Foundations
of PyGTK
Development

GUI Creation with Python
Second Edition

W. David Ash|ey
Andrew Krause

Apress’

Foundations of PyGTK
Development

GUI Creation with Python
Second Edition

W. David Ashley
Andrew Krause

Apress’

Foundations of PyGTK Development: GUI Creation with Python

W. David Ashley Andrew Krause
AUSTIN, TX, USA Leesburg, VA, USA
ISBN-13 (pbk): 978-1-4842-4178-3 ISBN-13 (electronic): 978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0
Library of Congress Control Number: 2018966864

Copyright © 2019 by W. David Ashley and Andrew Krause

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4178-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4179-0

I dedicate this book to my wife.
Without you, all of this would not be possible.
—W. David Ashley

Table of Contents

About the AULNOF ... XV
About the Technical REVIEWETSccusseemrrmssssnnnmsssssnnsssssssnssssssssssssssssssnsssssssnsssssssnns Xvii
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns Xix
LT LT] XXi
Chapter 1: Getting Started.........ccccusmmmmsnmmmsssnnmsssnnmsssnnmssssnmssssnmsssssssssssssssssssssnsssssnnnnns 1
Differences Between GTK+ 2.X @nd 3.Xcoviiiiiinienininin s sese e s e sessesssssnens 1
INSTAIING GTKAH 3.Xueereesererereresessesesesesesesessese s e sessesesssse s ssssssessesessesesessssesssssssenssssnsssnssssnssnees 3
SUMIMANY....eiteesteee e R e b e e e R e R e e b e e e nE e R e e e e e e e nRe e e Re e nenan e nnnnn s 4
Chapter 2: The Application and ApplicationWindow ClasSescccrusssmnnnrsssssnnnnnsns 5
The GEK.APPIICALION ClASS ..vvcereerrereriererersssesesesssssssessessesessessessessssessessesssssssessesssssssessessesssssnsessens 5
Primary vS. LOCAI INSTANCE.........ccoveeeeereecerc e 7
Ve 10 3T 7
Dealing with the ComMMANM LINE......ccccvvierierierenenrereressssesese e sessessessesssssssessesssssssessessesssssssessees 8
e 11110 OSSOSO 9
The GtK.ApplicatioNWINdOW ClaSS........cucviernninrenierenissinsese s sesse s sessessesssssssessesssssssessessens 10
T 0] OSSPSR OSSPSR 10
0T 0] 3o OSSO 11
EXAMPIE .. e R e e e n e R e s 11
£ 1114 7R 16
Chapter 3: Some Simple GTK+ Applications.......c.ccuusemrrmssssnsnmnssssnsnsnsssssssssssssssssnss 17
g (o] 10T o o 17
GTK+ Widget HIBrarChyccoveeienernsessesinssessssessssessssesesss e s sessssssessssssssssssssssssssssssssessssenens 20

TABLE OF CONTENTS

Extending HEHIOWOIIA.PY ..coceeveeiirierir e ss s sa e s sn e s s 20
The GTK.LADEI WIQEL......cccevvecerrererererererresessereresessesesseseesessessesaessssessessesssssssessesaessssessesees 22
LaYOUL CONTAINEIS.....ceierrerrereriereresessersessessesessessessesessessessessesessessesaessssessessessessssessessessssensessens 23

Signals and CallDacks.........cccucvvririnirnr s 24
Connecting the Signal ... e 24
Callback MethodS/FUNCLIONScccocrueecrereereereese e 26

EVENTS ...t e 26
EVENT TYPES...e it rs e e e ne e nr s 28
Using Specific EVENt STIUCTUIESccoveevereereser e 28

Further GTK+ METhOUS........coviiiirissce s s s sas 29
GEK.Widget MEthOUScocvverierererirserere st s e s se e sae e e saesae e e e naesnens 30
GIK.WINdow MEthOUS........cccceereriierisi s 31
Process Pending EVENTSccvcerirrinienienn e se e sss e e s sss e s saessssessesaessssessessees 33

5101 0] 33

Test Your Understandingcccoveevrenenenernsesenesesse s sessesese e sesse e ssssesessssessssessesesenss 36
Exercise 1: Using Events and Propertiescouovverrenrnsesnnesesesessesess e 36

E 1] 4= RS 37

Chapter 4: CONtaiNers.....ccccuusemnrrssssnnnnmsssssnsssssssnnssessssnnssessssnssesssssnnnsesssnnnnsssssnnnnssnss 39

LI O 0] - T3 TSRS 39
Decorator CONTAINEIS.ccoveereerereere e e 40
LayOUT CONTAINETS.......cceueereeereecseeese s s se e re e e e s 40
ReSIZiNG CRIlAreN........coceecr e e e s 41
CoNtAINEr SIGNAIScoceiiiirirsire e ne 42

Horizontal and VErtical BOXESccviererierierieesenessssssessessessssssessesssssssssessessssssssssssessssssssassssnses 42

Horizontal and Vertical Panes ... sessssssas 48

g0 TSR 52
T T I 72] 3[R S SRS 54

FiXed CONTAINEISveeveeciseirce s 54

{0 T2 01T £ OSSO 57

TABLE OF CONTENTS

L0100 60
NOTEDOOK PrOPEITIES...c..eeee et s 62

L= Lo I 0] o T=T = (0 3O 63
EVENE BOXES ...coveuceeeeereecrenese e s e s s se s e se s se e e s e s e se s se s e e sas e nensesenns 64
Test Your Understandingc.ccccvveevnenmnenmnnsessessssssessssesssssssss s ssssssssssssssssessssssssssssssssessnses 69
Exercise 1: Using Multiple CONAINEIScccceevrrereiinerese s 69
Exercise 2: Even More CONtAINETScuceeererernsesrnesess s ses s s sesss s sessssssssssssanes 70

£ 11114 7R 70
Chapter 5: Basic Widgetsccusmmmsmmmssnmssanmssansssnssssssssassssssssassssassssnssssnsssansssnsssansas 71
USING PUSH BUHONS ... 71
TOQQIE BULLONS ... s r e nnenne s 74
CRECK BULLONSc.cevieeerieerisesisse s se s sr s se s sn s s sne e 76
RAdi0 BUITONScvvecccrce e 79
TEXE ENIIS .t e e 82
(o 0] 0T TS 84
Inserting Text into @ GtK.ENtry Widget........oovvririennrnine v ne s sse e ssssessesnens 85
SPIN BULLONS.....ueiiectcire e s e e e e e R s 85
AdJUSTMENTS ... e 85

A Spin Button EXAMPIE. ..o s s 86
Horizontal and VertiCal SCAlES..........coouvvrenmrenirnesssesessse s senns 89
Additional BUTIONS........coviiiiirisie s 92
0010 2 R 92
File ChOOSEr BULLONScovivieiccriririsssese s s 95
FONt BUHONS ... s 100
Test Your Understanding ... sessese s s ssssssse s ssessssssesne s 103
Exercise 1: Renaming Files........ccoouvniiininnnn s s snes 103
Exercise 2: Spin Buttons and SCAIEScccucvrerrninneninnsscns s seenes 104
£ T 104

vii

TABLE OF CONTENTS

Chapter 6: Dialogsccuueeurrrsssnnnmmssssnnnmssssssnnssssssnsnsssssnsnssssssnnsssssssnnssssssnnnssssssnnnnss 107
Creating YOUur OWN DIalOgS........coeeerrererenerenerenesese e se s ses e e s e sss e sessssenns 108
Creating a Message Dialog........cccuuvvririnninnnene s s se s s 109
Nonmodal MesSage Dialog.......c.ccoiuvrrrierinninnine s se s snes 115
Another Dialog EXAMPIEc.covcririrernsinsne e 117
BUIIE=IN DIAIOGS ...eveeeerreerieerisesesesesse e ses e se e se s ses e s s s s nsssnssa s nensssenns 121
MESSAGE DIAIOGS ...eeuvrrenerreserrnseressesesese s se s e srs e s e e e srs s ses e sss e sa e sss e nsssnnsasnnsnns 121
ADOUL DIAIOGS ..vvveeeeeeerenseserresesieesesesessese s s e sn e ss s sn e sse e e s e s e ssa e senssnsnsennns 124
GtK.FileChOOSEr Di@l0gS....c.cuveerreerrneressesessesersssesessessssasesessessssssessssessssssssssssssssessssssssssnsssanes 130
Color SElection DIalOgsS.uouuerrererrnserrsesesresesessesessese e ses e ssese s srs s snssessssesesessssssssssssanes 139
Font Selection Didl0gs........cuouerrrerrrenerrnsessnesessesessssesessesessssessssesessesessssnsssssssssessssssssssssssnnes 143
Dialogs With MUIIPIE PAQgES......ccccvierererririererieserreseseesessese s sessessessessssessessessssessessessesssssssessens 146
Creating GtK.ASSISTaNt PAQESccvcriererierriere s sere e s sae e s e s snessssessesneees 151
GEK.PrOGIESSBAL........cccerueieirere st ser et a s e b e e s ae e e e s ae s a e e e nne e 154
Page Forward Methods ...t 155
Test Your Understandingc.ccecevevverieeneriensensee s ssesseesee e sesses e sessesssessessesssessessessesssssnessesnes 156
Exercise 1: Implementing File ChOOSEr DialogS........ccvrererererrerserersssersersessssessessessessssessesaes 157

£ 11T S 157
Chapter 7: Python and GTK+.......ccucceemmmnnsssenmmmsssssnnmmsssssssmsssssssnsssssssnssssssssssssssssnnnss 159
Arguments and Keyword ArgUMENTSccccvveririnienneniensensse s sesssssee e sessssssssaessessesssesaesaesnes 159
[T o111 o OO O P S R PRS SN 162
WHen t0 USE LOGUING......ccuiiiririrsirc st se s s ss s s sae s s sns s s 162
Some Simple EXAMPIES ..o r s s s nne 163
LOGQING 10 @ FIlEecercce et e e e 164
Logging from Multiple MOAUIES.........cceerinrir e 165
Logging Variable Data............cccviininininnsinsese s 166
Changing the Format of Displayed MeSSagescccuvrierrrnieniennsnnsensese s sessessessssessessens 166

viil

TABLE OF CONTENTS

(=]] 0] SRS 167
3] [0 (=] 0110 SO SR 167

(02 o T (=T) 0 O 170
Raising and Reraising EXCEPLIONScccccveververierevnsersere e ses s ssessssessessessssessessesassssessesaes 171
Catching MUItiple EXCEPLIONSccvvvvviererrrrerrere e ses s sse s e ssessesssses e s saesessessessessssessesnees 172
Chapter 8: Text View Widget........cocccmrmnsmmmmmmssssnnnmsssssssnmssssssssssssssssssssssssssssssssnnnss 175
SCrOHEd WINAOWS......c.cereecerecsereerese e se e se s s e e nes e 175
TEXEVIBWS c.vuveree st st n s d s ae et e e r e R e p e e n R nrnne e 181
TEXE BUTFEI'S .oveereertce st nne s 182
TeXt VIEW Propertiesccucverirninie st e s sae s e s s sas s s 184
PaNGO TaAD AITAYSccceeereerrenersese s s ses s se e se s sre s sre s s sae s e s e sasssesssnnnsnnes 188
Text [terators and MarkS ... e 190
Editing the TEXE BUFFEE ...ccueviecercere v re st sse e e s s sae s se e saesae e s e saennes 191
Retrieving Text terators and Marks........cccovevverernnensensesesessessesessssessessessessssessesssssssessesses 193
Changing Text Buffer CONTENTSccccveerevnreriere e ssssessesne s 195
Cutting, Copying, and Pasting TEXL........cccvrvrrrriernnensersesessssessesesss s sse e ssssessessessssessessees 196
Searching the TEXE BUTTEEcveveverreriererirsesese s s sss s se s sse e e ssessessssessessesasssssensessens 199
SCrolling TEXE BUFFEIS.....cvecrrererrerirrere s sese st s e se s sse s e s e e s e s sasse s e saesaessssensesnens 203
TEXETAGS .ot E e R e 204
INSEIING IMAQGES ...coveerreerreerr s e nr s 209
Inserting Child WIdgetSccccvvrrrerierenenserere s sersese s e s s ssesessesse s ssssessessessesessesaesaesasssssesaens 211
GEK. SOUICEVIBWveveeeersersereesesessessessssessessessssessessesassssessessesasssssessesasssssessesaessesensessessessssensenaes 214
Test Your Understandingc.cccoveeerenernsenenesesesesessesesseses s sessesesssses e sessesessssessssssesssssssenens 215
EXErcise 1: TeXt EQILOFccoveeeererereeresese s 216

£ 11134 R 216
Chapter 9: Tree View Widgetl.......ccuccmrrmssnnmmmmssssnnnmmssssssnmssssssssssssssssssssssssssssssssnnnss 219
PartS 0f @ TrEE VIBW ... s 220
LC O T oo L T 221
Gtk.TreeViewColumn and GtK.CelIRENUEIErcccoereeeerreerere e 223

ix

TABLE OF CONTENTS

USING GEK.LISTSTONEecvecererrerieienserere s sesessessssesessessssesessessessssessesaesssssssessesasssssessessesssssnsesnens 225
Creating the TrEE VIBWivcvvrerererrereressssessesseseese s ssesae s e ssesaesaesessesaesaesasnessesnessssssnesaees 228
Renderers and COIUMNS ..o 228
Creating the GEK.LISTSIONEccccvivverrriererirsersere s sese e s e e s s se s e s snesaesessesne s 230

USING GEK.TFEESIONEveerccer e r s s 232

ReferenCing ROWSccvvcrnneninesnre s s s 236
TrEE PALNS ... e 237
Tree ROW RETEIEINCES......ccoviecerreeriresesese s s nne s 238
LT LT (0] SRS 239

Adding Rows and Handling SEIECLIONSccccvrererenrensenesesesserese s s ssessssessessesssssssessessens 240
SiNGIE SEIBCHIONS......cvcerierrereriere s e e e e e s r e s e e e e nae e 241
MURIPIE SEIECHIONSceereerteir s s s a e e nnes 242
AddiNG NEW BOWSooovrirerierreiersenese s ses e s e e sse s sseses e ssesaessssessessesaesssnessesnesssssssesnesnes 243
Handling DOUDIE-ClICKS........cccvierereririeresesss s ses e sae s sse st s e saesss e s saesaessssesaesnes 252

Editable Text RENUEIEIScocooieerccrrceree s s 253

Cell Data METNOUSccoeeerereeree e 255

Cell RENABIEIS......coviiiriuiicsi i 259
Toggle BUtton RENAEIENSccoceveeririr et n e s s 259
PixDuf RENAEBIEIS ... 261
Spin BUtton RENUEIEISc.cveveireerrierinsesesese s ss s se e s ss s e ss s ssasis 263
COMDO BOX RENUEBIEIScoviueerreerisesessenesse e ss s se s s se s s s e snsnsssnsanis 265
Progress Bar RENABIEIScvererrieneresesese e s 268
Keyboard Accelerator RENABIEIS........ccuccverererrereresessese s e s ses e snes 269

Test Your Understanding ... sesses s s s ssss s s ssesssssaessessssssssaesaesnes 273
EXErciSe 1: File BrOWSENccccovinerinmrnisisse s s s 273

£ 10T 111 T 273

Chapter 10: Menus and TOOIDAISccuuvusssnemnmmssssnnsmsssssnnsmssssssnnesssssnnnsssssnnnsesssnnnnnss 275

POP-UP MENUS.....oceiiee et a e s s e e e b s e e a e e R s e et e ae s aenanan 275
Creating @ POP-UP MENU........ccverrrerrireresssseressesseses s ssessssessessesssssssessesaesssssssessesssssssesneses 276
Pop-up Menu Callback Methods..........cucevevrrrierennrenserere s se s ssesaesessessesnes 280

TABLE OF CONTENTS

Keyboard ACCEIBIAtOrSccccvveririirre et r e s s r e a e 283
STAtUS Bar HINES ...t 287
The Status Bar Witget ...t s se s 287
Menu Iem INFOrMEaLION ..o 289
LT LTI] OSSR 293
SUDMEBNUS ...ttt e e e e e s p e e e e 294
IMAGE MENU HBMS ..o s 294
Check MenU REBMS.......ccovvceecire s nr s 295
Radio MENU HEMS.......cueoereeerinesineses s s nrs e 296
MENU BAS......coiiiiiiirr 296
00 L TSR 299
010 L Tl =T OSSPSR 303
Toggle TOOI BULLONS........cccoereeerreerenesessesesssse s e e ssssesesse s s ssssssessesessssessssesesssnsssenens 304
Radio TOOI BUHONSccciicrincresesesese s s e s se s e sss e e e s e s e ssssssesssssssssnsnss 305
MeENU TOOI BULIONSccucereecrircsereses s srs s 305
Dynamic MenU Cre@tion..........cucveeviererennenieressesessessessesessessessesessessessessssessessessessssessessesssssssesaens 307
Creating XML FileS......cuvviirrierernsirsese s e s sssse s sae s e s s sss s s e ssesassss e ssesnesssnessesaens 307
LOAAING XIVMIL FIlESevuerverieirirerissersere e e s e sss e sae s e s sas s saesae s s e ssesnesssnesnesaens 311
Test Your Understandingc.ccoceccevvrieenininiinseesessessee s sesssesaesessesssessessesssesnessessssssesnesaesnes 313
EXErCiSe 1: TOOIDAIS.......coveerereercer et 314
EXErciSe 2: MENU BArS.......c.occoiiiereerresi e 314

£ 111 T S 314
Chapter 11: Dynamic User Interfaces........ccccuusmmmmmmssssnnnmsssssssnmssssssnssssssssssssssssnnnss 317
USer INTErface DESIGN.......ccccvvireiiiriirrie e sa e e s se s n e s s e e ae e an e 318
KNOW YOUF USEIS......coiuiiricerincesse s ss s s se s s s s 318
Keep the Design SIMPIEcccvcverernirere s s sssses e ssesasssssessesnes 319
AIWAYS BE CONSISTENTcecererreiirierere s sersere s e e s se s sse e s se s sa s e s e ssesaesa s e ssesaesaenessesaesaes 320
Keep the USEr in the LOOPccucvreririeniin e niene e ss e s s e snssnesaesaens 321
We All MK MISEAKESccceerrrrrmiiiserisssssssssesesssssse e e se s ssssssssssssssesssssssssssens 322
The Glade User INterface BUIIETccovoererrercrrereree e s snenens 322

xi

TABLE OF CONTENTS

The Glade INTEITACEcccceeeerrrircrir s 323
Creating the WINAOWccvvrerenerrirereses s seeses s ssesassessessesasssssessesaessssessesaesssssssesnees 326
Adding @ TOOIDAN ..o ———————— 330
Completing the File BrOWSETcccvevierererserserersesessesessessssessessessssessessesaesssssssessesssssssessees 333
MaKING CHANGES.......ccerrerrerrerersereresesseressessssessessessssessessesasssssessessesssssssessessensssessesasssssensesses 335

L o T S 1 3O 335
(0T LT T W1 O 337
USING GEK.BUIIART ..ot 339
Loading @ USer INTErfacecccovvrcnierennsnsne s s s 342
Test Your Understandingc.occcovenerenernsesrsenmsssesssesesssessssssssnens 343
Exercise 1: Glade TeXt EQItOrcoovervrerennesmneserssesesesesssse s sesse e e e sessesessssessnses 343
Exercise 2: Glade Text Editor with MENUS..........cccrvrrnrenmniesessse s senns 343

£ 1] 34 R 344
Chapter 12: Custom Widgetsccuummrrmssnnnmmmssssnnnmssssssnsssssssssssssssssssssssssssssssssnnnnss 345
An Image/Label BULION...........cci st sr e nne s 345
Custom MeSSage DIalOgS.......curruererrnrerrnenesriserisessse e sr s s se s se s sessssenns 349
Multithreaded APPlICALIONScocvieiiiricririr e 351
The Proper Way 10 Align WIdgetsccorermrenerecrrere s e sesnenens 358
BT 111 T o SRS 361
Chapter 13: More GTK Widgets.......cccussummmssannmsssnsssssnsssssnnssssnsssssnsssssnsssssnnssssnnssssns 363
Drawing WIdQeTSc.ceviriirierie et s s s sa e s s r e s s e e a e s et a e s n e 363
A Drawing Area EXAmPIEccooereriniininncrrnen s sse s s s sae s s s 364
The Layout WIdget.......ccooeiiririn i ss e s s sne s s s 370
(021 T 0 371
PriNting SUPPOM ... 373
Print OPerations.........ccucreniininenin e st s e e 378
Beginning the Print OPeration ... sennes 382
ReNAEriNg PAGEScccveeerreerinesisese s s sr s s s sns e 383
Finalizing the Print OPeration ..o e 384

xii

TABLE OF CONTENTS

Cairo Drawing CONTEXEcvvirieriererirserrere s s e s s e s s e sae e s e sae s e e s saesae e s e naenaes 384
Drawing PathS ... e 385
RTeT 00 L= T 0] o) 0] 386

RECENT FIIES .o —————— 387
Recent ChOOSEr IMENUccvverieereererersee s ressee s e saese s e e ssesae s e e ssesaessesssessesaessesssesaesaessenns 394
Adding RECENT FlES.......ccvceiircirsire s s 395
Recent ChooSer DIialog ... s s sae s 396

Automatic COMPIETION.........cvcrere e ae s 397

Test YOUr Understandingcccveevevrnerieriessnsensessesessssessessesssssssessessesssssssessesssssssessessesssssssessees 399
Exercise 1: Creating a Full Text Editor ... 399

SUMIMANY ..ttt R e e e e R e e e e e e R e R e e e e e Re e Re e e e e e e Re R e e e e naenris 400

Chapter 14: Integrating Everythingccccccnniinsemmnnnnnnnnsssssssssmmnesssssssssssssnns 403

Filg BIOWSETcuciererisisccse st s e 403

L7 1 L 405

g0 1T 2 406

072117 0 - N 408
Markup ParsSer FUNCLIONScccoeieriirienieesesesss e e sessssssessessesssessessessssssessessessssssssaessessenns 409
Parsing the XIMIL File........ccvveerenersserssesssesssese e sssse e s s ssssessssssnssssessssesssssssssssessnns 410

FUIEr RESOUICES......ccuiiiiriiii i s 410

SUMIMANY ..ttt e s R e e e e R e b e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 411

Appendix A: GTK+ Propertiesccccccummssssssmmmmmmmmsssssssssnsssssssssssssssssssssssssssssnnnns 413
GTKA PrOPEITIES ...ucvieeereeesinsesese e se s sr e s ne e 413
Child Widget PropPeriES....ccuevererrererersssesesessssessessessessssessessesssssssessessssssssssessessssessesaesssssssessesaes 475

Appendix B: GTK+ Signalsocccummmmssnsmmsssssnssmsssssssmssnns 481
EVENES ..t ———— 482
WidQet SIgNAIScovieeereeeriie s r e r e e nnnne e 485

xiii

TABLE OF CONTENTS

Appendix C: GTK+ STYIES ...ccuvriiremnmmssssnnnmmssssssssmsssssssssssssnssssssssssnsssssssssssssssnnnsssssnns 537
Default RC File SLYIES......cc.cocrreeeeereresereeer s 537
o T OSSR 537
L= A 10) A TR 540
Appendix D: Exercises Solutions and Hintsccccinnnsmmmmnnssssnmmmsssssmmsssssssnssnns 545
Chapter 3, Exercise 1: Using Events and Propertiesc.ccvvvnvrininnsnnnnesn s sessessennns 545
Chapter 4, Exercise 1: Using Multiple CoNtainersccccvvvvnininnnnsnieness s sessenees 546
Chapter 4, Exercise 2: Even More CONTAINEIScccccvvverrvierevessensesessessssesessessssessessessssessessesses 547
Chapter 5, Exercise 1: Renaming Files.........cocuovvrininnininnn s ssssessesnes 547
Chapter 5, Exercise 2: Spin Buttons and SCales ..o sesenes 548
Chapter 6, Exercise 1: Implementing File ChooSer Dialogs........cccvvereverrerierierensensessessesessessenses 549
Chapter 8, Exercise 1: Text Edit0r........ccccucrininninin s sss s snes 549
Chapter 9, EXercise 1: File BIOWSENccccvevinnininsninsinsese s sssses e s ssssessessessssessessesaes 550
Chapter 10, EXErciSe 1: TOOIDAIScccvvvrerererrersereresesseressessssessessessessssessessessssessessessessssessesses 551
Chapter 10, Exercise 2: MEeNU Bars ..o ses s sssse s sssssssessesnes 554
Chapter 11, Exercise 1: Glade Text Editor.........cccccvvrinninininnsnsn e sessennes 556
Chapter 11, Exercise 2: Glade Text Editor With MENUSccccvvvrvriernnensenienesss s sessessenees 557
Chapter 13, Exercise 1: Full Text EItor..........ccccuvriniininininssnsene s snas 558
INA@X.eiiieriiessrmsssas s s s sn s s s 561

Xiv

About the Author

W. David Ashley is a technical writer for SkillSoft, where he
specializes in open source, particularly Linux. As a member
of the Linux Fedora documentation team, he recently led
the Libvert project documentation and wrote the Python
programs included with it. He has developed in 20 different
programming languages during his 30 years as a software
developer and IT consultant. This includes more than

18 years at IBM and 12 years with American Airlines.

About the Technical Reviewers

Jonathan Giszczak is a professional software developer with
extensive experience writing software for the military and
financial services industries, as well as the game industry.
He graduated from the University of Michigan with a degree
in computer engineering. He has been writing C, C++, and
Python applications since the 1990s, including applications
in Motif and PyGTK.

Peter Gill loves spending time with his family in
Newfoundland, Canada. He is currently a software
developer at TownSuite, where he specializes in release
deployment and leading a full stack web development
team. Peter loves learning programming language and has
used Python, Ruby, Rust, Io, Prolog, Java, C, C++, C#, VB,
JavaScript, Typescript, Bash, PowerShell and is currently
focused on C# with ASP .NET Core and Typescript. He

is a huge advocate open source software. He loves to use

Git, Jenkins, Docker, and other tools related to automated
deployments.

xvii

Acknowledgments

I would like to express my gratitude to the many people who have made this book
possible. Many thanks go to Daniel Berrange of Red Hat, whose assistance has certainly
decreased the number of errors in the book. I would also like to thank Peter Gill and
Jonathan Giszczak for their fine technical reviewing skills. You were very tough on every
paragraph I wrote and every example I coded, but this book is better today because of
the hard work you put into the project.

I would like to extend a special thanks to Andrew Krause for his encouragement and
help. Without him, this update to his original book would not have been possible.

In addition, I would like to thank the people at Apress who put so many hours of
hard work into the book. I could not imagine writing for any other publisher. It is a great
organization that makes the writing process enjoyable.

Finally, I need to acknowledge my wife, who has supported me in every step of the
process. Without you, I would not be who I am today and for that I am forever grateful.

—W. David Ashley

Xix

Introduction

One of the most important aspects of an application is the interface that is provided to
interact with the user. With the unprecedented popularity of computers in society today,
people have come to expect those user interfaces to be graphical, and the question of
which graphical toolkit to use quickly arises for any developer. For many, the cross-
platform, feature-rich GTK+ library is the obvious choice.

Learning GTK+ can be a daunting task, because many features lack documentation
and others are difficult to understand even with the API documentation. Foundations
of PyGTK Development aims to decrease the learning curve and set you on your way to
creating cross-platform graphical user interfaces for your applications.

Each chapter in this book contains multiple examples that help you further your
understanding. In addition to these examples, the final chapter of this book provides
five complete applications that incorporate topics from the previous chapters. These
applications show you how to bring together what you have learned to accomplish in
various projects.

Each chapter starts with an overview, so that you are able to skip around if you
want. Most chapters also contain exercises to test your understanding of the material. I
recommend that you complete all the exercises before continuing, because the best way
to learn GTK+ is to use it.

At the end of this book, there are multiple appendixes that serve as references for
various aspects of GTK+. These appendixes include tables listing signals, styles, and
properties for every widget in GTK+. These appendixes will remain a useful reference
after you have finished reading the book and begin creating your own applications. In
addition, Appendix D explains the solutions to all the exercises in the book.

Who Should Read This Book

Because this book begins with the basics and works up to more difficult concepts, you do
not need any previous knowledge of GTK+ development to use this book. This book does
assume that you have a decent grasp of the Python programming language. You should

xxi

INTRODUCTION

also be comfortable with running commands and terminating applications (Ctrl+C) in a
Linux terminal.

In addition to a grasp of the Python programming language, some parts of this book
may be difficult to understand without some further knowledge about programming
for Linux in general. You will get more out of this book if you already comprehend basic
object-oriented concepts. It is also helpful to know how Linux handles processes.

You can still use this book if you do not already know how to implement object
orientation or manage processes in Linux, but you may need to supplement this book
with one or more online resources. A list of helpful links and tutorials can be found
on the book’s web site, which is located at www. gtkbook . com. You can also find more
information about the book at www.apress.com.

How This Book Is Organized

Foundations of PyGTK Development is composed of 14 chapters. Each chapter gives you
a broad understanding of its topic. For example, Chapter 4 covers container widgets and
introduces many of the most important widgets derived from the Gtk.Container class.

Because of this structure, some chapters are somewhat lengthy. Do not feel as
though you have to complete a whole chapter in one sitting, because it can be difficult
to remember all the information presented. Also, because many examples span multiple
pages, consider focusing on just a few examples at a time; try to understand their syntax
and intent.

Each chapter provides important information and unique perspectives that help you
to become a proficient PyGTK developer.

Chapter 1 teaches you how to install the GTK+ libraries and their dependencies on
your Linux system. It also gives an overview of each of the GTK+ libraries, including
GObject, GDK, GdkPixbuf, Pango, and ATK.

Chapter 2 introduces the Gtk.Application and Gtk.ApplicationWindow classes.
These classes are fundamental classes that wrap the program logic and provide some
useful features for your application. While a GTK+ program can be written without
utilizing these classes, you will find the creation process much easier and more object-
oriented if you utilize these classes.

Chapter 3 steps through two Hello World applications. The first shows you the basic
essentials that are required by every GTK+ application. The second expands on the first

xxii

http://www.gtkbook.com/
http://www.apress.com/

INTRODUCTION

while also covering signals, callback functions, events, and child widgets. You then learn
about widget properties and the Gtk.Button and Gtk.Label widgets.

Chapter 4 begins by introducing the Gtk.Container class. Next, it teaches you about
horizontal and vertical boxes, grids, fixed containers, horizontal and vertical panes,
notebooks, and event boxes.

Chapter 5 covers basic widgets that provide a way for you to interact with users.
These include toggle buttons, specialized buttons, text entries, and spin buttons.

Chapter 6 introduces you to the vast array of built-in dialogs. It also teaches you how
to create your own custom dialogs.

Chapter 7 is a general overview of the most useful features of Python. It covers many
Python features that are directly useful to the GTK+ programmer but not necessarily
covered in depth in many Python introductory texts.

Chapter 8 introduces you to scrolled windows. It also gives in-depth instructions on
using the text view widget. Other topics include the clipboard and the Gtk.SourceView
library.

Chapter 9 covers two types of widgets that use the Gtk.TreeModel object. It gives an
in-depth overview of the tree view widget and shows you how to use combo boxes with
tree models or strings.

Chapter 10 provides two methods of menu creation: manual and dynamic. It covers
menus, toolbars, pop-up menus, keyboard accelerators, and the status bar widget.

Chapter 11 is a short chapter about how to design user interfaces with the Glade user
interface builder. It also shows you how to dynamically load your user interfaces using
Gtk.Builder.

Chapter 12 teaches you how to create your own custom GTK+ widgets by deriving
them from other widgets.

Chapter 13 covers many of the remaining widgets that do not quite fit into other
chapters. This includes several widgets that were introduced in GTK+ 2.10, including
recent files and tray icon support.

Chapter 14 gives you a few longer, real-world examples. They take the concepts you
have learned throughout the book and show you how they can be used together.

The appendixes act as references to widget properties, signals, styles, stock items,
and descriptions of exercise solutions.

xxiii

INTRODUCTION

Official Web Site

You can find additional resources on the book’s official web site, found at www. gtkbook. com.
This web site includes up-to-date documentation, links to useful resources, and articles
that supplement what you learn in this book. There is also find a link to the downloadable
source code for every example in this book. The Apress web site (www.apress.com,) is
another great place to find more information about this book.

When you unzip the source code from the web site, you will find a folder that
contains the examples in each chapter and an additional folder that holds exercise
solutions. You can run all the files within the current folder.

XXiv

http://www.gtkbook.com/
http://www.apress.com/

CHAPTER 1

Getting Started

Welcome to Foundations of PyGTK Development. In this book, you acquire a thorough
knowledge of the GIMP Toolkit (GTK+), which allows you to create comprehensive
graphical programs. Before continuing, you should be aware that this book is aimed at
Python programmers, so we assume that you already have a good understanding of the
Python language, and you can jump right into using GTK+. Time is not spent on bringing
you up to speed on Python.

To get the most out of this book, you should follow each chapter sequentially and
study all the examples in each chapter. Getting started with GTK+ on Linux is very easy
because most distributions are bundled with everything you need to create and run
Python/GTK+ programs. We cover Windows and macOS installation procedures later in
this chapter.

There are a few tools that should be installed to get you started without running
into trouble. First, Python 3.x should be installed. It is required to run GTK+ 3.x Python
programs. Second, the GTK+ 3.x runtime libraries should be installed. These libraries
come with many dependencies installed, including GObject, Pango, GLib, GDK,
GdkPixbuf, and ATK. Be sure to install all the dependent libraries.

You do not need to install the GNU Compiler Collection. You are not compiling any
C/C++ programs in the examples provided in this book. You only need Python 3.x and
the GTK+ 3.x runtime libraries to be installed to run the example programs.

Differences Between GTK+ 2.x and 3.x

If you are proficient in GTK+ 2.x, you may be surprised by the changes in version 3.x.
There are both small and large changes to the GTK+ API and the Python classes that
wrap those libraries. While the basics for most widgets are unchanged, there are a lot
of small “gotchas” that can cause you grief until you understand why and where the
changes have been made.

© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_1

CHAPTER 1 GETTING STARTED

The reason for most of these changes is due to a change in the GTK+ philosophy. The
GTK+ 2.x libraries were designed around consistency between all GTK+ programs, with
the use of GTK+ themes as the basis for that consistency. This philosophy completely
changed with the GTK+ libraries. While themes are still available, it is now easier to
create GTK+ programs that have their own look and feel separate from the current
GTK theme. While this gives the developer greater control, it also requires some extra
programming steps to achieve the look and feel. It also removes some APIs that make a
widget easy to create and control.

The following is a partial list of the differences between GTK+ 2.x and 3.x. Some of these
items have simple workarounds, but others require a little more work on the programmer’s
part because they are different enough to cause source code porting problems.

e Many standard stock icons have been removed, mostly the ones used
on push buttons and menu items. If you need these icons, you must

provide your own set.

e All the 2.x constants are now grouped in a 3.x Python class as
attributes. If you are porting source code, this is a major area that
needs to be addressed.

¢ Some containers have been eliminated. For instance, the Gtk.Hbox
and Gtk.Vbox widgets have been removed and you now must specify
the orientation of a Gtk.Box via a parameter when creating a new
Gtk.Box instance. Note that the Gtk.Box class is now a real class in
GTK+ 3.%, not an abstract class.

o Default packing for containers has been removed; all packing
parameters must be supplied to the API.

e Some standard dialogs have been removed. You must create your
own dialogs to replace them.

o There are two new major classes that are very useful for the overall
control of large and small applications: the Gtk.Application class
and the Gtk.ApplicationWindow class. While these classes are not
strictly needed for simple applications, you still find them useful
for even the simplest of applications. For that reason, we base all
the examples in this book on these two classes to wrap our widget

examples.

CHAPTER 1 GETTING STARTED

Creating menus is much easier using the Gtk.Application and Gtk.ApplicationWindow
classes. This required complex programming in the GTK+ 2.x environment and is reduced to
creating an XML file to represent the menu you want to create in the 3.x environment.

Installing GTK+ 3.x

Before you can create programs, you must install Python, GTK+, and all the dependent
libraries. This section covers installing GTK+ on Linux and other Unix-like operating
systems. It does not cover how to install GTK+ on macOS or Windows. You need to
research the correct way to install GTK+ and Python in those OS environments.

Most modern Linux distributions include Python and GTK+ as part of their
respective repositories. You simply need to select Python 3 (this is sometimes installed
by default) and GTK+ 3.x (use the latest version available, as shown in Figure 1-1) from
the package install program in your Linux distribution and then install those packages
along with all the dependent packages.

To test your installation, run the following command.

/ust/bin/gtk3-demo

Run Application Class - o x

Application Class Info Source menus.ui application.ui application.c

Assistant

» Benchmark

Builder Application Class

Button Boxes Demonstrates a simple application.

Change Display This example uses GtkApplication, GtkApplicationWindow, GtkBuilder as well as
Clipboard GMenu and GResource. Due to the way GtkApplication is structured, it is run as

a separate process.
Color Chooser ™ P

Combo Boxes

Cursors

Dialogs and Message Boxes
Drawing Area

| » Entry

l Expander

Flow Box

Figure 1-1. GTK+ 3 demo program

CHAPTER 1 GETTING STARTED

If the program exists and the widget documentation window appears, then the GTK+
installation was successful.

Summary

This chapter introduced GTK+ Version 3.x and Python 3 along with some installation
prerequisites. It presented some post-installation tests to ensure that GTK+ was
successfully installed. And it discussed some differences between GTK+ 2.x and 3.x.
After successfully installing GTK+ 3.x and Python 3, your environment should be
ready to build your first Python/GTK+ program.
Chapter 2 further discusses Gtk.Application and the Gtk.ApplicationWindow, the
base classes that you should use for all Python 3 GTK+ 3.x programs.

CHAPTER 2

The Application and
ApplicationWindow
Classes

A new set of classes were introduced in GTK+ 3.x: Gtk.Application and
Gtk.ApplicationWindow. These classes are designed to be the base instances for your
GUI application. They wrap the application and the main window behavior of your
application. They have many built-in features and provide containers for the functions
in your application. The Gtk.Application and Gtk.ApplicationWindow classes

are described in detail in this chapter because they are the basis for all the example
programs in this book.

The Gtk.Application Class

Gtk.Applicationis the base class of a GTK application. Its primary purpose is to separate
your program from Python __main__ function, which is a Python implementation detail.
The philosophy of Gtk.Application is that applications are interested in being told what
needs to happen and when it needs to happen in response to actions from the user. The
exact mechanism by which Python starts applications is uninteresting.

Gtk.Application exposes a set of signals (or virtual methods) that an application
should respond to.

o startup: Sets up the application when it first starts. The virtual
method name for this signal is do_startup.

¢ shutdown: Performs shutdown tasks. The virtual method name for
this signal is do_shutdown.

© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_2

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

o activate: Shows the default first window of the application (like a new
document). The virtual method name for this signal is do_activate.

o open: Opens files and shows them in a new window. This
corresponds to someone trying to open a document (or documents)
using the application from the file browser, or similar. The virtual
method name for this signal is do_open.

When your application starts, the startup signal is fired. This gives you a chance to
perform initialization tasks that are not directly related to showing a new window. After this,
depending on how the application is started, either activate or open signal is called next.

The signal name and the receiving method name should not be the same. The
receiving method name should have an on_ prefix. For instance, a signal named paste
should have a connect call that looks something like the following.

action = Gio.SimpleAction.new("paste”, None)
action.connect("activate", self.on paste)
self.add action(action)

Note that you have to specify the new signal name and the corresponding method
name. By convention in GTK+ 3.x, signals that are built into an existing class have
ado_ prefix for their corresponding method names. Callbacks should have method
names with an on_ prefix. Adding a prefix to the method name prevents inadvertently
overriding method names that are not a part of the signal mechanism.

Gtk.Application defaults to applications being single-instance. If the user attempts
to start a second instance of a single-instance application, then Gtk.Application signals
the first instance, and you receive additional activate or open signals. In this case, the
second instance exits immediately without calling startup or shutdown signals.

For this reason, you should do essentially no work at all from Python’s __main__
function. All startup initialization should be done in Gtk.Application do_startup. This
avoids wasting work in the second-instance case where the program exits immediately.

The application continues to run as long as it needs to. This is usually as long as there
are any open windows. You can also force the application to stay alive by using the hold
method.

On shutdown, you receive a shutdown signal where you can do any necessary
cleanup tasks (such as saving files to disk).

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

Gtk.Application does notimplement main__ for you; you must do so yourself.
Your main__ function should be as small as possible and do almost nothing except
create your Gtk.Application and run it. The “real work” should always be done in
response to the signals fired by Gtk.Application.

Primary vs. Local Instance

The primary instance of an application is the first instance that is run. A remote instance
is an instance that has started but is not the primary instance. The term local instance is
refers to the current process, which may or may not be the primary instance.

Gtk.Application only emits signals in the primary instance. Calls to the Gtk.
Application API can be made in primary or remote instances (and are made from the
vantage of being the local instance). When the local instance is the primary instance,
method calls on Gtk.Application result in signals being emitted locally. When the local
instance is a remote instance, method calls result in messages being sent to the primary
instance and the signals are emitted there.

For example, calling the do_activate method on the primary instance emits the
activate signal. Calling it on a remote instance results in a message being sent to the
primary instance, and it emits the activate signal.

You rarely need to know if the local instance is primary or remote. In almost all cases,
you should call the Gtk.Application method that you are interested in and have it
forwarded or handled locally, as appropriate.

Actions

An application can register a set of actions that it supports in addition to the default
activate and open actions. Actions are added to the application with the GActionMap
interface, and invoked or queried with the GActionGroup interface.

As with the activate and open signals, calling activate_action on the primary
instance activates the named action in the current process. Calling activate_action
on a remote instance sends a message to the primary instance, causing the action to be
activated there.

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

Dealing with the Command Line

Normally, Gtk.Application assumes that arguments passed on the command line are
files to be opened. If no arguments are passed, then it assumes that an application is
being launched to show its main window or an empty document. When files are given,
you receive these files (in the form of GFile) from the open signal; otherwise, you receive
an activate signal. It is recommended that new applications make use of this default
handling of command-line arguments.

If you want to deal with command-line arguments in more advanced ways, there are
several (complementary) mechanisms by which you can do this.

First, the handle-local-options signal is emitted, and the signal handler gets a
dictionary with the parsed options. To make use of this, you need to register your options
with the add_main_option_entries method. The signal handler can return a non-negative
value to end the process with this exit code, or a negative value to continue with the
regular handling of command-line options. A popular use of this signal is to implement a
--version argument that works without communicating with a remote instance.

If handle-local-options is not flexible enough for your needs, you can override the
local command_line virtual function to entirely take over the handling of command-
line arguments in the local instance. If you do so, you are responsible for registering
the application and for handling a --help argument (the default local command line
function does this for you).

Itis also possible to invoke actions from handle-1local-options or local command line
in response to command-line arguments. For example, a mail client may choose to map the
- -compose command-line argument to an invocation of its compose action. This is done by
callingactivate_action from the local command line implementation. If the command
line being processed is in the primary instance, then the compose action is invoked locally. If
itis a remote instance, the action invocation is forwarded to the primary instance.

Note in particular that it is possible to use action activations instead of activate or
open. It is perfectly reasonable that an application could start without an activate signal
ever being emitted. activate is only supposed to be the default “started with no options”
signal. Actions are meant to be used for anything else.

Some applications may wish to perform even more advanced handling of command
lines, including controlling the life cycle of the remote instance and its exit status once
it quits, as well as forwarding the entire contents of the command-line arguments, the
environment, and forwarding stdin/stdout/ stderr. This can be accomplished using
the HANDLES_COMMAND_LINE option and the command-1ine signal.

8

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

Example

Listing 2-1 provides a very simple example of an instance derived from the Gtk.Application

class.

Listing 2-1. An Example of the Gtk.Application Class

class Application(Gtk.Application):

def _init (self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",

flags=Gio.ApplicationFlags.HANDLES COMMAND LINE,
**kwargs)

self.window = None
self.add main option("test", ord("t"), GLib.OptionFlags.NONE, GLib.
OptionArg.NONE, "Command line test", None)

def

def

def

do_startup(self):

Gtk.Application.do startup(self)

action = Gio.SimpleAction.new("quit", None)
action.connect("activate", self.on_quit)
self.add action(action)

do_activate(self):
We only allow a single window and raise any existing ones
if not self.window:
Windows are associated with the application
when the last one is closed the application shuts down
self.window = AppWindow(application=self, title="Main Window")
self.window.present()

do_command line(self, command line):
options = command line.get options dict()
if options.contains("test"):
This is printed on the main instance
print("Test argument received")
self.activate()
return 0

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

This example is a very simple instance of the Gtk.Application class. This example
will be enhanced throughout this book as you gain knowledge of GTK+ 3.x.

Line 23 of the example shows how to create an instance of the Gtk.ApplicationWindow
class.

The next section outlines the Gtk.ApplicationWindow class.

The Gtk.ApplicationWindow Class

The Gtk.ApplicationWindow class is the main visible window for your application.
Under default conditions, this is the one and only main window visible to the user,
unless the application has been set to “multi-instance” (the default is “single-instance”).

Gtk.ApplicationWindow is a Gtk.Window subclass that offers extra functionality
for better integration with Gtk.Application features. Notably, it can handle both the
application menu as well as the menu bar (see Gtk.Application.set_app_menu() and
Gtk.Application.set menubar()).

When the Gtk.ApplicationWindow is used in coordination with the Gtk.
Application class, there is a close relationship between the two classes. Both classes
create new actions (signals) that may be acted upon by either class. But the Gtk.
ApplicationWindow class is responsible for the full functionality of the widgets contained
in the window. It should be noted that the Gtk.ApplicationWindow class also creates a
connection for the delete-event that activates the do_quit method of the associated
Gtk.Application class.

Actions

The Gtk.ApplicationWindow class implements the Gio.ActionGroup and Gio.
ActionMap interfaces to let you add window-specific actions exported by the associated
Gtk.Application with its application-wide actions. Window-specific actions are
prefixed with win. Prefix and application-wide actions are prefixed with the app. prefix.
Actions must be addressed with the prefixed name when referring to them from a Gio.
MenuModel.

Note that widgets placed inside the Gtk.ApplicationWindow class can also activate
these actions if they implement the Gtk.Actionable interface.

10

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

Locking

As with Gtk.Application, the GDKlock is acquired when processing actions arrive from
other processes, and should therefore be held when activating actions locally (if GDK
threads are enabled).

Example

Listing 2-2 is a very simple version of the integration between the Gtk.Application class
and the Gtk.ApplicationWindow class. This example becomes the building block for all
subsequent examples in this book.

Listing 2-2. An Example of the Gtk.Application and the Gtk.ApplicationWindow
Classes

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import GLib, Gio, Gtk

This would typically be its own
file MENU_XML="""
<?xml version="1.0" encoding="UTF-8"?> <interface>
<menu id="app-menu">
<section>
<attribute name="label" translatable="yes">Change label
</attribute> <item>
<attribute name="action">win.change label</attribute>
<attribute name="target">String 1</attribute>
<attribute name="label" translatable="yes">String 1
</attribute> </item>
<item>
<attribute name="action">win.change label</attribute>
<attribute name="target">String 2</attribute>
<attribute name="label" translatable="yes">String 2
</attribute> </item>
11

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

<item>
<attribute name="action">win.change label</attribute>
<attribute name="target">String 3</attribute>
<attribute name="label" translatable="yes">String 3
</attribute> </item>
</section>
<section>
<item>
<attribute name="action">win.maximize</attribute>
<attribute name="label" translatable="yes">Maximize
</attribute> </item>
</section>
<section>

<item>
<attribute name="action">app.about</attribute>
<attribute name="label" translatable="yes"> About</attribute>
</item>
<item>
<attribute name="action">app.quit</attribute>
<attribute name="label" translatable="yes"> Quit</attribute>
<attribute name="accel"><Primary>q</attribute>
</item>
</section>
</menu>
</interface>

class AppWindow(Gtk.ApplicationWindow):
def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)

This will be in the windows group and have the "win" prefix
max_action = Gio.SimpleAction.new stateful(“"maximize", None,
GLib.Variant.new_boolean(False))

12

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

max_action.connect("change-state", self.on_maximize toggle)
self.add action(max_action)
Keep it in sync with the actual state
self.connect("notify::is-maximized",
lambda obj, pspec: max_action.set state(
GLib.Variant.new_boolean(obj.props.is maximized)))
1bl variant = GLib.Variant.new string("String 1")
1bl action = Gio.SimpleAction.new_stateful("change label"”,
1bl variant.get type(),
1bl_variant)
1bl action.connect("change-state", self.on _change label state)
self.add action(1lbl action)
self.label = Gtk.Label(label=1bl variant.get string(),
margin=30)
self.add(self.label)
def on_change label state(self, action, value):
action.set state(value)
self.label.set text(value.get string())

def on_maximize toggle(self, action, value):
action.set state(value)
if value.get boolean():
self.maximize()
else:
self.unmaximize()

class Application(Gtk.Application):

def _ init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
flags=Gio.ApplicationFlags.HANDLES COMMAND LINE,
**kwargs)
self.window = None
self.add main option("test", ord("t"),
GLib.OptionFlags.NONE, GLib.OptionArg.NONE,
"Command line test", None)

13

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

if _name ==

14

def

def

def

def

def

app

app.

do_startup(self):

Gtk.Application.do startup(self)

action = Gio.SimpleAction.new("about", None)
action.connect("activate", self.on_about)

self.add action(action)

action = Gio.SimpleAction.new("quit", None)
action.connect("activate", self.on quit)

self.add action(action)

builder = Gtk.Builder.new from string(MENU XML, -1)
self.set_app menu(builder.get object("app-menu"))

do_activate(self):
We only allow a single window and raise any existing ones
if not self.window:
Windows are associated with the application
When the last one is closed the application shuts down
self.window = AppWindow(application=self, title="Main Window")
self.window.present()

do_command line(self, command line):
options = command line.get options dict()
if options.contains("test"):
This is printed on the main instance
print("Test argument received")
self.activate()
return 0

on_about(self, action, param):
about_dialog = Gtk.AboutDialog(transient for=self.window, modal=True)
about_dialog.present()

on_quit(self, action, param):
self.quit()

__main_ ":
= Application()
run(sys.argv)

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

This example is a full-blown program that should be run from the command
line. It modifies the command-line window and adds a menu to it for controlling the
application. Most of the menu options are non-functional examples but prove useful for
explaining how menu actions act and which class performs the actions specified by the
menu XML file.

The top three lines specify the environment for the Python program. Line 5
establishes the Python environment as version 3.x. This is required for all Python
programs running GTK 3.x. The next lines establish the Python and GTK imports. It
specifically imports the GTK 3.x import libraries. Make sure that you import the modules
using the gi interface so that you have the latest modules, because there may be more
than one set of modules installed on your system.

The next lines describe the menu XML interface. Each menu item is described
by one of three XML attributes. The first is the action attribute. It names an action
and the name prefix specifies which class receives the action signal. An app prefix
means that Gtk.Application processes the action signal. A win prefix means that Gtk.
ApplicationWindow processes the signal. The second attribute is target, which specifies
the string that displays in the menu item. The third attribute is 1abel, which specifies
whether or not the target attribute string should be translated.

Normally, this XML information is stored in its own file and read at runtime, but to
simplify the example, we have included it inline.

The next lines describe the Gtk.ApplicationWindow subclass AppWindow, which
encapsulates the main window behavior and all the main window widgets. In this
example, there are no widgets contained in the main window. It only intercepts action
signals from the menu and acts on those signals.

The main thing to note about the menu signal methods is that they have the same
name as specified in the menu XML but with an on_ prefix. The next lines turn two of the
four window actions into automatic toggles. The next lines catch the other two signals as
method calls.

The Gtk.Application subclass Application encapsulates the application behavior.
It provides the application startup and command-line processing, and processes two
menu XML signals. As with the methods processed by Gtk.ApplicationWindow, the Gtk.
Application method names have an on_ prefix.

First, the initialization for the Gtk.Application subclass calls the superclass to
initialize it and then sets up a new command-line option.

15

CHAPTER 2 THE APPLICATION AND APPLICATIONWINDOW CLASSES

The next lines perform the activation activities for the class, and create the Gtk.
ApplicationWindow subclass.

Next, two signal methods are defined in the menu XML that are destined for the Gtk.
Application subclass.

At the bottom is the actual start of the Python program. The only work that should be
done here is to create the class or subclass of Gtk.Application.

Summary

This chapter covered the Gtk.Application and the Gtk.ApplicationWindow classes
and the integration of the two classes. We covered how these classes can improve
your application and make it more object oriented. The classes can also improve the
readability and maintenance of your application.

In subsequent chapters, we cover most of the other GTK+ widgets while using
the classes covered in this chapter as the basis for integrating the widgets into sample

programs.

16

CHAPTER 3

Some Simple GTK+
Applications

This chapter introduces some simple GTK+ applications and a few GTK+ widgets. We
cover topics that are utilized in the upcoming chapters and example applications.
The following concepts are covered in this chapter.

e The basic function and method calls used by all GTK+ Python
applications

o The object-oriented nature of the GTK+ widget system

o Therole that signals, callbacks, and events play in your application
e How to alter textual styles with the Pango Text Markup Language

e Some useful functions and methods for widgets

e How to make a clickable label

e Howto get and set properties (attributes) using the widget methods

It is important that you grasp the concepts presented so that you have a proper
foundation.

Hello World

Practically every programming language book in the world starts with a Hello World
example. While this book is no different, the example it uses is more complicated than
most other language examples. This is because we base our example around the
Gtk.Application and Gtk.ApplicationWindow classes. This makes the example

© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_3

17

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

program somewhat longer, and, at first glance, overblown for such a simple GTK+
window. But it also allows good explanations for how GTK+ works and how the Python
bindings wrap the APIs into a very good object-oriented system.

Listing 3-1 is one of the simplest applications in this book, but it provides the basis
for explaining how a GTK+ application should be organized and how the GTK+ hierarchy
of widgets work. This is the basic code that every GTK+ application you create in Python
should have!

Listing 3-1. HelloWorld.py
#!/usx/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Main Window")
self.window.present()

if _name_ == " main_":
app = Application()
app.run(sys.argv)

18

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Figure 3-1 contains everything you need for a complete GTK+ 3.x Python program.

Figure 3-1. HelloWorld.py

If you have previous experience with GTK+, you may notice some GTK+ 2.x common
elements are missing. We explicitly make this a Python 3 program at line 1. This is
necessary because the GTK+ 3.x modules are only available in Python version 3.x. This
declaration allows lines 4-6 to properly establish the GTK+ 3.x environment.

Lines 8-11 support the visible GTK+ window. The only activity we need to support
for this application is calling the super class to initialize it. But there seems to be
some missing activities! All of those missing elements are either contained in the
Gtk.ApplicationWindow superclass or they are supported in the Gtk.Application class.
One of the default supporting actions connects the delete-event to a default method to
quit the application.

Lines 13-23 support the application logic. One of the four default methods for the
Gtk.Application class are defined in our subclass. The do_activate method performs
the activation activities needed.

do_activate is called when the application is activated (after startup). In this case,
two functions are needed. First, we check to see if this is the initial call to the method,
and if it is, we create the Application GTK+ window instance. Second, we activate and
show (present) the main application window.

19

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Lines 25-27 are the only Python statements needed to start our application. No other
statements are necessary, and in fact, none should be added. All the application work
should take place in the Gtk.Application class or the Gtk.ApplicationWindow class or
their subclasses. This prevents any unnecessary work taking place for a “single instance”
application that has attempted to start up another application instance.

GTK+ Widget Hierarchy

The GTK+ application programming interface is actually a C language API. However, it is
organized in such a way that an object-oriented language like Python can wrap the C API
so that the entire set of APIs are turned into a set of classes organized in a hierarchy.

The transition from GTK+ 2.x to 3.x made changes that have helped other languages
create object-oriented bindings that are easier to maintain and easier to implement.
For instance, while Python 2.x supported abstract classes, they were buried in the
collection classes and were hard to implement in your own code. Python 3.3 supplies
the collections.abc module, which makes it easy for you to subclass classes in the
module to create your own abstract classes. Also, the GTK+ 3.x API drastically reduces
the number of abstract classes. In the future, all of them will probably be eliminated.

The GTK+ 3.x object hierarchy is documented by the PyGObject API Reference
(http://lazka.github.io/ pgi-docs/#Gtk-3.0) document. This is the Python GTK+ 3.x
reference document. It covers everything you need to know about the Python object
bindings to GTK+, including the object hierarchy, supported classes, interfaces,
functions, methods, and properties. While the document is mostly comprehensive, it
lacks information concerning some new classes. We hope that this book provides that
information, as well excellent examples on how to use all the widgets and classes.

While it is important to have an understanding of the GTK+ hierarchy, it is still
possible to create good GUI applications with only a superficial understanding. But the
more you understand the hierarchy, the better control you have over your application.

Extending HelloWorld.py

Even though Listing 3-1 is a complete application, obviously it is not very useful. So let’s
add useful features and method calls to provide visible information and visual appeal to
our application (see Listing 3-2).

20

http://lazka.github.io

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS
Listing 3-2. HelloWorld with Label
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
label = Gtk.Label.new("Hello World!")
label.set selectable(True)
self.add(label)
self.set size request(200, 100)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Hello World!")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

Figure 3-2 is the result of running Listing 3-2. Note that the label is already
highlighted.

21

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

ello World!

Figure 3-2. HelloWorld with label

We now have an application that displays data, and thus is a little more useful. Let’s
take a look at the changes we made to the program to achieve this result.

Lines 12-15 are where most of the changes have been made. On line 12, we create
Gtk.Label with text “Hello World!” contained within it. On line 13, we make that text
selectable. This allows the user to select the text and copy it to the clipboard. On line 14,
we add the label to the Gtk.ApplicationWindow default container. All main windows in
GTK+ derive from Gtk.Container, so it is possible to add widgets to that container. Line
15 resizes Gtk.ApplicationWindow.

Line 27 shows all the widgets contained by Gtk.ApplicationWindow. We need this
method call because the present method does not perform that function. It only shows
the main window.

These are the only changes made to Listing 3-1. As you can see, it does not take a lot
of effort to add new functionality to a Python GTK+ application.

The GTK.Label Widget

A GTK. Label widget was created in Listing 3-2. This was accomplished with the following
invocation.

label = Gtk.Label.new("Hello World!")

This call creates a new label with the specified text included. The text may
include Python escape sequences (such as "\n"), which GTK+ uses to format your
text on the screen.

22

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

There are lots of useful methods that GTK. Label supports. The following is list of
some of the more useful ones.

o set selectable: This method turns on/off the text’s selectability.
The default is off. This is very useful for things like error messages,
where the user may wish to copy the text to the clipboard.

o set text: This method replaces the current label text with the
specified new text.

o set text with mnemonic: This method replaces the current label
text with the specified new text. The new text may or may not have a
mnemonic contained within it. If characters in the text are preceded
by an underscore, they are underlined, which indicates that they
represent a keyboard accelerator called a mnemonic. The mnemonic
key can be used to activate another widget, chosen automatically, or
explicitly using Gtk.Label.set mnemonic_widget.

o get text: This method retrieves the current label text.

Layout Containers

The Gtk.ApplicationWindow and Gtk.Window classes both indirectly derive from the
Gtk.Container widget. This means that all the methods in the Gtk.Container are
available to the derived windows.

By using the add method, widgets or other container types can be added to a main
window. That is how GTK. Label is added to the main window. It follows when you add a
widget to a container that a parent/child relationship is formed; the container becomes
the parent and the label becomes a child of the container.

The parent/child relationship between widgets is very important in GTK+ for many
reasons. For example, when a parent widget is destroyed, GTK+ recursively destroys all
the child widgets, no matter how deeply nested they are.

Containers also have a default sizing algorithm. This can be both good and bad
news. In many cases, the default sizing is just what you want; but in many cases, it is not.
You can override the default sizing by resizing the main window.

Another sizing helper for the container is the set_border width method. It allows you
to create a border around the text so that when the user shrinks the window manually, the
window has a minimum size determined by the size of text and the border width.

There is more information on containers and layouts in Chapter 4.
23

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Signals and Callbacks

GTK+ is a system that relies on signals and callback methods. A signal is a notification to your
application that the user has performed some action. You can tell GTK+ to run a method or
function when the signal is emitted. These are called callback methods/functions.

Caution GTK+ signals are not the same as POSIX signals! Signals in GTK+
are propagated by events from the X Window System. Each provides separate
methods. These two signal types should not be used interchangeably.

After you initialize your user interface, control is given to the gtk_main() function
through the Gtk.Application class instance, which sleeps until a signal is emitted. At
this point, control is passed to other methods/functions.

As the programmer, you connect signals to their methods/callback functions. The
callback method/function is called when the action has occurred and the signal is
emitted, or when you have explicitly emitted the signal. You also have the capability of
stopping signals from being emitted at all.

Note It is possible to connect signals at any point within your applications.

For example, new signals can be connected within callback methods/functions.
However, you should try to initialize mission-critical callbacks before calling gtk
main() or the present() method in the Gtk.Application instance.

There are many types of signals, and just like functions, they are inherited from parent
structures. Many signals are generic to all widgets, such as "hide" and "grab-focus" or
specific to the widget such as the Gtk.RadioButton signal "group-changed". In any case,
widgets derived from a class can use all the signals available to all of its ancestors.

Connecting the Signal

Our first example of connecting to a signal intercepts the "destroy" signal from a main
window so that we can choose how to handle that signal. One of the main reasons

for handling this signal ourselves is to perform an action prior to having the window
automatically destroyed by the GTK+ system.

widget.connect("destroy”, self.on window destroy, extra param)
24

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

GTK+ emits the "destroy" signal when widget.destroy() is called on the widget
or when False is returned from a delete_event() callback method/function. If you
reference the API documentation, you see that the destroy signal belongs to the Gtk.
Object class. This means that every class in GTK+ inherits the signal. You can be notified
of the destruction of any GTK+ structure/instance.

There are two required parameters to every connect() call. The first is the name
of the signal you want to track. Each widget has many possible signals, all of which are
found in the API documentation. Remember that widgets are free to use the signals of
their ancestors, since each widget is actually an implementation of each of its ancestors.
You can use the “Object Hierarchy” section of the API to reference parent classes.

widget.connect("signal name", function name, extra_param)

When typing the signal name, the underscore and dash characters are
interchangeable. They are parsed as the same character, so it does not make any
difference which one you choose. I use the underscore character in all the examples
in this book.

The second parameter in the connect () method is the callback method/function
which is called when the signal is emitted. The format of the callback method/function
depends on the function prototype requirements of each specific signal. An example
callback method is shown in the next section.

The last parameter in the connect () method allows you to send extra parameters to
the callback method/function. Unlike the C version of the g_signal connect() function,
the Python version of the connect () method call allows you to pass as many extra
parameters as you need for the callback method/function. This is very useful because
it prevents the artificial creation of a single variable container that wraps a number of
variables/classes that you wish to pass to a callback/method.

In this instance of connect (), a single label is passed to the callback method.

widget.connect("destroy”, self.on window destroy, label)

The return value for connect () is the handler identifier of the signal. You can use
this with GObject.signal handler block(), GObject.signal handler unblock(),
and GObject.signal handler disconnect(). These functions stop a callback method/
function from being called, re-enable the callback function, and remove the signal
handler from a widget’s handler list, respectively. More information is in the API

documentation.

25

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Callback Methods/Functions

Callback methods/functions specified in connect () are called when the signal is emitted
on the widget to which it was connected. For all signals, with the exception of events,
callback methods/functions are in the following form.

a callback function
def on_window_destroy(widget, extra arg)

a callback method
def on window destroy(self, widget, extra arg)

You can find an example format of a callback method/function for each signal in the
API documentation, but this is the generic format. The widget parameter is the object
that performed the connect() call.

There are other possible required arguments that may appear in the middle as well,
although this is not always the case. For these parameters, you need to reference the
documentation of the signal you are utilizing.

The last parameter of your callback method/function corresponds to the last parameter
of connect (). Remember that there can be as many of these optional arguments as you
need, but the number of extra parameters from the connect () call and the number of extra
arguments in the callback method/ function definition must be the same.

You should also note that the first argument to the method version of the callback is
the self argument required by Python in method definitions; otherwise, the function
and method definitions are the same.

Events

Events are special types of signals that are emitted by the X Window System. They are
initially emitted by the X Window System and then sent from the window manager to
your application to be interpreted by the signal system provided by GLib. For example,
the "destroy" signal is emitted on the widget, but the "delete-event" event is first
recognized by the underlying Gdk.Window of the widget, and then emitted as a signal of
the widget.

26

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

The first instance of an event you encountered was the "delete-event". The
"delete-event" signal is emitted when the user tries to close the window. The window
can be exited by clicking the Close button on the title bar, using the Close pop-up menu
item in the taskbar, or by any other means provided by the window manager.

Connecting events to a callback function is done in the same manner with connect()
as with other GTK + signals. However, your callback function is set up slightly differently.

an event callback function
def on window destroy(widget, event, extra arg)

an event callback method
def on_window destroy(self, widget, event, extra arg)

The first difference in the callback method/function is the boolean return value.
If True is returned from an event callback, GTK+ assumes the event has already been
handled and it does not continue. By returning False, you are telling GTK+ to continue
handling the event. False is the default return value for the function, so you do not
need to use the "delete-event" signal in most cases. This is only useful if you want to
override the default signal handler.

For example, in many applications, you may want to confirm the exit of the program.
By using the following code, you can prevent the application from exiting if the user does
not want to quit.

an event callback method
def on_delete event(self, widget, event, extra arg):
answer = # Ask the user if exiting is desired.
if answer:
return False
else:
return True

By returning False from the "delete-event"” callback function, widget.destroy() is
automatically called on the widget. This signal automatically continues with the action,
so there is no need to connect to it unless you want to override the default.

In addition, the callback function includes the Gdk.Event parameter. Gdk.Event is a
union of the Gdk.EventType enumeration and all the available event structures. Let’s first
look at the Gdk. EventType enumeration.

27

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Event Types

The Gdk.EventType enumeration provides a list of available event types. These can be
used to determine the type of event that has occurred, since you may not always know
what has happened.

For example, if you connect the "button-press-event" signal to a widget, there
are three different types of events that can cause the signal’s callback function to
be run: Gdk.EventType.BUTTON_PRESS, Gdk.EventType.2BUTTON_PRESS, and Gdk.
EventType.3BUTTON_PRESS. Double-clicks and triple-clicks emit the Gdk.EventType.
BUTTON_PRESS as a second event as well, so being able to distinguish between different
types of events is necessary.

Appendix B provides see a complete list of the events available to you. It shows the
signal name that is passed to connect (), the Gdk.EventType enumeration value, and a
description of the event.

Let’s look at the "delete-event" callback function. We already know that "delete-
event" is of the type Gdk.EventType.DELETE, but let’s assume for a moment that we did
not know that. We can easily test this by using the following conditional statement.

def delete event(self, window, event, data):
if event.type == Gdk.EventType.DELETE:
return False
return True

In this example, if the event type is Gdk.EventType.DELETE, False is returned, and
widget.destroy() is called on the widget; otherwise, True is returned, and no further
action is taken.

Using Specific Event Structures

Sometimes, you may already know which type of event has been emitted. In the
following example, we know that a "key-press-event" is always emitted.

widget.connect("key-press-event", on_key press)

In this case, it is safe to assume that the type of event is always Gdk.EventType.KEY
PRESS, and the callback function can be declared as such.

def on_key press(widget, event):

28

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Since we know that the type of event is a Gdk.EventType.KEY_PRESS, we do not
need access to all of the structures in Gdk . Event. We only have use for Gdk . EventKey,
which we can use instead of Gdk.Event in the callback method/function. Since the
event is already cast as Gdk . EventKey, we have direct access to only the elements in that
structure.

Gdk.EventKey.type
Gdk.EventKey.window
Gdk.EventKey.send_event
Gdk.EventKey.time The length of the event in milliseconds

GDK_KEY_PRESS or GDK_KEY RELEASE
#
#
#

Gdk.EventKey.state # The state of Control, Shift, and Alt
#
#
#
#

The window that received the event
TRUE if the event used XSendEvent

Gdk.EventKey.keyval The key that was pressed

Gdk.EventKey.length The length of string

Gdk.EventKey.string A string approximating the entered text

Gdk.EventKey.hardware keycode Raw code of the key that was pressed or
released

Gdk.EventKey.group # The keyboard group

Gdk.EventKey.is modifier # Whether hardware keycode was mapped

There are many useful properties in the Gdk. EventKey structure that we use
throughout the book. At some point, it would be useful for you to browse some of the
Gdk. Event structures in the API documentation. We cover a few of the most important
structures in this book, including Gdk . EventKey and Gdk . EventButton.

The only variable that is available in all the event structures is the event type, which
defines the type of event that has occurred. It is a good idea to always check the event
type to avoid handling it in the wrong way.

Further GTK+ Methods

Before continuing on to further examples, I would like to draw your attention to a few
functions that will come in handy in later chapters and when you create your own GTK+
applications.

29

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Gtk.Widget Methods

The Gtk.Widget structure contains many useful functions that you can use with any
widget. This section outlines a few that you need in a lot of your applications.

It is possible to destroy a widget by explicitly calling widget.destroy() on the object.
When invoked, widget.destroy() drops the reference count on the widget and all of
its children recursively. The widget, along with its children, are then destroyed and all
memory is freed.

widget.destroy()

Generally, this is only called on top-level widgets. It is usually only used to destroy
dialog windows and to implement menu items that quit the application. It is used in the
next example to quit the application when a button is clicked.

You can use widget.set size request() to set the minimum size of a widget. It
forces the widget to be smaller or larger than it would normally be. It does not, however,
resize the widget so that it is too small to be functional or able to draw itself on the screen.

widget.set size request(width, height)

By passing -1 to either parameter, you are telling GTK+ to use its natural size, or the
size that the widget would normally be allocated to if you do not define a custom size.
This is used if you want to specify only the height or only the width parameter. It also
allows you to reset the widget to its original size.

There is no way to set a widget with a width or height of less than 1 pixel, but by
passing 0 to either parameter, GTK+ makes the widget as small as possible. Again, it is
not resized so small that it’s non-functional or unable to draw itself.

Because of internationalization, there is a danger in setting the size of any widget.
The text may look great on your computer, but on a computer using a German
translation of your application, the widget may be too small or large for the text. Themes
also present issues with widget sizing, because widgets are defaulted to different sizes,
depending on the theme. Therefore, it is best to allow GTK+ to choose the size of widgets
and windows in most cases.

You can use widget.grab focus() to force a widget to grab the keyboard focus. This
only work on widgets that can handle keyboard interaction. One example of a use for
widget.grab focus() is sending the cursor to a text entry when the search toolbar is
shown in Firefox. It could also be used to give focus to a Gtk. Label that is selectable.

widget.grab focus()
30

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Often, you want to set a widget as inactive. By callingwidget.set_sensitive(), the
specified widget and all of its children are disabled or enabled. By setting a widget as
inactive, the user is prevented from interacting with the widget. Most widgets are also
grayed out when set as inactive.

widget.set sensitive(boolean)

If you want to re-enable a widget and its children, you need only to call this method
on the same widget. Children are affected by the sensitivity of their parents, but they only
reflect the parents’ settings, instead of changing their properties.

Gtk.Window Methods

You have now seen two examples using the Gtk.Window class. You learned how to set the
title of a window and add a child widget. Now, let’s explore a few more functions that
allow you to further customize windows.

All windows are set as resizable by default. This is desirable in most applications,
because each user has different size preferences. However, if there is a specific reason
for doing so, you can use window.set resizable() to prevent the user from resizing the

window.

window.set resizable(boolean)

Caution You should note that the ability to resize is controlled by the window
manager, so this setting may not be honored in all cases!

The preceding caution brings up an important point. Much of what GTK+ does
interacts with the functionality provided by the window manager. Because of this, not all
of your window settings may be followed on all window managers. This is because your
settings are merely hints that are either used or ignored. You should keep in mind that
your requests may or may not be honored when designing applications with GTK+.

The default size of Gtk.Window can be set with window.set default size(), but
there are a few things to watch out for when using this method. If the minimum size of
the window is larger than the size you specify, this method is ignored by GTK+. It is also
ignored if you have previously set a larger size request.

window.set default size(width, height)

31

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Unlike widget.set size request(),window.set default size() only sets the
initial size of the window; it does not prevent the user from resizing it to a larger or
smaller size. If you set a height or width parameter to 0, the window’s height or width is
set to the minimum possible size. If you pass -1 to either parameter, the window is set to
its natural size.

You can request that the window manager move the window to the specified location
with window.move(); however, the window manager is free to ignore this request. This is
true of all functions that require action from the window manager.

window.move(x, y)

By default, the position of the window on the screen is calculated with respect to
the top-left corner of the screen, but you can use window.set gravity() to change this

assumption.
window.set gravity(gravity)

This function defines the gravity of the widget, which is the point that layout
calculations consider (0, 0).Possible values for the Gdk.Gravity enumeration include
Gdk.Gravity.NORTH_WEST, Gdk.Gravity.NORTH, Gdk.Gravity.GRAVITY NORTH_ EAST,
Gdk.Gravity.WEST, Gdk.Gravity.CENTER, Gdk.Gravity.EAST, Gdk.Gravity.SOUTH WEST,
Gdk.Gravity.SOUTH, Gdk.Gravity.SOUTH_EAST, and Gdk.Gravity.STATIC.

North, south, east, and west refer to the top, bottom, right, and left edges of the
screen. They are used to construct multiple gravity types. Gdk.Gravity.STATIC refers to
the top-left corner of the window itself, ignoring window decorations.

If your application has more than one window, you can set one as the parent with
window.set transient for(). This allows the window manager to do things such as
center the child above the parent or make sure one window is always on top of the other.
We explore the idea of multiple windows and transient relationships in Chapter 6 when
discussing dialogs.

window.set transient for(parent)

You can set the icon that appears in the taskbar and title bar of the window by calling
window.set_icon_from_file(). The size of the icon does not matter, because it is
resized when the desired size is known. This allows the scaled icon to have best quality.

window.set icon from file(filename)

32

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Trueis returned if the icon was successfully loaded and set.

Caution Icons are a complex topic and have many behavioral complexities,
including icon sets, scaling, and interactions with themes. See the GTK+
documentation for more information.

Process Pending Events

At times, you may want to process all pending events in an application. This is extremely
useful when you are running a piece of code that takes a long time to process. This
causes your application to appear frozen, because widgets are not redrawn if the CPU is
taken up by another process. For example, in an integrated development environment
that I created called OpenLDeyv, I have to update the user interface while a build
command is being processed; otherwise, the window would lock up and no build output
would be shown until the build was complete.

The following loop is the solution for this problem. It is the answer to a great number
of questions from new GTK+ programmers.

while Gtk.events pending():
Gtk.main_iteration()

The loop calls Gtk.main_iteration(), which processes the first pending event for
your application. This continues while Gtk.events_pending() returns True, which tells
you whether there are events waiting to be processed.

Using this loop is an easy solution to the freezing problem, but a better solution is
to use coding strategies that avoid the problem altogether. For example, you can use
idle functions found in GLib to call a function only when there are no actions of greater

importance to process.

Buttons

Gtk.Button is a special kind of container that can only contain a single child. However,
that child can be a container itself, thus allowing a button to contain multiple widgets.
The Gtk.Button class is a clickable entity. It can be connected to a defined method of the
owning container or window.

33

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Gtk.Button is an action widget. That is, when it is clicked, an action is expected to be
taken. The programmer has full control of that action by processing the signal emitted
when the button is clicked. So let’s take a look at how Gtk.Button works in another
simple example (see Listing 3-3).

Listing 3-3. HelloWorld with Button

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(25)
button = Gtk.Button.new with mnemonic(" Close")
button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)
self.add(button)
self.set size request(200, 100)

def on button clicked(self, button):
self.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Hello World!")
self.window.show all()
self.window.present()
34

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

if _name_ == " main_":
app = Application()

app.run(sys.argv)

Figure 3-3 shows the result of running Listing 3-3. Note how the button is centered
by default.

Close

Figure 3-3. HelloWorld with button

Those of you who are experienced GTK+ 2.x developers may wonder why we did
not use a stock button instead. Stock buttons have been deprecated since GTK+ 3.1 and
should not be used in new code. This may come as a huge surprise because this causes a
lot of work when upgrading a 2.x application to a 3.x application. But all is not as bad as it
first seems. By converting to non-stock buttons, your application becomes more portable
for all supported platforms.

Let's take a detailed look at the button code. There is some interesting code.

Line 12 sets the border width around the button to be created later. Lines 13-16
create the button and connect it to a method in the Gtk.Application instance. Line 13
creates a button with the mnemonic label " _Close". The underline indicates that the
letter C is the mnemonic. When the user presses Alt+C, the "clicked" signal is emitted
by the button.

Line 14 connects the "clicked" signal produced by the button to the on_button_
clicked method in the Gtk.ApplicationWindow instance. It does this by obtaining the
instance from the kwargs argument. The dictionary name application was assigned
avalue on line 28, and that value was fetched on line 14 to point to the correct Gtk.
Application instance method.

35

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

You may be wondering why we did not connect the button signal to a method local
to the Gtk.ApplicationWindow class. This is because the signal to quit the application
rightly belongs to the Gtk.Application class, not the Gtk.ApplicationWindow class.

This is one of those “gotchas” that can be very hard to understand and apply properly.
You need to think carefully when connecting signals to methods to make sure that the
correct class gets the signal. This is a roundabout method to process the "clicked"
signal. The normal way is to create your own method, like on_button_clicked, in the
Gtk.ApplicationWindow class and connect the signal to that method. We are only
showing this example to make the point that you can send signals to either the Gtk.
ApplicationWindow instance or the Gtk.Application instance.

Line 14 sets the relief style for the button. You should always use the Gtk.ReliefStyle.
NORMAL style unless you have good reasons for doing otherwise.

Line 16 adds the button to the Gtk.ApplicationWindow container. This works just
like adding a label, as shown in Listing 3-2.

Lines 19-20 process the "clicked" signal emitted from our button. Our only action is
to destroy the Gtk.ApplicationWindow instance.

We should note that when the last Gtk.ApplicationWindow instance is destroyed, the
Gtk.Application causes the application to exit.

Test Your Understanding

In this chapter, you learned about the window, button, and label widgets. It is time to put
that knowledge into practice. In the following exercise, you employ your knowledge of
the structure of GTK+ applications, signals, and the GObject property system.

Exercise 1: Using Events and Properties

This exercise expands on the first two examples in this chapter by creating a Gtk.
ApplicationWindow class that has the ability to destroy itself. You should set your first
name as the title of the window. A selectable Gtk. Label with your last name as the
default text string should be added as the child of the window.

Let’s consider other properties of this window: it should not be resizable and the
minimum size should be 300x100 pixels. The methods to perform these tasks were
discussed in this chapter.

36

CHAPTER 3 SOME SIMPLE GTK+ APPLICATIONS

Next, by looking at the API documentation, connect the key-press-event signal to
the window. In the "key-press-event" callback function, switch the window title and
the label text. For example, the first time the callback method is called, the window title
should be set to your last name and the label text to your first name.

Once you have completed exercise 1, you can find a description of the solution
in Appendix D. The solution’s complete source code can be downloaded from www.
gtkbook.com.

Once you have completed this exercise, you are ready to move on to the next chapter,
which covers container widgets. These widgets allow your main window to contain more
than just a single widget, which was the case in all the examples in this chapter.

However, before you continue, you should know about www. gtkbook. com, which can
supplement Foundations of PyGTK Development. This web site is filled with downloads,
links to further GTK+ information, C and Python refresher tutorials, API documentation,
and more. You can use it as you go through this book to aid in your quest to learn GTK+.

Summary

In this chapter, we introduced some simple GTK+ 3.x applications, along with some
simple widgets, which also introduced concepts that will be beneficial in later chapters.
Here are some of the concepts you learned in this chapter.

o The Gtk.Label class was introduced with an example program.
e The Gtk.Button class was introduced with an example program.

o The signals and methods to catch the signals were introduced. This
concept is covered in more depth in a later chapter.

e The concept of containers was introduced. This concept is covered in
more depth in Chapter 4.

In Chapter 4, we cover the Gtk.Container class and the vast array of container types

available.

37

http://www.gtkbook.com
http://www.gtkbook.com
http://www.gtkbook.com

CHAPTER 4

Containers

Chapter 3 introduced the basic essentials needed for creating basic GTK+ applications.
It also introduced signals, callback methods, the Gtk.label class, the Gtk.Button class,
and the Gtk.Container class.

In this chapter, you expand our knowledge of the Gtk.Container class. Then we
show the two kinds of contained widgets: layout and decorator containers. Additionally,
we cover a number of derived widgets, including boxes, notebooks, handle boxes, and
expanders.

The last widget covered, Gtk . EventBox, allows widgets to take advantage of GDK events.

The following topics are covered.

e The purpose of the Gtk.Container class and its descendants
o How to use layout containers, including boxes, tables, grid, and panes
¢ When to used fixed containers

e How to provide events to all widgets using event boxes

GTK.Container

The Gtk.Container class has been covered briefly in past sections, But we now cover the
class in more depth. This is necessary so that you have the necessary base knowledge
about containers so we may cover all the derived classes in subsequent sections.

The Gtk.Container class is an abstract class. Therefore you should never attempt to
create an instance of this class, only of the derived classes.

The main purpose of a container class is to allow a parent widget to contain one or
more child widgets. There are two type of container widgets in GTK+, those used for
laying out children and decorators and those that add some sort of functionality beyond
positioning children.

39
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_4

CHAPTER 4 CONTAINERS

Decorator Containers

In Chapter 3, you were introduced to Gtk.ApplicationWindow, a window derived from
Gtk.Window, which is derived from Gtk.Bin—a type of container class that has the
capability of holding only one child widget. Widgets derived from this class are called
decorator containers because they add some type of functionality to the child widget.

For example, a Gtk.Window provides it child with some extra functionality of being
placed in a top level widget. Other example decorators include the Gtk.Frame widget,
which draws a frame around it child, a Gtk.Button, which makes its child a clickable
button, and a Gtk.Expander which can hide or show its child from the user. All there
widgets use the add method for adding a child widget.

The Gtk.Bin only exposes one method, get_child. The only purpose of the Gtk.Bin
class is to provide an instantiable widget from which all subclasses that only require one
child widget can be derived. It is a central class for common base.

binwin = Gtk.Bin()

Widgets that derive from Gtk.Bin include windows, alignments, frames, buttons,
combo boxes, event boxes, expanders, handle boxes, scrolled windows, and tool items.
Many of these containers are covered in subsequent section of this chapter.

Layout Containers

Another type of container widget provided by GTK+ is called a layout container.
These are widgets that are used to arrange multiple widgets. Layout containers can be
recognized by the fact that they are derived directly from Gtk.Container.

As the name implies, the purpose of layout containers is to correctly arrange their
children according to the user’s preferences, your instructions, and built-in rules. User
preferences include the use of themes and font preferences. These can be overridden,
but in most cases, you should honor the user’s preferences. There are also resizing rules
that govern all container widgets, which is covered in the next section.

Layout containers include boxes, fixed containers, paned widgets, icon views,
layouts, menu shells, notebooks, sockets, tables, text views, toolbars, and tree views. We
are covering most of the layout widgets throughout this chapter and the rest of the book.
More information on those we do not cover is available in the PyGObject API Reference
(http://lazka.github.io/pgi-docs/#Gtk-3.0) documentation.

40

http://lazka.github.io/pgi-docs/#Gtk-3.0

CHAPTER 4 CONTAINERS

Resizing Children

In addition to arranging and decorating children, containers are tasked with resizing
child widgets. Resizing is performed in two phases: size requisition and size allocation.
In short, these two steps negotiate the size that is available to a widget. This is a recursive
process of communication between the widget, its ancestors, and its children.

Size requisition refers to the desired size of the child. The process begins at the
top-level widget, which asks its children for their preferred sizes. The children ask their
children and so on, until the last child is reached.

At this point, the last child decides what size it wants to be based on the space it
needs to be shown correctly on the screen and any size requests from the programmer.
For example, a Gtk.Label widget asks for enough space to fully display its text on the
screen or more space if you requested it to have a larger size.

The child then passes this size to its ancestors until the top-level widget receives the
amount of space needed based on its children’s requisitions.

Each widget stores its size preferences as width and height values in a Gtk.
Requisition object. Keep in mind that a requisition is only a request; it does not have to
be honored by the parent widget.

When the top-level widget has determined the amount of space it wants, size
allocation begins. If you have set the top-level widget as nonresizable, the widget will
never be resized; no further action occurs and requisitions are ignored; otherwise, the
top-level widget resizes itself to the desired size. It then pass the amount of available
space to its child widget. This process is repeated until all widgets have resized
themselves.

Size allocations for every widget are stored in one instance of the Gtk.Allocation
structure for each child. This structure is passed to child widgets for resizing with size
allocate(). This function can be called explicitly by the programmer as well, but doing
so is not a good idea in the majority of cases.

In most situations, children are given the space they request, but there are certain
circumstances when this cannot happen. For example, a requisition is not honored
when the top-level widget cannot be resized.

Conversely, once a widget has been given a size allocation by its parent, the widget
has no choice but to redraw itself with the new size. Therefore, you should be careful
where you call size_allocate().In most cases, set_size request() is best to use for
resizing widgets.

41

CHAPTER 4 CONTAINERS

Container Signals

The Gtk.Container class currently provides four signals. These are "add", "check

resize", "remove", and "set_focus_child".

"add": A child widget was added or packed into the container. This
signal is emitted even if you do not explicitly call add() but use the
widget’s built-in packing functions instead.

o ‘"check resize": The container is checking whether it needs to resize
for its children before taking further action.

o "remove": A child has been removed from the container.

o "set focus_child": A child of the container has received focus
from the window manager. Now that you know the purpose of the
Gtk.Container class, we will progress onto other types of container
widgets. You have already learned about windows, a type of Gtk.Bin
widget, so we will begin this chapter with a layout container called
Gtk.Box.

Horizontal and Vertical Boxes

Gtk.Box is a container widget that allows multiple children to be packed in a one-
dimensional, rectangular area. There are two types of boxes: a vertical box which packs
children into a single column, and a horizontal box which packs them into a single row.

Note In GTK+ 2.x, the Gtk.Box was an abstract class. The two subclasses
Gtk.HBox and Gtk.VBox were used to create horizontal and vertical boxes
respectively. In GTK+ 3.x these two classes have been deprecated and the Gtk.Box
has become a real class from which both horizontal and vertical boxes can be created.

The graphical output of the application is shown in Listing 4-1. Notice that the
names are shown in the same order as they were added to the array, even though each
was packed at the start position. Notice that the names are shown in the same order as
they were added to the array, even though each was packed at the start position.

42

CHAPTER 4 CONTAINERS

Listing 4-1. Vertical Boxes with Default Packing
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

names = ["Andrew", "Joe", "Samantha", "Jonathan"]
class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):

super(). init (*args, **kwargs)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

for name in names:
button = Gtk.Button.new with label(name)
vbox.pack start(button, True, True, 0)
button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)

self.set border width(10)

self.set size request(200, -1)

self.add(vbox)

self.show all()

def on_button clicked(self, widget):
self.destroy()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Boxes")
self.window.show all()
self.window.present()

CHAPTER 4 CONTAINERS

if _name_ == " main_":
app = Application()

app.run(sys.argv)

Figure 4-1 shows the result of running Listing 4-1.

Joe

Samantha

Jonathan

Figure 4-1. Vertical boxes with default packing

In analyzing Listing 4-2, Gtk.Box uses the same set of methods. Gtk.Box uses the
same set of methods.

As with every widget, you need to initialize Gtk.Box before using the object. All
the parameters that are passed are keyword parameters. The default orientation if no
keyword "orientation" is passed the default is Gtk.Orientation.HORIZONTAL. Other
keywords are available, such as "spacing". If the "homogeneous" keyword is set to True,
all of the children are given the smallest amount of space that can fit every widget.

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

The "spacing" keyword parameter places a default number of pixels of spacing
between each child and its neighbor. This value can be changed for individual cells as
children are added, if the box is not set as equally spaced.

Since you do not need further access to the labels in Listing 4-2 after they are added
to the widget, the application does not store individual pointers to each object. They are
all cleaned up automatically when the parent is destroyed. Each button is then added to
the box using a method called the packing.Gtk.Box widget.

44

CHAPTER 4 CONTAINERS

By adding widgets to the box with pack_start(), the child has three properties
automatically set. Expanding is set to True, which automatically provides the cell with
the extra space allocated to the box. This space is distributed evenly to all of the cells that
request it. The fill property is also set to True, which means the widget expands into all of
the extra space provided instead of filling it with padding. Lastly, the amount of padding
placed between the cell and its neighbors is set to zero pixels.

vbox.pack start(button, True, True, 0)

Packing boxes can be slightly unintuitive because of the naming of functions. The
best way to think about it is in terms of where the packing begins. If you pack at the start
position, children are added with the first child appearing at the top or left. If you pack at
the end position, the first child appears at the bottom or right of the box.

It should also be noted that the pack_start() and pack_end() methods not
only specify the packing parameters, they also add the widget to the specified widget
instance. It is not necessary to call the add () method to add the widget if you call one of
packing methods. In fact, it is a runtime error if you attempt to add the same widget with
a packing method and the add () method.

