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PREFACE TO THE SECOND EDITION

The first edition of Fractal Creations introduced PC owners to the fruits of the
collective efforts of aloose-knit international fractal programming team known
as Stone Soup. Readers enjoyed dazzling fractal graphics on their super VGA
PCs, and spent hours of fascinated pleasure exploring countless fractal
landscapes and discovering a visual cormnucopia of images. The first edition
came with version 15 of Fractint, the program providing all this excitement.
The authors and publisher received appreciative feedback from readers about
the software and book, which topped several computer book best-seller lists.

The very success of Fractal Creations provided an even wider audience for
Fractint, which in turn accelerated the contributions of new ideas, code, and
examples. Fractint version 16 followed rapidly on the heels of version 15, and
introduced the compact PAR format for storing fractal parameters that has
become a defacto standard for the exchange of images among fractal enthusiasts.
After version 17, the handwriting was on the wall: a new edition of Fractal
Creations was needed. This book introduces Fractint version 18.2, the third
significant upgrade of Fractint in the less than two years.

FRACTINT VERSION 18.2

iv

Fractal Creations, Second Edition provides several significant improvements over the
first edition. Fractint version 18.2 has many major new features; there are more
than 25 new fractal types. Fractint has always had a reputation for speed, but clever
programmers contributed new code that significantly speeded up many functions.
Fractint can now create images of virtually unlimited resolution; the 2048 x 2048
limit is now gone. New interactive exploration tools have been added—you can
now see the Julia set metamorphose before your eyes as you move a cursor around
the Mandelbrot set. Fractint also has a better facility for displaying the orbits
underlying the generation of fractals, which have an eerie beauty in their own right.

Fractint version 18.2 hasa greatly expanded capability to generate and display
4-D fractals in both two and three dimensions. A new kind of fractal using
hypercomplex numbers is introduced for the first time in this book.

All the popular features of the earlier edition are still available; you can make
fractals dance with color cycling, turn clouds into mountains or planets with the
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3-D facility, view fractals in full stereo with the included red/blue glasses, zoom
into any fractal to impossible depths, and design your very own fractal formulas.

OVER 1900 SPECTACULAR FRACTAL GIF IMAGES ON CD ROM

This book contains a CD ROM with over 1900 high resolution 1024 x 768 GIF
images of stunning artistry and quality. These images required 6886 hours to
generate on fast 33 and 66 mHz 486 PCs—that’s over 280 days of continuous
computer time—yours for the price of thisbook! Since the first edition, anumber
of talented fractal artists have emerged. Every single fractal type now has a new
example contributed by a Fractint user. A new chapter Fractal Recipes, explores
some of these glorious images in detail, so you can gain insight into how their
artistry was achieved.

C AND ASM SOURCE CODE PROVIDED

Youdon'thave tobea programmer to enjoy Fractint; butifyou are a programmer,
you will enjoy the source code. You can learmn how to enhance the program and
add your own features. After all, that is what the Stone Soup origins of Fractint
are all about! The complete source code for Fractint version 18.2 is provided on
the companion CD. A chapter describing the source code and demonstrating
how to add a fractal type has been added. The Fractal Types chapter now
documents the locations of the source modules for every fractal type.

NEW INTERACTIVE IFS DESIGN PROGRAM

The earlier Fractint version 15 could display Iterated Function Systems fractals,
but it did not provide an easy way to design and edit them. Fractal Creations,
Second Edition includes Fdesign, an interactive tool for designing IFS fractals. You
can use a mouse to visually modify the IFS transformations and instantly see the
results on the screen. Fdesign is another Stone Soup program, and can share files
with Fractint.

EXTRA FOR UNIX WORKSTATION FOLKS: XFRACTINT

Want to create fractals on a fast RISC workstation? Xfractint, the experimental
port of Fractint to UNIX/X, isincluded on your companion CD. You can compile
the Xfract source code yourself, or run the ready-to-use executables for Sun,
Sparc, DEC Alpha, or MIPS workstations.

We hope that you gain as much enjoyment reading this book and using this
software as the programmers have had developing the software!



Dear Reader/Viewer:

What is a book? Is it perpetually fated to be inky words on a paper page? Or can a
book simply be something that inspires—feeding your head with ideas and creativity
regardless of the medium? The latter, I believe. That’s why I'm always pushing our books to
a higher plane; using new technology to reinvent the medium.

I wrote my first book in 1973, Projects in Sights, Sounds, and Sensations. 1 like to
think of it as our first multimedia book. In the years since then, I've learned that people want
to experience information, not just passively absorb it—they want interactive MTV ina book.
With this in mind, I started my own publishing company and published Master C, a book/
disk package that turned the PC into a C language instructor. Then we branched out to
computer graphics with Fractal Creations, which included a color poster, 3-D glasses, and
atotally rad fractal generator. Ever since, we've included disks and other goodies with most
of our books. Virtual Redlity Creations is bundled with 3-D Fresnel viewing goggles and
Walkthroughs & Flybys CD comes with a multimedia CD-ROM. We've made complex
multimedia accessible for any PC user with Ray Tracing Creations, Multimedia Creations,
Making Movies on Your PC, Image Lab, and three books on Fractals.

The Waite Group continues to publish innovative multimedia books on cutting-
edge topics, and of course the programming books that make up our heritage. Being a
programmer myself, I appreciate clear guidance through a tricky OS, so our books come
bundled with disks and CDs loaded with code, utilities, and custom controls.

By 1993, The Waite Group will have published 135 books. Our next step is to
develop a new type of book, an interactive, multimedia experience involving the reader on
many levels.

With this new book, you'll be trained by a computer-based instructor with infinite
patience, run a simulation to visualize the topic, play a game that shows you different aspects
of the subject, interact with others on-line, and have instant access to a large database on the
subject. For traditionalists, there will be a full-color, paper-based book.

In the meantime, they've wired the White House for hi-tech; the information super
highway has been proposed; and computers, communication, entertainment, and informa-
tion are becoming inseparable. To travel in this Digital Age you'll need guidebooks. The Waite
Group offers such guidance for the most important software—your mind.

We hope you enjoy this book. For a color catalog, just fill out and send in the Reader
Report Card at the back of the book. You can reach me on CIS as 75146,3515, MCI mail as
mwaite, and usenet as mitch@well.sf.ca.us.

Sincerely,

W e

Mitchell Waite
Publisher
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INTRODUCTION

Thisbookisabout creating fractals—dazzlingand colorful images of infinite detail—on your
PC. This hands-on book comes bundled with Fractint, the preeminent fractal-generating
program. All the images on the book jacket and in the color plate section of this book were
created with this powerful program, which is the result of collaborative effort by an
international team of volunteer fractal enthusiasts. With this software and a PC, you can
quickly and easily begin creating your own fractals from any of the built-in fractal types. As
you become more proficient, you will discover an inexhaustible number of options for
coloring and transforming your images to suit your imagination. A beginner can create
images of striking complexity and beauty. But even an expert will find more than enough
controls and tools to challenge his or her adventurous creativity.

ORGANIZATION OF THE BOOK

Fractal Creations, Second Edition consists of the preface, this introduction, eight chapters,
three appendices, a color plate section, and companion disk and CD containing the
latest version 18.2 of the Fractint program and source code, the Fdesign program, and
example files.

Chapter 1: Installation

The first chapter tells you how to get Fractint up and running on your PC. If you are
an experienced computer user eager to begin creating fractals, you may find that the
Quick Start in this section is all you need to begin using the program. A more detailed
guided tour is provided in Chapter 3, Fractint Tutorial.
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Chapter 2: Fractals: A Primer

The second chapter describes fractals, the different varieties of fractals, how they are
generated, and their significance. The background provided here will enhance your
enjoyment of creating fractals by providing insight into what fractals are and how they
are generated.

Chapter 3: Fractint Tutorial

The Fractint tutorial is an extensive tour of the main features of Fractint. You will go
on a step-by-step tour through Fractint’s basic functions right up to some of the more
advanced functions. By the end of the tour you will know how to make many of those
spectacular color plate images.

Chapter 4: Fractal Recipes

In this chapter you can sample a gourmet feast of the very best fractal recipes created
by devoted Fractint users. You can learn by example the hints and tricks that the
experts use to make dazzling fractal images.

Chapter 5: Fractint Reference

Fractint is a multifeatured software program. This chapter tells you how to access all
the basic functions and unlock the secrets of Fractint’s advanced fractal-generation
options. This chapter has been updated to reflect the many new features of Fractint
version 18.2.

Chapter 6: Fractal Types

Fractint can generate the most extensive variety of fractals of any fractal program. At
last count, the main fractal type screen, which lists the different kinds of fractals
generated by Fractint, had 95 entries. As you will discover, the actual number of
possible kinds of fractals you can create with Fractint is much larger than that. This
chapter tells you about all of those different kinds of fractals, and is filled with dozens
of all-new examples you can try. For each of Fractint’s 95 fractal types, you will find
an example, the mathematical algorithm used to generate that type, and a reference
to the source code routines that implement the algorithm.
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Chapter 7: Making IFS Fractals with Fdesign

This chapter is about Fdesign, a companion program for Fractint (included on your
book disk) that lets you visually create and modify Iterated Functions Systems (IFS)
fractals. You can rapidly create bushes, trees, ferns, Sierpinski gaskets, wheat kernels,
telephone cords, and quilt patterns. The results of your creativity can be imported into
Fractint and displayed with Fractint’s powerful video support.

Chapter 8: Fractint’s Source Code

If you are curious about the inner workings of Fractint, you will find what you are
looking for in Chapter 8. The programmers tell you how to compile the program, and
walk you through key sections of code with explanations of how the fractal magic is
accomplished.

Appendices

There are three appendices, Appendix A, Fractint and Video Adapters, Appendix B,
Fractints and GIF Files, and Appendix C, Complex and Hypercomplex Numbers. These
appendices explain how Fractint’s video drivers work, give background on the main
file format that Fractint uses to store graphics, and introduce you to the mathematics
of multidimensional spaces that Fractint uses to create Fractals.

HOW TO USE THIS BOOK

Learning About Fractals

You will find a discussion of what fractals are, how they are generated, and the ideas
behind them in Chapter 2, Fractals: A Primer. This is the one chapter in the book that
does not require a computer—the only prerequisite is a lively curiosity.

For Those New to Fractint

The first three chapters provide a logical sequence for those encountering Fractint for
the first time. These chapters take you from Fractint installation and background
about fractals to a guided tour of Fractint’s many capabilities.



Users of Older Versions of Fractint

If you are already familiar with earlier versions of the Fractint program, you can start
with the tutorial in Chapter 3, Fractint Tutorial, to brush up on Fractint’s operation
as well as learn about some of the newer features. Then try out the Fractal Recipes in
Chapter 4. Consult Chapter 5, Fractint Reference, for acomprehensive review of all the
features of Fractint 18.2.

Reference Information

This book contains two chapters of useful reference information. Chapter 5, Fractint
Reference, documents the Fractint’s functions, commands, and menus. Chapter 6,
Fractal Types, provides a comprehensive description of Fractint’s fractal types.

For Programmers

xxii

You don'’t have to be a programmer to enjoy this book; but if you are, you will find
a wealth of useful information about programming fractals. The complete source for
Fractint is included on the distribution CD. The Fractal Types chapter (Chapter 6) tells
you where to find the routines used to generate each kind of fractal. Chapter 8,
Fractint’s Source Code, provides an overview of the code, tells you how to compile
Fractint, and describes the step-by-step process of adding a new fractal to Fractint.
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CHAPTER

INSTALLATION

In this chapter we’ll describe how to install the software that is bundled with
this book. We've also included quick start instructions for those who just can't
wait to start generating fractals. Chapter 2, Fractals: A Primer, provides a more
thorough guided tour of Fractint.

HARDWARE AND SOFTWARE REQUIREMENTS

Fractint will run on any IBM-compatible PC with at least 512K of free memory.
Ahard disk is highly recommended, but not required. Although Fractint can run
on text-only systems using its Disk/RAM video modes, displaying the fractals
generated by Fractint requires some kind of graphics video support. Fractint
supports the IBM CGA, EGA, VGA, MCGA, 8514/A, and XGA standards and the
VESA VBE standard. It also works with most other super VGA boards, Targa
boards, and Hercules-compatible monochrome graphics.

We have included a companion disk and a CD with this book. This disk
contains the files you'll need to install Fractint and the Fdesign program.

The disk distributed with this book is a 3-1/2" diskette, so you'll need a high-
density 3-1/2" disk drive to access it. If the machine on which you want to install
Fractint uses high-density 5-1/4" disk drives and you can locate another machine
with both types of disk drives, you can copy the files on your companion disk
toahigh-density 5-1/4" disk and perform the installation process from that disk.
The diskis not copy protected in any way, and the files will fit onto a high-density
5-1/4" disk.

The CD contains the Fractint source code and hundreds of exciting fractal
images. To use this disk you will need a CD ROM drive.



INSTALLING FRACTINT

LHa's SFX 2.10s

This program

will

Before installing any software package on your computer, it isagood ideato make
a backup copy of the floppy installation disk and store the original away
somewhere safely.

After you've made that backup copy, next insert the copy of the companion
disk or your CD into the computer and view the README file that is on it. The
mechanics of the book industry are such that the text of a book is finalized
before the companion disks, and it is always possible that we changed
something in either the Fractint program or its installation process after this
text was written. If that’s the case, you'll find everything you need to know
about any such changes in that README file. With that disk in your floppy
drive, view the README.COM file and see what it contains (we’ll use the A:
drive as an example) by typing

C:>  A:README.

To view the README file on the CD, change to the CD drive and type:

The file containing the Fractint program itself is FINSTALL.EXE. It is a self-
extracting archive file, which contains the “real” programs and their support files
stored in compressed form inside it.

To install Fractint and Fdesign on a hard disk, first create a new directory for
your Fractint files. Assuming you want to place the software in the \fractint
directory on drive C: and the A: drive is the source, enter the following
commands at the C:\> prompt to create a new directory and make it your current
one. Then, with your companion disk or your CD in the computer, run
FINSTALL to install Fractint and its related files on that new directory:

C¢:> md \fractint EE NTER

§ENTER)

C:%> cd \fractint (ENTER
C:\FRACTINT> a:\finstall

FINSTALL will list the name of each file as it puts it on your hard disk.
(c)1991, Yoshi
put FRACTINT.EXE and 1ts related files 1in your current directory.

Do you wish to proceed with this program?

orma v

FRCOINLBE
SIMPLGIF.EXE
FRACTINT.FRM
ALTERN.MAP
(etc)

C:\>
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Figure 1-1 Fractint’s initial scrolling credits screen

Installation from the CD-ROM will write 176 files to your hard disk. Installing
from the floppy will write 177 files to your hard disk.

