
Foundations
of PyGTK
Development

GUI Creation with Python
—
Second Edition
—
W. David Ashley
Andrew Krause

Foundations of PyGTK
Development

GUI Creation with Python

Second Edition

W. David Ashley
Andrew Krause

Foundations of PyGTK Development: GUI Creation with Python

ISBN-13 (pbk): 978-1-4842-4178-3			 ISBN-13 (electronic): 978-1-4842-4179-0
https://doi.org/10.1007/978-1-4842-4179-0

Library of Congress Control Number: 2018966864

Copyright © 2019 by W. David Ashley and Andrew Krause

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4178-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

W. David Ashley
AUSTIN, TX, USA

Andrew Krause
Leesburg, VA, USA

https://doi.org/10.1007/978-1-4842-4179-0

I dedicate this book to my wife.

Without you, all of this would not be possible.

—W. David Ashley

v

Table of Contents

Chapter 1: �Getting Started��� 1

Differences Between GTK+ 2.x and 3.x��� 1

Installing GTK+ 3.x��� 3

Summary��� 4

Chapter 2: �The Application and ApplicationWindow Classes������������������������������������ 5

The Gtk.Application Class�� 5

Primary vs. Local Instance��� 7

Actions��� 7

Dealing with the Command Line�� 8

Example��� 9

The Gtk.ApplicationWindow Class�� 10

Actions��� 10

Locking�� 11

Example��� 11

Summary��� 16

Chapter 3: �Some Simple GTK+ Applications�� 17

Hello World��� 17

GTK+ Widget Hierarchy�� 20

About the Author��xv

About the Technical Reviewers��xvii

Acknowledgments���xix

Introduction���xxi

vi

Extending HelloWorld.py�� 20

The GTK.Label Widget��� 22

Layout Containers��� 23

Signals and Callbacks�� 24

Connecting the Signal�� 24

Callback Methods/Functions�� 26

Events�� 26

Event Types��� 28

Using Specific Event Structures��� 28

Further GTK+ Methods��� 29

Gtk.Widget Methods��� 30

Gtk.Window Methods��� 31

Process Pending Events��� 33

Buttons��� 33

Test Your Understanding�� 36

Exercise 1: Using Events and Properties�� 36

Summary��� 37

Chapter 4: �Containers�� 39

GTK.Container�� 39

Decorator Containers�� 40

Layout Containers��� 40

Resizing Children�� 41

Container Signals��� 42

Horizontal and Vertical Boxes�� 42

Horizontal and Vertical Panes�� 48

Grids��� 52

Grid Spacing��� 54

Fixed Containers�� 54

Expanders�� 57

Table of Contents

vii

Notebook�� 60

Notebook Properties��� 62

Tab Operations�� 63

Event Boxes��� 64

Test Your Understanding�� 69

Exercise 1: Using Multiple Containers�� 69

Exercise 2: Even More Containers�� 70

Summary��� 70

Chapter 5: �Basic Widgets�� 71

Using Push Buttons�� 71

Toggle Buttons��� 74

Check Buttons�� 76

Radio Buttons��� 79

Text Entries�� 82

Entry Properties�� 84

Inserting Text into a Gtk.Entry Widget��� 85

Spin Buttons��� 85

Adjustments��� 85

A Spin Button Example��� 86

Horizontal and Vertical Scales��� 89

Additional Buttons�� 92

Color Button�� 92

File Chooser Buttons�� 95

Font Buttons��� 100

Test Your Understanding�� 103

Exercise 1: Renaming Files�� 103

Exercise 2: Spin Buttons and Scales�� 104

Summary��� 104

Table of Contents

viii

Chapter 6: �Dialogs��� 107

Creating Your Own Dialogs��� 108

Creating a Message Dialog��� 109

Nonmodal Message Dialog��� 115

Another Dialog Example��� 117

Built-in Dialogs�� 121

Message Dialogs�� 121

About Dialogs��� 124

Gtk.FileChooser Dialogs�� 130

Color Selection Dialogs��� 139

Font Selection Dialogs�� 143

Dialogs with Multiple Pages��� 146

Creating Gtk.Assistant Pages��� 151

Gtk.ProgressBar��� 154

Page Forward Methods�� 155

Test Your Understanding�� 156

Exercise 1: Implementing File Chooser Dialogs�� 157

Summary��� 157

Chapter 7: �Python and GTK+�� 159

Arguments and Keyword Arguments��� 159

