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PREFACE TO THE SECOND EDITION

The first edition of Fractal Creations introduced PC owners to the fruits of the

collective efforts of a loose-knit international fractal programming team known

as Stone Soup. Readers enjoyed dazzling fractal graphics on their super VGA

PCs, and spent hours of fascinated pleasure exploring countless fractal

landscapes and discovering a visual cornucopia of images. The first edition

came with version 15 of Fractint, the program providing all this excitement.

The authors and publisher received appreciative feedback from readers about

the software and book, which topped several computer book best-seller lists.

The very success of Fractal Creations provided an even wider audience for

Fractint, which in turn accelerated the contributions of new ideas, code, and

examples. Fractint version 16 followed rapidly on the heels of version 15, and

introduced the compact PAR format for storing fractal parameters that has

become a defacto standard for the exchange of images among fractal enthusiasts.

After version 17, the handwriting was on the wall: a new edition of Fractal

Creations was needed. This book introduces Fractint version 18.2, the third

significant upgrade of Fractint in the less than two years.

FRACTINT VERSION 18.2

Fractal Creations, Second Edition provides several significant improvements over the

first edition. Fractint version 18.2 has many major new features; there are more

than 25 new fractal types. Fractint has always had a reputation for speed, but clever

programmers contributed new code that significantly speeded up many functions.

Fractint can now create images of virtually unlimited resolution; the 2048 x 2048

limit is now gone. New interactive exploration tools have been added—you can

now see the Julia set metamorphose before your eyes as you move a cursor around

the Mandelbrot set. Fractint also has a better facility for displaying the orbits

underlying the generation of fractals, which have an eerie beauty in their own right.

Fractint version 18.2 hasa greatly expanded capability to generate and display

4-D fractals in both two and three dimensions. A new kind of fractal using

hypercomplex numbers is introduced for the first time in this book.

All the popular features of the earlier edition are still available; you can make

fractals dance with color cycling, turn clouds into mountains or planets with the

iv FRACTAL CREATIONS



3-D facility, view fractals in full stereo with the included red/blue glasses, zoom

into any fractal to impossible depths, and design your very own fractal formulas.

OVER 1900 SPECTACULAR FRACTAL GIF IMAGES ON CD ROM

This book contains a CD ROM with over 1900 high resolution 1024 x 768 GIF

images of stunning artistry and quality. These images required 6886 hours to

generate on fast 33 and 66 mHz 486 PCs—that’s over 280 days of continuous

computer time—yours for the price of this book! Since the first edition, a number

of talented fractal artists have emerged. Every single fractal type now has a new

example contributed by a Fractint user. A new chapter Fractal Recipes, explores

some of these glorious images in detail, so you can gain insight into how their

artistry was achieved.

C AND ASM SOURCE CODE PROVIDED

You don’t have to be a programmer to enjoy Fractint; but if you are a programmer,

you will enjoy the source code. You can learn how to enhance the program and

add your own features. After all, that is what the Stone Soup origins of Fractint

are all about! The complete source code for Fractint version 18.2 is provided on

the companion CD. A chapter describing the source code and demonstrating

how to add a fractal type has been added. The Fractal Types chapter now

documents the locations of the source modules for every fractal type.

NEW INTERACTIVE IFS DESIGN PROGRAM

The earlier Fractint version 15 could display Iterated Function Systems fractals,

but it did not provide an easy way to design and edit them. Fractal Creations,

Second Edition includes Fdesign, an interactive tool for designing IFS fractals. You

can use a mouse to visually modify the IFS transformations and instantly see the

results on the screen. Fdesign is another Stone Soup program, and can share files
with Fractint.

EXTRA FOR UNIX WORKSTATION FOLKS: XFRACTINT

Want to create fractals on a fast RISC workstation? Xfractint, the experimental

port of Fractint to UNIX/X, is included on your companion CD. You can compile

the Xfract source code yourself, or run the ready-to-use executables for Sun,

Sparc, DEC Alpha, or MIPS workstations.

We hope that you gain as much enjoyment reading this book and using this

software as the programmers have had developing the software!
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Dear ReaderNiewer:

What is a book? Is it perpetually fated to be inky words on a paper page? Or can a

book simply be something that inspires—feeding your head with ideas and creativity

regardless of the medium? The latter, I believe. That’s why I’m always pushing our books to

a higher plane; using new technology to reinvent the medium.

I wrote my first book in 1973, Projects in Sights, Sounds, and Sensations. I like to

think of it as our first multimedia book. In the years since then, I’ve learned that people want

to experience information, notjust passively absorb it—they want interactive MW in a book.

With this in mind, I started my own publishing company and published Master C, a book!

disk package that turned the PC into a C language instructor. Then we branched out to

computer graphics with Fractal Creations, which included a color poster, 3-D glasses, and

a totally rad fractal generator. Ever since, we’ve included disks and other goodies with most

of our books. Virtual Reality Creations is bundled with 3-D Fresnel viewing goggles and

Walkthroughs & Flybys CD comes with a multimedia CD-ROM. We’ve made complex

multimedia accessible for any PC user with Ray Tracing Creations, Multimedia Creations,

Making Movies on Your PC, Image Lab, and three books on Fractals.

The Waite Group continues to publish innovative multimedia books on cutting-

edge topics, and of course the programming books that make up our heritage. Being a

programmer myself, I appreciate clear guidance through a tricky OS, so our books come
bundled with disks and CDs loaded with code, utilities, and custom controls.

By 1993, The Waite Group will have published 135 books. Our next step is to

develop a new type of book, an interactive, multimedia experience involving the reader on

many levels.

With this new book, you’ll be trained by a computer-based instructor with infinite

patience, run a simulation to visualize the topic, play a game that shows you different aspects

of the subject, interact with others on-line, and have instant access to a large database on the

subject. For traditionalists, there will be a full-color, paper-based book.

In the meantime, they’ve wired the White House for hi-tech; the information super

highway has been proposed; and computers, communication, entertainment, and information

are becoming inseparable. To travel in this Digital Age you’ll need guidebooks. The Waite

Group offers such guidance for the most important software—your mind.

We hope you enjoy this book. For a color catalog, just fill out and send in the Reader

Report Card at the back of the book. You can reach me on CIS as 75146,3515, MCI mail as
mwaite, and usenet as mitch@well.sf.ca.us.

Sincerely,

— ;
Mitchell Waite

Publisher
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INTRODUCTION

Thisbookis about creating fractals—dazzlingand colorfulimages of infinite detail—onyour

PC. This hands-on book comes bundled with Fractint, the preeminent fractal-generating

program. All the images on the book jacket and in the color plate section of this book were

created with this powerful program, which is the result of collaborative effort by an

international team of volunteer fractal enthusiasts. With this software and a PC, you can

quickly and easily begin creating your own fractals from any of the built-in fractal types. As

you become more proficient, you will discover an inexhaustible number of options for

coloring and transforming your images to suit your imagination. A beginner can create

images of striking complexity and beauty. But even an expert will find more than enough

controls and tools to challenge his or her adventurous creativity.

ORGANIZATION OF THE BOOK

Fractal Creations, Second Edition consists of the preface, this introduction, eight chapters,

three appendices, a color plate section, and companion disk and CD containing the

latest version 18.2 of the Fractint program and source code, the Fdesign program, and

example files.

Chapter 1: Installation

The first chapter tells you how to get Fractint up and running on your PC. If you are

an experienced computer user eager to begin creating fractals, you may find that the

Quick Start in this section is all you need to begin using the program. A more detailed

guided tour is provided in Chapter 3, Fractint Tutorial.

xix



Chapter 2: Fractals: A Primer

The second chapter describes fractals, the different varieties of fractals, how they are

generated, and their significance. The background provided here will enhance your

enjoyment of creating fractals by providing insight into what fractals are and how they

are generated.

Chapter 3: Fractmt Tutorial

The Fractint tutorial is an extensive tour of the main features of Fractint. You will go

on a step-by-step tour through Fractint’s basic functions right up to some of the more

advanced functions. By the end of the tour you will know how to make many of those

spectacular color plate images.

Chapter 4: Fractal Recipes

In this chapter you can sample a gourmet feast of the very best fractal recipes created

by devoted Fractint users. You can learn by example the hints and tricks that the

experts use to make dazzling fractal images.

Chapter 5: Fractint Reference

Fractint is a multifeatured software program. This chapter tells you how to access all

the basic functions and unlock the secrets of Fractint’s advanced fractal-generation

options. This chapter has been updated to reflect the many new features of Fractint
version 18.2.

Chapter 6: Fractal Types

Fractint can generate the most extensive variety of fractals of any fractal program. At

last count, the main fractal type screen, which lists the different kinds of fractals

generated by Fractint, had 95 entries. As you will discover, the actual number of

possible kinds of fractals you can create with Fractint is much larger than that. This

chapter tells you about all of those different kinds of fractals, and is filled with dozens

of all-new examples you can try. For each of Fractint’s 95 fractal types, you will find

an example, the mathematical algorithm used to generate that type, and a reference

to the source code routines that implement the algorithm.
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Chapter 7: Making IFS Fractals with Fdesign

This chapter is about Fdesign, a companion program for Fractint (included on your

book disk) that lets you visually create and modify Iterated Functions Systems (IFS)

fractals. You can rapidly create bushes, trees, ferns, Sierpinski gaskets, wheat kernels,

telephone cords, and quilt patterns. The results of your creativity can be imported into

Fractint and displayed with Fractint’s powerful video support.

Chapter 8: Fractint’s Source Code

If you are curious about the inner workings of Fractint, you will find what you are

looking for in Chapter 8. The programmers tell you how to compile the program, and

walk you through key sections of code with explanations of how the fractal magic is

accomplished.

Appendices

There are three appendices, Appendix A, Fractint and Video Adapters, Appendix B,

Fractints and GIF Files, and Appendix C, Complex and Hypercomplex Numbers. These

appendices explain how Fractint’s video drivers work, give background on the main

file format that Fractint uses to store graphics, and introduce you to the mathematics

of multidimensional spaces that Fractint uses to create Fractals.

HOW TO USE THIS BOOK

Iearning About Fractals

You will find a discussion of what fractals are, how they are generated, and the ideas

behind them in Chapter 2, Fractals: A Primer. This is the one chapter in the book that

does not require a computer—the only prerequisite is a lively curiosity.

For Those New to Fractmt

The first three chapters provide a logical sequence for those encountering Fractint for

the first time. These chapters take you from Fractint installation and background

about fractals to a guided tour of Fractint’s many capabilities.



Users of Older Versions of Fractint

If you are already familiar with earlier versions of the Fractint program, you can start

with the tutorial in Chapter 3, Fractint Tutorial, to brush up on Fractint’s operation

as well as learn about some of the newer features. Then try out the Fractal Recipes in

Chapter 4. Consult Chapter 5, Fractint Reference, for a comprehensive review of all the
features of Fractint 18.2.

Reference Information

This book contains two chapters of useful reference information. Chapter 5, Fractint

Reference, documents the Fractint’s functions, commands, and menus. Chapter 6,

Fractal Types, provides a comprehensive description of Fractint’s fractal types.

For Programmers

You don’t have to be a programmer to enjoy this book; but if you are, you will find

a wealth of useful information about programming fractals. The complete source for

Fractint is included on the distribution CD. The Fractal Types chapter (Chapter 6) tells

you where to find the routines used to generate each kind of fractal. Chapter 8,

Fractint’s Source Code, provides an overview of the code, tells you how to compile

Fractint, and describes the step-by-step process of adding a new fractal to Fractint.
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CHAPTER

INSTALLATION

n this chapter we’ll describe how to install the software that is bundled with

this book. We’ve also included quick start instructions for those who just can’t

wait to start generating fractals. Chapter 2, Fractals: A Primer, provides a more

thorough guided tour of Fractint.

HARDWARE AND SOFTWARE REQUIREMENTS

Fractint will run on any IBM-compatible PC with at least 512K of free memory.

A hard disk is highly recommended, but not required. Although Fractint can run

on text-only systems using its Disk/RAM video modes, displaying the fractals

generated by Fractint requires some kind of graphics video support. Fractint

supports the IBM CGA, EGA, VGA, MCGA, 8514/A, and XGA standards and the

VESA VBE standard. It also works with most other super VGA boards, Targa

boards, and Hercules-compatible monochrome graphics.

We have included a companion disk and a CD with this book. This disk

contains the files you’ll need to install Fractint and the Fdesign program.

The disk distributed with this book is a 3-1/2” diskette, so you’ll need a high-

density 3-1/2” disk drive to access it. If the machine on which you want to install

Fractint uses high-density 5-1/4” disk drives and you can locate another machine

with both types of disk drives, you can copy the files on your companion disk

to a high-density 5-1/4” disk and perform the installation process from that disk.

The disk is not copy protected in anyway, and the files will fit onto a high-density
5-1/4” disk.

The CD contains the Fractint source code and hundreds of exciting fractal

images. To use this disk you will need a CD ROM drive.



INSTALlING FRACTINT

Before installing any software package on your computer, it is a good idea to make

a backup copy of the floppy installation disk and store the original away

somewhere safely.

After you’ve made that backup copy, next insert the copy of the companion

disk or your CD into the computer and view the README file that is on it. The

mechanics of the book industry are such that the text of a book is finalized

before the companion disks, and it is always possible that we changed

something in either the Fractint program or its installation process after this

text was written. If that’s the case, you’ll find everything you need to know

about any such changes in that README file. With that disk in your floppy

drive, view the README.COM file and see what it contains (we’ll use the A:

drive as an example) by typing
C:\> A:README.

To view the README file on the CD, change to the CD drive and type:

D:\> TYPE READ.MEIMORE (iii)

The file containing the Fractint program itself is FINSTALL.EXE. It is a self-

extracting archive file, which contains the “real” programs and their support files

stored in compressed form inside it.

To install Fractint and Fdesign on a hard disk, first create a new directory for

your Fractint files. Assuming you want to place the software in the \fractint

directory on drive C: and the A: drive is the source, enter the following

commands at the C:\> prompt to create a new directory and make it your current

one. Then, with your companion disk or your CD in the computer, run

FINSTALL to install Fractint and its related files on that new directory:

C:\> md \fractlnt (Wi
C:\> cd \fractint (ENTE
C:\FRACTINT> a:\firtall ii)

FINSTALL will display a startup message something like the one printed here

and it will ask you if you want to proceed. Press( ) and then (i) to do so.

FINSTALL will list the name of each file as it puts it on your hard disk.

LHa’s SFX 2.IOS (c)1991, Yoshi

This progra. will put FRACTINT.EXE and its related files in your current directory.

Do you wish to proceed with this program?

EYna Y

R!L8E

SIfl’L.GIF.EXE

FRACTINT. FRM

ALTERN.MAP

(etc)

C:\>
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Figure 1-1 Fractint’s initial scrolling credits screen

Installation from the CD-ROM will write 176 files to your hard disk. Installing

from the floppy will write 177 files to your hard disk.

MODIFYING YOUR DOS PATH

If you’d like to be able to run Fractint from any directory, you’ll have to change

your DOS PATH to include the Fractint directory (otherwise, you’ll still be able

to run Fractint, but you’ll have to be in the Fractint directory to do so). You

probablysetyourDOS PATHwaha PATH statement insideyourAUTOEXEC.BAT

file—if so, just add the Fractint directory to the end of that statement. Note that

changingyour PATH this way won’t actually affect your DOS PATH until the next

time you reboot your computer. Your PATH statement will end up looking

something like the one here.

path c:\dos;c:\work;c:\games; - .;c:\fractint

QUICK START

To start Fractint, simply enter its name at the DOS command prompt:
C:\ > fractint

Fractint takes a few seconds to start up, and then it presents you with its initial

scrolling credits screen (see Figure 1-1). This screen lists the names of all the

folks—and there are quite a few of them—who have contributed to the program

and helped make it what it is today.
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SE1ECTING A VIDEO MODE

Pressing with the scrolling credits screen active brings up Fractint’s MAIN

MENU screen, with its highlight bar on the SELECT VIDEO MODE menu item. Press

again to select that highlighted menu item, and Fractint will bring up its

SELECT VIDEO MODE screen. The highlight bar will be on a video mode appropriate

for your hardware. You can scroll the highlight bar up and down the list using

your cursor keys to choose an alternate video mode, if you want. If you have a

standard adapter (CGA, EGA, MCGA, VGA, or Hercules), Fractint should have

detected yourvideo equipment and highlighted a reasonable startingchoice. The
choices are

c—for EGA (16 colors)

c—for VGA, MCGA, and SVGA (256 colors)

—for CGA (4 colors)

—for monochrome CGA, EGA, VGA (2 colors)

Hercules Monochrome Graphics (2 colors)

Press to select the video mode currently being highlighted. (You can

also select video modes directly without going through Fractint’s menu interface

by pressing the indicated function keys, such as for 16-color EGA mode.)

Fractint will immediatelybegin drawingits initial image—the full Mandelbrot

set. For low resolution modes, this usually takes two passes. The first pass uses

large rectangles of color. The second pass adds more detail by breaking up the

large rectangles into smaller ones. For the full Mandelbrot set, this process is quite

fast—less than a second for 320 x 200 x 256 mode on a high-speed 486 machine.

ZOOMING IN ON AN IMAGE

Let’s bring up a zoom box, a device Fractint uses to control its zooming process.

Press [PAE several times. A rectangular outline will appear on the screen and

grow progressively smaller for each keypress until it reaches a minimum size. Use

the arrow keys to move this zoom box to someplace interesting (the areas on the

edge of the blue interior “lake” where there are lots of colors are the best) and press

Fractint will clear and redraw the screen using the area of the initial image
that was within the zoom box.

If you have a mouse, you can also use it to control the zoom box. Holding

down the left mouse button, move the mouse “up” and away from you to bring

up and shrink the zoom box (go ahead—you don’t have to wait for Fractint to
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Figure 1-2a Using the zoom box Figure 1-2b The zoomed-in results

Finish generating an image before you select a new one). Moving the mouse

toward you while holding down the left mouse button expands the zoom box.

To move the zoom box, just move the mouse without holding down any mouse

buttons. To perform the zoom, double-click the left mouse button.

Figures 1-2a and 1-2b show a Mandeibrot image with a zoom box on an

interesting area and the zoomed-in image that results when you press

SEIECTING A NEW FRACTAl. TYPE

Now let’s select a new fractal type. You can do this either directly by pressing ,

or indirectly by pressing the key to bring back Fractint’s MAIN MENU, using

the arrow keys to highlight the SELECT Fia T’E menu item, and pressing

() Fractint will bring up a rather formidable list of fractal types (see Figure

1-3), with the current one (MANDEL) highlighted. Select the lambda fractal type

(either by using your cursor keys to move the highlight bar or by typing its name

in directly) and press Press again at the parameter entry screen to

accept the default values, and Fractint will begin generating the Lambda fractal.

You can zoom in on interesting places in that fractal type just as you did with the
Mandelbrot fractal.

COIOR CYCLING

If you have a VGA video adapter, press the key to enter Fractint’s color-cycling

mode. While the colors are changing on your screen, press to randomly

select new sets of colors and the frequency with which they mutate into new
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Figure 1-3 Fractint’s fractal types menu

colors. The and keys change the “direction” of the color cycling, and the

and keys change the speed at which they change. (You can see why Fractint

has been called the 90s version of the Lava Lamp.) You exit from Fractint’s color-

cycling mode by pressing

GETTING OUT OF FRACTINT

Pressing a few times will back you out to the MAIN MENU and finally to a

prompt asking if you want to exit Fractint. Pressing brings you back to the

DOS prompt.

Now that you’ve gotten Fractint installed and running, you’re ready to turn

to Chapter 2, Fractals: A Primer, to learn what fractals are and to Chapter 3,
Fractint Tutorial, to learn more about Fractint.
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CHAPTER

FRACTALS:

A PRIMER

possible patterns with dazzling color and mind-stretching detail—you’ve

seen them on the covers of magazines, in calendars, on book jackets, and on

personal computer screens. They are fractals, a product of the marriage between

contemporary mathematics and the high-tech computer revolution, but nevertheless

a phenomenon as close to home as the flowers in your garden or the pores

on the back of your hand. You may have the impression that understanding or

exploring fractals requires a mind-numbing amount of higher math. Fortunately,
that’s not true at all.

This chapter will teach you what fractals are and where they come from. You

will see what properties fractals share in common, and explore the inner

workings of the chaos that creates distinctive “families” of fractals. You will learn

about interesting applications of fractals in a variety of different fields. Finally,

you will learn how fractal images are created using today’s personal computers.

Having read this chapter you’ll be in an excellent position to appreciate the

power of the Fractint program that comes with this book. Fractint is described

in the next chapter.

WHAT ARE FRACTAIS?

Fractals are beautiful, fascinating designs of infinite structure and complexity—

the sort of intricate patterns that capture attention and evoke a sense of childlike

wonder. A fractal is a mathematical object that has detailed structure no matter

how closely you look at it, no matter how great the magnification. Look at

Figure 2-1, which is a famous fractal called ajulia set. This fractal was generated



Figure 2-1 A computer-generated fractal

on a computer with the software enclosed with this book and then printed. If you

hold the page at arm’s length, you see spirals within spirals in repeating patterns,

sequences of ever-shrinking structures vanishing into nothing. If you hold the

page up close, your eyes will discover more detail right down to the limit of what

the printer could record. What you see here is an infinite pattern somehow

compressed into a finite space.

So what are fractals anyway? As you make your way through this book, we

will present ample evidence of the diversity of the universe of fractals and the

multiplicity of ways of answering that simple question.

THE TRUTH ABOUT FRACTAIS

We could go on and on about beauty and complexity, but let’s begin this

discussion with a healthy dose of reality. Far from being esoteric abstractions,

fractals are much closer homeI.aiyou realize. In fact, it is the nonfractal
objects that are unreal, abstract, and removed from our experience. Let’s see why
that is true.

From the beginnings of our education, formal and informal, we have been

given simplified categories for organizing the world. The world is a sphere.

Throw a baseball in the air, and its trajectory is a parabola. Nations are divided
into the First World, the Second World, and the Third World. All of these

statements have a strong element of truth, but none of them turns out to be

12 CHAPTER 2



accurate when you look closely. We have known since the Apollo days that the

earth is really pear-shaped. After allowing for air resistance, th-sFiaRfthe
earth, and even the gravitational field of the moon, the path of a baseball is not

exactly a parabola. As is increasigly evident today, the elements of the First,

Second, and Third Worlds are intertwined in a complex way in the economies

and societies of every country.

This may sound like splitting hairs, but our everyday lives are full of clothes that

don’t lit exactly, lawns that are not all grass, and newcarswith dentsin their fenders.

Yet we cannot do without our approximations and generalizations; we wouldn’t

make it through the day without simplifying assumptions. We say, “I’ll meet you

around 3:00,” “enough to feed thirteen,” or “about live people ptcar” instead of

“meet me at 3:12:26,” “enough food to feed live adults, two children, and six

elderhes,” or”exactly4.67359 people percar.” There is too much detail in the world

to fully grasp. Indeed, there is too much detail ma single leaf for the mind to absorb.

It is irritating in the extreme to have one’s simplified picture of the world

shown to be inaccurate, but it happens to us all the time. Galileo faced the

Inquisition for maintaining that the Earth was not the center of the universe, and

Einstein (as an employee of the Trademark office) puzzled us with the idea that

matter and energy are the same thing. The history of the investigation of fractals

contains many stories of discoveries made by outsiders who collected the

forgotten crumbs of different disciplines and prepared a feast of chaotic

structures and theories. Many scientists are finding that “curious counter-

examples” turn out to be the basis of a whole new field of inquiry, and worse yet,

a field developed by others! But we are getting ahead of ourselves.

Fractals are about looking closely and seeingmore. Fractals have to do with

bumps that have bumps, cracks that have crookednesses within crookednesses,
and atoms that turn out to be universes. Fractals have to do with the rich structure

of our universe that spans all scales from the uncountable galaxies at unthinkable

distances to the mysterious inner electric flashes and vibrations of the subatomic

realm. Let’s see how looking closer, results in fractals.

HOW IONG IS THE COASTUNE OF BRITAIN?

Benoit Mandelbrot, of IBM’s Thomas J. Watson Research Center, did ground-

breaking work in the theory of fractals and indeed, he coined the very word

“fractal.” Dr. Mandelbrot poses a simple question to introduce the notion of a

fractal in his book The Fractal Geomet7y of Nature (Wilt Freeman and Company,

1977, 1982, 1983, ISBN 0-7167-1186-9): How long is the coastline of Britain?
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Four segments Sixteen segments

each 1.414 long each .3900 long

Figure 2-2 Approximating a circle with polygons

This deceptively simple question turns out to expose a deep problem and give

us insight into the question “What is a fractal?”

Consider how to approximate the length of the “coastline” of a circle of radius

1. Of course you probably remember the answer in advance from high school

geometry: using the formula for the circumference of a circle; it is 2 x it x lwhere

it = 3.14159..., or approximately 6.28. As away of arriving at a similar result, you

could inscribe a square inside the circle, and estimate that the circumference of

the circle is the sum of the sides of the square, as shown in Figure 2-2. Notice that

if the results are not accurate enough, all you have to do ismake a polygon with
more sides. Table 2-1 shows how the circumference of an inscribed polygon gets

closer and closer to a limiting value, which is the “real” circumference.

This procedure is both mathematically correct and intuitively clear, and it

works in much more general settings than this example. Estimating distances of

curves by approximating them with a series of straight segments is a tried and true

procedure that surveyors use when mapping terrain. Think of the side of the

polygon (or the length of a sighting with a surveyor’s scope) as a giant measuring

stick. If the curve being measured is “well behaved”—which is to say, continuous

and smooth—the answer can be made as accurate as desired by making the

Table 2-1 The circumference of polygons inscribed in a unit circle
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Figure 2-3 Approximating the length of the coastline of Britain

approximating measuring sticks smaller and smaller. Presumably this same logic

can be used to find the length of the coastline of Britain. Or can it?

Let’s try the same trick on a map of Britain, using measuring sticks 200 and

25 miles long. Figure 2-3 shows the measuring stick approximations overlaid on

a map of Britain, and Table 2-2 shows the numerical results.

What is strange is that as the measuring stick gets smaller, the coastline

estimation seems to grow larger—much larger than we would expect from the

way the circumference approximation went! What is happening?

The difficulty is not too hard to see. The coastline of Britain is very, very

irregular, full of large and small bays, inlets, tiny rivers, and complex, rocky

shores. A long measuring stick does not bend with these many twists and turns,

but cuts directly over them. A shorter measuring stick fits snugly inside these

nooks and bays, thereby increasing the length estimate. Imagine doing this

exercise crawling on your hands and knees, measuring the coastline of Britain

0 50 lOOMiles

8 200-Mile Segments = 1600 Miles 102 25-Mile Segments = 2550 Miles
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Table 2-2 Estimation of the length of the coastline of Britain

with a measuring stick an inch long. Every small rock that you traversed around

would increase your coastline estimate. Your answer for estimating the coastline
would be astronomical!

There is a fundamental difference between a curve like a circle and a curve like

the coastline of Britain. This difference separates the shapes of classical geometry

from the shapes of fractal geometry. So here’s your first definition: the coastline

of Britain is a fractal, and our difficulty in measuring its length suggests a

definition of a fractal. For present purposes, we will use informal intuitive

definitions, because the formal definitions are beyond the scope of this book.

DEFINITION: If the estimated length of a curve becomes arbitrarily large as the measuring

stick becomes smaller and smaller, then the curve is called afractal curve.

While you might not be impressed by this observation of increasing distances

measured as we go from circles to coastlines, what is magic is that the idea behind

the fractal definition can be generalized to cover many other kinds of shapes

besides curves. In all cases the basic idea is the same—the difficulty of measuring

is due to the irregularity of the object being measured, and it is an irregularity that

continues to the most microscopic level. This difficulty of measuring is related

to the idea of dimension. Lines and curves are one-dimensional, planes and
surfaces are two-dimensional. It turns out that the idea of “dimension” can be

broadened in such a way that these unusual curves have a dimension greater than

1. This leads us directly to an alternative way to define a fractal.

DEFINITION: The fractal dimension of an object is a measure of its degree of irregularity

considered at all scales, and it can be a fractional amount greater than the

classical geometrical dimension of the object. The fractal dimension is

related to how fast the estimated measurement of the object increases as the

measurement device becomes smaller. A higher fractal dimension means

the fractal is more irregular, and the estimated measurement increases
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more rapidly. For objects of classical geometry (lines, curves), the dimension

of the object and its fractal dimension are the same. A fractal is an

object that has a fractal dimension that is strictly greater than its classical
dimension.

Because the British coastline is, after all, a curved line, which is a one-

dimensional geometric object, the fractal dimension of the coastline must be

a little greater than 1. According to Mandelbrot, the mathematician Lewis Fry

Richardson estimated it to be approximately 1.2. Indeed, mathematical “one-

dimensional” curves can be defined which are so irregular that their fractal

dimension approaches 2.0. One such “impossible” curve is the boundary of

the Mandelbrot set, which was proven to have a fractal dimension of exactly

2.0 by Japanese mathematician Shishikura in 1991. (We’ll introduce you to

the Mandelbrot set a bit later in this chapter.) In the discussion that follows,

we will use the term “fractal geometry” to refer loosely to the theory of these

bumpy shapes, just as classical geometry is the theory about regular “well-

behaved” shapes.

EXAMPIES OF FRACTAIS OCCURRING IN NATURE

Now that we know the coastline of Britain is a fractal, where else are these fractals

lurking? If you have begun to catch the gist of where this discussion is heading,

you have probably already guessed the answer: nearly everywhere!

Mountains as Fractals

Have you ever noticed how difficult it is to estimate the distance to a far-off

mountain? Nearby foothills and distant mountains have a very similar appearance.

A mountain is, therefore, a fractal; its roughness is the same at different

scales. Indeed, the fractal characteristic of hills and mountains quickly becomes

a practical matter for a hiker; a mild two-hour dash to the top can turn out to be

a full day of traversing up and down through ravines and canyons that were

invisible from a distance. The fun of scrambling up rocky hillsides is in part due

to the fact that the fractal dimension of a mountain applies at all scales, including

the scale of a human being. Figure 2-4 shows a range of snow-capped mountains

as seen from the Space Shuttle. The snow line traces the fractured boundaries of

ravines, forming a fractal dimension and a pattern amazingly similar to some

computer-generated fractals we will be discussing a bit later in the book.
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Figure 2-5 Footprint on the moon

Figure 2-4 Snow-capped mountains from

space are fractals

A good example of a fractal is found in the famous picture of a footprint on

the moon (see Figure 2-5). Near the footprint is the gravelly crust of the moon’s

surface. Consider now the “earthrise” view of the Earth and moon (see Figure

2-6). This picture is most famous for its beautiful view of the Earth, but look at

the lunar landscape and compare it with the lunar surface in the footprint picture.

Take the footprint out of the picture, and the surface of the moon seen from two

feet away looks somewhat like the moonscape viewed from two hundred miles

away. When a tiny piece of a fractal is similar to the whole, we say that the fractal

is self-similar. Understand that a self-similar object is generally a fractal, but not

all fractals are self-similar. A fractal is defined by the irregularity that must exist

at all scales, but this irregularity need not look the same. Both views of the moon’s

surface show fractal irregularities, but the fractal dimension appears to be higher

in the footprint picture than in the more distant moon surface.

Clouds

Clouds are wonderful examples of fractals. Sophisticated travelers are supposed to

prefer aisle seats on airplanes, but real fractal lovers choose window seats so they

can watch clouds. You may wonder how something as soft and fluffy as a cloud can

be a fractal, which we have defined in terms ofjagged but measurable bumps and

rough irregularities. Clouds are indeed roughly irregular and jagged; it’s just that
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Figure 2-6 Earthnse

the colors reflected by the cloud blend smoothly into one another, giving the

impression of smoothness. A little later in the book, we will try to convince you that

clouds and mountains from a fractal perspective are virtually the same thing.

Waves as Fractals

Not too long ago, before the study of turbulence (the complex movements of air

or fluids) had advanced, it was believed that ripples on the surface of a lake were

uniformly distributed. You can verify for yourself that this is not true, and that

the pattern of npples is very nonuniform, by simply taking a closer look at a body

of water on a windy day. Every lake surface has smooth patches. On a windy day

they might be small, and on a calmer day larger, but they are always there. But

if you look closely at the rough areas of the surface—the areas full of wavelets—

you will see that the “rough” areas are not completely rough, but themselves

contain little glassy smooth areas. The surface of a lake is complex in the extreme,

consisting of a nested pattern of smooth and rough areas that continues as you

look closer and closer. This kind of nested mixture of the smooth and rough is

a trademark of fractals. We can say that the lake’s surface has a fractal dimension.
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The Human Circulatory System

Blood flows from the heart in arteries and

back to the heart in veins, but what happens
in between? The arteries and veins are connected

by a network of smaller and smaller

vessels successively branching and rebranching

until they finally meet in microscopic

capillaries. A wonderful article in the February

1990 Scientific American entitled “Chaos

and Fractals in Human Physiology” describes

and vividly pictures this phenomenon.

Branching patterns are a characteristic quality
of certain classes of fractals.

Fractal Ferns

A more common example of fractal branching Figure 2-7 A fractal fern
can be found in the plant kingdom. Trees,

shrubs, and flowers all develop with a branching growth pattern that has a fractal

character. Figure 2-7 shows a computer-generated fractal fern based on a

deceptively simple scheme of symmetry and self-similarity. (The fern was made

using Fractint.) Each frond of the fern is a miniature of the whole. A real fern is

not self-similar to the same degree, yet it is amazing how realistic this idealized
fern looks.

Weather: Chaotic Fractals

Some of the most powerful supercomputers run complex mathematical models

in an attempt to improve weather forecasts, yet the success of this effort has been

only moderate. A large investment in computational power purchases the ability

to predict only a short time further ahead. The reason for this is not that the

computers don’t work or that the mathematical modelers are inept, but rather

that the dynamics underlying the weather are chaotic. Weather is like the flow

of water over Niagara Falls. If you launch a small leaf above the falls, where will

it be a few minutes later after going over the falls? While a personal computer can

easily project the orbit of the Voyager spacecraft far beyond the solar system, the

largest supercomputer cannot with any accuracy predict the path of our ill-fated

leaf. This is the difference between well-behaved and chaotic dynamic systems.
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DEFINITION: A dynamic system is a collection of parts that interact with each other and

change each other over time. A dynamic system is chaotic if small changes

in the initial conditions of the system make large changes in the system at
later times.

The weather is a great example of a dynamic system. There are periods of

relative calm and predictability, like the calm patches on a disturbed lake. But as

anyone knows who has watched the weather report on TV, there are always

fronts on the way, low pressure areas with huge spiral arms slowly moving to the

east, and hurricanes brewing in the Gulf.

Satellite pictures of weather patterns have become part of our cultural

memory. They have a certain beauty to them and, from our present perspective,
a definite fractal character. If the weather forecaster could zoom the satellite

picture, the audience would be treated to a succession of equally detailed pictures

as the nation-sized low pressure areas would give way to a picture of the wind

eddies around their city. These satellite pictures can be thought of as a graphical

representation of the chaotic weather dynamics. So now we have another route

to fractals—pictures of chaos.

QUALJTIES OF A FRACTAL.

The different qualities of fractals that have come up in the discussion of these

examples are summarized here. Note that not all of these qualities apply to

every fractal.

Qualities of Fractals

4 Fractional Dimension

4 Complex Structure at All Scales

4 Infinite Branching

4 Self-Similarity

4 Chaotic Dynamics

OF WHAT PRACTICAL. USE ARE FRACTAL.S?

The second most common question about fractals after the question “What are

they?” is some variation of “What earthly use do they have?” This is really a very

reasonable question, but somehow we fractal fanatics are irritated by it. Imagine

going to Paris to see the Mona Lisa in the Louvre and having someone ask you,

“Fine, but what is it good for?” Let’s see.
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Mathematics Education

Fractals are educational because they visually illustrate many basic mathematical

concepts and make an ideal vehicle for challenging visually oriented people with

those concepts. While appreciation for graphic images is not a substitute for

learning the abstract foundations of mathematics, being intrigued by dazzling

fractal images can motivate a student to dig through math texts looking for

abstract concepts that made possible the visual feast.

Mathematical subjects related to fractals include algebra, geometry, complex

numbers, and calculus. Fractals are an excellent topic for high school or even

junior high school mathematics projects. College level topics related to fractals

include complex analysis, measure theory, and the study of dynamic systems. A

recurring theme of this book is that one need not be an expert mathematician to

appreciate fractals, so that if you have never had the opportunity to study any of

these subjects, you can still understand and enjoy the fundamental concepts of

fractals. However, those who do take on the discipline of learning mathematics

will discover that the pleasures of fractal exploration will take on an added

dimension. This is why educators are using fractals in the classroom: fractals are

both accessible to beginning mathematics students and rewarding for mathematical

experts.

Understanding Chaotic Dynamic Systems with Fractals

‘While we rarely think this way, the life of a person in our complex society is

utterly dependent on both artificial and natural dynamic systems. As stated

earlier, a dynamic system is a collection of parts that interact with each other and

change each other over time. A few examples are power systems, the weather

system, computer systems, the national and international economies, and even

the planetary ecosystem. We say that dynamic systems can exhibit behavior that

is stable or chaotic. You may feel the word “chaotic” has negative connotations,

but it is not necessarily a bad thing. When you are roasting marshmallows in front

of a campfire, eyes transfixed on the swirls of smoke twisting up to the sky, you

are observing a chaotic dynamic system made up of the air, the fire, and the wood.

That kind of chaos is a pleasure, not a problem. But when chaotic interactions

in power systems cause blackouts, that is usually a bad thing (although certain

criminals would disagree). Useful computer algorithms (equations) are sometimes

stable for some numeric inputs but exhibit chaotic behavior for others. This

is an important concept to understand—certain formulas “blow up” and act

unpredictably at certain times. If such an algorithm is used to calculate the
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position of a spacecraft just before reentry, the experience of the chaotic region

of the algorithm could have serious consequences.

As we have already seen in connection with our example of the weather

system, fractals are intimately connected with chaos. In fact, many computer-

generated fractals are created precisely by operating otherwise well-behaved

algorithms in regions where they exhibit chaotic behavior. The study of fractals

cannot help but increase our knowledge of the chaotic behavior of dynamic

systems. Indeed, fractal theory may not only help us predict the weather, but it

can also help us understand the limits of our ability to predict it.

Image Compression

Now let’s move from chaos and weather to discuss an application of fractals for

computers.

Most personal computer users have encountered compression utility programs

like ARC and PKZIP that allow computer files to be stored in a very

compact form. These compression programs take advantage of the redundancy

in the pattern of bits that make up your file. Because graphic images consume so

much disk space, the need for this kind of file compression becomes even more

critical when storing graphics. For example, one of the typical new “super” VGA

graphics adapters can display an image 1024 pixels wide and 768 pixels high

(pixels are the small dots that make up a computer screen image). Because each

of these pixels can be any of 256 colors, it takes 8 bits (or 1 byte) of storage to

store the color of each pixel. Multiply that out, and you discover that storing one

graphics image from your screen at that resolution on your disk takes 786,432

bytes. That is enough to take up the better part of a high density floppy disk. After

compressing—with PKZIP, for example—the same image can often be stored in

less than half the space.

Fractals are complex images, but what is amazing is that in many cases they

can be represented by simple equations that consume little space. In some cases

it is possible to identify patterns of self-similarity in a graphics image and

compress the image storage by describing the self-similarity rather than drawing

the image. Taking this concept one step further, consider attempting to identify

fractal patterns in any graphics image, and compress storage by representing the

images with the rules generating the fractals. Imagine how powerful a technique

this could be, as it might allow huge amounts of information to be reduced to a

simple formula made of five or six characters! Michael Barnsley, one of the

originators of the Iterated Function Systems approach to generating fractals

which we will discuss shortly, has started a company that is building a
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commercial venture on this idea of graphics image compression. Fractal

compression techniques can reduce the size of an image as much as 100 times,

reducing megabytes of files to tens of kilobytes.

The ability to compress and decompress images is one of the keys to new

multimedia applications. If a single high-resolution image takes up nearly a

megabyte of disk space, consider that a minute of high-definition full-motion

video running at 30 frames per second requires 1800 times more, or nearly a

gigabyte (a thousand million bytes!). Fractal compression techniques are right

in the thick of the technological revolution that is bnnging animation, video, and

sound to your desktop.

Computer-Generated Simulation

Another application of fractals that you have almost certainly encountered is the

computer-generated simulation. Movie special effects is a whole industry that

uses many different technologies, ranging from animated artwork to miniature

models. We have discussed how many natural objects from mountains to planets

have a fractal nature. With the advent of high-resolution graphics workstations,

it is possible with fractal formulas to generate realistic-looking computer images

of mountains, trees, forests, and flowers. In the movie Star Trek: The Wrath of

Khan, the entire Genesis planet was a computer-generated fractal landscape. The

computer game Starfiight also pioneered the use of fractal planets. In the popular

mind, computer-generated images have a mechanistic quality, perhaps due to

the fact that popular computer drawing and paint tools come equipped with a

repertoire of regular shapes such as lines, circles, and squares. But if the computer

artist can supplement those with tools that create fractal shapes with roughness,

texture, branching, and cloudiness, then the mechanistic feel will be replaced by

the earthiness of the natural world. Figure 2-8 shows a scene of a fractal planet

as viewed from a fractal landscape. This example was generated with Fractint.

A New Artistic Medium

Fractals represent an opportunity for artists to utilize the computer as a new

medium for their creativity. Fractals are appearing on book covers, wall paper,

calendars, greeting cards, textile patterns, and gallery art. The use of fractals in

art is not new. Artists from Van Gogh to Escher have incorporated fractal patterns

and textures into their works. The difference is that earlier artists used the paint

brush or the wood cutting knife, whereas today a new generation of artists have

added the computer to their artistic tool kit.
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Figure 2-8 View of a fractal planet from a fractal landscape

Fractals Are Fun!

Despite the fact that it gets easier every day to argue the case that fractals are

practically important, somehow all the evidence for the usefulness of fractals

cited in the previous sections doesn’t address the real truth. People who are

visually oriented (who enjoy color, texture, and patterns) are naturally

attracted to fractal images. People who in addition to visual imagination have

a mathematical curiosity (no matter how little they may have actually studied

math) are irresistibly attracted to fractals. If you also have a philosophical bent

and an interest in computer graphics, then you and fractals are a match made
in heaven!

The ultimate practical application of fractals is the sheer enjoyment of

exploring, creating, coloring, designing, modifying, and contemplating fractal

images. So enjoy!

AN EMERGING VIEW OF NATURE

If you have begun to feel that more is at stake with fractals than beautiful pictures,

education, or image compression, you are on the right track. The universe of

fractals is related to the larger issue of understanding the relationship between

humanity and the natural world.
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Ever since the Greek philosophers, our Western civilization has operated out

of the idea that lines, circles, squares, and the other objects of classical geometry

were somehow “more real” than nature itself, which contains few pure examples

of these shapes. Plato postulated a world of ideal forms, where these perfect

shapes resided unblemished. The world of human experience to Plato was but

an imperfect and dim image of this ideal world. So, unable to live in this perfect

world, people remake the natural world into a vision of imaginary perfection.

Buildings must be square, shelves straight, and wheels round. Could it be that

this deeply held world view is behind our impulse to bulldoze forests and build

cities of rectangular skyscrapers laced with a gridwork of roads? Whatever the

case, the irony is that classical geometry is used to model nature, and when the
model doesn’t fit, we blame nature rather than the model. What’s worse, we then

try to change nature to fit our preconceptions!

While this doesn’t necessarily mean we should make buildings shaped like

fractals, it does mean fractal geometry can often provide a much better “fit” for

nature, and it can describe with great accuracy the structure of clouds, mountains,

rivers, ferns, waterfalls, sunflower fields, and even weather. It may also tell

us more about how the weather works, secrets of biochemistry, or insights about

how people think. What is of critical importance is not the success of the theory

but the reorientation of fundamental thinking. This emerging view of nature is

more humble, less arrogant. The deepest wonder is for nature itself, not our

attempts to model it and understand it.

THE COMPUTER AS A WINDOW TO CHAOS

Examples of chaotic phenomena occur in many disciplines, often as anomalous

special cases. In many fields you will find the term “ill-behaved” used to describe

chaotic phenomena. This is a very curious term indeed, reminiscent of the

attitude that children are meant to be seen and not heard, and when they are

heard, they are bad! But can the notion of “badness” be extended to a

mathematical algorithm? That question will remain unanswered here, and this

observation will have to suffice: where fractals are concerned, what is “bad” often

turns out to be “good”!

For years, algorithms that exhibited chaotic behavior were ignored or relegated

to footnotes for the curious. Chaotic behavior represented as numbers is very hard

to understand. But make this chaotic behavior visual and it can be directly grasped.

With the advent of low-cost video adapters, a personal computer can now be used

as a tool to visualize such chaotic dynamics—a kind of window to chaos.
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We’ve spent a good deal of time drawing parallels between nature and fractals

and revealing ways in which fractals play a role in science. Now we are going to

go into more depth and explain how a simple fractal is generated on a computer.

You don’t need to understand this to run the Fractint program that comes with

this book, but knowing how the fractal is made can enhance your appreciation

of its physical beauty. This section explores a whole category of fractals created

by what are known as escape-time algorithms. The term escape time comes from

the fact that the algonthm works by determining when an orbit “escapes” a circle,

as will be explained shortly. The most famous fractal of them all, the Mandeibrot

set, is an example of this kind of fractal. Let’s have a look at how pictures of this
fractal are created.

How the Escape-Time Mandeibrot Set Is Generated

To appreciate the Mandelbrot fractal, a few mathematical preliminaries are

needed. We will be using these rules later, soit is important to understand them.

A set is simply a collection of objects of some kind. In the case of the Mandelbrot

set, those objects are the coordinates of locations on a mathematical map called

a complex plane. These particular locations are unusual because they are made

up not of the familiar real numbers we use every day for finances and measuring,

but rather what are called complex numbers. You might think of this plane as

being like the map of a city with rectangular streets and avenues. The horizontal

x-axis might be considered a collection of avenues numbered from some large

negative number to some large positive number. The vertical y-axis would be

unusual in that it corresponded to complex numbers (from negative large to

positive large) with names such as 2i, 6.529i, and so on.

Complex Numbers and the Complex Plane

What’s so special about complex numbers? First, they are unusual in that they

are composed of two parts, one a familiar real number, the other an imaginary

number. The imaginary part is most interesting. With real numbers, you are not

allowed to take the square root of a negative number, and this operation is not

defined. With complex numbers this is allowed, and the result of taking the

square root of—i is a special number designated “i.’ Looking at this another way,

the number i is defined to be the complex number such that i2 = —i, which is

another way of saying that i is the positive square root of —i. Every complex
number is written as the sum of a real number and another real number times

i, or a + bi, where a and b are real numbers.
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Figure 2-9 The complex plane

Complex numbers can be graphed using a “real” axis (for the “a” part), and

an “imaginary” axis (for the “bi” part). Figure 2-9 shows how the complexnumber

a + bi can be graphed using the two axes on the complex plane. The place where

the two axes meet is called the origin, and it is the graph of the complex number

0 + Ci, which is the familiar zero from ordinary arithmetic.

Using the fact that i2 = —1, and the ordinary rules of arithmetic, you can do

arithmetic using complex numbers. For example, (2+ 3i) + (—3 + 2i) is calculated

by adding the real parts together and the imaginary parts together, so the answer
is ((2 — 3) + (3 + 2)i) or —1 + 5i.

Multiplying is a little more complicated. The expression (2 + 3i) x (—3 + 2i) is

multiplied out exactly as it would be in algebra if “i” were a variable, and then

simplified using i2 = —1. (See the Appendices for more on complex numbers.)

Distance Between Complex Numbers

The next concept we need to grasp is how to calculate the distance between

complex numbers. Imagine our map is Manhattan, New York City, U.S.A.,

where the x-axis is avenue numbers and the y-axis is street numbers. Suppose

you live in a high-rise apartment at 3rd Street and 4th Avenue, and a friend of
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Figure 2-10 Distance between two apartments in Manhattan

yours lives in another high-rise apartment at 6th Street and 8th Avenue. You are

peeking at your friend’s apartment through a telescope, and you are curious

about how far away it is. For the sake of this discussion, let’s say that New York

blocks are perfectly square, so a block along the avenues is the same distance as

a block along the streets. Figure 2-10 shows the section of Manhattan where these

two apartments are located.

You can see that the apartments are on the ends of the hypotenuse of a right

triangle. One leg of the triangle, the leg that runs in the avenue direction, is three

blocks long. The other leg is four blocks long. Using the Pythagorean theorem,

we see that the distance is five blocks, because 5 = (3 2 + 42) . The formula for

the distance between two complex numbers is based on the same idea. The

avenues are the real part of the complex number, and the streets are the imaginary

part. The distance formula is just the Pythagorean theorem applied to the

distance between the two complex numbers in the x-axis (real) direction and the

y-axis (imaginary) direction.

To make a Mandelbrot set, we need the distance from the complex number

a + bi to the origin 0+ Oi. Again, this distance is the square root of the sum of the
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squares of the real and imaginary parts, or (a2 + b2). A shorthand way of writing

the distance of a complex number a + bi to the origin is a + bil, and when you

see this you will know that the real meaning is (a2 + b2).

The purpose of using this formula in generating a Mandelbrot set is to test

whether a point is inside a circle of radius 2 centered on the origin of the complex

plane. If Ia + bil is less than 2.0, then the point is inside the circle.

Orbits Escaping

The Mandelbrot set is a collection of points “in” the complex plane. In order to

calculate it, each point is tested to determine if it is in the set. Here is how the test

works. Each test point determines a sequence of points in the complex plane

(you’ll see how in a minute). A sequence is just a list of numbers. A subscript is

used to show which is the first, the second, and so forth. This sequence is

sometimes called the orbit of a particular test point, such as the point .37 + .4i.

Think of the sequence of complex numbers as the successive positions of an

object flying through space, and you’ll see why the term “orbit” is appropriate.

Here is how a point passes or fails the test for membership in the Mandelbrot set.

If any of the points in the orbit belonging to the test point are outside the circle

of radius 2 about the origin, then that test point is not in the Mandelbrot set. If

all of the orbit positions remain inside the circle of radius 2, then the test point

is in the Mandelbrot set. Another way to put this is that the Mandelbrot set

consists of all those test points whose orbits never escape the circle of radius 2,

but whiz around forever inside it. A radius larger than 2 would work fine for this

computation, but a smaller radius would not. A radius of 2 is the smallest radius

centered on the origin that contains all of the Mandelbrot set, as you can see in

Figure 2-15 later.

The Magic Formula

How are these orbits generated from the test point? Suppose the point tobe tested

is the one on the origin, a + bi, which we will call c. The sequence of points

generated by c will be designated;, z1, z2, z3 zn,... Here, çis the nth member

of the sequence, counting up from zero, and the little dots are mathematics-ese

for “and so forth.” (By the way, mathematicians often use the letter “Z” to represent

complex numbers.) The first element of the sequence is the origin itself, so; =

0 + Ci, that is, z0 = 0. To get the next member of the sequence, the previous
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Figure 2-11 The escaping orbit of .37 + .4i

member is multiplied times itself and added to c. This sequence-building process

is described by the equation:

z0 = 0 + Oi

zi = z + C

Zn÷1 = Zn2 + C

Let’s use a real point. Suppose the test point is the complex number .37 + .4i.

Calculating z1 is easy, because z1 = z + (.37 + .4i), and z =0 x 0= 0, so z1 = .37

+ .41. The distance of this point to the origin is (.37 2 42), or about .545, which

is well within the circle of radius 2. The orbit value z2 is (.37 + .4i)2 + (.37 + .4i).

To simplify all this, we used a computer, and Table 2-3 shows the orbit sequence

values for the test point .37 + .4i, along with the distance from the origin of each

sequence member. Figure 2-11 shows a plot for the orbit formed by this table
of results.

The orbit starts to swing outward, comes back in to a minimum value at z5,

and swings around outward again. The orbit member Z12 is the first one to

wander outside the circle. Notice that the distance value for Z12 is 3.950, almost
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Table 2-3 Test orbit for .37 + .4i

double the test circle radius. Figure 2-11 shows a plot of this escaping orbit in

the complex plane.

This calculation shows that the test point .37 + .4i is not in the Mandelbrot

set because its orbit escapes the circle.

Nonescapmg Orbit

Now, changing this complex number just a little gives a different result. Table

2-4 shows the orbit of the point .37 + .2i. One hundred values were calculated,

but not all are shown. Figure 2-12 shows a plot of these values. Note how nice

and symmetrical this orbit is.

If we calculate the orbit sequence starting with .37 + .2i, we discover that the

orbit values stay well inside the circle for the first 100 orbit calculations. This

raises a difficult point.Just because the first 100 orbit values are within the circle

doesn’t mean some later values might not escape. So how do we ever know a test

point is in the Mandelbrot set? The answer is that we don’t really know. The

Mandelbrot set has to be approximated by setting an arbitrary cutoff point for

how many orbit values will be tested. So for practical purposes, we will say that

the test value .37 + .2i is in the Mandelbrot set because for the 100 orbit sequence
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Figure 2-12 The nonescaping orbit of .37 + .2i

Table 2 Test Orbit for .37 + .2i
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values that were checked, all were confined to the inside of the test circle.

(Fractint will let you control this parameter.)

Even though only the first 100 values were checked, this orbit looks very

convincingly nonescaping. It has a definite, regular inward spiral that appears to

converge to a point. Fractint lets you watch these fascinating orbits come and go

while fractals are being generated.

Testing Points on a Grid of Pixels

The next problem is how to test all the points of a given set in the complex plane.

This is impossible, because there are an infinite number of points to test. But it

isn’t really necessary to test all the points. The end objective is to make a picture

of the Mandelbrot set on a computer screen. The solution is to map the pixels

(small dots) on the computer screen to the complex plane, and just test those

complex points that correspond to a pixel. This is analogous to coloring just the

street/avenue intersections of our Manhattan map. When this is accomplished,

the pixels are colored one color if the test value is in the Mandelbrot set and
another color if it isn’t.

The Final Black-and-White Mandeibrot Algorithm

Let’s summarize what has been said so far, and use a little different notation. For

each pixel on the computer screen, the complex number z1 mapped to that
pixel will be tested to see if it is in the Mandelbrot set or not. Zpei is the test point
we discussed in the above examples and therefore, it is the variable “c” in the

Mandelbrot orbit formula z÷1 = + C, 50 C = Zpei• We will define the sequence
of complex numbers (called the orbit sequence) z0, z1, z2 z,1 The first member
of the orbit sequence is the origin, so; = 0 + Oi. The second member of the
sequence, Z1, is Z + c, or c itself, because ; is zero. If c is already outside the circle,
we are done; we’ll color the pixel white.

The next member of the sequence, Z2, is the first member squared plus C, so

Z2 = Z + C. We must plug values into z and then, after checking to see if the new

value is outside the circle, the process is continued. In general, each orbit value

Zn÷i is obtained from the previous orbit value Zn by the formula Zn+i = Z + C. Each

time a new Zn÷i is calculated, it is tested to see if it has gone outside the circle. The

notation for the “in the circle test” for our Mandelbrot set is whether IZn÷iI < 2,

where IZn÷iI is the distance OfZn+i to the center point. If IZn÷iI <2 is true, we calculate

another iteration; otherwise, the orbit value has escaped, and it is colored white.

Because we do not want the computer to calculate forever, we have a maximum
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Figure 2-13 The Mandeibrot set

iteration cutoff, and if the orbit has not escaped by the time we reach the cutoff,

we quit and declare the point to be colored black.

Figure 2-13 shows the result of this little exercise, after all the points are

colored. The Mandelbrot set consists of all those points we colored black—

points whose orbits always stayed inside the circle (or at least, stayed inside for

as long as the computer had the patience to wait). The actual edge of what appears

as a lake in the figure is a fractal in the sense of the definitions earlier in this

chapter. Measured with a small enough “inch stick,” the coastline of”Mandelbrot

Lake” can be made as long as you want, and it has a fractal dimension greater than

one. In fact, as mentioned earlier, the fractal dimension of the Mandelbrot set

coastline has been proved to be exactly 2.0!

Where Did the Mandeibrot Fractal REALLY Come From?

In Figure 2-13, there are two big “bays” in the giant lake, with smaller baylets at

the top and bottom. The whole “coastline” is an impossibly detailed nesting of

bay within bay within bay, resulting in thin, jagged filaments shooting out like

static electricity. This is a picture of a set that James Gleick called “the most

complex object of mathematics.”

By contrast, look at this formula, placed in a box in big, bold, type, so you can

soak it in, meditate on it, and wonder about it.

zn+1=zn2+c
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Appearances of simplicity CAN be deceiving. The innocent-looking formula

E = mc2 somehow encapsulates the whole theory of relativity. Not so here! The

formula z1 = z2 + c is no more, and no less, than what it appears to be. Take a

number, square it, and add a number. Nothing fancy, nothing tricky, nothing

profound. No energy, no mass, no real-world stuff. Yet this is the formula which,

given a few more details about repeating and checking for escaping orbits,

generates the beautiful Mandelbrot set. How can such a wondrous and complex

shape come from the absurdly simple formula z÷1 = z + c?

Here is a hint of where to look for the mysterious source of fractals. The

formula z÷1 = z + c may be simple, but it is repeated over and over a very large

number of times. At the very beginning of this chapter, a fractal was described

as an infinite pattern somehow compressed into a finite space. There are many

different kinds of fractals, but however different they are, and however diverse

their methods of generation, all of them have some kind of iterative scheme at

their heart. The secret: formulas play a less important role in a fractal compared

to the powerful iterative powers at work. Yet this is not enough to explain fractals

completely. And while the mathematics and iterative method are logical, perhaps

limitations of the human mind will never allow us to fully understand fractals.

For some of us, therein lies their appeal!

Fractals Come Alive: Escape-Time Colors

Our black-and-white coloring scheme for each test point works well and provides

a beautiful picture. But there is one more refinement we can make to an escape-

time fractal that gives an additional and wondrous level of beauty: color.

As we have seen, the Mandelbrot set is defined as the set of points that do not

escape a circle of radius 2 under iteration of the formula z÷1 = z + c. And we have

seen that a picture of the Mandelbrot set can be made with two colors, one for

the points in the set, one for the points out of the set.

A brightly colored variation of this picture can be created by coloring the

points not in the Mandelbrot set—the ones that escaped the circle—according

to how long it takes for the orbit to escape, where “how long” means “how many
orbits.” We can use the number of iterations to control the final color of the testpoint

pixel. So if the test point escapes in a few iterations, the color might be red,

but if it takes many iterations it might be colored blue.

Figure 2-14 shows a more graphic view of how escape-time coloring works.

The bottom of the diagram shows the familiar two dimensions of the complex

plane, with two points, a and b, selected for testing and coloring. The vertical
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Figure 2-14 Escape-time coloring of the Mandeibrot set

axis represents the number of times the formula is iterated. You can imagine

the 2” radius escape circle as a cylinder that is stretched into the third
dimension, with the iteration values on the vertical scale color-coded. Therefore,

the vertical level reached when the orbit escapes the cylinder is used to

color the test pixel according to the color for that level. In our figure we show

that test-point a forms a spiral that never escapes, so it is colored the “inside

color” (blue in Fractint). Test-point b forms an orbit that escapes on the seventh

iteration, so it is made of color number 7. The overall effect of this coloring
scheme divides the Mandelbrot fractal into bands reminiscent of terraced rice

paddies on a Chinese mountainside. Each band represents an area where the

orbits began with points in these bands escaping at the same iteration. Near the

“lake edge” of the Mandelbrot set, these bands become more and more irregular

and bent. You can see these bands in Figure 2-15.

The spectacular stripes of the Mandelbrot set rendered with escape-time

coloringshouldnotbe confusedwith the set itself. Mathematically, the Mandelbrot

set consists of the solidly colored lake area. The colorful stripes are points near

the Mandelbrot set. However, this distinction is not always made, and in popular

fractal parlance the Mandelbrot set often refers to the whole colorful image, lake,

stripes, and all.
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Figure 2-15 Colorized Mandeibrot set (in grayscale with the parts identified)

Zooming In, or How Big Is a Fractal?

Because there are too many possible points to calculate—infinitely many, to be

exact—the complete Mandelbrot set cannot be rendered in a picture. In common

computer practice, a rectangular grid of numbers is used for the values of c, using

as fine a mesh as can be resolved by the particular graphics hardware. To show

the complete Mandelbrot set, these numbers must span a range of approximately

—2 to 2 in thex andy dimensions. However, there is no law that says that the entire

Mandelbrot set from—2 to 2 must be included in the view. By picking a very small

piece of the complex plane as the corners for the calculation grid, a small area of

the fractal can be blown up with a zoom effect. For example, you can look at the

fractal between—.2 and +.2 or—.02 and +02. From what we have said so far, you

are undoubtedly prepared for the fact that the Mandelbrot set, being a fractal, is

just as interesting in these microscopic views as it is in the large view. That is

indeed the case. Even a modestly powered personal computer can reveal

staggering patterns in the Mandelbrot set. Let us do a quick calculation to see

just how staggering.

Fractint allows zooming in successively on a fractal ten times, magnifying the

image a maximum of about twenty-five times for each zoom. The limit of ten
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Figure 2-16 A giant Mandeibrot set swallows the orbit of Mars

zooms is not mathematical but is due to the computer’s representation of

numbers. At the most extreme magnification, a small patch of the complex plane

about .000000000001 units (1.0 x 10-12) wide fills the screen. Using the width

of the Mandelbrot set of 4.0, and the width of the physical screen of about a foot,

we can calculate how big the complete Mandelbrot set would be at the same scale.

Don’t peek at the answer—guess! You’re probably thinking that the giant

Mandelbrot set would be pretty big, or we wouldn’t be making much of a fuss

about it, so maybe the answer is.. .ahhh. . .as big as a football field? Maybe a mile

or two? Well, that’s a brave answer. Indeed, if the giant Mandelbrot set were a mile

wide, and because there are about twenty-five million different one-foot-wide

patches in a square mile, you could be pretty busy charting them all.

But a mile wide is the wrong answer. A Mandelbrot set blown up to the scale

of the most extreme zoomed view you can see on your PC screen with Fractint
would be one billion miles wide. That is ten times the distance from the Earth to the

sun; a bit greater than the diameter of the orbit ofJupiter. Figure 2-16 shows the

relative sizes of this giant Mandelbrot set and the solar system.

What are the chances, then, that in your fractal explorations you will find a

piece of the Mandelbrot set never before seen with human eyes? Not only pretty

good, but virtually certain, as a matter of fact. You may have heard of a company

that for a fee will name a star after you and record it in a book? Maybe the same

thing will soon be done with the Mandelbrot set!

Mandeibrot and Julia Sets

Although the magnitude of exploration possibilities so far discussed is already of

an astronomical size, you should be warned that the parade of endless fractal
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vistas has not even begun! The Mandeibrot set can be viewed not only as a

fascinating fractal in its own right, but as an infinite “catalog” of a related class of

fractals, called Julia sets. Each point of the Mandelbrot set may be considered an

index pointing to a specific Julia set. These Julia sets are named after the French

mathematician Gaston Julia, who discovered them.

Here is how Julias are formed. Consider a point c in a picture of the

Mandelbrot set, and let it be inside or outside the “lake” that is the Mandelbrot

set proper. Given this fixed point c, let’s apply a slight modification of the

escape-time algorithm for calculating the Mandelbrot set. In the calculation of
the Mandelbrot set the c in the formula z2 + c was set to the value z which

pixel,

changes for each pixel being colored. In the Julia set calculation, by way of

contrast, the value of c is keptfixed for the entire image and just z changes. This

little trick results in a new type of fractal. Changing the value of c changes the

entire Julia set to anotherJulia set. Thus, there is no one Julia set, but rather an

infinity of them, one for each value of c. That same number c corresponds to

one point of the Mandelbrot set, so that one point may be considered as the

index of the Julia set.

Figure 2-17 shows a picture of the Mandelbrot set surrounded by smaller

pictures ofJulia sets, with numbers connecting thejulia sets with the corresponding

index points on the Mandelbrot set.

Note that Julia sets whose Mandelbrot index is inside the Mandelbrot lake

have a lake themselves, whereas index points well outside the Mandelbrot lake

do not have a lake. Some of the most interestingJulia sets have an index near the

shore of the Mandelbrot lake. As the index approaches the shore from within the

Mandelbrot lake, the Julia set lake’s shoreline becomes more and more convoluted,

until it explodes into fragments just as the index “hits the shore.” In fact,

this phenomenon can be used as the definition of the Mandelbrot set (which is,

you recall,just the lake part of the escape-time picture of the Mandelbrot set). The

Mandelbrot set consists of exactly thoseJulia indices ofJulia sets with lakes in one

connected piece.

Thisidea of one fractal beingacatalogforawhole familyofotherfractalsisa quite

general idea. Later on in the book, when we are discussing other kinds of fractals,

we will refer to the catalog fractal as the Mandelbrot form, and the family of fractals

that correspond to the indices as theJulia form. This relationship makes sense even

though the iterated formulas used to calculate the fractals are very different than

the familiarz2 + c formula. When we want to make it clear that we mean the original

Mandelbrot orJulias, we will speak of the “classic” MandelbrotlJulia.
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Figure 2-17 Julia family

The Ubiquitous Mandeibrot Set

In physics and mathematics, there are certain numbers that appear over and over

again, sometimes in completely different contexts. A good example is the

number it. The definition of it comes from geometry; it is simply the ratio

between the circumference and diameter of a circle. But It is ubiquitous: it pops

up again and again in connection with waves, power systems, complex numbers,

exponentials, and logarithms.

In a similar way, you will find the familiar bulging shape of the Mandeibrot

set reappearing over and over in miniature form, both within itself and as a detail

FRACTALS: A PRIMER 41



within totally different fractals. Figure

2-18 shows several “baby Mandelbrots”

within a sequence of successively greater

magnification zooms.
Given the fundamental nature of

fractals, which has to do with the exist-

Step 1 Step 5 ence of infinite detail, at greater and

greater magnification, it is not too

surprising to find baby Mandelbrots

inside the original Mandelbrot fractal.

But suppose we use the same approach

to fractal generation (coloring pixels by

iterating a formula), but change the formula

to something completely different,
Step2 Step6 say, z1 = c x cosine(z). This formula

doesn’t look anything like the Mandelbrot
formula, and neither does the

generated fractal. Yet buried within

the fractal is the shape shown in Figure

2-13. Another baby Mandelbrot!

This is not an isolated example—it happens

again and again. The ubiquitous
Step 3 Step 7

Mandelbrot set shape is to fractal theory
what the number is to mathemat -

ics and engineering. Indeed, the plaque

on the Pioneer spacecraft should
have contained a Mandeibrot set

engraving!

Now that we’ve covered the Mandelbrot

in great detail let’s take a look at some
Step 4 Step 8

other kinds of fractals.

Figure 2-18 Fractal zoom in steps

Higher Dimension Mandeibrot and Julia Sets

Because the idea of Einstein’s relativity theory has permeated popular consciousness,

most people have heard of the idea of spaces with more than three

dimensions. So you are probably not surprised to discover that fractals can be
defined with four dimensions.
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Four-Dimensional Number Systems

The classical Mandelbrot and Julia sets use complex numbers, which have the

interesting property that they are two-dimensional (can be represented naturally

as points on the plane) but still have all the algebraic properties of familiar rea’

numbers. You can add, subtract, multiply, and divide them and all the usual rules

of arithmetics apply. Why not use higher dimensional numbers instead of

complex numbers? If a complex number may be represented as x + iy, why not

define x + iy + jz + kt, for some suitable i, j, and k, where x, y, z, and t are real

numbers? Extending our analogy mentioned earlier connecting complex numbers

with New York addresses, x and y might refer to streets and avenues, and

z might be the floor of a building where someone lives. The fourth dimension is

a bit harder, perhaps we could think of t as referring to the date and time.

As it turns out, there are several alternative ways to mathematically define four-

dimensional extensions of the complex numbers along these lines. None of these

extensions quite satisfy all the arithmetic properties of real numbers, but they can

be used to define fractals. These alternatives were studied extensively by rnathematicians

at the turn of the century. (See Appendix C, Complex and Hypercomplex
Numbers, for more details about two- and four-dimensional numbers.)

The most famous four-dimensional extensions of the complex numbers are the

quaternions, which are very useful in physics. Because no four-dimensional

number system can satisfy all the algebraic properties of real numbers, some

property must fail. For quaternions, q1 x q2 and q2 x q1 are not always the same (the

commutative law of multiplication fails). Alan Norton, an associate of Benoit

Mandelbrotat the IBM’s Thomas J. Watson Research Center, introduced the world

to quaternion Julia sets in 1982, and John Hart extended this work in 1989.

In the Fractint program that comes with this book, we resurrect a forgotten

four-dimensional number system from the dustbin of mathematical history, the

hypercomplex number system, and use it to generate four-dimensional fractals.

Hypercomplex numbers satisfy the commutative law, but you cannot always

divide by nonzero numbers (the existence of multiplicative inverses of nonzero

elements sometimes fails). However, hypercomplex numbers have the advantage

over quaternions that familiar mathematical functions such as sine, cosine,

and the exponential function that work with complex numbers can easily be

extended to hypercomplex numbers. Four-dimensional fractals use the fact that

the fundamental formula used to generate Mandelbrot andJulia sets, z2 + c, works

just as well using quaternions or hypercomplex numbers as regular complex

numbers. But the resulting Mandelbrot or Julia fractal is four-dimensional
instead of two dimensional!
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Figure 2-19 Explaining an apple to a flatlander

Visualizing Four-Dimensional Fractals

Given that you and I live in three-dimensional space, it is hard to imagine a four-
dimensional fractal. The classic satirical book Flatland (Edwin A. Abbot, Dover

Publications, NY, 1952) discusses problems imaginary creatures living in two or

three dimensions might have understanding higher dimensions. Our solution is
the same as the solution of the Flatland characters. As three-dimensional creatures

we can understand four-dimensional objects in terms of three-dimensional slices.

If you wanted to explain an apple to a two-dimensional creature living somehow

in a plane, you could show him several different slices (cross-sectionalviews) of the

apple. Figure 2-19 shows a flatland creature contemplatingapple slices. Now think

of yourself as a three-dimensional “flatland” creature and look at the three-

dimensional “slices” of a hypercomplex Julia set shown in the Figure 2-20.
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Figure 2-20 3-D slices of a 4-D Julia set printed on a 2-D page

One way to visualize a four-dimensional object is to think of the fourth

dimension as time. You could imagine that the hypercomplexJulia fractals shown

in Figure 2-20 are snapshots ofa single mutatingfractal taken at different times. Our

imaginary flatlander could use the same trick to visualize an apple. We could create

a “mutating apple slice” animation for our flat friend by filming a sequence of

horizontal slices a frame at a time, moving from the bottom to the top of the apple.

We could then project the movie onto the flatlander’s plane. He would see a circular

apple slice grow in size as the plane moved to the fat part of the apple, then become

smaller and smaller until it vanished entirely. But because you and I know that the

apple is “really” three-dimensional, this approach is not too satisfying. Fortunately,

you canjust create and enjoy 3-D “slices” of hypercomplex and quaternion fractals

without solving this knotty philosophical problem, or for that matter even really
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understandingwhat these four-dimensional numbers “really” are! You’ll learn how

to do this with the Fractint program later in this book.

Newton’s Method-Escape to Finite Attractor

After this brief excursion to higher dimensions, we return to the more familiar

world of two-dimensional fractals. The escape-time method of generating

fractals we have discussed so far might be called “escape to infinity.” The test for

when an orbit has escaped (strayed outside a circle of radius 2) is really a test for

escaping to infinity. In the case of the Mandelbrot andJulia orbit formulas, once

the orbit value gets outside that circle, if you were to continue to calculate the

orbit it would spiral outward forever. In this case we say that “infinity is an

attractor” for the orbit. It is as if infinity were a magnet trying to attract the

Mandelbrot orbit values to itself. And we can imagine that the orbit test point is

trying to keep the orbit values in check.

Escape to a Finite Attractor

A similar kind of fractal image is generated by measuring the escape time to a finite

value rather than infinity. One example of this creates fractals using what is called

Newton’s method. (Newton, as you probably recall, was a famous physicist who

invented—that is, discovered—a great many truths about moving objects and

gravity. He also discovered some clever math techniques.) For example, every time

you press the square root button on a calculator, you are using Newton’s method.

Newton’s method is a way of doing a calculation by beginning with a guess for the

answer, and repeatedly applying a formula that transforms the guess into a better

guess. The series of answers so generated converges rapidly to the correct answer.

Consider the problem of finding the cube root of 1. This is the same problem

as finding the solution to the equationz3 —1=0. The solutions to this equation are

the numbers that when multiplied by themselves two times (z xz xz) give 1 as an

answer. You might think that this is a silly problem, because the answer is clearly

the number 1, because 1 = 1. What makes the problem interesting is that when

complex numbers are considered (the same kind of numbers we just discussed in

connection with the Mandelbrot calculation), there are actually three solutions to

the equation. These three answers are three equally spaced points on a circle of

radius 1. They are the complex numbers 1 + iO, —1/2 + i 3/2, —1/2 — i 3/2

Figure 2-21 shows the three cube roots of 1 distributed on the unit circle in

the complex plane, and what happens to several initial guesses when fed into the
Newton’s method formula.
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Figure 2-22 Newton’s method fractal for the
cube root of 1

Figure 2-21 The three complex cube roots of 1

The Newton’s method approach is very similar to the Mandelbrot set calculation.

The pixels on the screen are mapped to complex numbers in the same

way. For each complex number Zej corresponding to a pixel, an orbit sequence
;, z1, z2 c,.. is generated. This time the orbit sequence is generated by a slightly
more complicated formula, z1 = (2z3 + 1)/3z2. But the main difference is that with
Newton’s method the criterion for “escape” is different. For the Mandelbrot set,

escaping meant that the orbit got outside a circle of radius 2 centered on the origin.

The orbits that got too close to the “magnet” at infinity were attracted to it. But in

the case of Newton’s method, there are three magnets, one located at each of the

cube roots of 1 around the unit circle. Orbits escape (or perhaps we should say they

die) when they are irreversibly attracted to these magnets. Each test-point pixel is

colored according to the magnet that captures its orbit.

But what happens when the test point guess is between two of the three

possible attracting values? The answer is chaos! Areas colored according to the

ultimate destination of the orbit become intertwined in an infinitely complex

pattern, as Figure 2-22 reveals.

Newton’s method is an example of where fractals turn up in situations that

engineers want to avoid. That square root button on your calculator has a

purpose—to find the square root. The first guess your calculator makes before

applying Newton’s method is designed to be close enough to the final answer so

that the algorithm will work effectively to find the square root. If the algorithm

doesn’t work for bad initial guesses, then it is the job of the calculator designer
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to avoid those values. The designer will be out of a job if he or she builds a

calculator where an “ill-behaved” initial guess is used and the calculator gives the

wrong answer.

Generating a Newton Fractal

Here is how to use Newton’s method to generate a fractal. Start with a grid of

complex numbers that more than covers the unit circle and our three cube roots

of one. The corner values might extend from —2 to 2 in both the x andy direction.

Assign colors to the three answers. Fractint uses dark blue, light blue, and green.

Each number, Zpej in the grid is used as an initial guess for the Newton’s method
calculation. Set Z0 = Zej and successively apply the Newton formula to get a
sequence z0, z1, z2 Each time the formula is iterated, the orbit is checked to
see if it has come near one of the roots. If it does, the calculation is finished, and

zis assigned the color of the root that captured it. The areas near the three roots
end up being solidly colored with the color for that root. In between the roots,

the three colors twist together in an intricate braided pattern. These solid areas

are called basins of attraction, because they show all the starting points that end

up converging to a particular attractor. Figure 2-22 shows this intriguing fractal,

which might be said to be based on the applied mathematician’s nightmare—the
indecision of Newton’s method!

Chaotic Orbits and the Iorenz Attractor

The discussion of escape-time fractals introduced the idea of an orbit as a series of

points that can be imagined to be the path of a flying object. The only concern for

the orbit was the time required to escape outside some radius, or the time required

to be captured by an attractor (that is, the number of iterations required). The orbit

itself was not the main concern, but was simply a step in the calculation of a color

of a single point. However, orbits can be interesting in themselves.

The idea of plotting orbits from the equations describing dynamic systems is

as old as physics itself. One of the first triumphs of theoretical physics was the

demonstration that the elliptic orbit of a small moon around a large planet is a

consequence of the inverse square law of gravitation. The problem of determining

the orbits of two objects revolving around each other is known as the

“two-body problem.” It has a simple and elegant solution. But adding a third

body to the dynamic system greatly complicates the orbits. Three-body orbits

can be complex beyond imagination.

Why is it, then, that every high school science student has the idea that

planetary orbits are ellipses, when there are, to make a slight understatement,
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more than two objects in the universe? No orbit in the physical world is exactly

an ellipse. If the three-body problem has a complicated solution, how about the

trillion-body problem, the one that exists today in our universe!

There is, of course, a perfectly reasonable answer to this question. An ellipse

is a simple geometric shape that has simple mathematical properties that make

it very suitable for computational purposes, not to mention educational purposes.

In science and engineering, careful simplifications and approximations

can make intractable problems manageable, and they are a very important tool

in the engineering tool kit.

Yet this eminently reasonable answer is unsatisfying. This propensity to

imagine orbits in the simplest possible geometric terms is probably yet another

manifestation of a deep cultural bias toward a classically geometric way of

imagining the world. What do we find when we abandon the simple beauty of

the ellipse and contemplate chaotic orbits—which is to say, virtually every real
orbit? Fractals, of course!

Before launching into an example of a chaotic orbit, let us review a few

properties of the well-behaved orbits of classical mechanics. The elliptic

orbit is periodic. That is, the orbiting object describes a single path over

and over. Alternatively, under different conditions the orbit might be a

parabola or a hyperbola, in which case the orbit is not periodic, but the object

traverses the orbit exactly once. In all of these cases, the orbit is a well-defined
smooth curve.

In late 1963, Edward Lorenz published a paper on deterministic chaos that

included some plots of an unusual orbit. Like the Mandelbrot set, his “monster

curve” had a very simple mathematical description. But the behavior of this orbit,

which we will refer to as the Lorenz attractor, is far from simple.

The plot of the Lorenz attractor orbit consists of two connected spirals, in two

different planes at an angle to each other (see Figure 2-23). The orbit path would

swirl around inside one of these spiral areas, and then at random intervals it

would switch allegiances to the other, and so on back and forth. This orbit has

some bizarre properties. It is bounded, like the ellipse, and contained forever

within a delimited region of space. But unlike the ellipse, the Lorenz orbit is not

periodic; in fact, it never crosses itself or repeats. Its path is, therefore, an infinitely

long thread wound around in a finite space. The combination of these three

factors—bounded, infinitely long, never crossing itself or repeating—implies a

complex interweaving of arbitrarily close near misses of different strands of the

orbits like an air traffic controller’s worst nightmare! From all that we have

discussed so far, you will not be surprised to learn that such an orbit is a fractal.

Figure 2-23 is a plot of the first few thousand or so turns of this chaotic orbit. You
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Figure 2-23 The Lorenz attractor

can generate the Lorenz attractor in stereo 3-D using Fractint and even have it

generate tones as it’s being made.

Gaskets and Ferns—Iterated Function Systems

The essence of a fractal is to have detail at all scales, including the most extreme

magnifications. One way to achieve this characteristic is through self-similarity.

An object is self-similar if small pieces of itself are identically shaped versions of

the complete object, only on a smaller scale. One method of generating fractals

is to directly exploit this idea. A fractal can be defined by exactly specifying the

relationship between itself and its self-similar parts.

Michael Bamsley has developed this approach and named it Iterated Function

Systems, or IFS for short. An endless variety of fractals can be created in this way,

some of them eerily lifelike. Fractint and Fdesign can create a variety of bushes,

trees, and ferns using the IFS fractal type.

The Sierpinski Gasket

The Sierpinski (pronounced “sear-pin-ski”) gasket is a fractal that looks as if it is

made of Swiss cheese because it has so many holes. It’s called a gasket because

it seems to offer the structure you might find in a gasket—lots of passages

surrounding each other.

The Sierpinski gasket can be exactly specified by stating the rule governing its

self-similarity: it’s a geometric object built within a triangle, with the property that
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each of the three subtriangles formed from one of its corners and the midpoints

of the adjacent two sides is an exact self-similar replica of the whole triangle.

Anotherway to define this fractal is to use what are called affine maps. An affine

map is a transformation of an object that preserves its shape. The transformation

can rotate it, move it, enlarge it, or shrink it, but it must not distort the shape of

the object. Therefore, you must be sure your transformations do the same

operation to each point in the same way. Such a map is said to be contractive if

it always shrinks objects. The notion of a contractive affine transformation is a

formal way of saying “self-similar.” In other words, if there is a contractive affine

map between an object and itself, then the object contains a miniature image of
itself and is self-similar.

We can easily describe the Sierpinski gasket with three affine maps. Draw the

Sierpinski gasket on a graph, so that two of the sides are nestled against thex- and

y- axes. The corners of the triangle are the points (0,0), (1,0), and (0,1). Here are

three affine maps defining this Sierpinski gasket:

1. Map every point (x,y) to the point (x/2,y/2). This maps the whole triangle

to the lower left triangle by shrinking the scale by a factor of a half.

2. Map every point (x,y) to the point (x/2,y/2 + 1/2). This maps the whole

triangle to the upper left corner subtriangle by shrinking the scale by a

factor of a half and shifting up half a unit.

3. Map every point (x,y) to the point (x/2 + l/2,y/2). This maps the whole

triangle to the lower right subtriangle by shrinking the scale by a factor of

a half and shifting to the right half a unit.

These three affine maps are shown in Figure 2-24.

In this particular example, the transformations are particularly simple because

no rotation was involved, only shifting and shrinking. The key insight into the

relationship between affIne transformations and the Sierpinski gasket is to notice

that there are four possible triangles with sides equal to half the sides of the

original. The missing triangle is the center one, formed from the midpoints of the

three sides. Why is there no transformation mapping the whole triangle to the

center? Because there is nothingin the center—that is the “hole”! If the fourth affmne

transformation were added, mapping the whole triangle to the middle, the result

would be rather boring—simply a filled-in triangle! Leaving out the center is what

creates the “Swiss cheese” effect with the missing centers of the triangles.

Barnsley suggests a method of generating the fractal from these affine

transformations that he calls the “chaos game.” Start with any arbitrary point

whatsoever. Pick one of the transformations at random and apply it to the point,
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Figure 2-24 Sierpinski gasket

plotting the result. Continue by applying a new randomly chosen transformation

each time to the last point, again plotting the result. But as the process is repeated,

the points generated will produce the shape of the Sierpinski gasket. The name

Iterated Function Systems for this kind of fractal comes from the repeated, or

iterated, application of these affine maps, or function systems.

The Sierpinski gasket is used here to illustrate IFS fractals, but it can also be

generated in two otherwaysbyFractint: byusingL-systems(see Chapter 5, Fractint

Reference) andbyusingthe escape-time methods we have discussed. The Sierpinski

gasket holds the record for the number of different ways that Fractint can create it.

A Fractal Fern

The Sierpinski gasket is a very unnatural-looking object, but it is just one of an

endless variety of images possible with the IFS approach. Another fractal that has

become almost a trademark of Barnsley’s work is the fractal fern.

Many plants have several levels of self-similarity because of their branching
structure. Some kinds of ferns have wide fronds at the base and narrower fronds
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Figure 2-25 The self-similarity of a fractal fern

in the center, tapering to a pointed tip. If you broke off the very bottom fronds,

you would end up with a smaller but still similar fern. Four iterated functions can

be used to define a very natural-looking fern. Two functions define the selfsimilarity

between the left and right fronds with the whole. One function defines

the stem. Finally, another function defines the relationship between the whole

fern and the fern less the bottom fronds. Figure 2-25 shows these self-similarities.

As with the Sierpinski gasket, probabilities are assigned to these functions, and

their repeated application seeded with an arbitrary starting point generates the

image, just as we described earlier for the Sierpinski gasket.
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THERE’S MUCH MORE

No introduction to fractals can completely cover the subject. This fractal

primer was designed to give you a taste and feel of what fractals are all about,

as well as a slight touch of the mathematics behind them. But because this is

really more a book about exploring and creating fractals, the next chapter

begins that exploration with a guided tour of the Fractint program that comes
with this book.
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re you ready for a wild ride into the mysterious world of fractals? You

have come to the right place. This chapter is a guided tour of the Fractint

program. For a complete reference to the keystrokes and commands, see

Chapter 5, Fractint Reference.