MODIFYING YOUR DOS PATH

If you'd like to be able to run Fractint from any directory, you'll have to change
your DOS PATH to include the Fractint directory (otherwise, you'll still be able
to run Fractint, but you'll have to be in the Fractint directory to do so). You
probablyset your DOSPATH witha PATH statement inside your AUTOEXEC.BAT
file—if so, just add the Fractint directory to the end of that statement. Note that
changing your PATH this way won'tactually affect your DOS PATH until the next
time you reboot your computer. Your PATH statement will end up looking
something like the one here.

path c:\dos;c:\work;c:\games;...;c:\fractint

QUICK START

To start Fractint, simply enter its name at the DOS command prompt:
c:\ > fractint

Fractint takes a few seconds to start up, and then it presents you with its initial
scrolling credits screen (see Figure 1-1). This screen lists the names of all the
folks—and there are quite a few of them—who have contributed to the program
and helped make it what it is today.
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SELECTING A VIDEO MODE

Pressing with the scrolling credits screen active brings up Fractint’s MaiN
MeNu screen, with its highlight bar on the SELECT VIDEO MODE menu item. Press
again to select that highlighted menu item, and Fractint will bring up its
SeLeCT VIDEO MoDE screen. The highlight bar will be on a video mode appropriate
for your hardware. You can scroll the highlight bar up and down the list using
your cursor keys to choose an alternate video mode, if you want. If you have a
standard adapter (CGA, EGA, MCGA, VGA, or Hercules), Fractint should have
detected your video equipment and highlighted a reasonable starting choice. The
choices are

(F2—for EGA (16 colors)
F3)—for VGA, MCGA, and SVGA (256 colors)
(Fs—for CGA (4 colors)
(F6)—for monochrome CGA, EGA, VGA (2 colors)

(CoNTROL {(F6)—Hercules Monochrome Graphics (2 colors)

Press to select the video mode currently being highlighted. (You can
also select video modes directly without going through Fractint’s menu interface
by pressing the indicated function keys, such as (F2) for 16-color EGA mode.)

Fractint willimmediately begin drawingits initial image—the full Mandelbrot
set. For low resolution modes, this usually takes two passes. The first pass uses
large rectangles of color. The second pass adds more detail by breaking up the
large rectangles into smaller ones. For the full Mandelbrot set, this process is quite
fast—less thana second for 320 x 200 x 256 mode on a high-speed 486 machine.

ZOOMING IN ON AN IMAGE

Let’s bring up a zoom box, a device Fractint uses to control its zooming process.
Press several times. A rectangular outline will appear on the screen and
grow progressively smaller for each keypress untilit reachesaminimumsize. Use
the arrow keys to move this zoom box to someplace interesting (the areas on the
edge of the blue interior “lake” where there are lots of colors are the best) and press
(EnTeR). Fractint will clear and redraw the screen using the area of the initial image
that was within the zoom box.

If you have a mouse, you can also use it to control the zoom box. Holding
down the left mouse button, move the mouse “up” and away from you to bring
up and shrink the zoom box (go ahead—you don’t have to wait for Fractint to
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Figure 1-2a Using the zoom box Figure 1-2b The zoomed-in results

finish generating an image before you select a new one). Moving the mouse
toward you while holding down the left mouse button expands the zoom box.
To move the zoom box, just move the mouse without holding down any mouse
buttons. To perform the zoom, double-click the left mouse button.

Figures 1-2a and 1-2b show a Mandelbrot image with a zoom box on an
interesting area and the zoomed-in image that results when you press (ENTER).

SELECTING A NEW FRACTAL TYPE

Now let’s select a new fractal type. You can do this either directly by pressing (7),
or indirectly by pressing the key to bring back Fractint’s MaN MENU, using
the arrow keys to highlight the SeLEcT FracTAL TYPE menu item, and pressing
(ENTER). Fractint will bring up a rather formidable list of fractal types (see Figure
1-3), with the current one (MANDEL) highlighted. Select the lambda fractal type
(either by using your cursor keys to move the highlight bar or by typing its name
in directly) and press (ENTER). Press again at the parameter entry screen to
accept the default values, and Fractint will begin generating the Lambda fractal.
You can zoom in on interesting places in that fractal type just as you did with the
Mandelbrot fractal.

COLOR CYCLING

If you have a VGA video adapter, press the (¥) key to enter Fractint’s color-cycling
mode. While the colors are changing on your screen, press to randomly
select new sets of colors and the frequency with which they mutate into new
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Figure 1-3 Fractint’s fractal types menu

colors. The (€ and (3 keys change the “direction” of the color cycling, and the
and @ keys change the speed at which they change. (You can see why Fractint
has been called the 90s version of the Lava Lamp.) You exit from Fractint’s color-

cycling mode by pressing (EsC).

GETTING OUT OF FRACTINT

Pressing a few times will back you out to the Main Menu and finally to a
prompt asking if you want to exit Fractint. Pressing (¥) brings you back to the
DOS prompt.

Now that you've gotten Fractint installed and running, you're ready to turn
to Chapter 2, Fractals: A Primer, to learn what fractals are and to Chapter 3,
Fractint Tutorial, to learn more about Fractint.
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CHAPTER

FRACTALS:
A PRIMER

Impossible patterns with dazzling color and mind-stretching detail—you've
seen them on the covers of magazines, in calendars, on book jackets, and on
personal computer screens. They are fractals, a product of the marriage between
contemporary mathematics and the high-tech computer revolution, but never-
thelessa phenomenon as close to home as the flowers in your garden or the pores
on the back of your hand. You may have the impression that understanding or
exploring fractals requires a mind-numbing amount of higher math. Fortu-
nately, that’s not true at all.

This chapter will teach you what fractals are and where they come from. You
will see what properties fractals share in common, and explore the inner
workings of the chaos that creates distinctive “families” of fractals. You will learn
about interesting applications of fractals in a variety of different fields. Finally,
you will learn how fractal images are created using today’s personal computers.
Having read this chapter you'll be in an excellent position to appreciate the
power of the Fractint program that comes with this book. Fractint is described
in the next chapter.

WHAT ARE FRACTALS?

Fractals are beautiful, fascinating designs of infinite structure and complexity—
the sort of intricate patterns that capture attention and evoke a sense of childlike
wonder. A fractal is a mathematical object that has detailed structure no matter
how closely you look at it, no matter how great the magnification. Look at
Figure 2-1, which is a famous fractal called a Julia set. This fractal was generated



Figure 2-1 A computer-generated fractal

onacomputer with the software enclosed with this book and then printed. If you
hold the page at arm’s length, you see spirals within spirals in repeating patterns,
sequences of ever-shrinking structures vanishing into nothing. If you hold the
page up close, your eyes will discover more detail right down to the limit of what
the printer could record. What you see here is an infinite pattern somehow
compressed into a finite space.

So what are fractals anyway? As you make your way through this book, we
will present ample evidence of the diversity of the universe of fractals and the
multiplicity of ways of answering that simple question.

THE TRUTH ABOUT FRACTALS

12

We could go on and on about beauty and complexity, but let’s begin this
discussion with a healthy dose of reality. Far from being esoteric abstractions,
fractals are much closer to heme than you realize. In fact, it is the nonfractal
objects that are unreal, abstract, and removed from our experience. Let’s see why
that is true.

From the beginnings of our education, formal and informal, we have been
given simplified categories for organizing the world. The world is a sphere.
Throw a baseball in the air, and its trajectory is a parabola. Nations are divided
into the First World, the Second World, and the Third World. All of these
statements have a strong element of truth, but none of them turns out to be
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accurate when you look closely. We have known since the Apollo days that the
earth is really pear-shaped. After allowing for air resistance, the pear-shape of the
earth, and even the gravitational field of the moon, the path of a baseball is not
exactly a parabola. As is increasingly evident today, the elements of the First,
Second, and Third Worlds are intertwined in a complex way in the economies
and societies of every country.

This may sound like splitting hairs, but our everyday lives are full of clothes that
don’tfitexactly, lawns that are not all grass, and new cars with dentsin their fenders.
Yet we cannot do without our approximations and generalizations; we wouldn’t
make it through the day without simplifying assumptions. We say, “I'll meet you
around 3:00,” “enough to feed thirteen,” or “about five people per car,” instead of
“meet me at 3:12:26,” “enough food to feed five adults, two children, and six
elderties,” or “exactly 4.67359 people per car.” There is too much detail in the world
to fully grasp. Indeed, there is too much detail in a single leaf for the mind to absorb.

It is irritating in the extreme to have one’s simplified picture of the world
shown to be inaccurate, but it happens to us all the time. Galileo faced the
Inquisition for maintaining that the Earth was not the center of the universe, and
Einstein (as an employee of the Trademark office) puzzled us with the idea that
matter and energy are the same thing. The history of the investigation of fractals
contains many stories of discoveries made by outsiders who collected the
forgotten crumbs of different disciplines and prepared a feast of chaotic
structures and theories. Many scientists are finding that “curious counter-
examples” turn out to be the basis of a whole new field of inquiry, and worse yet,
a field developed by others! But we are getting ahead of ourselves.

Fractals are about looking closely and seeing more. Fractals have to do with
bumps that have bumps, cracks that have crookednesses within crookednesses,
and atoms that turn out to be universes. Fractals have to do with the rich structure
of our universe that spans all scales from the uncountable galaxies at unthinkable
distances to the mysterious inner electric flashes and vibrations of the subatomic
realm. Let’s see how looking closer, results in fractals.

HOW LONG IS THE COASTLINE OF BRITAIN?

Benoit Mandelbrot, of IBM’s Thomas J. Watson Research Center, did ground-
breaking work in the theory of fractals and indeed, he coined the very word
“fractal.” Dr. Mandelbrot poses a simple question to introduce the notion of a
fractal in his book The Fractal Geometry of Nature (Wilt Freeman and Company,
1977, 1982, 1983, ISBN 0-7167-1186-9): How long is the coastline of Britain?
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Four segments
each 1.414 long

Eight segments Sixteen segments
/ each 0.765 long each .3900 long

Figure 2-2 Approximating a circle with polygons

This deceptively simple question turns out to expose a deep problem and give
us insight into the question “What is a fractal?”

Consider how to approximate the length of the “coastline” of a circle of radius
1. Of course you probably remember the answer in advance from high school
geometry: using the formula for the circumference of a circle; it is 2 x T X 1where
T = 3.14159..., orapproximately 6.28. Asa way of arriving at a similar result, you
could inscribe a square inside the circle, and estimate that the circumference of
the circle is the sum of the sides of the square, as shown in Figure 2-2. Notice that
if the results are not accurate enough, all you have to do ismake a polygon with
more sides. Table 2-1 shows how the circumference of an inscribed polygon gets
closer and closer to a limiting value, which is the “real” circumference.

This procedure is both mathematically correct and intuitively clear, and it
works in much more general settings than this example. Estimating distances of
curves by approximating them with a series of straight segmentsisatried and true
procedure that surveyors use when mapping terrain. Think of the side of the
polygon (or the length of a sighting with a surveyor’s scope) as a giant measuring
stick. If the curve being measured is “well behaved”—which is to say, continuous
and smooth—the answer can be made as accurate as desired by making the

{3 Table 2-1 The circumference of polygons inscribed in a unit circle
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ENGLAND

8 200-Mile Segments = 1600 Miles 102 25-Mile Segments = 2550 Miles

Figure 2-3 Approximating the length of the coastline of Britain

approximating measuring sticks smaller and smaller. Presumably this same logic
can be used to find the length of the coastline of Britain. Or can it?

Let’s try the same trick on a map of Britain, using measuring sticks 200 and
25 mileslong. Figure 2-3 shows the measuring stick approximations overlaid on
a map of Britain, and Table 2-2 shows the numerical results.

What is strange is that as the measuring stick gets smaller, the coastline
estimation seems to grow larger—much larger than we would expect from the
way the circumference approximation went! What is happening?

The difficulty is not too hard to see. The coastline of Britain is very, very
irregular, full of large and small bays, inlets, tiny rivers, and complex, rocky
shores. A long measuring stick does not bend with these many twists and turns,
but cuts directly over them. A shorter measuring stick fits snugly inside these
nooks and bays, thereby increasing the length estimate. Imagine doing this
exercise crawling on your hands and knees, measuring the coastline of Britain
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{3 Table 2-2 Estimation of the length of the coastline of Britain
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| DEFINITION:

DEFINITION:

with a measuring stick an inch long. Every small rock that you traversed around
would increase your coastline estimate. Your answer for estimating the coastline
would be astronomical!

There is afundamental difference between a curve like a circle and a curve like
the coastline of Britain. This difference separates the shapes of classical geometry
from the shapes of fractal geometry. So here’s your first definition: the coastline
of Britain is a fractal, and our difficulty in measuring its length suggests a
definition of a fractal. For present purposes, we will use informal intuitive
definitions, because the formal definitions are beyond the scope of this book.

If the estimated length of a curve becomes arbitrarily large as the measuring
stick becomes smaller and smaller, then the curve is called a fractal curve.

While you might not be impressed by this observation of increasing distances
measured as we go from circles to coastlines, what is magic is that the idea behind
the fractal definition can be generalized to cover many other kinds of shapes
besides curves. In all cases the basic idea is the same—the difficulty of measuring
is due to the irregularity of the object being measured, and it is an irregularity that
continues to the most microscopic level. This difficulty of measuring is related
to the idea of dimension. Lines and curves are one-dimensional, planes and
surfaces are two-dimensional. It turns out that the idea of “dimension” can be
broadened in such a way that these unusual curves have a dimension greater than
1. This leads us directly to an alternative way to define a fractal.

The fractal dimension of an object is a measure of its degree of irregularity
considered at all scales, and it can be a fractional amount greater than the
classical geometrical dimension of the object. The fractal dimension is
related to how fast the estimated measurement of the object increases as the
measurement device becomes smaller. A higher fractal dimension means
the fractal is more irregular, and the estimated measurement increases

CHAPTER 2



more rapidly. For objects of classical geometry (lines, curves), the dimen-
sion of the object and its fractal dimension are the same. A fractal is an
object that has a fractal dimension that is strictly greater than its classical
dimension.

Because the British coastline is, after all, a curved line, which is a one-
dimensional geometric object, the fractal dimension of the coastline must be
alittle greater than 1. According to Mandelbrot, the mathematician Lewis Fry
Richardson estimated it to be approximately 1.2. Indeed, mathematical “one-
dimensional” curves can be defined which are so irregular that their fractal
dimension approaches 2.0. One such “impossible” curve is the boundary of
the Mandelbrot set, which was proven to have a fractal dimension of exactly
2.0 by Japanese mathematician Shishikura in 1991. (We'll introduce you to
the Mandelbrot set a bit later in this chapter.) In the discussion that follows,
we will use the term “fractal geometry” to refer loosely to the theory of these
bumpy shapes, just as classical geometry is the theory about regular “well-
behaved” shapes.

EXAMPLES OF FRACTALS OCCURRING IN NATURE

Now that we know the coastline of Britain is a fractal, where else are these fractals
lurking? If you have begun to catch the gist of where this discussion is heading,
you have probably already guessed the answer: nearly everywhere!