Listing 4-2. Vertical_Boxes Specifying Packing Parameters
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

names = ["Andrew", "Joe", "Samantha", "Jonathan"]
class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):

super(). init (*args, **kwargs)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

for name in names:
button = Gtk.Button.new with_label(name)
vbox.pack_end(button, False, False, 5)
button.connect("clicked", self.on button clicked)
button.set _relief(Gtk.ReliefStyle.NORMAL)

45

CHAPTER 4 CONTAINERS

self.set border width(10)
self.set size request(200, -1)
self.add(vbox)

self.show all()

def on_button clicked(self, widget):
self.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Boxes")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

Since we packed each of the widgets starting at the end, they are shown in reverse
order in Figure 4-2). The packing began at the end of the box and packed each child
before the previous one. You are free to intersperse calls to start and end packing
functions. GTK+ keeps track of both reference positions. Since we packed each of the
widgets starting at the end, they are shown in reverse order. The packing began at the
end of the box and packed each child before the previous one. You are free to intersperse
calls to start and end packing functions. GTK+ keeps track of both reference positions.

46

CHAPTER 4 CONTAINERS

Jonathan

Samantha

Joe

Andrew

Figure 4-2. Vertical_Boxes specifying packing parameters

By setting the expand property to True, the cell expands so that it takes up additional

space allocated to the box that is not needed by the widgets. By setting the fill property

to True, the widget expands to fill extra space available to the cell. Table 4-1 offers a brief

description of all possible combinations of the expand and fill properties.

Table 4-1. Expand and Fill Properties

expand fill

Result

True True
True False
False True
False False

The cell expand so that it takes up additional space allocated to the box, and
the child widget expand to fill that space.

The cell expand so that it takes up additional space, but the widget not expand.
Instead, the extra space is empty.

Neither the cell nor the widget expand to fill extra space. This is the same thing
as setting both properties to False.

Neither the cell nor the widget expand to fill extra space. If you resize the
window, the cell not resize itself.

47

CHAPTER 4 CONTAINERS

In the previous pack_end() call, each cell is told to place five pixels of spacing
between itself and any neighbor cells. Also, according to Table 4-1 neither the cell nor its
child widget expand to take up additional space provided to the box.

vbox.pack end(button, True, True, 0)

Note If you have experience programming with other graphical toolkits, the size
negotiation system provided by GTK+ may seem odd. However, you quickly learn
its benefits. GTK+ automatically takes care of resizing everything if you change a
user interface, instead of requiring you to reposition everything programmatically.
You will come to view this as a great benefit as you continue learning GTK+.

While you should try to finalize the order of elements in a Gtk.Boxwidget before
displaying it to the user, it is possible to reorder child widgets in a box with
reorder_child().

vbox.reorder child(child widget, position)

By using this method, you can move a child widget to a new position in the Gtk.Box.
The position of the first widget in a Gtk.Box container is indexed from zero. The widget
is placed in the last position of the box if you specify a position value of -1 or a value
greater than the number of children.

Horizontal and Vertical Panes

Gtk.Paned is a special type of container widget that holds exactly two widgets. A resize
bar is placed between them, which allows the user to resize the two widgets by dragging
the bar in one direction or the other. When the bar is moved, either by user interaction or
programmatic calls, one of the two widgets shrinks while the other expands.

Note In GTK+ 2.x, the Gtk.Paned was an abstract class. The two subclasses
Gtk.HPaned and Gtk.VPaned were used to create horizontal and vertical boxes
respectively. In GTK+ 3.x, these two classes have been deprecated and the Gtk.
Paned has become a real class from which both horizontal and vertical panes can
be created.

48

CHAPTER 4 CONTAINERS

There are two types of paned widgets: horizontal resizing and vertical resizing. As
with boxes, Gtk.Paned provides all the functions for both horizontal and vertical panes.
Listing 4-3 shows a simple example where two Gtk.Button widgets are placed as the
children of a horizontal pane.

Listing 4-3. Horizontal Paned with Buttons
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _ init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
hpaned = Gtk.Paned.new(Gtk.Orientation.HORIZONTAL)
buttonl = Gtk.Button.new with label("Resize")
button2 = Gtk.Button.new with label("Me!")
buttoni.connect("clicked", self.on button clicked)
button2.connect("clicked", self.on button clicked)
hpaned.add1(button1)
hpaned.add2 (button2)
self.add(hpaned)
self.set size request(225, 150)
self.show all()

def on_button clicked(self, button):
self.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

49

CHAPTER 4 CONTAINERS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Panes")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

Asyou can see in Figure 4-3 the Gtk.Paned widget places a vertical bar between its
two children. By dragging the bar, one widget shrinks while the other expands. In fact, it
is possible to move the bar so that one child is completely hidden from the user’s view.
You learn how to prevent this with the pack1() and pack2() methods.

—_———

Resize Mel

Figure 4-3. Horizontal paned with buttons

In Figure 4-3 we created a Gtk.Paned object with the following.
hpaned = Gtk.Paned.new(Gtk.Orientation.HORIZONTAL)

If you want to use a vertical paned widget instead, you need only to call the
following.

vpaned = Gtk.Paned.new(Gtk.Orientation.VERTICAL)

All of the Gtk.Paned functions then work with either type of paned widget.

50

CHAPTER 4 CONTAINERS

Since Gtk.Paned can only handle two children, GTK+ provides a function for packing
each child. In the following example, pack1() and pack2() methods were used to add
both children to Gtk.Paned. These functions use the default values for the resize and
shrink properties of the Gtk.Paned widget.

hpaned.add1(button1);
hpaned.add2 (button2);

The preceding add1() and add2 () method calls are from Listing 4-3 and are
equivalent to the following.

hpaned.pack1(label1, False, True);
hpaned.pack2(label2, True, True);

The second parameter in pack1() and pack2() specifies whether the child widget
should expand when the pane is resized. If you set this to False, no matter how much
larger you make the available area, the child widget does not expand.

The last parameter specifies whether the child can be made smaller than its size
requisition. In most cases, you want to set this to True so that a widget can be completely
hidden by the user by dragging the resize bar. If you want to prevent the user from doing
this, set the third parameter to False. Table 4-2 illustrates how the resize and shrink
properties interrelate.

Table 4-2. Resize and Shrink Properties

resize shrink Result

True True The widget takes up all available space when the pane is resized, and the user
is able to make it smaller than its size requisition.

True False The widget takes up all available space when the pane is resized, but available
space must be greater than or equal to the widget’s size requisition.

False True The widget will not resize itself to take up additional space available in the
pane, but the user is able to make it smaller than its size requisition.

False False The widget will not resize itself to take up additional space available in the
pane, and the available space must be greater than or equal to the widget’s
Size requisition.

51

CHAPTER 4 CONTAINERS

You can easily set the exact position of the resize bar with set_position(). The
position is calculated in pixels with respect to the top or left side of the container. If you
set the position of the bar to zero, it is moved all the way to the top or left if the widget
allows shrinking.

paned.set _position(position)

Most applications want to remember the position of the resize bar, so it can be
restored to the same location when the user next loads the application. The current
position of the resize bar can be retrieved with get_position().

pos = paned.get position()

Gtk.Paned provides multiple signals, but one of the most useful is move-handle,
which tells you when the resizing bar has been moved. If you want to remember the
position of the resize bar, this tells you when you need to retrieve a new value.

Grids

So far, all the layout container widgets I have covered only allow children to be packed in
one dimension.

The Gtk.Grid widget, however, allows you to pack children in two-dimensional space.

One advantage of using the Gtk.Grid widget over using multiple Gtk.Box widgets is
that children in adjacent rows and columns are automatically aligned with each other,
which is not the case with boxes within boxes. However, this is also a disadvantage,
because you will not always want everything to be lined up in this way.

Figure 4-4 shows a simple grid that contains three widgets. Notice that the single
label spans two columns. This illustrates the fact that grids allow one widget to span
multiple columns and/or rows as long as the region is rectangular.

Enter the following information ...

Name: | |

Figure 4-4. Grid displaying name

52

CHAPTER 4 CONTAINERS

Listing 4-4 inserts two Gtk.Label widgets and a Gtk.Entry widget into the two-by-
two area (you learn how to use the Gtk.Entry widget in Chapter 5, but this gives you a
taste of what is to come).

Listing 4-4. Grids Displaying Name
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(150, 100)
grid = Gtk.Grid.new()
label1 = Gtk.Label.new("Enter the following information ...")
label2 = Gtk.Label.new("Name: ")
entry = Gtk.Entry.new()
grid.attach(label1, o0, 0, 2, 1)
grid.attach(label2, o, 1, 1, 1)
grid.attach(entry, 1, 1, 1, 1)
grid.set_row_spacing(5)
grid.set _column_spacing(5)
self.add(grid)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

53

CHAPTER 4 CONTAINERS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Tables")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

Grid Spacing

If you want to set the spacing for every column in a grid, you can use set_column_
spacing(). This function was used in set_row_spacing() to add padding between rows.
These functions override any previous settings of the grid.set_row_spacing() to add
padding between rows. These functions override any previous settings of the grid.

grid.set column_spacing(5)
The grid.attach() method require five parameters, as follows.

Grid.attach(child widget, left pos, top_pos, width, height)

Fixed Containers

The Gtk.Fixed widget is a type of layout container that allows you to place widgets by
the pixel. There are many problems that can arise when using this widget, but before we
explore the drawbacks, let’s look at a simple example.

Listing 4-5 shows the Gtk.Fixed widget that contains two buttons, one found at each
of the locations (0,0) and (20,30), with respect to the top-left corner of the widget.

Listing 4-5. Specifying Exact Locations
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
54

CHAPTER 4 CONTAINERS
class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
fixed = Gtk.Fixed.new()
buttonl = Gtk.Button.new with label("Pixel by pixel ...")
button2 = Gtk.Button.new with label("you choose my fate.")
buttoni.connect("clicked", self.on button clicked)
button2.connect("clicked", self.on button clicked)
fixed.put(buttoni, 0, 0)
fixed.put(button2, 22, 35)
self.add(fixed)
self.show all()

def on_button clicked(self, widget):
self.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Fixed")
self.window.show all()
self.window.present()

if _name__ == " main_":
app = Application()
app.run(sys.argv)

The Gtk.Fixed widget initialized with Gtk.Fixed.new() allows you to place widgets
with a specific size in a specific location. Placing widgets is performed with put() at
specified horizontal and vertical positions.
fixed.put(child, x, y)

55

CHAPTER 4 CONTAINERS

The top-left corner of the fixed container is referred to by location (0,0). You should
only be able to specify real locations for widgets or locations in positive space. The fixed
container resizes itself, so every widget is completely visible.

If you need to move a widget after it has been placed within a The Gtk.Fixed
container, you can use move (). You need to be careful not to overlap a widget that has
already been placed. The Gtk.Fixed widget does not provide notification in the case of
overlap. Instead, it tries to render the window with unpredictable results.

fixed.move(child, x, y)

This brings us to the inherent problems with using the Gtk.Fixed widget. The first
problem is that your users are free to use whatever theme they want. This means that the
size of text on the user’s machine may differ from the size of text on your machine unless
you explicitly set the font. The sizes of widgets vary among different user themes as well.
This can cause misalignment and overlap. This is illustrated in Figure 4-5, which shows

two screenshots, one with a small font size and one with a larger font size.

Pixel by pixel ...

you choose my fate,

Pixel by pixel ...
you choose my fate.

Figure 4-5. Problems caused by different font sizes in a Gtk.Fixed container

56

CHAPTER 4 CONTAINERS

You can explicitly set the size and font of text to avoid overlap, but this is not advised
in most cases. Accessibility options are provided for users with low vision. If you change
their fonts, some users may not be able to read the text on the screen.

Another problem with using Gtk.Fixed arises when your application is translated
into other languages. A user interface may look great in English, but the displayed strings
in other languages may cause display problems, because the width is not constant.
Furthermore, languages that are read right to left, such as Hebrew and Arabic, cannot be
properly mirrored with the Gtk.Fixed widget. It is best to use a variable-sized container,
such as Gtk.Box or Gtk.Grid in this case.

Finally, it can be quite a pain adding and removing widgets from your graphical
interface when using a Gtk.Fixed container. Changing the user interface requires you
to reposition all of your widgets. If you have an application with a lot of widgets, this
presents a long-term maintenance problem.

On the other hand, you have grids, boxes, and various other automatically formatting
containers. If you need to add or remove a widget from the user interface, it is as easy
as adding or removing a cell. This makes maintenance much more efficient, which is
something you should consider in large applications.

Therefore, unless you know that none of the presented problems will plague your
application, you should use variable-sized containers instead of Gtk.Fixed. This
container was presented only so you know it is available if a suitable situation arises.
Even in suitable situations, flexible containers are almost always a better solution and
are the proper way of doing things.

Expanders

The Gtk.Expander container can handle only one child. The child can be shown or
hidden by clicking the triangle to the left of the expander’s label. A before-and-after
screenshot of this action can be viewed in Figure 4-6.

57

CHAPTER 4 CONTAINERS

ellc (il |J[_”__I

» Click Me For More!

w Click Me For More!
Hide me or show me,
that is your choice.

Figure 4-6. A Gtk.Expander container
Listing 4-6 introduces you to the most important Gtk.Expander methods.

Listing 4-6. Gtk.Expander Container
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(200, 100)
expander = Gtk.Expander.new with_mnemonic("Click _Me For More!")
label = Gtk.Label.new ("Hide me or show me,\nthat is your choice.")
expander.add(label)
expander.set_expanded(True)
self.add(expander)

58

CHAPTER 4 CONTAINERS
class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Hello World!")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

Activating a Gtk.Expander widget cause it to be expanded or retracted depending on
its current state.

Tip Mnemonics are available in almost every widget that displays a label. Where
available, you should always use this feature, because some users prefer to
navigate through applications with the keyboard.

If you wish to include an underscore character in the expander label, you should
prefix it with a second underscore. If you do not want to take advantage of the mnemonic
feature, you can use Gtk.Expander.new() to initialize the Gtk.Expander with a standard
string as the label, but providing mnemonics as an option to the user is always a good
idea. In normal expander labels, underscore characters are not parsed but are treated as
just another character.

The Gtk.Expander widget itself is derived from Gtk.Bin, which means that it can
only contain one child. As with other containers that hold one child, you need to use
expander.add() to add the child widget.

The child widget of a Gtk.Expander container can be shown or hidden by calling
expander.set_expanded().expander.set _expanded().

expander.set_expanded(boolean)

59

CHAPTER 4 CONTAINERS

By default, GTK+ does not add any spacing between the expander label and the child
widget. To add pixels of spacing, you can use expander.set_spacing() to add padding.

expander.set_spacing(spacing)

Notebook

The Gtk.Notebook widget organizes child widgets into a number of pages. The user can
switch between these pages by clicking the tabs that appear along one edge of the widget.

You are able to specify the location of the tabs, although they appear along the top by
default. You can also hide the tabs altogether. Figure 4-7 shows a Gtk.Notebook widget
with two tabs that was created with the code in Listing 4-7.

Go to page 2 to find the answer.

Page 1 Page 2

Figure 4-7. A notebook container with multiple pages

When creating a notebook container, you must specify a tab label widget and a child
widget for each tab. Tabs can be added to the front or back, inserted, reordered, and

removed.

Listing 4-7. Container with Multiple Pages
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

60

CHAPTER 4 CONTAINERS
class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(250, 100)
notebook = Gtk.Notebook.new()

label1 = Gtk.Label.new("Page 1")
label2 = Gtk.Label.new("Page 2")
child1 = Gtk.Label.new("Go to page 2 to find the answer.")
child2 = Gtk.Label.new("Go to page 1 to find the answer.")

notebook.append page(child1, label1)
notebook.append page(child2, label2)

notebook.set tab_pos(Gtk.PositionType.BOTTOM)
self.add(notebook)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Notebook")
self.window.show all()
self.window.present()

if _name_ ==" main_":
app = Application()
app.run(sys.argv)

After you create a Gtk.Notebook, it is not very useful until you add tabs to it. To add
a tab to the end or beginning of the list of tabs, you can use notebook.append page() or
notebook.prepend_page(), respectively. Each of these methods accepts a child widget,
and a widget to display in the tab, as shown next.

61

CHAPTER 4 CONTAINERS

Tip The tab label does not have to be a Gtk.Label widget. For example, you
could use a Gtk.Box widget that contains a label and a close button. This allows
you to embed other useful widgets, such as buttons and images, into the tab label.

Each notebook page can only display one child widget. However, each of the
children can be another container, so each page can display many widgets. In fact, it is
possible to use Gtk.Notebook as the child widget of another Gtk.Notebook tab.

Caution Placing notebooks within notebooks is possible but should be done with
caution, because it can easily confuse the user. If you must do this, make sure
that you place the child notebook’s tabs on a different side of the notebook than
its parent’s tabs. By doing this, the user is able to figure out what tabs belong to
which notebook.

If you want to insert a tab in a specific location, you can use notebook.insert
page(). This function allows you to specify the integer location of the tab. The index of
all tabs located after the inserted tab increase by one.

notebook.insert page (child, tab label, position)

All three of the functions used to add tabs to a Gtk.Notebook return the integer
location of the tab you added or -1 if the action has failed.

Notebook Properties

In Listing 4-7, the tab-position property was set for the Gtk.Notebook, which was done
with the following call.

notebook.set tab pos(position)

Tab position can be set in notebook.set tab_pos() by using the Gtk.PositionType
enumeration. These include Gtk.PositionType.TOP, Gtk.PositionType.BOTTOM, Gtk.
PositionType.LEFT, and Gtk.PositionType.RIGHT.

62

CHAPTER 4 CONTAINERS

Notebooks are useful if you want to give the user multiple options, but you want
to show them in multiple stages. If you place a few in each tab and hide the tabs
with notebook.set show tabs(), you can progress the user back and forth through
the options. An example of this concept would be many of the wizards you see
throughout your operating system, similar to the functionality provided by the
Gtk.Assistant widget.

notebook.set show tabs(show tabs)

At some point, the Gtk.Notebook runs out of room to store tabs in the allocated
space. To remedy this problem, you can set notebook tabs as scrollable with notebook.
set_scrollable().

notebook.set scrollable(scrollable)

This property forces tabs to be hidden from the user. Arrows are provided so that
the user is able to scroll through the list of tabs. This is necessary because tabs are only
shown in one row or column.

If you resize the window so that all of the tabs cannot be shown, the tabs are made
scrollable. Scrolling also occurs if you make the font size large enough that the tabs
cannot all be drawn. You should always set this property to True if there is any chance
that the tabs will take up more than the allotted space.

Tab Operations

GTK+ provides multiple functions that allow you to interact with tabs that already exist.
Before learning about these methods, it is useful to know that most of these cause the
change-current-page signal to be emitted. This signal is emitted when the current tab
that is in focus is changed.

If you can add tabs, there has to be a method to remove tabs as well. By using
notebook.remove_page(), you can remove a tab based on its index reference. If you
did not increase the reference count before adding the widget to the Gtk .Notebook, this
function releases the last reference and destroys the child.

notebook.remove page(page number)

63

CHAPTER 4 CONTAINERS

You can manually reorder the tabs by calling notebook.reorder child(). You must
specify the child widget of the page you want to move and the location to where it should
be moved. If you specify a number that is greater than the number of tabs or a negative
number, the tab is moved to the end of the list.

notebook.reorder child(child, position)

There are three methods provided for changing the current page. If you know the
specific index of the page you want to view, you can use notebook.set_current_page()
to move to that page.

notebook.set current page(page number)

At times, you may also want switch to the next or previous tab, which can be done
with call notebook.next_page() or notebook.prev_page().Ifa call to either of these
functions would cause the current tab to drop below zero or go above the current
number of tabs, nothing occurs; the call is ignored.

When deciding what page to move to, it is often useful to know the current page and
the total number of tabs. These values can be obtained with notebook.get current_
page(), respectively.

Event Boxes

Various widgets, including Gtk.Label, do not respond to GDK events, because they
do not have an associated GDK window. To fix this, GTK+ provides a container widget
called Gtk.EventBox. Event boxes catch events for the child widget by providing a GDK
window for the object.

Listing 4-8 captures the button-press-event signal by using an event box. The
text in the label is changed based on its current state when the label is double-clicked.
Nothing visible happens when a single click occurs, although the signal is still emitted in
that case (Gtk.Label) by using an event box. The text in the label is changed based on
its current state when the label is double-clicked. Nothing visible happens when a single
click occurs, although the signal is still emitted in that case.

64

CHAPTER 4 CONTAINERS

Listing 4-8. Adding Events to Gtk.Label

#!/usr/bin/python3

import sys

import gi
gi.require version('Gtk', '3.0")

from gi.

repository import Gtk, Gdk

class AppWindow(Gtk.ApplicationWindow):

def

def

__init_ (self, *args, **kwargs):

super(). init_ (*args, **kwargs)

self.set border width(10)

self.set size request(200, 50)

eventbox = Gtk.EventBox.new()

label = Gtk.Label.new("Double-Click Me!")
eventbox.set _above child(False)
eventbox.connect("button press event", self.on button pressed, label)
eventbox.add(label)

self.add(eventbox)
eventbox.set_events(Gdk.EventMask.BUTTON_PRESS MASK)
eventbox.realize()

on_button pressed(self, eventbox, event, label):
if event.type == Gdk.EventType. 2BUTTON_ PRESS:
text = label.get text()
if text[0] == 'D":
label.set text("I Was Double-Clicked!")
else:
label.set text("Double-Click Me Again!")
return False

class Application(Gtk.Application):

def

__init_ (self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",
**kwargs)

self.window = None

65

CHAPTER 4 CONTAINERS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Hello World!")
self.window.show_all()
self.window.present()

__main_ ":
app = Application()
app.run(sys.argv)

if name ==

When using an event box, you need to decide whether the event box’s Gdk .Window
should be positioned above the windows of its child or below them. If the event box
window is above, all events inside the event box go to the event box. If the window is
below, events in windows of child widgets first go to that widget and then to its parents.

Note If you set the window’s position as below, events do go to child widgets
first. However, this is only the case for widgets that have associated GDK windows.
If the child is a Gtk . Label widget, it does not have the ability to detect events

on its own. Therefore, it does not matter whether you set the window’s position as
above or below in Listing 4-8.

The location of the event box window can be moved above or below its children
with eventbox.set_above child(). By default, this property is set to False for all event
boxes. This means that all events are handled by the widget for which the signal was first
emitted. The event is then passed to its parent after the widget is finished.

eventbox.set above child(above child)

Next, you need to add an event mask to the event box so that it knows what type of
events the widget receives. Values for the Gdk . EventMask enumeration that specify event
masks are shown in Table 4-3. A bitwise list of Gdk . EventMask values can be passed to
eventbox.set _events() if you need to set more than one.

66

Table 4-3. Gdk.EventMask Values

CHAPTER 4 CONTAINERS

Value

Description

Gdk.EventMask.EXPOSURE_MASK
Gdk.EventMask.POINTER_MOTION_MASK

Gdk.EventMask.POINTER_MOTION_HINT_MASK

Gdk.EventMask. BUTTON_MOTION_MASK

Gdk.EventMask.BUTTON1_MOTION_MASK

Gdk.EventMask.BUTTON2_MOTION_MASK

Gdk.EventMask.BUTTON3_MOTION_MASK

Gdk.EventMask.BUTTON_PRESS_MASK
Gdk.EventMask.BUTTON_RELEASE_MASK
Gdk.EventMask.KEY_PRESS_MASK
Gdk.EventMask.KEY_RELEASE_MASK
Gdk.EventMask.ENTER_NOTIFY_MASK

Gdk.EventMask.LEAVE_NOTIFY_MASK

Gdk.EventMask.FOCUS_CHANGE_MASK
Gdk.EventMask.STRUCTURE_MASK

Gdk.EventMask.PROPERTY_CHANGE_MASK

Accepts events when a widget is exposed.

Accepts events emitted when the proximity of
the window is left.

Limits the number of GDK_MOTION_NOTIFY
events, so they are not emitted every time the
mouse moves.

Accepts pointer motion events while any button
is pressed.

Accepts pointer motion events while button 1 is
pressed.

Accepts pointer motion events while button 2 is
pressed.

Accepts pointer motion events while button 3 is
pressed.

Accepts mouse button press events.
Accepts mouse button release events.
Accepts key press events from a keyboard.
Accepts key release events from a keyboard.

Accepts events emitted when the proximity of
the window is entered.

Accepts events emitted when the proximity of
the window is left.

Accepts change of focus events.

Accepts events emitted when changes to
window configurations occur.

Accepts changes to object properties.

(continued)

67

CHAPTER 4 CONTAINERS

Table 4-3. (continued)

Value Description
Gdk.EventMask.VISIBILITY_NOTIFY_MASK Accepts change of visibility events.
Gdk.EventMask.PROXIMITY_IN_MASK Accepts events emitted when the mouse cursor
enters the proximity of the widget.
Gdk.EventMask.PROXIMITY_OUT_MASK Accepts events emitted when the mouse cursor
leaves the proximity of the widget.
Gdk.EventMask.SUBSTRUCTURE_MASK Accepts events that change the configuration of
child windows.
Gdk.EventMask.SCROLL_MASK Accepts all scroll events.
Gdk.EventMask.ALL_EVENTS_MASK Accepts all types of events.

You must call eventbox.set_events() before you call eventbox.realize() on the
widget. If a widget has already been realized by GTK+, you have to instead use eventbox.
add_events() to add event masks.

Before calling eventbox.realize(), your Gtk.EventBox does not yet have an
associated Gdk.Window or any other GDK widget resources. Normally, realization occurs
when the parent is realized, but event boxes are an exception. When you call window.
show() on a widget, it is automatically realized by GTK+. Event boxes are not realized
when you call window. show_all(), because they are set as invisible. Calling eventbox.
realize() on the event box is an easy way to work around this problem.

When you realize your event box, you need to make sure that it is already added as a
child to a top-level widget, or it will not work. This is because, when you realize a widget,
it automatically realizes its ancestors. If it has no ancestors, GTK+ is not happy, and
realization fails.

After the event box is realized, it has an associated Gdk.Window. Gdk.Window is a class
that refers to a rectangular region on the screen where a widget is drawn. It is not the
same thing as a Gtk.Window, which refers to a top-level window with a title bar and so
on. A Gtk.Window contains many Gdk.Window objects, one for each child widget. They are
used for drawing widgets on the screen.

68

CHAPTER 4 CONTAINERS

Test Your Understanding

This chapter has introduced you to a number of container widgets that are included in
GTK+. The following two exercises allow you to practice what you have learned about a
few of these new widgets.

Exercise 1: Using Multiple Containers

One important characteristic of containers is that each container can hold other
containers. To really drive this point home, in this example, you use a large number of
containers. The main window shows a Gtk.Notebook and two buttons along the bottom.

The notebook should have four pages. Each notebook page should hold a Gtk.
Button that moves to the next page (the Gtk.Button on the last page should wrap around
to the first page).

Create two buttons along the bottom of the window. The first should move to the
previous page in the Gtk.Notebook, wrapping to the last page if necessary. The second
button should close the window and exit the application when clicked.

Exercise 1 is a simple application to implement, but it illustrates a few important
points. First, it shows the usefulness of Gtk.Box, and how vertical and horizontal boxes
can be used together to create complex user interfaces.

It is true that this same application could be implemented with a Gtk.Grid as the
direct child of the window, but it is significantly easier to align the buttons along the
bottom with a horizontal box. You notice that the buttons were packed at the end of
the box, which aligns them to the right side of the box, and this is easier to implement
with boxes.

Also, you saw that containers can, and should, be used to hold other containers. For
example, in Exercise 1, a Gtk.Window holds a vertical Gtk.Box, which holds a horizontal
Gtk.Box and a Gtk.Notebook. This structure can become even more complex as your
application grows in size.

Once you have completed Exercise 1, move on to Exercise 2. In the next problem,
you use the paned container instead of a vertical box.

69

CHAPTER 4 CONTAINERS

Exercise 2: Even More Containers

In this exercise, you expand upon the code you wrote in Exercise 1. Instead of using a
vertical Gtk.Box to hold the notebook and horizontal box of buttons, create a vertical
Gtk.Paned widget.

In addition to this change, you should hide the Gtk.Notebook tabs, so the user is not
able to switch between pages without pressing buttons. In this case, you not be able to
know when a page is being changed. Therefore, each button that is in a Gtk.Notebook
page should be contained by its own expander. The expander labels allow you to
differentiate between notebook pages.

Once you have completed Exercise 2, you will have had practice with Gtk.Box, Gtk.
Paned, Gtk.Notebook, and Gtk.Expander—four important containers used throughout
the rest of this book.

Before continuing on to the next chapter, you may want to test out a few of the
containers covered in this chapter that you did not need for Exercises 1 and 2. This
gives you practice using all of the containers, because later chapters do not review past
information.

Summary

In this chapter, you learned about the two types of container widgets: decorators and
layout containers. Types of decorators covered were expanders, and event boxes. Types
of layout containers covered were boxes, panes, grids, fixed containers, and notebooks.

The event box container is seen in later chapters, because there are other widgets
besides Gtk.Label that cannot handle GDK events. This is specified when you learn
about these widgets. You will see most of the containers in later chapters as well.

While these containers are necessary for GTK+ application development, merely
displaying Gtk.Label and Gtk.Button widgets in containers is not very useful (or
interesting) in most applications. This type of application does little to accommodate
anything beyond basic user interaction.

Therefore, in the next chapter, you are going to learn about many widgets that allow
you to interact with the user. These widgets include types of buttons, toggles, text entries,
and spin buttons.

70

CHAPTER 5

Basic Widgets

So far, you have not learned about any widgets that are designed to facilitate user

interaction—except Gtk.Button. That changes in this chapter, as we cover many types of

widgets that allow the user to make choices, change settings, or input information.

These widgets include push buttons, toggle buttons, check buttons, radio buttons,

color selection buttons, file chooser buttons, font selection buttons, text entries, and

number selection buttons.

In this chapter, you learn

How to use clickable buttons with stock items.

How to use types of toggle buttons, including check buttons and
radio buttons.

How to use the entry widget for one-line, free-form text input.

How to use the spin button widget for integer or floating-point

number selection.

What sort of specialized buttons are available.

Using Push Buttons

Previously, this section was titled “Using Stock Items.” But GTK+ 3.x stock items
have been deprecated, so I will show you how to create look-alike stock items out of

standard items.
Figure 5-1 shows how to create a look-alike stock Close button.

71

© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_5

CHAPTER 5 BASIC WIDGETS

311 ke

b4 Close

Figure 5-1. Look-alike stock button

Use the code in Listing 5-1 to produce the look-alike stock button.

Listing 5-1. Look-alike Stock Button
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new()
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
icon_theme = Gtk.IconTheme.get default()
icon = icon_theme.load icon("window-close", -1,
Gtk.IconLookupFlags.FORCE_SIZE)
image = Gtk.Image.new_from pixbuf(icon)
hbox.add(image)
label = Gtk.Label.new with mnemonic(" Close")
hbox.add(1label)
hbox.set_homogeneous (True)
button.add(hbox)
button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)

72

CHAPTER 5 BASIC WIDGETS

self.add(button)
self.set size request(230, 100)

def on button clicked(self, param):
self.destroy()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Look-alike Stock Item”)
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

The first task to create a custom button is to make a standard button and then
make a horizontal box. The next task is to create an image for the button. The following
statements accomplish that task.

icon_theme = Gtk.IconTheme.get default()

icon = icon_theme.load icon("window-close", -1,
Gtk.IconLookupFlags.FORCE_SIZE)

image = Gtk.Image.new_from pixbuf(icon)
hbox.add(image)

The first statement gets the default GTK+ theme. Next we load the PixBuficon from
the theme by name.
Next, we turn the PixBuficon into an image and then add it to the horizontal box.

73

CHAPTER 5 BASIC WIDGETS
Now we create a label an then add it to the horizontal box.

label = Gtk.Label.new with mnemonic(" Close")
hbox.add(1label)

Now we can connect the button to our custom method, set the relief style for the
button, and then add the button to the Gtk.ApplicationWindow.

button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)
self.add(button)

Tip The icon image you want may or may not be in the default theme. You may
have to look at other themes to find an image you can use. You may need to install
a GTK+ theme in order to obtain access to a theme that fits your purpose.

Toggle Buttons

The Gtk.ToggleButton widget is a type of Gtk.Button that holds its active or inactive
state after it is clicked. It is shown as pressed down when active. Clicking an active toggle
button causes it to return to its normal state. There are two widgets derived from Gtk.
ToggleButton: Gtk.CheckButton and Gtk.RadioButton

You can create a new The Gtk.ToggleButton with one of three functions. To create
an empty toggle button, use Gtk.ToggleButton.new(). If you want the toggle button
to include a label by default, use Gtk.ToggleButton.new with label(). Lastly, Gtk.
ToggleButton also supports mnemonic labels with Gtk.ToggleButton.new_with_
mnemonic().

Figure 5-2 shows two Gtk.ToggleButton widgets that were created with two
mnemonic labels by calling the Gtk.ToggleButton.new_with _mnemonic() initializer.
The widgets in the screenshot were created with the code in Listing 5-2.

74

CHAPTER 5 BASIC WIDGETS

No! Deactivate that one!

Figure 5-2. Two Gtk.ToggleButton widgets

In Listing 5-2, when one toggle button is activated, the other is disabled. The only

way to make it sensitive is to deactivate the original toggle button.

Listing 5-2. Two Gtk ToggleButton Widgets
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)

vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)
togglel = Gtk.ToggleButton.new with mnemonic(" Deactivate the other

one!™)

toggle2 = Gtk.ToggleButton.new with _mnemonic(" No! Deactivate that

one!™)

togglel.connect("toggled", self.on button toggled, toggle2)
toggle2.connect("toggled", self.on button toggled, togglel)
vbox.pack start(toggle1i, True, True, 1)

vbox.pack start(toggle2, True, True, 1)

self.add(vbox)

CHAPTER 5 BASIC WIDGETS

def on_button_toggled(self, toggle, other toggle):
if (Gtk.ToggleButton.get active(toggle)):
other toggle.set sensitive(False)
else:
other toggle.set sensitive(True)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Toggle Buttons")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

The only signal added by the Gtk.ToggleButton class is "toggled", which is emitted
when the user activates or deactivates the button. This signal was triggered in Listing 5-2
by one toggle button in order to disable the other.

In Listing 5-2 another important piece of information was shown: multiple widgets
can use the same callback method. We did not need to create a separate callback method
for each toggle button, since each required the same functionality. It is also possible to
connect one signal to multiple callback methods, although this is not recommended.
Instead, you should just implement the whole functionality in a single callback method.

Check Buttons

In most cases, you will not want to use the Gtk.ToggleButton widget, because it looks
exactly like a normal Gtk.Button. Instead, GTK+ provides the Gtk.CheckButton widget,
which places a discrete toggle next to the display text. Gtk.CheckButton is derived from
the Gtk.ToggleButton class. Two instances of this widget are shown in Figure 5-3.

76

|| 1am the main option.

Close

Figure 5-3. Two Gtk.CheckButton widgets

CHAPTER 5

BASIC WIDGETS

As with toggle buttons, three functions are provided for Gtk.CheckButton
initialization. These include Gtk.CheckButton.new(), Gtk.CheckButton.new with
label(), and Gtk.CheckButton.new with mnemonic().Gtk.CheckButton also inherits

the important “toggled” signal, which is used in Listing 5-3.

Listing 5-3. Gtk.CheckButtons
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)

check1 = Gtk.CheckButton.new with label("I am the main option.")
check2 = Gtk.CheckButton.new with label("I rely on the other guy.")

check2.set_sensitive(False)

check1.connect("toggled", self.on button checked, check2)
closebutton = Gtk.Button.new_with_mnemonic("_Close")

closebutton.connect("clicked", self.on button close clicked)
vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)

77

CHAPTER 5 BASIC WIDGETS

vbox.pack start(checki, False, True, 0)
vbox.pack start(check2, False, True, 0)
vbox.pack start(closebutton, False, True, 0)
self.add(vbox)

def on_button checked(self, check1, check2):
if check1.get active():
check2.set _sensitive(True);
else:
check2.set_sensitive(False)

def on button close clicked(self, button):
self.destroy()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Check Buttons")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

Excluding the initialization methods, all functionality for check boxes is
implemented in the Gtk.ToggleButton class and its ancestors. Gtk.CheckButton is
merely a convenience widget, which provides the graphical differences from standard
Gtk.Button widgets.

78

CHAPTER 5 BASIC WIDGETS

Radio Buttons

The second type of widget derived from Gtk.ToggleButton is the radio button widget.
In fact, Gtk.RadioButton is actually derived from Gtk.CheckButton. Radio buttons are
toggles that are generally grouped together.

In a group, when one radio button is selected, all others are deselected. The group
forbids selecting multiple radio buttons at once. This allows you to provide multiple

options to the user where only one should be selected.

Note GTK+ does not provide a way to deselect a radio button, so one radio
button is not desirable. The user is not able to deselect the option! If you only need
one button, you should use a Gtk .CheckButton or Gtk.ToggleButton widget.

Radio buttons are drawn as a discrete circular toggle on the side of the label widget,
so that they can be differentiated from other types of toggle buttons. It is possible to draw
radio buttons with the same toggle as Gtk.CheckButton, but this should not be done
because it can confuse and frustrate the user. A group of four radio buttons in a vertical

box is shown in Figure 5-4.

e I want to be clicked!
() Click me instead!

) No! Click me!
() Nol Click me instead!

Figure 5-4. Four Gtk.RadioButton widgets

For radio buttons to work correctly, they must all be referenced to another radio
button in the group. Otherwise, all of the buttons would act as independent toggle
buttons. An example of how to use multiple radio buttons is shown in Listing 5-4.

79

CHAPTER 5

BASIC WIDGETS

Listing 5-4. Gtk.RadioButton

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.

repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def

__init_ (self, *args, **kwargs):

super(). init (*args, **kwargs)
self.set border width(10)

radiol = Gtk.RadioButton.new with label(None, "I want to be clicked!™)

radio2 = Gtk.RadioButton.new with label from widget(radio1,
"Click me instead!)

radio3 = Gtk.RadioButton.new with label from widget(radio1,
"No! Click me!”)

radio4 = Gtk.RadioButton.new with label from widget(radio3,
"No! Click me!”)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL,

spacing=0) vbox.pack start(radio1, False, False, 0)

vbox.pack start(radio2, False, False, 0)

vbox.pack start(radio3, False, False, 0)

vbox.pack start(radio4, False, False, 0)

self.add(vbox)

self.show all()

class Application(Gtk.Application):

def

80

__init_ (self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

CHAPTER 5 BASIC WIDGETS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Radio Buttons")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

The first radio button in a group can be created with any of the following three
functions. However, if you want to use a Gtk. Label widget as the child, it is also possible
to use a mnemonic widget, so the toggle can be activated from the keyboard.

radiobutton = Gtk.RadioButton.new(list)
radiobutton = Gtk.RadioButton.new with_ label(list, "My label")
radiobutton = Gtk.RadioButton.new with mnemonic(list, " My label")

However, there is a fourth way to both create multiple radio buttons and a list at
the same time. You do this by creating your first radio button without specifying a list.
Subsequent radio buttons are created referencing the first radio button created or any
other radio button that is a part of the internal group.

Gtk.RadioButton.new with label(None, "I want to be clicked!")
Gtk.RadioButton.new with label from widget(radio1l, "Click me
instead!")

radio3 = Gtk.RadioButton.new with label from widget(radio1, "No! Click me!™)
radio4 = Gtk.RadioButton.new with label from widget(radio3, "No! Click me
instead!

radiol
radio2

None is specified for the radio group in each call. This is because the simplest way to
create a group of radio buttons is to associate them to another widget in the group. By
using this method, you avoid having to use the GLib with singly linked lists, since the list
is created and managed for you automatically.

Referring the initialization function to a radio button that already exists creates
each of these. GTK+ adds the new radio button to the group from the specified widget.
Because of this, you need only refer to any widget that already exists within the desired
radio group.

81

CHAPTER 5 BASIC WIDGETS

Lastly, every radio button in the group must be connected to the toggled signal.
When a radio button is selected, exactly two radio buttons emit the toggled signal,
because one is selected and another is deselected. You will not be able to catch all radio
button signals if you do not connect every radio button to toggled.

Text Entries

The Gtk.Entry widget is a single line, free-form text entry widget. It is implemented in a
general manner, so that it can be molded to fit many types of solutions. It can be used for
text entry, password entry, and even number selections.

Gtk.Entry also implements the Gtk.Editable interface, which provides a large
number of functions that are created to handle selections of text. An example Gtk.Entry
widget is shown in Figure 5-5. This text entry is used for password entry.

What is the password for dashley?

Password: |]

Figure 5-5. Gtk.Entry widget for passwords

Note Gtk.Editable is a special type of object called an interface. An interface is
a set of APIs that are implemented by multiple widgets and used for consistency. You
learn how to implement and utilize interfaces in your own widgets in Chapter 12.

The Gtk.Entry widget considers all text to be standard strings. The only way it
differentiates between normal text and passwords is that a special character called an
invisibility character is shown instead of password content. Listing 5-5 shows you how
to use a Gtk.Entry widget for password entry. If you want to use a Gtk.Entry widget for
normal text entry, you need only to turn visibility on.

82

CHAPTER 5 BASIC WIDGETS
Listing 5-5. Gtk.Entry
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
import os

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
prompt_str = "What is the password for

+ os.getlogin() + "?"
question = Gtk.Label(prompt str)

label = Gtk.Label("Password:")

passwd = Gtk.Entry()

passwd.set visibility(False)

passwd.set _invisible char("*")

hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
hbox.pack start(label, False, False, 5)

hbox.pack start(passwd, False, False, 5)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(question, False, False, 0)

vbox.pack start(hbox, False, False, 0)

self.add(vbox)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

83

CHAPTER 5 BASIC WIDGETS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Password")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

Entry Properties

The Gtk.Entry widget is a highly flexible widget, because it was designed to be employed
in the maximum number of instances. This can be seen from the wide array of properties
provided by the class. A sampling of the most important of those is included in this
section. For a full list of properties, you should reference Appendix A.

Oftentimes, you want to restrict the length of the free-form text entered into an
entry widget because of string limitations of the value. In the following function
prototype, entry.set_max_length() limits the text of the entry to a maximum number
of characters. This can be useful when you want to limit the length of user names,
passwords, or other length-sensitive information.

entry.set max_length(max_chars)

Invisibility characters facilitate password entries in GTK+. The invisibility character
is the character that replace the actual password content in the entry, which can be set
with entry.set_invisible char(). The default character for the entry is an asterisk.

entry.set _invisible char(single char)
entry.set visibility(boolean)

After specifying the invisibility character, you can hide all entered text by setting
visibility to False with entry.set visibility(). You are still able to retrieve the
actual content of the entry programmatically, even though it is hidden from view.

84

CHAPTER 5 BASIC WIDGETS

Inserting Text into a Gtk.Entry Widget

In GTK+ 3.x there is only one way to replace all the text in a Gtk.Entry widget. The
method entry.set_text() overwrites the whole content of the text entry with the given
string. However, this is only useful if you no longer care about the current text displayed
by the widget.

entry.set text(text)

The current text displayed by Gtk.Entry can be retrieved with entry.get text().
This string is used internally by the widget and must never be freed or modified in
any way. It is also possible to use entry.insert text() to insert text into a Gtk.Entry
widget. The parameter to entry.insert text() specify both the text to insert and the
character position to insert the text.

Spin Buttons

The Gtk.SpinButton widget is a number selection widget that is capable of handling
integers and floating-point numbers. It is derived from Gtk.Entry, so Gtk.SpinButton
inherits all of its functions and signals.

Adjustments

Before covering the Gtk.SpinButton widget, you must understand the Gtk.Adjustment
class. Gtk.Adjustment is one of the few classes in GTK+ that is not considered a widget,
because it is derived directly from Gtk.Object. It is used for several widgets, including
spin buttons, view ports, and the multiple widgets derived from Gtk.Range.

New adjustments are created with Gtk.Adjustment.new(). Once added to a widget,
memory management of the adjustment is handled by the widget, so you do not have to
worry about this aspect of the object.

Gtk.Adjustment.new(initial value, lower range, upper range,
step_increment, page increment, page size)

85

CHAPTER 5 BASIC WIDGETS

New adjustments are initialized with six parameters. A list of these parameters
follows.

o initial value: The value stored by the adjustment when it is
initialized. This corresponds to the value property of the Gtk.
Adjustment class.

o lower_range: The minimum value the adjustment is allowed to hold.
This corresponds to the lower property of the Gtk.Adjustment class.

o lower_range: The maximum value the adjustment is allowed to hold.
This corresponds to the upper property of the Gtk.Adjustment class.

o step_increment: The increment to make the smallest change
possible. If you want to count all integers between 1 and 10, the
increment would be set to 1.

o page_increment: The increment to make when Page Up or Page
Down is pressed. This is almost always larger than the step_
increment.

o page_size: The size of a page. This value does not have much use
in a Gtk.SpinButton, so it should be set to the same value as page
increment or to 0.

There are two useful signals provided by the Gtk.Adjustment class: changed and
value-changed. The "changed" signal is emitted when one or more properties of the
adjustment have been altered, excluding the value property. The "value-changed"
signal is emitted when the current value of the adjustment has been altered.

A Spin Button Example

The spin button widget allows the user to select an integer or floating-point number by
incrementing or decrementing with the up or down arrows. The user can still type in a
value with the keyboard, and it is displayed as the nearest acceptable value if it is out of
range. Figure 5-6 shows two spin buttons in action that display an integer and a floating-
point number.

86

CHAPTER 5 BASIC WIDGETS

Figure 5-6. Spin buttons

Spin buttons show integer or floating-point numbers. In actuality, numbers are
stored as double values. The spin button handles rounding the number to the correct
number of decimal places. Listing 5-6 is a simple example that creates both integer and
floating-point number spin buttons.

Listing 5-6. Integer and Floating-Point Number Selection
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
integer = Gtk.Adjustment(5.0, 0.0, 10.0, 1.0, 2.0, 2.0)
float pt = Gtk.Adjustment(5.0, 0.0, 1.0, 0.1, 0.5, 0.5)
spin_int = Gtk.SpinButton()
spin_int.set adjustment(integer)
spin_int.set_increments(1.0, 0)
spin_int.set digits(0)
spin _float = Gtk.SpinButton()
spin float.set adjustment(float pt)
spin float.set increments(0.1, 0)

87

CHAPTER 5 BASIC WIDGETS

spin_float.set digits(1)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(spin_int, False, False, 5)
vbox.pack_start(spin_float, False, False, 5)

self.add(vbox)

self.set _size request(180, 100)

self.show all()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Spin Buttons")
self.window.show_all()
self.window.present()

if _name__ == " main_ ":
app = Application()
app.run(sys.argv)

Before creating the spin buttons, you should create the adjustments. You can also
initialize the spin button with a None adjustment, but it is set as insensitive. After your
adjustments are initialized, you can create new spin buttons with Gtk. SpinButton.new().
The other two parameters in the initialization function specify the climb rate of the spin
button and the number of decimal places to display. The climb rate is how much the value
should be incremented or decremented when a (+) or (-) sign is pressed.

Gtk.SpinButton.new(climb _rate, digits)

Alternatively, you can create a new spin button with Gtk.SpinButton.new with
range(), which automatically creates a new adjustment based on the minimum,
maximum, and step values you specify. The initial value is set to the minimum value
plus a page increment of ten times the step_increment by default. The precision of the
widget is automatically set to the value of step_increment.

88

CHAPTER 5 BASIC WIDGETS
Gtk.SpinButton.new with range (minimum value, maximum value, step increment)

You can call spinbutton.set digits() to set a new precision of the spin button and
spinbutton.set value() to set a new value. The value is automatically altered if it is out
of bounds of the spin button.

spin_button.set value(value)

Horizontal and Vertical Scales

Another type of widget called a scale allows you to provide a horizontal or vertical slider
that can choose an integer or a floating-point number. Gtk.Scale is both a horizontal
scale widget and a vertical scale widget. In GTK+ 2.x the Gtk.Scale was an abstract class.
The two subclasses Gtk.HScale and Gtk.VScale were used to create horizontal and
vertical scales respectively. In GTK+ 3.x these two classes have been deprecated and the
Gtk.Scale has become a real class from which both horizontal and vertical boxes can be
created.

The functionality of the Gtk.Scale widget is not much different from Gtk.
SpinButton. Itis often used when you want to restrict the user from entering values,
since the value is chosen by moving the slider. Figure 5-7 shows a screenshot of two
horizontal scale widgets.

Figure 5-7. Horizontal scale widgets

Scales provide essentially the same functionality as spin buttons, except using a
slider chooses the number. To show the similarities between the widgets, Listing 5-7
implements the same functionality as Listing 5-6: two sliders allow the user to select an
integer and a floating-point number.

89

CHAPTER 5 BASIC WIDGETS

Listing 5-7. Integer and Floating-Point Number Selection
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(250, -1)
scale int = Gtk.Scale.new with range(Gtk.Orientation.HORIZONTAL,
0.0, 10.0, 1.0)
scale float = Gtk.Scale.new with range(Gtk.Orientation.HORIZONTAL,
0.0, 1.0, 0.1)
scale int.set digits(0)
scale float.set digits(1)
scale int.set value pos(Gtk.PositionType.RIGHT)
scale float.set value pos(Gtk.PositionType.LEFT)
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(scale int, False, False, 5)
vbox.pack start(scale float, False, False, 5)
self.add(vbox)

class Application(Gtk.Application):
def _init (self, *args, **kwargs):

super(). init_ (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Scales")

90

CHAPTER 5 BASIC WIDGETS

self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

There are multiple ways to create new scale widgets. The first is with Gtk.
Scale.new(), which accepts a Gtk.Adjustment that defines how the scale works.

Gtk.Scale.new(adjustment)

Alternatively, you can create scales with Gtk.Scale.new _with_range(). This function
accepts the minimum value, the maximum value, and the step increment of the scale.

Gtk.Scale.new with range(minimum, maximum, step)

Since the value of the scale is always stored as a double , you need to define the
number of decimal places to show with scale.set_digits() if the default value is not
what you want. The default number of decimal places is calculated based on the number
of decimal places provided for the step increment. For example, if you provide a step
increment of 0.01, two decimal places are displayed by default.

scale.set digits (digits)

Depending on what type of scale widget you are using, you may want to change
where the value is displayed with scale.set _value pos(). Positions are defined by
the Gtk.PositionType enumeration, and they are Gtk.PositionType.LEFT, Gtk.
PositionType.RIGHT. Gtk.PositionType.TOP, and Gtk.PositionType.BOTTOM. You can
also use scale.set_draw_value() to hide the value from the user’s view altogether.

scale.set value pos(pos)

Gtk.Scaleis derived from a widget called Gtk.Range. This widget is an abstract type
that provides the ability to handle an adjustment. You should use scale.get_value()
to retrieve the current value of the scale. Gtk.Range also provides the “value-changed”
signal, which is emitted when the user changes the position of the scale.

Gtk.Adjustment widgets may also be shared with other widgets. A single Gtk.
Adjustment may be shared with the Gtk.SpinButton and a Gtk.Scale widgets. See the

GTK documentation for more information.

91

CHAPTER 5 BASIC WIDGETS

Additional Buttons

While the Gtk.Button widget allows you to create your own custom buttons, GTK+
provides three additional button widgets that are at your disposal: the color selection
button, file chooser button, and font selection button.

Each of the sections covering these three widgets also cover other important
concepts, such as the Gtk.Color class, file filters, and Pango fonts. These concepts are
used in later chapters, so it is a good idea to get a grasp of them now.

Color Button

The Gtk.ColorButton widget provides a simple way for you to allow your users to select
a specific color. These colors can be specified as six-digit hexadecimal values or the RGB
value. The color button itself displays the selected color in a rectangular block set as the
child widget of the button. Figure 5-8 is an example of this.

Custom

°

Cancel Select

Figure 5-8. Color selection dialog
92

CHAPTER 5 BASIC WIDGETS

A Gtk.ColorButton Example

When clicked, the color button opens a dialog that allows the user to enter in the color
value or browse for a choice on the color wheel. The color wheel is provided so the user
is not required to know the numeric values of the colors. Listing 5-8 shows how to use
the Gtk.ColorButton widget in an application.

Listing 5-8. Gtk.ColorButton and Gdk.Color
#!/usx/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
from gi.repository import Gdk

class AppWindow(Gtk.ApplicationWindow):
def _init_ (self, *args, **kwargs):

super()._init_ (*args, **kwargs)

self.set border width(10)

color = Gdk.RGBA(red=0, green=.33, blue=.66, alpha=1.0)
color = Gdk.RGBA.to color(color)

button = Gtk.ColorButton.new with color(color)

button.set title("Select a Color!")

label = Gtk.Label("Look at my color!")

label.modify fg(Gtk.StateType.NORMAL, color)
button.connect("color set", self.on color changed, label)
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
hbox.pack start(button, False, False, 5)

hbox.pack start(label, False, False, 5)

self.add(hbox)

def on_color changed(self, button, label):
color = button.get color()
label.modify fg(Gtk.StateType.NORMAL, color)

93

CHAPTER 5 BASIC WIDGETS
class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Color Button")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

In most cases, you want to create a Gtk.ColorButton with an initial color value,
which is done by specifying a Gdk.Color object to button = Gtk.ColorButton.new_
with_color(). The default color, if none is provided, is opaque black with the alpha
option disabled.

Storing Colors in Gdk.Color

Gdk.Color is a class that stores red, green, and blue values for a color. These values can
be retrieved or set using the method shown next. The fourth available value is the pixel
object. It automatically stores the index of the color when it is allocated in a color map,
so there is usually no need for you to alter this value.

After creating a new Gdk . Color object, if you already know the red, green, and blue
values of the color, you can specify them in the following manner. Red, green, and blue
values are stored as unsigned integer values ranging from 0 to 65,535, where 65,535
indicates full-color intensity. For example, the following color refers to white.

mycolorobj = Gdk.Color.new()
mycolorobj.red = 65535
mycolorobj.green = 65535
mycolorobj.blue = 65535

94

CHAPTER 5 BASIC WIDGETS

Using the Color Button

After setting your initial color, you can choose the title that is given to the color selection
dialog with button.set_title(). By default, the title is “Pick a Color’, so it is not
necessary to set this value if you are content with this title.

button.get color()
label.modify fg(Gtk.StateType.NORMAL, color)

In Listing 5-8, the foreground color was set in the normal widget state, which is what
state all labels are in, by and large, unless they are selectable. There are five options for
the Gtk.StateType enumeration that can be used in label.modify fg(). You can reset
the widget’s foreground color to the default value by passing a None color.

File Chooser Buttons

The Gtk.FileChooserButton widget provides an easy method for you to ask users to
choose a file or a folder. It implements the functionality of the file selection framework
provided by GTK+. Figure 5-9 shows a file chooser button set to select a folder and a
button set to select a file.

|s] Foundations+of+GTK%2B+Development.pdf e

|] ImageLabelButtonClass.py =

/home/dashley/ad/git/PyGTK/code/Custom_Widgets/ImageLabelButtonClass.py

Figure 5-9. File chooser buttons

When the user clicks a Gtk.FileChooserButton, an instance of Gtk.
FileChooserDialog is opened that allows the user to browse and select one file or one
folder, depending on the type of button you created.

95

CHAPTER 5 BASIC WIDGETS

Note You do not learn how to use the Gtk.FileChooserDialog widget until
Chapter 6, but you do not need to directly interface with it at this point, because
Gtk.FileChooserButton handles all interactions with the dialog.

A Gtk.FileChooserButton Example

You are able to change basic settings, such as the currently selected file, the current
folder, and the title of the file selection window. Listing 5-9 shows you how to use both
types of file chooser buttons.

Listing 5-9. Using the File Chooser Button
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
from pathlib import Path

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
label = Gtk.Label("")

chooser1 = Gtk.FileChooserButton("Choose a Folder.",
Gtk.FileChooserAction.SELECT FOLDER)
chooser2 = Gtk.FileChooserButton("Choose a Folder.",

Gtk.FileChooserAction.OPEN)
chooser1.connect("selection changed",
self.on_folder changed, chooser2)
chooser2.connect("selection changed”,
self.on file changed, label)

96

CHAPTER 5 BASIC WIDGETS

chooseri.set current folder(str(Path.home()))
chooser2.set current folder(str(Path.home()))
filter1 = Gtk.FileFilter()

filter2 = Gtk.FileFilter()

filteri.set name("Image Files")

filter2.set name("All Files")

filteri.add pattern("*.png")

filteri.add _pattern("*.jpg")

filteri.add pattern("*.gif")

filter2.add pattern("*")

chooser2.add filter(filter1)

chooser2.add filter(filter2)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(chooseri, False, False, 0)
vbox.pack start(chooser2, False, False, 0)
vbox.pack start(label, False, False, 0)
self.add(vbox)

self.set size request(240, -1)

def on_folder changed(self,
chooser1, chooser2): folder =
chooseri.get filename()
chooser2.set current folder(folder)

def on_file changed(self, chooser2, label):
file = chooser2.get filename()
label.set text(file)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

97

CHAPTER 5 BASIC WIDGETS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="File Chooser
Button")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

File chooser button widgets are created with Gtk.FileChooserButton.new(). This
widget is able to serve two purposes: selecting a single file or a single folder. There are four
types of file choosers that can be created (the remaining two are covered in Chapter 6),
but file chooser buttons support only Gtk.FileChooserAction.OPEN and Gtk.
FileChooserAction.SELECT FOLDER.

Gtk.FileChooser

The Gtk.FileChooserButton widget is an implementation of the functionality provided
by the Gtk.FileChooser class. This means that, while the button is not derived from
Gtk.FileChooser, it can still utilize all the methods defined by Gtk.FileChooser. Quite a
few of the methods in Listing 5-9 utilize functions provided by Gtk.FileChooser.

In Listing 5-9, chooser1.set_current folder() was used to set the current folder
of each file chooser button to the user’s home directory. The contents of this folder is
shown when the user initially clicks a file chooser button unless it is changed through
some other means. This method returns True if the folder was successfully changed.

chooseri.set current folder(filename)

The Path.home() method is a utility module provided by Python that returns the
current user’s home directory. As with most features in pathlib, this method is platform
independent.

This brings up a useful characteristic of the file chooser interface; it can be used
to browse many types of file structures, whether it is on a UNIX or Windows machine.
This is especially useful if you want your application to be designed for multiple
operating systems.

98

CHAPTER 5 BASIC WIDGETS

Since the file chooser button only allows one file to be selected at a time, you can use
chooser1.get filename()to retrieve the currently selected file or folder, depending on
the type of file chooser button. If no file is selected, this function returns None.

filename = chooseri.get filename()

At this point, you have enough information about the Gtk.FileChooser class to
implement file chooser buttons. Gtk.FileChooser is covered in more depth in the next
chapter when you learn about the Gtk.FileChooserDialog widget.

File Filters

Gtk.FileFilter objects allow you to restrict the files shown in the file chooser. For
example, in Listing 5-9, only PNG, JPG, and GIF files could be viewed and chosen by the
user when the Image Files filter was selected.

File filters are created with Gtk.FileFilter.new(). Therefore, you need to use
filefilter.set name() to set a displayed name for the filter type. If you provide more
than one filter, this name allows the user to switch between them.

filefilter = Gtk.FileFilter.new ();
filefilter.set name (name)

Lastly, for a filter to be complete you need to add types of files to show. The standard
way of doing this is with filefilter.add pattern() as shown in the following code
snippet. This function allows you to specify a format for the filenames that are to be
shown. Usually identifying file extensions that should be shown does this. You can use
the asterisk character as a wildcard for any type of filtering function.

filefilter.add pattern (pattern)

Tip Asin Listing 5-9, you may want to provide an AL1 Files filter that shows
every file in the directory. To do this, you should create a filter with only one pattern
set to the wildcard character. If you do not provide this filter, the user will never be
able to view any files that do not match a pattern provided by another filter.

99

CHAPTER 5 BASIC WIDGETS

You can also specify filter patterns with filefilter.add mime_type() by specifying
the Multipurpose Internet Mail Extensions (MIME) type. For example, image/* shows all
files that are an image MIME type. The problem with this function is that you need to be
familiar with MIME types. However, the advantage of using MIME types is that you do
not need to specify every file extension for a filter. It allows you to generalize to all files in
a specific MIME category.

filefilter.add mime_type(mime type)

After you create the filter, it needs to be added to the file chooser, which can be done
with filechooser.add filter().Once you supply the filters, the first specified filters is
used by default in the file chooser. The user is able to switch between types if you have
specified multiple filters.

filechooser.add filter (filter)

Font Buttons

Gtk.FontButton is another type of specialized button that allows the user to select font
parameters that correspond to fonts currently residing on the user’s system. Font options
are chosen in a font selection dialog that is displayed when the user clicks the button.
These options include the font name, style options, and font size. An example
Gtk.FontButton widget is displayed in Figure 5-10.

Sans Bold 12
Look at the font!

Figure 5-10. Font selection buttons

Font button widgets are initialized with Gtk.FontButton.new with font(), which
allows you to specify the initial font. The font is provided as a string in the following
format: Family Style Size. Each of the parameters is optional; the default font for Gtk.
FontButton is Sans 12, which provides no style parameters.

100

CHAPTER 5 BASIC WIDGETS

“Family” refers to the formal font name, such as Sans, Serif, or Arial. Style options
can vary between fonts, but they normally include Italic, Bold, and Bold Italic. If you
choose a Regular font style, no font style is specified. The size is the point size of the text,
such as 12 or 12.5.

A Gtk.FontButton Example

Listing 5-10 creates a Gtk.FontButton widget that is initialized with a Sans Bold 12 font.
When the chosen font in the button is changed, the new font is applied to a Gtk. Label
widget packed below the font button.

Listing 5-10. Using the Font Button
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
from gi.repository import Pango

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
label = Gtk.Label("Look at the font!")
initial font = Pango.font description from string("Sans Bold 12")
label.modify font(initial font)
button = Gtk.FontButton.new with font("Sans Bold 12")
button.set title("Choose a Font")
button.connect("font_set", self.on font changed, label)
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(button, False, False, 0)
vbox.pack_start(label, False, False, 0)
self.add(vbox)

101

CHAPTER 5 BASIC WIDGETS

def on_font changed(self, button, label):
font = button.get_font()
desc = Pango.font description from string(font)
buffer = "Font: " + font
label.set text(buffer)
label.modify font(desc)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Font Button")
self.window.show all()
self.window.present()

if _name__ == "_ main_":
app = Application()

app.run(sys.argv)

Using Font Selection Buttons

The code in Listing 5-10 gives the first sampling of the Pango.FontDescription class that
you have run across. The Pango.FontDescription class is used to parse font style strings.
You can create and use a new font description from a font string, such as Sans Bold 12, by
calling Pango.font_description from string() as follows.

initial font = Pango.font description from string("Sans Bold 12")
label.modify font(initial font)

After creating a font description, modify font() can be called to set the font of the
widget’s text. This function edits the font description object stored by the widget’s Gtk.
StyleContext property.

102

CHAPTER 5 BASIC WIDGETS

In Listing 5-10, the label’s text was set to the font stored by the Gtk.FontButton when
the “font-set” signal was emitted. You can retrieve the whole font description string
stored by the font button with fontbutton.get font name(), which was used to retrieve
the font string displayed by the label.

fontbutton.get font name()

In Listing 5-10, the new font style was applied to the Gtk.Label. However, if you set
fontbutton.set use font() and fontbutton.set use size() to True, the font button
uses the font family and size when rendering its text. This allows the user to preview the
text in the font button. This is turned off for font buttons by default.

fontbutton.set use font(boolean)
fontbutton.set use size(boolean)

Test Your Understanding

In this chapter, you learned about a number of basic widgets, such as Gtk.Entry, Gtk.
SpinButton, and various types of toggles and buttons. In the following two exercises, you
are creating two applications to practice using these widgets.

Exercise 1: Renaming Files

In this exercise, use a Gtk.FileChooserButton widget to allow the user to choose a file
on the system. Next, use a Gtk.Entry widget that allows the user to specify a new name
for the file. (Note that you can find functions for the file utilities required by this exercise
in the Python documentation.)

If the file was successfully renamed, you should disable the Gtk.Entry widget
and button until the user chooses a new file. If the user does not have permission to
rename the file that is selected, then the Gtk.Entry widget and button should be set
as insensitive as well. When you complete this exercise, you can find the solution in
Appendix D.

This exercise makes use of two widgets covered in this chapter: Gtk.Entry and
Gtk.FileChooserButton. It also requires you to use multiple utility functions provided
by Python, including functions to rename a file and retrieve information about the
permissions of an existing file.

103

CHAPTER 5 BASIC WIDGETS

Although you are not learning about any Python file functions, you may also want
to experiment with some other file-related utility functions, such as the ability to create
directories, change file permissions, and move throughout a directory structure. Python
provides a lot of functionality, and it is worthwhile to explore the API documentation in
your free time.

Exercise 2: Spin Buttons and Scales

In this exercise, create three widgets: a spin button, a horizontal scale, and a check
button. The spin button and horizontal scale should be set with the same initial value
and bounds. If the check button is selected, the two adjustment widgets should be
synchronized to the same value. This means that when the user changes the value of one
widget, the other is changed to the same value.

Since both widgets support integers and floating-point numbers, you should
implement this exercise with various numbers of decimal places. You should also
practice creating spin buttons and scales both with adjustments and by using the
convenience initializers.

Summary

In this chapter, you have learned about the following nine new widgets that provide you
with a meaningful way to interact with your users.

o Gtk.ToggleButton: A type of Gtk.Button widget that holds its active
or inactive state after it is clicked. It is shown as pressed down when it

is active.

o Gtk.CheckButton: Derived from Gtk.ToggleButton, this widget is
drawn as a discrete toggle next to the displayed text. This allows it to
be differentiated from a Gtk.Button.

e Gtk.RadioButton: You can group multiple radio button widgets
together so that only one toggle in the group can be activated at once.

o Gtk.Entry: This widget allows the user to enter free-form text on a
single line. It also facilitates password entry.

104

CHAPTER 5 BASIC WIDGETS

o Gtk.SpinButton: Derived from Gtk.Entry, spin buttons allow the
user to select or enter an integer or floating-point number within a
predefined range.

e Gtk.Scale: Similar to the spin button, this widget allows the user to
select an integer or floating-point number by moving a vertical or
horizontal slider.

e Gtk.ColorButton: This special type of button allows the user to select
a specific color along with an optional alpha value.

e Gtk.FileChooserButton: This special type of button allows the user
to select a single file or folder that already exists on the system.

o Gtk.FontButton: This special type of button allows the user to select
a font family, style, and size.

In the next chapter, you learn how to create your own custom dialogs using the
Gtk.Dialog class and about a number of dialogs that are built into GTK+. By the end of
Chapter 6, you have a decent grasp of the most important simple widgets available to you

in GTK+. From there, we continue on to more complex topics.

105

CHAPTER 6

Dialogs

This chapter introduces you to a special type of window called a dialog. Dialogs are
windows that supplement the top-level window. The dialog is provided by Gtk.Dialog,
a child class of Gtk.Window, extended with additional functionality. This means that it
is possible to implement your entire interface in one or more dialogs, while leaving the
main window hidden.

You can do anything with a dialog, such as display a message or prompt the user to
select an option. Their purpose is to enhance user experience by providing some type of
transient functionality.

In the first part of the chapter, you learn how to use Gtk.Dialog to create your
own custom dialogs. The next section introduces the large number of built-in dialogs
provided by GTK+. Lastly, you learn about a widget called Gtk.Assistant that allows
you to create dialogs with multiple pages; assistants are meant to help the user through a
multistage process.

In this chapter, you learn the following.

o How to create your own custom dialogs using the Gtk.Dialog widget

e How to give general information, error messages, and warnings to the
user with the Gtk.MessageDialog widget

e How to provide information about your application with Gtk.
AboutDialog

o What types of file chooser dialogs are available
o The ways to collect information with font and color selection dialogs

e How to create dialogs with multiple pages using the Gtk.Assistant
widget

107
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_6

CHAPTER6 DIALOGS

Creating Your Own Dialogs

A dialog is a special type of Gtk.Window that supplements the top-level window. It can
give the user a message, retrieve information from the user, or provide some other
transient type of action.

Dialog widgets are split in half by an invisible horizontal separator. The top part is
where you place the main part of the dialog’s user interface. The bottom halfis called
the action area, and it holds a collection of buttons. When clicked, each button emits a
unique response identifier that tells the programmer which button was clicked.

In most ways, the dialog widget can be treated as a window, because it is derived
from the Gtk.Window class. However, when you have multiple windows, a parent-child
relationship should be established between the dialog and the top-level window when
the dialog is meant to supplement the top-level window.

vbox = mydialog.get content area()

Gtk.Dialog provides access a vertical box that has the action area defined at bottom
of the box. The content area has yet to be defined. To define it you begin packing widgets
at start of the vertical box. Therefore you must always use the pack_start() to add
widgets to a Gtk.Dialog class. Buttons can easily be added to the action area with the
add_button(button text, response id) method call.

Note It is possible to manually implement the functionality of Gtk.Dialog by
creating a Gtk.Window with all of the same widgets and establishing window
relationships with set_transient for() in addition to other functions provided
by Gtk.Window. Gtk.Dialog is simply a convenience widget that provides
standard methods.

Both the action area and a separator are packed at the end of the dialog’s vertical box.
The provided by Gtk.Box (vbox) holds all the dialog content. Because the action area is
packed at the end, you should use pack_start() to add widgets to a Gtk.Dialog as follows.

vbox = mydialog.get ac area()
vbox.pack start (child, expand, fill, padding)

By packing widgets at the start of the box, the action area and the separator always
remains at the bottom of the dialog.

108

CHAPTER6 DIALOGS

Creating a Message Dialog

One advantage of Gtk.Dialog is that, no matter how complex the content of your dialog
is, the same basic concepts can be applied to every dialog. To illustrate this, we begin by
creating a very simple dialog that gives the user a message. Figure 6-1 is a screenshot of
this dialog.

The button was clicked.

Ok

Figure 6-1. A message dialog created programmatically

Listing 6-1 creates a simple dialog that notifies the user when the clicked signal is
emitted by the button. This functionality is provided by the Gtk.MessageDialog widget,
which is covered in a later section of this chapter.

Listing 6-1. Your First Custom Dialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new with mnemonic(" Click Me")
button.connect("clicked", self.on button clicked, self)
self.add(button)
self.set size request(150, 50)

109

CHAPTER6 DIALOGS

def on button clicked(self, button, parent):
dialog = Gtk.Dialog(title="Information", parent=parent,
flags=Gtk.DialogFlags.MODAL)
dialog.add button("0Ok", Gtk.ResponseType.OK)
label = Gtk.Label("The button was clicked.")
image = Gtk.Image.new from icon name("dialog-information",
Gtk.IconSize.DIALOG)
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
hbox.pack start(image, False, False, 0)
hbox.pack start(label, False, False, 0)
dialog.vbox.pack start(hbox, False, False, 0)
dialog.show all()
dialog.run()
dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Dialogs")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

Creating the Dialog

The first thing you need to do when the button in the main window is clicked is create
the Gtk.Dialog widget with Gtk.Dialog.new with buttons(). The first two parameters
of this function specify the title of the dialog, a pointer to the parent window, and the
modality flag.

110

CHAPTER6 DIALOGS

dialog = Gtk.Dialog(title="Information", parent=parent, flags=Gtk.
DialogFlags.MODA

The dialog is set as the transient window of the parent window, which allows
the window manager to center the dialog over the main window and keep it on top
if necessary. This can be achieved for arbitrary windows by calling window.set_
transient for(). You can also provide None if you do not want the dialog to have or
recognize a parent window.

Next, you can specify one or more dialog flags. Options for this parameter are given
by the Gtk.DialogFlags enumeration. There are three available values, which are shown
in the following list.

o Gtk.DialogFlags.MODAL: Force the dialog to remain in focus on
top of the parent window until closed. The user is prevented from
interacting with the parent.

o Gtk.DialogFlags.DESTROY WITH PARENT: Destroy the dialog when
the parent is destroyed, but do not force the dialog to be in focus. This
creates a nonmodal dialog unless you call dialog.run().

o Gtk.DialogFlags.USE_HEADER BAR: Create a dialog with actions in
the header bar instead of the action area.

In Listing 6-1, specifying Gtk.DialogFlags.MODAL created a modal dialog. It is not
necessary to specify a title or parent window; the values can be set to None. However, you
should always set the title, so it can be drawn in the window manager; otherwise, the
user has difficulty choosing the desired window.

In Listing 6-1, an OK button with a response of Gtk.ResponseType.0K was added to
the dialog.

In GTK+ 2.x, all dialogs placed a horizontal separator between the main content and
the action area of the dialog by default. That separator has been deprecated in GTK+ 3.x.

After the child widgets are created, they need to be added to the dialog. As I
previously stated, child widgets are added to the dialog by calling box.pack start().
The dialog is packed as follows.

image = Gtk.Image.new from icon name("dialog-information", Gtk.IconSize.
DIALOG)
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

111

CHAPTER6 DIALOGS

hbox.pack start(image, False, False, 0)
hbox.pack start(label, False, False, 0)
dialog.vbox.pack start(hbox, False, False, 0)

At this point, you need to show the dialog and its child widgets, because dialog.
run()only calls dialog. show() on the dialog itself. To do this, call dialog.show all()
on the dialog. If you do not show the widgets, only the separator and action area is visible
when dialog.run() is called.

Response Identifiers

When a dialog is fully constructed, one method of showing the dialog is by calling
dialog.run(). This function returns an integer called a response identifier when
complete. It also prevents the user from interacting with anything outside of the dialog
until it is destroyed or an action area button is clicked.

dialog.run()

Internally, dialog.run() creates a new main loop for the dialog, which prevents
you from interacting with its parent window until a response identifier is emitted or the
user closes the dialog. Regardless of what dialog flags you set, the dialog is always modal
when you call this method, because it calls dialog.set _modal().

If the dialog is manually destroyed by using a method provided by the window
manager, Gtk.ResponseType.NONE is returned; otherwise, dialog.run() returns
the response identifier referring to the button that was clicked. A full list of available
response identifiers from the Gtk.ResponseType enumeration is shown in Table 6-1.
You should always use the identifier’s available values instead of random integer values,
since they could change in future versions of GTK+.

112

CHAPTER6 DIALOGS

Table 6-1. Gtk.ResponseType Enumeration Values

Identifiers Value Description
Gtk.ResponseType.NONE -1 Returned if an action widget has no response
ID, or if the dialog is programmatically hidden or
destroyed.
Gtk.ResponseType.APPLY -10 Returned by Apply buttons in GTK+ dialogs.
Gtk.ResponseType .HELP -1 Returned by Help buttons in GTK+ dialogs.
Gtk.ResponseType.REJECT -2 Generic response ID, not used by GTK+ dialogs.
Gtk.ResponseType.ACCEPT -3 Generic response ID, not used by GTK+ dialogs.
Gtk.ResponseType.DELETE_EVENT -4 Returned if the dialog is deleted.
Gtk.ResponseType.0K -5 Returned by OK buttons in GTK + dialogs.
Gtk.ResponseType.CANCEL -6 Returned by Cancel buttons in GTK+ dialogs.
Gtk.ResponseType.CLOSE ~7 Returned by Close buttons in GTK+ dialogs.
Gtk.ResponseType.YES -8 Returned by Yes buttons in GTK + dialogs.
Gtk.ResponseType.No -9 Returned by No buttons in GTK+ dialogs.

Of course, when you create your own dialogs and when using many of the built-in

dialogs covered in the next few pages, you are free to choose which response identifier

to use. However, you should try to resist the urge to apply a Gtk.ResponseType.CANCEL

identifier to an OK button, or some other type of absurdity along those lines.

Note You are free to create your own response identifiers, but you should use
positive numbers, since all of the built-in identifiers are negative. This allows you to
avoid conflicts when more identifiers are added in future versions of GTK+.

After the dialog returns a response identifier, you need to make sure to call dialog.

destroy(), or it will cause a memory leak. GTK+ makes sure all of the dialog’s children

are destroyed, but you need to remember to initiate the process.

By calling dialog.destroy(), all of the parent’s children are destroyed and its

reference count drops. When an object’s reference count reaches zero, the object is

finalized, and its memory freed.

113

CHAPTER6 DIALOGS

The Gtk.Image Widget

Listing 6-1 introduces another new widget called Gtk.Image. Images can be loaded in a
wide variety of ways, but one advantage of Gtk.Image is that it displays the named image
“image-missing” if the loading has failed. It is also derived from Gtk.Widget, so it can be
added as a child of a container unlike other image objects, such as Gdk.Pixbuf.

In our example, new_from_icon name() created the Gtk.Image widget from a named
theme item.

image = Gtk.Image.new _from icon name("dialog-information", Gtk.IconSize.DIALOG)

When loading an image, you also need to specify a size for the image. GTK+
automatically looks for a stock icon for the given size and resizes the image to that
size if none is found. Available size parameters are specified by the Gtk.IconTheme
enumeration, as seen in the following list.

e Gtk.IconSize.INVALID: Unspecified size

e Gtk.IconSize.MENU: 16x16 pixels

o Gtk.IconSize.SMALL_TOOLBAR: 18x18 pixels
e Gtk.IconSize.LARGE TOOLBAR: 24x24 pixels
e Gtk.IconSize.BUTTON: 24x24 pixels

e Gtk.IconSize.DND: 32x32 pixels

e Gtk.IconSize.DIALOG: 48x48 pixels

Asyou can see, theme Gtk.Image objects are usually used for smaller images, such
as those that appear in buttons, menus, and dialogs, since theme images are provided in
a discrete number of standard sizes. In Listing 6-1, the image was set to Gtk.IconSize.
DIALOG or 48x48 pixels.

Multiple initialization functions for Gtk.Image are provided, which are described in
the API documentation, but new_from file() and new_from pixbuf() are especially
important to future examples in this book.

Gtk.Image.new from file(filename)

114

CHAPTER6 DIALOGS

Gtk.Image automatically detects the image type of the file specified to new_from_
file(). If the image cannot be loaded, it displays a broken-image icon. Therefore, this
function never returns a None object. Gtk.Image also supports animations that occur
within the image file.

Calling new_from pixbuf() creates a new Gtk.Image widget out of a previously
initialized Gdk . Pixbuf. Unlike new_from file(), you can use this function to easily figure
out whether the image is successfully loaded since you first have to create a Gdk.Pixbuf.

Gdk.Image.new_from pixbuf(pixbuf)

You need to note that the Gtk.Image creates its own references to the Gdk . Pixbuf, so you
need to release your reference to the object if it should be destroyed with the Gtk. Image.

Nonmodal Message Dialog

By calling dialog.run(), your dialog is always set as modal, which is not always
desirable. To create a nonmodal dialog, you need to connect to Gtk.Dialog’s
response signal.

In Listing 6-2, the message dialog from Figure 6-1 is reimplemented as a nonmodal
dialog. You should try clicking the button in the main window multiple times in a row.
This shows how you can not only create multiple instances of the same dialog but also
access the main window from a nonmodal dialog.

Listing 6-2. A Nonmodal Message Dialog
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new with _mnemonic(" Click Me")

115

CHAPTER6 DIALOGS

button.connect("clicked", self.on button clicked, self)
self.add(button)

self.set size request(150, 50)

self.show all()

def on_button clicked(self, button, parent):
dialog = Gtk.Dialog(title="Information", parent=parent)
dialog.add button("0Ok", Gtk.ResponseType.OK)
label = Gtk.Label("The button was clicked.")
image = Gtk.Image.new from icon name("dialog-information",

Gtk.IconSize.DIALOG)

hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
hbox.pack start(image, False, False, 0)
hbox.pack start(label, False, False, 0)
dialog.vbox.pack start(hbox, False, False, 0)
dialog.connect("response”, self.on dialog button clicked)
dialog.show all()

def on_dialog button clicked(self, dialog, response):
dialog.destroy()

class Application(Gtk.Application):

def _init_ (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Dialogs")
self.window.show all()
self.window.present()

if _name__ == " main_":
app = Application()

app.run(sys.argv)

116

CHAPTER6 DIALOGS

Creating a nonmodal dialog is very similar to the previous example, except you do
not want to call dialog.run(). By calling this function, a modal dialog is created by
blocking the parent window’s main loop regardless of the dialog flags.

Tip You can still create a modal dialog without using dialog.run() by setting
the Gtk.DialogFlags.MODAL flag. You can then connect to the response signal.
This function simply provides a convenient way to create modal dialogs and handle
response identifiers within one function.

By connecting to Gtk.Dialog’s response signal, you can wait for a response identifier
to be emitted. By using this method, the dialog is not automatically unreferenced when
aresponse identifier is emitted. The response callback method receives the dialog, the
response identifier that was emitted, and the optional data parameter.

One of the most important decisions you have to make when designing a dialog is
whether it is modal or nonmodal. As a rule of thumb, if the action needs to be completed
before the user can continue working with the application, then the dialog should be
modal. Examples of this would be message dialogs, dialogs that ask the user a question,
and dialogs to open a file.

If there is no reason why the user cannot continue working while the dialog is open,
you should use a nonmodal dialog. You also need to remember that multiple instances
of nonmodal dialogs can be created unless you prevent this programmatically, so dialogs
that must have only one instance should be created as modal.

Another Dialog Example

Now that you have created a simple message dialog from scratch, it is time to produce
a more complex dialog. In Listing 6-3, a few pieces of basic information about the user
are propagated using Python’s utility functions. A dialog, which is shown in Figure 6-2,
allows you to edit each piece of information.

117

CHAPTER6 DIALOGS

User Name:| SERREN

Real Name: David Ashley

Home Dir: | /home/dashley

Host Name: localhost.localdomain

Ok Cancel

Figure 6-2. A simple Gtk.Dialog widget

This information is, of course, not actually changed within the user’s system; the new
text is simply output to the screen. This example illustrates the fact that, regardless of the
complexity of the dialog, the basic principles of how to handle response identifiers are
still the only ones that are necessary.

You could easily implement this as a nonmodal dialog as well, although this would
not be of much use since the dialog itself is the application’s top-level window.

Listing 6-3. Editing Information in a Dialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
import os

import getpass

import socket

import pwd

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new with mnemonic(" Click Me")

118

CHAPTER6 DIALOGS

button.connect("clicked", self.on button clicked, self)
self.add(button)

self.set size request(180, 50)

self.show all()

def on_button clicked(self, button, parent):

dialog = Gtk.Dialog(title="Edit User Information",
parent=parent, flags=Gtk.DialogFlags.MODAL)

dialog.add button("0Ok", Gtk.ResponseType.OK)

dialog.add button("Cancel", Gtk.ResponseType.CANCEL)

dialog.set default response(Gtk.ResponseType.OK)

1bl1 = Gtk.Label("User Name:")

1bl2 = Gtk.Label("Real Name:")

1b13 = Gtk.Label("Home Dir:")

1bl4 = Gtk.Label("Host Name:")

user = Gtk.Entry()

real name = Gtk.Entry()

home = Gtk.Entry()

host = Gtk.Entry()

user.set_text(getpass.getuser())

real name.set text(pwd.getpwuid(os.getuid())[4])

home.set_text(os.environ["HOME'])

host.set_text(socket.gethostname())

grid = Gtk.Grid()

grid.attach(1lbl1,

grid.attach(1lbl2,

grid.attach(1bl3,

grid.attach(1lbl4, o, 3, 1)

grid.attach(user, 1, 0, 1, 1)

grid.attach(real name, 1, 1, 1, 1)

grid.attach(home, 1, 2, 1, 1)

grid.attach(host, 1, 3, 1, 1)

dialog.vbox.pack start(grid, False, False, 5)

dialog.show all()

result = dialog.run()

1)
1)
1)

-
-
-

-
-
-

o O O O

-

-

N

e
L N = N N

A

119

CHAPTER6 DIALOGS

if result == Gtk.ResponseType.OK:
print("User Name: " + user.get text())
print("Real Name: " +
real name.get text()) print("Home: " +
home.get text()) print("Host: " +
host.get text())

dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Simple Dialog")
self.window.show_all()
self.window.present()

if _name_ == " main_":
app = Application()
app.run(sys.argv)

The proper way to handle any modal dialog is to use the response identifiers,
deriving the correct response based on the clicked button. Since there was only one
response that needed to be deliberately detected, a conditional if statement was used in
Listing 6-3.

However, let’s assume that you need to handle multiple response identifiers. In this
case, an if statement would be a better solution, since it was created to compare a single
variable to multiple selections, as shown in the following code snippet.

result = dialog.run()

if result == Gtk.ResponseType.OK:
... Handle result ...

elif result == Gtk.ResponseType.APPLY:
... Handle result ...

120

CHAPTER6 DIALOGS

else:
... Handle default result ...

dialog.destroy()

Built-in Dialogs

There are many types of dialogs already built into GTK+. Although not all of the
available dialogs are covered in this chapter, you are given a strong understanding of
the concepts needed to use any built-in dialog. This section covers Gtk.MessageDialog,
GtkAboutDialog, Gtk.FileChooserDialog, Gtk.FontChooserDialog, and Gtk.
ColorChooserDialog.

Message Dialogs

Message dialogs give one of four types of informational messages: general information,
error messages, warnings, and questions. This type of dialog decides the icon to display,
the title of the dialog, and the buttons to add.

There is also a general type provided that makes no assumption as to the content of
the message. In most cases, you will not want to use this, since the four provided types
would fill most of your needs.

It is very simple to re-create the Gtk.MessageDialog widget. The first two examples
implemented a simple message dialog, but Gtk.MessageDialog already provides this
functionality, so you should not need to re-create the widget. Using Gtk.MessageDialog
saves on typing and avoids the need to re-create this widget many times, since most
applications make heavy use of Gtk.MessageDialog. It also provides a uniform look for
message dialogs across all GTK+ applications.

Figure 6-3 shows an example of a Gtk.MessageDialog (compare this to Figure 6-1),
which gives the user visual notification of a button’s clicked signal.

121

CHAPTER6 DIALOGS

The button was clicked.

Ok

Figure 6-3. A Gtk.MessageDialog widget

Since the content of the message is not critical, its type is set to a general message.
This message dialog can be produced using the code shown in Listing 6-4.

Listing 6-4. Using a Gtk.MessageDialog
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init_(self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new with _mnemonic(" Click Me")
button.connect("clicked", self.on button clicked, self)
self.add(button)
self.set size request(150, 50)

def on_button clicked(self, button, parent):

dialog = Gtk.MessageDialog(type=Gtk.MessageType.INFO, parent=parent,
flags=Gtk.DialogFlags.MODAL,
buttons=("0k", Gtk.ResponseType.OK),
text="The button was clicked.",
title="Information")

dialog.run()

dialog.destroy()

122

CHAPTER 6 DIALOGS
class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Dialogs")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

After the button in the main window is clicked, this example creates a new Gtk.
MessageDialog.

The parent window can be set to None if necessary, but in most cases, a parent-child
relationship should be established. If you do not set a parent widget, the message dialog
will not be centered above the parent window.

Message dialogs should be addressed by the user immediately, because they present
some type of important message or critical question that needs the user’s attention. By
not setting a parent window, the message dialog can be easily ignored, which is not the
desired action in most cases.

dialog = Gtk.MessageDialog. (type=Gtk.MessageType.INFO, parent=parent, \
flags=Gtk.DialogFlags.MODAL, \
buttons=("0k", Gtk.ResponseType.OK), \
text="The button was clicked.", \
title="Information")

You specify one or more dialog flags. Options for this parameter are given by the Gtk.
DialogFlags enumeration that was used when creating custom dialogs in the previous
three examples.

123

CHAPTER6 DIALOGS

Unlike GTK+ 2.x, the 3.x Gtk.MessageDialog does not use any positional parameters.
Instead, it uses keyword parameters exclusively. Also note that Gtk.MessageDialog does
not use a new method. This is because Gtk.MessageDialog creates a subclass of Gtk.
MessageDialog and the keywords determine what kind subclass is created.

Also note that the light bulb icon image is missing from the message dialog. This is
due to philosophy changes in GTK+ 3.x. If you must have icons in your dialogs then you
need to use Gtk.Dialog to hand create your dialogs.

Multiple buttons are supported by including a comma-separated list of buttons/
response ids using the "buttons" keyword.

You have no control over the visual formatting of the message provided to Gtk.
MessageDialog. If you would like to use the Pango Text Markup Language to format the
message dialog’s text, you can leave out the "text" keyword from the Gtk.MessageDialog
call. Then call set_markup(str) method with a string of Pango markup to set the text of
the message.

It is possible to add a secondary text to the message dialog, which causes the first
message to be set as bold with format_secondary text(). The text string provided to
this function should be similar to the format supported by the C printf().

This feature is very useful, because it allows you to give a quick summary in the
primary text and go into detail with the secondary text.

About Dialogs

The Gtk.AboutDialog widget provides you with a simple way to provide the user with
information about an application. This dialog is usually displayed when the item in
the Help menu is chosen. However, since menus are not covered until Chapter 10, our
example dialog is used as the top-level window.

Various types of information are shown with Gtk.AboutDialog, including the name
of the application, copyright, current version, license content, authors, documenters,
artists, and translators. Because an application won’t have all of this information, every
property is optional. The main window displays only the basic information, which is
seen along with the author credits in Figure 6-4.