Fractint generates fractals based on any of its 95 different built-in formulas. It

can save and retrieve fractaLs in CompuServe’s Graphics Interchange Format (GIF)

format. Fractint has additional capabilities for generating 3-D transformations of

fractals, making stereo red/blue images, doing color-cycle animation, changing

color palettes, letting you experiment with your own fractal formulas (with no

programming needed), and much more. In this chapter you will learn how to

access some of these features and how to fine-tune the way the program operates.

This chapter will take you through a hands-on demonstration of Fractint’s
most basic functions. It is for readers who have never used Fractint before, but

it will also show you nooks and crannies of the program that even experienced

users may not have discovered. Don’t feel restricted by our tour, however. You

may want to explore on your own at various points along the way. But do come

back. Fractint is the kind of program that grows on you because it has more

possibilities than you can absorb all at once.

UP AND RUNNING

We assume you have read Chapter 1, Installation, earlier in the book and that

Fractint is installed and ready to run in a directory that is included in your DOS

path. If not, go back and read the installation instructions, make sure you have



Figure 3-1 The Fractint road map

the correct flies in your Fractal Creations directory, and come back here as soon

as you have Fractint running.

Fractint has a keystroke record and playback capability which you can use to

demonstrate anything the program can do. When in playback mode, Fractint

appears to be under the control of an invisible guide entering keystrokes at the

keyboard. For a demo of many of Fractint’s features using the keystroke playback

mode, change to your Fractint directory and run DEMO.BAT. Assuming thatyou

have placed your flIes in \FRACTINT, type

cd \FRACTINT

DEMO

This demo will show you some of Fractint’s fractal types, how to control

Fractint with menus, and how to create special effects using color cycling. You

can exit the demo mode at any time by pressing Fractint will continue to

run, but will now respond to your keystrokes rather than the keystrokes stored
in the demo fIle.

A FRACTINT GUIDED TOUR

To make your tour easier, a road map is shown in Figure 3-1. This fIgure is a

simplified flowchart of the different functions of Fractint. As we go through the

tour, we will traverse the routes shown on the road map.

Here are a few conventions about how we will describe what you type to

invoke the various commands. When we want you to type in something literally,
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Table 3-1 Help nagation keys

we’ll show it in monospace and bold. For example, when you see “type in the fIle

name ALTERN.MAP,” you should type: ALTERN . MAP.

Some keys or other items will be referred to using key caps characters, as when

we write “press to return to the MAIN MENU.” You should press the key.

We will surround variable names that you should not type in literally with the

“<“and “>“ characters. When we write: “Type in at the DOS prompt FRACTINT

SAVENAME=<FILENAME>,” for example, you supply a fIle name to replace

<FILENAME>, so you would actually type in something like: FR A C TINT
SAVENAME=MY FRACTAL. GI F.

Quitting Fractint

Before we start, let’s talk about the two most important commands in Fractint,

the Quit command and the Help command. The Quit command key is

which is used in every context to back out of whatever mode you are in and move

toward the IvLuN MENU. In fact, repeatedly pressing J will get you to the EXIT

FROM FRACTINT? (Y/N) prompt, which then requires pressing only to return to

the DOS prompt.

The Help function is accessed by pressing the key from any place in the

program. The fIrst Help screen you see is context-sensitive; it depends on where

you were in the program when you pressed . Pressing a second time will

take you to the MAIN HELP INDEX, from which you can access all the Help screens.

Pressing J exits the help mode. Table 3-1 summarizes the keystrokes used to

navigate through the help system.
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Figure 3-2 The famous Fractint credits screen Figure 3-3 The Fractint Main Menu

The Credits Screen

Fractint’s opening screen shown in Figure 3-2 is decidedly unconventional and

comes closer than anything else to symbolizing the participatory nature of

Fractint. We “Stone Soupers” (the creators of Fractint) considered giving Fractint

a more fashionable face for this book, but after a little thought we realized that

the opening screen has become indispensable. To our eyes, it’s beautiful!

‘When you fIre up Fractint you are presented with a scrolling list of the names

of people who have made the “stone soup” tasty by contributing the odds and

ends from their programming “cupboards.” (Notice that the list shows the Stone

Soupers’ CompuServe Information Service (CIS) numbers, so you can contact

many of us by electronic mail.) Fractint is truly a community project driven by

the excitement and imagination of an international network of kindred souls.

These people have two things in common: their fascination with fractals and their
desire to share their excitement with others.

Once you have used Fractint more than a few times, you will probably get in

the habit of immediately pressing to bypass the credit screen and move

straight to the MAIN MENU when you start Fractint.

The Main Menu

Having paid homage to the legions who have contributed to the program, go

ahead and press to move to the MAIN MENU, which should look like

Figure 3-3.
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Using Fractint Menus

Fractint was originally a command-driven program, which means that various
keystrokes caused Fractint to execute different commands. All commands are
now also accessible from screens we call “menus,” which you can control with
the cursor keys. Throughout Fractint, you can select items from the menu by
moving the highlight to different menu items using the , , , and E keys,
and then pressing to execute the commands you have highlighted. Note
that the menus also tell you how to select the menu items by using direct
command keystrokes. For example, you can leave Fractint either by selecting
QUIT FIaINT with the arrow keys and pressing, orby pressing. Note
that none of the Fractint menus use the mouse.

Most commands can also be given at Fractint startup time using command-

line options. You can, for example, specify which video mode you want Fractint

to use by typing the following at the DOS prompt: f ra c tint vi deo=

This method can be useful when you have specialized commands to execute and

want to simply type them instead of using the menus. You can also execute

Fractint with command-line parameters from a batch file.

Fractint Modes

Fractint has fIve modes, each with its own set of commands. These fIve modes

are the display mode, the color-cycling mode, the orbits window mode, the

Julia window mode, and the palette editing mode. Of these fIve modes, the

display mode is the most important, because the main functions of Fractint are

accessible from within this mode. Color cycling, the orbits window, and the

Julia window are simple but secondary modes, while palette editing is a more

advanced function. Each of the fIve modes has its own set of commands, soit

is important for you to be clear at all times which mode is currently active. You

can press at any time to get help with the current mode. You do not need

to memorize keystrokes because menus and help screens can be easily

invoked, although you will fInd yourself quickly learning the most important

keystrokes. At fIrst Fractint will be in the display mode. The other four modes
will be described a little later.

The Fractint MAIN MENU is divided into three sections, described in the

following paragraphs.
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New Image

The NEw IMAGE menu category contains commands that let you select a fractal

type and select the desired video mode. Fractint can calculate its images from 95

built-in formulas. But in order to create a new image, Fractint needs to know two

things: what video mode you want to display and what fractal type you want to

calculate (see Chapter 6, Fractal Types, for an explanation of fractal types). The

fractal type defaults to the Mandelbrot set. If Fractint is able to detect what exact

video hardware your PC has, a suggested video mode will be highlighted in the

list of video modes when you invoke the SELECT VIDEO MODE function. (A video

mode is the screen resolution and number of colors supported by a particular

video adapter.) However, there is no universal default for the video mode; you

must choose a mode in order to generate an image. But before you go ahead and

choose a mode, let’s discuss the other menu headings.

Options

The OvnONs menu items give you access to a variety of settings and special effects.

You won’t need these right away, except possibly the VIEw WINDOW option.

Because the time it takes to create a fractal is directly proportional to how many

screen pixels have to be calculated, the VIEw WINDOW capability allows you to

specify a very small image that can be calculated very rapidly. This capability is

wonderful for the intrepid fractal explorer, especially one who does not have the

world’s fastest computer!

File

The FILE menu category includes the ability to restore to the screen, or read in,

previously calculated images that were saved as GIF fIles. (See Appendix B,

Fractint and GIF Files for more about the GIF standard.) There are two ways to

restore fIles and duplicate them on-screen: either as they were originally

calculated, or by doing a 3-D transformation on the fIle. There are also useful

commands on the FILE menu that let you enter DOS without exiting Fractint (you

return to Fractint by typing ex i t), quit Fractint altogether with (), and restart

Fractint with [ERfl.

Let’s continue this tour through each of the MAIN MENU commands in detail.

Selecting a Video Mode

Using the arrow keys, choose SELECT VIDEO MODE from the NEw IMAGE section of

the MAIN MENU, and press i. You will be presented with a list of video modes,

with a choice highlighted, that should look like Figure 3-4. This list shows all the
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Figure 3-4 The Select Video Mode menu

various drivers built into Fractint for a variety of video hardware, along with

comments about each video mode. (A video driver is a specialized routine for

accessing the features of your video hardware.) The list includes not only

standard IBM-compatible modes such as the 320 x 200 VGA 256-color mode,

but some highly unusual “tweaked” modes that can squeeze extra resolution out

of a plain VGA board.

The F3 option means that pressing function key will directly select that

video mode. Each video driver has a key combination associated with it, and

pressing the key combination selects that video mode. You can also select

different modes by using the arrow keys to move the highlight to the mode you

want and then pressing Fractint has room for up to 100 different video

modes, each with a different key combination. Table 3-2 lists some examples to

show how the key-naming scheme works.

Table 3-2 The Fractint key naming scheme
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Table 3-3 Video mode choices for different hardware

As an example, the mode labeled SF1 has a resolution of 360 pixels wide

and 480 pixels high, with 256 possible colors. This mode results from Fractint

directly programming the VGA registers, and it should work on any VGA

that is fully register-compatible with the IBM VGA. It is accessed by pressing

For right now, however, our main concern is to fInd a good video mode for

getting started. If you have a CGA, EGA, or VGA adapter, Fractint will have

detected your adapter and chosen a mode for you, which you will see highlighted.

If you have a VGA, for example, a good mode to use is the one labeled

F3 IBM 256-COLOR VGA/MCGA, because it has relatively low resolution for fast

results, and because it has more colors—a decided plus. You won’t immediately

notice the extra colors of a 256-color mode in the default Mandelbrot image that

we’ll be generating shortly, but once you zoom deep inside a fractal and try

cycling the colors, you’ll see the value of having more colors.

Once you select a video mode, it will remain current until you change modes.

Table 3-3 shows several good initial choices of video mode for different kinds of

video hardware. After you have created a really spectacular image, you may want

to regenerate it using a higher resolution mode.

If you have a super VGA board, try some of the SuperVGA/VESA Autodetect

modes. It’s a good idea to get out your video board documentation, fInd a chart

of video modes, and see which modes your board supports. For this tour,

though, any of the modes in Table 3-3 will be just fIne.

Generating a Fractal

Go ahead and select a video mode. If Fractint’s highlighted choice looks

reasonable for your computer hardware,just press to select it. If you don’t

64 CHAPTER 3



Figure 3-5 Your fIrst Mandeibrot set

like the mode Fractint chose and you have a VGA board, use F3; for an EGA, try

F2; and for a CGA, try F5.

Now for the trigger—press Pressing to select a video mode

begins generating a fractal image. The default image for Fractint is type mandel,

so you should now see a fractal being generated on your screen—the famous

Mandelbrot set. Your screen should look like Figure 3-5. Congratulations, you

have created your fIrst fractal!

If you didn’t get Fractint to display the Mandelbrot set, you probably selected

a video mode that is not supported by your hardware. This can be disconcerting,

but it does no harm. Even if your screen is black, press J to get back to the

MAIN MENU. (If the computer “locks up”—freezes the screen and keyboard—you

could have to reboot, but this is unlikely.) Try again, this time selecting an

appropriate video mode. If you have a color system, try c. That is the old IBM

4-color CGA mode, which should work on most systems.

EGA and VGA Colors

Once you get things working, try éxpenmenting with other modes. If you have

a super VGA and you started off with (), try the EGA () mode. This will give

you a feel for the way resolution affects speed. Notice that the default Mandelbrot

image (the one you get when you fIrst start Fractint and select a video mode) looks

almost the same with 16 colors as it does with 256 colors. In fact, the authors have

had phone calls from people complaining that the 256-color modes didn’t

appear to work! The reason is that the colors correspond to the number of iterations

of the formula used to calculate the Mandelbrot set. The outer colored area
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Figure 3-6 The orbits window

corresponds to color 1, the next stripe to color 2, and so forth. Mathematically

it turns out that the vast majority of visible pixels in the Mandelbrot image have

colors with values less than 16—which is the number of colors on the EGA, too.

But after you begin zooming in, the 256-color images will begin looking very
different.

To allow quick evaluation, Fractint plots its images, such as the Mandelbrot

set, using multiple passes. First it draws the entire fractal image using large

chunky blocks, then it goes over the image again and subdivides the blocks into

smaller blocks. The number of passes depends on the video mode; the higher the

resolution, the more passes. For example, 320 x 200 modes have two passes,

while 640 x480 modes have three. What’s nice about this approach is that you

don’t have to wait for the image to be completed before continuing your

explorations. You can generally tell what the fractal will look like soon after the

coarse pixels of the fIrst pass are colored. If you don’t like the way the fractal is

developing, you can press J to return to the MAIN MENU and change some of

the settings.

The Orbits Wmdow

Try the following experiment: After your Mandelbrot image is complete, press

the ® (the letter 0) key. You will see a black window appear in the lower right

corner of the screen, and a cross-shaped cursor appear in the center of the screen.

As you move the cursor with the mouse or the arrow keys, you will see a spiral-

like pattern of points appear in the window, as shown in Figure 3-6. This pattern
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makes visible the orbit values generated in the Mandelbrot calculation. (See

Chapter 2, Fractals: A Primer for an explanation of orbits.) Pressing turns

off this feature and returns to the normal display mode.

The Mandelbrot image is calculated by generating a sequence of points and

testing whether they have escaped a circle of radius 2. The window plots this

sequence of points on the screen, and colors them according to which iteration

of the Mandeibrot formula they belong. Notice that the orbits have the most

structure when the “lake” points are being plotted and that the orbit path does

not quickly escape to large values. The orbits get more complex as you move the

cursor toward the “lake” shoreline. (Some people feel the orbit plots are more

interesting than the fractal images themselves—and that is why in this latest
version of Fractint we have added this new orbit window.)

When in the orbit mode, there are special keys that enhance its effect. The @

key draws circles around each point, with radius inversely proportional to the

iteration number, so the first orbit points have the largest circle. Because this key

is a toggle, pressing again turns off circles and returns to plotting individual

points. The key toggles a line mode, in which the orbit points are connected

by lines. You can have the circle mode and line mode on at the same time!

Pressing toggles on and off the display of the coordinates of the point where

the cross-hair cursor points.

An Orbit Wmdow Trick

Here’s a trick that will let you fill the whole screen with just the orbit image. Press

to open the VIEw WINDOW OvnoNs menu. (If you were in orbits mode, pressing

any display mode command key such as ends the orbits mode.) You will see

the view windows screen, as shown in Figure 3-7. In the first field at the top of

the menu, typeat the P wDIsPIx?(NoFoRFuIIScIEN)prompt, and press

A small Mandelbrot image will then be generated in the center of your

screen. (View windows is really handy for quickly getting a feel for the

appearance of a fractal, because the little images generate very quickly.) Now turn

on the orbits mode by pressing . The baby Mandelbrot image will jump to the

upper left corner, and the orbits display will fill the screen! You can hide the

fractal image and allow the orbit image to fill the whole screen by using the ®

toggle. Pressing again restores the Mandelbrot image. Don’t forget to try

and to see the orbits represented with circles or lines. When you are done with

the orbits, press () again to turn off view windows by typing () at the first

prompt and pressing
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Figure 3-7 The view window options menu

Zoommg In

Now that you have your first Mandelbrot image displayed, and you’ve played

with the orbit display, what the heck can you do with it? Fractals are full of

interesting details that unfold as you expand them. The “zoom” function of

Fractint lets you dive inside a fractal on the screen and behold its inner beauty.

This is also the main tool that enables you to explore fractals at different scales.

Pressing the [PAGE uP] key or clicking the left mouse button creates a dashed

rectangle—called the zoom box—around the outer edge of the screen. Repeatedly

pressing (PAGE UP) or holding the left button down while moving the mouse

away from you shrinks the zoom box. You can move the zoom box around the

screen by using either the arrow keys or the mouse. Moving the mouse with no

buttons pressed moves the zoom box within the screen’s x-y plane.

The opposite of [PAGE UP], the [PAGE DOWN) key is used to make the zoom box

larger. Repeatedly pressing [PAGE DOWN) will make the zoom box disappear. To

do the same thing with the mouse, hold the left button down and pull the mouse

toward you. You can use keys and mouse together, too. On most recent

machines, you can speed up the movement of the zoom box with the cursor keys

by holding down the (CONTROU key while pressing the cursor keys.

You can even rotate the zoom box! Try and where

“+“ and “—“ are the gray keys on the numeric keypad. Moving the mouse left or

right while holding the right button down performs the same function.

68 CHAPTER 3



Zoom Box Exploration Technique

The real fun of using Fractint is locating some interesting detail in a fractal,

placing the zoom box over it, and then pressing (or double-clicking the
left mouse button) to cause Fractint to calculate and fill the entire screen with the

smaller detail that was in the zoom box. The zoom box acts as a magnifier.

You can also zoom out by creating a small zoom box and then pressing

(CONTROL}EAJ. The effect of this is to zoom out so that the previous image is

shrunk to the size of the zoom box and the surrounding area is filled in. The

equivalent mouse command is to double-click the right mouse button.

Finding Baby Mandeibrots

Mandelbrot images live inside Mandelbrots. In fact, it is hard to avoid them. In

order to try the zooming facility, try to locate some baby Mandelbrot sets in the

left-hand spike of the Mandelbrot set. Figure 3-8 shows the results of two zooms

which you can duplicate. The image on the left shows the full Mandelbrot set with

a zoom box centered on a bulge in the left-hand spike of the Mandelbrot. The

second image shows the resulting zoomed image, which contains a miniature

copy of the whole Mandelbrot set, and another small zoom box centered on

another small bulge in the fractal image. The third image shows the result of this

deeper zoom, revealing yet another small Mandeibrot shape. Even a short

investigation of the Mandelbrot spike should convince you that there are an

infinite number of such baby Mandelbrots.

Now try it yourself. Starting with the full Mandelbrot set, press (PAGE UP)

several times to make a small zoom box. Move the zoom box to the spot shown

in Figure 3-8a. When you are satisfied that the zoom box is in the correct position,

press Your image should look something like the one in Figure 3-8b.

Repeat this process, trying to duplicate the zoom box in the middle image to

generate the third image, Figure 3-8c.

Increasing the Maximum Iterations

Try zooming in several more times, finding still smaller baby Mandelbrot sets. If

you zoom far enough, you willfind that the Mandelbrot shape degrades. The shape

loses the sharp twists and turns of its convoluted coastline. The Mandelbrot set is
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Figure 3-8 Zooming in on baby Mandeibrots

defined to be the set of points c whose orbits generated by iterating the formula z1

= z+ c never escape a circle of radius 2 no matter how many iterations are

calculated. (See Chapter 2, Eractals: A Primer, for a discussion of escape-time

fractals.) Fractint approximates the value of “never” by waiting until some
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Figure 3-9 Effect of increasing Maximum Iterations

maximum number of iterations is reached, and then assuming that if the orbit

hasn’t escaped yet, it will never escape. This assumption is not completely accurate,

and it is better if a higher maximum iteration cutoff is used as you zoom deeper.

The default value in Fractint is 150 iterations, but you can set it as high as 32,768.

The price you pay for accuracy is that the calculations will take longer. You can set

the maximum iterations by pressing () to access the BAsic OvrioNs screen (or select

BASIc OvnoNs <x> under OPTIONS from the MAIN MENU, and filling in a value for

MAxIMuM ITERA11ONS. Figure 3-9 shows four versions of a baby Mandelbrot found

after a number of zooms. The maximum iterations values used for the four images

were 150,250,350, and 1000. You can see that the first image has begun to lose

the characteristic Mandelbrot shape, but that as the maximum iterations value is
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increased, the shape gets more accurate. For moderate depth zooms, the default

maximum iterations value of 150 works very well.

Color Cyclmg

The second Fractint mode is called color cycling. In this mode, Fractint rapidly

alters displayed colors of an image, giving an effect of animation. This works

because most graphics adapters create colors by using what are called color

palettes. A color palette is like the color key for children’s paint-by-numbers oil

painting kits. Each area of the painting is assigned a number, and each number

represents a color. The set of all the available colors assigned to numbers is the

current color palette. There are as many palette entries as the number of colors

your computer’s hardware video adapter can display at one time. So, a palette for

an EGA has 16 entries, and a VGA has as many as 256. But—and this is a big

“but”—the colors assigned to the palette entries are drawn from a much larger

selection. For example, the VGA 320 x 200 mode can display 256 colors on the

screen at one time, but these 256 can be selected from 262,144 possible colors!

(Understand that in Fractint, different shades of the same color are considered

different colors. Some fractals, for example, may have only 2 colors with 128

shades.) Your screen is like the child’s painting; each pixel is assigned not a color

but a color palette entry number. The color of the pixel is the color assigned to

its palette number. What Fractint does when it color cycles is rapidly change

which colors are assigned to which palette numbers. As you’ll see, this simple

technique creates a magical effect.

Why Color Cycling “Animates” Images

Most fractal images have more information in them than the mind can comprehend.

By assigning colors differently, you can make different details visible in the

same image. By cycling the colors, areas that make up the fractal are revealed by

color moving between them. Because the areas are connected in a highly

organized fashion, there is a high degree of animation potential. Playing with the

colors is at least half the fun of Fractint. Alas, this feature only works if your video

hardware supports at least 16 colors (EGA), and works best in the VGA and super

VGA 256-color modes. If you have a CGA or Hercules monochrome graphics

adapter, we suggest you skip on to the next section, or go out and buy a super

VGA with 1024K of RAM. A few years ago these adapters were the state-of-the-

art, but now they are inexpensive commodity items.
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Press the key to see your fractal color cycle. Show time! The colors of your

fractal will now start wildly gyrating! (If the cycling is too fast on your machine,

you can slow it down with the key.)

Color-Cycling Features and Experimenting

Earlier in this chapter we discussed the five modes of Fractint—the display mode,

the color-cycling mode, the orbits window mode, the Julia window mode, and the

palette editingmode. Assoonasyou press () (or 0 or (p)), Fractintenters the colorcyclingmode,

and awhole newset of command keys takes effect. The () and 0 keys

reverse the direction of the color rotation: the () key makes the colors radiate

outward, the 0 keymakes the colors move inward. To freeze the colorscheme, press

(SPACEBAR). The outside border of the screen will now be white to remind you that

Fractint is still in the color-cycling mode, even though the colors aren’t moving.

When you first enter the color-cycling mode, Fractint rotates the existing

colors in the current color palette. The original color scheme will repeat

periodically as the colors rotate (every 256 colors if you have VGA, every 16

colors if you have EGA). Pressing any of the function keys J to causes

Fractint to randomly create new colors in the existing palette, so the color

schemes never repeat (or at least not any time soon). Indeed, the number of color

schemes obtained by pressing the function keys is astronomical! These function

keys work by periodically adding random colors to the palette, and making the

in-between colors ooze continuously between the random colors. The lower

function keys (J, , and cause the colors to change abruptly. The higher

function keys (, , and cause the colors to change more smoothly and

continuously between more widely spaced random colors. Table 3-4 shows how

widely spaced the random colors are. For J, every fourth color is randomly

chosen, and the three in-between colors change smoothly between the two

random colors. The effect is one of rapidly moving stripes. At the other extreme,
the key causes new colors to be randomly created every 100 colors. This

means that the 99 intervening colors smoothly merge from one widely spaced

random color to the next 100 colors later. The effect is one of oozing pastels.

Pressing while the colors are cycling causes the color scheme to be

completely and randomly altered.

Slow-Motion Color Cycling

Often you’ll want to slow down or speed up the color cycling. There are two ways
to do this in Fractint. The first way is to use the and keys while colors are
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Table 3 ndom color thtewal for color-cycling function keys

cycling. This feature was originally added to control “flicker” on machines with

slower graphics adapters. On these machines, slowing down the cyclingwith the

cleans up the flicker. But if you have one of the new breed of faster computers

(such as a 486, or Pentium), you may find the color cycling is just too fast for

enjoyment; use the key to slow it down. The other way to change the color

cycling speed is to press any of the number keys, through . These keys cause

certain colors in the palette to be skipped, effectively increasing the rotation

speed. The higher-numbered keys cause colors to rotate faster. Fractint defaults

to the speed of the key.

Zoom in several times using you recall, most of the colors in

the default Mandelbrot are concentrated near the coastline. By zooming in, you

will spread them out and see the colors rotate more clearly. The Mandelbrot

with the normal IBM palette has a markedly striped appearance. To see more

smoothly changing colors, start color cycling with j. Then press The

new colors will be added to the end of the 256-color palette, and will take a little

time to “flush out” the old colors. To speed things up, press , wait until you

see that the smoother color changes have taken effect, then press to slow

things down again.

Try the function keys in reverse sequence, movingfrom to , waitinglong

enough for the old color palette to rotate out so you can see the new colors. As you

change to lower numbered function keys, the colors of the stnpeswill start to blend

less, and your attention will be drawn away from the lake outline to the stripes.
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When you see the image the way you want it, press (SPACEBAR) or to freeze it,

and () to exit the color-cycling mode and return to the regular display mode.

Saving a File

Between creative zooming and color cycling, by now you should have created a

few beautiful fractals. Chances are very good that your creation is unlike any

other. If you save it as a GIF, it can be opened again and experimented with, or

uploaded to CompuServe. (See Appendix B, Fracttnt and GIF Files, for details
about the GIF format.)

The command to save a fractal image to a file is ®. You must be viewing your

fractal, and you must not be in the color-cycling mode. (Pressing exits the

color-cycling mode.) Press® to save. You will see two multicolored stripes moving

down the right and leftsides of the screen likeabaras the savingprogresses. Fractint

saves images as GIF files; so when done, a window will appear on the screen with

the message “File saved as fractool.gif.” The number “001” will increment as you

save more images. These fIles will not be overwritten, so watch out for your disk

filling up with too many images! A typical 640 x 480 256-color image can use 200

kilobytes or more of storage. If you already have a fractal saved as FRACT001 .GIF,

the next time you start Fractint and do a save it will increase the number and save

it as FRACT002.GIF. You can exit Fractint or drop to DOS (the command) and

rename your best fractal GIFs using more meaningful names.

The Expanded Mam Menu

Assuming that you have saved your fractal creation, press to return to the

MAIN MENU. You will notice that the MAIN MENU is no longer the same. Because

you have created a fractal image, there are more functions Fractint can perform,

so the menu is expanded. These additional menu functions will always show

whenever there is a graphics image that has been calculated or read in from a disk.

Figure 3-10 shows the expanded MAIN MENU. The next sections will tell you a little

about the additional items in the MAIN MENU. The menu is organized according

to the groups to which the menu functions belong.

Current Image

There are four additional functions listed that relate to the current image. Fractint

can move back and forth nondestructively between menu or information screens
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Figure 3-10 The expanded Main menu

and fractal graphics screens. The first menu item is different depending on

whether the fractal calculation was complete when you pressed ( ) to return

to the menu. If the image was complete, you will see the menu item RErui To

IGE. If the fractal calculation was interrupted when you returned to the MAIN

MENU, you will see the menu item CONTINUE CALCULATION. Both of these will return

you to the graphics image; with CONTINUE CALCULATION the fractal calculation will

be resumed where you left off.

The INFo ABOUT IMAGE <T> selection gives you a screen of status information

about the current image. This is particularly useful if you want to find out

whetheran image has been completed. The( V )key allows access to thisstatus

information screen directly from an image without needing this menu.

The ZOOM Box FUNCTIONS item takes you to the Help screen describing

keystrokes and mouse actions for manipulating the zoom box.

Finally, O1Ts WINDow <0> takes you to the orbit window mode discussed

earlier in this chapter.

New Image

There are two new items listed under NEw IMAGE, one allowing the recalculation

of the previous image and one allowing toggling to and from Julia sets. The

Rrrum To PRIOR IMAGE <\> command goes back and recalculates the previous

image you created before you zoomed or changed fractal types. This is useful

when you are exploring a fractal by zooming, reach a dead end, and want to back

up. If you began with the Mandelbrot image, pressing( ) several times will get

you back to the full image. Try this now.

76 CHAPTER 3



Figure 3-11 The Julia window

Julia Window

The Tocc TO/FROMJULIA <SPACE> command initiated by the SPACEBAR) exploits

the relationship between Mandelbrot and Julia fractals that was discussed in

Chapter 2, Fractals: A Primer. (You will only see this menu item if the fractal type

is a Mandelbrot orJulia type. More on this a bit later.) Recall that the Mandelbrot

fractal is a “catalog” of Julia fractals; each point of a Mandelbrot fractal

corresponds to the Julia fractal with its parameters equal to that point. The

(SPACEBAR) lets you see the relationship between the Julia and Mandelbrot sets.

The (SPACEBAR) command has been greatly enhanced in Fractint version 18. Let’s

try it now.

Once you have the Mandelbrot image back on the screen, press (SPACEBAR). A

windowwfll appear in the lower right corner and a cross-shaped cursor will appear

in the middle of the screen. This window and cursor work in a similar way to the
orbits window discussed earlier, with the difference that the window shows an

outline of theJulia set rather than the orbit associated with the cursor position. As

you move the cursor around the Mandelbrot, the Julia image changes shape, as

shown in Figure 3-11. If you want to see the full Julia fractal at any point,just press

(SPACEBAR) again, and Fractint will switch to theJulia fractal type and generate the

image. Pressing (SPACEBAR) yet again regenerates the Mandelbrot set.

With a little experience, you will be able to predict the appearance of the

Julia set from the characteristics of the Mandelbrot image at the point you

selected. If the selected point is in the lake, the corresponding Julia set will have

a lake. If the point is “on land,” the Julia set will not have a single connected

lake. Some of the most interesting Julia sets are created with parameter values

that are right on the Mandeibrot shoreline.
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Table 3-5 Fractint’s Mandelbroulia pairs

Mandeibrot/julia Pairs

Many fractal types in Fractint have this Mandeibrot-Julia relationship. Table 3-5

shows all of these Mandelbrot-Julia pairs. The LSPACEBAR) toggle works with any

of them, but it only shows the Julia outline in a window for the traditional

Mandelbrot set (fractal type Mandel). For the other types, you can still explore

theJulia-Mandelbrot relationship by pressing(PAcEBAR), creatingacursorwhich

you can move with the mouse or arrow keys, and pressing 1PACEBAa) again to

generate the Julia.
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Options

The OPTION part of the MAIN MENU 15 the same as it was before you generated an
image. It allows you to set parameters that affect how images are calculated.

File

The Fii group of the MAIN MENU covers different ways of getting information

into and out of Fractint. The SAVE IMAGE command ( key) creates a file in

CompuServe’s GIF format (see box).

THE SPIFFY GIF FORMAT: The GIF acronym (pronounced jifr) stands for Graphics Interchange

Format, which is a device-independent way of representing images

developed by CompuServe Information Service. GIF has the advantage

that software to view images in this format is widely available on many

different kinds of computers. The GIF89a has an additional advantage that

makes it the format of choice for saving Fractint fractals. Fractint uses

special areas in the GIF89a format to store all the fractal information

needed to reproduce the file. If you open a GIF89a format file created by

Fractint (or its sister programs Winfract or Xfract), Fractint can extract

from the file not only the image but all the Fractint settings that were used

to generate the file. Better yet, if the image was saved before the fractal

calculation was completed, Fractint can open the partially completed GIF

file, load the parameters, and resume the calculation. GIF87a files are an

earlier version of GIF. This file format is provided only for compatibility
with older software that cannot handle GIF89a. Fractal information is not

stored with GIF87a files.

Another way to save all the Fractint settings is to use the SAvE CURRENT

PARAMETERS <B> command, which saves these settings in a Fractint .PAR file. The

information in this file is in the form of a named set of command-line options.

You can modify the .PAR file with a text editor. For more information on the

command controlled by the key, see the reference section later in Chapter 5,

Fractint Reference.

Colors

The COLORS group in the MAIN MENU allows you to color cycle. You will see this

only if you are in a graphics video mode that allows color cycling, such as EGA

or VGA 16- or 256-color modes. In addition to the color-cycling commands, you
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Figure 3-12 Fractal type selection screen Figure 3-13 Fractal parameters for fractal type

manzpower screen

can access Fractint’s color editor and staffield functions from this menu. These

are discussed in Chapter 5, Fractint Reference.

A Generalized Mandeibrot Set

Up to this point all the examples have been limited to the Mandelbrot set. This

is actually not such a serious limitation—this one fractal type alone has a richness

of shape and form that defies imagination. Fractint gives you such power that you

can examine the details of the Mandelbrot at immense magnifications. (If you

have not rotated or distorted your zoom box, you can see the magnification of

your zooms on the status screen.) But the Mandelbrot set is just the

beginning of where you can explore using Fractint, so let’s be adventurous and

try another fractal type.

As we saw, you can select a fractal type by pressing the key or choosing
SELECT FRACTAL TYPE from the MAIN MENU. The SELECT A FRACTAL TYPE screen is

shown in Figure 3-12. Use the arrow keys to select type manzpower. Fractint has

a speed key feature, so when you start typing the name of the fractal, the highlight

jumps to the first fractal type matching the name. In this case you only have to

type man z to make the highlight jump to manzpower. Next press, and you
will see a screen entitled PARAMETERS FOR FRACTAL TYPE MANZPOWER, as shown in

Figure 3-13. (You can also reach this screen using the key from the MiIN MENU

or while viewing a fractal.) Most fractal types have parameters that you can

change to alter the appearance of the fractal, and this screen lets you control these

parameters. At the bottom of the PARAMETERS screen is a window frame showing

the formula used to generate the fractal and showing how the parameters are used
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Figure 3-14 Manzpower images using parameters 2, 3, 4, and 5

in the fractal calculation. In the case of manzpower, the iterated formula is

z1 = zr” + c. In the case exp = 2, this is the same as the familiar Mandelbrot
formula. Press and if you haven’t changed the parameters from the values

shown in Figure 3-13, Fractint will calculate the familiar Mandelbrot set.

Let’s find out what happens if the exponent parameter exp is not the usual 2

which results in the Mandelbrot image, but another value such as 3. Press to

return to the PARAMETERS screen, and change the parameter labeled REAL PART OF

EXPONENT tO 3 and press to see the result. Then repeat the experiment using

the values 4, 5, and 6. The resulting images are shown in Figure 3-14. It is easy

to see a pattern. For the value exp =3. the fractal has two lobes that look somewhat

like one end of the Mandelbrot. When exp = 4, the fractal becomes a triangular

shape with three lobes, and so forth.

You can not only use integral values such as 2,3,4, or 5 for the exp parameter,

but fractional values as well. Try making a series of images using values such as
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Figure 3-15 Evolution of manzpower images as exponent changes

2,2.2,2.4,2.6,2.8, and 3 to see howthe Mandelbrot evolvesinto the two-headed

shape resulting from exp = 3. The left-hand “bay” of the Mandelbrot splits in two,

and the two halves migrate to the top and bottom. This series of images is shown

in Figure 3-15.

One variation of this fractal, using the value exp = 2.7 1828182845905 (the

number known to mathematicians as e), has been extensively studied by Lee

Skinner, which he calls the Zexpe fractal. (You can find many examples of images

using this formula in The Waite Group Press book Image Lab by Tim Wegner,

© 1992, and on the companion CD.) To explore this fractal, return to the

PARAMETERS screen for manzpower by pressing (), use the arrow keys to move the

highlight to REAL PART OF EXPONENT, and enter e.

HINT: When entering parameters, you can type the number directly or indirectly.

Typing e inserts 2.71828 182845905 (the numbere), and typing p inserts

3. 14159265358979 (the number ).

Do not judge a fractal from its “outer” appearance. The Zexpe fractal doesn’t

look much different from the Mandelbrot set at low zoom rations, but when you

zoom inside you will discover that they are completely different. Try this now!
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Figure 3-16 The Basic Options screen

In this discussion we have discussed only one of the four manzpower

parameters. Try entering small values for the other parameters and gradually

increasing them to see what they do.

Options, Options, We’ve Got Options!

From this tutorial so far, you have learned three different methods to create

beautiful fractal images. The first is to play with the colors using color cycling.

The second is to explore the “terrain” of the fractal by zooming in on details. The

third is to experiment with different parameter values. Now you’ll learn a fourth

method, experimenting with Fractint’s basic and extended options.

Just so we are all together, press (INSERT) to return Fractint to its startup

defaults. Press to get the SELECT A FRACTAL T’E menu. Move the highlight to

the manzpower fractal type using the arrow keys or by typing man z. Press ()

to get to the PARAMETERS FOR FRACTAL T’E MANZPOWER screen. Enter the value 4

for the R. PiiT OF EXPONENT parameter and press You should now see

the MAIN MENU. Press a function key for a quick, low resolution mode such as the

J 320 x 200 x 256 mode. You should see the triangular manzpower image we

discussed earlier. Press () (or () and select BAsic OvnoNs from the MAIN MENU)

to access the BASIc OvnoNs screen, shown in Figure 3-16. Have a look at the odd

assortment of things the key (Bisic OFnoNs command) allows you to set. Don’t

worry—you don’t have to understand them all at once. In fact, you can rarely use

most of these settings and still get a tremendous amount of enjoyment out of

Fractint. Using these options is a lot of fun though, because you can transform

your images in intriguing often unpredictable ways. In this section we’ll give you

some tips on using some of these options.
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Two of the most powerful controls on the BAsic OPTIONS screen are the inside

and outside options. The “inside” points are those where the maximum iteration

limit is reached before the bailout criterion is met. For example, the Mandelbrot

“inside” points form the blue lake region in the center of the fractal image. The

“outside” points are those points where the orbit eventually satisfies the bailout

criterion. The outside points of the Mandelbrot form its stylish stripes.

The inside options affect the points whose orbits never escape, but are

eternally drawn to points within the fractal set known as “attractors.” Fractint’s

default action is to color the inside points with the solid color blue. If you set the

inside parameter to a number, Fractint will use that color value. (Technically,

Fractint uses the number as an index to look up a color from the current color

palette.) Alternatively, you can use the other inside values to reveal the orbital

dynamics of the inside points in various ways. The possibilities are listed on the
screen—MAxIrER, ZMAG, BoF60, BoF61, EPSCR, STi, and PER.

These options are documented in detail in Chapter 5, Fractint Reference. You can

also learn about them using Fractint’s context-sensitive hypertext help system.

While the Bsic OvrioNs screen is showing, press the help key (). You can use the

arrow keys to select highlighted topics and jump to them with (This iswhat

is meant by hypertext.) Pressing the (BACKSPACE) allows you to back up to previous

help screens, and the () key returns you to the BASIc OvnoNs screen.

The outside option works in a way similar to the inside. It affects points whose
orbits meet the bailout criterion before the maximum iterations limit is reached.

Fractint’s default action is to color the outside points according to the iteration

when the orbit met the bailout criterion (outside set to “iter”), resulting in the

familiar “escape time” stripes. As with the inside option, you can color all the

outside points with a solid color by entering a color number. The remaining

outside options render the areas where orbits escape in different ways. The

possibilities include ITER, REAl.., IMAG, MULT, and SUMM. Let’s try a few combinations

of these options and see what happens.

Simple Is Beautiful—Solid Inside and Outside Colors

A mathematics teacher sent the Stone Soup Group a letter saying that she wanted

to show her students just the Mandelbrot set by itself, without any distracting

escape-time bands that really aren’t part of the fractal. As a result of this request,

we added the ability to set the outside colors to a solid color. Forexample, to make

a white-on-black fractal, use the arrow keys on the BAsic OvnONs menu to select

the INsIDE COLOR option, and enter the value 15 (white in the default IBM PC color

palette). Then move to the next line below with the arrow keys to the OUTSIDE
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Figure 3-17 Manzpower outline with outside=O and
inside=15

COWR line and enter the number 0 (black). Press You should now see the

familiar triangular shape of the manzpower fractal with exponent four, only this

time as a solid white shape, as shown in Figure 3-17.

Inside Mysteries—Zmag and BOF6O

Press again to return to the BAsic OPTIONS screen, move to INSIDE COLOR with

the key, and type z ma g. Press to recalculate the manzpower fractal. Each

lobe of the fractal is the center of a basin with lower color numbers. Try pressing

to cycle the colors. The colors seem to move toward the centers of the lobes

of the fractal. This effect is accomplished by coloring according to the magnitude

of the last orbit value when the maximum iterations were reached, using the

formula color = (x2 + y2) maxiter/2 + 1.

For a subtly different effect, press (after pressing if you are still cycling

colors) to return to the BAsic OvnONS screen, and change INSIDE COLOR to BOF6O.

This time the coloring is according to the closest distance the orbit comes to the

origin. The result of both of these inside options is shown Figure 3-18.

Outside Options—Real

Revisit the BAsic OPTIONS screen once again by pressing(). Change FLOATING POINT

ALGORITHM to Yes and set INSIDE COLOR back to the original value of 1 (blue). (If your
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Figure 3-18 Results inside=zmag and inside=bof6O

computer does not have a math coprocessor and the fractals generate too slowly,

go ahead and set floating point back to No. The results will be a bit different, but

you can still follow along.) You can mix inside and outside options; but while you

are learning, it is a good idea to use a solid color for the inside option while

experimenting with outside, so that you can see clearly the effect of your

experiments. Move the highlight one row lower to OUTSIDE CoLoRusing the () key,

and type in rea 1. This option colors pixels according to the sum of iteration when

the orbit escaped and the real part of the last orbit value. Press (j) to see the

result, shown in Figure 3-19. If you look carefully, you can see the original escape-

time bands, but a repeating pattern of curves is now superimposed onto the bands.

Now press the (PAGE u)key to create a zoom box, and keep pressing(PAGE_UP),

shrinking the zoom box until it just fits inside the central blue “lake” area of the

fractal. While holding down (CONTROL), press This causes Fractint to

“zoom out” for a more distant view. You can now see an eight-pointed star made

up of two hyperbolas.

If you are using Fractint’s integer mode for speed, you will see the star

inscribed in a polygonal shape with a background of stripes. The striped

background is due to the limitation of fast integer math, which cannot handle

large corners values. You can toggle back and forth between floating-point and

Fractint’s fast integer math using the key. If you are not sure which mode you

are presently using, press If you are using floating-point math, you will see

the message “Floating-point flag is activated.”

There is an interesting relationship between this star and the exponent used

in the manzpower fractal. Press () to return to the PARAMETERS FOR FRACTAL T’E

MANZPOWER screen. Use the key to move the highlight to the third parameter,
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Figure 3-19 Outside=real option

labeled R PART OF EXPONENT, and change the value from 4 to 1 and press

(!). You will see an image consisting of concentric circles, with the circles

broken into vertical stripes. Press again and change Ri PART OF EXPONENT

to 2. As mentioned earlier, the manzpower fractal with exponent 2 is the

Mandelbrot set. This time, however, the vertical stripes have been bent to form

two hyperbolas, forming a four-pointed star. (You might recall from geometry

that “one” hyperbola is really two curves.) Repeat this experiment once again by

pressing () and setting R PART OF EXPONENT to 3. Now—guess what—three

hyperbolas form a six-pointed star. Just for fun, try one more time, bumping the

exponent up to a larger number, say 6. Voila! A twelve-pointed star!

A 3-D Mandeibrot Set

Let’s continue the Fractint tour. Next, we are going to perform some 3-D

transformations on the Mandelbrot fractal you created earlier. For the mathematically

curious, the result will be a 3-D plot of the escape times of the

Mandelbrot formula. Be sure to try color cycling using the () key with these 3-D

examples. Also, note that the zooming feature does not work in the 3-D mode.

From the MAIN MENU, select RESTART FRACTINT or press the CINSERT) key, which

accomplishes the same thing. This command reinitializes almost all settings to

their default values, with the same result as exiting and restarting Fractint.

Press the key, and set INsIDE COLOR to MAXITER. To do this, use the () key

to move the highlight down to INSIDE COLOR and type ma xi t e r.
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Moving the Lake

The “inside color” option sets the palette number of the color used to color the

lake areas of fractals—locations where the orbit never escapes and the maximum

iterations limit is reached. This inside color value defaults to 1, which is the color

blue in the standard IBM color palette on both EGA and VGA adapters. This

setting is a Fractint tradition begun by the original author, Bert Tyler. Many other

fractal programs favor the color 0, which is black, but Bert preferred to see a blue

“lake”. Setting the inside color to maxiter has the effect of setting the inside color

to the maximum iteration value, which defaults to 150.

Normally, the choice of inside color is purely aesthetic, but not for what we are

about to do. The reason is that for interpreting fractals for 3-D purposes, Fractint

treats the color as a number, and the colornumber is interpreted as the height above

the plane. A colornumber of 2 means alowpoint, while a high colornumbermeans

a mountain or high place. The setting of the inside color to maxiter has the effect

of makingthe lake floatat the top of the 3-Dsurface. Thismakesmathematicalsense

because the resulting image is a graph of the iteration count of the escape-time
calculation, and when the lake occurs the iteration value is at the maximum, or 150,

unless you change it with the () command. The important point is that setting the

inside color affects the height of the lake when you are doing a 3-D transformation,

and we have jammed it to the maximum height so it hangs above the plane of our
fractal. Set the inside color to maxiter now.

When you are done with the command screen, press to accept the

values and return to the screen where you’ll generate the fractal image. If you have

a VGA, press the key to generate a Mandelbrot image in the 320 x 200 256-

color mode. Note that the lake area is no longer blue but rather gray. If you don’t

have a VGA or other adapter with a 320 x 200 x 256 mode, then use the Disk)

RAM Video 320 200 256 mode. This mode is buried way down the list. Cursor

down to it, highlight the mode, and press ((The Disk/RAM video isn’t

really “video” at all. Rather, it is a way of creating images using your disk, or, if

you have enough memory, your extended or expanded memory.) Later we’ll be

able to display the disk video File.

When the image is complete (you’ll hear a little whistle), save the image by

pressing the key. Make a mental note of the File name that was reported at the

top of the screen—it was probably something like FRACTOO3.GIF, depending

on how many images you have already saved. Return to the MAIN MENU with ().

Select 3D TRANSFORM FROM Fiii from the Fiii menu, or press the key. You will

now be presented with a list of Files. Use the arrow keys to move the highlight

to the File you just created with the save operation, and press Next you
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will see a list of video modes. The video mode you used to generate the

Mandelbrot image should be highlighted. If you have a VGA, you can use the
same mode. Press to select it. If you have a CGA, use the F5 IBM 4-

color CGA 3202004 mode, and if you have an EGA, use the F9 Low-Rez EGA

320 200 16 mode. In all cases, try to use a mode as close as possible to 320 pixels

wide and 200 ,pixels high.

Setting the 3-D Parameters

Fractint is now going to lead you through some screens that allow setting all

manner of parameters and effects for 3-D. The good news is that the default values

almost always make sense—you do not have to understand what all of them

mean. The screens are documented in detail in the Chapter 5, Fractint Reference.

The First screen is entitled 3D MODE SELECTION. Here is where you can turn on

what’s known as funny-glasses stereo (stereo using red/blue glasses) or use the

sphere mode to create a fractal planet. But not yet! This time around, press

to accept all the values. The next screen is entitled SELECT 3D FILL TYPE. Here you

will Find the Fractint light source options, which let you illuminate your fractal

and create shadows. The jusT Diw THE POINTS option will be highlighted, which

is just Fine for now, so press

The next somewhat imposing screen, entitled PLANAR 3D PARAMETERS, presents

numerous options for these three-dimensional rotations and scale factors. You

can view your fractal from different angles, spin it in space, stretch it, shrink it,

and move the viewer’s perspective right into the middle of it! When making

fractal landscapes, you can control the roughness of mountain ranges and the

height of floods in the valleys. For this tour, the default values are all okay, so press

to accept them. After the tour, you can come back and experiment.

If you have a slower XT- or AT-compatible PC, you may want to get up from

your chair, stretch your legs, and grab a quick cup of coffee or beverage of choice.

The 3-D transformation takes a few minutes. You will see the blue background

of the Mandelbrot image appear just as you saw it on the screen a few moments

before, but laid at an angle like a piece of paper on a desk. As the image develops,

you will see that the colored stripes of the Mandelbrot image are raised like

Chinese terraces on a mountainside. Floating above everything is the dark blue

Mandelbrot lake, raining a sparkling mist down to the terrain below. You should

now understand why we set i n s i d e m a x i t e r. If we had left the default

i n s i d e = 2, the lake would have been at the same level as the blue background,

instead of floating mysteriously above it.
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Figure 3-20 3-D Fractal Figure 3-21 Mandelbrot cliffs in perspective

Figure 3-20 shows what your 3-D fractal should look like. For the final touch,

press to launch color cycling, and try the higher function keys to create some

smoothly changing colors. When you are done playing with the colors, exit the

color-cycling mode with

Variations on a Theme

Let’s try a few variations. For each variation, start with the () command. Fractint

will remember your previous settings, and you can move from screen to screen

by pressing pausing only to make the indicated changes. If you overshoot

a screen, you can back up with The one setting that will not be remembered

is the video mode foryou CGA and EGA owners who used Disk/RAM video. Each

time you are asked for the video mode, you should press(CGA)or(EGA).

If you have a VGA and used to generate the original image, you will not have

this minor complication, because in your case the video list will come up with

the mode highlighted. You can accept it by pressing just as you do for

the other screens that do not require changes.

3-D Variation #1: Make solid cliffs. Start with the command, and move

through the screens with () When you come to the SELECT 3D Fui T’E

screen, select SURFACE Fiii (CoLoIs INTERPOLATED), but otherwise leave the settings

unchanged, pressing until the image regenerates. This option definitely

slows things up, so take another break! This time the floating Mandelbrot image

will become the top of a mountain with precipitous cliffs hanging under it.

3-D Variation#2: Add a perspective viewpoint. Start with () ,and move through

the screens with () When you come to the PLANAR 3D PARAMETERS screen,
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look for PsPEcnvE DISTANCE [1—999,0 FOR NO Psp] about halfway down. Type

in 150. Smaller numbers provide the more extreme perspective of a closer

viewpoint, while higher numbers create a flatter perspective such as photographers

obtain through a telephoto lens. Press (j) to regenerate the image. As

aside effect the image edges will look a little bit rougher. But you are now closer

to the scene, with closer features expanded! Figure 3-21 shows the “Mandeibrot

cliffs” in perspective.

3-D Variation#3: Make the mountain into a lake. Throughout this book we have

referred to the classic Mandelbrot shape in the center of the Mandelbrot fractal

as a lake, but then we turned around and made it into a mountain top in 3-D.

We’ll show you how to remedy that. Start with(), and move through the screens

with () When you come to the PLANAR 3D PARAMEThRS screen, look for
SURFACE ROUGHNESS SCALING FACTOR IN Pa, which should have the default value

of 30. We want you to depress the mountain top and make it a lake, so change

the surface roughness value to —5. That’s right, the new value is—5, which means

that the z-coordinate will be scaled by—5 percent— depressingthe mountaintop

below the surrounding plain. Press to regenerate the image. You have

turned the mountain into a lake-bottomed canyon!

And Now, Images in Stereo!

Let’s try one more bit of magic and plot this Mandelbrot image in red/blue

stereoscopic 3-D. For thisyou’ll need your trusty red-and-blue glasses—the ones

that came with this book. Here’s how these images work: A number of different

cues tell you that a scene has depth. Distant objects appear smaller than nearer

objects. As you move your head, nearer objects get in the way of farther objects.

Mist obscures distant objects. Because of these cues, a person with one eye can

still perceive depth. Those of us with two good eyes have another depth cue:

binocular vision. Our brain fuses the images coming from our two eyes and gives

a sense of depth.

Red/Blue Glasses

Fractint is capable of performing the perspective transformations necessary to

simulate the viewpoints of two eyes. The problem is how to get the left image to

the left eye and the right image to the right eye. One solution would be to rapidly

alternate the left and right images on your screen and have the user wear special

glasses with liquid crystal shutters synchronized to the monitor. High-end
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workstations can be purchased with this capability, but it is expensive, costing

thousands of dollars. For Fractint we have opted for a simpler approach that has

cost you just the price of this book: red/blue glasses. These are the same kind of

glasses that kids of a bygone era eagerly retrieved from cereal packages in order
to view stereo scenes on the box.

The idea is simple. Fractint puts a left view of a fractal on the screen in red and

a right view of the image in blue. You put on the glasses, which have Filters that

block the incorrect view from reachingyour eyes: blue blocks red, and red blocks

blue. (Note that some 30 percent of the population cannot see these binocular

effects for one reason or another, and we hope you are not one of them!) And alas,

even if your eyes are perfect, you are still going to need a color monitor that can

display red and blue. That rules out all monochrome setups as well as CGA,

which cannot show red and blue. If you have EGA or VGA with color, you are
in business.

Press to return to the MAIN MENU, and then press . Select the same GIF

file from the SELECT FILE FOR 3D TRANSFORM screen that you created before (follow

the previous instructions to make it if you haven’t already). Set the video mode
to for VGA or for EGA. At the 3D MODE SELECTION screen, cursor down

to the bottom option labeled STEREO (RiB 3D)? (0=NO,1=ALTERNATE

2=SuPERIMP05E,3=PH0T0) and press and then This is the superimpose

option, which describes how the red and blue colors will be combined on the

screen. The superimpose method combines colors red and blue to make magenta

and pink, giving sharper results but fewer color shades. The alternate option

alternates red and blue dots on the screen, sacrificing resolution but allowing

more color shades. The photo mode is for photographing the screen and making

stereo slides. The reference section of this book explains all this in more detail.

Under SELECT 3D FILL TYPE, select the top option MAKE A SURFACE GRID. Press

Note that J lets you back up to previous screens if you want to

change something. You will then come to the FUNNY GLASSES PARAMETERS screen,

which you did not see in the previous examples. The defaults are OK, so press

If you changed the surface roughness parameter on the PLANAR 3D

PARAMETERS screen in the previous examples, change it back to 30 and press

This time you will see a grid approximating the solid Mandelbrot image you

generated a moment before. First a red image is generated, then a blue image.

These images should look like the Mandelbrot cliffs image of the previous

example, shown in Figure 3-21. Put on the red/blue glasses that came with this

book and view the image, making sure the red lens is over the left eye. There you

are in living 3-D—a Mandelbrot mountain outlined in a grid!
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Clouds, Mountains, and Plasma

A fractal that is particularly interesting for 3-D experiments is the plasma type.
This fractal allows the creation of both cloud and mountain range images. Who
would have guessed that mountains and clouds are so closely related? The
plasma type makes a random pattern of smoothly changing colors that look like
clouds. This type works best with a 256-color mode. If you have an EGA, you
can follow along, but the results will be somewhat different.

Select Plasma

Just to make sure we are on the same track, press the CINSERT) key to reinitialize
Fractint, and then select a video mode. The mode is a good choice for VGA,

for EGA. This will generate the Mandelbrot image again! (The plasma type
will not work with modes with fewer than 16 colors, which rules out CGA and

Hercules adapters.) After you have selected a video mode (and pressed if

you selected the mode from the mode list), press J to display the type screen.

You don’t have wait for the Mandelbrot image to Finish before pressing J.

You can select “plasma” by moving the highlight with the cursor keys, or you

can just start typing the word p 1 a s ma and use the speed key feature mentioned

earlier. Because plasma is the only type that begins with “p1,” as soon as you have

typed these two letters, the highlight will jump to the plasma type. Now press

to select the highlighted fractal type. After selecting a type, Fractint

prompts you for any parameters that affect the appearance of that particular type.

In the case of the plasma type, the “graininess” factor parameter affects how

gradually the colors on the screen merge with one another. You have a choice of

two different algorithms, one that winds recursively around smaller and smaller

blocks, and the other which systematically covers the screen with multiple

passes. Both give the same result. Because the shape of the plasma pattern is

normally randomly determined, the random seed value allows you to specify if

you want each plasma fractal to be newly created, or if you want to repeat the last

pattern. For now, press to accept all the default values. You might want

to come back later and experiment. To do so, start with the (I) command and

reselect type plasma, which will get you back to the plasma parameter screen, or

move directly to the parameter screen while viewing a plasma fractal using .

As soon as you have pressed to accept your parameters choice, the

plasma calculation will begin. What you are seeing on the screen is a fascinating

algorithm that recursively subdivides the screen, randomly choosing colors with

values between surrounding colors. No two plasma images are quite the same

because of the random element of the calculation. When the image is complete,
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start color cycling with the command. Now you understand why this type is

called “plasma”! The screen colors ooze and writhe in graceful undulations of

ethereal plasma waves. Be sure to try the function keys while color cycling. The

lower-numbered function keys give detailed paisley patterns, while

the higher ones ((), (), and ()) result in larger, flowing patterns.

Turning a Cloud into a Mountain

Take a good, long time playing with the plasma type, which is certainly one of

the more colorful and dramatic fractals that you can create with Fractint. Be sure

to press the key occasionally while it’s color cycling; this instantly changes

the colors. We should have convinced you that Fractint can make clouds, but

what about mountains? To create mountains you have to First save a plasma

image. If you are still in the color-cycling mode (as visually indicated by either

moving colors or a white screen boundary) then you should exit to the display

mode by pressing Press to save the plasma screen, once again making

a note of the File name that is reported on the screen. You are probably up to File

FRACTO22.GIF by now, right?

We can turn a cloud into a mountain by doing a 3-D transformation on the

colors of the cloud. A cloud image can be considered a color-coded contour map

of a mountain, where areas of equal color are the same height. By performing a

3-D transformation, we are transforming the contour map back into the

mountain it represents.

Press the key to invoke the 3-D function, and select the just-saved File from

the file list. At the VIDEO MODE SELECTION screen, select the same video mode used

to generate the plasma in the First place for VGA, for EGA). Accept the

default values of the 3D MODE SELECTION by pressing(). At the SELECT 3D FIll

TYPE screen, select SURFACE FILL (COLORs INTERPOLATED) and press () This will

bringyou to the PLANAR 3D PARAMETERS screen. If you have an EGA and are reading

in a 16-color plasma file, set surface roughness to 500. VGA users reading in a

256-color plasma File can leave the default value of 30 unchanged. Press

and watch a mountain emerge before your eyes!

Plasma Mountain Variations

Plasma Mountain Variation #1: Make the mountain emerge from water. Repeat

all the instnlctions for making a mountain from a saved plasma cloud in the

previous paragraph, until you reach the Pii 3D PARAMETERS screen. Then set
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Figure 3-22 Plasma mountains

the WATER LEVEL (MINIMUM COLOR VALUE) item to 47. This will cause all color

values less than 47 to be mapped to a flat lake surface. You can begin to see why

George Lucas developed Pixar to use computers to simulate real terrain. After the

mountain landscape has been created, enter the color-cycling mode by pressing

. You will be in color-cycling mode, but the colors will not be moving. Then

press J (for “load map”). This color-cycling command allows you to load

various color maps.

There is a special map called TOPO.MAP that has color values tailored to

plasma mountains, complete with water, rocks, greenery, and snow. Select

TOPO.MAP from the File list. (If it is not in the list, type in the drive letter and

directory where you put the Fractint Files. For example, if your Fractint Files are

in c:\fractint type C: \ f ra c t i n t Then the map File screen will be

refreshed and you should see TOPO.MAP.) Select it, and press Exit the

color-cycling mode by pressing You should then see a plasma mountain

with more realistic landscape coloring—blue water, green hillsides, brown

Fields, and snow-capped mountains. Figure 3-22 shows an example.

Variation #2: Make a red/blue 3-D glasses plasma mountain. Repeat the plasma

mountain instnictions, beginning with the command, selecting the same

plasma File, and using the () video mode. At the 3D MODE SELECTION screen,

cursor down to the bottom option labeled Smio (R/B 3D)? (O=No, 1=ALmR-

NATE,2=SUPERIMPOSE,3=PHOTO), type 2 , and press () Under SELECT 3D FILL

TYPE, select the top option, MAvi A SURFACE GRID. Press Continue to press

accepting all the defaults for the remaining screens. The result is a wire-

frame mountain, which makes an excellent red/blue 3-D glasses stereo image.

The “grid” Fill type has the virtue of being very fast, soit is an excellent means to
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Figure 3-23 Plasma planet

play with 3-D parameters. When you have an image the way you want it, you can

apply a slower Fill type.

Variation #3: Make a plasma planet. Repeat the plasma mountain instnictions,

beginning with the command, selecting the same plasma File, and using the

() video mode. At the 3D Mode Selection screen, cursor down to the SPHERICAL

PROJECTION item and type yes. Set the option Smio (R/B 3D)? (O=No, 1=ALmR-

NATE, 2=SUPERIMPOSE, 3=PH0T0) back to 0, and press Continue to press

accepting all the defaults for the next screens. The plasma image will be

projected onto the surface of a sphere, making a plasma planet, as shown in

Figure 3-23. You can project any GIF image onto a sphere in this way, whether

or not it originated in Fractint.

At this point we shall leave you to your own devices. You can press again

and try some of the other 3D options—a good strategy for learning. One piece

of advice, though: just change one or two things at a time so you get an idea of

what you are doing! For instance, try combining your plasma landscape with

your planet by First creating the landscape, and then adding the planet, using the

key on most keyboards) instead of the . The key is just like

except the previous image is not erased. You can use to superimpose

moons over your plasma landscapes.
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COLOR PLATES REFERENCE

All of the images shown in the Color Plates section are used elsewhere in the

book. This reference will enable you to find out how the images were made and

even duplicate them on your PC. Color Plates 1 through 25 are discussed in

Chapter 4, Fractal Recipes. You will find the parameter file entries in the file

RECIPES2.PAR on your companion disk. The remaining images are used as

examples in Chapter 6, Fractal Types. The parameter file entries are located in

EXAMPLES.PAR on your disk.
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reating fractals is a little like cooking. You can have a lot of fun using your

creativity to make a tasty dish out of whatever ingredients are at hand.

Sometimes, though, you yearn for the exquisite taste of a gourmet dish, so you

search through your favorite recipe book for a treat invented by some extraordinary

culinary genius. Seeing the fractals made by a Fractint expert is a lot like

tasting a prize-winning chefs favorite dish. Despite Fractint’s multitude of

options and possibilities, you may think you have seen everything after many

hours of experimenting. Then you try a new fractal recipe and discover a whole

new universe waiting to be explored. Some very talented people have used

Fractint to make images in their own inimitable style. In this chapter you’ll find

their best recipes, and you can try them out for yourself!

Your humble authors consider themselves to be programmers more than

artists. A synergy exists between the creators of the Fractint program and the

artists whose work is featured in these pages. The programmer thinks of some

twist of coding or modification of an algorithm, and wonders what visual effect

that change would make. The source code is edited, the program recompiled,

and a quick test made. Then the programmer’s attention moves on to other

concerns. Much later that selfsame programmer discovers images of seductive

complexity and beauty made by some of these fractal artists and asks, “How on

earth were those made?”—only to discover that the images were made with his

or her very own code! Fractint’s programmers live for the experience of seeing
the fruits of their technical labors transmuted into art.



FRACTAl. COOKING HINTS

When it comes to creatingworld-class ffactals, there are no hard and fast rules. Each

of the artists whose work you will find in this chapter has a different approach to

how great fractals are created. Here are a few tips gleaned from the experts.

4 Don’t jump to conclusions about the initial appearance of a fractal. Fractals

that look superficially the same from a “zoomed out” perspective may be

extraordinarily different when viewed at high magnifications. Try different

degrees of zooming. A fractal does not usually look the same at a

magnification of a million as it does at a magnification of one. So do try

zooming in to different levels when exploring a fractal.

4 Spend time coloring your fractals. You can do this by turning on color

cycling with the key and trying the various function keys. You can also

load different color maps by entering the color-cycling mode with or

and then pressing . Fractals typically contain far more detail than the

eye or the mind can absorb. Assigning the colors differently can completely

alter what you see in a fractal image. Later in this chapter you’ll see

examples of this.

4 Experiment with Fractint’s basic and extended options (() and (i)). The

inside and outside coloring options, or the use of features like continuous

potential or binary decomposition, can completely alter the appearance of

a fractal. Don’t forget the fractal parameters (you will see the fractal

parameters screen afterselectinga fractal type with orbyusingthe key).

Remember that you really don’t have to fully understand these options in

order to test them out! Experiment with them and see what happens!

4 Try your hand at inventing your own formula types. You can use a text

editor (such as the DOS EDIT application) to edit the file FRACTINT.FRM.

The easiest way to invent a whole new fractal is to copy an existing formula

type, and change the formula around. Once again, do not be deterred if

you have no idea what a complex hyperbolic tangent is. We’ll let you in on

a deep secret: a bright mathematician having fun with Fractint probably

has no more idea than you do of the effect of making a fractal from a

formula like z = tanh(z)/(z2+ cos(z/2)).

USING PARAMETER FIl.ES

The best way to share fractal recipes is by using Fractint parameter files, better
known as PAR files because their file name extension is .PAR. The PAR format
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Figure 4-1 Save @Batchflle dialog box

is a compact way of saving the fractal parameters used to make a fractal. This

format is shared by Fractint and the various incarnations of Fractint running on

PCs and workstations. PAR files are a great way to share your fractals with others

because they are small and compact and still hold all the information needed to

reproduce a fractal. You will find them on computer bulletin boards and

conferencing systems wherever fractals are discussed. On CompuServe, look in

library 4 of the GRAPHDEV forum for many examples.

Writing Parameter Files

When, in the midst of your fractal explorations, you have created a fractal you

want to save in a parameter file, press () or select SAVE CURRENT PARAMETERS. .<B>

from the MAIN MENU. You will then see a menu that looks like Figure 4-1. Fill in

the name of the parameter file (the extension .PAR is added automatically) and

the name you want to give to the fractal. The name of the parameter file entry must

be different than any of the names already used in the file; one parameter file can

hold many entries, each with a unique name. You also have the option of having

the colors written in compressed form in the parameter file, or of using the colors

already saved in a separate color map file. Note that if you specify a color map

file, Fractint will not automatically create the map file if it doesn’t exist, but you

can create it in a separate step using the command when in the color-cycling

mode. The parameters will be written in a file you can edit.

A parameter file.entry looks like this:

Hypnoteyes2 { ; by Pieter Branderhorst

reset type=julia corners=—0. 162458/0.17487/0.734422/0.984935

params=0.258919/1.76951e—007 decomp=256 co1ors=b1ues.map
}
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The name of the image is Hypnoteyes2. This is the name the Fractint user sees

when opening the parameter file. The curly braces contain all the fractal options

discussed in Chapter 3, Fractint Tutârial. In this case, the options include the

fractal type, the corners values defining the piece of the complex plane delimiting

the fractal, the decomposition option, and a color map. You can edit this file by

hand, or you can read it back into Fractint, make changes, and save it again. The

character (semicolon) indicates that the rest of the line is ignored, and may be

used for comments. In this case by Pieter Branderhorst” is a comment.
Remember that Fractint saves this same fractal information with the GIF89a

format images. You can convert your previously saved Fractint GIF files to PAR

files by pressing ® or by selecting LOAD IMAGE FROM FILE... <i> from the MAIN

MENU to read in the GIF file and then pressing or selecting SAVE CURRENT

PARAMETERS from the MAIN MENU. to save it as a PAR file entry.

Reading Parameter Files

All of the fractal recipes in this chapter are stored on this book’s companion disk

in PAR files, and should have been installed in your \FRACTINT directory. The

easiest way to try the recipes is to read in the PAR file entry. To do this, press
or select RUN SAVED COMMAND SET <@> from the MAIN MENU and select the PAR

file from the file list. (Fractint will automatically use the file called FRACTINT.PAR

if it can find it. To change to a different PAR file from the named PAR entry screen,

press You can navigate to different directories by selecting” “to go up a

directory, or by selecting a subdirectory name to go down a directory. Once the

PAR file is opened, you will be presented with a list of named PAR entries. Select

a PAR entry with the arrow keys, press and Fractint will go to work

generating the image.

THE RECIPES

For each of these fractal recipe images, you’ll find the following information:

1. Name of the Image: the image name as it is stored in the parameter file.

2. PAR File: where the image parameters are stored on your companion disk.

3. Image Credits: who is responsible for creating this fractal parameter entry.

4. Parameter File Listing: the listing of the parameter file entry.

5. Generation Time: seconds required to generate a 640 x 480 image on a

66MHz 486DX2 machine. Your machine and resolution may be different,
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but this will give you an idea how long the fractal takes. If you generate one

of these fractals and note the time using the display, you can figure

that the other times will be proportionally related.

6. Formula File listing: for type=formula fractals, the FRM file entry.

7. About the Image: notes about particularly interesting parameters used

and how the parameters affect the appearance of the image.

8. Variations: other options to try out with this fractal image.

The Mandeibrot Set

The most famous fractal of all is the Mandelbrot set. Many fractal devotees spend

their entire time exploring and playing with just this one fractal. There are two

completely different ways of exploring a fractal. The first is to zoom into different

parts of the fractal and explore the vast fractal terrain at different magnifications.

This is the most common and most readily understandable method of exploration.

A completely different approach is to experiment with different methods

of rendering the colors of the fractal. Both of these techniques will be demonstrated
in this section.

The Mandelbrot set is aset of points in the complex plane. The colorful default

image of the Mandelbrot set that you get by starting Fractint and pressing c is

not so much a picture of the Mandelbrot set itself as one way of visualizing the

dynamic system used to define the set. The Mandelbrot set consists of the blue

area in the middle of the image. The colorful stripes surrounding the “lake” are

a graphical representation of the escape time of the iterated function z2 + c used

to define the set (how many iterations it took for the orbit generated by that

function to escape a circle of radius 2). There are many other schemes for

assigning colors to point inside or outside of the Mandelbrot set. Most of these

depend in some way on the dynamics of the whirling orbits determined by z =

z2 + c. Other effects are the results of algorithms to do with the order in which

the points are plotted.
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Figure 4-2 Default_Mandeibrot

Mandeibrot

PAR File: RECIPES2.PAR

Image Credits: Benoit Mandeibrot (who else?)

Parameter File listing:

Default_Mandelbrot { ;This is as simple as it gets

reset type=mandel

}

Generation Time: 4 seconds

About the Image: Figure 4-2 and color plate 1 show the classic Mandelbrot escape-time image. There

are two minor differences between this image and other Mandelbrot images you

may have seen. Both of these differences are due to decisions made early in the life

of Fractint. The first is that the outer two escape-time bands have been combined

into the blue background. Therefore, the green ring that appears to be the second

escape-time ring (the points that escaped a circle of radius 2 after two iterations)

is really the third. This difference is due to a programming speedup that was

irresistible to the performance-oriented programmer. Since 02+ c = c, one iteration

of computation is saved by starting the orbit calculation z = z2 + c with c instead

of zero. The second difference is that the Mandelbrot lake is often assigned the color

black, but Fractint’s original programmer felt that blue was a more appropriate

color for a lake. (You can change the color of the lake to black by pressing to get

the Bsic OPTIONS menu and setting the INSIDE parameter to 0.)
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The r e s e t keyword in the parameter file tells Fractint to reset all parameters

to the default values before reading the file. This is not absolutely necessary, but

without it the results may vary if you have changed some of Fractint’s settings.

Beginning a PAR file with reset is standard practice. PAR files generated by

Fractint with the () command always begin with reset.

Variations: You can see the missing outer escape-time ring by generating the Mandelbrot set

using fractal type test. Press(), select RECIPES2.PAR, andselectTRuELDEiRoT.

Figure 4-3 Potential Mandelbrot

Potential Mandeibrot

PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:

manOOl { ; Cc) 1993 Richard H. Sherry, 76264,752

; Par series based on Mandeibrot classic lake

reset type=mandel passes=1 corners=—2.14/1.14/—1.23/1.23 float=y

maxi ter=255 inside=255 potential255/2000/1000

colors=000<200>000ZKO<45>xpAxpAwoA<3>t 19000

}

Generation Time: 16 seconds
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About the Image: The escape-time method of rendering fractals results in an inherently discontinuous

image. That’s because the regions outside the fractal set are divided into

regions of identical escape times. The continuous potential method is based on

the idea of graphing the potential field that would be created around a charged

Mandelbrot set. For our purposes, this physical interpretation is less important

than the fact that the continuous potential method results in smoothly varying

colors rather than striped bands.

ThelineofthePARfllethatdoesthismagicisthelinepotentiat=255/2000/

1 000, as Figure 4-3 and color plate 2 show. The first parameter is the maximum

colorvalue, the second parameter is the slope, and the third parameter is the orbit

bailout value. Of these parameters, the one to experiment with is the slope. A

higher value makes the colors change more rapidly. In this case, Richard Sherry

has intentionally chosen a “too high” value so that the entire range of 256 colors

is compressed into a band just outside the Mandelbrot set. In a more normal use

of potential, the goal would be to spread out the colors to cover the entire image

by using a lower slope. The result of using a higher value is an image that is

deceptive; it looks very much like a distance estimator method that thickens the

tiny filaments emanating from the Mandelbrot and makes them visible.

If you are new to Fractint, you might wonder about the mysterious co to r s =

line of the PAR file. Fractint uses a method of encoding the 768 values of a VGA

color palette into a few characters. This line is not meant to be understandable

by humans, but Fractint understands it very well. You can convert this color

palette to a form you can understand by generating the image, entering the colorcycling

mode using , and saving the map file with the command.

Variations: Try color cycling this image by pressing J. You will see the black outline of the

Mandelbrot set grow larger and slowly lose its shape as it traces the outer escape-
time contours.
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Figure 4-4 BOF6O Mandeibrot

BOF6O Mandeibrot

PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:

manOO4 { ; Cc) 1993 Richard H. Sherry, 76264,752

; Par series based on Mandeibrot classic lake

reset type=mandet passes=1

corners=—1 .905194/O.654814/—O.959991/O.960002 maxiter=500

inside=bof6O outside=O

colors=000jVD<17>PFFOAO<15>ZcO<14>OAO<15>ZcO<15>OAOSNC<29>xo’zpaypa<29>U\

P F000<29>n nn pppooo<30>000P F F<2 9>xeDzf C yf C <11>k WD

}

Generation Time: 1 minute 20 seconds

About the Image: Until now all of the Mandeibrot images we have discussed have dealt with the
area outside of the Mandelbrot set. The interior of the Mandelbrot set has been

rendered with a solid color. The orbits used to generate the Mandelbrot set

exhibit complex dynamics that vary within the set. Any method that can render

these dynamics with colors that are dependent on the chaotic dynamics of the
orbit will reveal structure within the Mandelbrot. One such method uses

Fractint’s ins i de=bof 60 option, so named because it is discussed on page 60 of

our edition of the classic book Beauty of Fractals. This option is discussed in

Chapter 5, Fractint Reference, in more detail. For now let this suffice: the interior
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Figure 4-5 BOF6O Mandeibrot using passes=tesseral

of the set is colored according to how close to the origin the orbit associated with

that point comes. The result is shown in Figure 4-4.

Note the outs i de=O option. This sets the entire exterior of the Mandelbrot set

to the color black. Any fractal has too much information for the eye and the mind

to grasp, so some method of focusing attention is needed. It is possible to combine
methods that show structure inboth the interior and the exterior of the Mandelbrot

set. In this case simple isbetter, and the fact that the outside hasbeenrenderedblack

makes it easier to focus on the beauty revealed in the Mandelbrot interior.

Variations: An interesting effect (not for mathematical purists!) is to set pa s s e s = t and

fill CO lo r=1. The tesseral option is a divide-and-conquer algorithm that

recursively subdivides an image into rectangles; and if the border is a solid color,

the interior of the rectangle is filled in. Normally, this makes no difference to the

final image, but setting f ill C 010 r= 1 causes the interiors of the rectangles to be

filled in with color number 1 rather than the color of the rectangle boundary. The

effect is to leave a lattice of rectangles as an artifact of the computation method.

This effect shows off the structure inherent in the BOF6O very well. Figure 4-5

and color plate 3 show the result. Be sure to try rotating the colors with c..
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Figure 4-6 BOF6O Mandeibrot II

BOF6O Mandeibrot II

PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:

manOl2 { ; (c) 1993 Richard H. Sherry, 76264,752

Par series based on Mandeibrot classic lake

reset type=mandel passes=1 corners=—2.5/1.500012/--1.499989/1.5

maxiter=125 inside=bofó0 outsidemult biomorph0

colors=000eib<3>JQNDLJ5_n<4>8JLICr<3>7GNxfd<3>ILLQCc<2>CFMVHH<4>EGGBGG9j\

e8VTipUXcPKSKcRe<6>CHJxa4<5>FJFHZBJ44<3>AEEhMBWKDKIFhnV<4>ELIhG7<6>CGFiI\

k<3>FGMhJk<2>HGOlpm<6>DKKyiRBmh<2>8ONM_9<4>AJFIf6<4>EKFhW6Ocw4SavI3XWAuI\

FdaGhlEhq7c3v<6>8b5<6>mJ9<6>IHR<4>BWI<6>xMo<5>_BDkJ7vQI<2>Isd<2>CeO<6>QS\

r<5>gcridrjYo<3>lAe<3>d7Ec77_A8<2>PJ9<3>UItha9VaLIaX8GHEURBNLIuB<4>9NG7c\

t85_153<3>AEEGkOCWKSk8<2>DOE8OP<3>8DHhWE<4>EIGdNYOJPaz3NbAPVV<2>CJ J I CO5E\

KLcN<6>9JGqtj knf

}

Generation Time: 26 seconds

About the Image: This image uses three special options in tandem. The interior of the Mandeibrot

set is colored using i n s i d e = b o f 60 as before. The exterior is a combination of the

bi omo rph0 and the outs i demul t, which factorin the directionof the orbit and

the real and imaginary components of the last orbit value along with the iteration

number (see Chapter 5, Fractint Reference, for more details). The result is shown

in Figure 4-6 and color plate 4.
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Variations: Try different combinations of o u t s I d e = and b I om o r p h = options, such as
outsideiter with biomorph=O.

Figure 4-7 Silky Mandeibrot

Silky Mandeibrot
PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:
manO2ó { ; (c) 1993 Richard H. Sherry, 76264,752

; Par series based on Mandeibrot classic lake

reset type=mandel corners=—2.139999/1.140009/--1.229988/1.230001

maxiter500 insideO potential=255/300/O

colors=000s19<40>QK00000FO<44>FxOGzOGyO<31>OFOFOO<45>xOOzOOyOO<30>FOOZKO\

<45>xpAxpAwoA<2>um9 cyclerangeO/255

}

Generation Time: 32 seconds

About the Image: This image revisits the pot en t i a I = option. This time a much lower slope value

is used (300 compared to 2000). The Mandelbrot exterior has been transformed

into smooth silky cushions with a pseudo 3-D effect shown in Figure 4-7 and

color plate 5.
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Figure 4-8 Baby Mandeibrot

Baby Mandeibrot
PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:

manO32 { ; (c) 1993 Richard H. Sherry, 76264,752

; Par series based on Mandeibrot classic lake

reset typemandel

corners—1 .930068861596/—I 930068528796/—0.000000121619/0. 000000125717

floaty maxiter500 inside=0 periodicity0

colors=000USQJNQSzg<2>DTUj KO<2>IIQ4YI gn2QYEz6M7DOKhDEVKQCErI UWASBGzAHgTK\

ITF5MGCFHJpZqW45Oae<2>CNU8YL9QOCfYBYVAQSm9ETEK2g26VECF4AHFj I 1<2>IEVb9’ 13\

ADBIIRmTMa’CpOLmill<2>IPVIN8FLECJK3Au6EeCunc2VT8TJDRD2p<2>AEW’dygRanQc3Q\

‘<2>8KSYSf<2>FKUv8I<2>LGKRJ8IIHBq5<2>9RXBrCJLg<2>BIUxHO<2>MIQhUu<2>ILYP4\

9OprGZc3RB5OG7LLN_SIURDOQjTQIFITHMKmWOvh<2>CSUB33A8B9DJIM75KHKgSMEE3pB<2\

>8QNV’ kKR’ NA4GEF7Rk<2>9KVtAnEI i <2>AIVSGK<2>DIPb76ODGK9i EE_o8aUDW3Qq5Ng7K\

ZpulvzRYcQJWn<2>BLW4xvZ05QcCHTJ8Ov<2>9JYOtW<2>7RReKHPJMNa_GSVPDXDIZIM’<2\

>GpH<2>0_c<2>754PdM<3>dqHBOdF8XIGPLNH<3>SFp<3>127J ILd”UUXJOTkNkZLcMJXQM\

PKKQEJQvvtYadOYr5QcIcWRZT<2>DMQovx<2>JSY95waHISIdIIXQ4TK9SEEROgvJZkEQ’En\

B<2>AQNbNvOKevAd<2>LGTdYQ

}

Generation Time: 20 seconds

About the Image: This baby Mandeibrot, shown in Figure 4-8 and color plate 6, lives in the depths

of the Mandelbrot at a magnification of 8,086,166. It is one of an infinite number

of such self-similar subsets of the Mandelbrot that exist along the left-hand spike
of the Mandelbrot.
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Variations: Try zooming farther, and see if you can find still more baby Mandelbrots at

even deeper resolutions. A magnification of eight million is nowhere near
Fractint’s limit, which exceeds 4,000000,000,000 (that’s four trillion!).

Critters

Fractals could really be used for Rorschach tests. Different people see very

different things in the same fractal, and undoubtedly a learned psychiatrist could

attach much profound meaning to what you see. However, the next few

examples are clearly critters, beyond a shadow of a doubt!

If you can, get an imaginative six or seven year old to help you name your

fractals. At that tender age the obstacles preventing direct perception of what

fractals really are has not yet developed!

Figure 4-9 Meditating Hermit

Meditating Hermit
PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry (and the Compuserve Graphdev gang)
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Parameter File listing:

Smile_2 { ; (c) June 1992, Dick Sherry 76264,752

reset typeformula formulafile=fractint.frm formulanameRichard5

corners=—I .750391/1 .249622/1 .496003/-I .495989/1 .249622/—I .495989

inside=bofó0 decomp=256

colors=000UMOAGRcccKF5 ‘eI_dI<2>X GPK5VXE<I 3>FAO<6>YRO<7>BAOGGO<I I >KVOPMO<I 7>\

FDOKIO<31>HiBHiBHhB<78>A5O6Pz<24>46K4Gz<39>OOFWIGVkG

}

ForinulaFilelisting: Richard5 (XAXIS) {; Jm Richard—Collard

z = pixel:

z=sin(z*sinh(z))+pixel,

I z I <=50

}

Generation Time: 10 minutes

About the Image: Who says fractals can’t be funny? Figure 4-9 and color plate 7 show a strange

creature with a blissful smile and a glowing navel. Who is this little guy? A

meditating hermit? A sumo wrestler? A sun bather? And this from an arcane

fractal made from a formula using the complex sine and complex hyperbolic sine
functions!

If you are not familiar with Fractint’s user-defined fractals, the Richard5

formula is a good example. The variable z is initialized to “pixel,” which means

the complex number associated with the pixel on the screen about to be colored.

The formula to be iterated replaces z with sin(zxsinh(z)) + pixel each iteration,

until the condition IzI<=50 is true. (Remember, the Izi operatoris the “programmer’s

absolute value” rather than the mathematical absolute value. The expression Izi

in the formula parser language means 1z21 in mathematical terminology.)

The outline shape of the meditating figure is the region of the Richard5 fractal

where maximum iterations are hit. The d e corn p = 256 option colors the surrounding

background according to the pie slice where the just-escaped orbit value

lands out of 256 pie slices. The i n si d e=bo f 60 is responsible for the details of the

mysterious creature’s face and body. Recall that this option colors pixels

according to the closest distance the orbit swoops to the origin.

Variations: Try generating the default RichardS fractal. To do this, press to get the fractal

types screen, select the formula fractal type, and then select the RichardS fractal.

In the center you will see the horizontal form of our friendly meditating critter,

without any facial or body features.
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Figure 4-10 Smiling Face

Smiling Face
PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry (and the Compuserve Graphdev gang)

Parameter File Listing:

rhsl44 { ; (c) June 1992 Dick Sherry 76264,752

; no commercial use w/o permission

reset type=fn(z)+fn(pi x) functionsqr/cos

corners—1 .066106/—0.51 7546/2 .981645/3.122173/—0.936088/2.808271

params=0/0/1 maxiter32000 inside0 potential255/500/20

co1ors000B7C54693607n<13>5O3frT<10>842qP3<11>8lOKdO<15>88OMdU<9>9pc7re7re<1\

9>5 td000<60>0005 Va<6>534J J N<2>845 CoP<11>541H8G<1 9>500 ja <2> F99J Gd<11>6I3qXY<\

7>Ydw000<1 9>000kSq<5>GAI

}

Generation Time: 1 minutes 8 seconds

About the Image: For another smiling critter, see Figure 4-10 and color plate 8. This one appears

magically within the fn(z) + fn(pix) fractal type using sqr and cos as functions.

This fractal type has been generalized using Fractint’s function variables, which

allow 16 different functions to replace different variables. Because fn(z) + fn(pix)

has two such variables, it is really 256 different fractal types disguised as one.