Mountains as Fractals

Have you ever noticed how difficult it is to estimate the distance to a far-off
mountain? Nearby foothills and distant mountains have a very similar appear-
ance. A mountain is, therefore, a fractal; its roughness is the same at different
scales. Indeed, the fractal characteristic of hills and mountains quickly becomes
a practical matter for a hiker; a mild two-hour dash to the top can turn out to be
a full day of traversing up and down through ravines and canyons that were
invisible from a distance. The fun of scrambling up rocky hillsides is in part due
to the fact that the fractal dimension of a mountain applies at all scales, including
the scale of ahuman being. Figure 2-4 shows a range of snow-capped mountains
as seen from the Space Shuttle. The snow line traces the fractured boundaries of
ravines, forming a fractal dimension and a pattern amazingly similar to some
computer-generated fractals we will be discussing a bit later in the book.
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Figure 2-5 Footprint on the moon

Figure 24 Snow-capped mountains from

Clouds

18

space are fractals

A good example of a fractal is found in the famous picture of a footprint on
the moon (see Figure 2-5). Near the footprint is the gravelly crust of the moon’s
surface. Consider now the “earthrise” view of the Earth and moon (see Figure
2-6). This picture is most famous for its beautiful view of the Earth, but look at
thelunarlandscape and compare it with the lunar surface in the footprint picture.
Take the footprint out of the picture, and the surface of the moon seen from two
feet away looks somewhat like the moonscape viewed from two hundred miles
away. When a tiny piece of a fractal is similar to the whole, we say that the fractal
is self-similar. Understand that a self-similar object is generally a fractal, but not
all fractals are self-similar. A fractal is defined by the irregularity that must exist
atall scales, but this irregularity need not look the same. Both views of the moon’s
surface show fractal irregularities, but the fractal dimension appears to be higher
in the footprint picture than in the more distant moon surface.

Clouds are wonderful examples of fractals. Sophisticated travelers are supposed to
prefer aisle seats on airplanes, but real fractal lovers choose window seats so they
canwatch clouds. You may wonder how something as soft and fluffy asa cloud can
be a fractal, which we have defined in terms of jagged but measurable bumps and
rough irregularities. Clouds are indeed roughly irregular and jagged; it's just that
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Figure 2-6 Earthrise

the colors reflected by the cloud blend smoothly into one another, giving the
impression of smoothness. A little later in the book, we will try to convince you that
clouds and mountains from a fractal perspective are virtually the same thing,

Waves as Fractals

Not too long ago, before the study of turbulence (the complex movements of air
or fluids) had advanced, it was believed that ripples on the surface of a lake were
uniformly distributed. You can verify for yourself that this is not true, and that
the pattern of ripples is very nonuniform, by simply taking a closer look at abody
of water on a windy day. Every lake surface has smooth patches. On a windy day
they might be small, and on a calmer day larger, but they are always there. But
if you look closely at the rough areas of the surface—the areas full of wavelets—
you will see that the “rough” areas are not completely rough, but themselves
contain little glassy smooth areas. The surface of alake is complex in the extreme,
consisting of a nested pattern of smooth and rough areas that continues as you
look closer and closer. This kind of nested mixture of the smooth and rough is
atrademark of fractals. We can say that the lake’s surface has a fractal dimension.
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The Human Circulatory System

Fractal Ferns

Blood flows from the heart in arteries and
back to the heart in veins, but what happens
in between? The arteries and veins are con-
nected by a network of smaller and smaller
vessels successively branchingand rebranch-
ing until they finally meet in microscopic
capillaries. A wonderful article in the Febru-
ary 1990 Scientific American entitled “Chaos
and Fractals in Human Physiology” describes
and vividly pictures this phenomenon.
Branching patterns are a characteristic qual-
ity of certain classes of fractals.

Amore common example of fractal branching
can be found in the plant kingdom. Trees,
shrubs, and flowers all develop with a branching growth pattern that hasa fractal
character. Figure 2-7 shows a computer-generated fractal fern based on a
deceptively simple scheme of symmetry and self-similarity. (The fern was made
using Fractint.) Each frond of the fern is a miniature of the whole. A real fern is
not self-similar to the same degree, yet it is amazing how realistic this idealized
fern looks.

Figure 2-7 A fractal fern

Weather: Chaotic Fractals

20

Some of the most powerful supercomputers run complex mathematical models
inan attempt to improve weather forecasts, yet the success of this effort has been
only moderate. A large investment in computational power purchases the ability
to predict only a short time further ahead. The reason for this is not that the
computers don't work or that the mathematical modelers are inept, but rather
that the dynamics underlying the weather are chaotic. Weather is like the flow
of water over Niagara Falls. If you launch a small leaf above the falls, where will
it be a few minutes later after going over the falls? While a personal computer can
easily project the orbit of the Voyager spacecraft far beyond the solar system, the
largest supercomputer cannot with any accuracy predict the path of our ill-fated
leaf. This is the difference between well-behaved and chaotic dynamic systems.
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DEFINITION: A dynamic system is a collection of parts that interact with each other and
change each other over time. A dynamic system is chaotic if small changes
in the initial conditions of the system make large changes in the system at
later times.

The weather is a great example of a dynamic system. There are periods of
relative calm and predictability, like the calm patches on a disturbed lake. But as
anyone knows who has watched the weather report on TV, there are always
fronts on the way, low pressure areas with huge spiral arms slowly moving to the
east, and hurricanes brewing in the Gulf.

Satellite pictures of weather patterns have become part of our cultural
memory. They have a certain beauty to them and, from our present perspective,
a definite fractal character. If the weather forecaster could zoom the satellite
picture, theaudience would be treated to a succession of equally detailed pictures
as the nation-sized low pressure areas would give way to a picture of the wind
eddies around their city. These satellite pictures can be thought of as a graphical
representation of the chaotic weather dynamics. So now we have another route
to fractals—pictures of chaos.

QUALITIES OF A FRACTAL

The different qualities of fractals that have come up in the discussion of these
examples are summarized here. Note that not all of these qualities apply to
every fractal.

Qualities of Fractals

Fractional Dimension

Complex Structure at All Scales

Infinite Branching

Self-Similarity

Chaotic Dynamics

4 8468848

OF WHAT PRACTICAL USE ARE FRACTALS?

The second most common question about fractals after the question “What are
they?” is some variation of “What earthly use do they have?” This is really a very
reasonable question, but somehow we fractal fanatics are irritated by it. Imagine
going to Paris to see the Mona Lisa in the Louvre and having someone ask you,
“Fine, but what is it good for?” Let’s see.
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Mathematics Education

Fractals are educational because they visually illustrate many basic mathematical
concepts and make an ideal vehicle for challenging visually oriented people with
those concepts. While appreciation for graphic images is not a substitute for
learning the abstract foundations of mathematics, being intrigued by dazzling
fractal images can motivate a student to dig through math texts looking for
abstract concepts that made possible the visual feast.

Mathematical subjects related to fractals include algebra, geometry, complex
numbers, and calculus. Fractals are an excellent topic for high school or even
junior high school mathematics projects. College level topics related to fractals
include complex analysis, measure theory, and the study of dynamic systems. A
recurring theme of this book is that one need not be an expert mathematician to
appreciate fractals, so that if you have never had the opportunity to study any of
these subjects, you can still understand and enjoy the fundamental concepts of
fractals. However, those who do take on the discipline of learning mathematics
will discover that the pleasures of fractal exploration will take on an added
dimension. This is why educators are using fractals in the classroom: fractals are
both accessible to beginning mathematics students and rewarding for math-
ematical experts.

Understanding Chaotic Dynamic Systems with Fractals

22

While we rarely think this way, the life of a person in our complex society is
utterly dependent on both artificial and natural dynamic systems. As stated
earlier, a dynamic system is a collection of parts that interact with each other and
change each other over time. A few examples are power systems, the weather
system, computer systems, the national and international economies, and even
the planetary ecosystem. We say that dynamic systems can exhibit behavior that
is stable or chaotic. You may feel the word “chaotic” has negative connotations,
butitisnot necessarily abad thing. When you are roasting marshmallows in front
of a campfire, eyes transfixed on the swirls of smoke twisting up to the sky, you
are observingachaotic dynamic system made up of the air, the fire, and the wood.
That kind of chaos is a pleasure, not a problem. But when chaotic interactions
in power systems cause blackouts, that is usually a bad thing (although certain
criminals would disagree). Useful computer algorithms (equations) are some-
times stable for some numeric inputs but exhibit chaotic behavior for others. This
is an important concept to understand—certain formulas “blow up” and act
unpredictably at certain times. If such an algorithm is used to calculate the
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position of a spacecraft just before reentry, the experience of the chaotic region
of the algorithm could have serious consequences.

As we have already seen in connection with our example of the weather
system, fractals are intimately connected with chaos. In fact, many computer-
generated fractals are created precisely by operating otherwise well-behaved
algorithms in regions where they exhibit chaotic behavior. The study of fractals
cannot help but increase our knowledge of the chaotic behavior of dynamic
systems. Indeed, fractal theory may not only help us predict the weather, but it
can also help us understand the limits of our ability to predict it.

Image Compression

Now let’s move from chaos and weather to discuss an application of fractals for
computers.

Most personal computer users have encountered compression utility pro-
grams like ARC and PKZIP that allow computer files to be stored in a very
compact form. These compression programs take advantage of the redundancy
in the pattern of bits that make up your file. Because graphic images consume so
much disk space, the need for this kind of file compression becomes even more
critical when storing graphics. For example, one of the typical new “super” VGA
graphics adapters can display an image 1024 pixels wide and 768 pixels high
(pixels are the small dots that make up a computer screen image). Because each
of these pixels can be any of 256 colors, it takes 8 bits (or 1 byte) of storage to
store the color of each pixel. Multiply that out, and you discover that storing one
graphics image from your screen at that resolution on your disk takes 786,432
bytes. That is enough to take up the better part of a high density floppy disk. After
compressing—with PKZIP, for example—the same image can often be stored in
less than half the space.

Fractals are complex images, but what is amazing is that in many cases they
can be represented by simple equations that consume little space. In some cases
it is possible to identify patterns of self-similarity in a graphics image and
compress the image storage by describing the self-similarity rather than drawing
the image. Taking this concept one step further, consider attempting to identify
fractal patterns in any graphics image, and compress storage by representing the
images with the rules generating the fractals. Imagine how powerful a technique
this could be, as it might allow huge amounts of information to be reduced to a
simple formula made of five or six characters! Michael Barnsley, one of the
originators of the Iterated Function Systems approach to generating fractals
which we will discuss shortly, has started a company that is building a
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commercial venture on this idea of graphics image compression. Fractal
compression techniques can reduce the size of an image as much as 100 times,
reducing megabytes of files to tens of kilobytes.

The ability to compress and decompress images is one of the keys to new
multimedia applications. If a single high-resolution image takes up nearly a
megabyte of disk space, consider that a minute of high-definition full-motion
video running at 30 frames per second requires 1800 times more, or nearly a
gigabyte (a thousand million bytes!). Fractal compression techniques are right
in the thick of the technological revolution that is bringing animation, video, and
sound to your desktop.

Computer-Generated Simulation

Another application of fractals that you have almost certainly encountered is the
computer-generated simulation. Movie special effects is a whole industry that
uses many different technologies, ranging from animated artwork to miniature
models. We have discussed how many natural objects from mountains to planets
have a fractal nature. With the advent of high-resolution graphics workstations,
it is possible with fractal formulas to generate realistic-looking computer images
of mountains, trees, forests, and flowers. In the movie Star Trek: The Wrath of
Khan, the entire Genesis planet was a computer-generated fractal landscape. The
computer game Starflight also pioneered the use of fractal planets. In the popular
mind, computer-generated images have a mechanistic quality, perhaps due to
the fact that popular computer drawing and paint tools come equipped with a
repertoire of regular shapes such aslines, circles, and squares. Butif the computer
artist can supplement those with tools that create fractal shapes with roughness,
texture, branching, and cloudiness, then the mechanistic feel will be replaced by
the earthiness of the natural world. Figure 2-8 shows a scene of a fractal planet
as viewed from a fractal landscape. This example was generated with Fractint.

A New Artistic Medium

24

Fractals represent an opportunity for artists to utilize the computer as a new
medium for their creativity. Fractals are appearing on book covers, wall paper,
calendars, greeting cards, textile patterns, and gallery art. The use of fractals in
artisnotnew. Artists from Van Gogh to Escher have incorporated fractal patterns
and textures into their works. The difference is that earlier artists used the paint
brush or the wood cutting knife, whereas today a new generation of artists have
added the computer to their artistic tool kit.
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Fractals Are Fun!

Figure 2-8 View of a fractal planet from a fractal landscape

Despite the fact that it gets easier every day to argue the case that fractals are
practically important, somehow all the evidence for the usefulness of fractals
cited in the previous sections doesn’t address the real truth. People who are
visually oriented (who enjoy color, texture, and patterns) are naturally
attracted to fractal images. People who in addition to visual imagination have
a mathematical curiosity (no matter how little they may have actually studied
math) are irresistibly attracted to fractals. If you also have a philosophical bent
and an interest in computer graphics, then you and fractals are a match made
in heaven!

The ultimate practical application of fractals is the sheer enjoyment of
exploring, creating, coloring, designing, modifying, and contemplating fractal
images. So enjoy!

AN EMERGING VIEW OF NATURE

If you have begun to feel that more is at stake with fractals than beautiful pictures,
education, or image compression, you are on the right track. The universe of
fractals is related to the larger issue of understanding the relationship between
humanity and the natural world.
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Ever since the Greek philosophers, our Western civilization has operated out
of the idea that lines, circles, squares, and the other objects of classical geometry
were somehow “more real” than nature itself, which contains few pure examples
of these shapes. Plato postulated a world of ideal forms, where these perfect
shapes resided unblemished. The world of human experience to Plato was but
an imperfect and dim image of this ideal world. So, unable to live in this perfect
world, people remake the natural world into a vision of imaginary perfection.
Buildings must be square, shelves straight, and wheels round. Could it be that
this deeply held world view is behind our impulse to bulldoze forests and build
cities of rectangular skyscrapers laced with a gridwork of roads? Whatever the
case, the irony is that classical geometry is used to model nature, and when the
model doesn't fit, we blame nature rather than the model. What's worse, we then
try to change nature to fit our preconceptions!

While this doesn’t necessarily mean we should make buildings shaped like
fractals, it does mean fractal geometry can often provide a much better “fit” for
nature, and it can describe with great accuracy the structure of clouds, moun-
tains, rivers, ferns, waterfalls, sunflower fields, and even weather. It may also tell
us more about how the weather works, secrets of biochemistry, or insights about
how people think. What is of critical importance is not the success of the theory
but the reorientation of fundamental thinking. This emerging view of nature is
more humble, less arrogant. The deepest wonder is for nature itself, not our
attempts to model it and understand it.

THE COMPUTER AS A WINDOW TO CHAOS

26

Examples of chaotic phenomena occur in many disciplines, often as anomalous
special cases. In many fields you will find the term “ill-behaved” used to describe
chaotic phenomena. This is a very curious term indeed, reminiscent of the
attitude that children are meant to be seen and not heard, and when they are
heard, they are bad! But can the notion of “badness” be extended to a
mathematical algorithm? That question will remain unanswered here, and this
observation will have to suffice: where fractals are concerned, what is “bad” often
turns out to be “good”!