124

CHAPTER 6 DIALOGS

GtkAboutDialogWidget.py

30
All about Gtk.AboutDialog
j_:_'. M 1- al I_'H'_%‘_-.:.'l\'._‘._ ause.net

(C) 2007 Andrew Krause

Credits License Close

Four ns of

GTK.

Development

GtkAboutDialogWidget.py

Created by Author #1
Author #2
Documented by Documenter #1
Documenter #2
Translated by Translator #1
Translator #2

Credits License Close

Figure 6-4. An About credit dialog and author credit
125

CHAPTER6 DIALOGS

By clicking the Credits button, the user is presented with any authors, documenters,
translators, and artists that are provided. The License button pops up a new dialog that
shows the given license content.

Listing 6-5 is a simple example that shows you how to use every available property of
the Gtk.AboutDialog widget.

Listing 6-5. Using a Gtk.AboutDialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, GdkPixbuf

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
button = Gtk.Button.new with mnemonic(" Click Me")
button.connect("clicked", self.on button clicked, self)
self.add(button)
self.set size request(150, 50)
self.show all()

def on_button clicked(self, button, parent):

authors = ["Author #1", "Author #2"]
documenters = ["Documenter #1", "Documenter
#2"] dialog = Gtk.AboutDialog(parent=parent)
logo = GdkPixbuf.Pixbuf.new_from file("./logo.png")
if logo != None:

dialog.set logo(logo)
else:

print("A GdkPixbuf Error has occurred.")
dialog.set name("Gtk.AboutDialog")
dialog.set version("3.0")
dialog.set_copyright("(C) 2007 Andrew Krause")

126

CHAPTER6 DIALOGS

dialog.set comments("All about Gtk.AboutDialog")

dialog.set license("Free to all!")

dialog.set website("http://book.andrewKrause.net")

dialog.set _website label("book.andrewkrause.net")

dialog.set authors(authors)

dialog.set documenters(documenters)

dialog.set translator credits("Translator #1\nTranslator #2")
dialog.connect("response”, self.on dialog button clicked)
dialog.run()

def on_dialog button clicked(self, dialog, response):
dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="About Dialog")
self.window.show all()
self.window.present()

if _name__ == " main_":
app = Application()
app.run(sys.argv)

Many properties are available for you to set when creating your own Gtk.
AboutDialog instance. Table 6-2 summarizes those options that were used in Listing 6-5.
If the license is not specified, the License button is not visible. The Credits button is not
visible if there are no credits.

127

CHAPTER6 DIALOGS

Table 6-2. Gtk.AboutDialog Option Values

Property Description

program_name The application’s name.

version The current version of the application the user is running.

copyright A short copyright string that should not span more than one or two lines.

comments A short description of the application that should not span more than one or
two lines.

license License information that is displayed in a secondary dialog. Setting this to
None hides the License button.

web site The home page URL of the application.

web site_label A label that is displayed instead of the URL.

authors A Python list of authors who have contributed code to the project.

artists A Python list of artists who have created graphics for the project.

documenters A Python list of documenters who have written documentation for the project.

translator_credits A string that specifies the translator(s) of the current language.

logo Usually loaded from a file, this Gdk . Pixbuf object is the application’s logo.

Unlike author, artist, and documenter credits, the translator credits are only a single
string. This is because the translator string should be set to the person that translated the
language currently in use. Internationalization and gettext are not topics for this book.
For more information, you should visit waw.gnu.org/software/gettext.

Gdk.Pixbuf

GdkPixbuf is a class that contains information about an image stored in memory. It allows
you to build images manually by placing shapes or pixels or to load a pre-built image from
afile. The latter is preferred in most cases, so that is what is covered in this book.

Since GdkPixbuf is derived from GObject, it supports referencing. This means
that the same image can be used in multiple locations in a program by increasing the
reference count with ref(). Dereferencing GdkPixbuf objects (pixbufs) is performed
automatically in almost all cases.

128

http://www.gnu.org/software/gettext

CHAPTER6 DIALOGS

To load a pixbuf from a file, you can use GdkPixbuf.new from file(), which was

used in Listing 6-5. This function loads the image with an initial size set to the actual size

of the image.
logo = GdkPixbuf.Pixbuf.new_from file("./logo.png")

After you load the image, you can resize it with scale_simple(). This function

accepts the new size parameters of the Gdk.Pixbuf and the interpolation mode to use

for the scaling.
pixbuf.scale _simple(dest width, dest_height, interp type)
The following are the four GdkPixbuf.InterpType modes.

o GdkPixbuf.InterpType.NEAREST: Sampling is performed on the
nearest neighboring pixel. This mode is very fast, but it produces the
lowest quality of scaling. It should never be used for scaling an image
to a smaller size!

o GdkPixbuf.InterpType.TILES: This mode renders every pixel as a
shape of color and uses antialiasing for the edges. This is similar to
using GdkPixbuf.InterpType.NEAREST for making an image larger or
GdkPixbuf.InterpType.BILINEAR for reducing its size.

o GdkPixbuf.InterpType.BILINEAR: This mode is the best mode for
resizing images in both directions, because it has a balance between
its speed and the quality of the image.

o GdkPixbuf.InterpType.HYPER: While it is very high quality, this
method is also very slow. It should only be used when speed is not
a concern. Therefore, it should never be used for any application
that the user would expect a fast display time. In one function call,
GdkPixbuf.new from file at size() conveniently resizes the
image immediately after it loads from the file.

Many other features are provided in the GdkPixbuf class, but only a few of these are

covered, as needed. For further information on GdkPixbuf, you should reference the API

documentation.

129

CHAPTER6 DIALOGS

Gtk.FileChooser Dialogs

In the last chapter, you learned about Gtk.FileChooser and the Gtk.FileChooserButton
widget. Recall that Gtk.FileChooser is not a widget, but an abstract class. Abstract classes
differ from real classes, because they may not implement the methods they declare.

GTK+ provides the following three widgets that subclass the Gtk.FileChooser class.

e Gtk.FileChooserButton: The file chooser button was covered in the
previous chapter. It allows the user to choose one file or folder by
displaying a Gtk.FileChooser dialog when clicked.

o Gtk.FileChooserDialog: This is the actual widget that allows the
user to choose a file folder. It can also facilitate the creation of a folder
or saving of a file. When you use Gtk.FileChooserDialog, you are
actually using a file chooser widget packed into a Gtk.Dialog.

o Gtk.FileChooserWidget: This is the actual widget that allows the
user to choose a file folder. It can also facilitate the creation of a folder
or saving of a file. When you use Gtk.FileChooserDialog, you are
actually using a file chooser widget packed into a Gtk.Dialog.

You have already learned about Gtk.FileChooserButton and have used a file
chooser to open one file and to select a directory. There are three other abilities provided
by the file chooser widget. In the next three examples, you learn how to use a file chooser
dialog to save a file, create a directory, and choose multiple files.

Saving Files

Figure 6-5 shows a Gtk.FileChooserDialog widget that is saving a file. You will notice
that it is similar to the next two figures as well, because all types of file chooser dialogs
have a consistent look so that it is minimally confusing to new users and maximally
efficient to all. The widget also uses the same code to implement each dialog type to
minimize the amount of necessary code.

130

CHAPTER6 DIALOGS

Name: | newfile.exq

42> Home

[Desktop
[Documents
«, Downloads
dd Music

2] Pictures

W« Videos

[m marvin

4+ Other Locations

[PythonGTK3

4 ad | pubs | PythonGTK3 @ »

Name

en-US

|| Makefile

| | publican.cfg

& tmp

Cancel

()

Modified

Yesterday
7 Nov 2017
13 May

13 May

Save

Figure 6-5. A file chooser dialog for saving

File chooser dialogs are used in the same way as the previous two dialogs covered
in this chapter, except you need to handle the response code returned by Gtk.Dialog.
new(). Listing 6-6 allows the user to choose a file name and sets the button’s text to that

file name if the correct response identifier is returned.

131

CHAPTER 6 DIALOGS
Listing 6-6. Using a Gtk.AboutDialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(200, 100)
button = Gtk.Button.new with label("Save as ...")
button.connect("clicked", self.on button clicked, self)
self.add(button)

def on_button clicked(self, button, parentwin):
dialog = Gtk.FileChooserDialog(title="Save file as ...",
parent=parentwin,
action=Gtk.FileChooserAction.SAVE,
buttons=("_Cancel",
Gtk.ResponseType.CANCEL,
" Save", Gtk.ResponseType.ACCEPT))
response = dialog.run()
if response == Gtk.ResponseType.ACCEPT:
filename = dialog.get filename()
button.set label(filename)
dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init_ (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

132

CHAPTER6 DIALOGS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Save a File")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

All file chooser dialogs are created with the Gtk.FileChooserDialog() regardless
of what options you choose. As with other dialogs, you begin by setting the title of the
dialog and the parent window. The parent window should always be set, because file
chooser dialogs should be modal.

dialog = Gtk.FileChooserDialog(title="Save file as ...", \
parent=parentwin, \
action=Gtk.FileChooserAction.SAVE, \
buttons=("_Cancel", Gtk.ResponseType.CANCEL, \
" Save", Gtk.ResponseType.ACCEPT))

Next, as with file chooser buttons, you have to choose the action of file chooser that
is created. All four action types provided by the Gtk.FileChooser abstract class are
available to Gtk.FileChooserDialog. These are described in the following list.

e Gtk.FileChooserAction.SAVE: The user is prompted to enter a file
name and browse throughout the file system for a location. The
returned file is the chosen path with the new file name appended to
the end. Gtk.FileChooser provides methods that allow you to ask for
confirmation if the user enters a file name that already exists.

e Gtk.FileChooserAction.OPEN: The file chooser only allows the user
to select one or more files that already exist on the user’s system.
The user is able to browse throughout the file system or choose a
bookmarked location.

133

CHAPTER6 DIALOGS

Gtk.FileChooserAction.SELECT_FOLDER: This is very similar to

the save action, because it allows the user to choose a location and
specify a new folder name. The user can enter a new folder name that
is created when the file chooser returns or click the Create Folder
button, shown in Figure 5-6, which creates a new folder in the current
directory.

Gtk.FileChooserAction.CREATE_FOLDER: This is very similar to

the save action, because it allows the user to choose a location and
specify a new folder name. The user can enter a new folder name that
is created when the file chooser returns or click the Create Folder
button, shown in Figure 5-6, which creates a new folder in the current
directory.

Lastly, you have to provide a name/response ID list of buttons to add to the action

area. In Listing 6-6, when the Cancel button is clicked, Gtk.ResponseType.CANCEL is
emitted, and when the Save button is clicked, GTK_RESPONSE_ACCEPT is emitted.

Creating a Folder

GTK+ allows you not only to select a folder but also to create a folder. A Gtk.

FileChooserDialog widget using this type can be seen in Figure 6-6, which is a

screenshot of Listing 6-7.

134

CHAPTER6 DIALOGS

eaterdiFoloer [:
Name: | mytemp|
2 Home 4 ad | pubs | PythonGTK3 » G
Deskto Name ~ Size Modified
p
en-US Yesterday
[Ey e arares) Makefile 429bytes 7 Nov2017
< Downloads __J publican.cfg 142 bytes 13 May
& tmp 13 May
dd Music
&) Pictures
B« Videos
[PythonGTK3
[marvin
+ Other Locations
Cancel Ok

Figure 6-6. A file chooser dialog for creating a folder

The dialog in Listing 6-7 handles creating the new folder when accepted by the user,
so you do not need to take any further action beyond destroying the dialog.

Listing 6-7. Using a Gtk.AboutDialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

135

CHAPTER 6 DIALOGS
class AppWindow(Gtk.ApplicationhWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(200, 100)
button = Gtk.Button.new with label("Create a Folder ...")
button.connect("clicked", self.on button clicked, self)
self.add(button)

def on_button clicked(self, button, parentwin):
dialog = Gtk.FileChooserDialog(title="Create a Folder ...",
parent=parentwin,
action=Gtk.FileChooserAction.SAVE,
buttons=("_Cancel”,
Gtk.ResponseType.CANCEL,
" 0k", Gtk.ResponseType.OK))
response = dialog.run()
if response == Gtk.ResponseType.OK:
filename = dialog.get filename()
print("Creating directory: %s\n" % filename)
dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do _activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Create Folder")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

136

CHAPTER6 DIALOGS

The full folder name of the dialog can be retrieved by using the same function that
retrieved the file name in the previous example, get _filename(). The standard os.
mkdir () method from the os module creates a folder in the specified location on all
supported operating systems.

Selecting Multiple Files

Figure 6-7 shows a standard file chooser dialog that allows the user to choose a file. The
difference between Gtk.FileChooserDialog and Gtk.FileChooserButton using the
Gtk.FileChooserAction.OPEN type is that dialogs are capable of selecting multiple files
while buttons are restricted to one file.

Openifile(s)p [:
> Home 4 fxdashley = ad pubs = PythonGTK3 »
[Desktop Name v Size Modified

en-US Wed
B B Makefile 429 bytes 7 Nov 201
< Downloads B publican.cfg 142 bytes 13 May

tmp 13 May
dd Music
21 Pictures
W« Videos
[m PythonGTK3
[@m marvin
+ Other Locations

Cancel Open

Figure 6-7. A file chooser dialog for selecting multiple files
137

CHAPTER6 DIALOGS

Listing 6-8 shows you how to handle multiple file selections. It is very similar to
single file selections except for the fact that selections are returned in a Python list.

Listing 6-8. Using A Gtk FileChooserDialog to Select Multiple Files
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(200, 100)
button = Gtk.Button.new with label("Open file(s) ...")
button.connect("clicked", self.on button clicked, self)
self.add(button)

def on_button clicked(self, button, parentwin):
dialog = Gtk.FileChooserDialog(title="Open file(s) ...",
parent=parentwin,
action=Gtk.FileChooserAction.OPEN,
buttons=("_Cancel"”,
Gtk.ResponseType.CANCEL,
" Open", Gtk.ResponseType.ACCEPT))
dialog.set select multiple(True)
response = dialog.run()
if response == Gtk.ResponseType.ACCEPT:
filenames = dialog.get filenames()
i=0
while i < len(filenames):
file = filenames[i]
print(file + " was selected.")
i+=1
dialog.destroy()
138

CHAPTER 6 DIALOGS
class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Open Nultiple
Files")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

The get filenames() function returns a Python list of the selected file(s).

filenames = dialog.get filenames()

Color Selection Dialogs

In the previous chapter, you learned about the Gtk.ColorButton widget, which allowed
the user to select a color. After clicking that button, the user was presented with a dialog.
Although not specified at the time, that dialog was a Gtk.ColorSelectionDialog widget.

Similar to Gtk.FileChooserDialog, the color selection dialog is actually a Gtk.
Dialog container with a Gtk.ColorSelection widget packed as its child widget. Gtk.
ColorSelection can easily be used on its own. However, since a dialog is a natural way
of presenting the widget, GTK+ provides Gtk.ColorSelectionDialog. A color selection
dialog is shown in Figure 6-8.

139

CHAPTER6 DIALOGS

Hue: 0 -+ Red:
Saturation: 0 + Greer
Value: 50 e Blue:
Opacity: [
Color name: | #7F7F7F
|3
Help

Figure 6-8. A file chooser dialog for selecting multiple files

Listing 6-9 contains a top-level window that has two buttons. When the first button
is clicked, a modal Gtk.ColorSelectionDialog is created. The other button creates a
nonmodal Gtk.ColorSelectionDialog. Each chooses global color and opacity values.

This example also loops through program arguments, setting the initial color value if
provided. This allows you to pass an initial color when launching the application.

Listing 6-9. Using a Gtk.ColorSelectionDialog
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

global color = Gdk.RGBA(red=.50, green=.50, blue=.50,
alpha=1.0).to_color() global alpha = 65535

class AppWindow(Gtk.ApplicationWindow):

140

def

def

def

CHAPTER6 DIALOGS

__init_ (self, *args, **kwargs):

super(). init_ (*args, **kwargs)

self.set border width(10)

self.set size request(200, 100)

modal = Gtk.Button.new with label("Modal")

nonmodal = Gtk.Button.new with label("Non-Modal")

modal.connect("clicked", self.on_run _color selection dialog,
self, True)

nonmodal.connect("clicked", self.on run color selection dialog,

self, False)

hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

hbox.pack start(modal, False, False, 5)

hbox.pack start(nonmodal, False, False, 5)

self.add(hbox)

on_dialog response(self, dialog, result):
if result == Gtk.ResponseType.OK:
colorsel = dialog.get color selection()
alpha = colorsel.get current alpha()
color = colorsel.get current color()
print(color.to string())
global color = color
global alpha = alpha
dialog.destroy()

on_run_color selection dialog(self, button, window, domodal):
if domodal:

title = ("Choose Color -- Modal")
else:

title = ("Choose Color -- Non-Modal")
dialog = Gtk.ColorSelectionDialog(title=title, parent=window,

modal=domodal)

colorsel = dialog.get color selection()
colorsel.set has opacity control(True)
colorsel.set current color(global color)
dialog.connect("response”, self.on dialog response)
dialog.show all()

141

CHAPTER 6 DIALOGS
class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Color Selection Dialog”)
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

The only function provided by the Gtk.ColorSelectionDialog class is Gtk.
ColorSelectionDialog(). The following code can get the selected color.

alpha = colorsel.get current alpha()
color = colorsel.get current color()
print(color.to_string())

Gtk.ColorSelectionDialog provides direct access to its four available child widgets.
The first, colorsel is the Gtk.ColorSelection widget that facilitates color selection. The
other three are an OK button, a Cancel button, and a Help button. By default, the Help
button is hidden. You can use show() or the show_all() method to set it visible.

As with Listing 6-2, this example connects to the response signal, which receives all
of the response identifiers regardless of whether the dialog is modal or nonmodal. The
dialog is set as modal or nonmodal with the "modal" keyword on the insanitation of the
Gtk.ColorSelectionDialog class.

Gtk.ColorSelectionDialog(title=title, parent=window, modal=domodal)

Listing 6-9 shows a fourth color property apart from its RGB values, its opacity (alpha
value). Ranging between 0 and 65,535, this value regulates how transparent the color is
drawn, where 0 is fully transparent and 65,535 is opaque. By default, the opacity control

142

CHAPTER6 DIALOGS

is turned off within color selection widgets. You can call the method set_has_opacity
control() to enable the feature.

colorsel.set has opacity control(boolean)

When opacity is turned on, the hexadecimal color value is sixteen digits long, four
digits for each of the values: red, green, blue, and alpha. You must use colorsel.get
current_alpha() to retrieve its value from the color selection widget.

Font Selection Dialogs

The font selection dialog is a dialog that allows the user to select a font and

is the dialog shown when a Gtk.FontButton button is clicked. As with Gtk.
ColorSelectionDialog, direct access to the action area buttons is provided through
the Gtk.FontSelectionDialog structure. An example font selection dialog is shown in
Figure 6-9, which should look similar to the one you saw in the last chapter.

Family: Style: Siz
PT Sans Italic
PT Sans Narrow Bold 8

Simple CLM 1
Source Han Sans CN 12

Preview:

GTK+ 3 Development With Python

Cancel OK

Figure 6-9. A font selection dialog

Figure 6-9 is the result of running Listing 6-10.

143

CHAPTER6 DIALOGS

Listing 6-10. Using a Gtk.FontSelectionDialog
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(200, 100)
button = Gtk.Button.new with label("Run Font Selection Dialog")
button.connect("clicked", self.on run font selection dialog)
self.add(button)

def on_run font selection dialog(self, button):
dialog = Gtk.FontSelectionDialog(title="Choose a Font",
buttons=("Apply",
Gtk.ResponseType.APPLY),
parent=self)
dialog.set preview text("GTK+ 3 Development With Python")
dialog.connect("response”, self.on dialog response)

dialog.run()

def on_dialog response(self, dialog, response):
if response == Gtk.ResponseType.OK or response ==
Gtk.ResponseType.APPLY:
font = dialog.get font name()
message = Gtk.MessageDialog(title="Selected Font",
flags=Gtk.DialogFlags.MODAL,
type=Gtk.MessageType.INFO,
text=font,
buttons=("0k", Gtk.ResponseType.OK),
parent=dialog);

144

CHAPTER6 DIALOGS

message.run()
message.destroy()
if response == Gtk.ResponseType.OK:
dialog.destroy()
else:
dialog.destroy()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Font Selection Dialog”)
self.window.show_all()
self.window.present()

if _name_ == " main_":
app = Application()
app.run(sys.argv)

The font selection dialog initialization function, Gtk.FontSelectionDialog(),
returns a new Gtk.FontSelectionDialog widget with the specified title.

The dialog itself contains three buttons: OK, Apply, and Cancel. They emit the Gtk.
ResponseType.OK, Gtk.ResponseType.APPLY, and Gtk.ResponseType.CANCEL signals
respectively.

There is no need to create a modal dialog, because the font selection dialog is
connected to a response signal.

If the user clicks the OK button, the user is presented with the selected font, and the
dialog is destroyed. By clicking Apply, the selected font is presented to the user, but the
dialog is not destroyed. This allows you to apply the new font so the user can view the
changes without closing the dialog.

145

CHAPTER6 DIALOGS

The font selection widget contains a Gtk.Entry widget that allows the user to
preview the font. By default, the preview text is set to “abcdefghijk ABCDEFGHIJK”. This
is somewhat boring, so I decided to reset it to “GTK+ 3 Development With Python’, the
title of this book.

The last methods provided by Gtk.FontSelectionDialog() allow you to set and
retrieve the current font string. The font string used by dialog.set font name()
and dialog.get font_name() is in the same format that we parsed with Pango.
FontDescription in the previous chapter.

Dialogs with Multiple Pages

With the release of GTK+ 2.10, a widget called Gtk.Assistant was introduced. Gtk.
Assistant makes it easier to create dialogs with multiple stages, because you do not
have to programmatically create the whole dialog. This allows you to split otherwise
complex dialogs, into steps that guide the user. This functionality is implemented by
what are often referred to as wizards in various applications.

Figure 6-10 shows the first page of a simple Gtk.Assistant widget, which was
created using the code in Listing 6-11. This example begins by giving the user general
information. The next page will not allow the user to proceed until text is entered in
a Gtk.Entry widget. The third page will not allow the user to proceed until a Gtk.
CheckButton button is activated. The fourth page will not let you do anything until the
progress bar is filled, and the last page gives a summary of what has happened. This is
the general flow that every Gtk.Assistant widget should follow.

146

CHAPTER6 DIALOGS

Introduction
Click the Check Button

Confirmation

This in an example of a Gtk.Assistant. By
clicking the forward button, you can continue
to the next section!

Cancel Next

Figure 6-10. The first page of a Gtk.Assistant widget

Listing 6-11. The Gtk.Assistant Widget
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk
import time

class assistant(Gtk.Assistant):
progress = None

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set size request(450, 300)
self.set title("Gtk.Assistant Example")
self.connect("destroy", Gtk.main _quit, None)

147

CHAPTER6 DIALOGS

148

create page 0

page0_widget = Gtk.Label("This in an example of a Gtk.Assistant. By\n"
+ "clicking the forward button, you can " +
"continue\nto the next section!")

self.append page(page0 widget)

self.set page title(pageo widget, "Introduction")

self.set _page type(page0 widget, Gtk.AssistantPageType.INTRO)

self.set _page complete(page0 widget, True)

create page 1

pagel widget = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL,

spacing=5)
label = Gtk.Label("Your Name: ")
entry = Gtk.Entry()

pagel widget.pack start(label, False, False, 5)

pagel widget.pack start(entry, False, False, 5)

self.append page(pagel widget)

self.set page title(pagel widget, "")

self.set_page type(pagel widget, Gtk.AssistantPageType.CONTENT)
self.set page complete(pagel widget, False)

create page 2

page2_widget = Gtk.CheckButton.new with label("Click me to Continue!")
self.append page(page2 widget)

self.set page title(page2 widget, "Click the Check Button")
self.set _page type(page2 widget, Gtk.AssistantPageType.CONTENT)
self.set page complete(page2 widget, False)

create page 3

page3_widget = Gtk.Alignment.new(0.5, 0.5, 0.0, 0.0)

button = Gtk.Button.new with label("Click Me!")

self.progress = Gtk.ProgressBar()

hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=5)
hbox.pack start(self.progress, True, False, 5)

hbox.pack start(button, False, False, 5)

page3_widget.add(hbox)

self.append page(page3_widget)

self.set page title(page3 widget, "Click the Check Button")
self.set _page type(page3 widget, Gtk.AssistantPageType.PROGRESS)

def

def

def

CHAPTER6 DIALOGS

self.set _page complete(page3 widget, False)
create page 4
page4 widget = Gtk.Label("Text has been entered in the label and
the\n" + "combo box is clicked. If you are done, then\n"

+ "it is time to leave!")
self.append page(page4 widget)
self.set page title(page4 widget, "Confirmation")
self.set _page type(page4 widget, Gtk.AssistantPageType.CONFIRM)
self.set page complete(page4 widget, True)
set up the callbacks
entry.connect("changed",self.entry changed)
page2 widget.connect("toggled",self.button toggle)
button.connect("clicked", self.button clicked)
self.connect("cancel", self.assistant canceled)
self.connect("close", self.assistant close)

entry changed(self, entry):

text = entry.get text()

num = self.get current page()

page = self.get nth_page(num)

self.set_page complete(page, len(text) > 0)

button toggled(self, toggle):
active = toggle.get active()
self.set _page complete(toggle, active)

button clicked(self, button):

percent = 0.0

button.set sensitive(False)

page = self.get nth_page(3)

while (percent <= 100.0):
message = str(percent) +
print(message)
self.progress.set fraction(percent / 100.0)
self.progress.set text(message)

complete”

149

CHAPTER6 DIALOGS

while (Gtk.events pending()):
Gtk.main_iteration()
time.sleep(1)
percent += 5.0
self.set _page complete(page, True)

def assistant canceled(self, response):
self.destroy()

def assistant close(self, response):
print("You would apply your changes
now!") self.destroy()

class AppWindow(Gtk.ApplicationWindow):
def init (self, *args, **kwargs): super(). init (*args, **kwargs)

self.set border width(25)
button = Gtk.Button.new with mnemonic(" Open Assistant")
button.connect("clicked", self.on start button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)
self.add(button)
self.set size request(200, 100)

def on_start button clicked(self, button):
assistant()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super().__init_ (*args, application_id="org.example.myapp", **kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Gtk.Assistant")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

150

CHAPTER6 DIALOGS

Creating Gtk.Assistant Pages

A Gtk.Assistant widget is a dialog with multiple pages, although it is actually not
derived from Gtk.Dialog. By calling Gtk.Assistant(), you create a new Gtk.Assistant
widget with no initial pages.

index = assistant.append page(widget)

There is no actual page widget for assistants, because each page is actually a
child widget that is added with assistant.prepend page(), assistant.append_
page(), or assistant.insert page(). Each of these functions accepts the child
widget (added as the contents of the page) and returns the new page’s index. Each
page has a number of properties that can be set, each of which is optional. A list of
these options follows.

o Page title: Every page should have a title, so the user knows what it is
for. Your first page should be an introductory page that tells the user
information about the assistant. The last page must be a summary
or confirmation page that makes sure the user is ready to apply the
previous changes.

e Header image: In the top panel, you can display an optional image to
the left of the title. This is often the application’s logo or an image that
complements the assistant’s purpose.

o Side image: This optional image is placed along the left side of the
assistant beside the main page content. It is used for aesthetic appeal.

e Page type: The page type must always be set, or it defaults to Gtk.
AssistantPageType.CONTENT. The last page must always be a
confirmation or summary page. You should also make the first page
an introductory page that gives the user information about what task
the assistant performs.

151

CHAPTER6 DIALOGS

After you have set the page’s properties, you must choose what type of page it is.
There are five types of pages. The first page should always be Gtk.AssistantPageType.

INTRO. The last page should always be Gtk.AssistantPageType.CONFIRM or

Gtk.AssistantPageType.SUMMARY—if your assistant does not end with one of those two
types of pages, it will not work correctly. All the available page types are described in the

following list.

Gtk.AssistantPageType.CONTENT: This type of page has general
content, which means it is used for almost every page in the assistant.
It should never be used for the last page in an assistant.

Gtk.AssistantPageType.INTRO: This type of page has introductory
information for the user. This should only be set for the first page in
the assistant. Although not required, introductory pages give the user
direction; they should be used in most assistants.

Gtk.AssistantPageType.CONFIRM: The page allows the user to
confirm or deny a set of changes. It is typically used for changes
that cannot be undone or may cause something to break if not set
correctly. This should only be set for the last page of the assistant.

Gtk.AssistantPageType.SUMMARY: The page gives a summary of the
changes that have occurred. This should only be set for the last page
of the assistant.

Gtk.AssistantPageType.PROGRESS: When a task takes a long time to
complete, this blocks the assistant until the page is marked as complete.
The difference between this page and a normal content page is that all
of the buttons are disabled and the user is prevented from closing the
assistant.

Caution
CONFIRMor Gtk.AssistantPageType.SUMMARY, your application will abort

If you do not set the last page type as Gtk.AssistantPageType.

with a GTK+ error when computing the last button state.

152

CHAPTER6 DIALOGS

Since Gtk.Assistant is not derived from Gtk.Dialog, you cannot use dialog.run()
(or any other Gtk.Dialog method) on this widget. Instead, the following four signals are
provided for you to handle button-clicked signals.

o "apply": This signal is emitted when the Apply button or Forward
button clicks any assistant page.

e "cancel": This signal is emitted when the Cancel button clicks any
assistant page.

o "close": This signal is emitted when the Close button or Apply
button on the last page in the assistant is clicked.

o ‘"prepare": Before making a new page visible, this signal is emitted so
that you can do any preparation work before it is visible to the user.

You can connect to all Gtk.Assistant signals with assistant.connect() or any other
signal connection function provided by GLib. Excluding "prepare", the callback methods
for Gtk.Assistant signals receive the assistant and the user data parameter. The callback
method for the prepare signal also accepts the child widget of the current page.

By default, every page is set as incomplete. You have to manually set each page as
complete when the time is right with assistant.set page complete() or the Gtk.
Assistant will not be able to proceed to the next page.

assistant.set page complete(page, boolean)

On every page, a Cancel button is displayed in addition to a few others. On pages
other than the first one, a Back button is displayed that is always sensitive. This allows
you to visit the previously displayed page and make changes.

Note The page that is visited when the user clicks the Back button is not always
the previous page according to the page index. It is the previously displayed page,
which may be different based on how you defined the page flow of your assistant.

On every page except the last, a Forward button is placed, which allows the user to
move to the next page. On the last page, an Apply button is displayed that allows the
user to apply the changes. However, until the page is set as complete, the assistant sets
the Forward or Apply button as insensitive. This allows you to prevent the user from
proceeding until some action is taken.

153

CHAPTER6 DIALOGS

In Listing 6-11, the first and last pages of the assistant were set as complete, because
they were merely informative pages. This is the case in most assistants, since they should
begin with an introduction page and end with a confirmation or summary page.

The other two pages are where it becomes interesting. On the second page, we want
to make sure that the user cannot proceed until text is entered in the Gtk.Entry widget.
It would seem that we should just check when text has been inserted and be done with it.

However, what happens if the user deletes all of the text? In this case, the forward
button should be disabled yet again. To handle both of these actions, you can use Gtk.
Editable’s changed signal. This allows you to check the current state of the text in the
entry upon every change, as in Listing 6-11.

On the third page, we want to enable the forward button only when the check button
is active. To do this, we used the toggled signal of Gtk.ToggleButton to check the current
state of the check button. Based on this state, the forward button’s sensitivity was set.

The fourth page has a type of Gtk.AssistantPageType.PROGRESS, which disables all
actions until the page is set as complete. The user is instructed to click a button, which
begins the process of filling a Gtk.ProgressBar widget 10 percent every second. When
the progress bar is filled, the page is set as complete.

Gtk.ProgressBar

The Gtk.Assistant example introduced another new widget called Gtk.ProgressBar.
Progress bars are a simple way to show how much of a process has been completed and
is useful for processes that take a long time to handle. Progress bars give the user a visual
cue that progress is being made, so they do not think the program has frozen.

New progress bars are created with Gtk.ProgressBar (). The implementation of
Gtk.ProgressBar was made a lot simpler with the release of GTK+ 2.0, so be careful
when using the API documentation, because a number of the displayed functions and
properties are depreciated. The two examples following show you how to correctly use
the Gtk.ProgressBar widget.

percent = 0.0

button.set sensitive(False)

page = self.get nth page(3)

while (percent <= 100.0):
message = str(percent) + " complete”
print(message)

154

CHAPTER6 DIALOGS

self.progress.set fraction(percent / 100.0)

self.progress.set text(message)

while (Gtk.events pending()):
Gtk.main_iteration()

time.sleep(1)

percent += 5.0

You may also want to display text that can complement the progress bar. In the
preceding example, progress.set_text() displayed the percent complete statistic,
which is superimposed on the progress bar widget.

If you are not able to detect the progress of the process, you can use pulses. In the
preceding example, progress.pulse() moved the progress bar one step for every
pending event that was processed. You can set the pulse step with progress.set_pulse

step().

progress.set pulse step(0.1)

while (Gtk.events pending ()):
Gtk.main_iteration()
progress.pulse()

By setting the pulse step to 0.1, the progress bar fills up in the first ten steps and
clears itself in the next ten. This process continues for as long as you continue pulsing
the progress bar.

Page Forward Methods

There are times that you may want to skip to specific assistant pages if conditions are
correct. For example, let’s assume your application is creating a new project. Depending
on the chosen language, you want to jump to either the third or fourth page. In this case,
you want to define your own Gtk.AssistantPageFunc method for forward motion.

You can use assistant.set forward page func() to define a new page forward
function for the assistant. By default, GTK+ increments directly through the pages in
order, one page at a time. By defining a new forward function, you can define the flow.

assistant.set forward page func(page func, data)

155

CHAPTER6 DIALOGS

For example, assistant_forward() is a simple Gtk.AssistantPageFunc
implementation that moves from page two to either three or four, depending on the
condition returned by decide next page().

def assistant forward(self, current page, data):
next_page = 0;
if current_page == 0:
next page = 1
elif current page ==
next_page = (decide next page() ? 2 : 3)
elif current page == 2 or current page ==
next_page = 4
else:
next page = -1
return next_page

Note By returning —1 from a page forward function, the user is presented with
a critical error and the assistant will not move to another page. The critical error
message will tell the user that the page flow is broken.

In the assistant.forward() method, flow is changed based on the Boolean value
returned by the fictional function decide_next_page(). In either case, the last page is
page 4. If the current page is not within bounds, -1 is returned, so an exception is thrown
by GTK+.

While this Gtk.Assistant example is very simple, implementations of this widget
can become very complex as they expand in number of pages. This widget could be re-
created with a dialog, a Gtk.Notebook with hidden tabs, and a few buttons. (I have had to
do that very thing multiple times!), but it makes the process a lot easier.)

Test Your Understanding

In the exercise for this chapter, you are creating custom dialogs of your own. Each of

the dialogs is an implementation of a type of file chooser dialog. However, you are
embedding a Gtk.FileChooserWidget into a Gtk.Dialog to re-create the functionality of
the built-in dialogs.

156

CHAPTER6 DIALOGS

Exercise 1: Implementing File Chooser Dialogs

In this exercise, you create a window with four buttons. Each button opens a different
dialog when clicked, which implements one of the four Gtk.FileChooser actions. You
should use Gtk.FileChooserWidget added to Gtk.Dialog instead of the prebuilt
Gtk.FileChooserDialog.

o Your dialog implements a Gtk.FileChooserAction.SAVE file chooser
dialog. The chosen file name should be printed to the screen.

e Your dialog implements a Gtk.FileChooserAction.CREATE_FOLDER
file chooser dialog. The new folder name should be printed to the
screen. You have to manually create the new folder with a Python
function.

o Your dialog implements a Gtk.FileChooserAction.OPEN file chooser
dialog. The chosen file names should be printed to the screen.

e Your dialog implements a Gtk.FileChooserAction.SELECT FOLDER
file chooser dialog. The chosen folder path should be printed to the
screen.

You need to set each of the dialogs to a decent size so that the entire content is visible
to the user. If you get stuck during this exercise, you can find a solution in Appendix D.

Summary

In this chapter, you learned how to create your own custom dialogs. To do this, you need
to first initialize the dialog. Then, action area buttons need to be added as well as the
main content to the dialog’s vertical Gtk.Box.

Dialogs can be created as modal or nonmodal. A modal dialog created with dialog.
run() blocks the user from interacting with the parent window until it is destroyed by
creating a main loop for the dialog. It also centers the dialog above its parent window.
Nonmodal dialogs allow the user to interact with any other window in the application
and will not force focus on the dialog.

157

CHAPTER6 DIALOGS

After learning about the built-in dialogs, you learned about multiple types of built-in
dialogs provided by GTK+.

o Message dialog (Gtk.MessageDialog): Provides a general message,

error message, warning, or simple yes/no question to the user.

o About dialog (Gtk.AboutDialog): Shows information about the
application, including version, copyright, license, authors, and
others.

o File chooser dialog (Gtk.FileChooserDialog): Allows the user to
choose a file, choose multiple files, save a file, choose a directory, or
create a directory.

o Color selection dialog (Gtk.ColorSelectionDialog): Allows the user
to choose a color along with an optional opacity value.

o Font selection dialog (Gtk.FontSelectionDialog): Allows the user to
choose a font and its size and style properties.

The last section of this chapter showed you a widget called Gtk.Assistant, which
was introduced in GTK+ 2.10. It allows you to create dialogs with multiple stages. It is
important to note that assistants are not actually a type of Gtk.Dialog widget but are
directly derived from the Gtk.Window class. This means that you have to handle these by
connecting signals in the main loop instead of calling dialog.run().

You now have a firm understanding of many important aspects of GTK+. The
Chapter 9 explains the multiline text entry widget called Gtk. TextView. Other topics
include the clipboard and the Gtk.SourceView library.

158

CHAPTER 7

Python and GTK+

Now that you have a reasonable grasp of GTK+ and a number of simple widgets, it
is time to move to the details of how Python and GTK+ work together. We also cover
other Python aspects that will be useful for your projects, as well as some useful
PGObject libraries.

Although this book is not a comprehensive guide to Python, we examine several
topics used by GTK+ that are not usually covered by basic Python programming guides.

Arguments and Keyword Arguments

Keyword parameters and arguments are used throughout the GTK+ library to pass class
instance property values from class to subclass to subclass, and so on. So let’s examine
this phenomenon closely.

The most important thing to understand about GTK+ class properties is that they
are implemented as Python properties in PyGTK. This means that a reference to a
property class and methods should be replaced as a standard Python class and methods
when accessed. The following example shows how to access the Gtk.Window property
named title.

win = Gtk.Window()
title = win.props.title

The property can also be set using standard Python methods.

win = Gtk.Window()
win.props.title = "My Main Window"

Of course, the Gtk.Window class also supplies the get_title() and set_title()
methods to perform the same tasks, but the shortcut Python methods also perform the
same tasks. The choice as to which methods you use is entirely up to you.

159
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_7

CHAPTER 7 PYTHON AND GTK+

Now that you understand that GTK+ properties are implemented as Python
properties, we can move on to describing how to use and pass keyword arguments to
classes. Let’s continue looking at Gtk.Window and how you create instances of that class.
The class definition for Gtk.Window looks like this:

class Gtk.Window(Gtk.Bin):
def _ init_(self, *args, **kwargs):
super(). init_ (*args, **kwargs)

So, what are these *args and **kwargs arguments/parameters and what do they
do? PyGTK uses this methodology to pass property names and values to class instances.
When a class instance receives these arguments, it has the choice to use them, pass them
on to the super class, or simply throw them away. Most of the time, it uses the ones that
match the properties that the class defines. It then locates the corresponding value and
assigns it to the corresponding property name. It does this task using code similar to the
code in Listing 7-1.

Listing 7-1. Keyword Arguments

class MyWindow(Gtk.Window):
def _init_ (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
for arg in argv:
print("Another arg through *argv :",arg) for kw in keywords:

print(kw, ":", keywords[kw])

Not shown in the example are formal arguments. There is a required order for
arguments: formal arguments must all appear first in the argument list, followed by all
args arguments, and finally, by all the keyword arguments. The following example shows
the formal declaration for how this must work.

function(formal args, args, kwargs)

160

CHAPTER 7 PYTHON AND GTK+

The following are calling statements that use formal arguments, variable arguments,
and keyword arguments.

function using formal and variable args def functioni(title, modal, *args):

calling function1
function1("My title", False, # variable args follow
"Peaches", "and", "Cream")
function1("My Window", True) # Only formal args, no variable args
function1(True) # Invalid!!! Missing one formal arg

function using formal and keyword args def function2(title, modal, **kwargs)

calling function2

function2("My title", True, parent=window, accept focus=True) function2("My
Window", False) # Only formal args, no keyword args
function2(parent=window) # Invalid, no formal args

There are many other variations of these examples, but if you follow these three
simple rules, you should have no problem coping with all the variations:

o Formal arguments must all appear in the argument list first. If there
are no formal arguments, then they can be absent from the argument
list. There can be as many formal arguments as you need.

e Variable arguments must all appear next in the argument list. If
there are no variable arguments, then they can be absent from the
argument list. There can be as many variable arguments as you need.

o Keyword arguments must all appear last in the argument list. If
there are no keyword arguments, then they can be absent from the
argument list. There can be as many keyword arguments as you need.

PyGTK rarely uses formal arguments; it uses variable and keyword arguments almost
exclusively. This makes it a little easier to cope with instantiating all the GTK+ classes.
Just remember that GTK+ ignores any keyword arguments that are not also property
names. This is very useful when you want to establish and manage your own properties.

161

CHAPTER 7 PYTHON AND GTK+

Logging

Logging tracks events that happen when software runs. The software developer adds
logging calls to their code to indicate that certain events have occurred. An event is
described by a descriptive message that can optionally contain variable data (i.e.,

data that is potentially different for each occurrence of the event). Events also have an
importance that the developer ascribes to the event; the importance can also be called
the level or severity.

When to Use Logging

Logging provides a set of convenience functions for simple logging usage. These are
debug(), info(), warning(), error(), and critical(). Table 7-1 describes when to use
logging for common tasks and the best tool to use for each task.

Table 7-1. Logging Tasks

Task You Want to Perform Best Tool for the Task

Display console output for ordinary use of a print()
command-line script or program

Report events that occur during normal operation logging.info() (or logging.debug() for

of a program (e.qg., status monitoring or fault very detailed output for diagnostic purposes)
investigation)
Issue a warning for a particular runtime event logging.warning() if there is nothing the

client application can do about the situation, but
the event should still be noted

Report an error for a particular runtime event Raise an exception

Report suppression of an error without raising an logging.error(), logging.exception()
exception (e.g., error handler in a long-running or logging.critical() as appropriate for
Server process) the specific error and application domain

The logging functions are named after the level or severity of the events that they
track. The standard levels and their applicability are described in Table 7-2 (in increasing
order of severity).

162

http://logging.info

CHAPTER 7 PYTHON AND GTK+

Table 7-2. Logging Levels

Level When It’s Used
DEBUG Detailed information, typically of interest only when diagnosing problems.
INFO Confirmation that things are working as expected.

WARNING Anindication that something unexpected happened, or indicative of some problem in
the near future (e.g., disk space low). The software is still working as expected.

ERROR Due to a more serious problem, the software has not been able to perform a function.

CRITICAL A serious error indicating that the program itself may be unable to continue running.

The default level is WARNING, which means that only events of this level and above
will be tracked, unless the logging package is configured to do otherwise.

Events that are tracked can be handled in different ways. The simplest way of
handling tracked events is to print them to the console. Another common way is to write
them to a disk file.

Some Simple Examples

The following is a very simple example.
import logging

logging.warning('Watch out!') # will print a message to the console
logging.info('I told you so') # will not print anything

Ifyou type these lines into a script and run it, you see the following printed on the
console.

WARNING:root:Watch out!

The INFO message doesn’t appear because the default level is WARNING. The
printed message includes the indication of the level and the description of the event
provided in the logging call (i.e., Watch out!). Don’t worry about the “root” part for now;
itis explained later. The actual output can be formatted quite flexibly if you need that;

formatting options are also explained later.

163

CHAPTER 7 PYTHON AND GTK+

Logging to a File

Recording logging events in a file is a very common, so let’s look at that next. Be sure
to try the following in a newly started Python interpreter; don’t just continue from the
session described earlier.

import logging

logging.basicConfig(filename="example.log",level=1ogging.DEBUG)
logging.debug('This message should go to the log file')
logging.info('So should this")

logging.warning('And this, too")

And now if we open the file and look at what we have, we should find the log
messages.

DEBUG:root:This message should go to the log file INFO:root:So should this
WARNING:root:And this, too

This example also shows how you can set the logging level, which acts as the
threshold for tracking. In this case, because we set the threshold to DEBUG, all of the
messages were printed.

If you want to set the logging level from a command-line option, such as

--log=INFO

and you have the value of the parameter passed for --1og in a loglevel variable, you
can use

getattr(logging, loglevel.upper())

to get the value, which you pass to basicConfig() via the level argument.
You may want to error check any user input value, perhaps as in the following example.

assuming loglevel is bound to the string value obtained from the
command line argument. Convert to upper case to allow the user to
specify --log=DEBUG or --log=debug
numeric_level = getattr(logging, loglevel.upper(), None)
if not isinstance(numeric_level, int):

raise ValueError('Invalid log level: %s' % loglevel)
logging.basicConfig(level=numeric_level, ...)

164

CHAPTER 7 PYTHON AND GTK+

The call to basicConfig() should come before any calls to debug(), info(), and so
forth. As it’s intended as a one-off simple configuration facility, only the first call actually
does anything; subsequent calls are effectively no-ops.

If you run the preceding script several times, the messages from successive runs are
appended to the example. log file. If you want each run to start afresh, not remembering
the messages from earlier runs, you can specify the filemode argument, by changing the
call in the example to this:

logging.basicConfig(filename="example.log", filemode='w', level=logging.DEBUG)

The output is the same as before, but the log file is no longer appended, so the
messages from earlier runs are lost.

Logging from Multiple Modules

If your program consists of multiple modules, the following is an example of how you
could organize logging in it.

myapp.py
import logging
import mylib

def main():
logging.basicConfig(filename="myapp.log", level=logging.INFO)
logging.info('Started")
mylib.do something()
logging.info('Finished")

if _name__ == '_ main_ ':
main()
mylib.py

import logging

def do_something():
logging.info('Doing something")

If you run myapp . py, you should see this in myapp. log:

INFO:root:Started INFO:root:Doing something INFO:root:Finished

165

CHAPTER 7 PYTHON AND GTK+

This is hopefully what you were expecting to see. You can generalize this to multiple
modules using the pattern in mylib.py. Note that for this simple usage pattern, apart
from looking at the event description, you won’t know where in your application your
messages came from by looking in the log file. If you want to track the location of your
messages, you'll need to refer to the documentation beyond this tutorial level.

Logging Variable Data

To log variable data, use a format string for the event description message and append
the variable data as arguments; for example,

import logging

logging.warning('%s before you %s', 'Look', 'leap!")
displays

WARNING:root:Look before you leap!

As you can see, merging variable data into the event description message uses the
old, %-style of string formatting. This is for backward compatibility; the logging package
predates newer formatting options, such as str.format() and string.Template. These
newer formatting options are supported, but exploring them is outside the scope of this
book. See the Python documentation for more information.

Changing the Format of Displayed Messages

To change the format that is used to display messages, you need to specify the format
you want to use.

import logging

logging.basicConfig(format="%(levelname)s:%(message)s', level=logging.DEBUG)
logging.debug('This message should appear on the console')
logging.info('So should this")

logging.warning('And this, too')

This should print something like the following.

2010-12-12 11:41:42,612 is when this event was logged.

166

CHAPTER 7 PYTHON AND GTK+

The default format for date/time display is ISO8601 or [RFC 3339]. If you need
more control over the formatting of the date/time, provide a datefmt argument to
basicConfig(), as follows.

import logging

logging.basicConfig(format="%(asctime)s %(message)s', datefmt="%m/%d/%Y
BL:%M:%S % logging.warning('is when this event was logged.")

This displays something like the following.
12/12/2010 11:46:36 AM is when this event was logged.

The format of the datefmt argument is the same as supported by time.strftime().

Exceptions

Running exceptions in GTK+, application are the same as running any standard Python
program. Since the GTK module is simply a standard Python module that wraps the
GTK+ APIs, the library implementation morphs all GTK+ exceptions into standard
Python exceptions. The result of this is that you do not need to worry about catching
Glib.Error errors. None will ever be thrown by the GTK module.

That does not mean that you can ignore standard Python exceptions. You should
plan for any exceptions in your application, just the way you would for any Python
application. Let’s review some principals of Python exceptions.

Raising Exceptions

Exceptions are raised automatically when something goes wrong in your application.
Before we take a look at how to handle an exception, let’s take a look at how you can raise
exceptions manually—and even create your own kinds of exceptions.

The Raise Statement

You raise an exception with the raise statement, which takes an argument that is either
a class (which should subclass the Exception class) or an instance. When using a class
as an argument, an instance of the class is automatically created. The following is an
example of using the built-in Exception class.

167

CHAPTER 7 PYTHON AND GTK+

>>> raise Exception

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

Exception

> raise Exception('overload') Traceback (most recent call last):
File "<stdin>", line 1, in <module> Exception: overload

The first example raises a generic exception with no information about what went
wrong. The second example added the error message overload.

Many built-in classes are available. A full description of all the exception classes
are available in the Python Library Reference in the “Built-in Exceptions” section. The
following lists the class hierarchy for all the Python 3.x exceptions.

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception
+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError

168

CHAPTER 7

+-- OSError
+-- BlockingIOError
+-- ChildProcessError
+-- ConnectionError
| +-- BrokenPipeError
| +-- ConnectionAbortedError
| +-- ConnectionRefusedError
| +-- ConnectionResetError

|
|
|
|
|
|
|
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
|
+-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError

PYTHON AND GTK+

169

CHAPTER 7 PYTHON AND GTK+

+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

Custom Exception Classes

There are a lot of built-in exceptions that cover a lot of ground. But there times when you
might want to create your own exception class. For example, there is no GTK+ exception
class, so you might have a need to create your own. This gives you a chance to selectively
handle exceptions based on their class. Thus, if you wanted to handle GTK runtime
errors, you would need a separate class for the exceptions.

You create such an exception just like you would any other class, but be sure to
subclass the Exception class (either directly or indirectly, which means that subclassing
any other built-in exception is okay). The following shows how to write a custom
exception class.

class GtkCustomException)Exception): pass

Feel free to add your own methods to class as you need them.

Catching Exceptions

Of course, raising an exception is only the first part of exceptions. The really useful part
is catching (or trapping) and handling exceptions in your own application code. You do
this with the try and except statements. Let’s take a look at a simple example.

x = input('Enter the first number: ')
y = input('Enter the second number: ')
print(x/y)

170

CHAPTER 7 PYTHON AND GTK+

This works nicely until the user enters zero as the second number.

Enter the first number: 10

Enter the second number: o

Traceback (most recent call last):
File "<stdin»", line 3, in <module>

ZeroDivisionError: division by zero

To catch the exception and perform some error handling (like printing a more
friendly error message), you could rewrite the program like this:

try:
x = input('Enter the first number: ')
y = input('Enter the second number: ')
print(x/y)

except ZeroDivisionError:
print('The second number can not be zero!')

Although this solution might seem overblown for such a simple case, when
hundreds of division statements are used throughout an application, this would be a
more reasonable case.

Note Exceptions propagate out of functions and methods to where they are
called, and if they are not caught there either, the exceptions will “bubble up”

to the top level of the program. This means that you can use try and except
statements to catch exceptions that are raised in your own and other people’s code
(modules, function, classes, etc.).

Raising and Reraising Exceptions

Exceptions can be raised inside other exceptions, passing the exception on to a
higher level of code. To do this, the subsequent exception must be called without any
arguments via the raise statement.

171

CHAPTER 7 PYTHON AND GTK+

The following is an example of this very useful technique. The example passes the
ZeroDivisionException to a higher level of code if the exception is not suppressed.

class SuppressedDivision:
suppressed = False
def calc(self, expr):
try:
return eval(expr)
except ZeroDivisionError:
if self.suppressed:
print('Division by zero is illegal!')
else:
raise

Asyou can see, when the calculation is not suppressed, the ZeroDivisionException
is caught but passed on to the higher level of code, where it will be caught and handled.

Catching Multiple Exceptions

The try and except block can also catch and process more than one exception. To see
how this works, let’s enhance the previous example to catch the TypeError exception.

class SuppressedDivision:
suppressed = False
def calc(self, expr):
try:
return eval(expr)
except ZeroDivisionError:
if self.suppressed:
print('Division by zero is illegal!')
else:
raise
except TypeError:
if self.suppressed:
print('One of the operands was not a valid number!")
else:
raise

172

CHAPTER 7 PYTHON AND GTK+

Now we begin to see the power of the try and except code block and using
exceptions. In the preceding example, we are using the interpreter’s ability to examine all
the variables of the calculation, instead of writing essentially the same code ourselves to
process all the variables to find out if the calculation works before we process it.

We can also combine both exceptions into a single block of code, as follows.

class SuppressedDivision:
suppressed = False
def calc(self, expr):
try:
return eval(expr)
except ZeroDivisionError, TypeError:
if self.suppressed:
print('One or both operands is illegal!')
else:
raise

We can also capture the object that causes the exception.

class SuppressedDivision:
suppressed = False
def calc(self, expr):
try:
return eval(expr)
except (ZeroDivisionError, TypeError , e:
if self.suppressed:
print('The value "' + str(e) '" is illegal!')
else:
raise

There is much more to processing exceptions but this information is enough to whet

your appetite.
You should consult with your Python resources for more complete information on

exceptions.

173

CHAPTER 8

Text View Widget

This chapter teaches you how to use the Gtk.TextView widget. The text view widget is
similar to a Gtk.Entry widget, except it is capable of holding text that spans multiple
lines. Scrolled windows allow the document to exist beyond the bounds of the screen.

Before you learn about Gtk. TextView, this chapter begins by introducing a few new
widgets. The first two widgets are scrolled windows and viewports. Scrolled windows are
composed of two scrollbars that scroll the child widget. A few widgets support scrolling
already, including Gtk.Layout, Gtk.TreeView, and Gtk.TextView. For all other widgets
that you want to scroll, you need to add them first to a Gtk.Viewport widget, which gives
its child widget scrolling abilities.

In this chapter, you learn the following:

o How to use scrolled windows and viewports
e Howto use the Gtk.TextView widget and apply text buffers

o The functions that text iterators and text marks perform when dealing
with buffers

o Methods for applying styles to the whole or part of a document
e How to cut, copy, and paste to and from the clipboard

o How to insert images and child widgets into a text view

Scrolled Windows

Before you can learn about the Gtk. TextView widget, you need to learn about two
container widgets called Gtk.ScrolledWindow and Gtk.Viewport. Scrolled windows use
two scrollbars to allow a widget to take up more space than is visible on the screen. This
widget allows the Gtk.TextView widget to contain documents that expand beyond the
bounds of the window.

175
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_8

CHAPTER 8 TEXT VIEW WIDGET

Both scrollbars in the scrolled window have associated Gtk.Adjustment objects.
These adjustments track the current position and range of a scrollbar; however, you will
not need to directly access the adjustments in most cases.

A scrollbar’s Gtk.Adjustment holds information about scroll bounds, steps, and
its current position. The value variable is the current position of the scrollbar between
the bounds. This variable must always be between the lower and upper values, which
are the bounds of the adjustment. The page_size is the area that can be visible on
the screen at one time, depending on the size of the widget. The step _increment and
page_increment variables are used for stepping when an arrow is pressed or when the
Page Down key is pressed.

Figure 8-1 is a screenshot of the window created with the code in Listing 8-1.
Both scrollbars are enabled because the table containing the buttons is larger than

the visible area.

=) 3
Close Close Close Close
Close Close Close Close
Close Close Close Close
Close Close Close Close
Close Close Close Close
Close Close Close Close
Close Close Close Close
L]

Figure 8-1. A synchronized scrolled window and viewport

Listing 8-1 shows how to use scrolled windows and viewports. As a scrollbar moves, the
viewport scrolls as well because the adjustments are synchronized. Try to resize the window
to see how the scrollbars react to becoming larger and smaller than the child widget.

176

CHAPTER 8 TEXT VIEW WIDGET

Listing 8-1. Using Scrolled Windows

#!/usr/bin/python3

import sys
import gi
gi.require versi

on('Gtk", '3.0")

from gi.repository import Gtk

class AppWindow(

Gtk.ApplicationWindow):

def init (self, *args, **kwargs):

super(). init (*args, **kwargs)
self.set border width(10)

gridi = Gtk.Grid.new()

grid2 = Gtk.Grid.new()
gridi.set_column_homogeneous = True
grid2.set column_homogeneous = True

gridi.set_row_homogeneous = True

grid2.set_row_homogeneous = True

gridi.set column_spacing
grid2.set _column_spacing

gridi.set_row_spacing = 5

grid2.set_row_spacing = 5

i=0

while i
j:
whil
i4=

< 10:
0
e j < 10:
button = Gtk.Button.new with label("Close")
button.set relief(Gtk.ReliefStyle.NONE)
button.connect("clicked", self.on button clicked)
gridi.attach(button, i, j, 1, 1)
button = Gtk.Button.new with label("Close")
button.set relief(Gtk.ReliefStyle.NONE)
button.connect("clicked", self.on button clicked)
grid2.attach(button, i, j, 1, 1)
j+=1

1

177

CHAPTER 8 TEXT VIEW WIDGET

swin = Gtk.Scrolledwindow.new(None, None)
horizontal = swin.get hadjustment()
vertical = swin.get vadjustment()
viewport = Gtk.Viewport.new(horizontal, vertical)
swin.set border width(5)
swin.set propagate natural width(True)
swin.set _propagate natural height(True)
viewport.set border width(5)
swin.set _policy (Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC)
swin.add_with_viewport(gridi1)
viewport.add(grid2)
vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
vbox.set_homogeneous = True
vbox.pack start(viewport, True, True, 5)
vbox.pack start(swin, True, True, 5)
self.add (vbox)
self.show all()

def on_button clicked(self, button):
self.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",
**kwargs)

self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,

title="Scrolled Windows & Viewports")

self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

178

CHAPTER 8 TEXT VIEW WIDGET

Newly scrolled windows are created with Gtk.ScrolledWindow.new(). In Listing 8-1
each parameter is set to None , which causes the scrolled window to create two default
adjustments for you. In most cases, you want to use the default adjustments, but it is also
possible to specify your own horizontal and vertical adjustments for the scroll bars.

The adjustments in this example are used when the new viewport is created with
Gtk.Viewport.new(). The viewport adjustments are initialized with those from the
scrolled window, which makes sure that both containers are scrolled at the same time.

As you set up a scrollable window, the first decision you need to make is when the
scrollbars will be visible. In this example, Gtk.PolicyType.AUTOMATIC was used for
both scrollbars so that each is only shown when needed. Gtk.PolicyType.ALWAYS is the
default policy for both scrollbars. The following are three enumeration values provided
by Gtk.PolicyType.

o Gtk.PolicyType.ALWAYS: The scrollbar is always visible. It is
displayed as disabled or grayed out if scrolling is not possible.

o Gtk.PolicyType.AUTOMATIC: The scrollbar is only visible if scrolling is
possible. If it is not needed, the scrollbar temporarily disappears.

o Gtk.PolicyType.NEVER: The scrollbar is never shown.

Another property, although not used by very many applications, is the placement of
the scrollbars. In most applications, you want the scrollbars to appear along the bottom
and the right side of the widget, which is the default functionality.

However, if you want to change this, you can call set_placement(). This function
receives a Gtk.CornerType value, which defines where the content is placed with respect
to the scrollbars. For example, the default value is Gtk.CornerType.TOP_LEFT, because
the content normally appears above and to the left of the scrollbars.

swin.set placement(window placement)

Available Gtk.CornerType values include Gtk.CornerType.TOP_LEFT, Gtk.
CornerType.BOTTOM LEFT, Gtk.CornerType.TOP_RIGHT, and Gtk.CornerType.BOTTOM
RIGHT, which define where the content is placed with respect to the scrollbars.

179

CHAPTER 8 TEXT VIEW WIDGET

Caution It is a very rare occasion when set_placement() should be used!

In almost every possible case, you should not use this function, because it can
confuse the user. Unless you have a good reason for changing the placement, use
the default value.

It is possible to set the shadow type of the widget with respect to the child widget by
calling set_shadow_type().

swin.set shadow type(type)

In Chapter 4, you learned how to use the Gtk.ShadowType enumeration along with
handle boxes to set the type of border to place around the child widget. The same values
as before set the shadow type of a scrolled window.

After you have set up a scrolled window, you should add a child widget for it to be of
any use. There are two possible ways to do this, and the method is chosen based on the
type of child widget. If you are using a Gtk.TextView, Gtk.TreeView, Gtk.IconView, Gtk.
Viewport, or Gtk. Layout widget, you should use the default add() method, since all five
of these widgets include native scrolling support.

All other GTK+ widgets do not have native scrolling support. For those widgets,
add_with viewport() should be used. This function gives the child scrolling support by
first packing it into a container widget called a Gtk.Viewport. This widget implements
scrolling ability for the child widget that lacks its own support. The viewport is then
automatically added to the scrolled window.

Caution You should never pack Gtk.TextView, Gtk.TreeView, Gtk.IconView,
Gtk.Viewport, or Gtk.Layout widgets into a scrolled window with add_with
viewport (), because scrolling may not be performed correctly on the widget!

It is possible to manually add a widget to a new Gtk.Viewport and then add that
viewport to a scrolled window with add(), but the convenience function allows you to
ignore the viewport completely.

The scrolled window is simply a container with scrollbars. Neither the container nor
the scrollbars perform any action by themselves. Scrolling is handled by the child widget,
which is why the child must already have native scrolling support to work correctly with
the Gtk.ScrolledWindow widget.

180

CHAPTER 8 TEXT VIEW WIDGET

When you add a child widget that has scrolling support, a function is called to add
adjustments for each axis. Nothing is done unless the child widget has scrolling support,
which is why a viewport is required by most widgets. When the scrollbar is clicked
and dragged by the user, the value in the adjustment changes, which causes the value-
changed signal to be emitted. This action also causes the child widget to render itself
accordingly.

Because the Gtk.Viewport widget did not have any scrollbars of its own, it relied
completely on the adjustments to define its current position on the screen. The
scrollbars are used in the Gtk.ScrolledWindow widget as an easy mechanism for
adjusting the current value of the adjustment.

Text Views

The Gtk.TextView widget displays multiple lines of text of a document. It provides
many ways to customize the whole of a document or individual portions of it. It is even
possible to insert GdkPixbuf objects and child widgets into a document. Gtk.TextView is
the first reasonably involved widget you have encountered up to this point, so the rest of
this chapter is dedicated to many aspects of the widget. It is a very versatile widget that
you need to use in many GTK+ applications.

The first few examples of this chapter may lead you to believe that Gtk.TextView can
only display simple documents, but that is not the case. It can also display many types of
rich text, word processing, and interactive documents that are used by a wide variety of
applications. You learn how to do this in the sections that follow.

Figure 8-2 introduces you to a simple text view window that allows you to enter text
and do some basic layout design. But it also does not have many features and is lacking
features found in many word processors.

Your 1st GtkTextView widget]|

Figure 8-2. A Gtk.TextView widget

181

CHAPTER 8 TEXT VIEW WIDGET

Text views are used in every type of text and document editing application that
uses GTK+. If you have ever used AbiWord, gedit, or most other text editors created for
GNOME, you have used the Gtk.TextView widget. It is also used in the Gaim application
in instant message windows. (In fact, all the examples in this book were created in the
OpenLDev application, which uses Gtk.TextView for source code editing!)

Text Buffers

Each text view displays the contents of a class called Gtk.TextBuffer. Text buffers store
the current state of the content within a text view. They hold text, images, child widgets,
text tags, and all other information necessary for rendering the document.

A single text buffer is capable of being displayed by multiple text views, but each text
view has only one associated buffer. Most programmers do not take advantage of this
feature, but it becomes important when you learn how to embed child widgets into a text
buffer in a later section.

As with all text widgets in GTK+, text is stored as UTF-8 strings. UTF-8 is a type of
character encoding that uses from 1 byte to 4 bytes for every character. To differentiate
the number of bytes that a character takes up, “0” always precedes a character that is 1
byte, “110” precedes 2-byte characters, “1110” comes before 3-byte sequences, and so
on. UTF-8 characters that span multiple bytes have “10” in the two most significant bits
of the rest of the bytes.

By doing this, the basic 128 ASCII characters are still supported, because an
additional 7 bits are available in a single-byte character after the initial “0” UTF-8 also
provides support for characters in many other languages. This method also avoids small
byte sequences occurring within larger byte sequences.

When handling text buffers, you need to know two terms: offset and index. The word
“offset” refers to one character. UTF-8 characters may span one or more bytes within the
buffer, so a character offset in a Gtk.TextBuffer may not be a single byte long.

Caution The word “index” refers to an individual byte. You need to be careful
when stepping through a text buffer in later examples, because you cannot refer to
an index that is between two character offsets.

182

CHAPTER 8 TEXT VIEW WIDGET

Listing 8-2 illustrates one of the simplest text view examples you could create. A new
Gtk.TextView widget is created. Its buffer is retrieved, and text is inserted into the buffer.
A scrolled window then contains the text view.

Listing 8-2. A Simple Gtk.TextView Example

#!/usr/bin/python3
import sys
import gi
gi.require version('Gtk', '3.0")
from gi.repository import Gtk
class AppWindow(Gtk.ApplicationWindow):
def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(250, 150)
textview = Gtk.TextView.new()
buffer = textview.get buffer()
text = "Your 1st GtkTextView widget!"
buffer.set text(text, len(text))
scrolled win = Gtk.ScrolledWindow.new (None, None)
scrolled win.add(textview)
self.add(scrolled win)
class Application(Gtk.Application):
def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Text Views")
self.window.show all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

183

CHAPTER 8 TEXT VIEW WIDGET

Most new Gtk.TextView widgets are created with Gtk.TextView.new(). By using
this function, an empty buffer is created for you. This default buffer can be replaced later
with set_buffer() or retrieved with get_buffer().

If you want to set the initial buffer to one that you have already created, you can
create the text view with Gtk.TextView.new with buffer().In most cases, it is easier to
simply use the default text buffer.

Once you have access to a Gtk. TextBuffer object, there are many ways to add
content, but the easiest method is to call set_text(). This function receives a text buffer,
a UTF-8 text string to set as the buffer’s new text, and the length of the text.

set_text(text, length)

If the text string is NULL-terminated, you can use -1 as the length of the string. This
function silently fails if a null character is found before the specified length of text.

The current contents of the buffer are completely replaced by the new text string. In
the “Text Iterators and Marks” section, you are introduced to functions that allow you to
insert text into a buffer without overwriting the current content that are more suitable for
inserting large amounts of text.

Recall from the previous section that there are five widgets that have native scrolling
abilities, including the Gtk.TextView widget. Because text views already have the
facilities to manage adjustments, container.add() should always add them to scrolled

windows.

Text View Properties

Gtk.TextView was created to be a very versatile widget. Because of this, many properties
are provided for the widget. In this section, you learn about a number of these widget
properties.

One feature that makes the text view widget extremely useful is that you are able to
apply changes to the whole or only an individual part of the widget. Text tags change the
properties of a segment of text. Customizing only a part of the document is covered in a
later section of this chapter.

Listing 8-3 shows many of the properties that can customize the contents of Gtk.
TextBuffer. You should note that many of these properties could be overridden in
individual sections of a document with text tags.

184

CHAPTER 8 TEXT VIEW WIDGET
Listing 8-3. Using Gtk.TextView Properties

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Pango

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(260, 150)
font = Pango.font description from string("Monospace Bold 10")
textview = Gtk.TextView.new()
textview.modify font(font)
textview.set wrap mode(Gtk.WrapMode.WORD)
textview.set justification(Gtk.Justification.RIGHT)
textview.set editable(True)
textview.set cursor visible(True)
textview.set pixels above lines(5)
textview.set pixels below lines(5)
textview.set pixels inside wrap(5)
textview.set left margin(10)
textview.set right margin(10)
buffer = textview.get buffer()
text = "This is some text!\nChange me!\nPlease!"
buffer.set text(text, len(text))
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.ALWAYS)

scrolled win.add(textview)
self.add(scrolled win)

185

CHAPTER 8 TEXT VIEW WIDGET

class Application(Gtk.Application):
def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Text Views Properties")
self.window.show_all()
self.window.present()
if _name_ ==" main_":
app = Application()
app.run(sys.argv)

The best way to explain what each of Gtk.TextView’s properties does is to show you
a screenshot of the result, which can be viewed in Figure 8-3. You should compile the
application on your own machine and try changing the values used in Listing 8-3 to get a
feel for what they do as well.

mEIR)
This is some text!

Change me!

Please!|

Figure 8-3. Gtk.TextView with nondefault properties

It is possible to change the font and colors of individual parts of the text view content,
but as shown in Listing 8-3 it is still possible to use the functions from past chapters to
change the content of the whole widget. This is useful when editing documents that have
a consistent style, such as text files.

186

CHAPTER 8 TEXT VIEW WIDGET

When dealing with a widget that displays text on multiple lines, you need to decide
if and how text is wrapped. In Listing 8-3 the wrap mode was set to Gtk.WrapMode .WORD
with set_wrap_mode(). This setting wraps the text but does not split a word over two
lines. There are four types of wrap modes available in the Gtk.WrapMode enumeration.

e Gtk.WrapMode.NONE: No wrapping occurs. If a scrolled window
contains the view, the scrollbar expands; otherwise, the text view
expands on the screen. If a scrolled window does not contain the
Gtk.TextView widget, it expands the widget horizontally.

e Gtk.WrapMode.CHAR: Wrap to the character, even if the wrap point
occurs in the middle of a word. This is usually not a good choice for a
text editor, since it splits words over two lines.

o Gtk.WrapMode.WORD: Fill up the line with the largest number of words
possible but do not break a word to wrap. Instead, bring the whole

word onto the next line.

o Gtk.WrapMode.WORD CHAR: Wrap in the same way as GTK_WRAP_
WORD, but if a whole word takes up more than one visible width of
the text view, wrap it by the character.

At times, you may want to prevent the user from editing the document. The editable
property can be changed for the entire text view with set_editable(). It is worth
noting that with text tags, you can override set_editable() for certain sections of the
document, so it is not always an end-all solution.

Contrast this with set_sensitive(), which prevents the user from interacting
with the widget at all. If a text view is set as not editable, the user is still able to perform
operations on the text that do not require the text buffer to be edited, such as selecting
text. Setting a text view as insensitive prevents the user from performing any of these
actions.

When you disable editing within a document, it is also useful to stop the cursor from
being visible with set_cursor visible(). By default, both of these properties are set to
True, so both need to be changed to keep them in sync.

By default, there is no extra spacing placed between lines, but Listing 8-3 shows
you how to add spacing above a line, below a line, and between wrapped lines. These
functions add extra space between lines, so you can assume that there is already enough
spacing between lines. In most cases, you should not use this feature, because spacing
may not look correct to the user.

187

CHAPTER 8 TEXT VIEW WIDGET

Justification is another important property of text views, especially when
dealing with rich text documents. There are four default justification values: Gtk.
Justification.LEFT, Gtk.Justification.RIGHT, Gtk.Justification.CENTER, and
Gtk.Justification.FILL.

Justification can be set for the whole text view with set_justification(), butit can
be overridden for specific sections of text with text tags. In most cases, you want to use
the default Gtk.Justification.LEFT justification unless the user wants it to be changed.
Text is aligned to the left of the view by default.

textview.set justification(justification)

The last properties set by Listing 8-3 were the left and right margins. By default, there is
no extra margin space added to either the left or right side, but you can add a certain number
of pixels to the left with set_left margin() or to the right with set_right margin().

Pango Tab Arrays

Tabs added to a text view are set to a default width, but there are times when you want
to change that. For example, in a source code editor, one user may want to indent

two spaces while another may want to indent five spaces. GTK+ provides the Pango.
TabArray object, which defines a new tab size.

When changing the default tab size, you first calculate the number of horizontal
pixels the tab takes up based on the current font. The following make tab_array()
function can calculate a new tab size. The function begins by creating a string out of the
desired number of spaces. That string is then translated into a Pango. Layout object,
which retrieves the pixel width of the displayed string. Lastly, the Pango.Layout is
translated into a Pango. TabArray, which can be applied to a text view.

def make tab array(fontdesc, tab size, textview):
if tab_size < 100:
return
tab_string = '
layout = Gtk.Widget.create pango layout(textview, tab string)
layout.set font description(fontdesc)
(width, height) = layout.get pixel size()
tab_array = Pango.TabArray.new(1, True)
tab_array.set tab(0, Pango.TabAlign.LEFT, width)

textview.set tabs(tab array)
188

" * tab size

CHAPTER 8 TEXT VIEW WIDGET

The Pango.Layout object represents a whole paragraph of text. Normally, Pango
uses it internally for laying out text within a widget. However, it can be employed by this
example to calculate the width of the tab string.

We begin by creating a new Pango. Layout object from the Gtk.TextView and
creating the tab string with Gtk.Widget.create pango layout(). This uses the default
font description of the text view. This is fine if the whole document has the same font
applied to it. Pango. Layout describes how to render a paragraph of text.

layout = Gtk.Widget.create pango layout(textview, tab string)

If the font varies within the document, or it has not already been applied to the text
view, you want to specify the font to use for the calculations. You can set the font of a
Pango.Layout with set_font_description(). This uses a Pango.FontDescription
object to describe the layout’s font.

layout.set font_description(fd)

Once you have correctly configured your Pango. Layout, the width of the string can be
retrieved with get_pixel size(). This is the calculated space that the string takes up within
the buffer, which should be added when the user presses the Tab key within the widget.

(width, height) = layout.get pixel size()

Now that you have retrieved the width of the tab, you need to create a new Pango.
TabArray with Pango.TabArray.new(). This function receives the number of elements
that should be added to the array and notification of whether the size of each element is
going to be specified in pixels.

tab_array = Pango.TabArray.new(1, True)

You should always create the tab array with only one element, because there is only
one tab type supported at this time. If True is not specified for the second parameter,
tabs are stored as Pango units; 1 pixel is equal to 1,024 Pango units.

Before applying the tab array, you need to add the width. This is done with set_
tab(). The integer “0” refers to the first element in the Pango. TabArray, the only one
that should ever exist. Pango.TabAlign.LEFT must always be specified for the second
parameter, because it is currently the only supported value. The last parameter is the
width of the tab in pixels.

tab_array.set tab(0, Pango.TabAlign.LEFT, width)

189

CHAPTER 8 TEXT VIEW WIDGET

When you receive the tab array back from the function, you need to apply it to the
whole of the text view with set_tab(). This makes sure that all tabs within the text view
are set to the same width. However, as with all other text view properties, this value can
be overridden for individual paragraphs or sections of text.

textview.set tabs(tab _array)

Text Iterators and Marks

When manipulating text within a Gtk. TextBuffer, there are two objects that can keep
track of a position within the buffer: Gtk.TextIter and Gtk.TextMark. Functions are
provided by GTK + to translate between these two types of objects.

Text iterators represent a position between two characters in a buffer. They are
utilized when manipulating text within a buffer. The problem presented by text
iterators is that they automatically become invalidated when a text buffer is edited.

Even if the same text is inserted and then removed from the buffer, the text iterator
becomes invalidated, because iterators are meant to be allocated on the stack and used
immediately.

For keeping track of a position throughout changes within a text buffer, the Gtk.
TextMark object is provided. Text marks remain intact while buffers are manipulated and
move their position based on how the buffer is manipulated. You can retrieve an iterator
pointing to a text mark with get_iter at mark(), which makes marks ideal for tracking
a position in the document.

get iter at mark(iter, mark)

Text marks act as though they are invisible cursors within the text, changing position
depending on how the text is edited. If text is added before the mark, it moves to the right
so that it remains in the same textual position.

By default, text marks have a gravity set to the right. This means that it moves to
the right as text is added. Let us assume that the text surrounding a mark is deleted.

The mark moves to the position between the two pieces of text on either side of the
deleted text. Then, if text is inserted at the text mark, because of its right gravity setting, it
remains on the right side of the inserted text. This is similar to the cursor, because as text
is inserted, the cursor remains to the right of the inserted text.

190

CHAPTER 8 TEXT VIEW WIDGET

Tip By default, text marks are invisible within the text. However, you can set a
Gtk.TextMark as visible by calling set_visible(), which places a vertical bar
to indicate where it is located.

Text marks can be accessed in two ways. You can retrieve a text mark at a specific
Gtk.TextIter location. It is also possible to set up a text mark with a string as its name,
which makes marks easy to keep track of.

Two default text marks are always provided by GTK+ for every Gtk.TextBuffer:
insert and selection_bound. The insert text mark refers to the current cursor position
within the buffer. The selection_bound text mark refers to the boundary of selected
text if there is any selected text. If no text is selected, these two marks point to the same
position.

The "insert" and "selection_bound" text marks are extremely useful when
manipulating buffers. They can be manipulated to automatically select or deselect text
within a buffer and help you figure out where text should logically be inserted within a
buffer.

Editing the Text Buffer

GTK+ provides a wide array of functions for retrieving text iterators as well as
manipulating text buffers. In this section, you see a few of the most important of these
methods in use in Listing 8-4, and then you are introduced to many more. Figure 8-4
displays an application that inserts and retrieves the text with a Gtk. TextBuffer.

Insert Text Get Text

Figure 8-4. An application using a Gtk.TextView widget

191

CHAPTER 8 TEXT VIEW WIDGET

Listing 8-4 is a simple example that performs two functions. When the Insert Text
button shown in Figure 8-4 is clicked, the string shown in the Gtk.Entry widget is
inserted at the current cursor position. When the Get Text button is clicked, any selected
text is output with print().

Listing 8-4. Using Text Iterators

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _ init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(-1, -1)
textview = Gtk.TextView.new()
entry = Gtk.Entry.new()
insert button = Gtk.Button.new with label("Insert Text")
retrieve = Gtk.Button.new with label("Get Text")
insert button.connect("clicked", self.on insert text, (entry, textview))
retrieve.connect("clicked", self.on retrieve text, (entry, textview))
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.add(textview)
hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)
hbox.pack start(entry, True, True, 0)
hbox.pack start(insert button, True, True, 0)
hbox.pack start(retrieve, True, True, 0)
vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
vbox.pack start(scrolled win, True, True, 0)
vbox.pack start(hbox, True, True, 0)
self.add(vbox)
self.show all()
def on_insert text(self, button, w):

buffer = w[1].get buffer()
text = w[0].get text()

192

CHAPTER 8 TEXT VIEW WIDGET

mark

buffer.get insert()
iter = buffer.get iter at mark(mark)
buffer.insert(iter, text, len(text))
def on_retrieve text(self, button, w):
buffer = w[1].get buffer()
(start, end) = buffer.get selection bounds()
text = buffer.get text(start, end, False)
print(text)
class Application(Gtk.Application):
def _init_(self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Text Iterators")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

An important property of iterators is that the same iterator can be used repeatedly,
because iterators become invalidated every time you edit a text buffer. In this way, you
can continue to reuse the same Gtk.TextIter objectinstead of creating a huge number
of variables.

Retrieving Text Iterators and Marks

As stated before, there are quite a number of functions available for retrieving text
iterators and text marks, many of which is used throughout this chapter.

Listing 8-4 begins by retrieving the insert mark with buffer.get insert(). Itis
also possible to use buffer.get selection_bound() to retrieve the “selection_bound”
text mark.

mark = buffer.get insert()

buffer.get iter at mark(mark)

iter

193

CHAPTER 8 TEXT VIEW WIDGET

Once you have retrieved a mark, you can translate it into a text iterator with
textbuffer.get iter at mark(), so that it can manipulate the buffer.

The other function presented by Listing 8-4 for retrieving text iterators is buffer.
get selection_bounds(), which returns the iterators located at the insert and
selection_bound marks. You can set one or both of the text iterator parameters to None,
which prevent the value from returning, although it would make more sense to use the
functions for the specific mark if you only need one or the other.

When retrieving the contents of a buffer, you need to specity a start and end iterator
for the slice of text. If you want to get the whole contents of the document, you need
iterators pointing to the beginning and end of the document, which can be retrieved
with buffer.get bounds().

buffer.get bounds(start, end)

It is also possible to retrieve only the beginning or end iterator for the text buffer
independently of the other with buffer.get start iter() orbuffer.get end iter().

Text within a buffer can be retrieved with buffer.get text(). It returns all the text
between the start and end iterators. If the last parameter is set to True, then invisible text
is also returned.

buffer.get text(start, end, boolean)

Caution You should only use buffer.get text() for retrieving the whole
contents of a buffer. It ignores any image or widget objects embedded in the
text buffer, so character indexes may not correspond to the correct location. For
retrieving individual parts of a text buffer, use buffer.get slice() instead.

Recall that the offset refers to the number of individual characters within the buffer.
These characters can be one or more bytes long. The buffer.get iter at offset()
function allows you to retrieve the iterator at the location of a specific offset from the
beginning of the buffer.

buffer.get iter at offset(iter, character offset)

GTK+ also provides buffer.get _iter at line index(), which chooses a position
of an individual byte on the specified line. You should be extremely careful when using
this function, because the index must always point to the beginning of a UTF-8 character.
Remember that characters in UTF-8 may not be only a single byte!

194

CHAPTER 8 TEXT VIEW WIDGET

Rather than choosing a character offset, you can retrieve the first iterator on a
specified line with buffer.get iter at line().

buffer.get iter at line(iter, character offset)

If you want to retrieve the iterator at an offset from the first character of a specific
line, buffer.get iter at line offset()does the trick.

Changing Text Buffer Contents

You have already learned how to reset the contents of a whole text buffer, but it is also
useful to edit only a portion of a document. There are a number of functions provided for
this purpose. Listing 8-4 shows you how to insert text into a buffer.

If you need to insert text in an arbitrary position of the buffer, you should use
buffer.insert(). To do this, you need a Gtk.TextIter pointing to the insertion point,
the text string to insert into the buffer that must be UTF-8, and the length of the text.

buffer.get insert()

When this function is called, the text buffer emits the insert-text signal, and the text
iterator is invalidated. However, the text iterator is then reinitialized to the end of the
inserted text.

A convenience method named insert at cursor() can call buffer.insert() at the
cursor’s current position. This can easily be implemented by using the insert text mark,
but it helps you avoid repetitive calls.

buffer.insert at cursor(text, length)

You can delete the text between two text iterators with gtk_text buffer delete().
The order in which you specify the iterators is irrelevant, because the method
automatically places them in the correct order.

buffer.delete(start, end)

This function emits the "delete-range" signal, and both iterators are invalidated.
However, the start and end iterators are both reinitialized to the start location of the
deleted text.

195

CHAPTER 8 TEXT VIEW WIDGET

Cutting, Copying, and Pasting Text

Figure 8-5 shows a text view with an entry field and buttons that can access the clipboard
functions via the text view object.

Paste

Insert Emoji

Cut Copy Paste

Figure 8-5. Gtk.TextView clipboard buttons

Three clipboard options are cut, copy, and paste, which are standard to almost all
text editors. They are built into every Gtk. TextView widget. However, there are times that
you want to implement your own versions of these functions to include in an application
menu or toolbar.

Listing 8-5 gives an example of each of these methods. When one of the three Gtk.
Button widgets is clicked, some action is initialized. Try using the buttons and the right-
click menu to show that both use the same Gtk.Clipboard object. These functions can also
be called by using the built-in keyboard accelerators, which are Ctrl+C, Ctrl+X, and Ctrl+V.

Listing 8-5. Using Text Iterators

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

196

CHAPTER 8 TEXT VIEW WIDGET

class AppWindow(Gtk.ApplicationWindow):

def

def

def

def

__init_ (self, *args, **kwargs):

super(). init (*args, **kwargs)

self.set border width(10)

textview = Gtk.TextView.new()

cut = Gtk.Button.new with label("Cut")

copy = Gtk.Button.new with label("Copy")

paste = Gtk.Button.new with label("Paste")
cut.connect("clicked", self.on cut clicked, textview)
copy.connect("clicked", self.on_copy clicked, textview)
paste.connect("clicked", self.on paste clicked, textview)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set size request(300, 200)

scrolled win.add(textview)

hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)
hbox.pack start(cut, True, True, 0)

hbox.pack start(copy, True, True, 0)
hbox.pack_start(paste, True, True, 0)

vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
vbox.pack_start(scrolled win, True, True, 0)

vbox.pack start(hbox, True, True, 0)

self.add(vbox)

on_cut_clicked(self, button, textview):

clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))
buffer = textview.get buffer()

buffer.cut clipboard(clipboard, True)

on_copy clicked(self, button, textview):

clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))
buffer = textview.get buffer()

buffer.copy clipboard(clipboard)

on_paste clicked(self, button, textview):

clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))

buffer = textview.get buffer()
buffer.paste clipboard (clipboard, None, True)

197

CHAPTER 8 TEXT VIEW WIDGET

class Application(Gtk.Application):
def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Cut, Copy &
Paste")
self.window.show_all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

Gtk.Clipboardis a central class where data can be transferred easily between
applications. To retrieve a clipboard that has already been created, you should use
clipboard.get (). GTK+ 3.x only supplies a single default clipboard. GTK+ 2.x provided
named clipboards but that functionality is no longer supported.

Note While it is possible to create your own Gtk.Clipboard objects, when
performing basic tasks, you should use the default clipboard. You can retrieve it
by executing the method Gdk.Atom.intern("CLIPBOARD", False) to Gtk.
Clipboard.get().

It is feasible to directly interact with the Gtk.Clipboard object that you have created,
adding and removing data from it. However, when performing simple tasks including
copying and retrieving text strings for a Gtk.TextView widget, it makes more sense to use
Gtk.TextBuffer’s built-in methods.

The simplest of Gtk. TextBuffer’s three clipboard actions is copying text, which can
be done with the following:

buffer.copy clipboard(clipboard)

198

CHAPTER 8 TEXT VIEW WIDGET

The second clipboard function, buffer.cut_clipboard(clipboard, True) copies
the selection to the clipboard as well as removing it from the buffer. If any of the selected
text does not have the editable flag set, it is set to the third parameter of this function. This
function copies not only text but also embedded objects such as images and text tags.

buffer.cut clipboard(clipboard, True)

The last clipboard function, buffer.paste clipboard() first retrieves the content of
the clipboard. Next, the function does one of two things. If the second parameter, which
accepts a Gtk.TextIter, has been specified, the content is inserted at the point of that
iterator. If you specify None for the third parameter, the content is inserted at the cursor.

buffer.paste clipboard (clipboard, None, True)

If any of the content that is going to be pasted does not have the editable flag set,
then it is set automatically to default_editable. In most cases, you want to set this
parameter to True, because it allows the pasted content to be edited. You should also
note that the paste operation is asynchronous.

Searching the Text Buffer

In most applications that use the Gtk.TextView widget, you need to search through a text
buffer in one or more instances. GTK+ provides two functions for finding text in a buffer:
forward_search() and backward_search().

The following example shows you how to use the first of these functions to search
for a text string in a Gtk. TextBuffer; a screenshot of the example is shown in Figure 8-6.
The example begins when the user clicks the Find button.

199

CHAPTER 8 TEXT VIEW WIDGET

Search for ... Find

Figure 8-6. An application that searches a text buffer

The application in Listing 8-6 searches for all instances of the specified string within
the text buffer. A dialog is presented to the user, displaying how many times the string
was found in the document.

Listing 8-6. Using The Gtk Textlter Find Function

#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Gdk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):

super(). init_ (*args, **kwargs)
self.set border width(10)
textview = Gtk.TextView.new()
entry = Gtk.Entry.new()
entry.set text("Search for ...")
find = Gtk.Button.new with label("Find")

200

def

CHAPTER 8 TEXT VIEW WIDGET

find.connect("clicked", self.on find clicked, (textview, entry))
scrolled win = Gtk.ScrolledWindow.new (None, None)
scrolled win.set size request(250, 200)
scrolled win.add(textview)
hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)
hbox.pack_start(entry, True, True, 0)
hbox.pack start(find, True, True, 0)
vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
vbox.pack start(scrolled win, True, True, 0)
vbox.pack start(hbox, True, True, 0)
self.add(vbox)
on _find clicked(self, button, w):
find = w[1].get text()
find len = len(find)
buffer = w[0].get buffer()
start = buffer.get start iter()
end itr = buffer.get end iter()
i=0
while True:
end = start.copy()
end.forward chars(find len)
text = buffer.get text(start, end, False)
if text == find:
i+=1
start.forward chars(find len)
else:
start.forward char()
if end.compare(end itr) ==
break

output = "The string '"+find+"' was found " + str(i) +

" times!"

dialog = Gtk.MessageDialog(parent=self,
flags=Gtk.DialogFlags.MODAL,
message_type=Gtk.MessageType.INFO,
text=output, title="Information",

buttons=("0K", Gtk.ResponseType.OK))
201

CHAPTER 8 TEXT VIEW WIDGET

dialog.run()
dialog.destroy()
class Application(Gtk.Application):
def _init_ (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None
def do _activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Searching Buffers")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

The first thing the search function needs to do is retrieve the lower and upper search
bound of the document with buffer.get start iter() and buffer.get end iter().
We use the end upper bound limit for testing purposes later in the code.

end = start.copy()
end.forward chars(find len)

The search loop begins by setting up an end Gtk.TextIter and then incremented by
the length of the search string. This creates a slice of the buffer equal to the length of the
search string.

text = buffer.get text(start, end, False)

The buffer.get_text() retrieves the text between the two Gtk.TextIter’s. The
third parameter is a boolean specifying whether only text is retrieved or to include other

markers in the text.

if text == find:
i+=1
start.forward chars(find len)

202

CHAPTER 8 TEXT VIEW WIDGET

else:
start.forward char()

if end.compare(end itr) == o:
break

Next, we test if the search string matches the string from the buffer. If a match was
found then we increment our match counter and move the start Gtk. TextIter past the
string we found in the buffer. If a match was not found then increment the start Gtk.
TextIter by one character. Lastly, we test upper search bound Gtk.TextIter is equal to
the end of the buffer and break out of our endless loop if the two are equal.