Variations: So where did this smiling fellow come from? To find out, press , select
RECIPES2.PAR (use to change PAR files if Fractint finds and opens
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Figure 4-11 Smiling Face without potential

Figure 4-12 Mixed up smiling face

FRACTINT.PAR). Without waiting for the fractal to generate, press to access

the EXTENDED OPTI0Ns,change potential to 0, and press Instead of the

smiling face, you will see two blank eyes staring at you, shown in Figure 4-11.

The structure of the face comes from the continuous potential color rendering

that you just turned off. For another variation, try PAR entry RHS 143. This is the

identical fractal except for the color palette. This smiling face looks a bit confused,

as you can see in Figure 4-12 and color plate 9.
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Figure 4-13 Alien Owl

Alien Owl

PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry (and the Compuserve Graphdev gang)

Parameter File listing:

rhsl48 { ; (c) June 1992 Dick Sherry 76264,752

no commercial use wlo permission

reset typefn(z)+fn(pix) functionreci plsqr floatyes

corners-1.13365810.24635510.8523411—O.9876610.2463551—O.98766

paramsO/O/1 maxi ter32000 insideO potential=2551500120

colors=0004F164G<20>65z<1 1>06F0E3<17>HW8IY9HW9<7>4F1 FA4<19>ZLC_MCZLB<8>HBO<2\

2>ppp<8>C900AO<20>A’ IBb2A’ 2<6>2G1 ODOOGO<6>OfO<9>OEO<30>Ln6Mp7Mo7<23>OEOkdh<9\

>LDD<4>LIC_JB_KBLLBu9e

}

Generation Time: 2 minutes 20 seconds

About the Image: Little creatures hiding in fractals are not always friendly and familiar. The fellow

shown in Figure 4-13 and color plate 10 looks like an alien owl from a planet

where two eyes arejust not enough. The fractal formula is the same fn(z) + fn(pix)

type, but using the functions recip and square. The iterated function in this case

is liz + pixel2. Once again, the stnicture of the image comes from the continuous

potential coloring.

Variations: Color cycling usually is very intriguing with fractals created using continuous

potential. Try the key and see.
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Figure 4-14 Snail Shell

Snail Shell

PAR File: RECIPES2.PAR

Image Credits: Richard H. Sherry

Parameter File listing:

rhs2O5 { ; (c) Dick Sherry Aug 8, 1992 76264,752

reset typelambda

corners=0.3536842/0.0873952/0.3558072/0.8289457/0.030721 2/0.786423

paramso.9510.6 maxiter500 inside=0 decomp25ó

colors=00000_<26>OOFFFO<61>zz0zz0yy0<61>FF000F<62>OOzOOzOOy<33>00_

}

Generation Time: 1 minute 32 seconds

About the Image: Figure 4-14 and color plate 11 show a beautiful spiral very suggestive of a snail

shell. The coloring scheme uses the d e c omp = 256 option which colors pixels

according to the final position of a just-escaped orbit. The spiral itself is present

in the fractal without the decomposition option, but the color rendering method

and judicious selection of a color palette make all the difference for this image.

Variations: A good way to appreciate what the artist did with this fractal is to generate the

same fractal with de comp0 and use the default IBM palette. To do this, load

RH5205 from RECIPES2.PAR using the command. Press to get BAsic

OFrioNs (you don’t have to wait for the fractal to finish). Set the decomposition

parameter to 0 and press Then press to enter the color-cycling mode,
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Figure 4-15 Snail Shell without decomposition

to load the default IBM palette, and to exit the color-cycling mode. The

result should look like Figure 4-15. Notice that the spiral is still visible, but it is

less structured because regular escape-time coloring is being used instead of

decomposition coloring.
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Figure 4-16 Hi Earthling!

Hi Earthling!
PAR File: RECIPES2.PAR

Image Credits: Peter Moreland

Parameter File listing:

HI Earthling.. { ; Well where is your leader?

; Peter Moreland 100012,3213

reset type=magnet I m

corners=7.414884/3.717069/—6.804988/3.803521 /1.034958/1.774657

params=1.76/4 float=y maxiter=32000 bailout=500 inside=0

potential255/51 1/0

colors=LSUK’W<4>9kZ<2>s72<2>b9k<27>12V<9>j5k<27>gjX<30>gUa<7>Hbl<13>Vq7Wr7Xs\

9<30>esw<5>wUV<24>ubSubStaT<21>h9w<6>eHAeI3cL7<4>W_RVbUUcS<4>ThNk5Ln5K<12>MZ\

V

}

Generation Time: 38 seconds

About the Image: Figure 4-16 and color plate 12 show another alien creature brought to life with

the continuous potential option. This fractal uses the magnetism formula—a

complicated-looking rational function (division of two polynomials).

Variations: Try turning off potential by setting POTENTIAL MAX COLOR to 0 on the () screen

(EXThNDED OPTIoNs). Then turn on decomposition by setting DECOMP OPTION to

255 using the screen (BASIC OPTIoNs). The same basic outline of the alien

creature remains, but the appearance has a very different texture.
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Figure 4-17 Tentacles

Tentacles

PAR File: RECIPES2.PAR

Image Credits: Peter Moreland

Parameter File listing:

Tentacles { ; 00:18:05.11

; 10 jan 93 .. caren park

reset type=magnetlj corners=1.265442/1.604642/0.775681/1.030081

params=—0.2/0.4 float=y maxiter500 inside=maxiter periodicity0

colors=000bLO<9>000<1 5>ut0<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>000<1 6>zO\

X<1 5>000<1 5>p0w<1 5>000<1 5>zzz<1 5>000LOO<1 3>zOO<2>pOOlOOhOOdOOaOO<9>000<1 5>zX\

O<4>f NO

}

Generation Time: 5 minutes 20 seconds

About the Image: Figure 4-17 and color plate 13 show the writhing tentacle of Captain Nemo’s deep

sea squid, complete with suction cups. This fractal uses thejulia variant of the same

magnet formula used in “Hi Earthling!”. The beauty of this fractal comes directly

from the fractal algorithm and the colors—no unusual options were applied.

The per i od i c i t y=0 parameter turns off one of Fractint’s optimizations that

occasionally fails. Fractint attempts to save work by noticing when an orbit is

repeating itself. If you see an artificial-looking grid of dots on your fractal when

using passes=guessing, try setting per iodi ci ty=o and see if that clears it up.
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You have to set this on the command line or by using the (for GIvE A COMMAND)

facility. Press and type in period i ci ty=O.

Variations: Try different color maps. You can load them by entering the color-cycling mode

with and then pressing (load a color map).

Figure 4-18 Smokie Watches You

Smokie Watches You

PAR File: RECIPES2.PAR

Image Credits: Peter Moreland, Richard Sherry

Parameter File listing:

Smokie_Watches_you { ; From “Evil” by Dick Sherry ;) Credit where it’s due <G>.

; Cc) 1992 Peter Moreland 100012,3213

reset type=manzzpwr

corners=—I. 1681 533/—I. 1222362/0. 0256899/—0. 0246208/—I. 1222362/—0. 0246208

params=I/0/2 float=y maxiter=500 inside=0 potentia=255/5II/O

colors=000<178>000SOOFZH<3>6H7ppp<3>UUUhhUhhT<I0>NF4giT<II>TPBSOARM8PL7OJ5MH\

3<2>LG3KG3J F31 F31 F2<24>0501 N9hMA

}

Generation Time: 1 minutes 20 seconds

About the Image: Not Smokie the Bear, no it can’t be! Yes indeed, just to prove that fractal geometry

provides a lifelike model of nature, we end this series of critter fractals with a

genuine fractal bear! Checkout Figure 4-18 and color plate 14. This image was the
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result of quite a humorous bit of group creativity in CompuServe’s Graphdev

forum. Some of the other images in this series, such as the smiling face and

meditating figure, came from the same wild and woolly exchange of PAR files over

the period of a few days.

The manzzpower function is an extension of the usual Mandelbrot formula.

The iterated formula is z’ = Zz + + c, with the parameter exp set to 2. All Fractint

Mandelbrot-type fractal types allow the user to create “warped” images by

perturbing the initial value of the orbit sequence. The first parameter in this

example is set to 1, which means that the real component of the orbit initial value

has 1 added at the beginning of each orbit calculation. Continuous potential is
used to smooth out the colors.

Variations: Try different color maps, and see if you can come up with evil-looking eyes!

Just Beautiful Patterns

Finding fractals that look like critters is alot of fun, and provides a welcome break

from the serious pursuit of the ultimate fractal image. However, the true fractal

aficionado doesn’t care if his or her fractal looks like anything familiar at all. The

fascination is in the pattern. Look at the following fractals, and let your

imagination play with the dance of colors and interplay of shapes and texture.

See what you can see, but enjoy!
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Figure 4-19 AeolisAndJanus

AeolisAndJanus
PAR File: RECIPES2.PAR

Image Credits: Caren Park

Parameter File listing:

AeolisAndJanus { ; 00:06:40.46

; .. from JMSOI:PigSnoutFace

reset type=barnsleym3 corners=3. 320626/—2 .679374/—4.4/4.4/—2.679374/4.4

maxiter327ó7 bailout=16 outside=real logmap=yes invert=1/0/0

colors=000840<1 3>zXO<1 5>000<1 5>ut0<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>0\

00<1 6>zOX<1 5>000<1 5>p0w<1 5>000<1 5>zzz<1 5>000LOO<1 3>zOO<2>pOOlOOhOOdOOaOO<9>0\

00420

}

Generation Time: 1 minutes 40 seconds

About the Image: The bamsleym3 fractal type is characterized by a conditional branch in the

formula that creates discontinuities in the image. Fractals made with this type

often have a mosaic quality. This image uses the o u t s i d e = rca i option, which

colors each pixel according to the iteration count plus the real value of the first

escaping orbit. This has the effect of revealing additional structure, which takes

on the appearance of nested petals that create a pine cone effect. Using logmap

compresses colors and lets you see a wider range of color gradations before details

are lost in the “gravel.” The result is shown in Figure 4-19 and color plate 15.

FRACTAL. RECIPES 125



Variations: Color cycling of this fractal is gentle and beautiful because of the many

continuous gradations of color.

Figure 4-20 AsteroidShip

AsteroidShip
PAR File: RECIPES2.PAR

Image Credits: Caren Park

Parameter File listing:

AsteroidShip { ; 00:38:19.91

; 02 jan 93 . - caren park

reset type=fn*z+z function=cotan passes=t

corners=—1.914244/1.413756/—1.248/1.248 paramsl/0/1 maxiter327ó7

inside=bofó0 outside=rea I logmap=yes i nvert=0 5/0/0

colors=Otz<39>O5zO3zO2zOOzOOy<59>003002000000000<29>OOkOOmOlm<29>Oky0mzlmz<3\

0>zzz<44>5zz3zz2zz0zz0yz<2>Ouz cyc lerange=0/255
}

Generation Time: 16 minutes

About the Image: Figure 4-20 and color plate 16 show a fractal with delicate color shading that

looks much like the interplay of light in a mist. The novel idea in this PAR file is
to combine i n s i d e = B 0 F with inversion. The i n v e r t = 0. 5/0/0 command turns

the fractal inside out, and surrounds the fractal object by the luminous glow of
the B0F60 effect.
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Variations: Yes! Color cycle this fractal! Try turning off the various options (inside, outside,

and logmap) to get a feel for what they do.

Figure 4-21 BadDream

BadDream

PAR File: RECIPES2.PAR

Image Credits: Caren Park

Parameter File listing:

BadDream { ; 01:30:10.15

; 05 dec 92 . . caren park

reset type=newton

corners=0.813797527/0.8140471 671—0 .001023803/—0.000836573 params=47

f(oaty maxiter=500 inside=maxiter periodicity=—1

coors=000f0<2>p0w<15>000<15>zzz<15>000L00<13>z00<2>p00100h00d00a00<9>000<1\

5>zXO<1 5>000<1 5>ut0<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>000<1 6>zOX<1 5>00\

0<11>c0h

}

Generation Time: 44 seconds

About the Image: Newton fractals graphically display the life-and-death struggle between different

attractors battling to capture orbits. In this case, there are 47 such attractors

because of par ams=47. The braids in this image (see Figure 4-21 and color plate

17) show the twisting together of microscopically separated regions that launch

orbits ending up being captured by different attractors.
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This isn’t the critter section so we won’t comment on the scary monster that

Caren must have seen in this image!

Figure 4-22 BullsEyeStar

BullsEyeStar
PAR File: RECIPES2.PAR

Image Credits: Caren Park

Parameter File listing:

BullsEyeStar { ; 00:01:46.94

; 31 dec 92 . . caren park

reset type=fn*z+z function=recip

corners=31 .99/—31 .99/23.992505/—23.992505 params=—300/—200/5100/—21072

maxi ter=32000 inside=0 potential=255/200/32000 invert=0.5/0/0

colors=WPJbHE<5>zHO<8>SDF<3>N3JLOKLI KM2KN3KO4J<1 2>zz0<7>”9YYAXVB<6>KAJMAKOA\

M<12>ziF<13>K8C413000<15>svcsvcsvcsvc<4>jiWhfUfdTebS<3>ZUMYRKUMHSJF<6>EAb<6>\

7Nu5Px5Nu<5>A5cB5 I <3>G8SH9QIAQ<4>SKP<3>_VZ ‘Y b cdcf<4>nru<1 5>015<6>eYJg_LiaN\

kcPneR<4>zpa<4>jdwgaVcZT’WSYUR<6>AAK<3>ALQAOSARUBUWBXY<6>DqlDtnCql<5>8Xc7Ta9\

Q I <5>L4R<8>VHIZHG

}

Generation Time: 40 seconds

About the Image: The authors would like to politely request that all mathematicians and fractal

purists quietly move on to the next recipe and skip this one. The BullsEyeStar

fractal is not for you!
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The BullsEyeStar fractal shown in Figure 4-22 and color plate 18 appears to

be impossible. Consider this: the iterated formula is z’ = fn(z)z + z, where fn(z)

is the recip function, liz. But(liz)zis 1,so this formula is reallyz’ = 1+z. Not much

of a formula, and it shouldn’t generate much of an image. For any starting point,

the orbit just heads straight east at the rate of one unit per iteration. This should

result in a very dull image. However, there are a few wrinkles. The first is that

continuous potential is applied, and the second is that the fractal is inverted.

Fractint uses several kinds of math internally. Fixed-point integer math runs

very fast and doesn’t need a math coprocessor. The disadvantage is that fixed-

point numbers have a limited dynamic range, and are not suitable for deep zooms

or certain functions that have a wide range of values. The BullsEyeStar fractal

works only with integer math. Try turning float on with the () toggle, and the

result is zilch—an almost blank screen. (You can tell if floating point is used with

the c:! status command. Integer math is never mentioned on this screen, but

if floating point is used, this screen announces it.)

Perhaps the rolling circular waves of light come from the continuous potential

calculation and the choice of color map. But where does the star come from?

Remember that inversion is turned on, so the inside and outside are reversed. The

complex numbers further from the origin are the ones where fixed-point

numbers run out of precision. These numbers have been reflected to the inside,

so the star is most likely an artifact of the failure of integer math.

Such an ephemeral fractal, and so beautiful! Is a fractal a fractal if it is an

accidental consequence of a program’s internals? Surely our failure to understand
the basis of a fractal does not make it less a fractal.

Speaking for themselves, the authors are quite fond of this anomalous image,

and we thank Ms. Park for discovering it!

Variations: Turn on floating point, turn off continuous potential, or turn off inversion, and

watch this fractal slip away like sand through your fingers! To get insight into this

image, try performing a 3-D transformation on it. You can use the command

or use the following PAR file:

bullseye {

3d=yes filenamebullseye.gif scalexyz=90/90 roughness3O waterline=O

ambient=20 rotationóO/30/O perspective=O xyshi ft=O/O

colors=WPJbHE<5>zHO<8>SDF<3>N3JLOKLI KM2KN3KO4J<1 2>zzO<7>”9YYAXVB<6>KAJM\

AKOAM<12>ziF<13>K8C413000<15>svcsvcsvcsvc<4>jiWhfUfdTebS<3>ZUMYRKUMHSJF<\

6>EAb<6>7Nu5Px5Nu<5>A5c<5>H9Q<4>QIPSKPUNS<2>_VZ ‘Y’ b’ cdcf<4>nru<1 5>015<6>\

eYJg_LiaNkcPneR<4>zpa<4>jdWgaVcZT’WSYUR<6>AAK<3>ALQAOSARUBUWBXY<6>DqlDtn\

Cq l<6>7Ta<6>L4R<8>VHI ZHG

}
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Figure 4-23 BullsEyeStar in 3-D

A 3-D transformation treats the color numbers as a third dimension and

projects the resulting surface to two dimensions. You can see the result in Figure

4-23. This “fractal” is in fact a smooth basin with a cross-shaped discontinuity
in the center.
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Figure 4-24 BlueStrandsOnGreen

BlueStrandsOnGreen

PAR File: RECIPES2.PAR

Image Credits: Caren Park

Parameter File listing:

BlueStrandsOnGreen { ; 01:05:38.22

06 dec 92 .. caren park

reset type=complexnewton passes=t

corners=—0 000008636234/—0.000008034234/0.000000481 9/0.0000009334

params=3/2/4/1 floaty maxiter=400 bailout=2500 inside=maxiter

periodi ci ty=0

colors=000ZZZ<6>zzz<15>000LOO<13>zOO<2>pOOlOOhOOdOOaOO<9>000<15>zXO<15>000<1\

5>ut0<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>000<1 6>zOX<1 5>000<1 5>p0w<1 5>00\

0<7>WWW

}

Generation Time: 28 minutes

About the Image: The ComplexNewton fractal type is similar to the regular Newton fractal. Newton’s

method is used to determine the roots of the simple polynomialz — r =0. For the

regularNewton fractal type, n mustbe an integerand r is 1. Forthe ComplexNewton

both n and r can be complex numbers. The very same Newton formula works in

both cases, but with a big difference. The calculation of raising a complex number

to a complex power involves computing a logarithm, and the complex logarithm

has infinitely many values. One is arbitrarily selected in order to complete the
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calculation. The fractal resulting from this arbitrariness exhibits a discontinuous

tear. This tear is propagated throughout the image at all magnifications. These

tears look as though you are viewing a three-dimensional object, and parts of the

object are blocking other parts behind.

The BlueStrandsonGreen fractal shown in Figure 4-24 and color plate 19

display this characteristic very clearly. Compare it to the regular Newton image

BadDream earlier in this chapter. You can see the same braided strands in both

images, but in the BlueStrandsonGreen image, these braids abruptly begin and
end.

Part of the appeal of this fractal is the delicate color scheme that highlights one
intertwined strand of the braid.

Variations: This image is zoomed in very deeply. You can zoom out by making a small zoom

box with the (PAGE key or mouse and pressing @O-ER

Figure 4-25 Chains

Chains

PAR File: RECIPES2.PAR

Image Credits: Caren Park
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Parameter File listing:

Chains { ; 00:01:15.68

; 03 jan 93 caren park

reset type=julia corners=—0.1/0.1/—0.075/O.075

pa rams=—0.784469886/0.133089005

colors=WPJ775<1 3>svcsvcsvcsvc<4>j i WhfUfdTebS<3>ZUMYRKUMHSJ F<6>EAb<6>7Nu5Px5N\

u<5>A5cB5 <3>G8SH9QIAQ<4>SKP<3>_VZ Y b cdcf<4>nru<1 5>015<6>eYJg_Li aNkcPneR<4\

>zpa<4>jdWgaVcZT’WSYUR<6>AAK<3>ALQAOSARUBUWBXY<6>DqlDtnCql<5>8Xc7Ta9Q’<5>L4R\

<8>VHI<7>zHO<8>SDF<3>N3JLOKL1KM2KN3KO4J<12>zz0<7>”9YYAXVB<6>KAJMAKOAM<12>zi\

F<1 3>K8C41 3000443

}

Generation Time: 28 minutes

About the Image: The Chains image, shown in Figure 4-25 and color plate 20, is just a simple

unadorned Julia set with no special options and very skillful coloring.

Figure 4-26 EggsOnLeaf

EggsOnLeaf
PAR File: RECIPES2.PAR

Image Credits: Caren Park
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Parameter File listing:

EggsOnLeaf { ; 00:16:32.89

; 28 dec 92 caren park

reset type=fn(z)+fn(pi x) function=sin/cosh passes=t

corners—0.571705/—0.403833/0.808401/0.934305 params=0.7/0.333/0.5/0.5

floaty maxiterl00 bailout50 insidebofó0

colors=ddd<16>000PFF<29>xeDzfCyfC<30>PFFOAO<70>_UI’UIaVJbWK<19>xo’zpaypa<29>\

UPF000<29>nnnpppooo<1 3>TTT

}

Generation Time: 8 minutes

About the Image: The name EggsOnLeaf tells it all, as you can see in Figure 4-26 and color plate

21. The “eggs” are created by the I n s i d e=bof 60 option and the selection of a

palette that highlights the BOF6O basins.

Variations: The artist elected to use the pa s s e s = t e s s e r a i algorithm. This option generally

does not affect the resulting image, although if any image details can be

completely surrounded by a box of constant color, they may disappear. You can

incorporate an artifact of the tesseral recursive boxes method by setting Fiii
COLOR to 1 from the BAsic OPTIONS screen. The outer areas are affected the

most, and are turned into a latticework of boxes.
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Figure 4-27 Who Pulled the Plug?

Who Pulled the Plug?
PAR File: RECIPES2.PAR

Image Credits: Peter Moreland

Parameter File listing:

Who_pulled_the.... { ; Plug! Oh well, there goes the galaxy...

; (C)1993 Peter Moreland 100012,3213

reset type=frothybasin

corners=0.4968056/0.6382582/0.3680705/0.5064456/0.4813085/0.3887334

params=6 float=y maxiter=5000 decomp=256 distest=5/71 finattract=y

colors=froth6 .map

}

Generation Time: 1 minute and 40 seconds

About the Image: Figure 4-27 and color plate 22 show a giant whirlpool that looks as though it is

emptying the universe through a cosmic bathtub drain. This image was created

using the Frothy Basins fractal type, discovered by James C. Alexander of the

University of Maryland.

One of the things that makes the Frothy Basins fractal so interesting is the

shape of the dynamical system’s attractors (shapes that orbits tend to move

toward). It is not at all uncommon for a dynamical system to have nonpoint

attractors. Shapes such as circles are very common. Strange attractors are

attractors which are themselves fractal. What is unusual about this system,
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however, is that the attractors intersect, giving the fractal the appearance of a

frothy liquid that has been stirred up. This is the first case in which such a

phenomenon has been observed. The three attractors for this system are made

up of line segments that overlap to form an equilateral triangle. This attractor

triangle can be seen by pressing the key while the fractal is being generated,

turning on the SHOW OIrnTs option.

Variations: An interesting variation on this fractal can be generated by applying the previous

mapping twice per iteration. The result is that each of the three attractors is split

into two parts, giving the system six attractors.

Figure 4-28 Meta_Cold

Meta_Cold

PAR File: RECIPES2.PAR

Image Credits: Peter Moreland

Parameter File listing:

Meta_Cold! { ; (c)1992 Peter Moreland 100012,3213

reset typefn*z+z function=tan
come rs21. 315763/—31. 989983/—22 868427/22 . 868451/—19. 828226/31. 989997

params=5/5/5/100 maxi ter32000 inside=0 potential=255/200/32000
colors=LSUJPU<11>GMUFMUFMUFLUFLUEKUEKUDJV<2>BLSAMR9MQ8MP6KM<58>inujovinu<164\
>JQUQW JQU

}

Generation Time: 72 seconds
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About the Image: Figure 4-28 shows a fractal that looks like an aluminum lattice. The smooth

coloring comes from the use of continuous potential, and the repeating pattern

from the use of the trigonometric tangent function which is periodic (repeats

itself at regular intervals).

Variations: You can turn the cold metal latticework red-hot by manipulating the colors. Try

color cycling and using the more continuous palettes available with the higher-

numbered function keys through .

Figure 4-29 MagneticHole

MagneticHole
PAR File: RECIPES2.PAR

Image Credits: Peter Moreland

Parameter File listing:

MagneticHole { ; 00:23:23.30

; 19 dec 92 . . caren park

reset typeformula formulafile=fractint.frm formulaname=halleysin

passes=2 corners=0.883445/1.020085/—0.05124/0.05124 params=1.6 float=y

maxiter=500 bailout=1000 inside=maxiter

colors=000sIE<6>IKKkLLjLMiMNhMO<5>aPT<20>zzzOzOLLLzOO<5>zz0000555<2>EEEOzOKK\

K<3>_ccchhhmmmssszzzzz0<6>zOGzOO<3>zzOnxóbuCPOZFpP<3>Ozz<2>OGzVVz<3>zVz<3>\

zVV<3>zzV<3>VzV<3>Vzz<2>Vbzhhz<3>zhz<3>zhh<3>zzh<3>hzh<3>hzz<2>h I zzOOwO3000o\

OB<12>OOz<15>zz0<8>EfH<2>zzz<5>jkqzzzdfm0zlZaj<5>IN’FKZAEO57C000<6>zkk<7>zOO\

GOOG4OG8000z<1 0>zc0<4>zY2000zV3<5>zN5000zL6zJ7zI7zG8<5>t ID

}
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Fonnula File listing:

halleySin (XYAXIS) {; Chris Green. Halley’s formula applied to sin(x)=0.

; Use floating point.

; P1 real = 0.1 will create the picture from page 281 of Pickover’s book.

z=pi xc I:

s=sin(z), c=cos(z)

zz_pl*(s/(c_(s*s)/(c÷c))),

0.0001 < si

}

Generation Time: 4 minutes 4 seconds

About the Image: Figure 4-29 and color plate 24 show a fractal that looks like magnetic lines of

force made from the Halley formula for the sine function. Halley’s formula is an

alternative to Newton’s formula for finding the roots of functions (values where

the function gives the value 0). This version of Halley’s formula is not built into

Fractint, but uses a formula stored in FRACTINT.FRM.

Variations: Yet another fractal that begs to be color cycled! Once you start the cycling, notice
the difference between (rapidly changing color bands) and (slowly

oozing colors).

Figure 4-30 MapCompass

MapCompass
PAR File: RECIPES2.PAR

Image Credits: Caren Park
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Parameter File Listing:

MapCompass { ; 00:00:21.20

; ... from P0D047

reset type=lambdafn function=sqr passest

corners—6.81694/6.810364/—4.549606/4.544006 paramsl /0.9 maxiter=128

fillcolor=255 inside=epsiloncross outside=mult logmap=yes

colors=000LMFc9>svcsvcsvcsvccl 3>UMHSJ FQIJ<5>EAb<6>7Nu5Px5Nu<5>A5c<2>E7WF8UG8\

SH9QJANKBLMCI<6>_VZ’Y’b’cdcf<4>nru<15>015<6>eYJg_LiaNkcPneR<4>zpa<4>jdWgaVcZ\

T WSYURC6>AAK<4>AOS

}

Generation Time: 11 seconds

About the Image: Figure 4-30 and color plate 25 show a radially symmetric image that could be

a special compass or a windmill. The gridwork in the background is an artifact

of the tesseral strategy for computing the image by recursively subdividing into

smaller and smaller rectangles. The fill CO lo r=2 55 option makes this grid

visible. Both the inside=epsi lonCross and outside=mult options add structure
to the fractal.

Variations: To appreciate how useful Fractint options are for revealing fractal structure, try

converting MapCompass to a regular escape-time fractal. Invoke the BASIc

OvnoNs screen by pressing and change pa s s e s = t to pa s s e s = g, which

removes the background grid. Then change i n s i d e = e ps i I Ofl C ross tO I n s i d e = 0

and outsidemult to outside=iter to remove much of the remaining fractal

structure. The resulting image looks quite ordinary. There is simply too much

to see in a fractal in a glance; the options provide alternative views of the same

unfathomable dynamic system, each one revealing one aspect.

THERE’S MORE

These recipes are only the beginning of the tasty fractal treats you can try. For

many more gourmet concoctions, look for other .PAR files on your distribution

disk, and check out the 1800 images on the companion CD. Have fun!
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REFERENCE

ractint gives you the capability to do a lot more than just generate fractal

images. You can save them, restore them, contort them using various 3-D

transformations, print them, and adjust their colors in all kinds of ways. You can

even use Fractint to perform all of these functions on ordinary GIF files.

The other chapters in this book cover specific Fractint commands when they

are appropriate for the topic at hand. In this chapter, Fractint’s commands and

how you access them are the topics at hand. If Fractint can do something, this

chapter will tell you how to tell Fractint to do it.

First, we’ll give you a general overview of Fractint’s command stnlcture and

several alternative ways by which you can tell Fractint what you want it to do. Then

we’ll briefly describe Fractint’s context-sensitive, on-line help system. Then,

because nearly every Fractint command can optionally be issued as a command-line

argument, we’ll cover the basics of Fractint’s command-line argument syntax.

Finally, we’ll cover Fractint’s individual commands one by one.

FRACTINT COMMANDS

There are several different methods of telling Fractint what to do. Which

method you use in a particular situation is often a matter of convenience and

personal style. After becoming familiar with the program, you will probably

end up using a mixture of these methods that you find to be the most effective

for you. The four basic mechanisms are the mouse, the keystroke commands,

the arrow-key-controlled menu interface, and command-line options. Let’s

look briefly at each of these.



The Mouse

Fractint uses the mouse for only two purposes: bringing up and controlling the

zoom box while in its main display mode, and moving the pixel-selection cursor

in the optional palette editing and orbits/Julia display modes. Even if you are not

an enthusiastic fan of the mouse, we recommend using it with the zoom box if

you have one.

If you don’t have a mouse, don’t worry. A mouse is not required for any

Fractint operation, and you can perform all operations using only the keyboard.

Keystroke Commands

Using keystroke commands is often the fastest way to interactively control the

operation of Fractint. If you havejust generated the perfect fractal image andwant

to save it for posterity, for example, all you have to do is press the key.

Keystroke commands are not case-sensitive: you can save that fractal image using

either the ® or key.

Note that some of Fractint’s keystroke commands (such as the ® command)

perform their actions immediately, while others (such as the command, which

you use to select a new fractal type) take you to a menu screen for further action.

Because Fractint has several modes of operation, the effect of a keystroke

sometimes depends on which mode Fractint is in. We’ll discuss this in more

depth as we cover the individual command functions.

The Arrow-Key-Controlled Menu Interface

The arrow-key or cursor-key interface uses a series of full-screen menus that

display options. You can display the main arrow-key menu by pressing the

key when you’re looking at Fractint’s initial credits screen or by pressing
the key when you’re looking at a fractal image. Figure 5-1 shows the MAIN

MENU as it appears once you’ve generated a fractal image (the menu that appears

prior to that point is somewhat shorter, as several of the items on the full menu

aren’t applicable yet).

When using any of Fractint’s menus, you select an option by moving the

highlighted area to the desired option using the arrow keys and then pressing
At the MAIN MENU level, those menu selection items which are also

reachable via a keystroke command show that keystroke inside angle brackets

(<>)—this can help you learn Fractint’s basic commands rapidly.
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Figure 5-1 Fractint’s Main menu screen

Some screens have input fields for entering various parameters that control

how the program operates. Screens used to select files also have directory

navigation capabilities; by selecting subdirectories, the directory displayed is

changed. On these screens, selecting the directory “..“ moves the listed directory

up the directory tree. The special capabilities of some of these screens are

documented later in this chapter.

Command-line Arguments

A command-line argument is an option that you give a program “on the command

line” as you start it up. When you give MS-DOS the command TYPE AUTOEXEC

.BAT, for instance, you are giving the TYPE command the command-line

argument AUTOEXEC.BAT. Fractint accepts command-line arguments that

allow you to run it with your choice of video mode, starting coordinates, and just

about every other parameter and option known to Fractint.

Fractint has several other ways to use these command-line arguments besides

putting them in the command-line. In fact, referring to them as “command-line”

arguments is a bit of an anachronism—the command line is probably the place

where they are used the least.

By whatever name they are called, command-line arguments are extremely

useful. Command-line arguments are used inside startup files (such as the

SSTOOL.S.INI file). They can also be invoked “on the fly” using Fractint’s GIVE

COMMAND STRING (®) command or the menu interface. Finally, Fractint can also

load and save fractal images using parameter files, which are files containing the

instructions for generating fractal images rather than their actual bitmaps—
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Figure 5-2 The Main Help Index menu Figure 5-3 The Fractal Types Help screen

instructions stored in the form of command-line arguments. Each of these

techniques, and the syntax of Fractint’s command-line arguments in general, will

be discussed in more detail later in the chapter.

FRACTINT’S HElP SYSTEM

Before getting too far into this reference chapter, it seems appropriate to mention

one tool that may reduce your need to read it on occasion—Fractint’s on-line,

context-sensitive, hypertext-format Help system.

Fractint’s built-in, on-line Help system can help you learn to use the program’s

many features. To get help at any time, simply press Fractint’s Help system

is context-sensitive, so the Help screen you see when you press depends on

the particular mode you were in and which command function you were

processing when you pressed that key. Figure 5-2 shows the main Help menu

screen that is displayed if you press immediately upon starting Fractint.

Figure 5-3 shows the Help screen that is displayed if you press immediately

after you have pressed the key (while staring at the screen showing Fractint’s

rather formidable list of fractal types).

The Help system uses a hypertext format—while using the Help system, you

can select any topic (hot-link) displayed in blue by using the arrow or keys

to highlight it and then pressing to select it. For instance, on the fractal

types help screen shown in Figure 5-3, the terms Fractal Types, Barnsleyj 1,

Barnsleyj2, and BarnsleyJ3 are hot-links and are displayed in blue. You can get

more information on the Barnsleyj2 fractal type by pressing the down arrow key

twice to highlight it and then pressing In the main Help screen shown

in Figure 5-2, every item on the screen is displayed in blue, as that screen consists

entirely of a list of help topics.
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You can wander down through as many levels of help topics as you want. The

(BACKSPACE) key backs you out one level at a time. Pressing when you are

already in the Help system always sends you to the main Help menu shown in

Figure 5-2.

There is frequently more than one screen’s worth of information on a

particular help topic. When that happens, use the (PAGE UPD and (PAGE DOWN) keys

to move through the available Help screens for that topic. The SUMMARY OF

FRACTAL TYPES Help screen shown in Figure 5-3 is probably the most extreme

example of this situation—note the 1 OF 33 displayed in the upper right-hand
corner of that screen.

You can exit from Fractint’s on-line Help system at any time by pressing the

key. You will be returned back to Fractint and whatever mode and

command you left it in.

Finally, we should point out that the Help system gives you the most up-to-

date information available about Fractint. The mechanics of book publishing are

such that the companion disk is generated sometime after the book text is

completed. If one of Fractint’s entry screens or options looks a bit different than

this reference chapterindicates, pressing the key to checkout the on-line help

is a good idea. It’s possible that the Fractint authors managed to relax a program

limitation or even add a new feature during the interval between the book text

being finalized and the master disk being sent to the duplicators.

USING COMMAND-LINE ARGUMENTS

As we proceed through this chapter describing various Fractint commands, we

will list the command-line arguments that apply to those commands. Because

of this, we should describe the syntax of command-line arguments before we

go any further.

When used “on the command-line,” the syntax for command-line arguments
is as follows:

fractint argumentvalue argumentvalue argumentvalue...

where the individual arguments are Fractint settings and are separated by one or

more spaces (an individual argument may not include spaces). Either upper- or

lowercase may be used, and arguments can be in any order. A typical sequence

of arguments might be

type=julia video=F3 inside=1O
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Table 5-1 Command-Line argument swt

This example selects fractal type Julia, sets the video mode to F3 (VGA 320 x

200 256-color mode) and sets the inside to color number 10 in the palette. All

of these settings can also be made using the menu interface and its various
submenus.

Table 5-1 lists terminology we will use throughout the rest of this chapter as
the commands are documented.

Commands in the SSTOOLS.INI File

\Vhen Fractint is fIrst started, it always looks along the DOS path for any file called

SSTOOLS.INI (SSTOOLS stands for Stone Soup Tools) and reads startup
commands from that file if it exists. Then it looks at its own command line;

arguments there will override those from the .INI file. The SSTOOL.S.INI

command file is used in the same way as Microsoft’s TOOLS.INI or WINDOWS.INI

configuration files. Sister Stone Soup Group programs, such as the

Windows port of Fractint (Winfract) and Lee Crocker’s Piclab, also use the

SSTOOLS.INI file. You designate a section of SSTOOLS.INI as belonging to a

particular program by beginning the section with its label in brackets. Fractint

looks for the label [fractint] and ignores any lines it finds in the file belonging to

any other labels.

Command-line parameters always appear in the [fractint] section. The

commands do not have to be all on the same line; in fact, you may prefer to

put each command on its own line for clarity. Comments can be added to
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Starting bracket

Name of fractal Comment Location of fractal

/
Resetto Spirall {;A sample Julia set
defaults

‘—reset type=julia corners=2/2/—1.55/1.5

Fractalty e
params=O.3/O.6 maxiter=200 Maximumiterations

Ending—}
bracket Fractal parameters

Figure 5-4 An annotated parameter file entry

command-line files by preceding the comment with a semicolon. For example,
if an SSTOOLS.INI file looks like this:

[fracti nt]

type=julia ;start up with a Julia set

inside=O ;using traditional black

printer=hp ;my printer is a LaserJet

[start rek]

Aye, captain, but I dinna think the engines can take it!

Fractint will read only the second, third, and fourth lines. The last line is for a

fictitious program called Startrek.

You can place any sort of Fractint command you like in SSTOOLS.INI, but

the normal case is to place commands there that you want to always take effect

(the p r i n t e r = h p entry, for instance, is a perfect example).

Specifying Command-IJne Arguments Interactively

Fractint also provides a way to enter command-line arguments interactively.

Whenever you invoke Fractint’s ® (Give COMMAND STRING) command, which is

explained in detail later in the chapter, you can enter a text string containing one

or more command-line arguments.

Commands in Parameter Files

A powerful extension of the command-line concept is the parameter file.

Parameter files contain lists of named fractal images, called parameter entries,

and all the command-line arguments needed to generate them. Parameter files

have a .PAR file name extension. Many parameter files, each containing a number

of different entries, are supplied on the companion disk. A parameter file entry

is shown in Figure 5-4 along with labels for the component parts. The name of
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the parameter entry, in this case SpiiiJ, is followed by a list of commands

contained within curly brackets ({ }).

You can display and use parameter file entries using the (RUN SAVED

COMMAND SET) command, described later in this chapter. You can create

parameter file entries by using a text editor, but you will find it easier to generate

them automatically using the () (SAVE CURRENT PARAMETERS) command.

Commands in Indirect Files

There is one final method for running commands that is available only from the

MS-DOS command line. Command-line arguments can be put in an indirect file.

If@filename appears in the command line, it causes Fractint to read the file name

for any arguments it contains. When it finishes, it resumes reading its own

command line. For example, the command line:

fractint maxiter=250 &lmyfile passes=1

sets the maximum iterations to 250, opens the file MYFILE, reads and executes

the commands in it, and then sets the number of passes to 1. The indirect file

option is valid only on the MS-DOS command line, as Fractint cannot deal with

multiple indirection (putting the indirect file @filename commands within other
indirect files).

For example, if the contents of MYFILE is

corners—4141—212;set the image boundary

typemanowar ;use this fractal type

biomorph=yes ;and the Biomorph option

then the effect of starting Fractint with:

fractint filename

is exactly the same as starting it with:

f ract i nt corners=—4141—212 type=manowa r bi omorph=yes

Fractint can be told to take its commands indirectly from a parameter file

entry as well, using the convention @filename/entryname. For example, the
command line:

fractint myfile/myentry

tells Fractint to open the parameter file MYFILE.PAR, locate the parameter entry
in that file named MYENTRY, and take its initial commands contained in that

parameter entry.
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THE FRACTINT OPERATING MODES

Fractint has several different operating modes, each with its own set of

commands. Fractint starts up in the main display mode. The main display mode

is the most important because the main functions of Fractint are accessible from

within this mode, and it’s the one most folks end up using most of the time.

Fractint has several other operating modes, all entered from the main display

mode and designed to handle special functions (such as palette editing and orbits

displays). When in these modes, Fractint responds to the mouse and keyboard

commands differently.

The rest of this chapter documents all the Fractint commands. It is organized

using the order in which the available commands are displayed in Fractint’s MAIN

MENU. Commands are listed with the function they perform first. The alternative

means of accessing that function using the menus, keystroke commands,

command-line options, and the mouse are then given.

FRACTINT’S MAIN DISPlAY MODE

You are in the main display mode as soon as Fractint is started up, although some

of the commands (the SAVE IMAGE command, for example) are not accessible until

after you have created an image. The most basic commands may be executed

either by using an arrow-key menu or by entering a keystroke. The mouse is used

only for manipulating the zoom box in the display mode. Most commands can

also be entered as a command-line option.

The Fractint MAIN MENU deals exclusively with display mode commands. The

following section is organized according to the major headings of the main

arrow-key menu. Remember that you can display the main arrow-key menu by

pressing the key when you’re looking at Fractint’s initial credits screen or

by pressing the key when you’re looking at a fractal image.

Note that the MAIN MENU that is shown before you’ve generated any fractal

images is a subset of the one that displays after you have done so, as some of

Fractint’s commands (such as saving the image) aren’t applicable until you have

generated an image.

Current Image Commands

The Current Image commands all deal with the current paused or completed

graphics images. These commands include returning from the menu back to the

FRACTINT REFERENCE 151



graphics image, getting information about the image, controlling the zoom box,

and special display modes such as the orbits display.

Continue Calculation

Command Function: Continue calculation—resume a fractal calculation that was interrupted by

pressing (ESCAPE) to access the main menu display.

Menu Access: CONTINUE CALCULATION under the CURRENT IMAGE section of the MAIN MENU.

Command-line Access: none

Comments: This command switches Fractint from the MAIN MENU back to the current image,

resuming the calculation if it was not complete, continuing where it left off. If the

image was complete, this command is displayed as RiEruiu TO IMAGE rather than
CONTINUE CALCULATION.

Info About Image c

Command Function: Find information about the status of your current image.

Menu Access: INFO ABOUT IMAGE under the CURRENT IMAGE section of the MAIN MENU.

Command-line Access: none

Comments: This command displays an information screen about the current image, including

fractal type, whether the image is complete or not, its corner parameters, time of

calculation, parameters values, maximum iterations, and current bailout value

used to test when an orbit has escaped. Pressing any key returns to the displayed

image and resumes the calculation. The exact content of this screen varies with the

options in effect at the time. This command is particularly useful for checking the

completion status of an “all-nighter” 1024 x 768 image by telling you whether the

image is complete and, if not, which of the multiple passes has been reached.

Zoom Box Functions

The zoom box is the mechanism in Fractint for selecting pieces of fractal images

and recalculating them so that they expand to fill the screen. These commands

apply only when an image is on the screen. You do not need to wait for Fractint

to complete its process of generating an image before bringing up and manipulating

the zoom box. There are no menu equivalents for the zoom box commands.
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Fractint allows extraordinary control of the zoom box, including such

functions as rotating and skewing. If your screen does not have a 4:3 aspect ratio

(that is, if the visible display area on it is not 1.333 times as wide as it is high),

rotating and zooming will have some odd effects—angles will change, including

the zoom box’s shape itself, circles (if you are lucky enough to see any with a

nonstandard aspect ratio) become noncircular, and so on. The vast majority of

PC screens do have a 4:3 aspect ratio.

Zooming is not implemented for some fractal types for which it does not

apply, such as the plasma and diffusion fractal types, nor for overlaid and 3-D

images. A few fractal types support zooming but do not support rotation and

skewing—nothing happens when you try it.

The effect of manipulating the zoom box is the same as resetting the co r n e r s =
value from the command line.

Define Zoom Region (uPD

Command Function: Define the region in the complex plane within which to carry out a fractal
calculation.

Mouse Access: Clicking the left mouse button creates a zoom box. See the mouse zoom box

functions in the following sections.

Command-LineAccess: corners=xmin/xmax/ymin/ymaxE/x3rd/y3rd]

center—mag=EXctr/Yctr/Mag]

Comments: When the command-line option is used and four values are specfied (the usual

case), a rectangle is define as follows: x-coordinates are mapped to the screen, left

to right, from xmin to xmax, andy-coordinates are mapped to the screen, bottom

to top, from yrnin to yrnax. Six parameters can be used to describe any rotated

or stretched parallelogram: (xmin,yrnax) are the coordinates used for the top-left

corner of the screen, (xmax,yrnin) for the bottom-right corner, and (x3rd,y3rd)

for the bottom-left corner. Figure 5-5 shows the relationship of the Co r n e r s =

parameters and the zoom box.

Including Center-ma g on the command line, indirect file, orin SSTOOLS.INI

is an alternative way to enter corners as a center point and a magnification. This

approach is popular with some fractal programs and publications. Entering just
f raCt i nt cent er—mag= tells Fractint to use this form rather than corners when

saving a parameter file entry using the command. The J status display

shows the corners in both forms. Note that an aspect ratio of 1.3333 is assumed.

If you have altered the zoom box proportions or rotated the zoom box, this form

can no longer be used. The magnification is relative to a zoom box of width 2.

The center-mag form of specifying the zoom box is particularly useful for creating
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(xmin, ymax) (xmax, ymax) (xmin, ymax) (xmax, ymax)

Figure 5-5 The corners of the zoom box mapped to the complex plane

a series of zooms. For example, make a file called ZOOM.BAT with the following

lines, replacing F3 with an appropriate video mode for your setup:

fractint type=mande center—mag=—O.1049/O.9278/.12 maxiter=1000 savenamezooml batch=yes videof3

fractint type=mande center—mag=—O.1049/O.9278/.63 maxiter=1000 savename=zoom2 batch=yes videof3

fractint type=mandet center—mag=—O.1049/O.9278/3.17 maxiter=1000 savename=zoom3 batch=yes videof3

fractint type=mande center—mag=—O.1049/O.9278/15.8 maxiter=1000 savenamezoom4 batch=yes videof3

fractint type=mandet center—mag—O.1049/O.9278/79.2 maxiter=1000 savenamezoom5 batch=yes videof3

fractint type=mande center—mag=—O.1049/O.9278/396 maxiterl000 savename=zoomó batch=yes videof3

fractint type=mande center—mag—O.1049/O.9278/1980 maxiter=1000 savename=zoom7 batch=yes videof3

fractint type=mande center—mag—O.1049/O.9278/9900 maxiter=1000 savename=zoom9 batch=yes videof3

Zoom In PAGE UP)

Command Function: Resize the zoom box (zoom in).

Mouse Access: Click the left mouse button to create a zoom box. To make the zoom box smaller,

hold the left button down and move the mouse up (away from you). To make

it larger, hold the left button down and move the mouse down (toward you).

Comments: This action both creates and changes the size of the zoom box. Each time you

press (PAGE UP) the box shrinks in size. (PAGE DOWND increases the size of the zoom

box. Figure 5-6 shows a full Mandelbrot image with a zoom box sized and moved

to what should be an interesting area.

(xmin,ymin) (xmin,ymin) (x3rd,y3rd) (xmin,ymin)

corners=xmin/xmax/ymin/ymax corners=xmin/xmax/ymin/ymax/x3rd/y3rd

Rectangular zoom box Skewed zoom box
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Figure 5-6 A zoom box at an interesting area
on the Mandelbrot set

Zoom Out (PAGE DOWN)

Command Function: Expand the zoom box (zoom out).

Mouse Access: Hold the left button down and move the mouse down (toward you).

Comments: If the zoom box is expanded to fill the whole screen, the zoom box settings are

reset (useful if you have rotated the zoom box or altered the aspect ratio

accidentally). Each time you press (PAGE DOWND the box enlarges in size.

Move Zoom Box J, ,

Command Function: Move (“pan”) the zoom box to various screen locations.

Mouse Access: Move the mouse without pushing either button.

Comments: It is possible to move the zoom box partially off the screen, so the redrawn image

includes points not in the original image. If you are using the keyboard to move the

zoom box, holding down the [CONTROL] key while pressing the arrow keys causes

the zoom box to move five times farther each time you press an arrow key—a useful

feature when you want to move your zoom box a significant distance.

Draw Zoom Box Area

Conunand Function: Redraw the area inside the zoom box as a full-screen image.

Mouse Access: Double-click the left mouse button.

Comments: Do this when you have the zoom box framing the exact area you want to

recalculate as a full-screen image.
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Zoom Out and Redraw L!ER

Command Function: Zoom out, so that the screen fills the current zoom box, and redraw the image.

Menu Access: none

Mouse Access: Double-click the right mouse button.

Comments: This function can be thought of as the opposite of the above draw zoom box area

command—it’s away of zooming out rather than zooming in. When you perform

a zoom out, your new fractal image is generated so that the previous image will

be displayed inside the area you have currently outlined with the zoom box.

Rotate Zoom Box

Command Function: Rotate the zoom box.

Mouse Access: Move the mouse left or right while holding down the right button.

Comments: o{J means holding down (CONTROL] and pressing the numeric keypad’s

key. Rotating the zoom box does not work with some fractal types, such as

bif+sinpi, bif=sinpi, biflambda, bifurcation, diffusion, julibrot, and L-system—

if you try to rotate the zoom box while displaying one of these fractal types,

nothing happens.

Zoom Box Aspect Ratio (c9!1TROLJ{AGE_uJ, (CONTROL){PAGE DOWN)

Command Function: Alters the zoom box aspect ratio by shrinking or expanding its vertical size.

Mouse Access: Move the mouse away from you or toward you while holding both buttons (or
the middle button on a three-button mouse).

Comments: The aspect ratio of the zoom box is the width of the zoom box in pixels relative

to its height in pixels. By default, this aspect ratio matches that of the entire image

on your screen. There are no commands to directly stretch or shrink the zoom

box horizontally—the same effect can be achieved by combining vertical

stretching and resizing. Figure 5-7 shows a zoom boxwhose aspect ratio has been

modified with the (CONTROL}(PAGE UP) key.

Zoom Box Skew LOME,

Command Function: “Skew” the zoom box, moving the top and bottom edges in opposite directions

soit forms a parallelogram rather than a rectangle. moves the top

of the zoom box to the right, moves it to the left.

Mouse Access: Move the mouse left or right while holding both buttons (or the middle button
on a three-button mouse).
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Figure 5-7 A zoom box with a modified Figure 5-8 A skewed zoom box

aspect ratio

Comments: There are no commands to directly skew the left and right sides of the zoom

box—the same effect can be achieved by using the available skew functions

combined with rotation. Figure 5-8 shows a zoom box that has been skewed with
the key.

Zoom Box Color (CONTROIJ{DELETEJ

Command Function: Change zoom box color. Each time you press [CONTROL}(INSERTJ the box will

change to the next higher color number. The (CONTROL){DELETEJ command

changes the color to the next lower color number.

Mouse Access: Move the mouse away from you or toward you while holding the right button
down.

Comments: Changing the zoom box color is useful when you’re having trouble seeing the

zoom box against the colors around it. For example, if you zoom into an area with

very light colors, the white zoom box will blend into the image. Changing the

zoom box color to any dark color will make it visible again.

Orbits Window 1J

Command Function: Show the orbit paths of fractal computations as the fractal is drawn.

Command-Iine Access: orbi tde ay=<nnn>

Comments: There are two separate and completely different display mode commands for the

key. Which one takes effect depends on whether a calculation is currently
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progressing. Pressing while an image is still being generated toggles the orbit

feature discussed in the next few paragraphs on and off. Pressing the key after

the calculation has completed (or pressing the keystroke combinationwhetherornot

the image is still beingcalculated) activates an alternate Orbits

display, described in the “Completed Image Orbits Display Mode” section that

immediately follows.

Displaying Orbits While Generating an Image This version of the Orbits display

shows the trajectories of the calculation orbits of each pixel used to create a fractal

as the fractal is being drawn. Escape-time fracta]s work by repeatedly iterating a

formula and generating a sequence of complex numbers, while testing whether

each number has exceeded a threshold as the sequence is generated. Normally, the

results of the interim iteration calculations (the orbit values) are not displayed. The

() command shows you these orbit values, which can be fascinating to see. To best

see this effect, first press () and set passes to 1. The multiple-pass guessing mode

that Fractint normally uses makes it hard to see what pixel is being calculated

because it fills the screen’s black areas with color very quickly; orbits show up best

on a black background and so are much easier to see in one-pass mode.

Next, press a function key to start a Mandelbrot fractal calculation. While the

image is still being generated, press the key to see the orbits. In the beginning,

you will see white pixels flitting somewhat randomly around the screen. But

when the Mandelbrot calculation reaches the lake area, lovely spiral patterns will

emerge. If the orbit display is too fast, use the key to bring up the BAsic OFrioNs

menu and, increase the value in the OirnT DEuw entry to slow it down. Note that

the orbits display toggle is disabled whenever you switch to a text space mode

display, so that you will have to press the key again when you return to your

graphics image after using that BAsic OvrioNs screen. Figure 5-9 shows a partially

completed Mandelbrot image showing an interesting orbit spiral from somewhere

in the main lake region.

Completed Image Orbits Display Mode Pressing the key after your fractal image

calculation has completed (or pressing the keystroke combination

whether or not it has completed) activates an alternate Orbits display—actually,

an alternate operating mode with its own set of function key operations. Two

things happen to your display right away: a small cross-hair cursor shows up in

the middle of your screen, and a pop-up window displays the orbit (iteration)

values of the formula at the location of the cursor. Moving the cross-hair cursor

using either the mouse or the arrow keys causes the orbits display to change based

on the new location of the cursor. If you have generated your fractal image with

the VIEw WINDOW option active (described later in the chapter), the roles of the
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Figure 5-9 Orbits display while an image Figure 5-10 An orbits display in a window

is being generated

two viewing windows are reversed: the fractal image is displayed in a window and

the orbits display is displayed full-screen. Figure 5-10 shows an orbit display

using this method.

The Orbits display can be modified in many ways:

Toggles circle mode on and off. In circle mode, the orbits are

displayed not as individual pixels, but as circles with radii inversely

proportional to the iteration count (higher iterations produce
smaller circles).

Toggles line mode on and off. In line mode, consecutive orbit values

are connected using lines.

Toggles number mode on and off. In number mode, a line of text at

the top of the image displays the current pixel location.

When you press , Fractint brings up an entry screen letting you

enter a pixel location manually. The cursor moves to that new

location and the orbits display follows it.

Toggles hide mode on and off. Hide mode only works if you have

entered orbits mode with the VIEw WINDOW option enabled (described

later in the chapter). When hide mode is on, the original

image disappears and the orbits display is the only image shown on

your screen.

Saves the Fractal, Cursor, Orbits, and Numeric displays as they

currently appear on your screen to a file.
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or (comma) Makes the scale of the Orbits display smaller.

or 0 (period) Makes the scale of the Orbits display larger.

Restores the scale of the Orbits display to its default value.

Any other keystroke returns you to Fractint’s main command level.

New Image Commands

These commands are accessible under the NEw IMAGE section of the MAIN MENU.

From this collection of commands, you can select a new video mode, change the

current fractal type, toggle between Mandelbrot fractals and the equivalentJulia

fractals, and regenerate images you previously made in the same session. All of

these commands result in the calculation of a new image.

Select Video Mode

((Z through (), (c9TRoL/@)/() Combinations)

Command Function: Select the video mode in which the fractal will be displayed.

Menu Access: SE1cf VIDEo MODE under the NEw IMAGE section of the MAIN MENU.

Command-line Access: vi d eo=<mod e>

where <mode> is the keystroke exactly as listed in the VIDEO menu. For example,

the popular 320 x 200 256-color VGA mode can be accessed with the command-

line option video=F3.

Comments: In Fractint the selection of a video mode triggers the recalculation of an image

and changes the image resolution. Higher resolutions show more detail but take

longer to calculate. A good strategy is to explore using a low-resolution mode

such as 320 x 200 () or the VIEw WINDOW option (described later in the

chapter) and, if you like the image, recalculate it later using a higher resolution

mode. Only certain modes work for any particular video adapter; you should

check your graphics adapter documentation or just try different modes and see

what works. Don’t be dismayed if you try a video mode and get a blank screen;

pressing the key will get you back to the MAIN MENU.

You can change the keystrokes that invoke particular video modes if you don’t

like the defaultsFractintoffers. To do this, simplymodifyFractint’sFRACTINT.CFG

file using your favorite text editor.
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Table 5-2 Video mode labels and their equivalent keystrokes

FRACTINT.CFG contains a list of all the modes built into Fractint, the same

modes that you see when you go to the SELECT VIDEO MODE MAIN MENU item.

When you start Fractint, it reads FRACTINT.CFG and builds its internal list of

video modes and assigns them function keys based on its contents. Table 5-2

explains the scheme for labeling video modes by keystroke combinations.

Video modes listed without corresponding function keys are accessible only
from Fractint’s menu interface.

Dish/RAM Video Modes Certain video modes are labeled Disk/RAM Video. These

are simulated video modes that do not display on your screen but use extended,

expanded, or disk memory, as it is available, to store your image. These modes

allow you to create images at higher resolutions than your video equipment

supports (up to Fractint’s internal limitation of 2048 x 2048 x 256 colors) and

then view them in a lower resolution. Keep in mind that these modes need

memory—the 2048 x 2048 mode needs 4 megabytes of expanded, extended, or

disk memory! These disk video modes are also useful because they allow you to

produce fractals in the background under multitasking environments such as

Windows or DesQView. In the regular high-resolution video modes, the

calculations stop if you switch to another program. Disk video modes have

disadvantages. Besides the fact that you can’t see a fractal while it is being

calculated, disk video modes are slower than normal video modes (especially if

Fractint can’t find extended or expanded memory to use and must use disk

space). Fractint’s expanded memory options work with any memory manager

supporting EMS 3.2 or later, and its extended memory options work with any

memory manager supporting XMS 2.0 or later. Virtually every memory manager

in use today supports both of these standards.

If you have one of today’s popular super VGA boards, Fractint’s SuperVGA/

VESA Autodetect modes should work with it. Note that many of the super VGA
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resolution modes require video boards with more than the standard 256Kmemory

and, therefore, not every board supports all the modes. The 640 x 400 256-color

mode is the highest resolution using 256 colors that works with 256K of memory.

Resolutions higher than 640 x 480 require that you have a monitor capable of

higher resolutions as well. It is quite possible that you have a video adapter that can

handle some high-resolution video modes—but a monitor that can’t.

If you’re not sure if you have a super VGA adapter or which modes it and your

monitor support, the easiest approach to take is to try a few. One of three things

will happen: Fractint may be able to use that video mode with your hardware,

it may detect that it cannot use that video mode with your hardware and bring

up a message box telling you so, or it may attempt to generate an image using that

video mode and fail miserably. In the latter case, you can always press the

key to get back to the text-based menu system and try a different video mode.

Following the Autodetect modes are some less standard resolutions that work

on various adapters. You should try the ones for your brand of graphics adapter.

Don’t overlook various “tweaked” modes if you have a VGA. You won’t find these

listed in your graphics board documentation, because they are achieved by

Fractint accessing and directly programming the VGA registers. A favorite mode

for many VGA users is the 320 x 400 256-color mode. This mode has better

resolution than the 320 x 200 mode, and despite being nonstandard, will

work on virtually any VGA-equipped system.

If your computer seems to be having problems with Fractint and any of its

available video modes, Appendix A, Fractint and Video Adapters, describes how

Fractint detects and works with different video adapters, problems that can
occur, and how to work around them.

Select Fractal Type (f)

Command Function: Presents a list of fractal types from which a fractal can be generated.

Menu Access: SELECT FRACTAL TYPE under the NEW IMAGE section of the MAIN MENU.

Command-Line Access: t ype=<t ype>

where <type> is the fractal type exactly as listed under the interactive type list.

pa rams=xxxE /xxxE /xxxE /xxx]]]

bai lout=nnnn

where the xxx fields represent fractalspecific entry parameters and the nnnn field

represents the fractalspeciflc bailout value.
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Comments: After selecting a type, you will be prompted for any needed parameters and

bailout values. Each fractal type uses its own unique fractal p?rameters. In all

cases, default parameter values are provided which generate interesting images—you

can press to accept these default vaules, if you want. The types

formula, ifs, and lsystem read in a complete list of subtypes from files you can edit,

allowing you to create new types. See Chapter 6, Fractal Types, for more about

the fractal types available in Fractint.

Toggle To/From Julia (SPACEBARJ

Command Function: Toggle between Mandelbrot and Julia fractal types.

Menu Access: TOGGLE TO/FROM JUUA under the NEw IMAGE section of the MAIN MENU.

Command-Line Access: none

Comments: As explained in Chapter 2, Fractals: A Primer, each point of a Mandelbrot set

corresponds to aJulia set. Fractint allows you to see this connection very clearly.

Create an image of the classic Mandelbrot set (t y p e m a n d e 1, the default fractal

type when you first start up Fractint). With the image on the screen, press the

LSPAC4J key. Two things will happen: a cross-hair cursor will appear in the

center of your image, and a small window will open up showing the Julia set

corresponding to the location of that cross-hair cursor. The Julia set is generated

using the julia_inverse algorithm, which generates basic outlines of Julia sets

quickly and then fills them in later. As you move the cross-hair cursor around

over the Mandelbrot set, the corresponding Julia set changes accordingly.

Pressing the CSPACEBARD key again causes Fractint to switch over to a full-screen

display of the current Julia set. Pressing the LSPACJ key a third time brings

back the original, full-screen Mandelbrot display. If you have generated that

Mandelbrot set with the VIEw WINDOW option active (described later in the

chapter), the roles of the two viewing windows are reversed: the Mandelbrot set

is displayed in a window and the Julia set is displayed full-screen. Figure 5-11

shows a full Mandelbrot image with a Julia set displayed in a window.

The Julia display can be modified in several ways:

Toggles number mode on and off. In number mode, a line of text at the

top of the image displays the current pixel location.

When you press , Fractint brings up an entry screen letting you enter

a pixel location manually. The cursor moves to that new location and

the Julia display follows it.
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Figure 5-11 Mandelbrot image with a

Julia set window

Toggles hide mode on and off. Hide mode only works if

you have entered orbits mode with the VIEw WINDOW

option enabled (described later on in the chapter).

When hide mode is on, the original Mandelbrot image

disappears and the Julia display is the only image shown

on your screen.

Saves the fractal, cursor, and numeric display as they

currently appear on your screen to a file.

(SPACEBAR) Switches to full-screen display of the current Julia set

using the standard t ype= jul i a algorithm. Pressing the

[SPACEBAR) key a second time returns to your original

Mandelbrot display.

or o (comma) Makes the scale of the Julia display smaller.

or o (period) Makes the scale of the Julia display larger.

Restores the scale of the Julia display to its default value.

Any other keystroke returns you to Fractint’s main command level.

There are many other fractal types that share this Mandelbrot/julia relationship,

and Fractint can be used to show those relationships, although perhaps not

quite as dramatically as it does with the classic MandelbrotfJulia fractals. (The

presence of the quick julia_inverse algorithm lets Fractint generate itsJulia sets

“on the fly”.) Select any of the fractal types that begin with the letters man... and

then press the LSPACJ key with that image on the screen. Fractint switches to
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the Julia set display mode and brings up the cross-hair cursor, but without the

matching “Julia set” formula display. The command keys work as previously

described, although some of them (such as the®, , and keys) have no effect.

Pressing the CSPACEBARD keya second time causes Fractint to switch over to display

the “julia” fractal type corresponding to the location of the cross-hair cursor.

Pressing the (SPACEBAR) key a third time brings back the original “man...” image.

Remember that eachJulia type is in fact an infinite collection of quite different

fractals, depending on the values of the parameters. The characteristics of each

Julia set can be inferred from the appearance of the Mandeibrot set near the point

that generates theJulia set. For example, if the cursor is pointing somewhere deep

inside a Mandelbrot lake, the corresponding Julia will have a large lake.

Conversely, if the cursor is residing somewhere on land, the Julia will not have

a large lake. The most interesting Julia sets may be found from points near the

lake edge of the corresponding Mandelbrot set, where the chaos is the greatest.

Return to Prior Image ()

Command Function: Redraw the previous image.

Menu Access: RETURN To PRIOR IMAGE under the NEw IMAGE section of the MAIN MENU.

Command-Line Access: none

Comments: As you make a series of images, Fractint remembers the zoom coordinates and

fractal types of the last 25 images. The command causes the zoom parameters

and type to be set to the previously generated fractal. Repeatedly pressing

causes Fractint to back through the list and recalculate your previous images. Use

this when you have made an ill-advised zoom into a boring area and you don’t

want to start over, but just want to retreat to an image previously generated.

Options

The OPTIONS section of the MAIN MENU allows many of the features of Fractint to be

accessed interactively. These cover a wide range of different effects and alternatives.

We’ll cover them here in the order they are encountered in the menus.

Basic Options

Command Function: Access basic options.

Menu Access: Bsic OvnoNs under the OvnoNs section of the MAIN MENU.
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Figure 5-12 Fractint’s Basic Options (X) Input screen

Command-Line Access: various (see the following text)

Comments: The distinction in Fractint between “basic” and “extended” options is somewhat

arbitrary. The Bisic OPTIONS input screen is shown in Figure 5-12, with the

default values showing.

Set Passes Options ()

Command Function: Set the passes algorithm options.

Menu Access: PASSES (1,2, G[UESSING] ,B[OUNDARY TRACING] T[ESSERAL])” on the BASIc OlmoNs x>

menu.

Command-LineAccess: passes=ll2lguesslbtmltesserat

Remember that 1I2IGuEsSIWnvIITESSERAL means to use one of those five possibilities.

Example:

pa sses=btm

Comments: The Passes option selects single-pass, dual-pass, solid-guessing, boundary

tracing, or the tesseral algorithm. The single-pass mode draws the screen pixel

by pixel and is the slowest. The dual-pass mode generates a “coarse” screen first

as a preview using 2 x 2-pixel boxes and, when the screen is filled, generates the

rest of the dots with a second pass. The effect is to quickly get a coarse view of

the fractal so you can exit early if you decide you don’t like it.

Solid-guessing is the fastest mode, because it attempts to avoid calculations

by guessing the color of pixels surrounded by pixels of one color. It performs

from two to four visible passes—more in higher-resolution video modes. Its first

visible pass is actually two passes—one pixel per 4 x 4, 8 x 8, or 16 x 16 pixel
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box (depending on number of passes) is generated, and the guessing logic is

applied to fill in the blocks at the next level (2 x 2,4 x 4, or 8 x 8). Subsequent

passes fill in the display at the next-finer resolution, skipping blocks that are

surrounded by the same color. The multiple passes are for two reasons. The first

is to give you a quick preview of the image in case you don’t want to wait for it

to complete. The second reason is that the guessing algorithm works in stages,

starting with a rough approximation. Solid-guessing can guess wrong, but it

guesses wrong quickly.

The Tesseral algorithm is a variant of the super-solid guessing algorithm that

works by continually dividing the screen into quarters, calculating all of the pixel

values of the rectangular border of each quadrant, and filling in an entire

rectangle if its boundary is all the same color.

Boundary tracing is a completely different approach from the others. It only

works accurately with fractal types that do not contain “islands” of colors (such

as the Mandelbrot set), but not those that do (such as the Newton type).

Boundary tracing works by finding a color boundary, tracing it around the

screen, and then filling in the enclosed area. The idea of this algorithm is to speed

up calculations, but in Fractint solid-guessing is almost always faster. We have

included boundary tracing anyway because it is so much fun to watch! Boundary

tracing does not work when the inside color is set to 0 (black), because it uses

0 to determine whether a color has been written to the screen already.

To select one of these options from the screen, at the PASSES (1, 2,

G[uEssING], B[OUNDARY TRACE], or T[ESSERAL]) prompt, type in i for one pass, 2 for

two passes, g or guess for guessing, b or btm for boundary-tracing method, or

t for the tesseral algorithm.

Understand that the single-pass and dual-pass modes result in exactly the

same image and take the same amount of time. They work best for fractal purists

who do not want to risk the occasional inaccuracies of the default guessing mode.

Most of the time, the solid-guessing mode is the one to use, and it is usually the

default. If you are the type who is fascinated by watching intriguing algorithms

at work, by all means try the boundary tracing and tesseral options.

Floating-Pointflntcgcr Toggle i

Command Function: Change between floating-point and integer math for calculating fractals.

Menu Access: FLOATING-POINT ALGORIThM under the BASIC OPTIoNS <X> menu.

Command-Line Access: f lo a t = yes

Comments: Most fractal types have both a fast integer math and a floating-point version. The

faster, but sometimes less accurate, integer version is the default. If you have an
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Intel 80486-based PC or other fast machine, such as an 80286 or 80386 with a

math coprocessor such as the 80287 or 80387, or if you are using the continuous

potential option (which looks best with high bailout values not possible with

Fractint’s integer math implementation), you may prefer to use floating-point

instead of integer math.

To force Fractint to use floating-point, you can add f 10 a t =y e s at the

command line, use the key to toggle between integer math and floating-point

math, or specify floating point at its entry on the Bisic OPTIONS menu. Fractint

also automatically changes to floating-point math when you zoom deeply into

an image beyond the limited range of its faster integer math routines. This will

be seen by the sudden slowness of regeneration when zooming if your computer

does not have a floating-point math unit (FPU).

If you want to run some comparison speed tests, the TAB status key adds a line

(in its upper right-hand corner) that mentions when floating-point is being used

and also reports the time taken to generate the current fractal. Ona 33-MHz 80386-

based PC, the default Mandeibrot set (type mandel) usingthe()video mode takes

1.98 seconds. After you have pressed () to use floating-point instead of integer

math, the time increases to3.46 secondsusingan 80387 floating-pointcoprocessor,

and 57.5 seconds without a coprocessor. These results will vary a lot depending

on which CPU chip your machine is using, and their clock speed—in fact, when

run on a PC using an 486DX with its on-chip floating-point unit, Fractint’s integer

and floating-point algorithms run at nearly the same speed.

Set Maximum Iteration ()

Command Function: Set the maximum iteration at which an escape-time fractal formula considers a

point to have “escaped its orbit.”

Menu Access: MAXIMUM ITERATIoNS (2 TO 32767) under the BASIC OPTIONS <X> menu.

Command-Line Access: maxi ter<nnn>

where nnn is a number from 2 to 32767.

Comments: Recall that the escape-time algorithm creates fractal images by repeatedly

iterating a formula and testing whether the orbit wanders outside the bailout

threshold. Because many orbits never escape the bailout radius, Fractint must

have a limit to how many iterations it will trybefore givingup, or the computation

will go on forever. That limit is the maximum iterations value, and it has a default

of 150. The limit causes some inaccuracy in the final fractal. For example, there

are points near the lake shore of the Mandelbrot set whose orbits have not

escaped after 150 iterations, but which would have escaped after a few more
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iterations if the calculation had been extended. These points might be plotted as

part of the lake, when they really belong on the shore. The higher the maximum

iterations cutoff, the more accurate the final image, but the slower the calculation.

Asapractical matter, the default Mandelbrot image looks fine with 150 iterations.

As you zoom in further, however, you may need to increase the iteration limit
as the inaccuracies become visible.

To see the effect of setting the maximum iteration limit, press from the MAIN

MENU or while viewing a fractal, and set the MAXIMUM ITERATIONS (2 TO 32767)

value to 3. (The value 2 creates a solid blue image unless the inside value is set

to something other than 2.) You will see a single oval band surrounding the lake,

which consists of all the points whose orbits did not escape after 3 iterations.

Now, press again and set maximum iterations to 4. You will see one more

band, and the lake will be a little smaller. After trying a few higher values, you

will see why the value 150 is fine for the default Mandelbrot. A higher value

makes no visual difference at that magnification.

Set Maximum Iteration (Inside) Color @)

Command Function: Set the color assigned to points that pass the maximum iterations limit (the lake
color).

Menu Access: INSIDE COLOR (NNNN, MAXITER, ZMAG, B0F60, BOF61, EPSCROSS, STARTRAIL, PERIOD) item

on the BASIc OPnONS <x> menu.

Command-LineAccess: inside=<nnn>Imaxiterlzmaglbofóolbofóllepscrosslstartraillperiod

Comments: The inside option lets you set the color of the lake area of a fractal, which consists

of the points whose orbits had still not escaped when the maximum iteration

cutoff was reached (see the earlier discussion of maximum iterations). For

example, setting inside to 0 makes the Mandelbrot fractal interior lake black,

because color 0 is black in the standard IBM palette. (If you change the palette

by cycling colors, 0 might be a different color.) Setting inside to maxiter makes

the inside color the same as the maximum iteration value you are using, which

is useful for 3-D purposes.

Other options reveal hidden structure inside the lake. Ins i de=bo f 60 and

i n s i d e =b of 62 are named after the page numbers in our copy of The Beauty of

Fractals where we first saw these plotted. If you set i ns i de=bo f 60, the lake area will
be broken into colored areas where the iteration number of the closest orbit

approach to the origin is the same. If you set I nsi de=bofól, you will see the lake

broken into colored areas where the closest value of the orbit to the origin is the

same. Setting i ns i de=zma gcolors the inside pixels based on the magnitude of their

order point when rnaxiter was reached. Setting ins i d e =p e r i o d colors the inside
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pixels based on their periodicity as detected using Fractint’s periodicity-detection

logic—pixels with a three-cycle periodicity are shown using color 3, for example.

Finally, there is the EPSCROSS option, which colors the inside pixels based on

whether their orbits swung close to the x or y axis, and there is the STARCROSS

option, which colors them based on clusters of points in the orbits.

Don’t worry if you don’t understand all these options; just try them to see what

they look like!

Set Outside Color (J

Command Function: Set the colorof escape-time pointswithiterations less than the maximumiterations.

Menu Access: OUTSIDE COLOR (<NNN>, ITER, REAL, IMAG, MULT, SUMM) item on the Bisic OPTIONS <X>

menu.

Command-LineAccess: outside=<nnn>Iiterlreallimaglmultlsumm

where <nnn> is a number from 0 up to the number of colors of the current

video mode.

Comments: As you might guess, this function is the opposite of the inside option. The inside

option sets the color of the lake, which is to say the points of the Mandelbrot set.

The outside option concerns itself with all the areas outside the lake.

Throughout this book we have discussed the Mandelbrot fractal or image

instead of the Mandelbrot set. The reason is that the Mandelbrot set consists of

just the interior lake; all the striped colors of the usual fractal image of the

Mandelbrot are not part of the set at all! The first outside option was born when

the authors received a letter from a high school math teacher who wanted to see

just the Mandelbrot set (the part colored with the inside option), and not the

distracting stripes outside the set.

The classic method of colonng outside the fractal is to color according to how

many iterations were required before z reached the bailout value, usually 4. This

is the method used when outside is set to Iter.

Setting the outside color to a numeric value nnn sets the color of the exterior

to some number of your choosing. For example, if OUTSIDE COLOR is 1, all points

not inside the fractal set are displayed as color 1 (blue). Note that defining an

outside color forces any image to be a two-color one: either a point is inside the

set, or it is outside it.

However, when z reaches bailout, the real and imaginary components can be

at very different values. Setting the outside value to real or imag colors the outside

pixels using the iteration value plus the real or imaginary values. If outside is

summ, Fractint uses the sum of all these values to determine the pixel color. These
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options can give a startling 3-D quality to otherwise flat images and can change

some boring images to wonderful ones. The mult option colors outside pixels by

multiplying the iteration by real divided by imaginary. There was no mathematical

reason for this coloring scheme—it just seemed like a good idea at the time.

Set Default Saving File Name @)

Command Function: Set the default file name for saving images with the command.

Menu Access: SAVENAME (.GIF implied) item on the BAsic OPTIONS <X menu.

Command-Line Access: savename<fi lename>

Comments: When you save an image with the command, Fractint creates file names like

FRACTOO 1. GIF and increments the number automatically as more files are

saved. You can change the default file name with the savename option. This is

particularly useful when you are creating a collection of files at once using the

batch mode and you want the file name to remind you what the fractal is. For

example, make a file called SAVENAME.BAT with these lines:

fractint type=mandel savenamemandel videof3 batch=yes

fractint type=manowar savename=manowar video=f3 batch=yes

If you don’t have a VGA, use a different video mode that works with your

adapter, such as F2 for EGA or F5 for CGA. Running this batch file will create

two files, MANDEL.GIF and MANOWAR.GIF. Fractint will replace the last letter

in your savename with a number if you save several images in a single Fractint

session after setting the savename.

Note that even when you specify a savename, if you save more than one image

during a session an incrementing number will appear at the end of the file name.

For example, if you start Fractint with:

fracti nt savenametest

the successive names used for saving will be TEST.GIF, TES1 .GIF, TES2.GIF
and so forth.

Set File Overwrite Flag @)

Conunand Function: Set the file overwrite flag.

Menu Access: Fn OVERWRITE (OVER\VPJTE=) item on the BAsic OPTIONS <X> menu.

Command-Line Access: overwri te=no I yes

The default value is “no.”

Comments: If ov e r w r i t e = yes, the file names used in a Fractint session will overwrite existing

files from previous sessions with the same names. Files created during the same
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sessionwillstillnot be overwrittenbecause the file nameswillcontainincrementing
numbers. If overwri te=no, files will not be overwritten.

Set Sound Effects J

Command Function: Disable sound effects or attach sound to an orbit coordinate to make fractal

music.

Menu Access: SOUND (No, YES, x, y, z) item on the Bsic OPTIONS <X> menu.

Command-Line Access: sound=off lxi I z

Use one of off, x, y, or z. The default is on.

Comments: The off option disables the beeps that tell you your fractal is done or that you have

made an error. The sound = x I y I z options are for the “attractor” fractals, like the

Lorenz fractals, control the frequency of the sound on your PC speaker as they

are generating an image, based on the x-, y-, or z-coordinate the fractal is

displaying at the moment. In other words, sound = y means they-axis pixel values

will control the frequency of the tone generator. The effect depends on the speed.

If the sound changes too fast for your taste, try using the key to toggle to

floating-point math and slow the “music” down.

Fractint’s sound routines support the standard PC speaker only, and cheerfully

ignore any fancy sound equipment (such as Sound Blaster boards) that

might also reside on your system.

Use Log Map @J

Command Function: Map iterations to colors with a logarithmic mapping.

Menu Access: LOG PALETTE (O=No, 1=YES,- 1=OLD,+N=cMPi.sD,-N=SQRT) item on the BASIc OPTIONS

<x> menu.

Command-Line Access: logmapyesIoldI<nnn>

Comments: Normally, escape-time iterations are mapped one-to-one to palette colors, which

causes areas with a high iteration count to lose detail because the colors change

so rapidly that the “stripes” are too close together for you to see any pattern.

Turning this option on causes colors to be mapped to the logarithm of the

iteration, revealing stnicture in the featureless areas of more chaotic coloring.

Entering a positive number causes a variable degree of logarithmic compression

to be used; a negative number causes quadratic compression. When using a

logarithmic palette in a 256-color mode, we suggest changing your colors from

the usual defaults. For example, the last few colors in the default IBM VGA color

map are black, which results in points nearest the lake smearing into a single dark

band, with little contrast from the blue lake.
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Figure 5-13 A Pickover Biomorph

Entering a value of +2 or —2 causes Fractint to first scan the borders of the

image looking for the minimum iteration value (under the assumption that this

is the minimum iteration value that will exist on the final image) and then set the
logmap value to that minimum value. This tends to cause Fractint to use all of

the existing palette values in its logarithmic palette mapping.

Enable Biomorph Rendering @J

Command Function: Turn on biomorph rendering of escape-time fractals.

Menu Access: BIOMORPH COLOR (—1 MEANS OFF) item on the BAsic OPTIONS <X> menu.

Command-Line Access: biomorph=<nnn>

Comments: Related to binary decomposition (see following description) are the biomorphs

invented by Clifford Pickover and discussed byA. K. Dewdney in his “Computer

Recreations” column in theJuly 1989 Scientific American, page 110. These are so

named because this coloring scheme makes many fractals look like one-celled

animals. Figure 5-13 shows an example of what appears to be a giant biomorph.

To create biomorphs, the normal escape-time coloring is modified so that if

either the real or the imaginary component is less than the bailout, then the pixel

is set to the biomorph color. The effect is a bit better with higher bailout values:

the bailout is automatically set to 100 when this option is in effect. You can try

other values with the bailout =nnn option. The biomorph option is turned on by

setting the biomorph value to a positive number, taken to be the color to use on

the affected pixels. ‘When toggling tojulia sets, the default corners are three times

bigger than normal to allow the biomorph appendages to be seen. This option
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Figure 5-14 The Mandelbrot fractal using

decomposition

does not work with all types. In particular it fails with any of the mandelsine

family. However, if you are stuck with monochrome graphics, you should try it,

as it works very well in two-color modes. Try it with the marksmandel and

marksjulia types.

Use Binary Decomposition @)

Command Function: Use the binary decomposition method when rendering escape-time fractals.

Menu Access: DECOMP OvnoN (2,4,8,.. ,256, O=OFF) item on the BAsIc OPTIONS <X> menu.

Command-LineAccess: decomp012141811613216411281256

Pick one of these values; the default is 0, which means decomposition is off.

Comments: Most escape-time fractal types are calculated by iterating a simple function of a

complex number, producing another complex number, until either the number

exceeds some predefined bailout value, or the iteration limit is reached. The pixel

corresponding to the starting point is then colored based on the result of that
calculation.

The decomposition command turns on another coloring method. Here the

points are colored according to which section of the complex plane the final value

is in. The decomposition parameter determines how many sections the plane is

divided into for this purpose. The result is a kind of warped checkerboard

coloring, even in areas that would ordinarily be part of a single contour. Figure
5-14 shows what the default Mandelbrot fractal looks like with de comp8.
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Fill Color @J

Command Function: Select the color used as filler when using the boundary-tracing and tesseral

algorithms.

Menu Access: Fni COLOR (NoP%w, <NNN>) item on the Bsic OvnoNs <x> menu

Command-Line Access: fi I lcolor=<nnn>

Conunents: The Fill Color option only affects the boundary-tracing and tesseral algorithms

(pa s s e s = b or t). It causes them to use a fixed color instead of the boundary color

whenever they fill in an area. This gives you a pretty clear idea of just how much

of the fractal image these algorithms avoided calculating

Orbit Delay @J

Command Function: Slow down the optional orbits display.

Menu Access: ORBIT DELAY (O=N0NE) item on the Bsic OPTIONS <X> menu.

Command-Line Access: orbitdelay<nnn>

Comments: The OiIT DELAY option affects only the speed of the display of the “orbit” pixels

shown when you are using the orbits option during image generation. The

default setting of zero does not delay the display at all. Higher values delay the

display more dramatically.

Extended Options J

Command Function: Access the EXTENDED OPTIoNs menu, which contains a loose collection of fractal

options.

Menu Access: EXTENDED OPTIONS under the OPTIoNS section of the MAIN MENU.

Command-Line Access: various (see the following text)

Comments: The option input screen is shown in Figure 5-15 with the default values

showing.

Look for Finite Attractor (J

Command Function: Invoke the basins of finite attractor option for coloring Julia lakes.

Menu Access: LooK FOR FINITE AIrPACTOR item on the EXTENDED OPTIONS < menu.

Command-LineAccess: finattractnolyeslphase

The default va’ue is “no.”
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Figure 5-15 The Extended Options menu

Comments: This is another option that colors some Julia lakes, showing the escape time to

Finite attractors. It works with the lambda and magnet types and others.

A finite attractor is a point within a Julia set that captures the orbits of points

that come near. By “capture” we mean that if this option is turned on, Fractint

attempts to locate such a finite attractor, and then to color the inside of the lake

according to the time of escape of that attractor. This is an exact analogy to the

way the normal escape-time algorithm colors points according to escape time to

infinity. Anotherwayto put this is that this option graphs the level sets of the basin
of attraction of a Finite attractor.

For a quick demonstration, select a fractal type of lambda, with real and

imaginary parts of the parameter both equal to .5. You will obtain an image with

a large blue lake. Now set LOOK FOR FINITE ATrPACTOR to “yes” with the menu.

The image will be redrawn from scratch, this time with a much more multicolored

lake. A finite attractor lives in the center of one of the resulting ripple patterns in

the lake—turn the Orbits display ((p)) on if you want to see where it is; the orbits

of all initial points that are in the lake converge there. Figure 5-16 shows the result.

If the phase option is used, Fractint colors its attractor values using the phase

of the convergence to a finite attractor rather than the time of its escape.

Use Distance Estimator Method ()

Command Function: Use the distance estimatoralgorithmwhen rendering Mandelbrot andJuliafractals.

Menu Access: DISTANCE ESTIMATOR METHOD (0 MEANS OFF) item on the EXTENDED OPTIONS <‘i>

menu.