For years, algorithms that exhibited chaotic behavior were ignored or relegated
to footnotes for the curious. Chaotic behavior represented as numbers is very hard
tounderstand. But make this chaotic behavior visual and it can be directly grasped.
With the advent of low-cost video adapters, a personal computer can now be used
as a tool to visualize such chaotic dynamics—a kind of window to chaos.
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We've spenta good deal of time drawing parallels between nature and fractals
and revealing ways in which fractals play a role in science. Now we are going to
go into more depth and explain how a simple fractal is generated on a computer.
You don't need to understand this to run the Fractint program that comes with
this book, but knowing how the fractal is made can enhance your appreciation
of its physical beauty. This section explores a whole category of fractals created
by what are known as escape-time algorithms. The term escape time comes from
the fact that the algorithm works by determining when an orbit “escapes”a circle,
as will be explained shortly. The most famous fractal of them all, the Mandelbrot
set, is an example of this kind of fractal. Let’s have a look at how pictures of this
fractal are created.

How the Escape-Time Mandelbrot Set Is Generated

To appreciate the Mandelbrot fractal, a few mathematical preliminaries are
needed. We will be using these ruleslater, so it is important to understand them.
Asset is simply a collection of objects of some kind. In the case of the Mandelbrot
set, those objects are the coordinates of locations on a mathematical map called
a complex plane. These particular locations are unusual because they are made
up not of the familiar real numbers we use every day for finances and measuring,
but rather what are called complex numbers. You might think of this plane as
being like the map of a city with rectangular streets and avenues. The horizontal
x-axis might be considered a collection of avenues numbered from some large
negative number to some large positive number. The vertical y-axis would be
unusual in that it corresponded to complex numbers (from negative large to
positive large) with names such as 2i, 6.529i, and so on.

Complex Numbers and the Complex Plane

What's so special about complex numbers? First, they are unusual in that they
are composed of two parts, one a familiar real number, the other an imaginary
number. The imaginary part is most interesting. With real numbers, you are not
allowed to take the square root of a negative number, and this operation is not
defined. With complex numbers this is allowed, and the result of taking the
square root of -1 is a special number designated “i.” Looking at this another way,
the number i is defined to be the complex number such that i* = -1, which is
another way of saying that i is the positive square root of —1. Every complex
number is written as the sum of a real number and another real number times

i, or a + bi, where a and b are real numbers.
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Figure 2-9 The complex plane

« _»

Complex numbers can be graphed using a “real” axis (for the “a” part), and
an “imaginary” axis (for the “bi” part). Figure 2-9 shows how the complex number
a + bi can be graphed using the two axes on the complex plane. The place where
the two axes meet is called the origin, and it is the graph of the complex number
0 + 0i, which is the familiar zero from ordinary arithmetic.

Using the fact that i? = -1, and the ordinary rules of arithmetic, you can do
arithmetic using complex numbers. Forexample, (2 + 3i) + (-3 + 2i) is calculated
by adding the real parts together and the imaginary parts together, so the answer
is(2-3)+@B+2i)or-1+5i.

Multiplying is a little more complicated. The expression (2 + 3i) x (=3 + 2i) is
multiplied out exactly as it would be in algebra if “i” were a variable, and then
simplified using i? = —1. (See the Appendices for more on complex numbers.)

Distance Between Complex Numbers

The next concept we need to grasp is how to calculate the distance between
complex numbers. Imagine our map is Manhattan, New York City, US.A,,
where the x-axis is avenue numbers and the y-axis is street numbers. Suppose
you live in a high-rise apartment at 3rd Street and 4th Avenue, and a friend of
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Figure 2-10 Distance between two apartments in Manhattan

yours lives in another high-rise apartment at 6th Street and 8th Avenue. You are
peeking at your friend’s apartment through a telescope, and you are curious
about how far away it is. For the sake of this discussion, let’s say that New York
blocks are perfectly square, so a block along the avenues is the same distance as
ablockalongthe streets. Figure 2-10 shows the section of Manhattan where these
two apartments are located.

You can see that the apartments are on the ends of the hypotenuse of a right
triangle. One leg of the triangle, the leg that runs in the avenue direction, is three
blocks long. The other leg is four blocks long. Using the Pythagorean theorem,
we see that the distance is five blocks, because 5 = (3 2 + 4%) . The formula for
the distance between two complex numbers is based on the same idea. The
avenuesare the real part of the complex number, and the streets are the imaginary
part. The distance formula is just the Pythagorean theorem applied to the
distance between the two complex numbers in the x-axis (real) direction and the
y-axis (imaginary) direction.

To make a Mandelbrot set, we need the distance from the complex number
a + bi to the origin 0 + Oi. Again, this distance is the square root of the sum of the
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squares of the real and imaginary parts, or ( a*+ b?). A shorthand way of writing
the distance of a complex number a + bi to the origin is |a + bil, and when you
see this you will know that the real meaning is ( a* + b?).

The purpose of using this formula in generating a Mandelbrot set is to test
whether a point is inside a circle of radius 2 centered on the origin of the complex
plane. If |a + bil is less than 2.0, then the point is inside the circle.

Orbits Escaping

The Mandelbrot set is a collection of points “in” the complex plane. In order to
calculate it, each point is tested to determine if it is in the set. Here is how the test
works. Each test point determines a sequence of points in the complex plane
(you'll see how in a minute). A sequence is just a list of numbers. A subscript is
used to show which is the first, the second, and so forth. This sequence is
sometimes called the orbit of a particular test point, such as the point .37 + .4i.
Think of the sequence of complex numbers as the successive positions of an
object flying through space, and you'll see why the term “orbit” is appropriate.
Here is how a point passes or fails the test for membership in the Mandelbrot set.
If any of the points in the orbit belonging to the test point are outside the circle
of radius 2 about the origin, then that test point is not in the Mandelbrot set. If
all of the orbit positions remain inside the circle of radius 2, then the test point
is in the Mandelbrot set. Another way to put this is that the Mandelbrot set
consists of all those test points whose orbits never escape the circle of radius 2,
but whiz around forever inside it. A radius larger than 2 would work fine for this
computation, but a smaller radius would not. A radius of 2 is the smallest radius
centered on the origin that contains all of the Mandelbrot set, as you can see in
Figure 2-15 later.

The Magic Formula

Howare these orbits generated from the test point? Suppose the point tobe tested
is the one on the origin, a + bi, which we will call c. The sequence of points
generated by ¢ will be designated z, 7, 2,, Z,,....2,,.... Here, 2, is the nth member
of the sequence, counting up from zero, and the little dots are mathematics-ese
for “and so forth.” (By the way, mathematicians often use the letter “z” to represent
complex numbers.) The first element of the sequence is the origin itself, so z, =

0 + 0i, that is, z, = 0. To get the next member of the sequence, the previous
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Figure 2-11 The escaping orbit of .37 + .4i

member is multiplied times itself and added to c. This sequence-building process
is described by the equation:

Z,=0+0i
7 =70+cC

— 2
Za=%,*¢

n

Let's use a real point. Suppose the test point is the complex number .37 + .4i.
Calculating z, is easy, because z, =z} + (.37 + .4i),and 27 =0x0=0,s0 2, = .37
+.41. The distance of this point to the originis (.37 >+ .4%), orabout.545, which
is well within the circle of radius 2. The orbit value z, is (37 + .41)* + (37 + .40).
To simplify all this, we used acomputer, and Table 2-3 shows the orbit sequence
values for the test point .37 + .4i, along with the distance from the origin of each
sequence member. Figure 2-11 shows a plot for the orbit formed by this table
of results.

The orbit starts to swing outward, comes back in to a minimum value at z,,
and swings around outward again. The orbit member z , is the first one to
wander outside the circle. Notice that the distance value for z , is 3.950, almost
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{Q Table 2-3 Test orbit for .37 + .4i
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double the test circle radius. Figure 2-11 shows a plot of this escaping orbit in
the complex plane.

This calculation shows that the test point .37 + .4i is not in the Mandelbrot
set because its orbit escapes the circle.

Nonescaping Orbit

Now, changing this complex number just a little gives a different result. Table
2-4 shows the orbit of the point .37 + .2i. One hundred values were calculated,
but not all are shown. Figure 2-12 shows a plot of these values. Note how nice
and symmetrical this orbit is.

If we calculate the orbit sequence starting with .37 + .2i, we discover that the
orbit values stay well inside the circle for the first 100 orbit calculations. This
raises a difficult point. Just because the first 100 orbit values are within the circle
doesn’t mean some later values might not escape. So how do we ever know a test
point is in the Mandelbrot set? The answer is that we don't really know. The
Mandelbrot set has to be approximated by setting an arbitrary cutoff point for
how many orbit values will be tested. So for practical purposes, we will say that
the test value .37 +.2i is in the Mandelbrot set because for the 100 orbit sequence
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Figure 2-12 The nonescaping orbit of .37 + .2i

{C} Table 2-4 Test Orbit for .37 + 2i
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values that were checked, all were confined to the inside of the test circle.
(Fractint will let you control this parameter.)

Even though only the first 100 values were checked, this orbit looks very
convincingly nonescaping. It has a definite, regular inward spiral that appears to
converge to a point. Fractint lets you watch these fascinating orbits come and go
while fractals are being generated.

Testing Points on a Grid of Pixels

‘
The next problem is how to test all the points of a given set in the complex plane.
This is impossible, because there are an infinite number of points to test. But it
isn’t really necessary to test all the points. The end objective is to make a picture
of the Mandelbrot set on a computer screen. The solution is to map the pixels
(small dots) on the computer screen to the complex plane, and just test those
complex points that correspond to a pixel. This is analogous to coloring just the
street/avenue intersections of our Manhattan map. When this is accomplished,
the pixels are colored one color if the test value is in the Mandelbrot set and
another color if it isn't.

The Final Black-and-White Mandelbrot Algorithm

Let’s summarize what has been said so far, and use a little different notation. For
each pixel on the computer screen, the complex number 2l mapped to that
pixel will be tested to see if it is in the Mandelbrot set or not. 2,15 the test point
we discussed in the above examples and therefore, it is the variable “c” in the
Mandelbrot orbit formula z, | = 2} + ¢, so c =z, ,. We will define the sequence
of complex numbers (called the orbit sequence) Z:2;2Zyr+1 %, Thefirstmember
of the orbit sequence is the origin, so z, = 0 + 0i. The second member of the
sequence, z,isz¢ +c, or citself, because z is zero. If cis already outside the circle,
we are done; we'll color the pixel white.

The next member of the sequence, z,, is the first member squared plus ¢, so
Z, = 2} +c. We must plug values into z and then, after checking to see if the new
value is outside the circle, the process is continued. In general, each orbit value
Z ,, is obtained from the previous orbit value z by the formulaz  =z?+c. Each
timeanewz_, iscalculated, it is tested to see if it has gone outside the circle. The
notation for the “in the circle test” for our Mandelbrot set is whether Iz [< 2,
where |z |isthedistance ofz_  tothe center point.Iflz  |<2istrue, we calculate
another iteration; otherwise, the orbit value has escaped, and it is colored white.
Because we do not want the computer to calculate forever, we have a maximum
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Figure 2-13 The Mandelbrot set

iteration cutoff, and if the orbit has not escaped by the time we reach the cutoff,
we quit and declare the point to be colored black.

Figure 2-13 shows the result of this little exercise, after all the points are
colored. The Mandelbrot set consists of all those points we colored black—
points whose orbits always stayed inside the circle (or at least, stayed inside for
aslongasthe computer had the patience to wait). The actual edge of what appears
as a lake in the figure is a fractal in the sense of the definitions earlier in this
chapter. Measured with a small enough “inchstick,” the coastline of “Mandelbrot
Lake” can be made aslong as you want, and it has a fractal dimension greater than
one. In fact, as mentioned earlier, the fractal dimension of the Mandelbrot set
coastline has been proved to be exactly 2.0!

Where Did the Mandelbrot Fractal REALLY Come From?

In Figure 2-13, there are two big “bays” in the giant lake, with smaller baylets at
the top and bottom. The whole “coastline” is an impossibly detailed nesting of
bay within bay within bay, resulting in thin, jagged filaments shooting out like
static electricity. This is a picture of a set that James Gleick called “the most
complex object of mathematics.”

By contrast, look at this formula, placed in abox in big, bold, type, so you can
soak it in, meditate on it, and wonder about it.

— 2
Zn+l_zn+C
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Appearances of simplicity CAN be deceiving. The innocent-looking formula
E = mc? somehow encapsulates the whole theory of relativity. Not so here! The
formulaz  =z2+ cisnomore, and no less, than what it appears to be. Take a
number, square it, and add a number. Nothing fancy, nothing tricky, nothing
profound. No energy, no mass, no real-world stuff. Yet this is the formula which,
given a few more details about repeating and checking for escaping orbits,
generates the beautiful Mandelbrot set. How can such a wondrous and complex
shape come from the absurdly simple formulaz =22 +¢?

Here is a hint of where to look for the mysterious source of fractals. The
formulaz =2z’ +cmaybe simple, but it is repeated over and over a very large
number of times. At the very beginning of this chapter, a fractal was described
as an infinite pattern somehow compressed into a finite space. There are many
different kinds of fractals, but however different they are, and however diverse
their methods of generation, all of them have some kind of iterative scheme at
their heart. The secret: formulas play a less important role in a fractal compared
to the powerful iterative powers at work. Yet this is not enough to explain fractals
completely. And while the mathematics and iterative method are logical, perhaps
limitations of the human mind will never allow us to fully understand fractals.
For some of us, therein lies their appeal!

Fractals Come Alive: Escape-Time Colors

Our black-and-white coloring scheme for each test point works well and provides
a beautiful picture. But there is one more refinement we can make to an escape-
time fractal that gives an additional and wondrous level of beauty: color.

As we have seen, the Mandelbrot set is defined as the set of points that do not
escape acircle of radius 2 under iteration of the formulaz | = z2 +c. And we have
seen that a picture of the Mandelbrot set can be made with two colors, one for
the points in the set, one for the points out of the set.

A brightly colored variation of this picture can be created by coloring the
points not in the Mandelbrot set—the ones that escaped the circle—according
to how long it takes for the orbit to escape, where “how long” means “how many
orbits.” We can use the number of iterations to control the final color of the test-
point pixel. So if the test point escapes in a few iterations, the color might be red,
but if it takes many iterations it might be colored blue.

Figure 2-14 shows a more graphic view of how escape-time coloring works.
The bottom of the diagram shows the familiar two dimensions of the complex
plane, with two points, a and b, selected for testing and coloring. The vertical
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Figure 2-14 Escape-time coloring of the Mandelbrot set

axis represents the number of times the formula is iterated. You can imagine
the 2" radius escape circle as a cylinder that is stretched into the third
dimension, with the iteration values on the vertical scale color-coded. There-
fore, the vertical level reached when the orbit escapes the cylinder is used to
color the test pixel according to the color for that level. In our figure we show
that test-point a forms a spiral that never escapes, so it is colored the “inside
color” (blue in Fractint). Test-point b forms an orbit that escapes on the seventh
iteration, so it is made of color number 7. The overall effect of this coloring
scheme divides the Mandelbrot fractal into bands reminiscent of terraced rice
paddies on a Chinese mountainside. Each band represents an area where the
orbits began with points in these bands escaping at the same iteration. Near the
“lake edge” of the Mandelbrot set, these bands become more and more irregular
and bent. You can see these bands in Figure 2-15.