After we break out of the loop, we report the search results to the user.

Scrolling Text Buffers

GTK+ does not automatically scroll to search matches that you select. To do this, you
need to first call buffer.create _mark() to create a temporary Gtk.TextMark at the
location of the found text.

buffer.create mark(name, location, left gravity)

The second parameter of buffer.create _mark() allows you to specify a text string
as a name for the mark. This name can reference the mark later without the actual
mark object. The mark is created at the location of the specified text iterator. The last
parameter creates a mark with left gravity if set to True.

Then, use view.scroll mark_onscreen() to scroll the buffer, so the mark is on the
screen. After you are finished with the mark, you can remove it from the buffer with
buffer.delete mark().

textview.scroll mark onscreen(mark)

The problem with view.scroll mark onscreen() is that it only scrolls the minimum
distance to show the mark on the screen. For example, you may want the mark to be
centered within the buffer. To specify alignment parameters for where the mark appears
within the visible buffer, call textview.scroll to mark().

textview.scroll to mark(mark, margin, use align, xalign, yalign)

203

CHAPTER 8 TEXT VIEW WIDGET

You begin by placing a margin, which reduces the scrollable area. The margin must
be specified as a floating-point number, which reduces the area by that factor. In most
cases, you want to use 0.0 as the margin so the area is not reduced at all.

If you specify False for the use_align parameter, the function scrolls the minimal
distance to get the mark onscreen; otherwise, the function uses the two alignment
parameters as guides, which allows you to specify horizontal and vertical alignment of
the mark within the visible area.

An alignment of 0.0 refers to the left or top of the visible area, 1.0 refers to the right or
bottom and 0.5 refers to the center. The function scrolls as far as possible, but it may not
be able to scroll the mark to the specified position. For example, it is impossible to scroll
the last line in a buffer to the top if the buffer is larger than one character tall.

There is another function, textview.scroll to iter(), which behaves in the same
manner as textview.scroll to mark(). The only difference is that it receives a Gtk.
TextIter instead of a Gtk.TextMark for the location, although in most cases, you should
use text marks.

Text Tags

There are many functions provided for changing properties of all the text within a
Gtk.TextBuffer, which have been covered in previous sections. But, as previously
mentioned, it is also possible to change the display properties of only an individual
section of text with the Gtk.TextTag object.

Text tags allow you to create documents where the text style varies among different
parts of the text, which is commonly called rich text editing. A screenshot of a Gtk.
TextView that uses multiple text styles is shown in Figure 8-7.

204

CHAPTER 8 TEXT VIEW WIDGET

MmER

Bold Text
Bold_Italic, Underline Bold

- Italic
Small + Double
Bold + Extra Large has

' Underli

A ||ttle bit softer now nderline
alitde bit louder now! -
| Clear

Figure 8-7. Formatted text within a text buffer

Text tags are actually a very simple concept to apply. In Listing 8-7 an application
is created that allows the user to apply multiple styles or remove all the tags from the
selection. After reading the rest of this section, you might want to try out other text
properties by altering Listing 8-7 to include different style options.

Listing 8-7. Using Text Iterators

#!/usr/bin/python3
import sys
import gi
gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Pango
text to_scales = [("Quarter Sized", 0.25),
("Double Extra Small", 0.5787037037037), ("Extra Small",
0.6444444444444), ("Small", 0.8333333333333), ("Medium",
1.0), ("Large", 1.2), ("Extra Large", 1.4399999999999),
("Double Extra Large", 1.728), ("Double Sized", 2.0)]
class AppWindow(Gtk.ApplicationWindow):
def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(500, -1)

205

CHAPTER 8 TEXT VIEW WIDGET

textview = Gtk.TextView.new()
buffer = textview.get buffer()
buffer.create tag("bold", weight=Pango.Weight.BOLD)
buffer.create tag("italic", style=Pango.Style.ITALIC)
buffer.create tag("strike", strikethrough=True)
buffer.create tag("underline", underline=Pango.Underline.SINGLE)
bold = Gtk.Button.new with label("Bold")
italic = Gtk.Button.new with label("Italic")
strike = Gtk.Button.new with label("Strike")
underline = Gtk.Button.new with_label("Underline")
clear = Gtk.Button.new with label("Clear")
scale button = Gtk.ComboBoxText.new()
i=o0
while i < len(text to_scales):
(name, scale) = text to scales[i]
scale button.append_text(name)
buffer.create_tag(tag name=name, scale=scale)
i+=1
bold. setattr ("tag", "bold")
italic. setattr ("tag", "italic")
strike. setattr ("tag", "strike")
underline. setattr ("tag", "underline")
bold.connect("clicked", self.on format, textview)
italic.connect("clicked", self.on format, textview)
strike.connect("clicked", self.on format, textview)
underline.connect("clicked", self.on format, textview)
clear.connect("clicked", self.on clear clicked, textview)
scale button.connect("changed", self.on scale changed, textview)
vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
vbox.pack start(bold, False, False, 0)
vbox.pack start(italic, False, False, 0)
vbox.pack start(strike, False, False, 0)
vbox.pack start(underline, False, False, 0)
vbox.pack start(scale button, False, False, 0)
vbox.pack start(clear, False, False, 0)
scrolled win = Gtk.ScrolledWindow.new(None, None)

206

CHAPTER 8 TEXT VIEW WIDGET

scrolled win.add(textview)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.ALWAYS)
hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)
hbox.pack start(scrolled win, True, True, 0)
hbox.pack_start(vbox, False, True, 0)
self.add(hbox)
def on_format(self, button, textview):
tagname = button.tag
buffer = textview.get buffer()
(start, end) = buffer.get selection_bounds()
buffer.apply tag by name(tagname, start, end)
def on_scale changed(self, button, textview):
if button.get active() == -1:
return
text = button.get active text()
button. setattr ("tag", text)
self.on format(button, textview)
button.set active(-1)
def on_clear clicked(self, button, textview):
buffer = textview.get buffer()
(start, end) = buffer.get selection_bounds()
buffer.remove all tags(start, end)
class Application(Gtk.Application):
def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Text Tags")
self.window.show_all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

207

CHAPTER 8 TEXT VIEW WIDGET

When you create a text tag, you normally have to add it to a Gtk.TextBuffer’s tag
table, an object that holds all the tags available to a text buffer. You can create a new Gtk.
TextTag object with Gtk.TextTag.new() and then add it to the tag table. However, you
can do this all in one step with buffer.create_tag().

buffer.create tag(tag name, property name=value)

The first parameter specifies the name of the tag to be added to the table Gtk.
TextTag. This name can reference a tag for which you do not have the Gtk.TextTag
object anymore. The next parameters are a set of keyword/value list of Gtk.TextTag style
properties and their values.

For example, if you wanted to create a text tag that sets the background and
foreground colors as black and white respectively, you could use the following method.
This function returns the text tag that was created, although it has already been added to
the text buffer’s tag table.

buffer.create tag("colors", background="#000000", foreground="#FFFFFF")

There are a large number of style properties available in GTK+.

Once you have created a text tag and added it to a Gtk.TextBuffer’s tag table, you
can apply it to ranges of text. In Listing 8-7 the tag is applied to selected text when a
button is clicked. If there is no selected text, the cursor position is set to the style. All text
typed at that position would have the tag applied as well.

Tags are generally applied to text with buffer.apply tag by name().The tagis
applied to the text between the start and end iterators. If you still have access to the Gtk.
TextTag object, you can also apply a tag with buffer.apply tag().

buffer.apply tag by name(tag name, start, end)

Although not used in Listing 8-7 it is possible to remove a tag from an area of text
with buffer.remove tag by name(). This function removes all instances of the tag
between the two iterators if they exist.

buffer.remove tag by name(tag name, start, end)

208

CHAPTER 8 TEXT VIEW WIDGET

Note These functions only remove tags from a certain range of text. If the tag
was added to a larger range of text than the range specified, the tag is removed for
the smaller range, and new bounds are created on either side of the selection. You
can test this with the application in Listing 8-7.

If you have access to the Gtk.TextTag object, you can remove the tag with buffer.
remove tag().
It is also possible to remove every tag within a range with buffer.remove all tags().

Inserting Images

In some applications, you may want to insert images into a text buffer. This can easily be
done with Gdk.Pixbuf objects. In Figure 8-8, two images were inserted into a text buffer
as Gdk.Pixbuf objects.

“2 Undo

(S Redol

Figure 8-8. Formatted text within a text buffer

Adding a pixbuf to a Gtk.TextBuffer is performed in three steps. First, you must
create the pixbuf object and retrieve the Gtk.TextIter where it is inserted. Then, you
can use buffer.insert pixbuf() to add it to the buffer. Listing 8-8 shows the process of
creating a Gdk.Pixbuf object from a file and adding it to a text buffer.

209

CHAPTER 8 TEXT VIEW WIDGET
Listing 8-8. Inserting Images into Text Buffers

#!/usr/bin/python3
import sys
import gi
gi.require version('Gtk', '3.0")
from gi.repository import Gtk
class AppWindow(Gtk.ApplicationWindow):
def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(200, 150)
textview = Gtk.TextView.new()
buffer = textview.get buffer()
text = " Undo\n Redo"
buffer.set text(text, len(text))
icon_theme = Gtk.IconTheme.get default()
undo = icon_theme.load icon("edit-undo", -1,
Gtk.IconLookupFlags.FORCE_SIZE)
buffer.get iter at line (0)
buffer.insert pixbuf(line, undo)
redo = icon_theme.load icon("edit-redo", -1,
Gtk.IconLookupFlags.FORCE_SIZE)
buffer.get iter at line (1)
buffer.insert pixbuf(line, redo)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.add(textview)
self.add (scrolled win)
class Application(Gtk.Application):

line

line

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

210

CHAPTER 8 TEXT VIEW WIDGET

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Pixbufs")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

Inserting a Gdk.Pixbuf object into a text buffer is done with buffer.insert
pixbuf(). The Gdk.Pixbuf object is inserted at the specified location, which can be any
valid text iterator in the buffer.

buffer.insert pixbuf(iter, pixbuf)

Pixbufs are handled differently by various functions. For example, buffer.get
slice() places the OXFFFC character where a pixbufis located. However, the OXFFFC
character can occur as an actual character in the buffer, so that is not a reliable indicator
of the location of a pixbuf.

Another example is buffer.get_text(), which completely ignores nontextual
elements, so there is no way to check for pixbufs within the text using this function.

Therefore, if you are using pixbufs in a Gtk.TextBuffer, it is best to retrieve text from
the buffer with buffer.get slice().You can then use iter.get pixbuf() to check
whether the 0xFFFC character represents a Gdk.Pixbuf object; it returns None if a pixbuf
is not found at that location.

iter.get pixbuf()

Inserting Child Widgets

Inserting widgets into a text buffer is a little more complicated than pixbufs, because

you must notify both the text buffer and the text view to embed the widget. You begin by
creating a Gtk.TextChildAnchor object, which marks the placement of the widget within
the Gtk.TextBuffer. Then, you add the widget to the Gtk. TextView widget.

211

CHAPTER 8 TEXT VIEW WIDGET

Figure 8-9 shows a Gtk.TextView widget that contains a child Gtk.Button widget.
Listing 8-9 creates this window. When the button is pressed, self.destroy is called,
which terminates the application.

¥ ——

_ the button _
Click to exit

Figure 8-9. A child widget inserted into a text buffer

Listing 8-9. Inserting Child Widgets into a Text Buffer

#!/usr/bin/python3
import sys
import gi
gi.require version('Gtk', '3.0")
from gi.repository import Gtk
class AppWindow(Gtk.ApplicationWindow):
def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(25)
self.set border width(10)
self.set size request(250, 100)
textview = Gtk.TextView.new()
buffer = textview.get buffer()
text = "\n Click to exit!"
buffer.set text(text, len(text))
iter = buffer.get iter at offset(8)
anchor = buffer.create child anchor(iter)
button = Gtk.Button.new with label("the button")
button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)

212

CHAPTER 8 TEXT VIEW WIDGET

textview.add child at anchor(button, anchor)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.add(textview)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.ALWAYS)
self.add(scrolled win)
def on_button clicked(self, button):
self.destroy()
class Application(Gtk.Application):
def _init_(self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None
def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Child Widgets")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

When creating a Gtk.TextChildAnchor, you need to initialize it and insert it into a
Gtk.TextBuffer. You can do this by calling buffer.create child anchor().

buffer.create child anchor(iter)

A child anchor is created at the location of the specified text iterator. This child
anchor is simply a mark that tells GTK+ that a child widget can be added to that point
within the text buffer.

Next, you need to use textview.add child at_anchor() to add a child widget to the
anchor point. As with Gdk.Pixbuf objects, child widgets appear as the OxFFFC character.
This means that, if you see that character, you need to check whether it is a child widget
or a pixbuf, because they are indistinguishable otherwise.

textview.add child at anchor(child, anchor)

213

CHAPTER 8 TEXT VIEW WIDGET

To check whether a child widget is at the location of an OxFFFC character, you should
calliter.get child anchor(), which returns None if a child anchor is not located at that
position.

iter.get child anchor()

You can then retrieve a list of the widgets added at the anchor point with anchor.
get widgets(). You need to note that only one child widget can be added at a single
anchor, so the returned list usually contains only one element.

anchor.get widgets()

The exception is when you are using the same buffer for multiple text views. In this
case, multiple widgets can be added to the same anchor in the text views, as long as no
text view contains more than one widget. This is because of the fact that the child widget
is attached to an anchor handled by the text view instead of the text buffer.

Gtk.SourceView

Gtk.SourceView is a widget that is not actually a part of the GTK+ libraries. It is an
external library to extend the Gtk.TextView widget. If you have ever used gedit, you have
experienced the Gtk.SourceView widget.

There is a large list of features that the Gtk.SourceView widget adds to text views. A
few of the most notable ones follow:

e Line numbering

» Syntax highlighting for many programming and scripting languages
e Printing support for documents containing syntax highlighting

e Automatic indentation

e Bracket matching

e Undo/Redo support

e Source markers for denoting locations in source code

o Highlighting the current line

214

CHAPTER 8 TEXT VIEW WIDGET

Figure shows a screenshot of gedit using the Gtk.SourceView widget. It has line

numbering, syntax highlighting, bracket matching, and line highlighting turned on.

1 #!/usr/bin/python3

2

3 import sys

4 import gi

5 gi.require_version('Gtk', '3.0")

6 rrom gi.repository import Gtk

7

8 class AppWindow(Gtk.ApplicationwWindow) :

9

10 def init (self, *args, **kwargs):

11 super().__init_ (*args, **kwargs)

12 self.set border width(10)

13 checkl = Gtk.CheckButton.new with_label("I am the main option.")
14 check2z = Gtk.CheckButton.new with label("I rely on the other guy.")
15 check2.set sensitive(False)

16 checkl.connect(“toggled”, self.on_button_checked, check2)

17 closebutton = Gtk.Button.new with mnemonic(" Close")

18 closebutton.connect("clicked", self.on_button_close clicked)

19 vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)
20 vbox.pack start(checkl, False, True, 0)

21 vbox.pack_start(check2, False, True, 0)

22 vbox.pack start(closebutton, False, True, 0)

23 self.add(vbox)

24 self.show all()

25

26 def on button checked(self, checkl, check2):

27 if checkl.get active():

28 check2.set sensitive(True);

Figure 8-10. A child widget inserted into a text buffer

The Gtk.SourceView library has an entire separate API documentation, which can

be viewed at http://gtksourceview.sourceforge.net.

Test Your Understanding

The following exercise instructs you to create a text editing application with basic

functionality. It gives you practice on interacting with a Gtk.TextView widget.

215

http://gtksourceview.sourceforge.net

CHAPTER 8 TEXT VIEW WIDGET

Exercise 1: Text Editor

Use the Gtk.TextView widget to create a simple text editor. You should have the ability to
perform multiple text editing functions, including creating a new document, opening a
file, saving a file, searching the document, cutting text, copying text, and pasting text.

When creating a new document, you should make sure that the user actually wants
to continue, because all changes are lost. When the Save button is pressed, it should
always ask where to save the file. Once you have finished this exercise, a solution is
shown in Appendix D.

Hint This is a much larger GTK+ application than any previously created in this
book, so you may want to take a few minutes to plan your solution on paper before
diving right into the code. Then, implement one function at a time, making sure it
works before continuing on to the next feature. We expand on this exercise in later
chapters as well, so keep your solution handy!

This is the first instance of the Text Editor application that you are working on
throughout this book. In the last few chapters of this book, you learn new elements that
help you create a fully featured text editor.

The application is expanded in Chapter 10, where you add a menu and a toolbar. In
Chapter 13, you add printing support and the ability to remember past open files and
searches.

A solution to this exercise is in Appendix D. Much of the functionality of the text
editor solution has been implemented by other examples in this chapter. Therefore,
most of the solution should look familiar to you. It is a bare minimum solution, and I
encourage you to expand on the basic requirements of the exercise for more practice.

Summary

In this chapter, you learned all about the Gtk.TextView, which allows you to display
multiple lines of text. Text views are usually contained by a special type of Gtk.Bin
container called Gtk.ScrolledWindow that gives scrollbars to the child widget to
implement scrolling abilities.

216

CHAPTER 8 TEXT VIEW WIDGET

A Gtk.TextBuffer handles text within a view. Text buffers allow you to change many
different properties of the whole or portions of the text using text tags. They also provide
cut, copy, and paste functions.

You can move throughout a text buffer by using Gtk.TextIter objects, but text
iterators become invalid once the text buffer is changed. Text iterators can search
forward or backward throughout a document. To keep a location over changes of a
buffer, you need to use text marks. Text views are capable of displaying not only text but
also images and child widgets. Child widgets are added at anchor points throughout a
text buffer.

The last section of the chapter briefly introduced the Gtk. SourceView widget, which
extends the functionality of the Gtk.TextView widget. It can be used when you need
features such as syntax highlighting and line numbering.

In Chapter 9, you are introduced to two new widgets: combo boxes and tree views.
Combo boxes allow you to select one option from a drop-down list. Tree views allow you
to select one or more options from a list usually contained by a scrolled window. Gtk.
TreeView is the most difficult widget that is covered in this book, so take your time with
the next chapter.

217

CHAPTER 9

Tree View Widget

This chapter show you how to use the Gtk.ScrolledWindow widget in combination with
another powerful widget known as Gtk.TreeView. The tree view widget can be used to
display data in lists or trees that span one or many columns. For example, a Gtk.TreeView
can be used to implement a file browser or display the build the output of an integrated
development environment.

Gtk.TreeView is an involved widget, because it provides a wide variety of features, so
be sure to carefully read through each section of this chapter. However, once you learn
this powerful widget, you are able to apply it in many applications.

This chapter introduces you to a large number of features provided by Gtk.TreeView.
The information presented in this chapter enables you to mold the tree view widget to
meet your needs. Specifically, in this chapter, you learn the following.

o What objects are used to create a Gtk.TreeView and how its model-
view-controller design makes it unique

e How to create lists and tree structures with the Gtk.TreeView widget

e Whentouse Gtk.TreePath, Gtk.TreelIter, or Gtk.TreeRowReference
to reference rows within a Gtk.TreeView

o How to handle double-clicks, single row selections, and multiple row
selections

« How to create editable tree view cells or customize individual cells

with cell renderer functions

o The widgets you can embed within a cell, including toggle buttons,
pixbufs, spin buttons, combo boxes, progress bars, and keyboard

accelerator strings

219
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_9

CHAPTER9 TREE VIEW WIDGET

Parts of a Tree View

The Gtk.TreeView widget is used to display data organized as a list or a tree. The data
displayed in the view is organized into columns and rows. The user is able to select one
or multiple rows within the tree view using the mouse or keyboard. A screenshot of the
Nautilus application using Gtk.TreeView is shown in Figure 9-1.

==
File Edit View Go Bookmarks Help
<l > B (¢ Jusr L x| =alfel | E | 2
Name v Size Type Date Modified
» 3 bin 3,100 items Folder Tue 29 May 2018 05:12:23 PM CDT
& games Oitems Folder Wed 07 Feb 2018 03:41:06 AM CST I
» (& include 253items Folder Tue 29 May 2018 11:38:33 AM CDT
» & lib 902 items Folder Tue 29 May 2018 05:12:23 PM CDT
- @ lib64 3,651 items Folder Tue 29 May 2018 05:11:18 PM CDT
» [aisleriot 1item Folder Mon 12 Mar 2018 04:17:24 PM CDT
» B alsa-lib 3items Folder Wed 02 May 2018 07:56:36 PM CDT
~ &l ao 1item Folder Wed 07 Feb 2018 11:57:32 PM CST
~ [plugins-4 3items Folder Wed 02 May 2018 07:18:01 PM CDT
_| libalsa.so 36.3kB Unknown Wed 07 Feb 2018 11:57:33 PM CST
| liboss.so 158 kB Unknown Wed 07 Feb 2018 11:57:33 PM CST
] libpulse.so 15.8kB Unknown Wed 07 Feb 2018 11:57:33 PM CST
» & apr1 1item Folder Tue 06 Feb 2018 08:42:27 PM CST
» & apr-util-1 Oitems Folder Tue 06 Feb 2018 08:42:51 PM CST
a0 i 4 ko Coaldar Wlnd A Al ANIE ABNAYIE DA COYT
m 11 items, Free space: 173.4 GB -)

Figure 9-1. Using The Gtk.TreeView widget

Gtk.TreeViewis a difficult widget to use and an even more difficult widget
to understand, so this whole chapter is dedicated to using it. However, once you
understand how the widget works, you are able to apply it to a wide variety of
applications, because it is possible to customize almost every aspect of the way the
widget is displayed to the user.

What makes Gtk.TreeView unique is that it follows a design concept that is
commonly referred to as model-view-controller (MVC) design. MVC is a design method
where the information and the way it is rendered are completely independent of each
other, similar to the relationship between Gtk.TextView and Gtk.TextBuffer.

220

CHAPTER9 TREE VIEW WIDGET

Gtk.TreeModel

Data itself is stored within classes that implement the Gtk.TreeModel interface. GTK+
provides four types of built-in tree model classes, but only Gtk.ListStore and Gtk.
TreeStore is covered in this chapter.

The Gtk.TreeModel interface provides a standard set of methods for retrieving
general information about the data that is stored. For example, it allows you to get the
number of rows in the tree and the number of children of a certain row. Gtk.TreeModel
also gives you a way to retrieve the data that is stored in a specific row of the store.

Note Models, renderers, and columns are referred to as objects instead of
widgets, even though they are a part of the GTK+ library. This is an important
distinction—since they are not derived from Gtk.Widget, they do not have the
same set of functions, properties, and signals that are available to GTK+ widgets.

Gtk.ListStore allows you to create a list of elements with multiple columns. Each
row is a child of the root node, so only one level of rows is displayed. Basically, Gtk.
ListStore is a tree structure that has no hierarchy. It is only provided because faster
algorithms exist for interacting with models that do not have any child items.

Gtk.TreeStore provides the same functionality as Gtk.ListStore, except the data
can be organized into a multilayered tree. GTK+ provides a method for creating your
own custom model types as well, but the two available types should be suitable in most
cases.

While Gtk.ListStore and Gtk.TreeStore should fit most applications, a time may
come when you need to implement your own store object. For example, if it needs
to hold a huge number of rows, you should create a new model that is more efficient.
In Chapter 12, you learn how to create new classes derived from GObject, which can
be used as a guide to get you started deriving a new class that implements the Gtk.
TreeModel interface.

After you have created the tree model, the view is used to display the data. By
separating the tree view and its model, you are able to display the same set of data
in multiple views. These views can be exact copies of each other, or the data can be
displayed in varying ways. All the views are updated simultaneously as you make
alterations to a model.

221

CHAPTER9 TREE VIEW WIDGET

Tip While it may not immediately seem beneficial to display the same set of

data in multiple tree views, consider a file browser. If you need to display the same

set of files in multiple file browsers, using the same model for each view would
save memory as well as make your program run considerably faster. This is also

useful when you want to provide multiple display options for the file browser. When

switching between display modes, you do not need to alter the data itself.

Models are composed of columns that contain the same data type and rows that

hold each set of data. Each model column can hold a single type of data. A tree model
column should not be confused with a tree view column, which is composed of a single

header but may be rendered with data from multiple model columns. For example, a

tree column may display a text string that has a foreground color defined by a model

column that is not visible to the user. Figure 9-2 illustrates the difference between model

columns and tree columns.

Text Color Column Header
Red #FF0000 Red
Blue #0000FF <4——» Blue
Green #006600 Green
Purple #9900FF Purple
Black #000000 Black
Brown #660000 Brown‘
Model Column Model Column Tree Column
(text) (Gdk.Colon)

Figure 9-2. The relationship between model and tree columns

222

CHAPTER9 TREE VIEW WIDGET

Each row within a model contains one piece of data corresponding to each model
column. In Figure 9-2, each row contains a text string and a Gdk . Color value. These two
values are used to display the text with the corresponding color in the tree column. You
learn how to implement this in code later in this chapter. For now, you should simply
understand the differences between the two types of columns and how they relate.

New list and tree stores are created with a number of columns, each defined by
an existing GObject. TYPE. Usually, you need to use only those already implemented
in GLib. For example, if you want to display text you can use GObject.TYPE_STRING,
GObject.TYPE_BOOLEAN, and a few of the number types like GObject.TYPE_INT.

Tip Since it is possible to store an arbitrary data type with GObject.
TYPE_POINTER, one or more tree model columns can be used to simply store
information about every row. You just need to be careful when there are a large
number of rows, because memory usage quickly escalates. You also have to take
care of freeing the pointers yourself.

Gtk.TreeViewGolumn and Gtk.CellRenderer

As previously mentioned, a tree view displays one or more Gtk.TreeViewColumn objects.
Tree columns are composed of a header and cells of data that are organized into one
column. Each tree view column also contains one or more visible columns of data. For
example, in a file browser, a tree view column may contain one column of images and
one column of file names.

The header of the Gtk.TreeViewColumn widget contains a title that describes what
data is held in the cells below. If you make the column sortable, the rows are sorted when
one of the column headers is clicked.

Tree view columns do not actually render anything to the screen. This is done with
an object derived from Gtk.CellRenderer. Cell renderers are packed into tree view
columns similar to how you add widgets into a horizontal box. Each tree view column
can contain one or more cell renderers, which are used to render the data. For example,
in a file browser, the image column would be rendered with

Gtk.CellRendererPixbuf and the file name with Gtk.CellRendererText. An
example of this was shown in Figure 9-1.

223

CHAPTER9 TREE VIEW WIDGET

Each cell renderer is responsible for rendering a column of cells, one for every row
in the tree view. It begins with the first row, rendering its cell and then proceeding to the
next row down until the whole column, or part of the column, is rendered.

In GTK+ 3 the g_object_set() function is no longer available. So you must add
attributes to the renderer. Column attributes correspond to tree model columns and are
associated with cell renderer properties, as shown in Figure 9-3. These properties are
applied to each cell as it is rendered.

Model Column Model Column
String Gdk.TypeColor
Text Color Column Header
Red #FFO0000 Red
Blue #0000FF P! Blue
Green #006600 Green
Purple #9900FF Purple
Black #000000 Black
Brown #660000 Bro u.-‘.'n‘

“text” “foreground” }— — Gtk.CelIRenderText;

—— Properties

Figure 9-3. Applying cell renderer properties

In Figure 9-3, there are two tree model columns with the types GObject.TYPE_STRING
and Gdk.RGBA. These are applied to Gtk.CellRendererText’s text and foreground
properties and used to render the tree view column accordingly.

An additional way to change cell renderer properties is by defining a cell data
function. This function is called for every row in the tree view before it is rendered. This
allows you to customize how every cell is rendered without the need for the data to be

224

CHAPTER9 TREE VIEW WIDGET

stored in a tree model. For example, a cell data function can be used to define how many
decimal places of a floating-point number to display. Cell data functions are covered in
detail in the “Cell Data Methods” section of this chapter.

This chapter also covers cell renderers that are used to display text (strings, numbers,
and Boolean values), toggle buttons, spin buttons, progress bars, pixbufs, combo boxes,
and keyboard accelerators. In addition, you can create custom cell renderer types, but
this is usually not needed, since GTK+ now provides such a wide variety of types.

This section has taught you what objects are needed to use the Gtk.TreeView
widget, what they do, and how they interrelate. Now that you have a basic
understanding of the Gtk.TreeView widget, the next section has a simple example of
the Gtk.ListStore tree model.

Using Gtk.ListStore

Recall from the previous section that Gtk.TreeModel is simply an interface implemented
by data stores, such as Gtk.ListStore. Gtk.ListStore is used to create lists of data that
have no hierarchical relationship among rows.

In this section, a simple Grocery List application is implemented that contains three
columns, all of which use Gtk.CellRendererText. Figure 9-4 is a screenshot of this
application. The first column is a boolean value displaying True or False that defines
whether or not the product should be purchased.

Tip You usually do not want to display Boolean values as text, because if

you have many Boolean columns, it becomes unmanageable for the user.
Instead, you want to use toggle buttons. You learn how to do this with Gtk.
CellRendererToggle in a later section. Boolean values are often also used as
column attributes to define cell renderer properties.

225

CHAPTER9 TREE VIEW WIDGET

e

mEIR)
Buy Count Product
TRUE 2 Bread
FALSE 1 Butter
TRUE 1 Milk
FALSE 3 Chips
TRUE 4 Soda

Figure 9-4. A tree view widget using a Gtk.ListStore tree model

Listing 9-1 creates a Gtk.ListStore object, which displays a list of groceries. In
addition to displaying the products, the list store also displays whether to buy the
product and how many of them to buy.

This Grocery List application is used for many examples throughout the rest of
the chapter. Therefore, the content of some functions may be excluded later on if it
is presented in previous examples. Also, to keep things organized, in every example,
setup_tree view() is used to set up columns and renderers. Full code listings for every
example can be downloaded at www. gtkbook . com

Listing 9-1. Using a Gtk.FontSelectionDialog

#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, GObject

BUY IT = 0
QUANTITY = 1
PRODUCT = 2

GroceryItem = ((True, 1, "Paper Towels"),
(True, 2, "Bread"),
(False, 1, "Butter"),
(True, 1, "Milk"),
(False, 3, "Chips"),
(True, 4, "Soda"))
226

http://www.gtkbook.com

CHAPTER9 TREE VIEW WIDGET

class AppWindow(Gtk.ApplicationWindow):

def

def

__init_ (self, *args, **kwargs):

super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(250, 175)
treeview = Gtk.TreeView.new()
self.setup tree view(treeview)
store = Gtk.ListStore.new((GObject.TYPE BOOLEAN,
GObject.TYPE_INT,
GObject.TYPE_STRING))
for row in GroceryItem:
iter = store.append(None)
store.set(iter, BUY_IT, row[BUY IT], QUANTITY,
Tow[QUANTITY], PRODUCT, row[PRODUCT])
treeview.set _model(store)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.AUTOMATIC)
scrolled win.add(treeview)
self.add(scrolled win)
setup tree view(self, treeview):
renderer = Gtk.CellRendererText.new()
column
treeview.append column(column)

renderer = Gtk.CellRendererText.new()
column
treeview.append column(column)

renderer = Gtk.CellRendererText.new()
column
treeview.append column(column)

class Application(Gtk.Application):

def

__init_ (self, *args, **kwargs):

super(). init (*args, application id="org.example.myapp",

**kwargs)
self.window = None

Gtk.TreeViewColumn("Buy", renderer, text=BUY IT)

Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)

227

CHAPTER9 TREE VIEW WIDGET

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Grocery List")
self.window.show_all()
self.window.present()

if _name_ ==" main_":
app = Application()
app.run(sys.argv)

Creating the Tree View

Creating the Gtk.TreeView widget is the easiest part of the process. You need only to
call Gtk.TreeView.new(). A tree model can easily be applied to a Gtk.TreeView after
initialization with treeview.set _model(store).

Until GTK+ 3 came along, there were functions to hide/unhide the column header
for a Gtk.TreeViewColumn. Those functions have been deprecated in GTK+ 3 and now all
column headers are always visible.

Gtk.TreeViewColumn headers provide more functionality beyond column titles for
some tree views. In sortable tree models, clicking the column header can initiate sorting
of all of the rows according to the data held in the corresponding column. It also gives a
visual indication of the sort order of the column if applicable. You should not hide the
headers if the user needs them to sort the tree view rows.

As a GTK+ developer, you should be very careful about changing visual properties.
Users have the ability to choose themes that fit their needs, and you can make your
application unusable by changing how widgets are displayed.

Renderers and Columns

After creating the Gtk.TreeView, you need to add one or more columns to the view for
it to be of any use. Each Gtk.TreeViewColumn is composed of a header, which displays a
short description of its content, and at least one cell renderer. Tree view columns do not
actually render any content. Tree view columns hold one or more cell renderers that are
used to draw the data on the screen.

228

CHAPTER9 TREE VIEW WIDGET

All cell renderers are derived from the Gtk.CellRenderer class and are referred to
as objects in this chapter, because Gtk.CellRenderer is derived directly from GObject,
not from Gtk.Widget. Each cell renderer contains a number of properties that determine
how the data is drawn within a cell.

The Gtk.CellRenderer class provides common properties to all derivative renderers,
including background color, size parameters, alignments, visibility, sensitivity, and
padding. A full list of Gtk.CellRenderer properties can be found in Appendix A. It also
provides the editing-canceled and editing-started signals, which allow you to implement
editing in custom cell renderers.

In Listing 9-1, you were introduced to Gtk.CellRendererText, which is capable
of rendering strings, numbers, and boolean values as text. Textual cell renderers are
initialized with Gtk.CellRendererText.new().

Gtk.CellRendererText provides a number of additional properties that dictate how
each cell is rendered. You should always set the text property, which is the string that is
displayed in the cell. The rest of the properties are similar to those used with text tags.

Gtk.CellRendererText contains a large number of properties that dictate how every
row is rendered. renderer. foreground-rgba() was used in the following example to
set the foreground color of every piece of text in the renderer to orange. Some properties
have a corresponding set property as well, which must be set to True if you want the
value to be used. For example, you should set foreground-set to True for the changes
takes effect.

renderer.props.foreground-rgba = Gdk.RGBA(red=1.0, green=0.65, blue=0.0,
alpha=1.0)

After you create a cell renderer, it needs to be added to a Gtk.TreeViewColumn. Tree
view columns can be created with Gtk.TreeViewColumn() if you only want the column
to display one cell renderer. In the following code, a tree view column is created with the
title “Buy” and a renderer with one attribute. This attribute is referred to as BUY_IT (with
avalue of 0) when the Gtk.ListStore is populated.

column = Gtk.TreeViewColumn("Buy", renderer, text=BUY IT)

The preceding function accepts a string to display in the column header, a cell
renderer, and a list of attributes. Each attribute contains a string that refers to the
renderer property and the tree view column number. The important thing to realize is

229

CHAPTER9 TREE VIEW WIDGET

that the column number provided to Gtk.TreeViewColumn() refers to the tree model
column, which may not be the same as the number of tree model columns or cell
renderers used by the tree view.

It turns out that the Gtk.TreeViewColumn() is very hard to implement piecemeal
in Python 3. It is not just convenience method, but the preferred method for creating a
Gtk.TreeViewColumn(). The following code snippet is the correct way to create a Gtk.
TreeViewColumn() in Python 3 and assign at least one attribute.

renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Buy", renderer, text=BUY IT)
treeview.append_column(column)

If you want to add multiple renderers to the tree view column, you need to pack each
renderer and set its attributes separately. For example, in a file manager, you might want
to include a text and an image renderer in the same column. However, if every column
only needs one cell renderer, it is easiest to use Gtk.TreeViewColumn().

Note If you want a property, such as the foreground color, set to the same value for
every row in the column, you should apply that property directly to the cell renderer
with renderer. foreground-rgba(). However, if the property varies depending
on the row, you should add it as an attribute of the column for the given renderer.

After you have finished setting up a tree view column, it needs to be added to the
tree view with treeview.append_column(column). Columns may also be added into an
arbitrary position of the tree view with treeview.insert column(column) or removed
from the view with treeview.remove column(column).

Creating the Gtk.ListStore

The tree view columns are now set up with the desired cell renderers, so it is time to
create the tree model that interfaces between the renderers and the tree view. For the
example found in Listing 9-1, we used Gtk.ListStore so that the items would be shown
as a list of elements.

230

CHAPTER9 TREE VIEW WIDGET

New list stores are created with Gtk.ListStore.new(). This function accepts the
number of columns and the type of the data each column holds. In Listing 9-1, the list
store has three columns that store boolean, integer, and string data types.

Gtk.ListStore.new((GObject.TYPE_BOOLEAN, GObject.TYPE_INT,
GObject.TYPE_STRING))

In Python 3, the column type parameters are formed into a tuple. That tells the
method not only the column type but also the number of columns.

After creating the list store, you need to add rows with store.append(None) for it to
be of any use. This method appends a new row to the list store, and the iterator is set to
point to the new row. You learn more about tree iterators in a later section of this chapter.
For now, it is adequate for you to know that it points to the new tree view row.

iter = store.append(None)
store.set(iter, BUY IT, row[BUY IT], QUANTITY, row[QUANTITY],
PRODUCT, row[PRODUCT])

Next, we need to set which column and what values are to be loaded with data. This
is done with the store.set() method. One or more rows can be set with this method.
The preceding example stores values in each column of the row from left to right, but the
column can be listed in any order since we are also specifying the column number where
the value is loaded.

Note Gtk.CellRendererText automatically converts Boolean values and
numbers into text strings that can be rendered on the screen. Therefore, the
type of data applied to a text attribute column does not have to be text itself, but
just has to be consistent with the list store column type that was defined during
initialization of the Gtk.ListStore.

There are multiple other functions for adding rows to a list store, including store.
prepend() and store.insert(). A full list of available functions can be found in the Gtk.
ListStore API documentation.

231

CHAPTER9 TREE VIEW WIDGET

In addition to adding rows, you can also remove them with store.remove(). This
function removes the row that Gtk. TreeIter refers to. After the row is removed, the
iterator points to the next row in the list store, and the function returns True. If the last
row was just removed, the iterator becomes invalid, and the function returns False.

store.remove(iter)

In addition, store.clear() is provided, which can be used to remove all rows from a
list store. You are left with a Gtk.ListStore that contains no data.

After the list store is created, you need to call treeview.set model() to add it to the
tree view. By calling this method, the reference count of the tree model is incremented
by one.

Using Gtk.TreeStore

There is one other type of built-in tree model called Gtk.TreeStore, which organizes
rows into a multilevel tree structure. It is possible to implement a list with a Gtk.
TreeStore tree model as well, but this is not recommended because some overhead is
added when the object assumes that the row may have one or more children.

Figure 9-5 shows an example tree store, which contains two root elements, each
with children of its own. By clicking the expander to the left of a row with children, you
can show or hide its children. This is similar to the functionality provided by the Gtk.

Expander widget.
QEX)

Buy Count Product

TRUE 1 Paper Towels

TRUE 2 Bread

FALSE 1 Butter

TRUE 1 Milk

FALSE 3 Chips

TRUE 4 Soda

Figure 9-5. A tree view widget using a Gtk.TreeStore tree model

232

CHAPTER9 TREE VIEW WIDGET

The only difference between a Gtk.TreeView implemented with a Gtk.TreeStore
instead of a Gtk.ListStore is in the creation of the store. Adding columns and renderers
is performed in the same manner with both models, because columns are a part of the
view not the model. Executing Listing 9-2 will produce the dialog in Figure 9-5.

Listing 9-2. Creating a Gtk.TreeStore

#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, GObject

BUY IT = 0
QUANTITY = 1
PRODUCT = 2

PRODUCT _CATEGORY = 0
PRODUCT _CHILD = 1

GroceryItem = ((PRODUCT CATEGORY, True, 0, "Cleaning Supplies"),

(PRODUCT CHILD, True, 1, "Paper Towels"),

(PRODUCT CHILD, True, 3, "Toilet Paper"),

(PRODUCT_CATEGORY, True, 0, "Food"),

(PRODUCT CHILD, True, 2, "Bread"),

(PRODUCT CHILD, False, 1, "Butter"),

(PRODUCT CHILD, True, 1, "Milk"),

(PRODUCT CHILD, False, 3, "Chips"),

(PRODUCT CHILD, True, 4, "Soda"))

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):

super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(275, 270)
treeview = Gtk.TreeView.new()
self.setup tree view(treeview)

233

CHAPTER9 TREE VIEW WIDGET

store = Gtk.TreeStore.new((GObject.TYPE_BOOLEAN,
GObject.TYPE_INT,
GObject.TYPE_STRING))
iter = None
i=0
for row in GroceryItem:
(ptype, buy, quant, prod) = row
if ptype == PRODUCT CATEGORY:
j=1+1
(ptype1, buyl, quanti, prodi) = GroceryItem[j]
while j < len(GroceryItem) and ptypel == PRODUCT CHILD:
if buy1:
quant += quantl
Jj+=1
if j < len(GroceryItem):
(ptype1, buyl, quanti, prodi) = GroceryItem[j]
iter = store.append(None)
store.set(iter, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)
else:
child = store.append(iter)
store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)
i+4=1
treeview.set model(store)
treeview.expand all()
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.AUTOMATIC)
scrolled win.add(treeview)
self.add(scrolled win)
def setup tree view(self, treeview):
renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Buy", renderer, text=BUY IT)
treeview.append column(column)
renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

234

CHAPTER9 TREE VIEW WIDGET

treeview.append column(column)

renderer = Gtk.CellRendererText.new()

column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)
treeview.append column(column)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None
def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Grocery List")
self.window.show all()
self.window.present()
if _name__ == " main_":
app = Application()
app.run(sys.argv)

Tree stores are initialized with Gtk. TreeStore.new(), which accepts the same
parameters as Gtk.ListStore.new(). The column type parameters are formed into a
tuple. That tells the method not only the column type but also the number of columns.

Adding rows to a tree store is a little different than adding rows to a list store. You
add rows to a tree store with store.append(), which accepts one iterator or None. The
iterator should point to the parent row of the new row. The method returns an iterator
that points to the inserted row when the function returns, and the second.

iter = store.append(None)

In the preceding call to store.append(), a root element was appended to the list by
passing None as the parent iterator. The iter tree iterator returned by the method was set
to the location of the new row.

In the second call to store.append(), which follows, the row is added as a child of
iter. Next, the child tree iterator is returned set to the current location of the new row
within the tree store when the method returns.

child = store.append(iter)

235

CHAPTER9 TREE VIEW WIDGET

As with list stores, there are many methods available for adding rows to a tree store.
These include store.insert(), store.prepend(), and store.insert before() to
name a few. For a full list of methods, you should reference the Gtk.TreeStore API
documentation.

After you add a row to the tree store, it is simply an empty row with no data. To add
data to the row, call store.set (). This function works in the same way as store.set().
It accepts the tree store, a tree iterator pointing to the location of the row, and a list of
column-data pairs. These column numbers correspond to those you used when setting
up the cell renderer attributes.

store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

In addition to adding rows to a tree store, you can also remove them with store.
remove(). This function removes the row that is referred to by Gtk.TreeIter. After the
row is removed, iter points to the next row in the tree store, and the function returns
True. If the row that you removed was the last in the tree store, the iterator becomes
invalid, and the function returns False.

store.remove(iter)

In addition, store.clear() is provided, which can be used to remove all rows from a
tree store. You are left with a Gtk.TreeStore that contains no data.

In Listing 9-2, treeview.expand_all() is called to expand all of the rows. This is a
recursive function that expands every possible row, although it only affects tree models
that have child-parent row relationships. In addition, you can collapse all of the rows
with treeview.collapse all(). By default, all rows are collapsed.

Referencing Rows

Three objects are available for referring to a specific row within a tree model; each

has its own unique advantages. They are Gtk.TreePath, Gtk.Treelter, and Gtk.
TreeRowReference. In the following sections, you learn how each object works and how
to use them within your own programs.

236

CHAPTER9 TREE VIEW WIDGET

Tree Paths

For example, if you are presented with the string 3:7:5, you would start at the fourth
root element (recall that indexing begins at zero, so element three is actually the fourth
element in the level). You would next proceed to the eighth child of that root element.
The row in question is that child’s sixth child.

To illustrate this graphically, Figure 9-6 shows the tree view created in Figure 9-5 with
the tree paths labeled. Each root element is referred to as only one element, 0 and 1. The
first root element has two children, referred to as 0:0 and 0:1.

EE[=
Buy Count Product
w TRUE 4 Cleaning Supplies
TRUE 1 Paper Towels
TRUE 3 Toilet Paper
v TRUE 7 Food
TRUE 2 Bread
FALSE 1 Butter
TRUE 1 Milk
FALSE 3 Chips
TRUE 4 Soda

Figure 9-6. Tree paths for a tree view using Gtk.TreeStore

Two functions are provided that allow you to convert back and forth between a
path and its equivalent string: treepath.to string() and Gtk.TreePath.new_from_
string(). You usually do not have to deal with the string path directly unless you are
trying to save the state of a tree view, but using it helps in understanding the way tree
paths work.

Listing 9-3 gives a short example of using tree paths. It begins by creating a new path
that points to the Bread product row. Next, treepath.up() moves up one level in the
path. When you convert the path back into a string, you see that the resulting outputis 1,
pointing to the Food row.

237

CHAPTER9 TREE VIEW WIDGET

Listing 9-3. Converting Between Paths and Strings

treepath = Gtk.TreePath.new from string("1:0")
treepath.up(path)

str = treepath.to_string(path)

print(str)

Tip If you need to get a tree iterator and only have the path string available,
you can convert the string into a Gtk.TreePath and then to a Gtk.TreeIter.
However, a better solution would be to skip the intermediate step with
treemodel.get iter from string(), which converts a tree path string
directly into a tree iterator.

In addition to treepath.up(), there are other functions that allow you to navigate
through a tree model. You can use treepath.down() to move to the child row and
treepath.next() or treepath.prev() to move to the next or previous row in the same
level. When you move to the previous row or parent row, False is returned if it was not
successful.

At times, you may need to have a tree path as a list of integers instead of a string. The
treepath.get indices() function returns the integers that compose the path string.

treepath.get indices(path)

Problems can arise with tree paths when a row is added or removed from the tree
model. The path could end up pointing to a different row within the tree or, worse, a row
that does not exist anymore! For example, if a tree path points to the last element of a tree
and you remove that row, it now points beyond the limits of the tree. To get around this
problem, you can convert the tree path into a tree row reference.

Tree Row References

Gtk.TreeRowReference objects are used to watch a tree model for changes. Internally,

they connect to the "row-inserted", "row-deleted", and "rows-reordered" signals,

updating the stored path based on the changes.

238

CHAPTER9 TREE VIEW WIDGET

New tree row references are created with Gtk. TreeRowReference.new() from an
existing Gtk.TreeModel and Gtk.TreePath. The tree path copied into the row reference
is updated as changes occur within the model.

treerowref.new(model, path)

When you need to retrieve the path, you can use treerowref.get path(), which
returns None if the row no longer exists within the model. Tree row references are able
to update the tree path based on changes within the tree model, but if you remove all
elements from the same level as the tree path’s row, it no longer has a row to point to.

You should be aware that tree row references do add a small bit of overhead processing
when adding, removing, or sorting rows within a tree model, since the references have to
handle all of the signals emitted by these actions. This overhead does not matter for most
applications, because there will not be enough rows for the user to notice. However, if your
application contains a large number of rows, you should use tree row references wisely.

Tree Iterators

GTK+ provides the Gtk.TreeIter object, which can be used to reference a specific row
within a Gtk.TreeModel. These iterators are used internally by models, which means that
you should never directly alter the content of a tree iterator.

You have already seen multiple instances of Gtk. TreeIter, from which you can
discern that tree iterators are used in a similar way to Gtk.TreeIter. Tree iterators
are used for manipulation of tree models. Tree paths, however, are used to point to
rows within a tree model in a way that provides a human-readable interface. Tree row
references can be used to make sure that tree paths adjust where they point throughout
changes of a tree model.

GTK+ provides a number of built-in methods to perform operations on the tree
iterators. Typically, iterators are used to add rows to a model, set the content of a row,
and retrieve the content of a model. In Figure 9-1 and Figure 9-2, tree iterators were
used to add rows to Gtk.ListStore and Gtk.TreeStore models and then set the initial
content of each row.

Gtk.TreeModel provides a number of iter *() methods, which can be used to move
iterators and retrieve information about them. For example, to move to the next iterator
position, you could use treemodel.iter next(), which returns True if the action was
successful. A full list of available functions can be found in the Gtk.TreeModel API
documentation.

239

CHAPTER9 TREE VIEW WIDGET

It is easy to convert between tree iterators and tree paths with the use of treemodel.
get path() and treemodel.get iter(). The tree path or iterator must be valid for
either of these functions to work correctly. Listing 9-4 gives a short example of how to
convert between Gtk.TreeIter and Gtk.TreePath.

Listing 9-4. Converting Between Paths and Iterators

path
iter

treemodel.get path(model, iter)
treemodel.get iter(model, path)

The first method in Listing 9-4, treemodel.get path() converts a valid tree iterator
into a tree path. That path is then sent to treemodel.get iter(), which converts it back
into an iterator. Notice that the second method accepts two parameters.

One problem presented by Gtk.TreeIter is that the iterator is not guaranteed to
exist after a model is edited. This is not true in all cases, and you can use treemodel.
get_flags() to check the Gtk.TreeModelFlags.ITERS PERSIST flag, which is turned
on by default for Gtk.ListStore and Gtk.TreeStore. If this flag is set, the tree iterator is
always valid as long as the row exists.

treemodel.get flags()

Even if the iterator is set to persist, it is not a good idea to store tree iterator objects,
since they are used internally by tree models. Instead, you should use tree row references
to keep track of rows over time, since references will not become invalidated when the
tree model changes.

Adding Rows and Handling Selections

Both of the examples that you have been given up to this point define the tree model
during startup. The content does not change after it is initially set. In this section, the
Grocery List application is expanded to allow the user to add and remove products. Before
the example is introduced, you learn how to handle single and multiple selections.

240

CHAPTER9 TREE VIEW WIDGET

Single Selections

Selection information is held for each tree view by a Gtk.TreeSelection object. You can
retrieve this object with treeview.get selection().A Gtk.TreeSelection objectis

automatically created for you for every Gtk.TreeView, so there is never a need to create

your own tree selection.

Caution Gtk.TreeSelection provides one signal, “changed”, which is
emitted when the selection has changed. You should be careful when using this
signal, because it is not always reliable. It can be emitted when no changes occur
by the user selecting a row that is already selected. Therefore, it is best to use the
signals provided by Gtk.TreeView for selection handling, which is in Appendix B.

Tree views support multiple types of selections. You can change the selection type
with treeselection.set mode(). Selection types are defined by the Gtk.SelectionMode

enumeration, which includes the following values.

Gtk.SelectionMode.NONE: The user is prohibited from selecting any

TOWS.

Gtk.SelectionMode.SINGLE: The user may select up to one row,
though it is possible that no row is selected. By default, tree selections
are initialized with Gtk.SelectionMode.SINGLE.

Gtk.SelectionMode.BROWSE: The user is able to select exactly one
row. In some rare cases, there may not be a selected row. This option
actually prohibits the user from deselecting a row except when the

selection is moved to another row.

Gtk.SelectionMode.MULTIPLE: The user may select any number
of rows. The user is able to use the Ctrl and Shift keys to select

additional elements or ranges of elements.

If you have defined the selection type as Gtk.SelectionMode.SINGLE or
Gtk.SelectionMode.BROWSE, you can be sure that only one row is selected. For tree

views with one selection, you can use treeselection.get selected() to retrieve the

selected row.

treeselection.get selected(model, iter)

241

CHAPTER9 TREE VIEW WIDGET

The treeselection.get selected() method can be used to retrieve the tree model
associated with the Gtk.TreeSelection object and a tree iterator pointing to the selected
row. True is returned if the model and iterator were successfully set. This function will
not work with a selection mode of Gtk.SelectionMode .MULTIPLE!

If no row has been selected, the tree iterator is set to None, and False is returned
from the function. Therefore, treeselection.get selected() can also be used as a test
to check whether or not there is a selected row.

Multiple Selections

If your tree selection allows multiple rows to be selected (Gtk.SelectionMode.
MULTIPLE), you have two options for handling selections, calling a function for every row
or retrieving all of the selected rows as a Python list. Your first option is to call a function
for every selected row with treeselection.selected foreach().

treeselection.selected foreach(selected, foreach func, None)

This function allows you to call selected foreach func() for every selected row,
passing an optional data parameter. In the preceding example, None was passed to the
function. The function must be either a Python function or method, an example of which
is seen in Listing 9-5. The function in Listing 9-5 retrieves the product string and prints it
to the screen.

Listing 9-5. Selected for-each Function

foreach_func(model, path, iter, data)
(text,) = model.get(iter, PRODUCT)
print ("Selected Product: %s" % text)

Note You should not modify the tree model or selection from within the
foreach_func implementation! GTK+ gives critical errors to the user if you do
S0, because invalid tree paths and iterators may result.

Also note the method model.get () always return a tuple, even if you only ask for
a single column,

242

CHAPTER9 TREE VIEW WIDGET

One problem with using tree selection foreach func functions is that you are not
able to manipulate the selection from within the function. To remedy this problem, a
better solution would be to use treeselection.get selected rows(), which returns a
Python list of Gtk.TreePath objects, each pointing to a selected row.

treeselection.get selected rows(model)

You can then perform some operation on each row within the list. However, you
need to be careful. If you need to edit the tree model within the List, you want to
first convert all of the tree paths to tree row references, so they continue to be valid
throughout the duration of your actions.

If you want to loop through all of the rows manually, you are also able to use
treeselection.count_selected rows(), which returns the number of rows that are
currently selected.

Adding New Rows

Now that you have been introduced to selections, it is time to add the ability to add new
products to the list.

The only difference in this example in comparison to the previous Grocery List
application is visible in Figure 9-7, which shows that an Add and Remove buttons were
added along the bottom of the tree view. Also, the selection mode was changed to allow

the user to select multiple rows at a time.

Category: = Cleaning Supplies -
Product: Shampoo

Quantity: | 1 -+
/| Buy the Product

Add Cancel

Figure 9-7. Editing an item in the grocery list

243

CHAPTER9 TREE VIEW WIDGET

Listing 9-6 is the implementation of the callback function that is run when the user
clicks the Add button. It presents the user with a Gtk.Dialog that asks the user to choose
a category, enter a product name and quantity of products to buy, and select whether or
not to purchase the product.

If all of the fields are valid, the row is added under the chosen category. Also, if the
user specified that the product should be purchased, the quantity is added to the total
quantity of the category.

Listing 9-6. Adding a New Product

#!/usx/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, GObject

BUY IT = 0
QUANTITY = 1
PRODUCT = 2

PRODUCT _CATEGORY = 0
PRODUCT CHILD = 1

GroceryItem = ((PRODUCT CATEGORY, True, 0, "Cleaning Supplies"), (
PRODUCT CHILD, True, 1, "Paper Towels"),
(PRODUCT CHILD, True, 3, "Toilet Paper"), (PRODUCT CATEGORY,
True, 0, "Food"), (PRODUCT CHILD, True, 2, "Bread"),
(PRODUCT CHILD, False, 1, "Butter"),
(PRODUCT CHILD, True, 1, "Milk"),
(PRODUCT CHILD, False, 3, "Chips"),
(PRODUCT CHILD, True, 4, "Soda"))
class AddDialog(Gtk.Dialog):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
parent = kwargs['parent’]
set up buttons
self.add button("Add", Gtk.ResponseType.OK)

244

CHAPTER9 TREE VIEW WIDGET

self.add button("Cancel", Gtk.ResponseType.CANCEL)
set up dialog widgets
combobox = Gtk.ComboBoxText.new()
entry = Gtk.Entry.new()
spin = Gtk.SpinButton.new with_range(0, 100, 1)
check = Gtk.CheckButton.new with mnemonic(" Buy the Product")
spin.set_digits(o)
Add all of the categories to the combo box. for row in GroceryItem:
(ptype, buy, quant, prod) = row
if ptype == PRODUCT_CATEGORY:
combobox.append_text(prod)
create a grid
grid = Gtk.Grid.new()
grid.set_row_spacing (5)
grid.set _column_spacing(5)
fill out the grid
grid.attach(Gtk.Label.new("Category:"), 0, 0, 1, 1)
grid.attach(Gtk.Label.new("Product:"), 0, 1, 1, 1)
grid.attach(Gtk.Label.new("Quantity:"), 0, 2, 1, 1)
grid.attach(combobox, 1, 0, 1, 1)
grid.attach(entry, 1, 1, 1, 1)
grid.attach(spin, 1, 2, 1, 1)
grid.attach(check, 1, 3, 1, 1)
self.get content_area().pack start(grid, True, True, 5)
self.show all()

run the dialog and check the results
if self.run() != Gtk.ResponseType.OK:
self.destroy()
return
quantity = spin.get value()
product = entry.get text()
category = combobox.get active text()
buy = check.get active()

245

CHAPTER9 TREE VIEW WIDGET

if product == or category == None:
print("All of the fields were not correctly filled out!")
return
model = parent.get treeview().get model();
iter = model.get iter from string("o")
Retrieve an iterator pointing to the selected category. while iter:
(name,) = model.get(iter, PRODUCT)
if name == None or name.lower() == category.lower():
break
iter = model.iter next(iter)
#
#
Convert the category iterator to a path so that it # will not
become invalid and add the new product as a child of the category.

path = model.get path(iter)

child = model.append(iter)
model.set(child, BUY_IT, buy, QUANTITY, quantity, PRODUCT, product)
Add the quantity to the running total if it is to be purchased.

if buy:
iter = model.get iter(path)
(i,) = model.get(iter, QUANTITY) i += quantity

model.set(iter, QUANTITY, i)
self.destroy()
class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):

super(). init (*args, **kwargs)

self.set border width(10)

self.set size request(275, 270)

self.treeview = Gtk.TreeView.new()

self.setup tree view(self.treeview)

store = Gtk.TreeStore.new((GObject.TYPE BOOLEAN,
GObject.TYPE_INT,
GObject.TYPE_STRING))

246

CHAPTER9 TREE VIEW WIDGET

iter = None
i=o0
for row in GroceryItem:
(ptype, buy, quant, prod) = row
if ptype == PRODUCT CATEGORY:
j=1i+1
(ptype1, buyl, quanti, prodi) = GroceryItem[j]
while j < len(GroceryItem) and ptypel == PRODUCT CHILD:
if buy1:
quant += quantl
j+=1;
if j < len(GroceryItem):
(ptype1, buyl, quanti, prodi) = GroceryItem[7j]
iter = store.append(None)
store.set(iter, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)
else:
child = store.append(iter)
store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)
i+=1
self.treeview.set model(store)
self.treeview.expand all()
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.AUTOMATIC)
scrolled win.add(self.treeview)
button add = Gtk.Button.new with label("Add")
button_add.connect("clicked", self.on add button clicked, self)
button _remove = Gtk.Button.new with label("Remove")
hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)
hbox.pack end(button_remove, False, True, 5)
hbox.pack_end(button add, False, True, 5)
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack _end(hbox, False, True, 5)
vbox.pack end(scrolled win, True, True, 5)
self.add(vbox)

247

CHAPTER9 TREE VIEW WIDGET

def setup tree view(self, treeview):
renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Buy", renderer, text=BUY IT)
self.treeview.append column(column)
renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)
treeview.append column(column)
renderer = Gtk.CellRendererText.new()
column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)
treeview.append column(column)

def on_add button clicked(self, button, parent):
dialog = AddDialog(title="Add a Product", parent=parent,
flags=Gtk.DialogFlags.MODAL)

def get treeview(self):
return self.treeview

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Grocery List")
self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

248

CHAPTER9 TREE VIEW WIDGET

Retrieving Row Data

Retrieving the values stored in a tree model row is very similar to adding a row. In Listing
9-6 model.get iter from string() is first used to retrieve a tree iterator that points to
the first row in the tree view. This corresponds to the first category.

Next, model.iter next() is used to loop through all of the root-level rows. For each
root-level row, the following code is run. First, the product name is retrieved with model.
get (). This function works like treestore.set(), which accepts a Gtk.TreeModel,
an iterator pointing to a row, and a list of one or more column numbers. This method
always returns a tuple even if you supply a single column as a parameter.

(name,) = model.get(iter, PRODUCT)
if name.lower() == category.lower():
break

Then the current product is compared to the chosen category name. If the two
strings match, the loop is exited, because the correct category was found. The iter
variable now points to the selected category.

Adding a New Row

Adding new rows to the tree model is done in the same way as they were originally
added during startup. In the following code, the Gtk.TreeIter that points to the chosen
category is first converted into a tree path, since it becomes invalidated when the tree
store is changed. Note that it does not have to be converted to a tree row reference,
because its location will not possibly change.

path = model.get path(iter)
child = model.append(iter)
model.set(child, BUY_IT, buy, QUANTITY, quantity, PRODUCT, product)

Next, a new row is appended with treestore.append(), where iter is the parent
row. That row is populated with treestore.set(), using the data entered by the user in
the dialog.

249

CHAPTER9 TREE VIEW WIDGET

Combo Boxes

Listing 9-6 introduces a new widget called Gtk.ComboBox.

Gtk.ComboBox is a widget that allows the user to choose from a number of options in
a drop-down list.

The combo box displays the selected choice in its normal state. Combo boxes can be
used in two different ways, depending on what method you use to instantiate the widget,
either with a custom Gtk.TreeModel or with a default model with only a single column of
strings.

In Listing 9-6 a new Gtk.ComboBox was created with Gtk.ComboBoxText.new(),
which creates a specialized combo box that contains only one column of strings. This is
simply a convenience method, because the drop-down list of a combo box is internally
handled with a Gtk.TreeModel. This allows you to easily append and prepend options
and insert new options with the following methods.

combobox.append_text(text)
combobox.prepend text(text)
combobox.insert text(position, text)

The first function combobox.get active text() returns an integer that refers to the
index of the current row or -1 if there is no selection. This can be converted into a string
and then into a Gtk.TreePath. Also, combobox.get active iter() retrieves an iterator
pointing to the selected row, returning True if the iterator was set.

Removing Multiple Rows

The next step is to add the ability to remove products from the list. Since we have added
the ability for multiple rows to be selected, the code must also be able to remove more
than one row.

Listing 9-7 implements two methods. The first method, remove row(), is called for
every selected row, removing the row if it is not a category. If the removed row was to
be purchased, its quantity is removed from the category’s running total. The second
function, remove_products(), is the method that is run when the Remove button is
clicked.

250

CHAPTER9 TREE VIEW WIDGET

Listing 9-7. Removing One or More Products

def remove row(self, ref, model):
Convert the tree row reference to a path and retrieve the
iterator. path = ref.get path()
iter = model.get iter(path)
Only remove the row if it is not a root row.
parent = model.iter parent(iter)
if parent:
(buy, quantity) = model.get(iter, BUY_IT, QUANTITY)
(pnum,) = model.get(parent, QUANTITY)
if (buy):
pnum -= quantity
model.set(parent, QUANTITY, pnum)
iter = model.get iter(path)
model.remove(iter)

def remove products(self, button, treeview):

selection = treeview.get selection()

model = treeview.get model()

rows = selection.get selected rows(model)

Create tree row references to all of the selected rows.

references = []

for data in rows:
ref = Gtk.TreeRowReference.new(model, data)
references.append(ref)

for ref in references:
self.remove _row(ref, model)

When the Remove button is pressed, the remove_products() method is called. This
function begins by calling selection.get selected rows()to retrieve a Python list of
tree paths that point to the selected rows. Since the application is altering the rows, the
list of paths is converted into a list of row references. This makes sure that all of the tree
paths remain valid.

After the paths are converted to tree row references, the list is iterated via a Python
for statement and the remove_row() method is called for every item. Within remove_
row(), a new function is used to check whether the row is a category.

251

CHAPTER9 TREE VIEW WIDGET

If the selected row is a category, we know that it is a root element and have no
parents. Therefore, the following model.iter parent() call performs two tasks. First,
if the parent iterator is not set, this method returns False, and the category row is not
removed. If the row has a parent, which means that it is a product, the parent iterator is
set and used later in the function.

parent = model.iter parent(iter)

Second, the function retrieves information about the selected product and its
parent category. If the product is set to be purchased, its quantity is subtracted from
the total product count displayed by the category. Since changing this data invalidates
the iterator, the path is converted into an iterator, and the row is removed from the tree
model.

Handling Double-clicks

Double-clicks are handled with the row-activated signal of the Gtk.TreeView. The
signal is emitted when the user double-clicks a row, when the user presses the spacebar,
Shift+spacebar, Return, or Enter on a noneditable row, or when you call treeview.row_
activated().

Listing 9-8. Editing a Clicked Row

def row activated(self, treeview, path, column, data):
model = treeview.get model()
if model.get iter(path))
Handle the selection ...

In Listing 9-8, the callback method row_activated() is called when the user
activates a row within the tree view. The activated row is retrieved from the tree path
object with treemodel.get iter().From there, you are free to use whatever functions/
methods you have learned thus far to retrieve or alter the content of the row.

252

CHAPTER9 TREE VIEW WIDGET

Editable Text Renderers

It would be very useful to allow the user to edit the contents of a tree view. This could be
accomplished by presenting a dialog that contains a Gtk.Entry, in which the user would
be able to edit the content of a cell. However, GTK+ provides a much simpler way to edit
textual components that is integrated into the tree cell by using Gtk.CellRendererText’s
edited signal.

When a user clicks a cell in the selected row that is marked as editable, a Gtk.Entry
is placed in the cell that contains the current contents of the cell. An example of a cell
being edited is shown in Figure 9-8.

=8

Buy Count Product

TRUE 1 Paper Towels

TRUE 3 Toilet Paper
v TRUE 7 Food

TRUE 2 Bread

FALSE 1 Butter

TRUE 1 Milk

Add Remove

Figure 9-8. An editable cell

After the user presses the Enter key or removes focus from the text entry, the edited
widget is emitted. You need to connect to this signal and apply the changes once it is
emitted. Listing 9-9 shows you how to create the Gtk.ListStore Grocery List application
where the product column is editable.

Listing 9-9. Editing a Cell’s Text

def set up treeview(self, treeview):
renderer = Gtk.CellRenderer.Text.new()
column = Gtk.TreeViewColumn.new with attributes("Buy", renderer,
"text", BUY_IT)

253

CHAPTER9 TREE VIEW WIDGET

treeview.append column(column)

renderer = Gtk.CellRendererText.new()

column = Gtk.TreeViewColumn.new with attributes("Count", renderer,
"text", QUANTITY)

treeview.append column(column)

Set up the third column in the tree view to be editable. renderer
= Gtk.CellRendererText.new() renderer.set property(“"editable”,
True) renderer.connect("edited", self.cell edited, treeview)

column = Gtk.TreeViewColumn.new with attributes("Product"”,
renderer, "text", PRODUCT)

treeview.append column(column)

def cell edited(self, renderer, path, new text, treeview):Tree View Widget
if len(new_text) > o:
model = treeview.get model()
iter = model.get iter from string(path)
if iter:
model.set(iter, PRODUCT, new_text)

Creating editable Gtk.CellRendererText cells is a very simple process. The first
thing you need to do is set the editable and editable-set properties of the text renderer to
True.

renderer.set property(“"editable", True)

Remember that setting the editable property applies it to the whole column of data
that is drawn by the renderer. If you want to specify row by row whether the cell should
be editable, you should add it as an attribute of the column.

The next thing you need to do is connect the cell renderer to the edited signal
provided by Gtk.CellRendererText. The callback function for this signal receives the
cell renderer, a Gtk.TreePath string pointing to the edited row, and the new text that was
entered by the user. This signal is emitted when the user presses the Enter key or moves
focus from the cell’s Gtk.Entry while the cell is being edited.

254

CHAPTER9 TREE VIEW WIDGET

The edited signal is necessary, because changes are not automatically applied to the
cell. This allows you to filter out invalid entries. For example, in Listing 9-9, the new text
is not applied when the new string is empty.

iter = model.get iter from string(path)
if iter:
model.set(iter, PRODUCT, new_text)

Once you are ready to apply the text, you can convert the Gtk.TreePath string
directly into a Gtk.TreeIter with model.get iter from string(). This function
returns True if the iterator was successfully set, which means that the path string points
to a valid row.

Caution You always want to check that the path is valid, even though it is
supplied by GTK+, because there is a chance that the row has been removed or
moved since the callback function was initialized.

After you retrieve the Gtk.TreeIter, you can use model.set() to apply the new text
string to the column. In Listing 9-9, new_text was applied to the PRODUCT column of
the Gtk.ListStore.

Cell Data Methods

If you need to further customize every cell before it is rendered to the screen, you can use
cell data methods. They allow you to tinker with every property of each individual cell.
For example, you can set the foreground color based on the content of the cell or restrict
the number of decimal places a floating-point number that are shown. It can also be
used to set properties that are calculated during runtime.

Figure 9-9, which creates a color list, shows an application that uses cell data
functions to set the background color of each cell based on the text property of the
Gtk.CellRendererText.

255

CHAPTER9 TREE VIEW WIDGET

#000000
#000033
#000066

#000099

#0000CC

Figure 9-9. Screenshot of Listing 9-10

Caution Make sure not to use cell data functions if you have a large number of
rows in your tree model. Cell data functions process every cell in the column before it
is rendered, so they can significantly slow down tree models with many rows.

In Listing 9-10, a cell data function is used to set the background color to the value of
the color string stored by the cell. The foreground color is also set to white for every cell,
although this could also be applied to the whole renderer with the model.set (). This
application shows a list of the 256 web-safe colors.

Listing 9-10. Using Cell Data Functions
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Gdk, GObject
clr = ("00", "33", "66", "99", "CC", "FF")
COLOR = 0

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)

256

def

def

CHAPTER9 TREE VIEW WIDGET

self.set size request(250, 175)
treeview = Gtk.TreeView.new()
self.setup tree view(treeview)
store = Gtk.ListStore.new((GObject.TYPE_ STRING,
GObject.TYPE_STRING, GObject.TYPE_STRING))
for varl in clr:
for var2 in clr:
for var3 in clr:

color = "#" + varl + var2 + var3

iter = store.append()

store.set(iter, (COLOR,), (color,))
treeview.set model(store)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,

Gtk.PolicyType.AUTOMATIC)

scrolled win.add(treeview)
self.add(scrolled win)

setup_tree view(self, treeview):

renderer = Gtk.CellRendererText.new()

column = Gtk.TreeViewColumn.new()

column.pack start(renderer, True)

column.add attribute(renderer, "text", COLOR)

column.set title("Standard Colors")

treeview.append column(column)
column.set cell data func(renderer, self.cell data func, None)

cell data func(self, column, renderer, model, iter, data):

Get the color string stored by the column and make it the

foreground color

(text,) = model.get(iter, COLOR)

renderer.props.foreground rgha = Gdk.RGBA(red=1.0, green=1.0,
blue=1.0, alpha=1.0)

red = int(text[1:3], 16) / 255

257

CHAPTER9 TREE VIEW WIDGET

green = int(text[3:5], 16) / 255 blue = int(text[5:7], 16) / 255
renderer.props.background rgba = Gdk.RGBA(red=red, green=green,

blue=blue, alpha=1.0)
renderer.props.text = text

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp", **kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Color List")
self.window.show all()
self.window.present()

if _name__ == "_ main_":
app = Application()
app.run(sys.argv)

Another example of a useful cell data function is when you are using floating-point
numbers, and you need to control the number of decimal places that are displayed. In
fact, that example is used when you learn about spin button cell renderers in the “Spin
Button Renderers” section of this chapter.

Once you have set up your cell data function, you need to connect it to a specific
column by calling column.set_cell data func(). The last two parameters of
this function allow you to supply data that is passed to the cell data function and
an additional function that is called to destroy the data. You can set both of these
parameters to None if they are not necessary.

column.set cell data func(renderer, self.cell data func, None)

If you have added a cell data function to a column that you now want to remove, you
should call column.set cell data func() function parameter set to None.

As previously stated, cell data functions should only be used when you have a
definite need for fine-tuning the rendering of the data. In most cases, you want to
use additional column attributes or column.property set() to change properties,

258

CHAPTER9 TREE VIEW WIDGET

depending on the scope of the settings. As a rule of thumb, cell data functions should
only be used to apply settings that cannot be handled with column attributes or may not
be set for every cell.

Cell Renderers

Up to this point, you have only learned about one type of cell renderer, Gtk.
CellRendererText. This renderer allows you to display strings, numbers, and Boolean
values as text. You are able to customize how the text is displayed with cell renderer
attributes and cell data functions and allow it to be edited by the user.

GTK+ provides a large number of cell renderers that can display other types of
widgets besides text. These are toggle buttons, images, spin buttons, combo boxes,
progress bars, and accelerators, which are all covered in this chapter.

Toggle Button Renderers

Displaying Boolean values as “TRUE” or “FALSE” with Gtk.CellRendererText is a bit
tacky, and it takes up a large amount of valuable space in each row, especially when
there are a lot of visible Boolean columns. You might be thinking that it would be nice if
you could display a check button for Boolean values instead of text strings. It turns out
that you can — with the help of a type of cell renderer named Gtk.CellRendererToggle.

By default, toggle button cell renderers are drawn as a check button, as shown in
Figure 9-10. You can also set up toggle button renderers to be drawn as radio buttons,
but you need to manage the radio button functionality yourself.

BIER
Buy Count Product
v o1 Paper Towels
v 2 Bread
J 1 Butter
v o1 Milk
v a4 Soda

Figure 9-10. Toggle button renderers

259

CHAPTER9 TREE VIEW WIDGET

As with editable text renderers, you have to manually apply the changes performed
by the user; otherwise, the button will not toggle visually on the screen. Because of
this, Gtk.CellRendererToggle provides the toggled signal, which is emitted when the
user presses the check button. Listing 9-11 presents a toggled callback function for
the Grocery List application. In this version of the application, the BUY_IT column is
rendered with Gtk.CellRendererToggle.

Listing 9-11. Using Cell Data Functions

def buy it toggled(renderer, path, treeview):
model = treeview.get model()
iter = model.get iter from string(path)
if iter:
(value,) = model.get(iter, BUY_IT)
model.set row(iter, (!value, None))

Toggle cell renderers are created with Gtk.CellRendererToggle.new(). After
creating a toggle cell renderer, you want to set its activatable property to True so that
it can be toggled; otherwise, the user will not be able to toggle the button (which can
be useful if you only want to display a setting but not allow it to be edited). column.
property set() can be used to apply this setting to every cell.

Next, the active property should be added as a column attribute instead of text,
which was used by Gtk.CellRendererText. This property is set to True or False,
depending on the desired state of the toggle button.

Then, you should connect the Gtk.CellRendererToggle cell renderer to a callback
function for the toggled signal. Listing 9-11 gives an example callback function for the
toggled signal. This callback function receives the cell renderer and a Gtk.TreePath
string pointing to the row that contains the toggle button.

Within the callback function, you need to manually toggle the current value
displayed by the toggle button as shown in the following two lines of code. The emission
of a toggled signal only tells you that the user wants the button to be toggled; it does not
perform the action for you.

(value,) = model.get(iter, BUY_IT)
model.set row(iter, (!value, None))

260

CHAPTER9 TREE VIEW WIDGET

To toggle the value, you can use model.get () to retrieve the current value stored
by the cell. Since the cell is storing a Boolean value, you can set the new value to the
opposite of the current in model.set row().

As previously mentioned, Gtk.CellRendererToggle also allows you to render the
toggle as a radio button. This can be initially set to the renderer by changing the radio
property with renderer.set_radio().

renderer.set radio(radio)

You need to realize that the only thing that is changed by setting radio to True is the
rendering of the toggle button! You have to manually implement the functionality of a
radio button through your toggled callback function. This includes activating the new
toggle button and deactivating the previously selected toggle button.

Pixbuf Renderers

Adding images in the form of GdkPixbuf objects as a column in a Gtk.TreeView is a very
useful feature provided by Gtk.CellRendererPixbuf. An example of a pixbuf renderer is
shown in Figure 9-11, in which there is a small icon to the left of each item.

BER)
Some Items
1 Copy
[‘E‘jPaste
L_f New
Open

Eerint

Figure 9-11. Pixbufrenderers

261

CHAPTER9 TREE VIEW WIDGET

You have already learned almost everything necessary to add GdkPixbuf images to a tree
view in previous sections, but Listing 9-12 presents a simple example to guide you. There is
no need to create a separate column header for pixbufs in most cases, so Listing 9-12 shows
you how to include multiple renderers in one column. Pixbuf cell renderers are extremely
useful in types of tree view implementations, such as file system browsers.

Listing 9-12. GdkPixbuf Cell Renderers

def set up treeview(self, treeview):
column = Gtk.TreeViewColumn.new()
column.set resizable(True)
column.set title("Some Items")
renderer = Gtk.CellRendererPixbuf.new()
it is important to pack the renderer BEFORE adding attributes!!
column.pack start(renderer, False) column.add attribute(renderer,
"pixbuf", ICON)
renderer = Gtk.CellRendererText.new()
it is important to pack the renderer BEFORE adding attributes!!
column.pack start(renderer, True) column.add attribute(renderer,
"text", ICON NAME) treeview.append_column(column)

New Gtk.CellRendererPixbuf objects are created with Gtk.CellRendererPixbuf.
new(). You then want to add the renderer to the column. Since there is multiple
renderers Gtk.CellRendererPixbuf.new() in our column, you can use column.pack
start() to add the renderer to the column. It is important to pack the renderer into the
column BEFORE adding an attributes. Failure to do this invalidates the renderer and you
receive a runtime warning and no data appears in the column.

Next, you need to add attributes to the column for the Gtk.CellRendererPixbuf.
In Listing 9-12, the pixbuf property was used so that we could load a custom icon
from a file. However, pixbufs are not the only type of image supported by Gtk.
CellRendererPixbuf.

If you are using a Gtk.TreeStore, it is useful to display a different pixbuf when the
row is expanded and when it is retracted. To do this, you can specify two GdkPixbuf
objects to pixbuf-expander-open and pixbuf-expander-closed. For example, you may
want to do this to display an open folder when the row is expanded and a closed folder
when the row is retracted.

262

CHAPTER9 TREE VIEW WIDGET

When you create the tree model, you need to use a new type called GdkPixbuf.
Pixbuf, which stores GdkPixbuf objects in each model column. Every time you add a
GdkPixbuf to a tree model column, its reference count is incremented by one.

Spin Button Renderers

In Chapter 5, you learned how to use the Gtk.SpinButton widget. While
Gtk.CellRendererText can display numbers, a better option is to use Gtk.
CellRendererSpin. Instead of displaying a Gtk.Entry when the content is to be edited, a
Gtk.SpinButton is used. An example of a cell rendered with Gtk.CellRendererSpin that

is being edited is shown in Figure 9-12.

Count Product
2 Paper Towels

9 Bread

1 Milk
3 Chips
4 Sonda

Figure 9-12. Spin button renderers

You notice that the floating-point numbers in the first column in Figure 9-12 show
multiple decimal places. You can set the number of decimal places shown in the spin
button but not the displayed text. To decrease or eliminate the number of decimal
places, you should use a cell data function. An example of a cell data function that hides

decimal places is shown in Listing 9-13.

Listing 9-13. Cell Data Function for Floating-Point Numbers
def cell edited(self, renderer, path, new text, treeview):

Retrieve the current value stored by the spin button renderer's
adjustme adjustment = renderer.get property(“"adjustment™)
value = "%.0f" % adjustment.get value() model = treeview.get model()
iter = model.get iter from string(path) if iter:
model.set(iter, QUANTITY, value)
263

CHAPTER9 TREE VIEW WIDGET

Recall that if you want to dictate the number of decimal places shown by a floating-
point number in a column using Gtk.CellRendererText or another derived renderer,
you need to use a cell data function. In Listing 9-13, a sample cell data function was
shown that reads in the current floating-point number and forces the renderer to display
no decimal places. This is necessary because Gtk.CellRendererSpin stores numbers as
floating-point numbers.

Gtk.CellRendererSpin is compatible with both integers and floating-point
numbers, because its parameters are stored in a Gtk.Adjustment. Listing 9-13 is an
implementation of the Grocery List application in which the Quantity column is
rendered with Gtk.CellRendererSpin.

Listing 9-14. Spin Button Cell Renderers

def setup tree view(self, renderer, column, adj):
adj = Gtk.Adjustment.new(0.0, 0.0, 100.0, 1.0, 2.0, 2.0)
renderer = Gtk.CellRendererSpin(editable=True, adjustment=adj, digits=0)
column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)
treeview.append column(column)
renderer.connect("edited", self.cell edited, treeview)

Add a cell renderer for the PRODUCT column

New Gtk.CellRendererSpin objects are created with Gtk.CellRendererSpin().
When you create the renderer, you should set the editable, adjustment, and digits
properties of the object, as follows.

Gtk.CellRendererSpin(editable=True, adjustment=adj, digits=0)

Gtk.CellRendererSpin provides three properties: adjustment, climb rate, and
digits. These are stored in a Gtk.Adjustment defining the spin button’s properties, the
acceleration rate when an arrow button is held down, and the number of decimal places
to display in the spin button respectively. The climb rate and number of decimals to
display are both set to zero by default.

After setting up the cell renderer, you should then connect to the edited signal to the
cell renderer, which is used to apply the new value chosen by the user to the cell. There
is usually no need to filter this value, because the adjustment already limits the values
allowed by the cell. The callback function is run after the user presses the Enter key or
moves focus from the spin button of a cell that is being edited.

264

CHAPTER9 TREE VIEW WIDGET

Within the cell edited()callback method in Listing 9-14 you need to first retrieve
the adjustment of the spin button renderer, because it stores the new value that is to be
displayed. This new value can then be applied to the given cell.

Note Although the edited signal of a Gtk.CellRendererText still receives
the new_text parameter, this should not be used. The parameter does not store a
textual version of the spin button’s value. Furthermore, the value used in model.
set () that replaces the current value must be supplied as a floating-point
number, so a string is not acceptable regardless of its contents.

You can retrieve the adjustment’s value with renderer.get property("adjustment”),
applying it to the appropriate column. if the QUANTITY column is used to display a
floating-point number (GObject.TYPE_FLOAT), you can use the returned type in its current
state. We have instead chosen to convert the float value to a string value.

When creating the tree model, the column must be of the type GObject.TYPE_FLOAT,
even if you want to store an integer. You should use cell data functions to limit the
number of decimal places displayed by each cell.

Combo Box Renderers

Gtk.CellRendererCombo provides a cell renderer for a widget that you have just learned
about, Gtk.ComboBox. Combo box cell renderers are useful, because they allow you to
present multiple predefined options to the user. Gtk.Cel1lRendererCombo renders text
in a similar way to Gtk.CellRendererText, but instead of showing a Gtk.Entry widget
when editing, a Gtk.ComboBox widget is presented to the user. An example of a
Gtk.CellRendererCombo cell being edited is shown in Figure 9-13.

265

CHAPTER9 TREE VIEW WIDGET

Count Product

ra BTEdU
1 Butter
1 Milk

3 Chips
4 Soda

Figure 9-13. A combo box cell renderer

To use Gtk.CellRendererCombo, you need to create a Gtk.TreeModel for every cell in
the column. In Listing 9-15, the QUANTITY column of the Grocery List application from
Listing 9-1 is rendered with Gtk.CellRendererCombo.

Listing 9-15. Combo Box Cell Renderers

def setup tree view(self, treeview):
Create a GtkListStore that will be used for the combo box
renderer. model = Gtk.ListStore.new((GObject.TYPE_STRING,
GObject.TYPE_STRING))
iter = model.append()
model.set(iter, 0, "None")
iter = model.append()
model.set(iter, 0, "One")
iter = model.append()
model.set(iter, 0, "Half a Dozen")
iter = model.append()
model.set(iter, 0, "Dozen")
iter = model.append()
model.set(iter, 0, "Two Dozen")
Create the GtkCellRendererCombo and add the tree model. Then, add the
renderer to a new column and add the column to the GtkTreeView.
renderer = Gtk.CellRendererCombo(text column=0, editable=True,
has_entry=True, model=model)

266

CHAPTER9 TREE VIEW WIDGET

column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)
treeview.append column(column)

renderer.connect("edited", self.cell edited, treeview)
renderer = Gtk.CellRendererText.new()

column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)
treeview.append_column(column)

def cell edited(self, renderer, path, new text, treeview):
Make sure the text is not empty. If not, apply it to the tree view
cell. if new text I= "":
model = treeview.get model()
iter = model.get iter from string(path)
if iter:
model.set(iter, QUANTITY, new text)

New combo box cell renderers are created with Gtk.CellRendererCombo(). Gtk.
CellRendererCombo has three properties in addition to those inherited from Gtk.

CellRendererText: "has_entry", "model", and "text_column".

renderer = Gtk.CellRendererCombo(text column=0, editable=True,
has_entry=True, model=model)

The first property you need to set is "text _column", which refers to the column in
the combo box’s tree model that is displayed in the cell renderer. This must be a type
supported by Gtk.CellRendererText, such as GObject.TYPE_STRING, GObject.TYPE_
INT, or GObject.TYPE_BOOLEAN. The model property is a Gtk.TreeModel that is used as
the content of the combo box. You must also set the editable property to True, so the cell
content may be edited.

Lastly, there is a widget called Gtk.ComboBoxEntry that gives the user choices like
a normal combo box, but it also uses a Gtk.Entry widget to allow the user to enter a
custom string instead of choosing an existing option. To allow this functionality with
a combo box cell renderer, you must set the has-entry property to True. This is turned
on by default, which means that you must turn it off to restrict the choices to those that
appear in Gtk.CellRendererCombo’s tree model.

267

CHAPTER9 TREE VIEW WIDGET

As with other cell renderers derived from Gtk.CellRendererText, you want to use
the text field as the column attribute and set its initial text when creating the tree view’s
model. You can then use the edited signal to apply the text to the tree model. In Listing 9-
15, the changes are only applied when the "new_text" string is not empty, since the user
is free to enter free-form text as well.

Progress Bar Renderers

Another type of cell renderer is Gtk.CellRendererProgress, which implements the Gtk.
ProgressBar widget. While progress bars support pulsing, Gtk.CellRendererProgress
only allows you to set the current value of the progress bar. Figure 9-14 shows a Gtk.
TreeView widget that has a progress bar cell renderer in the second column, which
displays textual feedback.

- — lal)
Process |Progress
e e e e e e e - e o e e
W 0% Complete |
/bin/moo ENeomplete |
/bin/boo 100% Complete

Figure 9-14. Progress bar cell renderers

Progress bar cell renderers are another easy feature to implement in a program.
You can use Gtk.CellRendererProgress() to create new Gtk.CellRendererProgress
objects. Gtk.CellRendererProgress provides two properties: "text" and "value". The
progress bar state is defined by the "value" property, which is an integer with a value
between 0 and 100. A value of 0 refers to an empty progress bar, and 100 refers to a full
progress bar. Since it is stored as an integer, the tree model column corresponding to the
value of the progress bar should have the type GObject.TYPE_INT.

The second property provided by Gtk.CellRendererProgress is text. This property
is a string that is drawn over the top of the progress bar. This property can be ignored
in some cases, but it is usually a good idea to give the user more information about the
progress of a process. Examples of possible progress bar strings are “67% Complete’, “3 of
80 Files Processed’, “Installing foo . . ., and so on.

268

CHAPTER9 TREE VIEW WIDGET

Gtk.CellRendererProgress is a useful cell renderer in some cases, but you should
be careful when you deploy it. You should avoid using multiple progress bars in one row,
because doing so could confuse the user and takes up a lot of horizontal space. Also, tree
views with many rows appear messy. In many cases, it would be better for the user to use
a textual cell renderer instead of a progress bar cell renderer.

However, there are some cases where Gtk.CellRendererProgress is a good choice.
For example, if your application has to manage multiple downloads at the same time,
progress bar cell renderers are an easy way to give coherent feedback about progress for
each download.

Keyboard Accelerator Renderers

GTK+ 2.10 introduced a new type of cell renderer called Gtk.CellRendererAccel, which
displays a textual representation of a keyboard accelerator. An example of an accelerator
cell renderer is shown in Figure 9-15.