Command-line Access: di stest=<nnn>

176 CHAPTER 5



Figure 5-16 Finite Attractors in Lambda Lake

The default is 0 (distance estimator turned off).

Comments: This is Fractint’s implementation of an alternative method for rendering the

Mandelbrot and Julia sets, based on work by mathematician John Milnor and

described in TheScience of Fractal Images. ‘While this alternative method takes full

advantage of your color palette, one of its best uses is in preparing monochrome

(single-color) images for a printer. Using the 1600 x 1200 2-color disk video

mode and an HP LaserJet, you can generate fractals of quality equivalent to the

black-and-white illustrations of the Mandelbrot set in The Beauty of Fractals.

The distance estimator method has the effect of widening the very thin strands

which are part of the inside of the set. Instead of hiding invisibly between pixels,

these strands are made one pixel wide. This method is designed to be used with

the classic Mandelbrot and Julia types, and it may work with other escape-time
fractals.

To turn on the distance estimator method, set the distest value on the Bsic

OvnoNs <x> screen to a nonzero value. If you set distest to 1, you should also set

inside to something other than 1, or you will get a solid blue fractal. You should

use the one-pass or two-pass mode—solid-guessing and boundary tracing can

miss some of the thin strands made visible by the distance estimator method. For

the highest-quality images, maxiter should also be set to a high value, say 1000

or so. You’ll probably also want inside set to zero, to get a black interior.

In color modes, the distance estimator method also produces more evenly

spaced contours. Set distest to a higher value for narrower color bands, a lower

value for wider ones. A good value to start with is 1000. Setting distest

automatically also toggles to floating-point mode. When you reset distest back

to zero, remember to turn off floating-point mode if you want it off.

FRACTINT REFERENCE 177



Unfortunately, images using the distance estimator method can take many

hours to calculate even on a fast machine with a coprocessor. Therefore, you

should not use the distest option for exploration, but use it only after you have

found interesting fractals.

Set Continuous Potential Parameters ()

Command Function: Invoke the continuous potential option and control coloring (change stripes

into continuously varying hues).

Menu Access: Use the following items on the EXTENDED OPTIONS <‘i> menu:

POTENTIAL MAX COLOR (0 MEANS OFF) (default 0)

SLOPE (default 0)

BAILOUT (default 0)

16-BIT VALUES (default no)

Command-LineAccess: potential<maxcolor>E/<slope>E/<bailout>E/lóbit]]]

Comments: Fractint’s escape-time fractal images are usually calculated by the level set

method, producing bands of color. Each of these bands consists of all points
whose orbit exceeded the bailout threshold at the same iteration. The continuous

potential option makes colors change continuously, rather than breaking the

image into bands or stripes. A 256-color VGA video mode is mandatory to

appreciate this effect, as it is impossible to show continuous variation with only

4 or 16 colors. Non-3-D continuous potential images sometimes have a 3-D

appearance because of the smoothly changing colors. Color cycling a continuous

potential image with the GD command gives a totally different effect than you

experience with a normal striped fractal. The colors ooze rather than flash.

MAx COLOR is the color corresponding to zero potential, which plots as the top

of the mountain. Generally, this should be set to one less than the number of

colors, for example, 255 for VGA. Remember that the last few colors of the default

IBM VGA palette are black, so you won’t see what you are really getting until you

change to a different palette.

SLOPE is a number that determines how fast the colors change (try 2000 or so).

If this value is too high, there will be large solid areas with the color 0; if it is too

low, only a limited segment of possible colors will appear in the image. In 3-D

transformations, this value determines the steepness of the mountain slopes.

BAILOUT IS a number that replaces the normal escape-time bailout (set at 4).

Larger values give more accurate and smoother potential—try 200.
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16-BIT VALUES 1S a flag that makes Fractint save the file as a double-wide 16-

bits-per-pixel GIF file. Use this flag if you want to try a 3-D transformation of the

image. The 16 bits per pixel results in a smoother 3-D image. If you do not turn

on this flag but save the file in the normal way, then the potential value will be

tnincated to an integer, resulting in a rougher 3-D image. When this flag is turned

on, saved file names will have the extension POT, short for “potential.” You can

load these files back into Fractint with the command the same way normal

GIF files are loaded back in. However, the POT files will look strange when
viewed with GIF decoders other than Fractint.

Creating 3-D Landscapes Continuous potential is particularly useful when

creating 3-D landscape images from fractals. When viewed in 3-D, the stripes

of a typical noncontinuous-potential image turn into something like Chinese

terraces; most of the surface appears to be made up of colorful horizontal steps.

This effect may be interesting, but it is not suitable for use with the illuminated

3-D fill options 5 and 6. Continuous potential smoothes the steplike terraces

into a continuous surface, so that the illumination results in graduated shades
of color.

Internally continuous potential is approximated in Fractint by calculating
as follows:

log (modulus)
potential = 2 iterations

where “modulus” is the magnitude of the iterations orbit value—the first orbit

value that exceeded the bailout. The term “potential” comes from the fact that this

value is related to the electrical potential field surrounding the lake that would

result if it were electrically charged.

Here is a pointer for using continuous potential. Fractint’s criterion for halting

a fractal calculation, the bailout value, is generally set to 4, but continuous

potential is inaccurate at such a low value. The integer math which makes the

mandel and julia types so fast imposes a hard-wired maximum bailout value of

127. You can still make interesting images with these bailout values, such as

ridges in the fractal hillsides. However, this bailout limitation can be avoided by

turning on the floating-point algorithm option from the BAsic OPTIONS <x> menu

or by adding f lo a t = yes to the Fractint command line.

Creating Mt. Mandeibrot Using Continuous Potential Options The following commands

can be used to re-create the image we call Mt. Mandelbrot. Type the
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following into a file called MTMAND. If you invoke Fractint from the DOS

prompt as “fractint @mtmand,” these options will take effect.

TYPEmande I

CORNERS=—0. 199201—0.11/1 . 0/1. 06707

INS IDEmaxi ter

MAXITER=255

POTENTIAL=255/2000/1000/lóbi t

PASSES=1

FLOATyes

SAVENAME=mtmand

Use a 256-color video mode. (If you don’t have a graphics adapter with a 256-

color mode, use a disk video mode. You won’t be able to see the file right away,

but you can convert it to 3-D later and then see it.) See the 3-D section for how

to generate a 3-D image from the resulting MTMAND.POT file.

Invert Image (J

Command Function: Invert an image for viewing in a cylindrical mirror

Menu Access: Use the following items on the EXTENDED OPTIONS <‘i> menu:

INVERSION RADIUS OR “AUTO” (0 MEANS OFF) (default 0)
CENTER X-COORDINATE OR “AUTO” (default 0)

CENTER Y-COORDINATE OR “AUTO” (default 0)

Command-Line Access: invert<radius>/<xcenter>/<ycenter>

Comments: The invert image function has three parameters. The inversion radius must be

set; the default 0 value means inversion is turned off. The center x- and ycoordinates
default to 0 if not set.

Many years ago there was a brief craze for anamorphic art (images painted and

viewed with the use of a cylindrical mirror, so that they looked weirdly distorted

on the canvas but cOrrect in the distorted reflection). In other words, you could

see the paintings-eerrectIy4fou looked at the image in the cylindrical mirror.

Fractint’s inversion option jrforms a related transformation on most of the
fractal types. You define the certer point and radius of a circle on your fractal.
Fractint maps each point inside he circle to a corresponding point outside, and
vice versa. This is known to matiematicians as “everting” the plane.John Milnor
made his name in the 1950s wth a method for everting a seven-dimensional
sphere, so Fractint still has a wa\r to go in this particular area.

As an example, if a point A ince the circle is 1/3 of the way from the center
to the radius, it is mapped to a point Aalong the same radial line, but at a distance
of(3 x radius) from the origin. An outsIdeppint B’ at 4 times the radius is mapped
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Figure 5-17 The inversion transformation

to a point B inside at ¼ the radius. Figure 5-17 shows the transformation that

inversion accomplishes.

The EXTENDED OvrIoNs menu prompts you for the radius and center coordinates

of the inversion circle. Entering Auto sets the radius at 1/6 the smaller

dimension of the image currently on the screen. The auto values for xcenter and

ycenter use the coordinates currently mapped to the center of the screen.

The Newton fractal is a good one to try with the inversion option, because it has

well-defined radial spokes that make it easy to visualize the before and after effects

of inverting. Get the TYPE SELECrION menu by pressing (T), and then, selecting

NEWtON. Then enter inversion parameters from the EXTENDED OPTIONS <Y> menu,

and use a radius of 1 with the center coordinates set to 0. The center has “exploded”

to the periphery. See Figure 5-18 for an example made with an order-3 Newton

fractal showing the results before and after inversion. Inverting through a circle not

centered on the origin produces bizarre effects that we’re not even going to try to

describe. Do this by entering nonzero values for xcenter and ycenter.

Set Co1or-Cydingbmits()

Command Function: limit the range of colors that are changed during color-cycling operations.

Menu Access: COLOR CYCLING FROM COLOR (0.. .254) item on the EXTENDED OPTIONS <Y> menu.

COLOR CYCLING To COLOR (1.. .255) item on the EXTENDED OPTIONS <Y> menu.
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Figure 5-18 Order-3 Newton fractal with and without inversion

Command-line Access: cyclerange=<nnn>/<nnn>

Comments: Color cycling is the rapid modification of the colors displayed on the screen by

“cycling” through the color palette, a process described in detail later in the

chapter. Normally, Fractint cycles palette entries 1 through 255 (color 0, used

for the border background, is not normally cycled). You can modify this range

to an alternate band of colors for some interesting effects.

Flipping the Image

Command Function: Flip an image around the screen’s x-axis, y-axis, or origin.

Menu Access: none

Command-line Access: none

Comments: Fractint can quickly flip (transpose) an image around the screen’s x-axis, y-axis,

or origin. With your image on the screen, a D-1 (accomplished by

holding down the (CONTROL) key and then pressing the key) tells Fractint to

flip the current image about the screen’s x-axis. tells Fractint to flip

the current image about the screen’sy-axis, and tells Fractint to flip

the current image about the screen’s origin. There was no particular fractal-
related reason to add these commands to Fractint, but someone asked for this

capability so we added it!

Set Type-Specific Parameters J

Command Function: Modify fractal type-specifIc parameters without selecting a new fractal type.

Menu Access: TYPE-SPECIfIC PARMS under the OPTIONS section of the MAIN MENU.
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Command-line Access: params=<nnn>C/<nnn>C/<nnn>C/<nnn>]]]
bai lout<nnn>

cornersxmin/xmax/ymin/ymax

center—mag=CXctr/Yctr/Mag]

Comments: The () option brings up type-specific input screens for your current fractal

type—the same screens that the SELECT Fia TE <r> command brings up

after you have selected a fractal type. This option gives you the ability to modify

either your current fractal parameters or your current image boundaries without

affecting the other value. It also avoids wandering through the fractal types menu

item when you’re not interested in changing fractal types.

Set View Window J

Conunand Function: Access view window settings so you can shrink the fractals image size for fractal
calculation.

Menu Access: VIEw WINDOW OvrloNs under the OPTIONS section of the MAIN MENU.

Conunand-lineAccess: viewwindows=xxC/xxC/yeslnoC/nnC/nn]]]]

Sets the reduction factor, final media aspect ratio, crop starting coordinates (yin),

explicit x size, and explicit y size.

Conunents: The view window is one of the fractal explorer’s best friends. It allows smaller size

images to be calculated and generated very rapidly because there are so few

pixels. You set the size of the reduction from the menu (the default is a 4.2-times

reduction of the normal full-screen image size). Thus, you can generate dozens

of images in a fraction of the time that full-sized fractals would take. The

calculation time is proportional to the number of pixels, so if you reduce the

image dimensions by a factor of four, the number of pixels is reduced by a factor

of sixteen, and the calculation time is reduced to one-sixteenth of the previous

time! For experimental purposes, a small view window is just fine. When you

find a promising effect, just turn off view windows, recalculate, and Fractint will

make a full-screen image.

Figure 5-19 shows the input screen for the viewing area parameters accessed

by the key. Note the message at the bottom indicating that the key will

reset all parameters to the defaults. This reset feature is useful, because it is

possible to get all tangled up in the settings!

Here is what each of these parameters does:

Preview display? (noforJull screen) (default no) Answer “yes” to turn on the view

window feature. Most of the time this is the only setting that will be needed—

the other parameters have very reasonable default values.
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Figure 5-19 Viewing area parameters

Auto window size reduction factor (default 4.2) This factor is the amount by which

the view window is scaled down. A larger value will make the view window

smaller and it will calculate more quickly.

Final media overall aspect ratio,y/x (default 0. 75) Aspect ratio is the overall height

divided by overall width. The default value of.75 is almost universal, so you will

rarely need to change this.

Crop starting coordinates to new aspect ratio? (default yes) If you answer “yes,” and

the corners parameters do not match the aspect ratio, the corners values will be

changed to make the aspect ratio the value you specified. This generally will

happen only if you either changed the view windows aspect ratio or altered the

aspect ratio of the zoom box by stretching it in one of the dimensions.

explicit size x pixels (0 for auto size) (default 0), y pixels (0 to base on aspect ratio)

(default 0) You may specify the exact pixel dimensions of the view window. This

overrides the autosize reduction factor and aspect ratio values.
Press to exit the VIEw PARAMETERS screen. To trigger the recalculation

of the image to the new view window, reselect a video mode by pressing

a function key.

Edit 3-D Transform Parameters D

Command Function: Edit the 3-D transform parameters.

Menu Access: FRACTAL 3D PARMS from the OPTIONS section of the MAIN MENU (see Figure 5-20).
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Figure 5-20 3D Parameters input screen

Figure 5-21 Fractint’s 3-D coordinate system

Command-line Access: rotation=<xrot>C/<yrot>C/<zrot>]]
perspecti ve=<nnn>

xyshi ft<xshi ft>/<yshi ft>

stereoOll 1213

Conunents: All the 3-D capabilities in Fractint except Fractal type julibrot use the same

variables. These 3-D parameters are also settable via the 3D TRANSFORM FROM Fu

item on the MAIN MENU. The fractal types that use 3-D include ifs3D, lorenz3d,

rossler3d, kamtorus3d, and henon.

Imagine that the x-axis runs horizontally across the middle of your computer

screen, with zero in the middle. They-axis runs vertically through the computer

screen with zero in the middle. The z-axis is perpendicular to the plane of

the screen with the positive end toward you. Figure 5-21 shows the coordinate

system (in relation to a computer screen).

Here is what each of the 3-D parameters does. To see their effects in action,

generate a lorenz3d fractal image by pressing the ( T ) key or selecting the SELECT

FRACTAL TYPE entry from the MAIN MENU.

x-axis, y-axis, and z-axis rotation The first three parameters allow setting the

rotations that cause the fractal objects to be viewed from different angles. Refer

to Figure 5-22 as you follow this example. With a lorenz3d fractal on the screen,

press the (1) key to bring up the 3D PARAMETERS menu and change the x-,y-, and

z-axis rotation values to 0,0,0. Press ( liT ) to accept these values, and press a

video mode function key if you haven’t already done so (( )is a good choice for

EGA/VGA). You are now seeing the Lorenz orbit as it is with no 3-D rotations.

The Lorenz orbit is the path of a wildly orbiting particle under the influence of

two invisible attractors. It spirals around one, then the other, back and forth,

forming two flat spirals in two different planes at an angle to each other.
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xrotation = 0

yrotation = 0

z rotation = 0

A. Rotate Lorenz fractal 30 degrees

about x-axis producing B.

xrotation =30

yrotation= 0

zrotation= 0

B. Rotate Lorenz fractal 30 degrees

about y-axis producing C.

xrotation =30

y rotation = 30

zrotation= 0

C. Final Lorenz rotated

Figure 5-22 A Lorenz fractal rotated about the three axes
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Repeat these steps starting with pressing , but change the x-axis rotation to

30. The image has rotated around the x-axis 30 degrees, with the top of the image

coming toward you. One of the two spirals now looks very thin because you are

viewing it end-on. Repeat these steps again, this time changing they- axis rotation

to 30, so both x andy rotations are now 30. The skinny spiral now looks fuller

because the image has rotated around the y-axis and the right-hand side of the

screen has moved away from you.

Repeat the steps one last time, setting all three rotation values to 30. The last

rotation is the easiest to understand, because the z-axis is coming right out of

the screen, and the rotation just moves the image clockwise around the screen.

To get a little better feel, you might try repeating this whole experiment with

red/blue glasses—just set the stereo option to 2. Figure 5-22 specifically shows

the first three of these Lorenz images with superimposed axes, with arrows

indicating the direction of rotation. The fourth image with all three rotations
set to 30 is not shown.

Perspective distance [1—999, Ofor no perspi The perspective parameter causes the

3-D projection to use a viewpoint from different distances. The effect is to make

closer parts of the fractal larger, and farther parts smaller, as seen by an imaginary

observer. The value entered for perspective distance allows you to control how

close this observer is to the fractal object. Imagine the 3-D object inside a box and

just touching all the sides. A perspective value of 100 is an extreme perspective

where your viewpoint is right on the near edge of the box, with parts of the object

very close. This can be considered a closeup of the image. A value of 200 means

that the near edge of the box is halfway between your eye and the far edge of the

box. Figure 5-23 diagrams this situation. Try a value of about 120 with lorenz3d
to see the effect.

X shft and Y shft with perspective The x and y shift move the position of the

observer. If perspective is also turned on, the image is not just moved on the

screen, but the point of view is also changed. Shifting to the left and then to the

right changes the image in exactly the same way as what you see is changed when

you close your right eye and look through your left, and then look at the same

scene through your right eye.

Stereo (RIB 3D) Stereo viewing is a technique whereby two distinct views of a 3-

D object are created, one as if seen by the right eye, the other a little offset and as

if seen by the left eye. To reproduce stereo vision, a way is needed to get the left and

right images to the correct eye. One method of doing that is to use red/blue funny

glasses. The red filter blocks the blue image and lets the red image through, and

FRACTINT REFERENCE 187



Your eye Your eye

Thickness of object

100 in z direction 0

Perspective = 100% Perspective = 200%

Eye is right on the edge Near part of object is midway between

of the fractal object the eye and the far part of the object

(very extreme viewpoint) (moderate perspective viewpoint)

Figure 5-23 Different perspective positions

the blue filter does the opposite. Fractint can put the left and right images on the

screen at the same time, using red and blue colors. The two images overlap, so some

method of combining the two colors is needed. Fractint provides two methods,

each with its advantages. The alternate and superimpose options are the two

different ways that the red and blue are combined. In the alternate approach, the

screen is divided so that every other pixel in each row is designated to be either a

red or blue pixel. The red and blue aren’t really combined except in your mind.

When your eye sees red and blue pixels close together, your mind “sees” the color

magenta. The alternate approach does offer less resolution, because each image is

formed from only half the screen pixels, but it allows more shades of red and blue—
128 shades on a VGA in a 256-color mode.

The superimpose option combines overlapping red and blue pixels in a single

magenta pixel, allowing higher effective resolution but fewer shades of red and

blue. Even in a 256-color mode, there are only 16 visible shades of red and blue;

all the colors are taken up with combinations of these shades. Use superimpose

for lorenz3d. Put on your 3-D glasses and regenerate the lorenz3d example.

Stereo option 3 makes two separate images and pauses so that pictures can be

taken of the screen. The two pictures canbe mounted and viewed with a stereo slide

viewer. This kind of stereo doesn’t use red and blue; it provides full-color stereo.

But of course, you need a camera to photograph the images or else you can save

the left and right views as GIF files and have slides made by a slide service.
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Figure 5-24 Funny Glasses Parameters input screen

Edit Red/Blue Glasses Parameters

Command Function: Edit 3-D “funny glasses” parameters.

Menu Access: This menu is automatically selected when you have chosen either the ALTERNATE

or SUPERIMPOSE STEREO 3D option during a 3D MODE selection. Figure 5-24 shows

the FUNNY GLASSES PARAMETERS input screen.

Conunand-line Access: interocular<distance>

converge=<distance>

crop=<red—left>/<red—right>/<blue—left>/<blue—right>

bright=<red>/<blue>

map=<mapfi lename>

Conunents: Interocular distance The interocular distance is the distance between the left and

right viewpoints measured as a percent of the screen width. It should be set small

enough so that your eyes can easily converge the two images, but large enough

that there is an adequate stereo effect. The default of 3 usually works quite well

if the perspective value is not extremely close.

Convergence adjust The convergence parameter adjusts the relative position of

the two images in the horizontal dimension. The effect is to move the apparent

image into or out from the screen. A larger value makes the image appear in front

of the screen, while a smaller (possibly negative) value makes the 3-D object

appear to be inside the monitor.

Left and right, red and blue image crop The red and blue images need to be clipped

on the left and right differently to make a proper 3-D effect. The edge of the image

should appear to be in the same place for both eyes. Setting this properly can be
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very tricky because it interacts strongly with the convergence parameter. The

default is about right for images that appear near the screen surface. Cropping

is only an issue when the screen edge clips the image. If a lorenz3d image is

completely contained within the screen, for example, so the black background

goes right up to the screen edge, then cropping is not needed.

Red and blue brightness factors The brightness parameters allow adjustment for

differences in the red and blue screen color saturation and glasses filter properties.

You can adjust these values so thatboth the red andblue images lookequallybright.

The correct settings are dependent on the color properties of your monitor, the

quality of your funny glasses filters, and the colorsensitivityofyoureyes. Try to find

values that minimize the ghost image caused by bleed-through of the left (red)

image through the blue lens to the right eye, and the right (blue) image through the

red lens to the left eye. If you can see a faint, green, “ghost” image when you place

the blue lens over the red image, it means there is too much yellow in the red

image—try turning down the monitor intensity until the ghost disappears.

Map file name The alternate and superimpose methods of displaying red and

blue images on your screen each require special palette mappings. They are
stored in the files GLASSES 1 MAP and GLASSES2.MAP that come with Fractint.

These files should be placed in a directory listed in your path. (If Fractint can’t

find them, it can generate the values on the fly.) The files GLASSES1MAP and

GLASSES2.MAP are designed to allow the greatest number of different shades

of red and blue. If you are using superimpose, try substituting the file called

GRID.MAP and see if it works any better (especially for wire frame images or

other images that do not need shades of red and blue).

File Access

The Fii section of the MAIN MEru is where you go to save and load images, do 3-D

transformations, create batch files, print, drop to DOS, quit Fractint, or restart. We

will cover the menu items in order. Keep in mind that the MAIN MEru is modified

to show more possibilities when an image has already been generated.

Select a Parameter File Entry J

Command Function: Select an entry from a parameter file and use it to generate a new image.

Menu Access: RUN SAVED COMMAND SET from the FILE section of the MAIN MENU.

Command-line Access: parmf I lefi lename
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Figure 5-25 The parameter entry selection Figure 5-26 Details of a parameter entry
screen

Changes Fractint’s default parameter file name from FRACTINT.PAR to the file

name specified.

f i lename/ent ryname

Causes Fractint to start up using the parameter file filename and the parameter

entry entryname.

Comments: Fractint has the ability to load and save sets of command-line entries describing

images in the screen rather than the images themselves. These entries are stored

in parameter files. Multiple entries can be saved in any one file. Each parameter

file entry contains all the information Fractint needs to re-create a single fractal

image. Parameter files are a very powerful feature, as they give you the ability to

completely describe fractal images with just a few lines of text.

When you press the key, Fractint reads the currently opened parameter

file (by default, FRACTINT.PAR) and presents you with a selection screen

displaying the name and first comment area of each entry (see Figure 5-25). If

you want to select a different parameter entry file, you can press the c: key to

bring up a file-selection menu of available parameter files. Otherwise, use the

arrow keys to select a parameter entry (you can press at any time to see the

entire text of the entry that is currently highlighted—see Figure 5-26) and press

to select it. If you have not yet displayed any fractal images, you will be

prompted to select a video mode; otherwise, Fractint will use the last graphics

mode you selected to display the selected parameter entry.

Save an Image @

Command Function: Save a fractal image as a .GIF file.

Menu Access: SAVE IMAGE To FILE under the FILE section of the MAIN MENU.
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Command-Line Access: batch=yes

Causes an automatic save following the completion of a calculation.

Comments: Pressing ® causes the current image to be saved as a CompuServe GIF file. (See

Appendix B, Fractint and GIF Files, for details on the .GIF format.) Two small

vertical bars representing the progress of the save operation will grow down the

left- and right-hand sides of the screen. ‘When they reach the bottom of the

screen, the name of the saved file is reported at the top of your screen. The default

name, which is settable in the Bsic OPTIONS menu, is FRACTOO1 .GIF. If you save

more than one time during a Fractint session, the last character of the name will

be a number that is incremented, resulting in FRACTOO2.GIF, and so forth. The

saved file appears in the directory that was current when Fractint was started. You

can’t set the path name from Fractint.

Normally, Fractint does not overwrite existing files. If you would like to reuse

existing file names to conserve disk space, set overwrite to “yes” in the Bsic OvnoNS

menu,oraddthelineoverwri te=yestothecommandlineorinyourSSTOOLS.INI

file. Even with ov e r w r i t e =y e s the file names will have an incrementing number,

so that saved images made during the same session will not overwrite each other.

Fractint’s GIFs Store Partial States Fractint remembers the state of a partial

calculation when savingin the GIF file format. Fractint is the world’s fastest fractal

program, but calculations with high maximum iterations in floating-point mode,

extreme resolutions, or running on a slow PC can still take a long time. For

example, the feather image on the cover of the original Fractal Creations book

took a week to generate on a 25-MHz 80386 machine. (The image was created

using a 2048 x 2048 disk video mode with a very high maximum iteration

value.) Many times throughout that week the image was saved when the

computer had to be used for other purposes—and when it was restored, the

calculation picked right up where it left off!

Fractint stores GIFs using the GIF89a format. If you need to make a GIF file

that is viewable with software that does not support the new GIF89a standard,

start the program with the option

gi f87a=yes

and then all saved images will be in the older GIF87a format. However, they will

not contain any information about the Fractint parameter that created them. You

can also convert GIF89a files to GIF87a files by reading them in and then saving
them. The command line

fractint newformatgif gif87a=yes savename=oldformat.gif batch=yes

reads in the file newformat.gif and saves it as the GIF87a format file oldformat.gif.
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Load Images from a File (!)

Command Function: Load a fractal image from a GIF file for display.

Menu Access: LOAD IMAGE FROM FILE <R> under the FILE section of the MAIN MENU.

Conunand-I_ine Access: Cf i lename]<fi lename>

To load an image as you start Fractint so it’s viewable, you can type in either
fractint myfi leOrfractint fi lename=myfi ie.TheGlFexterisionisassumed.

Comments: GIF files created by Fractint contain not just fractal images but also information

about how the fractal was generated. Therefore, loading the file not only allows

you to view the image, but resets Fractint to regenerate that image. Fractint is

capable of being used as a GIF decoder to view files not created by Fractint, such

as pictures. Fractint has no way of knowing how those GIFs were generated, but

has to think of them as some sort of fractal, soit sets their fractal type to “plasma.”

The command takes you to a sophisticated file selection screen with several
useful features. These features are as follows:

4 Point to file: Just use the arrow keys to move the highlight to the file you

want to select. Then press If you select an item that is a directory,

the current directory changes to the selected directory. Selecting “..“ takes

you up one directory.

4 Speed key selection: Begin typing the name of the file you want to select.

The highlight will jump to the first file name that matches what you have

typed so far.

4 Path search: You can type the name of a file not in the current directory.

If it is in one of the directories listed in your path statement, Fractint will
find it.

4 Wild cards: If you enter a wild card template, such as t .gif, then the list

will change to showjust the files matching the template, in this case, all files

starting with “t” with the extension “.gif.” The wild cards work the same as

DOS wild cards using ““ and “?“.

4 Changing drive or directory: You may enter a new drive by typing in the

drive letter and a “:“, or a new directory, or both at the same time. If you

are entering a new directory, end with a “\“ so that Fractint knows you want

a directory rather than a file.

Once you have selected a file, the video mode list is presented and you will

be prompted to select a video mode to display the selected fractal. If Fractint can
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locate a video mode on the list that matches the image being loaded (part of the

information stored with a GIF is its resolution), that mode will be highlighted.

Disk Video and Higher-Resolution Modes It is possible to view an image at a lower

resolution than the actual resolution of the image. For example, the image on the

cover of the original edition of Fractal Creations was created at Fractint’s highest

resolution of 2048 x 2048 using the disk video mode. The same image can be
viewed in Fractint at a low resolution mode such as 640 x 480 or 320 x 200.

Fractint just throws out the extra pixels. This feature is extremely useful, because

it allows you to create and view disk video images or other images at resolutions

greater than those supported by your graphics equipment.

3-D Transformation from File ()

Command Function: Perform a 3-D transformation of a GIF file.

Menu Access: 3D TRANSFORM FROM FILE under the FILE section of the MAIN MENU.

Command-line Access: 3D=yes

Comments: Most of the fractals created by Fractint are inherently two-dimensional, meaning

they are flat in the x-y plane. A 3-D mode allows you to transform any fractal into

a three-dimensional image with depth and anx-y-z-axis. The 3-D function treats

a fractal’s colors as the third dimension and performs various 3-D and rendering

transformations on the image, so it appears on the screen projected realistically.
Another feature of Fractint is that the 3-D transformations are not limited to

Fractint-generated files, but can also be performed on GIF files created by other

software. Indeed some scientists use Fractint’s 3-D capabilities to enhance

electron microscope pictures!

Using 3-D involves several successive and somewhat complex-looking

screens, but it is really quite easy to use. The command leads you to the first

of these screens for inputting all the parameters that affect 3-D. Do not be

dismayed by the number of possibilities: usually the default values are something

reasonable, and you press to move to the next screen. Follow the defaults

at first, and then try changing the parameters a few at a time.

The command begins with a file selection screen that works the same as

the file selection for the command. Select a GIF file, choose a video mode

(generally the same as that of the GIF file), and then select a 3-D mode (see the

following section).
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Figure 5-27 3D Mode Selection screen

Select a 3-D Mode j

Command Function: After 3-D transformation has been selected, it is used to choose a specific 3-D mode.

Menu Access: 3D TRANSFORM FROM FILE under the FILE section of the MAIN MENU.

Command-line Access: 3D=yes

previ ew=yes I no

coa rse<nnn>

showbox=yes I no

sphere=yes I no

stereoO 111213

rayOll 121314151617

brief=yes I no

Comments: After the file name prompt and video mode check, Fractint presents the 3D Mode

Selection screen shown in Figure 5-27. Each selection will have defaults entered.

If you want to change any of the defaults, use the cursor keys to move through

the menu. When you’re satisfied, press to accept your choices and move
to the next 3-D screen. allows you to back up to the previous screen.

Here are the options and what they do.

Preview Mode? (yes or no) Preview mode provides a rapid look at your transformed

3-D image by skipping a lot of rows and filling in the image. It is good

for quickly discovering the best parameters. Once the 3-D parameters look good,

you can turn off the preview mode and generate the full image.

Show Box? If you have selected preview mode, you have another option to

consider. This is the option to show a rectangular “image box” around the image

boundaries in scaled and rotated coordinatesx,y, and z. The bottom of this box
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is the originalx-y plane of your fractal, and the height is the dimension where the

colors in your fractal will be interpreted as elevations. The box appears only in

rectangular transformations and shows how the final image will be oriented; it

doesn’t draw the actual transformation. If you select light source in the next

screen, it will also show you the light source vector so you can tell where the light

is coming from in relation to your image.

Coarseness, preview/grid/ray (my dir) The coarseness parameter sets how many

divisions the image will be divided into in they direction. It is needed if you select

preview mode as described, or grid fill in the SELECT Fiii T’E screen. The default

is 20 divisions; a larger number makes a finer (and slower) grid.

Spherical Projection? The spherical projection parameter allows you to select a

sphere projection of your fractal. This maps your image onto a plane as

previously described if your answer is “no,” or onto a sphere if you answer “yes.”

Therefore you can take your favorite fractal, wrap it around a sphere, and turn

it into a planet, an asteroid, a moon, or whatever. Fractint allows you to use any

GIF image and make a planet out of it—even a digitized photograph of your loved

one! Planets can be smooth or rough, large or small, and they can be illuminated

with the light from an imaginary sun.

Stereo Fractint allows you to create 3-D images for use with red/blue glasses like

the ones found in 3-D comic books. Option 0 turns off the stereo effect. Options

1 and 2 require the special red/blue glasses. They are meant to be viewed right

on the screen or on a color print of the screen. The image can be made to hover

entirely or partially in front of the screen.

Stereo option 1 gives 64 shades of red and blue, but with half the spatial

resolution you have selected. It works by writing the red and blue images on

adjacent pixels, which is why it removes half the picture’s resolution. In general,

we recommend you use this with resolutions above 640 x 350 only. Use this

mode for continuous potential landscapes where you need all those shades.

Stereo option 2 gives you full spatial resolution but with only 16 shades of

gray. If the red and blue pixels overlap, the colors are mixed, and the pixel is

colored magenta. This option is good for wire-frame images (we call them surface

grids), lorenz3d, and ifs3d. It works fine in 16-color modes.

Stereo option 3 is for creating full-color stereo pair images for viewingwith more

specialized equipment. The left image is presented on the screen first. You may

photograph it or save it as a GIF for later processing into a slide. Then the second

image is presented, and you may do the same with it as you did with the first image.

You can then take the two images and convert them to a stereo image pair.
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Ray trace out ?/Bñef output ?/Output File Name: Fractint can create files of its 3-D

transformations that are compatible with many ray tracing programs. Currently,

five are supported directly: POV-Ray, Vivid, MW, Rayshade, and DXF. In

addition, a Raw output is supported which can be relatively easily transformed

into a format many other products can use. The DKBIPOVray format is obsolete

and not recommended. POV-Ray users should use RAW format and convert

with the RAW2POV program, or directly read in GIF files with POV-Ray’s height

field feature. Acrospin is included as a ray tracing output option, even though it’s

not reallya ray tracer, because the same Fractint options apply. All ray tracing files

consist of triangles that follow the surface created by Fractint during the 3-D

transform. Triangles that lie below the waterline are not created in order to avoid

causing unnecessarywork for the poor ray tracers which are already overworked.

A simple plane can be substituted by the user at the waterline if needed.

The size (and, therefore, the number) of triangles created is determined by the

PiviEw FACTOR setting. While generating the ray tracing file, you will view the

image from above and watch it partitioned into triangles.

The color of each triangle is the average of the color of its vertices in the original

image, unless BRIEF OUTPUT is selected. If BRIEF OUTPUT is selected, a default color

is assigned at the beginning of the file and is used for all triangles.

The RY-TcING OUTPUT Fiu NiE is used to specify the name of the file to be

written. The default name is FRACTOO1.RAY. Note that the ray tracing files

generated by Fractint are not ready to be traced by themselves. For one thing, no

light source is included. They are actually meant to be included within other ray

tracing files. Because the intent is to produce an object that may be included in a

larger ray tracing scene, it is expected that all rotations, shifts, and final scaling will

be done by the ray tracer. Thus, in creating the images, no facilities for rotations or

shifting is provided. Scaling is provided to achieve the correct aspect ratio.

The files created using the RM’ TRACE option can be huge. Setting P1vIEw

FACTOR to 40 will result in over 2000 triangles. Each triangle can take from 50 to

200 bytes each to describe, so your ray tracing files can rapidly approach or

exceed 1Mb. Make sure you have enough disk space before you start.

Ray Tracing Files: Technical Information Each ray tracing file starts with a

comment identifying the version of Fractint that generated it and ends with a

comment giving the number of triangles in the file.

Fractint’s coordinate system has the origin of the x-y plane at the upper left-

hand corner of the screen, with positive x to the right and positive y down. The

ray tracing files have the origin of the x-y plane moved to the center of the screen

with positive x to the right and positivey up. Increasing values of the color index
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are out of the screen and in the +z direction. The color index 0 will be found in

the x-y plane at z=—1.

‘When x, y, and z scale are set to 100, the surface created by the triangles will

fall within a box of +1— 1.0 in all three directions. Changing scale will change the

size and/or aspect ratio of the enclosed object.

We will only describe the structure of the Rw format here. If you want to

understand any of the ray tracing file formats besides Raw, please see your

favorite ray tracer documentation.

The Rw format simply consists of a series of clockwise triangles. If BRiEF

OUTPUT is checked, each line is a vertex with coordinatesx,y, andz. Each triangle

is separated by a couple of CRs from the next. If BRIEF OUTPUT is not checked, the

first line in each triangle description is the red, green, blue value of the triangle.

Selecting BRIEF OUTPur produces shorter files with the color of each triangle

removed—all triangles will be the same color. These files are otherwise identical

to normal files but will run faster than the non-BRIEF OUTPUT files. Also, with BRiEF

OUTPUT selected, you may be able to get files to run with more triangles than

otherwise.

For DKB, when BRIEF OUTPUT is selected and the WATER LEVEL value (specified

on the next screen) is nonzero, you may get empty COMPOSITE!

END_COMPOSITE pairs, (i.e., containing no triangle information). These are

harmless, but may be edited out of the file if desired.

Targa output? If you want any of the 3-D transforms you select to be saved as

Targa-24 files or overlaid onto one, rather than as GIF files, select this option.

Select 3-D Fill Type @2)

Command Function: Select a 3-D fill type, determining if the image is drawn with all pixels, as a wire

frame image, etc.

Menu Access: Automatically selected after you have entered your basic 3-D options during a
3-D file restore.

Figure 5-28 shows the SELECT 3D FILL T’E screen as it appears in the

nonsphere case. If you are doing a 3-D projection onto a sphere, the only

difference is that there will be only one light source option.

Command-line Access: fit ttype=<nnn>

where <nnn> isO through 7.

Conunents: In the course of any 3-D projection, portions of the original image must be

stretched to fit the new surface. Points of an image that formerly were right next
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Figure 5-28 Select 3D Fill Type screen

Figure 5-29 The 3-D surface grid fill option

to each other may have a space between them now. The SELECT FILL T’E options

generally determine what to do with the space between the mapped dots.

Maize a surface grid If you select the MAv A SURFACE GRID option, Fractint will

make an unfilled wire-frame grid of the fractal surface that has as many divisions

in the originaly direction as were set in the COARSE option in the first screen. This

wire-frame view of your image is generated very quickly and can reveal a quick

approximation of what the final 3-D fractal will look like. Figure 5-29 shows a

portion of the Mandelbrot set in planar 3-D drawn using this option.

Just draw the points The second option, JusT Diw THE POINTS, means Fractint

maps points in the 2-D image to corresponding points in the 3-D image.

Generally, this will leave empty space between many of the points, and this space

will appear black. Figure 5-30 shows the same portion of the Mandelbrot set

drawn using this option.

Connect the dots (wire frame) This fill method simply connects the points in the

hope that the connecting lines will fill in all the missing pixels. This option is

rarely used because it has been supplanted by the superior surface-fill methods

that were developed later.

Surface fill (colors interpolated), SuifrAce fill (colors not interpolated) The surface-fill

options fill in the areas between the 3-D dots with small triangles formed from the

transformed points. If the corners of the triangles are different colors, the COLORS

INTERPOLATED fill colors the interior of the triangle with colors that smoothly blend

between the corner colors. The CoLoRS NOT INTERPOLATED fill simply colors the

whole triangle the color of one of the corners. Interpolating the colors makes the
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Figure 5-30 The 3-D just draw the points Figure 5-31 The 3-D surface fill option

option

little triangles blend better but only works if the color palette is continuous,

meaning that colors with near color numbers are a similar color. If the results look

strange, try the COLORS NOT INTERPOLATED fill. Figure 5-31 shows the same portion

of the Mandelbrot set drawn using this option.

Solid fill (bars up from “ground”) The solid fill method works by using a kind of

bar graph approach. A line is drawn from each point to its projection in the xy

plane. Figure 5-32 shows the same portion of the Mandelbrot set drawn using

this option.

Light source before transformation, Light source after transformation The two light

source fill options allow you to position an imaginary sun over your fractal

landscape. Fractint colors each pixel of the landscape according to the angle the

surface makes with an imaginary light source. This creates the appearance of
shadows and can be used to create realistic mountains. You will be asked to enter

the three coordinates of the vector pointing toward the light in one of the

following screens.

The option called LIGHT SOURCE BEFORE TRANSFORMATION calculates the illumination

before doing the coordinate transformations, and it is slightly faster. If you

generate a sequence of images where one rotation is progressively changed, the

effect is as if the image and the light source are fixed in relation to each other and

you orbit around the image.

LIGHT SOURCE AFTER TRANSFORMATION applies the transformations first, then

calculates the illumination. If you generate a sequence of images with progressive

rotation as above, the effect is as if you and the light source are fixed and the object
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Figure 5-32 The 3-D solid fillI option

is rotating. Figure 5-33 shows the relationship between the fractal object, the

viewer, and the light source for these two options.

If you select either light source fill (before or after), you will be prompted for a

color map, which is a file assigning colors to the color numbers. You can try

ALTERN.MAP, which is a grayscale palette that represents the light source shading

as shades of gray. However, any map that has continuous shades ofcolorworkswell

with the light source options, although they may not look as realistic as with the

Observer Observer

Light source is fixed to object and rotates with object Light source is fixed to observer and object rotates by itself.

Light source before transformation. Light source after transformation.

Figure 5-33 Two light source options

FRACTINT REFERENCE 201



Figure 5-34 Planar 3D Parameters screen

gray palette in ALTERN.MAP. Try color cycling with the () command and using

the higher function keys (such as or ) to get some interesting effects.

Select Planar 3-D Parameters (Z)

Command Function: Choose various planar 3-D parameters (such as axis rotation, water level, etc.)

Menu Access: Automatically selected if you have not selected spherical projection as part of the

basic 3-D options list.

Figure 5-34 shows the PLANAR 3D PARAMETERS input screen as it appears when

the light fill option is in effect. If a light fill is not in effect, the last two items, the

randomize colors and mono/color options, will not show on the screen.

Command-Line Access: rotation<xrot>[/<yrot>[/<zrot>]]
sca lexyz=<sca lex>[/<sca ley>[/csca lez>]]

roughness=<sca lez> water Ii ne=<leve 1>

perspective=<distance>

xyshi ft=<xshi ft>[/cyshi ft>]

xyadjust=cxadjust>[/cyadjust>]

transparent=<startcolor>/<stopcolor>

randomi ze=<nnn>

ful lcoloryes I no

Comments: The number of 3-D parameters in this menu is a bit daunting; however, most

have reasonable default values, so you can usually press to accept them

all. Therefore, you do not need to understand all of them to get 3-D working.

You’ll usually change only a few of these parameters, unless you want to explore.
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y-axis

x-axis

z-axis

Figure 5-35 Rotating fractal objects

X-axis rotation in degrees, Y-axis rotation in degrees, Z-axis rotation in degrees The

first entries are rotation values around the x-, y-, and z-axes. Think of your

starting image as a flat map. Thex value tilts the bottom of your monitor toward

you byx degrees. They value pulls the left side of the monitor toward you. The

z value spins it counterclockwise. The final result of combining rotations

depends on the order in which they are done. Fractint always rotates first along

the x-axis, then along the y-axis, and finally along the z-axis. All rotations

actually occur through the center of the original image. Figure 5-35 shows
these three rotations.

X-axis scalingjactorinpct, Y-axis scalingjactorinpct, Swface roughness scalingjactor

in pct Following the three rotation parameters are three scaling factors that

control the resulting size of each axis of the image. Initially, leave the x- andyaxes

alone and try changing the surface roughness factor (really z-axis scaling).

High values of roughness assure that your fractal will be translated into steep

Alpine mountains and improbably deep valleys; low values make gentle, rolling

terrain. Negative roughness is legal. For example, if you’re doing a Mandelbrot

image and want the solid Mandelbrot lake to be below the ground, instead of

eerily floating above, try a roughness of about —30%.
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Your eye Your eye

Thickness of object
in z direction

Perspective = 100% Perspective = 200%

Eye is right on the edge Near part of object is midway between

of the fractal object the eye and the far part of the object

(very extreme viewpoint) (moderate perspective viewpoint)

Figure 5-36 The perspective parameter

WaterLevel (minimum colorvalue) When a file is loaded into Fractint using the 3-D

option, the colors are interpreted as elevations accordingto the number of the color.

The water level option creates a minimum elevation in the resulting image. The

result is exactly like flooding a valley. The higher the water level value, the more

of the scene will be underwater. This works well with plasma landscapes.

Perspective distance [1—999, Ofor no perspi Perspective distance can be thought

of as the distance from your eye to the image. A zero value (the default) means

no perspective calculations, which makes the image appear flat, as though

photographed through a telephoto lens. If you do set perspective to a nonzero

value, nearer features to the observer will be larger than farther away features.

To understand the effect of the perspective number, picture a box with the

originalx-y plane of your flat fractal on the bottom and your 3-D fractal inside.

A perspective value of 100% places your eye right at the edge of the box and

yields fairly severe distortion, like a close view through a wide-angle lens. A

value of 200% puts your eye as far from the front of the box as the back is

behind. A value of 300% puts your eye twice as far from the front of the box

as the back is, and so on. Try about 150% for reasonable results. Much larger

values put you far away for even less distortion, while values smaller thaii 100%

put you “inside” the box. Try larger values first, and work your way in. Figure

5-36 shows how the perspective parameter relates to the distance from the

viewer to the object.
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X shft with perspective (positive = right), Y shft with perspective (positive = up),

Image nonperspective x adjust (positive = right), Image nonperspective y adjust

(positive = up) There are two types of x andy shifts that let you move the final

image around if you’d like to recenter it. In the first set, x and y shift with

perspective and move the image and change the viewing perspective. In the

second set, x and y adjust without perspective, and simply move the image

without changing the perspective viewpoint. They are usedjust for positioning

the final image on the screen.

First transparent color, Last transparent color You may define a range of transparent

colors. This option is most useful when using the Overlay command (see the

following text) to place one image on top of another, so parts of the bottom image

show through. Enter the color range (minimum and maximum value) for which

you do not want to overwrite whatever may already be on the screen. The color

ranges refer to the color numbers in the original image. The default is no

transparency (overwrite everything).

Randomize Colors (0—7, ‘0’ disables) The randomize option will smooth the

transition between colors and reduce the banding that occurs with some maps.
Select the value of randomize to between 0 (for no effect) and 7 (to randomize

your colors almost beyond use). A setting of 3 is a good starting point.

Here is an example of generating a Targa file based on the MTMAND.POT

continuous-potential file. Type the following into a file called mtmand3d:

fi lename=mtmand.pot

3d=yes

fit ltype=6

randomi ze=3

fut tcotor=yes

ambi entl 5

rotation=60/30/0

scatexyz=100/100

roughnessl 20

water t i neO

perspective=220

xyshi ftlO/—32

tightsource=1 I—I/I

maptopo

After creating the file MTMAND3D, type

fractint MTMAND3D savename=mtmand3D batch=yes

This will create a true-color Targa file called MTMAND3D.TGA.
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Figure 5-37 Light Source Parameters input screen

You can then use Piclab to convert this file to a GIF file with di ther=yes. If you

don’t have Piclab, you can still do a monochrome image of MtMand in regular GIF

format. In the previous example, remove the line f u 11 co to r = yes and change the

mapyes line to mapa I tern. The result will look very much like the cover of The

Beauty of Fractals, by HO. Peitgen and P.H. Richter, Springer-Verlag 1986.

Set light Source Parameters (Z)

Command Function: Set light source parameters.

Menu Access: Selected automatically if you have selected alight source option in the 3-D restore

Fiu TYPE menu. Figure 5-37 shows the LIGHT SOURCE PARAMETERS input screen.

Command-LineAccess: lightsource=<x>[/<y>[/<z>]]
smoothi ng<nnn>

ambi ent<nnn>

ha ze<nnn>

lightname=<fi lename>

Comments: The purpose of this screen is to control the details of an internal, simulated light

that is shining on your fractal. You will need patience when using the light source

option, because figuring out light directions can be confusing.

Xvaluelightvector, Yvalue light vector, Zvaluelightvector First, if you have selected

alight source fill, you must choose the direction of the light coming from the light

source. This will be scaled in the x,y, and z directions the same as the image. For

example, the values 1,1,3 position the light to come from the lower-right front
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Figure 5-38 Two light coordinate systems

of the screen in relation to the untransformed image. It is important to remember

that these coordinates are scaled the same as your image. Therefore, 1,1,1

positions the light to come from a direction of equal distances to the right, below,

and in front of each pixel on the original image. However, if the x,y,z scale is set

to 90,90,30, the result will be from equal distances to the right and below each

pixel but from only 1/3 the distance in front of the screen (that is, it will be low

in the sky, say, afternoon or morning).

Figure 5-38 shows the coordinate system used for defining the light vectors

in the two light source modes. This coordinate system is not the same for the

before transformation and after transformation light source options we explained

earlier. For the light source before transformation option, the positive

x-axis is on the left, the positivey-axis is up, and the positive z-axis is behind the

screen. A good light vector to try would be x=1, y=l, and z=-3. With this light

vector and rotations of 0,0,0, the light would appear to come from the upper

right. For the light source after transformation option, the positive x-axis is on

the right, the positivey-axis is up, and the positive z-axis is in front of the screen.

To get the same effect as the above vector, the signs of the x- and z-coordinates

of the light vector have to be reversed, yielding x=—1, y=l, and z=3. Confusion

can be avoided by using one of the two light source options until you are familiar
with the effects.

Light Source Smoothing Factor Next you are asked for a smoothing factor. Unless

you used continuous potential (see the earlier description) when generating the
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starting 3-D image, the illumination when using light source fills may appear

“sparkly,” like a sandy beach in bright sun. This is because with only 256 colors

in the original image, the z-coordinate has only 256 possible values, and the

transformed image surface is broken into tiny facets. With continuous potential,

there are 64,000 possible z-coordinate values, so a very smooth surface is

possible. The smoothing factor averages colors in each line of the original image,

smearing them together. A smoothing factor of 2 or 3 will allow you to see the

large-scale shapes better. If you did use continuous potential and are loading in

a “ .pot” file, you should turn off smoothing. If your fractal is not a plasma cloud

and has features with sharply defined boundaries (e.g., Mandelbrot lake), the

smoothing may cause the colors to run.

Ambient Light (0—i 00, ‘0’ = ‘Black’ shadows) The ambient option sets the

minimum light value a surface has if it has no direct lighting at all. All light values

are scaled from this value to white. This effectively adjusts the depth of the

shadows and sets the overall contrast of the image.

Haze Factor (0—i 00, ‘0’disables),FullColorLightFileName(fnotLTGHT001.TGA) The

last two input screen items appear only if you selected the full color option to

make a Targa file. The haze factor makes distant objects more hazy. Close-up

objects are little affected; distant objects will be obscured by haze. The value 0

disables the function, and 100 gives the maximum effect, with the farthest objects

lost in the mist. Currently, this does not really use distance from the viewer;

instead, Fractint cheats and uses they value of the original image. So the effect

really works only if they rotation (set earlier) is between +1— 30.

The last item allows you to choose the name for your light file. If you have a

RAM disk handy, you might want to create the file on it for speed, so include its

full path name in this option.

Select Spherical 3-D Parameters (Z)

Command Function: Select the various sphere 3-D parameters for wrapping an image around a globe

Menu Access: Selected automatically if you have selected a spherical transformation during the
initial 3D Restore menu.

Figure 5-39 shows the SPHERE 3D PARAMETERS input screen as it appears when

the light fill option is in effect. If a light fill is not in effect, the last two items, the

randomize colors and mono/color options, will not show on the screen.
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Figure 5-39 Sphere 3D Parameters screen

Conunand-Line Access: longi tude=<startdegree>/[<stopdegree>]
lati tude=<startdegree>/[<stopdegree>]

radius<scaleradius>

roughnes s<sca I ez>

water Ii ne< 11>

perspective=<distance>

xyshi ft=<xshi ft>[/<yshi ft>]

xyadjust=<xadjust>[/<yadjust>]

transparent<startcolor>/<stopcolor>

randomi ze=<nnn>

ful lcoloryes I no

Comments: The sphere 3-D parameters function controls the wrapping of a fractal image

around the surface of a sphere. In fact, you can project any GIF file image,

whether from Fractint or not, onto the surface of a sphere.

Longitude start (degrees), Longitude stop (degrees), Latitude start (degrees), Latitude

stop (degrees) Picture a globe lying on its side, north pole to the right. You will

be mapping the x- and y-values of the starting image to latitude and longitude

on the globe, so that what was a horizontal row of pixels becomes a line of

longitude, while what was a vertical column of pixels becomes a line of latitude.

The default values exactly cover the hemisphere facing you, from longitude 180

degrees (top) to 0 degrees (bottom) and latitude —90 (left) to latitude 90 (right).

By changing these values you can map the image to a piece of the hemisphere or

wrap it completely around the globe. Figure 5-40 shows how this works.
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Figure 5-40 Mapping a fractal to a sphere

Radius scalingfactor in pct The radius factor controls the overall size of the globe

and is the sphere analog to the x andy scale factors. Use this parameter to enlarge

or shrink your globe as you wish.

Swface Roughness scalingfactorinpct The roughness factor in the sphere context

controls the bumpiness of the surface of the sphere. A value of zero makes the

sphere perfectly smooth.

The remaining screen items have the same meaning for a sphere transformation

as they do for a plane transformation—see the PLANAR 3D PARAMETERS screen

explanation.

When the wrap-around “construction” process begins at the edge of the

sphere (the default) or behind it, it is plotting points that will be hidden by

subsequent points as the process sweeps around the sphere toward you.

Fractint’s hidden-point algorithms “know” this, and the first few dozen lines may

be invisible unless a high mountain happens to poke over the horizon. If you start

a spherical projection and the screen stays black, wait awhile (a longer while for

higher resolution or fill type 6) to see if points start to appear.

Select 3-D Overlay Parameters

Command Function: Perform a 3-D transformation of a GIF file overlaid on the current image.

Menu Access: 3D OvEPJJY FROM FILE <#> under the FILE section of the MAIN MENU.

Command-Line Access: none
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Figure 5-42 Save Current Parameters

entry screen
Figure 5-41 Moons over landscape

Comments: This function is identical to the normal 3-D transformation accessed with the

command, with one important difference: the screen is not cleared prior to

the drawing of the 3-D image. The new image is pasted on top of the old image.

For example, if the first image is a plasma landscape, and you use the

command to make a sphere, the sphere image will be added to the plasma

landscape picture. Figure 5-41 shows an example of the kind of images that are

possible with this command.

Save Parameter File Entry i

Command Function: This command causes Fractint to save the parameters used to generate your

current fractal image as an entry in a parameter file.

Menu Access: SAVE CURRENT PARAMETERS under the FILE section of the MAIN MENU.

Command-line Access: none

Comments: Fractint has the ability to load and save sets of command-line entries describing

images in the screen rather than the images themselves. These entries are stored

in parameter files. Multiple entries can be saved in any one file: each parameter

file entry contains all the information Fractint needs to re-create a single fractal

image. Parameter files are a very powerful feature of Fractint, as they give you the

ability to completely describe a fractal image with only a few lines of text.

When you press the key, Fractint displays the SAvE CURRENT PARAMETERS

entry screen shown in Figure 5-42.
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Here are the options and what they do.

Parameter File This is the name of the parameter file to which you want to add

your image description as a parameter file entry. The default name,

FRACTINT.PAR, is not really a good choice, as that file is a standard one supplied

with all versions of Fractint. You might want to enter another name (such as

MYFILE) instead. If you don’t enter your own filetype, .PAR is assumed. If the

named parameter file doesn’t exist, Fractint will silently create it for you.

Name This is the name of the entry you will be adding to the parameter file. If

a parameter entry already exists with this name, you will be asked if you really

want to overwrite it. If you indicate that you don’t, you will be returned to the

entry screen so that you can change it.

Main Comment, Second Comment, Third Comment, Fourth Comment You can

enter up to four lines of comments as part of your parameter file entry. The first

comment line is particularly important, as it is displayed along with the entry

name when you use the command to select and display entries in parameter

files. The other three comment lines are currently stored in the parameter file as

part of the entry, but are otherwise unused.

Record Colors? (No I Yes I @Filename), # of Colors These entries govern whether

color information should be included in the entry. Usually the default value

displayed by Fractint is what you want, as Fractint is pretty clever about

remembering whether you’ve used a palette file or done any color cycling lately.

The RECORD COLOR options are

No Don’t record colors. This is the default if the image is using
Fractint’s default colors.

Yes Record the colors in the parameter entry in detail. This is

the default when you’ve changed the display colors by

color cycling.

@filename Load the colors from the named color map file. This is the

default if you have loaded your colors from a color map file
and haven’t modified them.

The # of Colors field only matters if RECORD COLORS is set to Yes. It specifies

the number of color values to save as part of the parameter entry. Recording
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fewer colors takes less space, but loses nonvisible colors that might become

visible later via color cycling. Usually, the default value displayed by Fractint

is what you want.

X Multiples, Y Multiples, Video Mode These entries are only used if you want to

use Fractint’s DIVIDE-AND-CONQUER feature. The divide-and-conquer feature is

only enabled if either the X MULTIPLES or Y MULTIPLES field is greater than 1.

The divide-and-conquer feature creates multiple PAR entries that break up a

fractal image into pieces so that you can generate the image pieces one by one.

There are two reasons for doing this. The first is in case the fractal is very slow,

and you want to generate parts of the image at the same time on several

computers. The second is that you might want to make an image greater than

2048 x 2048. The parameters for this feature are

X MULTIPLES The number of images to create in the x direction (1 to 36).

Y MULTIPLES The number of images to create in they direction (1 to 36).

VIDEO MODE The Fractint video mode for each piece (e.g., “F3”).

The last item defaults to the currently selected video mode. IfeitherX MULTIPLES

or YMUL11PLES are greater than 1, then multiple numbered PARentries for the pieces

are added to the PAR file, and a MAKEMIG.BAT file is created that uses Fractint

to first build all of the component pieces and then stitch them together into a single

multi-image GIF file, FRACTMIG.GIF. The current limitations of the DIVIDE-AND-

CONQUER algorithm are 36 or fewerX and Ymultiples (so you are limited to “only”

36x36= 1296 component images), and a final resolution limit in both the X and Y

directions of 65,535 (a limitation of the GIF format).

Multi-image GIF files are a perfectly legal GIF format—but that doesn’t

necessarily mean that all GIF decoders can handle them. Because of this,

MAKEMIG.BAT includes one final line—commented out, but there in case you

need it—that calls another program (SIMPLGIF, included on your companion

disk and installed on your hard disk as part of the installation process described

in Chapter 1, Installation,) that reads your multi-image GIF file and uses it to

generate a simple, single-image GIF called SIMPLGIF.GIF.

One point should be emphasized here. Be aware that this process can be used

to generate huge images, and huge images come with corresponding appetites for

disk space. GIF files are highly compressed, but a 64K x 64K image represents

over four billion pixels, and even the best compression techniques only go so far.

Also, during the step that stitches the individual images together, both the

FRACTINT REFERENCE 213



individual images and the composite result must be available on your hard disk,

so the storage requirement is doubled.

Finally, if the software with which you intend to use your monster images

mandates that you process the images with SIMPLGIF, note that this program

needs to create a temporary uncompressed version of your final image as an

intermediate step. In this case, you really do need 4GB of free disk space for a

64K x 64K image—in addition to the space taken up by FRACTMIG.GIF and

SIMPLGIF.GIF. As a practical matter, most users of the “divide and conquer”

feature should limit their images to a “modest” 4K x 4K or 8K x 8K resolution

(which are actually pretty high resolutions!).

Print Image ®

Command Function: Print a fractal on the screen to a printer.

Menu Access: PRINT IMAGE under the Fuji section of the MAIN MENU.

Command-line Access: none

Comments: The command prints the current fractal on the screen. There are a number of

command-line options that govern printing. Printer-related command-line

options can be specified interactively using the (GIvE COMMAND STRING)

command, but are usually stored in your SSTOOLS.INI file. These printer-

related command-line options are described in detail in the final section of this

chapter, “Command-Line Only Commands.”

Fractint’s current list of supported printers includes Epson/IBM-compatible

dot-matrix printers (the default), HP-compatible laser printers, HP Paintjetcompatible

printers, Postscript printers (both monochrome and color), and

HP-GL-based plotters. Several of Fractint’s Disk/RAM video options use resolutions

specifically designed to work well with specific printers and Fractint’s ()
command.

Shell to DOS j

Command Function: Use this command to leave Fractint in memory so you can exit to DOS and return

to Fractint quickly

Menu Access: SHELL To DOS under the FILE section of the MAIN MENU.

Command-line Access: none

Comments: This option switches to DOS, leaving Fractint stored in memory, ready to resume

when you type ex i t at a DOS prompt. Be careful not to do anything that changes
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the video mode, as the bulk of your graphics image is still squirreled away in a

currently unused area of your video adapter’s memory. If you do change video

modes before returning to Fractint, your graphics image may not be intact when

you return. You return to Fractint from a shell-to-DOS by typing e xi t.

Give Command String @)

Command Function: Enter a command-line string interactively.

Menu Access: GIvE COMMAND STRING under the FILE section of the MAIN MENU.

Command-Line Access: none

Comments: This command gives you the option to enter a command-line (parameter) entry

at any time while using Fractint. Suppose, for instance, that you have just created

the perfect fractal image, are about to save it as a GIF file, and suddenly realize

that the software you are creating this GIF file for only accepts the older GIF87a

format. You can force Fractint to save its GIF files using the GIF87a format for

the rest of your session by pressing the key and entering the command-line

stnng g i f 87a =yes at the command-string prompt.

Quit Fractint ()

Command Function: Quit Fractint and return to DOS.

Menu Access: QUIT FRACTINT under the Fii section of the MAIN MENU.

Command-Line Access: none

Comments: You will be given the prompt EXIT FROM F1a1NT? (YIN). Pressing either or

exits, ® returns to the Main Menu, other keys do nothing. Because

is also used to back through the menu system, this safety feature prevents exiting

by inadvertently typing an extra

Restart Fractint (INSERt)

Command Function: Restart Fractint.

Menu Access: RESTART FRACTINT under the FIij section of the MAIN MENU.

Command-Line Access: reset

Comments: Pressing (INSERT) on the numeric keypad from the MAIN MENU has the same effect

as quitting and restarting Fractint. Use it when you have altered many Fractint
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settings and want to return to the startup defaults. Because Fractint is a rather

large program and takes a few seconds to load, this command avoids an irritating

delay that would be experienced by exiting and restarting.

The reset command-line parameter is used in parameter files to perform the

same effect as the INSERT) command.

Set Colors

The COLORS section of the MAIN MENU appears only if your graphics adapter

supports palette manipulations. If you have CGA- or Hercules-compatible

monochrome graphics, this menu will not appear. If you do have an EGA, VGA,

or higher advanced graphics adapter, this menu is your avenue to some

spectacular color effects, most notably color cycling.

Command Function: Enter the color-cycling mode with or without starting cycling.

Menu Access: COLOR CYCLING MODE and ROTATE PALETTE <+>, <-> under the COLORS section of

the MAIN MENU.

Command-line Access: none

Comments: The purpose of the command is to enter the color-cycling mode without

actually starting color cycling. Because the command itself does not start color

cycling, a visual indicator of the mode is provided; the border area of the screen

turns to white. You might want to do this to load a map file ordo some of the other

functions available under color cycling.

Use the or key to enter the color-cycling mode and start color cycling

at the same time. Color cycling is one of the really exciting features in Fractint.

An animation effect is achieved by rapidly changing how colors are mapped to

the color numbers of the original image. Plasma images are particularly

fascinating. The plasma colors flow into each other in an endless unfolding. Here

is an explanation of what is happening: Your fractal image actually assigns

numbers, not colors, to pixels. If your image is a 256-color image, the numbers

range from 0 to 255. At any given time, your graphics adapter assigns each of

these numbers to colors selected from a much larger set—262,144 different

colors for a VGA. Color cycling plays musical chairs with these colors. Think of

the 256 numbers as the chairs, and the colors as the kids circling with these

chairs. If the kids go one chair at a time, they are doing exactly what color cycling

does. All three of these commands cause the current mode to change from the

display mode to the color-cycling mode.

216 CHAPTER 5



Note that the palette colors available on an EGA adapter(16 colors at a time out

of a palette of 64) are limited compared to those of VGA, super VGA, and MCGA

(16 or 256 colors atatime out ofapalette of 262,144). Colorcyclingingeneral looks

a lot better in the VGA/MCGA modes. Also, because of the EGA palette restrictions,

some color cycling commands are not available with EGA adapters.

A completely different set of keystroke commands applies while in color

cycling mode. These are listed here.

Exits the color-cycling mode. For example, use this when you

are ready to save a fractal with ®.

Toggles cycling on and off.

Brings up a Help screen with commands specific to color
command mode.

cJ or E Cycles the palette forward. Each color moves to the higher color
index. Colors at the last index move to the first index.

(EJ or Cycles the palette backward. Each color moves to the next-
lower color index. Colors at the first color index move to the

last. Alternate between and to see the colors throb!

Cycles the palette forward or backward a single step and then

pauses the color cycling. Useful when you have just missed the

perfect color combination and want to attempt to recover it.

(J or Increases/decreases the cycling speed. The original purpose of this

command was to eliminate flicker experienced on some displays

when color cycling. But it is also useful just to slow down the

color cycling on very fast machines to a more pleasing speed.

Switches from simple color palette rotation to color selection

using randomly generated color bands of short () to long

() duration. Pressing any function key except the help key

() during color cycling causes Fractint to add new random

colors. Pressing causes a new random color to be created

for each cycle. Higher function keys cause new colors to be

generated at intervals and, in between, the colors smoothly

merge from the last random color to the next. The higher

the function key number, the more intermediate colors are

calculated. To see a few colors cycled through many beautiful

shades, use the higher keys.
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Causes the screen to be updated every n color cycles

(the default is 1), so smaller numbers give slower

cycling, higher give faster cycling. Handy for slower

computers.

Randomly selects a function key (() through ()) and

then updates all the screen colors prior to displaying

them for instant, random colors. Press this over and

over again to see your fractal with totally different colors.

(SPACEBAR) Pauses cycling and turns the screen border white as a
visual indication of the continuation of the color

cycling mode.

Pauses cycling and resets the palette to a preset two-

color “straight” assignment, such as a spread from

black to white. (Not for EGA.) These keys allow you to

access some built-in palettes and see how they look

with your fractal.

Pauses cycling and uses a two-color cyclical assignment,

for example, red_yellow_red (not for EGA).

These are some more built-in palettes to try.

Pauses cycling and uses a 3-color cyclical assignment,

for example, green_white_blue (not for EGA). Still

more built-in palettes!

or Pauses cycling and loads an external color map from

the files DEFAULT.MAP () (IBM default palette) or

ALTERN.MAP () (continuous grayscale palette),

supplied with the program.

Pauses cycling and prompts for the file name of an

external color map. Several others are supplied with

the program. (The MAP extension is assumed.) Map

files allow you to specify which color each color

number represents. They are ordinary text files. Each
line in the text file determines one color; the first line is

color 0, the second line is color 1, and so forth. Each

line of the map file has three numbers that determine

the red, green, and blue content of that color number.

218 CHAPTER 5



Table 5-3 The beginning of the ALTE.MAP sequence

These numbers range from 0 to 255. The First few lines of

ALTERN.MAP, a grayscale color map, are shown in Table 5-3.

For example, if you load in ALTERN.MAP, color 3 (the fourth row,

because you count up from 0) would have a red component of 252, a

green component of 248, and a blue component of 252. This is an almost-

white shade with an almost invisible red-blue (magenta) tinge. Note that

comments can be placed after the numbers. Color 0 is usually 000

because it is used for the normally black overscan border of your screen.

® Pauses cycling, prompts for a file name, and saves the current palette to
the named file (MAP assumed).

Enter Palette Editor j

Command Function: Enter palette editing mode for altering the color map in use.

Menu Access: PALETTE EDITING MODE under the CoLoIs section of the MAIN MENU.

Command-line Access: none

Comments: The palette editing mode is a sophisticated mechanism for customizing and

adjusting the Fractint color palette. It requires a graphics adapter supporting 256

colors, such as a VGA or super VGA.

Skilled fractal artists spend a lot of time manipulating the colors of their

fractals; this is what separates the beginners from the true artists. When the

palette editing mode is entered, an empty palette frame is displayed. Use the

cursor keys to position the frame, use the (PAGE UP) and (PAGE DOWN) keys to size

it, and then press to display the palette in a grid. Figure 5-43 shows the

palette editor grid. Note that the palette frame shows R(ed) G(reen) and B(lue)
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Figure 5-43 The palette editor grid

values for two color registers at the top. The active color register has a solid frame,

the inactive register’s frame is dotted. Within the active register, the active color

component is framed. The mouse controls a cross hair.

Once the palette frame is displayed, the following commands are available:

Exit to the color-cycling mode.

Hide the palette frame to see the full image; the cross

hair remains visible and all functions remain enabled;

press again to restore the palette display.

Move the cross-hair cursor around. In auto mode (the

default), the center of the cross hair selects the active

color register. Cursor-control keys move the cross hair
faster. A mouse can also be used to move around.

Select the red, green, or blue component of the active

color register for the subsequent INSERT OR DELETE
and SELECT Pivious OR NEXr COLOR COMPONENT IN

AcTIvE REGISTER commands.

Increase or decrease the active color component by 1.

Numeric keypad and keys do the same.

(PAGE uP), (PAGE DowN) Increase or decrease the active color component by 5.

Moving the mouse up or down with the left button
held is the same.

Set active color component to 0, 10, 20 60.
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[SPACEBA) Select the other color register as the active one. (In

auto mode this results in both registers set to the

color under the cursor until you move it.)

Rotate the palette one step.

Rotate the palette continuously (until next

keystroke).

Enter color-cycling mode.

Create a smoothly shaded range of colors between

the two color registers.

Duplicate the inactive color register in active color.

Stripe-shade; create a smoothly shaded range of

colors between the two color registers, setting only

every nth register; after pressing , press a
number from 2 to 9 which is used as n.

Store the current palette in a temporary save area

associated with the function key; these save

palettes are remembered only until you exit palette

editing mode.

Restore the palette from a temporary save area.

Converts the palette (or current exclude range) to

grayscale.

Make a negative color palette. If in the mode

(see following text), only the current color is

negated. If in the mode (see following text),

only the current range is negated. Otherwise, the

entire palette is negated.

Move or resize the palette frame. The frame

outline is drawn; it can then be moved and sized

with the cursor keys, (PAGE UP) and (PAGE DOWN).

Press when done moving/sizing.

Invert frame colors, useful with dark colors.

Prompt for a palette map file name (default file type

is MAP), and save the palette to that map file.
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Toggle auto mode on or off. When on, the active color register
follows the cursor; when off, must be pressed to set the

register to the color under the cursor.

Useful only when auto is off, as previously described; double-

clicking the left mouse button is the same as

Toggle exclude mode on or off—when toggled on, only the active

color is displayed.

Toggle exclude range on or off—when on, only colors in the range

of the two color registers are shown.

0 Swap the values in the red and green columns.

(f) Swap the values in the green and blue columns.

(@!KJ) Swap the values in the red and blue columns.

() Toggle the “freestyle” palette editing mode (yes, a mode within a

mode). When in the freestyle palette editing mode and with the

cross-hair cursor inside the palette table, the mouse performs special

editing functions. Freestyle mode changes a range of palette values

(the upper and lower boundsof the palette spread are shown with

checkered borders). While in freestyle mode, the (CONTR9}(I.1SER)

and (CONTRO1}(DE1TEJ keys change the width of this palette spread.

Pressing () or double-clicking the left mouse button “fixes” the

color values (exiting freestyle mode with the () toggle with an
unfixed color band reverts that band to its unfixed values).

Make Starfield ()

Conunand Function: Make a starfield from your favorite fractal image.

Menu Access: MAI STARFIELD under the COLORS section of the MAIN MENU.

Command-line Access: none

Comments: Once you have generated your favorite fractal image, you can convert it into a

fractal starfield with the () transformation (for “astronomy”). The screen is filled

with star-like distributions of individual pixels of different degrees of brightness.

Stars are generated on a pixel-by-pixel basis—the odds that a particular pixel will

coalesce into a star are based (partially) on the color index of that pixel.
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If the screen is entirely black and the star density per pixel is set to 30, then

a starfield transformation will create an evenly distributed starfield with an

average of one star for every 30 pixels. Therefore, if you’re on a 320 x 200 screen

you have 64,000 pixels and would end up with about 2,100 stars. By introducing

the variable of “dumpiness,” we can create more stars in areas that have higher

color values. At 100% dumpiness, a color value of 255 will change the average

of finding a star at that location to 50:50. A lower dumpiness value will lower

the amount of probability weighting. To create a spiral galaxy, draw your favorite

spiral fractal (IFS,Julia, or Mandelbrot) and perform a starfield transformation.

For general starfields, we recommend transforming a plasma fractal. For

starfields based on fractals with lakes, such as the Mandelbrot fractal, be sure to
set ins i de=255 for the best effect.

Real starfields have many more dim stars than bright ones because very few

stars are close enough to appear bright. To achieve this effect, the program will

create a bell curve based on the value of ratio of dim stars to bright stars. After

calculating the bell curve, the curve is folded in half and the peak is used to

represent the number of dim stars.

Starfields can be shown in 256 colors only. Fractint will automatically try to

load AIJERN.MAP and abort if the map file cannot be found.

FRACTINT’S AUTOKEY FEATURE

Fractint’s autokey feature allows you to control Fractint using files containing

sequences of simulated keystrokes. The autokey feature is different from

parameter files in that parameter files contain sequences of command-line

options used to control Fractint, while autokey files simulate sequences of

keystrokes that Fractint treats as if your fingers were pressing the keyboard. You

can set up Fractint sessions that use autokey sequences to teach Fractal exploring

methods, generate special effects, attract people to a booth, etc.

A sample autokey file (DEMO.KEY) designed to show off some of the

capabilities of Fractint and a batch file to run it (DEMO.BAT) are included on

your companion disk. Type demo at the DOS prompt to run it.

Autokey mode and its various options are enabled using command-line

parameters, enterable either on the command line or via the ® (GIvE COMMAND

STRING) command. The command-line parameters are

autokeyname=<filename> This command-line option sets the name of the file

that the autokey option is going to use. If this option is not specified, the autokey

option uses the default filename AUTO.KEY.
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autokey=play This command-line option causes Fractint to begin reading keystrokes

from the autokey file name rather than the keyboard. Fractint will

continue to process its keystrokes from this file until it reaches the end of the file

or you press the key on the keyboard.

autokey=record This command-line option causes Fractint to begin recording

and saving your keystrokes into the current autokeyname file. Once Fractint

begins recording keystrokes, it continues to do so until you exit Fractint.

Autokey files are text-based, and can be created or edited using anyASCil text

editor. Autokey files consist of quoted text, special keystroke symbols, and

special autokey commands. Autokey files can include comments—anything

from an unquoted semicolon to the end of a line is a comment. As with parameter

files, several autokey sequences can either be bundled in a single line or placed

on individual lines (when in record mode, Fractint stores every keystroke on a

separate line). Because most Fractint sessions involve many keystrokes that aren’t

easy to put into text files (like and (PAGE uPJ), autokey files use a number of

special symbols to represent them.

Table 5-4 lists the commands that may be placed in an autokey file.

Making Fractint demos can be tricky. Here are some useful hints:

4 StartFractintwithfractint autokeynamemydemo.key autokey=record

or use the GIVE COMMAND STPJNG <G> sequence to issue the two options. (If

you use the command, remember to enter the autokeyname option first.)

4 When in record mode, avoid using the cursor keys to select file names,

fractal types, formula names, etc. Instead, try to type in names, and use the

full name as often as possible. This will ensure that the exact item you want

gets chosen during playback, even if the list you are selecting from is
different.

4 Beware of video mode assumptions. It is safest to build a separate demo for

different resolution monitors. Not everyone can run his or her computer
in 640 x 480 256-color mode.

4 Whenyou finish recording, cleanup your autokey file. InsertaCAlCWAIT

after each keystroke that triggers something that takes a variable amount

of time (calculating a fractal, restoring a file, saving a file). Watch for

unwanted WAIT statements and fragmented text strings (while in record

mode, Fractint dutifully recorded your every pause over 0.5 second and

breaks up your text strings if you type too slowly). Convert multiple

symbol entries to the *nn option.
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Table 54 Autokey commands
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Table 5-5 Autokey special-key sbols

4 Add plenty of comments with the “;“ feature, so you know what is going

on when you look at your autokey file sometime in the future.

4 It is a good idea to add an INSERT command before a GOTO that restarts

the demo. The NSEfl key resets Fractint just as if you exited the program

and restarted it. It’s far too easy to forget that you changed the iteration limit

from 150 to 32,000 at some point in the middle of your demo loop.

WARNING: An autokey file built for any one version of Fractint will probably require

some retouching before it works with future releases of Fractint. The

authors have no intention of making sure that the same sequence of

keystrokes will have exactly the same effect from one version of Fractint

to the next. That would pre’[ty much freeze Fractint development, and we

just love to keep enhancing it!
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COMMAND-UNE-ONIX COMMANDS

This section documents Fractint commands that exist only in command-line

or batch form and do not have associated keystrokes or menu items. It is

organized into video-related, printer-related, fractal-related, and miscellaneous

commands, and is roughly in the order of importance/usefulness within

those categories.

Video-Related Command-Une Options

adapter=cga I ega I egamono Imcga I vga I hgc I

atileverexltridentlncrlvideo7lgenoalparadiselchipstechltseng3000l

tseng4000laheadalaheadbloacktech

Normally, Fractint automatically detects the type of video adapter on your

system. The adapt e r = option is for those cases where Fractint’s autodetection

logic doesn’t work (either “mis-detecting” your adapter type or, in the worst

cases, messing up your screen during the process). It causes Fractint to skip the

autodetect logic and assume the named adapter type is present. Use this only if

the autodetect logic fails for your adapter. Entries on the second and third lines

are for super VGA chipsets, and imply VGA compatibility. This will affect the

default mode and any other Fractint features that depend on auto-detecting

adapters. Note that this command does not actually change what your adapter

can do—only what Fractint thinks your adapter can do. (The “I” means “or”—

specify just one of these options.)

vesadetect=no Suppresses Fractint’s VESA detection. Normally, Fractint checks

for VESA support as its first Super VGA Chipset mode, and looks no further if

it finds that your adapter is VESA compliant. This option bypasses that check,

and is useful if your adapter has a faulty VESA driver.

textsafe=yeslnolbioslsave When you press a key (such as , , or that

switches from a graphics image to text mode; Fractint remembers the image and

displays it the next time you choose graphics mode. This is a fast method for

saving the graphics screen, but it does not work perfectly for every graphics

adapter in every video mode—especially high-resolution modes. If this method

does not work on your computer, you can use the t e x t s a f e = command to

specify methods that are slower but safer. Try various t e x t s a f e = options if you

have the following display problems:
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4 A display image that is either garbled or overlaid with lines and dashes

when you return to the graphics image after opening a menu, pressing

or pressing J for help.

4 A blank screen when you start running Fractint.

The following are the t e x t s a f e = options:

yes This option is the default. When you switch either to or from the graphics

mode, Fractint saves only the part of video memory that EGA and VGA adapters

are supposed to modify during the mode change.

no This option uses a monochrome, 640 x 200 x 2-mode to display text. It

displays text quickly, but it uses characters that are chunky and, of course,

colorless. If you use this option, specifying text Color s=mono might improve the

text display.

bios This option saves memory just as text sa f e=ye s does, but it uses the

adapter’s BIOS routines to save and restore the graphics image. This option is fast,

but it works perfectly on only a few adapters

save If all other options fail, try this one. It is slow, but it should work on all

adapters and in all modes. It directs Fractint to save and restore the entire image.

Expanded or extended memory is used if enough is available; otherwise, a

temporary disk file is used.

askvideo—yeslno If”no,” this eliminates the prompt asking you if the video mode

specified in a file to be restored is OK for your current video hardware.

exitmode=nn Sets the bios-supported video mode to use upon exit (if not mode

3)—nn is the mode in hexadecimal. For people who like nonstandard text modes.

afi=yes Normally, Fractint accesses IBM 8514/A adapters and their clones by

writing directly to their registers. This option forces Fractint to use the slower
HDILOAD interface instead.

textcolors=mono Set text screen colors to simple black and white. Use this if the

shades of color do not show up well on your monochrome screen.

textcolors=<aa>kbb>/<cc>/... Set text screen colors. Each value is a hexadecimal

number, with the first digit the background color from 0 to 7, and the second

digit the foreground color from 0 to 15. Hex color values are as follows:
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o black 8 gray
1 blue 9 light blue

2 green A light green

3 cyan B light cyan
4 red C light red

5 magenta D light magenta
6 brown E yellow
7 white F bright white

A total of 31 different colors can be specffied, with their use in Fractint as
follows:

Heading:
1 Fractint version information

2 heading line development information (not used in released version)

Help:

3 subheading
4 main text

5 instructions at bottom of screen

6 hotlink field

7 highlighted (current) hotlink

Menu, selection boxes, parameter input boxes:

8 background around box and instructions at bottom

9 emphasized text outside box

10 low intensity information in box

11 medium intensity information in box

12 high intensity information in box (e.g., heading)

13 current key-in field

14 current key-in field when it is limited to one of n values

15 current choice in multiple choice list

16 speed key prompt in multiple choice list

17 speed key in multiple choice list

General (tab key display, IFS parameters, “thinking” display):

18 high intensity information

19 medium intensity information

20 low intensity information

21 current key-in field
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Disk video:

22 background around box

23 high intensity information

24 low intensity information

Diagnostic messages:
25 error

26 information

Credits screen:

27 bottom lines

28 high intensity divider line

29 low intensity divider line

30 primary authors

31 contributing authors

The default is

textcolors=1 F/1A/2E/70/28/71/31/78/70/17/

1 F/i E/2F/5F/07/OD/71 /70/78/OFf

70/OE/OF/4F/20/17/20/28/OF/07

(In a real command file, all values must be on one line.)

Printer-Related Command-Line Options

pri nter=<type>E/<resoluti on>E/<port#>]]

The command printer=<type>[/<resolution>[/<port#>]] defines your basic

printer setup. The default printer type is the Epson-compatible, dot-matrix

printer. Table 5-6 shows the possible values for <type>.

For dot-matrix and laser printers, the resolution is in dots per inch. Possible

values are 60, 120, and 240 for the Epson/IBM; 75, 150, and 300 for the LaserJet;

90 and 180 for the PaintJet; and 10 through 600 for PostScript. Plotter resolution

is in portions of a page, with acceptable values from 1 to 10 (3 means 1/3 of a

page). The Printer port can be 1,2, and 3 for LPT1-3 via the BIOS (21 or 22 for

LPT1-2 using direct access); 11, 12, 13, and 14 for COM1-4 via the BIOS (31 or

32 for COM1-2 using direct access). Direct access methods are faster—when

they work. With PostScript, a negative port number can be used to redirect

printing to a file.

printfile=<filename> Causes printing to go to the file <filename> rather than

directly to the printer. The file name isincremented aftereachprint to file operation.
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Table 5-6 Printer types

title=yes Enables or disables the printing of a Fractint-supplied title with the

output (the default is no).

comport=portlbaudlopts Performs serial printer port initialization. “Port” may be

1,2,3, or4forcoml throughcom4. “Baud” is the baud rate, whichmaybe 115,

150,300,600, 1200,2400,4800, or 9600. “Options” includes bits, stop bits, and

parity in any order. For example,

fractint comport=1/9600/n81

sets the printer for port comi, 9600 baud, no parity, 8 bits per character, and

1 stop bit.

linefeed=crlJllflcr Forces the use of control characters at the end of each line (crlf
is the default).

colorps=yeslno This option is ignored for all but PostScnpt printers. It enables or

disables Color PostScript extensions (the default is no).

rleps=yeslno This option is ignored for all but PostScript printers. It enables or

disables PostScript RLE encoding (the default is no). Run-Length-Encoding results

in smaller files—but they may take longer to print. The run length encoding code

is based on pnmtops, which is copyright © 1989 byJef Poskanzer, and carries the

followingnotice: “Permission to use, copy, modify, and distribute this software and

its documentation foranypurpose andwithout fee isherebygranted, provided that

the above copyright notice appears in all copies and that both that copyright notice

and this permission notice appear in supporting documentation. This software is

provided ‘as is’ without express or implied warranty.”
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epsf=11213 Forces print to a PostScript file (default file name FRACTOO1.EPS).

The PostScript mode is turned on. Lower numbers force stricter adherence to the

Encapsulated PostScript (EPS) format. 1 means by-the-book. 2 allows some EPS
“no-nos” like settransfer and setscreen—but includes code that should make the

code still work without affecting the rest of the non-EPS document. 3 is a free-
for-all. The default value is 1.

translate=yesl<nnn> This option is ignored for all but PostScript printers.