The spectacular stripes of the Mandelbrot set rendered with escape-time
coloring should not be confused with the set tself. Mathematically, the Mandelbrot
set consists of the solidly colored lake area. The colorful stripes are points near
the Mandelbrot set. However, this distinction is not always made, and in popular
fractal parlance the Mandelbrot set often refers to the whole colorful image, lake,
stripes, and all.
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Figure 2-15 Colorized Mandelbrot set (in grayscale with the parts identified)

Zooming In, or How Big Is a Fractal?

Because there are too many possible points to calculate—infinitely many, to be
exact—the complete Mandelbrot set cannot be rendered ina picture. Incommon
computer practice, a rectangular grid of numbersis used for the values of ¢, using
as fine a mesh as can be resolved by the particular graphics hardware. To show
the complete Mandelbrot set, these numbers must span a range of approximately
—2to2inthexandy dimensions. However, there isno law that says that the entire
Mandelbrot set from -2 to 2 must be included in the view. By pickinga very small
piece of the complex plane as the comners for the calculation grid, a small area of
the fractal can be blown up with a zoom effect. For example, you can look at the
fractal between—.2 and +.2 or—.02 and +.02. From what we have said so far, you
are undoubtedly prepared for the fact that the Mandelbrot set, being a fractal, is
just as interesting in these microscopic views as it is in the large view. That is
indeed the case. Even a modestly powered personal computer can reveal
staggering patterns in the Mandelbrot set. Let us do a quick calculation to see
just how staggering.

Fractint allows zooming in successively on a fractal ten times, magnifying the
image a maximum of about twenty-five times for each zoom. The limit of ten
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Figure 2-16 A giant Mandelbrot set swallows the orbit of Mars

zooms is not mathematical but is due to the computer’s representation of
numbers. At the most extreme magnification, a small patch of the complex plane
about .000000000001 units (1.0 x 10-'2) wide fills the screen. Using the width
of the Mandelbrot set 0of 4.0, and the width of the physical screen of about a foot,
we can calculate how big the complete Mandelbrot set would be at the same scale.

Don't peek at the answer—guess! You're probably thinking that the giant
Mandelbrot set would be pretty big, or we wouldn’t be making much of a fuss
about it, so maybe the answer is...ahhh...as big as a football field? Maybe a mile
ortwo? Well, that'sabrave answer. Indeed, if the giant Mandelbrot set were amile
wide, and because there are about twenty-five million different one-foot-wide
patches in a square mile, you could be pretty busy charting them all.

But a mile wide is the wrong answer. A Mandelbrot set blown up to the scale
of the most extreme zoomed view you can see on your PC screen with Fractint
would be one billion miles wide. That is ten times the distance from the Earth to the
sun; a bit greater than the diameter of the orbit of Jupiter. Figure 2-16 shows the
relative sizes of this giant Mandelbrot set and the solar system.

What are the chances, then, that in your fractal explorations you will find a
piece of the Mandelbrot set never before seen with human eyes? Not only pretty
good, but virtually certain, as a matter of fact. You may have heard of a company
that for a fee will name a star after you and record it in a book? Maybe the same
thing will soon be done with the Mandelbrot set!

Mandelbrot and Julia Sets

Although the magnitude of exploration possibilities so far discussed is already of
an astronomical size, you should be warned that the parade of endless fractal
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vistas has not even begun! The Mandelbrot set can be viewed not only as a
fascinating fractal in its own right, but as an infinite “catalog” of a related class of
fractals, called Julia sets. Each point of the Mandelbrot set may be considered an
index pointing to a specific Julia set. These Julia sets are named after the French
mathematician Gaston Julia, who discovered them.

Here is how Julias are formed. Consider a point ¢ in a picture of the
Mandelbrot set, and let it be inside or outside the “lake” that is the Mandelbrot
set proper. Given this fixed point c, let’s apply a slight modification of the
escape-time algorithm for calculating the Mandelbrot set. In the calculation of
the Mandelbrot set, the ¢ in the formula 22 + ¢ was set to the value zm,‘which
changes for each pixel being colored. In the Julia set calculation, by way of
contrast, the value of cis kept fixed for the entire image and just z changes. This
little trick results in a new type of fractal. Changing the value of ¢ changes the
entire Julia set to another Julia set. Thus, there is no one Julia set, but rather an
infinity of them, one for each value of c. That same number ¢ corresponds to
one point of the Mandelbrot set, so that one point may be considered as the
index of the Julia set.

Figure 2-17 shows a picture of the Mandelbrot set surrounded by smaller
pictures of Julia sets, with numbers connecting the Julia sets with the correspond-
ing index points on the Mandelbrot set.

Note that Julia sets whose Mandelbrot index is inside the Mandelbrot lake
have a lake themselves, whereas index points well outside the Mandelbrot lake
do not have alake. Some of the most interesting Julia sets have an index near the
shore of the Mandelbrot lake. As the index approaches the shore from within the
Mandelbrot lake, the Julia set lake’s shoreline becomes more and more convo-
luted, until it explodes into fragments just as the index “hits the shore.” In fact,
this phenomenon can be used as the definition of the Mandelbrot set (which is,
yourecall, just the lake part of the escape-time picture of the Mandelbrot set). The
Mandelbrot set consists of exactly those Julia indices of Julia sets with lakes in one
connected piece.

Thisidea of one fractal beinga catalog forawhole family of other fractalsisa quite
general idea. Later on in the book, when we are discussing other kinds of fractals,
we will refer to the catalog fractal as the Mandelbrot form, and the family of fractals
that correspond to the indices as the Julia form. This relationship makes sense even
though the iterated formulas used to calculate the fractals are very different than
the familiar 22 + ¢ formula. When we want to make it clear that we mean the original
Mandelbrot or Julias, we will speak of the “classic” Mandelbrot/Julia.
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Figure 2-17 Julia family

The Ubiquitous Mandelbrot Set

In physics and mathematics, there are certain numbers that appear over and over
again, sometimes in completely different contexts. A good example is the
number 7. The definition of T comes from geometry; it is simply the ratio
between the circumference and diameter of a circle. But T is ubiquitous: it pops
upagainand again in connection with waves, power systems, complex numbers,
exponentials, and logarithms.

In a similar way, you will find the familiar bulging shape of the Mandelbrot
set reappearing over and over in miniature form, both within itself and as a detail
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Step 2 Step 6

Step3 Step?

Step4 Step 8

Figure 2-18 Fractal zoom in steps

within totally different fractals. Figure
2-18 shows several “baby Mandelbrots”
within a sequence of successively greater
magnification zooms.

Given the fundamental nature of
fractals, which has to do with the exist-
ence of infinite detail, at greater and
greater magnification, it is not too
surprising to find baby Mandelbrots
inside the original Mandelbrot fractal.
But suppose we use the same approach
to fractal generation (coloring pixels by
iterating a formula), but change the for-
mula to something completely different,
say, z ., = CX cosine(z ). This formula
doesn’t look anything like the Mandel-
brot formula, and neither does the
generated fractal. Yet buried within
the fractal is the shape shown in Fig-
ure 2-13. Another baby Mandelbrot!
This is not an isolated example—it hap-
pens again and again. The ubiquitous
Mandelbrot set shape is to fractal theory
what the number is to mathemat -
ics and engineering. Indeed, the plaque
on the Pioneer spacecraft should
have contained a Mandelbrot set
engraving!

Now that we've covered the Mandelbrot
in great detail, let’s take a look at some
other kinds of fractals.

Higher Dimension Mandelbrot and Julia Sets

Because the idea of Einstein’s relativity theory has permeated popular conscious-
ness, most people have heard of the idea of spaces with more than three
dimensions. So you are probably not surprised to discover that fractals can be

defined with four dimensions.
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Four-Dimensional Number Systems

The classical Mandelbrot and Julia sets use complex numbers, which have the
interesting property that they are two-dimensional (can be represented naturally
as points on the plane) but still have all the algebraic properties of familiar real
numbers. You canadd, subtract, multiply, and divide them and all the usual rules
of arithrnetics apply. Why not use higher dimensional numbers instead of
complex numbers? If a complex number may be represented as x + iy, why not
define x + iy + jz + kt, for some suitable i, j, and k, where x, y, z, and ¢ are real
numbers? Extending our analogy mentioned earlier connecting complex num-
bers with New York addresses, x and y might refer to streets and avenues, and
zmight be the floor of a building where someone lives. The fourth dimension is
a bit harder, perhaps we could think of t as referring to the date and time.

Asit turns out, there are several alternative ways to mathematically define four-
dimensional extensions of the complex numbers along these lines. None of these
extensions quite satisfy all the arithmetic properties of real numbers, but they can
be used to define fractals. These alternatives were studied extensively by mathema-
ticians at the turn of the century. (See Appendix C, Complex and Hypercomplex
Numbers, for more details about two- and four-dimensional numbers.)

The most famous four-dimensional extensions of the complex numbers are the
quaternions, which are very useful in physics. Because no four-dimensional
number system can satisfy all the algebraic properties of real numbers, some
property must fail. For quaternions, g, x g, and q,x q, are not always the same (the
commutative law of multiplication fails). Alan Norton, an associate of Benoit
Mandelbrot at the IBM’s Thomas J. Watson Research Center, introduced the world
to quaternion Julia sets in 1982, and John Hart extended this work in 1989.

In the Fractint program that comes with this book, we resurrect a forgotten
four-dimensional number system from the dustbin of mathematical history, the
hypercomplex number system, and use it to generate four-dimensional fractals.
Hypercomplex numbers satisfy the commutative law, but you cannot always
divide by nonzero numbers (the existence of multiplicative inverses of nonzero
elements sometimes fails). However, hypercomplex numbers have the advan-
tage over quaternions that familiar mathematical functions such as sine, cosine,
and the exponential function that work with complex numbers can easily be
extended to hypercomplex numbers. Four-dimensional fractals use the fact that
the fundamental formula used to generate Mandelbrot and Juliasets, 2> + ¢, works
just as well using quaternions or hypercomplex numbers as regular complex
numbers. But the resulting Mandelbrot or Julia fractal is four-dimensional
instead of two dimensional!
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Figure 2-19 Explaining an apple to a flatlander

Visualizing Four-Dimensional Fractals

Given that you and I live in three-dimensional space, it is hard to imagine a four-
dimensional fractal. The classic satirical book Flatland (Edwin A. Abbot, Dover
Publications, NY, 1952) discusses problems imaginary creatures living in two or
three dimensions might have understanding higher dimensions. Our solution is
the same as the solution of the Flatland characters. As three-dimensional creatures
we can understand four-dimensional objects in terms of three-dimensional slices.
1f you wanted to explain an apple to a two-dimensional creature living somehow
inaplane, you could show him several different slices (cross-sectional views) of the
apple. Figure 2-19 showsaflatland creature contemplating apple slices. Now think
of yourself as a three-dimensional “flatland” creature and look at the three-
dimensional “slices” of a hypercomplex Julia set shown in the Figure 2-20.

“,
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Figure 2-20 3-D slices of a 4-D Julia set printed on a 2-D page

One way to visualize a four-dimensional object is to think of the fourth
dimension as time. You could imagine that the hypercomplex Julia fractals shown
inFigure 2-20are snapshots ofasingle mutating fractal taken at different times. Our
imaginary flatlander could use the same trick to visualize an apple. We could create
a “mutating apple slice” animation for our flat friend by filming a sequence of
horizontal slices a frame at a time, moving from the bottom to the top of the apple.
We could then project the movie onto the flatlander’s plane. He would see a circular
apple slice grow in size as the plane moved to the fat part of the apple, then become
smaller and smaller until it vanished entirely. But because you and I know that the
appleis “really” three-dimensional, this approach is not too satisfying. Fortunately,
you can just create and enjoy 3-D “slices” of hypercomplex and quaternion fractals
without solving this knotty philosophical problem, or for that matter even really
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understanding what these four-dimensional numbers “really” are! You'll learn how
to do this with the Fractint program later in this book.

Newton’s Method-Escape to Finite Attractor

46

After this brief excursion to higher dimensions, we return to the more familiar
world of two-dimensional fractals. The escape-time method of generating
fractals we have discussed so far might be called “escape to infinity.” The test for
when an orbit has escaped (strayed outside a circle of radius 2) is really a test for
escaping to infinity. In the case of the Mandelbrot and Julia orbit formulas, once
the orbit value gets outside that circle, if you were to continue to calculate the
orbit it would spiral outward forever. In this case we say that “infinity is an
attractor” for the orbit. It is as if infinity were a magnet trying to attract the
Mandelbrot orbit values to itself. And we can imagine that the orbit test point is
trying to keep the orbit values in check.

Escape to a Finite Attractor

Asimilar kind of fractal image is generated by measuring the escape time to a finite
value rather than infinity. One example of this creates fractals using what is called
Newton’s method. (Newton, as you probably recall, was a famous physicist who
invented—that is, discovered—a great many truths about moving objects and
gravity. He also discovered some clever math techniques.) For example, every time
you press the square root button on a calculator, you are using Newton’s method.
Newton’s method is a way of doing a calculation by beginning with a guess for the
answer, and repeatedly applying a formula that transforms the guess into a better
guess. The series of answers so generated converges rapidly to the correct answer.

Consider the problem of finding the cube root of 1. This is the same problem
as finding the solution to the equation z°~ 1 = 0. The solutions to this equation are
the numbers that when multiplied by themselves two times (z xz x2) give 1 asan
answer. You might think that this is a silly problem, because the answer is clearly
the number 1, because 1% = 1. What makes the problem interesting is that when
complex numbers are considered (the same kind of numbers we just discussed in
connection with the Mandelbrot calculation), there are actually three solutions to
the equation. These three answers are three equally spaced points on a circle of
radius 1. They are the complex numbers 1 +1i0,~1/2 +13/2,-1/2 - i3/2

Figure 2-21 shows the three cube roots of 1 distributed on the unit circle in
the complex plane, and what happens to several initial guesses when fed into the
Newton’s method formula.
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Figure 2-22 Newton’s method fractal for the
cube root of 1

Figure 2-21 The three complex cube roots of 1

The Newton’s method approach is very similar to the Mandelbrot set cal-
culation. The pixels on the screen are mapped to complex numbers in the same
way. For each complex number 2, corresponding to a pixel, an orbit sequence
24,2}, %2, 15 generated. This time the orbit sequence is generated by a slightly
more complicated formula, z | =(22°+1)/32>. But the main difference is that with
Newton’s method the criterion for “escape” is different. For the Mandelbrot set,
escaping meant that the orbit got outside a circle of radius 2 centered on the origin.
The orbits that got too close to the “magnet” at infinity were attracted to it. But in
the case of Newton’s method, there are three magnets, one located at each of the
cuberoots of 1 around the unit circle. Orbits escape (or perhaps we should say they
die) when they are irreversibly attracted to these magnets. Each test-point pixel is
colored according to the magnet that captures its orbit.