Logging�� 162

When to Use Logging�� 162

Some Simple Examples�� 163

Logging to a File��� 164

Logging from Multiple Modules�� 165

Logging Variable Data��� 166

Changing the Format of Displayed Messages�� 166

Table of Contents

ix

Exceptions�� 167

Raising Exceptions��� 167

Catching Exceptions��� 170

Raising and Reraising Exceptions�� 171

Catching Multiple Exceptions��� 172

Chapter 8: �Text View Widget�� 175

Scrolled Windows�� 175

Text Views�� 181

Text Buffers�� 182

Text View Properties��� 184

Pango Tab Arrays�� 188

Text Iterators and Marks�� 190

Editing the Text Buffer�� 191

Retrieving Text Iterators and Marks�� 193

Changing Text Buffer Contents��� 195

Cutting, Copying, and Pasting Text�� 196

Searching the Text Buffer��� 199

Scrolling Text Buffers��� 203

Text Tags�� 204

Inserting Images�� 209

Inserting Child Widgets�� 211

Gtk.SourceView�� 214

Test Your Understanding�� 215

Exercise 1: Text Editor�� 216

Summary��� 216

Chapter 9: �Tree View Widget�� 219

Parts of a Tree View��� 220

Gtk.TreeModel��� 221

Gtk.TreeViewColumn and Gtk.CellRenderer�� 223

Table of Contents

x

Using Gtk.ListStore�� 225

Creating the Tree View�� 228

Renderers and Columns��� 228

Creating the Gtk.ListStore�� 230

Using Gtk.TreeStore��� 232

Referencing Rows�� 236

Tree Paths��� 237

Tree Row References�� 238

Tree Iterators�� 239

Adding Rows and Handling Selections�� 240

Single Selections�� 241

Multiple Selections��� 242

Adding New Rows�� 243

Handling Double-clicks�� 252

Editable Text Renderers��� 253

Cell Data Methods�� 255

Cell Renderers�� 259

Toggle Button Renderers�� 259

Pixbuf Renderers�� 261

Spin Button Renderers��� 263

Combo Box Renderers�� 265

Progress Bar Renderers��� 268

Keyboard Accelerator Renderers�� 269

Test Your Understanding�� 273

Exercise 1: File Browser��� 273

Summary��� 273

Chapter 10: �Menus and Toolbars��� 275

Pop-up Menus�� 275

Creating a Pop-up Menu��� 276

Pop-up Menu Callback Methods��� 280

Table of Contents

xi

Keyboard Accelerators��� 283

Status Bar Hints��� 287

The Status Bar Widget�� 287

Menu Item Information��� 289

Menu Items�� 293

Submenus�� 294

Image Menu Items�� 294

Check Menu Items�� 295

Radio Menu Items��� 296

Menu Bars�� 296

Toolbars��� 299

Toolbar Items��� 303

Toggle Tool Buttons�� 304

Radio Tool Buttons�� 305

Menu Tool Buttons�� 305

Dynamic Menu Creation��� 307

Creating XML Files�� 307

Loading XML Files�� 311

Test Your Understanding�� 313

Exercise 1: Toolbars�� 314

Exercise 2: Menu Bars�� 314

Summary��� 314

Chapter 11: �Dynamic User Interfaces�� 317

User Interface Design�� 318

Know Your Users��� 318

Keep the Design Simple��� 319

Always Be Consistent��� 320

Keep the User in the Loop�� 321

We All Make Mistakes�� 322

The Glade User Interface Builder��� 322

Table of Contents

xii

The Glade Interface�� 323

Creating the Window�� 326

Adding a Toolbar��� 330

Completing the File Browser�� 333

Making Changes��� 335

Widget Signals�� 335

Creating a Menu��� 337

Using Gtk.Builder��� 339

Loading a User Interface�� 342

Test Your Understanding�� 343

Exercise 1: Glade Text Editor�� 343

Exercise 2: Glade Text Editor with Menus��� 343

Summary��� 344

Chapter 12: �Custom Widgets��� 345

An Image/Label Button��� 345

Custom Message Dialogs��� 349

Multithreaded Applications�� 351

The Proper Way to Align Widgets��� 358

Summary��� 361

Chapter 13: �More GTK Widgets�� 363

Drawing Widgets�� 363

A Drawing Area Example�� 364

The Layout Widget�� 370

Calendars��� 371

Printing Support��� 373

Print Operations�� 378

Beginning the Print Operation�� 382

Rendering Pages�� 383