Translate=yes prints the negative image of the fractal. T cans a t e = nn n reduces

the image to that many colors. A negative value causes a color reduction as well

as a negative image.

halftone=frequency/angle/style[/f/als/f/als/f/als] This option is ignored for all but

PostScript printers. It is presented here for advanced PostScript owners and those

who want to experiment. This option defines the halftone screen for PostScript,

which affects how colors are rendered as dot patterns. The first value, frequency,

defines the number of halftone lines per inch. The second chooses the angle (in

degrees) at which the screen lies. The third option chooses the halftone “spot”

style. Good default frequencies are between 60 and 80; good default angles are

45 and 0; the default style isO. If the ha If tone= option is not specified, Fractint

will print using the printer’s default halftone screen, which should have been

already set to do a fine job on the printer.

These are the only three options used when colorps=no. When color PostScript

printing is being used, the other nine options specify the red, green, and blue

screens. A negative number in any of these places will cause it to use the previous

(or default) value for that parameter. NOTE: Especially when using color, the

built-in screens in the printer’s ROM may be the best choice for printing. The
default values are as follows:

halftone=45/45/1 /45/75/1 /45/15/1 /45/0/1

and these will be used if Fractint’s halftone is chosen over the printer’s built-in

screen. The current halftone styles are

0 Dot

1 Dot (Smoother)

2 Dot (Inverted)

3 Ring (Black)

4 Ring (White)

5 Triangle (Right)

6 Triangle (Isosceles)
7 Grid
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8 Diamond

9 Line

10 Microwaves

11 Ellipse
12 Rounded Box

13 Custom

14 Star

15 Random

16 Line (slightly different)

halftone=r/g/b This option is ignored for all but PaintJet printers. This halftone

option is presented here for advanced PaintJet owners and those who want to

experiment. It sets the gamma adjustment of the red, green, and blue components.

Higher gamma values result in colors with more contrast being sent to the

printer. Note that the PAINTJET.MAP color-map file uses colors specifically

designed to match those on the paintjet.

plotstyle=Of1 12 This option is ignored for all but HP-GL-compatible plotters. It

selects one of several plotting styles. The available styles are

o 3 parallel lines (red/green/blue) are drawn for each pixel, arranged like

“I/I.” Each bar is scaled according to the intensity of the corresponding

color in the pixel. Using different pen colors (e.g., blue, green, violet) can

come out nicely. The trick is to not tell anyone what color the bars are

supposed to represent and they will accept these plotted colors because

they look nice.

1 Same as 0, but the lines are also twisted. This removes some of the

order of the image, which is a nice effect. It also leaves more whitespace

making the image much lighter, but colors such as yellow are actually
visible.

2 Color lines are at the same angle and overlap each other. This type has

the most whitespace. Quality improves as you increase the number of

pixels squeezed into the same size on the plotter.

Fractal-Related Command-lJne Options

periodicity=nolshowlnnn Allows control of periodicity checking; “no” turns it off,

“show” lets you see which pixels were painted the inside color due to being

caught by periodicity. Specifying a number causes a more conservative periodicity

test (each increase of 1 divides the test tolerance by 2). Entering a negative
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number lets you turn on “show” with that number. Type lambdafn fun c t ion = e x p

needs periodicity turned off to be accurate—there may be other cases.

symmetiy=<.symmetiy> This option forces symmetry to one of None, X ax i s,

Yaxi s, XYaxi s, Origin, or P1 symmetry. Some fractalsaresymmetricalandhave

parts that are reflections of their other parts. For example, the top and bottom
of the Mandelbrot fractal are reflections of each other. The Mandelbrot fractal has

x-axis symmetry, because the top points are the reflections of the bottom points

about the x-axis. Y-axis symmetry means the left and right sides of a fractal are

reflections of each other. XY-axis symmetry is a combination of both of these.

Origin symmetry reflects upper points to lower points on the opposite side.

Finally, PT symmetry describes the symmetry of periodic fractals that repeat

themselves every PT units.

This command forces symmetry whether or not the fractal really exhibits it.

A portion of the fractal is calculated, and the symmetrical parts are reflections of

the calculated part. The Fractint authors have attempted to automatically use

symmetry when it exists, but they have not caught every case. For example, any

of the fractal types with “fn” in their name (such as “fn+fn”) exhibit different

symmetry depending on which functions are used to replace “fn” in the formula.

If you are experimenting with a fractal and can see that it has symmetry that

Fractint doesn’t know about, you can set the symmetry with this command and

make the fractal run faster, because fewer points have to be calculated. You can

also apply symmetry just to change any fractal and see how it looks. If you type

fractint symmetryxyaxi $

and plot the Mandelbrot fractal, you will see that it has changed. What is normally

the upper-left corner of the Mandelbrot image is reflected to the other three

corners; the right half of the fractal is no longer the same.

initorbit=pixel, initorbit=<nnn>/<nnn> Allows control over the value used to begin

each Mandelbrot-type orbit. The command i n i to rb i t =p i xc i is the default for

most types; this command initializes the orbit to the complexnumber corresponding

to the screen pixel. The command i ni torbi t=nnn/nnn uses the enteredvalue
as the initializer.

rseed=nn Forces Fractint to use value “nn” as its initial random number seed

(otherwise, Fractint uses a value based on the current time). Useful when you

need to reproduce an image that would otherwise have some degree of

randomness involved, such as a plasma cloud.

showdot=nn Causes Fractint to color the pixel it is working on using color “nn”

(the pixel color then gets reset when Fractint finishes its pixel calculation). Useful
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when an image takes a long time to calculate and you’re not exactly sure how far

along the image has been processed during that calculation.

formulafile=<formulafilename> Lets you specify the default formula file for

type = f o rmu La fractals (the default is FRACTINT.FRM). Handy if you want to

generate one of these fractal types in batch mode.

formulaname=<formulaname> Lets you specify the default formula name for

t y p e = f o cm u I a fractals (the default is no formula at all). Required if you want to

generate one of these fractal types in batch mode, as this is the only way to specify
a formula name in that case.

fsfile=4sfilename> Lets you specify the default lfile for t ype= i f s fractals (the

default is fractint.ifs). Handy if you want to generate one of these fractal types in
batch mode.

s=<4fssystemname> Lets you specify the default ifs name fort ype= i fs fractals (the

default is the first type in the file). Required if you want to generate one of these

fractal types in batch mode, as this is the onlywayto specify an ifs name in that case.

lfile=<lfilename> Lets you specify the default Ifile for t ype= I system fractals (the

default is FRACTINT.L). Handy if you want to generate one of these fractal types
in batch mode.

lname=<lsysteniname> Letsyou specifythe default isystem name for type =ls y stem

fractals (the default is the first type in the Ifile). Required if you want to generate

one of these fractal types in batch mode, as this is the only way to specify an Lsystem
name in that case.

function:=4n1>[i<zfn2>[14n3>[14n4>]]] Allows setting variable functions found in

some fractal type formulas. Possible values of the functions are si n, co s, tan, cot an,

sinh,cosh,tanh, cotanh,exp, .og, sqr, recip (liz), ident (identity), and cosxx (an

older cos function that contained a bug, left in for backward compatibility).

Miscellaneous Command-lJne Options

autokey=playlrecord, autokeyname=filename These commands control Fractint’s

autokey feature, and are described in detail in this chapter’s autokey mode section.

makemig=nn/nn This command causes Fractint to run in batch mode and build

a multi-image GIF file from a number of component images. This command is

not normally run manually, but is part of the MAKEMIG.BAT file created by the

() (Sw CURRENT PARAMETERS) command.
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gij87a=yes Backward-compatibility switch to force creation of GIF files in the
GIF87a format. Fractint now creates files in the new GIF89a format, which

permits storage of fractal information within the format. This switch is needed

only if you want to view Fractint images with a GIF decoder that cannot accept

the newer format. The disadvantage of this option is that no fractal information
will be stored with the file, and Fractint will not know how the file was created.

savetime=nn Forces Fractint to save the image it is working on every “nn”

minutes. Added at the request of a frustrated user who had his computer set up

to work on a fractal image all weekend and lost his power sometime on Saturday.

exitnoa.sk=yes Suppresses Fractint’s “are you sure?” safety message when you

press to exit Fractint.

colors=@filenamelcolorspec This option is generated automatically by the ®

(SAVE CURRENT PARAMETERS) command if the record colors prompt is set to Yes or

@fllename. The COLORSPEC option stores the color values using a compressed
internal format.

ranges=nn [Inn [Inn...] I Causes Fractint’s coloring scheme to use ranges of iteration
values rather than a different color for each iteration value. Iteration counts

up to and including the first value are mapped to color number 0, up to and

including the second value to color number 1, and so on. The values must be in

ascending order.

A negative value can be specified for “striping.” The negative value specifies

a stripe width, the value following it specifies the limit of the striped range. Two

alternating colors are used within the striped range. Example:

RANGES=O/1 O/30/—5/65/79/32000\

This example maps iteration counts to colors as follows:

Color Iterations

0 unused (formula always iterates at least once)
1 itolO

2 llto3O

3 31to35,41to45,51to55,and6lto65

4 36to40,46to50,and56to60

5 66to79

6 80 and greater

hertz=nnn Sets the frequency of the sound produced by the sound = x / y / z option.

Legal values are 200 through 10,000.
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dither=yes Dither a color file into two colors for display on a black-and-white

display. This gives a poor-quality display of gray levels. Note that if you have a

2-color display, you can create a 256-color GIF file with disk video and then read
it back in dithered.

orbitdisplay=yes Causes the file ORBITS.RAW to be opened and the points

generated by orbit fractals or IFS fractals to be saved in a raw format. This file can

be read by the Acrospin program, which can rotate and scale the image rapidly

in response to cursor-key commands. The file name ORBITS.RAW is fixed and

will be overwritten each time a new fractal is generated with this option.

fpu=387liitlnoiit Normally, Fractint automatically detects the presence and type

of floating-point unit (FPU) your PC has, and uses hand-tuned assembler

routines that squeeze the most performance out of it. This option forces Fractint

to assume the presence or absence of an advanced 80387 or ITT math coprocessor

on those occasions when Fractint might not automatically detect one.

makedoc=filename When used on the command line, causes Fractint to build a

special FRACTINT.DOC file from its internal help files and then exit.
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his chapter is your explorer’s atlas of the fractal universe. At last count

there were 95 fractal types listed on the Fractint SELECT FRACTAL TYPE screen.

Each of these types contains rich landscapes for you to explore. These worlds

are huge beyond imagination, and the territory is largely uncharted. At the

scale of your computer screen, each of these fractal landscapes stretches many

millions of miles and could not be fully explored in a hundred lifetimes. Having

95 such worlds to explore might seem enough, but Fractint takes your much

further. Some of the fractal types are not individual worlds at all. They are

galaxies of worlds, representing whole fractal families that you select as you

supply different parameters. Finally, among these 95 fractal types are three

general purpose fractal-creating engines that let you invent your own fractal
universe!

The first version of Fractint contained only two fractal types: the classic

Mandelbrot set and the Julia set. Then other fractal types were added as the

authors came across them in the fractal literature or invented new fractals by

coding variations of existing fractals. Program users like yourself began sending

the programmers additional fractal types. At first the programmers accepted and

added to Fractint just about any new fractal type they received, but as time went

by, the criteria for acceptance became more selective and more orderly. In an

effort to reduce the number of fractal types, many of the algorithms were

consolidated under single, more general types. The present list of 95 fractal types

grew by this evolutionary process, driven by the enthusiasm of Fractint

aficionados around the world who continue to propose new types and new

program enhancements.



This chapter will help you find your way through this cornucopia of fractal

possibilities, and provide you with useful information along the way. In these

pages you will find:

4 Ideas for exploring fractal types and generating great images.

4 Details of how algorithms work (expecially helpful for the programmers

among you).

4 Source code reference—where to find the code that generates each type.

4 All-new examples, complete with a range of options and outstanding
colors.

4 Interesting historical tidbits.

SELECTING FRACTAl. TYPES AND ACCESSING HEl.P

You can access the SELECT A FRACTAL T’E screen from the MAIN MENU or by

pressing the command. You will then see the names of Fractint’s types on the

screen in alphabetical order by rows. The number of types has grown to the point

where Fractint can’t even show them all in one screen, so you’ll see (MORE) on

either the top or bottom of the screen, showing you which end of the screen is

hiding additional fractal types. You can use the or keys to jump to

the beginning or end of the the types list and see the hidden type names.

To select a fractal type, you can navigate around the SELECT A FRACTAL TYPE

screen using the arrow keys. You can also begin to type a fractal name, and

Fractint’s speedkey feature will jump the highlight to the first fractal name

matching the letters you have typed so far.

Fractint has a flexible help system that you can use to learn more about each

fractal type. While the SELECT A FRACTAL TviE screen is showing, pressing () will

take you to the SUMMARY OF FRACTAL TYPES help screen showing the mathematical

formula used by each fractal type. You can use the and keys to move the

blue-green highlight from type to type. Pressing while a type name is

highlighted will cause a hypertext jump to additional information for that kind

of fractal. Pressing BACKSPACE) backs up to the previous help screen. Pressing

exits the help system.

After you have selected a fractal on the SELECT A FRACTAL TYPE screen, pressing

will take you to the PARAMETERS FOR FRACTAL TYPE <Fractal Name> screen.

A fractal parameter is a number, function, or algorithm choice that affects how

the fractal is calculated and, therefore, changes the resulting fractal image. At the

242 CHAPTER 6



bottom of the PARAMETERS screen is a box containing the mathematical formula

for the fractal (the same formula you can also see in the SUMMARY OF FRACTAL TYPES

help screen mentioned above). You can look at the formula to see how the

parameters affect the fractal calculation. You can also just try different parameters

and see what happens to the image without worrying about the mathematics.

The default parameters are designed to give interesting images, so for initial

explorations you don’t need to change parameters. You can also access the fractal

type help information from the PARAMETERS screen by pressing (J.

FRACTAl. TYPE REFERENCE

To help you sort out the many fractal types available in Fractint, this chapter

divides the types into groups, and discusses each group separately. Table 6-1 lists

the fractal types alphabetically, and tells which section of this chapter covers each

type. Use this chart to look up any particular fractal type you would like to know

more about, and find out where it is discussed in the chapter. Don’t forget to also

consult the on-line help information discussed earlier in this chapter. The on-line

help contains a wealth of information about fractal types.

In this chapter, Fractal types are divided into Escape-Time Fractals, 3-D

Fractals, Bifurcation Fractals, Orbit Fractals, and Fractal Miscellania. This

division is more practical than theoretical, and is designed to help you find what

you are looking for. The 3-D Fractals section is where to look for all the types that

can make stereo images you can view with the red/blue glasses that came with

this book, even fractals that could be categorized differently.

In each of the sections below, you will find a brief discussion of the characteristics

of all the fractals in that section, followed by particular information about each

type. The mathematical formula used to generate the fractal is spelled out, along

with a guide to finding the code in the Fractint source on your book disk.

Escape-Time Fractals

The most widely known kind of fractal images are generated by the escape-time

method used to generate the historic first images of the famous Mandelbrot set.

For each pixel on your computer screen, the escape-time method generates a

series of orbit values by repeating, or iterating, a formula. For each iteration, the

new orbit value is checked against an escape criterion. If the criterion is met, the

computation is stopped and the screen pixel is colored according to the time it

took for the orbiting number to escape. The escape time is taken to be the number

of iterations required before the orbit value escaped.
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Table &1 Fractint’s fractal twes
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Table &1 Fractint’s fractal twes (continued)
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Table &1 Fractint’s fractal twes (continued)
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The term “escape” was first applied to the escape-time algorithm because the

escape criterion was a test for the orbit value exceeding a “threshold of no return.”

For example, the Mandelbrot set is generated by iterating the formula z = z2 +

c, and testing whether IzI> 2. It is possible to prove that once IzI> 2, further

iterations of the Mandelbrot formula will result in larger and larger orbit values

diverging to infinity. The orbit values are like a rocket that has reached escape

velocity of the solar system; the rocket will then head for the reaches of infinite

space, never to return. When the escape criterion is a test for the magnitude of

the orbit value exceeding a threshold value, we call the fractal an “escape-timeto-infinity”
fractal.

The idea of escape time works just as well when the orbit “escapes” to some

finite point rather than infinity. You might imagine our intrepid space explorers

wandering too near a black hole and being swallowed up. The “escape” criterion

would be the rocket’s venturing inside the famous Schwarzschild radius. Once

inside, there is no return and, indeed, the rocket is no longer even visible to the

outside universe. Perhaps “capture time” is more apt than “escape time,”

especially if you don’t like the idea of your space ship being swallowed by a black

hole! Nevertheless, we’ll call these fractals “escape-to-finite-attractor” fractals.

Escape-time fractals form the bulk of Fractint’s types. We have divided them

into Mandelbrot/julia pairs, Mandelbrot/julia Generalized, Escape Time to

Infinity, Escape Time to Infinity Generalized, 4-D Escape Time, Escape Time to

Finite Attractor, and User-Defined Escape Time.

Mandeibrot/Julia Pairs

In a special sense,the classic Mandelbrot set is a catalog of all the Julia sets. Both

share the formula z = + c, but they use the formula in different ways. In the

Mandelbrot calculation, the variable c is mapped to the pixels on your computer

screen. On the other hand, eachJulia set is formed using a fixed c, and the initial

values z that begin the iteration process are mapped to your screen. Therefore,

a pixel in a Mandelbrot image represents a particular value of c that can in turn

be used to generate a whole Julia image.

From the beginning of its development, Fractint has used the (ACEp4) key

to let you explore this MandelbrotfJulia relationship. Now in Fractint version 18,

this capability has been greatly enhanced. Press (I) to get the SELECT A Fia

TYPE screen, and select type mandel. Generate an image by pressing a function

key to select a video mode (such as for the 640 x 480 x 256 SVGA

video mode) or by pressing if you have already selected a video mode.

When the image is complete, press (SPACEBAR). A cross hair will appear on the
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screen, and a window will open in the lower right-hand side of your screen. This

window contains the outline of the Julia set corresponding to the point on the

Mandelbrot set where the cursor is pointing. You can move the cursor around the

screen using the mouse or the arrow keys and instantly see how the Julia set

changes. But there’s more fun—when you have found an interestingJulia outline,

press (SPACEBAR) again, and a complete full-screen Julia image will be generated.

Presslrlg(SPACEBARj again takes you back to the Mandelbrot image. (Fractint doesn’t

store the image but will regenerate it—fortunately, this calulation is very quick.)

Finally, press (SPACEBAR) one more time and the cross-hair cursor will reappear at

its previous location.

When the Julia is on the screen, pressing takes you back and forth between

the classic escape-timejulia set and thejulia_inverse type set which generates the

Julia outline that you saw in the small window below the Mandeibrot display.

(The Julia_inverse type is documented later in this chapter in the Orbits Fractals
section.)

So far we have discussed the classic Mandelbrot and Julia sets, which are

generated using Fractint’s mandel and julia fractal types. Dr. Michael Bamsley,

in his book Fractals Everywhere (Academic Press, 1988), points out that fractals

created using other formulas have this same “Mandelbrot/julia” relationship.

Suppose a fractal is generated with the formula z = f(z) + c, where f(z) is some

function of z, say z2 + sin(z). Then the “Mandelbrot” in the general sense would

be created by assigning different values of c for each screen pixel, and the “Julia”

set could be created by fIxingc and initializingz for each screen pixel,just as with

the classic Mandelbrot and Julia sets. For the rest of this chapter, we will adopt

Dr. Barnsley’s terminology, and use “Mandelbrot” and “Julia” to refer to these

more general types, and not just types mandel and julia.

You can also explore these general Mandelbrot/julia pairs using the (SPACEBAR)

key. The only difference is that the window showing theJulia outline has not been

implemented for any types except mandel and julia. To try this, press and

select any of the Mandelbrot types in this section. (For example, try Fractal type

bamsleyml.) Press c$PACEBARJ, and you will see the cross-hair cursor, but noJulia

window. (If you do not see a cross-hair cursor, then the type you selected is not

a Mandeibrot type.) Pressing c$PACEBARJ again takes you to the Julia variant

corresponding to the point on the Mandelbrot where the cursor was pointing.
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Bamsleym 1

Category: Mandeibrot/julia Pair

This type is the Mandeibrot variant corresponding to fractal type bamsleyj 1. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.

Example:

Hot_Silk! { ; Fractal Flag

; (c)1992 Peter Moreland 100012,3213

reset typebarnsleymi passest

corners—1 .907569/—i .35147/0. 369773/—0.37169/—i .351 47/—0.371 69

bailouti2i23 decomp=256 periodicity=—256

colors=000gOJ<56>i Oyi OyOOzOOzi 1 y<77>vv4ww3xx2yy2yyi zz0<83>zi OzOOzOOyOi <22>hO\

}

Formula: Initialize: c = z = zpbcel

Iterate: (z — 1)c if x >= 0
(z+1)c ifx<=0

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_mandel_per_pixel,() FRACTALS.C

Integer math orbit BamsleylFractalO FRACTALS.C
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Code: Routine Type Routine Name File

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit BamsleylFPFractalO FRACTALS.C

Barnsleyj 1

Category: Mandelbrot/julia Pair

This type is the Julia variant corresponding to fractal type bamsleyml. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.

Example:

Mirror, Mirror! { ; (c) Peter Moreland 100012,3213

reset type=barnsleyjl corners=—1.3564493/—1.2725469/0.717811/0.7807173

params=0.1414/1.79 float=y maxiter=32000 bailout=100 decomp=256
colors=00000eOeOOeeeOOeOeeLOeeeLLLLLzLzLLzzzLLzLzzzLzzz000555<3>HHHKKK000SSS\

WWW_c c chhhmmms ss z z zOOz<3>z0z<3>zOO<3>zz0<3>OzO<3>Oz z<2>OGzVVz<3>zVz<3>zVV<\
3>zzV<3>VzV<3>Vzz<2>Vbzhhz<3>zhz<3>zhh<3>zzh<3>hzh<3>hzz<2>hlzOOS<3>SOS<3>S0\

0<3>SSO<3>OSO<3>OSS<2>O7SEES<3>SES<3>SEE<3>SSE<3>ESE<3>ESS<2>EHSKKS<2>QKSSKS\

S KQS KOS KMS KK<2>SQKS S KQSKOS KMS KKS K<2>KSQKS S KQS KOS KMS OOG<3>GOG<3>G00<3>GGO<3>0\

G0<3>OGG<2>04G88G<2>E8GG8GG8EG8CG8AG88<2>GE8GG8EG8CG8AG88G8<2>8GE8GG8EG8CG8A\

GBBG<2>FBGGBGGBFGBDGBCGBB<2>GFBGGBFGBDGBCGBBGB<2>BGFBGGBFGBDGBCG000<6>000

}

Formula: Initialize: z = zpbcel

Iterate: (z— 1)c, if x >= 0

(z+1)/c, ifx<O
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit BamsleylFractalO FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit BamsleylFPFractalO FRACTALS.C

bamsleym2

Category: MandelbrotfJulia Pair

This type is the Mandelbrot variant corresponding to fractal type bamsleyj2. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.

Example:

rhs249 { ; (c) Richard Sherry Aug 8, 1992 76264,752

reset type=barnsleym2 corners=—O.271995/O.272007/O.75088/1.158889

params=1/—O.06 maxiter=500 inside=O potential=255/1000/1

colors=000’O<28>FF000F<62>OOzOOzOOy<61>OOF FFO<61>zzOzzOyyO<31>aaO

)

Formula: Initialize: c = z = zpixel

Iterate: (z— 1)c ifxy+xy>= 0

(z+ 1)c ifxy+xy<0
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_mandel_per_pixel,() FRACTALS.C

Integer math orbit Bamsley2FractalO FRACTALS.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit Bamsley2FPFractalO FRACTALS.C

barnsleyj 2

Category: MandelbrotfJulia Pair

This type is the Julia variant corresponding to fractal type bamsleym2. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.

Example:

food_chain { ; Jonah’s View?

; BG Dodson 1993 71636,1075

reset type=barnsleyj2 corners=—31.99/20.4736/—20.174345/19.173355

params=0.6/1.1 maxiter=20 bailout=22 inside=bof60 outside=summ

invert0. 5/0.0533337/0

co lors=000hhO<1 4>330000003<1 4>OOr<1 5>000<1 5>rOO<1 5>000<1 5>Opp<1 4>044000222<1 \

4>hhh<1 4>333000000<26>00701 7037<1 3>4S4<1 3>2A22921 71151131000<1 5>rAr<1 5>000<1 \

4>ee0

}
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Formula: Initialize: z = zpixel

Iterate: (z — 1) C fx,,y + xy>= ‘
(z + 1) C if xy + xy <0

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization long_julia_per_pixel() FRACTALS.C

Integer math orbit Bamsley2FractalO FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit Bamsley2FPFractalQ FRACTALS.C

bamsleym3

Category: MandelbrotfJulia Pair

This type is the Mandelbrot variant corresponding to fractal type bamsleyj3. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.

Example:

AeolisAndJanus { ; 00:06:40.46

; ... from JMSOI:PigSnoutFace

reset typebarns leym3 corners=3 .320626/—2.679374/—4 4/4.4/—2.679374/4.4

maxiter32767 bailoutló outside=real logmap=yes invertl/0/0
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colors=000840<13>zXO<15>000<15>ut0<15>000GA4<12>2vlOzOOwO<14>000<15>OOz<14>0\

00<1 6>zOX<1 5>000<1 5>p0w<1 5>000<1 5>zzz<1 5>000LOO<1 3>zOO<2>pOOlOOhOOdOOaOO<9>0\

00420

:>

Formula: Initialize: c = z = zpixel

Iterate: x2 —y2 — 1 + i2xy if x> 0

x — y — 1 + x x + i(2xy + y x) if x, <= 0

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjnandel_per_pixel,() FRACTALS.C

Integer math orbit Bamsley3FractalO FRACTALS.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit Barnsley3FPFractal() FRACTALS.C

barnsleyj3

Category: Mandeibrot/Julia Pair

This type is the Julia variant corresponding to fractal type barnsleym3. The

formula is taken from Dr. Michael Bamsley’s book Fractals Everywhere.
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Example:

Fractal_Angel??? { ; Most bizzare.

; BG Dodson 71636,1075

reset type=barnsleyj3 corners=—31 .99/31.989999/—23.992556/23.992536

params=0. 1/0.36 maxiter=32000 insidebof6l potential=255/200/32000

invert=7.99752/0/0

colors=000zg3<44>v31 v21 uOO<4>tOOtOOtOOsOOsOOsOO<34>gOOgOOfOOeOO<5>dOOcOOcOOb\

OObOO<82>644644544444<57>yyyzzzzzzzzzzzzzzz

:>

Formula: Initialize: z = zpixel

Iterate: x—y—1 + i2xy. if x.> 0

x—y— 1+ i(2xy+yx), if x <= 0

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit Bamsley3FractalO FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit Bamsley3FPFractalO FRACTALS.C

Cmplxmarksmand

Category: MandelbrotfJulia Pair
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This type is the Mandeibrot variant corresponding to fractal type cmplxmarksjul.

The formula is from Mark Peterson. Note the exponent. Complex number

exponents often introduce interesting discontinuities in fractals. If the exponent

p is real, this type reduces to type marksmand.

Example:

YosemiteSunrise { ; 00:01:05.63

; 26 dec 92 .. caren park

reset type=cmpl xma rksmand passes=t

corners=—0.761978/0.934022/—1 .207056/0.064944 params=0.4/1/5/2 floaty

maxi ter=500 i nside=maxi ter potenti a 1=255/50/500 periodi ci ty—1

colors=000zjO<6>zx0zz0zzl<29>zzxzzzzzz<61>zVlzUOzUOzTO<28>zlOzOOzOOyOO<30>cO\

Obllall’22_22<23>GEEFFFFFFFFF<29>xllzOOzlO<21>zhO

:>

Formula: Initialize: c = z = zpixel

Iterate: z2 + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization MarksCpLxMandperp FRACTALS.C

Floating point orbit MarksCpLxMand() FRACTALS.C
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Cmplxmarksjul

Category: MandelbrotfJulia Pair

This type is the Julia variant corresponding to fractal type cmplxmarksmand. If

the exponent p is real, this type reduces to type marksmand.

Example:

Keyboard_madness { ; An ergonomic nightmare (c)1992 Peter Moreland

reset type=cmplxmarksj ul

corners9.592494/8.9412748/—I .074353/—0 - 3477897/9.0093047/—0 .2967673

params=1/3/1.1/2 float=y maxiter=30000 bailout=250 inside=256

outs I de=mu It

colors=000554<8>’mF<2>diDfgChfBjdBkbA<3>rX6<4>Y6h<5>b5kb5lc5lc5md5ne4nf4oH6z\

CDc7LH<8>FO’GPcHPeIQhJQjKRm<5>Udr<9>600<8>IYSKaTKaT<21>bcLbcLbbM<8>YXU<3>DHb\

<3>vSj<5>bP9dFLf4X<5>RcuReuShv<30>UenUemUemUelUel<21>KfS_99<15>xllzOOzlO<29>\

zxOzz0zzl <7>103

)

Formula: Initialize: z = zpixel

Iterate: z2c (p-i) +

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit MarksCpLxMand() FRACTALS.C
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Mandel

Category: Mandeibrot/Julia Pair

This type is the Mandeibrot variant corresponding to fractal typejulia. This is it—

the one and only Mandelbrot set! Discovered by Benoit Mandelbrot.

Example:

The_Great_Divide { ; Bridge that gap with... .(C)1992 Peter Morelandl000l232l3

reset type=mandel

corners=—7.079179/—3 .838073/—3. 277214/4.310403/—9.554437/0.02313

params=5/—O.555 floaty maxiter=30333 bailout500 fillcolor=9

inside=256 decomp=256 periodicity=—1

colors=00031 1522343642334534356654931 D31962D52964D74784A83D92FC2A95D95BC\

5ED54799795ACA9ADA9AD9ED9AADDBDADEEDDG3I H62L72H74L75P75HA3L931D3LF3H95LA\

5HD6LD6QC6HB8LB8ID9ME9HACHEDLEDPB8SB9PE9TE9QFCUFCFG6EHBJG3MG3IG6MH5NK6PI\

3UH3RK3TL3PI4TH6QL5TM5UO6IH9MHAIKAMLAIHEMIDILDMLEQHATHAPLAULAPIDTIDQLEUL\

EMPESPC37J5EJCEI4ESAEQIEIPFJHEO6GMEHKFPM6IR9KTCPUIHHLIHJLIMLHHILLILHKMML\

LRLILPKTPKJ LQQMQLPSRRRXE6XDAYL5YQ6dP6YKDdKCZPDeRCZMHdMIYPI • PIXTIaSJ XQLaQ\

LXTMaTLeRLYMRZTQfTQkTNIURUXJUXSYWEfXA_YMdXN’XTfYTecSmXUIfS4FW6IX8MX9OZJN\

XRNXMQYSTZKRdRVcYUYfUYUX UYe_Z_eYXi YXe Xh YeZ i Y ea ia ac_gd Z ffafadhgf\

gn’Zsa_nd’tcanbdsbdnffuffikinlitliZbkdbkafmfinaisnjlujkhlqimsllmplmnompo\

mmmpqnpmoqppqunprtruupnptwrtqtxutuxtuxwutvyyvwuxzzzz<24>zzz

}

Formula: Initialize: c = z = zpixel

Iterate: z = z2 + C
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Code: Routine Type Routine Name File

C fractal engine StandardFractactalQ CALCFRACT.C

ASM integer math fractal engine calcrnand() CALCMAND.ASM

ASM floating point fractal engine calcmandfpO CALMANFP.ASM

Integer math initialization mandel_per_pixel() FRACTALS.C

Integer math orbit MandelFractalQ FRACTALS.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit MandelfpFractalO FRACTALS.C

Julia

Category: MandelbrotfJulia Pair

This type is the julia variant corresponding to fractal type Mandelbrot.

Example:

saiOO3 { ; Cc) 1993 Richard H. Sherry CIS:76264,752

reset=1732 type=julia passes=b corners=—2.O/2.000012/—1.499989/1.5

params=—7.15255737304688e—007/1.99 maxiter=256 fillcolor=241

inside=—100 outside=summ logmap=yes potenti a 1=255/500/25

periodi ci tyO

colors=000eZM<16>xo’zpaypa<13>kcRibRibR<14>UPFIII<29>ppp<31>000PFF<29>xe\

DzfCyfC<30>PFFOAO<1 5>ZcO<1 4>OAO<1 5>ZcO<1 5>OAOSNC<1 1>dYM

}

FRACTAL TYPES 259



Formula: Initialize: z = zpixel

Iterate: z2 + C

Code: Routine Type Routine Name File

C fractal engine StandardFractactalO CALCFRACT.C

ASM integer math fractal engine calcmand() CALCMAND.ASM

ASM floating point fractal engine calcmandfp() CALMANFP.ASM

Integer math initialization julia_per_pixel() FRACTALS.C

Integer math orbit JuliaFractalO FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit JuliafpFractalO FRACTALS.C

Mandel4

Category: MandelbrotfJulia Pair

This type is the Mandelbrot variant corresponding to fractal type julia4. It is a

simple generalization of the Mandelbrot formula, using the fourth power instead

of a square in the formula.

Example:

sacO3O { ; Cc) Richard H. Sherry 1993, CIS:76264,752

reset=1731 type=mandel4

come ms—1. 259916/—I. 109256/0. 100439/—0. 100434/—I. 109256/—0. 100434
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maxiter=256 insideO logmap=yes potential=256/250/50 biomorph=O

periodi ci ty=O

colors=000TTT<1 6>000PF F<52>uuE_NE<8>PF FOAO<1 5>ZcO<1 4>OAO<1 2>SY0000<1 7>OO\

OSNC<3>WQF000<2>000aVJ <3>eZM000<2>000kcR<3>ogU000<2>000ulY<2>xo 000<3>OO\

OulZtkYsjX000<3>000meTldSkcRibR<5>dZN000<9>222333555<26>nnnpppooo<12>UUU

}

Formula: Initialize: c = z = zpbcel
Iterate: z = z4 + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Integer math orbit Mandel4FractalQ FRACTALS.C

Floating point orbit Mandel4fpFractalO FRACTALS.C

Julia4

Category: Mandelbrot/julia Pair

This type is the Julia variant corresponding to fractal type mandel4. It is a simple

generalization of theJulia formula, using the fourth power instead of a square in
the formula.

FRACTAL. TYPES 261



Example:
Julias Jewels { ; These would be *very* nice to own!

reset type=juli a4 corners=0.43594/0. 565764/—0.4706169/—0.3732543

params=0.6/0. 55

colors=000exG<2>dyD<3>qd’<6>jdYmG8<3>pAA<16>3BNOCOOCO<36>MYsNZtNZtOZt<34>phq\

qi pphp<33>ABM

}

Formula: Initialize: z = zpbcel

Iterate: z = z4 + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization julia_per_pixel() FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Integer math orbit Mandel4FractalQ FRACTALS.C

Floating point orbit Mandel4fpFractalO FRACTALS.C

Manzpower

Category: Mandelbrot/julia Pair

This type is the Mandelbrot variant corresponding to fractal type juLzpower. This

type is a generalization of the Mandelbrot formula, using an exponent of z that can

be a complex number. If m = (2,0), this type reduces to the classic Mandelbrot.
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Example:

TheyWentThat_A_Way { ; (c)1992 Peter Moreland 100012,3213

reset typemanzpower

cornersó.13366561/6.13069422/21.2647339/21.2103975/6.15867736/21.2313848

params=11/6/4.555/12.666 float=y maxiter=32000 bailout=100 inside=255

potentiat=255/128/0 decomp25ó biomorph=0

cotors=LSUcio<128>KQUJQUJQUJPUJPUIPU<11)FMUFLUFLUEKUEKUDJV<2)BLSAMR9MQ8MP6KM\

<58>inujovinu34>cio

}

Formula: Initialize: c = z = zpL’cel

Iterate: z’ = zm + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longmandel_per_pixel() FRACTALS.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Integer math orbit longZpowerFractalQ FRACTALS.C

Floating point orbit floatZpowerFractal() FRACTALS.C

Julzpower

Category: Mandelbrot/julia Pair
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This type is the Julia variant corresponding to fractal type manzpower. This type

is a generalization of the Julia formula, using an exponent of z that can be a

complex number. If m = (2,0), this type reduces to the classic Julia.

Example:

decomp32 { ; An inverted decomposition julia using z=zA7+c

; Paul Dickins

reset type=julzpower corners=—1.834286/1.834286/—1.375714/1.375714

params=—O.434234481334931/O.966090025277329/7 float=y maxiter=44

invert=O.77/O/O decomp=32

colorszzzzNOOXzOOzNf000zNfOzX0000zzzD3z0000eeOe000e000zzz<9>zV_zRYzOVzKTzHQ\

zDN<4>oBKmBJ kBI i AHgAGe9G<2>Z8D

}

Formula: Initialize: z = zpt’cel

Iterate: z = zm + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Integer math orbit longZpowerFractalQ FRACTALS.C

Floating point orbit floatZpowerFractal() FRACTALS.C
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Manzzpwr

Category: Mandeibrot/julia Pair

This type is the Mandeibrot variant corresponding to fractal type juLzzpwr. This

type was first explored by Clifford Pickover. The example is from the “face” series

created by Dick Sherry, Peter Moreland, and Dan Farmer.

Example:

CutPaperl { ; From “EVIL” By Dick Sherry, via SMOKIE by Peter Moreland

; Dan Farmer

reset type=manz zpwr

corners=—1.1503476/—1.0993901/—O.002827848/—O.058661504/—1.0993901/—O.058550\

457 params=O.1/O/2 float=y maxiter=32000 inside0 decomp=255

colors=000<1 26>OOyOOzOOy<1 25>000

}

Formula: Initialize: c = z = zpbcel

Iterate: z = Zz + Zm + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit IloatZtozPluszpwrFractal() FRACTALS.C
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Julzzpwr

Category: Mandeibrot/julia Pair

This type is the Julia variant corresponding to fractal type manzzpwr. This type

was first explored by Clifford Pickover.

Example:

sacOló { ; Cc) Richard H. Sherry 1993, CIS:76264,752

; V17.32

reset=1731 type=julzzpwr

corners=2 .55567/—2.76433/—3.546667/3. 546667/—2.76433/3.546667

params=O.O1O1O1/O.0707/3 float=y maxiter=256 inside=O logmap=yes

potential=256/200/75 periodicity=O

colors=000XbO<14>OAOSNC<6>ZTH000<54>000111333<28>ppp<31>000PFF<29>xeDzfC\

yfC<30>PFFOAO<1 5>ZcO<1 4>OAO<1 5>ZcO

}

Formula: Initialize: z = zpbcel

Iterate: z = z + zm + C

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization otheijuliafp_per_pixel() FRACTALS.C

Floating point orbit floatZtozPluszpwrFractal() FRACTALS.C
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Mandellambda

Category: Mandeibrot/Julia Pair

This type is the Mandeibrot variant corresponding to fractal type lambda.

Example:

CoralAtolls { ; 00:03:27.29

; 26 nov 92 . caren park

reset type=mandellambda

corners=—1.01561762/—1.00898082/0.10249492/0.10747252 params=0.1/0.2

float=y maxiter=5000 bailout=8000 inside=maxiter periodicity=—1

colors=000703<1 4>zOX<1 5>000<1 5>p0w<1 5>000<1 5>zzz<1 5>000LOO<1 3>zOO<2>pOOlOOhO\

OdOOaOO<9>000<1 5>zXO<1 5>000<1 5>utO<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>O\

00301

}

Formula: Initialize: c = z = zpbcel

Iterate: cz (1 — z)

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Integer math orbit LambdaFractal() FRACTALS.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit LambdaFPFractal() FRACTALS.C
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Lambda

Category: Mandelbroiljulia Pair

This type is the Julia variant corresponding to fractal type mandellambda.

Example:

Really? { ; 00:01:27.27

; 19 dec 92 . - caren park

reset type= lambda corners=0.00437346/0.00645346/0.07547513/0.07701662

params=1.00000000000005/0.2 float=y maxiter500 inside=maxiter

colors=000KOA<4>000<1 5>p0w<1 5>000<1 5>zzz<1 5>000LOO<13>zOO<2>pOOlOOhOOdOOaOO<\

9>000<1 5>zXO<1 5>000<1 5>ut0<1 5>000GA4<1 2>2v1 OzOOwO<1 4>000<1 5>OOz<1 4>000<1 6>zO\

X<9>OOC

}

Formula: Initialize: z = zpbcel

Iterate: cz (1 — z)

Code: Routine Type Routine Name File

Fractal engine StandardFractactal() CALCFRACT.C

Integer math initialization julia_per_pixel() FRACTALS.C

Integer math orbit LambdaFractal() FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit LambdaFPFractal() FRACTALS.C
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Magnetim

Category: Mandeibrot/julia Pair

This type is the Mandeibrot variant corresponding to fractal type magnetlj.

These fractals are based on formulas related to the study of magnetism.

Example:

The_Stargate { ; The monolith should be here somewhere? (c)1992 Peter M.

reset type=magnetlm passes=b

corners=—15.976545/—12.5556/—O.799068/—3.116968/—11.998739/—3.812038

params=1.76/4 maxiter=32000 bailout500 fillcolor=9 inside=zmag

potential255/511/O decomp=256

colors=0009TU<35>9Im9ImAHnBHnCHnWGuDGo<19>WBu’ot<21>WCuv’I<21>XCtGSG<43>WBui\

NG<16>WBsJyI<11)VEr4Yf<46)WBupuI<9>XFrJ5S<9>N7Z

}

Formula: Initialize: z = 0, c = zpixel

Iterate: z = ((z2 + (c — 1))/(2z + (c — 2)))2

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit Magnet iFractalO FRACTALS.C
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Magnet lj

Category: Mandeibrot/Julia Pair

This type is the Julia variant corresponding to fractal type magnetim.

Example:

OctopusBreast { ; 00:30:23.96

; 05 dec 92 caren park

reset type=magnetlj corners=—4.218291/2.565709/—2.544/2.544

params—0.2/0.4 float=y maxiter=500 inside=maxiter periodicity0

colors=000dce<4>nrt<15>014<6>eYIg_KiaMkcOneQ<4>zp’<4>jdVgaUcZS’WRYUQ<6>AAJ<3\

>ALPAORARTBUVBXX<6>DqkDtmCqk<5>8Xb7T I 9Q_<5>L4Q<8>VHH<5>rH4vHl zHOvHl <7>SDE<3>\

N3ILOJLI JM2JN3JO4I<10>tq2wu0zz0ww0<6>”8YY9XVA<6>KAIMAJOAL<12>ziE<13>K8B4120\

00<15>svbsvbsvbsvb<13>UMGSJEQII<5>EAa<6>7Nt5Pw5Nt<5>A5b<2>D6WheTG8R<2>KBK000\

OEJ<7>b ‘b

}

Formula: Initialize: z =zpixel

Iterate: z = ((z2 + (c — 1))/(2z + (c — 2)))2

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit Magnet iFractalO FRACTALS.C
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Magnet2m

Category: Mandelbrot/julia Pair

This type is the Mandelbrot variant corresponding to fractal type magnet2j.

These fractals are based on formulas related to the study of magnetism.

Example:

BirdAndWaves { ; 00:01:03.22

14 dec 92 .. caren park

reset type=magnet2m passes=t

corners=—1 .325065/—0.821314/—0. 2477821—0.3197466/—I .1091 72/—0. 5356402

params=0.8/1 float=y maxiter=500 inside=—100 outside=real logmap=yes

decomp=32 periodicity=—1

colors=7Nu5Px<5>98fA5cB5 I <3>G8SH9QIAQ<4>SKP<3>_VZ Y b cdcf<4>nru<1 5>015<6>eY\

Jg_LiaNkcPneR<4>zpa<4>jdWgaVcZT’WSYUR<6>AAK<3>ALQAOSARUBUWBXY<6>DqlDtnCql<5>\

8Xc7Ta9Q’<5>L4R<8>VHI<7>zHO<8>SDF<3>N3JLOKLIKM2KN3KO4J<12>zz0<7>”9YYAXVB<6>\

KAJMAKOAM<12>ziF<13>K8C413000<15>svcsvcsvcsvc<4>jiWhfUfdTebS<4>YRKWPJUMHSJF<\

6>EAb<5>8Lr cyclerange=0/255

}

Formula: Initialize: z = 0, c = zpixel

Iterate: z’ = ((z3 + 3(c — 1)z + (c — 1)(c — 2))!

(3z2 + 3(c—2)z+ (c— 1)(c—2) + 1))2

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit Magnet2FractalO FRACTALS.C
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Magnet2j

Category: MandelbroilJulia Pair

This type is the Julia variant corresponding to fractal type magnet2m.

Example:

Magnet2j { ; Tim Wegner

reset=1822 type=magnet2j passes=1
corners—14. 01345/14 01345/—10. 51009/10. 51009

params=2 .013166162661 2556/0.00979899521 44952319 f loat=y

periodi ci ty=0
colors=000<5>eee<1 5>XXXWWWWWWWWW<6>SSSRRRRRRRRRQQQZZZ<4>YYYXXXXXXWWWWWW<\

17>QQQQQQQQQQQQQQQQQQ<7>QQQeeeddddddbbbbbbbbb’<lS>QQQnnnmmmlllllllllkk\

kj jjj j j<4>gggfffffffff<6>bbbQQQ<7>RRRRRRQQQRRRQQQRRR<14>QQQAAA<12>000LLL\
<7>NNNNNNNNN000000000<5>QQQBBB<2>DDDEEEEEEEEE<3>GGGHHHHHHHHH<5>KKKLLLLLL\

LLL<3>NNN000000000<3>QQQnnn<3>UUU 111<1 7>NNNNNNNNNNNN000000<5>QQQ

cyc lerange=2/255
}

Formula: Initialize: z = zpixel

Iterate: z’ = ((z3 + 3(c — 1)z + (c — 1)(c — 2))!

(3z2 + 3(c-2)z+ (c— 1)(c—2) + 1))2

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit Magnet2Fractal() FRACTALS.C

272 CHAPTER 6



Mandphoenix

Category: Mandelbrot/julia Pair

This type is the Mandelbrot variant corresponding to fractal type phoenix.

The phoenix type defaults to the original phoenix curve discovered by

Shigehiro Ushiki.

Example:
sacOO3 { ; Cc) Richard H. Sherry 1993, CIS:76264,752

; V17.32

reset=1731 type=mandphoenix corners=—2.5/1 .500012/—2.552616/0.447372

params=0.5/1.3/—3 maxiter=256 inside=0 outside=imag logmap=yes

periodi ci ty=0

colors=000CBCCABC8AD79<40>qe8qe8pd8<45>KAAKAALBA<41>sg8sg8rf8<40>K9B<1 5>\

zzó<14>MFA96G<1 5>B_ZCa ‘Bb’ Aca9da8da<21>CCD

}

Formula: Initialize: c = zpixel , z = 0, w = 0

Iterate: For degree ofz = 0: z’ = z2 + c, + cw, w’ = z
For degree of z >= 2: z’ = + + cw, w’ = z

For degree of z <= —3: z’ = + cI&rI2 + cw, w’ = z
Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization longphoenix_per_pixel() FRACTALS.C

Integer math orbit LongPhoenixFractalO FRACTALS.C
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Code: Routine Type Routine Name File

Floating point initialization phoenix_per_pixel() FRACTALS.C

Floating point orbit PhoenixFractal() FRACTALS.C

Floating point orbit Magnet2Fractal() FRACTALS.C

Phoenix

Category: MandelbroilJulia Pair

Thistype istheJuliavariantcorrespondingto fractal type mandphoenix. The phoenix

type defaults to the original phoenix curve discovered by Shigehiro Ushiki.

Example:

Wolf { ; Jonathan Osuch

reset type=phoenix corners=—1.557441/2.234555/—1.422003/1.421998

params=—O.75078049362069/1.40200999374372/2 inside=O

)

Formula: Initialize: z = zpixel, w = 0

Iterate: For degree of z = 0: z’ = z2 + c, + cw, w’ = z

For degree of z >= 2: z’ = + + cw, w’ = Z

For degree of z <= —3: z’ = Z?CdI + +cw, w’ = z
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_phoenix_per_pixel() FRACTALS.C

Integer math orbit LongPhoenixFractal() FRACTALS.C

Floating point initialization phoenix_per_pixel() FRACTALS.C

Floating point orbit PhoenixFractal() FRACTALS.C

Manowar

Category: Mandelbrot/julia Pair

This type is the Mandelbrot variant corresponding to fractal type manowarj.

Example:

t16097 { ; Jon Homer

reset type=manowam corners=—2.5/1.500012/—1.500014/1.5 inside0

invert=02/O.2/O.2 decomp=128

colors=000JOO<8>200000001<30>OOz<30>002000100<30>wPF<30>211000101<29>_0_a0a’\

0<28>1010001 00<30>wOO<20>L00

}

Formula: Initialize: c = m = z = zpixel

Iterate: z’ = z2 + rn + C

rn = z
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Integer math orbit ManOWarFractalO FRACTALS.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit ManOWarfpFractalO FRACTALS.C

Manowarj

Category: Mandelbrot/julia Pair

This type is the Julia variant corresponding to fractal type manowar.

Example:

t16142 { ; Jon Homer

reset type=manowarj corners=—5 .803056/9.808064/—7.758382/3.949979

params0/0.01 inside=O invemt=0.3/0/0 periodi ci ty4

colors=000KET<2>EAb<6>7Nu5Px5Nu<5>A5cB5 I <6>KBLMCIOEK<3>WQUYSX_VZ ‘Y ‘<6>nru<4>\

ggdfeadbYb’U<7>015<5>bVHeYJg_LiaN<6>zpa<4>jdwgaVcZT’WSYUR<6>AAK<4>AOSARUBUWB\

XYB_Bba<5>Dtn<6>8Xc7Ta9Q’<5>L4R<8>VHI<7>zHO<7>WEDSDFRAG<2>N3JLOKLIKM2KN3KO4\

J<12>zz0<7>”9YYAXVB<6>KAJ<4>VBQXBS_CUbCV<6>zEe<15>000<15>svc<14>XOBVL9UKC<3\

>MFP

}
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Formula: Initialize: rn = z = zpixel

Iterate: z’=z2+rn+c;

rn = z;

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization julia_per_pixel() FRACTALS.C

Integer math orbit ManOWarFractalQ FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit ManOWarfpFractalO FRACTALS.C

Marksmandel

Category: Mandelbrot/julia Pair

This type is the Mandelbrot variant corresponding to fractal type marksjulia. The

formula was proposed by Mark Peterson.

Example:

Transmitter { ; More fun, ready to zoom. Peter Moreland

reset type=marksmandel corners=—1 .236413/—I .466042/O.088695/—O.083512

params=O.8/O/—I

colors=0000aq<5>XQIYOkYKj<21>ejpekpfor<14>’Wd_UcX8BX8AW89Z54<26>5fjNOODYOIyq\

3pn4gk5Zh5Sg<38>D7ZD6ZC4a<I 9>EHACG7EH9

}
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Formula: Initialize: c = z = zpixel

Iterate: - 1) + c

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Integer math orbit MarksLambdaFractal() FRACTALS.C

Marksjulia

Category: Mandelbrot/Julia Pair

This type is the Julia variant corresponding to fractal type marksmandel. The

formula was proposed by Mark Peterson.

Example:

SEASLUG {

reset=1611 type=marksjulia passes=1 corners=—2.O/2.O/—1.499983/1.5

params=O.1/09 maxiter=1023 inside=O symmetry=none

colors000F4E<11>7DdG66<8>ltHmsmIDB<3>MxbJ79<6>YobH25<18>DWLCYME6E<3>lUm\

<18>fgzcwh_JQ<22>XpZWr_YDg_EkH26<21>GO_FPaH58<1O>CvoI5ó<9>TrMMBA<4>kxaJ4\

9<4>YKXG5B<4>7TeI35<16>IcGJI6<13>vARI26<20>r’fH25<20>QQ2HI7G29G3B

}
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Figure 6-1 A fractal type parameters screen

Formula: Initialize: z = zpixel

Iterate: ‘ + c

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization julia_per_pixel() FRACTALS.C

Integer math orbit Marksl2mbdaFractal() FRACTALS.C

Mandeibrot/julia Generalized

Originally Fractint had only two fractal types: mandel and julia. Every time your
authors saw an interesting fractal formula in a book or magazine, they coded it
into Fractint, and the types proliferated. Then with the advent of Fractint’s user-
defined formula type (described later in this chapter), Fractint’s clever users
began inventing new fractal types in massive numbers. Formulas were proposed
using permutations and combinations of functions, such as sin + sin + c, sin + cos
+ c, sin + log + c, and so forth. You get the idea! To defend Fractint from a 100-
page-long Fractal Types screen, the programmers designed a way to build
variable functions into types. This way hundreds of proposed fractal types can
be combined to a single type.

To see how this works, consider type lambdafn. The iterated formula is z’ =
cfn(z). The trick is that after selecting the type, you can use the PARAMETERS FOR
FRACTAL T’E screen to assign a particular function to fn. Figure 6-1 shows a
typical parameter screen. You can use the arrow keys to move the highlight to
the line labelled FIRST FuNcrIoN. Then use the or key to cycle through the
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Table 6-2 Function variable values

possible functions. There is also a speed key feature: if you repeatedly press a

letter key, the function variable field will cycle through the functions beginning

with that letter. For example, repeatedly pressing causes the FIIsT FuNcrIoN

field to cycle through sin, sinh, and sqr.

The possibilities for fn(z) include all of these functions: conj, cos, cosh, cosxx,

cotan, cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh, and zero.

Depending on which of these functions you select, the actual iterated formula will

be z’ = cconj(z), z’ = ccos(z), z’ = ccosh(z), and so forth, with “fn” replaced by one

of the functions to create a new formula. One fractal type does the work of 17

formulas. Actually, one formula can do the work of many more than 17 formulas,

because your humble authors added the capability for four different function

variables to be used in one fractal type. Therefore, the possible number of

combinations is 17 or 83,521! However, as of yet no actual Fractint fractal type

(other than the formula type) uses more than two of these function variables, so as

a practical matter one fractal type can incorporate 289 different formulas.
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Most of Fractint’s variable functions are familiar to students of mathematics.

The standard transcendental functions include cos, cosh, cotan, cotanh, exp, log,

sin, sinh, tan, and tanh. (The log function is the natural logarithm, not the base

ten logarithm.) Table 6-2 gives the definition of all of these functions.

Remember that you don’t have to understand these functions to use them to

make images! Just try them and see what happens.

The fractal types in this section all have escape-to-infinity algorithms, and

have the same Mandelbrot/Julia relationship discussed in the previous section.

Mandelfn

Category: Mandelbrot/Julia Generalized

This type is the Mandelbrot variant corresponding to fractal type lambdafn, and

is the generalization of type manlambda.

Example:

OrnateCBCLogo { ; Caren Park 00:02:04.73

; ... fran JMS:Psadhere

reset type=mande If n funct i oni dent

corners=—1.552978/1.551022/—1.155134/1.172866float=y maxiter=32767

outside=real Iogmap=yes invert=1/0/0 finattract=y

colors=000002<1 22>OOz000<1 25>z00000<2>001

}
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Formula: Initialize: c = z = zpixel

Iterate: cfn(z),

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_mandel_per_pixel() FRACTALS.C

Integer math orbit LambdaTrigFractal() FRACTALS.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit LambdafpFractal() FRACTALS.C

Lambdafn

Category: Mandelbrot/Julia Generalized

This type is the Julia variant corresponding to fractal type mandelfn, and is the

generalization of type lambda.

Example:

cetlólO9 { ; Jon Homer

reset type=lambdafn function=exp

corners=—5 .7118381—0.014282/0. 165024/4.436798 params=2/4 inside=0

potential=255/51 1/0

282 CHAPTER 6



colors=000332SDF<3>N3JLOKL1 KM2KN3KO4J<1 2>zzO<7>”9YYAXVB<6>KAJMAKOAM<1 2>zi F<\

13>K8C413000775<13>svcsvcsvcsvc<13>UMHSJFQIJ<5>EAb<6>7Nu5Px5Nu<5>A5cB5’<ó>KB\

LMCIOEK<3>WQUYSX_VZ ‘Y ‘<ó>nru<l 5>015<5>bVHeYJg_Li aN<6>zpa<4>jdWgaVcZT WSYUR<6\

>AAK<4>AOSARUBUWBXYB_Bba<5>Dtn<6>8Xc7Ta9Q’ <5>L4R<8>VH I<7>zHO<7>WED

cycerange=2/255

}

Formula: Initialize: z = zpixel

Iterate: cfn(z),

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit LambdaTrigFractal() FRACTALS.C

Floating point initialization othejuliafpperpixel() FRACTALS.C

Floating point orbit LambdafpFractal() FRACTALS.C

Manfn+exp

Category: Mandelbrot/Julia Generalized

This type is the Mandelbrot variant corresponding to fractal type julfn÷exp.
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Example:
rhsl3l { ; Cc) June 1992 Dick Sherry 76264,752

; no commercial use w/o permission

reset type=manfn+exp function=cos float=yes

corners=4.11792/4.546936/4.822723/5.145401 maxiter=500 inside=0

potential=255/300/150 decomp=265 biomorph=0

colors=000000000usp<7>d_6<8>zzz<18>’ZI_XG’YI<21>zzzKU5<10>7L15K06K0<11>KU400\

OKU0000KU0000KU0000KU0000KU0000<1 5 4>000

}

Formula: Initialize: c = z = zpixel

Iterate: z’ = fn(z) + ez + c

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longmandel_perpixel() FRACTALS.C

Floating point initialization otheandelfpperpixeI() FRACTALS.C

Integer math orbit LongTrigPlusExponentFractal() FRACTALS.C

Floating point orbit FloatTrigPlusExponentFracta() FRACTALS.C

Julfn+exp

Category: Mandeibrot/Julia Generalized
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This type is the Julia variant corresponding to fractal type manfn+exp.

Example:
CrazyEyes {

reset=1733 type=julfn+exp function=sqr
corners=—1.20961/O.6157227/—O.1073608/1.2621

pa rams—O.57696533203125/—O.0302734375
}

Formula: Initialize: z = zpixel

Iterate: z’ = fn(z) + e + c

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactal() CALCFRACT.C

Integer math initialization lonuliaperpixel() FRACTALS.C

Floating point initialization othejuliafpperpixel() FRACTALS.C

Integer math orbit LongTrigPlusExponentFractal() FRACTALS.C

Floating point orbit FloatTrigPlusExponentFracta() FRACTALS.C

Manfn+zsgrd

Category: Mandelbrot/Julia Generalized

This type is the Mandelbrot variant corresponding to fractal type julfn+zsqrd.
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Example:
rhsl37 { ; (c) June 1992 Dick Sherry 76264,752

no commercial use w/o permission

reset type=manfn+zsqrd function=log float=yes

corners=—23 .043366/—26.245789/—2.199417/2. 071243/—26.245789/2 .071243

params=20 maxiter=32000 inside=0 potential=255/300/150 decomp=265

biomorph=0

co lors=000<1 4>0000KO<23>070060070<1 0>OLO<3>mMl 020<1 92>011011 000f_8eZ8
}

Formula: Initialize: c = z = zpixel

Iterate: z’ = fn(z) + + c

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Floating point initialization mandelfpper_pixel() FRACTALS.C

Floating point orbit TrigPlusZsquaredfpFracta() FRACTALS.C

Integer math orbit TrigPlusZsquaredFracta() FRACTALS.C

Julfn+zsgrd

Category: Mandelbrot/Julia Generalized

286 CHAPTER 6



This type is the Julia variant corresponding to fractal type manfn+zsqrd.

Example:

ChevyChrome { ; 00:02:50.00

; 08 Dec 92 - caren park

reset type=j ul fn+zsqrd funct i on=cosxx

corners=—200383/2007874/—1.507797/1.5 params—0.5/0.5 maxiter2250

bailout=30 decomp=256 biomorph=0

co lors=000WPJUMHSJ F<6>EAb<6>7Nu5Px5Nu<5>A5cB5 • <2>E7UG8SH9QJANKBL0000EK<5>_VZ\

Y • b • cdcf<4>nru<1 5>015<6>eYJg_Li aNkcPneR<4>zpa<4>jdwgaVcZT • WSYUR<6>AAK<3>ALQ\

AOSARUBUWBXY<6>DqlDtnCql<5>8Xc7Ta9Q’<5>L4R<8>VHI<7>zHO<8>SDF<3>N3JLOKL1KM2KN\

3K04J<12>zz0<7>”9YYAXVB<6>KAJMAKOAM<12>zi F<13>K8C413000<15>svcsvcsvcsvc<11>\

YRK

}

Formula: Initialize: z = zpixel

Iterate: z’ = fn(z) + z2 + C

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization juliaLper..pixel() FRACTALS.C

Floating point initialization juliafp..per..pixel() FRACTALS.C

Floating point orbit TrigPlusZsquaredfpFracta() FRACTALS.C

Integer math orbit TrigPlusZsquaredFracta() FRACTALS.C
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Mandel(fnl Ifn)

Category: Mandeibrot/Julia Generalized

This type is the Mandelbrot variant corresponding to fractal type julia(fnllfn).

This interesting variation on the theme of generalizing the Mandelbrot set was

proposed by Jonathan Osuch. The magnitude of the current orbit value is used

to switch between two different variable functions. The “II” in the type name is

the C programmer’s logical “or.” If the two function variables are sqr (the default),

then this reduces to the usual Mandelbrot. Try making them different.

Example:

Fatworm {

reset=1733 type=mandel(fnhlfn) function=sqr/cos

corners=—8.279133/1O.66292/—7.483134/6.719686 params=O/O/O. 5 f loat=y

:>

Formula: Initialize: z = p1, c = zpixel

Iterate: if 1z12 < shift value, then

z’ = fnl(z) + c,

else

z’ = fn2(z) + C.

where fnl(z) and fn2(z) are each one of conj, cos, cosh, cosxx, cotan,

cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

C fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_mandel_perpixel() FRACTALS.C

Integer math orbit JuliaTrigOrTrigFractal() FRACTALS.C

Floating point initialization otheandelfpperpixel() FRACTALS.C

Floating point orbit JuliaTrigOrTrigfpFractal,() FRACTALS.C

Julia(fnl Ifn)

Category: Mandeibrot/Julia Generalized

This type is the Julia variant corresponding to fractal type mandel(fnllfn). This

type was proposed by Jonathan Osuch. The algorithm switches between two

different functions depending on the magnitude of the current orbit value.

Example:

Vortex { ; “They are moving right into the vortex!” (C)1993 PGM

; (c)1993 Peter Moreland 100012,3213

reset type=julia(fnllfn) function=recip/conj

corners=—7.395582/—7.086847/—0.432864/—0.201313 paramsl /—0.33/0.25

float=y maxiter=20000 bailout=500 decomp=256

coors=OOOQEF<11>G2JFOKFOK<11>IONIONIONIOOIOOIOP<33>QOXROYROYROZROZ<6>TO\

bTObUlbU2c<62>zzzzzzzzy<60>zzlzz0zy0yx0<45>QFF

}
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Formula: Initialize: z = zpixel

Iterate: if 1z12 <shift value, then

z’ = fnl(z) + c,

else

z’ = fn2(z) + c.

where fn 1(z) and fn2(z) are each one of conj, cos, cosh, cosxx, cotan,

cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization lonuliaperpixel() FRACTALS.C

Integer math orbit JuliaTrigOrTrigFractal() FRACTALS.C

Floating point initialization othejuliafpperpixel() FRACTALS.C

Floating point orbit JuliaTrigOrTrigfpFractal,() FRACTALS.C

Manlam(fnl Ifn)

Category: Mandelbrot/Julia Generalized

This type is the Mandelbrot variant corresponding to fractal type lambda(fnllfn),

and is another interesting generalization of mandelfn proposed by Jonathan
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Osuch. The algorithm switches between two different functions depending on

the magnitude of the current orbit value.

Example:

The_Final_Curtain { ; Regrets, I have a few, but then again, Sid Lives! <g>.

(c)1993 Peter Moreland, CIS Address 100012,3213

reset type=manlam(fnllfn) function=sqr/conj

corners=—1 .078314/—0.623828/0.775666/0. 47905 /—0.772323/0.367679

params=1.76/0/10 float=y maxiter500 bailout=90

colors=LSU6KM<58>inujovinu<164>JRTIRTIRTHRTHRT<23>8MP

}

Formula: Initialize: z = parameters

Iterate: if 1z12 <shift value, then

z’ = c fnl(z),

else

z’=cfn2(z)

where fnl(z) and fn2(z) are each one of conj, cos, cosh, cosxx, cotan,

cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longmandel_per_pixel() FRACTALS.C

Integer math orbit LambdaTrigOrTrigFractal() FRACTALS.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit LambdaTrigOrTrigfpFractall,() FRACTALS.C
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lambda(fnl Ifn)

Category: Mandeibrot/Julia Generalized

This type is the Julia variant corresponding to fractal type manlam(fnllfn)

proposed by Jonathan Osuch. The algorithm switches between two different

functions depending on the magnitude of the current orbit value.

Example:

Plate {

reset=1733 type=manlam(fnhlfn) function=sqr/cos

corners—2.642944/2.642944/—1.982208/1.982208 params=O/O/1O floaty

}

Formula: Initialize: z = zpixel

Iterate: if 1z12 < shift value, then

z’ = c fnl(z),

else

z’ = c fn2(z)

where fnl(z) and fn2(z) are each one of conj, cos, cosh, cosxx, cotan,

cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

C fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longJulia_per_pixel() FRACTALS.C

Integer math orbit LambdaTrigOrTrigFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit LambdaTrigOrTrigfpFractall,() FRACTALS.C

Escape Time to Infinity

The fractal types in this section are additional escape-to-infinity types that do not

come in Mandeibrot/Julia pairs.

Popcornjul

Category: Escape Time to InfInity

This formula came from Clifford Pickover’s Popcorn fractal. Pickover used it in

a completely different way (see type popcorn later in this chapter). It seemed

reasonable to use the formula in ajulia-style escape-time fractal, so here you are.
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Example:

Cellular { ; (c)1992 Peter Moreland 100012,3213

reset type=popcorn

corners=5 .335739/5.043655/3. 106827/6.645966/3.498291 /5.510727

pa rams0 .078

colors=000gVP<7>nYKt ‘GnYJ<S>s ‘Gt’ FsRh<5>t_JaAb<4>eFZeGZfGYfHXgIW<23>t’ Foac<7\

4>t ‘Ft ‘Ft ‘ Ft_Ft_FtZFtZFsYF<7>sXF

}

Formula: Initialize: x = zpixel, y = zpixel
Iterate: x’ = x — 0.05 sin(y) + tan(3y)

y’ = y — 0.05 sin(x) + tan(3x)

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALLFRACT.C

Integer math initialization longJulia_per_pixel() FRACTALS.C

Integer math orbit LPopcomFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit PopcomFractalQ FRACTALS.C

Sierpinski

Category: Escape Time to InfInity
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This Sierpinski fractal came from Michael Bamsley’s book Fractals Everywhere.

The Sierpinski gasket is one of those ubiquitous fractals—Fractint can generate

it using the escape-time method (as is done here with the sierpinski type) as an

1.-systems fractal, and as an Iterated Function System (IFS) fractal. A Sierpinski

Gasket is a nested set of triangles formed by cutting the center out of a triangle,

then repeating recursively for the remaining three triangles.

Comparison with the IFS version is enlightening. The IFS Sierpinski gasket

is generated with three affine transformations (see Chapter 2, Fractals: A Primer).

Take the inverse of those transformations, divide the formula into three cases,

and Voila! You have a Sierpinski Julia set. Notice that the original IFS transformation

divided by 2, and the cases in the formula below multiply by 2. Also note

that three IFS affEine functions became three cases in the Julia formula.

Example:

sbaO5l { ; Cc) 1993 Richard H. Sherry, CIS:76264,752

reset type=sierpinski passes=b corners—O.9/1.699996/—O.8999948/1.7

maxiter=256 bailout=155 fillcolor=253 inside=zmag outside=mult

potential=255/200/O invertO.67/O/O periodi city=O

colors=0008H0<11>ZcO<2>TYOQWOOUOLSOJQO<7>OAO<15>ZcO<15>OAOSNC<29>xo’zpay\

pa<13>kcRibRibR<14>UPFIII<29>ppp<31>000PFF<29>xeDzfCyfC<30>PFFOAO<2>6F0

}

Formula: Initialize: x = zpixel , y = zpixel
Iterate: x’ = 2x —1 if x > .5

x’=2x ifx <= .5

y’=2y—l ify > .5

y’=2y ify <= .5

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CAI.CFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit SierpinskiFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit SierpinskiFPFractal() FRACTALS.C
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Spider

Category: Escape Time to InfInity

Yet another variation on the basic Mandeibrot formula. In this formula, the

variable c, which remains fixed for each pixel calculation, is repeatedly divided

by 2 and added to the new orbit to get the new c.

Example:

SpiderLeggings { ; 00:11:23.54

11 dec 92 . . caren park

reset type=spider passes=t

corners=—1 .3204703/—I .3828737/—0.052686/0. 056887/—I .3828737/0.056887

maxiter=500 fillcolor=7 inside=zmag outside=imag logmap=yes

periodi ci ty=4

colors=000ZKD<2>RCCEEEHHG000LLL<I2>ppn<I5>FOAUPF<2>015<6>eYJg_LiaNkcPneR<4>z\

pa<I 2>UPFHGMEDLAAK<3>ALQAOSARUBUWBXY<6>Dq I DtnCq 1<5>8Xc7Ta9Q’ <5>L4R<8>VHI<7>z\

H0<8>SDF<4>LOKOG5<2I>Np6Pr7Op7<I6>OG5ZJE<6>wgF<8>XKDUHDSGC<6>AB7<12>svcsvcsv\

csvc<9>aXO<6>kbL000ocJ<6>zj F<9>aMD

}

Formula: Initialize: z = c = zpixel

Iterate: z’ = z2 + C

c’ = c/2 +

296 CHAPTER 6



Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization mandel_per_pixel() FRACTALS.C

Integer math orbit SpiderFractalO FRACTALS.C

Floating point initialization mandelfp_per_pixel() FRACTALS.C

Floating point orbit SpiderfpFractalO FRACTALS.C

Test

Category: Escape Time to InfInity

The test fractal type exists for the benefit of intrepid C programmers who want

to try “rolling their own” fractals without delving too deeply into Fractint’s

somewhat challenging code. Programmer’s who want to try this and have a C

compiler will find the routines in the file TESTPT.C.

Example:

Test { ; Shows missing stripe

reset=1733 type=test corners=—3.140845/3.140845/—2.355634/2.355634

floaty

}
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Formula: Initialize: c = z = zpixel

Iterate: z’ = z2 + C

Code: Routine Type Routine Name File

C fractal engine testO TESTPT.C

Tetrate

Category: Escape Time to InfInity

Iterating a simple exponential function. The default fractal has large chunky

splotches that look very different from the usual stylish escape-time stripes.

Example:

t17058 {

reset type=tetrate

corners=—O.09938510.04899710.1090081—O.08883410.048997/—O.088834

params=—1 inside=zmag outside=imag potential=255/511 /0

invert=O.05/0.01 /0.01

co Iors=000ME8LD7<53>kSI ISImTJnTJnTJ<2>qVKqVKqUJ<28>r53s42s53<60>spyspyspx<19\

>s Ins Ims lisk Is kksk j <21>td Wuc Vt c V<7>nZQmYP IXP IXP<35>N F8

}

Formula: Initialize: z = c = zpixel

Iterate: z’ = Cz
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALLFRACT.C

Floating point initialization othermandelfp_per_pixel() FRACTALS.C

Floating point orbit TetratefpFractalO FRACTALS.C

Tim’s_error

Category: Escape Time to InfInity

Acoding error by one of your intrepid authors produced this fractal formula. The

corollary to “everyone is famous for 15 minutes” is “everyone gets one fractal

named after himself or herself,” so this is it. Try setting fun c t i on = sq r to find a

prehistoric pterodactyl.

Example:

Eggzactly! { ; You must be yoking... (C)1993 Peter Moreland 100012,3213

reset type=tim’ s_error function=sqr

corners—1 .207252452/—1.087561701 /—0.06358676741—0.21800587231—l .0877397\

04/—0.218058332 float=y maxiter=25 bailout=10 outside=real

decomp=256 biomorph=256

co1ors000310521342641333533355653930D30961D51963D73783A82D91FC1A94D94BC\

4ED44789785ABA99DA8AD8ED8AACDBCADDEDCG3OH6IL7IH73L74P74HA2L92ID2LF2H94LA\

4HD5LD5QC5HB7LB7ID8ME8HABHECLECPB7SB8PE8TE8QFBUFBFG5EHAJG2MG2IG5MH4NK5PI\

2UH2RK2TL2PI3TH5QL4TM4UO5 I H8MH9IK9ML9IHDMI CI LCMLDQH9TH9PL9UL9PI CTI CQLDUL\
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DMPDSPB37I5EICEH4ERAEPIEHPFIHEN6GLEHJFPL6IQ9KSCPTIHGLIGJLHMLGHIKLIKHKLML\

KRLHLPJTPJJLPQMPLPRRRQXE5XD9YL4YQ5dP5YKCdKBZPCeRBZMGdMHYPH’ PHXTHaSIXQKaQ\

KXTLaTKeRKYMQZTPfTPkTMIUQUXIUXRYWDfX9_YLdXM’XSfYSecRmXTIfR4FV6IW8MW9OYJN\

WRNWMQXSTYKRcRVbYUXfUXUX_UYd_ZZeYWiYWe’Wh’XeZ_iY_ea_ia_acZgd_Z’efaeadggf\

fn’YsaZnd_tc’nbcsbcnfeufeikhnlhtlhZbjdbjaflfimairnjkujjhlpimrlllpllnolpo\

lmmoqnomoppppunortquuonpswrsqtwuttxttxwttvxyvvuxyzzy<24>zzy

}

Formula: Initialize: z = zpixel, C =

Iterate: tmp = fn(z)

tmp = tmp c — tmp c

tmp = tmpx c — tmp c
z’=tmp+ pixel;

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

ESCAPE TIME TO INFINITY GENERALiZED

In this section, we look at more escape-time-to-infinity fractals. These fractals

have no Mandelbrot/Julia variations and they use function variables, so this small

number of types account for quite a few fractal possibilities.
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fn(z) +fn(pix)

Category: Escape Time to InfInity Generalized

If p1 = p2 = 1, fnl(z) = sqr and fn2(z) = ident, then this type is the classic
Mandelbrot.

Example:

Downpoor { ; Paste watercoour thingy — Cc) 1992 Pete M. 100012,3213

Bantyre House, Cossack SQ, Naisworth, Goucs, UK.

reset typefnCz)+fnCpi x) function=cosxx/cosh

corners=—1 .502386/—I .371228/2.3414666/2.4398491 params=1 .5/0.06/1

co ors=000eQUh FLk4C<7>duQ’ aaYI <2>ZVi ZZhXWe<6>K8H<2>5G • <7>Y9WXXSWtP<7>rgvkVu\

dIu<6>nVC<2>ifQgjVgbQ<2>eDAeV_ey<3>TDd<6>QuJIhYBX<2>Oh_<5>mjr<5>ohrohrqbi<\

3>uGBqWQnjc<2>lVw<7>kDj<5>MEM<5>cX5MEv<6>gctjgtkhr<4>nkf<7>73gOFhdRieIh

}

Formula: Initialize: c = z = zpbcel

Iterate: z’ = p1fn(z) + p2fn(c)

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjichard8_per_pixel() FRACTALS.C
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Integer math orbit Richard8Fractal() FRACTALS.C

Floating point initialization otherrichard8fp_per_pixel() FRACTALS.C

Floating point orbit Richard8fpFractal() FRACTALS.C

fn(z*z)

Category: Escape Time to InfInity Generalized

This fractal is a generalization of the clasic Julia with no constant term.

Example:

Uh. .yeah. . .11 { ; Interesting

; BG Dodson 1992 71636,1075

reset type=fn C z*z) funct i on=cotan passes=b corners=—4 .0/4.0/—3.0/3 .0

float=y maxiter=32000 fiUcoor=200 inside=bofól ogmap=4

potential253/3000/1 decomp=128

co to r s000151131000<1 5> rA r<1 5>000<1 5>h hO<1 4>330000003<1 4>00 r<1 5>000<1 5> rOO<1\

5>000<1 5>Opp<1 4>044000222<1 4>hhh<1 4>333000000<26>00701 7037<1 3>4S4<1 5>171

}

Formula: Initialize: z = zpixel

Iterate: z’ = fn(z2)

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long_julia_per_pixel() FRACTALS.C

Integer math orbit TrigZsqrdFractal() FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit TrigZsqrdfpFractal() FRACTALS.C

f*f

Category: Escape Time to InfInity Generalized

This generalized function covers over 200 cases, all formed by taking the product
of two functions with no constant term.

Example:

cetlólO4 {

reset type=fn*fn funct i onexp/tanh

corners=O.144507/1.626775/1.426092/2.537793 foaty insideO

potentia=255/51 1/0

colors=000AB7vH3zHO<7>WEDSDFRAG<2>N3J LOKLI KM2KN3KO4J<1 2>zz0<7>”9YYAXVB<6>KA\

JMAKOAM<12>ziF<13>K8C413000332775EEA<11>svcsvcsvcsvc<13>UMHSJFQIJ<5>EAb<6>7N\

u5Px5Nu<5>A5cB5<6>KBLMCIOEK<3>WQUYSX_VZY<6>nru<15>015<5>bVHeYJg_LiaN<6>zp\

a<4>jdWgaVcZT ‘WSYUR<6>AAK<4>AOSARUBUWBXYB_Bba<5>Dtn<6>8Xc7Ta9Q • <5>L4R<8>VHI \

<5>rH5 cycerange=2/255

}
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Formula: Initialize: z = zpixel

Iterate: z’ = fn(z)2

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit TrigXTrigfpFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit TrigXTrigfpFractal() FRACTALS.C

ffl*z+z

Category: Escape Time to InfInity Generalized

Another generalized fractal formula, this time with the variable z added.

Example:

Cut_me { ; Cut me and I bleed Fractas!

; Ronad C. Lewen, 76376,2567

reset typefn*z+z function=cosh corners=—4.O/3.999993/—2.999991 /3.0

params=1.414/0/0/1.414 inside=255 potentia=255/128/O
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colors=00000jOjOjjOjOOjOjOjjkkkkrkdmwCCC_C_<9>sCs<20>ECsCCsCEs<19>CqsCssCsq<\

19>CsECsCEsE<19>qsqsssssq<19>ssEssCsqC<19>sECsCCqCC<18>GCCECCACCECE<9>YCYbjb\

<2>zjbFrb<5>zrbfzb<5>zzbFFj<5>zFjFNj<5>zNjFVj<5>zVjFbj<5>zbjFjj<5>zjjFrj<4>r\

rj zywccdWWWz000zOzz000zzOzOzzzzz
}

Formula: Initialize: z = zpbcel

Iterate: z’ = p1fn(z)z + p2z

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization julia_per_pixel() FRACTALS.C

Integer math orbit ZXTrigPlusZFractal() FRACTALS.C

Floating point initialization juliafp_per_pixel() FRACTALS.C

Floating point orbit ZXTrigPlusZfpFractal() FRACTALS.C

fn+fn

Category: Escape Time to InFinity Generalized

This type encompasses over 200 variations formed by adding two functions with
no constant term.
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Example:

BRACLET {; Lee Skinner

reset=1720 type=fn+fn function=cosh/sqr passes=1

corners=1.77888557/1.78734031/1.16095279/1.1673213 params=1/O/—1

fIoat=y maxiterlO23 baiout=8192 insidemaxiter ogmap=yes

potentia=255/51 1/0

co ors=OOOOSV<65>BCWECOOCG<3>8Q7<6>LE5NC4NC4<5>NB2NB2OB2PB2<24>gN1 hNl hPl \

<6>nbl oel oel <26>m56m56 R7kR7<8>hPAhPAhPBhOBhNAhMA<2>gI8gH8eG8<9>M32<9>z3\

3Y3g<55>zOVOTWOSW

}

Formula: Initialize: z = zpbcel

Iterate: z’ = p1fn(z) + p2fn(z)

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit TngPlusTngFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit TrigPlusTrigfpFractal() FRACTALS.C

306 CHAPTER 6



Marksmandelpwr

Category: Escape Time to InfInity Generalized

This formula was first proposed by Mark Peterson.This formula is set apart from

others by the function coefficient c that is initialized for each pixel to Z.

Example:

SNAKDEN.GIF { ; Lee Skinner

reset=1 720 typemarksmande pwr funct i onsqr passesl

corners=—1.10652/—1.0778615/—0.0107626/O.01077 fIoaty maxiter2047

inside0 ogmap=yes

co ors=OOOsgJ<4>hXabVeMDU<2>VKSdRS<5>FO7vdOPGWcMW<6>X_W<2>UXZTWZSVY<2O>2\

2LOOKOOK<1O>AOKBOKDOJ<41>uOGwlFwlF<117>zOOzt5<12>zt2ztlztlzs0ysl<2>vsózm\

8xkCviG

}

Formula: Initialize: z = zpixel, C =

Iterate: z’ = cfn(z) + zpbcel;

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization marks_mandelpwr_per_pixel() FRACTALS.C

Integer math orbit MarksMandelPwrFractal() FRACTALS.C

Floating point intialization marks_mandelpwrfp_per_pixel FRACTALS.C

Floating point orbit MarksMandelPwrfpFractal() FRACTALS.C
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sgr( 1/fn)

Category: Escape Time to InfInity Generalized

This type is one of the few Fractint formulas that divides by a function.

Example:

Purpe_Ka1eidoRing { ; Cc) 1992 Bill. Potter/Rings of foi kaeidoscope

; have fun use & abuse but no commercia use wo permission

reset type=sqrCl/fn) function=sin passesg float=y

corners=—1 .12/1.12/—0.84/0.84

maxiter=5000 decomp=255

colors=000FOK<57>TOaTObTObUOcUOc<62>zzzzzzzzy<60>zzlzz0zy0yx0<56>I4IH3JG2JFO\
KFOKFOKFOK

}

Formula: Initialize: z = zpbcel

Iterate: z’ = 1/fn(z)2

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization longjuliaper_pixel() FRACTALS.C

Integer math orbit SqrloverTrigFractal() FRACTALS.C
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Floating point initialization otherjuliafp_per_pixel FRACTALS.C

Floating point orbit SqrloverTrigfpFractal() FRACTALS.C

sgr(fn)

Category: Escape Time to InfInity Generalized

The square of the function—that tells it all. The formula has no constant term
added.

Example:

saeOO8 { ; Cc) 1993 Richard H. Sherry CIS:76264,752

reset=1 732 type=sqrC fn) function=si n

corners=—1.26561/1.259735/O.506409/1.76059 maxiter=256 fiIicoorO

inside—102 outside=rea ogmapyes decomp255 periodicity=O

coors=OOO2BO<1 4>ZcO<1 5>OAOSNC<29>xo • zpaypa<1 3>kcRi bRi bR<1 4>UPFI 11 <29>pp\

p<31>000PFF<29>xeDzfCyfC<30>PFFOAO<15>ZcO<13>3COOFO

}

Formula: Initialize: z = zpixel

Iterate: z’ = fn(z)2

where fn(z) is one of conj, cos, cosh, cosxx, cotan, cotanh, exp,

flip, ident, log, recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization long.julia_per_pixel() FRACTALS.C

Integer math orbit SqrTrigFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel FRACTALS.C

Floating point orbit SqrTrigfpFractal() FRACTALS.C

4-D Escape Time

The complex numbers that Fractint uses for most of its fractal calculations are
two-dimensional extensions of familar real numbers. What about doing arith—
metic with still higher dimensional numbers? At the turn of the century,
mathematicians proved that there is no perfect solution to this problem. All four-
dimensional generalizations of real and complex numbers will fail some of the
common rules of real arithmetic. These nineteenth century mathematicians
adopted quaternions as their preferred kind of four—dimensional numbers.
Quaternions satisfy all the algebraic rules governing real and complex numbers
except the communtative law of multiplication, which states that multiplication
of two numbers in either order gives the same result. They rejected an alternative
kind of numbers called hypercomplex numbers. These numbers satisfy the
commutative law of multiplication, but division by nonzero numbers does not
always work. The early mathematicians thought that the ability to divide was
more important than the order of multiplication. For fractal purposes it turns out
that the long—forgotten hypercomplex numbers are better—Fractint’s variable
functions work great with hypercomplex numbers, but don’t work with
quaternions. (See Appendix C, Complex and Hypercomplex Numbers, for more
details on how four-dimensional arithmetic works.)