But what happens when the test point guess is between two of the three
possible attracting values? The answer is chaos! Areas colored according to the
ultimate destination of the orbit become intertwined in an infinitely complex
pattern, as Figure 2-22 reveals.

Newton’s method is an example of where fractals turn up in situations that
engineers want to avoid. That square root button on your calculator has a
purpose—to find the square root. The first guess your calculator makes before
applying Newton’s method is designed to be close enough to the final answer so
that the algorithm will work effectively to find the square root. If the algorithm
doesn’t work for bad initial guesses, then it is the job of the calculator designer
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to avoid those values. The designer will be out of a job if he or she builds a
calculator where an “ill-behaved” initial guess is used and the calculator gives the
wrong answer.

Generating a Newton Fractal

Here is how to use Newton’s method to generate a fractal. Start with a grid of
complex numbers that more than covers the unit circle and our three cube roots
of one. The corner values might extend from -2 to 2 in both the xand y direction.
Assign colors to the three answers. Fractint uses dark blue, light blue, and green.
Eachnumber, z ,in the grid is used as an initial guess for the Newton’s method
calculation. Set z, = 2, , and successively apply the Newton formula to get a
sequence 2, 2, %,,. ... Each time the formula is iterated, the orbit is checked to
see if it has come near one of the roots. If it does, the calculation is finished, and
2, isassigned the color of the root that captured it. The areas near the three roots
end up being solidly colored with the color for that root. In between the roots,
the three colors twist together in an intricate braided pattern. These solid areas
are called basins of attraction, because they show all the starting points that end
up converging to a particular attractor. Figure 2-22 shows this intriguing fractal,
which might be said to be based on the applied mathematician’s nightmare—the
indecision of Newton’s method!

Chaotic Orbits and the Lorenz Attractor

48

The discussion of escape-time fractals introduced the idea of an orbit as a series of
points that can be imagined to be the path of a flying object. The only concern for
the orbit was the time required to escape outside some radius, or the time required
to be captured by an attractor (that is, the number of iterations required). The orbit
itself was not the main concern, but was simply a step in the calculation of a color
of a single point. However, orbits can be interesting in themselves.

The idea of plotting orbits from the equations describing dynamic systems is
as old as physics itself. One of the first triumphs of theoretical physics was the
demonstration that the elliptic orbit of a small moon around a large planet is a
consequence of the inverse square law of gravitation. The problem of determin-
ing the orbits of two objects revolving around each other is known as the
“two-body problem.” It has a simple and elegant solution. But adding a third
body to the dynamic system greatly complicates the orbits. Three-body orbits
can be complex beyond imagination.

Why is it, then, that every high school science student has the idea that
planetary orbits are ellipses, when there are, to make a slight understatement,
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more than two objects in the universe? No orbit in the physical world is exactly
anellipse. If the three-body problem has a complicated solution, how about the
trillion-body problem, the one that exists today in our universe!

There is, of course, a perfectly reasonable answer to this question. An ellipse
is a simple geometric shape that has simple mathematical properties that make
it very suitable for computational purposes, not to mention educational pur-
poses. In science and engineering, careful simplifications and approximations
can make intractable problems manageable, and they are a very important tool
in the engineering tool kit.

Yet this eminently reasonable answer is unsatisfying. This propensity to
imagine orbits in the simplest possible geometric terms is probably yet another
manifestation of a deep cultural bias toward a classically geometric way of
imagining the world. What do we find when we abandon the simple beauty of
the ellipse and contemplate chaotic orbits—which is to say, virtually every real
orbit? Fractals, of course!

Before launching into an example of a chaotic orbit, let us review a few
properties of the well-behaved orbits of classical mechanics. The elliptic
orbit is periodic. That is, the orbiting object describes a single path over
and over. Alternatively, under different conditions the orbit might be a
parabola or a hyperbola, in which case the orbit is not periodic, but the object
traverses the orbit exactly once. In all of these cases, the orbit is a well-defined
smooth curve.

In late 1963, Edward Lorenz published a paper on deterministic chaos that
included some plots of an unusual orbit. Like the Mandelbrot set, his “monster
curve” had a very simple mathematical description. But the behavior of this orbit,
which we will refer to as the Lorenz attractor, is far from simple.

The plot of the Lorenz attractor orbit consists of two connected spirals, in two
different planes at an angle to each other (see Figure 2-23). The orbit path would
swirl around inside one of these spiral areas, and then at random intervals it
would switch allegiances to the other, and so on back and forth. This orbit has
some bizarre properties. It is bounded, like the ellipse, and contained forever
within a delimited region of space. But unlike the ellipse, the Lorenz orbit is not
periodic;infact, itnever crossesitself or repeats. Its path s, therefore, an infinitely
long thread wound around in a finite space. The combination of these three
factors—bounded, infinitely long, never crossing itself or repeating—implies a
complex interweaving of arbitrarily close near misses of different strands of the
orbits like an air traffic controller’s worst nightmare! From all that we have
discussed so far, you will not be surprised to learn that such an orbit is a fractal.
Figure 2-23 isa plot of the first few thousand or so turns of this chaotic orbit. You
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Figure 2-23 The Lorenz attractor

can generate the Lorenz attractor in stereo 3-D using Fractint and even have it
generate tones as it’s being made.

Gaskets and Ferns—Iterated Function Systems

50

The essence of a fractal is to have detail at all scales, including the most extreme
magnifications. One way to achieve this characteristic is through self-similarity.
An object is self-similar if small pieces of itself are identically shaped versions of
the complete object, only on a smaller scale. One method of generating fractals
is to directly exploit this idea. A fractal can be defined by exactly specifying the
relationship between itself and its self-similar parts.

Michael Barnsley has developed thisapproach and named it Iterated Function
Systems, or IFS for short. An endless variety of fractals can be created in this way,
some of them eerily lifelike. Fractint and Fdesign can create a variety of bushes,
trees, and ferns using the IFS fractal type.

The Sierpinski Gasket

The Sierpinski (pronounced “sear-pin-ski”) gasket is a fractal that looks asif it is
made of Swiss cheese because it has so many holes. It’s called a gasket because
it seems to offer the structure you might find in a gasket—Ilots of passages
surrounding each other.

The Sierpinski gasket can be exactly specified by stating the rule governing its
self-similarity: it'sa geometric object built within a triangle, with the property that
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each of the three subtriangles formed from one of its corners and the midpoints
of the adjacent two sides is an exact self-similar replica of the whole triangle.

Another way to define this fractal is to use what are called affine maps. Anaffine
map is a transformation of an object that preserves its shape. The transformation
can rotate it, move it, enlarge it, or shrink it, but it must not distort the shape of
the object. Therefore, you must be sure your transformations do the same
operation to each point in the same way. Such a map is said to be contractive if
it always shrinks objects. The notion of a contractive affine transformation is a
formal way of saying “self-similar.” In other words, if there is a contractive affine
map between an object and itself, then the object contains a miniature image of
itself and is self-similar.

We can easily describe the Sierpinski gasket with three affine maps. Draw the
Sierpinski gasket ona graph, so that two of the sides are nestled against the x- and
y-axes. The corners of the triangle are the points (0,0), (1,0), and (0,1). Here are
three affine maps defining this Sierpinski gasket:

1. Map every point (x,y) to the point (x/2,y/2). This maps the whole triangle
to the lower left triangle by shrinking the scale by a factor of a half.

2. Map every point (x,y) to the point (x/2,y/2 + 1/2). This maps the whole
triangle to the upper left corner subtriangle by shrinking the scale by a
factor of a half and shifting up half a unit.

3. Map every point (x,y) to the point (x/2 + 1/2,y/2). This maps the whole
triangle to the lower right subtriangle by shrinking the scale by a factor of
a half and shifting to the right half a unit.

These three affine maps are shown in Figure 2-24.

In this particular example, the transformations are particularly simple because
no rotation was involved, only shifting and shrinking. The key insight into the
relationship between affine transformations and the Sierpinski gasket is to notice
that there are four possible triangles with sides equal to half the sides of the
original. The missing triangle is the center one, formed from the midpoints of the
three sides. Why is there no transformation mapping the whole triangle to the
center? Because there isnothing in the center—that is the “hole”! If the fourth affine
transformation were added, mapping the whole triangle to the middle, the result
would be rather boring—simply a filled-in triangle! Leaving out the center is what
creates the “Swiss cheese” effect with the missing centers of the triangles.

Barnsley suggests a method of generating the fractal from these affine
transformations that he calls the “chaos game.” Start with any arbitrary point
whatsoever. Pick one of the transformations at random and apply it to the point,
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Figure 2-24 Sierpinski gasket

plotting the result. Continue by applying a new randomly chosen transformation
each time to the last point, again plotting the result. But as the processis repeated,
the points generated will produce the shape of the Sierpinski gasket. The name
Iterated Function Systems for this kind of fractal comes from the repeated, or
iterated, application of these affine maps, or function systems.

The Sierpinski gasket is used here to illustrate IFS fractals, but it can also be
generated in two other ways by Fractint: by using L-systems (see Chapter 5, Fractint
Reference) and by using the escape-time methods we have discussed. The Sierpinski
gasket holds the record for the number of different ways that Fractint can create it.

A Fractal Fern

The Sierpinski gasket is a very unnatural-looking object, but it is just one of an
endless variety of images possible with the IFS approach. Another fractal that has
become almost a trademark of Barnsley’s work is the fractal fern.

Many plants have several levels of self-similarity because of their branching
structure. Some kinds of ferns have wide fronds at the base and narrower fronds
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Figure 2-25 The self-similarity of a fractal fern

in the center, tapering to a pointed tip. If you broke off the very bottom fronds,
you would end up with asmaller but still similar fern. Four iterated functions can
be used to define a very natural-looking fern. Two functions define the self-
similarity between the left and right fronds with the whole. One function defines
the stem. Finally, another function defines the relationship between the whole
fernand the fern less the bottom fronds. Figure 2-25 shows these self-similarities.
As with the Sierpinski gasket, probabilities are assigned to these functions, and
their repeated application seeded with an arbitrary starting point generates the
image, just as we described earlier for the Sierpinski gasket.
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THERE’S MUCH MORE

54

No introduction to fractals can completely cover the subject. This fractal
primer was designed to give you a taste and feel of what fractals are all about,
as well as a slight touch of the mathematics behind them. But because this is
really more a book about exploring and creating fractals, the next chapter
begins that exploration with a guided tour of the Fractint program that comes
with this book.
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A re you ready for a wild ride into the mysterious world of fractals? You
have come to the right place. This chapter is a guided tour of the Fractint
program. For a complete reference to the keystrokes and commands, see
Chapter 5, Fractint Reference.

Fractint generates fractals based on any of its 95 different built-in formulas. It
cansave and retrieve fractals in CompuServe’s Graphics Interchange Format (GIF)
format. Fractint has additional capabilities for generating 3-D transformations of
fractals, making stereo red/blue images, doing color-cycle animation, changing
color palettes, letting you experiment with your own fractal formulas (with no
programming needed), and much more. In this chapter you will learn how to
access some of these features and how to fine-tune the way the program operates.

This chapter will take you through a hands-on demonstration of Fractint’s
most basic functions. It is for readers who have never used Fractint before, but
it will also show you nooks and crannies of the program that even experienced
users may not have discovered. Don't feel restricted by our tour, however. You
may want to explore on your own at various points along the way. But do come
back. Fractint is the kind of program that grows on you because it has more
possibilities than you can absorb all at once.

UP AND RUNNING

We assume you have read Chapter 1, Installation, earlier in the book and that
Fractint is installed and ready to run in a directory that is included in your DOS
path. If not, go back and read the installation instructions, make sure you have



Figure 3-1 The Fractint road map

the correct files in your Fractal Creations directory, and come back here as soon
as you have Fractint running.

Fractint has a keystroke record and playback capability which you can use to
demonstrate anything the program can do. When in playback mode, Fractint
appears to be under the control of an invisible guide entering keystrokes at the
keyboard. Forademo of many of Fractint’s features using the keystroke playback
mode, change to your Fractint directory and run DEMO.BAT. Assuming that you
have placed your files in \FRACTINT, type

cd \FRACTINT

DEMO

This demo will show you some of Fractint’s fractal types, how to control
Fractint with menus, and how to create special effects using color cycling. You
can exit the demo mode at any time by pressing (€sc). Fractint will continue to
run, but will now respond to your keystrokes rather than the keystrokes stored
in the demo file.

A FRACTINT GUIDED TOUR

58

To make your tour easier, a road map is shown in Figure 3-1. This figure is a
simplified flowchart of the different functions of Fractint. As we go through the
tour, we will traverse the routes shown on the road map.

Here are a few conventions about how we will describe what you type to
invoke the various commands. When we want you to type in somethingliterally,
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{Q Table 3-1 Help navigation keys

we’ll show it in monospace and bold. For example, when you see “type in the file
name ALTERN.MAP,” you should type: ALTERN.MAP.

Some keys or other items will be referred to using key caps characters, as when
we write “press to return to the MaiNn Menu.” You should press the key.

We will surround variable names that you should not type in literally with the
“<”and “>” characters. When we write: “Type in at the DOS prompt FRACTINT
SAVENAME=<FILENAME>,” for example, you supply a file name to replace
<FILENAME>, so you would actually type in something like: FRACTINT
SAVENAME=MYFRACTAL.GIF.

Quitting Fractint

Before we start, let’s talk about the two most important commands in Fractint,
the Quit command and the Help command. The Quit command key is (€sc),
whichisused in every context to back out of whatever mode you are inand move
toward the MaiNn Menu. In fact, repeatedly pressing will get you to the Exit
FROM FRACTINT? (v/N) prompt, which then requires pressing only (¥) to return to
the DOS prompt.

The Help function is accessed by pressing the (F1) key from any place in the
program. The first Help screen you see is context-sensitive; it depends on where
you were in the program when you pressed (F1). Pressing (F1) a second time will
take you to the MaiN HErp INDEX, from which you can access all the Help screens.
Pressing exits the help mode. Table 3-1 summarizes the keystrokes used to
navigate through the help system.
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Figure 3-2 The famous Fractint credits screen Figure 3-3 The Fractint Main Menu

The Credits Screen

The Main Menu
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Fractint’s opening screen shown in Figure 3-2 is decidedly unconventional and
comes closer than anything else to symbolizing the participatory nature of
Fractint. We “Stone Soupers” (the creators of Fractint) considered giving Fractint
a more fashionable face for this book, but after a little thought we realized that
the opening screen has become indispensable. To our eyes, it's beautiful!

When you fire up Fractint you are presented with a scrolling list of the names
of people who have made the “stone soup” tasty by contributing the odds and
ends from their programming “cupboards.” (Notice that the list shows the Stone
Soupers’ CompuServe Information Service (CIS) numbers, so you can contact
many of us by electronic mail.) Fractint is truly a community project driven by
the excitement and imagination of an international network of kindred souls.
These people have two thingsin common: their fascination with fractals and their
desire to share their excitement with others.

Once you have used Fractint more than a few times, you will probably get in
the habit of immediately pressing to bypass the credit screen and move
straight to the Main Menu when you start Fractint.