Buy Buy
Copy Ctrl+C
Paste Ctrl+V
New Ctrl+N
Open Ctrl+O
Print Ctrl+P

Figure 9-15. Accelerator cell renderers

Listing 9-16 creates a list of actions along with their keyboard accelerators.
This type of tree view could be used to allow the user to edit the accelerators for an
application. The accelerator is displayed as text, since the renderer is derived from
Gtk.CellRendererText.

To edit the accelerator, the user needs to click the cell once. The cell then shows a
string asking for a key. The new key code is added, along with any mask keys, such as Ctrl
and Shift, into the cell. Basically, the first keyboard shortcut pressed is displayed by the cell.

269

CHAPTER9 TREE VIEW WIDGET
Listing 9-16. Combo Box Cell Renderers
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Gdk, GObject

ACTION = 0
MASK = 1
VALUE = 2

list = [("Cut", Gdk.ModifierType.CONTROL MASK, Gdk.KEY X), ("Copy",
Gdk.ModifierType.CONTROL MASK, Gdk.KEY C), ("Paste", Gdk.ModifierType.
CONTROL_MASK, Gdk.KEY V), ("New", Gdk.ModifierType.CONTROL MASK, Gdk.
KEY N), ("Open", Gdk.ModifierType.CONTROL MASK, Gdk.KEY O), ("Print",
Gdk.ModifierType.CONTROL MASK, Gdk.KEY P)]

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set size request(250, 250)
treeview = Gtk.TreeView.new()
self.setup _tree view(treeview)
store = Gtk.ListStore(GObject.TYPE_STRING,
GObject.TYPE_INT, GObject.TYPE_UINT)
for row in list:
(action, mask, value) = row
iter = store.append(None)
store.set(iter, ACTION, action, MASK, mask, VALUE, value)
treeview.set model(store)
scrolled win = Gtk.ScrolledWindow.new(None, None)
scrolled win.set policy(Gtk.PolicyType.AUTOMATIC,
Gtk.PolicyType.AUTOMATIC)
scrolled win.add(treeview)
self.add(scrolled win)

270

CHAPTER9 TREE VIEW WIDGET

def setup tree view(self, treeview):

renderer = Gtk.CellRendererAccel()

column = Gtk.TreeViewColumn("Action", renderer, text=ACTION)

treeview.append column(column)

renderer = Gtk.CellRendererAccel(accel mode=Gtk.

CellRendererAccelMode.GTK, editable=True)

column = Gtk.TreeViewColumn("Key", renderer, accel mods=MASK,

accel key=VALUE)

treeview.append column(column)

renderer.connect("accel edited", self.accel edited, treeview)
def accel edited(self, renderer, path, accel key, mask, hardware
keycode, treeview):

model = treeview.get model()

iter = model.get iter from string(path)

if iter:

model.set(iter, MASK, mask, VALUE, accel key)

class Application(Gtk.Application):

def _init_ (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Accelerator
Keys")
self.window.show_all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

271

CHAPTER9 TREE VIEW WIDGET

You can use Gtk.CellRendererAccel() to create new Gtk.CellRendererAccel
objects. Gtk.CellRendererAccel provides the following four properties that can be
accessed with renderer.get().

o Gdk.ModifierType.SHIFT_MASK: The Shift key.
o Gdk.ModifierType.CONTROL_MASK: The Ctrl key.

o Gdk.ModifierType.MOD_MASK,Gdk.ModifierType.MOD2_MASK, Gdk.
ModifierType.MOD3_MASK,Gdk .ModifierType.MOD4_MASK, Gdk.
ModifierType.MOD5 MASK: The first modifier usually represents the Alt
key, but these are interpreted based on your X server mapping of the
keys. They can also correspond to the Meta, Super, or Hyper key.

e Gdk.ModifierType.SUPER_MASK: Introduced in 2.10, this allows you to
explicitly state the Super modifier. This modifier may not be available
on all systems!

o Gdk.ModifierType.HYPER_MASK: Introduced in 2.10, this allows you to
explicitly state the Hyper modifier. This modifier may not be available
on all systems!

o Gdk.ModifierType.META MODIFIER: Introduced in 2.10, this allows
you to explicitly state the Meta modifier. This modifier may not be
available on all systems!

In most cases, you want to set the modifier mask (acel-mods) and the accelerator key
value (accel-key) as two attributes of the tree view column using Gtk.CellRendererAccel.
In this case, the modifier mask is of type GObject.TYPE_INT, and the accelerator key value
GObject.TYPE_UINT. Because of this, you want to make sure to case the Gdk.ModifierType
value to an int when setting the content of the modifier mask column.

store = Gtk.ListStore(GObject.TYPE STRING, GObject.TYPE_INT, GObject.TYPE_
UINT)

Gtk.CellRendererAccel provides two signals. The first, accel-cleared, allows you to
reset the accelerator when the user removes the current value. In most cases, you will not
need to do this unless you have a default value that you want the accelerator to revert to.

272

CHAPTER9 TREE VIEW WIDGET

Of greater importance, accel-edited allows you to apply changes that the user
makes to the keyboard accelerator, as long as you set the editable property to True. The
callback function receives a path string to the row in question along with the accelerator
key code, mask and hardware key code. In the callback function, you can apply the
changes with store.set(), as you would with any other editable type of cell.

Test Your Understanding

In Exercise 1, you have the opportunity to practice using the Gtk.TreeView widget, along
with multiple types of cell renderers. This is an extremely important exercise for you to
try, because you need to use the Gtk.TreeView widget in many applications. As always,
when you are finished, you can find one possible solution in Appendix D.

Exercise 1: File Browser

By now, you have probably had enough of Grocery List applications, so let’s try
something different. In this exercise, create a file browser using the Gtk.TreeView
widget. You should use Gtk.ListStore for the file browser and allow the user to browse
through the file system.

The file browser should show images to differentiate among directories and files.
Images are found in the downloadable source code at www. gtkbook . com. You can also
use the Python directory utility functions to retrieve directory content. Double-clicking a
directory should move you to that location.

Summary

In this chapter, you learned how to use the Gtk.TreeView widget. This widget allows
you to display lists and tree structures of data with Gtk.ListStore and Gtk.TreeStore
respectively. You also learned the relationship among the tree view, tree model,
columns, and cell renderers and how to use each of the objects.

Next, you learned about the types of objects that can be used to refer to a row within
the tree view. These include tree iterators, paths, and row references. Each of these
objects has its own advantages and disadvantages. Tree iterators can be used directly
with models, but they become invalid when the tree model changes. Tree paths are

273

http://www.gtkbook.com

CHAPTER9 TREE VIEW WIDGET

easily understandable, because they have associated human-readable strings, but may
not point to the same row if the tree model is changed. Lastly, tree row references are
useful, because they remain valid for as long as the row exists, even when the model is
changed.

You next learned how to handle selections of one row or multiple rows. With
multiple row selections, you can use a for-each function, or you can get a Python list of
the selected rows. A useful signal when dealing with selections is Gtk.TreeView’s row-
activated signal, which allows you to handle double-clicks.

After that, you learned how to create editable cells with Gtk.CellRendererText’s
edited signal, which displays a Gtk.Entry to allow the user to edit the content in the cell.
Cell data functions can also be connected to columns. These cell data functions allow
you to customize each cell before it is rendered to the screen.

Lastly, you learned about a number of cell renderers that allow you to display toggle
buttons, pixbufs, spin buttons, combo boxes, progress bars, and keyboard accelerator
strings. You were also introduced to the Gtk .ComboBox widget.

Congratulations! You are now familiar with one of the hardest and most versatile
widgets provided by GTK+. In the next chapter, you learn how to create menus,
toolbars, and pop-up menus. You also learn how to automate menu creation with user
interface (UT) files.

274

CHAPTER 10

Menus and Toolbars

This chapter teaches you how to create pop-up menus, menu bars, and toolbars. You
begin by creating each manually, so you learn how the widgets are constructed. This
gives you a firm understanding of all of the concepts on which menus and toolbars rely.

After you understand each widget, you are introduced to Gtk.Builder, which allows
you to dynamically create menus and toolbars through custom XML files. Each user
interface file is loaded, and each element applied to a corresponding action object,
which tells the item how it is displayed and how it acts.

In this chapter, you learn the following.

e How to create pop-up menus, menu bars, and toolbars
e How to apply keyboard accelerators to menu items

o What the Gtk.StatusBar widget is and how you can use it to provide
more information to the user about a menu item

e What types of menu and toolbar items are provided by GTK+
e How to dynamically create menus and toolbars with Ul files

o How to create custom stock items with Gtk.IconFactory

Pop-up Menus

You begin this chapter by learning how to create a pop-up menu. A pop-up menu

is a Gtk.Menu widget that is displayed to the user when the right mouse button is
clicked while hovering above certain widgets. Some widgets, such as Gtk.Entry and
Gtk.TextView, already have pop-up menus built into the widget by default.

275
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_10

CHAPTER 10 MENUS AND TOOLBARS

If you want to change the pop-up menu of a widget that offers one by default, you
should edit the supplied Gtk.Menu widget in the pop-up callback function. For example,
both Gtk.Entry and Gtk.TextView have a populate-popup signal, which receives the
Gtk.Menu that is going to be displayed. You can edit this menu in any way you see fit
before displaying it to the user.

Creating a Pop-up Menu

For most widgets, you need to create your own pop-up menu. In this section, you are
going to learn how to supply a pop-up menu to a Gtk.ProgressBar widget. The pop-up
menu we are going to implement is presented in Figure 10-1.

Set as Complete

Clear Progress

Figure 10-1. A simple pop-up menu with three menu items

The three pop-up menu items pulse the progress bar, set it as 100 percent complete,
and clear it. In Listing 10-1, an event box contains the progress bar. Because Gtk.
ProgressBar, like Gtk.Label, is not able to detect GDK events by itself, we need to catch
button-press-event signals using an event box.

Listing 10-1. Simple Pop-up Menu
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

276

CHAPTER 10 MENUS AND TOOLBARS

class AppWindow(Gtk.ApplicationWindow):

def

def

__init_ (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(10)
self.set size request(250, -1)

Create all of the necessary widgets and initialize the pop-up

menu. menu = Gtk.Menu.new()
eventbox = Gtk.EventBox.new()

progress = Gtk.ProgressBar.new() progress.set text("Nothing Yet

Happened")

progress.set show text(True) self.create popup menu(menu, progress)

progress.set _pulse step(0.05) eventbox.set above child(False)
eventbox.connect("button press event", self.button press event,

menu) eventbox.add(progress)

self.add(eventbox)

eventbox.set events(Gdk.EventMask.BUTTON PRESS MASK)
eventbox.realize()

create popup menu(self, menu, progress):

pulse = Gtk.MenuItem.new with_ label("Pulse Progress")
fill = Gtk.MenuItem.new with label("Set as Complete")
clear = Gtk.MenuItem.new with label("Clear Progress")
separator = Gtk.SeparatorMenuItem.new()
pulse.connect("activate", self.pulse activated, progress)
fill.connect("activate", self.fill activated, progress)
clear.connect("activate", self.clear activated, progress)
menu.append(pulse)

menu.append(separator)

menu.append(fill)

menu.append(clear)

menu.attach to widget(progress, None)

menu.show_all()

277

CHAPTER 10 MENUS AND TOOLBARS

def button press event(self, eventbox, event, menu):
pass

def pulse activated(self, item, progress):
pass

def fill activated(self, item, progress):
pass

def clear_ activated(self, item, progress):
pass

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Pop-up Menus")
self.window.show all()
self.window.present()

if _name__ =="_main__":
app = Application()

app.run(sys.argv)

In most cases, you want to use button-press-event to detect when the user wants
the pop-up menu to be shown. This allows you to check whether the right mouse button
was clicked. If the right mouse button was clicked, Gdk . EventButton’s button member is
equal to 3.

However, Gtk.Widget also provides the popup-menu signal, which is activated when
the user presses built-in key accelerators to activate the pop-up menu. Most users use
the mouse to activate pop-up menus, so this is not usually a factor in GTK+ applications.
Nevertheless, if you would like to handle this signal as well, you should create a third
function that displays the pop-up menu that is called by both callback functions.

278

CHAPTER 10 MENUS AND TOOLBARS

New menus are created with Gtk.Menu.new(). The menu is initialized with no initial
content, so the next step is to create menu items.

In this section, we cover two types of menu items. The first is the base class for
all other types of menu items, Gtk.MenuItem. There are three initialization functions
provided for Gtk.MenuItem: Gtk.MenuItem.new(), Gtk.MenuItem.new with label(),
and Gtk.MenuItem.new with mnemonic().

pulse = Gtk.MenuItem.new with label("Pulse Progress")

In most cases, you do not need to use the Gtk.MenuItem.new(), because a menu
item with no content is not of much use. If you use that function to initialize the menu
item, you have to construct each aspect of the menu in code instead of allowing GTK+ to
handle the specifics.

Note Menu item mnemonics are not the same thing as keyboard accelerators. A
mnemonic activates the menu item when the user presses Alt and the appropriate
alphanumeric key while the menu has focus. A keyboard accelerator is a custom
key combination that causes a callback function to be run when the combination is
pressed. You learn about keyboard accelerators for menus in the next section.

The other type of basic menu item is Gtk.SeparatorMenuItem, which places a
generic separator at its location. You can use Gtk.SeparatorMenuItem.new() to create a
new separator menu item.

Separators are extremely important when designing a menu structure, because they
organize menu items into groups so that the user can easily find the appropriate item.
For example, in the File menu, menu items are often organized into groups that open
files, save files, print files, and close the application. Rarely should you have many menu
items listed without a separator in between them (e.g., a list of recent files might appear
without a separator). In most cases, you should group similar menu items together and
place a separator between adjacent groups.

After the menu items are created, you need to connect each menu item to the
activate signal, which is emitted when the user selects the item. Alternatively, you can
use the activate-item signal, which is also emitted when a submenu of the given menu
item is displayed. There is no discernable difference between the two unless the menu

item expands into a submenu.

279

CHAPTER 10 MENUS AND TOOLBARS

Each activate and activate-item callback function receives the Gtk.MenuItem widget
that initiated the action and any data you need to pass to the function. In Listing 10-2,
three menu item callback functions are provided to pulse the progress bar, fill it to 100
percent complete, and clear all progress.

Now that you have created all of the menu items, you need to add them to the menu.
Gtk.Menu is derived from Gtk.MenuShell, which is an abstract base class that contains
and displays submenus and menu items. Menu items can be added to a menu shell with
menu.append(). This function appends each item to the end of the menu shell.

menu.append(pulse)

Additionally, you can use menu.prepend() or menu.insert() add a menu item to
the beginning of the menu or insert it into an arbitrary position respectively. Positions
accepted by menu.insert() begin with an index of zero.

After setting all of the Gtk.Menu’s children as visible, you should call menu.attach_
to_widget() so that the pop-up menu is associated to a specific widget. This function
accepts the pop-up menu and the widget that it is attached to.

menu.attach to widget(progress, None)

The last parameter of menu.attach _to widget() accepts a Gtk.MenuDetachFunc,
which can call a specific function when the menu is detached from the widget.

Pop-up Menu Callback Methods

After creating the necessary widgets, you need to handle the button-press-event signal,
which is shown in Listing 10-2. In this example, the pop-up menu is displayed every time
the right mouse button clicks the progress bar.

Listing 10-2. Callback Functions for the Simple Pop-up Menu
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

280

CHAPTER 10 MENUS AND TOOLBARS

class AppWindow(Gtk.ApplicationWindow):

def

def

def

__init_ (self, *args, **kwargs):

super(). init (*args, **kwargs)

self.set border width(10)

self.set size request(250, -1)

Create all of the necessary widgets and initialize the pop-up
menu. menu = Gtk.Menu.new()

eventbox = Gtk.EventBox.new() progress =

Gtk.ProgressBar.new()

progress.set text("Nothing Yet Happened")
progress.set show text(True) self.create popup menu(menu, progress)
progress.set _pulse step(0.05) eventbox.set above child(False)
eventbox.connect("button press event", self.button press event,
menu) eventbox.add(progress)

self.add(eventbox)

eventbox.set events(Gdk.EventMask.BUTTON PRESS MASK) eventbox.realize()

create _popup menu(self, menu, progress):

pulse = Gtk.MenuItem.new with label("Pulse Progress")
fill = Gtk.MenuItem.new with label("Set as Complete")
clear = Gtk.MenuItem.new with_label("Clear Progress")
separator = Gtk.SeparatorMenuItem.new()
pulse.connect("activate", self.pulse activated, progress)
fill.connect("activate"”, self.fill activated, progress)
clear.connect("activate”, self.clear activated, progress)
menu.append(pulse)

menu.append(separator)

menu.append(fill)

menu.append(clear)

menu.attach to widget(progress, None)

menu. show_all()

button press event(self, eventbox, event, menu):
if event.button == 3 and event.type == Gdk.EventType.BUTTON PRESS: menu.
popup(None, None, None, None, event.button, event.time) return True

return False

281

CHAPTER 10 MENUS AND TOOLBARS

def pulse activated(self, item, progress):
progress.pulse()
progress.set text("Pulse!")

def fill activated(self, item, progress):
progress.set_fraction(1.0)
progress.set text("One Hundred Percent")

def clear activated(self, item, progress):
progress.set fraction(0.0)
progress.set text("Reset to Zero")

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Pop-up Menus")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

In the button-press-event callback function in Listing 10-2, you can use menu.
popup () to display the menu on the screen.

menu.popup(parent_menu_shell, parent menu_item, func, func_data, button,
event_time)

In Listing 10-2 all parameters were set to None except for the mouse button that
was clicked to cause the event (event » button) and the time when the event occurred
(event.time). If the pop-up menu was activated by something other than a button, you
should supply 0 to the button parameter.

282

CHAPTER 10 MENUS AND TOOLBARS

Note If the action was invoked by a popup-menu signal, the event time will not
be available. In that case, you can use Gtk.get current event time().This
function returns the timestamp of the current event or Gdk . CURRENT _TIME if
there are no recent events.

Usually, parent_menu_shell, parent_menu_item, func, and func_data are set to
None , because they are used when the menu is a part of a menu bar structure. The
parent_menu_shell widget is the menu shell that contains the item that caused the pop-
up initialization. Alternatively, you can supply parent_menu_item, which is the menu
item that caused the pop-up initialization.

Gtk.MenuPositionFunc is a function that decides at what position on the screen
the menu should be drawn. It accepts func_data as an optional last parameter. These
parameters are not frequently used in applications, so they can safely be set to None.

In our example, the pop-up menu was already associated with the progress bar, so it is
drawn in the correct location.

Keyboard Accelerators

When creating a menu, one of the most important things to do is to set up keyboard
accelerators. A keyboard accelerator is a key combination created from one accelerator
key and one or more modifiers, such as Ctrl or Shift. When the user presses the key
combination, the appropriate signal is emitted.

Listing 10-3 is an extension of the progress bar pop-up menu application that adds
keyboard accelerators to the menu items. The progress bar is pulsed when the user
presses Ctrl+P, filled with Ctrl+F, and cleared with Ctrl+C.

Listing 10-3. Adding Accelerators to Menu Items
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

283

CHAPTER 10 MENUS AND TOOLBARS

class AppWindow(Gtk.ApplicationhWindow):

284

def

def

__init_ (self, *args, **kwargs):

super(). init_ (*args, **kwargs)

self.set border width(10)

self.set size request(250, -1)

Create all of the necessary widgets and initialize the pop-up
menu. menu = Gtk.Menu.new()

eventbox = Gtk.EventBox.new() progress = Gtk.ProgressBar.new()
progress.set_text("Nothing Yet Happened") progress.set show_
text(True) self.create popup menu(menu, progress) progress.set
pulse step(0.05) eventbox.set above child(False)
eventbox.connect("button press event", self.button press event,
menu) eventbox.add(progress)

self.add(eventbox)

eventbox.set events(Gdk.EventMask.BUTTON PRESS MASK)
eventbox.realize()

create _popup menu(self, menu, progress):

group = Gtk.AccelGroup.new()

self.add_accel group(group)

menu.set_accel group(group)

pulse = Gtk.MenuItem.new with label("Pulse Progress")
fill = Gtk.MenuItem.new with label("Set as Complete")
clear = Gtk.MenuItem.new with_label("Clear Progress")
separator = Gtk.SeparatorMenuItem.new()

Add the necessary keyboard accelerators.

pulse.add _accelerator("activate"”, group, Gdk.KEY P, Gdk.
ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)

fill.add _accelerator("activate", group, Gdk.KEY_F, Gdk.
ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)

clear.add accelerator("activate", group, Gdk.KEY C, Gdk.
ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)
pulse.connect("activate", self.pulse activated, progress)
fill.connect("activate", self.fill activated, progress)
clear.connect("activate", self.clear activated, progress)

CHAPTER 10 MENUS AND TOOLBARS

menu.append(pulse)
menu.append(separator)
menu.append(fill)

menu.append(clear)

menu.attach_to widget(progress, None)
menu. show_all()

def button press event(self, eventbox, event, menu):
if event.button == 3 and event.type == Gdk.EventType.BUTTON PRESS:
menu.popup(None, None, None, None, event.button, event.time)
return True
return False

def pulse activated(self, item, progress):
progress.pulse()
progress.set text("Pulse!™)

def fill activated(self, item, progress):
progress.set fraction(1.0)
progress.set text("One Hundred Percent")

def clear activated(self, item, progress):
progress.set_fraction(0.0)
progress.set text("Reset to Zero")

class Application(Gtk.Application):

def _init_ (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Pop-up Menus")
self.window.show_all()
self.window.present()

if name_ ==" main_":
app = Application()
app.run(sys.argv)

285

CHAPTER 10 MENUS AND TOOLBARS

Keyboard accelerators are stored as an instance of Gtk.AccelGroup. To implement
accelerators in your application, you need to create a new accelerator group with Gtk.
AccelGroup.new(). This accelerator group must be added to the Gtk.Window where the
menu appears for it to take effect. It must also be associated with any menus that take
advantage of its accelerators. In Listing 10-3, this is performed immediately after creating
the Gtk.AccelGroup with self.add accel group() and menu.set accel group().

It is possible to manually create keyboard accelerators with Gtk.AccelMap, but in
most cases, widget.add accelerator() provides all of the necessary functionality.

The only problem that this method presents is that the user cannot change keyboard
accelerators created with this function during runtime.

widget.add accelerator(signal name, group, accel key, mods, flags)

To add an accelerator to a widget, you can use widget.add accelerator(), which
emits the signal specified by signal name on the widget when the user presses the key
combination. You need to specify your accelerator group to the function, which must be
associated with the window and the menu as previously stated.

An accelerator key and one or more modifier keys form the complete key
combination. A list of available accelerator keys is available in the PyGObject API
Reference. All the definitions for the available keys can be included by with the
statement import GDK.

Modifiers are specified by the Gdk .ModifierType enumeration. The most often
used modifiers are Gdk .ModifierType.SHIFT_MASK, Gdk.ModifierType.CONTROL MASK,
and Gdk.ModifierType.MOD1_MASK, which correspond to the Shift, Ctrl, and Alt keys
respectively.

Tip When dealing with key codes, you need to be careful because you many
need to supply multiple keys for the same action in some cases. For example, if
you want to catch the number 1 key, you need to watch for Gdk .KEY 1 and Gdk.
KEY_KP_1 - they correspond to the 1 key at the top of the keyboard and the 1 key
on the numeric keypad.

The last parameter of widget.add_accelerator() is an accelerator flag. There are
three flags defined by the Gtk.AccelFlags enumeration. The accelerator is visible in a
label if Gtk.AccelFlags.VISIBLE is set. Gtk.AccelFlags . LOCKED prevents the user from
modifying the accelerator. Gtk.AccelFlags .MASK sets both flags for the widget accelerator.

286

CHAPTER 10 MENUS AND TOOLBARS

Status Bar Hints

Usually placed along the bottom of the main window, the Gtk.Statusbar widget can
give the user further information about what is going on in the application. A status bar
can also be very useful with menus, because you can provide more information to the
user about the functionality of the menu item that the mouse cursor is hovering over. A
screenshot of a status bar is shown in Figure 10-2.

Set as Complete

Clear Progress

Figure 10-2. A pop-up menu with status bar hints

The Status Bar Widget

While the status bar can only display one message at a time, the widget actually stores a
stack of messages. The currently displayed message is on the top of the stack. When you
pop a message from the stack, the previous message is displayed. If there are no more
strings left on the stack after you pop a message from the top, no message is displayed on
the status bar.

New status bar widgets are created with Gtk.Ststusbar.new(). This creates a new
Gtk.Statusbar widget with an empty message stack. Before you are able to add or
remove a message from the new status bar’s stack, you must retrieve a context identifier
with statusbar.get context id().

id = statusbar.get context id(description)

The context identifier is a unique unsigned integer that is associated with a context
description string. This identifier is used for all messages of a specific type, which allows
you to categorize messages on the stack.

287

CHAPTER 10 MENUS AND TOOLBARS

For example, if your status bar holds hyperlinks and IP addresses, you could create
two context identifiers from the strings “URL” and “IP” When you push or pop messages
to and from the stack, you have to specify a context identifier. This allows separate parts
of your application to push and pop messages to and from the status bar message stack
without affecting each other.

Tip Itis important to use different context identifiers for different categories of
messages. If one part of your application is trying to give a message to the user
while the other is trying to remove its own message, you do not want the wrong
message to be popped from the stack!

After you generate a context identifier, you can add a message to the top of the status
bar’s stack with statusbar.push(). This function returns a unique message identifier for
the string that was just added. This identifier can be used later to remove the message
from the stack, regardless of its location.

statusbar.push(context _id, message)

There are two ways to remove a message from the stack. If you want to remove a
message from the top of the stack for a specific context ID, you can use statusbar.
pop (). This function removes the message that is highest on the status bar’s stack with a
context identifier of context_id.

statusbar.pop(context id)

It is also possible to remove a specific message from the status bar’s message stack
with statusbar.remove(). To do this, you must provide the context identifier of the
message and the message identifier of the message you want to remove, which was
returned by statusbar.push() when it was added.

statusbar.remove(context_id, message id)

288

CHAPTER 10 MENUS AND TOOLBARS

Menu Item Information

One useful role of the status bar is to give the user more information about the menu
item the mouse cursor is currently hovering over. An example of this was shown in
Figure 10-2, which is a screenshot of the progress bar pop-up menu application in
Listing 10-4.

To implement status bar hints, you should connect each of your menu items to Gtk.
Widget’s "enter-notify-event" and "leave-notify-event" signals. Listing 10-4 shows
the progress bar pop-up menu application you have already learned about, except status

bar hints are provided when the mouse cursor moves over a menu item.

Listing 10-4. Displaying More Information About a Menu Item
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk, Gdk

class AppMenuItem(Gtk.MenuItem):

def _init_(self, *args, **kwargs):
super(). init (*args, **kwargs)

def setattr (self, name, value):
self. dict [name] = value

def getattr (self, name):
return self. dict [name]

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.set border width(10)
self.set size request(250, -1)
Create all of the necessary widgets and initialize the pop-up
menu. menu = Gtk.Menu.new()
eventbox = Gtk.EventBox.new() progress = Gtk.ProgressBar.new()

289

CHAPTER 10 MENUS AND TOOLBARS

290

def

progress.set text("Nothing Yet Happened")
progress.set_show_text(True)

statusbar = Gtk.Statusbar.new()

self.create_popup_menu(menu, progress, statusbar)
progress.set_pulse step(0.05)

eventbox.set _above child(False)
eventbox.connect("button_press event", self.button press event, menu)
eventbox.add(progress)

vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(eventbox, False, True, 0)

vbox.pack start(statusbar, False, True, 0)

self.add(vbox)
eventbox.set_events(Gdk.EventMask.BUTTON_PRESS MASK)
eventbox.realize()

create popup menu(self, menu, progress, statusbar):

pulse = AppMenuItem(label="Pulse Progress")

fill = AppMenuItem(label="Set as Complete")

clear = AppMenuItem(label="Clear Progress")

separator = Gtk.SeparatorMenuItem.new()

pulse.connect("activate", self.pulse activated, progress)
fill.connect("activate", self.fill activated, progress)
clear.connect("activate", self.clear activated, progress)

Connect signals to each menu item for status bar messages. pulse.
connect("enter-notify-event", self.statusbar hint, statusbar)
pulse.connect("leave-notify-event", self.statusbar hint, statusbar)
fill.connect("enter-notify-event", self.statusbar hint, statusbar)
fill.connect("leave-notify-event", self.statusbar hint, statusbar)
clear.connect("enter-notify-event”, self.statusbar_hint, statusbar)
clear.connect("leave-notify-event”, self.statusbar hint, statusbar)
pulse. setattr ("menuhint", "Pulse the progress bar one step.")
fill. setattr ("menuhint", "Set the progress bar to 100%.")
clear. setattr ("menuhint", "Clear the progress bar to 0%.")
menu.append(pulse)

CHAPTER 10 MENUS AND TOOLBARS

menu.append(separator)

menu.append(fill)

menu.append(clear)

menu.attach to widget(progress, None) menu.show all()

def button press event(self, eventbox, event, menu):
if event.button == 3 and event.type == Gdk.EventType.BUTTON PRESS:
menu.popup(None, None, None, None, event.button, event.time)
return True
return False

def pulse activated(self, item, progress):
progress.pulse()
progress.set_text("Pulse!")

def fill activated(self, item, progress):
progress.set fraction(1.0)
progress.set text("One Hundred Percent")

def clear activated(self, item, progress): progress.set fraction(0.0)
progress.set text("Reset to Zero")

def statusbar hint(self, menuitem, event, statusbar): id = statusbar.
get context_id("MenuItemHints")
if event.type == Gdk.EventType.ENTER _NOTIFY:
hint = menuitem._getattr ("menuhint")
id = statusbar.push(id, hint)
elif event.type == Gdk.EventType.LEAVE NOTIFY:
statusbar.pop(id)
return False

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

291

CHAPTER 10 MENUS AND TOOLBARS

def do activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Pop-up Menus")
self.window.show_all()
self.window.present()

if _name_ ==" main_":
app = Application()
app.run(sys.argv)

When implementing status bar hints, you first need to figure out what signals are
necessary. We want to be able to add a message to the status bar when the mouse cursor
moves over the menu item and remove it when the mouse cursor leaves. From this
description, using "enter-notify-event" and "leave-notify-event" is a good solution.

Since the GTK+ 3 interface to Python 3 does not implement the get _data() and
set_data() methods on GTK+ objects, we need to subclass the Gtk.MenuItem class to
implement the corresponding Python 3 attributes. This methodology is used on some
other examples in this book as well.

One advantage of using these two signals is that we only need one callback function,
because the prototype for each receives a Gdk . EventProximity object. From this
object, we can discern between Gdk . EventType.ENTER_NOTIFY and Gdk.EventType.
LEAVE_NOTIFY events. You want to return False from the callback function, because you
do not want to prevent GTK+ from handling the event; you only want to enhance what is
performed when it is emitted.

Within the statusbar_hint() callback method, you should first retrieve a context
identifier for the menu item messages. You can use whatever string you want, as long as
your application remembers what was used. Listing 10-4 described all the menu item
messages added to the status bar. If other parts of the application used the status bar,
using a different context identifier would leave the menu item hints untouched.

id = statusbar.get context id("MenuItemHints")

If the event type is Gdk.EventType.ENTER_NOTIFY, you need to show the message
to the user. In the create_popup_menu() method, a data parameter was added to each
menu item called "menuhint". This is a more in-depth description of what the menu
item does, which is displayed to the user.

hint = menuitem. getattr ("menuhint")
statusbar.push(id, hint)

292

CHAPTER 10 MENUS AND TOOLBARS

Then, with statusbar.push(), the message can be added to the status bar under the
"MenuItemHints" context identifier. This message is placed on the top of the stack and
displayed to the user. You may want to consider processing all GTK+ events after calling
this method, since the user interface should reflect the changes immediately.

However, if the event type is Gdk.EventType.LEAVE _NOTIFY, you need to remove
the last menu item message that was added with the same context identifier. The most

recent message can be removed from the stack with statusbar.pop().

Menu ltems

Thus far, you have learned about flat menus that display label and separator menu items.
Itis also possible to add a submenu to an existing menu item. GTK+ also provides a
number of other Gtk.MenuItem objects. Figure 10-3 shows a pop-up menu that contains
a submenu along with image, check, and radio menu items.

inWindew. (<) (@) (3
Application
Change label
(®) string 1
QO string 2
O string 3
() maximize
About
Quit Ctrl+Q

Figure 10-3. Image, check, and radio menu items

293

CHAPTER 10 MENUS AND TOOLBARS

Submenus

Submenus in GTK+ are not created by a separate type of menu item widget but by calling
menuitem.set submenu(). This method calls menu.attach to widget() to attach the
submenu to the menu item and places an arrow beside the menu item to show that it
now has a submenu. If the menu item already has a submenu, it is replaced with the
given Gtk.Menu widget.

menuitem.set_submenu(submenu)

Submenus are very useful if you have a list of very specific options that would clutter
an otherwise organized menu structure. When using a submenu, you can use the
“activate-item” signal provided by the Gtk.MenuItem widget, which is emitted when the
menu item displays its submenu.

In addition to Gtk.MenuItem and menu item separators, there are three other types
of menu item objects: image, check, and radio menu items; these are covered in the
remainder of this section.

Image Menu ltems

Warning The Gtk.ImageMenuItem class has been deprecated since GTK+ 3.1.
Do not use it in new code and be aware it could disappear completely in a newer
version of GTK+.

Gtk.ImageMenuItemis very similar to its parent class Gtk.MenuItem except it shows
a small image to the left of the menu item label. There are four functions provided for
creating a new image menu item.

The first function, imagemenuitem.new() creates a new Gtk.ImageMenuItem object
with an empty label and no associated image. You can use image menu item’s image
property to set the image displayed by the menu item.

Gtk.ImageMenuItem.new()

Additionally, you can create a new image menu item from a stock identifier with Gtk.
ImageMenuItem.new_from stock(). This function creates the Gtk.ImageMenuItemwith the
label and image associated with stock_id. This function accepts stock identifier strings.

Gtk.ImageMenuItem.new_from_ stock(stockid, accel group)

294

CHAPTER 10 MENUS AND TOOLBARS

The second parameter of this function accepts an accelerator group, which is set
to the default accelerator of the stock item. If you want to manually set the keyboard
accelerator for the menu item as we did in Listing 10-3, you can specify None for this
parameter.

Also, you can use Gtk.ImageMenuItem.new with label() to create a new Gtk.
ImageMenuItem initially with only a label. Later, you can use the image property to add
an image widget. GTK+ also provided the method imagemenuitem.set image(), which
allows you to edit the image property of the widget.

Gtk.ImageMenuItem.new with label(label)

Also, GTK+ provides Gtk . ImageMenuItem.new with mnemonic(), which creates an
image menu item with a mnemonic label. As with the previous method, you have to set
the image property after the menu item is created.

Check Menu Items

Gtk.CheckMenuItem allows you to create a menu item that displays a check symbol
beside the label, depending on whether its Boolean active property is True or False. This
would allow the user to view whether an option is activated or deactivated.
As with Gtk.MenuItem, three initialization functions are provided.
Gtk.CheckMenuItem.new(), Gtk.CheckItem.new with label(), and Gtk.
CheckMenuItem.new with mnemonic(). These functions create a Gtk.CheckMenuItem
with no label, with an initial label, or with a mnemonic label, respectively.

Gtk.CheckMenuItem.new()
Gtk.CheckMenuItem.new with label(label)
Gtk.CheckMenuItem.new with_mnemonic(label)

As previously stated, the current state of the check menu item is held by the active
property of the widget. GTK+ provides two functions, checkmenuitem.set active() and
checkmenuitem.get active() to set and retrieve the active value.

As with all check button widgets, you are able to use the "toggled" signal, which is
emitted when the user toggles the state of the menu item. GTK+ takes care of updating
the state of the check button, so this signal is simply to allow you to update your
application to reflect the changed value.

295

CHAPTER 10 MENUS AND TOOLBARS

Gtk.CheckMenuItem also provides checkmenuitem.set inconsistent(), which
alters the inconsistent property of the menu item. When set to True, the check menu
item displays a third “in between” state that is neither active nor inactive. This can show
the user that a choice must be made that has yet to be set or that the property is both set
and unset for different parts of a selection.

Radio Menu Items

Gtk.RadioMenuItemisa widget derived from Gtk.CheckMenuItem. Itis rendered as a
radio button instead of a check button by setting check menu item’s draw-as-radio
property to True. Radio menu items work the same way as normal radio buttons.

The first radio button should be created with one of the following functions. You can
set the radio button group to None, since requisite elements are added to the group by
referencing the first element. These functions create an empty menu item, a menu item
with a label, and a menu item with a mnemonic, respectively.

Gtk.RadioMenuItem.new(group)
Gtk.RadioMenuItem.new with label(group, text)
Gtk.RadioMenuItem.new with _mnemonic(group, text)

All other radio menu items should be created with one of the following three
functions, which add it to the radio button group associated with group. These
functions create an empty menu item, a menu item with a label, and a menu item with a

mnemonic, respectively.

Gtk.RadioMenuItem.new from widget(group)
Gtk.RadioMenuItem.new from widget with label(group, text)
Gtk.RadioMenuItem.new_from widget with mnemonic(group, text)

Menu Bars

Gtk.MenuBar is a widget that organizes multiple pop-up menus into a horizontal or
vertical row. Each root element is a Gtk.MenuItem that pops down into a submenu.
An instance of Gtk .MenuBar is usually displayed along the top of the main application
window to provide access to functionality provided by the application. An example
menu bar is shown in Figure 10-4.

296

CHAPTER 10 MENUS AND TOOLBARS

File Edit Help

Figure 10-4. Menu bar with three menus

In Listing 10-5, a Gtk.MenuBar widget is created with three menus: File, Edit, and

Help. Each of the menus is actually a Gtk.MenuItem with a submenu. A number of menu

items are then added to each submenu.

Listing 10-5. Creating Groups of Menus
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set size request(250, -1)
menubar = Gtk.MenuBar.new()

file = Gtk.MenuItem.new with label("File")
edit = Gtk.MenuItem.new with label("Edit")
help = Gtk.MenuItem.new with label("Help")
filemenu = Gtk.Menu.new()

editmenu = Gtk.Menu.new()
helpmenu = Gtk.Menu.new()
file.set submenu(filemenu)
edit.set submenu(editmenu)
help.set submenu(helpmenu)
menubar.append(file)
menubar.append(edit)
menubar.append(help)

297

CHAPTER 10 MENUS AND TOOLBARS

Create the File menu content.
new = Gtk.MenuItem.new with label("New")
open = Gtk.MenuItem.new with label("Open")
filemenu.append(new)
filemenu.append(open)
Create the Edit menu content.
cut = Gtk.MenuItem.new with label("Cut")
copy = Gtk.MenuItem.new with label("Copy")
paste = Gtk.MenuItem.new with label("Paste")
editmenu.append(cut)
editmenu.append(copy)
editmenu.append(paste)
Create the Help menu content.
contents = Gtk.MenuItem.new with label("Help")
about = Gtk.MenuItem.new with label("About")
helpmenu.append(contents)
helpmenu.append(about)

self.add(menubar)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Menu Bars")
self.window.show all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

New Gtk.MenuBar widgets are created with Gtk.MenuBar.new(). This creates an
empty menu shell into which you can add content.

298

CHAPTER 10 MENUS AND TOOLBARS

After you create the menu bar, you can define the pack direction of the menu bar
items with menubar.set_pack direction(). Values for the pack_direction property are
defined by the Gtk.PackDirection enumeration and include Gtk.PackDirection.LTR,
Gtk.PackDirection.RTL, Gtk.PackDirection.TTB, or Gtk.PackDirection.BTT. These
pack the menu items from left to right, right to left, top to bottom, or bottom to top,
respectively. By default, child widgets are packed from left to right.

Gtk.MenuBar also provides another property called child-pack-direction, which
sets what direction the menu items of the menu bar’s children are packed. In other
words, it controls how submenu items are packed. Values for this property are also
defined by the Gtk.PackDirection enumeration.

Each child item in the menu bar is actually a Gtk.MenuItem widget. Since Gtk.
MenuBar is derived from Gtk.MenuShell, you can use the menuitem.append() method to
add an item to the bar as shown in the following line.

menubar.append(file)

You can also use file.prepend() or file.insert() to add an item to the beginning
or in an arbitrary position of the menu bar.

You next need to call file.set submenu() to add a submenu to each of the root
menu items. Each of the submenus is a Gtk.Menu widget created in the same way as pop-
up menus. GTK+ then takes care of showing submenus to the user when necessary.

file.set submenu(filemenu)

Toolbars

A Gtk.Toolbar is a type of container that holds a number of widgets in a horizontal or
vertical row. It is meant to allow easy customization of a large number of widgets with
very little trouble. Typically, toolbars hold tool buttons that can display an image along
with a text string. However, toolbars are actually able to hold any type of widget. A
toolbar holding four tool buttons and a separator is shown in Figure 10-5.

299

CHAPTER 10 MENUS AND TOOLBARS

o0 - B =
Cut Copy Paste Select All

Figure 10-5. A toolbar showing both images and text

In Listing 10-6, a simple toolbar is created that shows five tool items in a horizontal
row. Each toolbar item displays an icon and a label that describes the purpose of the
item. The toolbar is also set to display an arrow that provides access to toolbar items that
do not fit in the menu.

In this example, a toolbar provides cut, copy, paste, and select-all functionality to a
Gtk.Entry widget. The AppWindow() method creates the toolbar, packing it above the
Gtk.Entry. It then calls create_toolbar(), which populates the toolbar with tool items
and connects the necessary signals.

Listing 10-6. Creating a Gtk.Toolbar Widget
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
toolbar = Gtk.Toolbar.new()
entry = Gtk.Entry.new()
vbox.pack start(toolbar, True, False, 0)
vbox.pack_start(entry, True, False, 0)
self.create toolbar(toolbar, entry)
self.add(vbox)
self.set size request(310, 75)

300

CHAPTER 10 MENUS AND TOOLBARS

def create toolbar(self, toolbar, entry): icon theme = Gtk.IconTheme.
get default()
icon = icon_theme.load icon("edit-cut", -1,
Gtk.IconLookupFlags.FORCE_SIZE)
image = Gtk.Image.new from pixbuf(icon)
cut = Gtk.ToolButton.new(image, "Cut")
icon = icon_theme.load icon("edit-copy", -1,
Gtk.IconLookupFlags.FORCE_SIZE)
image = Gtk.Image.new from pixbuf(icon)
copy = Gtk.ToolButton.new(image, "Copy")
icon = icon theme.load icon("edit-paste", -1,
Gtk.IconLookupFlags.FORCE SIZE)
Gtk.Image.new from pixbuf(icon)

image

paste = Gtk.ToolButton.new(image, "Paste")

icon = icon theme.load icon("edit-select-all", -1,
Gtk.IconLookupFlags.FORCE_SIZE)

image = Gtk.Image.new from pixbuf(icon)

selectall = Gtk.ToolButton.new(image, "Select A1l")
separator = Gtk.SeparatorToolItem.new()
toolbar.set show arrow(True)

toolbar.set style(Gtk.ToolbarStyle.BOTH)
toolbar.insert(cut, 0)

toolbar.insert(copy, 1)

toolbar.insert(paste, 2)

toolbar.insert(separator, 3)
toolbar.insert(selectall, 4)

cut.connect("clicked", self.cut clipboard, entry)
copy.connect("clicked", self.copy clipboard, entry)
paste.connect("clicked", self.paste clipboard, entry)
selectall.connect("clicked", self.select all, entry)

def cut clipboard(self, button, entry):
entry.cut_clipboard()

def copy clipboard(self, button, entry):
entry.copy clipboard()

301

CHAPTER 10 MENUS AND TOOLBARS

def paste clipboard(self, button, entry):
entry.paste clipboard()

def select all(self, button, entry):
entry.select region(0, -1)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None
def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Toolbar")
self.window.show_all()
self.window.present()
if name_ ==" main_":
app = Application()
app.run(sys.argv)

New toolbars are created with Gtk.Toolbar.new(), which was called before the
create_toolbar() function shown in Listing 10-6. This creates an empty Gtk.Toolbar
widget in which you can add tool buttons.

Gtk.Toolbar provides a number of properties for customizing how it appears and
interacts with the user, including the orientation, button style, and the ability to give
access to items that do not fit in the toolbar.

If all of the toolbar items cannot be displayed on the toolbar because there is not
enough room, then an overflow menu appears if you set toolbar.set show_arrow() to
True. If all of the items can be displayed on the toolbar, the arrow is hidden from view.

toolbar.set show arrow(boolean)

Another Gtk.Toolbar property is the style by which all of the menu items are
displayed, which is set with toolbar.set style(). You should note that this property
could be overridden by the theme, so you should provide the option of using the default
style by calling toolbar.unset _style(). There are four toolbar styles, which are defined
by the Gtk.ToolbarStyle enumeration.

302

CHAPTER 10 MENUS AND TOOLBARS

o Gtk.ToolbarStyle.ICONS: Show only icons for each tool button in
the toolbar.

o Gtk.ToolbarStyle.TEXT: how only labels for each tool button in the
toolbar.

o Gtk.ToolbarStyle.BOTH: Show both icons and labels for each tool
button, where the icon is located above its label.

e Gtk.ToolbarStyle.BOTH HORIZ: Show both icons and labels for each
tool button, where the icon is to the left of the label. The label text of a
tool item is only shown if the "is-important" property for the item is
set to True.

Another important property of the toolbar is the orientation that can be set with
toolbar.set orientation(). There are two possible values defined by the Gtk.
Orientation enumeration, Gtk.Orientation.HORIZONTAL and Gtk.Orientation.
VERTICAL, which can make the toolbar horizontal (default) or vertical.

Toolbar ltems

Listing 10-6 introduces three important tool item types: Gtk.ToolItem, Gtk.ToolButton,
and Gtk.SeparatorToolItem. All tool buttons are derived from the Gtk.ToolItem class,
which holds basic properties that are used by all tool items.

If you are using the Gtk.ToolbarStyle.BOTH HORIZ style, then an essential property
installed in Gtk.ToolItemis the "is-important" setting. The label text of the toolbar
item is only shown for this style if this property is set to True.

As with menus, separator tool items are provided by Gtk.SeparatorToolItemand
are created with Gtk.SeparatorToolItem.new(). Separator tool items have a draw
property, which draws a separator when set to True. If you set draw to False, it places
padding at its location without any visual separator.

Tip If you set the expand property of a Gtk.SeparatorToolItemto True and
its draw property to False, you force all tool items after the separator to the end
of the toolbar.

303

CHAPTER 10 MENUS AND TOOLBARS

Most toolbar items are of the type Gtk.ToolButton. Gtk.ToolButton provides only the
single initialization method Gtk.ToolButton.new() as all other initialization methods have
been deprecated since GTK+ 3.1. Gtk. ToolButton.new() can create a Gtk.ToolButton
with a custom icon and label. Each of these properties can be set to None.

Gtk.ToolButton.new(icon, label)

It is possible to manually set the label and icon after initialization with toolbutton.
set _label() and toolbutton.set icon widget(). These functions provide access to
tool button’s label and icon-widget properties.

Additionally, you can define your own widget to use instead of the default Gtk.Label
widget of the tool button with toolbutton.set label widget(). This allows you to
embed an arbitrary widget, such as an entry or combo box, into the tool button. If this
property is set to None, the default label is used.

toolbutton.set label widget(label widget)

After you create the toolbar items, you can insert each Gtk.ToolIteminto the toolbar
with toolbar.insert().

toolbar.insert(item, pos)

The second parameter of toolbar.insert() accepts the position to insert the
item into the toolbar. Tool button positions are indexed from zero. A negative position
appends the item to the end of the toolbar.

Toggle Tool Buttons

Gtk.ToggleToolButton is derived from Gtk.ToolButton, and therefore only implements
initialization and toggle abilities. Toggle tool buttons provide the functionality of a Gtk.
ToggleButton widget in the form of a toolbar item. It allows the user to view whether the
option is set or unset.

Toggle tool buttons are tool buttons that remain depressed when the active property
is set to True. You can use the toggled signal to receive notification when the state of the
toggle button has been changed.

There is only one way to create a new Gtk.ToggleToolButton. This is with Gtk.
ToggleToolButton.new(), which creates an empty tool button. You can then use the
methods provided by Gtk.ToolButton to add a label and image.

Gtk.ToggleToolButton.new()
304

CHAPTER 10 MENUS AND TOOLBARS

Radio Tool Buttons

Gtk.RadioToolButton is derived from Gtk.ToggleToolButton, so it inherits the “active”
property and "toggled" signal. Therefore, the widget only needs to give a way for you to
create new radio tool buttons and add them to a radio group.

A radio tool button should be created with Gtk.RadioToolButton.new(), where
the radio group is set to None. This creates a default initial radio group for the radio tool
button.

Gtk.RadioToolButton.new(group)

Gtk.RadioToolButton inherits functions from Gtk.ToolButton, which provides
functions and properties that can then set the label of the radio tool button, if necessary.

All requisite elements should be created with Gtk.RadioToolButton.from_
widget(). Setting group as the first radio tool button adds all requisite items added to the
same group.

Gtk.RadioToolButton.new_from widget(group)

Gtk.RadioToolButton provides one property, group, which is another radio tool
button that belongs to the radio group. This allows you to link all of the radio buttons
together so that only one is selected at a time.

Menu Tool Buttons

Gtk.MenuToolButton, derived from Gtk.ToggleToolButton, allows you to attach a menu
to a tool button. The widget places an arrow beside the image and label that provides
access to the associated menu. For example, you could use Gtk.MenuToolButton to add a
list of recently opened files to a toolbar button. Figure 10-6 is a screenshot of a menu tool
button that is used for this purpose.

305

CHAPTER 10 MENUS AND TOOLBARS

‘J view.h

| editor.h

~editor.glade

Figure 10-6. A menu tool button showing recently opened files

Listing 10-7 shows you how to implement a menu tool button. The actual tool button
is created in a similar way as any other Gtk.ToolButton except there is an extra step of
attaching a menu to the Gtk.MenuToolButton widget.

Listing 10-7. Using Gtk.MenuToolButton

recent = Gtk.Menu.new()

Add a number of menu items where each corresponds to one recent file.
icon theme = Gtk.IconTheme.get default()

icon = icon_theme.load icon("document-open", -1,
Gtk.IconLookupFlags.FORCE SIZE)

image = Gtk.Image.new_from pixbuf(icon)

open = Gtk.MenuToolButton.new(image, "Open")

open.set_menu(recent)

In Listing 10-7, the menu tool button was created with an image and a label with
Gtk.MenuToolButton.new(image, label).You can set either of these parameters to
None if you want to set them at a later time using Gtk.ToolButton properties.

Gtk.MenuToolButton.new(image, label)
306

CHAPTER 10 MENUS AND TOOLBARS

What makes Gtk.MenuToolButton unique is that an arrow to the right of the tool
button provides the user with access to a menu. The tool button’s menu is set with
menutoolbutton.set menu() or by setting the menu property to a Gtk .Menu widget.
This menu is displayed to the user when the arrow is clicked.

Dynamic Menu Creation

Note The Gtk.UIManager was deprecated in GTK+ 3.1 so the creation and
loading of Ul files are not covered in this section. Instead, the new Gtk.Builder
class and its associated XML files are covered. Gtk.Builder is a more powerful
and flexible system for managing external user interface descriptions and actions.
It also provides addition capabilities and reduces the amount of work needed to
create and manage user interfaces.

While it is possible to manually create every menu and toolbar item, doing so
can take up a large amount of space and cause you to have to code monotonously for
longer than necessary. To automate menu and toolbar creation, GTK+ allows you to
dynamically create menus from XML files.

The Gtk.Builder class can create many user interface objects, including menus,
menu bars, pop-up menus, entire dialogs, main windows, and many others. This section
concentrates on different types of menus, but you should keep in mind that Gtk.Builder
can build many other kinds of user interface objects.

Creating XML Files

User interface files are constructed in XML format. All of the content has to be contained
between <interface> and </interface> tags. One type of dynamic UI that you can create is
a Gtk.Menu with the <menu> tag shown in Listing 10-8.

307

CHAPTER 10 MENUS AND TOOLBARS

Listing 10-8. Menu Ul File

<?xml version="1.0" encoding="UTF-8"?>
<interface>
<menu id="menubar">
<submenu>
<attribute name="label">File</attribute>
</submenuy
<submenu>
<attribute name="label">Edit</attribute>
</submenuy
<submenu>
<attribute name="label">Choices</attribute>
</submenuy
<submenu>
<attribute name="label">Help</attribute>
</submenu>
</menu>
</interface>

Every menu and item tag should have a unique ID associated with it so that you can
access that item directly from your code. While not necessary, you should always add the
name property to every menu and item. The name property can access the actual widget.

Each <menu> can have any number of <item> children. Both of these tags must
be closed according to normal XML rules. If a tag does not have a closing tag (e.g.,
<menu/>), you must place a forward slash character (/) at the end of the tag so the
parser knows the tag has ended.

Each <menu> and <item> tags can have other children as well, such as the <section>
and <attribute> tags. The <section> tag organizes <item> tags. The <attribute> tags are
used to describe (i.e., add properties) to both <menu> and <item> tags.

The <attribute> tag has multiple purposes but one purpose common to all <item>
tags is the one containing the label property. This property supplies the label string that
is visible on the <item>. In this case, the <item> tags correspond to a Gtk.MenuItemlabel
attribute specifies the string that appears in the menu item.

308

CHAPTER 10 MENUS AND TOOLBARS

Another <attribute> tag that appears with each <item> tags is the action attribute.
This tag specifies the action to be taken when the <item> is clicked. The action specified
is closely tied to the Gtk.Application and the Gtk.ApplicationWindow class (or
their subclasses). The target of each action specifies which class instance—the Gtk.
ApplicationWindow or the Gtk.Application—creates the Gio.SimpleAction and
connects it to a method in the same class instance for processing the action. You can
think of the <attribute> action tag as a kind of signal name that is an alias for the real
signal to be processed.

The action attribute is applied to all elements except top-level widgets and separators.
When loading the Ul file to associate a Gtk.Action object to each element, Gtk.Builder
uses the action attributes. Gtk.Action holds information about how the item is drawn and
what callback method should be called, if any, when the item is activated.

Separators can be placed in a menu with the <separator/> tag. You do not
need to provide name or action information for separators, because a generic
Gtk.SeparatorMenuItemis added.

In addition to menu bars, you can create toolbars in a UI file with the <toolbar> tag,
as shown in Listing 10-9.

Listing 10-9. Toolbar Ul File

<?xml version="1.0"' encoding="utf-8' ?>
<interface>
<requires lib='gtk+' version='3.4'/>
<object class='GtkToolbar' id='toolbar'>
<property name='visible'>True</property>
<property name='can_focus'>False</property>
<child»
<object class="'GtkToolButton' id='toolbutton new'>
<property name='visible'>True</property> <property name=
'can_focus'>False</property>
<property name='tooltip text' translatable='yes'>New Standard
</property> <property name='action name'>app.newstandard</property>
<property name='icon_name'>document-new</property>
</object>
<packing>

309

CHAPTER 10 MENUS AND TOOLBARS

<property name='expand'>False</property> <property name=
"homogeneous ' >True</property>
</packing>
</child>
<child»
<object class="GtkToolButton' id='toolbutton quit'> <property
name='visible'>True</property> <property name='can focus'>False</property>
<property name='tooltip text' translatable='yes'>Quit</property>
<property name='action_name'>app.quit</property>
<property name='icon name'>application-exit</property> </object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
</object>
</interface>

Each toolbar can contain any number of <toolitem> elements. Tool items are
specified in the same manner as menu items, with an action ("action") and an ID. You
can use the ID for elements in separate Ul files, but you should not use the same names
if, for example, the toolbar and menu bar are located in the same file.

However, you can and should use the same action for multiple elements. This causes
each element to be drawn in the same way and to be connected to the same callback
method. The advantage of this is that you need to define only one Gtk.Action for each
item type. For example, the same action is used for the Cut element in the Ul files in
Listing 10-8 through 10-10.

Tip While the toolbar, menu bar, and pop-up menu were split into separate Ul
files, you can include as many of these widgets as you want in one file. The only
requirement is that the whole file content is contained between the <interface>
and </interface> tags.

310

CHAPTER 10 MENUS AND TOOLBARS

In addition to toolbars and menu bars, it is possible to define pop-up menus in a UI
file, as illustrated in Listing 10-10. Notice that there are repeated actions in Listing 10-8,
Listing 10-9, and Listing 10-10. Repeating actions allows you to define only a single Gtk.
Action object instead of separate objects for each instance of an action.

Listing 10-10. Pop-up Ul File

<?xml version='1.0" encoding="utf-8' ?>
<interface>
<menu id="app-menu">
<section>
<item>
<attribute name="label">About</attribute> <attribute
name="action">app.about</attribute>
</item>
<item>
<attribute name="label">Quit</attribute> <attribute
name="action">app.quit</attribute>
</item>
</section>
</menu>
</interface>

The last type of top-level widget supported by Ul files is the pop-up menu, denoted
by the <popup> tag. Since a pop-up menu is the same thing as a normal menu, you can
still use <menuitem> elements as children.

Loading XML Files

After you create your Ul files, you need to load them into your application and retrieve
the necessary widgets. To do this, you need to utilize the functionality provided by Gtk.
ActionGroup and Gtk.Builder.

Gtk.ActionGroup is a set of items with name, stock identifier, label, keyboard
accelerator, tooltip, and callback methods. The name of the each action can be set to an
action parameter from a Ul file to associate it with a Ul element.

311

CHAPTER 10 MENUS AND TOOLBARS

Gtk.Builder is a class that allows you to dynamically load one or more user interface
definitions. It automatically creates an accelerator group based on associated action
groups and allows you to reference widgets based on the "ID" parameter from the Ul file.

In Listing 10-11, Gtk.UIManager loads the menu bar and toolbar from the Ul files in
Listing 10-10. The resulting application is shown in Figure 10-7.

ell fcn | | H_j‘

File Edit Choices Help

&

Figure 10-7. A menu bar and a toolbar that are dynamically loaded

Each of the menu and tool items in the application are connected to empty callback
methods, because this example is only meant to show you how to dynamically load
menus and toolbars from UI definitions. You implement callback methods with actual
content in the two exercises found at the end of this chapter.

Listing 10-11. Loading a Menu with Gtk.Builder
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)

def change label(self):
pass

def maximize(self):
pass

312

CHAPTER 10 MENUS AND TOOLBARS

def about(self):
pass

def quit(self):
self.destroy()

def newstandard(self):
pass

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Hello World!")
builder = Gtk.Builder()
builder.add from file("./Menu XML File.ui")
builder.add from file("./Toolbar UI File.xml")
builder.connect_signals(self.window)
self.set _menubar(builder.get object("menubar"))
self.window.add(builder.get object("toolbar"))
self.window.present()
if _name__ == " main_":
app = Application()
app.run(sys.argv)

Test Your Understanding

The following two exercises give an overview of what you have learned about menus and
toolbars throughout the chapter.

In addition to completing them, you may want to create examples of pop-up menus
with other widgets that do not support them by default. Also, after finishing both of these
exercises, you should expand them by creating your own stock icons that are used in
place of the default items.

313

CHAPTER 10 MENUS AND TOOLBARS

Exercise 1: Toolbars

In Chapter 8, you created a simple text editor using the Gtk.TextView widget. In this
exercise, expand on that application and provide a toolbar for actions instead of a
vertical box filled with Gtk.Button widgets.

Although manual toolbar creation is possible, in most applications, you want to
utilize the Gtk.Builder method for toolbar creation. Therefore, use that method in this
exercise. You should also create your own with Gtk.IconFactory.

Oftentimes, it is advantageous for an application to provide the toolbar as a child of a
handle box. Do this for your text editor, placing the toolbar above the text view. Also, set
up the toolbar so that the textual descriptor is shown below every tool button.

This first exercise taught you how to build your own toolbars. It also showed you
how to use the Gtk.HandleBox container. In the next exercise, you reimplement the Text
Editor application with a menu bar.

Exercise 2: Menu Bars

In this exercise, implement the same application as in Exercise 1, except use a menu bar
this time. You should continue to use Gtk.Builder, but the menu does not need to be
contained by a Gtk.HandleBox.

Since tooltips are not shown for menu items automatically, use a status bar to
provide more information about each item. The menu bar should contain two menus:
File and Edit. You should also provide a Quit menu item in the File menu.

Summary

In this chapter, you learned two methods for creating menus, toolbars, and menu bars.
The first method was the manual method, which was more difficult but introduced you
to all of the necessary widgets.

The first example showed you how to use basic menu items to implement a pop-
up menu for a progress bar. This example was expanded on to provide keyboard
accelerators and more information to the user with the Gtk.Statusbar widget. You also
learned about submenus as well as image, toggle, and radio menu items.

314

CHAPTER 10 MENUS AND TOOLBARS

The next section showed you how to use menu items with submenus to implement
a menu bar with a Gtk.MenuShell. This menu bar could be displayed horizontally or
vertically and forward or backward.

Toolbars are simply a horizontal or vertical list of buttons. Each button contains an
icon and label text. You learned about three additional types of toolbar buttons: toggles,
radio buttons, and tool buttons with a supplemental menu.

Then, after much hard work, you were taught how to create dynamically loadable
menus. Each menu or toolbar is held in a UI definition file, which is loaded by the Gtk.
Builder class. The Builder associates each object with the appropriate action and
creates the widgets according to the Ul definition.

Last, you learned how to create your own custom icons. It is necessary to create your
own icons, because arrays of actions require an identifier to add an icon to an action.

In the next chapter, we are going to take a short break from coding and cover the
design of graphical user interfaces with the Glade user interface builder. This application
creates user interface XML files, which can be dynamically loaded when your application
starts. You then learn how to handle these files programmatically with Gtk.Builder.

315

CHAPTER 11

Dynamic User Interfaces

By now, you have learned a great deal about GTK+ and its supporting libraries, and you
are able to create fairly complex applications. However, manually writing all of the code
to create and configure the widgets and behavior for these applications can quickly
become tedious.

The Glade user interface builder removes the need for you to write all of that code
by allowing you to design your Ul graphically. It supports the GTK+ library of widgets as
well as various widgets from the GNOME libraries. User interfaces are saved as XML files,
which can dynamically build your application’s user interface.

The last part of this chapter covers Gtk.Builder, a library that can dynamically load
the XML files. Gtk.Builder creates all the necessary widgets and allows you to connect
any signals defined in Glade.

Note This chapter covers the user interface of Glade that is current at the time
of this writing. It is possible that this may change in the future, but any changes
should be an easy transition from the instructions provided in this chapter.

In this chapter, you learn the following.

o Issues you should keep in mind when designing graphical user
interfaces (GUIs)

o How to design custom graphical user interfaces with Glade

e How to dynamically load Glade user interfaces with Gtk.Builder

317
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_11

CHAPTER 11 DYNAMIC USER INTERFACES

User Interface Design

In this chapter, you are going to learn how to use Glade 3 and Gtk.Builder to implement
dynamic user interfaces. However, it is prudent to first learn a few concepts that you
should keep in mind when designing graphical user interfaces. These concepts can help
you to avoid confusing and frustrating users in the future.

You also have to realize that, while you know how to use your application because
you designed it, you need to do as much as possible to help the user make sense of
it. Whether the user is an expert or a novice, each user should be able to use your
application with the shortest possible learning curve. That said, the following sections
include many tips and design decisions to help you achieve this level of intuitiveness.
They also improve the maintainability of your application.

Know Your Users

When designing a user interface, the most important thing to consider is your audience.
Are they all experienced with the task at hand, or will some need more help than others?
Can you model your user interface after one that they are already familiar with, or is this
something completely new?

One of the biggest possible mistakes is to make rash generalizations about your
users’ skill level. You may think that the way you lay out your application makes sense,
but that is because you designed it. You should place yourself in the users’ position,
understanding they will have no prior knowledge about how to use your application.

To avoid confusion, take time to study similar applications, taking note of what
design decisions seem successful and which cause problems. For example, if you are
creating an application to be used in the GNOME desktop environment, you should
check out the GNOME Human Interface Guidelines (http://developer.gnome.org),
which can help you lay out a design that is used for other compliant applications.

Another thing to consider when designing a user interface is accessibility. Users
may have vision problems that could inhibit them from using an application. The
Accessibility Toolkit provides many facilities for GTK+ applications to make them
compatible with screen readers. GTK+ also relies heavily on themes, which is why you
should avoid setting the font, when possible, or provide the user with a way to change it.

318

http://developer.gnome.org

CHAPTER 11 DYNAMIC USER INTERFACES

Your language is another consideration when designing the user interface. First,
you should always use jargon that is familiar to the users. For example, you are free to
use mathematical terms in an engineering application, but you should not do so in a
web browser.

Many applications are translated into other languages when they become popular,
which may cause problems if you use words or images that could be offensive in other
cultures.

Keep the Design Simple

Once you know your audience, it becomes a lot simpler to design an effective user
interface, but you can still run into problems if the interface is too difficult or cluttered.
Always try to reduce the number of widgets on the screen to a reasonable number.

For example, if you need to provide many choices to the user where only one can be
selected, you might be tempted to use a lot of radio buttons. However, a better solution
may be to use a Gtk.ComboBox, which significantly decreases the number of required
widgets.

The Gtk.Notebook container is extremely useful for grouping similar option groups
that would otherwise clutter a huge page. In many applications, this widget groups
widgets that relate or depend on each other into a preferences dialog.

Menu layout is also another problematic area, because it is not always done in a
sensible manner. When possible, you should use standard menus, such as File, Edit, View,
Help, Format, and Window. These menus are familiar to users who are experienced with
computing, and users expect them. Because of this, these menus should contain standard
items as well. For example, the File menu should contain items for manipulating files,
printing, and exiting the application. You should investigate how other applications lay
out their menu items if you are not sure where to place a particular item.

Repetitive jobs, or those that the user performs often, should always be made quick
and easy. There are multiple ways to do this. The most important is to provide keyboard
accelerators for many actions —pressing Ctrl+O on the keyboard is a lot faster than
clicking the File menu and the Open menu item.

319

CHAPTER 11 DYNAMIC USER INTERFACES

Note Whenever possible, you should always use standard keyboard accelerators,
such as Ctrl+X for cutting and Ctrl+N for creating something new. This significantly
decreases the initial learning curve for users of your application. In fact, some
keyboard accelerators are already built into many widgets, such as Ctrl+X for
cutting the selection in text widgets.

It may take some time for your users to become accustomed to keyboard
accelerators, which is why toolbars are also extremely useful for repetitive options. You
need to find a balance between placing too few and too many items on a toolbar, though.
A cluttered toolbar scares and confuses the user, but a toolbar with too few items is
useless. If you have a large number of items that users might want on toolbars, it would
make sense to allow the users to customize the toolbars themselves.

Always Be Consistent

Consistency is important when designing a graphical user interface, and GTK+ makes
this extremely easy. First, GTK+ provides many stock items that should always be used
in favor of homegrown items where possible. The user will already be familiar with the
icons for the stock items and will know how to use them.

Caution Stock items can be very dangerous if you do not use them correctly. You
should never use a stock item for an action for which it was not originally intended.
For example, you should not use GTK_STOCK_REMOVE icon for a subtraction
operation just because it looks like a “minus sign.” The icons are defined by the
user’s theme; they may not always look the way you assume.

Speaking of themes, you should fall back on the settings provided by a theme
whenever possible. This helps you create a consistent look—not only throughout your
application but across the entire desktop environment. Since themes are applied to
all applications throughout a desktop, your application is consistent with most other
applications that the user runs.

320

CHAPTER 11 DYNAMIC USER INTERFACES

In those few cases where you do need to deviate from the defaults provided by the
user’s theme, you should always give the user a way to change the settings or to just use
the system defaults. This is especially important when dealing with fonts and colors,
because your changes can render your application unusable with some themes.

Another advantage of consistency is that the user learns how to use your application
much faster. The user needs to learn only one design instead of many. If you do not use
a consistent layout for your application and supplemental dialogs, the user is presented
with a brand-new adventure with every new window.

Keep the User in the Loop

One thing that can turn off a user of your application very quickly is if it is not responsive
for along period of time. Most computer users are accustomed to a bug or two, but if
your application is processing information and remains unresponsive for quite a while,
the user may give up.

To avoid this, there are two possible solutions. The first is to make your application
more efficient. However, if your application is not to blame, or there is no way to make
it more efficient, you should use progress bars. A progress bar tells the user that your
application is still working. Just make sure to update your progress bar! If you do not
know how long the process will take, another option would be to pulse the progress bar
and provide messages that update the user on the process’s progress.

Also, remember the following loop from Chapter 3.

while Gtk.events pending():
Gtk.main_iteration()

This loop makes sure that the user interface is updated, even when the processor
is busy processing another task. If you do not update the user interface during a CPU-
intensive process, the application may be unresponsive to the user until it is finished!

You should also provide your users with feedback when actions are performed. If a
document is being saved, you should mark it as unmodified or display a message in the
status bar. If you do not provide feedback to the user when an action is performed, it may
be assumed that the action was not performed.

Message dialogs are a very useful way to provide feedback, but they should be used
only when necessary. The user will become frustrated if message dialogs appear too
often, which is why only critical errors and warnings should be reported this way.

321

CHAPTER 11 DYNAMIC USER INTERFACES

We All Make Mistakes

Whether you are an expert or a novice, we all make mistakes. Because of this, you should
always forgive your users. After all, everyone has at one time or another pressed an
incorrect button that resulted in losing a large amount of work. In a properly designed
application, this should never occur.

For basic actions that cannot be easily undone by the user, you should provide the
ability to undo the action. For example, these basic actions could include deleting an
item from our Grocery List application or moving text within a text view.

For actions that cannot be undone, you should always provide a confirmation dialog.
It should explicitly state that this action cannot be undone and ask whether the user
wants to continue. For example, you should always ask the user whether the application
should be closed when there are documents with unsaved changes. People have been
using software for years and have come to expect a confirmation dialog box for actions
that cannot be undone.

The Glade User Interface Builder

One factor that can make or break a GUI toolkit is whether it can rapidly deploy
applications. While the user interface is extremely important to the success of an
application, it should not be the most consuming aspect of the development process.

Glade is a tool that allows you to quickly and efficiently design graphical user
interfaces so that you can move onto other aspects of your code. User interfaces are
saved as an XML file that describes the widget structure, the properties of each widget,
and any signal handlers you associated with each. Gtk.Builder can then load the user
interface file to dynamically build it on application load. This allows you to alter the user
interface aesthetically without the need to recompile the application.

Note Older versions of Glade allowed you to generate source code instead of
saving the user interface in an XML file. This method is deprecated, because it is
difficult to manage when you want to change your user interface. Therefore, you
should follow the method provided in this chapter.

322

CHAPTER 11 DYNAMIC USER INTERFACES

You need to realize from the start what Glade is and what it is not. Glade designs the
user interface of an application, set up signals that are associated with callback methods
implemented in your code, and take care of common widget properties. However, Glade
is not a code editor or an integrated development environment. The files it outputs must
be loaded by your application, and you must implement all of the callback methods in
your code. Glade is just meant to simplify the process of initializing your application’s
graphical user interface and connecting signals.

Tip Glade 3.22.1, the version used in this book, now allows integrated
development environments, such as Anjuta, to embed it into their user interfaces.
These IDEs provide a complete, start-to-finish solution for deploying GTK+
applications.

Another advantage of Glade is that, since the user interfaces are stored as XML files,
they are independent of the language. Any language that has wrapped the functionality
provided by Gtk.Builder can load user interfaces. This means that the same graphical
user interface designer can be used regardless of the programming language you choose.

Before continuing with the rest of this chapter, you should install Glade and the
development package for Gtk.Builder from your operating system’s package manager.
Alternatively, you can download and compile the sources from glade.gnome.org.

Also, you should make sure to follow along and create this application while reading
the rest of the chapter. This gives you a chance to learn your way around the Glade 3
application, so you can get as much practice as possible while you have this book to
guide you.

The Glade Interface

When you launch Glade for the first time, you see a main window with three panes: the
main window tree view, the widget palette, and the widget property editor. Figure 11-1
is a screenshot of the main Glade application window with a project opened from the
FileBrowser.glade.

323

http://gnome.org

CHAPTER 11 DYNAMIC USER INTERFACES

Open = o ol o Fileaw.rlglad.e ' Save Z R = = o x
SearchWidgets > <% Q Toplevels Containers Control Display | = : 4 General Packing 3
~ m_Gkwndow | _ - o: |
b = | GtkBox & o & & e @
v B8 GikToolbor Back Forward Up Refresh Home Delete Window Attributes
o Current Location: »Go Type: | Toplevel « | Position: | N¢
D —
(]
o Hint: | Normal w | Gravity: | Nc
o o
o Accel Groups:
] T ient Fi
— ransient For:
- t] Gtk
Attached To:
v Window Role:
Startup ID:
L g Appearance
CB Gtkscrolled [client side window decorations
Title:
- @A Decoratad Hide the u;lebar dur,
[& o T pany —' maximization

Figure 11-1. The Glade main window

The main tree view window facilitates Glade project management. The Main
Window Title Bar shows a list of the currently open projects, allowing you to switch
among them. The left pane also includes the widget tree view, which shows the widget
containment of the project with focus.

The widget tree view shows the parent-to-child container relationships within a
project. It is possible to have multiple top-level widgets. However, in Figure 11-1 window
is the only top-level widget of the FileBrowser.glade.

This pane is where you specify project options, save the project, and load existing
projects. The Popup menus in this window also provide many other options that can
help you when working with projects, such as undoing and redoing actions.

Note If you decide to work with Glade 2 instead of Glade 3, make sure to save
often. Undo and redo support was not implemented in the older versions of Glade,
and it is very frustrating if you accidentally overwrite an hour of work with one
wrong mouse click!

324

CHAPTER 11 DYNAMIC USER INTERFACES

The middle pane shown when you launch Glade 3 has buttons for selecting widgets
from a widget palette, which lists all of the widgets available to you for designing your
applications. A screenshot of the one of the widget palettes is shown in Figure 11-2.

Q|

= GtkBox

HH GtkGrid
|) GtkNotebook
[] GtkFrame
GtkAspectFrame
£ GtkListBox
: 838 GtkFlowBox
| [3 Gtkoverlay
< GtkMenuBar
GBS GtkToolbar
Z GtkToolPalette
[T] GtkPaned
ooo GtkButtonBox
B! GtkLayout
GtkFixed
& GtkEventBox
D - GtkExpander
0! Gtkviewport

Fi

Figure 11-2. A Glade widget palette

By default, there are five categories of widgets that can be displayed: top-level
widgets, containers, widgets used for control, display widgets, and composite and
depreciated widgets. You should not use any widgets in the GTK+ Obsolete list in new
applications, because they are depreciated and may be removed in future releases.

In addition to the default categories of widgets, you may find other categories
that include additional widget libraries. These include widgets added for the GNOME
libraries or other custom widget libraries.

325

CHAPTER 11 DYNAMIC USER INTERFACES

Through the View menu, you can change the layout of the widget palette. Figure 11-2
shows a widget palette that is set to show both icons and text. However, you can show only
text or only icons depending on what style you are most comfortable with.

To add a new top-level widget to the widget layout pane, all you need to do is click
the icon of the desired widget in the Toplevels section. A new top-level widget is then
displayed and added to the widget tree in the left pane. To add non-top-level widgets,
you need to first click the icon of the desired widget and then click your mouse where the
widget should be placed. You must click an empty cell in a container widget for the non-
top-level widget to be inserted into the user interface.

Creating the Window

In this chapter, you are going to be creating a simple file browser application with
Glade and Gtk.Builder. You begin by creating a new project by clicking on the new
project button at the top of the main Glade window or by using the blank project
created for you when the application loads. You can open an existing project by
clicking on the Open button at the top of the main Glade window if you return to this
tutorial at a later time.

After you have a blank project, you can begin by creating a new top-level
Gtk.Window by clicking the Window icon in the Toplevels widget palette. In the
new window, you see a mesh pattern in the interior of the widget, as displayed in
Figure 11-3. This pattern designates a region where a child widget can be added to a
container. After selecting a non-top-level widget from the widget palette, you must
click this region to add the widget to the container. Follow this method for adding all
non-top-level widgets.

326

CHAPTER 11 DYNAMIC USER INTERFACES

Figure 11-3. The Default Gtk.Window widget

After you create the top-level window, you notice changes in the content of the
widget Properties pane, shown in Figure 11-4. In this pane, you can customize all of the
properties of each widget that is supported in Glade.

Note While Glade allows you to edit many widget properties, some actions
simply have to be performed in the code. Therefore, you should not view Glade as a
replacement for everything that you have learned thus far in the book. You are still
doing a lot of GTK+ development in most applications.

The widget Properties window displayed in Figure 11-4 has a complete list of the
various options. The pane is divided into sections, which categorize the basic options
that are specific to the widget type that is currently selected. For example, the Gtk.
Window widget allows you to specify the window’s type, title, ability to be resized, default
size, and so on.

327

CHAPTER 11 DYNAMIC USER INTERFACES

< General Packing Common Signals)

ID: (] Composite

Window Attributes

Type: | Top Level w | Position: | None v

Hint: | Normal w | Gravity: | NorthWest w

W

Accel Groups:

W

Transient For:

Attached To:

¥

Window Role:

Startup ID:

Appearance

(] Client side window decorations

Title:

(¥ Decorated | Hide the titlebar during maximization

(o) Icon Name 2

Figure 11-4. The widget properties pane

The ID field, which is scrolled beyond the bounds of the scrolled window in
Figure 11-4 gives a unique name to the widget. Glade automatically assigns a name to
each widget that is unique for the current project, but these are generic names. If you
plan to reference a widget from within your application, you should give it an ID that
means something. It can easily become confusing when you have to load three Gtk.
TreeView3 widgets named treeviewl, treeview2, and treeview3!

328

CHAPTER 11 DYNAMIC USER INTERFACES

The Packing tab provides basic information about how the widget reacts to changes
in the size of its parent widget, such as expanding and filling. Common properties are
those provided by Gtk.Widget and are available to all widgets. For example, you can
provide a size request in this tab.

Note Packing options are a bit unintuitive when first working with Glade, because
properties are set by the child instead of the parent container. For example,
packing options for the children of a Gtk.Box are provided in the Packing tab of
the children themselves instead of the parent container.

The Signals tab allows you to define signals for each widget that is connected by
Gtk.Builder. Lastly, the Accessibility tab, designated by the handicapped symbol, gives
options that are used for accessibility support.

As you will recall from the first example in this book, an empty Gtk.Window widget
is not of any use except for illustrating how to create one. Since the file browser needs
multiple widgets packed into the main window for this application, the next step is to
add a vertical box container. Select the Box widget from the palette and click inside the
grid pattern of window to insert a Gtk.Box widget into the window. You can then use
the Properties pane to adjust the orientation of the box (vertical or horizontal) and the
number of panes the Gtk.Box contains. Figure 11-5 shows the adjustments necessary for

the Gtk.Box properties.

4 General Packing Common b

ID:

Box Attributes
Orientation: | Vertical w | Spacing: | 0
Baseline: Center v | |_J/Homogeneous
Numoar.of B — 4+ | []Add center child
items: -

Figure 11-5. The Default Gtk.Window widget
329

CHAPTER 11 DYNAMIC USER INTERFACES

By default, three cells are created to hold child widgets, but you can change this to
any number of items greater than zero. The default of three is how many child widgets
we need.

By default, a Gtk.Box has a vertical orientation but you can change the orientation to
horizontal if needed.

Note Do not worry if you are not sure how many widgets the container will hold.
You can add or remove cells in the General tab in the widget Properties pane. You
can then change the position of a widget within the box under the Packing tab. You
are also still able to edit the user interface with your code after it is built by Gtk.
Builder!

After adding the vertical box, you see three separate, empty container meshes; notice
the changes in the Properties pane and the widget tree view pane. To these meshes, we
will add a toolbar, an address bar, and a tree view.

Adding a Toolbar

The old handle box widget has long been deprecated since most of the widgets it was
meant to contain have been enhanced to dynamically hide their content. The Gtk.
Toolbar is one of the widgets that has been enhanced in this way. That means we can
directly add the toolbar to the vertical Gtk.Box we added to the main window previously.

When the toolbar widget is added it only appears as a thin strip in the top pane of the
vertical box. This is because it does not yet contain any buttons. And the method to add
buttons to the toolbar is not immediately obvious. To add buttons to the toolbar right-
click on the Gtk Toolbar entry in the Glade tree view pane and a pop-up menu labeled
Edit... appears, which then shows the dialog in Figure 11-6.

330

CHAPTER 11 DYNAMIC USER INTERFACES

fed bl - 5o
Label Type —
A . |w Use underline
Back Menu _ |
Up Button Image I
|
<separator> Separator .
pa P () Stock Id: gtk-sort-descending - |
Refresh Button =
Home Button () Icon name: 2 |
<separator> Separator
Delete Button O Icon widget: |
Information Button
Packing |
& 4 = | Expand: C’ OFF
Signal Detail Handler User data Swap After

v GtkMenuToolButton '
|
p r',‘.;.-],_- here> p (_'.'.;_-:_ here> F » .
» GtkToolButton
» GtkToolltem
» GtkContainer |
» GtkWidget

Figure 11-6. The toolbar editor

The toolbar editor allows you to add any supported type of item to a toolbar. To add
anew item, you need only to click the Add button. This presents you with a pane in the
editor dialog with which you can modify the new button’s properties. Be careful here
as your version of Glade may present you the option of using stock buttons. Stock items
have all been deprecated so you must create your own custom buttons instead.

After you add a new tool button, the next step is to choose what type of widget it
should be by selecting an option from the Type combo box. The types of toolbar items
included in the combo box are a generic tool button containing an image and a label,
toggles, radio buttons, menu tool buttons, tool items, and separators. When you select
a new type, the dialog immediately changes to allow you to edit properties for the
chosen type.

331

CHAPTER 11 DYNAMIC USER INTERFACES

For example, in Figure 11-6 the selected tool button is of the type Gtk.MenuToolButton.
Every toolbar item gives you the option of whether it should be visible when the toolbar
is horizontal or vertical. This allows you to hide the toolbar item when the toolbar has a
vertical orientation but show it to the user when the toolbar is horizontal.

Menu tool buttons also allow you to choose a label and image to display in the tool
item. An image can be a stock image, an existing image file, or an identifier of a custom
icon theme depending on what option you choose.

Along the bottom of the toolbar editor, you see a tree view that allows you to connect
signals to each tool button. Glade provides a number of named callback methods for
you to choose from that are based on the signal name and the name you gave the toolbar
item. You are also able to enter your own custom callback method name. It is possible to
specify data to pass to each method function through Gtk.Builder, so you can usually
leave the “User data” parameter blank. In Figure 11-6 a callback method by the name

on_back clicked() was connected to Gtk.MenuToolButton’s "clicked" signal.

When you load the user interface with Gtk.Builder, you have two choices for
connecting the callback methods defined in the Glade file with those in your code. If
you want to manually connect each callback method, you can name the signal handler
whatever you choose, as long as the name is unique. However, Gtk.Builder provides a
function that automatically connects all of the signals to the appropriate symbols in your
executable or Python program. To use this feature, the callback method name you define
in Glade must match the name of the function in your code!

The Packing tab includes options to determine padding around the widget, whether
the packing is from the start or end of the box, and to determine the widget’s position
within the container. These properties are exactly equivalent to the settings you used
when adding child widgets to Gtk.Box with box.pack start() and friends.

Tip You should remember from Chapter 4 that a table was provided that
illustrates what the expand and fill properties do to child widgets of a Gtk.Box
widget. Glade is a perfect opportunity for you to experiment with packing options
to gain a better understanding of how they affect the widget. Therefore, take a
moment to experiment with the various packing options!

332

CHAPTER 11 DYNAMIC USER INTERFACES

After completing the toolbar and fixing packing preferences, your application should
look like Figure 11-7.

Home

Figure 11-7. The toolbar in action

The toolbar shown in Figure 11-7 contains two menu tool buttons used for moving
forward and backward through the user’s browsing history. There are also tool buttons
for moving to the parent directory, refreshing the current view, removing a file, moving to
the home directory, and viewing file information. Each of these tool buttons is connected
to a callback method that you must implement in your code for the application.

Completing the File Browser

The next step in creating our file browser is to create the address bar that shows the users
the current location and allow them to enter a new location. This means that we need a
horizontal box with three widgets, as shown in Figure 11-8. The three widgets are a label
describing the content held in the Gtk.Entry widget, the Gtk.Entry widget that holds
the current location, and a button that moves to the location when pressed.

333

CHAPTER 11 DYNAMIC USER INTERFACES

3 H @ € @ ® o

Back Forward Up Refresh Home Delete Information

Figure 11-8. The file browser

To create the button in Figure 11-8 a horizontal Gtk . Box with two child widgets was
added to the button: a Gtk.Image widget set to the GTK_STOCK_JUMP_TO stock image
and a Gtk. Label widget named Go.

The last step is to add a Gtk.ScrolledWindow widget to the last cell in the vertical box
and a Gtk.TreeView widget to that container. The completed file browser user interface is
shown in Figure 11-9. However, we are not yet finished editing the application in Glade.

<& D R @ @ ® ¥
Back Forward Up Refresh Home Delete Information
Current Location: ‘%Go

GtkWindow

Figure 11-9. The file browser

334

CHAPTER 11 DYNAMIC USER INTERFACES

Making Changes

The file browser is completely designed, but now I have decided that it should include
a Gtk.StatusBar widget along the bottom of the window! Making changes to the user
interface can be tricky, so this section walks you through a few challenging actions.

The first step in adding the status bar is to extend the number of child widgets
contained by the main vertical Gtk .Box widget. To do this, choose the vertical box from
the widget tree view. In the Properties pane, you can increase the number of children
with the “Number of items” property in the General tab. This adds a new empty space at
the end of the vertical box into which you can add a status bar widget.

If you need to reorder the children of a vertical or horizontal box, you first need to
select the widget you want to move. Then, under the Packing tab in the Properties pane,
you can choose a new position by changing the value of its spin button. You are able to
see the child widget moving to its new position as you change spin button’s value. The
positions of surrounding child widgets are automatically adjusted to reflect the changes.

Another problematic task can result if you decide that you need to stuff a container
into a location where another widget is already added. For example, let’s assume that
you have decided to place a horizontal pane in place of the scrolled window in the file
browser application. You first need to select the widget from the widget tree view in the
main window and remove it by pressing Ctrl+X. After this, an empty box is displayed, in
which you can add the horizontal pane. Next, select the pane where the scrolled window
should be placed and press Ctrl+V.

Making changes to a user interface used to be a touchy topic with Glade 2, because
it did not support undo and redo actions. It used to be very easy to make a mistake and
lose hours of work by accidentally deleting your top-level widget, since you could not
undo any actions. Now that Glade 3 includes undo and redo support, you do not have to
worry as much.

Widget Signals

The last step for this application is to set up signals for all of the widgets. Figure 11-10
shows the Signals tab of the widget properties editor for the Go button. The Gtk.Button
widget is connected to the clicked signal, which calls on_button_clicked() when
emitted.

335

CHAPTER 11 DYNAMIC USER INTERFACES

General Packing Common Signals (%)
Signal Detail Handler User data Swap
v GtkButton
activate <Type here> <Click he... |#
clicked
L\ enter <Type here> <Click he... (2
£ leave <Type here> <Click he... |#}
£\ pressed <Type here> <Click he... |#
£\ released <Type here> <Click he... |2

» GtkContainer

» GtkWidget

» GObject

Figure 11-10. A widget signal editor

In addition to the “clicked” signal, you need to connect to a few others. Each of the
tool items should be connected to Gtk.ToolButton’s clicked signal with the exception
of the separators. Also, you should connect the Gtk.Entry to activate, which is emitted
when the user presses the Enter key when the entry has focus.

Note This application is only a design for a simple file browser that is meant
to show you how to design applications with Glade 3. The code needed for the
application to be more than just a design is implemented in Chapter 14.

336

CHAPTER 11

DYNAMIC USER INTERFACES

As for the tree view, you should connect it to row-activated. When a row is activated,

the user is shown more information about the file, or it navigates to the chosen directory.

Alist of the widgets along with their signals and callback methods is provided in

Table 11-1 so that you can easily follow along with this example.

Table 11-1. Widget Signals

Widget Description Signal Callback Method
Gtk.Button Go button “clicked” on_go clicked()
Gtk.Entry Location entry “activate” on_location activate()
Gtk.MenuToolButtonBack “clicked” on_back_clicked()
Gtk.MenuToolButtonForward “clicked” on_forward clicked()
Gtk.ToolButton Up “clicked” on_up clicked()
Gtk.ToolButton Refresh “clicked” on_refresh clicked()
Gtk.ToolButton Home “clicked” on_home_clicked()
Gtk.ToolButton Delete “clicked” on_delete clicked()
Gtk.ToolButton Information “clicked” on_info_clicked()
Gtk.TreeView File browser ~ “row-activated” on_row_activated()
Gtk.Window Main window “destroy” on_window_destroy()

Creating a Menu

In addition to toolbars, it is possible to create menus in Glade 3. Figure 11-11 shows the

menu bar editor, which is very similar to the toolbar editor. It supports normal menu

items and those rendered with images, check buttons, radio buttons, and separators.