The algebraic limitations of quaternions and hypercomplex numbers do not

need to stop us from using them to generate fractals. The classic Mandelbrot and

Julia sets generalize easily using either kind of number. The Mandelbrot andJulia

sets have orbits that trace paths in two dimensions, and result in sets of numbers

in two dimensions. Quaternion and hypercomplex Mandelbrot andJulia sets have

four-dimensional orbit paths and result in four-dimensional sets. Our problem is

how to view these higher dimensional fractals. We present a 2-D approach here,

and a 3-D approach later in this chapter in connection with julibrots.

The simplest way to plot higher dimensional fractals is to slice them with a

plane. Just as an architect can draw a two-dimensional cross section of a three310

CHAPTER 6



dimensional building, Fractint can slice a four-dimensional fractal and get a two-

dimensional result. (It is also possible to slice a four-dimensional fractal and get

a three-dimensional result—see fractal type julibrot in the 3-D Fractals section

later in this chapter.)

Quat

Category: 4-D Escape Time

This fractal type is the Mandelbrot variant corresponding to fractal type quatjul.

The quat fractal is the quaternion Mandelbrot set. In fact, the classic Mandelbrot

set is a special case of type quat.

As with the complex Mandelbrot set, the orbit variable is initialized with a

value corresponding to a screen pixel. Because your screen is two-dimensional,

only two of the four dimensions of the variable c can be initialized. The other two

variables can be enterd as parameters; they determine where the “knife” slices the

4-D Mandelbrot. These parameters are labeled and c in the following fomula.

‘When c3, and c are both zero, the resulting fractal is the familiar Mandelbrot set.
The quaternion Mandelbrot set is a four-dimensional object. Sliced directly

through the middle, the 2-D cross section is the classic Mandelbrot.
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Example:

quat {

reset=1733 type=quat corners=—2/2/—1.5/1.5

paramsO/O/O.3/—O.2 float=y

pen odi ci tyO

}

Formula: Initialize: q = (0,0,0,0), c = (Zpixel,Zpixel,c,c)
Iterate: q’ = q2 + C

where q = (qlqqJqk) and c = (cl,c,c,ck) are four-dimensional
quaternion numbers.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization quaternionfp_per_pixel() FRACTALS.C

Floating point orbit QuaternionFPFractalO FRACTALS.C

Quatjul

Category: 4-D Escape Time

This fractal type is thejulia variant corresponding to fractal type quat. The quatjul

fractals are the quatemion Julia sets. In fact, the classicJulia sets are special cases

of type quatjul.
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The quatjul fractal type requires six parameters. Four parameters are required

for the variable c that is fixed for each Julia set because quaternions are four

dimensional. Another two parameters are required for the orbit initializer to
determine where the 2-D slice of the 4-D fractal is made.

Example:

QuatJl { ; Julia Quaternion in blue—greens

; By Dan Farmer

; Quaternion example

reset type=quatjul corners=—1.388288/1.388288/—L041216/1.041216

params—O.745/O/O. 1 13/005 f loaty i nsideO periodi ci tyO

colors000l 43<1 46>Ioh000000

}

Formula: Initialize: q = (zpixelX,zpixelY,z,zk)
Iterate: q’ = q2 + C

where q = (qlqqJqk) and c = (cl,c,cJ,ck) are four-dimensional
quatemion numbers.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization quatemionjulfp_per_pixel() FRACTALS.C

Floating point orbit QuaternionFPFractalO FRACTALS.C
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Hypercomplex

Category: 4-D Escape Time

This fractal type is the Mandelbrot variant corresponding to fractal type

hypercomplexj. The hypercomplex fractal is the hypercomplex Mandelbrot set.

In fact, the classic Mandelbrot set is a special case of type hypercomplex.

As with the complex Mandelbrot set, the orbit variable is initialized with a

value corresponding to a screen pixel. Since your screen is two dimensional, only
two of the four dimensions of the variable c can be initialized. The other two

variables can be entered as parameters; they determine where the “knife” slices

the 4-D Mandelbrot. These parameters are labelled c3 and c in the folowing
fomula. When c3, and Ck are both zero, the resulting fractal is the familiar
Mandelbrot set. The hypercomplex Mandelbrot set is a four-dimensional object.

Sliced directly through the middle, the 2-D cross section is the classic Mandelbrot.

Hypercomplex numbers were brought to the attention of the authors by

Clyde Davenport, the author of A Hypercomplex Calculus with Applications to

Special Relativity. The hypercomplex and hypercomplexj fractal types were

proposed and implemented in Fractint by Tim Wegner. To the best of our

knowledge, the use of hypercomplex numbers to create fractals is published here

for the first time. A somewhat similar scheme was implemented independently

by Jason McGinnis of the United Kingdom in his version of Fractint. The authors

hope to merge Jason’s ideas with the current approach in a future version.
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Example:

Hypercomplex{ ; (C)1993 Peter Moreand

100012,3213

reset type=hypercomptex function=exp passesl

corners=—1.38284756/—1.38985234/—5.10519207/—5.08976125/—1.40480462/—5.0\

8092665 paramsl .3/1/1 .5/1 .11

f1oaty maxiter=250 baitout=100 inside=bofó0 decomp25ó biomorph=0

periodicity=0 viewwindows4.2/0.75/yes/0/O

colors000Bzz<6>2zz0zz0yz<37>OEzOCzOBzO9zO8z<3>O2zOOzOOy<59>002000000000\

<29>OOkOOmOl m<29>Okyomzl mz<30>zzz<38>Czz

}

Formula: Initialize: h = (0,0,0,0), c = (zpbcelX,zpbcelY,cJ,ck)
Iterate: h = fn(h) + c

where h = (hl,h,hJ,hk) and c = (cl,c,CJ,ck) are four-dimensional
hypercomplex numbers, fn(h) is one of conj, cos, cosh, cosxx,

cotan, cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh,

or zero, generalized to work with hypercomplex numbers.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization quaternionfp_per_pixel() FRACTALS.C

Floating point orbit HyperComplexFPFractal() FRACTALS.C

FRACTAL TYPES 315



Hypercomplexj

Category: 4-D Escape Time

This fractal type is the Julia variant corresponding to fractal type hypercomplex.

The hypercomplexj fractals are the hypercomplex Julia sets. In fact, the classic

Julia sets are special cases of type hypercomplexj.

The hypercomplexj fractal type requires six parameters. Four parameters are

required for the variable c that is fixed for each Julia set because hypercomplex

numbers are four dimensional. Another two parameters are required for the orbit
initializer to determine where the 2-D slice of the 4-D fractal is made.

Example:

Faked_Gold { ; Museum exhibit from a dig, dig it!

; (C)1993 Peter Moreland 100012,3213

reset type=hypercomplexj functi onexp

corners=0.7495447/0.6251076/—0. 1647639/0.0808346/0. 58686/0.052149

params=—0.745/0/0.113/0.05 floaty maxiter=250 baiout=1OO

insidebofó0 decomp=256 distestl/71 biomorph=0 periodicityo

colors=000kfó38>I4IH3JG2JFOKFOK<9>HOMHOMHONJONJONJOO45>TOaTObTObUOcUOc\

<62>zzzzzzzzy<60>zzlzzozyoyxo<16>1g6

}

Formula: Initialize: h = (zpixel,zpixel,z,zk)
Iterate: h’ = fn(h) + c
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where h = (hl,h,hJ,hk) and c = (cl,cCJ,ck) are four-dimensional
hypercomplex numbers, fn(h) is one of conj, cos, cosh, cosxx,

cotan, cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan, tanh,

or zero, generalized to work with hypercomplex numbers.

Code: Routine Type Routine Name File

C fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization quaternionjulfp_per_pixel() FRACTALS.C

Floating point orbit HyperComplexFPFractal() FRACTALS.C

ESCAPE TIME TO FINITE ATTRACTOR

Fractal images can be created by coloring pixels according to the number of

iterations it takes for an orbit to escape a bailout radius. An entirely different

approach is to color pixels according to the number of iterations it takes for the

orbit to be captured by a finite attractor. A finite attractor is a point that orbits

gravitate toward. Fractals are created by the titanic struggle of multiple attractors

striving to capture orbits. Orbits that begin near an attractor dive straight toward

that attractor, but orbits that begin between attractors are caught in a tug-of-war.

Sometimes, one attractor wins, sometimes another. The most famous example
of this behavior is the Newton fractal.

Two different coloring schemes are used with these fractals. Newton,

complexnewton, and halley use escape-time coloring; pixels are colored according
to the number of iterations before an orbit is within a fixed threshold distance

to an attractor. Types newbasin, complexbasin, and frothybasin color pixels

according to which attractor wins. The fractal image is broken into solid areas

where all the orbits originating in these areas are captured by the same attractor.
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Newton

Category: Escape Time to Finite Attractor

Newton’s method is a famous algorithm for finding the roots of polynomials.

Fractal type Newton uses a special case of this algorithm based on the polynomial

z’ —1. A root of this polynomial is a numberz such that z’ —1 = 0. If z is a real number,

the solution to this equation is easy: i’ —1=Oso z = 1. However, because z can

be a complexnumber, otheranswers are possible. It turns out that the equationz —

i = 0 has n roots in the complex plane. These roots are evenly spaced on a circle

of radius i centered at the origin. Each of these roots is a finite attractor for the

following Newton formula. The idea of the Newton formula is to guess the value

of a root, plug this guess into the formula, and get a better guess out of the formula.

By repeating this process, the root can be rapidly calculated with great accuracy.

The fun starts if the initial guess is between two of the roots; then Newton’s method

suffers from indecision and the resulting chaos creates a great fractal.

Example:

t17064 { ; Jon Homer

reset type=newton corners—O.344/O.344/—O.25567/O.26033 paramsó floaty

inside=—100 invert=O.1/O/O

co lors=000XZTPQP<2>5A2LAG<6>xC5<1 I >50P<8>9da<I 3>9Kv<4>000<7>IATIBTHCUHEUG FV<\

6>CQ_CR_DTZrIIQ_<2>WMZ_LZbIb<5>zOz<I4>’8TZ9QY9P<8>K9GI8FI8LJ8RK8X<6>dLk<I4>i23\
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j00102<13>I9dGAgG9e<7>M6RN5PO6O<5>_EHaGFcHEeJCgKB<6>uTOqT2IS5<3>SLG<7>HDLFCL\

CCN<2>BGNBHNAHNCHM<1 2>100<7>’ NCZNDXMFVLH<5>2AR<7>i fU<9>svckn_dfX

}

Formula: Initialize: z = zpixel

Iterate z’ = ((n — 1)z + 1)/(nz’)

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

MPC math initialization MPCjulia_per_pixel() FRACTALS.C

MPC math orbit MPCNewtonFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit NewtonFractal2() NEWTON .ASM

Newtbasin

Category: Escape Time to Finite Attractor

Fractal type newtbasin is identical to Newton except that the basin coloring

scheme is used. A pixel is colored according to which attractor captures the orbit

launched from that pixel’s coordinates.
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Example:

Genesis_Wave { ; Darn! They have used Proto—Matter in the matrix

; (c) 1992 Peter Moreland 100012,3213

reset type=newtbasi n

come rs12 . 1762344559/12 . 176355783/12. 1888035646/12. 1890084717/12. 1761 797786\

/12.1888764682 params=4 floaty maxiter32000 decomp=256

Co loms00056>000ix84> 1gB IcC I’ D IYDIVE<2>nLGoIHoEHoBI<1 5>cJQf Zgc20>k_hk_h ix8\

<1 3>oEHoBInCJ<1 4>cJQ000<1 09>000

}

Formula: Initialize: z = zpixel

Iterate z’ = ((n — 1)z + 1)/(nz’)

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

MPC math initialization MPCjulia_per_pixel() FRACTALS.C

MPC math orbit MPCNewtonFractal() FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit NewtonFractal2() NEWTON.ASM

Complexnewton

Category: Escape Time to Finite Attractor
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Type complexnewton generalizes type Newton in two ways. Instead of finding

the roots of the polynomial z’1 — r = 0 where n is an integer and r is 1, both n and

r are allowed to be complex numbers. Complex functions involving noninteger

exponents are fundamentally multiple valued, and the only way to make them

single valued is to tear the function’s graph somewhere. A multiple-valued

function is like a spiral staircase—there is more than one stair above any point

under the staircase. If you cut away all but one 3600 turn of the staircase to make

it single valued (only one stair above any point under the staircase), the ends of

the staircase where you cut are discontinuous. The fractal generated by this

formula has interesting discontinuities as a result. In true fractal fashion, these

discontinuities are propagated throughout the image at all scales.

Example:

CMPNWT1.GIF { ; Lee Skinner

reset=1611 type=complexnewton passes=1

corners=—7.425266/3.0421/3.319312/11.169836

params=3/2.71828182845905/3.14159265358979/9 floaty inside=O

logmap=yes periodicityO viewwindows=1.25/O.75/yes/O/O

colors=0000AO<8>IDCLEEMDD<24>xllzOOzlO<29>zxOzzOzzl<29>zzxzzzzzz<61>zVlz\

UOzUOzTO<28>zlOzOOzOOyOO<30>cOObllall ‘22_22<19>KCC

}

Formula: Initialize: z = zptxel

Iterate z’ = ((n — l)z +

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit ComplexNewtonO MPMATH_C.C
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Complexbasin

Category: Escape Time to Finite Attractor

Fractal type newtbasin is identical to Newton except that the basin coloring

scheme is used. A pixel is colored according to which attractor captures the orbit

launched from that pixel’s coordinates.

Example:

Jukebox { ; 01:39:09.43

; 03 jan 93 caren park

reset typecomplexbasin corners=—1 .074297/—0955225/—O.044652/O.044652

params=111/0/111 float=y maxiter=500 insidemaxiter periodicity=0

colors=0000iO<5>OAO<6>eXU<7>OAOAKK<6>mmK<7>AKMFFO<6>zzO<7>FFOFOO<6>zOA<7>FOO\

FFF<6>zzz<7>FFFOFK<6>OUm<7>OFKPFO<6>mKO<7>PFOFKA<5>NSIPUKOTJ<6>FKAOOK<4>57j7\

9p78 1<6>OOKODI <6>1 aA7>1 FOKF1 <6>hZO6>OIOKFOFOF<6>ZOU<7>FOFKFO<6>hZO<7>KF000\

A<6>OOk<7>OOAAOO<6>zOO<7>AOO6>2 rOOzOOuOOoO

}

Formula: Initialize: z = zptxel

Iterate z’ = ((n — 1)z +

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit ComplexBasinO MPMATH_C.C
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Halley

Category: Escape Time to Finite Attractor

Fractal type halley is very similar to type Newton, but uses a somewhat more

complicated formula to converge to the roots of a polynomial.

Example:

Jewelry_i { ; Delicate Halley

By Dan Farmer

Halley example

reset type=halley passes=b corners=—1.352/i.352/—O.773344/O.773344

paramsó/2/O.0001 float=y maxiter=256 insidemaxiter outsidereal

periodi ci tyO

colors000333222000PFF<27>vcDwdDxeDzfCyfCxeC<29>PFFOAO<15>ZcO<14>OAO<15>\

ZcO<1 5>OAOSNC<29>xo’ zpaypa<29>UPF000<4>888000BBB<23>ppp<28>555
}

Formula: Initialize: z = zpixel

Iterate: z’ = z — R F / [F’ — (F”F / (2F’))]

where F = Z(Zd —1), F’ and F” are first and second derivatives of F,

F’=(a+ 1)(zd1),andFh=(a+ 1)az”’

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

MPC math initialization MPCHa11ey_per_pixel() FRACTALS.C
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MPC math orbit MPCHalleyFractal() FRACTALS.C

Floating point initialization Halley_per_pixel() FRACTALS.C

Floating point orbit HalleyFractalO FRACTALS.C

Frothybasin

Category: Escape Time to Finite Attractor

Frothy Basins, or Riddled Basins, were discovered by James C. Alexander of the

University of Maryland. This type is interesting because the attractors are strange

attractors that intersect. (Roughly speaking, a strange attractor is an attractor that

is a fractal.)

Example:

EvilFrog { ; Kermit with rabies Wesley Loewer

reset type=frothybasin passes=1

corners=O.1987794025371462/O.1987794025306378/—1.287290394040766/—1.2872\

90394029171/O.1987794025292465/—1.287290394030193 paramsó/1 floaty

maxi ter=100

colors000zOO<82>MOOzOz<40>MOMOzO<40>OM000z<40>OOMzzO<40>MM0000000000

}

Formula: Initialize: z = zpLcel

Iterate: z’ = z2 — c conj(z)

where c = 1 + ai, and a = 1.0287 1376822...

324 CHAPTER 6



Code: Routine Type Routine Name File

Fractal engine calcfrothO MISCFRACT.C

Initialization froth_setupO MISCFRACT.C

Unity

Category: Escape Time to Finite Attractor

This intriguing fractal is based on a formula trying desperately to converge to the

number one. This formula was proposed by Mark Peterson.

Example:

Lo_Iteration_Unity { ; (C)1993 Peter Moreland 100012,3213

Thanks to Lee Skinner for the palette

resetl732 type=unity passest

corners—31. 914182/31. 914182/—2 . 438782/2 . 438782./—Il. 277216/—29. 954578

floaty maxiter=2 insidebofó0 invert7.47995/0/0 distest=3/5

periodi ci ty=0

colorsMgCMgC<19>zz9<60>2110H0011<8>4WH<4>MU’YUzUTh<6>cOheNgeOg<25>soltp\

luq lvr Iws lxumyvmzwn<47>C2W<8>V6aY7bZ9 ‘<1 4>zg0cl 3>nGDmDEmCDmBDmAC 18B<2>r6\

C<1 5>IfCKf C

}

Formula: Initialize: x = zpbcel, y = zpLcel,
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Iterate: One = x2 + y2

y’ =(2—One)x;

x’ = (2 — One)y’;

Code: Routine Type Routine Name File

Fractal engine StandardFractactalO CALCFRACT.C

Integer math initialization longjulia_per_pixel() FRACTALS.C

Integer math orbit UnityFractalO FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit UnityfpFractalO FRACTALS.C

3-D Solid Fractals

Since Fractint version 12, the fractal type julibrot has implemented what is

known in fractal literature as “stacked Julias.” The idea is to layer Julia sets one

on top of the other, changing the c parameter in the Julia z2 + c formula

continuously in the third dimension. The result is a hauntingly beautiful crystal-

like solid. This solid is rendered by coloring each pixel according to the distance

from a virtual viewer, with the foreground surface lighter, and receding surfaces

shaded an increasingly darker gray. Both grayscale and red/blue stereo images

can be made ofjulibrot crystals. Note that a 256-color video mode must be used.

Starting with Fractint version 18 (the version included with this book), the

julibrot type has been generalized in two different ways. First, stacked julias can

now be made using orbit routines other than the classic Julia. You can use the

julibrot type to stack 2-D fractals from types bamsleyj 1, bamsleyj2, barnsleyj3,

julfn+exp, julfn+zsqrd, julia, julia4, julzpower, julzzpwr, lambda, lambdafn,

and manowarj. Second, the julibrot rendering mechanism can now be used to

make 3-D “cross sections” of the 4-D fractal types quat, quatj, hypercomplex, and

hypercomplexj.

Julibrot Parameters

To access the fractal type julibrot, press(), selectJuLIBRoT from the SELECT FRACTAL

TYPE screen, and press () You will then see the SELECT O11T ALGORITHM FOR

JuLIBR0T screen, as shown in Figure 6-2.

Orbit Algorithms

The default orbit algorithm isJulia, which results in the original “Julibrot” image

of past Fractint versions. This screen works exactly like the SELECT FRACTAL TYPE

screen. Select an orbit algorithm and press
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Figure 6-2 Select Orbit Algorithm for Figure 6-3 Julibrot Parameters screen
Julibrot screen

Orbit Fractal Type Parameters

TheJULIBROT PARAMETERS screen is shown in Figure 6-3. Some of the details of this

screen vary depending on which orbit algorithm you selected, so we’ll discuss

various cases individually. In all cases, the formulas for the orbit algorithms are

in the form z’ = f(z) + c for some function g(z). When we mention the variable

c, we are referring to the c in this formula.

2-D Julia Case Let’s assume that you selected one of the 2-D Julia orbits

(barnsleyj 1 ,barnsleyj2, bamsleyj3,julfn+exp,julfn+zsqrd,julia,julia4,julzpower,

juLzzpwr, lambda, lambdafn, or manowarj). The complex coordinates corresponding

to each pixel of your computer screen are used to initialize z to start
each orbit calculation.

The first few items of the JuLIBR0T PARAMETERS are parameters for the orbit

algorithm you selected. All the parameters that you would normally see for the

orbit algorithm’s fractral type will be shown on the screen, except parameters that

the Julibrot renderer uses to calculate the third dimension. For the 2-D Julia

orbits, the parameters not shown are the real and imaginary parts of c. Other

parameters, such as the bailout value and the function variable parameters of type

julfn+zsqrd, are shown and may be entered.

Following the orbit algorithm parameters are four entries labeled “from” and

“to.” The first two of the three dimensions of ajulibrot image are mapped to the

screen pixels in the same way as is done for 2-DJulia sets. Imagine a stack of Julia

sets parallel to your computer screen, some closer to you, some farther away. The

third dimension (perpendicular to your screen) is controlled by changing the

variable c continuously from the FROM cX/FROM a value (near the viewer) to the To

cxrfo a value (farther from the viewer). Each value of (cx,cy) determines a 2-D

Julia set that is a cross section of theJulibrot image parallel to your computer screen.
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4-D Julia case Now let’s consider the 4-D Julia orbit algorithms quatjul and

hypercomplexj. The variables z and c in the orbit formula are four dimensional.

As with 2-DJulias, the coordinates corresponding to each pixel of your computer
screen are used to initialize z to start each orbit calculation, but because z is four

dimensional, there are two dimensions oft undetermined. These are determined

by the From/To settings of the JULIBROT PARAMETERS screen. Because the four

components of c are not required to form the third dimension as in the 2-D case,

these parameters appear at the top of the JuLIBR0T PARAMETERS screen.

The main difference between using 2-D and 4-D orbits to generate a Julibrot

image is that in the 2-D case many differentJulia sets are stacked together to form

a 3-D solid, whereas in the 4-D case the solid is formed from a single 4-DJulia set.

4-D Mandeibrot Case Finally, we’ll look at the 4-DJulia set orbit algorithms quat

and hypercomplex. The coordinates corresponding to each pixel of your

computer screen are used to set c rather than initialize z as was the case in thejulia

example. Because c is four dimensional, there are two dimensions of c undetermined.

These are set by the From/To settings of the JULIBROT PARAMETERS screen.

3-D Control Parameters

The remaining parameters on the JuLIBROT PARAMETERS screen allow you to control

the way the 3-D transformations are set up. The julibrot type uses its own 3-D

mechanisms—they do not interact with Fractint’s other 3-D settings. Most of

these settings never need to be changed.

Number of z pixels This parameter sets how many slices are used to build up

the solid image. The default value of 128 is good for most images. A higher

number gives finer results, but you will discover that much higher values than

128 have dimishing returns of better quality and exact a high price of increased

calculation time. For your final show-quality penultimate image, you might

want to increase this to 256 or more. Conversely, because the julibrot takes a

long time to generate, you can use lower values to explore. The calculation time

is proportional to this setting; a value of 256 will take twice the time as a setting
of 128.

3D mode The possible 3-D modes are monocular, left eye, right eye, and red-blue.

The first makes a grayscale image. The red-blue mode makes a stereo anaglyph that

you can view with the red/blue glasses that came with this book. The left eye and

right eye modes produce images that look similar to images made in the monocular

mode, but the perspective shifts to the left and right, allowing you to make stereo

slides or use other methods of combining the images into a stereo form.
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Distance between eyes This number controls the stereo effect. A slightly higher

number enhances the stereo separation, but may make the images more difficult

to fuse. This parameter is ignored in monocular mode.

Reference Frame Parameters The remainder of the parameters are needed to

construct the 3-D picture so the fractal appears with the desired depth and proper

z location. With the origin set to 8 inches beyond the screen plane and the depth

of the fractal at 8 inches, the default fractal will appear to start at 4 inches beyond

the screen and extend to 12 inches if your eyes are 2.5 inches apart and located

at a distance of 24 inches from the screen. The screen dimensions provide the
reference frame.

Tricks for Exploring Julibrots

You can use the 2-D fractal types corresponding to the orbit algorithm to help

you set up julibrot images. Keep in mind that the interior “lake” of the 2-D cross

sections is used to build the julibrot solids. Use the BAsic OPTIONS screen and

set inside color to Sand outset color to 0. These settings show off the “lake” area

without the distracting escape-time bands. Find a range of parameters that start

with a very small lake area, move through a larger lake, and change back to a small

lake. Use the end points of this range as your two From/To pairs.

Now get your thinking caps on. It may take a while for this to sink in; but when

it does, you’ll experience the pleasure of real mathematical insight and enjoy how

all these topics fIt together. Recall that the Mandelbrot set is an index of of Julia

sets. The easiest way to find a series of Julia sets that stack together to make a

julibrot is to use a Mandelbrot set. Generate an image of the Mandelbrot variant

of the orbit algorithm you want to use. For example, if you want to make ajulibrot

usingtypebarnsleyj 1, generate abarnsleyml image. (Press, select barnsleyml,

and press A low resolution video mode is fine; try (). When the image

is complete, press to turn on the cross-hair cursor. Then press ® (for

“numbers”) and the coordinates of the cursor will appear on the screen. Move the

cursor just “on shore” and write down the coordinates (you don’t need to write

down all the digits—the precision is not critical). Then move the cursor across

to the other side of the lake to a position on the opposite shore and write down

the coordinates of that point. The two sets of numbers you wrote down are the

Fromffo julibrot settings. Then press , select type julibrot, select the

barnsleyj 1 orbit algorithm. Enter the recorded coordinates—the first pair as the
FROM CX and FROM a values, and the second as the To cx and To a values. Go

ahead and generate the julibrot image. (Because julibrot is slow, you can use
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Figure 6-4 Exploring Julibrots using 2-D cross sections

to turn on the view windows feature and make a small image to speed things up.)

Figure 6-4 shows a barnsleyml image with the From and To values marked, a

series of Julia cross sections, and the resulting Julibrot image. For the image in

the figure, the “From” is just a bit offshore, and the To point is a bit onshore. The

reason for this was to magnify the texture of the surface. If the From/To points

had spanned the whole lake, the surface texture would have been such a small

percentage of the total depth as to be invisible.
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Julibrot

Category: 3-D Solid Fractals

Fractint’s “poor person’s ray tracer”—a solid fractal renderer that lets you see

stacked Julia sets as well as true 3-D fractals. Note that a 256-color video mode

is needed. When exploring, use the VIEw WINDOWS mode () to speed up what

can be a very slow fractal type.

Example:

Barnsley_Sponge { ; Tim Wegner

reset=1733 type=julibrot julibrotfromto=O.45/O.55/1.1/1.1

julibroteyes=2.5 orbi tname=barnsleyjl 3Dmode=red—blue

corners=—2.336449/2.336452/—1 .752338/1 .752337 float=y

co 1ors=g lassesi map

}

Code: Routine Type Routine Name File

Fractal engine Std4dFractalQ JULIBROT.C

Integer math initialization jb_per_pixel() JULIBROT.C

Floating point initialization jbfp_per_pixel() JULIBROT.C
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3-D Orbit Fractals

These fractals trace out orbit paths in three dimensions. You can alter the point

of view, perspective, and scale using the command. Try viewing them using

the stereo method with the superimpose method. (Enter 2 at the number 2—the

STEREO (R/B 3D)? (0=No, 1=ALTERNATE,2=SUPERIMPOSE,3=PHOTO) prompt.) Orbit

fractals generally benefit from higher resolution video modes; if your graphics

hardware supports it, try a 1024 x 768 mode.

Icons3d

Category: 3-D Orbit Fractal

The icons3D type, which was inspired by the bookSymmeuy in Chaos by Michael

Field and Martin Golubitsky, produces some of the most pleasing red/blue stereo

images you can make with Fractint. The images have the appearance of a delicate

but highly structured web. The formula implemented here maps the classic

population logistic map onto the complex plane and is, therefore, the distant

cousin of the bifurcation fractals mentioned later is this chapter, but with an

entirely different result.
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Example:

Sand_Dollar_3d_Il { ; Rotated view

reset type=icons3d corners=—2.134489/2.036423/—1.519231/1.608953

params=—2.34/2/O.2/O.1/O.O/5 maxiter=32767 inside=O

rotation=90/45/270 perspective=180 xyshift=O/O stereo=2 interocular=3

converge=—3 crop=4/O/O/4 brightlOO/100 colors=glasses2 .map

}

Formula: Intitialize: x = 0.01

y=O.003

Iterate: p = lambda + alpha(x2 + y2) + beta (x Zreai — y z)
x’ = p x + gamma Zreai — omegay
y’ =py—gammazg+ omegax
z’ = x2 + y2

Parameters: Lambda, Alpha, Beta, Gamma, Omega, and Degree

Code: Routine Type Routine Name File

2D floating point fractal engine orbit2dfloatO LORENZ.C

3D floating point fractal engine orbit3dfloatQ LORENZ.C

Floating point orbit iconfloatorbitO LORENZ.C

Floating point orbit lorenz3dlfloatorbit() LORENZ.C

Floating point orbit lorenz3d3floatorbit() LORENZ.C

Floating point orbit lorenz3d4floatorbit() LORENZ.C

Integer math orbit lorenz3dlongorbit() LORENZ.C

FRACTAL TYPES 333



Lorenz3d

Category: 3-D Orbit Fractal

The Lorenz Attractor fractal is based on a simple set of three deterministic

equations developed by Edward Lorenz while studying the nonrepeatability of

weather patterns. The orbit forms two saucer-like disks at an angle to each other

in three dimensions. The orbit filaments come arbitrarily close to each other but

never touch. The orbit is torn between the two disks, first spinning about one,
then the other.

Example:

Lorenz_two_lobe {

reset=1733 type=lorenz3d

come ms=—100 4318/26 56676/—63 80547/63. 18771

pamams=0.02/5/15/1/0/3 maxitem=300

motation=34/72/30 pemspective=1 50 xyshi ft=0/0 stereo=2 intemocular=2

convemge=—3 cmop=4/0/0/4 bmight=80/100 co1oms=g1asses2 .map

}

Formula: Intitiahze: x’ = x — (ax + ay)dt

z=y=z= 1
Iterate: y’ =y + (bx—y—zx)dt

z’ = z — (cz + xy)dt

334 CHAPTER 6



Code: Routine Type Routine Name File

3D floating point fractal engine orbit3dfloat() LORENZ.C

3D integer math fractal engine orbit3dlongO LORENZ.C

Floating point orbit lorenz3dfloatorbit() LORENZ.C

Floating point orbit lorenz3dlongorbit() LORENZ.C

Lorenz3d 1

Category: 3-D Orbit Fractal

This type is a one-lobe variation of lorenz3d.

Example:

Lorenz_one_lobe {

reset=1733 type=lorenz3dl

corners=2.181638/7.261645/—24. 08926/—19.00947

params=0.02/5/15/1/O/3 float=y maxiter=300

rotation=34/72/30 perspective=1 50 xyshi ft=0/0 stereo=2 interocular=2

converge=—3 crop=4/0/0/4 bright=80/100 co1ors=äg1asses2 .map

}

Formula: Initialize: n = (x2 + y2)

z=y=z= 1

FRACTAL TYPES 335



Iterate: x’ = x + (—ax — x + ay — by+n — an +yz)dt

y’=y+(bx—cx—ay—y+bn+an—xz—nz)dt

z’ = z + (y/2 — cz)dt

Code: Routine Type Routine Name File

3D floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit lorenz3dlfloatorbit() LORENZ.C

Lorenz3d3

Category: 3-D Orbit Fractal

This type is a three-lobe variation of lorenz3d.

Example:

lorenz_three_lobe {

reset type=lorenz3d3 passes=t corners=—20. 28/20.28/—20.28/20.28

params=0.020000000000000000416/10/28/2.6600000000000001421 float=y

maxiter=200 fillcolor=1 inside=bofóO outside=0 rotation=0/O/O

perspective=150 xyshift=0/0 stereo=2 interocular=3 converge=—4

crop=4/0/0/4 bright=80/100 co1ors=g1asses2 .map
}

Formula: Initialize: n = (x2 + y2)

z=y=z= 1
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Iterate: x’ = x + ((—ax — x + ay — by + yz)/3 + n2 — an2 (2xyn/3)(b + a — z) )dt

y’ =y + ((bx—cx—zx—ay —y)/3+ 2axy—2xy + (b + a—z)(x2 —y2)/3n)dt

z’ = z +(3x2y —y3)/2 — cz)dt

Code: Routine Type Routine Name File

3D floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit lorenz3d3floatorbit() LORENZ.C

Lorenz3d4

Category: 3-D Orbit Fractal

This type is a one-lobe variation of lorenz3d.

Example:

Lorenz_f our_lobe {

reset=1733 type=lorenz3d4 corners=—28.75506/31 .99/—31.99/28.75506

params=O.02/1O/28/2 .66/0/3

float=y maxiter=300 rotation=10/20/30 perspective=150 xyshift=0/0

stereo=2 interocular=2 converge=—3 crop=4/0/0/4 bright=80/100

colors=glasses2.map

}

Formula: Initialize: n = (x2 + y2)

z=y=z= 1
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Iterate: x’ = x + ((—ax3 + (2a + b — z)x2y + axy2 — 2xy2 + (zy3 — by3)/(2x2 + 2y2))dt

y’ = y + ((bx3 — zx+ ax2y — 2x2y +(—2a — b +z)xy2 — ay3f2x2 + 2y2))dt

z’ = z +(2x3y — 2xy3 — cz)dt

Code: Routine Type Routine Name File

3D floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit lorenz3d4floatorbit() LORENZ.C

Rossler3d

Category: 3-D Orbit Fractal

This strange attractor is named after the German Otto Rossler. His fractal
namesake looks like a band of ribbon with a fold in it.

Example:

Rossler3d {

reset=1 733 type=rossler3d corners=—30/30.00375/—19.99925/40

params=O.04/02/O.2

11/5.7 rotation=60/30/30 perspective=150

xyshift=O/O stereo=2 interocular=1 converge=—6 crop=4/O/O/4

bright8O/100 co1ors=äg1asses2.map

}
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Formula: Initialize: x = y = z = 1

Iterate: x’ = x — (y — x)dt

y’ = y + (x + ay)dt

z’ = z + (b + xz — cz)dt

Code: Routine Type Routine Name File

Floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit rosslerlongorbitO LORENZ.C

Integer math fractal engine orbit3dlongO LORENZ.C

Integer math orbit rosslerfloatorbit() LORENZ.C

Kamtorus3d

Category: 3-D Orbit Fractal

This fractal is a variation on the orbits theme. The fractal is not a single orbit but

the superimposition of many with different initializers.

Example:

podO34 { ; Par of the day 11—15—92, Dick Sherry, 76264,752

Cc) 1992

reset type=kamtorus3d

corners=O. 103714/—0. 102463/—0.372742/2 .213121—0.979996/i .762589
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params=O.33/O.005/200/50 maxiter=500 inside=O logmap=yes periodicity=O

rotation=60/30/O perspective=O xyshift=O/O

colors=000IVUNWdR9ejkO2>W_bs6IeJZaYYXXfibQc_ZYYgvHUfPdK’42>QXcdGSeC6’JMWQ’\

FL7MRUIpPaebc7V2>VQj3cC2>MYeEsGLgYI eZ7l GIHYxltmf rb pKEEowhgmk_dmG8TMKd9RRG\

T_MVgEomHRJNU_9i URJVIHUMMaPRhDeLIaWNZeD7cIGgNOkOm’ <2>L_1q31 <2>YPcastaT_YUeVV\

jvsPkkYacfgVb_Wi trPj jY bfYjgWejU mP6BQFPRObKcROkzQctfVWZWe9G7JOUQ4rRIpb4OXIQ\

XpvUersRiiTk’Vm9pIJeRjRG2>WVfmEnYnC2>T_e’KztVPkP7aTUmYmbXn53KHI_’rN2>U’hf\

DV<2>VSjKbD<2>QXfchK_cVW_e2xj7_YGIz2>P_qEqRJi_Obgbm4ZgKVa_MDB2>RSeXNnVQoTT\

oHte2>Qam8yJjd42>WYcCDvIKsNQquwukmsadqIW8NWU54xDEuLNrvT’nUdfVhZWITfOSbYSZf\

OhN2>LZh374HXH2>QWgkDvdKsYQqrlKdH_UpT2>S’jótFHgYVzPIZL’aTPd_fljwtu’BAcXQe\

qdnDXIKZkR_2>FBU89H2744FG6NR7UaBgkFtt’rXuq9mlD2>lLJlCLi7dg3w3>fcivHddE22\

>VScMkG<2>R_f8U7DVJ

}

Formula: Initialize: x = y = 0

Iterate: x’ = xcos(a) + (x2 —y)sin(a)

y’ = xsin(a) — (x2 —y)cos(a)

Code: Routine Type Routine Name File

3D floating point fractal engine orbit3dfloat() LORENZ.C

3D integer math fractal engine orbit3dlongO LORENZ.C

Floating point orbit kamtorusfloatorbit() LORENZ.C

Integer math orbit kamtoruslongorbit() LORENZ.C

Orbit Fractals

2-D Orbit

In this section we consider additional orbit Fractals that create 2-D images.
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Gingerbreadman

Category: 2-D Orbit

This intriguing orbit fractal looks like a gingerbread man cookie. While the fractal

is generating, new structures will suddenly appear after periods of apparent

stability.

Example:

gingerbreadman {

reset co1ors=defau1t.map type=gingerbreadman maxiter=20000

}

Formula: Initialize: x,y = parameters

Iterate: x’ = 1 —y + lxi

yI = x

Code: Routine Type Routine Name File

Fractal engine orbit2dfloat() LORENZ.C

Floating point orbit gingerbreadfloatorbit() LORENZ.C
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Henon

Category:

Example:

2-D Orbit

This fractal type was discovered by Michel Henon, an astronomer at Nice. The

shape is made up of thicker and thinner parts, and is more complex than it first

appears. This pattern continues even at the most extreme magnifications.

henon {

reset=1733 type=henon corners=—1.399994/1.398849/—0.49900818/0.5

params=1 .4/0.3

}

Routine Type

Floating point fractal engine orbit2dfloat()

Floating point orbit

Integer math fractal engine orbit2dlongO

Integer math orbit

Routine Name

henonlongorbitO

henonfloatorbitQ

File

LORENZ.C

LORENZ.C

LORENZ.C

LORENZ.C

Formula:

Code:

Initialize: x = y = 1

Iterate: x’ = 1 + y —

y’ = bx
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Hopalong

Category: 2-D Orbit

This fractal is due to Barry Martin. It looks like a ribbon tied in a bow, and it

develops in sudden leaps after periods of quiescence.

Example:

NETWORK { ; A hopaong lacey little number Peter Moreland 100012,3213

reset type=hopa long corners=—24 .694914/29.486391/—22.866557/23.187553

params=1.666/0.556/4.6 float=y maxiter=32767 bailout=300 inside=0

ogmap=yes

colors=00000eOeOOeeeOOeOeeLOeeeLLLLLzLzLLzzzLLzLzzzLzzz000S5S<3>HHHKKK000SSS\

WWW_ccchhhmmmssszzz00z<3>z0z<3>zOO<3>zzO<3>OzO<3>Ozz<2>OGzVVz<3>zVz<3>zVV<\

3>zzV<3>VzV<3>Vzz<2>Vbzhhz<3>zhz<3>zhh<3>zzh<3>hzh<3>hzz<2>hlzOOS<3>SOS<3>S0\

0<3>SSO<3>OSO<3>OSS<2>O7SEES<3>SES<3>SEE<3>SSE<3>ESE<3>ESS<2>EHSKKS<2>QKSSKS\

SKQSKOSKMSKK<2>SQKSSKQSKOSKMSKKSK<2>KSQKSSKQSKOSKMSOOG<3>GOG<3>G00<3>GGO<3>0\

G0<3>OGG<2>04G88G<2>E8GG8GG8EG8CG8AG88<2’GE8GG8EG8CG8AG88G8<2>8GE8GG8EG8CG8A\

GBBG<2>FBGGBGGBFGBDGBCGBB<2>GFBGGBFGBDGBCGBBGB<2>BGFBGGBFGBDGBCGkkk<5>343642

}

Formula: Initialize: x = y = 0:

Iterate: x’ = y — sign(x) (abs( bx — c))

y = a—x

(The function “signO” returns 1 if the argument is positive, —1 if

argument is negative.)
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Code: Routine Type Routine Name File

Floating point fractal engine orbit2dfloat() LORENZ.C

Floating point orbit hopalong2dfloatorbit() LORENZ.C

Icons

Category: 2-D Orbit

The 2-D form of ICONS3D.

Example:

Halloween {

reset type=icons corners=—1.0496/1.0496/—O.7872/O.7872

params=—2.7/5/1.5/1/O.O/6 float=y inside=O

colors=000TgsSfsSestYS<3’zvErMY<39’fZEqMY<32’FUyrMY<62’OV4rMYqNXqNW

}

Formula: Intitialize: x = 0.01

y=o.003

Iterate: p = lambda + alpha(x2 + y2) + beta (x Zreai —y Zimag)
x’ = p x + gamma Zreai — omega y
y’ =py_gammazg+ omegax
z =x2 +y2
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Parameters: Lambda, Alpha, Beta, Gamma, Omega, and Degree

Code: Routine Type Routine Name File

2D floating point fractal engine orbit2dfloat() LORENZ.C

3D floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit iconfloatorbit() LORENZ.C

Floating point orbit loreriz3dlfloatorbit() LORENZ.C

Floating point orbit loreriz3d3floatorbit() LORENZ.C

Floating point orbit loreriz3d4floatorbit() LORENZ.C

Integer math orbit loreriz3dlongorbit() LORENZ.C

Julia_inverse

Category: 2-D Orbit

The classic Julia formula (z’ = z2 + c )is attracted to infinity if it is initialized by

points outside the Julia set, and it is attracted to points within the Julia set

otherwise. The inverse formula (z = ± ( z—c)) has the opposite characteristic, and

it is repelled by those same attractors. This means that the orbit of this inverse

function tends to trace out the boundary of theJulia set. This method for drawing

Julia sets is called the Inverse Iteration Method (TIM).
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Not every border point is visited equally often by the orbit of the inverse

function. Fractint keeps track of the more often visited points and avoids them.
This is called the Modified Inverse Iteration Method, or MuM, and is much faster

than the TIM. Different options are provided for traversing the decision tree to

decide which of the two square roots to take in the formula, including Breadth

first, Depth first (left or negative first), Depth first (right or positive first), and

completely at random. The results vary significantly depending on the traversal

method chosen. As far as we know, this fact is an original discovery by Michael

Snyder, the implementor of Fractint’s julia_inverse type, and is published here
for the first time.

Example:

SeaShell { ; MuM Julia Michael Snyder

; Like a Chambered Nautilus cut in half; my favorite.

; Give it your highest 16—color resolution.

reset=1732 type=julia_inverse mi im=depth/right

corners=O.839251/—O.839269/—1.119046/1.119006/—O.839269/1.119006

params=O.27334/O.00742/5/1024

}

Formula: Initialize: z = point near Julia set

Iterate: z’ = +—(z—c,)

Code: Routine Type Routine Name File

C fractal engine inverse_julia_per_imageO CAICFRACT.C

Integer math orbit Linverse_julia_orbitO FRACTAl_S.C

Floating point orbit Minverse_julia_orbitO FRACTAl_S.C
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Lorenz

Category: 2-D Orbit

This type is the 2-D projection of type loreriz3d.

Example:

lorenz {

reset co1orsdefau1t.map type=lorenz

}

Formula: Intitialize: x’ = x — (ax + ay)dt

z=y=z= 1

Iterate: y’ =y+ (bx—y—zx)dt

z’ = z — (cz + xy)dt

Code: Routine Type Routine Name File

2D floating point fractal engine orbit2dfloat() LORENZ.C

2D integer math fractal engine orbit2dlongO LORENZ.C

Floating point orbit loreriz3dfloatorbit() LORENZ.C

Floating point orbit loreriz3dlongorbit() LORENZ.C
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Martin

Category: 2-D Orbit

The martin type is attributed to Barry Martin of Aston University in Birmingham,

England. The orbit traces out a quilt-like pattern, and keeps changing in

sudden spurts.

Example:

martin {

reset co1ors=defau1t .map type=martin params=3. 14159

}

Formula: Initialize: x =y = 0:

Iterate: x’ = y — sin(x)

y’ =a—x

Code: Routine Type Routine Name File

2D floating point fractal engine orbit2dfloat() LORENZ.C

Floating point orbit martin2dfloatorbit() LORENZ.C
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Pickover

Category: 2-D Orbit

This type is due to Clifford A. Pickover of the IBM Thomas J. Watson Research

Center. Be sure to try this one using 3-D. (Press and select 2 at the Smio (R/B

3D)? prompt. The fractal looks like a 3-D web with a wispy structure.)

Example:

pickover { ; 3—D image — use red/blue glasses

reset type=pickover corners=—3.696451/3.79018/—2.249562/3.098032

params=2. 24/0. 43/—0.65/—2 .43

float=y maxiter=1000 inside=0 rotationó0/30/0

perspective=150 xyshift=0/0 stereo=2 interocular=3 converge=—4

crop4/0/0/4 bright80/100

colors=&glasses2.map

}

Formula: Initialize: x = y = z = 1

Iterate: x’ = sin(ax) — zcos(bx)

y’ = z sin(cx) — cos(dy)
z’ = sin(x)

Code: Routine Type Routine Name File

Floating point fractal engine orbit3dfloat() LORENZ.C

Floating point orbit pickoverfloatorbit() LORENZ.C
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Superimposed Orbits

These fractals are not the graphs of a single orbit, but the superimposition of

many orbits, one on top of the other.

Dynamic

Category: Superimposed Orbits

This type, taken from Clifford Pickover’s book Computers, Pattern, Chaos, and

Beauty is much like Pickover’s popcorn fractaL There are two options controllable
from the BAsic OvrioNs <x> screen that have unusual effects on these fractaLs. The

O11T DELAY value controls how many initial points are computed before the orbits

are displayed on the screen. This allows the orbit to settle down. Setting the outside

option to summ causes each pixel to increment color every time an orbit touches

it; the resulting display is a 2-D histogram. (Note: this is unrelated to the normal

effect of the o u t si d e = s umm option when used with escape-time fractals.)

Example:

Sin_Waves { ; Dynamical System Fractal

; By Dan Farmer

; Dynamic Example

reset type=dynamic function=log passes=1
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corners=—31 .99/—6.208486/5.823209/31 .604723 params=200/0.001/10/5

float=y maxiter25 inside=O outside=summ

colors=000rT3LPb<10>ksMJNc<40>JAYI9XJNb<25>Gk3JNc<54>kA3JOb<25>UmBJNc<1 1 \

>MPkJNc<40>J9’ 18_JNb<19>XI5LOcNQbMN’PSa<7>fgV

}

Formula: y’ = y + f(x)

x’ = x — f(y)

where f(k) = sin(k + afn(bk)), and fn(z) is one of conj, cos, cosh,

cosxx, cotan, cotanh, exp, flip, ident, log, recip, sin, sinh, sqr,

tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine dynam2dfloat() LORENZ.C

Floating point initialization dynam2dfloatsetup() LORENZ.C

Floating point orbit dynamfloat() LORENZ.C

Kamtorus

Category: Superimposed Orbits

This type is the 2-D version of kamtorus3D.
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Example:

NYUFO13 { ; Kamtorus variation #2 — Dan Farmer

reset type=kamtorus corners=—1.103439/2.785873/—1.57457/1.341705

params=1.3/O.005/300/500 maxiter3200 inside=O

co lors=000dMk<40>zzzzzzzzy<60>zzl zzOzyOyxO<58>G2J FOKFOK<4>FOLGOLGOLGOMGOMHOM\

<52>TObUOcUOcV1 cV2d<18>dLj s

}

Formula: Initialize: x = y = 0

Iterate: x’ = xcos(a) + (x2 — y)sin(a)

y’ = xsin(a) — (x2 —y)cos(a)

Code: Routine Type Routine Name File

2D floating point fractal engine orbit2dfloat() LORENZ.C

2D integer math fractal engine orbit2dlongO LORENZ.C

Floating point orbit kamtorusfloatorbit() LORENZ.C

Integer math orbit kamtoruslongorbit() LORENZ.C

Mandelcioud

Category: Superimposed Orbits

This type demonstrates yet another method of using the classic Mandeibrot/Julia

formula to make a fractal image. The Mandelbrot orbits are superimposed.
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Example:

In_the_Abyss { ; Extra—terrestrial Jelly—fish! (C)1993 Peter Moreland

; Data 486 I 33 I Y I SF7 I 17.31(5) I 0:2:22.91

; Produced 31.1.93

; Map = Joe

reset typemande I cloud

corners=—O.833158/—1.151253/O.437465/—O.407465/—O.542105/O.049396

params=350 float=y maxiter=55 outside=summ

colors=0004FW6IX8MX9OZJNXRNXMQYSTZKRdRVcYUYfUYUX UYe_Z_eYXi YXe ‘Xh ‘YeZ ‘i Y\

‘ea’ia’hb’gd’Z’ffafadhgfgn’Zsa_nd’tcanbdsbdnffuff<2>tliZbkdbkafmfinaisnj\

lujkhlqimsllmplmnompommmpqnpmoqppqunprtruupnptwrtqtxutuxtuxwutvyyvwuxzzz\

z<24>zzz3l 1522343642334534356654931 D31962D52964D74784A83D92FC2A95D95BC5E\

D54799795ACA9ADA9AD9ED9AADDBDADEEDDG31 H62L72H74L75P75HA3L931 D3LF3H95LA5H\

D6LD6QC6HB8LB8ID9ME9HACHEDLEDPB8SB9PE9TE9QFCUFCFG6EHBJG3MG3IG6MH5NK6PI3U\

H3RK3TL3PI4TH6QL5TM5UO6IH9MHAIKAMLAIHEMIDILDMLEQHATHAPLAULAPIDTIDQLEULEM\

PESPC37J5EJCEI4ESAEQIEIPFJHEO6GMEHKFPM6IR9KTCPUIHHLIHJLIMLHHILLILHKMMLLR\

LILPKTPKJLQQMQLPSRRRXE6XDAYL5YQ6dP6YKDdKCZPDeRCZMHdMIYPI I PIXTIaSJXQLaQLX\

TMaTLeRLYMRZTQfTQkTNIURUXJUXSYWEfXA_YMdXN XTfYTecSmXU IfS

}

Formula: Iterate: z’ = z2 + c

Code: Routine Type Routine Name File

Fractal engine dynam2dfloat() CALCFRACT.C

Floating point orbit mandelcloudfloatO FRACTALS.C
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Popcorn

Category: Superimposed Orbits

Here is another Clifford Pickover fractal. The strange appearance of this fractal

is due to the superimposition of many orbits together.

Example:

sbaOló { ; Cc) 1993 Richard H. Sherry, CIS:76264,752

reset=1701 type=popcorn

corners=—2.047073/—1.013535/4.3996124/5.1545563

params=O.14999999999999999445 inside=O float=no

co lors=000RD6RC5RC4<66>umZumZt lYt IYskYCB3skX<97>CA2 lWs<1 3>EB5BITCEFC_C<3\

2>CA2JwE<28>CB2

}

Formula: Initialize: x = zpL,cel, y = zpbcel,
Iterate: x’ = x — 0.05 sin(y) + tan(3y)

y’ = y — 0.05 sin(x) + tan(3x)

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Integer math initialization Iongjulia_per_ptxel() FRACTALS.C

Integer math orbit LPopcornFractalO FRACTALS.C

Floating point initialization otherjuliafp_per_pixel() FRACTALS.C

Floating point orbit PopcornFractalO FRACTALS.C
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Fractal Miscellanea

This section includes Fractal types that wejust couldn’t fit into our grand scheme.

Included are the Bifurcation Fractals, several random fractal types, and the circle

and cellular types.

Bifurcation

Bifurcation fractals are based on an intriguing kind of dynamic system that

behaves normally up to a certain level of some controlling parameter, then goes

through a transition in which there are two possible solutions, then four, and

finally a chaotic array of possibilities. Examples of this emerged many years ago

in biological models of population growth. The following bifurcation fractal

types demonstrate that this behavior exists for a wide variety of iterated formulas.

Bif+sinpi

Category: Bifurcation

This type originally used the sine function. The formula involves the sum of a

linear term and a function. The formula has been generalized starting in Fractint
version 18.
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Example:
bifurcation_plus_sinepi {

reset maxiter=20000 co1ors=defau1t.map type=bif+sinpi
}

Formula: x’ = x + rfn( (x))

where “fn” is one of conj, cos, cosh, cosxx, cotan, cotanh, exp, flip, ident, log,

recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine BifurcationO CALCFRACT.C

Integer math orbit LongBifurcAddSinPi() CALCFRACT.C

Floating point orbit BifurcAddSinPi() CALCFRACT.C

bif=sinpi

Category: Bifurcation

The formula is the same as bif÷sinpi with the linear term cut. The formula has

been generalized starting in Fractint version 18.

Example:

bifurcation_equal_sinepi {

reset maxiter=20000 co1ors=defau1t.map type=bif=sinpi
}
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Formula: x’ = rfn( (x))

where “fn” is one of conj, cos, cosh, cosxx, cotan, cotanh, exp, flip, ident, log,

recip, sin, sinh, sqr, tan, tanh, or zero.

Code: Routine Type Routine Name File

Fractal engine BifurcationO CALCFRACT.C

Integer math orbit LongBifurcSetSinPiO CALCFRACT.C

Floating point orbit BifurcSetSinPiQ CALCFRACT.C

Biflambda

Category: Bifurcation

When fn is ident, the formula for this bifurcation fractal is the same as that for

the lambda escape-time fractal. The formula has been generalized starting in
Fractint version 18.

Example:

biflambda {

reset maxiter=20000 co1ors=defau1t.map type=biflambda

}

Formula: x’ = rfn(x)(1 — fn(x))
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Code:

Bifmay

Category: Bifurcation

This bifurcation fractal has quite a different iterated formula that involves

an exponent.

Example:

bifmay {

reset maxiter=20000 co1ors=defau1t.map type=bifmay

}

Formula: x’ = rx /((1 + xYtd1)
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Code: Routine Type Routine Name File

Fractal engine BifurcationO CALCFRACT.C

Integer math setup LongBifurcMaySetupO CALCFRACT.C

Floating point setuo BifurcMaySetupO CALCFRACT.C

Integer math orbit LongBifurcMayO CALCFRACT.C

Floating point orbit BifurcMayO CALCFRACT.C

Bifstewart

Category: Bifurcation

This fractal is a variation on bifurcation without an x term in the formula. The

formula has been generalized starting in Fractint version 18.

Example:

bi furcation_Stewart{

reset maxiter=20000 co1ors=defau1t.map type=bifstewart

}

Formula: x’ = rfn(x)2 — 1

where “fn” is one of conj, cos, cosh, cosxx, cotan, cotanh, exp, flip, ident, log,

recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

Fractal engine BifurcationO CALCFRACT.C

Integer math orbit LongBifurcStewart() CALCFRACT.C

Floating point orbit BifurcStewart() CALCFRACT.C

Bifurcation

Category: Bifurcation

This is the original bifurcation fractal based on the population model. The

formula has been generalized starting in Fractint version 18.

Example:

bifurcation {

reset maxi ter=20000 co1ors=defau1t .map type=bi furcation

}

Formula: x’ = x + rfn(x)(1 — fn(x))

where “fn” is one of conj, cos, cosh, cosxx, cotan, cotanh, exp, flip, ident, log,
recip, sin, sinh, sqr, tan, tanh, or zero.
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Code: Routine Type Routine Name File

Fractal engine BifurcationO CALCFRACT.C

Integer math orbit LongBifurcVerhulstO CALCFRACT.C

Floating point orbit BifurcVerhulstQ CALCFRACT.C

Lyapunov

Category: Bifurcation

This variation on a fractal made from the population model appeared in AK.

Dewdney’s “Mathematical Recreations” column of Scientfic American, September,
1991.

The bifurcation fractal illustrates what happens in a simple population model

as the growth rate increases. The Lyapunov fractal expands that model into two

dimensions by letting the growth rate vary in a periodic fashion between two

values. Each pair of growth rates is run through a logistic population model and

a value called the Lyapunov Exponent is calculated for each pair and is plotted.

The Lyapunov Exponent is calculated by adding up log I r— 2rxI over many cycles

of the population model and dividing by the number of cycles. Negative

Lyapunov exponents indicate a stable, periodic behavior and are plotted in color.
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Positive Lyapunov exponents indicate chaos (or a diverging model) and are
colored black.

Example:

Lyapunov_one { ; (c) 1992 Peter Moreland, The Saint

; come in Brett Sinclair!

reset type=lyapunov corners=2 .93748764/2.94703484/3.6751 4065/3.68217105

params4/0.75 maxi ter=50 colors=000000<29>OOkOOmOlm<16>OSt

}

Formula: x’ = rx(1 — x)

Code: Routine Type Routine Name File

Fractal engine lyapunovO CALCFRACT.C

asm routines LYAPUNOV.ASM

Floating point orbit BifurcLambda() CALCFRACT.C

Random Fractals

Most of the fractals generated by Fractint are deterministic. The mathematical

methods used to generate these fractals are repeatable and give the same result

each time. The plasma and diffusion types are different; they use a random

element in their generation. Each plasma and diffusion image is unique. If you

generate 30 images using these two types, you will get 30 results.
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Plasma

Category: Random

The plasma fractal creates smoothly varying cloud-like colors. Be sure to try

rotating the colors using . When used with the command, makes

mountains by converting colors to a third dimension.. At the request of ray

tracing enthusiasts, there is now an option to output 16-bit POT files, making

65,536 possible “mountain elevations” instead of just 256. The program POVRay

that comes with both the Ray Tracing Creations (by Drew Wells and Chris

Young, © 1993, Waite Group Press) and Image Lab (by Tim Wegner, © 1992,

Waite Group Press) books can read these POT files.
The status display shows the random seed (rseed) value used with the

current plasma image. Using this value with the r seed = command line option

allows the exact duplication of the plasma fractal, so that specific images can be

included in .PAR files. Otherwise, each image is unique.

Example:

plasma {

reset=1733 type=plasma corners=—2/2/—1.5/1.5 params2

}
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Formula: variant of the midpoint displacement algorithm

Code: Routine Type Routine Name File

Fractal engine plasmaO CALCFRACT.C

Diffusion

Category: Random

The diffusion fractal works by randomly choosing pixels inside a box. When one

touches an existing, colored pixel, then the new pixel is colored. The result is a

growth pattern like a cystal in a supersaturated solution.

Example:

diffusion {

reset co1ors=defau1t.map type=diffusion params=1

}

Code: Routine Type Routine Name File

Fractal engine diffusionO CALCFRACT.C
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Cellular Automaton

The Cellular Automation is a bit of a misfit in Fractint. It is an idealistic

mathematical machine that generates images in a very different way from the

methods used with other fractal types. We are content to leave this lonely fractal

type here in its own category with no apologies as a reminder that the study of

fractals is not a very tidy subject!

Cellular

Category: Cellular Automaton

A cellular automaton colors cells using simple rules that determine the contents

of a cell from the colors of neighboring cells. In the spirit of fractals, extremely

complex patterns arise from simple rules.

Example:

Type_61 { ; Jonathan Osuch

reset type=cellular corners=—1.O/1.O/—1.O/1.O

params=11.O/2111000355004045.O/61.O inside=O colors=000eOOAZADCTwuIeLO
}

Code: Routine Type Routine Name File

Fractal engine CellularO MISCFP.AC.C

Integer math setup CellularSetupO MISCFRAC.C
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Moire Pattern

Moire patterns are most commonly created by the interference of two patterns.

You might see such a Moire pattern looking through two window screens at an

oblique angle, or in the colors on the surface of a soap bubble. Once again we

prove that the discipline of fractals is the study of “loose ends,” as we classify the

circle fractal type in a category by itself.

Circle

Category: Moire Pattern

Moire interference patterns are created by truncating the fractional part of the

distance from the center of each pixel. Is this a fractal? If you zoom in, detail

disappears; but if you zoom out, it increases. No problem, apply inversion (under

the EXTENDED OPTIONS screen) and you’ll find it is indeed a fractal! But even

noninverted images can be quite interesting.

Example:

whirlpool { ; Tim Wegner

; Inverted circle, based on Lee Skinner’s SKIP.GIF

reset=1720 type=circle passes=1
corners=—2 .44259235/0.689915143/0.45481 2221—0.32858413/0. 597129484/—077\

192783 params=10000 float=y bailout=6 inside=0 logmap=yes

invert=0.130566/0/0 viewwindows=1.25/0.75/yes/0/0

colors=000Fmi<2>Fnb<5>thM<7>rJu<7>lvv<4>o3J<4>vnXwedxXmzNv<4>s59m89fC9_G\
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9VXB<3>’n7PFJ<6>P5qv46OHGNIIWMK<3>ykcDDFOAFE_NEaS3xdPFE<4>O65NMHKSKZJVHY\

N<3>6vZ<5>I EZL6_MEX<5>SyC lWq<3>NPe<7>NvL<7>MrCVvGdzK<6>ZLD<6>VxL<2>GGj FN\

qDVyRerdpk<7>DOTRQuRVmR_d<7>wzw<7>J Fu<2>zur<5>GxS<2>EdWDYYCTW<2>8D067L68\

J<5>8G2<5>aG4fH5iJGIMRpPa<7>Ylx<7>CVB<5>qwq<4>rPb<7>Ifi<3>lpX<6>FmoFmmFm\
k

}

Formula: c = integer part of a(x2 + y2)
color = c modulo(number of colors)

Code: Routine Type Routine Name File

Fractal engine StandardFractalO CALCFRACT.C

Floating point orbit CirclefpFractalO FRACTALS.C

USER-DEFINED FRACTAIS

The last three fractal types in this chapter are not “types” at all, they are fractal

universes in and of themselves. Each of these types allows you to define new

fractal types by entering the definitions in a Fractint-readable file using a text

editor like the DOS EDIT.EXE program.

The Fractint Formula Parser

The Fractint formula parser is one of the all-time popular features of Fractint.

Using it, you can create new fractal formulas, and try them out on the spot,

without having to be a programmer! This facility has unleashed the creativity of

fractal enthusiasts from every continent, who have created fractals from all kinds

of different formulas. A small sample of the product of their labors may be found

in the FRACTINT.FRM file on your book disk.

The formula parser has been greatly speeded up when run on machines with

a math coprocessor. All time-critical parser code has been rewritten in assembler

for Fractint version 18. If you have a computer with fast floating-point performance,

such as an 80486-based machine, you will discover there is little

discemable difference in speed between a formula type and a built-in fractal. If you

don’t have a math coprocessor, the formula parser can use Fractint’s fast integer

math, but will be somewhat slower than the equivalent built-in fractal type.

Accessing a Formula File

To generate a fractal using the formula parser, press to get the SELECT A FRACTAL

TYPE screen, select Foiivtui, and press If Fractint can find the file

FRACTINT.FRM, you will be presented with a list of formulas defined in that file
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Figure 6-5 Parameters for Fractal Type Formula screen

in a screen labeled: Fovtui SELECTION FILE: FRACTINT.FRM. If Fractint cannot find

the file in the current directory, you will see instead a standard Fractint file

selection and directory navigation screen. You can directly enter the directory

where the file FRACTINT.FRM resides (usually \FRACTINT) or navigate your

directory tree by selecting “. .“to go up a directory or a subdirectory name to go

down. Once you have located FRACTINT.FRM (or another .FRM file), select it

with the arrow keys and press Once in the FOiivtUI SELECTION screen, if

you want to open a different .FRM file, press You don’t need to remember

this command because there is a reminder at the bottom of the screen. Note also

that pressing from the FOiivtUI SEaION screen shows you the details of the

highlighted formula.

Once in the FOiivtU1i SELECTION screen, select a formula name and press

This takes you to the PARAMETERS FOR FRACTAL T’E FORMUIA screen, as shown in

Figure 6-5. At the bottom of the screen in a box you can see the formula parser

definition. After entering any desired parameters, press jj to generate the

fractal. If you have previously selected a video mode, the fractal will begin to

generate. Otherwise, press a function key to select a video mode, or press (DELETE)
to select a mode from the video mode list.

The Structure of a Formula File Entry

Figure 6-6 is an annotation of the Richard8 formula that shows what the different

parts do. Let’s walk through this example.

A formula begins with a name, in this case Richard8. This is the name that

appears in the list of entries when you open the .FRM file. Following the name,
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Figure 6-6 The world-famous “Authors” fractal

enclosed in parentheses, is the symmetry. You do not have to specify symmetry;

the purpose is to enable the fractal to calculate faster by exploiting symmetry if

indeed the fractal is symmetrical. The Richard8 fractal has XYAXIS symmetry,

which means that the fractal is symmetrical about both the x-axis andy-axis. The

possible values for symmetry are XAXIS, YAXIS, XYAXIS, ORIGIN, and P1.

The body of the formula definition is enclosed in curly brackets ({ and }). The

semicolon character (;) means that the rest of the line is ignored, so you can enter

comments in your formula. The first line of the Richard8 formula uses a comment

to remind us of the name of the good professor Jm Richard-Collard, who

designed the Richard8 formula.

The body of a formula is divided into three parts, a per-pixel initializer, the
iterated formula, and a bailout criterion. In the Richard8 formula, the initializer
is the line

z=pixel, sinp = sin(pixel):

This single line contains two statements separated by a comma. (The two

statements do not have to be on the same line, although for clarity it is a good

idea.) The first statement, z=pixel , creates a complex variable z and assigns to it the

value pixel. (The parser operates using the complex number system.) The variable

pixel is a predefIned variable that always contains the complex coordinates

corresponding to the current pixel. Generally, the initialization section makes

some use of the pixel variable. The second statement in the initialization line is

sinp = sin(pixel). Thislinecreatesavariablesinp,andassignstoitthevalueof

the sine function applied to pixel. The colon character (:) signals the end of the

initialization section. Subsequent statements will be executed every iteration.
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The next line of the formula definition is the iterated formula. In this case, the

formula is made up of the single statementz= sin(z) +sinp. This statementcalculates

the sine function of the variable z, adds the result to the complex number stored

in the variable sinp, and replaces the old value stored in z with the result.

The last line gives the bailout criterion. The iteration process will continue

as long as this condition is true. The Richard8 criterion is Izi <= 4. This

statement is not quite what it appears to be: Izi is what we call the “programmer’s

Table 3 The formula parser operator definitions
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Table The foula parser predefined variables

absolute value,” not the more universally understood “mathematician’s absolute

value.” If z = x + iy, then in the parser language Izi = x2 + y2 rather than the

value (x2 + y2) that a mathematician would expect. The reason for this is that

no self-respecting programmer would compare (x2 + y2) with 2 when

comparing x2 + y2 with 4 has the same result, because square roots require

considerable computation resources. If you are aware of this idiosyncracy of

Fractint, no problem will result.

Formula Parser Operators

Table 6-3 defInes all the functions and operators, and Table 6-4 defines all the

predefIned variables available to you for use in the parser. They are given in

decreasing order of precedence (operators earlier in the list will be performed

before operators later on the list if there are no parentheses to specify the order

explicitly). Most functions are complex valued functions of a complex variable.

The exceptions are the comparison operators which return TRUE or FALSE,

and the logical operators which take truth values as arguments. Note that Izi
and abs(z) have definitions somewhat different from common mathematical

useage.

You may be a bit puzzled by the function cosxx. When the cosine function

was first implemented in Fractint, there was a sign error in the code. This error

was corrected in later versions of Fractint, but by this time many users had made

fractals using cosxx. So the Fractint authors left the incorrect function in Fractint
with a different name.
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Predelined Variables

Certain variables have been given predefined meanings by the parser. You should

use the variable z as the main variable whose value is changed each iteration.

More Examples

Consider the following formula entry, taken from FRACTINT.FRM:

Cubic (XYAXIS) {; Lee Skinner

p = pixel, test = p1 + 3,

t3 = 3*p, t2 = p*p,

a = (t2 + 1)1t3, b = 2*a*a*a + (t2 — 2)1t3,

aa3 = a*a*3, z = 0 — a

z = zzz — aa3*z + b,

Izi < test

)

The first few lines of this formula are actually part of the intialization section,
which is not finished until a “:“ is encountered. Therefore, the iterated formula

consists only of the line

z = zbzbz — aa3*z + b,

Note also that the variable test is used as a bailout threshold. Because test =

p1 + 3, the user can control the bailout from the parameter screen using the

predefIned variable p1. For example, if you set REAL PORTION OF P1 to 4 in the
PARAMETERS FOR FRACTAL TYPE FORMULA screen, then the variable test would be 4
+ 3 and the bailout check would be the same as

Izi < 7

Remember that the comparison operators (such as “<“) operate on the real

part of variables only. In this particular formula, it, therefore, makes no difference
how the IMAGINARY PORTION OF P1 is set.

Let’s look another formula.

Halley (XYAXIS) {; Chris Green. Halley’s formula applied to x’7x0.
; P1 real usually I to 1.5, P1 imag usually zero. Use floating point.
; Setting P1 to I creates the picture on page 277 of Pickover’s book
zpixel:
z5=z*z*z*z*z;
z6=z*z5;
z7=z*z6;
zz_pl*((z7_z)I ((7.O*z6_1)_(42.O*z5)*(z7_z)I(14.O*z6_2))),
0.0001 < 1z7—zI

}
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This formula has a one-line initialization section, but a four-line iterated

section. The bailout criterion is a bit different—the test that 0.000 1 <= 1z7-zI

means that the z is close to a root of the polynomial z7 — z. This is actually an

escape-to-finite-attractor fractal. Try it, and you’ll see that it looks a lot like the

built-in types Halley and Newton. Remember to set the first parameter to a

nonzero number when you try this fractal, otherwise you will get a blank screen.

To understand why, look at the last long line of the iterated formula. If p1 is 0,

then z = z and the formula does nothing!

One final example. When the formula parser was first added to Fractint,

Professor Jm Richard Collard was so prolific at proposing formulas, that the

Stone Soup team added Fractint’s function variable facility to the parser in an

attempt to keep the FRACTINT.FRM file to a reasonable size. In the following

formula, fnl , fn2, and fn3 are function variables. Any of 17 functions can be

assigned to these variables using the PARAMETERS FOR FRACTAL TYPE FORMULA

screen. The possible functions that can replace the function variables are conj,

cos, cosh, cosxx, cotan, cotanh, exp, flip, ident, log, recip, sin, sinh, sqr, tan,

tanh, and zero. Because Professor Richard Collard’s formula has three function

variables, the number of possible variations on his formula with these 17

functions is 17 or 4,913 different formulas! Because Jm has contributed 27

such generalized formulas, you can see that his contributions add up to a lot

of fractal possibilities!

Jm_14 {; generalized Jm Richard—Collard type

zpi xel,tpl+4:

z=fnl(fn2(fn3(z)*pixel))+pixel,

I z I

)

You will find a PAR example using Jm_14 at the end of this section.

Fame and Fractals

If Dr. Mandelbrot can have a fractal named after him, why not have a fractal

named after yourself? To see how much fun this is, we’ll invent one right now.

If you have never heard of a hyperbolic sine function, you may think you are at

a decided disadvantage in inventing fractal formulas. Just remember that even

the most learned mathematicians (except the ones reading this book) have never

heard of “flip” or “cosxx” either, so you’re even!
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The best strategy for inventing fractal formulas is to start with a formula that

works, and change it a little at a time. However, once you get the hang of it, be

bold! Here goes:

Authors {

z = pixel:

z = sinh(log(Sqr(z))/Sqr(z)) + z

Izi < p1 + 4

)

We’re calling this the “Authors” fractal in memory of ourselves. The result of

generating this fractal is shown in Figure 6-6. On a distant planet in another

galaxy, monster mutant insects are lined up about to do battle, giant pincers

poised.... Believe it or not, this fractal resulted from our first attempt. Now it is

your turn!

Formula

Category: User Defined

This type invokes the famous Fractint formula parser. You can enter your own

fractal formulas using the parser language.
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Example:

Stars_Like_Jewels { ; (Well.. .WHAT would you call it????)

; BG Dodson 1992 71636,1075

reset type=formula formulafile=fractint.frm formulaname=Jm_14

funct i on=si n/sqr/si nh passes=b

corners2.82870110.845791—l.2811.2810.8457911.28 float=y fillcolor=200

logmap4 decomp=128

colors=000<78>ppnuud<7>yyazzMzze<4>zzzGez<23>PzzQ ‘0<13> ‘QOjQO<l 3>eNO
)

Formula: Initialize: user defined

Iterate: user defined

Code: Routine Type Routine Name File

Fractal engine StandardFractactalQ CALCFRACT.C

Initialization and orbits Formula() PARSER.C

Assembler speedups PARSERA.ASM

IS-System Fractals

Lindenmayer systems, or L-systemns for short, were conceived as a mathematical

theory of plant development by Aristid Lindenmeyer. They provide an interesting

connection between abstract rules and natural-looking graphics images.

Fractint faithfully implements a subset of the L-system language used in books

such as The Algorithmic Beauty of Plants by Prezemyslaw Prusinkiewicz and

Aristid Lindenmayer (Springer-Verlag, © 1990). You can type inexamples from

the earlier chapters of this book and run them with Fractint.

Although it does not follow that just because a theory successfully models

something like plant growth that plants actually use mechanisms analogous to

the theory; after a little experience with L-systems your perception of plants will

be different. You will find yourself noticing the characteristic branching patterns

of your favorite plants. It is amazing how a few simple rules can create complex

bushes, leaves, and flowers!.

L-systems can do a lot more than make plant-like images. You will find

examples of Koch snowflakes, Penrose tilings, Sierpinski gaskets along with all
manner of bushes and shrubs in the FRACTINT.L file.

Accessing an L-Systems File

To generate an L-systems image, press to get the SELECT A FRACTAL T’nE screen,

select LSYSTEM, and press If Fractint can find the file FRACTINT.L, you
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will be presented with a list of L-systerns definitions in a screen labeled: LSYSTEM

SELECTION FILE: FRACTINT.L. If Fractint cannot find the file in the current directory,

you will see instead a standard Fractint file selection and directory navigation

screen. You can directly enter the directory where the file FRACTINT.L resides

(usually \FRACTINT) or navigate your directory tree by selecting “..“ to go up a

directoryorasubdirectoryname togo down. Once you have located FRACTINT.L

(or another .L file), select it with the arrow keys and press Once in the

LSYSTEMS SELECTION screen, if you want to open a different .L file, press .

Pressing from the LSYSTEMS SELECTION screen shows you the details of the

highlighted L-systems.

Once in the LSYSTEMS SELECTION screen, select an L-systems name and press

() (try BUSH). This takes you to the PARAMETERS FOR FRACTAL TYPE LSYSTEMS

screen. At the bottom of the screen in a box you can see the L-systems definition.

L-systems have one parameter, the order. The higher the order, the more times

the recursive L-systems process is accomplished. Be careful with this parameter—calculation

time increases exponentially with the order. (With this one

type, a higher resolution has little to do with the time.) Start with smallernumbers

like 2 or 3 and slowly increase, or you may find yourself waiting for hours! (If you

are trying the L-systems definition BUSH, an order of 4 works well.) After entering

the order, press to generate the L-systems image. If you have previously

selected a video mode, the fractal will begin to generate. Otherwise press a

function key to select a video mode, or press (DELETE) tO select a mode from the

video mode list. Use as high a video mode as possible; this will not increase the

time but will let you see more detail.

The Structure of an IS-Systems File Entry

L-systerns fractals are constructed from line segments using rules specified in

drawing commands. An initial string of drawing commands, called an axiom, is

specified, along with an angle that is used with a rotate command. Then

transformation rules are defined that give rules for changing strings of drawing

commands to other strings. The rules are repeatedly applied to the initial string,

generating a sequence of strings of drawing commands. This process is repeated

until the user-entered order is reached. Then the drawing commands of the last

string are interpreted, and the image is drawn on your screen.

Each L-system entry in the file contains a specification of the angle, the

axiom, and the transformation rules. Each item must appear on its own line and

each line must be less than 160 characters long. The statement “angle n” sets

the angle to 360/n degrees; n must be an integer greater than 2 and less than
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50. The axiom begins with the keyword axiom followed by a series of drawing
commands.

Transformation rules are specified as a=string and convert the single character

“a” into “string.” If more than one rule is specified for a single character, all of the

strings will be added together. This allows specifying transformations longer

than the 160 character limit. Transformation rules may operate on any characters

except space, tab, or “}“. The “;“ (semicolon) character on a line causes the rest
of the line to be treated as a comment.

Drawing Commands

Strings are made up of the turtle graphics drawing commands shown in Table

6-5. This kind of graphics language is called turtle graphics because you imagine

giving commands to a turtle moving around the screen drawing a picture.

Table &5 L-systems drawing commands
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Figure 6-7 Forming the Koch Curve fractal

Other characters are perfectly legal in command strings. They are ignored for

drawing purposes, but can be used to achieve complex translations.

How an IS-Systems Delinition Works

Let’s look at the Koch Curve example shown in Figure 6-7. The angle is set to 6,

which means 360°/6 or 60°. The axiom is simply the single character F. Therefore

if this L-systems was plotted without applying any transformations, the plot
would be a horizontal line.

The transformation rule is F=F+F--F+F. This means to replace each F in the

current string with F+F--F++F. Understood graphically, it means to replace the

segment drawn by F with the more complicated series of segments drawn by

F+F--F++F. This string may be interpreted:

F Go forward one unit

+F Turn 60° counterclockwise and go forward one unit
--F Turn 120° clockwise and go forward one unit

++F Turn 120° counterclockwise and go forward one unit

Figure 6-7 shows how this works. A single segment has a triangular peak bent

out of it. It is easy to imagine repeating this “bending” process recursively to get

the final Koch Curve shape.

378 CHAPTER 6



Lsystem

Category: L-Systems

This type allows you to access Fractint’s Lindenmayer Systems generator. You

can run predefined L-systems images in FRACTINT.L or enter your own with
a text editor.

Example:

Snowflake { ; Renders well at 1024x768

; Use a lower order at lower resolutions

reset=1733 type=lsystem lfilefractintl lnameSnowFlakel

corners=—1I1I—1I1 params5 float=y

}

Formula: User defined

Code: Routine Type Routine Name File

Fractal engine isystemO LSYS.C

Lsystem asm routines LSYSA.ASM
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Iterated Function Systems

Iterated Function Systems (IFS) is a method of creating fractals developed by Dr.

Michael Barnsley, the author of the book Fractals Eve7ywhere and founder of the

fractal compression company he named, not surprisingly, “Iterated Systems.” The

IFS method of generating fractals is directly based on the notion of self-similarity,

in which a part of an object is a smaller copy of the whole object. The formulas

makingup the definition of an IFS fractal are mathematical specificationsof the selfsimilaritiesofthe
fractal. These formulasare calledcontractive affine transformations.

They are of the form X’ = AX + B, where A is a matrix and B is a vector. Fractint can

generate both two-dimensional and three-dimensional IFS fractals. For 3-D

fractals, the matrixA is a 3 x 3 matrix andX’,X, and Bare three-dimensionalvectors.

For 2-D fractals, the matrixA is a 2 x 2 matrix andX’, X, and B are two-dimensional

vectors. We’ll discuss these transformations shortly.

Accessing an IFS File

To generate an IFS image, press to get to the SELECT A FRACTAL T’w screen,

select IFS, and press If Fractint can find the file FRACTINT.IFS, you will

be presented with a list of IFS definitions defined in that file in a screen labeled:
IFS SELECTION FILE: FRACTINT.IFS. If Fractint cannot find the file in the current

directory, you will see instead a standard Fractint file selection and directory

navigation screen. You can directly enter the directory where the file

FRACTINT.IFS resides (usually \FRACTINT) or navigate your directory tree by

selecting “..“ to go up a directory or a subdirectory name to go down. Once you

have located FRACTINT.IFS (or another IFS file), select it with the arrow keys

and press Once in the IFS SELECTION screen, if you want to open a different

IFS file, press c. Pressing from the IFS SELECTION screen shows you the

details of the highlighted L-systems.

A 2-D IFS Fractal

Once in the IFS SELECTION screen, select the IFS name FERN and press This

takes you to the PARAMETERS FOR FRACTAL TYPE IFS screen. There is one choice to

make: the coloring method. The default value 0 colors according to how many

times a particular screen pixel is written. If you enter 1, the parts of the fractal are

colored according to which transformation was used to generate the points. This

method lets you clearly see the self-similarities of the fractal.

Use a high resolution mode to view IFS fractals. The images are built up pixel

by pixel, and using a higher resolution will not slow the fractal generation, but
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Figure 6-8 IFS Fern

will prevent the pixels from merging together so soon and let you see more detail.

Note that the zoom box works with IFS fractals so you can zoom in on details
or rotate and skew the zoom box.

Figure 6-8 shows the Bamsley’s famous fern fractal using coloring method 1.

The fern has four self-similarities, corresponding to the four affine transformations

making up the fern entry FRACTINT.IFS. The two most obvious

self-similarities are the two lower fronds. These are clearly copies of the whole

fern. If you cut away these two fronds and the bottom stem, you will see another

self-similarity The remaining fern is a slightly smaller and slightly rotated copy

of the original. There is one additional “self-similarity” that you might not expect.

This is the stem, which doesn’t looklike the fern at all, butina mathematical sense

is “similar.” The affine transformation that maps the whole fern to the stem

compresses it completely into a line segment.

3-D IFS Fractals

The IFS entries in FRACTINT.IFS that begin with “3” are 3-D examples. When

you generate them, you will see a 2-D projection onto the screen of the 3-D image,

unless you set Fractint to red/blue stereo using the command. See the 3-D Fern

example. A 2-D IFS entry has seven numbers—four numbers for the matrix, two

for the vector, and one for the probability. A 3-D entry has nine for the matrix,

three for the vector, and one for the probability, totaling 13 values. Fractint looks

for the “3” in the first letter of the name to help it decide that an IFS entry is 3-D,

so if you add new entries, you should follow that convention.
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fern {

}

Figure 6-9 Matrix form of Fern IFS equations

The Structure of an IFS File Entry

The FRACTINT.IFS entry for the fern looks like this:

0.00 0.00 0.00 .16 0.00 0.00 .01

0.85 0.04 —0.04 .85 0.00 1.60 .85

0.20 —0.26 0.23 .22 0.00 1.60 .07

—0.15 0.28 0.26 .24 0.00 0.44 .07

The first four numbers on each line form the matrix A in the affine formula

AX + B. The next two numbers form the vector B. The last number is a probability

that is used to determine how often an equation is used. In matrix format, these

same transformations look as shown in Figure 6-9.
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IFS Drawing Algorithm

Here is how the IFS drawing engine works. A starting point is chosen. It really

doesn’t make any difference what point is used. Then one of the transformations

is chosen at random, using the probability assigned to that transformation. The

transformation is applied to the initial point to get a new point. This process is

repeated, with a different transformation chosen each time. The first few

iterations are not plotted on the computer screen, in order to allow the moving

point to gravitate toward the fractal. From then on, because all of the transformations

map points on the fractal to other points on the fractal, the point dances
around the screen and draws the fractal.

Designing IFS Fractals

Unless you are very familiar with matrices and transformations, you will find it

difficult to create IFS fractals by directly entering numbers in the FRACTINT.IFS

file. (There is no harm in trying, though—you could just type in some numbers

and see what happens!) Fortunately, there is a much better way. The program

Fdesign will let you interactively design IFS fractals in a visual way, and save the

results in an IFS file. Fdesign is described in Chapter 7, Making IFS Fractals with

Fdesigri.
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IFS

Category: Iterated Function Systems

IFS fractals are generated using a special orbit mechanism that is based on user-

defined affine transformations. Both 2-D and 3-D fractals can be generated using

the method pioneered by Dr. Michael Barnsley.

Example:

3D_Fern {

reset=1733 type=ifs3d ifsfile=fractint.ifs ifs=3dfern

corners—4.999313/7.013138/—4.505173/7. 503448 paramsl

rotation=30/10/0 perspective=150 xyshi ft=0/0 stereo=2 interocular3

converge=—5 crop4/0/0/4 bright=80/100 co1orsg1asses2 .map

}

Formula: Iterate: X’ = AX + B

for various randomly selected affine transformations made up of matrices A
and vectors B.