Having paid homage to the legions who have contributed to the program, go
ahead and press to move to the Main Menu, which should look like
Figure 3-3.
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Using Fractint Menus

Fractint was originally a command-driven program, which means that various
keystrokes caused Fractint to execute different commands. All commands are
now also accessible from screens we call “menus,” which you can control with
the cursor keys. Throughout Fractint, you can select items from the menu by
moving the highlight to different menu items using the @, @, (©, and 3) keys,
and then pressing to execute the commands you have highlighted. Note
that the menus also tell you how to select the menu items by using direct
command keystrokes. For example, you can leave Fractint either by selecting
Quit FracTINT with the arrow keysand pressing (ENTER), or by pressing (ESC). Note
that none of the Fractint menus use the mouse.

Most commands can also be given at Fractint startup time using command-
line options. You can, for example, specify which video mode you want Fractint
to use by typing the following at the DOS prompt: fractint video=F3(ENTER).
This method can be useful when you have specialized commands to execute and
want to simply type them instead of using the menus. You can also execute
Fractint with command-line parameters from a batch file.

Fractint Modes

Fractint has five modes, each with its own set of commands. These five modes
are the display mode, the color-cycling mode, the orbits window mode, the
Julia window mode, and the palette editing mode. Of these five modes, the
display mode is the most important, because the main functions of Fractint are
accessible from within this mode. Color cycling, the orbits window, and the
Julia window are simple but secondary modes, while palette editing is a more
advanced function. Each of the five modes has its own set of commands, so it
isimportant for you to be clear at all times which mode is currently active. You
can press (F1) at any time to get help with the current mode. You do not need
to memorize keystrokes because menus and help screens can be easily
invoked, although you will find yourself quickly learning the most important
keystrokes. At first Fractint will be in the display mode. The other four modes
will be described a little later.

The Fractint Main Menu is divided into three sections, described in the
following paragraphs.
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New Image

The New IMAGE menu category contains commands that let you select a fractal
type and select the desired video mode. Fractint can calculate its images from 95
built-in formulas. But in order to create a new image, Fractint needs to know two
things: what video mode you want to display and what fractal type you want to
calculate (see Chapter 6, Fractal Types, for an explanation of fractal types). The
fractal type defaults to the Mandelbrot set. If Fractint is able to detect what exact
video hardware your PC has, a suggested video mode will be highlighted in the
list of video modes when you invoke the SeLect VipEo MopE function. (A video
mode is the screen resolution and number of colors supported by a particular
video adapter.) However, there is no universal default for the video mode; you
must choose a mode in order to generate an image. But before you go ahead and
choose a mode, let’s discuss the other menu headings.

Options

The OpTiONS menu items give you access toa variety of settings and special effects.
You won't need these right away, except possibly the ViEw Winpow option.
Because the time it takes to create a fractal is directly proportional to how many
screen pixels have to be calculated, the VIEw Winpow capability allows you to
specify a very small image that can be calculated very rapidly. This capability is
wonderful for the intrepid fractal explorer, especially one who does not have the
world’s fastest computer!

File

The FiLe menu category includes the ability to restore to the screen, or read in,
previously calculated images that were saved as GIF files. (See Appendix B,
Fractint and GIF Files for more about the GIF standard.) There are two ways to
restore files and duplicate them on-screen: either as they were originally
calculated, or by doing a 3-D transformation on the file. There are also useful
commands on the FiLe menu that let you enter DOS without exiting Fractint (you
return to Fractint by typing exi t), quit Fractint altogether with (€s¢), and restart

Fractint with (INSERT).
Let’s continue this tour through each of the Maiv Menu commands in detail.

Selecting a Video Mode

62

Using the arrow keys, choose SELECT ViDEO MODE from the NEw IMAGE section of
the Main MEeNU, and press (ENTER). You will be presented with alist of videomodes,
with a choice highlighted, that should look like Figure 3-4. This list showsaall the
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Figure 34 The Select Video Mode menu

various drivers built into Fractint for a variety of video hardware, along with
comments about each video mode. (A video driver is a specialized routine for
accessing the features of your video hardware.) The list includes not only
standard IBM-compatible modes such as the 320 x 200 VGA 256-color mode,
but some highly unusual “tweaked” modes that can squeeze extra resolution out
of a plain VGA board.

The F3 option means that pressing function key (F3) will directly select that
video mode. Each video driver has a key combination associated with it, and
pressing the key combination selects that video mode. You can also select
different modes by using the arrow keys to move the highlight to the mode you
want and then pressing (ENTER). Fractint has room for up to 100 different video
modes, each with a different key combination. Table 3-2 lists some examples to
show how the key-naming scheme works.

ﬂ Table 3-2 The Fractint key naming scheme
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{(3 Table 3-3 Video mode choices for different hardware

As an example, the mode labeled SF1 has a resolution of 360 pixels wide
and 480 pixels high, with 256 possible colors. This mode results from Fractint
directly programming the VGA registers, and it should work on any VGA
that is fully register-compatible with the IBM VGA. It is accessed by pressing
(FD).

For right now, however, our main concern is to find a good video mode for
getting started. If you have a CGA, EGA, or VGA adapter, Fractint will have
detected your adapter and chosen a mode for you, which you will see high-
lighted. If you have a VGA, for example, a good mode to use is the one labeled
F31BM 256-COLORVGA/MCGA, because it has relatively low resolution for fast
results, and because it has more colors—a decided plus. You won't immediately
notice the extra colors of a 256-color mode in the default Mandelbrot image that
we'll be generating shortly, but once you zoom deep inside a fractal and try
cycling the colors, you'll see the value of having more colors.

Once you select a video mode, it will remain current until you change modes.
Table 3-3 shows several good initial choices of video mode for different kinds of
video hardware. After you have created a really spectacular image, you may want
to regenerate it using a higher resolution mode.

If you have a super VGA board, try some of the SuperVGA/VESA Autodetect
modes. It’s a good idea to get out your video board documentation, find a chart
of video modes, and see which modes your board supports. For this tour,
though, any of the modes in Table 3-3 will be just fine.

Generating a Fractal

Go ahead and select a video mode. If Fractint’s highlighted choice looks
reasonable for your computer hardware, just press toselectit. If youdon't
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Figure 3-5 Your first Mandelbrot set

like the mode Fractint chose and you have a VGA board, use F3; for an EGA, try
F2; and for a CGA, try F5.

Now for the trigger—press (ENTER)! Pressing to select a video mode
begins generating a fractal image. The default image for Fractint is type mandel,
so you should now see a fractal being generated on your screen—the famous
Mandelbrot set. Your screen should look like Figure 3-5. Congratulations, you
have created your first fractal!

If you didn’t get Fractint to display the Mandelbrot set, you probably selected
avideo mode that is not supported by your hardware. This can be disconcerting,
but it does no harm. Even if your screen is black, press to get back to the
Main Menu. (If the computer “locks up”—freezes the screen and keyboard—you
could have to reboot, but this is unlikely.) Try again, this time selecting an
appropriate video mode. If you have a color system, try (F5). That is the old IBM
4-color CGA mode, which should work on most systems.

EGA and VGA Colors

Once you get things working, try experimenting with other modes. If you have
a super VGA and you started off with (F3), try the EGA (F2) mode. This will give
you a feel for the way resolution affects speed. Notice that the default Mandelbrot
image (the one you get when you first start Fractint and select a video mode) looks
almost the same with 16 colors asit does with 256 colors. In fact, the authors have
had phone calls from people complaining that the 256-color modes didn't
appear to work! The reason is that the colors correspond to the number of iterations
of the formula used to calculate the Mandelbrot set. The outer colored area
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Figure 3-6 The orbits window

corresponds to color 1, the next stripe to color 2, and so forth. Mathematically
it tumns out that the vast majority of visible pixels in the Mandelbrot image have
colors with values less than 16—which is the number of colors on the EGA, too.
But after you begin zooming in, the 256-color images will begin looking very
different.

To allow quick evaluation, Fractint plots its images, such as the Mandelbrot
set, using multiple passes. First it draws the entire fractal image using large
chunky blocks, then it goes over the image again and subdivides the blocks into
smaller blocks. The number of passes depends on the video mode; the higher the
resolution, the more passes. For example, 320 x 200 modes have two passes,
while 640 x480 modes have three. What’s nice about this approach is that you
don’t have to wait for the image to be completed before continuing your
explorations. You can generally tell what the fractal will look like soon after the
coarse pixels of the first pass are colored. If you don't like the way the fractal is
developing, you can press to return to the MaiNn Menu and change some of
the settings.

The Orbits Window

Try the following experiment: After your Mandelbrot image is complete, press
the (0) (the letter O) key. You will see a black window appear in the lower right
corner of the screen, and a cross-shaped cursor appear in the center of the screen.
As you move the cursor with the mouse or the arrow keys, you will see a spiral-
like pattern of points appear in the window, as shown in Figure 3-6. This pattern
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makes visible the orbit values generated in the Mandelbrot calculation. (See
Chapter 2, Fractals: A Primer for an explanation of orbits.) Pressing turns
off this feature and returns to the normal display mode.

The Mandelbrot image is calculated by generating a sequence of points and
testing whether they have escaped a circle of radius 2. The (0) window plots this
sequence of points on the screen, and colors them according to which iteration
of the Mandelbrot formula they belong. Notice that the orbits have the most
structure when the “lake” points are being plotted and that the orbit path does
not quickly escape to large values. The orbits get more complex as you move the
cursor toward the “lake” shoreline. (Some people feel the orbit plots are more
interesting than the fractal images themselves—and that is why in this latest
version of Fractint we have added this new orbit window.)

When in the orbit mode, there are special keys that enhance its effect. The ()
key draws circles around each point, with radius inversely proportional to the
iteration number, so the first orbit points have the largest circle. Because this key
is a toggle, pressing (€) again turns off circles and returns to plotting individual
points. The (D) key toggles a line mode, in which the orbit points are connected
by lines. You can have the circle mode and line mode on at the same time!
Pressing (N) toggles on and off the display of the coordinates of the point where
the cross-hair cursor points.

An Orbit Window Trick

Here’sa trick that will let you fill the whole screen with just the orbit image. Press
to open the View Winpow Options menu. (If you were in orbits mode, pressing
any display mode command key such as (¥) ends the orbits mode.) You will see
the view windows screen, as shown in Figure 3-7. In the first field at the top of
the menu, type (¥) at the Preview DispLaY? (NO For FULL SCREEN) prompt, and press
(ENTER). A small Mandelbrot image will then be generated in the center of your
screen. (View windows is really handy for quickly getting a feel for the
appearance of afractal, because the little images generate very quickly.) Now turn
on the orbits mode by pressing (0). The baby Mandelbrot image will jump to the
upper left corner, and the orbits display will fill the screen! You can hide the
fractal image and allow the orbit image to fill the whole screen by using the (#)
toggle. Pressing (H) again restores the Mandelbrot image. Don't forget to try
and (D) to see the orbits represented with circles or lines. When you are done with
the orbits, press (¥) again to tum off view windows by typing (N) at the first

prompt and pressing (ENTER).
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Figure 3-7 The view window options menu

Now that you have your first Mandelbrot image displayed, and you've played
with the orbit display, what the heck can you do with it? Fractals are full of
interesting details that unfold as you expand them. The “zoom” function of
Fractint lets you dive inside a fractal on the screen and behold its inner beauty.
This is also the main tool that enables you to explore fractals at different scales.

Pressing the key or clicking the left mouse button creates a dashed
rectangle—called the zoom box—around the outer edge of the screen. Repeat-
edly pressing or holding the left button down while moving the mouse
away from you shrinks the zoom box. You can move the zoom box around the
screen by using either the arrow keys or the mouse. Moving the mouse with no
buttons pressed moves the zoom box within the screen’s x-y plane.

The opposite of (PAGE UP), the (PAGE DOWN) key is used to make the zoom box
larger. Repeatedly pressing will make the zoom box disappear. To
do the same thing with the mouse, hold the left button down and pull the mouse
toward you. You can use keys and mouse together, too. On most recent
machines, you can speed up the movement of the zoom box with the cursor keys
by holding down the key while pressing the cursor keys.

You can even rotate the zoom box! Try (CONTROL{®) and (CONTROLX=), where
“4” are the gray keys on the numeric keypad. Moving the mouse left or

«w »

+” and
right while holding the right button down performs the same function.
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Zoom Box Exploration Technique

The real fun of using Fractint is locating some interesting detail in a fractal,
placing the zoom box over it, and then pressing (or double-clicking the
left mouse button) to cause Fractint to calculate and fill the entire screen with the
smaller detail that was in the zoom box. The zoom box acts as a magnifier.
You can also zoom out by creating a small zoom box and then pressing
(CONTROLHENTER). The effect of this is to zoom out so that the previous image is
shrunk to the size of the zoom box and the surrounding area is filled in. The
equivalent mouse command is to double-click the right mouse button.

Finding Baby Mandelbrots

Mandelbrot images live inside Mandelbrots. In fact, it is hard to avoid them. In
order to try the zooming facility, try to locate some baby Mandelbrot sets in the
left-hand spike of the Mandelbrot set. Figure 3-8 shows the results of two zooms
which you can duplicate. The image on the left shows the full Mandelbrot set with
a zoom box centered on a bulge in the left-hand spike of the Mandelbrot. The
second image shows the resulting zoomed image, which contains a miniature
copy of the whole Mandelbrot set, and another small zoom box centered on
another small bulge in the fractal image. The third image shows the result of this
deeper zoom, revealing yet another small Mandelbrot shape. Even a short
investigation of the Mandelbrot spike should convince you that there are an
infinite number of such baby Mandelbrots.

Now try it yourself. Starting with the full Mandelbrot set, press
several times to make a small zoom box. Move the zoom box to the spot shown
in Figure 3-8a. When you are satisfied that the zoom box isin the correct position,
press (ENTER). Your image should look something like the one in Figure 3-8b.
Repeat this process, trying to duplicate the zoom box in the middle image to
generate the third image, Figure 3-8c.

Increasing the Maximum Iterations

Try zooming in several more times, finding still smaller baby Mandelbrot sets. If
you zoom far enough, you will find that the Mandelbrot shape degrades. The shape
loses the sharp twists and turns of its convoluted coastline. The Mandelbrot set is
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Figure 3-8 Zooming in on baby Mandelbrots
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defined to be the set of points c whose orbits generated by iterating the formulaz_,
= 22+ C never escape a circle of radius 2 no matter how many iterations are
calculated. (See Chapter 2, Fractals: A Primer, for a discussion of escape-time
fractals.) Fractint approximates the value of “never” by waiting until some
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Figure 3-9 Effect of increasing Maximum Iterations

maximum number of iterations is reached, and then assuming that if the orbit
hasn't escaped yet, it will never escape. Thisassumption is not completely accurate,
and it is better if a higher maximum iteration cutoff is used as you zoom deeper.
The default value in Fractint is 150 iterations, but you can set it as high as 32,768.
The price you pay for accuracy is that the calculations will take longer. You can set
the maximum iterations by pressing (X) to access the Basic Options screen (or select
Basic OptiONs <x> under OpTIONs from the MAIN MEnu, and filling in a value for
MaxiMuM ITeraTIONS. Figure 3-9 shows four versions of a baby Mandelbrot found
after anumber of zooms. The maximum iterations values used for the four images
were 150, 250, 350, and 1000. You can see that the first image has begun to lose
the characteristic Mandelbrot shape, but that as the maximum iterations value is
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Color Cycling

72

increased, the shape gets more accurate. For moderate depth zooms, the default
maximum iterations value of 150 works very well.