Finalizing the Print Operation��� 384

Table of Contents

xiii

Cairo Drawing Context��� 384

Drawing Paths�� 385

Rendering Options�� 386

Recent Files��� 387

Recent Chooser Menu�� 394

Adding Recent Files�� 395

Recent Chooser Dialog��� 396

Automatic Completion�� 397

Test Your Understanding�� 399

Exercise 1: Creating a Full Text Editor�� 399

Summary��� 400

Chapter 14: �Integrating Everything��� 403

File Browser��� 403

Calculator��� 405

Ping Utility�� 406

Calendar��� 408

Markup Parser Functions��� 409

Parsing the XML File��� 410

Further Resources�� 410

Summary��� 411

�Appendix A: GTK+ Properties�� 413

�GTK+ Properties��� 413

�Child Widget Properties�� 475

�Appendix B: GTK+ Signals��� 481

�Events�� 482

�Widget Signals��� 485

Table of Contents

xiv

�Appendix C: GTK+ Styles��� 537

�Default RC File Styles��� 537

�Pango��� 537

�Gtk.TextTag Styles�� 540

�Appendix D: Exercises Solutions and Hints��� 545

�Chapter 3, Exercise 1: Using Events and Properties�� 545

�Chapter 4, Exercise 1: Using Multiple Containers�� 546

�Chapter 4, Exercise 2: Even More Containers�� 547

�Chapter 5, Exercise 1: Renaming Files��� 547

�Chapter 5, Exercise 2: Spin Buttons and Scales�� 548

�Chapter 6, Exercise 1: Implementing File Chooser Dialogs�� 549

�Chapter 8, Exercise 1: Text Editor��� 549

�Chapter 9, Exercise 1: File Browser��� 550

�Chapter 10, Exercise 1: Toolbars�� 551

�Chapter 10, Exercise 2: Menu Bars�� 554

�Chapter 11, Exercise 1: Glade Text Editor��� 556

�Chapter 11, Exercise 2: Glade Text Editor with Menus��� 557

�Chapter 13, Exercise 1: Full Text Editor�� 558

Index�� 561

Table of Contents

xv

About the Author

W. David Ashley is a technical writer for SkillSoft, where he

specializes in open source, particularly Linux. As a member

of the Linux Fedora documentation team, he recently led

the Libvert project documentation and wrote the Python

programs included with it. He has developed in 20 different

programming languages during his 30 years as a software

developer and IT consultant. This includes more than

18 years at IBM and 12 years with American Airlines.  

xvii

About the Technical Reviewers

Jonathan Giszczak is a professional software developer with

extensive experience writing software for the military and

financial services industries, as well as the game industry.

He graduated from the University of Michigan with a degree

in computer engineering. He has been writing C, C++, and

Python applications since the 1990s, including applications

in Motif and PyGTK. 

Peter Gill loves spending time with his family in

Newfoundland, Canada. He is currently a software

developer at TownSuite, where he specializes in release

deployment and leading a full stack web development

team. Peter loves learning programming language and has

used Python, Ruby, Rust, Io, Prolog, Java, C, C++, C#, VB,

JavaScript, Typescript, Bash, PowerShell and is currently

focused on C# with ASP .NET Core and Typescript. He

is a huge advocate open source software. He loves to use

Git, Jenkins, Docker, and other tools related to automated

deployments.  

xix

Acknowledgments

I would like to express my gratitude to the many people who have made this book

possible. Many thanks go to Daniel Berrange of Red Hat, whose assistance has certainly

decreased the number of errors in the book. I would also like to thank Peter Gill and

Jonathan Giszczak for their fine technical reviewing skills. You were very tough on every

paragraph I wrote and every example I coded, but this book is better today because of

the hard work you put into the project.