337

CHAPTER 11 DYNAMIC USER INTERFACES

e

Edit Menu Bar

Label Type
- z Stock Item: | gtk-new -
w _File Normalitem K -

(unnamed) Image item Accel Group: Ei]

(unnamed) Image item ;
) (_J) Custom label and image:
(unnamed) Image item

(unnamed) Image item Edit Label
<separator> Separator item ey .
(unnamed) Image item '

v _Edit Normal item Use Underline; ON
(unnamed) Image item
(unnamed) Image item EditImage

s3] F = Image
Signal Detail Handler User data Swap After

w GtkMenultem
activate <Type here> <Click here>
activate-item

deselect

select
toggle-size-allocate

toggle-size-request

Figure 11-11. The menu bar editor

Caution The Glade 3.22.1 editor currently still uses Stock Iltems for Menu Iltems.
All Stock Items are deprecated so you really should be using your own custom
menu items, only this version of Glade does not support custom menu items. You
may need to edit the XML produced by Glade to create your own custom entries.

You now know of three ways to create menus; this raises the question of which one
is best. Every method has its advantages and disadvantages, so let’s take a look at each
method.

338

CHAPTER 11 DYNAMIC USER INTERFACES

You first learned how to create menus manually, molding each object to your needs.
This method is good to use with smaller menus, because the code will not take up a lot
of space and the implementation is located entirely in one place. However, if your menu
grows in size or contains more than just basic items, the code can become tedious to
maintain and take up a lot of space.

Next, you learned how to use Gtk.Builder with UI definitions to dynamically
create menus. This method simplified menu creation, because you could define a large
number of actions in a small amount of space. Also, since menus are constructed from
Ul definitions, allowing the user to edit a menu is extremely simple. This is clearly the
preferred method of menu creation if you are not using Glade to design your application.

Glade also presents a very attractive method of menu creation, because after its
initial design, maintenance is simple. It also requires no code to create the menu, since
Gtk.Builder constructs it for you. However, one problem with this method is that it is
not as easy to allow the user to alter the layout of menus and toolbars as with the Ul file
method.

One method that can easily be employed is to pack all of your widgets with respect
to the end of the vertical box or whatever container you use as the child of the main
window. Then, when your application loads, you can simply pack the menu created
by Gtk.Builder into the window with box.pack_start(). Nevertheless, if you do not
need to allow your users to customize the menu, it makes sense to do all menu creation
through Glade.

Now that you are finished creating the user interface, you can save it as a
FileBrowser.glade file, where project can be replaced by a name of your choice. This
file can be loaded with respect to the location of the application or from an absolute
path.

Using Gtk.Builder

After you design your application in Glade, the next step is to load the user interface with
Gtk.Builder.

This GTK+ class parses the Glade user interface and creates all of the necessary
widgets at runtime.

Gtk.Builder provides the methods necessary to create and hold the user interface
loaded from an XML file. It can also connect signals added in the Glade file to callback
methods within your application.

339

CHAPTER 11 DYNAMIC USER INTERFACES

Another advantage of Gtk.Builder is that overhead is added only during
initialization, and this is negligible compared to an interface created directly from code.
After initialization, there is virtually no overhead added to the application. For example,
Gtk.Builder connects signal handlers internally in the same way as your own code, so
this requires no extra processing.

Since Gtk.Builder handles all of the widget initialization and the layout was already
designed in Glade 3, the length of your code base can be significantly reduced. Take,
for example, Listing 11-1, which would be significantly longer if you had to hand-code
everything.

Listing 11-1. Loading the User Interface
#!/usxr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class SignalHandlers():

def on_back clicked(self, button):
pass

def on forward clicked(self, button):
pass

def on_up clicked(self, button):
pass

def on_refresh clicked(self, button):
pass

def on_home_clicked(self, button):
pass

def on_delete clicked(self, button):
pass

340

CHAPTER 11 DYNAMIC USER INTERFACES

def on_info clicked(self, button):
pass

def on_go clicked(self, button):
pass

def on_location activate(self, button):
pass

def on_row activated(self, button):
pass

def on_window destroy(self, button):
pass

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):

if not self.window:
builder = Gtk.Builder()
builder.add from file("./FileBrowser.glade")
self.window = builder.get object("main_window")
self.add window(self.window)
builder.connect_signals(SignalHandlers())
self.add window(self.window)

self.window.show_all()

if _name__ == " main_":
app = Application()
app.run(sys.argv)

341

CHAPTER 11 DYNAMIC USER INTERFACES

Loading a User Interface

Loading a Glade user interface is done with builder.add from file(). Thisis the

first Gtk.Builder method you should call, although it should be called after getting an
instance of Gtk.Builder. It parses the user interface provided by the XML file, creates
all of the necessary widgets, and provides facilities for translation. The only parameter
needed by the builder.add from file() method is the path to your Glade project file.

builder = Gtk.Builder()
builder.add from file("./FileBrowser.glade")

Next, you need to fetch the "main_window", connect all the signals, and lastly add the
window to the Gtk.Application class instance.

self.window = builder.get object("main _window")
builder.connect signals(SignalHandlers())
self.add window(self.window)

The builder.get object() needs one parameter which is the ID you assigned to the
Gtk.Window main window in your Glade project. From this Gtk.Builder can determine
all the child widgets that belong to the main window from reading the XML. It can then
construct the window from the XML definition.

After constructing the main window, we need to assign all the signal handlers. Gtk.
Builder can do this automatically if we supply a special Python class that contains
nothing but the signal handler methods. The builder.connect _signals() method does
this by supplying an instance of our signal handler class to it as a parameter.

Finally, we need to add the window constructed by Gtk.Builder to our Gtk.
Application. This window now becomes controlled by our Gtk.Builder instance. While
itis not a full Gtk.ApplicationWindow it acts very much like one as far as controlling the
new window. Note that we use the window.show all() to show the window instead of
the window.present () method because our new window has no present () method.

It really is as simple as that. The File Browser window appears immediately and you
are off and running. All that is left to do is fill all the signal handler methods, create the
store for the Gtk.TreeView widget, build the window initialization code, and you have a
working application.

342

CHAPTER 11 DYNAMIC USER INTERFACES

Test Your Understanding

These two exercises are especially important for you to become a proficient GTK+
developer. It is not practical to programmatically design every aspect of large
applications, because it takes too long.

Instead, you should be using Glade to design the user interface and Gtk.Builder
to load that design and connect signals. By doing this, you are able to quickly finish the
graphical aspects of your applications and get to the backend code that makes your
applications work.

Exercise 1: Glade Text Editor

This exercise implements the text editor from the “Test Your Understanding” Exercise
1 section in Glade. The toolbar in the text editor should be implemented completely in
Glade.

This exercise should not require extra coding if you still have the exercise solution
from the previous chapter. You can also find the solution to “Test Your Understanding”
section on the book’s web site at waw. gtkbook. com. This exercise gives you a chance to
learn your way around Glade 3 and test out many widget properties.

After you design an application with a toolbar, it is an easy transition to add a menu
bar. In larger applications, you should provide both of these options to the user. In the
following exercise, you add a menu bar to the text editor application.

Exercise 2: Glade Text Editor with Menus

You have implemented the text editor with a menu bar. In this exercise, redesign the
application from that exercise using Glade and Gtk.Builder. First, you should implement
the menu with Python and GTK+, which allows you to use both together. Second, you
should implement the menu again in Glade.

As with the previous exercise, the solution for Exercise 2 is at waw. gtkbook. com.
Using the downloadable solution allows you skip coding the callback functions because
you already did that in the previous chapter.

343

http://www.gtkbook.com
http://www.gtkbook.com

CHAPTER 11 DYNAMIC USER INTERFACES

Summary

In this chapter, we took a short break from coding and looked into issues that you need
to consider when designing a graphical user interface. In short, you must always keep
your users in mind. You need to know what to expect of your users and cater to their
needs in every aspect of the application.

Next, you learned how to design graphical user interfaces using Glade 3. The ability
to quickly deploy the graphical aspects of an application is necessary when considering a
GUI toolkit, and GTK+ has Glade to fill this need.

Glade allows you to design every aspect of your user interface, including widget
properties, layout, and signal handlers. User interfaces are saved as readable XML files
that describe the structure of your application.

After designing an application in Glade 3, you can dynamically load the user
interface with Gtk.Builder. This GTK+ class parses the Glade user interface and creates
all the necessary widgets at runtime. It also provides functions for connecting signal
handlers declared in Glade to callback methods within your application.

In the next chapter, we are going to get back to coding and delve into the
complexities of the GObject system. You learn how to create your own GObject classes by
deriving new widgets and classes, as well as how to create a widget from scratch.

344

CHAPTER 12

Custom Widgets

By now, you have learned a great deal about GTK+ and its supporting libraries. You have
enough knowledge to use the widgets provided by PyGTK to create complex applications
of your own.

However, one thing that you have not yet learned is how to create your own widgets.
Therefore, this chapter is dedicated to deriving new classes from existing GTK+ classes.
You are guided through some examples to show you how easy this is done using PyGTK.

In this chapter, you learn how to derive new classes and widgets from GTK+ widgets.
We provide several examples of how to do this and discuss some of the problems you
might encounter along the way.

An Image/Label Button

Since GTK+ 3.1, all stock items have been deprecated. While I agree with this decision,
I was disappointed that the Gtk.Button was not extended to include an option for a
button to display both an image and text. After eliminating the use-stock property,

a Gtk.Button can only display text or an image, but not both at the same time.

The workaround for this is easily implemented but is extremely repetitive, and
itis not object-oriented at all. You can see an example of how the workaround is
implemented in the “Using Push Buttons” section. You can easily see that this solution
would be very repetitive if you have a lot of buttons to code, and you are not making
good use of code reuse with this implementation.

Another point of contention is that the programmer is forced to look up the real
image they want from a string. What if the new implementation did that work for you and
all you needed to supply to the new widget was the lookup string? After all, you probably
want to use an image from the user’s default theme, so just let the new widget do all
that work.

345
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_12

CHAPTER 12 CUSTOM WIDGETS

Figure 12-1 shows an image label button created by the program shown in
Listing 12-1. This simple implementation shows how to extend the functionality
and style of a standard Gtk.Button.

Figure 12-1. An ImageLabelButton at work

Listing 12-1 shows the class implementation for the ImageLabelButton.

Listing 12-1. ImageLabelButton Class Implementation
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class ImagelabelButton(Gtk.Button):

def init (self, orientation=Gtk.Orientation.HORIZONTAL,

image="image-missing", label="Missing", *args,
**kwargs) :

super(). init (*args, **kwargs)

now set up more properties

hbox = Gtk.Box(orientation, spacing=0)

if not isinstance(image, str):

raise TypeError("Expected str, got %s instead." % str(image))
icon_theme = Gtk.IconTheme.get default()
icon = icon_theme.load icon(image, -1,
Gtk.IconLookupFlags.FORCE SIZE)
img = Gtk.Image.new_from pixbuf(icon)

346

CHAPTER 12 CUSTOM WIDGETS

hbox.pack start(img, True, True, 0)
img.set_halign(Gtk.Align.END)
if not isinstance(label, str):

raise TypeError("Expected str, got %s instead." % str(label))

if len(label) > 15:
raise ValueError("The length of str may not exceed 15
characters.")
labelwidget = Gtk.Label(label)
hbox.pack start(labelwidget, True, True, 0)
labelwidget.set_halign(Gtk.Align.START)
self.add(hbox)

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set border width(25)

button = ImagelLabelButton(image="window-close", label="Close")

button.connect("clicked", self.on button clicked)
button.set relief(Gtk.ReliefStyle.NORMAL)
self.add(button)

self.set size request(170, 50)

def on button clicked(self, button):
self.destroy()

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="ImagelLabelButton")
self.window.show all()
self.window.present()

347

CHAPTER 12 CUSTOM WIDGETS

if _name_ == " main_":
app = Application()

app.run(sys.argv)

The first point to understand is that when a Gtk.Button is created, the style of
the button is set when you assign either the image or label property. Once assigned,
the style of the button can never be changed. That is also the case for the new
ImagelLabelButton.

To start our discussion, let’s take a closer look at the initialization of the widget. We
allow two new properties and override one Gtk.Button existing property. The property
label overrides the parent property but is used in the same way as the text for the label
widget. The properties orientation and image are new. They are used, respectively, to
specify the orientation of the label/image (horizontal or vertical) and the string name to
look up the corresponding default theme icon.

The rest of the initialization code is straightforward. Create a Gtk .Box with either
the default orientation or the one specified by the keyword argument. Next, if the image
keyword is specified, look up the name in the default user theme, fetch the icon, and add
the image to Gtk.Box. Next, if the label is specified, create a Gtk.Label and add that to
Gtk.Box. Lastly, add the box to the button.

We changed the Gtk.ImagelLabelButton class by adjusting the alignment of the
image and the label text so that they remain centered together no matter how the button
is sized. We used the set_halign() method and turned off the fill and expand properties
used in the pack _start() method.

Note that we do not override any other methods or properties of the underlying
Gtk.Button. In this case, there is no need to modify the button in any other way.
ImagelabelButton behaves as a normal Gtk.Button would. Therefore, we have
accomplished our mission of creating a new class of button.

Most importantly, there is some error detection code in the new class to catch
invalid data types and values. It cannot be stressed enough that you provide this kind
argument checking. The lack of proper error messages and proper error detection can
ruin all the work you put into a new class because it does not provide enough debug
information to correct even minor mistakes or problems, which will cause your class to
fall into disuse.

348

CHAPTER 12 CUSTOM WIDGETS

Custom Message Dialogs

Another reason to subclass GTK+ widgets is to save work by integrating more behavior
into the widget. For instance, a standard GTK+ dialog requires a lot of initialization
before you ever display the dialog. You can solve a repeated amount of work by
integrating a standard look-and-feel to all of your message dialogs.

The way to reduce the amount of work necessary to create a dialog is to create a
design that includes all the features you need, with either default settings or parameters
that can activate additional options/values. In Listing 12-2, let’s look at a customized
question dialog to see how this can work.

Listing 12-2. A Customized Question Dialog Implementation
class ooQuestionDialog(Gtk.Dialog):

hbox = None
vbox = None

def init (self, title="Error!", parent=None,
flags=Gtk.DialogFlags.MODAL, buttons=("NO",
Gtk.ResponseType.NO, " YES",
Gtk.ResponseType.YES)):
super(). init (title=title, parent=parent, flags=flags,
buttons=buttons)

self.vbox = self.get content_area()
self.hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL,
spacing=5)

icon_theme = Gtk.IconTheme.get default()

icon = icon_theme.load icon("dialog-question”, 48,
Gtk.IconLookupFlags.FORCE_SVG)

image = Gtk.Image.new from pixbuf(icon)

self.hbox.pack start(image, False, False, 5)

self.vbox.add(self.hbox)

def set message(self, message, add msg=None):
self.hbox.pack start(Gtk.Label(message), False, False, 5)
if add_msg != None:

349

CHAPTER 12 CUSTOM WIDGETS

expander = Gtk.Expander.new with_mnemonic(\ " Click
me for more information.")

expander.add(Gtk.Label(add msg))

self.vbox.pack start(expander, False, False, 10)

def run(self):
self.show all()
response = super().run()
self.destroy()
return response

This dialog has a predefined design that is common to all of our message dialogs. It
contains the following elements.

o There are separate classes for each type of message dialog.

o The dialog always contains an icon. The icon displayed is dependent
on the type of dialog being displayed (message, information,
error, etc.).

o The dialog always displays a primary message.

e The number and type of buttons displayed have a logical default that
can be overridden by the user.

o All dialogs default to modal.

e An additional message can also be displayed in the dialog. It is
enclosed in an expander that can be used any time the dialog is
displayed.

e There are two additional methods supplied with the class. The
first method, set_message(), sets both the primary dialog
message and an optional additional message. The second method,
run(), shows the dialog, runs the dialog, destroys the dialog, and
returns the response_id. The run() method is optional if you
want a non-modal dialog displayed. Of course, you have to supply
additional functionality in the run() dialog to make that happen.

350

CHAPTER 12 CUSTOM WIDGETS

It is very simple to instantiate and run the dialog. The following code performs all the
necessary tasks to open the dialog.

dialog = ooQuestionDialog(parent=parentwin)

dialog.set message("This is a test message.\nAnother line.",
add_msg="An extra message line.”)

response = dialog.run()

It is obvious that loading the custom design into the dialog has both advantages and
disadvantages. The main disadvantage is combining the design and the functionality
together. The big advantage is that should you wish to change the design, there is only
one place to modify it.

From this example, it should be an easy exercise for the user to create similar
subclasses for error, message, information, and warning dialogs. Just remember that
consistency is the key to this task.

Multithreaded Applications

Multithreaded applications are at the core of any high-end GTK+ application, which

is any application that utilizes databases, network communication, client-server
activities, interprocess communications, and any other process that uses long running
transactions. All of these applications require either multiple processes or threads to
manage the communications to and from the separate entities to supply and receive
information from each other.

GTK+ is a single thread library. It is not thread safe to access its API from multiple
threads. All API calls must come from the main thread of the application. This means
that long-running transactions can make the user interface seem to freeze, sometimes
for very long periods of time.

The key to solving this problem is to move all long-running transactions to other
threads. But, this is not easy because it involves setting up threads and supplying
some type of thread safe communications for two or more threads or processes to
utilize.

Most books on the topic of GUIs usually ignore this problem and concentrate on the
GUTI itself. This is a great disservice to the reader because just about any GUI application
that the reader encounters in their professional life is multithreaded, but the reader has
no experience in this type of application.

351

CHAPTER 12 CUSTOM WIDGETS

This book supplies an example to give you a better idea of what a multithreaded
application looks like and the basics on how to organize it. The example is not the only
way to architect a multithreaded application, but it does supply all the basics for such
an application. The details and methods might be different for your project, but you are
following the same basic outline supplied by our example.

Listing 12-3 is the example multithreaded application. It is a very simple program
that requests information from another thread, and the main thread correctly waits for
the supplier thread to provide the data. We describe this example in some detail after
the listing.

Listing 12-3. Multithreaded Application
#!/usr/bin/python3

import sys, threading, queue, time
import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

def dbsim(q1l, q2):
while True:
data = ql.get()
the request is always the same for our purpose

items = {'lname':"Bunny", 'fname':"Bugs",

"street':"Termite Terrace", 'city':"Hollywood",

'state':"California", 'zip':"99999", 'employer':"Warner
Bros.", 'position':"Cartoon character", 'credits':"Rabbit
Hood, Haredevil Hare, What's Up Doc?"}

q2.put(items)

ql.task _done()
class AppWindow(Gtk.ApplicationWindow):

def _init_ (self, *args, **kwargs):
super(). init (*args, **kwargs)

self.lname = None
self.fname = None
self.street = None

352

CHAPTER 12 CUSTOM WIDGETS

self.city = None
self.state = None
self.zip = None
self.employer = None
self.position = None
self.credits = None

self.ql = queue.Queue()

self.q2 = queue.Queue()

self.thrd = threading.Thread(target=dbsim, daemon=True,
args=(self.q1, self.ql, self.q2))

self.thrd.start()

window setup

self.set border width(10)

grid = Gtk.Grid.new()
grid.set_column_spacing(5)
grid.set _row spacing(5)

name

label = Gtk.Label.new("Last name:")
label.set _halign(Gtk.Align.END)
grid.attach(label, 0, 0, 1, 1)
self.lname = Gtk.Entry.new()
grid.attach(self.lname, 1, 0, 1, 1)
label = Gtk.Label.new("First name:")
label.set _halign(Gtk.Align.END)
grid.attach(label, 2, 0, 1, 1)
self.fname = Gtk.Entry.new()
grid.attach(self.fname, 3, 0, 1, 1)
address

label = Gtk.Label.new("Street:")
label.set_halign(Gtk.Align.END)
grid.attach(label, o0, 1, 1, 1)
self.street = Gtk.Entry.new()
grid.attach(self.street, 1, 1, 1, 1)
label = Gtk.Label.new("City:")
label.set _halign(Gtk.Align.END)

353

CHAPTER 12 CUSTOM WIDGETS

354

grid.attach(label, 2, 1, 1, 1)
self.city = Gtk.Entry.new()
grid.attach(self.city, 3, 1, 1, 1)
label = Gtk.Label.new("State:")
label.set_halign(Gtk.Align.END)
grid.attach(label, o, 2, 1, 1)
self.state = Gtk.Entry.new()
grid.attach(self.state, 1, 2, 1, 1)
label = Gtk.Label.new("Zip:")
label.set _halign(Gtk.Align.END)
grid.attach(label, 2, 2, 1, 1)
self.zip = Gtk.Entry.new()
grid.attach(self.zip, 3, 2, 1, 1)
employment status
label = Gtk.Label.new("Employer:")
label.set_halign(Gtk.Align.END)
grid.attach(label, o, 3, 1, 1)
self.employer = Gtk.Entry.new()
grid.attach(self.employer, 1, 3, 1, 1)
label = Gtk.Label.new("Position:")
label.set _halign(Gtk.Align.END)
grid.attach(label, 2, 3, 1, 1)
self.position = Gtk.Entry.new()
grid.attach(self.position, 3, 3, 1, 1)
label = Gtk.Label.new("Credits:")
label.set _halign(Gtk.Align.END)
grid.attach(label, o, 4, 1, 1)
self.credits = Gtk.Entry.new()
grid.attach(self.credits, 1, 4, 3, 1)
buttons

bb = Gtk.ButtonBox(Gtk.Orientation.HORIZONTAL)
load button = Gtk.Button.new_with_label("Load")
bb.pack_end(load button, False, False, 0)
load button.connect("clicked", self.on load button clicked)
save_button = Gtk.Button.new_with_label("Save")

def

def

CHAPTER 12 CUSTOM WIDGETS

bb.pack_end(save button, False, False, 0)
save_button.connect("clicked", self.on save button clicked)
cancel button = Gtk.Button.new_with_label("Cancel")
bb.pack_end(cancel button, False, False, 0)

cancel button.connect("clicked", self.on cancel button clicked)

box setup

vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL,
spacing=5) vbox.add(grid)

vbox.add(bb)

self.add(vbox)

on_cancel button clicked(self, button):
self.destroy()

on_load button clicked(self, button):
self.q1l.put('request")
wait for the results to be
queued data = None
while Gtk.events pending() or data ==

None: Gtk.main iteration()

try:

data = self.q2.get(block=False)
except queue.Empty:
continue

self.lname.set text(data['lname'])
self.fname.set_text(data['fname'])
self.street.set text(data['street'])
self.city.set text(data['city'])
self.state.set text(data['state'])
self.zip.set text(data['zip'])
self.employer.set text(data['employer'])
self.position.set text(data['position’])
self.credits.set text(data['credits'])
self.q2.task done()

355

CHAPTER 12 CUSTOM WIDGETS

def on_save button_clicked(self, button):

self.lname.set text("")
self.fname.set text("")
self.street.set text("")
self.city.set text("")

self.state.set text("")
self.zip.set_text("")
self.employer.set text("")
self.position.set_text("")
self.credits.set_text("")

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Multi-Thread")
self.window.show all()
self.window.present()

if _name_ == " main_":
app = Application()

app.run(sys.argv)

Before we examine the listing in detail, let’s describe the application requirements
and see how we satisfied those requirements.

Our application is a simulation of a database client and a server—all in a single
multithreaded program. The main window requests data from the threaded server
and waits for a response. The server waits for a request and then supplies the data
back to the client. The client side of the application is a simple GTK+ application
that displays the data fetched from the server. The server is a single Python function
running in a thread. It waits for a request, provides the data, and then waits for the
next request.

356

CHAPTER 12 CUSTOM WIDGETS

The key to all of this is that the GTK+ client does not freeze, no matter how long the
server takes to provide the data back to the client. This allows the application (and all
other applications) to continue processing desktop events.

Let’s start our examination of the listing right at the top—the dbsim server function,
which stands for database simulator. We kept this function as simple as possible to
reveal the basic functionality. The code is an endless loop that waits for a transaction to
appear on a queue. q1.get() tries to read a transaction off the queue and waits to return
when a transaction becomes available. dbsim does nothing with the transaction data;
instead, it just builds a Python dictionary. It then puts the dictionary on a return queue
with the 2. put(items). Finally, processing returns to the top of the forever loop and
waits for the next transaction.

The solution shown here works fine for a single client, but breaks down when
multiple clients try to access the server because there is no way to synchronize the client
requests with the returned data. We would need to enhance the application to provide
that level of synchronization.

If you want to experiment with longer transaction times from the server, insert a
time.sleep() statement between the q1.get() and the q2.put(items) statements. This
provides the proof that the client does not freeze during a long-running transaction.

Now let’s see how the client works. The client is a standard GTK+ application,
except for the on_load _button_clicked() method. This method accesses the database
simulator thread to obtain the information to fill out the entry fields displayed on the
main window. The first task is to send the request to the database simulator. It does this
by placing a request on a queue that is read by the simulator.

Now we come to the hard part. How do we wait for the returned information without
putting the main thread to sleep? We do this by placing the method in a loop that
processes pending events until the information is available from the server. Let’s take a
look at that tight loop.

while Gtk.events pending() or data == None:
Gtk.main_iteration()
try:
data = self.q2.get(block=False)
except queue.Empty:
continue

357

CHAPTER 12 CUSTOM WIDGETS

The while statement starts the loop by checking to see if there are pending GTK+
events to process and whether data has been placed in the target variable. If either
condition is True, the tight loop is entered. Next, we process a single GTK+ event (if one
is ready). Next, we try to fetch data from the server. self.q2.get(block=False) is a non-
blocking request. If the queue is empty, then an exception is raised and then ignored
because we need to continue the loop until the data is available.

Once the data is successfully fetched, the on_load button clicked() method
continues by filling out the displayed entry fields with the supplied information.

There is one more piece to this puzzle. Take a look at the statement that created the
server thread.

self.thrd = threading.Thread(target=dbsim, daemon=True, args=(self.q1,
self.q2))

The key part of this statement is the daemon=True argument, which allows the thread
to watch for the main thread to finish, and when it does, it kills the server thread so that
the application ends gracefully.

This application example has all the basic for communication between two threads.
We have two queues for requests and returned data. We have a thread that performs
all the long-running transactions needed by the client. And finally, we have a client
that does not freeze while waiting for information from the server. This is the basic
architecture for a multithreaded GUI application.

The Proper Way to Align Widgets

Prior to GTK+ 3.0, the proper way to align widgets was through the Gtk.Alignment
class. This class was deprecated starting with GTK+ 3.0, thus seeming to eliminate
an easy way to align widgets. But in truth, there are two methods in the Gtk.Widget
class that can align widgets in any container: the halign() and the valign()
methods.

These methods are easy to use and provide the type of alignment that the
programmer desires in 90% of cases. Listing 12-4 shows how using the Gtk.Widget
alignment methods produce all the types of alignment provided by the halign() and
valign() methods.

358

Listing 12-4. Aligning Widgets
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")
from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

def init (self, *args, **kwargs) :
super(). init_ (*args, **kwargs)
self.set border width(10)
self.resize(300, 100)
create a grid
gridl = Gtk.Grid()
gridi.height = 2
gridi.width = 2
gridi.set column_homogeneous(True)
gridi.set row_homogeneous(True)
self.add(grid1)
build the aligned labels
label1l = Gtk.Label('Top left Aligned')
label1.can focus = False
labeli.set _halign(Gtk.Align.START)
label1.set valign(Gtk.Align.START)
gridi.attach(label1, o, 0, 1, 1)
label2 = Gtk.Label('Top right Aligned")
label2.can _focus = False
label2.set _halign(Gtk.Align.END)
label2.set valign(Gtk.Align.START)
gridi.attach(label2, 1, 0, 1, 1)
label3 = Gtk.Label('Bottom left Aligned')
label3.can_focus = False
label3.set_halign(Gtk.Align.START)
label3.set valign(Gtk.Align.END)

CHAPTER 12 CUSTOM WIDGETS

359

CHAPTER 12 CUSTOM WIDGETS

gridi.attach(label3, o, 1, 1, 1)

label4 = Gtk.Label('Bottom right Aligned')
label4.can_focus = False
label4.set_halign(Gtk.Align.END)
label4.set valign(Gtk.Align.END)
gridi.attach(labels4, 1, 1, 1, 1)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super(). init (*args, application_id="org.example.myapp",
**kwargs)

self.window = None

gtk version = float(str(Gtk.MAJOR VERSION)+'.'+str(Gtk.MINOR VERSION))

if gtk_version < 3.16:
print('There is a bug in versions of GTK older that 3.16.")
print('Your version is not new enough to prevent this bug from')
print('causing problems in the display of this solution.")
exit(0)

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Alignment")
self.window.show all()
self.window.present()

if _name__ == " main_":
app = Application()
app.run(sys.argv)

When you run this example, you see four different alignments displayed, as shown in
Figure 12-2.

360

CHAPTER 12 CUSTOM WIDGETS

Top left Aligned Top right Aligned

Bottom left Aligned Bottom right Aligned

Figure 12-2. Alignment example

The following code snippet shows how to align a single label widget to the top-left
corner of a Gtk.Grid cell.

label1.set _halign(Gtk.Align.START)
label1.set valign(Gtk.Align.START)

As you can see, aligning a widget is really simple, and the overhead is reduced
because we are not invoking a new class for each aligned widget. This method of aligning
widgets should be sufficient for most of your application needs.

Summary

This chapter presented three widget customization examples, which should provide
enough information for you to create your own custom widgets. There are many more
possibilities to increase the usability and quality of your applications.

361

CHAPTER 13

More GTK Widgets

You have learned, by now, almost everything this book has to teach you. However, there
are a number of widgets that did not quite fit into previous chapters. Therefore, this
chapter covers those widgets.

The first two widgets are used for drawing and are named Gtk.DrawingArea
and Gtk.Layout. These two widgets are very similar except the Gtk.Layout widget
allows you to embed arbitrary widgets into it in addition to using functions for
drawing.

In addition, you learn about Gtk.Entry widgets that support automatic completion
and calendars. Lastly, you are introduced to widgets that were added in GTK+ 2.10
including status icons, printing support, and recent file managers.

In this chapter, you learn the following.

o How to use the drawing widgets Gtk.DrawingArea and Gtk.Layout

e How to use the Gtk.Calendar widget to track information about
months of the year

o How to use widgets introduced in GTK+ 2.10 that provide recent file

tracking, printing support, and status icons

o How to implement automatic completion in a Gtk.Entry widget by
applying a Gtk.EntryCompletion object

Drawing Widgets

Gtk.DrawingArea only provides one method, Gtk.DrawingArea.new(), which accepts no

parameters and returns a new drawing area widget.

Gtk.DrawingArea.new()

363
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_13

CHAPTER 13 MORE GTK WIDGETS

To begin using the widget, you only need to use the supplied by the parent widget
Gdk .Window to draw on the area. Remember that a Gdk.Window object is also a Gdk.
Drawable object.

One advantage of Gtk.DrawingArea is that it derives from Gtk.Widget, which
means that it can be connected to GDK events. There are a number of events to which
you want to connect your drawing area. You first want to connect to realize so that
you can handle any tasks that need to be performed when the widget is instantiated,
such as creating GDK resources. The "configure-event" signal notifies you when
you have to handle a change in the size of the widget. Also, "expose-event" allows
you to redraw the widget when a portion is exposed that was previously hidden. The
"expose-event" signal is especially important, because if you want the content of the
drawing area to persist over "expose-event" callbacks, you have to redraw its content.
Lastly, you can connect to button and mouse click events so that the user can interact
with the widget.

Note To receive certain types of events, you need to add them to the list

of widget events that are supported with widget.add events().Also, to
receive keyboard input from the user, you need to set the widget.set can_
focus(True) flag, since only focused widgets can detect key presses.

A Drawing Area Example

Listing 13-1 implements a simple drawing program using the Gtk.DrawingArea
widget. Since the introduction of GTK+ 3 the Cairo drawing library has replaced the
old drawing primitives used in earlier versions of GTK+. This library differs from the
old primitives in that it use vector graphics to draw shapes instead of using freehand
techniques. Vector graphics are interesting because they don’t lose clarity when
resized or transformed.

Figure 13-1 is a screenshot of this application.

364

CHAPTER 13 MORE GTK WIDGETS

Figure 13-1. A drawing area widget with text drawn with the mouse

While this is a very simple program, it nonetheless shows how to interact with the
Gtk.DrawingArea widget.

365

CHAPTER 13 MORE GTK WIDGETS
Listing 13-1. The Drawing Area Widget
#!/usr/bin/python3

import sys

import cairo

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Gdk
SIZE = 30

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
self.set size request(450, 550)
drawingarea = Gtk.DrawingArea()
self.add(drawingarea)
drawingarea.connect('draw', self.draw)

def triangle(self, ctx):
ctx.move to(SIZE, 0)
ctx.rel line to(SIZE, 2 * SIZE)
ctx.rel line to(-2 * SIZE, 0)
ctx.close path()

def square(self, ctx):
ctx.move_to(0, 0)
ctx.rel line to(2 * SIZE, 0)
ctx.rel line to(0, 2 * SIZE)
ctx.rel line to(-2 * SIZE, 0)
ctx.close path()

def bowtie(self, ctx):
ctx.move_to(0, 0)
ctx.rel line to(2 * SIZE, 2 * SIZE)
ctx.rel line to(-2 * SIZE, 0)
ctx.rel line to(2 * SIZE, -2 * SIZE)
ctx.close path()

366

def

def

CHAPTER 13 MORE GTK WIDGETS

inf(self, ctx):

ctx.move to(0, SIZE)

ctx.rel curve to(0, SIZE, SIZE, SIZE, 2 * SIZE, 0)
ctx.rel curve to(SIZE, -SIZE, 2 * SIZE, -SIZE, 2 * SIZE, 0)
ctx.rel curve to(o, SIZE, -SIZE, SIZE, -2 * SIZE, 0)
ctx.rel curve to(-SIZE, -SIZE, -2 * SIZE, -SIZE, -2 * SIZE, 0)
ctx.close path()

draw_shapes(self, ctx, x, y, fill):
ctx.save()
ctx.new_path()
ctx.translate(x + SIZE, y + SIZE)
self.bowtie(ctx)
if fill:

ctx.fill()
else:

ctx.stroke()
ctx.new_path()
ctx.translate(3 * SIZE, 0)
self.square(ctx)
if fill:

ctx.fill()
else:

ctx.stroke()
ctx.new_path()
ctx.translate(3 * SIZE, 0)
self.triangle(ctx)
if fill:

ctx.fill()
else:

ctx.stroke()
ctx.new_path()
ctx.translate(3 * SIZE, 0)
self.inf(ctx)
if fill:

ctx.fill()

367

CHAPTER 13 MORE GTK WIDGETS

else:
ctx.stroke()
ctx.restore()

def fill shapes(self, ctx, x, y):
self.draw_shapes(ctx, x, y, True)

def stroke shapes(self, ctx, x, y):
self.draw_shapes(ctx, x, y, False)

def draw(self, da, ctx):
ctx.set _source rgbh(o, 0, 0)
ctx.set_line width(SIZE / 4)
ctx.set_tolerance(0.1)
ctx.set line join(cairo.LINE_JOIN ROUND)
ctx.set dash([SIZE / 4.0, SIZE / 4.0], 0)
self.stroke shapes(ctx, 0, 0)
ctx.set _dash([], 0)
self.stroke shapes(ctx, 0, 3 * SIZE)
ctx.set line join(cairo.LINE JOIN BEVEL)
self.stroke shapes(ctx, 0, 6 * SIZE)
ctx.set line join(cairo.LINE JOIN MITER)
self.stroke shapes(ctx, 0, 9 * SIZE)
self.fill shapes(ctx, 0, 12 * SIZE)
ctx.set line join(cairo.LINE JOIN BEVEL)
self.fill shapes(ctx, 0, 15 * SIZE)
ctx.set_source rgh(1, 0, 0)
self.stroke shapes(ctx, 0, 15 * SIZE)

class Application(Gtk.Application):

def init (self, *args, **kwargs):
super()._init_ (*args, application_id="org.example.myapp",**kwargs)
self.window = None

def do _activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Drawing Areas")

368

CHAPTER 13 MORE GTK WIDGETS

self.window.show all()
self.window.present()

if name_ ==" main_":
app = Application()

app.run(sys.argv)

The best way to understand how to use Cairo is to imagine that you are an artist
using a paintbrush to draw out a shape on canvas.

To begin, you can choose a few characteristics of your brush. You can choose the
thickness of your brush and the color you want to paint with. You can also choose the
shape of your brush tip. You can choose either a circle or a square.

Once you have chosen your brush, you are ready to start painting. You have to be
quite precise when describing what you want to appear.

First, decide where you want to place your brush on the canvas. You do this by supplying
an x and a y coordinate. Next, you define how you want your brush stroke to look—an arc, a
straight line, and so forth. Finally, you define the point where you want your stroke to end,
again by supplying an x and a'y coordinate. Triangles and squares are very easy to do!

More complex graphics are generated using variations of the above theme with a few
additions, such as Fills (coloring in), transformations (zooming in, moving), and so forth,
using the Python interface to Cairo.

Nearly all the work revolves around using the cairo.Context (or cairo tinthe
Cairo C API). This is the object that you send your drawing commands to. There are a few
options available to initialize this object in different ways.

Itis very important to know that there is a difference between the coordinates that you
are describing your graphics on and the coordinates that you are displaying your graphics
on. When giving a presentation, you draw on your transparent acetate beforehand, and
then display it on your overhead projector. Cairo calls the transparent acetate that the
user space coordinates and the projected image that the device space coordinates.

When initializing the Cairo context object, we tell it how our description should be
displayed. To do this, we supply a transformation matrix. Modifying the transformation
matrix can lead to some very interesting results.

One of Cairo’s most powerful features is that it can output graphics in many different
formats (it can use multiple back ends). For printing, we can have Cairo translate our
graphics into postscript to send to the printer. For onscreen display, Cairo can
translate our graphics into something gtk can understand for hardware-accelerated
rendering! It has many more important and useful target back ends. On initializing the

369

CHAPTER 13 MORE GTK WIDGETS

cairo.Context, we set its target back end, supplying a few details (such as color depth
and size), as seen in the next example.

The Layout Widget

In addition to Gtk.DrawingArea, GTK+ provides another drawing widget called Gtk. Layout.
This widget is actually a container and differs from Gtk.DrawingArea in that it supports not
only drawing primitives but also child widgets. In addition, Gtk. Layout provides scrolling
support natively, so it does not need a viewport when added to a scrolled window.

Note One important distinction to note with layouts is that you should draw
to Gtk.Layout’s bin_window member instead of Gtk.Widget’s window . For
example, you need to draw to the parent binary window, not the layout window.
You can obtain the binary window by calling the 1ayout.get bin window()
method. This allows child widgets to be correctly embedded into the widget.

New Gtk.Layout widgets are created with Gtk. Layout.new(), which accepts
horizontal and vertical adjustments. Adjustments are created for you if you pass None to
both function parameters. Since Gtk. Layout has native scrolling support, it can be much
more useful than Gtk.DrawingArea when you need to use it with a scrolled window.

However, Gtk.Layout does add some overhead, since it is capable of containing
widgets as well. Because of this, Gtk.DrawingArea is a better choice if you only need to
draw on the widget’s Gdk . Window.

Child widgets are added to a Gtk. Layout container with layout.put(), which places
the child with respect to the top-left corner of the container. Since Gtk. Layout is derived
directly from Gtk.Container, it is able to support multiple children.

layout.put(child widget, x, y)

A call to layout.move()can be used later to relocate the child widget to another
location in the Gtk.Layout container.

Caution Because you place child widgets at specific horizontal and vertical
locations, Gtk.Layout presents the same problems as Gtk. Fixed. You need to
be careful of these when using the layout widget! You can read more about Gtk.
Fixed widget issues in the “Fixed Containers” section in Chapter 4.

370

CHAPTER 13 MORE GTK WIDGETS

Lastly, if you want to force the layout to be a specific size, you can send new width
and height parameters to layout.set _size(). You should use this method instead of
layout.set size request(), because it adjusts the adjustment parameters as well.

layout.set _size(width, height)

Also, unlike size requests, the layout sizing function requires unsigned numbers.
This means that you must specify an absolute size for the layout widget. This size should
be the total size of the layout, including portions of the widget that are not visible on
the screen because they are beyond the bounds of the scrolling area! The size of a Gtk.
Layout widget defaults to 100x100 pixels.

Calendars

GTK+ provides the Gtk.Calendar widget, which is a widget that displays one month of
a calendar. It allows the user to move among months and years with scroll arrows, as
shown in Figure 13-2. You can also display three-letter abbreviations of the day names
and week numbers for the chosen year.

SEX)

New Open Add Event Remove Clear All
Create oropen acalendar.. | ryont Name Location Event Time
€ June > < 2018 >
SunMonTueWedThu Fri Sat

1 2

3 4 56 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 & 29 30

Figure 13-2. Gtk.Calendar widget

371

CHAPTER 13 MORE GTK WIDGETS

New Gtk.Calendar widgets are created with Gtk.Calendar.new(). By default, the
current date is selected. Therefore, the current month and year stored by the computer
are also displayed. You can retrieve the selected date with calendar.get date() or
select a new day with calendar.select day(). To deselect the currently selected day,
you should use calendar.select day() with a date value of zero.

To customize how the Gtk.Calendar widget is displayed and how it interacts with
the user, you should use calendar.set_display options() to set a bitwise list of
Gtk.CalendarDisplayOptions values. The following are nondeprecated values of this
enumeration.

o Gtk.CalendarDisplayOptions.SHOW HEADING: If set, the name of the
month and the year are displayed.

o Gtk.CalendarDisplayOptions.SHOW DAY NAMES: If set, a three-letter
abbreviation of each day is shown above the corresponding column
of dates. They are rendered between the heading and the main

calendar content.

o Gtk.CalendarDisplayOptions.SHOW DETAILS: Shows only a when
details are provided. See calendar.set_detail func().

o Gtk.CalendarDisplayOptions.NO_MONTH_CHANGE: Stops the user
from changing the current month of the calendar. If this flag is not
set, you are presented with arrows that allow you to go to the next or
previous month. By default, the arrows are enabled.

o Gtk.CalendarDisplayOptions.SHOW_WEEK NUMBERS: Displays the
week number along the left side of the calendar for the current year.
The week numbers are hidden by default.

In addition to selecting a single day, you can mark as many days in the month as you
want one at a time with calendar.mark_day(). This function returns True if the day was
successfully marked.

calendar.mark_day(day)

There are two signals available for detecting when the user selects a day. The first
signal, "day-selected", is emitted when the user selects a new day with the mouse
or the keyboard. The "day-selected-double-click" signal is emitted when the user
selects a day by double-clicking it. This means that you should not need the "button-
press-event" signal with the Gtk.Calendar widget in most cases.

372

CHAPTER 13 MORE GTK WIDGETS

Printing Support

GTK+ 2.10 introduced a number of new widgets and objects that add printing support

to the library. While there are many objects in this API, in most instances, you only need

to directly interact with Gtk.PrintOperation, which is a high-level printing API that can

be used across multiple platforms. It acts as a front-end interface for handling most print
operations.

In this section, we implement an application that prints the content of a text file
that the user selects in a Gtk.FileChooserButton widget. Figure 13-3 is a screenshot
of the default print dialog on a Linux system. The user selects a file from the disk using
a Gtk.FileChooserButton widget, and clicks the Print button in the main window to
open this dialog.

m R
General Page Setup Job Color Advanced
Printer Location Status
& PrinttoFile
2 HP-HP-Officejet-Pro-X476dn-MFP Study
& print Rejecting Jobs
Range Copies
®) All Pages Copies: 1 +
Current Page
] Collate
. - 2
O Pages: [| Reverse L
Preview Cancel Print

Figure 13-3. Printing dialog

373

CHAPTER 13 MORE GTK WIDGETS

Listing 13-2 begins by defining the necessary data structures for the application and
setting up the user interface. The PrintData class holds information about the current
print job, which helps with rendering the final product. Widgets is a simple structure that
provides access to multiple widgets and the print job information in callback methods.

Listing 13-2. GTK+ Printing Example
#!/usr/bin/python3

import sys

import math

from os.path import expanduser

import gi

gi.require version('Gtk', '3.0")

gi.require version('PangoCairo', '1.0')

from gi.repository import Gtk, cairo, Pango, PangoCairo

class Widgets:

def init (self):
self.window = None
self.chooser = None
self.data = None
self.settings = Gtk.PrintSettings.new()

class PrintData:

def _init (self):
self.filename = None
self.fontsize = None
self.lines per page = None
self.lines = None
self.total lines = None
self.total pages = None

class AppWindow(Gtk.ApplicationWindow):

def _ init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
self.HEADER HEIGHT = 20.0

374

CHAPTER 13 MORE GTK WIDGETS

self.HEADER GAP = 8.5

w = Widgets()

w.window = self

self.set border width(10)

w.chooser = Gtk.FileChooserButton.new ("Select a File",
Gtk.FileChooserAction.OPEN)

w.chooser.set _current folder(expanduser("~"))

print = Gtk.Button.new with label("Print")

print.connect("clicked", self.print file, w)

hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

hbox.pack_start(w.chooser, False, False, 0)

hbox.pack start(print, False, False, 0)

self.add(hbox)

def print file(self, button, w):
filename = w.chooser.get filename()
if filename == None:
return
operation = Gtk.PrintOperation.new()
if w.settings != None:
operation.set print settings(w.settings)
w.data = PrintData()
w.data.filename = filename
w.data.font_size = 10.0
operation.connect("begin print", self.begin print, w)
operation.connect("draw_page", self.draw_page, w)
operation.connect("end print", self.end print, w)
res = operation.run(Gtk.PrintOperationAction.PRINT DIALOG,
w.window)
if res == Gtk.PrintOperationResult.APPLY:
if w.settings != None:
w.settings = None
settings = operation.get print settings()
elif res == Gtk.PrintOperationResult.ERROR:

375

CHAPTER 13 MORE GTK WIDGETS

dialog = Gtk.MessageDialog.new(w.window,
Gtk.DialogFlags.DESTROY WITH
PARENT,
Gtk.MessageType.ERROR,
Gtk.ButtonsType.S CLOSE,
"Print operation error.")

dialog.run()

dialog.destroy()

def begin print(self, operation, context, w):
w.data.lines = []
f = open(w.data.filename)
for line in f:
w.data.lines.append(line)
f.close()
w.data.total lines = len(w.data.lines)

height = context.get_height() - self.HEADER_HEIGHT -
self.HEADER _GAP w.data.lines per page = math.floor(height /
(w.data.font_size + 3)) w.data.total pages =

(w.data.total lines - 1) / w.data.lines per page+l
operation.set _n_pages(w.data.total pages)

def draw_page(self, operation, context, page nr, w):
cr = context.get cairo context()
width = context.get width()
layout = context.create pango layout()
desc = Pango.font_description from_string(“"Monospace")
desc.set _size(w.data.font size * Pango.SCALE)
layout.set font description(desc)
layout.set text(w.data.filename, -1)
layout.set width(-1)
layout.set alignment(Pango.Alignment.LEFT)
(width, height) = layout.get size()
text_height = height / Pango.SCALE
cr.move_to(0, (self.HEADER HEIGHT - text_height) / 2)
PangoCairo.show layout(cr, layout)
page_str = "%d of %d" % (page nr + 1, w.data.total pages)

376

CHAPTER 13 MORE GTK WIDGETS

layout.set text(page str, -1)
(width, height) = layout.get size()
layout.set alignment(Pango.Alignment.RIGHT)
cr.move_to(width - (width / Pango.SCALE),
(self.HEADER HEICHT - text height) / 2)
PangoCairo.show layout(cr, layout)
cr.move to(0, self.HEADER HEIGHT + self.HEADER GAP)
line = page nr * w.data.lines_per page
i=o
while i < w.data.lines_per page and line <
w.data.total lines:
layout.set text(w.data.lines[line], -1)
PangoCairo.show layout(cr, layout)
cr.rel move to(0, w.data.font size + 3)
line += 1
i+=1

def end print(self, operation, context, w):
w.data.lines = None
w.data = None

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self,
title="Calendar")
self.window.show all()
self.window.present()

if _name__ == "_ main_":
app = Application()
app.run(sys.argv)

377

CHAPTER 13 MORE GTK WIDGETS

Two values are defined at the top of AppWindow class in Listing 13-2 called HEADER _
HEIGHT and HEADER GAP. HEADER HEIGHT is the amount of space that is available for
the header text to be rendered. This displays information, such as the file name and
page number. HEADER _GAP is padding placed between the header and the actual page
content.

The PrintData class stores information about the current print job. This includes
the location of the file on the disk, the size of the font, the number of lines that can be
rendered on a single page, the file’s content, the total number of lines, and the total
number of pages.

Print Operations

The next step is to implement the print_file callback method that runs when the Print
button is clicked. This method is implemented in Listing 13-2. It takes care of creating
the PrintData, connecting all the necessary signals, and creating the print operation.

The first step in printing is to create a new print operation, which is done by calling
Gtk.PrintOperation.new(). What makes Gtk.PrintOperation unique is that it uses the
platform’s native print dialog if there is one available. On platforms like UNIX, which do
not provide such a dialog, Gtk.PrintUnixDialog or the GNOME dialog is used.

Note For most applications, you should use the Gtk.PrintOperation
methods when possible, instead of directly interacting with the print objects. Gtk.
PrintOperation was created as a platform-independent printing solution, which
cannot be easily reimplemented without a lot of code.

The next step is to call operation.set print settings() to apply print settings to
the operation. In this application, the Gtk.PrintSettings object is stored as an attribute
in the Widgets class instance. If the print operation is successful, you should store the
current print settings so that these same settings can be applied to future print jobs.

You then set up the PrintData class by allocating a new instance. The file
name is set to the currently selected file in the Gtk.FileChooserButton, which was
already confirmed to exist. The print font size is also set to 10.0 points. In text editing
applications, you would usually retrieve this font from Gtk.TextView’s current font. In
more complex printing applications, the font size may vary throughout a document, but
this is a simple example meant only to get you started.

378

CHAPTER 13 MORE GTK WIDGETS

Next, we connect to three Gtk.PrintOperation signals, which are discussed
in detail later in this section. In short, begin_print is called before the pages are
rendered and can be used for setting the number of pages and doing necessary
preparation. The draw_page signal is called for every page in the print job so that it
can be rendered. Lastly, the end_print signal is called after the print operation has
completed, regardless of whether it succeeded or failed. This callback method cleans
up after the print job. A number of other signals can be used throughout the print
operation. A full list is in Appendix B.

Once the print operation has been set up, the next step is to begin the printing
by calling operation.run(). This method is where you define which task the print
operation performs.

operation.run(action, parent)

The Gtk.PrintOperationAction enumeration, shown in the following list, defines
which printing task the print operation performs. To print the document, you should use
Gtk.PrintOperationAction.PRINT_DIALOG.

o Gtk.PrintOperationAction.ERROR: Some type of error has occurred
in the print operation.

o Gtk.PrintOperationAction.PREVIEW: Preview the printjob thatis
performed with the current settings. This uses the same callbacks for
rendering as the print operation, so it should take little work to get it

up and running.

e Gtk.PrintOperationAction.PRINT: Start printing using the current
printing settings without presenting the print dialog. You should
only do this if you are 100 percent sure that the user approves of
this action. For example, you should have already presented a
confirmation dialog to the user.

o Gtk.PrintOperationAction.EXPORTPRINT: Export the printjob to a
file. To use this setting, you have to set the export-filename property
prior to running the operation.

The last two parameters of operation.run() allow you to define a parent window
to use for the print dialog to use None to ignore this parameter. This function does not
return until all of the pages have been rendered and are sent to the printer.

379

CHAPTER 13 MORE GTK WIDGETS

When the function does give back control, it returns a Gtk.PrintOperationResult
enumeration value. These values give you instructions on what task you should perform
next, and whether the print operation succeeded or failed. The four enumeration values
are shown in the following list.

o Gtk.PrintOperationResult.ERROR: Some type of error has occurred
in the print operation.

o Gtk.PrintOperationResult.APPLY: Print settings were changed.
Therefore, they should be stored immediately so that changes are not
lost.

o Gtk.PrintOperationResult.CANCEL: The user cancelled the print
operation, and you should not save the changes to the print settings.

e Gtk.PrintOperationResult.PROGRESS: The print operation has yet
to be completed. You only get this value if you are running the task
asynchronously.

It is possible to run the print operation asynchronously, which means that
operation.run() may return before the pages have been rendered. This is set with
operation.set _allow_async().You should note that not all platforms allow this
operation, so you should be prepared for this not to work!

If you run the print operation asynchronously, you can use the done signal to
retrieve notification when the printing has completed. At this point, you are given the
print operation results, and you need to handle it accordingly.

After handling the print operation result, you should also handle the resulting error if
it was set and if it exists.

A full list of possible errors under the Gtk.PrintError domain can be found in
Appendix E.

One unique feature provided by Gtk.PrintOperation is the ability to show a
progress dialog while the print operation is running. This is turned off by default, but it
can be turned on with operation.set show_progress(). This is especially useful if you
allow the user to run multiple print operations at the same time.

operation.set _show progress(boolean)

380

CHAPTER 13 MORE GTK WIDGETS

It may be necessary at times to cancel a current print job, which can be done by
calling operation.cancel(). This function is usually used within a begin print,
paginate, or draw_page callback method. It also allows you to provide a Cancel button
so that the user can stop in the middle of an active print operation.

operation cancel()

It is also possible to give a unique name to the print job, which identifies it within an
external print monitoring application. Print jobs are given names with operation.set
job_name(). If this is not set, GTK+ automatically designates a name for the print job and
numbers consecutive print jobs accordingly.

If you are running the print job asynchronously, you may want to retrieve the
current status of the print job. By calling operation.get status(), a Gtk.PrintStatus
enumeration value is returned, which gives more information about the status of the
print job. The following is a list of possible print job status values.

e Gtk.PrintStatus.INITIAL: The print operation has yet to begin. This
status is returned while the print dialog is still visible because it is the
default initial value.

e Gtk.PrintStatus.PREPARING: The print operation is being split into
pages, and the begin-print signal was emitted.

o Gtk.PrintStatus.GENERATING DATA: The pages are being rendered.
This is set while the draw-page signal is being emitted. No data has
been sent to the printer at this point.

o Gtk.PrintStatus.SENDING DATA: Data about the printjob is being
sent to the printer.

e Gtk.PrintStatus.PENDING: All of the data has been sent to the
printer, but the job has yet to be processed. It is possible that the
printer may be stopped.

o Gtk.PrintStatus.PENDING ISSUE: There was a problem during the
printing. For example, the printer could be out of paper, or there
could be a paper jam.

e Gtk.PrintStatus.PRINTING: The printer is currently processing the
print job.

381

CHAPTER 13 MORE GTK WIDGETS

o Gtk.PrintStatus.FINISHED: The printjob has been successfully
completed.

o Gtk.PrintStatus.FINISHED ABORTED: The printjob was aborted. No
further action is taken unless you run the job again.

The value returned by operation.get status() can be used within applications,
since it is a numerical value. However, GTK+ also provides the ability to retrieve a string
with operation.get_status_string(), which is a human-readable description of
the print job status. It is used for debugging output or displaying more information to
the user about the print job. For example, it could be displayed on a status bar or in a
message dialog.

Beginning the Print Operation

Now that the print operation is set up, it is time to implement the necessary signal
callback methods. The “begin-print” signal is emitted when the user initiates printing,
which means that all settings have been finalized from the user’s point of view.

In Listing 13-2, the begin_print callback method first retrieves the contents of the
file and splits it into the number of lines. The total number of lines is then calculated,
which can retrieve the number of pages.

To calculate the number of pages required by the print operation, you need
to figure out how many lines can be rendered on every page. The total height of
every page is retrieved with context.get height(), which is stored in a Gtk.
PrintContext object. Gtk.PrintContext stores information about how to draw the
page. For example, it stores the page setup, width and height dimensions, and dots
per inch in both directions. We go into more detail in the draw_page callback method
later in this chapter.

Once you have the total height of the page that is available for rendering text, the next
step is to divide that height by the font size of the text plus 3 pixels of spacing to be added
between each line. The floor () function rounds down the number of lines per page so
that clipping does not occur along the bottom of every full page.

Once you have the number of lines per page, you can calculate the number of pages.
Then, you must send this value to operation.set _n_pages() by the end of this callback
method. The number of pages are used so that GTK+ knows how many times to call the
draw_page callback method. This must be set to a positive value so that rendering does
not begin until it is changed from its default -1 value.

382

CHAPTER 13 MORE GTK WIDGETS

Rendering Pages

The next step is to implement the draw_page callback method, which is called once for
every page that needs to be rendered. This callback method requires the introduction of
a library called Cairo. It is a vector graphics library that renders print operations, among
other things.

Listing 13-2 begins by retrieving the Cairo drawing context for the current Gtk.
PrintContext with context.get cairo_context(). The returned context object renders
print content and then applies it to the PangoLayout.

At the beginning of this callback method, we also need to retrieve two other values
from the Gtk.PrintContext. The firstis context.get width(), which returns the width
of the document. Notice that we do not need to retrieve the height of the page, since we
have already calculated the number of lines that fit on each page. If the text is wider than
the page, it is clipped. You have to alter this example to avoid clipping the document.

Caution The width returned by the Gtk.PrintContext is in pixels. You need to
be careful because different functions may use alternative scales, such as Pango
units or points!

The next step is to create a PangoLayout with context.create _pango layout(),
which is used for the print context. You should create Pango layouts in this manner for
print operations, because the print context already has the correct font metrics applied.

The next operation performed by this function is to add the file name to the top-left
corner of the page. To start, layout.set text() sets the current text stored by the layout
to the file name. The width of the layout is set to -1 so that the file name does not wrap
at forward slash characters. The text is also aligned to the left of the layout with layout.
set_alignment().

Now that the text is added to the layout, cr.move_to() moves the current point in the
Cairo context to the left of the page and the center of the header. Note that the height of
the PangoLayout must first be reduced by a factor of Pango. SCALE!

cairo.move_to(x, y)

Next, we call cr.show_layout()to draw the PangoLayout on the Cairo context. The
top-left corner of the layout is rendered at the current point in the Cairo context. This is
why it was first necessary to move to the desired position with cr.move_to().

cairo.show layout(layout)
383

CHAPTER 13 MORE GTK WIDGETS

After rendering the file name, the same method adds the page count to the top-right
corner of each page. You should again note that the width returned by the PangoLayout had
to be scaled down by Pango. SCALE so that it would be in the same units as other Cairo values.

The next step is to render all of the lines for the current page. We begin by moving to
the left of the page, HEADER _GAP units below the header. Then, each line is incrementally
rendered to the Cairo context with cr.show_layout(). One interesting thing to note is
that the cursor position in the loop is moved with cr.rel move to().

cairo.rel move to(dx, dy)

This function moves the current position relative to the previous position. Therefore,
after a line is rendered, the current position is moved down one line, which is equal to
the font size of the text since the font is monospace.

Tip By moving the cursor relative to the previous position, it is easy to add an
arbitrary amount of spacing between each line of text and the adjacent one as long
as this additional height was previously taken into consideration when calculating
the number of pages in the begin_print callback method.

When developing with GTK+, you have the whole Cairo library available to you.
More basics are covered in the “Cairo Drawing Context” section of this chapter; however,
if you are implementing printing in your own applications, you should take the time to
learn more about this library from the Cairo API documentation.

Finalizing the Print Operation

After all of the pages have been rendered, the "end-print" signal is emitted. Listing 13-2
shows the end_print callback method, which is used for the signal. It resets modified
attributes of the PrintData instance.

Cairo Drawing Context

Cairo is a graphics-rendering library that is used throughout the GTK+ library. In
the context of this book, Cairo renders pages during a print operation. This section
introduces you to the Pycairo library and some of the classes and drawing methods
associated with them.

384

CHAPTER 13 MORE GTK WIDGETS

Pages of a print operation in GTK+ are rendered as Cairo context objects. This object
allows you to render text, draw various shapes and lines, and fill clipped areas with color.
Let us look at a few methods provided by Cairo for manipulating Cairo drawing contexts.

Drawing Paths

Shapes in Cairo contexts are rendered with paths. A new path is created with cairo.
new_path(). You can then retrieve a copy of the new path with cairo.copy path() and
add new lines and shapes to the path.

cairo.copy path()

There are a number of functions provided for drawing paths, which are listed
in Table 13-1. More information about each function can be found in the Cairo API

documentation.

Table 13-1. Cairo Path-Drawing Methods

Method Description

cairo.arc() Draw an arc in the current path. You must provide the radius of the
arc, horizontal and vertical positions of its center, and the start and
end angle of the curve in radians.

cairo.curve to() Create a Bezier curve in the current path. You must provide the end
position of the curve and two control points that calculate the curve.

cairo.line to() Draw a line from the current position to the specified point. The
current position is simply moved if an initial point does not exist.

cairo.move to() Move to a new position in the context, which causes a new subpath to
be created.

cairo.rectangle() Draw a rectangle in the current path. You must provide the coordinates

of the top-left corner of the rectangle, its width, and its height.

cairo.rel curve to() This function is the same as cairo.curve to(), exceptitis drawn
with respect to the current position.

cairo.rel line to() This function is the same as cairo.line to(), exceptitis drawn
with respect to the current position.

cairo.rel move to() This function is the same as cairo.move to(), exceptitis drawn
with respect to the current position.

385

CHAPTER 13 MORE GTK WIDGETS

When you are finished with a subpath, you can close it with cairo.path close().
This encloses the current path so that it can be filled with a color if necessary.

Rendering Options

The current color used for drawing operations on a source is cairo.set_source rgh().
The color is used until a new color is set. In addition to choosing a color, you can use
cairo.set_source rgba(), which accepts a fifth alpha parameter. Each of the color
parameters is a floating-point number between 0.0 and 1.0.

After you have moved to a specific point and set the source color, you can fill the
current path with cairo.fill(), which accepts only the context. Alternatively, you can
fill a rectangular area with cairo.fill extents(). This function calculates an area with
corners of (x1,y1) and (x2,y2), filling all of the area that is in between those points that is
also contained by the current path.

cairo.fill extents(x1, y1, x2, y2)

Drawing operations, such as curves, can cause edges to become jagged. To fix this,
Cairo provides antialiasing to drawings with cairo.set _antialias().

cairo.set antialias(antialias)

Antialiasing settings are provided by the cairo.Antialias enumeration. The
following is a list of values provided by this enumeration.

e cairo.Antialias.DEFAULT: The default antialiasing algorithm is
used.

e cairo.Antialias.NONE: No antialiasing occurs; instead, an alpha
mask is used.

e cairo.Antialias.GRAY: Uses only a single color for antialiasing. This
color is not necessarily gray but is chosen based on the foreground
and background colors.

e cairo.Antialias.SUBPIXEL: Uses subpixel shading provided by LCD

screens.

This is simply a short introduction to Cairo drawing contexts. For further information
about Cairo, you should reference its API documentation at www.cairographics.org.

386

http://www.cairographics.org

CHAPTER 13 MORE GTK WIDGETS

Recent Files

In GTK+ 2.10, a new API was introduced that allows you to keep track of recently opened
files across applications. In this section, we are going to implement this functionality in
the simple text editing application. This application with a recent file chooser is shown
in Figure 13-4. Later, in this chapter’s exercise, you are going to add recent file support to

your text editor.

All Files

Cancel Open

Figure 13-4. Recent file chooser dialog

The code in Listing 13-3 sets up the text editing application. Two buttons allow you
to open an existing file using a Gtk.FileChooserDialog and save your changes.

Then, there is a Gtk.MenuToolButton that provides two functions. When the button
is clicked, a Gtk.RecentChooserDialog is displayed that allows you to select a recent
file from the list. The menu in the Gtk.MenuToolButton widget is of the type Gtk.
RecentChooserMenu, which shows the ten most recent files.

387

CHAPTER 13 MORE GTK WIDGETS

Listing 13-3. Remembering Recently Opened Files
#!/usr/bin/python3

import sys

import urllib

from urllib.request import pathname2url
import os

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, Pango

class Widgets():

def init (self):
self.window = None
self.textview = None
self.recent = None

class AppWindow(Gtk.ApplicationWindow):

def _init (self, *args, **kwargs):
super(). init (*args, **kwargs)
w = Widgets()
w.window = self
self.set border width(5)
self.set _size request(600, 400)
w.textview = Gtk.TextView.new()
fd = Pango.font_description from string("Monospace 10")
self.modify font(fd)
swin = Gtk.ScrolledWindow.new(None, None)
openbutton = Gtk.Button.new with label("open™)
save = Gtk.Button.new with label("Save")
icon_theme = Gtk.IconTheme.get default()
icon = icon_theme.load icon("document-open", -1,
Gtk.IconLookupFlags.FORCE SIZE)
image = Gtk.Image.new_from pixbuf(icon)
w.recent = Gtk.MenuToolButton.new(image, "Recent Files")

388

def

def

CHAPTER 13 MORE GTK WIDGETS

manager = Gtk.RecentManager.get default()

menu = Gtk.RecentChooserMenu.new_for manager(manager)
w.recent.set_menu(menu)

menu.set_show _not_found(False)
menu.set local only(True)

menu.set limit(10)

menu.set_sort type(Gtk.RecentSortType.MRU)
menu.connect("selection-done", self.menu_activated, w)
openbutton.connect("clicked", self.open file, w)
save.connect("clicked", self.save file, w)
w.recent.connect("clicked", self.open recent file, w)
hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)
hbox.pack start(openbutton, False, False, 0)
hbox.pack start(save, False, False, 0)

hbox.pack start(w.recent, False, False, 0)

vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)
swin.add(w.textview)

vbox.pack start(hbox, False, False, 0)

vbox.pack start(swin, True, True, 0)
w.window.add(vbox)

save file(self, save, w):

filename = w.window.get title()

buffer = w.textview.get buffer()

(start, end) = buffer.get bounds()

content = buffer.get text(start, end, False)
f = open(filename, 'w')

f.write(content)

f.close()

menu_activated(self, menu, w):
filename = menu.get current uri()
if filename != None:

fn = os.path.basename(filename)

f = open(fn, 'r')

contents = f.read()

389

CHAPTER 13 MORE GTK WIDGETS

390

f.close()
w.window.set title(fn)
buffer = w.textview.get buffer()
buffer.set text(content, -1)
else:
print("The file '%s' could not be read!" % filename)

def open file(self, openbutton, w):
dialog = Gtk.FileChooserDialog(title="Open File", parent=w.window,
action=Gtk.FileChooserAction.OPEN,
buttons=("Cancel", Gtk.ResponseType.
CANCEL, "Open", Gtk.ResponseType.OK))
if dialog.run() == Gtk.ResponseType.OK:
filename = dialog.get filename()
content = ""
f = open(filename, 'r')
content = f.read()
f.close()
if len(content) > o:

Create a new recently used

resource. data = Gtk.RecentData()
data.display name = None

data.description = None

data.mime_type = "text/plain”

data.app_name =

os.path.basename(_ file)

data.app _exec = " " + data.app_name +

"%u" #data.groups = ["testapp”, None]

data.is private = False

url = pathname2url(filename)

Add the recently used resource to the default
recent manager. manager =
Gtk.RecentManager.get_default()

result = manager.add full(url, data)

Load the file and set the filename as the title of

CHAPTER 13 MORE GTK WIDGETS

the window. w.window.set title(filename)

buffer =

w.textview.get buffer()

buffer.set text(content,-1)
dialog.destroy()

def open recent file(self, recent, w):

manager = Gtk.RecentManager.get default()

dialog = Gtk.RecentChooserDialog(title="Open Recent File",
parent=w.window,
recent_manager=manager,
buttons=("Cancel",
Gtk.ResponseType.CANCEL,
"Open",
Gtk.ResponseType.0OK))

Add a filter that will display all of the files in
the dialog. filter = Gtk.RecentFilter.new()
filter.set name("All Files")
filter.add pattern("*") dialog.add filter(filter)
Add another filter that will only display plain
text files. filter = Gtk.RecentFilter.new()
filter.set name("Plain Text")
filter.add mime_type("text/plain")
dialog.add filter(filter)
dialog.set show not found(False)
dialog.set local only(True)
dialog.set 1imit(10)
dialog.set sort type(Gtk.RecentSortType.MRU)
if dialog.run() == Gtk.ResponseType.OK:
filename = dialog.get current uri()
if filename != None:
Remove the "file://" prefix from the beginning of the
URI if it exists.
content = ""
fn = os.path.basename(filename)

391

CHAPTER 13 MORE GTK WIDGETS

f = open(fn, 'r')
contents = f.read()
f.close()
if len(content) > o:
w.window.set title(fn)
buffer = w.textview.get buffer()
buffer.set text(content, -1)
else:
print("The file '%s' could not be read!" % filename)
dialog.destroy()

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp"”,
**kwargs)
self.window = None

def do_activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Recent Files")
self.window.show all()
self.window.present()

if _name_ == " main_":
app = Application()

app.run(sys.argv)

A central class called Gtk.RecentManager handles recent file information. It is
possible to create your own from scratch, but if you want to share recent files across
applications, you can retrieve the default with Gtk.RecentManager.get default().
This allows you to share recent files with applications, such as gedit, GNOME'’s recent
documents menu, and others that take advantage of the Gtk.RecentManager API.

392

CHAPTER 13 MORE GTK WIDGETS

We next create a new Gtk .RecentChooserMenu widget from the default Gtk.
RecentManager. This menu displays recent files and (optionally) number the menu items
created with Gtk.RecentChooserMenu.new_for manager(). The files are not numbered
by default, but this property can be changed by setting "show-numbers" to True or by
calling menu.set_show_numbers().

Gtk.RecentChooserMenu implements the Gtk.RecentChooser interface, which
provides the functionality you need for interacting with the widget. In Listing 13-3,
anumber of Gtk.RecentChooser properties customize the menu. These also apply to
two other widgets that implement the Gtk.RecentChooser interface:
Gtk.RecentChooserDialog and Gtk.RecentChooseriWidget.

It is possible that recent files in the list have been removed since they were added. In
this case, you may not want to display them in the list. You can hide recent files that no
longer exist with rchooser.set _show not found(). This property only works with files
that are located on the local machine.

Tip You may actually want to show files that are not found to the user. If the user
selects a file that does not exist, you can then easily remove it from the list after
informing the user about the problem.

By default, only local files are shown, which means that they have a file:// Uniform
Resource Identifier (URI) prefix. A URI refers to things, such as file locations or Internet
addresses based on their prefixes. Using only the file:// prefix guarantees that they are
located on the local machine. You can set this property to False to show recent files that
are located at a remote location. You should note that remote files are not filtered out if
they no longer exist!

If the list includes a large number of recent files, you probably will not want to list
all of them in the menu. A menu with a hundred items is quite large! Therefore, you can
use recentchooser.set limit()to set a maximum number of recent items that are
displayed in the menu.

recentchooser.set limit(limit)

When you set a limit on the number of elements, which files are shown depends
on the sort type you defined with recentchooser.set_sort type(). By default, this
is set to Gtk.RecentSortType.NONE. The following are the available values in the Gtk.
RecentSortType enumeration.

393

CHAPTER 13 MORE GTK WIDGETS

o Gtk.RecentSortType.NONE: The list of recent files is not sorted at all
and is returned in the order that they appear. This should not be used
when you are limiting the number of elements that are displayed,
because you cannot predict which files will be displayed!

o Gtk.RecentSortType.MRU: Sorts the most recently added files first
in the list. This is most likely the sorting method you want to use,
because it places the most recent file at the beginning of the list.

o Gtk.RecentSortType.LRU: Sorts the least-recently added files first in
the list.

o Gtk.RecentSortType.CUSTOM: Uses a custom sorting function to sort
the recent files. To use this, you need recentmanager.set_sort_
func() to define the sorting method.

The last part of this example saves the file under the specified name. When a file is
opened in this text editor, the window title is set to the file name. This file name is used
to save the file. Therefore, be careful because this simple text editor cannot be used to

create new files!

Recent Chooser Menu

You have just learned about the Gtk.RecentChooserMenu widget. Listing 13-3
implements the "selection-done" callback method that was connected to it. This
function retrieves the selected URI and opens the file if it exists.

You can use recentchooser.get current uri() to retrieve the currently selected
recent file, since only one item can be selected. Since we restricted the menu to only
displaying local files, we need to remove the file:// prefix from the URL If you are
allowing remote files to be displayed, you may need to remove different prefixes from the
URI, such as http://. You can use the Python method os.path.basename() to remove
URI prefixes.

os.path.basename(filename)
os.path.basename(filename)

After the prefix is removed, we attempt to open the file. If the file was successfully
opened, the window title is set to the file name and the file is opened; otherwise, a
warning is presented to the user that the file could not be opened.

394

CHAPTER 13 MORE GTK WIDGETS

Adding Recent Files

When the Open button is pressed, we want to allow the user to select a file to open
from a Gtk.FileChooserDialog. If the file is opened, it is added to the default Gtk.
RecentManager.

If the file is successfully opened, recentmanager.add full() addsitasa
new recent item to the default Gtk.RecentManager. To use this method, you
need two items. First, you need the URI, which is created by appending the file
name to file:// to show that it is a local file. This file name can be built with
pathname2url() from the url import.

pathname2url(filepath)

Secondly, you need an instance of the Gtk.RecentData class. The content of this
class are a set of attributes that describe the data needed to store the file information
to the Gtk.RecentManager. display name displays a shortened name instead of the file
name, and description is a short description of the file. Both of these values can safely
be set to None.

You then have to specify a MIME type for the file, the name of your application, and
the command line used to open the file. The name of your application can be retrieved
by calling the Python library method os.path.basename(__file). There a number of
ways to get the program name but you can also safely set this to None.

Next, groups is a list of strings that designate what groups the resource belongs to.
You are able to use this to filter out files that do not belong to a specific group.

The last member, is_private, specifies whether this resource is available to
applications that did not register it. By setting this to True, you can prevent other
applications that use the Gtk.RecentManager API from displaying this recent file.

Once you construct the Gtk.RecentData instance, it can be added along with the
recent file URI as a new resource with recentmanager.add_full(). You can also add
anew recent item with recentmanager.add_item(), which creates a Gtk.RecentData
object for you.

To remove a recent item, call recentmanager.remove_item(). This function returns
True if a file with the specified URI is successfully removed. If not, an error under
theGtk.RecentManagerError domain is set. You can also remove all recent items from
the list with recentmanager.purge items().

recentmanagerremove item(uri)

395

CHAPTER 13 MORE GTK WIDGETS

Caution You should avoid purging all of the items in the default Gtk.
RecentManager! This removes recent items that are registered by every
application, which the user probably does not want since your application should
not alter recent resources from other applications.

Recent Chooser Dialog

GTK+ also provides a widget called Gtk .RecentChooserDialog, which displays recent
files in a convenient dialog. This widget implements the Gtk.RecentChooser interface,
so it is very similar in functionality to Gtk.RecentChooserMenu. In Listing 13-3, open_
recent_file shows how to allow the user to open a recent file with this widget.

New Gtk.RecentChooserDialog widgets are created in a similar way to dialogs
with Gtk.RecentChooserDialog(). This function accepts a title for the dialog, a parent
window, a Gtk.RecentManager widget to display, and pairs of buttons and response
identifiers.

Listing 13-3 introduces recent file filters. New Gtk.RecentFilter objects are created
with Gtk.RecentFilter.new(). Filters display only recent files that follow installed
patterns.

filter.set name("All Files")
filter.add pattern("*")
dialog.add filter(filter)

The next step is to set the name of the filter. This name is displayed in the combo
box where the user chooses which filter to use. There are many ways to create filters,
including with filter.add pattern(), which finds filters with matching patterns. The
asterisk character can be used as the wildcard. There are also functions for matching
MIME types, image file types, application names, group names, and ages in days. Next,
use recentchooser.add filter() to add the Gtk.RecentFilter to the recent chooser.

With the Gtk.RecentChooserDialog widgets, it is possible to choose multiple files
with recentchooser.set select multiple().If the user can select multiple files, you
want to use recentchooser.get_uris() to retrieve all of the selected files.

recentchooser.get uris(length)

This function also returns the number of elements in the list of strings.

396

CHAPTER 13 MORE GTK WIDGETS

Automatic Completion

You learned about the Gtk.Entry widget in Chapter 5, but GTK+ also provides the Gtk.
EntryCompletion object. Gtk.EntryCompletion is derived from GObject and provides
the user with automatic completion in Gtk.Entry. Figure 13-5 shows an example Gtk.
Entry that is providing the user with multiple selections. Note that the user also has the
option of ignoring the choices and entering an arbitrary string.

Enter a widget in the following GtkEntry:
g

GtkDialog
GtkWindow
GtkContainer
GtkWidget

Figure 13-5. Gtk.EntryCompletion automatic completion

Listing 13-4 implements a Gtk.Entry widget that asks you to enter the name of a
GTK+ widget. All of the strings in the Gtk.EntryCompletion widget that have the same
prefix as the entered text are displayed as choices. This example shows just how easy it is
to get automatic completion up and running.

Listing 13-4. Automatic Completion
#!/usr/bin/python3

import sys

import gi

gi.require version('Gtk', '3.0")

from gi.repository import Gtk, GObject

397

CHAPTER 13 MORE GTK WIDGETS
class AppWindow(Gtk.ApplicationhWindow):

def _init (self, *args, **kwargs):
super(). init_ (*args, **kwargs)
widgets = ["GtkDialog", "GtkWindow", "GtkContainer",
"GtkWidget"] self.set border width(10)
label = Gtk.Label.new("Enter a widget in the following GtkEntry:")
entry = Gtk.Entry.new()
Create a GtkListStore that will hold autocompletion
possibilities. types = (GObject.TYPE_STRING,)
store = Gtk.ListStore.new(types) for widget in widgets:
iter = store.append() store.set(iter, 0, widget)
completion = Gtk.EntryCompletion.new()
entry.set completion(completion)
completion.set model(store)

completion.set text column(0)

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)
vbox.pack start(label, False, False, 0)

vbox.pack start(entry, False, False, 0)

self.add(vbox)

class Application(Gtk.Application):

def _init (self, *args, **kwargs):
super(). init (*args, application id="org.example.myapp",
**kwargs)
self.window = None

def do _activate(self):
if not self.window:
self.window = AppWindow(application=self, title="Automatic
Completion")
self.window.show all()
self.window.present()

if _name__ == "_ main_":
app = Application()
app.run(sys.argv)

398

CHAPTER 13 MORE GTK WIDGETS

To implement a Gtk.EntryCompletion, you need to first create a new Gtk.ListStore
that displays the choices. The model in this example only has one textual column, but it
is acceptable to provide a more complex Gtk.ListStore as long as one column is of the
type GObject.TYPE_STRING.

New Gtk.EntryCompletion objects are created with Gtk.EntryCompletion.new().
You can then apply it to an existing Gtk.Entry widget with entry.set completion().
GTK+ takes care of displaying matches and applying the choices by default.

Next, completion.set model() applies the tree model to the Gtk.EntryCompletion
object. If there was already a model applied to the object, it is replaced. You also have
to use completion.set text column() to designate which column contains the string,
since models do not have to be only a single column. If you do not set the text column,
automatic completion will not work because the text column is set to -1 by default.

It is possible to display as much of the prefix as is common to all of the matches with
completion.set_inline completion().You should note that inline completion is case
sensitive, but automatic completion is not! If you are using this, you may want to set
completion.set popup single match(), which prevents the pop-up menu from being
displayed when there is only a single match.

You can use completion.set popup set width() to force the pop-up menu to be
the same width as the Gtk.Entry widget. This corresponds to Gtk.EntryCompletion’s
popupset_width property.

If there are a lot of matches, you may want to set the minimum match length with
completion.set minimum_key length(). This is useful when there is such a large
number of elements in the list that it would take a long time for the list to be rendered on
the screen.

Test Your Understanding

In this chapter’s exercise, you finish the text editing application that has been the
focus of multiple exercises in past chapters. It requires you to integrate the automatic
completion, printing, and recent file capabilities into your application.

Exercise 1: Creating a Full Text Editor

In this exercise, you complete the text editor that you have been creating in the last few
chapters. You add three new features to the application.

399

CHAPTER 13 MORE GTK WIDGETS

First, add the automatic completion feature, which should be implemented to
remember past searches in the search toolbar. The application has to remember
the past searches for only the current instance of the application runtimes. Next,
add printing support, which includes printing and print preview abilities. Printing
support can be easily implemented with the high-level Gtk.PrintOperation class.
Lastly, instruct the text editor to remember the last five files loaded using the Gtk.
RecentManager class.

So that you do not have to rewrite previous aspects of the application, you should use
the solution to a Chapter 11 exercise or download that solution from this book’s official
web site.

Summary

In this chapter, you learned about a number of widgets that did not quite fit into previous
chapters. These widgets and objects are summarized in the following list.

o Gtk.DrawingArea: An empty widget that is meant to allow you to
draw on its Gdk.Window object, which is also a Gdk.Drawable object.

o Gtk.Layout: This widget is like Gtk.DrawingArea, except it allows
you to embed widgets within its interface as well. It introduces
overhead, so you should| not use this widget if you want only drawing
capabilities.

e Gtk.Calendar: Display a single month for the chosen year. This
widget allows the user to select a date, and you can mark multiple
dates programmatically.

e Gtk.PrintOperation: A high-level printing API that is platform
independent. There are many other objects provided for
implementing printing support, but most actions should be handled
with the Gtk.PrintOperation class so that it functions across
multiple platforms.

400

CHAPTER 13 MORE GTK WIDGETS

o Gtk.RecentManager: A simple class for managing lists of recent
files. These lists can be shared across applications. Menu and dialog
widgets are provided for displaying recent files.

o Gtk.EntryCompletion: Provide automatic completion support to
Gtk.Entry widgets. The choices are composed of a Gtk.ListStore
object filled with possible matches.

You have now learned all of the topics that this book intended to introduce. In the
next chapter, you are presented with five complete applications that take advantage of
topics that were covered in the past 12 chapters.

401

CHAPTER 14

Integrating Everything

So far, you have had an in-depth view of everything that you can do with GTK+ and
associated technologies. In this chapter, we're going to put this knowledge to work by
building a few applications.

This chapter introduces five full applications: the file browser that was designed in
Chapter 11, a calculator, a ping utility, a hangman game, and a calendar. However, the
source code for the examples is not contained in this chapter. The code for each of the
applications in this chapter can be downloaded from www. gtkbook. com.

I'will conclude this final chapter of the book by offering pointers to other learning
resources so that you can continue expanding your GTK+ knowledge.

File Browser

In Chapter 11, you implemented the user interface of a file browser application in Glade.
The user interface was dynamically loaded, and all the signals were autoconnected with
Gtk.Builder.

At the end of Chapter 11, you were told that the callback methods would be
implemented in this chapter, and we will do so now. Figure 14-1 shows the file browser
application when it is first launched. It is displaying the root folder.

403
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_14

http://www.gtkbook.com

CHAPTER 14 INTEGRATING EVERYTHING

HE
& > %] @ ® 5
Back Forward Up Refresh Home Delete Information
Current Location: | /home/dashley/ad/git/PyGTK/tmp/en-US/html & Go
File Name

.

(£ common_Content

|| PyGTK_Development-Basic_Widgets.html

|| PyGTK_Development-Dynamic_User_Interfaces-Summary.html
|_| PyGTK_Development-Tree_View_Widget-Summary.html

|| PyGTK _Development-Tree_View_Widget-ReferencingRows.html
|_| PyGTK_Development-Dialogs-Testing.html

|_| PYGTK_Development-Integration-Calendar.html

|| PyGTK_Development-Basic_Widgets-Testing.html

|| PyGTK_Development-Menus_And_Toolbars-StatusBar.html

|_| PyGTK_Development-Some_Simple_GTK_Applications-Buttons.html|
|_| PyGTK_Development-Menus_And_Toolbars-MenuBars.html

|| PyGTK_Development-Basic_Widgets-Additional_Buttons.html
|| PyGTK_Development-More_GTK_Widgets.html

|_| PyGTK_Development-Some_Simple_GTK_Applications.html

|_| PyGTK_Development-Getting_Started.html|

Figure 14-1. The file browser using Gtk.TreeView

The file browsing capabilities are of special interest in this application. They
are very similar to those in Chapter 9’s “Exercise 1: File Browser” section. In that
exercise, you created a simple application using a Gtk.TreeView widget that could
browse the user’s file system. The current location of the file browser is stored in a
linked list from which the full path can be built. Each node in the list is one part of
the path, and the directory separator is placed between each string to build the full
path. A Gtk.Entry widget is also provided to allow the user to edit the path with
the keyboard.

Navigation through the file system can be done using a few different methods. The
location can be entered in the address bar, although the validity of the location must be
verified when the Gtk.Entry widget is activated. In addition to this method, the user can

404

CHAPTER 14 INTEGRATING EVERYTHING

use the Back, Forward, Up, or Home toolbar buttons to navigate through the browsing
history, move to the parent directory, or go to the home directory, respectively. Lastly,
Gtk.TreeView’s row-activated signal allows the user to move into the selected directory
or view information about the selected file.

A Gtk.StatusBar widget is placed along the bottom of the window. It keeps track of
the total number of items in the current directory and the total size of these items. The
sources for this example, along with the four other applications in this chapter, can be
downloaded from www. gtkbook . com.

Calculator

A calculator is a simple application that is implemented in most GUI programming
books. This example is meant to show you just how easy it is to implement a calculator.
Figure 14-2 is a screenshot of the application.

| |]
S G i S

585

7 8 9 / Clr
< 5 6 X +/-
1 2 3 - Sqrt
0 = + Xy

Figure 14-2. A simple calculator application

405

http://www.gtkbook.com

CHAPTER 14 INTEGRATING EVERYTHING

This calculator application was designed in Glade, so the user interface was
completed with absolutely no code. Since most of the widgets in this example are Gtk.
Button widgets, the clicked and destroy signals were the only two needed.

The calculator allows the user to enter numbers with an optional decimal point,
perform four basic operations (add, subtract, multiply, and divide), negate numbers, and
calculate square roots and exponents. To cut down on the number of callback methods
needed, all the numbers and the decimal place were connected to a single callback
method called num_clicked(), and the four basic operations and the power operations
were connected to one another. This allows you to take advantage of the fact that these
groups of operations need a lot of similar code to work.

When a number or the decimal point button is clicked, the character is
appended to the end of the current value, although the length of the number
is restricted to ten digits. When an operation button is clicked, the operation is
performed, and the new value is stored. It also sets a flag called clear_flag that
tells the calculator that a new number should be started when the user presses a
number or decimal place.

Ping Utility

In this program, you learn how to use channels in the GLib library to communicate
with applications through pipes. A ping utility application is displayed in Figure 14-3;
it allows the user to ping an address a specific number of times or continually until the
application is stopped.

406

CHAPTER 14 INTEGRATING EVERYTHING

e

o Mt | Mol |
Address: | www.google.com
Pings: (o) 3 — 4+ | requests () Continuous requests

Seq Address TTL Time Units
1 dfw28s01-in-x04.1e100.net (2607 53 9.80 ms
2 dfw28s01-in-x04.1e100.net (2607 53 9.41 ms
3 dfw28s01-in-x04.1e100.net (2607 53 101 ms

&L Ping @' Stop ¥ Close

Figure 14-3. A ping utility application

In this application, the GLib spawn_async_with_pipes() function is used to fork an
instance of the ping application with the specified address. The shell command received
by this function was parsed with the shell parse argv() function so that it was in
the correct format. The Ping button is disabled, which prevents the user from running
multiple instances of the child process.

After spawning the child process, the output pipe is used to create a new Channel
object that watches the pipe for read data. When data is ready to be read, it is parsed so
that statistics for each ping can be displayed in a Gtk.TreeView widget. This continues
for the specified number of times or until the user stops the child.

When a child process is running, a Stop button is enabled, which allows the user
to kill the child process before it completes. This function simply calls the following
instance of the os.killpg() function, which forces the child process to close.

407

CHAPTER 14 INTEGRATING EVERYTHING

When the process is killed, the pipe is destroyed, which causes the channel to shut
down in the watch function. This ensures that we are able to reuse the same Channel
object for the next child process.

Calendar

The last application in this chapter creates a calendar that organizes events for the
user. It uses the Gtk.Calendar widget to allow the user to browse dates. Gtk.TreeView
displays events on the given day. Figure 14-4 shows this calendar application.

BER)

5 =] + = P
New Open Add Event Remove Clear All
Createoropen acalendar.. | cyontname Location Event Time
\ June < 2018 >
MonTueWedThu Fri Sat
{ RERG

3 4 5 & 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 EE 29 30

Figure 14-4. A calendar application with two events

Most of the code to create the calendar application should look very familiar,
because it uses functions introduced in previous chapters. In addition to the familiar
functions, the application uses the XML parser provided by XML-SAX to open calendar
files, which are stored as XML files. An example calendar file that contains one event is
shown in Listing 14-1.

408

CHAPTER 14 INTEGRATING EVERYTHING

Listing 14-1. Calendar File

<calendar>
<event>
<name>Release of the Book</name>
<location>Everywhere</location>
<day>16</day>
<month>3</month>
<year»>2007</year>
<start>All Day</start>
<end></end>
</event>
</calendar>

A new calendar is created by clicking the New toolbar button, which asks for a
calendar file name and location. The calendar is saved every time you add or remove
an event, so a Save button is not provided. You can also open an existing calendar by
pressing the Open toolbar button.