Code: Routine Type Routine Name File

Fractal engine ifsO LORENZ.C
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CHAPTER

MAKING IFS

FRACTALS

WITH FDESIGN

design is a public domain program that lets you visually create and edit

Iterated Fractal Systems (IFS) fractals. Recall that IFS fractals are especially

useful for making images that have a natural appearance. You can make images

of trees, shrubs, tiled patterns, nested triangles, and exotic gaskets. You load

and save IFS images in either Fractint’s FRACTINT.IFS file format or Fdesign’s

own native format. Best of all, you can see simple representations of the

transformations used to generate IFS fractals, and modify them by simply

pointing and clicking with the mouse. You can instantly see the effects of your

changes on your computer screen.

IFS fractals take the idea of self-similarity to the limit. A mathematical object

is self-similar if small parts of itself are similar to the whole. This definition hinges

on what is meant by “similarity.” For most fractals, the part and the whole might

be similar only in the sense that they both have the same degree of roughness and

structure (fractal dimension). IFS fractals are self-similar in a much stronger

sense; the whole contains true copies of itself. These copies may be rotated,

shrunk, compressed, and moved compared to the whole, but they are otherwise

identical. The mathematical term for this strong kind of similarity is that the part

is the image of the whole under a contractive affine transformation. (A contractive

affine transformation is one that rotates, shrinks, compresses, or moves

an object, but does not otherwise distort it.)

Consider Figure 7-1. You can see the word “FRACTINT” spelled out in capital

letters made up of straight segments. But if you look closely, you will see that each

of these letter segments is a miniature copy of the whole word “FRACTINT.”



Figure 7-1 The self-similar word “FRACTINT”

These miniature FRACTINTs are not absolutely identical to the whole, but look

very much the same. The vertical stem of the “F” is much larger than the

horizontal middle stroke. The diagonal, lower right segment of the “R” is slanted.

The top of the “C” is upside down. But within the limits of these affine

relationships, the small segments are copies of the whole word “FRACTINT.”

Furthermore, because these small FRACTINTs are copies of the whole, their

letters are in turn made up of the word FRACTINT and so on forever.

Fdesign is a program designed to help you explore IFS fractals. This chapter

will tell you how to install and run Fdesign, how to read and write IFS files using

Fractint’s format, how to easily change the transformations to create your own

images. You will learn how to load and manipulate 128 different built-in

examples from Fdesign aswell as the examples in Fractint’s own FRACTINT.FRM

file. For more background on the theory of IFS fractals, see Chapter 2, Fractals:
A Primer.

PROGRAM DISTRIBUTION

Fdesign was programmed in Turbo C++ by Doug Nelson. He has released the

program to the public domain, so you are free to copy, use, and redistribute it

without any fee. The program is publicly available on CompuServe and many

BBSs, and is provided on your distribution disk for your convenience.

Fdesign is a wonderful example of high quality, freely distributed software.

The program has been written and distributed with the same “Stone Soup”

spirit as Fractint, and the Fractint authors are pleased that Doug made Fdesign
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compatible with Fractint’s IFS file format so that both programs can be

used together.

UP AND RUNNING

The details of the installation of Fdesign are given in Chapter 1, Installation.

Because you cannot change directories from inside Fdesign, all the .TRN example

files, as well as Fractint’s FRACTINT.IFS file, should be in the same directory.

YourFractint directorywouldbe a good place. The FDESIGN.EXE program itself

can reside in any directory that is included in your DOS “path.”

Hardware Requirements

Fdesign requires the following hardware:

4 A Microsoft-compatible mouse for operation. The author reports that
some clone mice have not worked.

4 An Intel 80x87-compatible math coprocessor greatly speeds up the

generation of images, but is not an absolute requirement. To give you an

idea of the coprocessor’s speed, an Fdesign will run faster on an 8 MHz XT

with a coprocessor than on a 20 MHz 386 without a coprocessor.

4 EGA or VGA graphics are required, but VGA is much better because the

pixel size is square (same number of dots per inch horizontally as

vertically).

4 You’ll also need 350K of memory free before starting Fdesign (less if you

don’t use the Virtual Screen plot feature).

4 Fdesign supports the following printers: HP Laser Jet II or compatible,

Epson 24 pin compatible, and Epson 9 pin compatible.

If you have an 80386 or lower class of PC, you should really consider getting

a math coprocessor. Prices have dropped to moderate levels (under $100), and

for floating-point intensive software such as Fdesign, a math processor provides

the single most dramatic upgrade you can buy for your computer. Be aware that

an 4865X processor has no floating-point unit, but an 486DX does. Fdesign

really flies on 486DX or DX2.
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Figure 7-2 The Fdesign opening screen Figure 7-3 The Fdesign Main menu

Fdesign has only modest video requirements, and will run on any EGA or

VGA graphics adapter. A virtual screen capability lets you create higher

resolution images for printing. You can also save your results in Fractint’s format

and then regenerate the images using any of Fractint’s jillions of drivers at

whatever super VGA resolutions your hardware supports.

Software Requirements

Fdesign works under DOS version 3.0 or later. It runs fine in a full-screen DOS
window under Windows 3.1 or OS/2. You need to make sure that a mouse

driver is loaded in either your AUTOEXEC.BAT (with a name like “mouse”) or

in your CONFIG.SYS. Note that Windows 3.1 uses its own mouse driver, so

being able to use your mouse with Windows does not mean that the DOS
mouse driver is loaded.

Starting Fdesign

Change directories on your hard disk to the directory where the Fdesign .TRN

files are located. Make sure the FRACTINT.IFS file is also in the directory.

Assuming you have installed Fdesign in your \FRACTINT directory, type

cd \FRACTINT

FDESIGN

You should then see the opening screen, which looks like Figure 7-2. To get

the MAIN MENU shown in Figure 7-3, press any key or click either mouse button.
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Figure 7-4 The Load File screen

Fdesign is a straightforward program to run, and you can probably figure out

how to run it just by clicking on the MAIN MENU items and seeing what happens.

In the rest of this chapter, we’ll take you go through a step-by-step tutorial in

Fdesign’s operation and intersperse a bit more explanation of what IFS fractals
are all about.

For Mouseless Readers... So you don’t have a mouse? All is not lost. You won’t be able to edit and

manipulate IFS fractals but you can still generate the .TRN examples. (The

extension “TRN” stands for “Transformations.”) For example, to view

WEB.TRN, make sure the WEB.TRN is in the current directory, and type

F d e s i g n We You will see the WEB.TRN fractal generating on your

screen. You can exit by pressing (). While viewing these IFS files is fun,

editing and changing the IFS fractals is even more fun, but for that you need

a mouse!

USING FDESIGN

Start Fdesign and click either mouse button to see the MAIN MENU. Fdesign starts

with an IFS fractal automatically generating. The colors can be rendered in two

different ways. If you click on NORMAL PLOT on the MAIN MENU, the menu will

vanish and the fractal will be regenerated using the whole screen. The parts of

the fractal are colored according to which IFS affine transformation maps the

whole image to that colored subpart. (We’ll discuss the affine transformations in

a moment.) Click either mouse button to get back to the MAIN MENU. Now click
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Figure 7-5 The Edit Transformations screen

Ofl ALTERNATE Dispiiy, which is the sixth menu item. This time the pixels are

colored according to how often they are written in the process of displaying an

image. Fdesign uses the random IFS method of generating fractals, and runs

continuously. The image is built up from individual pixels written all over the

screen. When a pixel is written that is already colored, the color number is

bumped up one.

The Edit Screen

Click either mouse button to get back to the MAIN MENU. Now click on Lo FROM

DISK. You will see a screen that looks like Figure 7-4. The list of file names of the

Fdesign .TRN files are shown on the screen. As you click on the names with the

mouse, you will see what the fracial stored in that file looks like. If you have a fast

486DX machine ora fast 386 with a math coprocessor, the small fracial will appear

to be generated almost insianianeously. Now click on the entryTELEPHON. To accept

your selection, click the right mouse button. This wilhake you to a screen that we’ll

call the EDIT TRANSFORMATIONS screen, shown in Figure 7-5. The TELEPHON.TRN

fracial will still appear in the upper right corner, but you will also see a new menu

on the left and some triangles in the center of the screen, superimposed on top of

a grid of dots. This screenis the key to undersianding IFS fractals and usingFdesign.

The Affine Transformations of the Telephone Fractal

Iterated Function Systems use contractive affine (pronounced uh fine) transformations.

An affine transformation changes shapes to other shapes. It can shrink,
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rotate, move, or compress a shape. These transformations are called “contractive”

because they always map images to smaller images. An affine transformation can

be completely specified by what it does to a triangle. Fdesign allows you to

graphically visualize affine transformations using “before” and “after” triangles.

The “before” triangle is drawn with thick dotted lines and colored red. Doug

Nelson, the creator of Fdesign, calls this the reference triangle. The corners are

labeled A, B, and C.

The TELEPHON.TRN fractal (called the telephone fractal because it looks a

lot like a coiled telephone cord) is generated by two contractive affine transformations.

These two transformations are shown graphically by two additional

triangles, also with the corners labeled A, B, and C, as shown in Figure 7-5. Each

of the two solid lined triangles is the result (or image) of applying a different affine

transformation to the large dash-lined reference triangle.

First Transformation

Consider first the larger of the two solid-lined triangles shown in Figure 7-5,

which we’ll call the first triangle. (This triangle appears yellow on your computer

screen if you are following along.) Now imagine what it would take to transform

the dashed reference triangle into the first triangle, so that the respective corners

labeled A, B, and C map to each other. The first triangle is only slightly different

from the reference triangle. It is a little smaller, and rotated a few degrees

clockwise. So the transformation that maps the reference triangle to the first

triangle must shrink a little and rotate clockwise a few degrees.

Now look again at Figure 7-5. The telephone fractal has a little loop in the

upper right corner. This loop is purple on your computer screen and shows as

a darker gray in the figure. If you were to snip this small loop off of the telephone

fractal, the remaining piece would be a little smaller than the original and rotated

slightly clockwise. The relationship between the whole telephone fractal and the

piece remaining after snipping the small loop is exactly the same as the

relationship of the reference triangle to the first triangle—slightly smaller and

rotated clockwise. We have identified a self-similarity in the telephone fractal.

Second Transformation

The second small triangle shown in Figure 7-5 (purple on your computer screen,

a darker gray in the figure) determines another affine transformation, which in

turn is related to another self-similarity of the telephone fractal. This small

triangle is much smaller than the reference triangle, and the corners A and C have

been swapped. One way to swap these two corners would be to flip the triangle

over like a pancake. Now consider what would happen if you shrunk the
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telephone fractal to a quarter of its size and flipped it upside down. It would look

just like the small tail of the telephone fractal.

On your color computer screen it is easy to keep track of which self-similarities

are connected to which triangle because they are color coded. In the case of the

telephone fractal, the large yellow triangle (lighter in Figure 7-5) is related to the

large yellow piece of the fractal. Similarly, the small purple triangle (darker in the

figure) is related to the small purple tail of the fractal.

How Fdesign Works An IFS fractal is generated by affine transformations that rotate, shrink,
compress, or move objects. Each transformation maps the whole fractal to a
self-similar part. There will be as many self-similar relationships in a fractal as
there are transformations used to generate the fractal. An affine transformation
is determined by two triangles: a reference triangle, and the triangle that results
by applying that transformation to the reference triangle. Fdesign lets you edit
affine transformations that generate fractals by manipulating triangles that
determine those transformations.

Adjusting Affme Transformations

Now for the fun. Suppose you change these transformations, then how would

the image be changed? To find out, click on the ADJUST TRIANGLE menu item. You

will then see the prompt SELECT TRIANGLE To MovE. Point to the small purple

triangle, and click the left mouse button. Then Fdesign will ask, Si±a CORNER

To CHANGE. Point the mouse cursor at corner A of the purple triangle, and click

the left mouse button. Now point the mouse a small distance from corner A of

the purple triangle, and click the left mouse button again. Like magic, corner A

will jump to where the mouse cursor was pointing, and the fractal will change

before your eyes! Figure 7-6 shows the results of several such experiments. Just

keep pointing the mouse to different places and clicking the left mouse button.

If you make the triangle too big, Fdesign will give the error message “not affine.”

Affine transformations used to generate IFS fractals must be contractive; that is,

theymust make the triangles at least slightly smaller. If you see this error,just click

the left mouse button and continue, trying points that make the triangle smaller.

When you are satisfied with the current fractal, press the right mouse button

to return to the edit menu. Click on MAIN MENU, and you will see your IFS fractal

filling the whole screen. Clicking either mouse button one more time will restore
the MAIN MENU.
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L
Figure 7-6 Transformation adjustment experiments

Savrng Your Fractal

You can save your work three different ways in Fdesign. Clicking on SAvE To

DISK at the MAIN MENU saves the IFS parameters in Fdesign’s native .TRN

format. You can also save the image as a GIF by clicking on SAvE To .GIF.

(Unlike Fractint, Fdesign does not save the fractal parameters with the GIF file,

but only saves the image.) The third way to save the file is as a Fractint-format

IFS file entry. To do this, click on IFS CODES (FRACTINT) on the MAIN MENU. You

will then see the IFS codes on the screen, along with a menu with options to

read from or write to an IFS file, as shown in Figure 7-7. Click on WRITE A
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Figure 7-7 The IFS Codes (Fractint) screen

FRACTINT IFS FILE. Fdesign will then ask you to fill in an IFS file name. Type

in the file name MY I F s and press (There is only room to for you to write

in the file name without the extension—Fdesign supplies the IFS extension.)

This will add to the MYIFS.IFS file, or create this file in the current directory

if it doesn’t exist. Then you will be prompted for the NAME OF IFS CODES. Type
in TELEPHONE. Click on Return to restore the MAIN MENU to the screen, and then

click on QUIT to return to the DOS prompt.

Loadmg Your Fractal into Fractmt

Now that we’ve made and saved an IFS fractal using Fdesign, let’s load it into

Fractint so we can display it using different resolutions. Start Fractint in the same

directory where the MYIFS.IFS file was saved. Because Fdesign only works with

files in the current directory, this will be the directory that was current when you

exited Fdesign. Press to get the SELECT A FRACTAL TYPE screen, and type in I F S

(or select with the cursor keys) and press If the file FRACTINT.IFS is in

the current directory, you will be presented with a list of named IFS parameter
sets in the FRACTINT.IFS file. Press to see the list of IFS files in the current

directory. (If Fractint could not find the FRACTINT.IFS File in the current

directory, you will be taken directly to a list of IFS Files without having to press
Select MYIFS (the file where we saved the TELEPHONE fractal) from the

list of files using the arrow keys, and press You will then see a list of fractals

stored in MYIFS.IFS. (You can put more than one fractal into the MYIFS.IFS File,

but so far we have only added TELEPHONE, so unless you saved other fractals,

you will only see this one entry.) Select TELEPHONE with the cursor keys and
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Figure 7-8 The IFS entries in FRACTINT.IFS

press At the PARAMETERS FOR FRACTAL TYPE IFS screen, you can select one

of two different coloring schemes. The default coloring scheme (COLORING

METHOD set to 0) is the same as Fdesign’s “Alternate Display.” If you enter 1 for

the COLORING METHOD, Fractint will use a coloring scheme similar to Fdesign’s

“Normal Plot” that colors pixels according to which transformation was selected

to draw the pixel. Change COLORING METHOD to 1 and press

Select the highest video mode your graphics equipment will support. Many

newer super VGA adapters have a 1024 x 768 pixel 16-color (SF3) mode. If you

know your graphics adapter/monitor combination supports that mode, press

or else press (DELETE) to see the mode list, select a mode with the arrow

keys, and press A 16-color mode is fine for IFS fractals.

You can see that IFS fractals look better in high resolution modes. You can use

a text editor (such as the DOS program EDIT) to edit the numbers in the

FRACTINT.IFS file. However, this is a difficult way to experiment with IFS

fractals because editing the numbers is less intuitive than using the mouse to edit

IFS transforms in Fdesign. But Fractint has much more powerful video support

than Fdesign. You can have the best of both worlds by using Fdesign to create

your IFS fractals, and then move IFS fractals from Fdesign to Fractint to display

it in a high resolution super, VGA video mode.

Loading and Editing a FRACTINT.IFS Fractal in Fdesign

Now let’s try opening some of Fractint’s IFS fractals in Fdesign. If you are still

running Fractint, exist by pressing several times and answering the EXIT

FROM FRACTINT (Y/N)? prompt by typing y.
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Figure 7-9 The 22 affine transformations that

generate the word “Fractint” as numbers

If the file FRACTINT.IFS is not in the current directory with the Fdesign .TRN

files, copy it with the command copy \ F R ACT I NT \ F R ACT I NT. I F S where

“\FRACTINT” is your Fractint directory. Start Fdesign by typing f des i g
and click either mouse button to see the MAIN MENU. Click on the menu item IFS

CODES (FRACTINT). You should then see once again the IFS codes menu shown

in Figure 7-7. This time click on READAFRACTINT IFS FILE. At the READ FROM WHAT

IFS FII prompt, fill in the name FRACTINT and press You will then see

a list of all the IFS entries in FRACTINT.IFS shown in Figure 7-8. Note that some

of these entries begin with “3D.” These entries don’t work in Fdesign. (How to

manipulate a 3-D triangles with a mouse is a tough problem for a programmer!)

If you select a 3-D IFS fractal by mistake, you will briefly see the message

“Number of triangles was zero” and will be taken back to the READ/WRITE FRACTINT
IFS Fiis menu.

Select the IFS fractal FRACTINT from the list by pointing at the mouse and

clicking. You will briefly see the message “22 IFS codes read in” and will be taken
back to the READ/WRITE FRACTINT IFS FILES menu.

Click on REmIi to get to the MAIN MENU. You will see the message “No File”

at the top of the screen. You haven’t made a mistake. “No File” simply means that

the current IFS fractal did not come from an Fdesign .TRN file. To see the fractal,

click on NOivt PLOT. Eureka! The word “Fractint” will appear on the screen! It

should look very much like Figure 7-1 at the beginning of this chapter. Each letter

is made up of small versions of the word “Fractint.”
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Figure 7-10 The Edit Triangles screen Figure 7-11 Recropped edit triangles

This IFS fractal uses 22 different transformations, one for each “pen stroke”

needed to spell the word. Each transformation maps the whole word “Fractint”

to one segment of a letter. We’ll show you two ways to see those transformations.

Click a mouse button to get the MAIN MENU, and then click once again on IFS
CODES (FRACTINT).

Figure 7-9 shows the codes making up the 22 affine transformations spelling

“Fractint.” We’ll let you in on a little secret. Even Dr. Michael Bamsley, the

inventor of IFS fractals and a method of using them to compress images, couldn’t

tell by looking at those numbers that the resulting fractal spells the word

“Fractint”! So don’t worry that the numbers don’t mean a lot to you. Just be

thankful that the Fdesign program makes it easy to edit the numbers in a way that

is easy to understand. Click on REmI to get to the MAIN MENU.
To see these transformations in a more understandable form, click on EDIT

TRANSFORMATION. You will see the screen shown in Figure 7-10. The triangles

spelling the word “Fractint” are a bit small to see easily, so let’s make them larger.

Click on RECROP. This creates a zoom box that represents the size of the edit

triangles after recropping. Usually, fractal program zoom boxes are for the

purpose of letting you zoom in on fractal details, but in this case the zoom box

is a convenience to make it easier for you to edit the IFS triangles. Make the zoom

box as big as possible by holding down the left mouse button and pulling the

mouse toward you. Then position the large zoom box in the lower right corner

by moving the mouse without holding down any mouse buttons. Try adjusting

the zoom box so it won’t interfere with the fractal image in the upper right corner

by holding down the left mouse button and pushing the mouse away from you.

Click both mouse buttons together, and you should see the larger set of edit

triangles shown in Figure 7-11.
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Figure 7-12 Author’s IFS creation

Creating a New IFS Fractal

Ready for some real fun? Now let’s invent a brand new fractal. From the EDIT

menu, click on SCRATCH EVERYrHING. You will then be prompted to create a

reference triangle. This triangle should be as large as possible, but leave the upper

right corner free for the fractal image. Move the mouse cursor to the upper left

corner, and click the left mouse button. The letter A will appear. Then move

about 2/3 of a screen to the right and click again. The letter B will appear with

a dashed line connecting it with point A. Finally, move the cursor somewhere

near the bottom of the screen and click again. The reference triangle is now

complete. In order to create an IFS fractal, you will need to create two additional

triangles. They should be smaller than the reference triangle. Continue to point

and click at different positions on the screen. As soon as you have completed six

additional points, the fractal will appear in the upper-right corner. But don’t stop,

keep clicking and adding more triangles. Like magic, as fast as you complete a

triangle, the modified fractal will appear on the screen! When you are satisfied,

click the right mouse button to return to the edit screen.

The results of the unbridled creativity of one of your authors is shown in

Figure 7-12. We’re sure you can do better!

Printing with Fdesign

Fdesign can display IFS fractals at only 640 x 480 pixels, but it can print them

at the much higher resolution of 1504 x 1200 using the virtual screen capability.

You can also print images displayed on the screen, along with the transformation

triangles and codes.
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After you have generated a fractal image that you want to print, click either
mouse button to return to the MAIN MENU. Then click on PRINT. You will be

prompted to select a printer. Three printers are supported, Epson 9 pin, Epson

24 pin, and Hewlett-Packard laserjet II. Almost every printer can emulate one

of these, so if you have a different printer, check your printer documentation.

Click on the desired printer name, then click on CONTINUE. Fdesign will print

your fractal, the triangles, and the IFS codes on one page.

For a higher quality printout, click on VIRTUAL SCREEN PRINT from the MAIN

MENU. You must first generate the fractal using an invisible virtual screen, and

then print it. Click on PLOT 1000K PoINTs. (If the result turns out to have too few

points to look good, you can click on PLOT N POINTS instead, and fill in a number

larger than 1,000.) A virtual plot status display will come on your screen,

allowing you to monitor progress. When the PLOT POINTS menu returns, click on

PRINT, and once again select a printer as before. Your fractal will fill a whole page

at high resolution when printed.

AN FDESIGN SAMPIER

A really good way to use Fdesign is to start with the great collection of images that

the Fdesign programmer provides with the program. You can load and view

these images, and alter the IFS transformations to make your own fractals.

Natural Fractals

IFS images can look very lifelike because self-similarity is a characteristic of some

natural phenomena, particularly plants. If the IFS transformations mimic the

actual self-similarity of a plant, the result will look very much like the plant.

Tree

From the MAIN MENU of Fdesign, click on L.OAD FROM DISK. Point the mouse cursor

at T1E and click the right mouse button. This will take you to the edit screen for

the TREE fractal. The transformation triangles for this fractal are shown in Figure
7-13. There are three IFS transforms, one that makes the tree branch to the left

and one to the right. The remaining transformation generates the stem. The

“triangle” that makes the stem is interesting because it is not a true triangle at all.

If you make two of the corners of a transformation triangle coincide, the “triangle”

becomes a line segment, and the part of the fractal generated by this transformation

will be a segment.
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Figure 7-13 TREE.TRN Figure 7-14 FEATHER.TRN

The resulting tree is interesting because the foliage on the tree is made entirely

of stems! The stems continually branch in two directions, until you are no longer

aware of individual stems, but only the bushy tree shape. To see a full screen view

of the tree, click on MAIN MENU.

Feather

Click on L.OAD FROM DISK again, and this time load the image FEATHER by pointing

and clicking with the right mouse button. This fractal is shown in Figure 7-14.
The two transformations are similar to those for the TELEPHON.TRN fractal

discussed earlier. One of the transformations generates a slight shrinkage and

rotation of the image, creating a gentle curve. The other transformation creates
miniatures of the whole fractal. The result looks a lot like a feather.

Gram

Now load GRAIN.TRN. This one hasa symmetryvery much like a grain of wheat.

‘Where the feather fractal had a transformation with a slight rotation, this one

turns nearly (but not exactly) 900. Because the A and B corners were swapped

in the larger triangle, the components of the grain flop back and forth, resulting

in a nested series of grain fronds at nearly right angles to each other.

Mathematical Monsters

The key to many natural looking fractals are gentle spirals and almost-exact

turns. You will get completely different and very unnatural results from
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Figure 7-15 GRAIN.TRN Figure 7-16 Sierpinski gasket

transformations that accomplish even turns and contractions by integral factors.

Let’s look at some examples.

Binary

Load the file BINARY.TRN. The triangles have a very orderly look about them,

and the result shows in the resulting fractal. This fractal looks like a mathematical

gasket. (A gasket is a flat object that has pieces cut out of it.) Click on ADJUST

TRIANGLE and select the top triangle by pointing and clicking, then at the prompt

SELECT CORNER To MOVE, point at corner C. Move this corner directly down soit

coincides with corner C of the lower left triangle. The result should look like

Figure 7-16. Voila! A Sierpinski gasket!

Cross

Load the file CROSS.TRN and look at the transformation triangles. By now you

probably have memorized the commands. From the MAIN MENU of Fdesign, click

on LOAD FROM DIsK. Point the mouse cursor at CROSS and click the right mouse

button. This will take you to the edit screen for the CROSS fractal, shown in Figure

7-17. The triangles are the picture of symmetry, one in the center, and four others

rotating around the corners of an invisible square that would just contain the

center triangle. The fractal reflects the highly symmetrical transformations. This

fractal has five-fold self-similarity. (Of course, you might already have guessed

that from the fact that there are five IFS transformations!)
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Figure 7-17 CROSS.TRN

MOVING ON

Table 7-1 summarizes all the commands of Fdesign. You can use this as a handy

reference to the program. As you have seen, Fdesign is easy to use and meshes

well with Fractint. With Fdesign, you have an interactive fractal design tool that

makes it easy to visualize the transformations that generate IFS images, modify

them, and save them for later display by Fractint.
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Table 7-1 Fdesi menu summa
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Table 7-1 Fdesi menu summa (continued)
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SOURCE CODE

f you are a programmer, you are probably curious about some of the coding

magic buried in the innards of Fractint. Perhaps you want to experiment with a

new fractal type that Fractint doesn’t handle yet. Perhaps you want to see why

Fractint’s GIF encoder is faster (or slower) than yours. Maybe you just want to

see how Fractint manages to access the IBM 8514/A video adapter without the

need for IBM’s HDILOAD API. Or maybe you want to borrow some portion of

our program and use it in your noncommercial application.

To help you explore such topics, we’ve included the complete source code for

Fractint on your Fractal Creations companion CD-ROM. This chapter will show

you how to extract it from the distribution CD-ROM disk, rebuild the executable

file from the source code (assuming you have an appropriate compiler), and

modify the source files to add your own features and/or fractal types. Note that

we’re making the assumption that you’re familiar with MS-DOS commands, the

“C” programming language, and your favorite “C” compiler.

In this chapter, we’ll cover four topics. First, we’ll describe the basic steps

needed to extract the source code from the companion disk and rebuild Fractint

using the popular Microsoft and Borland compilers. Next, we’ll briefly describe

the various source code files in an effort to help you find specific code segments.

You’ll find, for example, that Fractint’s GIF encoder logic is in the ENCODER.C

module and that its 8514/A routines are in FR85 14A.ASM. Third, we’ll describe

the C language structure that contains the core information about all the Fractint

fractal types. Finally, we’ll walk you, the developer, through adding several new

fractal types to Fractint’s source code.



EXTRACTING THE SOURCE FIIES

The source code to Fractint is stored on your companion CD-ROM disk inside

a file called FRASRC.EXE. FRASRC.EXE is a self-extracting archive file, a special

type of MS-DOS program that contains other programs stored in compressed

form. To obtain Fractint’s source code in a usable form, first set up an appropriate

directory on your hard disk. This directory is referred to here as C:\FRASRC,

although you can name it anything you like. Then make that new directory your

current one, insert your distribution CD-ROM disk into your CD-ROM disk

drive, and run the FRASRC program from the DOS prompt. If you don’t have

a CD-ROM drive but have access to another PC that does have one, you can copy

the FRASRC.EXE file to a floppy disk and use that copy. FRASRC will extract all

of the appropriate source files from its innards and deposit them onto your

current directory. Here’s an example of what you’d type

C:> MD \FRASRC
C:> CD \FRASRC!
C:> D:\FRASRC!

assuming that your CD drive is D.

REBUIIDING FRACTINT.EXE FROM THE SOURCE CODE

You will need to have access to an appropriate C compiler in order to rebuild a

Fractint EXE file from its source files. Instructions for using several such

compilers are in the next few paragraphs. Other environments may work as well,

but we can’t vouch for them. Although several of the source modules to Fractint

are written in assembler language, you don’t need an assembler program unless

you intend to modify those modules—current object files for all of the assembler
modules have been included with the source files.

Rebuild with Microsoft C

The source files include a MAKEFRAC.BAT file that you invoke to rebuild Fractint.

The MAKEFRAC.BAT file is set up to use Microsoft C version 7.0, 6.0, or 5.1 or

QuickC version 2.5. We will caution you that Fractint’s main authors use version

7.0 these days and, in fact, the final version of the source code was probably tested

using only version 7.0, so there is always a good possibility that we have created

some sort of minor problems for the other compilers at the last minute.
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MAKEFRAC.BAT, as distributed, assumes that you are using Microsoft C 7.0.

If you’re using another version of Microsoft C, edit MAKEFRAC.BAT to select the

appropriate compiler by “un-commenting” the appropriate GOTO as follows:

rem remove the ‘rem’ preceding the goto that applies to you...

rem goto msc7debug

goto msc7

rem goto mscó

rem goto msc5

rem goto quickc

The build process for Microsoft C includes several other files that are invoked

directly orindirectlyby MAKEFRAC.BAT: several MAKEI11es (FRACTINT.MAK,

FRACHELP.MAK), an indirect command file used during the link process

(FRACTINT.LN7 for Microsoft C 7.0, FRACTINT.LNK for the other compilers),

and FRACTINT.DEF, used only by the linker under MSC 7. The alternate link

command file and the DEF file take advantage of the improved overlay

capabilities of the linker supplied with MSC 7.

Rebuild with Borland C++ and Turbo C

The source files include BCFRACT.PRJ and BCHELP.PRJ files for the Borland

C++ compilers, and TCFRACT.PRJ, TCHELP.PRJ, and FRACTINT.DSI< files for

the Turbo C compilers. When you start up your copy of Borland’s C++ or Turbo

C using the source directory, it will find the project files for you automatically.

Warning! Fractint’s main authors use Microsoft C 7.0 these days, and in fact the final

version of the source code was probably only tested against that Microsoft

compiler, so there is always the possibility that we have created some sort

of minor problems for the other compilers at the last minute.

THE SOURCE FIIES

The Fractint source code can be logically divided into two sections. These

sections, and the routines that compose them, are

4 The user interface code. This code handles all of the user interaction and

displays, handing off any actual fractal generating functions to the core
fractal routines.
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4 The fractal-generating engine code. This code is concerned only with

generating fractal images, and calls user-interface routines to handle any

keyboard/mouse activity and video handling.

The User Interface Code

The user interface routines consist of the following modules.

FRACTINT.C

This is where you’ll fInd the main() routine. FRACTINT.C can be thought of as

a traffic cop for the rest of the program. On startup, this module first calls the
routines that detect and initialize the environment under which Fractint is

running. It then displays the initial scrolling credits screen and waits for a

keypress. Once you’ve selected an initial video mode, the module drops into its

main message loop, detecting keystrokes and mouse movements via calls to the

keypressed() routine and invoking appropriate user interface or fractal engine

routines to process them. Listing 8-1, for instance, contains the code in the main

message loop that invokes Fractint’s image-flipping logic when you press
or while a fractal image is on the screen.

Listing 8-1 The image-flipping logic in FRACTINT.C

case 24: /* ctl—x, Ctl—Y, CTL—Z do flipping */

case 25:

case 26:

1* Note: ‘kbdchar’ contains the keyboard character that

‘keypressedO’ has reported is in the input queue.

‘flip_imageO’ (in module MISCOVLC) is the routine

that actually performs the image—flipping and removes

the keypress from the input queue.

*1

flip_image(kbdchar);

break;

PROTOTYPH

This is a file of function prototypes. Any routine that is defined in one module and

called from another has a function prototype defined here. The Fractint authors

have found that using a standard include file like this significantly reduces the
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problems one runs into when routine “a” hands an integer value to routine “b”—

which expects to see a floating-point value.

PORT.H

This is an include file of portability equates, which serves to hide some of the

differences between different operating environments from the rest of Fractint’s

source code. Fractint’s original MS-DOS implementation continues to be its most

popular, but there are currently Windows 3.x, OS/2 (1.x and 2.x), and

X-Windows ports of Fractint in existence using many of the same source

modules. It is in here, for instance, that PRINTER is defined to be “PRT:,”

“/dev/pm,” or “/dev/Ip” based on the type of computer system in use.

CMDFILES.C

The routines in this module handle all of Fractint’s startup parameters, as

specified either on the startup command-line, the fractint section of your

SSTOOLS.INI file, or any parameter fIles being processed. If you wanted to

modify Fractint to perform backflips, for example, you could make Fractint

recognize a new back f Ii p= Eyes I no] command-line option by adding it to the

list of i f ( s t rn c mp (... clauses in the cmdargO routine in this module (see

Listing 8-2).

Listing 8-2. Adding “backflip=[yeslno]” command-line sensitivity to Fractint

/* the following code, when added to the ‘cmdargO’ routine in

CMDFILES.C, acts on the presence of a “backflip=Cyeslno]”

command—line option. ‘cmdargO’ has already set up the following:

variable is a string containing the argument name

yesnoval contains I if the argument value was “yes”

o if the argument value was “no”

—1 if it was something else

*1

if (strcmp(variable,”backf lip”) == 0 ) {

if (yesnoval < 0) goto badarg;

if (yesnoval == 1) {

/* The logic for actually getting Fractint to perform backflips

would go here, and is left as an exercise for the reader */

}

1* a return value of 0 indicates that all is well. *1

return 0;

}
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PROMPTS 1 .C, PROMPTS2.C

The routines in these modules handle Fractint’s full-screen prompting logic,

which handles all of Fractint’s data entry functions. These routines were

originally in a single module, and were split up only because the original module

grew too large for some compilers to handle. The fullscreenpromptQ routine,

which accepts lists of prompt strings, field types, and default entry values,

presents the user with a full-screen display, and returns with his selections, is in
PROMPTS 1 .C.

HELPC, HELPDEFS.H

This module and its include file handles Fractint’s on-line help engine. They are

invoked wheneveryou press J for help. The help file itself is built usinga standalone

help compiler developed especially for Fractint. Fractint can access this

help file either as a separate file (FRACTINT.HLP), or as text attached to the end

of FRACTINT.EXE. The latter option reduces the number of files required by

Fractint, but isn’t compatible with all compilers and isn’t always portable across

operating systems.

HC.C, HELPCOM.H, HELP*.SRC

HC.C is the source code for a stand-alone program that builds Fractint’s
FRACTINT.HLP and HELPDEFS.H files from the various HELP*.SRC source

files. It is compiled separately from the rest of Fractint (but handled automatically

by the MAKEFRAC.BAT file used by the Microsoft compilers).

INTRO.C

The routines in this module handle Fractint’s introductory scrolling-credits

screen. This is a very small module, but it is kept separate from the rest of the

Fractint code so that it can be easily used as an overlay module.

SLIDESHWC

The routines in this module handle Fractint’s demo mode auto key= (slideshow)

logic. This lets you build files of “keystrokes” controlling Fractint in stand-alone

demos. Run the DEMO.BAT file included on your distribution disk to see how
this works.
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PLOT3D.C, 3D.C, LINE3D.C

The routines in these modules handle Fractint’s 3-D capabilities as invoked by

the 3-D and 3-D Overlay functions. The draw_lineQ routine in PLOT3D.C, for

instance, is a speedy little routine that draws a straight line from point A to point

B using the Bresenham algorithm.

ROTATE.C

The routines in this module handle Fractint’s color-cycling logic. The low-level

routines that handle the actual color cycling are assembler-based and in the
VIDEO.ASM module.

EDITPAL.C

The routines in this module handle Fractint’s palette-editor logic. The low-level

routines that handle the actual palette manipulation are assembler-based and in
the VIDEO.ASM module.

PRINTER.C, PRINTERA.ASM

The routines in these modules handle all of the printer routines (the ones that get

control when you press the key to print an image). The assembler module

exists only so that some of the larger printer tables can be stuffed into an overlaid

code segment, keeping Fractint’s total memory requirements as low as possible.

GENERAL.ASM

The routines in this module handle Fractint’s “general purpose” assembler
modules. There is a lot of excellent code buried in here, most of which has

nothing to do with fractals. GENERAL.ASM holds Fractint’s CPUIFPU detectors,

extended/expanded memory access routines, keyboard/mouse routines, sound

routines, and the 32-bit scaled integer multiplyO and divide() routines used as

the core of Fractint’s integer math modules. Comments at the beginning of

GENERAL.ASM give a complete list of its routines by name and function.

VIDEO.ASM

The routines in this module handle the bulk of Fractint’s low-level video access

(a few specialty routines, described later, handle some of the more exotic video
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adapters). As with GENERAL.ASM, there is alot of excellent code buried in here,

none of which has anything to do with fractals. For example, the adapter_detectO

routine, called when Fractint first starts up, automatically detects the presence

of a CGA, EGA, VGA, XGA, and almost every super VGA adapter known to

humankind. Comments at the beginning of GENERAL.ASM give a complete list

of the routines that the rest of Fractint code knows about by name and function.

FR8514A.ASM, HGCFRA.ASM, TARGA.C,

TARGA.H, TARGA_LC.H, TPLUS.C,

TPLUS_A.ASM, TPLUS.DAT, TP3D.C, LOADMAPC

The routines in these modules handle Fractint’s 8514/A and 8514/A clones

(FR85 14A), Hercules (HGCFP.A), and Targa (all of the others) video routines.

DISKVID.C

The routines in this module handle Fractint’s Disk/RAM Video routines, which

let you use your realJextended/expanded memory or even your disk drive as a

virtual video adapter. To the rest of the Fractint code, this “virtual video” is no

different from any other “real” video mode. With these routines, even the user

with a lowly CGA video adapter can generate 256-color images at resolutions up

to 2048 x 2048 pixels.

YOURVID.C

The routines in this module give the programmer a simple way to add support

for video adapters not currently supported by Fractint. All the programmer has

to do is modify the existing routines that set up the video mode, end it, and read

and write pixels to the screen while in that video mode. The module as shipped

on the companion CD invokes IBM’s MCGA/VGA 320 x 200 x 256 mode.

ZOOM.C

The routines in this module, workingwith the low-level routines in VIDEO.ASM,

support Fractint’s zoom-box functions.
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ENCODER.C, DECODER.C, WADFILE.C,

GIFVIEWC, TGAVIEWC, F16.C

The routines in these modules handle the GIF and TARGA File loadingand saving

capabilities of Fractint. The main GIF encoding and decoding routines are
located in ENCODER.C and DECODER.C.

REALDOS.C, LOADFDOS.C

The routines in these modules handle DOS-specific functions (mostly video-

related) that are handled differently in other environments, such as Windows and

OS/2. The stopmsg() routine in REALDOS.C, for example, switches your video to

text mode, displays the message givenit, waits forakeypress, and reports the results

to whatever routine called it. The Windows port of Fractint uses an alternate

module (WINDOS.C, which is not included as part of the Fractint source code)

and the Windows messagebox() routine to perform the same function.

MISCRES.C, MISCOVLC

The routines in these modules are the routines that literally didn’t fit anywhere

else. MISCOVLC includes the routines that can be stuffed into an overlay
section, and MISCRES.C includes those that (at least under versions of Microsoft

C prior to version 7.0) can’t.

The Fractal-Generating Code

The core fractal-generating routines concern themselves only with generating

fractal images, and hand off all user input and screen display functions to the user

interface routines. Although the original reason for this splitting of functionality

was simply ease-of-programming, it has resulted in a very handy dividend: these

fractal-generating routines are now generally common to both Fractint and its

various ports to other environments (WINFRACT for Microsoft Windows,
PMFRACT for OS/2, XFRACT for the X-Windows environment, etc.). When a

new version of Fractint is released, its new fractal-generating code can be quickly

added to its sister programs—sometimes in a matter of hours. These fractal-

generating routines consist of the following modules.
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FRACTINT.H

This is an include file of common definitions that virtually every other routine

must know about.

FRACTALPC, FRACTYPE.H

FRACTALP.C contains a single fractaispecific structure containing information

about each of the fractal types included in Fractint—in fact, the onlyitemsthatmost

of the other modules know about the fractal types in Fractint are contained in this

structure. Because of its importance to the rest of the program, this ‘fractalspecifIc’

structure is described in more detail in the next section. FRACTYPE.H contains

#deflnes for the entry locations of each fractal type in the structure.

CALCFRAC.C

CALCFRAC.C contains the code for the basic fractal engine and its general

algorithms. CalcfractO is the fractal engine entry point called by the main fractal

loop in FRACTINT.C, and oversees the remainder of the fractal engine code.

CalcfractQ scans the fractalspecific structure (described in the next section) for

any fractal-specific information, initializes its pointers accordingly, and invokes

whichever fractal routine that structure states should generate that image.

CALCFRAC.C also contains the routines handlingmany of the general fractal-

related algorithms. StandardFractalQ, for example, is the general escape-time

fractal image generator and handles most of the options specific to escape-time

fractals, suchastheinside and outside options. The solidguessO,boundary_traceO,

and tesseral() routines are also found here.

FRACSUBR.C

FRACSUBR.C contains service routines invoked by the startup fractal code in

FRACTINT.C and the core fractal code in CALCFRAC.C. It’s actually an

overflow module that was created when CALCFRAC.C simply grew too large for

many of the popular MS-DOS-based compilers to handle.

The most important routine by far in this module is calcfracinitQ which is

called by FRACTINT.C prior to starting any fractal image. Calcfracinit()

determines whether or not an image has been zoomed too deep for its integer

algorithm (and if so, switches to its floating-point equivalent algorithm),
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determines the actual image corners, fills up coordinate arrays determining the

location of every pixel, and initializes a few coordinate-related variables.

FRACTALS.C

FRACTALS.C contains most of the fractalspeciulc code for the escape-time

fractals (escape-time fractals are those fractal types which are calculated by

iterating formulas until an intermediate value exceeds a predetermined value).

The fractal-specific functions for the Lambda fractal, for example (a standard

escape-time fractal using the formula z(n + 1) = Lambda x z(n) x (1 — z(n)”2) are
located in FRACTALS.C.

FRACSUBA.ASM

FRACSUBA.ASM contains several general service routines that have been moved

into assembler for speed. The longbailout() routine, for example, quickly checks

to see if the long integer values X and Ymeet the condition (((Xx X) + (Yx Y)<Z)

while worrying about possible integer overflow conditions. Every routine in this

module was at one time a small C routine in FRACTALS.C (and for portability

purposes still has a C-based equivalent routine there).

CALCMAND.ASM, CALMANFPASM

These are the Mandelbrot/julia Set routines, hand-tuned in assembler for the last

ounce of speed. When folks compare the speed of various fractal programs,

they’re almost invariablydiscussinghow fast those programs generate a Mandelbrot
fractal. There are far more readable (but slower) C versions of these same fractal

types in the core fractal engine. Those C routines are used when an option (such

as biomorphs) is in effect that the superfast assembler routines don’t check for.

NEWTON.ASM, LORENZ.C, JB.C, PARSER.C,

PARSERA.ASM, TESTPT.C, ISYS.C, LSYSA.ASM,

LYAPUNOVASM, HCMPLX.C, JIIM.C

These routines handle the Newton, Lorenz, JuliBrot, Formula, Test, L-systems,

Lyapunov, HyperComplex, and real-time Julia set fractal types respectively.

These fractal types either didn’t fit into the core fractal engine structure or, as with

the previous Mandelbrot/julia routines, were hand-coded for speed.
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MISCFRAC.C

MISCFRAC.C is a catchall routine that contains several miscellaneous routines

that handle various fractal types. Stand-alone fractal types with relatively short

generating routines tend to end up here. The plasmaO routine handles plasma

cloud images. The diffusion() routine handles diffusion fractals, while the

bifurcationO routine handles the various bifurcation fractals. The popcomO,

cellularO, and frothybasin routines are in here as well.

MPMATH_C.C, MPMATH_A.ASM, MPMATH.H

These MP (Mark Peterson’s) math routines handle floating-point mathematics

using integer exponent/mantissa pairs. They are an alternate to Fractint’s scaled

long-integer math routines for those situations where scaled-integer math

doesn’t work very well.

FPUO87.ASM, FPU387.ASM

These are customized floating-point math operations, written in assembler for

speed.

THE FRACTAl SPECIFIC STRUCTURE

The fractalspecifIc structure in FRACTALP.C contains all of the information most

of the modules in Fractint need to know about fractals. Even the main fractal

engine code uses that structure to access any routines that are specific to any

fractal type.

The fractalspeciulc structure and the definitions of the flag bits included in it

are located in the FRACTINT.H include file. Fractal types are added to Fractint

simply by adding any new routines required to generate the fractal types to the

basic fractal engine and then adding new entries to this structure describing the

fractal types and pointing to the routines that generate them. In the next section,

we’ll go through this process, adding several new fractal types to Fractint.

Listing 8-3 shows the layout of the fractalspecific structure. Listing 8-4 shows

the fractalspeciflc entries and related variables for the MandelbrotlJulia family of

fractals. Listings 8-5 and 8-6 appear laterin this section with detailed descriptions

of their related flag values.
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listing 8-3 Fractint’s fractaispecific structure

struct fracta Ispeci fi cstuff

listing 8-4 The Mandeibrot/Julia fractaispecific entries

#define NOFRACTAL

#define MANDEL

#define JULIA

#define MANDELFP

#define JULIAFP

static char realzOE] = Real Perturbation of Z(O);

static char imagzOE] = Imaginary Perturbation of Z(O)”;

static char realparmE] = Real Part of Parameter”;

static char imagparmE] = ‘Imaginary Part of Parameter;

struct fractalspecificstuff far fractaispecificE] {

/* fractal name, parameter text strings, parameter values,

helptext, helpformula, flags,

xmin xmax ymin ymax mt tojulia tomandel tofloat symmetry

orbit fnct per_pixel fnct per_image fnct calctype fcnt bailout */

mandel’, realzO, imagzO,’,’,O,O,O,O,

HT_MANDEL, HF_MANDEL, WINFRAC,

—2.5, 1.5, —1.5, 1.5, 1, JULIA,NOFRACTAL, MANDELFP, XAXIS_NOPARM,

JuliaFracta I, mandel_per_pixel,MandelSetup,StandardFractal, STDBAILOUT,

continued on next page

{

char *name; / name of the fractal */

char *paramE4]; / name of the parameters *1

float paramvalueE4]; /* default parameter values */

mt helptext; 1* helpdefs.h HT_xxxx, —1 for none /

mt helpformula; 1* helpdefs.h HF_xxxx, —1 for none /

mt flags; /* constraints *1

float xmin; /* default XMIN corner /

float xmax; /* default XMAX corner /

float ymin; /* default YMIN corner /

float ymax; /* default YMAX corner /

mt isinteger; 1* 1 if integerfractal, 0 otherwise *1

mt tojulia; 1* mandel—to—julia switch *1

mt tomandel; 1* julia—to—mandel switch /

mt tofloat; /* integer—to—floating switch /

mt symmetry; /* applicable symmetry logic */

mt (*orbitcalc)O; /* function that calculates one orbit */

mt (*per_pixel)O; 1* once—per—pixel mit *1

mt (*per_image)(); 1* once—per—image setup *1

mt (*calctype)O; / name of main fractal function *1

mt orbit_bailout; / usual bailout value for orbit calc *1

—1

0

4

6
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continued from previous page

julia, realparm, imagparm,,,0.3,0.6,0,0,

HT_JULIA, HF_JULIA, WINFRAC,

—2.0, 2.0, —1.5, 1.5, 1, NOFRACTAL, MANDEL, JULIAFP, ORIGIN,

JuliaFracta 1, julia_per_pixel, JuliaSetup,StandardFracta 1, STDBAILOUT,

‘*mandel”, realz0, imagz0,,,0,0,0,0,

HT_MANDEL, HF_MANDEL, WINFRAC,

—2.5, 1.5, —1.5, 1.5, 0, JULIAFP,NOFRACTAL, MANDEL, XAXIS_NOPARM,

JuliafpFractai,mandelfp_per_pi xel, MandelfpSetup,StandardFractal, STDBAILOUT,

‘*juiia”, realparm, imagparm,’,’,0.3,0.6,0,0,

HT_JULIA, HF_JULIA, WINFRAC,

—2.0, 2.0, —1.5, 1.5, 0, NOFRACTAL, MANDELFP, JULIA, ORIGIN,

JuliafpFracta I, juliafp_per_pi xci, JuliafpSetup,StandardFracta I,STDBAILOUT

The Fractaispecific Structure—User Interface Entries

The Fractint modules that handle the user interface are interested in the following

fractaispecific items (the items are not necessarily listed in the order in which they

appear in the structure).

name

This is the name of the fractal type. Fractal names can be up to 16 characters long,

and cannot include spaces. If a particular fractal type has both integer and

floating-point algorithms, it has two structure entries. In such cases, one of the

entries has a leading ““ in the name field (note that there’s a “mandel”and a

*mandel” entry in Listing 8-4). The display routines use this ““ as a flag

indicating that this entry is a duplicate that should not be displayed for user-

selection purposes. In these cases, each entry contains flags indicatingwhich type

it is (isinteger) and pointing towards its alternative (tofloat), so Fractint can select

the appropriate entry automatically.

param[4], paramvalue[4]

These array entries contain the string descriptions and default values of up to four

optional user-selectable parameters. Fractal types with fewer than four such

parameters have null entries in the name fields that aren’t relevant. Parameter

names should be kept under 40 characters long just so they’ll fit in Fractint’s

dialog boxes. All members of the MandelbrotlJulia family of fractals accept two

parameters.
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xmin, xmax, ymin, ymax

These are the corner values of the default image that is displayed when this fractal
type is first selected.

flags

This Field contains abitmask of flags that the Fractint modules query to determine
the capabilities and limitations of this fractal type. These flags and their values are
detailed in Listing 8-5. Although many of the entries in this Field are of interest
only to the routines that actually generate the fractal, some of them are of interest
to the other modules as well. In particular, the presence of the WINFRAC flag
indicates that Fractint’s Windows port, Winfract, has the capability to generate
this fractal type. Usually, every fractal type in Fractint can also be generated using
Winfract and sports this flag. All members of the Mandelbrotfjulia family of
fractals use only the WINFRAC flag.

listing 8-5 Fractint’s fractal-specific bitmasked flags

1* bitmask defines for fractaispecific flags */

#define NOZOOM 1 1* zoombox not allowed at all */

#define NOGUESS 2 /* solid guessing not allowed */

#define NOTRACE 4 / boundary tracing not allowed */

#define NOROTATE 8 /* zoombox rotate/stretch not allowed */

#define NORESUME 16 /* can’t interrupt and resume */

#define INFCALC 32 /* this type calculates forever */

#define TRIGI 64 /* 1 trig function in formula */

#define TRIG2 128 /* 2 trig functions in formula */

#define TRIG3 192 /* 3 trig functions in formula */

#define TRIG4 256 /* 4 trig functions in formula */

#define WINFRAC 512 /* supported in WinFrac */

#define PARMS3D 1024 /* uses 3d parameters */

helptext, helpformula

These entries contain pointers (defined in HELPDEFS.H) to locations in

Fractint’s help file describing this particular fractal type. A -i indicates that no

Fractint-style HELP reference is available. When you add fractal types to Fractint

and haven’t expanded Fractint’s internal help files to accomodate them, use a
value of—i for these fields.

tojulia, tomandel

These fields contain an entry number giving the location in the fractalspecific

array of the Julia or Mandelbrot fractals matching this fractal type, if any such
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fractal types exist. The main message loop in FRACTINT.C uses these flags when

the user requests a Mandelbrot/Julia switch. These entry numbers are coded as

#defInes in FRACTYPE.H. Note in Listing 8-4 how the Mandelbrot andJulia set

entries point to each other.

The Fractalspecffic Structure—Fractal-Generation Entries

The Fractint modules that actually generate the fractal image are interested in the

following fractalspeciflc items (the items are not necessarily listed in the order in

which they appear in the structure).

isinteger

This field is nonzero if this fractal type uses an integer algorithm, and zero if this

fractal type uses floating-point math. Many of the fractal types, including the

Mandelbrot/Julia fractals in Listing 8-4, have both an integer and a floating-point

version, with an entry for each.

tofloat

This field contains the entry number of the fractal type which is the integer or

floating-point equivalent to this one (the name is misleading, as this may be a

floating-point fractal type pointing to its integer equivalent). A zero in this entry

indicates that there isno such equivalent. Note in Listing 8-4 how the Mandelbrot

and Julia set entries point to their sister entries. The calcfracinitQ routine in

FRACSUBR.C uses the tofi oat and isinteger flags to automatically (and silently)

select the fractal type appropriate to the users preference and the current

zooming depth (floating-point fractal types can zoom in farther than their integer

equivalents). When using fractal types that have only one entry (plasma clouds,

for example, have no floating-point equivalent). Fractint uses that one algorithm

regardless of any preference the user has indicated.

symmetry

Many fractal types are symmetrical in some respect, and Fractint’s fractal engine

can recognize and handle many different kinds of symmetry. The Mandelbrot

fractal, for example, is symmetrical along the x-axis as long as none of its optional

parameters has been set to a nonzero value. The Julia fractal is symmetrical about
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the origin. Whenever it can, Fractint takes advantage of symmetry to reduce the

amount of time it takes to calculate and display an image—note how the bottom

half of the initial Mandeibrot image is generated and displayed at the same time

as the top half.

If a particular fractal type has symmetrical properties, that symmetry is

indicated using this flag. Listing 8-6 includes an annotated listing of all the

symmetry types currently recognized by Fractint.

Listing 8-6 Fractint’s fractalspecilEic symmetry flags

/* defines for symmetry *1

/ no symmetry at all */

1* X—axis symmetry if no parameters are given *1

1* X—axis symmetry *1

/ Y—axis symmetry if no parameters are given *1

1* Y—axis symmetry *1

1* XY—axis symmetry if no parameters are given *1

1* XY—axis symmetry *1

1* Origin symmetry if no parameters are given *1

1* Origin symmetry *1

1* P1 symmetry if no parameters are given *1

1* P1 symmetry *1

1* X—axis symmetry if param has no imag component *1

1* X—axis symmetry if param has no real component *

/* for formula fractals — symmetry declared in the file */

This field of bitmasked flags, already mentioned as a user interface field, also

contains a number of flags of interest to the code that actually generates fractals.

Some fractal types, for example, don’t work correctly with the solid-guessing

and/or boundary-tracing options, so the fractal engine must ignore the user’s

preferences for those options when generating those fractal types. Listing 8-5

includes an annotated listing of the bitmasked flags contained in this field.

orbit_bailout

For escape-time fractal types, this is the comparison value that is used by default

to detect that an iteration has escaped from the fractal set. For the Mandelbrot
fractals, this value is 4, as the calculation of the fractal ends when the value of z(n)12

is greater than 4. For non-escape-time fractals, this field is meaningless, and is

usually set to NOBAILOUT (#defIned to be 0.0) as an indicator of that fact.

#defi ne NOSYM 0

#define XAXIS_NOPARM —1

#define XAXIS 1

#defi ne YAXIS_NOPARM —2

#defi ne YAXIS 2

#defi ne XYAXIS_NOPARM —3

#define XYAXIS 3

#defi ne ORIGIN_NOPARM —4

#define ORIGIN 4

#define PI_SYM_NOPARM —5

#define PI_SYM 5

#define XAXIS_NOIMAG —6

#define XAXIS_NOREAL 6

#define SETUP_SYM 100

flags
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The four following entries are pointers to functions, and are used by the fractal

engine to connect the fractal type to any fractalspecific code it requires. None of

these routines is called with any parameters (they all use global variables instead

for speed). All of the functions return values, although in some cases those values

are ignored.

per_image()

This is a pointer to a function specific to this fractal type that handles any

initialization that must be taken care of on a “per-image” basis. The per_imageO

function returns a value of 0 if it has completed the fractal image on its own, or

returns a nonzero value if the main fractal engine should continue by calling the

calctypeO function (described in the next section).

Fractal types such as the plasma, IFS, and L-system fractals (which use

completely unique calculation logic) traditionally point to the standard StandaloneSetupO

routine here and then point to their custom routine in the calctypeO

pointer, described next. StandaloneSetupO calls a routine which starts a timer

and then calls the calctypeO routine for this fractal type. StandaloneSetupO

always returns a 0 to indicate that the calculation process is completed.

The more common escape-time fractal types usually point to one of several
standard initialization routines. These routines initialize a few variables and

handle special cases that affect items like symmetry. The Mandelbrot and Julia

fractals, for instance, determine at this point whether they can use their fast

assembler algorithms or must use slower C-based algorithms because some

option (such as biomorphs or decomposition) is in effect, which the fast

assembler algorithms cannot handle. The four most commonly used initialization

routines for escape-time fractals are MandellongSetupO, MandelfpSetupO,

JulialongSetupO, and JuliafpSetupO, which handle generic Mandelbrot- and

Julia-style fractals for the integer and floating-point algorithms, respectively.

Listing 8-15, shown later in this chapter in the section on adding escape-time

fractals, lists the MandellongSetupO routine used by many of the integer

Mandelbrot-like escape-time fractals (and Listing 8-16 shows what this routine

would look like without all of its special-case logic).

calctype()

This is a pointer to a function that handles the overall fractal calculation. For some

fractal types (plasma clouds, IFS, and L-systemfractals, for example), this function

is specific to the fractal type and handles the entire image with a single call.
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For all of the escape-time fractals this item points to the StandardFractal()

routine. The core fractal logic in CALCFRAC.C recognizes the StandardFractal()

entbeingtheescape-timefractalroutine.WhenitseesthatStandardFractal()

is specified as the calctype() entry, the core fractal logic switches to its escape-time

logic, enablesitsescape-time optionssuch assolid-guessingand boundary-tracing,

and calls StandardFractal() once for each pixel. The StandardFractal() routine

handles the per-pixel options like biomorphs, decomposition, inside and outside

colors, and calls the per_pixel() and orbitcalc() functions described in the next two

sections to do the actual work of performing any fractalspecific calculations.

The calctype() routine returns a zero to indicate that it completed the image,

or a nonzero value to indicate that it didn’t (maybe you pressed the key to

abort the calculation). This returned value is used by the core fractal engine logic

to tag the image as being complete or incomplete. StandardFractalQ is a special

case, and returns the color of the pixel it has just calculated to the escape-time

fractal routines that called it (information that the solid-guessing, boundary-

tracing, and tesseral algorithms need).

Of all the routines specified in the fractaispecific array, the routine pointed to

by calctype() is by far the most complex. For non-escape-time fractals, it’s often

the only routine specific to the fractal type. If you are adding an escape-time

fractal algorithm to Fractint, you must use StandardFractalQ. On the other hand,

if you’re adding a fractal type that is completely unlike anything Fractint

currently features, the combination of the calctype() entry point and the

per_imageO one gives you the ability to do so.

Listings 8-8 through 8-11, shown later in this chapter in the section on adding

stand-alone fractals, contain a complete stand-alone calctypeO function implementing

a drunkard’s walk fractal type.

per_pixel()

This is a pointer to a function called by StandardFractalQ that handles any fractal-

specific initialization that must be taken care of on a per-pixel basis (usually

precalculating z(O)). Many escape-time fractal types share common per_pixelO

routines, although writing your own is easily done. Listing 8-18, shown later in

this chapter in the section on adding escape-time fractals, lists simple per_pixelO

routines for integer and floating-point Mandelbrot and Julia fractals.

StandardFractalQ ignores any value returned by this routine.

Non-escape-time fractal types are free to use this function pointer for their

own purposes. Usually, their fractalspecific entries for this function pointer are

just set to NULL.
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orbitcalc()

This is a pointer to a function called by StandardFractal() that handles a single

orbit (iteration) calculation. This function calculates z(n + 1) given the value of

z(n), and is often the only routine that is specific to a particular family of escape-

time fractal types. This routine returns 0 if the new value has not reached its

bailout limit, or 1 if it has. Listing 8-19, shown later in this chapter in the section

on adding escape-time fractals, lists the orbitcalcO routines used for integer and

floating-point Mandelbrot and Julia fractals.

Non-escape-time fractal types are free to use this function pointer for their

own purposes. Usually, their fractalspecific entries for this function pointer are
just set to NULL.

ADDING NEW FRACTAI. TYPES

Let’s put all the claims about adding new fractals to Fractint to a test by actually

doing it. We’re going to add two different kinds of fractals to Fractint.

First, we’ll add a new stand-alone fractal type to Fractint—a simple drunkard’s

walk. (A drunkard’s walk involves an object taking random-length steps in

random directions.) For demonstration purposes, we’ll also give this fractal type

the ability to generate Mandelbrot images, even though you’d normally generate

Mandelbrot fractals using the escape-time fractal engine.

Then, we’ll add a family of four escape-time fractal types—integer and floating-

point versions of two fractal types that form a Mandelbrot/julia pair. In fact, in this

case our “new” fractals are going to be the familiar Mandelbrot and Julia sets.

By the time we have added these fractals, we’ll have covered all the basic

concepts of adding fractal types to Fractint.

Let’s admit to a little cheating here—the entries you are going to add are

already in their relevant modules. They’ve just been commented out so as not to

show up in the distributed Fractint executable. When the text refers to your

adding these entries to the relevant modules, all you really have to do is remove

the start (/*) and end (*/) of the comments. Nothing eliminates typing errors

quite as efficiently as eliminating the typing itself.

Adding Stand-Alone Fractals

Now let’s add our stand-alone drunkard’s walk fractal (with its Mandelbrot

option) to Fractint.
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Adding Entries to the FRACTYPE.H File

The first thing you must do when adding new fractal types to Fractint is to add

their definitions to the FRACTYPE.H file. These definitions point to the fractal’s

locations in the fractalspecific structure (recall that the rest of Fractint’s code uses

that fractalspecific structure to access any information it needs about a particular

fractal type). For many fractal types, these definitions are only used in the

fractalspecific structure and, in the case of our drunkard’s walk fractal, this

definition is never actually going to be used anywhere at all. Nevertheless, it’s a

good practice to always add the definition to FRACTYPE.H so that all of the fractal

types are defined in one place. For one thing, it’s quite confusing when you’re

adding fractal types if the last entry in this list isn’t also the last entry in the

fractalspecific array. The value of this entry will be the location of the entry you

will be adding to the end of the fractal-specific structure. You’ll need a single entry

for the drunkard’s walk fractal, indicating that it is located in the 161st entry in

the fractal-specific structure:

#define DEMOWALK 161

Adding Entries to the Fractaispecific Structure

Having added the entry for this new fractal type to our list in FRACTYPE.H, add

its entry to the end of the fractalspecific array in FRACTALP.C, just before the

NULL entry indicating the end of the list (in this case, just before the four new

escape-time fractal entries that are also commented out just prior to the NULL

entry—we’ll discuss them in the next section). Listing 8-7 shows the new entry

you need to add.

listing 8-7 The fractalspecific entry for drunkard’s walk

demowalk’, Average Stepsize (% of image),

Color (0 means rotate colors),,’,5,O.O,O,O,—1, —1,NORESUME+WINFRAC,

—2.5, 1.5, —1.5,1.5, 0, NOFRACTAL, NOFRACTAL, NOFRACTAL, NOSYM,

NULL, NULL, StandaloneSetup, demowalk, NOBAILOUT,

Refer to Listings 8-3 through 8-6 as we examine this fractalspecific entry, as

they include the definitions of all of the flags it uses. The fractal type’s name, used

whenever Fractint needs to identify this fractal type for the user, is “demowalk.”

This fractal type accepts two optional parameters: an average stepsize expressed

as a percentage of the image size, and the color used to display the walk. The first
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parameter (the stepsize) defaults to 5%, and the second (the color) defaults to

zero (successive lines generated as the fractal iterates will be generated using
different colors as it walks).

Helptext and helpformula are —1, as we have not developed any help text for

this fractal type. This fractal uses two fractal-specific flags. NORESUME indicates

that this fractal type is not resumable. If we save one of its images in the middle

of a calculation and reload it later, this fractal type doesn’t contain any special

logic letting it resume its calculations where they left off (the escape-time fractal

types rely on logic inside the standard escape-time fractal engine to perform this

task). The WINFRAC flag signals that Fractint’s Windows port, Winfract, can

handle this fractal type.

The initial screen corners are —2.5,1.5,—i .5,1.5—the standard, slightly off-

center cornervalues that display the initial Mandelbrot image well. Isinteger is zero,

indicating that this fractal type is a floating-point fractal and the core fractal engine

should set up floating-point pixel coordinates when calling it. This fractal has no

Julia equivalent, Mandelbrot equivalent, or integer/floating point equivalent, so

those entries are all NOFRACTAL. This fractal has no symmetry (NOSYM).

The demowalk fractal follows the convention of the stand-alone fractal types:

the permageO function points to StandaloneSetupO, the calctypeQ function

points to demowalk’s own fractal-specific routine, and the perpixel() and
orbitcalc() functions are unused and set to NULL as an indicator of that fact. Its

bailout value has been set to NOBAILOUT because the user can’t change the

bailout value of its simple Mandelbrot function.

Once you’ve added (or removed the comments from) these entries in

FRACTYPE.H and FRACTALP.C, rebuild Fractint and run it again. You now

have a new fractal type, demowalk.

The calctype() Routine

As is the convention with the stand-alone fractal types, the calctypeQ function

does all the work for generating this particular fractal type. Listings 8-8 through

8-11 contain the complete code for the demowalkO function, which you will find

that we’ve already added to FRACTALS.C.

Let’s walk through this routine line-by-line to see what functions a standalone

fractal type must perform. Stand-alone routines, because they have no

general fractal engine overseeing their function as the escape-time fractals do,

have to handle more functions on their own (like updating the actual image and

worrying about whether the user is frantically banging on the keyboard

attempting to bring up a spreadsheet before the boss arrives).
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Defining and Initializing the Variables

Listing 8-8 shows the portion of the demowalkO routine that defines and
initializes the variables we need.

The first seven lines reference global variables that demowalkO needs to

access to perform its function. Param[] is an array holding up to four optional

parameter values, either the default values from the fractalspecific entry or their

revised values as modified by the user. Maxit is the maximum number of

iterations. Rflag and rseed are values for the random number generator—using

these global values instead of its own lets demowalkO take advantage of the

r see d= command-line parameterin case anyone everneeds to generate replicatable

random walks (hey, you never know). Xdots and ydots give the resolution of the

current video mode, and colors gives the number of colors in this mode. DxO[],

dyO[], dxl [] and dyl [] are arrays used to determine the floating-point values of

each pixel coordinate on the image. The drunkard’s walk section of demowalk()

doesn’t need them, but its Mandelbrot option does (and your fractal types

probably will).

The next six lines describe local variables that this fractal type needs for its
calculations.

Listing 8-8 The demowalkO fractal generation routine—initialization code

demowalk()

float stepsize; 1* average stepsize *1

mt xwalk, ywalk; 1* current position *1

mt xstep, ystep; 1* current step *1

mt steps; /* number of steps /

mt color; /* color to draw this step *1

float temp, tempadjust; 1* temporary variables */

Accessing the Parameters

Listing 8-9 shows the portion of the demowalk() routine that examines the usersettable

parameters and sets up our walk accordingly.

The first line of executable code just lets us branch around the drunkard’s

walk routine if the user has set the first optional parameter to 999—our way of

{

extern double paramE]; 1* optional user parameters *1

extern mt maxit; / maximum iterations (steps) */

extern mt rflag, rseed; 1* random number seed */

extern mt xdots, ydots; 1* image coordinates */

extern mt colors; /* maximum colors available */

extern double far *dxO, far *dyo; 1* arrays of pixel coordinates */

extern double far *dxl, far *dyl; 1* C... for skewed zoom—boxes) */
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getting to the Mandeibrot option. Let’s ignore the Mandeibrot option for the

moment (we’ll get to it later) and concentrate on the drunkard’s walk algorithm.

Next, the executable code seeds the random number generator (and bumps

up the seed value so the next random walk will be different from this random

walk). Then the routine sets up its initial xwalk and ywalk values to start its walk

in the center of the image.

The next few lines of code reference the user-modifiable parameters, param[0]

and param[1]. Param[0] is defined in the demowalk fractalspecific structure as

the average stepsize in terms of a percentage of the image. Param[ 1] is defined
as the color to use for the walk.

Listing 8-9 The demowalkO fractal generation routine—parameter access code

if (paramEO] ! 999) { 1* if 999, do a Mandelbrot instead */

srand(rseed); /* seed the random number generator *1

if (!rflag) ++rseed;

tempadjust = RAND_MAX >> 2; /* adjustment factor /

xwatk = xdots / 2; /* start in the center of the image /

ywalk = ydots / 2;

stepsize = min(xdots, ydots) 1* calculate average stepsize *1

* (paramEO]/100.O); / as a percentage of the image *1

color = max(O, min(colors, paramEl])); / set the initial color *1

Let’s Walk!

Listing 8-10 shows the portion of the demowalk() routine that actually performs
the drunkard’s walk.

First, note the call to keypressed() at the beginning of this loop, with a return

with a zero value if keypressed() returns a value. This logic performs a very

important function: It gives Fractint the ability to force demowalk() to exit early.

Maybe the user fired up the demowalk fractal using a maxit of 20,000 and has

decided about 10,000 iterations into the image that he wants to see another

fractal type instead. Maybe his boss is walking in the door and our inspired user

is supposed to be working on next year’s budget.

The next eight lines perform a fairly standard drunkard’s walk routine,

randomly choosing x and y directions and handling the case where the poor

drunkard smashes into the walls at the edges of the image (in our case, sticking
to the wall until the end of that walk).
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The next three lines handle the optional color rotation in the case where

param[ 1] is zero, being careful to avoid using the background color 0 or

exceeding the number of colors in the image.

Finally, demowalk() has to update the image. Rather than build our own line

drawing routine, we borrowed one from the 3-DlogicinPLOT3D.C. Why invent

code when you can steal . . .uhh... borrow it?

Note that there is alternative, commented out code that uses the putcolorO

routine to display just the endpoints instead of the entire line. This code was

added just to demonstrate how to update images a pixel at a time.

The last two lines in the loop replace our drunkard’s old location with his new

one in preparation for taking the next step.

Finally, if the routine falls out of the bottom of the generation loop it returns with

avalue of one indicatingto the callingroutines that it completed its image normally.

listing 8-10 The demowalkO fractal generation routine—performing the walk

for (steps = 0; steps < maxit; steps++) { / take maxit steps *1

if (keypressed()) /* abort if told to do so /

return(0);

temp = rand(); /* calculate the next xstep *1

xstep = ((temp/tempadjust) — 2.0) * stepsize;

xstep = min(xwalk + xstep, xdots — 1);

xstep = max(0, xstep);

temp = rand(); /* calculate the next ystep *1

ystep = ((temp/tempadjust) — 2.0) * stepsize;

ystep = min(ywalk + ystep, ydots — 1);

ystep = max(0, ystep);

if (paramEl] == 0.0) /* rotate the colors? */

if (++color >= colors) 1* rotate the colors, avoiding *1

color = 1; /* the background color 0 */

1* the draw_line function is borrowed from the 3D routines *1

draw_line(xwa 1k, ywa lk,xstep,ystep,color);

/ or, we could be on a pogo stick and just displaying

where we landed...

putcolor(xstep, ystep, color);

*1

xwalk = xstep; /* remember where we were /

ywalk = ystep;

}

return(1); / we’re done */

Generating a Mandeibrot Image

Listing 8-11 shows the portion of the demowalk() routine that performs the

optional Mandelbrot function invoked when the user sets the average stepsize

parameter to 999.
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This Mandelbrot routine was inserted only to show how a stand-alone fractal

type accesses the x- andy- coordinates of each pixel in its image. However, it also

serves to demonstrate the disadvantages of implementing an escape-time fractal

type as a stand-alone fractal. Because it’s not using the escape-time fractal engine,

this fractal type does not have automatic access to any of the standard escape-time

options like solid-guessing, boundary-tracing, biomorphs, decomposition, any

of the inside or outside options, etc. Also, it’s incredibly slow.

Note that the floating-point arrays used by the Mandelbrot option are only

filled in if a fractal type has been declared to use a floating-point type algorithm.

Integer fractals use long far array equivalents called ixO [1, lyO [1, lxi [1, and lyl [1.

Listing 8-11 The demowalkO fractal generation routine—the Mandelbrot option

} else {

}

/ a simple Mandelbrot routine *1

1* the following routine determines the X and Y values of

each pixel coordinate and calculates a simple mandelbrot

fractal with them — slowly, but surely */

mt ix, iy;

for (iy = 0; iy < ydots; iy++) {

for (ix = 0; ix < xdots; ix++) {

}

mt iter;

double x, y, newx, newy, tempxx, tempxy, tempyy;

1* first, obtain the X—and Y—coordinate values of this pixel */

x = dx0Eix]+dxlEiy];

y = dy0Eiy]+dylEix];

/ now initialize the temporary values *1

tempxx = tempyy = tempxy = 0.0;

if (keypressed()) /* abort if told to do so

return (0);

1* the inner iteration loop */

for (iter = 1; iter < maxit; iter++) {

1* calculate the x and y values of Z(iter) *1

newx = tempxx — tempyy + x;

newy = tempxy + tempxy + y;

/* calculate the temporary values */

tempxx = newx * newx;

tempyy = newy * newy;

tempxy = newx * newy;

/ are we done yet? *1

if (tempxx + tempyy > 4.0) break;

}

1* color in the pixel *1

putcolor(ix, iy, iter & (colors — 1));

}

return(1 ); / we’re done */
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Adding Escape-Time Fractals

Now let’s add a family of four escape-time fractal types to Fractint—integer and

floating-point versions of the familiar Mandelbrot and Julia sets.

Adding Entries to the FRACTYPE.H File

The first thing you must do when adding new fractal types to Fractint is to add

definitions in the FRACTYPE.H file. These definitions point to the fractal’s

locations in the fractalspecific file. For many fractal types, including the ones

you’re about to add, these definitions are used only inside the fractalspecific

structure (and in fact for some fractal types, they aren’t even used there), but it’s

a good practice to always add these definitions to FRACTYPE.H, so they’re all in

one place. You’ll need four entries for the integer and floating-point variations of

both the Mandelbrot and Julia types. The values of these entries will be the

location of the entries you will be adding to the end of the fractalspecifEic structure.

Listing 8-12 shows the four entries you need to add.

Usting 8-12 Adding the demo fractal types to FRACTYPE.H

#define DEMOMANDEL 162

#define DEMOJULIA 163

#define DEMOMANDELFP 164

#define DEMOJULIAFP 165

Adding Entries to the Fractalspecific Structure

Having added the entries for these four new fractal types, let’s add their entries

to the end of the fractalspecific array in FRACTALP.C, just before the NULL

entry indicating the end of the list. Listing 8-13 shows the four new entries we
need to add.

Usting 8-13 Adding the demo fractal types to FRACTALP.C

‘demomandel, realzO, imagzO,,’,O,O,O,O,

—1, —1, WINFRAC,

—2.5, 1.5, —1.5, 1.5, 1, DEMOJULIA, NOFRACTAL, DEMOMANDELFP, XAXIS_NOPARM,

JuliaFractal, mandel_per_pixel, Mandel longSetup, StandardFractal, STDBAILOUT,

demojulia, realparm, imagparm,,,0.6,0.55,0,0,

—1, —1, WINFRAC,

—2.0, 2.0, —1.5, 1.5, 1, NOFRACTAL, DEMOMANDEL, DEMOJULIAFP, ORIGIN,

JuliaFractal, julia_per_pixel, JulialongSetup, StandardFracta 1, STDBAILOUT,

continued on next page
*demomandel’, realzO, imagzO, , ,O,O,O,O,
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continued from previous page

—1, —1, WINFRAC,
—2.5, 1.5, —1.5, 1.5, 0, DEMOJULIAFP, NOFRACTAL, DEMOJULIA, XAXIS_NOPARM,
Juti afpFracta 1, mandetfp_per_pi xet, MandelfpSetup, StandardFracta 1, STDBAILOUT,

‘*demojulia’, realparm, imagparm,’,,0.6,0.55,0,0,
—1, —1, WINFRAC,
—2.0, 2.0, —1.5, 1.5, 0, NOFRACTAL, DEMOMANDELFP, DEMOMANDEL, ORIGIN,
JutiafpFractat, juti afp_per_pixel, JuliafpSetup, StandardFractal, STDBAILOUT,

Let’s go over the demomandel entry. Refer to Listings 8-3 through 8-6 as we

do so, as they include the definitions of all flags and parameter strings used by

this entry. The fractal type’s name, used whenever Fractint needs to identify this

fractal type, is “demomandel.” It accepts two optional parameters (realparm and

imagparm), both of which default to 0. Helptext and helpformula are—i, as we

have not developed any help text for this fractal type. Its only flag is WINFRAC,

which signals that Fractint’s Windows port, Winfract, can handle it. Its screen

corners are —2.5.1.5,—i .5,1.5—the standard, slightly off-center corner values

that display the initial Mandelbrot image well. Isinteger is 1, indicating that this

is an integer fractal. Its Julia equivalent, reached by pressing the right mouse

button, is DEMOJULIA. (Being a Mandelbrot fractal, it has no Mandelbrot

equivalent so that entry is NOFRACTAL.) Its alternative floating-point algorithm

is the one in the DEMOMANDELFP entry. Its symmetry (XAXIS_NOPARM) is

about the x-axis, but only if its optional parameters are all zero. We’ll go into the

four function pointers in detail in the following paragraphs. Finally, its bailout
value is the standard bailout value, 4.0.

Once you’ve added (or removed the comments from) these entries in

FRACTYPE.H and FRACTALP.C, rebuild Fractint and run it again. You now have

two new fractal types, demomandel and demojulia. These new fractal types have

both floating-point and integer versions, and are connected via the Mandelbrot/

Julia toggle activated by the right mouse button. Not only do the basic algorithms

work, but they also work with all of Fractint’s myriad options and doodads.

Now take a look at the entry for the mandel4 fractal type in FRACTALP.C,

shown in Listing 8-i4. Note that the main difference between, this entry and the

one fordemomandelisthepointertoadifferentorbitcalcOroutine,Mandel4FractalO

(found in FRACTALS.C). All of the other function pointers are identical.

listing 8-14 The Mandel4 entry in FRACTALP.C

mandel4, realz0, imagz0,’,,O,O,O,O,

HT_MANDJUL4, HF_MANDEL4, WINFRAC,

—2.0, 2.0, —1.5, 1.5, 1, JULIA4,NOFRACTAL, NOFRACTAL, XAXIS_NOPARM,

Mandet4Fractat, mandel_per_pixel, MandellongSetup, StandardFractal, STDBAILOUT,
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The Four Function Pointers

The function pointers are the heart of the actual fractal calculation process, so it’s

worthwhile to go over the four function pointers in each of these new entries and

see what the functions they point to actually do. If you’re perusing through the

source code while you’re reading this chapter, all of the functions referred to in
this section reside in the FRACTALS.C module unless noted otherwise.

The per_image() Routines

The new fractal types point to one of four per_imageO routines. The routine

depends on whether the fractal is a Mandelbrot or ajulia and on whether it uses

an integer or floating-point algorithm. In all four cases, we’re invoking standardized

routines used by a number of escape-time fractal types. The routines are

actually quite similar, and they’re really simpler than they first appear. In fact, the

bulk of the code in these routines covers special cases and variables that don’t

apply to any of the fractal types in our examples (the usual penalty for writing

general-purpose subroutines). Listing 8-15 shows the source code for the

MandellongSetup() routine as it appears in the FRACTALS.C module.

Listing 8-16 shows the same routine and its three companions stripped down

to the code that affects our new routines. All they do is initialize a pointer to a

parameter structure (longparm for the integer types or floatparm for the floating-

point types). In the case of the Mandelbrot fractals, this parameter points to a

structure containing the current pixel coordinates. In the case of thejulia fractals,

it points to a structure containing a parameter value (the parameter value is

provided either manually by the user or automatically via the MandelbrotfJulia

toggle function). The Julia fractals also call the get_julia_attractorO routine
(located in the FRACSUBR.C module) that checks to see if the finite attractor

option has been enabled. If the finite attractor option has been enabled,

get_julia_attractorO performs some special initialization. Normally,

get_julia_attractorO just returns without doing anything.

listing 8-15 MandellongSetupO source

Mandel longSetup()

{

FgHalf = fudge >> 1;

c_exp = paramE2];

if(fractypeMARKSMANDEL && c_exp < 1)

c_exp = 1;

if(fractype==LMANDELZPOWER && c_exp < 1)

c_exp = 1; continued on next page

FRACTINT’S SOURCE CODE 437
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if((fractype==MARKSMANDEL && !(c_exp & 1)) II

(fractype==LMANDELZPOWER && c_exp & 1))

symmetry = XYAXIS_NOPARM; /* odd exponents *1

if((fractype==MARKSMANDEL && (c_exp & 1)) II fractype=LMANDELEXP)

symmetry = XAXIS_NOPARM;

if(fractype==SPIDER && periodicitycheck==1)

periodi ci tycheck=4;

longparm = &linit;

i f(fractype==LMANDELZPOWER)
{

if(paramE4] == 0.0 && debugflag != 6000 && (double)c_exp == paramE2])

fractalspeci fi cEfractype] .orbi tcalc = longZpowerFractal;

else

fractalspecifi cEfractype] .orbi tcalc = longCmplxZpowerFractal;

if(paramE3] != 0 II (double)c_exp != paramE2] )

symmetry = NOSYM;

}

return(1 );

}

listing 8-16. .Setup() source simplified

Mandel longSetup()

{

1* initialize the parm pointer to point to the current pixel coordinate values */

longparm = &linit;

1* return, indicating that the fractal has yet to be generated */

return(1 );

}

Julia longSetup()

{

1* initialize the parm pointer to point to the parameter entry *1

longparm = &lparm;

/* invoke the julia attractor option, if its been set *1

get_julia_attractor (0.0, 0.0);

1* return, indicating that the fractal has yet to be generated *1

return(1 );

}

MandelfpSetup()

{

1* initialize the parm pointer to point to the current pixel coordinate values */

floatparm = &init;

1* return, indicating that the fractal has yet to be generated */

return(1 );

}

JuliafpSetup()

{
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1* initialize the parm pointer to point to the parameter entry *1

floatparm = &parm;

1* invoke the julia attractor option, if its been set *1

get_julia_attractor (0.0, 0.0);

1* return, indicating that the fractal has yet to be generated */

return(1 );

}

The calctype() Routines

All of the previous examples use the same calctype() function. This is the

standard, escape-time fractal routine, StandardFractalQ, located in the

CALCFRAC.C module. The core fractal logic in CALCFRAC.C recognizes the

StandardFractalQ entry as being the escape-time fractal routine. When it sees

that StandardFractalO is specified as the calctype() entry, the core fractal logic

switches to its escape-time routines, enables its escape-time options such as

solid-guessing and boundary-tracing, and calls StandardFractal() once for each

pixel. StandardFractalQ handles all sorts of options like inside coloring, outside

coloring, biomorphs, decomposition, logarithmic palettes, and such automatically,

making them a feature of every escape-time fractal type.

The per_pixel() Routines

The examples use one of several per_pixelO routines, depending on whether

they are Mandelbrot or Julia fractals and on whether they use the integer or

floating-point algorithms. As in the case of the per_image() routines, these are

all standardized routines used by a number of escape-time fractal types. Listing

8-17 shows the mandel_per_pixel() routine called by many of the Mandelbrotstyle
functions.

This routine has special logic to handle the inversion option (with inversion, the

initial pixel value is really from a different (everted) location) and several of the

esoteric inside options. Listing 8-18 shows the same routine and its sister routines

stripped of those options and down to fighting trim for comparison purposes.

Aside from those option checks, all the routines do is initialize a few variables
so that the first call to the orbitcalcQ routines can calculate z(1). The oldJold

structures hold the results of the previous iteration—z(O) in this case, and the

value of the current pixel coordinate position. For the Mandelbrot fractals, z(O)

may be modified by an optional parameter. The tempsqrx/tempsqry variables

contain the square of the real and imaginary components of the previous

calculation. Normally, they are leftover values from the previous iteration, so
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they have to be explicitly calculated here because on the first call to the

per_orbitO routines there is no previous iteration.