I would like to extend a special thanks to Andrew Krause for his encouragement and

help. Without him, this update to his original book would not have been possible.

In addition, I would like to thank the people at Apress who put so many hours of

hard work into the book. I could not imagine writing for any other publisher. It is a great

organization that makes the writing process enjoyable.

Finally, I need to acknowledge my wife, who has supported me in every step of the

process. Without you, I would not be who I am today and for that I am forever grateful.

—W. David Ashley

xxi

Introduction

One of the most important aspects of an application is the interface that is provided to

interact with the user. With the unprecedented popularity of computers in society today,

people have come to expect those user interfaces to be graphical, and the question of

which graphical toolkit to use quickly arises for any developer. For many, the cross-

platform, feature-rich GTK+ library is the obvious choice.

Learning GTK+ can be a daunting task, because many features lack documentation

and others are difficult to understand even with the API documentation. Foundations

of PyGTK Development aims to decrease the learning curve and set you on your way to

creating cross-platform graphical user interfaces for your applications.

Each chapter in this book contains multiple examples that help you further your

understanding. In addition to these examples, the final chapter of this book provides

five complete applications that incorporate topics from the previous chapters. These

applications show you how to bring together what you have learned to accomplish in

various projects.

Each chapter starts with an overview, so that you are able to skip around if you

want. Most chapters also contain exercises to test your understanding of the material. I

recommend that you complete all the exercises before continuing, because the best way

to learn GTK+ is to use it.

At the end of this book, there are multiple appendixes that serve as references for

various aspects of GTK+. These appendixes include tables listing signals, styles, and

properties for every widget in GTK+. These appendixes will remain a useful reference

after you have finished reading the book and begin creating your own applications. In

addition, Appendix D explains the solutions to all the exercises in the book.

�Who Should Read This Book
Because this book begins with the basics and works up to more difficult concepts, you do

not need any previous knowledge of GTK+ development to use this book. This book does

assume that you have a decent grasp of the Python programming language. You should

xxii

also be comfortable with running commands and terminating applications (Ctrl+C) in a

Linux terminal.

In addition to a grasp of the Python programming language, some parts of this book

may be difficult to understand without some further knowledge about programming

for Linux in general. You will get more out of this book if you already comprehend basic

object-oriented concepts. It is also helpful to know how Linux handles processes.

You can still use this book if you do not already know how to implement object

orientation or manage processes in Linux, but you may need to supplement this book

with one or more online resources. A list of helpful links and tutorials can be found

on the book’s web site, which is located at www.gtkbook.com. You can also find more

information about the book at www.apress.com.

�How This Book Is Organized
Foundations of PyGTK Development is composed of 14 chapters. Each chapter gives you

a broad understanding of its topic. For example, Chapter 4 covers container widgets and

introduces many of the most important widgets derived from the Gtk.Container class.

Because of this structure, some chapters are somewhat lengthy. Do not feel as

though you have to complete a whole chapter in one sitting, because it can be difficult

to remember all the information presented. Also, because many examples span multiple

pages, consider focusing on just a few examples at a time; try to understand their syntax

and intent.

Each chapter provides important information and unique perspectives that help you

to become a proficient PyGTK developer.

Chapter 1 teaches you how to install the GTK+ libraries and their dependencies on

your Linux system. It also gives an overview of each of the GTK+ libraries, including

GObject, GDK, GdkPixbuf, Pango, and ATK.

Chapter 2 introduces the Gtk.Application and Gtk.ApplicationWindow classes.

These classes are fundamental classes that wrap the program logic and provide some

useful features for your application. While a GTK+ program can be written without

utilizing these classes, you will find the creation process much easier and more object-

oriented if you utilize these classes.