Markup Parser Functions

To open a calendar, this application uses XML-SAX’s parser to retrieve the contents of the
file. This parser is very easy to use and supports basic XML files. The first thing you need
to do to use the parser is define a new xmlparser object. This object has many attributes,
including four user-defined functions that you need to code yourself; I cover them one at
atime. Any of these functions can be set to None.

The first method, StartElement(), is called for every open tag, such as <calendar>
and <event>. This function receives the name of the tag element along with arrays of
attribute names and values. This allows you to differentiate between starting elements,
checking for attributes when appropriate. In the calendar application, this function is
used to free all the temporary data stored for the previous event, creating a clean slate for
the next event.

StartElement(name, attributes)

409

CHAPTER 14 INTEGRATING EVERYTHING

The next method, EndElement (), is called for every close tag, such as </calendar>
and </event>. It is also called for tags that have no close tag, such as <tag/>. Similar to
the previous method, it accepts the tag name. In the calendar application, it is used to
add the event to the global tree if the </event> tag has been reached.

EndElement (name)

The CharacterData() method is called for the data found between StartElement()
and EndElement () calls. It accepts the text between the two tags as well as the length of
the text. This function is called in the calendar application to read the content of an event.

CharacterData(data)

Note The CharacterData() method is not only called for tags that contain
strings but also for tags that call other tags; therefore, this function may have a
text parameter filled with spaces and new line characters!

Parsing the XML File

The parsing of the XML text is done with an xmlparser object. You can create a new
parser with xml.sax.parse(filename, contenthandler):

xml.sax.parse(filename, contenthandler))

This function creates and returns a new xmlparser object.
XML-SAX can also do XML namespace processing for you. See the documentation

for more information.

Further Resources

Congratulations! You have now completed reading this book, and you know enough
to develop and manage complex GTK+ applications. However, you may be wondering
where you should go from here. There are a number of libraries and resources that will
become indispensable as you begin developing applications on your own.

The first resource is the book’s web site (www. gtkbook. com). This site includes links
to online resources for GTK + developers, as well as tutorials on topics that did not fit

410

http://www.gtkbook.com

CHAPTER 14 INTEGRATING EVERYTHING

in this book. You can use it as a starting point for finding help with GTK+ application
development.

Another great resource is the GTK+ web site (www.gtk.org). This site includes
information about mailing lists, downloads, and bug tracking for GTK+. You can find
up-to-date documentation on this site as well.

The GNOME developer’s web site (http://developer.gnome.org) is also an ideal
place to learn more. In addition to GTK+ and its supporting libraries, there are a number
of other libraries used to develop applications for GNOME that you will continually run
across. The following list briefly summarizes a few of these libraries.

o The PyGObject API Reference (http://lazka.github.io/pgi-docs)
is a one-stop web site for all things related to Python, GNOME, GTK+,
ATK, GDK, and many other libraries.

o The Pycairo API Reference (http://pycairo.readthedocs.io/
en/latest/reference/index.html) has documentation for all the
Python APIs for Cairo.

o The Python web site (waw. python.org) has documentation for all
versions of Python 2.x and 3.x. It includes references, tutorials,
how-to’s, FAQs, PyPi, and information about the Python Software
Foundation.

Summary

You have become familiar with a large portion of GTK+ and its supporting libraries. This
knowledge can be used to implement graphical user interfaces for applications on many
platforms.

This book is intended to give you a thorough understanding of GTK+, and I
hope that it will continue to be a valuable resource as you develop applications. The
appendixes are indispensable references for topics that are not always thoroughly
documented in the APT documentation; they can be used even when you become an
expert. The last appendix provides short descriptions of exercise solutions and tips on
how to complete them.

Now that you have this knowledge, practice and experience will help you become a
great graphical application developer. You have everything you need to continue on your
own. [hope you have had as much fun reading this book as I have had writing it!

411

http://www.gtk.org
http://developer.gnome.org
http://lazka.github.io/pgi-docs
http://pycairo.readthedocs.io/en/latest/reference/index.html
http://pycairo.readthedocs.io/en/latest/reference/index.html
http://www.python.org

APPENDIX A

GTK+ Properties

Python provides the property system used by GTK+, which allows you to customize how
widgets interact with the user and how they are drawn on the screen. In the following
sections, you are provided with a complete reference to the widget and child properties
available in GTK+ 3.

GTK+ Properties

Every class derived from GObject can create any number of properties. In GTK+, these
properties store information about the current state of the widget. For example,
Gtk.Button has a property called relief that defines the type of relief border used by the
button in its normal state.

In the following code, object.relief was used to retrieve the current value stored
by the button’s relief property. This method accepts a single property name and
returns the value of the property. You can also use object.relief(value) to set each
object property.

relief = button.props.relief

There are a great number of properties available to widgets; Tables A-1 through A-132
provide a full properties list for each widget and object in GTK+ 3. Remember that
object properties are inherited from parent widgets, so you should investigate a widget’s
hierarchy for a full list of properties. For more information on each object, you should
reference the API documentation.

413
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0

APPENDIXA GTK+ PROPERTIES

Caution In the GTK+ C API, property names may contain one or more dashes.
Since these dashes are interpreted by Python as the subtraction operator, all
Python property names substitute underscores for dashes in all property names.
For instance, the property name logo-icon-name becomes logo_icon_name in a
Python program.

Table A-1. Gtk.AboutDialog Properties

Property Type Description

artists string A list of individuals who helped create the artwork used by the
application. This often includes information such as an e-mail
address or URL for each artist, which is displayed as a link.

authors string A list of individuals who helped program the application. This
often includes information such as an e-mail address or URL
for each programmer, which is displayed as a link.

comments string A short string that describes the general functionality of the
program. This is displayed in the main dialog window, so it
should not be too long.

copyright string Copyright information about the application. This is displayed
in the main dialog window, so it should not be too long.
An example copyright string would be “(C) Copyright 2018
Author”.

documenters string A list of individuals who helped write documentation for the
application. This often includes information such as an e-mail
address or URL for each documenter, which is displayed
as a link.

license string The content of the license for the application. This is displayed
with a Gtk. TextView widget in a secondary dialog, so the
length of the string does not matter.

license-type Gtk.License The license type of the program.

(continued)

414

APPENDIXA GTK+ PROPERTIES

Table A-1. (continued)

Property Type Description

logo GdkPixbuf An image that is displayed as the application’s logo in the main
window. If this is not set, window.get default icon_
list() is used.

logo-icon-name string An icon name from the icon theme to use as the logo in the
main About dialog. If this is set, it takes precedence over the
logo property.

program-name string The name of the application to display in the main

About dialog. If you do not set this property, GLib.get
application_name() is used.

translator-credits string A string that holds information about the translator(s) for the
current language. It should be set as translatable, so each
translator can provide a custom string. This often includes
information such as an e-mail address or URL for each
translator, which is displayed as a link.

version string The version of the application that the user is running.

website string A URL to the homepage for the application. This string must be
prefixed with http://.

website-label string A label to display in place of the web site URL. If this is not set,
website is set as the URL label.

wrap-license boolean If set to True, the license content is wrapped.

Table A-2. GtkAccelGroup Properties

Property Type Description
is-locked boolean Is the accel group locked.
modifier-mask Gdk.ModifierType Modifier Mask.

415

APPENDIXA GTK+ PROPERTIES

Table A-3. Gtk.AccelLabel Properties

Property Type Description

accel-closure GObject.Closure The closure that should be watched for changes to the
keyboard accelerator.

accel-widget Gtk.Widget The widget that should be watched for changes to the
keyboard accelerator.

Table A-4. Gtk.Accessible Properties

Property Type Description

widget Gtk.Widget The widget referenced by this accessible.

Table A-5. Gtk.Adjustment Properties

Property Type Description

lower double The minimum double value that the adjustment can reach.

page-increment double The increment that is shifted when moving one page forward or
backward.

page-size double The size of a page of the adjustment. You should set this to zero
when you use Gtk.Adjustment for Gtk.SpinButton.

step-increment double The increment that is moved in an individual step. For example,
with Gtk.SpinButton, a single step is taken when an arrow
button is pressed.

upper double The maximum double value that the adjustment can reach.
value double The current value of the adjustment, which is always between lower
and upper.

416

APPENDIXA GTK+ PROPERTIES

Table A-6. Gtk.AppChooserButton Properties

Property Type Description

heading string The text to show at the top of the dialog.
show-default-item boolean Whether the combobox should show the default application on top.

show-dialog-item boolean Whether the combobox should include an item that triggers a
Gtk.AppChooserDialog.

Table A-7. Gtk.AppChooserDialog Properties

Property Type Description
gfile Gio.File The Gio.File used by the app chooser dialog.
heading string The text to show at the top of the dialog.

Table A-8. Gtk.AppChooserWidget Properties

Property Type Description

default-text string The default text appearing when there are no applications.
show-all boolean Whether the widget should show all applications.
show-default boolean Whether the widget should show the default application.
show-fallback boolean Whether the widget should show fallback applications.
show-other boolean Whether the widget should show other applications.

show-recommended boolean Whether the widget should show recommended applications.

Table A-9. Gtk.Application Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.
app-menu Gio.MenuModel The Gio.MenuModel for the application menu.
menubar Gio.MenuModel The Gio.MenuModel for the menubar.
register-session boolean Register with the session manager.

417

APPENDIXA GTK+ PROPERTIES

Table A-10. Gtk.ApplicationWindow Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.

show-menubar boolean True if the window should show a menubar at the top of the
window.

Table A-11. Gtk.Arrow Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.
arrow-type Gtk.ArrowType The direction the arrow should point.
shadow-type Gtk.ShadowType Appearance of the shadow surrounding the arrow.

Table A-12. Gtk.AspectFrame Properties

Property Type Description

obey-child boolean Force aspect ratio to match that of the frame’s child.
ratio float Aspect ratio if obey_child is False.

shadow-type float Appearance of the shadow surrounding the arrow.
xalign float X alignment of the child.

yalign float Y alignment of the child.

Table A-13. Gtk.Assistant Properties

Property Type Description

use-header-bar integer Use Header Bar for actions.

418

APPENDIXA GTK+ PROPERTIES

Table A-14. Gtk.Box Properties

Property Type Description

baseline-position Gtk.BaselinePosition The position of the baseline aligned widgets if
extra space is available.

homogeneous boolean Whether the children should all be the same size.

spacing integer The amount of space between children.

Table A-15. Gtk.Builder Properties

Property Type Description

translation-domain string The translation domain used by gettext().

Table A-16. Gtk.Button Properties

Property Type Description

always-show-image boolean Whether the image is always shown.

image Gtk.Widget Child widget to appear next to the button text.

image-position Gtk.PositionType The position of the image relative to the text.

label string Text of the label widget inside the button, if the
button contains a label widget.

relief Gtk.ReliefStyle The border relief style.

use-underline boolean If set, an underline in the text indicates the next
character should be used for the mnemonic
accelerator key.

Table A-17. Gtk.ButtonBox Properties

Property Type Description

layout-style Gtk.ButtonBoxStyle How to lay out the buttons in the box. Possible values
are spread, edge, start and end.

419

APPENDIXA GTK+ PROPERTIES

Table A-18. Gtk.Calendar Properties

Property Type Description

day integer The selected day (as a number between 1 and 31, or 0 to
unselect the current day.

detail-height-rows integer Details height in rows.

detail-width-chars integer Details width in characters.

month integer The selected month (as a number between 0 and 11).

no-month-change boolean If True, the selected month cannot be changed.

show-day-names boolean If True, day names are displayed.

show-details boolean If True, details are shown.

show-heading boolean If True, a heading is displayed.

show-week-numbers boolean If True, week numbers are displayed.

year integer The selected year.

Table A-19. Gtk.CellArea Properties

Property Type Description

edit-widget Gtk.CellEditable The widget currently editing the edited cell.
edited-cell Gtk.CellEditable The cell that is currently being edited.
focus-cell Gtk.CellEditable The cell, which currently has focus.

Table A-20. Gtk.CellAreaBox Properties

Property Type Description

spacing integer Space that is inserted between cells.

420

APPENDIXA GTK+ PROPERTIES

Table A-21. Gtk.CellAreaContext Properties

Property

Type

Description

area

minimum-height

minimum-width

natural-height

natural-width

Gtk.CellArea

integer
integer
integer

integer

The Cell Area this context was created for.
Minimum cached height.

Minimum cached width.

Natural cached height.

Natural cached width.

Table A-22. Gtk.CellRenderer Properties

Property Type Description

cell-background string Cell background color as a string.

cell-background-set boolean Whether the cell background color is set.

minimum-width integer Minimum cached width.

editing boolean Whether the cell renderer is currently in
editing mode.

height integer The fixed height.

is-expanded boolean Row is an expander row, and is expanded.

is-expander boolean Row has children.

mode Gtk.CellRendererMode Editable mode of the Gtk.CellRenderer.

sensitive boolean xlib.Display the cell sensitive.

visible boolean x1ib.Display the cell.

width integer The fixed width.

xalign float The x-align.

xpad integer The xpad.

yalign float The y-align.

ypad integer The ypad.

421

APPENDIXA GTK+ PROPERTIES

Table A-23. Gtk.CellRendererAccel Properties

Property Type

Description

accel-key integer
accel-mode Gtk.CellRendererAccelMode
accel-mods Gdk.ModifierType

keycode integer

The keyval of the accelerator.
The type of accelerators.
The modifier mask of the accelerator.

The hardware keycode of the accelerator.

Table A-24. Gtk.CellRendererCombo Properties

Property Type Description

has-entry boolean If False, don't allow to enter strings other than the chosen ones.
model Gtk.TreeModel The model containing the possible values for the combo box.
text-column integer A column in the data source model to get the strings from.

Table A-25. Gtk.CellRendererPixbuf Properties

Property Type Description

gicon Gio.Icon The Gio.Icon being displayed.
icon-name string The name of the icon from the icon theme.
pixbuf GdkPixbuf.Pixbuf The pixbuf to render.

pixbuf-expander-closed GdkPixbuf.Pixbuf
pixbuf-expander-open GdkPixbuf.Pixbuf

stock-detail string
stock-size integer
surface cairo.Surface

Pixbuf for closed expander.
Pixbuf for open expander.
Render detail to pass to the theme engine.

The Gtk.IconSize value that specifies the
size of the rendered icon.

The surface to render.

422

APPENDIXA GTK+ PROPERTIES

Table A-26. Gtk.CellRendererProgress Properties

Property Type Description

inverted boolean Invert the direction in which the progress bar grows.

text string Text on the progress bar.

text-xalign float The horizontal text alignment, from O (left) to 1 (right). Reversed for RTL
layouts.

text-yalign float The vertical text alignment, from 0 (top) to 1 (bottom).

value integer Value of the progress bar.

Table A-27. Gtk.CellRendererSpin Properties

Property Type Description

adjustment Gtk.Adjustment The adjustment that holds the value of the spin button.
climb-rate float The acceleration rate when you hold down a button.

digits integer The number of decimal places to display.

Table A-28. Gtk.CellRendererSpinner Properties

Property Type Description

active boolean Whether the spinner is active (i.e.. shown) in the cell.

pulse integer Pulse of the spinner.

size Gtk.IconSize The Gtk.IconSize value that specifies the size of the rendered
spinner.

423

APPENDIXA GTK+ PROPERTIES

Table A-29. Gtk.CellRendererText Properties

Property Type Description

align-set boolean Whether this tag affects the alignment
mode.

alignment Pango.Alignment How to align the lines.

attributes Pango.AttrListe A list of style attributes to apply to the text
of the renderer.

background Gdk .RGBA Background color as a Gdk . RGBA.

background-set boolean Whether this tag affects the background
color.

editable boolean Whether the text can be modified by the
user.

editable-set boolean Whether this tag affects text editability.

ellipsize Pango.EllipsizeMode The preferred place to ellipsize the string,
if the cell renderer does not have enough
room to display the entire string.

family string Name of the font family, e.g. Sans,
Helvetica, Times, Monospace.

family-set boolean Whether this tag affects the font family.

font string Font description as a string, e.g. “Sans
Italic 12”.

font-desc Pango.FontDescription Font description as a Pango.
FontDescription struct.

foreground string Foreground color as a string.

foreground-rgha Gdk .RGBA Foreground color as a Gdk . RGBA.

foreground-set bool Whether this tag affects the foreground
color.

language-set boolean Whether this tag affects the language that

the text is rendered as.

424

(continued)

Table A-29. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

language-set boolean Whether this tag affects the language that
the text is rendered as.

markup string Marked up text to render.

max-width-chars integer The maximum width of the cell, in
characters.

placeholder-text string Text rendered when an editable cell is
empty.

rise integer Offset of text above the baseline (below
the baseline if rise is negative).

rise-set boolean Whether this tag affects the rise.

scale float Font scaling factor.

scale-set boolean Whether this tag scales the font size by a
factor.

single-paragraph-mode boolean Whether to keep all text in a single
paragraph.

size integer Font size.

Size-points float Font size in points.

size-set boolean Whether this tag affects the font size.

stretch Pango.Stretch Font stretch.

stretch-set
strikethrough
strikethrought-set
style

style-set

text

underline

boolean
boolean
boolean
Pango.Style
boolean

string

Pango.Underline

Whether this tag affects the font stretch.
Whether to strike through the text.
Whether this tag affects strikethrough.
Font style.

Whether this tag affects the font style.
Text to render.

Style of underline for this text.

(continued)

425

APPENDIXA GTK+ PROPERTIES

Table A-29. (continued)

Property Type Description

underline-set boolean Whether this tag affects underlining.

variant Pango.Variant Font variant.

variant-set boolean Whether this tag affects the font variant.

weight integer Font weight.

weight-set boolean Whether this tag affects the font weight.

width-chars integer The desired width of the label, in
characters.

wrap-mode Pango.WrapMode How to break the string into multiple lines,
if the cell renderer does not have enough
room to display the entire string.

wrap-width integer The width at which the text is wrapped.

Table A-30. Gtk.CellRendererToggle Properties

Property Type Description

activatable boolean The toggle button can be activated.
active boolean The toggle state of the button
inconsistent boolean The inconsistent state of the button.
radio integer Draw the toggle button as a radio button.

426

APPENDIXA GTK+ PROPERTIES

Table A-31. Gtk.CellView Properties

Property Type Description

background string Background color as a string.
background-rgbha Gdk.RGBA Background color as a Gdk . RGBA.
background-set boolean Whether this tag affects the background color.
cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

cell-area-context Gtk.CellAreaContext The Gtk.CellAreaContext used to compute
the geometry of the cell view.

draw-sensitive boolean Whether to force cells to be drawn in a sensitive
state.

fit-model boolean Whether to request enough space for every row
in the model.

model Gtk.TreeModel The model for cell view.

Table A-32. Gtk.CheckMenultem Properties

Property Type Description

active boolean Whether the menu item is checked.

draw-as-radio boolean Whether the menu item looks like a radio menu item.
inconsistent boolean Whether to display an “inconsistent” state.

Table A-33. Gtk.ColorButton Properties

Property Type Description

alpha integer The selected opacity value (0 fully transparent, 65535 fully opaque).
show-editor ~ boolean ~ Whether to show the color editor right away.

title string The title of the color selection dialog.

427

APPENDIXA GTK+ PROPERTIES

Table A-34. Gtk.ColorChooserDialog Properties

Property Type Description

show-editor boolean Show editor.

Table A-35. Gtk.ColorChooserWidget Properties

Property Type Description

show-editor boolean Show editor.

Table A-36. Gtk.ColorSelection Properties

Property Type Description

current-alpha integer The current opacity value (0 fully transparent, 65535 fully opaque).
current-rgba Gdk .RGBA The current RGBA color.

has-opacity-control boolean Whether the color selector should allow setting opacity.
has-palette boolean Whether a palette should be used.

Table A-37. Gtk.ColorSelectionDialog Properties

Property Type Description

cancel-button Gtk.Widget The cancel button of the dialog.
color-selection Gtk.Widget The color selection embedded in the dialog.
help-button Gtk.Widget The help button of the dialog.

ok-button Gtk.Widget The OK button of the dialog.

428

Table A-38. Gtk.ComboBox Properties

APPENDIXA GTK+ PROPERTIES

Property Type Description

active integer The item that is currently active.

active-id string The value of the id column for the active row.

button-sensitivity Gtk.SensitivityType Whether the drop-down button is sensitive
when the model is empty.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

column-span-column integer

entry-text-column integer
has-entry boolean
has-frame boolean
id-column integer
model Gtk.TreeModel

popup-fixed-width boolean

popup-shown boolean
row-span-column integer
wrap-width integer

Gtk.TreeModel column containing the
column span values.

The column in the combo box’s model to
associate with strings from the entry if the
combo was created with Gtk.ComboBox.
has_entry =True.

Whether combo box has an entry.

Whether the combo box draws a frame
around the child.

The column in the combo box’s model that
provides string IDs for the values in the
model.

The model for the combo box.

Whether the pop-up’s width should be a fixed
width matching the allocated width of the
combo box.

Whether the combo’s drop-down is shown.

Gtk.TreeModel column containing the row
span values.

Wrap width for laying out the items in a grid.

429

APPENDIXA GTK+ PROPERTIES

Table A-39. Gtk.Container Properties

Property

Description

border-width

The width of the empty border outside the containers children.

Table A-40. Gtk.Dialog Properties

Type Description

use-header-bar integer Use Header Bar for actions.

Table A-41. Gtk.Entry Properties

Property

Type

Description

activates-default

attributes

buffer

caps-lock-warning

completion

cursor-position

editable

has-frame

im-module

input-hints

boolean

Pango.AttrList

Gtk.EntryBuffer

boolean

Gtk.EntryCompletion

integer

boolean

boolean

string
Gtk.InputHints

Whether to activate the default widget
(such as the default button in a dialog)
when Enter is pressed.

A list of style attributes to apply to the
text of the entry.

Text buffer object that actually stores
entry text.

Whether password entries show a
warning when Caps Lock is on.

The auxiliary completion object.

The current position of the insertion
cursor in chars.

Whether the entry contents can be
edited.

False removes outside bevel from
entry.

Which IM module should be used.

Hints for the text field behavior.

430

(continued)

Table A-41. (continued)

APPENDIXA GTK+ PROPERTIES

Property

Type

Description

input-purpose

max-length

overwrite-mode

placeholder-text

populate-all

primary-icon-activatable

primary-icon-gicon
primary-icon-name
primary-icon-pixbuf
primary-icon-sensitive

primary-icon-storage-type

primary-icon-tooltip-markup

primary-icon-tooltip-text

progress-fraction

progress-pulse-step

scroll-offset

Gtk.InputPurpose

integer

boolean

string

boolean

boolean

Gio.Icon

string
GdkPixbuf.Pixbuf
boolean

Gtk.ImageType

string

string

float

float

integer

Purpose of the text field.

Maximum number of characters for
this entry. Zero if no maximum.

Whether new text overwrites existing
text.

Show text in the entry when it's empty
and unfocused.

Whether to emit “populate-popup”
signal for touch pop-ups.

Whether the primary icon is
activatable.

Gio.Icon for primary icon.
Icon name for primary icon.
Primary pixbuf for the entry.
Whether the primary icon is sensitive.

The representation being used for
primary icon.

The contents of the tooltip on the
primary icon.

The contents of the tooltip on the
primary icon.

The current fraction of the task that’s
been completed.

The fraction of total entry width to move
the progress bouncing block for each call
to Gtk.Entry.progress pulse().

Number of pixels of the entry scrolled
off the screen to the left.

(continued)

431

APPENDIXA GTK+ PROPERTIES

Table A-41. (continued)

Property Type Description

secondary-icon-activatable boolean Whether the secondary icon is
activatable.

secondary-icon-gicon Gio.Icon Gio.Icon for secondary icon.

secondary-icon-name string Icon name for secondary icon.

secondary-icon-pixbuf GdkPixbuf.Pixbuf Secondary pixbuf for the entry.

secondary-icon-sensitive boolean Whether the secondary icon is
sensitive.

secondary-icon-storage-type ~ Gtk.ImageType The representation being used for
secondary icon.

secondary-icon-tooltip-markup string The contents of the tooltip on the
secondary icon.

secondary-icon-tooltip-text string The contents of the tooltip on the
secondary icon.

selection-bound integer The position of the opposite end of the
selection from the cursor in chars.

show-emoji-icon boolean Whether to show an icon for Emoji.

tabs Pango.TabArray A list of tabstop locations to apply to
the text of the entry.

text string The contents of the entry.

text-length integer Length of the text currently in the entry.

truncate-multiline boolean Whether to truncate multiline pastes
to one line.

visibility boolean False displays the “invisible str” instead
of the actual text (password mode).

width-chars integer Number of characters to leave space
for in the entry.

xalign float The horizontal alignment, from 0 (left)

to 1 (right). Reversed for RTL layouts.

432

APPENDIXA GTK+ PROPERTIES

Table A-42. Gtk.EntryBuffer Properties

Property Type Description

length integer Length of the text currently in the buffer.

max-length integer Maximum number of characters for this entry. Zero if no maximum.
text string The contents of the buffer.

Table A-43. Gtk.EntryCompletion Properties

Property Type Description
cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.
inline-completion boolean Whether the common prefix should be inserted

automatically.

inline-selection boolean If set to True, the prefix that is common to all
choices is added to the text. For this property to
work, text-column must be set.

minimum-key-length integer Minimum length of the search key in order to look
up matches.

model Gtk.TreeModel The model to find matches in.

popup-completion boolean Whether the completions should be shown in a pop-
up window.

popup-set-width boolean If True, the pop-up window has the same size as
the entry.

popup-single-match boolean If True, the pop-up window appears for a single
match.

text-column integer The column of the model containing the strings.

433

APPENDIXA GTK+ PROPERTIES

Table A-44. Gtk.EventBox Properties

Property Type Description

above-child boolean Whether the event-trapping window of the eventbox is above the
window of the child widget as opposed to below it.

visible-window boolean ~ Whether the event box is visible, as opposed to invisible and only used
to trap events.

Table A-45. Gtk.EventController Properties

Property Type

Description

propagation-phase Gtk.PropagationPhase Propagation phase at which this controller is run.

widget Gtk.Widget Widget the gesture relates to.

Table A-46. Gtk.Expander Properties

Property Type Description

expanded boolean Whether the expander has been opened to reveal the child
widget.

label string Text of the expander’s label.

label-fill boolean Whether the label widget should fill all available horizontal space.

label-widget Gtk.Widget

resize-toplevel boolean

use-markup boolean

use-underline boolean

A widget to display in place of the usual expander label.

Whether the expander resizes the top-level window upon
expanding and collapsing.

The text of the label includes XML markup. See Pango.parse
markup().

If set, an underline in the text indicates the next character should
be used for the mnemonic accelerator key.

434

APPENDIXA GTK+ PROPERTIES

Table A-47. Gtk.FileChooserButton Properties

Property Type Description

dialog Gtk.FileChooser The file chooser dialog to use.

title string The title of the file chooser dialog.

width-chars integer The desired width of the button widget, in characters.

Table A-48. Gtk.FileChooserNative Properties

Property Type Description
accept-label string The label on the accept button.
cancel-label string The label on the cancel button.

Table A-49. Gtk.FileChooserWidget Properties

Property Type Description
search-mode boolean Search mode.
subtitle string Subtitle.

Table A-50. Gtk.FlowBox Properties

Property Type Description

activate-on-single-click boolean Activate row on a single click.

column-spacing integer The amount of horizontal space between two
children in pixels.

homogeneous boolean Whether the children should all be the same size.

max-children-per-line integer The maximum amount of children to request
space for consecutively in the given orientation.

min-children-per-line integer The minimum number of children to allocate
consecutively in the given orientation.

row-spacing integer The amount of vertical space between two
children.

selection-mode Gtk.SelectionMode The selection mode.

435

APPENDIXA GTK+ PROPERTIES

Table A-51. Gtk.FontButton Properties

Property Type Description

show-size boolean ~ Whether selected font size is shown in the label.
show-style boolean Whether the selected font style is shown in the label.
title string The title of the font chooser dialog.

Whether the label is drawn in boolean Whether the label is drawn in the selected font.
the selected font

use-size boolean Whether the label is drawn with the selected font size.

Table A-52. Gtk.FontSelection Properties

Property Type Description
font-name string The string that represents this font.
preview-text string The text to display in order to demonstrate the selected font.

Table A-53. Gtk.Frame Properties

Property Type Description

label string Text of the frame’s label.

label-widget Gtk.Widget A widget to display in place of the usual frame label.
label-xalign float The horizontal alignment of the label.

shadow-type Gtk.ShadowType Appearance of the frame border.

436

APPENDIXA GTK+ PROPERTIES

Table A-54. Gtk.GLArea Properties

Property Type Description

auto-render boolean Whether the Gtk.GLArea renders on each redraw.
context Gdk.GLContext The GL context.

has-alpha boolean Whether the color buffer has an alpha component.
has-depth-buffer boolean Whether a depth buffer is allocated.
has-stencil-buffer ~ boolean Whether a stencil buffer is allocated.

use-es boolean Whether the context uses OpenGL or OpenGL ES.

Table A-55. Gtk.Gesture Properties

Property Type Description
n-points integer Number of points needed to trigger the gesture.
window Gdk .Window Gdk .Window to receive events about.

Table A-56. Gtk.GestureLongPress Properties

Property Type Description

delay-factor float Factor by which to modify the default timeout.

Table A-57. Gtk.GesturePan Properties

Property Type Description

orientation Gtk.Orientation Allowed orientations.

Table A-58. Gtk.GestureSingle Properties

Property Type Description

button integer Button number to listen to.

exclusive boolean Whether the gesture is exclusive.

touch-only boolean Whether the gesture handles only touch events.

437

APPENDIXA GTK+ PROPERTIES

Table A-59. Gtk.Grid Properties

Property Type Description
baseline-row integer ~ The row to align to the baseline when valign is Gtk.Align.
BASELINE.

column-homogeneous boolean If True, the columns are all the same width.

column-spacing integer ~ The amount of space between two consecutive columns.
row-homogeneous boolean If True, the rows are all the same height.
row-spacing integer ~ The amount of space between two consecutive rows.

Table A-60. Gtk.HeaderBar Properties

Property Type Description

custom-title Gtk.Widget Custom title widget to display.

decoration-layout string The layout for window decorations.
decoration-layout-set ~ boolean Whether the decoration-layout property has been set.
has-subtitle boolean Whether to reserve space for a subtitle.
show-close-button boolean Whether to show window decorations.

spacing integer The amount of space between children.

subtitle string The subtitle to display.

title string The title to display.

Table A-61. Gtk.IMContext Properties

Property Type Description
input-hints Gtk.InputHints Hints for the text field behavior.
input-purpose Gtk.InputPurpose Purpose of the text field.

438

Table A-62. Gtk.IconView Properties

APPENDIXA GTK+ PROPERTIES

Property Type Description

activate-on-single-click boolean Activate row on a single click.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

column-spacing integer Space that is inserted between grid columns.

columns integer Number of columns to display.

item-orientation Gtk.Orientation How the text and icon of each item are
positioned relative to each other.

item-padding integer Padding around icon view items.

item-width integer The width used for each item.

markup-column integer Model column used to retrieve the text if using
Pango markup.

model Gtk.TreeModel The model for the icon view.

pixbuf-column integer Model column used to retrieve the icon pixbuf
from.

reorderable boolean View is reorderable.

row-spacing integer Space that is inserted between grid rows.

selection-mode Gtk.SelectionMode The selection mode.

spacing integer Space that is inserted between cells of an item.

text-column integer Model column used to retrieve the text from.

tooltip-column integer The column in the model containing the tooltip

texts for the items.

Table A-63. Gtk.ListBox Properties

Property Type Description
activate-on-single-click boolean Activate row on a single click.
selection-mode Gtk.SelectionMode The selection mode.

439

APPENDIXA GTK+ PROPERTIES

Table A-64. Gtk.ListBoxRow Properties

Property Type Description
activatable boolean Whether this row can be activated.
selectable boolean Whether this row can be selected.

Table A-65. Gtk.LockButton Properties

Property Type Description

permission Gio.Permission The Gio.Permission object controlling this button.
text-lock string The text to display when prompting the user to lock.
text-unlock string The text to display when prompting the user to unlock.
tooltip-lock string The tooltip to display when prompting the user to lock.
tooltip-not-authorized string The tooltip to display when prompting the user cannot

obtain authorization.

tooltip-unlock string The tooltip to display when prompting the user to unlock.

Table A-66. Gtk.Menu Properties

Property Type Description

accel-group Gtk.AccelGroup The accel group holding accelerators for the
menu.

accel-path string An accel path used to conveniently construct

accel paths of child items.

active integer The currently selected menu item.

anchor-hints Gdk.AnchorHints Positioning hints for when the menu might fall
off-screen.

attach-widget Gtk.Widget The widget the menu is attached to.

menu-type-hint Gdk.WindowTypeHint ~ Menu window type hint.

(continued)

440

Table A-66. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

monitor integer The monitor that the menu pops up on.
rect-anchor-dx integer Rect anchor horizontal offset.
rect-anchor-dy integer Rect anchor vertical offset.

reserve-toggle-size boolean

A boolean that indicates whether the menu
reserves space for toggles and icons.

Table A-67. Gtk.MenuBar Properties

Property Type

Description

child-pack-direction Gtk.PackDirection

pack-direction Gtk.PackDirection

The child pack direction of the menubar.

The pack direction of the menubar.

Table A-68. Gtk.MenuButton Properties

Property Type Description

align-widget Gtk.Container The parent widget that the menu should align with.
direction Gtk.ArrowType The direction the arrow should point.

menu-model Gio.MenuModel The model from which the pop-up is made.
popover Gtk.Popover The pop-over.

popup Gtk.Menu The drop-down menu.

use-popover boolean Use a pop-over instead of a menu.

441

APPENDIXA GTK+ PROPERTIES

Table A-69. Gtk.Menultem Properties

Property Type Description

accel-path string Sets the accelerator path of the menu item.

label string The text for the child label.

submenu Gtk.Menu The submenu attached to the menu item, or None if it has none.
use-underline boolean If set, an underline in the text indicates the next character should be

used for the mnemonic accelerator key.

Table A-70. Gtk.MenuShell Properties

Property Type Description

take-focus boolean A boolean that determines whether the menu grabs the keyboard focus.

Table A-71. Gtk.MenuToolButton Properties

Property Type Description

menu Gtk.Menu The drop-down menu.

Table A-72. Gtk.MessageDialog Properties

Property Type Description

buttons Gtk.ButtonsType The buttons shown in the message dialog.

message-area Gtk.Widget Gtk.Box that holds the dialog’s primary and
secondary labels.

message-type Gtk.MessageType Whether the color buffer has an alpha component.

secondary-text String The secondary text of the message dialog

secondary-use-markup boolean The secondary text includes Pango markup.

text string The primary text of the message dialog.

use-markup boolean The primary text of the title includes Pango markup.

442

APPENDIXA GTK+ PROPERTIES

Table A-73. Gtk.ModelButton Properties

Property Type Description

active boolean Active.

centered boolean Whether to center the contents.
icon Gio.Icon The icon.

iconic boolean Whether to prefer the icon over text.
inverted boolean Whether the menu is a parent.
menu-name string The name of the menu to open.

role Gtk.ButtonRole The role of this button.

text string The text.

Table A-74. Gtk.MountOperation Properties

Property Type Description

is-showing boolean Are we showing a dialog?

parent Gtk.Window The parent window.

screen Gdk.Screen The screen where this window is displayed.

Table A-75. Gtk.NativeDialog Properties

Property Type Description

modal boolean If True, the dialog is modal (other windows are not usable while
this one is up)

title string The title of the dialog.
transient-for Gtk.Window The transient parent of the dialog.

visible boolean Whether the dialog is currently visible.

443

APPENDIXA GTK+ PROPERTIES

Table A-76. Gtk.Notebook Properties

Property Type Description

enable-popup boolean If True, pressing the right mouse button on the notebook
pops up a menu that you can use to go to a page.

group-name string Group name for tab drag and drop.

page integer The index of the current page.

scrollable boolean If True, scroll arrows are added if there are too many
tabs to fit.

show-border boolean Whether the border should be shown.

show-tabs boolean Whether tabs should be shown.

tab-pos Gtk.PositionType Which side of the notebook holds the tabs.

Table A-77. Gtk.Numerablelcon Properties

Property Type Description

background-icon Gio.Icon The icon for the number emblem background.

background-icon-name string The icon name for the number emblem
background.

count integer The count of the emblem currently displayed.

label string The label to be displayed over the icon.

style-context Gtk.StyleContext The style context to theme the icon appearance.

Table A-78. Gtk.PadController Properties

Property Type Description
action-group Gio.ActionGroup Action group to launch actions from.
pad Gdk.Device Pad device to control.

444

Table A-79. Gtk.Paned Properties

APPENDIXA GTK+ PROPERTIES

Property Type Description

max-position integer Largest possible value for the “position” property.
min-position integer Smallest possible value for the “position” property.
position-set boolean True if the Position property should be used.
wide-handle boolean Whether the paned should have a prominent handle.

Table A-80. Gtk.PlacesSidebar Properties

Property Type Description

local-only boolean Whether the sidebar only includes local files.

location Gio.File The location to highlight in the sidebar.

open-flags Gtk.PlacesOpenFlags Modes in which the calling application can
open locations selected in the sidebar.

populate-all boolean Whether to emit “populate-popup” for
pop-ups that are not menus.

show-desktop boolean Whether the sidebar includes a built-in
shortcut to the Desktop folder.

show-enter-location boolean Whether the sidebar includes a built-in
shortcut to manually enter a location.

show-other-locations boolean Whether the sidebar includes an item to
show external locations.

show-recent boolean Whether the sidebar includes a built-in
shortcut for recent files.

show-starred-location boolean Whether the sidebar includes an item to
show starred files.

show-trash boolean Whether the sidebar includes a built-in

shortcut to the Trash location.

445

APPENDIXA GTK+ PROPERTIES

Table A-81. Gtk.Plug Properties

Property Type Description
embedded boolean Whether the plug is embedded.
socket-window Gdk.Window The window of the socket the plug is embedded in.

Table A-82. Gtk.Popover Properties

Property Type Description

constrain-to Gtk.PopoverConstraint Constraint for the popover position.
modal boolean Whether the popover is modal.
pointing-to Gdk.Rectangle Rectangle the bubble window points to.
position Gtk.PositionType Position to place the bubble window.
position Gtk.Widget Widget the bubble window points to.

Table A-83. Gtk.PopoverMenu Properties

Property Type Description

visible-submenu string The name of the visible submenu.

Table A-84. Gtk.PrintOperation Properties

Property Type Description

allow-async boolean True if print process may run asynchronous.
current-page integer The current page in the document.
custom-tab-label string Label for the tab containing custom widgets.
default-page-setup ~ Gtk.PageSetup The Gtk.PageSetup used by default.
embed-page-setup boolean True if page setup combos are embedded in

Gtk.PrintUnixDialog.

(continued)

446

Table A-84. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

export-filename string Export filename.

has-selection boolean True if a selection exists.

job-name string A string used for identifying the print job.

n-pages integer The number of pages in the document.

n-pages-to-print integer The number of pages that print.

print-settings Gtk.PrintSettings The Gtk.PrintSettings used for initializing
the dialog.

show-progress boolean True if a progress dialog is shown while
printing.

status Gtk.PrintStatus The status of the print operation.

status-string string A human-readable description of the status.

support-selection boolean True if the print operation supports print of
selection.

track-print-status boolean True if the print operation continues to report
on the print job status after the print data has
been sent to the printer or print server.

unit Gtk.Unit The unit in which distances can be measured in
the context.

use-full-page boolean True if the origin of the context should be at

the corner of the page and not the corner of the
imageable area.

447

APPENDIXA GTK+ PROPERTIES

Table A-85. Gtk.ProgressBar Properties

Property Type Description

ellipsize Pango.EllipsizeMode The preferred place to ellipsize the string, if the progress
bar does not have enough room to display the entire
string, if at all.

fraction float The fraction of total work that has been completed.

inverted boolean Invert the direction in which the progress bar grows.

pulse-step float The fraction of total progress to move the bouncing block
when pulsed.

show-text boolean Whether the progress is shown as text.

text string Text to be displayed in the progress bar.

Table A-86. Gtk.RadioButton Properties

Property Type Description

group Gtk.RadioButton The radio button whose group this widget belongs to.

Table A-87. Gtk.RadioMenultem Properties

Property Type Description

group Gtk.RadioMenuItem The radio menu item whose group this widget belongs to.

Table A-88. Gtk.RadioToolButton Properties

Property Type Description

group Gtk.RadioToolButton The radio tool button whose group this button belongs to.

448

APPENDIXA GTK+ PROPERTIES

Table A-89. Gtk.Range Properties

Property Type Description

adjustment Gtk.Adjustment The Gtk.Adjustment that contains the
current value of this range object.

fill-level float The fill level.

inverted boolean Invert direction slider moves to increase
range value.

lower-stepper-sensitivity Gtk.SensitivityType The sensitivity policy for the stepper that
points to the adjustment’s lower side.

restrict-to-fill-level boolean Whether to restrict the upper boundary to
the fill level.

round-digits integer The number of digits to round the value to.

show-fill-level boolean Whether to display a fill level indicator

graphics on trough.

upper-stepper-sensitivity Gtk.SensitivityType The sensitivity policy for the stepper that
points to the adjustment’s upper side.

Table A-90. Gtk.RecentChooserMenu Properties

Property Type Description

show-numbers boolean Whether the items should be displayed with a number.

Table A-91. Gtk.RecentManager Properties

Property Type Description
filename string The full path to the file to be used to store and read the list.
size integer The size of the recently used resources list.

449

APPENDIXA GTK+ PROPERTIES

Table A-92. Gtk.RendererCellAccessible Properties

Property Type Description

renderer Gtk.CellRenderer The cell renderer represented by this accessible.

Table A-93. Gtk.Revealer Properties

Property Type Description

child-revealed boolean Whether the child is revealed and the
animation target reached.

reveal-child boolean Whether the container should reveal the
child.

transition-duration integer The animation duration, in milliseconds.

transition-type Gtk.RevealerTransitionType The type of animation used to transition.

Table A-94. Gtk.Scale Properties

Property Type Description

digits integer The number of decimal places that are displayed in the
value.

draw-value boolean Whether the current value is displayed as a string next to
the slider.

has-origin boolean Whether the scale has an origin.

value-pos Gtk.PositionType The position in which the current value is displayed.

Table A-95. Gtk.ScaleButton Properties

Property Type Description

adjustment Gtk.Adjustment The Gtk.Adjustment that contains the current value of this
scale button object.

icons string List of icon names.
Size Gtk.IconSize The icon size.
value float The value of the scale.

450

APPENDIXA GTK+ PROPERTIES

Table A-96. Gtk.ScrolledWindow Properties

Property Type Description

hadjustment Gtk.Adjustment The Gtk.Adjustment for the horizontal position.

hscrollbar-policy Gtk.PolicyType When the horizontal scrollbar is displayed.

max-content-height integer The maximum height that the scrolled window
allocates to its content.

max-content-width integer The maximum width that the scrolled window
allocates to its content.

min-content-height integer The minimum height that the scrolled window
allocates to its content.

min-content-width integer The minimum width that the scrolled window
allocates to its content.

overlay-scrolling boolean Overlay scrolling mode.

propagate-natural-height boolean Propagate Natural Height.

propagate-natural-width ~ boolean Propagate Natural Width.

shadow-type Gtk.ShadowType Style of bevel around the contents.

vadjustment Gtk.Adjustment The Gtk.Adjustment for the vertical position.

vscrollbar-policy Gtk.PolicyType When the vertical scrollbar is displayed.

window-placement Gtk.CornerType Where the contents are located with respect to

the scrollbars.

Table A-97. Gtk.SearchBar Properties

Property Type Description
search-mode-enabled boolean Whether the search mode is on and the search bar shown.
has-origin boolean Whether to show the close button in the toolbar.

Table A-98. Gtk.SeparatorToolltem Properties

Property

draw

Type Description

boolean Whether the separator is drawn, or just blank.

451

APPENDIXA GTK+ PROPERTIES

Table A-99. Gtk.Settings Properties

Property Type Description

gtk-alternative-button-order boolean Whether buttons in dialogs should use the
alternative button order.

gtk-alternative-sort-arrows boolean Whether the direction of the sort indicators in list

gtk-application-prefer-dark-theme boolean

gtk-cursor-blink boolean
gtk-cursor-blink-time integer
gtk-cursor-blink-timeout integer
gtk-cursor-theme-name string

gtk-cursor-theme-size integer
gtk-decoration-layout string

gtk-dialogs-use-header boolean
gtk-dnd-drag-threshold integer
gtk-double-click-distance integer
gtk-double-click-time integer
gtk-enable-accels boolean
gtk-enable-animations boolean
gtk-enable-event-sounds boolean

and tree views is inverted compared to the default
(where down means ascending).

Whether the application prefers to have a dark
theme.

Whether the cursor should blink.
Length of the cursor blink cycle, in milliseconds.

Time after which the cursor stops blinking, in
seconds.

Name of the cursor theme to use, or None to use
the default theme.

Size to use for cursors, or 0 to use the default size.
The layout for window decorations.

Whether built-in GTK+ dialogs should use a header
bar instead of an action area.

Number of pixels the cursor can move before
dragging.

Maximum distance allowed between two clicks for
them to be considered a double click (in pixels).

Maximum time allowed between two clicks
for them to be considered a double click (in
milliseconds).

Whether menu items should have accelerators.
Whether to enable toolkit-wide animations.

Whether to play any event sounds at all.

452

(continued)

Table A-99. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

gtk-enable-input-feedback-sounds boolean ~ Whether to play event sounds as feedback to user
input.

gtk-enable-input-feedback-sounds boolean ~ Whether a middle click on @ mouse should paste
the ‘PRIMARY’ clipboard content at the cursor
location.

gtk-entry-password-hint-timeout integer ~ How long to show the last input character in hidden
entries.

gtk-enable-primary-paste boolean ~ Whether a middle click on a mouse should paste
the ‘PRIMARY’ clipboard content at the cursor
location.

gtk-entry-select-on-focus boolean Whether to select the contents of an entry when it
is focused.

gtk-error-bell boolean When True, keyboard navigation and other errors
cause a beep.

gtk-font-name string The default font family and size to use.

gtk-fontconfig-timestamp integer Timestamp of current fontconfig configuration.

gtk-icon-theme-name string Name of icon theme to use.

gtk-im-module string Which IM module should be used by default.

gtk-key-theme-name string Name of key theme to load.

gtk-keynav-use-caret boolean Whether to show cursor in text.

gtk-label-select-on-focus boolean Whether to select the contents of a selectable label
when it is focused.

gtk-long-press-time integer Time for a button/touch press to be considered a
long press (in milliseconds).

gtk-modules string List of currently active GTK modules.

gtk-primary-button-warps-slider ~ boolean ~ Whether a primary click on the trough should warp

the slider into position.

(continued)

453

APPENDIXA GTK+ PROPERTIES

Table A-99. (continued)

Property Type Description

gtk-print-backends string List of the GtkPrintBackend backends to use by
default.

gtk-print-preview-command string Command to run when displaying a print preview.

gtk-recent-files-enabled boolean Whether GTK+ remembers recent files.

gtk-recent-files-max-age integer Maximum age of recently used files, in days.

gtk-shell-shows-app-menu boolean Set to True if the desktop environment is
displaying the app menu, False if the app should
display it itself.

gtk-shell-shows-desktop boolean Set to True gtk-shell-shows-desktop, False if not.

gtk-shell-shows-menubar boolean Setto True if the desktop environment is
displaying the menubar, False if the app should
display it itself.

gtk-sound-theme-name string XDG sound theme name.

gtk-split-cursor boolean Whether two cursors should be displayed for mixed
left-to-right and right-to-left text.

gtk-theme-name string Name of theme to load.

gtk-titlebar-double-click string The action to take on titlebar double-click.

gtk-titlebar-middle-click string The action to take on titlebar middle-click.

gtk-titlebar-right-click string The action to take on titlebar right-click.

gtk-xft-antialias integer ~ Whether to antialias Xft fonts; 0=no,
1=yes, —1=default.

gtk-xft-dpi integer Resolution for Xft, in 1024 * dots/inch. —1 to use
default value.

gtk-xft-hinting integer ~ Whether to hint Xft fonts; 0=no, 1=yes, —1=default.

gtk-xft-hintstyle string What degree of hinting to use; hintnone,
hintslight, hintmedium, or hintfull.

gtk-xft-rgha string Type of subpixel antialiasing; none, rgb, bgr, vrgb,

vbgr.

454

APPENDIXA GTK+ PROPERTIES

Table A-100. Gtk.ShortcutLabel Properties

Property Type Description
accelerator string Accelerator.
disabled-text string Disabled text.

Table A-101. Gtk.ShortcutsGroup Properties

Property Type Description
accel-size-group Gtk.SizeGroup Accelerator Size Group.
height integer Height.

title string Title.

title-size-group Gtk.SizeGroup Title Size Group.

view string View.

Table A-102. Gtk.ShortcutsSection Properties

Property Type Description
max-height integer Maximum Height.
section-name string Section Name.
title string Title.

view-name string View Name.

455

APPENDIXA GTK+ PROPERTIES

Table A-103. Gtk.ShortcutsShortcut Properties

Property Type Description

accel-size-group Gtk.SizeGroup Accelerator Size Group.

accelerator string The accelerator keys for shortcuts of type
‘Accelerator’.

action-name string The name of the action.

direction Gtk.TextDirection Text direction for which this shortcut is active.

icon Gio.Icon The icon to show for shortcuts of type ‘Other Gesture’.

icon-set boolean Whether an icon has been set.

shortcut-type Gtk.ShortcutType The type of shortcut that is represented.

subtitle string A short description for the gesture.

subtitle-set boolean Whether a subtitle has been set.

title string A short description for the shortcut.

title-size-group Gtk.SizeGroup Title Size Group.

Table A-104. Gtk.ShortcutsWindow Properties

Property Type Description
section-name string Section Name.
view-name string View Name.

Table A-105. Gtk.SizeGroup Properties

Property Type Description

mode Gtk.SizeGroupMode The directions in which the size group affects the
requested sizes of its component widgets.

456

APPENDIXA GTK+ PROPERTIES

Table A-106. Gtk.SpinButton Properties

Property Type Description

adjustment Gtk.Adjustment The adjustment that holds the value of the
spin button.

climb-rate float The acceleration rate when you hold down
a button.

digits integer The number of decimal places to display.

numeric boolean Whether non-numeric characters should
be ignored.

snap-to-ticks boolean Whether erroneous values are

automatically changed to a spin button’s
nearest step increment.

update-policy ~ Gtk.SpinButtonUpdatePolicyt Whether the spin button should update
always, or only when the value is legal.

value float Reads the current value, or sets a new
value.
wrap boolean Whether a spin button should wrap upon

reaching its limits.

Table A-107. Gtk.Spinner Properties

Property Type Description

active boolean Whether the spinner is active.

457

APPENDIXA GTK+ PROPERTIES

Table A-108. Gtk.Stack Properties

Property Type Description

hhomogeneous boolean Horizontally homogeneous sizing.

homogeneous boolean Homogeneous sizing.

interpolate-size boolean Whether or not the size should smoothly
change when changing between differently
sized children.

transition-duration integer The animation duration, in milliseconds.

transition-running boolean Whether or not the transition is currently

transition-type
vhomogeneous
visible-child

visible-child-name

Gtk.StackTransitionType
boolean
Gtk.Widget

string

running.

The type of animation used to transition.
Vertically homogeneous sizing.

The widget currently visible in the stack.

The name of the widget currently visible in
the stack.

Table A-109. Gtk.StackSidebar Properties

Property Type

Description

stack Gtk.Stack

Associated stack for this Gtk.StackSidebar.

Table A-110. Gtk.StackSwitcher Properties

Property Type Description
icon-size integer Symbolic size to use for named icon.
stack Gtk.Stack Associated stack for this Gtk.StackSidebar.

458

APPENDIXA GTK+ PROPERTIES

Table A-111. Gtk.StyleContext Properties

Property Type Description

paint-clock Gdk.FrameClock The associated Gdk . FrameClock.
parent Gtk.StyleContext The parent style context.

screen Gdk.Screen The associated Gdk. Screen.

Table A-112. Gtk.Switch Properties

Property Type Description
active boolean Whether the switch is on or off.
state boolean The backend state.

Table A-113. Gtk.TextBuffer Properties

Property Type Description

copy-target-list Gtk.Targetlist The list of targets this buffer supports for clipboard
copying and DND source.

cursor-position integer The position of the insert mark (as offset from the
beginning of the buffer).
has-selection boolean Whether the buffer has some text currently selected.

paste-target-list Gtk.Targetlist The list of targets this buffer supports for clipboard
pasting and DND destination.

tag-table Gtk.TextTagTable TextTag Table.

text string Current text of the buffer.

Table A-114. Gtk.TextMark Properties

Property Type Description
left-gravity bool Whether the mark has left gravity.
name string Mark name.

459

APPENDIXA GTK+ PROPERTIES

Table A-115. Gtk.TextTag Properties

Property Type Description

accumulative-margin bool Whether left and right margins
accumulate.

background string Background color as a string.

background-full-height bool Whether the background color fills

background-full-height-set bool

background-rgba Gdk .RGBA
background-set boolean

direction Gtk.TextDirection
editable boolean

editable-set boolean

fallback boolean

fallback-set boolean

family string

family-set boolean

font string

font-desc Pango.FontDescription

the entire line height or only the
height of the tagged characters.

Whether this tag affects background
height.

Background color as a Gdk . RGBA.

Whether this tag affects the
background color.

Text direction, e.g. right-to-left or
left-to-right.

Whether the text can be modified by
the user.

Whether this tag affects text
editability.

Whether font fallback is enabled.

Whether this tag affects font
fallback.

Name of the font family, e.g. Sans,
Helvetica, Times, Monospace.

Whether this tag affects the font
family.

Font description as a string, e.g.
“Sans Italic 12”.

Font description as a Pango.
FontDescription class.

460

(continued)

Table A-115. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

font-features-set boolean Whether this tag affects font
features.

foreground string Foreground color as a string.

foreground-rgha Gdk .RGBA Foreground color as a Gdk . RGBA.

foreground-set boolean Whether this tag affects the
foreground color.

indent integer Amount to indent the paragraph, in
pixels.

indent-set boolean Whether this tag affects indentation.

invisible boolean Whether this text is hidden.

invisible-set boolean Whether this tag affects text
visibility.

justification Gtk.Justification Left, right, or center justification.

justification-set

language

language-set

left-margin

left-margin-set

letter-spacing

letter-spacing-set

boolean

string

boolean

integer

boolean

integer

boolean

Whether this tag affects paragraph
justification.

The language this text is in, as an
ISO code. Pango can use this as a
hint when rendering the text. If not
set, an appropriate default is used.

Whether this tag affects the
language that the text is rendered
as.

Width of the left margin in pixels.

Whether this tag affects the left
margin.
Extra spacing between graphemes.

Whether this tag affects letter
spacing.

(continued)

461

APPENDIXA GTK+ PROPERTIES

Table A-115. (continued)

Property Type Description

name string Name used to refer to the text tag.
None for anonymous tags.

paragraph-background string Paragraph background color as a
string.

paragraph-background-rgba Gdk.RGBA Paragraph background RGBA as a
Gdk . RGBA.

paragraph-background-set boolean Whether this tag affects the
paragraph background color.

pixels-above-lines integer Pixels of blank space above
paragraphs.

pixels-above-lines-set boolean Whether this tag affects the number
of pixels above lines.

pixels-below-lines integer Pixels of blank space below
paragraphs.

pixels-below-lines-set boolean Whether this tag affects the number
of pixels below lines.

pixels-inside-wrap integer Pixels of blank space between
wrapped lines in a paragraph.

pixels-inside-wrap-set boolean Whether this tag affects the number
of pixels between wrapped lines.

right-margin integer Width of the right margin in pixels.

right-margin-set boolean Whether this tag affects the right
margin.

rise integer Offset of text above the baseline

(below the baseline if rise is
negative) in Pango units.

rise-set boolean Whether this tag affects the rise.

(continued)

462

Table A-115. (continued)

APPENDIXA GTK+ PROPERTIES

Property Type Description

scale float Font size as a scale factor relative
to the default font size. This properly
adapts to theme changes etc. so is
recommended. Pango predefines
scales, such as PANGO_SCALE_X_
LARGE, which is defined in C as the
value (1.2 *1.2).

scale-set boolean Whether this tag scales the font size
by a factor.

size integer Font size in Pango units.

size-points float Font size in points.

size-set boolean Whether this tag affects the font
size.

stretch Pango.Stretch Font stretch as a Pango.Stretch, e.g.

stretch-set

strikethrough
strikethrough-rgba
strikethrough-rgba-set

strikethrough-set

style

style-set

tabs

boolean

boolean
Gdk .RGBA

boolean

boolean

Pango.Style

boolean

Pango.TabArray

Pango.Stretch.CONDENSED

Whether this tag affects the font
stretch.

Whether to strike through the text.
Color of strikethrough for this text.

Whether this tag affects
strikethrough color.

Whether this tag affects
strikethrough.

Font style as a Pango.Style, e.g.
Pango.Style.ITALIC.

Whether this tag affects the font
style.
Custom tabs for this text.

(continued)

463

APPENDIXA GTK+ PROPERTIES

Table A-115. (continued)

Property Type Description
tabs-set boolean Whether this tag affects tabs.
underline Pango.TabArray Style of underline for this text.

underline-rgbha

underline-rgba-set

underline-set

variant

variant-set

weight

weight-set

wrap-mode

wrap-mode-set

Gdk . RGBAY

boolean

boolean

Pango.Variant

boolean

integer

boolean

Gtk.WrapMode

boolean

Color of underline for this text.

Whether this tag affects underlining
color.

Whether this tag affects underlining.

Font variant as a Pango.Variant, e.g.
Pango.Variant.SMALL CAPS

Whether this tag affects the font
variant.

Font weight as an integer, see
predefined values in Pango.
Weight; for example, Pango.
Weight.BOLD.

Whether this tag affects the font
weight.

Whether to wrap lines never, at
word boundaries, or at character
boundaries.

Whether this tag affects line wrap
mode.

464

Table A-116. Gtk.TextView Properties

APPENDIXA GTK+ PROPERTIES

Property Type Description

accepts-tab bool Whether Tab results in a tab character being
entered.

bottom-margin integer Height of the bottom margin in pixels.

buffer Gtk.TextBuffer The buffer that is displayed.

cursor-visible boolean If the insertion cursor is shown.

editable boolean Whether the text can be modified by the user.

im-module string Which IM module should be used.

indent integer Amount to indent the paragraph, in pixels.

input-hints Gtk.InputHints Hints for the text field behavior.

input-purpose Gtk.InputPurpose Purpose of the text field.

justification Gtk.Justification Left, right, or center justification.

left-margin integer Width of the left margin in pixels.

monospace boolean Whether to use a monospace font.

overwrite boolean Whether entered text overwrites existing contents.

pixels-above-lines integer Pixels of blank space above paragraphs.

pixels-below-lines integer Pixels of blank space below paragraphs.

pixels-inside-wrap integer Pixels of blank space between wrapped lines in a
paragraph.

populate-all boolean Whether to emit the “populate-popup” signal for
touch pop-ups.

right-margin integer Width of the right margin in pixels.

tabs Pango.TabArray Custom tabs for this text.

top-margin integer Height of the top margin in pixels.

wrap-mode Gtk.WrapMode Whether to wrap lines never, at word boundaries,

or at character boundaries.

465

APPENDIXA GTK+ PROPERTIES

Table A-117. Gtk.ThemingEngine Properties

Property Type Description

name string Theming engine name.

Table A-118. Gtk.ToggleButton Properties

Property Type Description

active boolean If the toggle button should be pressed in.
draw-indicator boolean If the toggle part of the button is displayed.
inconsistent boolean If the toggle button is in an “in between” state.

Table A-119. Gtk.ToggleToolButton Properties

Property Type Description

active boolean If the toggle button should be pressed in.

Table A-120. Gtk.ToolButton Properties

Property Type Description

icon-name string The name of the themed icon displayed on the item.
icon-widget Gtk.Widget Icon widget to display in the item.

label string Text to show in the item..

label-widget Gtk.Widget Widget to use as the item label.

use-underline boolean If set, an underline in the label property indicates that the next
character should be used for the mnemonic accelerator key in
the overflow menu.

466

APPENDIXA GTK+ PROPERTIES

Table A-121. Gtk.Toolltem Properties

Property Type Description

is-important boolean Whether the toolbar item is considered important. When True, toolbar
buttons show text in Gtk.ToolbarStyle.BOTH HORIZ mode.

visible-horizontal boolean Whether the toolbar item is visible when the toolbar is in a
horizontal orientation.

visible-vertical boolean Whether the toolbar item is visible when the toolbar is in a vertical
orientation.

Table A-122. Gtk.ToolltemGroup Properties

Property Type Description

collapsed boolean Whether the group has been collapsed and items are
hidden.

ellipsize Pango.EllipsizeMode Ellipsize for item group headers.

header-relief ~Gtk.ReliefStyle Relief of the group header button.

label string The human-readable title of this item group.

label-widget ~ Gtk.Widget A widget to display in place of the usual label.

Table A-123. Gtk.ToolPalette Properties

Property Type Description

icon-size Gtk.IconSize Size of icons in this tool palette.
icon-size-set boolean Whether the icon-size property has been set.
toolbar-style Gtk.ToolbarStyle Style of items in the tool palette.

467

APPENDIXA GTK+ PROPERTIES

Table A-124. Gtk.Toolbar Properties

Property Type Description

icon-size Gtk.IconSize Size of icons in this toolbar.

icon-size-set boolean Whether the icon-size property has been set.
show-arrow boolean If an arrow should be shown if the toolbar doesn’t fit.

toolbar-style Gtk.ToolbarStyle How to draw the toolbar.

Table A-125. Gtk.TreeModelFilter Properties

Property Type Description

child-model Gtk.TreeModel The model for the filtermodel to filter.

virtual-root ~ Gtk.TreePath The virtual root (relative to the child model) for this filtermodel.

Table A-126. Gtk.TreeModelSort Properties

Property Type Description

model Gtk.TreeModel The model for the TreeModelSort to sort.

Table A-127. Gtk.TreeSelection Properties

Property Type Description

mode Gtk.SelectionMode Selection mode.

468

APPENDIXA GTK+ PROPERTIES

Table A-128. Gtk.TreeView Properties

Property Type Description
activate-on-single- boolean Activate row on a single click.
click

enable-grid-lines Gtk.TreeViewGridLines Whether grid lines should be drawn in the tree

view.

enable-search boolean View allows user to search through columns
interactively.

enable-tree-lines boolean Whether tree lines should be drawn in the tree
view.

expander-column Gtk.TreeViewColumn Set the column for the expander column.

fixed-height-mode boolean Speeds up Gtk.TreeView by assuming that
all rows have the same height.

headers-clickable boolean Column headers respond to click events.

headers-visible boolean Show the column header buttons.

hover-expand boolean Whether rows should be expanded/collapsed
when the pointer moves over them.

hover-selection boolean Whether the selection should follow the
pointer.

level-indentation integer Extra indentation for each level.

model Gtk.TreeModel The model for the tree view.

reorderable boolean View is reorderable.

rubber-banding boolean Whether to enable selection of multiple items
by dragging the mouse pointer.

search-column integer Model column to search through during
interactive search.

show-expanders boolean View has expanders.

tooltip-column integer The column in the model containing the tooltip

texts for the rows.

469

APPENDIXA GTK+ PROPERTIES

Table A-129. Gtk.TreeViewColumn Properties

Property Type Description

alignment float X Alignment of the column header text or
widget.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

clickable boolean Whether the header can be clicked.

expand boolean Column gets share of extra width allocated
to the widget.

fixed-width integer Current fixed width of the column.

max-width integer Maximum allowed width of the column.

min-width integer Minimum allowed width of the column.

reorderable boolean Whether the column can be reordered
around the headers.

resizable boolean Column is user-resizable.

sizing Gtk.TreeViewColumnSizing Resize mode of the column.

sort-column-id integer Logical sort column ID this column sorts on
when selected for sorting.

sort-indicator boolean Whether to show a sort indicator.

sort-order Gtk.SortType Sort direction the sort indicator should
indicate.

spacing integer Space that is inserted between cells.

title string Title to appear in column header.

visible boolean Whether to display the column.

widget Gtk.Widget Widget to put in column header button
instead of column title.

width integer Current width of the column.

x-offset integer Current X position of the column.

470

APPENDIXA GTK+ PROPERTIES

Table A-130. Gtk.VolumeButton Properties

Property

Type

Description

use-symbolic

boolean

Whether to use symbolic icons.

Table A-131. Gtk.Widget Properties

Property Type Description

app-paintable boolean Whether the application paints directly on the widget.
can-default boolean Whether the widget can be the default widget.
can-focus boolean Whether the widget can accept the input focus
composite-child ~ boolean Whether the widget is part of a composite widget.

events

expand

focus-on-click

halign
has-default
has-focus
has-tooltip
height-request

hexpand
hexpand-set
is-focus
margin
margin-bottom

margin-end

Gdk.EventMask

boolean

boolean

Gtk.Align
boolean
boolean
boolean

integer

boolean
boolean
boolean
integer
integer

integer

The event mask that decides what kind of Gdk.
EventMask this widget gets.

Whether widget wants to expand in both directions.

Whether the widget should grab focus when it is clicked
with the mouse.

How to position in extra horizontal space.
Whether the widget is the default widget.
Whether the widget has the input focus.
Whether this widget has a tooltip.

Override for height request of the widget, or —1 if natural
request should be used.

Whether widget wants more horizontal space.

Whether to use the hexpand property.

Whether the widget is the focus widget within the toplevel.
Pixels of extra space on all four sides.

Pixels of extra space on the bottom side.

Pixels of extra space on the end.

(continued)

471

APPENDIXA GTK+ PROPERTIES

Table A-131. (continued)

Property Type Description

margin-start integer Pixels of extra space on the start.

margin-top integer Pixels of extra space on the top side.

name string The name of the widget.

no-show-all boolean Whether Gtk.Widget.show all() should not affect
this widget.

opacity float The opacity of the widget, from 0 to 1.

parent Gtk.Container The parent widget of this widget. Must be a Container

receives-default

scale-factor
sensitive
tooltip-markup
tooltip-text
valign
vexpand
vexpand-set
visible

width-request

window

boolean

integer
boolean
string

string
Gtk.Align
boolean
boolean
boolean

integer

Gdk.Window

widget.

If True, the widget receive the default action when it is
focused.

The scaling factor of the window.

Whether the widget responds to input.

The contents of the tooltip for this widget.
The contents of the tooltip for this widget.
How to position in extra vertical space.
Whether widget wants more vertical space.
Whether to use the vexpand property.
Whether the widget is visible.

Override for width request of the widget, or —1 if natural
request should be used.

The widget’s window if it is realized.

472

Table A-132. Gtk.Window Properties

APPENDIXA GTK+ PROPERTIES

Property Type Description

accept-focus boolean True if the window should receive the input
focus.

application Gtk.Application The Gtk.Application for the window.

attached-to Gtk.Widget The widget where the window is attached.

decorated boolean Whether the window should be decorated by
the window manager.

default-height integer The default height of the window, used when
initially showing the window.

default-width integer The default width of the window, used when
initially showing the window.

deletable boolean Whether the window frame should have a
close button.

destroy-with-parent boolean If this window should be destroyed when the
parent is destroyed.

focus-on-map boolean True if the window should receive the input
focus when mapped.

focus-visible boolean Whether focus rectangles are currently
visible in this window.

gravity Gdk.Gravity The window gravity of the window.

has-toplevel-focus boolean If this window’s titlebar should be hidden
when the window is maximized.

icon GdkPixbuf.Pixbuf Icon for this window.

icon-name string Name of the themed icon for this window.

is-active boolean Whether the toplevel is the current active
window.

is-maximized boolean Whether the window is maximized.

(continued)

473

APPENDIXA GTK+ PROPERTIES

Table A-132. (continued)

Property Type Description

mnemonics-visible boolean Whether mnemonics are currently visible in
this window.

modal boolean If True, the window is modal (other windows
are not usable while this one is up).

resizable boolean If True, users can resize the window.

role string Unique identifier for the window to be used
when restoring a session.

screen Gdk.Screen The screen where this window is displayed.

skip-pager-hint boolean True if the window should not be in the
pager.

skip-taskbar-hint boolean True if the window should not be in the task
bar.

startup-id string Unique startup identifier for the window used
by startup-notification.

title string The title of the window.

transient-for Gtk.Window The transient parent of the dialog.

type Gdk.WindowTypeHint Hint to help the desktop environment
understand what kind of window this is and
how to treat it.

urgency-hint bool True if the window should be brought to the
user’s attention.

window-position Gtk.WindowPosition The initial position of the window.

474

APPENDIXA GTK+ PROPERTIES

Child Widget Properties

A few containers in GTK+ have properties that are assigned to every child of the
container. Table A-133 through Table A-149 describes these properties.

Caution Inthe GTK+ C API property, names may contain one or more dashes.
Since these dashes are interpreted by Python as the subtraction operator, all
Python property names substitute underscores for dashes in all property names.
For instance, the property name logo-icon-name becomes logo_icon_name in a
Python program.

Table A-133. Gtk.ActionBar Child Properties

Property Type Description

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with
reference to the start or end of the parent.

position integer The index of the child in the parent.

Table A-134. Gtk.Assistant Child Properties

Property Type Description

complete boolean Whether all required fields on the page have been
filled out.

has-padding boolean Whether the assistant adds padding around the page.

header-image GdkPixbuf.Pixbuf Header image for the assistant page.

page-type Gtk.AssistantPageType The type of the assistant page.
sidebar-image GdkPixbuf.Pixbuf Sidebar image for the assistant page.

title string The title of the assistant page.

475

APPENDIXA GTK+ PROPERTIES

Table A-135. Gtk.Box Child Properties

Property Type Description
expand boolean Whether the child should receive extra space when the parent grows.
fill boolean Whether extra space given to the child should be allocated to the

child or used as padding.

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with
reference to the start or end of the parent.

padding integer Extra space to put between the child and its neighbors, in pixels.

position integer The index of the child in the parent.

Table A-136. Gtk.ButtonBox Child Properties

Property Type Description
non-homogeneous boolean If True, the child is not subject to homogeneous sizing.
secondary boolean If True, the child appears in a secondary group of children,

suitable for, e.g., help buttons.

Table A-137. Gtk.Fixed Child Properties

Property Type Description
X integer X position of child widget.
y integer Y position of child widget.

Table A-138. Gtk.Grid Child Properties

Property Type Description

height integer The number of rows that a child spans.

left-attach integer The column number to attach the left side of the child to.
top-attach integer The row number to attach the top side of a child widget to.
width integer The number of columns that a child spans.

476

APPENDIXA GTK+ PROPERTIES

Table A-139. Gtk.HeaderBar Child Properties

Property Type Description

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with
reference to the start or end of the parent.

position integer The index of the child in the parent.

Table A-140. Gtk.Layout Child Properties

Property Type Description
X integer X position of child widget.
y integer Y position of child widget.

Table A-141. Gtk.Menu Child Properties

Property Type Description

bottom-attach integer The row number to attach the bottom of the child to.
left-attach integer The column number to attach the left side of the child to.
right-attach integer The column number to attach the right side of the child to.
top-attach integer The row number to attach the top side of a child widget to.

Table A-142. Gtk.Notebook Child Properties

Property Type Description

detachable boolean Whether the tab is detachable.

menu-label string The string displayed in the child’s menu entry.
position integer The index of the child in the parent.

reorderable boolean Whether the tab is reorderable by user action.
tab-expand boolean Whether to expand the child’s tab.

tab-fill boolean Whether the child’s tab should fill the allocated area.
tab-label string The string displayed on the child’s tab label.

477

APPENDIXA GTK+ PROPERTIES

Table A-143. Gtk.Overlay Child Properties

Property Type Description
index integer The index of the overlay in the parent, —1 for the main child.
pass-through boolean Pass through input, does not affect main child.

Table A-144. Gtk.Paned Child Properties

Property Type Description
resize boolean If True, the child expands and shrinks along with the paned widget.
shrink boolean If True, the child can be made smaller than its requisition.

Table A-145. Gtk.PopoverMenu Child Properties

Property Type Description
position integer The index of the child in the parent.
submenu string The name of the submenu.

Table A-146. Gtk.Stack Child Properties

Property Type Description

icon-name string The icon name of the child page.
name string The name of the child page.
needs-attention boolean Whether this page needs attention.
position integer The index of the child in the parent.
title string The title of the child page.

478

APPENDIXA GTK+ PROPERTIES

Table A-147. Gtk.ToolltemGroup Child Properties

Property Type Description
expand boolean Whether the item should receive extra space when the group grows.
fill boolean ~ Whether the item should fill the available space.

homogeneous boolean Whether the item should be the same size as other homogeneous items.
new-row boolean Whether the item should start a new row.

position integer Position of the item within this group.

Table A-148. Gtk.ToolPalette Child Properties

Property Type Description

exclusive boolean Whether the item group should be the only expanded at a given times.

expand boolean Whether the item group should receive extra space when the palette
grows.

Table A-149. Gtk.Toolbar Child Properties

Property Type Description

expand boolean Whether the item should receive extra space when the toolbar grows.

homogeneous boolean Whether the item should be the same size as other homogeneous
items.

479

APPENDIX B

GTK+ Signals

GTKH+ is a system that relies on signals and callback methods/functions. A signal is a
notification to your application that the user has performed some action. When a
signal is emitted, you can tell GTK+ to run a method/function called a callback
method/function.

To connect a signal, you can use the object.connect() function, which accepts
three parameters. The signal name is a string representing the signal. A list of signal
names can be found in the tables throughout this appendix.

object.signal(signal name, handler, data)

The second parameter is the name of the callback method/function that is called
when the signal is emitted. The form for each callback function is found in the GTK+
API documentation; however, many of the function prototypes have incomplete
documentation, so you can find more information about nonstandard parameters in the
signal reference tables throughout this appendix.

The last parameter of object.connect() allows you to send data of an arbitrary type
to the callback method/function.

This appendix provides a complete list of events and signals available to GTK+
objects and widgets. The first section provides information about the GDK event types
available to Gtk.Widget and derivative classes (see Table B-1). The sections that follow
provide a complete list of signal names and a description for every object with signals
in GTK+.

481
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0

APPENDIXB GTK+ SIGNALS

Events

Events are a special type of signal that are emitted by the X Window System. Once

emitted, they are sent from the window manager to your application to be interpreted by

the signal system provided by GLib.

In doing this, you can use the same signal connection and callback function

methods as with normal signals. One difference is that event callback functions return

a boolean value. If you return True, no further action will happen. If you return the
default value of False, GTK+ will continue to handle the event. Table B-1 lists the
Gtk.Widget event types.

Table B-1. Gtk.Widget Event Types

Signal Name Gdk.EventType Value Description
delete-event Gdk.EventType. The window manager requested that the top-level
DELETE window be destroyed. This can be used to confirm
the deletion of the window.
destroy-event Gdk.EventType. The widget’s Gdk .Window was destroyed. You
DESTROY should not use this signal, because the widget is

expose-event

motion-notify-
event

button-press-
event

button-press-
event

Gdk.EventType.
EXPOSE

Gdk.EventType.
MOTION NO

Gdk.EventType.
BUTTON_PRESS

Gdk.EventType.
2BUTTON_PRESS

usually disconnected before it can be emitted.

A new part of the widget was shown and needs to
be drawn.

This is emitted when the window was previously
obscured by another object.

The IFY mouse cursor has moved while within the
proximity of the widget.

A mouse button was clicked once. This is emitted
along with Gdk.EventType.2BUTTON_PRESS and
Gdk.EventType.3BUTTON_PRESS events.

A mouse button was clicked twice. This also emits
Gdk.EventType.BUTTON_PRESS, so you need
to check the event type in the method/callback
function.

482

(continued)

Table B-1. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name

Gdk.EventType Value

Description

button-press-
event

button-release-
event

key-press-event

key-release-event

enter-notify-event

leave-notify-event

focus-in-event

focus-out-event

configure-event

map-event

unmap-event

property-notify-
event

Gdk.EventType.
3BUTTON_PRESS

Gdk.EventType.
BUTTON_RELEASE

Gdk.EventType.
KEY PRESS

Gdk.EventType.
KEY_RELEASE

Gdk.EventType.
ENTER_NOTIFY

Gdk.EventType.
LEAVE_NOTIFY

Gdk.EventType.
FOCUS_CHANGE

Gdk.EventType.
FOCUS_CHANGE

Gdk.EventType.
CONFIGURE

Gdk.EventType.
MAP

Gdk.EventType.
UNMAP

Gdk.EventType.
PROPERTY_NOTIFY

A mouse button was clicked twice. This also emits
Gdk.EventType.BUTTON_PRESS, so you need
to check the event type in the method/callback
function.

A previously clicked mouse button was released.

A keyboard key was pressed. You can return True
to prevent any text from being entered or actions
being taken because of the key press.

A previously pressed keyboard key was released.
This is usually not as useful as “key-press-event”.

The mouse cursor entered the proximity of the
widget.

The mouse cursor exited the proximity of the
widget.

Keyboard focus entered the widget from another
widget within the window.

Keyboard focus left the widget for another widget
within the window.

The size, position, or stacking order of the widget
changed. This is normally emitted when a new size
is allocated for the widget.

The widget was mapped to the display.

The widget was unmapped from the display.

A property of the widget has been changed or
deleted. You can use this to track changes to a
specific widget property stored by GObject.

(continued)
483

APPENDIXB GTK+ SIGNALS

Table B-1. (continued)

Signal Name Gdk.EventType Value Description

selection-clear- Gdk.EventType. The application no longer has ownership of a
event SELECTION_CLEAR selection, so it needs to be cleared.
selection-request- Gdk.EventType. The selection of the widget was requested by
event SELECTION_REQUEST another application.

selection-notify- Gdk.EventType. The owner of a selection responded to a selection

event

proximity-in-event

proximity-out-event

event

event

event

event

event

event

client-event

visibility-notify-event

SELECTION_NOTIFY

Gdk.EventType.
PROXIMITY_IN

Gdk.EventType.
PROXIMITY_OUT

Gdk.EventType.
DRAG_ENTER

Gdk.EventType.
DRAG_LEAVE

Gdk.EventType.
DRAG_MOTION

Gdk.EventType.
DRAG_STATUS

Gdk.EventType.
DROP_START

Gdk.EventType.
DROP_FINISHED

Gdk.EventType.
CLIENT EVENT

Gdk.EventType.
VISIBILITY NOTIFY

conversion request.

An input device has come in contact with a sensing
surface, such as a pen on a touch screen.

An input device, such as a pen on a touch screen,
has broken off contact with a sensing surface.

The mouse pointer entered the widget while a drag
action was in progress.

The mouse pointer left the widget while a drag
action was in progress.

The mouse pointer moved within the widget while a
drag action was in progress.

The current status of a drag action was changed.
A drop action on the widget began.

A drop action on the widget completed.

An event for the widget was received from another

application.

The visibility of the widget changed. For example,
some portion of it has been covered or uncovered.

484

(continued)

Table B-1. (continued)

APPENDIXB GTK+ SIGNALS

Description

Signal Name Gdk.EventType Value

no-expose-event Gdk.EventType.
NO_EXPOSE

scroll-event Gdk.EventType.
SCROLL

window-state-event Gdk.EventType.
WINDOW STATE

event Gdk.EventType.
SETTING
event Gdk.EventType.

OWNER_CHANGE

grab-broken-event Gdk.EventType.
GRAB_BROKEN

The source region was completely available when
parts of a drawable area were copied.

The widget has been scrolled in one direction or
another. This allows you to update the widget’s
visible area.

The state of the widget has changed. If the widget
is a top-level window, this can happen when it is
minimized, maximized, made sticky, made into an
icon, and so forth.

A setting was added, removed, or modified for the
widget.

The owner of the widget has changed. This event
was introduced in GTK+ 2.6.

The widget was grabbed by the pointer or the
keyboard, but it was broken. This can happen
when the window becomes invisible or when a
user attempts to repeat a grab. This event was
introduced in GTK+ 2.8.

Widget Signals

Tables B-2 through B-69 provide a complete list of signals for each class in GTK+ that has

signals. In addition to signal names, a description is provided for each item. If the signal

does not follow the standard signal prototype, the additional parameters are listed; these

additional parameters do not include the user data pointer.

485

APPENDIXB GTK+ SIGNALS

Table B-2. Gtk.AccelGroup Signals

Signal Name Additional Parameters Description

accel-activate GObject.Object The accel-activate signal is an
acceleratable, integer keyval, implementation detail of Gtk.
Gdk .ModifierType modifier AccelGroup and not meant to be

used by applications.

accel-changed GObject.Object The accel-changed signal is emitted
acceleratable,integer keyval, when an entry is added to or
Gdk.ModifierType modifier removed from the accel group.

Table B-3. Gtk.AccelMap Signals

Signal Name Additional Parameters Description
changed string accel_path, integer accel_key;, Notifies about a change in the global
Gdk .ModifierType accel mods accelerator map.

Table B-4. Gtk.Adjustment Signals

Signal Name Additional Description
Parameters
changed None Emitted when one or more of the

Gtk.Adjustment properties have
been changed, other than the Gtk.
Adjustment value property.

value-changed None Emitted when the Gtk.Adjustment
value property has been changed.

Table B-5. Gtk.AppChooserButton Signals

Signal Name Additional Parameters Description

custom-item- string item_name Emitted when a custom item, previously added
activated with Gtk .AppChooserButton.append_
custom_is activated from the drop-down menu.

486

APPENDIXB GTK+ SIGNALS

Table B-6. Gtk.AppChooserWidget Signals

Signal Name Additional Parameters Description

application-activated Gio.AppInfo Emitted when an application item is
application activated from the widget’s list.

application-selected Gio.AppInfo Emitted when an application item is
application selected from the widget’s list.

populate-popup Gtk.Menu menu, Gio. Emitted when a context menu is about

AppInfo application to pop up over an application item.

Table B-7. Gtk.Application Signals

Signal Name Additional Description
Parameters

window-added Emitted when a Gtk .Window is added to application
through Gtk.Application.add window().

window-removed window Emitted when a Gtk .Window is removed from
application,

either as a side-effect of being destroyed or explicitly
through Gtk.Application.remove window().

Table B-8. Gtk.Assistant Signals

Signal Name Additional Parameters Description

apply None The Apply button or the Forward button was clicked
any Gtk.Assistant page.

cancel None The Cancel button was clicked any Gtk.
Assistant page.

close None The Close button or the Apply button was clicked
the last page in the Gtk.Assistant.

escape None

prepare Gtk.Widget page A new page is about to become visible. This
signal was emitted so that you can perform any
preparation tasks before it is visible to the user.

487

APPENDIXB GTK+ SIGNALS

Table B-9. Gtk.Button Signals

Signal Name Additional Parameters Description

activate The “activate” signal on Gtk.Button is an action
signal and emitting it causes the button to animate
press then release.

clicked Emitted when the button has been activated

(pressed and released).

Table B-10. Gtk.Calendar Signals

Signal Name Additional Parameters Description

day-selected None Emitted when the user selects a day.

day-selected- None Emitted when the user double-clicks a day.

double-click

month-changed None Emitted when the user clicks a button to
change the selected month on a calendar.

next-month None Emitted when the user switched to the
next month.

next-year None Emitted when user switched to the next year.

prev-month None Emitted when the user switched to the
previous month.

prev-year None Emitted when user switched to the

previous year.

488

Table B-11. Gtk.CellArea Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

add-editable Gtk.CellRenderer renderer,
Gtk.CellEditable editable,
Gdk.Rectangle cell area,

Gtk.TreePath path

Gtk.TreeModel model, Gtk.
Treelter iter,boolean is_
expander, boolean is_expanded

apply-attributes

Gtk.CellRenderer renderer,
Gtk.TreePath path

focus-changed

Gtk.CellRenderer renderer,
Gtk.CellEditable editable

remove-editable

Indicates that editing has started on
renderer and that editable should be
added to the owning cell-layouting
widget at cell_area.

This signal is emitted whenever
applying attributes to area from model.

Indicates that focus changed on this
area.

Indicates that editing finished on
renderer and that editable should
be removed from the owning cell-
layouting widget.

Table B-12. Gtk.CellRenderer Signals

Signal Name Additional Parameters Description

editing-canceled None This signal is emitted when the user
cancels the process of editing a cell.

editing-started GtkCellEditable This signal is emitted when a cell

editable, string path

starts to be edited.

Table B-13.

Gtk.CellRendererAccel Signals

Signal Name

Additional Parameters

Description

accel-cleared

accel-edited

string path_string

string path_string, integer accel_

key, Gdk .ModifierType accel

mods, integer hardware_keycode

Emitted when the user has
removed the accelerator.

Emitted when the user has
selected a new accelerator.

489

APPENDIXB GTK+ SIGNALS

Table B-14. Gtk.CellRendererCombo Signals

Signal Name Additional Parameters Description

changed string path_string, Gtk. This signal is emitted each time after the user
Treelter new iter selected an item in the combo box, either by
using the mouse or the arrow keys.

Table B-15. Gtk.CellRendererText Signals

Signal Name Additional Parameters Description
edited string path_string, This signal is emitted after
string new_text renderer has been edited.

Table B-16. Gtk.CellRendererToggle Signals

Signal Name Additional Parameters Description

toggled string path_string The “toggled” signal is emitted
when the cell is toggled.

Table B-17. Gtk.CheckMenultem Signals

Signal Name Additional Parameters Description

toggled None This signal is emitted when the
state of the check box is changed.

Table B-18. Gtk.Clipboard Signals

Signal Name Additional Parameters Description

owner-change Gdk.EventOwnerChange The “owner-change” signal is emitted when GTK+
event receives an event that indicates that the ownership
of the selection associated with clipboard has
changed.

490

APPENDIXB GTK+ SIGNALS

Table B-19. Gtk.ColorButton Signals

Signal Name Additional Parameters Description

color-set None The “color-set” signal is emitted
when the user selects a color.

Table B-20. Gtk.ColorSelection Signals

Signal Name Additional Parameters Description

color-changed None This signal is emitted when the color
changes in the Gtk.ColorSelection
according to its update policy.

Table B-21. Gtk.ComboBox Signals

Signal Name Additional Parameters Description

changed None The changed signal is emitted when the active
item is changed.

format-entry-text string path For combo boxes that are created with an entry
(See Gtk.ComboBox.has-entry).

move-active Gtk.ScrollType The “move-active” signal is a keybinding signal

scroll type that is emitted to move the active selection.
popdown None The “popdown” signal is a keybinding signal that

is emitted to popdown the combo box list.

popup None The “popup” signal is a keybinding signal that is
emitted to pop up the combo box list.

491

APPENDIXB GTK+ SIGNALS

Table B-22. Gtk.Container Signals

Signal Name Additional Parameters Description

add Gtk.Widget child A child widget was added or packed into the
container. This signal is emitted even if you do not
explicitly call object.container add() but use
the widget’s built-in packing functions instead.

check-resize None The container checks whether it needs to be resized
before adding a child widget.

remove Gtk.Widget child A child widget was removed from the container.

set-focus-child ~ Gtk.Widget child A container’s child widget gained focus from the
window manager.

Table B-23. Gtk.CssProvider Signals

Signal Name Additional Parameters Description

parsing-error Gtk.CssSection section Signals that a parsing error occurred.

Table B-24. Gtk.Dialog Signals

Signal Name Additional Parameters Description

close None The “close” signal is a keybinding
signal that is emitted when the user
uses a keybinding to close the dialog.

response integer Emitted when an action widget is
clicked, the dialog receives a delete
event, or the application programmer
calls Gtk.Dialog.response().

492

Table B-25. Gtk.Entry Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters Description

activate None The “activate” signal is emitted when the
user hits the Enter key.

backspace None The “backspace” signal is a keybinding
signal that is emitted when the user asks
for it.

copy-clipboard None The “copy-clipboard” signal is a keybinding
signal that is emitted to copy the selection
to the clipboard.

cut-clipboard None The “cut-clipboard” signal is a keybinding

delete-from-cursor

icon-press

icon-release

insert-at-cursor

Gtk.DeleteType type,
integer num_deletions

Gtk.EntryIconPosition
pos, Gtk.
EntryIconPosition
event

Gtk.EntryIconPosition
pos, Gtk.
EntryIconPosition
event

string new_text

signal that is emitted to cut the selection to
the clipboard.

d

C

The “icon-press” signal is emitted when an
activatable icon is clicked.

The “icon-press” signal is emitted when an
activatable icon is clicked.

The “icon-release” signal is emitted on the
button release from a mouse click over an
activatable icon.

The “insert-at-cursor” signal is a
keybinding signal that is emitted when the
user initiates the insertion of a fixed string
at the cursor.

(continued)

493

APPENDIXB GTK+ SIGNALS

Table B-25. (continued)

Signal Name

Additional Parameters

Description

insert-emoji

move-cursor

paste-clipboard

populate-popup

preedit-changed

None

Gtk.MovementStep
step, integer num_steps,
boolean extended

None

Gtk.Widget popup

string preedit

The “insert-emoji” signal is a keybinding
signal that is emitted to present the Emoji
chooser for the entry.

The “move-cursor” signal is a keybinding
signal that is emitted when the user
initiates a cursor movement.

The “paste-clipboard” signal is a keybinding
signal that is emitted to paste the contents
of the clipboard into the text view.