Listing 8-17 The mandel_per_pixel() routine

mt mandel_per_pixel()

{

1* mandel *1

if (invert)

{

invertz2(&ini t);

1* watch out for overflow *1

if(bitshift <= 24)

if (sqr(init.x)+sqr(init.y) >= 127)

{

init.x = 8; /* value to bail out in one iteration *1

init.y = 8;

}

if(bitshift > 24)

if (sqr(init.x)+sqr(init.y) > 4)

{

init.x = 2; 1* value to bail out in one iteration *1

init.y = 2;

}

1* convert to fudged longs *1

linit.x = init.x*fudge;

linit.y = init.y*fudge;

}

else

linit.x = lxOEcol]+lxlErow];

switch (fractype)

{

case MANDELLAMBDA: 1* Critical Value 0.5 + 0.Oi *1

lold.x = FgHalf;

lold.y = 0;

break;

default:

bId = linit;

break;

}

/ alter mit value */

if(useinitorbit == 1)

bold = linitorbit;

else if(useinitorbit == 2)

bId = linit;
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if(inside == —60 II inside == —61)

{

1* kludge to match “Beauty of Fractals” picture since we start

Mandeibrot iteration with mit rather than 0 *1

lold.x = lparm.x; 1* initial pertubation of parameters set *1

lold.y = lparm.y;

color = —1;

}

else

{

lold.x + lparm.x; 1* initial pertubation of parameters set *1

lold.y + lparm.y;

}

ltmp = linit; /* for spider */

ltempsqrx = multiply(lold.x, lold.x, bitshift);

ltempsqry = multiply(lold.y, lold.y, bitshift);

return(1); /* 1st iteration has been done */

}

listing 8-18 The .. per_pixel functions simplified

mt mandel_per_pixel()

{

1* Z(0) is the value of the pixel coordinates */

bId = linit;

/* add in the optional parameter, if any *1

lold.x + lparm.x;

lold.y + lparm.y;

1* precalculate temporary values for the next iteration *1

ltempsqrx = multiply(lold.x, lold.x, bitshift);

ltempsqry = multiply(lold.y, lold.y, bitshift);

1* return — we’re done */

return(O);

}

mt julia_per_pixel()

{

1* Z(0) is the value of the pixel coordinates */

lold.x = lxOEcol]+lxlErow];

lold.y = lyO[row]+lylEcol];

1* precalculate temporary values for the next iteration *1

ltempsqrx = multiply(lold.x, lold.x, bitshift);

ltempsqry = multiply(lold.y, lold.y, bitshift);

1* return — we’re done */

return(0);

}

mt mandelfp_per_pixel()

{ continued on next page
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continued from previous page

1* Z(O) is the value of the pixel coordinates */
old = mit;
/* add in the optional parameter, if any *1
old.x += parm.x;
old.y + parm.y;
1* precalculate temporary values for the next iteration *1
tempsqrx = sqr(old.x);
tempsqry = sqr(old.y);
1* return — we’re done */

return (0) ;

}

mt juliafp_per_pixel()

{

1* Z(O) is the value of the pixel coordinates */

old.x = dxOEcol]+dxlErow];

old.y = dyOErow]+dylEcol];

1* precalculate temporary values for the next iteration *1

tempsqrx = sqr(old.x);

tempsqry = sqr(old.y);

1* return — we’re done */

return (0) ;

}

The orbitcalc() Routines

The Mandeibrot andJulia examples use the same orbitcalc() logic. Given that the

longparm/floatparm pointer has already been redirected by the per_image()

routine, once you get those fractal types initialized with z(O) they all use the same

formula to calculatez(n + 1)fromz(n). There are floating-point and integervariants

of this routine,JuliaFractalQandJuliafpFractalQ. Usting8-19 shows both of them

and the bailout routines they call. This is one case where the floating-point

algorithms are easier to follow, as the integer algorithms have to include some fairly

contorted logic to ensure that they detect all the overflow possibilities.

listing 8-19 The JuliaFractal and JuliafpFractal routines and their bailout functions

JuliaFractal()

{

lnew.x = ltempsqrx — ltempsqry + longparm—>x;

lnew.y = multiply(lold.x, lold.y, bitshiftlessl) + longparm—>y;

return(longbai loutO);

}

Jul i afpFracta IC)

{

new.x = tempsqrx — tempsqry + floatparm—>x;

new.y = 2.0 * old.x * old.y + floatparm—>y;

return(floatbai loutO);

}
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static mt near floatbailout()

{

if ( ( magnitude = ( tempsqrx=sqr(new.x)

+ ( tempsqry=sqr(new.y) ) ) > rqlim ) return(1);

old = new;

return(O);

}

mt longbailout()

{

/* the real routine is in assembler for speed: this is the C equivalent */

ltempsqrx = lsqr(lnew.x);

ltempsqry = lsqr(lnew.y);

Imagnitud = ltempsqrx + ltempsqry;

if (Imagnitud >= Ilimit II Imagnitud < 0 II labs(lnew.x) > llimit2

1 labs(lnew.y) > llimit2 II overflow) {

overf lowO;

return(1 );

}

bId = mew;

Algorithmically, all the routines do is perform the function listed here. The
actual code is contorted to save calculation time: this iteration’s new.x is also next

iteration’s old.x, so there’s no reason to recalculate the squares of the old values

given that you’ve already calculated them (as the squares of the new values) in

the previous iteration.

1* algorithm notes:

old.x and old.y are the values of the x and y results of

the prior iteration

new.x and new.y are the values of the x and y results of

this iteration

tempsqrx and tempsqry are temporary values for x squared

and

y squared. The real routines, being clever, re—use these

values

when they calculate new.x in the next iteration.

bailoutlimit is the bailout value (usually 4) defined by

the orbit_bailout

entry in the fractal—specific structure, but perhaps

changed to a

different value as a user option.

*1

new.x = (old.x * old.x) — (old.y * old.y) + param.x;

new.y = 2 * old.x * old.y + param.y;

tempsqrx = new.x * new.x;

tempsqry = new.y * new.y;

if ( (tempsqrx + tempsqry ) > bailoutlimit)

return(1 );

else

return(O);
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APPENDIX

FRACTINT AND

VIDEO ADAPTERS

FRACTINT AND VIDEO ADAPTER DETECTION

When Fractint starts up, one of the first things it does is examine your hardware

to determine what kind of video adapter is available. First, it runs through a series

of basic checks to determine if your video adapter is CGA, Hercules, EGA, or

VGA-compatible. Then, if your video adapter is VGA-compatible, Fractint runs

through a second series of checks to determine whether your video adapter is

based on one of several popular super VGA chipsets that can handle higher
resolution modes like 640 x 480 x 256 or 1024 x 768 x 16. This video

autodetection logic is what gives you the ability to tell Fractint to generate a 640

x 480 256-color image without telling it (or even knowing) what kind of video

adapter is on your system. This appendix covers the limitations of Fractint’s

autodetection logic and describes how to modify or disable it if it runs into

problems on your system.

VIDEO ADAPTER MEMORY

One limitation of Fractint’s video autodetection logic is that it assumes that every

video adapter has the maximum amount of video memory available to it. This

means that Fractint sometimes thinks that your PC can display video modes it

really can’t, because your video adapter just doesn’t have the video memory to

work with. For instance, Fractint assumes that every EGA adapter has 256K of

adapter memory and can handle 640 x 350 16-color mode—cheerfully ignoring

the fact that some early IBM EGA adapters came supplied with only 64K of video



memory and topped out at 640 x 350 2-color mode. Many third-party super

VGA chipsets can handle video modes that require a full megabyte of memory

or more—f the video adapter on which they reside contains that much memory.

When you attempt to use a video mode you don’t really have the capability

to handle—say, using a 640 x 480 256-color mode which requires that a video

adapter have 512K of video memory on an adapter that only has 256K—Fractint

goes right ahead and tells your video BIOS to go into that mode.

When that happens, one of several results can occur. Your video may stay in

text mode (even though Fractint thinks it is in a graphics mode), or it may be in

graphics mode, but with only a portion of the display showing a good image. In

either case, the solution is the same—press to get back into text mode and
then select another video mode.

VIDEO MONITOR UMITATIONS

All VGA monitors can handle 640 x 480 resolution—but not every monitor can

handle 800 x 600 or 1024 x 768. It is possible that your system has a video

adapter that can generate video modes your monitor can’t handle. Fractint

assumes that if you attempt to use a particular video mode and your video adapter

can handle it, then your monitor can handle it as well.

When a video adapter attempts to throw a monitor into a resolution beyond

its capability, you get a generally trashed display, usually of moving diagonal

lines. If this happens to you when you attempt to enter a high-resolution video

mode, press to get back into text mode and then select anothervideo mode.

It is not a good idea to push a video monitor beyond its rated limits. A monitor

can be damaged or destroyed when a video adapter attempts to run it at a higher

resolution than it was built to handle. If you inadvertently attempt to use a video

resolution beyond the capabilities of your monitor, don’t spend a lot of time

watching that weird display before pressing

VIDEO CHIPSET DETECTION PROBIEMS

Super VGA chipset autodetection is wonderful—when it works. Fractint’s super

VGA detection algorithms are, in the authors’ humble opinions, among the best in

the business, but sometimes even that isn’t good enough. Unfortunately, the only

way to detect the presence of some video chipsets is to write to certain adapter

locationsand readback the results, and there is always the possibilitythat somenew

chipset introduced by vendor “A” just happens to pass the detection logic Fractint
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uses for super VGA adapter “B”—or what’s worse, locks up solid when that chipset

detection logic is used. In the former case, all of Fractint’s standard VGA video

modes will work, but none of its super VGA modes. In the latter case, olderversions

of Fractint have been known to lock up the system entirely as soon as they were

started. Fortunately, there are solutions for these cases.

If your video adapter came with a VESA VBE driver (usually a file named

something like VESA.COM or VESA.EXE), invoking that driver before starting

up Fractint will often solve any adapter-detection problems. VESA stands for
Video Elect ronics StandardsAssociation, and VBE stands for its VideoBIOS Extension

standard. This standard is one of the best things that ever happened to the super

VGA adapter world, as it gives DOS-based programs a standard way to access

super VGA video adapters regardless of the chipsets they use. During its super

VGA detection routines, Fractint checks for VESA compliance first. If it finds that

your video adapter responds to its VESA requests, Fractint never executes any

of its chipset-specffic logic.

If you don’t have a VESA driver, but know what type of chipset your video

adapter uses, you can use the ad a pt e r = command-line parameter to force

Fractint to bypass its internal video chipset detection logic completely and

assume the presence of a particular chipset. The a d a p t e r = command-line

parameter is discussed in detail at the end of Chapter 5, Fracttnt Reference, at the

beginning of the command-line only commands section. Try this parameter on your

command-line first. If it works there, add it to your SSTOOLS.INI file so that

Fractint uses it every time it runs. (Note that Fractint looks for the video chipset

on your adapter rather than the name of the vendor who built or sold it. To the

software program, it’s the chipset that is important—and as it happens, several

popular PC vendors have switched video chipsets several times.) The command-

line parameter adapt e r = vga causes Fractint to assume the presence of a vanilla

VGA adapter that handles no super VGA video modes.

GRAPHICS-TO-TEXT-TO-GRAPHICS SWITCH FAIIURE

Fractint’s default method of switching from graphics mode to text mode and

back (such as when you press to check on the status of your image and then

press to return to that image) is extremely sophisticated—and makes

some stringent assumptions about the VGA-compatibility of your video adapter.

One could argue that these assumptions are particularly stringent (to the point

of being absurd) when they are applied to a video adapterwhichis in a super VGA

video mode that “real” VGA adapters can’t get into in the first place.
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If your graphics image is corrupted (usually a generally correct image but with

a few rows of trashed pixels) when you switch from graphics mode to text mode

and back, then your graphics adapter doesn’t match all of those assumptions. If

this happens to you when you return to your graphics image from a , J,
or sequence, Fractint’s t e x t s a f e = command-line parameter will probably

solve your problems. This command-line parameter causes Fractint to use one

of several alternative approaches to handling its graphics-to-text-to-graphics

switch. The t e x t s a f e = command-line parameter is discussed in detail at the end

of Chapter 5, Fractint Reference, at the beginning of the command-line only

commands section. Try this parameter and its different options on your command-line

first. If one works there, add it to your SSTOOLS.INI file so that

Fractint uses it every time it runs.
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APPENDIX

FRACTINT AND

GIF FILES

Fractint stores its images in GIF (Graphics Interchange Format) files. The GIF

standard was developed and is maintained by CompuServe to meet the needs of

their on-line customer base. Because of this design goal (and the fact that

CompuServe’s subscribers access CompuServe using all kinds of computer

hardware over relatively slow dial-up lines), the GIF standard offers several

advantages over other formats.

Platform Independence—GIF images are stored in a format independent of the

computer system on which they were generated. GIF files developed by Fractint

are displayable on any system for which someone has written a GIF viewer, and

GIF viewers are available for virtually every graphics-capable system on the

market today.

Compression—GIF images are stored in an internally compressed format

using a variant of the popular LZW algorithm. As a result, high-resolution images

take up much less room on your hard disk when stored as GIF files than when

stored in other formats—an important consideration for an image-oriented

program such as Fractint.

Application-Specfic Extensions—When CompuServe enhanced the GIF standard

with the GIF89a version, GIF images were given the ability to include

applicatton-specfic extension blocks as part of the image stream. Application-

specific extension blocks include a name field identifying the application that

created them, and are ignored by any other program accessing the GIF image.

Fractint uses this capability (and the identifier “FRACTINT”) to store any fractal-

specific information about the image as part of the GIF file, and recovers that

information along with the image when it reads that file later. This is how Fractint



knows, for example, that FRACT123.GIF is a partially completed image of ajulia

set with its parameters set at (0.25,0.58) and corners at (—1 .4,0.06)(0.45,0.60)

which was calculating line 143 using the second pass of the solid-guessing

algorithm when it was saved—and is able to resume that calculation immediately

after reloading the image.

Because some older GIF viewers can handle only the older GIF87a format,

Fractint includes a command-line option (g I f 87a =ye s) that forces it to store its

images using that older format. Note that when it does so, it can’t include its fractalspecific

extensionblock as part of the image and, therefore, can onlyview the image

as if it were one created by some other, nonfractal program if it reloads it later.

The Graphics Interchange Format© is the copyright property of CompuServe

Incorporated. GIFSM is a Service Mark property of CompuServe Incorporated.
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APPENDIX

COMPLEX AND

HYPERCOMPLEX

NUMBERS

Fractint uses a variety of different kinds of number systems to generate fractals.

These number systems include complex numbers, quatemions, and hypercomplex

numbers. You may not be familiar with these different number systems, so

the basic facts about them are presented here.

Complex numbers, the extension of the algebra of real numbers to two

dimensions, are the most familar of these various number systems. Complex

numbers have desirable properties that make them ideal for use in generating

fractals. You can add, subtract, multiply, and divide complex numbersjust as you

do familiar real numbers. Because complex numbers are two dimensional, the

pixels on your computer screen can be mapped to complex numbers in a natural

way. Another advantage of complex numbers for our purposes is that many of

the functions that work with real numbers (such as the sine, cosine, exponential,

and logarithm) can be extended to complex numbers, so we can use these
functions to build fractal formulas.

The quatemions are a generalization of complex numbers to four dimensions.

They are useful in the theoretical formulations of physics, and are familiar to

students of abstarct algebra. Alan Norton (1982) and John Hart (1989) have

generated intriguing three-dimensional images of quatemionjulia sets. Now you

can do the same thing with Fractint’sjulibrot fractal type.

The hypercomplex numbers are similar to quatemions, but they are not well

known because the nineteenth century mathematicians who first worked on the

problem of generalizing complex numbers rejected hypercomplex numbers in



favor of quaternions for use in physics. For our purposes, however, hypercomplexnumbers

have abigadvantage overquaternions. We canbuildhypercomplex

fractal formulas using all the functions we use to generate fractals with complex

numbers. Hypercomplex numbers were brought to the attention of the Stone

Soup Group by Clyde Davenport, who has written an expository extension of his

master’s thesis entitled A Hypercomplex Calculus with Applications to Relativity. To

the best of our knowledge, the use of hypercomplex numbers to generate fractals

is presented here in Fractal Creations, Second Edition and Fractint version 18 for
the first time.

This appendix provides you with a summary of the basic rules governing the

algebras of complex numbers, quaternions, and hypercomplex numbers. For

each number system, you will learn how the arithmetic operations of addition,

subtraction, multiplication, and division work, and how to compute transcendental

functions applied to these different numbers. This information is intended

as a reference for those who want to implement fractal generation software of

their own or simply want to better understand the mathematics underlying

Fractint’s higher dimensional fractals. Space permits only a brief exposition of

algebraic properties and not a full tutorial.

COMPIEX NUMBERS

You may remember from your high school days that it is illegal to take the square

root of a negative number. The real number system is not closed under the

operation of taking roots, and in particular, the square root of a negative number

cannot be a real number. (A number system is said to be closed under an operation

if the result of that operation on numbers from that system yields a result in the

original number system.) The real number system can be extended to a larger

number system that is closed under the operation of taking roots. The result of

this extension is the complex number system.

The Number i

The complex number system is created from the real number system by defining

a single additional element defined as a number i such that i2 = —1. This

= (—1). All the rules of addition, subtraction, multiplication, and division work

with this extended number system, and any complex number z can be written

in the form z = al + bi, where a and b are real numbers. (The “1” is usually not

written, but we did it this once to emphasize that every complex number can be
written as a linear combination of the two numbers 1 and i.) The number a is
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called the real part of z and the number b is the imaginary part of z. A number

with no real component is called an imaginary number. We will sometimes write

the complex number a + bi as the ordered pair (a,b). The (a,b) notation

emphasizes that the complex numbers form a two-dimensional space.

The term “imaginary” is unfortunate, because you might think from the name

that imaginary numbers are somehow not legitimate numbers. Imaginary

numbers are no less “real” or any more “imaginary” in the ordinary sense of those

words than the real numbers. Complex numbers definitely apply to the “real”

world in a very strong way. Engineering subjects ranging from spacecraft orbital

dynamics to electric power transfer are heavily dependent on them.

Algebraic Properties of Complex Numbers

The complex numbers are a successful extension of the real numbers to two
dimensions. The real numbers form what mathematicians call a field. A field has

two operations, addition and multiplication, which are commutative, associative,

and distributive. The associative law says that the order of adding or

multiplying makes no difference, that for example (ab)c is the same as a(bc). The

commutative law states that adding or multiplying from the left is the same as

adding or multiplying from the right. For example, a + b = b + a. The two

operations of addition and multiplication are related in a distributive law, stating

that a(b + c) = ab + ac. Both operations have an identity element (0 for addition,

1 for multiplication) that when applied to an element result in no change:

a + 0 = a and al = a. Both operations have an inverse operation, so that for every

a, there is an element —a such that a + (—a) = 0. Similarly, for every nonzero a,
there is an element 1/a such that a (1/a) = 1.

When the real numbers are extended to form the complex number system,

every single one of the field properties still applies. The complex numbers obey

the same algebraic rules as the real numbers.

Complex Arithmetic

All you need to know to do arithmetic with complex numbers is that i2 = —1 and

that the regular algebra rules of real number arithmetic apply.

To add or subtract two complex numbers, you just add or subtract the real

and imaginary components. For example,

(2 + 3i) + (3 + 4i) = (2 + 3) + (3 + 4)i

= 5 + 7i
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and

(2 + 3i) - (3 + 4i) = (2 —3) + (3 —4)i

=—1 —i

To multiply, treat i as a variable and use the rules of algebra, in particular the

distributive law, which states that a(b + c) = ab + ac. Then replace any instances

of i2 with —1. Collect all the real and imaginary parts together. Therefore,

(2 + 3i) (4 + 5i) = (2 + 3i)4 + (2 + 3i)5i

= 2(4) + 12i + lOi + 15i2

=2(4)+ 12i+ lOi+ 15(—1)

=(8—15)+(12+ 1O)i

To divide, the trick is to simplify the demominator so that it is in the form a

+ bi. Then multiply the top and bottom of the fraction by the complex conjugate

of the denominator. (The complex conjugate of a + bi is a — bi; or the original

number with the imaginary component negated.) The reason this trick works is

that when you multiply a complex number by its conjugate, the result is a real

number, so the denominator will not have an imaginary component. Then you

can simplify the result to the a + bi form. For example:

(2 + 3i)/(4 + 5i) = ((2 + 3i)(4 — 5i))/((4 + 5i)(4 — 5i))

= (2(4) — 2(5i) + 3i(4) — (3i)(5i))i / 4(4) — (5i)(5i)

= (8 — lOi + 12i — 15i2)/(16 — 25i2)

= ((8 + 15) + (12 — 1O)i)/ (16— 25(—1))

= (23 + 2i)/41

= 23/4 1 + (2/41)i

Transcendental Functions

Many functions that operate with real numbers can be generalized to complex

numbers. Some examples are the trigonometric functions sine(x) and cosine(x),

the exponential ex, and the natural logarithm ln(x). Because computer languages

and libraries usually provide only the real versions of these functions, the

programmer who desires to write fractal programs involving transcendental

functions needs formulas that reduce the complex version of functions to their

real equivalents. This information is surprisingly difficult to find. Books about

complex analysis are concerned about the development of analytical theory, and

the derivation of the formulas for transcendental functions is a very low priority

that is often not covered. We present here the information we wish we had had

when Fractint was first programmed.
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Table C-i Transcendental function formulas

In the formulas shown in Table C-i, the left hand of the equation is the

complex valued function of a complex variable to be calculated. The right hand

of the equation provides a formula in terms of real valued functions of a real

variable operating on the real or imaginary components of the complex

argument.

QUATERNION S

When the real numbers are generalized to two dimensions to form the complex
numbers, no algebraic properties are lost. The complex numbers obey all of the
field properties discussed earlier. A natural question arises: why not extend the
complex numbers further, to four dimensions? Alas, the nineteenth century
mathematician Frobenius who investigated this problem proved that the quest
for four-dimensional “complex” numbers cannot succeed. At least one field
property must be sacrificed. The quatemions are such a four-dimensional
extension of the complex numbers. They fail the communtative law of multiplication:

sometimes ab and ba are not equal.
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Table C-2 Quatemion basis element multiplication rules

The Numbers i,j, and k

Just as the complex numbers can be obtained from the real numbers by adding

the special element i, the quatemions can be obtained from the complex numbers

by adding special elementsj and k. Every quatemion q can be written as a linear

combination of 1, i,j, and k. That is, for every quatemion q, there are real numbers

x, y, z, and w such that q = x + yi + zj + wk.

Quatemion Arithmetic

Recall that complex number arithmetic boils down to the regular rules for real

arithmentic plus the fact that i2 = —1. You can use ordinary algebra to manipulate

complex numbers, and whenever you encounter i2 you can replace it with —1. The

analogous idea works for quatemions, with two important differences. Instead of

just the new element i, we have i,j, and k,so we need to give rules for multiplying

these special elements together. Because, the commutative law of multiplication

fails, when manipulating quatemion numbers, you cannot assume (as you do

when working out real and complex number algebra) that xy = yx.

Table C-2 shows the rules for multiplying various combinations of 1, i,j, and

k together. Notice that 1 and i behave as before, with i2 = —1, so when thej and

k components of a quatemion are zero, the quatemion behaves exactly like a

complex number.

The failure of the commutative law is evident from Table C-2. For example,

ij = k but in the reverse order,ji = —k. The information in Table C-2 is sufficient

to multiply any two quatemions together. However, for your convenience, the

following formula works out the details.

Letq1 =x1 +y1i +z1j +w1k andq2 =x2 +y2i +z2j +w2k. Then

q1q2 = 1(x1x2+y1y2—z1z2—w1w2)+

i(y1x2 + x1y2 + w1z2 — z1w2) +

j(z1x2 — w1y2 + x1z2 + y1w2) +

k(w1x2 + z1y2 —y1z2 + x1w2)
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Quaternion Fractals

Fractint can make both 2-D and 3-D fractals using quatemions. For 2-D cross

sections of true four-dimensional fractals, try fractal types quat and quatjul. To

see a 3-D solid fractal (actually a 3-D cross section of a 4-D fractal), select fractal

type julibrot and choose orbit formula quatjul. (See Chapter 6, Fractal Types, for

more information on fractal types quat, quatjul, and julibrot.)

HYPERCOMPIEX NUMBERS

Quatemions are not the only possible four-dimensional supersets of the complex

numbers. William Hamilton, the discoverer of quatemions in the 1830s, considered

an alternative called the hypercomplex number system. We have already

mentioned that complex numbers cannot be extended to four dimensions with all

the field properties intact. What field property must be sacrificed this time?

Unlike quatemions, the hypercomplex numbers satisfy the commutative law

of multiplication: for any hypercomplex numbers a and b, we have ab = ba. The

law that fails is the field property stating that all nonzero elements of a field have

a multiplicative inverse. For nonzero hypercomplex numbers, a, there is no

guarantee that there is another element a’ such that aa’ = 1.

Today we cannot say for sure why Hamilton decided to use quatemions

instead of hypercomplex numbers in the emerging physics. We can only

speculate that the inability to confidently divide by nonzero elements was a

stumbling block in his mind. He prefered the messy consequences of losing the

commutative law of multiplication instead. The rest is history. Today hypercomplex

numbers are not well known, and the quaternion product is alive and well

in undergraduate electricity and magnetism classes as the div and curl functions.

Now, a century and a half later, we can second guess Hamilton’s decision. For,

as we shall see momentarily, hypercomplex numbers have some real advantages

for making fractals.

Hypercomplex Arithmetic

As with quaternions, we will define multiplication in terms of the elements 1,

j, and k, but with subtly different rules. Table C-3 shows the rules for multiplying

various combinations of 1, i,j, and k together. As before with quaternions, we still

have i2 = —1, so the complex numbers are embedded within the hypercomplex

numbers just as they are within the quaternions.
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Table C-3 Hercomplex basis element multiplication mles

You have to look very closely to see the difference between quatemion and

hypercomplex multiplication. Compare Table C-2 with Table C-3. Just a few

signs have changed. Compare the first two lines of each table. In Table C-3,

reversing the order of multiplication has no effect. We have i = ji, jk = kj, and
ki = ik. The commutative law holds.

Once again, Table C-3 is sufficient to tell you how to multiply two hypercomplex

numbers together. Just use normal algebra, and when you need to simplfy

the product of two basic elements, use table C-3. However, the formulas below

will help anyone who would like to implement hypercomplex mathematics in

their own program.

Let h1 = x1 + y1i + z1j + w1k and h2 = x2 + y2i + z2j + w2k. Then

h1h2 = 1(x1x2 —y1y2 —z1z2 + w1w2) +

i(y1x2 + x1y2 — w1z2 — z1w2) +

j(z1x2 — w1y2 + x1z2 —y1w2) +

k(w1x2 + z1y2 + y1z2 + x1w2)

As an added bonus, we’ll give you the formula for the reciprocal.

h’ = 1 [x(x2+y2+z2+w2)—2w(xw—yz)1/[((x—w)2+(y+z)2)((x+w)2+(y—z)2)1+

i[—y(x2+y2+z2+w2)—2z(xw—yz)1/[((x—w)2+(y+z)2)((x+w)2+(y—z)2)1+

j [—z(x2+y2+z2+w2)—2y(xw—yz)]/[((x—w)2+(y+z)2)((x+w)2+(y—z)2)]+

k[w(x2+y2+z2+w2)—2x(xw—yz)]/[((x—w)2+(y+z)2)((x+w)2+(y—z)2)1

A look at this formula shows the difficulty with hypercomplex numbers. In

order to calculate h’, you have to divide by the quantity [((x — w)2 + (y + z)2)

((x + w)2 + (y — z)2)1. So when this quantity is zero, the multiplicative inverse will
not exist.

Serendipity Sthkes: Generalizing Transcendental Functions

From what has been said so far, you may be wondering why bother with

hypercomplex numbers since they are so similar to quatemions. The answer lies
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in the simplicity with which any complex valued function of a complex variable

can be generalized to hypercomplex numbers.

Hypercomplex numbers can be represented as a pair of complex numbers in

the following way.

Let h =x + yi+ zj + wk.

Let a = (x — w) + i(y + z) and

b = (x + w) + i(y — z)

The numbers a and b are complex numbers. We can represent h as the pair

of complex numbers (a,b). Conversely, if we have a hypercomplex number given

to us in the form (a,b), we can solve for x, y, z, and w. The solution to

c =c+ic=(x—w)+i(y+z)
d=d+id=(x+w)+i(y—z)

is

x = (c + d)/2

y = (c + d)/2

z = (cv— d)/2
x = (dy— c)/2

Define sin(h) as (sin(a),sin(b)). We know how to compute sin(a) and sin(b)
(see Table C-i). Let

c = sin(a)

d = sin(b)

and use the equations above to solve for x, y, z, and w in terms of c and d. The

beauty of this is that it really doesn’t make any difference what function we use.

Instead of sinO, we could have used cos, sinh, ln, or z2

Using this technique, version i8 of Fractint can create 3-D fractals using the

formula h’ = fn(h) + c, where “fn” is any of the built-in functions sin, cos, tan, cot,

sinh, cosh, log, and so forth. The potential use of hypercomplex numbers to

create fractals is still greater. Consider this: every fractal you can generate using

Fractint’s powerful formula (parser) can be generalized to four dimensions!
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ABOUT THE AUTHORS

Tim Wegner and Bert Tyler, two of the programmers of Fractint, have collaborated
to bring you Fractal Creations, Second Edition. As of the time of this writing,

they have never met, but have worked entirely via electronic mail and through

CompuServe’s GRAPHDEV conference.

TIM WEGNER

Tim Wegner considers himself more of a “math type” than a programmer,

although some of the programmingskills of the rest of the team may have

rubbed off a little on him. He first discovered Bert’s Fra386 program in

late 1988, and remembers pestering Bert to alter the program soit would

run on low-end PCs. Tim’s reasons were entirely selfish: he wanted to

modify Bert’s code to add features, and he only had a lowly 80286-based

PC. As soon as Fractint version 6 came out injanuary of 1989, Tim began

to barrage Bert with ideas and code. These included support for super

VGA graphics boards, the now-famous color-cycling feature, new fractal

types, and 3-D transformation capabilities. Together, Tim and Bert hammered
out the main outlines of Fractint’s “StandardFractal” architecture and data

structures. Tim has been labeled by his cohorts as being “obsessed with options,”

but he has now paid the price. As a co-author of this book, Tim had to document

all the options he so enthusiastically added!

Tim has BA and MA degrees in mathematics from Carleton College and the

University of California Berkeley. He worked for seven years overseas as a

volunteer, doing things like working with Egyptian villagers building water

systems. Since returning to the United States in 1982, he has written shuttle

navigation software, a flight scheduling prototype, and supported strategic

information planning, all at NASA’s Johnson Space Center. He currently is a
Member of the Technical Staff of MITRE Houston.

Tim is the author of Image Lab and a co-author of The Waite Group’s Fractal

Creations (First Edition) and Fractals for Windows.



Bert Tyler is Fractint’s original author. He wrote the “blindingly fast” Intel

80386-specific integer math code and the original video mode logic that

was the basis of the Fractint program. At one point, Bert understood every

line of Fractint’s source code, but these days there are so many goodies in

there from so many developers that he now claims that he has no idea what

some of those routines are doing. Bert’s involvement with Fractint began

when he downloaded a “Mandelbrot generator” program, fired it up on his

brand-new 80386-based PC with no math coprocessor—and then broke

out of the program two hours later when it had drawn only half of its first

image. Bert remembered that a friend of his had written a Mandelbrot generator

for a TI-based processor that used integer math and decided to try programming

something similar for his 386—and Fractint was born.

When asked what his best contributions to Fractint have been, Bert answered

that they were his decisions to distribute the program with full source code, and

give full credit to anyone who sent him improvements. The authors receive major

improvements from people they’ve never heard of before on an almost daily basis.

Bert has a BA in mathematics from Cornell University. He has been in

programming since he got ajob at the computer center in his sophomore year

at college. In other words, he says, he hasn’t done an honest day’s work in his life.

Bert has been know to pass himself off as a PC expert, aUNlXexpert, a statistician,

and even a financial modeling expert. He is currently passing himself off as an

independent PC consultant, supporting PC-to-mainframe communications.

Bert is a co-author of Fractals for Windows.

ACCESSING THE AUTHORS

Communication between the authors for development of the next version of

Fractint takes place in GRAPHDEV (Graphics Developers) Section 4 (Fractal

Sources) of CompuServe. Access to this area is open to any and all interested in

computer generated images. Stop on by if you have any questions or just want

to take a peek at what’s getting tossed into the soup! This is a good way to get your

Fractint questions answered. The authors are always happy to help Fractint users

and to hear suggestions for improving the program.

Bert Tyler [73477,433] on CompuServe

Timothy Wegner [7 1320,675] on CompuServe
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THE STONE SOUP GROUP

Fractint is the product of an informal association of programmers and fractal

enthusiasts know as the Stone Soup group. Here is the explanation of the origin
of that name and an introduction to the Fractal Creations Second Edition authors.

THE FABIE OF STONE SOUP

Once upon a time, somewhere in Eastern Europe, there was a great famine.

Peoplejealously hoarded whatever food they could find, hidingit even from their

friends and neighbors. One day a peddler drove his wagon into a village, sold a

few of his wares, and began asking questions as if he planned to stay for the night.

“There’s not a bite to eat in the whole province,” he was told. “Better keep

moving on.”

“Oh, Ihave everything Ineed,” he said. “In fact, Iwas thinking of making some

stone soup to share with all of you.” He pulled an iron cauldron from his wagon,

filled it with water, and built a fire under it. Then, with great ceremony, he drew

an ordinary-looking stone from a velvet bag and dropped it into the water.

By now, hearing the rumor of food, most of the villagers had come to the

square or watched from their windows. As the peddler sniffed the “broth” and

licked his lips in anticipation, hunger began to overcome their skepticism.

“Ahh,” the peddler said to himself rather loudly, “I do like a tasty stone soup.

Of course, stone soup with cabbage—that’s hard to beat.”

Soon a villager approached hesitantly, holding a cabbage he’d retneved from its

hidingplace, andaddeditto the pot. “Capital!” cried the peddler. “You know,Ionce

had stone soup with cabbage and a bit of salt beef as well, and it was fit for a king.”

The village butcher managed to find some salt beef.. and so it went, through

potatoes, onions, carrots, mushrooms, and so on, until there was indeed a

delicious meal for all. The villagers offered the peddler a great deal of money for

the magic stone, but he refused to sell and traveled on the next day. And from

that time on, long after the famine had ended, they reminisced about the finest

soup they’d ever had.



THE ORIGIN OF FRACTINT

Fractint has grown and developed just like the soup in the fable, with quite a bit

of magic, although without the element of deception. You don’t have to deceive

programmers to make them think that hours of painstaking, often frustrating

work is fun—they think that already!

The original “stone” was the program FRA386.EXE written by Bert Tyler,

which may still be found on some computer bulletin boards. In some ways it is

a little unfair to describe Bert’s original program as a humble stone, since Fra386

was a highly polished and capable fractal generator. It’s claim to fame was that

it was “blindingly fast.” But a comparison between the original program and the

copy of Fractint packaged with this book shows why the “stone” metaphor is apt.

If Fra386 was a tasty morsel, then Fractint is a gourmet feast! The reason is that

for several years now fractal enthusiasts from around the world have been

sending Bert and the other Stone Soup authors programming onions, potatoes,

and spices to add to the soup! You are a beneficiary of this enthusiastic

outpouring of creativity, because Fractint is the state of the art of PC fractal

programming. It would take a mammoth software development project to

duplicate Fractint’s features in a commercial program, and by then Fractint
would have added still more features.

HOW THE STONE SOUP TEAM WORKS

Whenever anyone comes up with ideas for Fractint, those ideas are shared and

passed around in the CompuServe GRAPHDEV forum. A feature makes it into

the program if someone cares enough to incorporate the feature by writing the

code. Because the source code is available, many ideas are sent to the authors as

fully integrated source code. Other features start life as suggestions and are

eventually coded by one of the authors.

One of the Fractint authors wrote this statement, that sums up the experience

of being a “Stone Souper”:

There is something unique about the way this group works. We get alongwell

without a formal structure or responsibilities, without clashes, and somehow

everyone’s efforts come together. Don’t ask me how—I think some kind of magic

is involved, and certainly some good humor.
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INDEX

Note: [FSS] denotes elements of

fractaispecific structure

Keys
key, 222

# key, 96, 222
+ key, 73, 220

key, 160, 220, 221
- key, 73, 220
• key, 160, 221
<key, 160, 221
= key, 221
> key, 160, 221
@ key, 190-191, 222
\key, 165,221
0—6 keys, 220
1—9 keys, 218
3 key, 194, 195, 198, 202, 206

A key, 218, 222
B key, 79, 220
C key, 67, 216, 221
D key, 214-215, 218, 221
E key, 219
F key, 167, 222
G key, 215, 220
H key, 164, 220
I key, 184
J key, 248
lkey, 67, 218
N key, 67, 163, 221
0 key, 66-67
P key, 159, 163, 214
R key, 193-194, 220
S key, 75, 219, 221
T key, 162, 221
V key, 67
W key, 221
X key, 165-176, 222
Y key, 175, 222
Z key, 80, 160, 164

keys, 218
key, 68

@XD key, 68
@Xö key, 158

key, 157
key, 156

ER key, 69
keys, 218

key, 156
J.ERT key, 157

key, 156
key, 156

key, 368
key, 61, 73, 220
J key, 61, 218, 222

key, 58, 59, 75
key, 59

keys, 221
keys, 217

J key, 104
key, 162

key, 62, 215
key, 61, 220

[PAGE PWNJ key, 68, 220
(PAGE up) key, 68, 220

key, 61, 220
keys, 218

keys, 221
(SPACEBAR), 73, 77, 218, 221

key, 152

key, 61, 73, 220

Izi notation, programmer’s’,
370-37 1

1, complex cube roots of, 46-47

2-D orbit fractal type

descriptions, 341-349

3-D landscapes, option good for,
179-180

3-D orbit fractal types

described, 332

type descriptions, 332-340

3-D solid fractal type

descriptions, 326-331

3-D transform parameters,

editing, 184-188
3-D Transformation from File

coarseness setting, 196

fill type options, 198-202

light source options, 206-208

mode selection for, 195-198

overlay parameters, 210-211

planar options, 202-206

preview mode, 195

ray tracer format option,

197- 198

show box option, 195-196

spherical 3-D parameters,
208-2 10

spherical projection option,
196

stereo options, 196

3D.C, 415

4-D escape time fractal types

described, 310-311

type descriptions, 311-317

16 Bit Values flag, 179

8514/A

routines related to, 416

using HDIIOAD interface to

access, 228

A

Abbot, Edwin A., 44

absolute value notation,

programmer’s’, 370-371

Acrospin option, 197

adapter= command, 227

Aeolis and Janus

illustration, Plate 15

recipe, 125-126

affine maps, 5 1-52

afi= command, 228

Alien Owl

illustration, Plate 10

recipe, 118

ALTERN.MAP file, 218-219

ambient light setting, 208

anamorphic images, 180

animation via color cycling,

72-75

askvideo= command, 228

Asteroid Ship

illustration, Plate 16

recipe, 126-127

autokey

basics of, 223

command summary, 225

file name, specifying, 223

playing back keystrokes, 224

recording keystrokes, 224

special key symbols (table), 226

B

Baby Mandelbrot recipe,
113-114

Bad Dream

illustration, Plate 17

recipe, 127-128

Bailout, 178

Barnsley, Michael, 50, 248

Barnsley Sponge, Plate 59

Barnsleyjl fractal type, 250-25 1

Bamsleyj2 fractal type, 252-253

Barnsleyj3 fractal type, 254-255

Bamsleyml fractal type,
249-250

Barnsleym2 fractal type,

25 1-252

Barnsleym3 fractal type,
253-254

Basic Options command,

165- 166

basins of attraction, 48

Bif+sinpi fractal type, 355-356

Biflambda fractal type, 357-358

Bifmay fractal type, 358-359

Bif=sinpi fractal type, 356-357

Bifstewart fractal type, 359-360

bifurcation fractals

described, 355

type descriptions, 355-362

Bifurcation fractal type, 360-361

biomorph rendering enabling,

173-174

BIRDANDW, Plate 26

blank screen on video mode

selection problem, 160
BlueStrandsOnGreen

illustration, Plate 19

recipe, 131-132

BOF6O Mandeibrot II recipe,
111-112

BOF6O Mandelbrot recipe,
109-110

BOF6O option, 85

boundary tracing mode, 167

BRACLET, Plate 27

Brief Output option, 197, 198

brightness parameters, red/blue,
190

Britain’s coastline, approximating

length, 13-17

Bulls Eye Star

illustration, Plate 18

recipe, 128-130

C

CALCFRAC.C, 418

calctypeO [FSS], 426-427

Cellular fractal type, 365

CET161O4, Plate 28

CET161O9, Plate 29

Chains

illustration, Plate 20

recipe, 132-133

chaotic phenomena, 20-21, 26-27

Circle fractal type, 366-367

cloud fractals, 93-94

CMDFILES.C, 413

CmpIxmarksjul fractal type, 257

Cmplxmarksmand fractal type,
255-256

CMPNWT1, Plate 30

coarseness setting (3-D

transforms), 196

coastlines, approximating length

of, 13-17

Collard, Richard, 373

color

advice for using, 102

blue/red brightness

parameters, 190

color number, 2-D meaning

vs. 3-D, 88

continuously varying, 178-180



color, continued

cycling, 7, 72-75

exiting from, 75

keystroke commands

summary, 217-219

mode indicator, 216

setting limits to, 181-182

EGA, 65-66

‘filler’, selection of, 175

interpolation of, for surface fill

options, 199-200

logarithmic mapping of,

172-173

palettes

basics of, 72

editing, 219-222

per range of iteration values,

setting for, 236

randomizing, 73, 205

setting, for every feature of

text screen, 228-230

transparent, setting range of,
205

VGA, 65-66

color plates reference,following 96

colorps= command, 231

colors= command, 236

command-line arguments

basics of, 145-146

in indirect files, 150

in SSTOOLS.INI file, 148-149

syntax for, 147-148

command-line only commands

fractal-related, 233-235

miscellaneous, 235-237

printer-related, 230-233

video-related, 227-230

complex mathematics, 27-30,

452-455

Complexbasin fractal type, 322

Complexnewton fractal type,
320-32 1

comport= command, 231

Computers, Pattern, Chaos, and

Beauty, 350

Connect the dots option, 199

Continue Calculation command,

76, 152

continuous potential, 178-180

algorithm for computing, 179

option, 178-180
contractive affine transformations,

380, 387, 392-393

convergence adjustment, 189

coprocessors, toggling forced

recognition of, 237

CORAITO, Plate 31

cosxx() cosine function, 371

cross fractal, 403, 404

D

Davenport, Clyde, 314

DECODER.C, 417

DECOMP32, Plate 34

decomposition option

effect of, 174

setting, 174

DEFAULT.MAP file, 218

Define Zoom Region command,

153-154

DESQview, background fractal

generation with, 161

DIFFUSIO, Plate 35

Diffusion fractal type, 364

Disk/RAM video mode, 88, 161

DISKVID.C, 416

Distance Estimator Method,

176-178

dither=ftommand, 237

DKBIPOVray file format, 197

Dodson, B.G., 302

Draw Zoom Box Area command,

155

dual-pass mode, 166

Dynamic fractal type, 350-351

dynamic systems, 20-2 1, 22-23

E

Edit 3-D Transform Parameters,

184- 188

Edit Red/Blue Glasses

Parameters, 189-190

EDITPAL.C, 415

EggsOnLeaf

illustration, Plate 21

recipe, 133-134

EGGZACTI., Plate 36

Enable Biomorph Rendering

command, 173-174

ENCODER.C, 417

epsf= command, 232

escape time’, 27, 247

escape-time coloring, 36-37

escape time fractals

described, 243, 247

fundamentals, 27-50

escape-time-to-finite-attractor
fractals

described, 317

type descriptions, 318-326

escape-time-to-infinity

generalized fractal type

descriptions, 301-310

EVILFROG, Plate 37

exitmode= command, 228

exitnoask= command, 236

extended options, accessing, 175

F

F16.C, 417

Farmer, Dan, 313, 350, 352

Fdesign program

creating new fractals, 400

editing transformations,

392-395, 399

hardware requirements, 389

loading Fractint’s IFS fractals

into, 397-398

menu summary (table),
405-406

mouseless usage of, 391

origins of, 388

printing, 400-401

reference triangle, 393

saving results, 395-396

software requirements, 390

startup, 391-392

feather fractal, 402

ferns, 20, 52-53

File main menu section, 62

files

dithering color for

monochrome display, 237

loading images from, 193-194

overwriting of, allowing/

preventing, 171-172

POT, outputting to, 363

saving images, 75, 191-192

selecting parameter, 190-191

setting default name for

saving, 171

Fill Color option, 175

Fill type options, 198-202

finite attractors, 176

illustrated, 177

flags EFSSI, 423, 425

Flatland, 44

Flipping the Image, 182

floating point vs. integer math

options, 85-87

Floating-Point/Integer Toggle,

167-168

Fn*fn fractal type, 303-304

Fn*z+z fractal type, 304-305

Fn+fn fractal type, 305-306

Fn(z*z) fractal type, 302-303

Fn(z)+fn(pi.x) fractal type,
301-302

Food Chain, Plate 38

formula files

accessing, 367-368

name for, specifying default,
235

structure of entries, 368-373

Formula fractal type (user

defined), 374-375

formulafile= command, 235

formulaname= command, 235

formulas

of pre-defined fractals

accessing, per fractal type,
242

setting variable functions in,
235

of user-defined fractals

composition and syntax,
368-371

default name for, specifying,
235

parser for, 367, 371-373
four-dimensional number

systems, 43

fpu= command, 237

FPUO87.ASM, 420

FPU387.ASM, 420

FR8514A.ASM, 416

FRACSUBR.C, 418-419

Fractal Angel, Plate 39

fractal creation guidelines, 102

fractal curve, 16

fractal dimension, 16-17

Fractal Geometiy of Nature, 13

FRACTALP.C, 418

fractals

4-D, 44-46

clouds as, 18-19

defined, 11-13, 16-17, 21

escape time, 30-32

escape to finite attractor,
46-48

human physiology, in, 20

iterative basis of, 36

mapping to spheres, 208-210

mountains as, 17-18

Newton’s method for

generating, 47-48

plant forms of, 20

simulating nature with, 24

uses of, 22-25

waves as, 19

weather, in, 20-21

Fractals Eveiywhere, 248

fractaispecific structure. See under

Fractint, source code

Fractint

3-D coordinate system of, 185

adding fractal types

family of escape-time,
435-443

stand-alone, 428-434

‘backflip=Iyeslnol’ sensitivity

for, 413

background plotting under

Windows, 161

basic options, 83-84

color cycling, 7, 72-75

exiting from, 75

keystroke commands

summary, 217-219

mode indicator, 216

setting limits to, 181-182

command-line arguments,

145- 146

credits screen, 60

Exit from Fractint ? (Y/N)’

prompt, suppressing, 236

exiting, 8, 59, 215

formula parser, 367-373

fractal creation guidelines, 102

fractal types

getting information per, 242

listed by name, 244-246



fractal types, continued

functions diagram, 58

G1F files, multi-image,
command to build, 235

help system, using, 59, 146-147 gif87a= command, 236

image plotting, multiple pass,
66

key-naming scheme, 63

keystroke commands, use of,
144

keystroke record/playback,
223-226

loading IFS fractals into,
396-397

main menu

expanded, 75

illustrated, 60, 76

means of returning to, 144
overviews, 62, 151

menu navigation within, 61,
144-145

modes of, 61, 151

quitting, 8, 59, 215

restarting, 62, 215-216

road map to, 58

running from any directory, 5

sound support, 172

source code for. See main entry

source code

speed through symmetry, 234

startup, quick, 5-8

symmetry in plots, 234
tutorial, 57-96

types of fractals
evolution of list of, 241

formulas for, accessing, 242

selecting, 7, 80, 162, 242

video adapter detection
limitations, 445-446

video mode selection, 5-6,

62-64, 160-162

zooming in, 6-7
FRACTINT.C, 412

FRACTINT.DOC file, command

to build special, 237
FRACTINT.H

adding entries to, 429, 435
descnbed, 418

FRACTINT.IFS, 380

FRACTMIG.GIF files, 213, 214

FRACTYPE.H, 418

Frothybasin fractal type, 324-325
function= command, 235

G

GENERAL.ASM, 415-416

Genesis Wave, Plate 40

GIF files

advantages of, 79, 449-450

converting GIF89a to G1F87a,
192

converting older to PAR files,
104

force creation of G1F87a files,
236

GIF89a, 79

GIF87a, 79, 236

G1FVIEW.C, 417

Gingerbread Man, Plate 41

Gingerbreadman fractal type, 341

Give Command String
command, 215

Gleick, James, 35

grain fractal, 402, 403
Great Divide, Plate 56

Green, Chris, 372

H

halftone= command

for PaintJet printers, 233

for PostScript printers, 232-233

Halley fractal type, 323-324

hardware requirements, 3
haze factor, 208

HC.C, 414

HCMPLX.C, 419

help system, Fractint’s, 59,
146- 147

HEIY*.SRC, 414

HEU’.C, 414

HELPCOM.H, 414

HEIYDEFS.H, 414

helpformula IFSSI, 423

helptext EFSSI, 423

Henon fractal type, 342
Henon, Michel, 342

hertz= command, 236

HGCFRA.ASM, 416

Hi Earthling!
illustration, Plate 12

recipe, 121

Hopalong fractal type, 343-344

Homer, Jon, 275, 276, 282, 318

hot-link, 146

Hypercomplex fractal type,
3 14-3 15

hypercomplex numbers, 43-45,
457-459

Hypercomplexj fractal type,
316-317

i, 27, 452-453

Icons fractal type, 344-345

lcons3d fractal type, 332-333

IFS. See iterated Function Systems
ifs= command, 235

ifs fractal, specifying default
name, 235

ifs fractals, specifying default file
name for, 235

ifsfile= command, 235
IIM. See Inverse Iteration

Method

image compression, 23-24

image-cropping, left-right/red-
blue, 189-190

image-flipping, 182

image inversion, 180-181

image nonperspective X/Y

adjusts, 205
indirect files, 150

Info About image command, 152
initorbit= command, 234

inside options, 84-87

inside points, 84
installation of software, 3-5

integer math vs. floating point

options, 85-87

Integer/Floating-Point Toggle,
167-168

interocular distance, adjusting,
189

1NTRO.C, 414

Inverse Iteration Method (IIM),
345-346

Invert Image function, 180-181

isinteger IFSSI, 424

Iterated Function Systems (IFS)
2-D, 380-381

3-D, 381

basics of, 50-53, 387-388

creating, 400

drawing algorithm, 383
iFS files

accessing, 380

entry structure, 382
mathematical basis of, 380

type description, 384
iterations

default, 71

for zooming deeper, 71

observing effect of limit on,
169

setting maximum, 168-169

J

JB.C, 419

JiIM.C, 419

Julfn+exp fractal type, 284-285

Julfn+zsqrd fractal type, 286-287

Julia fractal type, 259-260
Julia, Gaston, 40

juli&.inverse algorithm, 163

Juliajnverse fractal type,
345-346

Julia-Mandelbrot toggle, 77,

163- 165

Julia set fractals

4-D, 45

basics of, 39-41

coloring, finite attractor option Isystem fractals

for, 175-176

Mandelbrot set and, 39-41

Mandelbrot/Julia pairs

summary (table), 78

most interesting, 165

Julia4 fractal type, 261-262

Julia(fnIIfn) fractal type, 289-290

Julia’s Jewels, Plate 4

julibrot fractal types, 326-331

JuLzpower fractal type, 263-264

JuLzzpwr fractal type, 266

Just-draw-the-points option, 199

K

Kamtorus fractal type, 35 1-352

Kamtorus3d fractal type, 339-340

key name abbreviations, 63

keystroke record/playback,

223-226

L

Iambda fractal type, 268

Iambdafn fractal type, 282-283

Iambda(fnIIfn) fractal type,
292-293

latitude start/stop, 209-210
Lewen, Ronald C., 304

Ifile. command, 235

light file name, specifying, 208

Ught source before/after

transformation options,
200-202

light source smoothing factor,
207-208

light vector settings, 206-207
UNE3D.C, 415

linefeed. command, 231

Iname. command, 235

WADFDOS.C, 417

1OADFIIE.C, 417

loading Images from a File,
193-194

LOADMAP.C, 416

Loewer, Wesley, 324

longitude start/stop, 209-210

Look for Finite Attractor option,
175-176

Lorenz attractor orbit, 49-50

Lorenz, Edward, 49

Loren.z fractal in 3-D, 185-188

1_oren.z fractal type, 347
Lorenz Three lobe, Plate 57

Lorenz Two lobe, Plate 58

Loren.z3d fractal type, 334-335

Loren.z3dl fractal type, 335-336

Loren.z3d3 fractal type, 336-337

loren.z3d4 fractal type, 337-338

low Iteration Unity, Plate 43

Isystem files

accessing, 375-376

drawing commands (table), 377

entry structure of, 376-378

definitions for, 378

described, 375-377

specifying default file name
for, 235

specifying default name for, 235

type description, 379



Lyapunov fractal type, 361-362

Lyapunov One, Plate 44
LYAPUNOV.ASM, 419

IXSA.ASM, 419

IXSYS.C, 419

M

macros, keyboard. See autokey

Magnetlj fractal type, 270

Magnetlm fractal type, 269

Magnet2j fractal type, 272

Magnet2m fractal type, 271

Magnetic Hole
illustration, Plate 24

recipe, 137-138

magnifying image portions,
68-72, 102

Make a surface grid option, 199
Make Starfield command,

222-223

makedoc= command, 237

makemig= command, 235
MAKEMIG.BAT files, 213, 235

Mandel fractal type, 258-259

Mandel4 fractal type, 260-261
Mandelbrot, Benoit, 13, 106, 258

Mandeibrot (default) recipe,
106- 107

Mandelbrot-Julia pairs

relationship of, 247

toggling between, 77,
163-165, 247-248

type descriptions, 249-279
Mandeibrot set

3-D, plotting, 87-92

baby, finding, 69

default image of, 105

escape-time coloring of, 36-37

exploring, approaches to, 105
formula for, 31, 35, 69-70

fractal dimension of, 17

generalized, 80-83
illustrations

3-D, 90

babies, zoomed in on, 70,
Plate 6

cliffs in perspective, 90

decomposition, 174
default, 65, 106, color Plate 1

escape-time coloring

process, 37

greatest size renderable with
Fractint, 39

in stepped iterations, 71
monochrome, 35

Pickover biomorph, 173

potential, Plate 2, 107
variations in color, Plates 2-6

with Julia family, 41
with Julia window, 77, 164

with parts labeled, 38

zoomed in steps, 42
Julia sets and, 39-41

Julia/Mandeibrot pairs

summary (table), 78

lake color, setting, 169-170
mathematical basis of, 27-39

outside color, setting, 170-171

recipes for, 106-114

speed of plotting default, 168

Zexpe vs., 82

zooming in on, 38-39

Mandelbrot/julia fractals

generalized
described, 279-281

type descriptions, 281-300

Mandelcioud fractal type,
352-353

Mandelfn fractal type, 281-282

Mandel)fnllfn) fractal type,
288-289

Mandellambda fractal type, 267

Mandphoenix fractal type,
273-274

Manfn+exp fractal type, 283-284

Manfn+zsqrd fractal type,
285-286

Manlam(fnllfn) fractal type,
290-291

Manowar fractal type, 275-276

Manowarj fractal type, 276-277

Manzpower fractals, 80-82,
262-263

Manzzpwr fractal type, 265

Map Compass

illustration, Plate 25

recipe, 138-139

Marksjulia fractal type, 278-279

Marksmandel fractal type,

277-278

Marksmandelpwr fractal type,
307

Martin, Barry, 343, 348

Martin fractal type, 348

math education, fractals in, 22

Maxcolor, 178

McGinnis, Jason, 314

Meditating Hermit

illustration, Plate 7

recipe, 114-115

menu, main

colors section, 216

expanded, 75
illustrated, 60, 76

means of returning to, 144
overviews, 62, 151

Meta Cold

illustration, Plate 23

recipe, 136-137
Milnor, John, 177, 180

Mirror, Mirror!, Plate 45

MISCFRAC.C, 420

M1SCOVL.C, 417

MISCRES.C, 417

Mixed Up Smiling Face, Plate 9
modes of Fractint, 61

Moire pattern fractals, 366-367
Moreland, Peter, credited, 121,

122, 123, 135, 136, 137,

249, 257, 263, 265, 269,

277, 291, 294, 299, 301,

315, 316, 320, 325, 353
mountain fractals

generating, 94-96
stereo 3-D, 95-96

mouse, notes on use of, 144

Move Zoom Box command, 155

MPMATH_A.ASM, 420

MPMATH_C.C, 420

MPMATH.H, 420

N

name (FSSI, 422

nature, changing our view of,
25-26

Nelson, Doug, 388

New Image main menu section,

62

Newtbasin fractal type, 319-320

Newton fractal type, 182 (illus.),
3 18-3 19

Newton’s method, 46

Newtons method fractal, 47-48

Norton, Alan, 43

Not Your Usual Fractal 13,

Plate 46

number systems, four-

dimensional, 43

0

OCTOPUSB, Plate 33

one, complex cube roots of,
46-47

Options main menu section, 62

orbit_bailout EFSSI, 425-426

Orbit Delay option, 175

orbit sequence, 34
orbitcalc() [FSS], 428

orbitdisplay= command, 237
orbits

classical, 48-49

defined, 30

escaping, 31-32

initializing Mandelbrot-type,
234

Lorenz attractor, 49-50

non-escaping, 32-34

orbits window, 66-67, 157-160

ORBITS.RAW file, 237

Osuch, Jonathan, 289, 290-291,

365

outside options, 84-87

outside points, 84

overlaying 3-D images on
current, 210-211

overwriting files, allowing’

preventing, 171-172

P

PaintJet printers, setting RGB

gamma adjustments, 233

palettes. See under color
PAR files

comments in, notation for, 104

converting old GIF files to, 104

creating, modes of, 150

entries, components of,
2 12-2 14

reading, 104

saving entries to, 79, 103,
211-214

selecting, 190-191

typical entries, 103-104,

149- 150

Par of the Day 34, Plate 47

paramE4l IFSSI, 422

parameters

3-D transform, editing, 184-188

accessing current fractal’s,
182- 183

entering, 82

fractal, defined, 242

paramvalueE4l [FSS], 422
Park, Caren, credited, 125, 126,

127, 128, 131, 132, 133,

138, 256, 267, 268, 270,

271, 296, 322

parser, user-defined formula,
367-373

PARSERA.ASM, 419

PARSERC, 419

path, modifying for Fractint, 5

per_imageO [FSS], 426

per....pi.xel() EFSSI, 427

perimeters, approximations of,
13-17

periodicity= command, 233-234

perspective distance setting, 204
Peterson, Mark, credited, 256,

277, 278, 420

Phoenix fractal type, 274-275

Pickover biomorph (illus.), 173
Pickover, Clifford A., 173, 266,

293, 349, 350, 354

Pickover fractal type, 349

pixels, giving specific color to

during calculation,
234-235

planet fractal, generating, 96

plasma type fractals, 93-96,
363-364

PLOT3D.C, 415

plotstyle= command, 233

plotters, setting style of HP-GLcompatible,

233

Popcorn fractal type, 354

Popcornjul fractal type, 293-294
PORT.H, 413

PostScript printers. See under

printers

POT files, outputing to, 363



Potential Mandelbrot recipe,
107- 108

Potter, Bill, 308

POVray file format, 197
Power, Dan, 265

Preview Factor setting, 197

preview mode (3-D transforms),
195

Print Image command, 214

printer= command, 230
PRINTERA.ASM, 415

PRINTER.C, 415

printers

PaintJet, setting RGB gamma

adjustments, 233

PostScript

defining halftone screen for,
232-233

enabling Color extensions
in, 231

printing negative images on,
232

run-length-encoding files
for, 231

resolutions per supported, 230

specifying type, resolution,

and port, 230, 231

supported by Fractint, 214, 231

printfile= command, 230

printing
end-of-line control

characters, specifying, 231
file destination for,

specifying, 230

good generating mode for
laser, 177

titles on printouts, toggling,
231

to PostScript files, 232
PROMPTS1.C, 414

PROMPTS2.C, 414

PROTOTYP.H, 412-413

Purple Kaleido Ring, Plate 48

a

Quat fractal type, 311-312
Quaternion Julia One, Plate 49

quaternions, 43, 455-457

Quatjul fractal type, 312-313

R

radius scaling factor, 210

random fractal types, 362-364

randomness for images,

determining, 234

ranges= command, 236

Raw output option, 198

ray tracing files, 197-198
REAIDOS.C, 417

Really?, Plate 50

recipe format, 104-105

red/blue glasses, adjustments for, Set Passes Options command,
189-190

Return To Image command, 76

Return To Prior Image

command, 76, 165

Richardson, Lewis Fry, 17

rleps= command, 231

Rossler3d fractal type, 338-339
Rotate Zoom Box command, 156

ROTATE.C, 415

rseed= command, 234

S

Sand Dollar 3D II, Plate 60

savetime= command, 236

saving

automatic, specifying interval
for, 236

default fractal name, 192

Fractint settings to PAR files,
79, 103

images to disk, 75, 191-192

parameter file entries, 79, 103,
211-2 14

partial images, 192

to old G1F87a format, 192, 236

saving progress indicator, 192

Science of Fractal Images, 177
Seashell, Plate 51

Select 3-D Fill Type, 198-202

Select 3-D Overlay Parameters,
2 10-2 11

Select a 3-D Mode, 195-198

Select a Parameter File Entry,
190- 191

Select Fractal Type command,
162- 163

Select Planar 3-D Parameters,

202-206

Select Spherical 3-D Parameters,

208-2 10

Select Video Mode commands,

160- 162

self-similarity, 18, 20, 50

serial printer port initialization,
231

set, 27

Set Color-Cycling Umits, 181-182
Set Continuous Potential

Parameters, 178-180

Set Default Saving File Name
command, 171

Set File Overwrite Flag
command, 171-172

Set Ught Source Parameters,
206-208

Set Maximum Iteration

command, 168-169

Set Maximum Iteration (inside)

Color command, 169-170

Set Outside Color command,

170- 17 1

166-167

Set Sound Effects command, 172

Set Sound Effects, 172

Set Type-Specific Parameters,
182- 183

Set View Window, 183-184

Shell to DOS command, 214-
215

Sherry, Richard H., credited,
107, 109, 111, 112, 113,

114, 116, 118, 119, 123,

259, 260, 265, 266, 273,

284, 286, 295, 309, 354

Shishikura, 17

show box option (3-D
transforms), 195-196

showdot= command, 234-235

Sierpinski fractal type, 50-52,
294-295, 403

Silky Mandeibrot recipe, 112
SIMPLGIF, 213, 214

Sine Waves, Plate 52

single-mode, 166
Skinner, Lee, 82, 306, 307, 321,

325, 366

SLIDESHW.C, 414

Slope, 178

Smiling Face
illustration, Plate 8

recipe, 116-117
Smokie Watches You

illustration, Plate 14

recipe, 123-124
Snail Shell

illustration, Plate 11

recipe, 119-120
Snowflake, Plate 53

Snyder, Michael, 346

Solid fill option, 200

solid guessing mode, 166-167
sound

Fractint’s support for, 172

setting frequency of, 236

toggling on/off, 172
source code

3-D plotting routines, 415

85 14A-handling routines, 416
bifurcationO, 420

boundary..traceO, 418

Bresenham line-drawing

algorithm, 415
calcfracinitO, 418

calcfractQ, 418

cellularO, 420

color-cycling logic, 415

compiling

using Borland C++ and
Turbo C, 411

using Microsoft C, 410-411
CPU detectors, 415

credits-screen routines, 414

demo mode routines, 414

diffusionO, 420

Disk/RAM video routines, 416

DOS-specific functions
routines, 417

escape-time fractal-specific
code, 419

extended/expanded memory
access routines, 415

files from CD-ROM,

extracting, 410

floating-point routines using

integer math, 420

floating-point routines for

coprocessors, 420
FPU detectors, 415

fractal engine routines, 418

fractal-generating code,
417-443

fractal-specific routines, 419

fractalspecific structure

adding entries to, 429-430,
435-436

bitmasked flag defines, 423
code definition, 421

described, 420

elements accessed by user
interface, 422-424

elements used by fractal-

generating routines,
424-428

Mandelbrot/julia example
entries, 421-422

symmetry flag defines, 425

frothybasin routines, 420

general service routines, 419

GIF file handling routines, 417

help engine routines, 414

help file builder routines, 414

Hercules cards handling
routines, 416

image-flipping logic, 412

keyboard routines, 415

IongbailoutO, 419
mainO, 412

Mandeibrot/Julia assembly
routines, 419

mouse routines, 415

multiply/divide routines,
32-bit scaled, 415

palette-editing logic, 415

plasmaO, 420

popcornO, 420

portability equates, 413

printer routines, 415

prompting logic, full-screen,
414

solidguessO, 418
sound routines, 415

StandardFractalQ, 418

startup fractal code service
routines, 418-419



source code, continued

startup parameter handling,
413

stopmsgO, 417

Targa file handling routines,
417

Targa video routines, 416

tesseralO, 418

user interface code, 412-417

video access routines, low-

level, 415-416

video adapter detection code,
416

video support, user-added,

routines for, 416

zoom box routines, 416

spherical projection option (3-D

transforms), 196

Spider fractal type, 296-297

Sqr(1/fn) fractal type, 308-309

Sqr(fn) fractal type, 309-310

SSTOOLS.1NI file, 148-149

Star Trek: The Wrath of Khan, 24

starfields, making, 222-223

startup of Fractint, quick, 5-8

stereo options (3-D transforms),
196

Stone Soup fable, 463-464

Stone Soup Group, 463, 464-465

superimposed orbit fractal type

descnptions, 350-354

Surface fill color interpolation

options, 199-200

surface roughness scaling factor

non-spheres, 203

spheres, 210

symmetry= command, 234

symmetry [FSS], 424-425

system requirements, 3

T

T16097, Plate 32

T16142, Plate 54

T17064, Plate 55

Targa file definition example,
205-206

TARG&LC.H, 416

TARGA.C, 416

TARGA.H, 416

Tentacles

illustration, Plate 13

recipe, 122-123

tesseral algorithm, 167

Test fractal type, 297-298

TESTPT.C, 419

Tetrate fractal type, 298-299

text screen colors, setting all,
228-230

textcolors= command, 228-230

textsafe= command, 227-228

TGAVIEW.C, 417

timed saves, command for, 236

Tim’s...error fractal type, 299-300

title= command, 231

titles on printouts, 231

tofloat [FSS1, 424

Toggle To/From Julia command,

77, 163-165

tojulia EFSSI, 423-424

tomandel [FSSI, 423-424

TP3D.C, 416

TPLUS..A.ASM, 416

TPLUS.C, 416

TPLUS.DAT, 416

transcendental functions,

454-455, 458-459

translate= command, 232

tree fractal, 401-402

.TRN file extension, 391

troubleshooting

blank-screen-on-startup

problem, 228

garbled graphics problem,

228, 446-447

switching-back-to-graphics-

from-text problems,

227-228, 447-448

video-mode-not-remembered

problem, 90

Tyler, Bert

bio, 461

email address, 462

type selection, fractal, 7, 80,

162, 242

U

Undo. See Return to Prior image

Unity fractal type, 325-326

Use Binary Decomposition, 174

Use Distance Estimator Method,

176- 178

Use Log Map command, 172-173 Windows, background fractal

V

vesadetect= command, 227

video adapter detection

limitations, 445-446

video modes

8514/A, using HD1IOAD

interface to access, 228

blank-screen-on-startup

problem, 228

exit mode, specifying nonstandard,
228

garbled graphics problem,

228, 446-447

Is video mode OK?’ prompt,

eliminating, 228

preferred VGA, 162
selection of

changing keystrokes for, 160

from menus, 5-6, 62-64,

160- 162

non-automatic, 227

switching-back-to-graphics-

from-text problems,

227-228, 447-448

VESA detection suppression,
227

video-mode-not-remembered

problem, 90

video monitor limitations, 446

view window

advantages of, 183

aspect ratio setting, 184

auto size reduction factor, 184

crop starting coordinates

option, 184

preview display option, 183

size specification by pixels, 184

w

water level option, 204

Wegner, Tim

bio, 460-461

credits, 272, 314, 331, 366

email address, 462

Who Pulled the Plug

illustration, Plate 22

recipe, 135-136

generation under, 161

Wire frame option, 199

x

xmax (FSS1, 423

xmin EFSSI, 423

X/Y axis scaling factor, 203

X/Y shifts with perspective, 205

X/Y/Z axis rotation in degrees

options, 203

X/Y/Z light vector settings,
206-207

V

ymax EFSSI, 423

ymin EFSSI, 423

YOURVID.C, 416

z

Zexpe fractal vs. Mandelbrot, 82

Zmag option, 85
zoom box

aspect ratio modified (illus.),
157

aspect ratio of, changing, 156

color of, changing, 157

commands related to, 152-157

redraw area within on full

screen, 155

rotating, 68, 156

skewed (illus.), 157

skewing, 156-157

speeding up motion of, 68
Zoom Out and Redraw

command, 156

Zoom Out command, 155

ZOOM.C, 416

zooming in

as fractal exploration

technique, 102

command for, 154

fractal types not supported for,
153

on the Mandelbrot, 68-72
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Books have a substantial influence on the destruction of the forests of

the Earth. For example, it takes 17 trees to produce one ton of paper.

A first printing of 30,000 copies of a typical 480-page book consumes

108,000 pounds of paper, which will require 918 trees!

Waite Group Press’ is against the clear-cutting of forests and

supports reforestation of the Pacific Northwest of the United States

and Canada, where most of this paper comes from. As a publisher with

several hundred thousand books sold each year, we feel an obligation

to give back to the planet. We will, therefore, support and contribute

a percentage of our proceeds to organizations which seek to preserve

the forests of planet Earth.



MAKING MOVIES ON YOUR PC
David Mason and Alexander Enzmann

Flex your imagination and direct animated movies! You’ll get everything you need in this book/disk

package to create fantastic rotating television logos. MTV-style action-clips, eye-boggling flybys and

walkthroughs, or just about any movie effect you can dream up. The disks include the POLYRAY ray

tracer for creating photorealistic images, and DTA, Dave’s Targa Animator, the standard for

converting ray-traced images to FLI movies. You’ll also get ready-to-run example movies and

explanations. No need to draw precise locations of objects and shadows—the included programs make

realistic animation a snap; programming skills aren’t required.

ISBN 1-878739-41-7, 200 pp.’ 2-5.25 disks, $34.95 US/$48.95 Ca.., Availabl, now

VIRTUAL REALITY PLAYHOUSE

by Nick Lavroff

Jack-in to the world of Virtual Reality with this playful new book and disk package. Virtual Reality is a

new interactive technology which creates the convincing illusion that you are completely immersed in

worlds existing only inside your computer. Virtual Reality Playhouse lets you enter those worlds and

even create your own personal digital dimension. Expand the parameters of your mind as you move

rapidly from an introduction of Virtual Reality’s basic concepts to visual explorations illustrating real-

life applications. Demo programs include a 3-D simulation that puts you inside a robot which travels

through a computer-generated city. Or, you can play a game in a 3-D room that can be tilted, spun, and

twisted in nearly impossible ways. Put on the enclosed 3-D glasses and jump right into any one of 8

startling VR simulations. There are even plans for building your own LCD-shuttenng VR glasses and

power glove to manipulate objects in a VR world. For MS/PC DOS machines.

ISBN 1-878739-19 -0, 146 pp., 1 3•5W disk, 3-D glasses, $22.95 US/$29.95 Can., Available now

RAY TRACING CREATIONS

Create 3-D Photorealistic Images on the PC

by Drew Wells

With the Ray Tracing Creations book/disk combination, you can immediately begin rendering

perfect graphic objects like the ones in computer movies. Using the bundled powerful shareware

P0 V-Ray program, you’ll learn to control the location, shape, light, shading, and surface texture of all

kinds of 3-D objects. P0 V-Ray’s C-like language is used to describe simple objects, planes, spheres,

and more complex polygons. Over 100 incredible pre-built scenes are included that can be generated,

studied, and modified any way you choose. This book provides a complete course in the fundamentals

of ray tracing that will challenge and entice you. Contains 386 and 286 versions of P0 V-Ray; VGA

display required. For MS/PC DOS machines.

ISBN 1-878739-27-1, 400 pp., 1 HD 3•5W disk, 3-D glasses, $39.95 US/$49.95 Can., Available now

Send for our unique catalog to get more information about these books, as well

as our outstanding and award-winning programming titles, such as:

Master C: Let the PC Teach You C and Master C++: Let the PC

Teach You Object-Oriented Programming. Both are book/disk software

packages that turn your computer into an infinitely patient C and C++

professor.

Workout C. Hundreds of C projects and exercises and a full-featured

C compiler make this an unbeatable training program and value.

C++ Primer Plus. Written by Stephen Prata in the same style as his

C Primer Plus, which won the Computer Press Association’s coveted

“Best How-To Computer Book” award and sold over 400,000 copies.

Object Oriented Programming in Turbo C++ and Object

Oriented Programming in Microsoft C++. Robert Lafore, master

teacher of the programming art, takes the prospective C++

programmer from the basics to the most complex concepts, and provides

anyone with C++ programming experience a comprehensive reference.

Windows API Bible. The only comprehensive guide to the 800

instructions and messages in the Windows Application Programming
Interface.

Visual Basic How-To and Visual Basic Super Bible. Both books cover

the unique Microsoft language that makes Windows programming much

more accessible. How-To provides solutions to VB programming

questions. Super Bible is the ultimate compendium of reference

information on VB.

Turbo Pascal How-To. Everything you need to know to begin writing

professional Turbo Pascal programs.



IMAGE LAB

Explore, Manipulate, and Create Images on Your PC
by Tim Wegner

Image Lab is a complete IBM PC-based “digital darkroom” in a unique book/disk package that covers

virtually all areas of graphic processing and manipulation, and comes with the finest graphics

shareware available today: PJCLAB, CSHOW, JMPROCES, image Alchemy, and others. The

software included in Image Lab lets you convert from one graphics file format to another, size images,

remove colors, adjust palettes, combine, crop, transform, ray trace, and render your images. Graphics

expert Tim Wegner shows you how to make 3-D fractals and combine them to make photorealistic

scenes. The powerful POV-Ray program and clever examples are worth the price of the book alone.

Full color stereo glasses are available along with detailed directions for making your own stereoscopic

full-color images. Best on MS/PC DOS 386 machines with a VGA video board.

ISBN 1-878739-11-5,350 pp, 1 HD 3.5 disk, color poster, $39.95 US/$49.95 Ca., Available now

MULTIMEDIA CREATIONS

Hands On Workshop for Exploring Animation
by Philip Shaddock

Contemplating the jump into multimedia? Do it with Multimedia Creations and its powerful bundled

GRASP program. Whether novice or programmer, you can create your own animated interactive

audio-visual programs: from concept through post production, renderings to video tape. After a brief

primer on PC video systems and animation fundamentals, you can start working with GRASP, creating

everything from educational programs to your own multimedia cartoons. Work through the entire book/disk

package to learn tricks like windowing, color cycling, sprite animation, delta compression techniques, and

classical flipbook-style animation. And there are advanced chapters with in-depth coverage and reference

sources for power users. Accompanying shareware programs provide you with the basic tools for creating

complete multimedia presentations on the PC. For MS/PC DOS machines.

ISBN 1-878739-26-3, 450 pp, 2 5.25 disks, $44.95 US/$56.95 Ca.., Available now

TO ORDER TOLL-FREE CALL 1-800-368-9369

TELEPHONE 415-924-2575 • FAX 415-924-2576

SEND ORDER FORM BELOW TO: WAITE GROUP PRESS, 200 TAMAL PLAZA, CORTE MADERA, CA 94925

Oty Book US/Can Price Total SiJp to
C++ Primer Plus $26.95/34.95

Fractals For Windows $34.95/44.95

Image Lab $3995149.95
Company

Master C 3.5” 5.25” disks $4495156.95

Master C++ 3.5” 5.25” disks $3995149.95 Address _________________________________________________

Multimedia Creations $4495162.95

OOP in Turbo C++ $2995132.95 City, State, Zip

Ray Tracing Creations
Ph ___________________________________________________

Turbo Pascal How-To $2495132.95
one __________________________________________________

Virtual Reality Playhouse $2295129.95

Visual Basic How-To $3495144.95
Payment Method

Visual Basic Super Bible $3995149.95

Windows API Bible $3995149.95
0 Check Enclosed 0 VISA 0 MasterCard

Workout C $3995149.95
Card# _____________________________ Exp. Date _________

Calif. residents add 7.25% Sales Tax
_________

Signature
Shipping

UPS ($5 first book/$1 each additional) SATISFACTION GUARANTEED

UPS Two Day ($lO/$2) OR YOUR MONEY BACK,
Canada($1O/$4) NO QUESTIONS ASKED.

TOTAL



This is a legal agreement between you, the end user and purchaser, and The Waite Group®, Inc., and

the authors of the programs contained in the disk. By opening the sealed disk package, you are

agreeing to be bound by the terms of this Agreement. If you do not agree with the terms of this

Agreement, promptly return the unopened disk package and the accompanying items (including the

related book and other written material) to the place you obtained them for a refund.

SOFTWARE LICENSE

1. The Waite Group, Inc. grants you the right to use one copy of the enclosed software programs

(the programs) on a single computer system (whether a single CPU, part of a licensed network,

or a terminal connected to a single CPU). Each concurrent user of the programs must have

exclusive use of the related Waite Group, Inc. written materials.

2. The programs, including the copyright in the programs, is owned by the respective author and

the copyright in the entire work is owned by The Waite Group, Inc. and they are, therefore,

protected under the copyright laws of the United States and other nations, under international

treaties. You may make only one copy of the disk containing the programs exclusively for

backup or archival purposes, or you may transfer the programs to one hard disk drive, using

the original for backup or archival purposes. You may make no other copies of the programs,

and you may make no copies of all or any part of the related Waite Group, Inc. written
materials.

3. You may not rent or lease the programs, but you may transfer ownership of the programs and

related written materials (including any and all updates and earlier versions) if you keep no

copies of either, and if you make sure the transferee agrees to the terms of this license.

4. You may not decompile, reverse engineer, disassemble, copy, create a derivative work, or

otherwise use the programs except as stated in this Agreement.

GOVERNING LAW

This Agreement is governed by the laws of the State of California.



LIMITED WARRANTY

The following warranties shall be effective for 90 days from the date of purchase: (i) The Waite
Group, Inc. warrants the enclosed disk to be free of defects in materials and workmanship under
normal use; and (ii) The Waite Group, Inc. warrants that the programs, unless modified by the
purchaser, will substantially perform the functions described in the documentation provided by The
Waite Group, Inc. when operated on the designated hardware and operating system. The Waite
Group, Inc. does not warrant that the programs will meet purchaser’s requirements or that operation
of the programs will be uninterrupted or error-free. The programs warranty does not cover any
programs that has been altered or changed in any way by anyone other than The Waite Group, Inc.
The Waite Group, Inc. is not responsible for problems caused by changes in the operating
characteristics of computer hardware or computer operating systems that are made after the release
of the programs, nor for problems in the interaction of the programs with each other or other
software.

THESE WARRANTIES ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR OF ANY

OTHER WARRANTY, WHETHER EXPRESS OR IMPLIED.

EXCLUSIVE REMEDY

The Waite Group, Inc. will replace any defective disk without charge if the defective disk is returned
to The Waite Group, Inc. within 90 days from date of purchase.

This is Purchaser’s sole and exclusive remedy for any breach of warranty or claim for contract,
tort, or damages.

LIMITATION OF LIABILITY

THE WAITE GROUP, INC. AND THE AUTHORS OF THE PROGRAM SHALL NOT IN

ANY CASE BE LIABLE FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
OR OTHER SIMILAR DAMAGES ARISING FROM ANY BREACH OF THESE WARRANTIES

EVEN IF THE WAITE GROUP, INC. OR ITS AGENT HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THE LIABILITY FOR DAMAGES OF THE WAITE GROUP, INC. AND THE AUTHORS

OF THE PROGRAMS UNDER THIS AGREEMENT SHALL IN NO EVENT EXCEED THE

PURCHASE PRICE PAID.

COMPLETE AGREEMENT

This Agreement constitutes the complete agreement between The Waite Group, Inc. and the authors
of the programs, and you, the purchaser.

Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above exclusions or limitations may not apply to you.
This limited warranty gives you specific legal rights; you may have others, which vary from state
to state.



Comoanv Name:

Please describe your computer hardware:

Horddhk_____ExceIent LIVeryGood LI Good

5.25” dIsk ãives 3.5” dIsk Ewes______

Video ______Minitor_____

Pthder Per

Where did you buy this book?

LI Bookstore metier_____________________

LI Discount store nntner ___________________

LI Computer store nntner -

How do you like the Fractint program?

How do you use this book (education, diversion, relaxation...)?

How did you find the pace of this book? _________________ LI Miâig
LI Book’s fonnut

Please describe any problems you may have encountered with How many other Waite Group books do you own?__________
lastalling or using the programs:

LI Catdognntner_____________________

LI DfrectfromWGP LI Other ____________

What price did you pay for this book?____________________

What influenced your purchase of this book?

LI Reommienduilon LI Advertisement

LI Magazine review LI Store display

LI ReputatlonofTheWdteGroop LI Topic

How many computer books do you buy each year?

What Is your favorite Waite Group book?

What is your level of computer expertise?

LI New LI Dchhler LI Hodcer

LI Power User LI Pmpimimer [1 Experienced Profesdond

Is there any program or subject you would like to see The Waite

Group cover In a similar approach?

Do you have the first edition of this book? ________________

Additional continents?________________________________

LI Check here for a free Waite Group Press” catalog

Division: Mail Slop:

Last Name: First Name: Middle Initial:

Street Address:

City State: Zip:

Daytime Telephone: (

Date product was acquired: Month

I

Day Year Your Occupation:

Overall, bow would you rate Fractal Creations, Second Edition?

Fá LI BelowAvenige LI Poor

What did you like MOST about this product?

What did you like LEAST about this product?

Send to Waite Group Press”, 200 Tamal Plaza, Corte Madera, CA 94925 Fractal Creations, Second Edition



PLACE

STAMP

HERE

Waite Group Press, Inc.

Attention: Fractal Creations, Second Edition

200 Tamal Plaza, Suite 101

Corte Madera, CA 94925

- FOLDHERE -





Ii

WAITE GROUP

PRESSTM



Fractals aren’t just op art or psychedelic lava lights. You’ll
learn their history and scientific uses such as studying weather,
geographical measurement, nature simulations, and cinematic
special effects. And then there are the everyday benefits of
fractals: learning about color theory, math, and geometry.

A new view of nature might be the last thing you expect from
a PC, but that’s what you get with Fdesign. This unique
program is used for generating and modifying Iterated Fractal
Systems (IFS) fractals, which reproduce the geometry of
nature with patterns of mountains, veins, and leaves.

Fractal Creations Second Edition offers a myriad of
options for creating and transforming fractals. Use the zoom
box to see a fractal’s microscopic structure, or render your
vivid creations in 3-D. Fractal recipes show how to cook up a
sea slug, octopus, or evil frog, and then number crunch a
batch of gingerbread men. Adjust Fractint’s huge range by
tweaking corner parameters, altering color palettes, resizing,
or animating the fractal. Spice up images with 3-D stereo
vision: slip on the provided red/blue glasses and watch the
images jump off the screen.

Fractint 18 now offers more fractal types than any other
program (99, to be exact), including some unavailable
anywhere else. New features include: 25 new fractals, new
variations of original fractals, virtually unlimited graphics
resolution, and hyper-text-style on-line help. And Fractint is
still the world’s fastest fractal generator.



CR
FRACTAL CREATIONS

Second Edit;on Include,: Sec•nd
• Fractint Vi 8

• Accessible, hands-on tutorials and manual

• Red/Blue 3-D glasses
• Reference section with algorithms
• Modifiable FracIit crce code

• CD with 1,800 GIF and .PAR Fractals files

• 16 pages of color plates
• Source code for DOS, Unix

WHAT YOU NEED:

• 512K of memory, IBM compatible PC, hard disk (recommended)

Fractals are intricate patterns of color and texture

generated by deceptively simple mathematical
formulas. With Fractal Creations Second Edition

and a PC you can easily create these phenomenal

images. But this isn’t just a book—it’s a super-creative
book/disk/CD-ROM bundle: you’ll get the latest
version of the world’s most eminent fractal generator,
Fractint version 18; pIus the powerful Fdesign, a

program which draws fractals that mimic nature such as

rain, clouds or waves. The awesome storage capacity of
the CD allows us to include over 1,800 beautiful GlF

fractal images and all the Fractint source code.

ISBN 1-878739—34—4

5 3 4 9 5>

•$39. USA
• $48.95 CANADA
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