The second Fractint mode is called color cycling. In this mode, Fractint rapidly
alters displayed colors of an image, giving an effect of animation. This works
because most graphics adapters create colors by using what are called color
palettes. A color palette is like the color key for children’s paint-by-numbers oil
painting kits. Each area of the painting is assigned a number, and each number
represents a color. The set of all the available colors assigned to numbers is the
current color palette. There are as many palette entries as the number of colors
your computer’s hardware video adapter can display at one time. So, a palette for
an EGA has 16 entries, and a VGA has as many as 256. But—and this is a big
“but”—the colors assigned to the palette entries are drawn from a much larger
selection. For example, the VGA 320 x 200 mode can display 256 colors on the
screen at one time, but these 256 can be selected from 262,144 possible colors!
(Understand that in Fractint, different shades of the same color are considered
different colors. Some fractals, for example, may have only 2 colors with 128
shades.) Your screen is like the child’s painting; each pixel is assigned not a color
but a color palette entry number. The color of the pixel is the color assigned to
its palette number. What Fractint does when it color cycles is rapidly change
which colors are assigned to which palette numbers. As you'll see, this simple
technique creates a magical effect.

Why Color Cycling “Animates” Images

Most fractal images have more information in them than the mind can compre-
hend. By assigning colors differently, you can make different details visible in the
same image. By cycling the colors, areas that make up the fractal are revealed by
color moving between them. Because the areas are connected in a highly
organized fashion, there is a high degree of animation potential. Playing with the
colorsis at least half the fun of Fractint. Alas, this feature only works if your video
hardware supportsatleast 16 colors (EGA), and works best in the VGA and super
VGA 256-color modes. If you have a CGA or Hercules monochrome graphics
adapter, we suggest you skip on to the next section, or go out and buy a super
VGA with 1024K of RAM. A few years ago these adapters were the state-of-the-
art, but now they are inexpensive commodity items.
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Press the @ key to see your fractal color cycle. Show time! The colors of your
fractal will now start wildly gyrating! (If the cycling is too fast on your machine,
you can slow it down with the @ key.)

Color-Cycling Features and Experimenting

Earlier in this chapter we discussed the five modes of Fractint—the display mode,
the color-cycling mode, the orbits window mode, the Julia window mode, and the
palette editing mode. Assoonas you press (3 (or @ or (€)), Fractintentersthe color-
cyclingmode,and awhole new set of command keystakeseffect. The ) and © keys
reverse the direction of the color rotation: the (®key makes the colors radiate
outward, the @ key makes the colorsmove inward. To freeze the color scheme, press
(spaceBar). The outside border of the screen will now be white to remind you that
Fractint is still in the color-cycling mode, even though the colors aren't moving,

When you first enter the color-cycling mode, Fractint rotates the existing
colors in the current color palette. The original color scheme will repeat
periodically as the colors rotate (every 256 colors if you have VGA, every 16
colors if you have EGA). Pressing any of the function keys (F2) to causes
Fractint to randomly create new colors in the existing palette, so the color
schemes never repeat (or at least not any time soon). Indeed, the number of color
schemes obtained by pressing the function keys is astronomical! These function
keys work by periodically adding random colors to the palette, and making the
in-between colors ooze continuously between the random colors. The lower
function keys ((F2), (F3), and (F%)) cause the colors to change abruptly. The higher
function keys ((F8), (F9), and (F10)) cause the colors to change more smoothly and
continuously between more widely spaced random colors. Table 3-4 shows how
widely spaced the random colors are. For (F2), every fourth color is randomly
chosen, and the three in-between colors change smoothly between the two
random colors. The effect is one of rapidly moving stripes. At the other extreme,
the key causes new colors to be randomly created every 100 colors. This
means that the 99 intervening colors smoothly merge from one widely spaced
random color to the next 100 colors later. The effect is one of oozing pastels.

Pressing while the colors are cycling causes the color scheme to be
completely and randomly altered.

Slow-Motion Color Cycling

Often you'll want to slow down or speed up the color cycling. There are two ways
to do this in Fractint. The first way is to use the @ and (® keys while colors are
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d::; Table 3-4 Random color interval for color-cycling function keys
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cycling. This feature was originally added to control “flicker” on machines with
slower graphicsadapters. On these machines, slowing down the cycling with the
cleans up the flicker. But if you have one of the new breed of faster computers
(such as a 486, or Pentium), you may find the color cycling is just too fast for
enjoyment; use the @ key to slow it down. The other way to change the color
cycling speedis to press any of the number keys, (1) through (9). These keys cause
certain colors in the palette to be skipped, effectively increasing the rotation
speed. The higher-numbered keys cause colors to rotate faster. Fractint defaults
to the speed of the (1) key.

Zoom in several times using (PAGE UP)}—as you recall, most of the colors in
the default Mandelbrot are concentrated near the coastline. By zoomingin, you
will spread them out and see the colors rotate more clearly. The Mandelbrot
with the normal IBM palette has a markedly striped appearance. To see more
smoothly changing colors, start color cycling with ®. Then press (F10). The
new colors will be added to the end of the 256-color palette, and will take alittle
time to “flush out” the old colors. To speed things up, press (9), wait until you
see that the smoother color changes have taken effect, then press (1) to slow
things down again.

Trythe functionkeysin reverse sequence, moving from (F10) to (F2), waitinglong
enough for the old color palette to rotate out so you can see the new colors. As you
change tolower numbered function keys, the colors of the stripes will start to blend
less, and your attention will be drawn away from the lake outline to the stripes.
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When you see the image the way you want it, press or (©) to freeze it,
and to exit the color-cycling mode and return to the regular display mode.

Saving a File

Between creative zooming and color cycling, by now you should have created a
few beautiful fractals. Chances are very good that your creation is unlike any
other. If you save it as a GIF, it can be opened again and experimented with, or
uploaded to CompuServe. (See Appendix B, Fractint and GIF Files, for details
about the GIF format.)

The command to save a fractal image to a file is (5). You must be viewing your
fractal, and you must not be in the color-cycling mode. (Pressing exits the
color-cyclingmode.) Press () to save. You will see two multicolored stripes moving
down the rightand left sides of the screenlike a bar as the saving progresses. Fractint
saves images as GIF files; so when done, a window will appear on the screen with
the message “File saved as fract001.gif.” The number “001” will increment as you
save more images. These files will not be overwritten, so watch out for your disk
filling up with too many images! A typical 640 x 480 256-color image can use 200
kilobytes or more of storage. If you already have a fractal saved as FRACT001.GIF,
the next time you start Fractint and do a save it will increase the number and save
itas FRACT002.GIF. You can exit Fractint or drop to DOS (the (0) command) and
rename your best fractal GIFs using more meaningful names.

The Expanded Main Menu

Assuming that you have saved your fractal creation, press to return to the
Main Menu. You will notice that the MaIN Menu is no longer the same. Because
you have created a fractal image, there are more functions Fractint can perform,
so the menu is expanded. These additional menu functions will always show
whenever there isa graphics image that has been calculated or read in from a disk.
Figure 3-10 showsthe expanded Mamn Menu. The next sections will tellyoualittle
about the additional items in the MamNn Menu. The menu is organized according
to the groups to which the menu functions belong,

Current Image

Thereare fouradditional functions listed that relate to the current image. Fractint
can move back and forth nondestructively between menu or information screens
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Figure 3-10 The expanded Main menu

and fractal graphics screens. The first menu item is different depending on
whether the fractal calculation was complete when you pressed (E s € ) to return
to the menu. If the image was complete, you will see the menu item Return To
ImaGE. If the fractal calculation was interrupted when you returned to the Man
MEnu, you will see the menu item ConTINUE CALCULATION. Both of these will return
you to the graphics image; with ConTiNUE CaLcuLATION the fractal calculation will
be resumed where you left off.

The INFo ABouT IMAGE <T4B> selection gives you a screen of status information
about the current image. This is particularly useful if you want to find out
whetheranimage hasbeen completed. The ( T & B ) keyallowsaccesstothisstatus
information screen directly from an image without needing this menu.

The Zoom Box FuncTions item takes you to the Help screen describing
keystrokes and mouse actions for manipulating the zoom box.

Finally, Orsits WiNDOW <0> takes you to the orbit window mode discussed
earlier in this chapter.

New Image

There are two new items listed under New IMAGE, one allowing the recalculation
of the previous image and one allowing toggling to and from Julia sets. The
ReTURN To PRIOR IMAGE <\> command goes back and recalculates the previous
image you created before you zoomed or changed fractal types. This is useful
when you are exploring a fractal by zooming, reach a dead end, and want to back
up. If you began with the Mandelbrot image, pressing ( ) several times will get
you back to the full image. Try this now.
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Figure 3-11 The Julia window

Julia Window

The TocGLE To/FrRoM JuLia <Space> command initiated by the exploits
the relationship between Mandelbrot and Julia fractals that was discussed in
Chapter 2, Fractals: A Primer. (You will only see this menu item if the fractal type
isa Mandelbrot or Julia type. More on this a bit later.) Recall that the Mandelbrot
fractal is a “catalog” of Julia fractals; each point of a Mandelbrot fractal
corresponds to the Julia fractal with its parameters equal to that point. The
lets you see the relationship between the Julia and Mandelbrot sets.
The command has been greatly enhanced in Fractint version 18. Let’s
try it now.

Once you have the Mandelbrot image back on the screen, press (SPACEBAR). A
window will appear in the lower right corer and a cross-shaped cursor will appear
in the middle of the screen. This window and cursor work in a similar way to the
orbits window discussed eatlier, with the difference that the window shows an
outline of the Julia set rather than the orbit associated with the cursor position. As
you move the cursor around the Mandelbrot, the Julia image changes shape, as
shown in Figure 3-11. If you want to see the full Julia fractal at any point, just press
again, and Fractint will switch to the Julia fractal type and generate the
image. Pressing yet again regenerates the Mandelbrot set.

With a little experience, you will be able to predict the appearance of the
Julia set from the characteristics of the Mandelbrot image at the point you
selected. If the selected pointisin the lake, the corresponding Julia set will have
a lake. If the point is “on land,” the Julia set will not have a single connected
lake. Some of the most interesting Julia sets are created with parameter values
that are right on the Mandelbrot shoreline.
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{3 Table 3-5 Fractint’s Mandelbrot/Julia pairs
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Mandelbrot/Julia Pairs

Many fractal types in Fractint have this Mandelbrot-Julia relationship. Table 3-5
shows all of these Mandelbrot-Julia pairs. The toggle works with any
of them, but it only shows the Julia outline in a window for the traditional
Mandelbrot set (fractal type Mandel). For the other types, you can still explore
the Julia-Mandelbrot relationship by pressing (SPACEBAR), creating a cursor which
you can move with the mouse or arrow keys, and pressing again to
generate the Julia.
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Options
The OpTiON part of the MAIN MENU is the same as it was before you generated an
image. It allows you to set parameters that affect how images are calculated.

File

The FiLe group of the Main Menu covers different ways of getting information
into and out of Fractint. The SAve IMAGE command ((8) key) creates a file in
CompuServe’s GIF format (see box).

THE SPIFFY GIF FORMAT: The GIF acronym (pronounced “Jiff") stands for Graphics Interchange
Format, which is a device-independent way of representing images
developed by CompuServe Information Service. GIF has the advantage
that software to view images in this format is widely available on many
differentkinds of computers. The GIF89a has an additional advantage that
makes it the format of choice for saving Fractint fractals. Fractint uses
special areas in the GIF89a format to store all the fractal information
needed to reproduce the file. If you open a GIF89a format file created by
Fractint (or its sister programs Winfract or Xfract), Fractint can extract
from the file not only the image but all the Fractint settings that were used
to generate the file. Better yet, if the image was saved before the fractal
calculation was completed, Fractint can open the partially completed GIF
file, load the parameters, and resume the calculation. GIF87a files are an
earlier version of GIF. This file format is provided only for compatibility
with older software that cannot handle GIF89a. Fractal information is not
stored with GIF87a files.

Another way to save all the Fractint settings is to use the Save CURRENT
PARAMETERS <B> command, which saves these settings in a Fractint .PAR file. The
information in this file is in the form of a named set of command-line options.
You can modify the .PAR file with a text editor. For more information on the
command controlled by the (8) key, see the reference section later in Chapter 5,

.Fractint Reference.

Colors

The CoLors group in the Main Menu allows you to color cycle. You will see this
only if you are in a graphics video mode that allows color cycling, such as EGA
or VGA 16- or 256-color modes. In addition to the color-cycling commands, you
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Figure 3-12 Fractal type selection screen Figure 3-13 Fractal parameters for fractal type

manzpower screen

can access Fractint’s color editor and starfield functions from this menu. These
are discussed in Chapter 5, Fractint Reference.

A Generalized Mandelbrot Set

80

Up to this point all the examples have been limited to the Mandelbrot set. This
isactually not such aserious limitation—this one fractal type alone has arichness
of shape and form that defies imagination. Fractint gives you such power that you
can examine the details of the Mandelbrot at immense magnifications. (If you
have not rotated or distorted your zoom box, you can see the magnification of
your zooms on the status screen.) But the Mandelbrot set is just the
beginning of where you can explore using Fractint, so let’s be adventurous and
try another fractal type.

As we saw, you can select a fractal type by pressing the (T) key or choosing
SeLeCT FracTaL Type from the Main Menu. The Setect A FractaL TypE screen is
shown in Figure 3-12. Use the arrow keys to select type manzpower. Fractint has
aspeed key feature, so when you start typing the name of the fractal, the highlight
jumps to the first fractal type matching the name. In this case you only have to
type manz to make the highlight jump to manzpower. Next press (ENTER), and you
will see a screen entitled PARAMETERS FOR FRACTAL TYPE MANZPOWER, as shown in
Figure 3-13. (You can also reach this screen using the (Z) key from the Main Menu
or while viewing a fractal.) Most fractal types have parameters that you can
change to alter the appearance of the fractal, and this screen lets you control these
parameters. At the bottom of the PARAMETERs screen is a window frame showing
the formula used to generate the fractaland showing how the parametersare used
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Figure 3-14 Manzpower images using parameters 2, 3, 4, and 5

in the fractal calculation. In the case of manzpower, the iterated formula is
2., =257 + c. In the case exp = 2, this is the same as the familiar Mandelbrot
formula. Press (ENTER), and if you haven’t changed the parameters from the values
shown in Figure 3-13, Fractint will calculate the familiar Mandelbrot set.

Let's find out what happens if the exponent parameter exp is not the usual 2
which results in the Mandelbrot image, but another value such as 3. Press (Z) to
return to the PARAMETERs screen, and change the parameter labeled ReaL ParT OF
ExpoNENTtO 3 and press tosee theresult. Then repeat the experiment using
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