The “populate-popup” signal is emitted before
showing the context menu of the entry.

If an input method is used, the typed text is
not immediately be committed to the buffer.

toggle-overwrite None The “toggle-overwrite” signal is a
keybinding signal that is emitted to toggle
the overwrite mode of the entry.

Table B-26. Gtk.EntryBuffer Signals
Signal Name Additional Parameters Description

deleted_text

inserted_text

integer position, integer
n_chars

This signal is emitted after text
is deleted from the buffer.

integer position, string chars, This signal is emitted after text

integer n_chars

is inserted into the buffer.

Table B-27. Gtk.EntryCompletion Signals

Signal Name

Additional Parameters Description

action_activated integer index

Emitted when an action
is activated.

494

APPENDIXB GTK+ SIGNALS

Table B-28. Gtk.Expander Signals

Signal Name Additional Parameters Description

activate None Emitted when an
action is activated.

Table B-29. Gtk.FileChooserButton Signals

Signal Name Additional Parameters Description

file_set None The “file-set” signal is emitted when the
user selects a file. Note that this signal is
only emitted when the user changes the file.

Table B-30. Gtk.FileChooserWidget Signals

Signal Name Additional Description
Parameters
desktop_folder None The “desktop-folder” signal is a keybinding signal that is

emitted when the user asks for it. This is used to make the
file chooser show the user’s Desktop folder in the file list.

down_folder None The “down-folder” signal is a keybinding signal that is
emitted when the user asks for it.

home_folder None The “home-folder” signal is a keybinding signal that is
emitted when the user asks for it.

location_popup string path The “location-popup” signal is a keybinding signal that is
emitted when the user asks for it.

location_popup_ None The “location-popup-on-paste” signal is a keybinding signal

on_paste that is emitted when the user asks for it.

location_toggle_ None The “location-toggle-popup” signal is a keybinding signal

popup that is emitted when the user asks for it.

places_shortcut None The “places-shortcut” signal is a keybinding signal that is

emitted when the user asks for it.

(continued)

495

APPENDIXB GTK+ SIGNALS

Table B-30. (continued)

Signal Name Additional Description
Parameters

quick_bookmark integer The “quick-bookmark” signal is a keybinding signal that is
bookmark_ emitted when the user asks for it.
index

recent_shortcut None The “recent-shortcut” signal is a keybinding signal that is

search_shortcut

show_hidden

up_folder

emitted when the user asks for it.

None The “search-shortcut” signal is a keybinding signal that is
emitted when the user asks for it.

None The “show-hidden” signal is a keybinding signal that is
emitted when the user asks for it.

None The “up-folder” signal is a keybinding signal that is emitted
when the user asks for it.

Table B-31. Gtk.FlowBox Signals

Signal Name

Additional Parameters

Description

activate_cursor_child

child_activated

move_cursor

select_all

None

Gtk.FlowBoxChild
child

Gtk.MovementStep
step, integer count

None

The “activate-cursor-child” signal is a
keybinding signal that is emitted when the
user activates the box.

The “child-activated” signal is emitted when
a child has been activated by the user.

The “move-cursor” signal is a keybinding
signal that is emitted when the user
initiates a cursor movement.

The “select-all” signal is a keybinding signal
that is emitted to select all children of the
box, if the selection mode permits it.

496

(continued)

APPENDIXB GTK+ SIGNALS

Table B-31. (continued)

Signal Name Additional Parameters Description

selected_children_ None The “selected-children-changed” signal is

changed emitted when the set of selected children
changes.

toggle_cursor_child None The “toggle-cursor-child” signal is a

keybinding signal that toggles the selection
of the child that has the focus.

unselect_all None The “unselect-all” signal is a keybinding
signal that is emitted to unselect all children
of the box, if the selection mode permits it.

Table B-32. Gtk.FlowBoxChild Signals

Signal Additional Description
Name Parameters
activate None The “activate” signal is emitted when the user activates

a child widget in a Gtk . F1owBox, either by clicking or
double-clicking, or by using the Space or Enter key.

Table B-33. Gtk.FontButton Signals

Signal Additional Description
Name Parameters
font_set None The “font-set” signal is emitted when

the user selects a font. When handling
this signal, use Gtk.FontButton.
get font_name() to find out that
font was just selected.

497

APPENDIXB GTK+ SIGNALS

Table B-34. Gtk.GLArea Signals

Signal Name Additional
Parameters

Description

create_context Gdk.GLContext

context
render None
resize integer width,
integer height

The “create-context” signal is emitted when the widget
is being realized, and allows you to override how the GL
context is created. This is useful when you want to reuse
an existing GL context, or if you want to try creating
different kinds of GL options.

The “render” signal is emitted every time the contents of
the Gtk.GLArea should be redrawn.

The “resize” signal is emitted once when the widget

is realized, and then each time the widget is changed
while realized. This is useful in order to keep GL state
up to date with the widget size, like for instance camera
properties that may depend on the width/height ratio.

Table B-35. Gtk.Gesture Signals

Signal Name Additional Parameters Description
begin Gdk.EventSequence This signal is emitted when the gesture is
sequence recognized. This means the number of touch
sequences matches Gtk.Gesture.n-
points(), and the Gtk.Gesture.check
handler() returned True.
render Gdk.EventSequence This signal is emitted whenever a sequence
sequence is cancelled. This usually happens on active

touches when Gtk.EventController.
reset () is called on gesture (manually, due
to grabs...), or the individual sequence was
claimed by parent widgets’ controllers.

498

(continued)

Table B-35. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters Description
end Gdk.EventSequence This signal is emitted when the gesture is
sequence recognized. This means the number of touch
sequences matches Gtk.Gesture.n-
points(), and the Gtk.Gesture.check
handler () returned True.
sequence_state_ Gdk.EventSequence This signal is emitted whenever a sequence
changed sequence, Gtk. state changes.
EventSequenceState
state

Table B-36. Gtk.GestureDrag Signals

Signal Name Additional Parameters Description

drag_begin Gtk.GestureDrag gesture_ This signal is emitted whenever
drag, float startx, float starty dragging starts.

drag_end Gtk.GestureDrag gesture_ This signal is emitted whenever
drag, float startx, float starty the dragging is finished.

drag_update Gtk.GestureDrag gesture_ This signal is emitted whenever
drag, float startx, float starty the dragging point moves.

Table B-37. Gtk.GestureLongPress Signals

Signal Name Additional Parameters

Description

cancelled None

pressed float x, float y

Gtk.GesturelLongPress “pressed” happened.

This signal is emitted whenever a press goes
unmoved/unreleased longer than what the GTK+
defaults tell.

499

APPENDIXB GTK+ SIGNALS

Table B-38. Gtk.GestureMultiPress Signals

Signal Name Additional Parameters Description

integer n_press, float x, This signal is emitted whenever

pressed
floaty a button or touch press happens.

Table B-39. Gtk.GesturePan Signals

Signal Name Additional Parameters Description
pan Gtk.PanDirection This signal is emitted once a panning
direction, float offset gesture along the expected axis is detected.

Table B-40. Gtk.GestureRotate Signals

Signal Name Additional Parameters Description

float angle, float angle_delta This signal is emitted when the angle

pan
between both tracked points changes.

Table B-41. Gtk.GestureSwipe Signals

Signal Name Additional Parameters Description

float velocity_x, float This signal is emitted when the recognized
gesture is finished, velocity and direction are
a product of previously recorded events.

swipe
velocity_y

Table B-42. Gtk.GestureZoom Signals

Signal Name Additional Parameters Description

This signal is emitted whenever the distance

scale_changed float scale
between both tracked sequences changes.

500

Table B-43. Gtk.IMContext Signals

APPENDIXB GTK+ SIGNALS

preedit_changed

retrieve_surrounding

Signal Name Additional Description
Parameters
string str The “commit” signal is emitted when a complete input
sequence has been entered by the user. This can be a
single character immediately after a key press or the
final result of pre-editing.
delete_surrounding integer offset, The “delete-surrounding” signal is emitted when the

integer n_chars

None

None

None

input method needs to delete all or part of the context
surrounding the cursor.

The “preedit-changed” signal is emitted whenever
the preedit sequence currently being entered has
changed. It is also emitted at the end of a preedit
sequence, in that case Gtk.IMContext.get
preedit string() returns the empty string.

The “preedit-end” signal is emitted when a pre-editing
sequence has been completed or canceled.

The “retrieve-surrounding” signal is emitted when
the input method requires the context surrounding
the cursor. The callback should set the input method
surrounding context by calling the Gtk.IMContext.
set_surrounding() method.

Table B-44. Gtk.IconTheme Signals

Signal Name

Additional Parameters

Description

Emitted when the current icon theme is switched
or GTK + detects that a change has occurred in the
contents of the current icon theme.

501

APPENDIXB GTK+ SIGNALS

Table B-45. Gtk.IconView Signals

Signal Name Additional Parameters

Description

activate_cursor_item None

item_activated Gtk.TreePath path

move_cursor Gtk.MovementStep
step, integer count

select_all None
select_cursor_item None
selection_changed None
toggle_cursor_item None
unselect_all None

A keybinding signal that is emitted
when the user activates the currently
focused item.

The “item-activated” signal is emitted

when the method Gtk.IconView.item
activated() is called, when the user
double clicks an item with the “activate-
on-single-click” property set to False, or
when the user single clicks an item when
the “activate-on-single-click” property set to
True. It is also emitted when a non-editable
item is selected and one of the keys: Space,
Return or Enter is pressed.

The “move-cursor” signal is a keybinding
signal that is emitted when the user
initiates a cursor movement.

A keybinding signal that is emitted when
the user selects all items.

A keybinding signal that is emitted when
the user selects the item that is currently
focused.

The “selection-changed” signal is emitted
when the selection (i.e. the set of selected
items) changes.

A keybinding signal that is emitted when
the user toggles whether the currently
focused item is selected or not. The exact
effect of this depend on the selection mode.

A keybinding signal that is emitted when
the user unselects all items.

502

Table B-46. Gtk.InfoBar Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

close None

response integer response_id

The “close” signal is a keybinding signal that is
emitted when the user uses a keybinding to dismiss
the info bar.

Emitted when an action widget is clicked or the
application programmer calls Gtk.Dialog.
response(). The response_id depends on that
action widget was clicked.

Table B-47. Gtk.Label Signals

Signal Name Additional Parameters Description

activate_current_link None

activate_link string uri

copy_clipboard None

A keybinding signal that is emitted when
the user activates a link in the label.

The signal that is emitted to activate a
URI. Applications may connect to it to
override the default behavior, which is to
call Gtk.show_uri_on_window()

The “copy-clipboard” signal is a
keybinding signal that is emitted to copy
the selection to the clipboard.

move_cursor Gtk.MovementStep step, The “move-cursor” signal is a keybinding
integer count, boolean signal that is emitted when the user

extend_selection

populate_popup Gtk.Menu menu

initiates a cursor movement. If the cursor
is not visible in entry, this signal causes
the viewport to be moved instead.

The “populate-popup” signal is emitted
before showing the context menu of the
label. Note that only selectable labels have
context menus.

503

APPENDIXB GTK+ SIGNALS

Table B-48. Gtk.LevelBar Signals

Signal Name Additional Parameters

Description

offset_changed string name

Emitted when an offset specified on the bar
changes value as an effect to Gtk.LevelBar.
add_offset value() being called.

Table B-49. Gtk.LinkButton Signals

Signal Name Additional Parameters

Description

activate_link None

The “activate-link” signal is emitted each time
the Gtk.LinkButton has been clicked.

Table B-50. Gtk.ListBox Signals

Signal Name Additional Parameters

Description

activate_cursor_row None

move_cursor Gtk.MovementStep

object, integer p0

row_activated Gtk.ListBoxRow row

row_selected Gtk.ListBoxRow row

select_all None
selected_rows_ None
changed

toggle_cursor_row None
unselect_all None

The “row-activated” signal is emitted when a
row has been activated by the user.

The “row-selected” signal is emitted when a
new row is selected, or (with a None row) when
the selection is cleared.

The “select-all” signal is a keybinding signal
that is emitted to select all children of the box,
if the selection mode permits it.

The “selected-rows-changed” signal is emitted
when the set of selected rows changes.

The “unselect-all” signal is a keybinding signal
that is emitted to unselect all children of the
box, if the selection mode permits it.

504

APPENDIXB GTK+ SIGNALS

Table B-51. Gtk.ListBoxRow Signals

Signal Name Additional Parameters Description

activate None If you want to be notified when the user activates a
row (by key or not), use the Gtk.ListBox “row-
activated” signal on the row’s parent Gtk. ListBox.

Table B-52. Gtk.Menu Signals

Signal Name Additional Parameters Description

move_scroll Gtk.ScrollType
scroll type

popped_up object flipped_rect, object Emitted when the position of menu is finalized
final_rect, boolean flipped_x, after being popped up using Gtk.Menu. popup
boolean flipped_y at_rect(), Gtk.Menu.popup at widget(),

or Gtk.Menu.popup_at_pointer().

Table B-53. Gtk.Menultem Signals

Signal Name Additional Parameters Description

move_scroll Gtk.ScrollType The user scrolled the menu with one of the
scroll type Gtk.ScrollType values.

activate None Emitted when the item is activated.

activate_item None Emitted when the item is activated, but also

if the menu item has a submenu. For normal
applications, the relevant signal is Gtk.
MenuItem “activate”.

deselect None

select None

toggle_size_allocate integer object The menu item was allocated with a new size.
toggle_size_request integer object The menu item requested a new size.

505

APPENDIXB GTK+ SIGNALS

Table B-54. Gtk.MenuShell Signals

Signal Name

Additional Parameters

Description

activate_current

cancel

cycle_focus

deactivate

insert

move_current

move_selected

selection_done

boolean force_hide

None

Gtk.DirectionType
direction

None

Gtk.Widget child
integer position

Gtk.
MenuDirectionType
direction

integer distance

None

An action signal that activates the current menu
item within the menu shell.

An action signal that cancels the selection within
the menu shell. Causes the Gtk.MenuShell
“selection- done” signal to be emitted.

A keybinding signal that moves the focus in the
given direction.

This signal is emitted when a menu shell is
deactivated.

The “insert” signal is emitted when a new Gtk.
MenuItem is added to a Gtk.MenuShell.

A separate signal is used instead of Gtk.
Container “add” because of the need for an
additional position parameter.

A keybinding signal that moves the current menu
item in the direction specified by direction.

The “move-selected” signal is emitted to move the
selection to another item.

This signal is emitted when a selection has been
completed within a menu shell.

506

Table B-55. Gtk.MenuToolButton Signals

Signal Name Additional Description
Parameters
show_menu None The “show-menu” signal

is emitted before the
menu is shown.

Table B-56. Gtk.NativeDialog Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

response integer

Emitted when the user responds to the dialog.

Table B-57. Gtk.Notebook Signals

Signal Name Additional Parameters

Description

change_current_
page
create_window

integer

Gtk.Widget page,
integer x, integer y

focus_tab Gtk.NotebookTab

move_focus_out Gtk.DirectionType

object

Gtk.Widget child,
integer page_num

page_added

page_removed Gtk.Widget child,

integer page_num

page_reordered Gtk.Widget child,

integer page_num

reorder_tab Gtk.DirectionType

direction, boolean p0
boolean

Gtk.Widget child,
integer page_num

select_page

switch_page

The page currently shown by Gtk .Notebook
was changed.

The “create-window” signal is emitted when a
detachable tab is dropped on the root window.

The focus was moved by

The focus was moved out of the Gtk.
NotebookTab widget in the given direction.

the “page-added” signal is emitted in the
notebook right after a page is added to the
notebook.

The “page-removed” signal is emitted in the
notebook right after a page is removed from
the notebook.

The “page-reordered” signal is emitted in
the notebook right after a page has been
reordered.

A new page was selected for

Emitted when the user or a function changes
the current page.

507

APPENDIXB GTK+ SIGNALS

Table B-58. Gtk.Overlay Signals

Signal Name Additional Parameters Description
get_child_ Gtk.Widget widget The “get-child-position” signal is emitted to determine
position the position and size of any overlay child widgets. A

handler for this signal should fill allocation with the
desired position and size for widget, relative to the
‘main’ child of overlay.

Table B-59. Gtk.Paned Signals

Description

Signal Name Additional
Parameters

accept_position None

cancel_position None

cycle_child_focus boolean reversed

cycle_handle_ boolean reversed
focus
move_handle Gtk.ScrollType

scroll type

toggle_handle_ None

focus

The “accept-position” signal is a keybinding signal that
is emitted to accept the current position of the handle
when moving it using key bindings.

The “cancel-position” signal is a keybinding signal that
is emitted to cancel moving the position of the handle
using key bindings. The position of the handle is reset
to the value prior to moving it.

The “cycle-child-focus” signal is a keybinding signal
that is emitted to cycle the focus between the children
of the paned.

The “cycle-handle-focus” signal is a keybinding signal
that is emitted to cycle whether the paned should grab
focus to allow the user to change position of the handle
by using key bindings.

The “move-handle” signal is a keybinding signal that
is emitted to move the handle when the user is using
key bindings to move it.

The “toggle-handle-focus” is a keybinding signal that is
emitted to accept the current position of the handle and
then move focus to the next widget in the focus chain.

508

Table B-60. Gtk.PlacesSidebar Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters Description

drag_action_ask integer action The places sidebar emits this signal when
it needs to ask the application to pop up a
menu to ask the user for that drag action to
perform.

drag_action_ Gdk.DragContext, Gio. When the user starts a drag-and- drop

requested File dest_file, Gio. operation and the sidebar needs to ask the

File src file list

drag_perform_drop ~ Gio.File dest file,
Gio.File src_file
list, integer action

mount Gio.MountOperation
mount_operation

open_location Gio.File location,
Gtk.PlacesOpenFlags
open_flags

application for that drag action to perform,
then the sidebar emits this signal.

The places sidebar emits this signal when
the user completes a drag-and-drop
operation and one of the sidebar’s items is
the destination. This item is in the dest
file, and the source file list hasthe
list of files that are dropped into it and that
should be copied/moved/etc. based on the
specified action.

The places sidebar emits this signal when
it starts a new operation because the user
clicked some location that needs mounting.
In this way the application using the Gtk.
PlacesSidebar can track the progress
of the operation and, for example, show a
notification.

The places sidebar emits this signal when
the user selects a location in it. The calling
application should display the contents of
that location; for example, a file manager
should show a list of files in the specified
location.

(continued)

509

APPENDIXB GTK+ SIGNALS

Table B-60. (continued)

Signal Name Additional Parameters

Description

populate_popup
Gio.File selected
item, Gio.Volume
selected volume

show_connect_to_ None
server

show_enter_location None

show_error_message string primary, string
secondary

Gtk.Widget container,

The places sidebar emits this signal when
the user invokes a contextual pop-up on

one of its items. In the signal handler, the
application may add extra items to the menu
as appropriate. For example, a file manager
may want to add a “Properties” command to
the menu.

The places sidebar emits this signal when

it needs the calling application to present a
way to connect directly to a network server.
For example, the application may bring up

a dialog box asking for a URL like “sftp://
ftp.example.com”. It is up to the application
to create the corresponding mount by using,
for example, Gio.File.mount_enclosing
_volume().

The places sidebar emits this signal when

it needs the calling application to present a
way to directly enter a location. For example,
the application may bring up a dialog box
asking for a URL like “http://http.
example.com”.

The places sidebar emits this signal when

it needs the calling application to present
an error message. Most of these messages
refer to mounting or unmounting media, for
example, when a drive cannot be started for
some reason.

510

(continued)

http://example.com
http://http.example.com
http://http.example.com

Table B-60. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

show_other_
locations_with_flags

Gtk.PlacesOpenFlags
open_flags

show_starred
location

Gtk.PlacesOpenFlags
object flags

unmount Gio.MountOperation

mount_operation

The places sidebar emits this signal when
it needs the calling application to present a
way to show other locations e.qg. drives and
network access points. For example, the
application may bring up a page showing
persistent volumes and discovered network
addresses.

The places sidebar emits this signal when

it needs the calling application to present

a way to show the starred files. In GNOME,
starred files are implemented by setting the
nao:predefined-tag-favorite tag in the tracker
database.

The places sidebar emits this signal when it
starts a new operation because the user for
example ejected some drive or unmounted a
mount. In this way the application using the
Gtk.PlacesSidebar a track the progress
of the operation and, for example, show a
notification.

511

APPENDIXB GTK+ SIGNALS

Table B-61. Gtk.Plug Signals

Signal Name Additional Parameters Description

plug None Emitted when the plug becomes embedded in a socket.

Table B-62. Gtk.Popover Signals

Signal Name Additional Parameters Description

closed None

Table B-63. Gtk.PrintOperation Signals

Signal Name Additional Parameters Description
begin_print Gtk.PrintContext Emitted after the user has finished changing
context print settings in the dialog, before the actual

rendering starts.

create_custom_widget None Emitted when displaying the print dialog.
If you return a widget in a handler for this
signal it is added to a custom tab in the
print dialog. You typically return a container
widget with multiple widgets in it.

custom_widget_apply Gtk.Widget widget Emitted right before Gtk.
PrintOperation “begin-print” if you
added a custom widget in the Gtk.
PrintOperation “create-custom-widget”
handler. When you get this signal you should
read the information from the custom
widgets, as the widgets are not guaranteed
to be around at a later time.

done Gtk. Emitted when the print operation run has
PrintOperationResult finished doing everything required for
result printing.
(continued)

512

Table B-63. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

draw_page Gtk.PrintContext
context, integer page_nr

end_print Gtk.PrintContext
context

paginate Gtk.PrintContext
context

preview preview, Gtk.
PrintContext
context, Gtk.Window
parent

request_page_setup Gtk.PrintContext
context, integer pagre_
nr, Gtk.PageSetup
setup

status_changed None

update_custom_widget Gtk.Widget widget,
Gtk.PageSetup setup,
Gtk.PrintSettings
settings

Emitted for every page that is printed. The
signal handler must render the page nr’s
page onto the Cairo context obtained from
context using Gtk.PrintContext.get
cairo_context(

Emitted after all pages have been rendered.
A handler for this signal can clean up any
resources that have been allocated in the
Gtk.PrintOperation “begin-print”
handler.

Emitted after the Gtk.PrintOperation
“begin-print” signal, but before the actual
rendering starts. It keeps getting emitted until
a connected signal handler returns True.

Gtk.PrintOperationPreviewis
emitted when a preview is requested from
the native dialog.

Emitted once for every page that is printed,
to give the application a chance to modify
the page setup. Any changes done to setup
are enforced only for printing this page.

Emitted at between the various phases of
the print operation. See Gtk.PrintStatus
for the phases that are being discriminated.
Use Gtk.PrintOperation.get
status() to find out the current status.

Emitted after change of selected printer.
The actual page setup and print settings are
passed to the custom widget, which can
actualize itself according to this change.

513

APPENDIXB GTK+ SIGNALS

Table B-64. Gtk.RadioButton Signals

Signal Name Additional Description
Parameters
group_changed None Emitted when the group of radio buttons that a radio button

belongs to changes. This is emitted when a radio button
switches from being alone to being part of a group of 2 or more
buttons, or vice-versa, and when a button is moved from one
group of 2 or more buttons to a different one, but not when the
composition of the group that a button belongs to changes.

Table B-65. Gtk.RadioMenultem Signals

Signal Name Additional Description
Parameters
group_changed None The radio button switched to a new group, or it

was removed from a radio group altogether.

Table B-66. Gtk.Range Signals

Signal Name Additional Parameters Description
adjust_bounds float value Emitted before clamping a value, to give the
application a chance to adjust the bounds.
change_values Gtk.ScrollType The Gtk.Range “change-value” signal is emitted
scroll type, float when a scroll action is performed on a range. It
value allows an application to determine the type of

scroll event that occurred and the resultant new
value. The application can handle the event itself
and return True to prevent further processing. Or,
by returning False, it can pass the event to other
handlers until the default GTK+ handler is reached.

move_slider Gtk.ScrollType Virtual function that moves the slider. Used for
step keybindings.
value_changed None Emitted when the range value changes.

514

APPENDIXB GTK+ SIGNALS

Table B-67. Gtk.RecentManager Signals

Signal Additional Description
Name Parameters
changed None Emitted when the current recently used

resources manager changes its contents,
either by calling Gtk.RecentManager.
add_item() or by another application.

Table B-68. Gtk.Scale Signals

Signal Name Additional Description
Parameters
format_value float value Signal that allows you to change how the scale

value is displayed. Connect a signal handler that
returns an allocated string representing value. That
string is then used to display the scale’s value.

Table B-69. Gtk.ScaleButton Signals

Signal Name Additional Description
Parameters
popdown None The “popdown” signal is a keybinding signal

that is emitted to popdown the scale widget.
popup None The “popup” signal is a keybinding signal that
is emitted to pop up the scale widget.

value_changed float value The “value-changed” signal is emitted when
the value field has changed.

515

APPENDIXB GTK+ SIGNALS

Table B-70. Gtk.ScrolledWindow Signals

Signal Name Additional Parameters Description

edge_overshot Gtk.PositionType pos The “edge-overshot” signal is emitted
whenever user initiated scrolling makes the
scrolled window firmly surpass (i.e., with
some edge resistance) the lower or upper
limits defined by the adjustment in that
orientation.

edge_reached Gtk.PositionType pos The “edge-reached” signal is emitted
whenever user-initiated scrolling makes the
scrolled window exactly reaches the lower
or upper limits defined by the adjustment in

that orientation.
move_focus_out Gtk.ScrollType scroll, The “move-focus-out” signal is a keybinding
boolean horizontal signal that is emitted when focus is moved
away from the scrolled window by a
keybinding.

The Gtk.Widget “move-focus” signal is
emitted with direction_type on this
scrolled windows toplevel parent in the
container hierarchy. The default bindings for
this signal are and .

scroll_child Gtk.DirectionType The “scroll-child” signal is a keybinding
direction_type signal that is emitted when a keybinding
that scrolls is pressed. The horizontal or
vertical adjustment is updated that triggers
a signal that the scrolled windows child may
listen to and scroll itself.

516

APPENDIXB GTK+ SIGNALS

Table B-71. Gtk.SearchEntry Signals

Signal Name Additional Description
Parameters

next_match None The “next-match” signal is a keybinding signal that is
emitted when the user initiates a move to the next match
for the current search string.

previous_match None The “previous-match” signal is a keybinding signal that
is emitted when the user initiates a move to the previous
match for the current search string.

search_changed None The Gtk.SearchEntry “search-changed” signal is
emitted with a short delay of 150 milliseconds after the last
change to the entry text.

stop_search None The “stop-search” signal is a keybinding signal that is

emitted when the user stops a search via keyboard input.

Table B-72. Gtk.ShortcutsWindow Signals

Signal Name

Additional Parameters Description

close

integer object

The “close” signal is a keybinding signal
that is emitted when the user uses a
keybinding to close the window.

Table B-73. Gtk.Socket Signals

Signal Name Additional Parameters Description

plug_added None This signal is emitted when a client is successfully
added to the socket.

plug_removed None This signal is emitted when a client is removed from

the socket. The default action is to destroy the Gtk.
Socket widget, so if you want to reuse it you must
add a signal handler that returns True.

517

APPENDIXB GTK+ SIGNALS

Table B-74. Gtk.SpinButton Signals

Description

Signal Name Additional Parameters

change_value Gtk.ScrollType
scroll

input None

output None

value_changed None

wrapped None

The “change-value” signal is a keybinding signal
that is emitted when the user initiates a value
change.

The “input” signal can be used to influence
the conversion of the users input into a double
value. The signal handler is expected to use
Gtk.Entry.get text() to retrieve the text
of the entry and set new_value to the new
value.

The “output” signal can be used to change to
formatting of the value that is displayed in the
spin buttons entry.

The “value-changed” signal is emitted when the
value represented by spinbutton changes. Also
see the Gtk.SpinButton “output” signal.

The “wrapped” signal is emitted right after the
spinbutton wraps from its maximum to minimum
value or vice-versa.

Table B-75. Gtk.Statusbar Signals

Signal Name Additional Parameters

Description

text_popped integer context_id, string text

text_pushed integer context_id, string text

Emitted whenever a new message is popped
off a status bar’s stack.

Emitted whenever a new message is pushed
onto a status bar’s stack.

518

Table B-76. Gtk.StyleContext Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

changed None

The “changed” signal is emitted when there

is a change in the Gtk.StyleContext.

Table B-77. Gtk.Switch Signals

Signal Name Additional Parameters

Description

activate None

The “activate” signal on Gtk.Switch is an action

signal and emitting it causes the switch to animate.
Applications should never connect to this signal, but
use the “notify_active” signal.

state_set boolean state

The “state-set” signal on Gtk . Switch is emitted to

change the underlying state. It is emitted when the user
changes the switch position. The default handler keeps
the state in sync with the Gtk . Switch active property.

Table B-78. Gtk.TextBuffer Signals

Signal Name Additional Parameters

Description

apply_tag

TextIter end

begin_user_action None

changed None

end_user_action None

Gtk.TextTag tag, Gtk.
TextIter start, Gtk.

The “apply-tag” signal is emitted to
apply a tag to a range of text in a Gtk.
TextBuffer. Applying actually occurs in
the default handler.

The “begin-user-action” signal is emitted
at the beginning of a single user-visible
operation on a Gtk. TextBuffer.

The “changed” signal is emitted when the
content of a Gtk.TextBuffer has changed.

The “end-user-action” signal is emitted at
the end of a single user-visible operation on
the Gtk.TextBuffer.

(continued)

519

APPENDIXB GTK+ SIGNALS

Table B-78. (continued)

Signal Name

Additional Parameters

Description

insert_child_anchor

insert_pixbuf

insert_text

mark_deleted

mark_set

modified_changed

paste_done

remove_tag

Gtk.TextIter location,
Gtk.TextChildAnchor
anchor

Gtk.TextIter location,
GdkPixbuf.Pixbuf
pixbuf

Gtk.TextIter location
string test, integer len

Gtk.TextMark mark

Gtk.TextIter location,
Gtk.TextMark mark

None

Gtk.Clipboard
clipboard

Gtk.TextTag tag, Gtk.
TextIter start, Gtk.
TextIter end

The “insert-child-anchor” signal is emitted
to insert a Gtk. TextChildAnchor in a
Gtk.TextBuffer. Insertion actually occurs
in the default handler.

The “insert-pixbuf” signal is emitted to
insert a GdkPixbuf.Pixbuf ina Gtk.
TextBuffer. Insertion actually occurs in
the default handler.

The “insert-text” signal is emitted to insert
text in a Gtk. TextBuffer. Insertion
actually occurs in the default handler.

The “mark-deleted” signal is emitted as
notification after a Gtk. TextMark is
deleted.

The “mark-set” signal is emitted as
notification after a Gtk. TextMark is set.

The “modified-changed” signal is
emitted when the modified bit of a Gtk.
TextBuffer flips.

The “paste-done” signal is emitted after
paste operation has been completed. This is
useful to properly scroll the view to the end
of the pasted text. See Gtk.TextBuffer.
paste_clipboard() for more details.

The “remove-tag” signal is emitted to
remove all occurrences of tag from a range
of text in a Gtk. TextBuffer. Removal
actually occurs in the default handler.

520

APPENDIXB GTK+ SIGNALS

Table B-79. Gtk.TextTag Signals

Signal Name Additional Parameters Description

event GObject.Object object, The “event” signal is emitted when
Gdk.Event event, Gtk. an event occurs on a region of the
TextIter iter buffer marked with this tag.

Table B-80. Gtk.TextTaglable Signals

Signal Name Additional Parameters Description

tag_added Gtk.TextTag tag A GtkTextTag object was added to the tag table.
tag_changed Gtk.TextTag tag, A property of a tag contained by the tag table was
boolean size_changed changed. The size of the displayed text can be

changed by other properties besides the size, such
as weight and font family.

tag_removed Gtk.TextTag tag A Gtk.TextTag object was removed from the tag
table.

Table B-81. Gtk.TextView Signals

Signal Name Additional Parameters Description

backspace None The “backspace” signal is a keybinding signal
that is emitted when the user asks for it.

copy_clipboard None The “copy-clipboard” signal is a keybinding
signal that is emitted to copy the selection to the
clipboard.

cut_clipboard None The “cut-clipboard” signal is a keybinding
signal that is emitted to cut the selection to the
clipboard.

delete_from_cursor Gtk.DeleteType type, Textwas deleted from around cursor.
integer count

(continued)

521

APPENDIXB GTK+ SIGNALS

Table B-81. (continued)

Signal Name

Additional Parameters

Description

extend_selection

insert_at_cursor

insert_emaoji

move_cursor

move_viewport

paste_clipboard

populate_popup

preedit_changed

granularity, Gtk.
TextIter location,
Gtk.TextIter start,
Gtk.TextIter end

string string

None

Gtk.MovementStep
step, integer count,
boolean extended_
selection

Gtk.ScrollStep step,
integer count

None

Gtk.Widget popup

string preedit

Gtk.TextExtendSelection The “extend-
selection” signal is emitted when the selection
needs to be extended at location.

The “insert-at-cursor” signal is a keybinding
signal that is emitted when the user initiates the
insertion of a fixed string at the cursor.

The “insert-emoji” signal is a keybinding signal
that is emitted to present the Emoji chooser for
the text view.

The “move-cursor” signal is a keybinding signal
that is emitted when the user initiates a cursor
movement. If the cursor is not visible in text view,
this signal causes the viewport to be moved
instead.

The “move-viewport” signal is a keybinding
signal that can be bound to key combinations
to allow the user to move the viewport, i.e.
change what part of the text view is visible in a
containing scrolled window.

The “paste-clipboard” signal is a keybinding
signal that is emitted to paste the contents of
the clipboard into the text view.

The “populate-popup” signal is emitted before
showing the context menu of the text view.

If an input method is used, the typed text is not
immediately committed to the buffer. So if you
are interested in the text, connect to this signal.

522

(continued)

Table B-81. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters Description

select_all boolean select The “select-all” signal is a keybinding signal that
is emitted to select or unselect the complete
contents of the text view.

set_anchor None The “set-anchor” signal is a keybinding signal
that is emitted when the user initiates setting
the “anchor” mark. The “anchor” mark is placed
at the same position as the “insert” mark.

toggle_cursor_ None The “toggle-cursor-visible” signal is a keybinding

visible signal that is emitted to toggle the Gtk.
TextView cursor-visible property.

toggle_overwrite None The “toggle-overwrite” signal is a keybinding

signal that is emitted to toggle the overwrite
mode of the text view.

Table B-82. Gtk.ToggleButton Signals
Signal Name Additional Parameters Description
toggled None Should be connected if you wish to

perform an action whenever the Gtk.
ToggleButton’s state is changed.

Table B-83. Gtk.ToggleToolButton Signals

Signal Name

Additional Parameters

Description

toggled None

Emitted whenever the toggle
tool button changes state.

523

APPENDIXB GTK+ SIGNALS

Table B-84. Gtk.ToolButton Signals

Signal Name Additional Description
Parameters
clicked None This signal is emitted when the tool button is clicked

with the mouse or activated with the keyboard.

Table B-85. Gtk.Toolltem Signals

Signal Name Additional Description
Parameters
create_menu_proxy None This signal is emitted when the toolbar needs

toolbar_reconfigured

information from tool item about whether the item
should appear in the toolbar overflow menu.

None This signal is emitted when some property of the
toolbar that the item is a child of changes.

Table B-86. Gtk.Toolbar Signals

Signal Name

Additional Parameters

Description

focus_home_or_end

orientation_changed

popup_context_menu

style_changed

boolean focus_home

Gtk.Orientation
orientation_changed

Gtk.Orientation
orientation

Gtk.ToolbarStyle style

A keybinding signal used internally
by GTK+. This signal can’t be used in
application code.

Emitted when the orientation of the
toolbar changes.

Emitted when the user right-clicks
the toolbar or uses the keybinding to
display a pop-up menu.

Emitted when the style of the toolbar
changes.

524

APPENDIXB GTK+ SIGNALS

Table B-87. Gtk.TreeSelection Signals

Signal Name Additional Description
Parameters
changed None Emitted whenever the selection has (possibly)
changed. Please note that this signal is mostly a
hint.

Table B-88. Gtk.TreeView Signals

Signal Name Additional Parameters Description

columns_changed None The number of columns of the treeview has
changed.

cursor_changed None The position of the cursor (focused cell) has
changed.

expand_collapse_ boolean object, boolean p0, A row located at the cursor position needs to

cursor_row boolean p1 expanded or collapsed.
move_cursor Gtk.MovementStep The Gtk.TreeView “move-cursor” signal is a
step, integer direction keybinding signal that is emitted when the user
presses one of the cursor keys.
row_activated Gtk.TreePath path, The “row-activated” signal is emitted when the
Gtk.TreeViewColumn method Gtk.TreeView.row activated()
column is called, when the user double clicks a treeview

row with the “activate-on-single-click” property
set to False, or when the user single clicks

a row when the “activate-on-single-click”
property set to True.

row_collapsed Gtk.Treelter iter, The given row has been collapsed (child nodes
Gtk.TreePath path are hidden).

row_expanded Gtk.Treelter iter, The given row has been expanded (child nodes
Gtk.TreePath path are shown).

(continued)

525

APPENDIXB GTK+ SIGNALS

Table B-88. (continued)

Signal Name Additional Parameters Description

select_all None All of the rows within the tree view were
selected. This can be done by pressing Ctrl+A
or Ctrl +.

select_cursor_ None The user pressed the Backspace key while the

parent

select_cursor_
row

start_interactive_
search

test_collapse_
row

test_expand_
row

toggle_cursor_
row

unselect_all

boolean object

None

Gtk.Treelter iter,
Gtk.TreePath path

Gtk.Treelter iter,
Gtk.TreePath path

None

None

row had cursor focus.

A noneditable row was selected by pressing one
of the following key bindings: space bar, Shift
+space bar, Return, or Enter.

The user pressed Grtl+F while the tree view
had focus.

The given row is about to be collapsed (hide its
children nodes). Use this signal if you need to
control the collapsibility of individual rows.

The given row is about to be expanded (show
its children nodes). Use this signal if you need to
control the expandability of individual rows.

The user pressed Ctrl+spacebar while a row
had focus.

All of the rows in a tree view were deselected
by pressing Shift +Ctrl+A or Shift+Ctrl+/.

Table B-89. Gtk.TreeViewColumn Signals

Signal Name Additional Description
Parameters
clicked None The user pressed the tree view column’s header button. This

usually causes the tree view’s rows to be sorted according
to that column in views that support sorting.

526

Table B-90. Gtk.Widget Signals

APPENDIXB GTK+ SIGNALS

Signal Name Additional Parameters

Description

accel_closures_changed None

button_press_event Gdk.EventButton event

button_release_event Gdk.EventButton event

can_activate_accel integer signal_id

child_notify GObject.ParamSpec child_
property

configure_event Gdk.EventConfigure event

damage_event Gdk.EventExpose event

delete_event Gdk.Event event

The “button-press-event” signal is
emitted when a button (typically
from a mouse) is pressed.

The “button-release-event” signal
is emitted when a button (typically
from a mouse) is released.

Determines whether an
accelerator that activates the
signal identified by signal_id can
currently be activated.

The “child-notify” signal is emitted
for each ‘child property [child-
properties]’ that has changed on
an object. The signal’s detail holds
the property name.

The “configure-event” signal is
emitted when the size, position or
stacking of the widget’s window
has changed.

Emitted when a redirected
window belonging to widget

is drawn into. The region/area
members of the event shows what
area of the redirected drawable
was drawn into.

The “delete-event” signal is
emitted if a user requests that a
toplevel window is closed.

(continued)

527

APPENDIXB GTK+ SIGNALS

Table B-90. (continued)

Signal Name Additional Parameters Description

destroy None Signals that all holders of a
reference to the widget should
release the reference that they
hold. May result in finalization of
the widget if all references are
released.

destroy_event Gdk.Event event The “destroy-event” signal is
emitted when a Gdk .Window
is destroyed. You rarely get this
signal, because most widgets
disconnect themselves from their
window before they destroy it, so
no widget owns the window at

destroy time.
direction_changed Gtk.TextDirection The “direction-changed” signal is
previous_direction emitted when the text direction of
a widget changes.
drag_begin Gdk.DragContext context The “drag-begin” signal is emitted

on the drag source when a drag
is started. A typical reason to
connect to this signal is to set
up a custom drag icon with e.g.
Gtk.Widget.drag source_
set_icon_pix
drag_data_delete Gdk.DragContext context The “drag-data-delete” signal
is emitted on the drag source
when a drag with the action
Gdk.DragAction.MOVE is
successfully completed.

(continued)

528

Table B-90. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name

Additional Parameters

Description

drag_data_get

drag_data_received

drag_drop

drag_end

drag_failed

drag_leave

drag_motion

draw

enter_notify_event

Gdk.DragContext context,
Gtk.SelectionData data,
integer info, integer time

Gdk.DragContext context,
integer x, integer y, Gtk.
SelectionData data, integer
info, integer time
Gdk.DragContext context,
integer x, integer y, integer time

Gdk.DragContext context

Gdk.DragContext context,
Gtk.DragResult result

Gdk.DragContext context,
integer time

Gdk.DragContext context,
integer x, integer y, integer time

cairo.Context cr

Gdk.EventCrossing event

The “drag-data-get” signal is
emitted on the drag source when
the drop site requests the data
that is dragged.

The “drag-data-received” signal is
emitted on the drop site when the
dragged data has been received.

The “drag-drop” signal is emitted
on the drop site when the user
drops the data onto the widget.

The “drag-end” signal is emitted
on the drag source when a drag is
finished.

The “drag-failed” signal is emitted
on the drag source when a drag
has failed.

The “drag-leave” signal is emitted
on the drop site when the cursor
leaves the widget.

The “drag-motion” signal is
emitted on the drop site when the
user moves the cursor over the
widget during a drag.

This signal is emitted when a
widget is supposed to render itself.

The “enter-notify-event” is
emitted when the pointer enters
the widget’s window.

(continued)

529

APPENDIXB GTK+ SIGNALS

Table B-90. (continued)

Signal Name Additional Parameters Description

event Gdk.Event event The GTK+ main loop emits three
signals for each GDK event
delivered to a widget: one generic
“event” signal, another, more
specific, signal that matches the
type of event delivered (e.g. Gtk.
Widget “key-press-event”) and
finally a generic Gtk.Widget
“event-after” signal.

event_after Gdk.Event event After the emission of the Gtk.
Widget “event” signal and
(optionally) the second more
specific signal, “event-after” is
emitted regardless of the previous
two signals handlers return

values.
focus Gtk.DirectionType The widget received focus.
direction
focus_in_event Gdk.EventFocus event The “focus-in-event” signal is
emitted when the keyboard focus
enters the widget’s window.
focus_out_event Gdk.EventFocus event The “focus-out-event” signal is
emitted when the keyboard focus
leaves the widget’s window.
grab_broken_event Gdk.EventGrabBroken Emitted when a pointer or
event keyboard grab on a window

belonging to widget is broken.

(continued)

530

Table B-90. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name

Additional Parameters

Description

grab_focus

grab_notify

hide

hierarchy_changed

key_press_event

key_release_event

keynav_failed

None

boolean was_grabbed

None

Gtk.Widget previous_
toplevel

Gdk.EventKey event

Gdk.EventKey event

Gtk.DirectionType
direction

The widget forced focus on
itself by calling widget.
grab_focus(). This signal can
also be initiated with mnemonic
accelerators.

The “grab-notify” signal is
emitted when a widget becomes
shadowed by a GTK+ grab (not
a pointer or keyboard grab)

on another widget, or when it
becomes unshadowed due to a
grab being removed.

The “hide” signal is emitted when
widget is hidden, for example with
Gtk.widget.hide().

The “hierarchy-changed” signal is
emitted when the anchored state
of a widget changes.

The “key-press-event” signal is
emitted when a key is pressed.
The signal emission reoccurs at
the key-repeat rate when the key
is kept pressed.

The “key-release-event” signal is
emitted when a key is released.

Emitted if keyboard navigation
fails. See Gtk.Widget.keynav_
failed() for details.

(continued)

531

APPENDIXB GTK+ SIGNALS

Table B-90. (continued)

Signal Name Additional Parameters

Description

leave_notify_event Gdk.EventCrossing event

map None

map_event Gdk.EventAny event

mnemonic_activate boolean group_cycling

motion_notify_event Gdk.EventMotion event

move_focus Gtk.Widget old parent

popup_menu None

property_notify_event Gdk.EventProperty event

The “leave-notify-event” is
emitted when the pointer leaves
the widget’s window.

The “map” signal is emitted when
widget is going to be mapped.

The “map-event” signal is
emitted when the widget’s
window is mapped. A window is
mapped when it becomes visible
on the screen.

The default handler for this

signal activates widget if group
cycling is False, or just makes
widget grab focus if group
cyclingis True.

The “motion-notify-event” signal
is emitted when the pointer moves
over the widget’s Gdk . Window.

The “parent-set” signal is emitted
when a new parent has been set
on a widget.

This signal is emitted whenever
a widget should pop up a context
menu.

The “property-notify-event” signal
is emitted when a property on
the widget’s window has been
changed or deleted.

532

(continued)

Table B-90. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name

Additional Parameters

Description

proximity_in_event

proximity_out_event

query_tooltip

realize

screen_changed

Gdk.EventProximity
event

Gdk.EventProximity
event

integer x, integer y, boolean
keyboard_mode, Gtk.
Tooltip tooltip

None

Gdk.Screen
previous screen

To receive this signal the Gdk.
Window associated to the
widget needs to enable the Gdk.
EventMask.PROXIMITY IN_
MASK mask.

To receive this signal the Gdk.
Window associated to the

widget needs to enable the Gdk.
EventMask.PROXIMITY OUT
MASK mask.

Emitted when Gtk.Widget
has-tooltip is True and the hover
timeout has expired with the
cursor hovering “above” widget;
or emitted when widget got focus
in keyboard mode.

The “realize” signal is emitted
when widget is associated with

a Gdk .Window, which means

that Gtk.Widget.realize()
has been called or the widget has
been mapped (that is, it is going to
be drawn).

The “screen-changed” signal is

emitted when the screen of a
widget has changed.

(continued)

533

APPENDIXB GTK+ SIGNALS

Table B-90. (continued)

Signal Name Additional Parameters

Description

scroll_event Gdk.EventScroll event

selection_clear_event Gdk.EventSelection
event

selection_get Gtk.SelectionData
data, integer info, integer time

selection_notify_event Gtk.SelectionData data
selection_received Gtk.SelectionData data,
integer time

selection_request_event Gdk.EventSelection

event
show_help Gtk.WidgetHelpType
help type
size_allocate Gdk.Rectangle allocation

The “scroll-event” signal is
emitted when a button in the 4 to
7 range is pressed. Wheel mice
are usually configured to generate
button press events for buttons 4
and 5 when the wheel is turned.

The “selection-clear-event” signal
is emitted when the widget’s
window has lost ownership of a
selection.

Selection data was requested
from the widget.

The “selection-request-event”
signal is emitted when another
client requests ownership of the
selection owned by the widget’s
window.

The user requested help with

the widget by pressing Ctrl

+F1. Help types are defined

by Gtk.WidgetHelpType,

which is composed of
Gtk.WidgetHelpType.

HELP _TOOLTIP and Gtk.
WidgetHelpType.WHATS _THIS

The widget was given a new size
allocation.

534

(continued)

Table B-90. (continued)

APPENDIXB GTK+ SIGNALS

Signal Name

Additional Parameters

Description

state_flags_changed

style_updated

touch_event

unmap

unmap_event

unrealize

visibility_notify_event

window_state_event

Gtk.StateFlags flags

None

None

None

Gdk.EventAny event

None

Gdk.EventVisibility
event

Gdk.EventWindowState
event

The “style-updated” signal is a
convenience signal that is emitted
when the Gtk.StyleContext
“changed” signal is emitted on
the widget’s associated Gtk.
StyleContext.

The “unmap” signal is emitted
when widget is going to be
unmapped, which means that
either it or any of its parents up to
the toplevel widget have been set
as hidden.

The “unmap-event” signal

is emitted when the widget’s
window is unmapped. A window
is unmapped when it becomes
invisible on the screen.

The “unrealize” signal is emitted
when the Gdk . Window associated
with widget is destroyed.

The “visibility-notify-event”

is emitted when the widget’s
window is obscured or
unobscured.

The “window-state-event” is
emitted when the state of the
toplevel window associated to the
widget changes.

535

APPENDIXB GTK+ SIGNALS

Table B-91. Gtk.Window Signals

Signal Name Additional Description
Parameters
activate-default None The “activate-default” signal is a keybinding signal that
is emitted when the user activates the default widget of
window.
activate-focus None The “activate-focus” signal is a keybinding signal that

is emitted when the user activates the currently focused
widget of window.

enable-debugging None The “enable-debugging” signal is a keybinding signal
that is emitted when the user enables or disables
interactive debugging.

keys-changed None The “keys-changed” signal is emitted when the set of
accelerators or mnemonics that are associated with
window changes.

set-focus Gtk.Widget The focus was changed to a different child in the
window.

536

APPENDIX C

GTK+ Styles

GTK+ provides many ways to customize the styles of widgets. Most widget style
customization is done through style properties.

This appendix provides a reference to the default Pango Text Attribute Markup
Language and Gtk.TextTag styles.

Default RC File Styles

Until GTK+ 3., styles were governed by the Gtk.Style class, RC files that defined user
styles, the Pango markup language, and the Gtk.TextTag class. Since the introduction
of GTK+ 3.x, RC files and the Gtk.Style class have been deprecated. A new class, Gtk.
StyleContext, was introduced to replace the Gtk.Style class, but RC files remain
deprecated and have no replacement.

Pango

The Pango Text Attribute Markup Language allows you to change text styles with XML
tags in certain widgets, such as Gtk. Label, using the set_markup method.

The tag can be used with many attributes to define the styles of text. For
example, Text sets the text between the tags
with the specified font. Table C-1 lists the tag’s supported attributes.

537
© W. David Ashley and Andrew Krause 2019

W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0

APPENDIXC ~ GTK+ STYLES

Table C-1. Span Tag Attributes

Attribute Description

background A value that describes the background color.
Possible values include the hexadecimal RGB value in the form #RRGGBB or a
supported color name like blue.

face A font family name, such as Sans or Monospace. This tag is the same thing
as font_family.

fallback When enabled, which is the default, the system tries to find the font that most
closely matches the specified font. You should not turn this off, but if it is
necessary, you should use a value of False.

font_desc A font description string that would be supported by Pango.
FontDescription, such as "Sans Bold 12".

font_family A font family name, such as Sans or Monospace. This tag is the same thing
as face.

foreground A value that describes the foreground color. Possible values include the
hexadecimal RGB value in the form #RRGGBB or a supported color name like
blue.

lang A language code that states what language the text string is in.

rise This value allows you to create superscripts and subscripts by specifying a

vertical displacement, in 10,000ths of an em unit. Negative values create a
subscript, and positive values create a superscript.

size The size of the font, in 1,024ths of a point. You can also use xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller. Absolute sizes are
usually easier to specify by using font_desc.

stretch How much the text is stretched. Possible values include ultracondensed,
extracondensed, condensed, semicondensed, normal,
semiexpanded, expanded, extraexpanded, and ultraexpanded.

strikethrough You should specify true to place a single line through the text or false to
turn it off.

(continued)

538

APPENDIXC ~ GTK+ STYLES

Table C-1. (continued)

Attribute

Description

strikethrough_color A value that describes the strikethrough line color. Possible values include

variant

weight

the hexadecimal RGB value in the form #RRGGBB or a supported color
name like blue.

A value of normal or smallcaps, which allows text to be rendered as all capital
letters.

The weight of the text. Possible values include ultralight, 1ight, normal,
bold, ultrabold, heavy, and a numeric weight value.

Pango also provides a number of convenience tags. These tags can be used in place

of various attributes. As with the tag, you must always provide a closing
tag (e.g.,).

: Make the font bold, which is equivalent to .

<big>: Make the font larger than the current font, which is equivalent
to.

<i>: Equivalent to , which makes the font
italic.

<s>: Strike through the text, which is equivalent to , which makes the font italic.

<sub>: Make the text string subscript. This uses the default value for
subscript text.

<sup>: Make the text string superscript. This uses the default value for
superscript text.

<small>: Make the font larger than the current font, which is
equivalent to .

<small>: Make the font larger than the current font, which is
equivalent to .

539

APPENDIXC ~ GTK+ STYLES

o <tt>:Make the font a monospace font. This can be used for code
segments or other strings that require monospaced characters.

o <u>:Underline the text, which is equivalent to .

Gtk.TextTag Styles

Text tags allow you to define styles for specific sections of Gtk. TextBuffer. Table C-2 is
a complete list of styles supported by Gtk.TextBuffer along with a description of what
type of values each style supports using the create_tagand apply tag methods.

Table C-2. Gtk.TextTag Style Properties

Property Type Description

accumulative-margin boolean Whether left and right margins
accumulate.

background string The background color as a

hexadecimal string. Strings should
be specified in the following format:
#RRGGBB.

background-full-height boolean Indicates whether the background
color fills the entire line height or only
the height of each individual character.

background-full-height-set boolean Whether this tag affects background
height.

background-full-height-set boolean Whether this tag affects background
height.

background-set boolean Whether this tag affects the
background color.

direction Gtk.TextDirection Text direction (e.g., right-to-left or
left-to-right).

(continued)

540

Table C-2. (continued)

APPENDIXC ~ GTK+ STYLES

Property Type Description

editable boolean Indicates whether the text can be
modified.

editable-set boolean Whether this tag affects text editability.

fallback boolean Whether font fallback is enabled.

fallback-set boolean Whether this tag affects font fallback.

family string Name of the font family (e.g., Sans,
Helvetica, Times, Monospace).

family-set boolean Whether this tag affects the font
family.

font string Font description as a string (e.g.,
Sans Italic 12).

font-desc Pango.FontDescription Font description as a Pango.

font-features
font-features-set
foreground
foreground-rgha

foreground-set

indent

indent-set
invisible
invisible-set
justification

justification-set

string
boolean
string

Gdk . RGBA

boolean

integer

boolean
boolean
boolean
Gtk.Justification

boolean

FontDescription class.

OpenType Font Features to use.
Whether this tag affects font features.
Foreground color as a string.
Foreground color as a Gdk . RGBA.

Whether this tag affects the
foreground color.

Amount to indent the paragraph, in
pixels.

Whether this tag affects indentation.
Whether this text is hidden.

Whether this tag affects text visibility.
Left, right, or center justification.

Whether this tag affects paragraph
justification.

(continued)

541

APPENDIXC ~ GTK+ STYLES

Table C-2. (continued)

Property Type Description

language string The language this text is in, as an ISO
code. Pango can use this as a hint
when rendering the text. If not set, an
appropriate default is used.

language-set boolean Whether this tag affects the language
the text is rendered in.

left-margin integer Width of the left margin in pixels.

left-margin-set boolean Whether this tag affects the left
margin.

letter-spacing integer Extra spacing between graphemes.

letter-spacing-set boolean Whether this tag affects letter spacing.

name string Name used to refer to the text tag.
None for anonymous tags.

paragraph-background string Paragraph background color as a
string.

paragraph-background-rgba Gdk.RGBA Paragraph background RGBA as a
Gdk . RGBA.

paragraph-background-set boolean Whether this tag affects the paragraph
background color.

pixels-above-lines integer Pixels of blank space above
paragraphs.

pixels-above-lines-set boolean Whether this tag affects the number of
pixels above lines.

pixels-below-lines integer Pixels of blank space below
paragraphs.

pixels-below-lines-set boolean Whether this tag affects the number of

pixels above lines.

(continued)

542

Table C-2. (continued)

APPENDIXC ~ GTK+ STYLES

Property Type Description

pixels-inside-wrap integer Pixels of blank space between
wrapped lines in a paragraph.

pixels-inside-wrap-set boolean Whether this tag affects the number of
pixels between wrapped lines.

right-margin integer Width of the right margin in pixels.

right-margin-set boolean Whether this tag affects the right
margin.

rise integer Offset of text above the baseline
(below the baseline if rise is negative)
in Pango units.

rise-set boolean Whether this tag affects the rise.

scale float Font size as a scale factor relative
to the default font size. This properly
adapts to theme changes, and so
forth, so it is recommended.

scale-set boolean Whether this tag scales the font size
by a factor.

size integer Font size in Pango units.

Size-points float Font size in points.

size-set boolean Whether this tag affects the font size.

stretch Pango.Stretch Font stretch as a Pango.Stretch
(e.g., Pango.Stretch.CONDENSED).

stretch-set boolean Whether this tag affects the font
stretch.

strikethrough boolean Whether to strike through the text.

strikethrough-rgba Gdk .RGBA Color of strikethrough for this text.

strikethrough-rgba-set boolean Whether this tag affects strikethrough

color.

(continued)
543

APPENDIXC ~ GTK+ STYLES

Table C-2. (continued)

Property Type Description

style Pango.Style Font style as a Pango. Style, (e.g.,
Pango.Style.ITALIC).

style-set boolean Whether this tag affects the font style.

tabs Pango.TabArray Custom tabs for this text.

tabs-set boolean Whether this tag affects tabs.

underline Pango.Underline Style of underline for this text.

underline-rgha Gdk .RGBA Color of underline for this text.

underline-rgha-set boolean Whether this tag affects underlining
color.

underline-set boolean Whether this tag affects underlining.

variant Pango.Variant Font variant as a Pango.Variant
(e.g., Pango.Variant.SMALL
CAPS).

variant-set boolean Whether this tag affects the font
variant.

weight integer Font weight as an integer, see
predefined values in Pango.Weight;
for example, Pango.Weight.BOLD.

weight-set boolean Whether this tag affects the font
weight.

wrap-mode Gtk.WrapMode Whether to wrap lines never, at
word boundaries, or at character
boundaries.

wrap-mode-set boolean Whether this tag affects line wrap

mode.

544

APPENDIX D

Exercises Solutions and
Hints

This appendix walks you through the solutions for each of the exercises found in this
book, although the full code for the solutions can be downloaded from www.gtkbook. com.
If you get stuck, this appendix gives you the tools to solve the exercises before you look at
the code. You can then reference the downloadable solutions to see how I implemented

each of the exercise applications.

Note As the exercises become more complex, the solutions may differ greatly
from your implementations. Even if your application works successfully, you should
check out the downloadable solutions for comparison.

Chapter 3, Exercise 1: Using Events and Properties

The solution for this exercise should appear very similar to the exercises found
throughout Chapter 3. To begin, your application should include the following four basic
steps that are required by every Python GTK+ application.

1. Create the Gtk.Application instance.
2. Create the Gtk.ApplicationhWindow instances.

3. Show the Gtk.ApplicationWindow instance using the show all()
method.

4. Activate the Gtk.ApplicationWindow instance using the
present() method.

545
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0
http://www.gtkbook.com

APPENDIXD EXERCISES SOLUTIONS AND HINTS

In addition to these basic steps, you must also add a Gtk.Label widget to the top-
level window. This label widget can be set as selectable with set_selectable(). Next,
you should connect the Gtk.ApplicationWindow widget to the "key-press-event”
signal, which is called every time the user presses a key when the window has focus.

Note The “key-press-event” does not work if it is connected to the Gtk.Label
widget! In Chapter 4, you learn that the label widget cannot receive GDK events
because it does not have its own Gdk.Window.

In the "key-press-event" callback method, you can use the following Python code
to determine whether the label is currently displaying the first or last name.

if stringi.lower() == string2.lower():

The window and label text should be switched accordingly. You should then return
False so that the application continues to handle the "key-press-event".

Another solution is to just swap the window title and label text unconditionally. This
is the approach used in the supplied exercise solution.

Chapter 4, Exercise 1: Using Multiple Containers

This exercise helps you gain experience using a variety of container widgets that were
covered in Chapter 4, including Gtk.Notebook and Gtk.Box. Let’s analyze the content of
each of these containers.

The Gtk.Notebook container should contain four tabs. Each tab in a notebook is
associated with a label widget and a child widget. The append_page () method can
be used to add new pages to a notebook. Each of these tabs should contain a Gtk.
Button widget that is connected to the clicked signal. When a button is clicked, the
notebook should move to the next page, wrapping around when the last page is reached.
Connecting each clicked signal to the same callback function can do this.

Within the callback method, which is called next_tab() in the downloadable
solution, you first need to check the page number. If the page number is less than three,
you can simply call next_page() to move to the next page; otherwise, you can use
set_current page() to set the page number to zero. This same method can be used for
moving to the previous page in the notebook.

546

APPENDIXD EXERCISES SOLUTIONS AND HINTS

The next container is a horizontal Gtk .Box that holds two buttons. The first button
should move to the previous page in the Gtk.Notebook container when pressed. You
can use the same method for moving to the next page for moving to the previous page,
although it has to be reversed. The other button should close the window and exit the
application when clicked. These buttons can be packed with pack_end() so that they
appear against the right side of the horizontal box instead of the left side.

The last container in the application is a vertical Gtk.Box widget that should hold the
Gtk.Notebook and horizontal Gtk.Box widgets. This vertical box can be packed into the
top-level Gtk.Window widget to complete the application’s user interface.

Chapter 4, Exercise 2: Even More Containers

This exercise solution is very similar to the previous exercise. The first difference is that
the Gtk.Notebook tabs should be hidden with set_show_tabs(). Then, a Gtk.Expander
container should be placed between each Gtk.Button widget and the Notebook tab. This
allows you to show and hide the button found in each tab. The expander’s label can also
be used to tell you which tab is currently displayed.

The last difference is that, instead of using a vertical Gtk.Box widget to pack the
notebook and horizontal box, you should use a vertical Gtk.Paned widget. This container
allows you to redistribute the allocated space for each of its two children by dragging the
horizontal separator located between the two widgets.

Chapter 5, Exercise 1: Renaming Files

In this exercise, you need to use several widgets that you learned about in Chapter 5,
including the stock buttons Gtk.Entry and Gtk.FileChooserButton. The purpose of this
exercise is to allow the user to rename the selected file with a function built into Python.
The first step is to set up your user interface, which includes three interactive
widgets. The first is a file chooser button, created with Gtk.FileChooserButton.new().
The chooser’s action should be set to Gtk.FileChooserAction.OPEN. This allows you
to select only a single file. The set_current folder() function can be used to set the
current folder of the file chooser button to the user’s home directory, found using the
Python method os.path.expanduser('~").

547

APPENDIXD EXERCISES SOLUTIONS AND HINTS

This Gtk.FileChooserButton widget should be connected to the "selection-
changed" signal. Within its callback function, you need to verify whether the file can be
renamed. This can be done with a Python method called os.access(). The following
call can use used within your application.

ret = os.access("/tmp/foo.txt", os.F_OK | os.W_OK)

If the file cannot be accessed or changed by the current user, the Gtk.Entry and Gtk.
Button widgets should be disabled. This can be done by sending the opposite Boolean
value as mode to the widget via the method set_sensitive().

The next widget in the exercise is a Gtk.Entry, which allows the user to enter a new
name for the widget. This is a new name for the file excluding the location, since this file
name is appended to the Gtk.FileChooserButton’s location when the file is renamed.
The last widget, the Gtk.Button, should call the renaming function when clicked.

Within the button’s callback method, you first need to retrieve the current file and
location from the file chooser button. The location, along with the content of the Gtk.
Entry widget, can be used to build a new absolute path for the file. Lastly, you should use
the Python os.rename(src, dest) function to rename the file. You should note that you
must import the Python os module for any of the functions to work!

import os

Chapter 5, Exercise 2: Spin Buttons and Scales

This exercise is very different from the previous exercise; it lets you practice with the
Gtk.CheckButton, Gtk.SpinButton, and Gtk.Scale widgets. When the check button is
activated, the values of the spin button and horizontal scale should be synchronized;
otherwise, they can move independently of each other.

To do this, the first step is to create two identical adjustments, one for each range
widget. The toggle button in the solution is active on application launch so that the
values are immediately synced.

The next step is to connect each of the range widgets to the same callback method/
function for the "value-changed" signal. Within this function, the first step is to retrieve
the current values of the spin button and scale. If the toggle button is active, these values
are compared. Action is only taken if the values are not the same so that the value-
changed signal is not repeatedly emitted.

548

APPENDIXD EXERCISES SOLUTIONS AND HINTS

Lastly, the callback function can use the Python built-in isinstance() function to
figure out which type of widget holds the new value. Based on the result of the test, the
other widget should be given the new value.

Chapter 6, Exercise 1: Implementing File Chooser
Dialogs

In this chapter’s only exercise, you are supposed to re-create the four types of file chooser
dialogs by embedding a Gtk.FileChooserWidget widget into a Gtk.Dialog widget. The
results of each action can simply be printed to standard output.

The main application window includes four buttons, one for each of the Gtk.
FileChooserWidget action types, where the Gtk.FileChooserAction.OPEN action allows
you to select multiple files. These buttons can be packed into a vertical box and then into
the top-level window.

Each of the callback functions follows the same pattern. It first creates a Gtk.Dialog
widget and packs a Gtk.FileChooserWidget above the dialog’s action area by packing
the dialog’s vbox member with pack_start().

The next step is to run the dialog with run(). If the returned result is the response
associated with acceptance of the action, you should output what would occur with
print(). For example, you should tell the user that the file is saved; the folder has been
created; the files is opened; or the folder was selected. In a Gtk.FileChooserAction.
OPEN action, you should output all the selected files.

Chapter 8, Exercise 1: Text Editor

This exercise is the first instance of the text editor application that you encounter. It asks
you to implement all of the functionality of the text editor.

Note The downloadable exercise solution includes only very basic functionality of
a text editor. It is meant to get you started if you are having trouble. However, you
are encouraged to continue to expand your text editor implementation beyond the
provided solution!

549

APPENDIXD EXERCISES SOLUTIONS AND HINTS

There are a number of callback functions implemented for the text editor. These are
the ability to create a new file; open an existing file; save the file; cut, copy, and paste
selected text; and search for text in the document.

To create a new document, you should first ask the user whether or not the
application should continue with a Gtk.MessageDialog widget. If the user chooses to
continue, the downloadable exercise solution simply clears the Gtk.TextBuffer object
and destroys the dialog; otherwise, the dialog is just destroyed.

Opening a document in the provided solution does not ask the user for confirmation,
since it is easy to cancel the operation from the Gtk.FileChooserDialog widget. The
file chooser dialog has an action type of Gtk.FileChooserAction.OPEN. When a file is
selected, its contents are read with the Python method read() and written into the text
buffer. Saving in the exercise solution asks for a new file name every time the button is
pressed. It calls write() to save the text to the selected file.

The clipboard functions are similar to those provided in Chapter 8’s clipboard
example. It uses the built-in text buffer functions for cut, copy, and paste actions. These
actions are performed on the default clipboard, Gdk.SELECTION CLIPBOARD.

Chapter 9, Exercise 1: File Browser

In this chapter’s exercise, you implement a very simple file browser. It allows the user to
browse throughout the system’s file structure and differentiate between files and folders.
This exercise is meant to give you practice using the Gtk.TreeView widget. In Chapter 14,
it greatly expands into a more functional file browser.

The first step is to configure the tree view, which includes a single column. This
column includes two cell renderers, one for a GdkPixbuf and one for the file or folder
name, so you have to use the expanded method of tree view column creation that was
discussed in Chapter 9. The first cell renderer should use Gtk.CellRendererPixbuf and
the second, Gtk.CellRendererText.

The tree model, a Gtk.ListStore is created with two columns with types of
GdkPixbuf.Pixbuf and GObject.TYPE_STRING.

After the tree model is created in the downloadable exercise solution, the populate
tree model() method is called, which displays the root folder of the file system on
startup. The current path displayed by the file browser is stored in a global linked list
called current_path. If the list is empty, the root folder is displayed; otherwise, a path is

built out of the list’s content, and the ".." directory entry is added to the tree model.

550

APPENDIXD EXERCISES SOLUTIONS AND HINTS

Then, GDir is used to walk through the contents of the directory, adding each file or
folder to the tree model. You can use os.path.isdir(location)to check whether each is
a file or folder, displaying the correct icon depending on the result.

The last step is to handle directory moves, which is done with Gtk.TreeView’s
"row-activated" signal. If the selection is the ".." entry, then the last element in the
path is removed, and the tree model repopulated; otherwise, the new path is built out
of the current location and the selection. If the selection is a folder, then the tree model
is repopulated in the new directory. If it is a file, then the action is ignored and nothing
else is done.

Chapter 10, Exercise 1: Toolbars

This exercise alters Listing 10-1 (a simple pop-up menu) by replacing the buttons along
the side with a Gtk.Toolbar created with Gtk.Builder. The following XML file can be
used for creating the toolbar.

<?xml version='1.0" encoding="utf-8' ?>
<interface>
<requires lib="gtk+' version='3.4'/>
<object class='GtkToolbar' id='toolbar'>
<property name='visible'>True</property>
<property name='can_focus'>False</property>
<child>
<object class="'GtkToolButton' id='toolbutton new'> <property name=
'visible'>True</property> <property name='can_focus'>False</property>
<property name='tooltip text' translatable='yes'>New Standard
</property>
<property name='action_name'>app.on_newstandard</property>
<property name='icon_name'>document-new</property>
</object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>

551

APPENDIXD EXERCISES SOLUTIONS AND HINTS

<child>
<object class="'GtkToolButton' id='toolbutton open'> <property
name="'visible'>True</property> <property name='can_focus'>False
</property>
<property name='tooltip text' translatable='yes'>Open Standard
</property> <property name='action_name'>app.on_openstandard</property>
<property name='icon_name'>document-open</property> </object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
<child>
<object class='GtkToolButton' id='toolbutton save'> <property
name="'visible'>True</property> <property name='can_focus'>False
</property>
<property name='tooltip text' translatable='yes'>Save Standard
</property> <property name='action_name'>app.on_savestandard</property>
<property name='icon_name'>document-save</property> </object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
<child>
<object class="'GtkSeparatorToolItem' id='toolbutton separator'>
<property name='visible'>True</property>
<property name='can_focus'>False</property> </object>
</child>
<child>
<object class="'GtkToolButton' id='toolbutton cut'> <property
name="'visible'>True</property> <property name='can_focus'>False
</property>
<property name='tooltip text' translatable='yes'>Cut Standard
</property> <property name='action_name'>win.on_cutstandard</property>
<property name='icon_name'>edit-cut</property> </object>

552

APPENDIXD EXERCISES SOLUTIONS AND HINTS

<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
<child>
<object class="'GtkToolButton' id='toolbutton copy'> <property
name="'visible'>True</property> <property name='can_focus'>False
</property>
<property name='tooltip text' translatable='yes'>Copy Standard
</property> <property name='action_name'>win.on_copystandard</property>
<property name='icon_name'>edit-copy</property> </object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
<child>
<object class="GtkToolButton' id='toolbutton paste'> <property
name="'visible'>True</property> <property name='can_focus'>False
</property>
<property name='tooltip text' translatable='yes'>Paste Standard
</property> <property name='action name'>win.on_pastestandard
</property>
<property name='icon_name'>edit-paste</property> </object>
<packing>
<property name='expand'>False</property>
<property name="'homogeneous'>True</property>
</packing>
</child>
</object>
</interface>

Within your application, you next need to create signal callback methods to process
the signals generated by the callbacks. The rest of the text editor’s implementation is the
same as in Listing 10-1.

553

APPENDIXD EXERCISES SOLUTIONS AND HINTS

Chapter 10, Exercise 2: Menu Bars

This exercise is an alteration of Listing 10-1, where the buttons along the side are moved
to a Gtk.MenuBar widget created with Gtk.Builder. The following Ul file can be used for
creating the toolbar.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Generated with glade 3.22.1 -->
<interface>
<requires lib="gtk+" version="3.20"/>
<object class="GtkMenuBar" id='menubar'>
<property name="visible">True</property>
<property name="can_focus">False</property>
<child>
<object class="GtkMenuItem">
<property name="visible">True</property>
<property name="can_focus">False</property>
<property name="label" translatable="yes"> File</property>
<property name="use_underline">True</property> <child
type="submenu">
<object class="GtkMenu">
<property name="visible">True</property>
<property name="can_focus">False</property>
<child>
<object class="GtkImageMenuItem"> <property name="label">
gtk-new</property> <property name="visible">True</property>
<property name="can_focus">False</property> <property
name="use_stock">True</property>
<signal name="activate" handler="app.on_menu_new"
swapped="no"/> </object>
</child>
<child>
<object class="GtkImageMenuItem">
<property name="label">gtk-open</property>
<property name="visible">True</property>
<property name="can_focus">False</property>

554

APPENDIXD EXERCISES SOLUTIONS AND HINTS

<property name="use_stock">True</property>
<signal name="activate" handler="app.on_menu_open"
swapped="no"/> </object>
</child>
<child>
<object class="GtkImageMenuItem">
<property name="label">gtk-save</property>
<property name="visible">True</property>
<property name="can_focus">False</property>
<property name="use_stock">True</property>
<signal name="activate" handler="app.on_menu_save"
swapped="no"/> </object>
</child>
</object>
</child>
</object>
</child>
<child>
<object class="GtkMenuItem">
<property name="visible">True</property>
<property name="can_focus">False</property>
<property name="label" translatable="yes"> Edit</property>
<property name="use_underline">True</property> <child type="submenu">
<object class="GtkMenu">
<property name="visible">True</property>
<property name="can_focus">False</property>
<child>
<object class="GtkImageMenultem"> <property name="label">
gtk-cut</property> <property name="visible">True</property>
<property name="can_focus">False</property> <property
name="use_stock">True</property>
<signal name="activate" handler="win.on_menu_cut"
swapped="no"/>
</object>
</child>

555

APPENDIX D

</object>
</child>
</object>
</interface>

EXERCISES SOLUTIONS AND HINTS

<child>
<object class="GtkImageMenuItem">

<property name="label">gtk-copy</property>
<property name="visible">True</property>

<property name="can_focus">False</property>
<property name="use_stock">True</property>

<signal name="activate" handler="win.on_menu_copy"
swapped="no"/> </object>

</child>
<child>
<object class="GtkImageMenuItem">

<property name="label">gtk-paste</property>
<property name="visible">True</property>

<property name="can_focus">False</property>
<property name="use_stock">True</property>

<signal name="activate" handler="win.on_menu_paste
swapped="no"/> </object>

</child>
</object>

Within your application, you next need to create an the callback methods/functions

that is associated with each of the toolbar items in the Ul file. The rest of the exercise is

the same as in Listing 10-1.

Chapter 11, Exercise 1: Glade Text Editor

This exercise expands on the Glade main window (see Listing 11-1), yet again by asking

you to redesign the whole user interface in Glade. Instead of using buttons, you should

implement a toolbar for text editing functions. You can then use Gtk.Builder to load the

graphical user interface and connect the necessary signals. Figure D-1 is a screenshot of

the application for this exercise using a toolbar.

556

APPENDIXD EXERCISES SOLUTIONS AND HINTS

Search for ...

Figure D-1. The text editor application with a toolbar designed in Glade

Within your application, you next need to create signal callback methods to process
the signals generated by the callbacks. The rest of the text editor’s implementation is the
same as in Listing 10-1.

Chapter 11, Exercise 2: Glade Text Editor
with Menus

This exercise also expands on Listing 11-1. You to redesign the whole user interface in
Glade. This time, though, instead of using buttons, you should implement a menu bar for
text editing functions. You can then use Gtk.Builder to load the graphical user interface
and connect the necessary signals. Figure D-2 is a screenshot of the application for this
exercise using a menu bar.

557

APPENDIXD EXERCISES SOLUTIONS AND HINTS

File Edit

I

Search for ...

Figure D-2. The text editor application with a menu bar in Glade

Chapter 13, Exercise 1: Full Text Editor

This last text editor exercise is an extension of Listing 13-1, “The Drawing Area Widget.”

In it, you should add two additional features. The first is printing support, which allows

the user to print the current text in the Gtk.TextBuffer widget. The printing support in

the downloadable solution for this exercise is very similar to the printing example built

in Chapter 13, so you should check out that example’s description for more information
about how this solution works.

558

APPENDIXD EXERCISES SOLUTIONS AND HINTS

The other additional feature is a recent file chooser menu for the Open toolbar item.
To create this, you must convert the Open toolbar item to a Gtk.MenuToolItem widget.
The default recent manager, obtained with recentmanager.get default(), can be used
to provide the recent files. Then, you can create the recent file chooser menu with
Gtk.RecentChoooserMenu.new_for manager (). This menu should be added to the Open
menu tool button’s Gtk.Menu. You can use the selection-done signal to figure out which
menu item is selected and what file should be opened.

559

Index

A

Adjustment, see Gtk.Adjustment

B

Button, check, see Gtk.CheckButton
Button, color, see Gtk.ColorButton
Button, file chooser, see Gtk.
FileChooserButton
Button, font, see Gtk.FontButton
Button, push, see Gtk.Button
Button, radio, see Gtk.RadioButton
Button, spin, see Gtk.SpinButton
Button, toggle, see Gtk.ToggleButton

C,D

Check button, see Gtk.CheckButton

Chooser button, file, see Gtk.
FileChooserButton

Chooser, file, see Gtk.FileChooser

Color button, see Gtk.ColorButton

E

Entry, text, see Gtk.Entry

F

File chooser, see Gtk.FileChooser
File chooser button, see Gtk.
FileChooserButton

© W. David Ashley and Andrew Krause 2019

File filter, see Gtk.FileFilter
Filter, file, see Gtk.FileFilter
Font button, see Gtk.FontButton

G HILJ KL MN,O
Gdk.Color, 93-94, 223
methods
new(), 94
GLib, 1, 26, 33, 81, 153, 223, 406-407, 482
Gtk.Adjustment, 85-86, 91, 176, 264, 416,
423, 449-451, 457, 486
methods
new(), 85
Gtk.Button, 33-34, 37, 39-40, 49, 69-71,
74,76,78,92, 104, 196, 212, 314,
335, 337, 345-346, 348, 406, 413,
419, 488, 546-548
methods
set_relief(), 74
Stock items, 71
Gtk.CheckButton, 74, 76-79,
104, 146, 548
methods
new(), 77
new_with_mnemonic(), 77
Gtk.Color, 92
methods
new_with_color(), 94
Gtk.ColorButton, 92-94, 105, 139, 427, 491
methods

561

W. D. Ashley and A. Krause, Foundations of PyGTK Development,

https://doi.org/10.1007/978-1-4842-4179-0

https://doi.org/10.1007/978-1-4842-4179-0

INDEX

Gtk.ColorButton (cont.)
get_color(), 95
set_title(), 95
Gtk.Dialog, 105, 107-110, 115, 117-118,
124,130, 139, 151, 153, 156-158,
244, 430, 492, 549
Gtk.Editable, 82, 154
Gtk.Entry, 53, 82-85, 103-105, 146, 154,
175, 192, 253-254, 263, 265, 267,
274-276, 300, 333, 336-337, 363,
397, 399, 401, 404, 493-494, 547-548
methods
insert_text(), 85
set_invisible_char(), 84
set_text(), 85
set_visibility(), 84
properties, 430-432
Gtk.FileChooser, 98-99, 157
methods
add_filter(), 100
Gtk.FileChooserAction, 98, 133-134, 137,
157, 547, 549-550
Gtk.FileChooserButton, 95-98, 103,
105, 130, 137, 373, 378, 435, 495,
547-548
methods
get_filename(), 99, 137, 139
new(), 98, 547
set_current_folder(), 98, 547
Gtk.FileChooserDialog, 95-96, 99, 121,
130-135, 137-139, 157-158, 387,
395, 550
Gtk.FileFilter, 99
methods
add_mime_type(), 100
add_pattern(), 99, 396
new(), 99
set_name(), 99

562

Gtk.FontButton, 100-103, 105, 143,
436, 497
methods
get_font_name(), 103, 497
new_with_font(), 100
set_use_font(), 103
set_use_size(), 103
Gtk.IconTheme
methods
get_default(), 73, 306
load_icon(), 73, 306
Gtk.Image
methods
Gtk.Label, 22-23, 30, 36-37, 39, 41, 53, 62,
64-66, 70, 81, 101, 103, 276, 304,
334, 348, 503, 537, 546
methods
modify_fg(), 95
new_with_mnemonic(), 74
Gtk.Object, 25, 85
Gtk.PositionType, 62, 91, 419, 444, 446,
450, 516
Gtk.RadioButton, 24, 74, 79-80, 104,
448, 514
methods
new(), 81
new_with_label(), 81
new_with_label_from_widget(), 81
new_with_mnemonic(), 81
Gtk.Range, 85, 91, 449, 514
Gtk.Scale, 89, 91, 105, 450, 515, 548
methods
get_value(), 91
new(), 91
new_with_range(), 91
set_digits(), 91
set_draw_value(), 91
set_value_pos(), 91

Gtk.SpinButton, 85-86, 89, 91, 103, 105,
263, 416, 457, 518, 548
methods
new(), 88
new_with_range(), 88
set_digits(), 89
Gtk.StateType, 95
Gtk ToggleButton, 74-76, 78-79, 104, 154,
304, 466, 523
methods
new(), 74
new_with_label(), 74
new_with_mnemonic(), 74

PQ

Pango
methods
font_description_from_string(), 102

INDEX

Pango.FontDescription, 102, 146, 189, 424,
460, 538, 541
Push button, see Gtk.Button

R
Radio button,

see Gtk.RadioButton
S

Scale, see Gtk.Scale
Spin button, see
Gtk.SpinButton

LUVWXYZ
Text entry, see Gtk.Entry
Toggle button, see Gtk.ToggleButton

563

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started

	Differences Between GTK+ 2.x and 3.x
	Installing GTK+ 3.x
	Summary

	Chapter 2: The Application and ApplicationWindow Classes

	The Gtk.Application Class
	Primary vs. Local Instance
	Actions
	Dealing with the Command Line
	Example
	The Gtk.ApplicationWindow Class
	Actions
	Locking
	Example
	Summary

	Chapter 3: Some Simple GTK+ Applications

	Hello World
	GTK+ Widget Hierarchy
	Extending HelloWorld.py
	The GTK.Label Widget
	Layout Containers

	Signals and Callbacks
	Connecting the Signal
	Callback Methods/Functions

	Events
	Event Types
	Using Specific Event Structures

	Further GTK+ Methods
	Gtk.Widget Methods
	Gtk.Window Methods
	Process Pending Events

	Buttons
	Test Your Understanding
	Exercise 1: Using Events and Properties

	Summary

	Chapter 4: Containers

	GTK.Container
	Decorator Containers
	Layout Containers
	Resizing Children
	Container Signals

	Horizontal and Vertical Boxes
	Horizontal and Vertical Panes
	Grids
	Grid Spacing

	Fixed Containers
	Expanders
	Notebook
	Notebook Properties
	Tab Operations

	Event Boxes
	Test Your Understanding
	Exercise 1: Using Multiple Containers
	Exercise 2: Even More Containers

	Summary

	Chapter 5: Basic Widgets

	Using Push Buttons
	Toggle Buttons
	Check Buttons
	Radio Buttons

	Text Entries
	Entry Properties
	Inserting Text into a Gtk.Entry Widget

	Spin Buttons
	Adjustments
	A Spin Button Example

	Horizontal and Vertical Scales
	Additional Buttons
	Color Button
	A Gtk.ColorButton Example
	Storing Colors in Gdk.Color
	Using the Color Button

	File Chooser Buttons
	A Gtk.FileChooserButton Example
	Gtk.FileChooser
	File Filters

	Font Buttons
	A Gtk.FontButton Example
	Using Font Selection Buttons

	Test Your Understanding
	Exercise 1: Renaming Files
	Exercise 2: Spin Buttons and Scales

	Summary

	Chapter 6: Dialogs

	Creating Your Own Dialogs
	Creating a Message Dialog
	Creating the Dialog
	Response Identifiers
	The Gtk.Image Widget

	Nonmodal Message Dialog
	Another Dialog Example

	Built-in Dialogs
	Message Dialogs
	About Dialogs
	Gdk.Pixbuf

	Gtk.FileChooser Dialogs
	Saving Files
	Creating a Folder
	Selecting Multiple Files

	Color Selection Dialogs
	Font Selection Dialogs

	Dialogs with Multiple Pages
	Creating Gtk.Assistant Pages
	Gtk.ProgressBar
	Page Forward Methods

	Test Your Understanding
	Exercise 1: Implementing File Chooser Dialogs

	Summary

	Chapter 7: Python and GTK+

	Arguments and Keyword Arguments
	Logging
	When to Use Logging
	Some Simple Examples
	Logging to a File
	Logging from Multiple Modules
	Logging Variable Data
	Changing the Format of Displayed Messages

	Exceptions
	Raising Exceptions
	The Raise Statement
	Custom Exception Classes

	Catching Exceptions
	Raising and Reraising Exceptions
	Catching Multiple Exceptions

	Chapter 8: Text View Widget

	Scrolled Windows
	Text Views
	Text Buffers
	Text View Properties
	Pango Tab Arrays

	Text Iterators and Marks
	Editing the Text Buffer
	Retrieving Text Iterators and Marks
	Changing Text Buffer Contents
	Cutting, Copying, and Pasting Text
	Searching the Text Buffer
	Scrolling Text Buffers

	Text Tags
	Inserting Images
	Inserting Child Widgets
	Gtk.SourceView
	Test Your Understanding
	Exercise 1: Text Editor

	Summary

	Chapter 9: Tree View Widget

	Parts of a Tree View
	Gtk.TreeModel
	Gtk.TreeViewColumn and Gtk.CellRenderer

	Using Gtk.ListStore
	Creating the Tree View
	Renderers and Columns
	Creating the Gtk.ListStore

	Using Gtk.TreeStore
	Referencing Rows
	Tree Paths
	Tree Row References
	Tree Iterators

	Adding Rows and Handling Selections
	Single Selections
	Multiple Selections
	Adding New Rows
	Retrieving Row Data
	Adding a New Row
	Combo Boxes
	Removing Multiple Rows

	Handling Double-clicks

	Editable Text Renderers
	Cell Data Methods
	Cell Renderers
	Toggle Button Renderers
	Pixbuf Renderers
	Spin Button Renderers
	Combo Box Renderers
	Progress Bar Renderers
	Keyboard Accelerator Renderers

	Test Your Understanding
	Exercise 1: File Browser

	Summary

	Chapter 10: Menus and Toolbars

	Pop-up Menus
	Creating a Pop-up Menu
	Pop-up Menu Callback Methods

	Keyboard Accelerators
	Status Bar Hints
	The Status Bar Widget
	Menu Item Information

	Menu Items
	Submenus
	Image Menu Items
	Check Menu Items
	Radio Menu Items

	Menu Bars
	Toolbars
	Toolbar Items
	Toggle Tool Buttons
	Radio Tool Buttons
	Menu Tool Buttons

	Dynamic Menu Creation
	Creating XML Files
	Loading XML Files

	Test Your Understanding
	Exercise 1: Toolbars
	Exercise 2: Menu Bars

	Summary

	Chapter 11: Dynamic User Interfaces

	User Interface Design
	Know Your Users
	Keep the Design Simple
	Always Be Consistent
	Keep the User in the Loop
	We All Make Mistakes

	The Glade User Interface Builder
	The Glade Interface
	Creating the Window
	Adding a Toolbar
	Completing the File Browser
	Making Changes
	Widget Signals
	Creating a Menu

	Using Gtk.Builder
	Loading a User Interface

	Test Your Understanding
	Exercise 1: Glade Text Editor
	Exercise 2: Glade Text Editor with Menus

	Summary

	Chapter 12: Custom Widgets

	An Image/Label Button
	Custom Message Dialogs
	Multithreaded Applications
	The Proper Way to Align Widgets
	Summary

	Chapter 13: More GTK Widgets

	Drawing Widgets
	A Drawing Area Example
	The Layout Widget

	Calendars
	Printing Support
	Print Operations
	Beginning the Print Operation
	Rendering Pages
	Finalizing the Print Operation

	Cairo Drawing Context
	Drawing Paths
	Rendering Options

	Recent Files
	Recent Chooser Menu
	Adding Recent Files
	Recent Chooser Dialog

	Automatic Completion
	Test Your Understanding
	Exercise 1: Creating a Full Text Editor

	Summary

	Chapter 14: Integrating Everything

	File Browser
	Calculator
	Ping Utility
	Calendar
	Markup Parser Functions
	Parsing the XML File

	Further Resources
	Summary

	Appendix A: GTK+ Properties

	GTK+ Properties
	Child Widget Properties

	Appendix B: GTK+ Signals

	Events
	Widget Signals

	Appendix C: GTK+ Styles

	Default RC File Styles
	Pango
	Gtk.TextTag Styles

	Appendix D: Exercises Solutions and Hints

	Chapter 3, Exercise 1: Using Events and Properties
	Chapter 4, Exercise 1: Using Multiple Containers
	Chapter 4, Exercise 2: Even More Containers
	Chapter 5, Exercise 1: Renaming Files
	Chapter 5, Exercise 2: Spin Buttons and Scales
	Chapter 6, Exercise 1: Implementing File Chooser Dialogs
	Chapter 8, Exercise 1: Text Editor
	Chapter 9, Exercise 1: File Browser
	Chapter 10, Exercise 1: Toolbars
	Chapter 10, Exercise 2: Menu Bars
	Chapter 11, Exercise 1: Glade Text Editor
	Chapter 11, Exercise 2: Glade Text Editor with Menus
	Chapter 13, Exercise 1: Full Text Editor

	Index