Chapter 3 steps through two Hello World applications. The first shows you the basic

essentials that are required by every GTK+ application. The second expands on the first

Introduction

http://www.gtkbook.com/
http://www.apress.com/

xxiii

while also covering signals, callback functions, events, and child widgets. You then learn

about widget properties and the Gtk.Button and Gtk.Label widgets.

Chapter 4 begins by introducing the Gtk.Container class. Next, it teaches you about

horizontal and vertical boxes, grids, fixed containers, horizontal and vertical panes,

notebooks, and event boxes.

Chapter 5 covers basic widgets that provide a way for you to interact with users.

These include toggle buttons, specialized buttons, text entries, and spin buttons.

Chapter 6 introduces you to the vast array of built-in dialogs. It also teaches you how

to create your own custom dialogs.

Chapter 7 is a general overview of the most useful features of Python. It covers many

Python features that are directly useful to the GTK+ programmer but not necessarily

covered in depth in many Python introductory texts.

Chapter 8 introduces you to scrolled windows. It also gives in-depth instructions on

using the text view widget. Other topics include the clipboard and the Gtk.SourceView

library.

Chapter 9 covers two types of widgets that use the Gtk.TreeModel object. It gives an

in-depth overview of the tree view widget and shows you how to use combo boxes with

tree models or strings.

Chapter 10 provides two methods of menu creation: manual and dynamic. It covers

menus, toolbars, pop-up menus, keyboard accelerators, and the status bar widget.

Chapter 11 is a short chapter about how to design user interfaces with the Glade user

interface builder. It also shows you how to dynamically load your user interfaces using

Gtk.Builder.

Chapter 12 teaches you how to create your own custom GTK+ widgets by deriving

them from other widgets.

Chapter 13 covers many of the remaining widgets that do not quite fit into other

chapters. This includes several widgets that were introduced in GTK+ 2.10, including

recent files and tray icon support.

Chapter 14 gives you a few longer, real-world examples. They take the concepts you

have learned throughout the book and show you how they can be used together.

The appendixes act as references to widget properties, signals, styles, stock items,

and descriptions of exercise solutions.

Introduction

xxiv

�Official Web Site
You can find additional resources on the book’s official web site, found at www.gtkbook.com.

This web site includes up-to-date documentation, links to useful resources, and articles

that supplement what you learn in this book. There is also find a link to the downloadable

source code for every example in this book. The Apress web site (www.apress.com,) is

another great place to find more information about this book.

When you unzip the source code from the web site, you will find a folder that

contains the examples in each chapter and an additional folder that holds exercise

solutions. You can run all the files within the current folder.

Introduction

http://www.gtkbook.com/
http://www.apress.com/

1
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_1

CHAPTER 1

Getting Started
Welcome to Foundations of PyGTK Development. In this book, you acquire a thorough

knowledge of the GIMP Toolkit (GTK+), which allows you to create comprehensive

graphical programs. Before continuing, you should be aware that this book is aimed at

Python programmers, so we assume that you already have a good understanding of the

Python language, and you can jump right into using GTK+. Time is not spent on bringing

you up to speed on Python.

To get the most out of this book, you should follow each chapter sequentially and

study all the examples in each chapter. Getting started with GTK+ on Linux is very easy

because most distributions are bundled with everything you need to create and run

Python/GTK+ programs. We cover Windows and macOS installation procedures later in

this chapter.

There are a few tools that should be installed to get you started without running

into trouble. First, Python 3.x should be installed. It is required to run GTK+ 3.x Python

programs. Second, the GTK+ 3.x runtime libraries should be installed. These libraries

come with many dependencies installed, including GObject, Pango, GLib, GDK,

GdkPixbuf, and ATK. Be sure to install all the dependent libraries.

You do not need to install the GNU Compiler Collection. You are not compiling any

C/C++ programs in the examples provided in this book. You only need Python 3.x and

the GTK+ 3.x runtime libraries to be installed to run the example programs.

�Differences Between GTK+ 2.x and 3.x
If you are proficient in GTK+ 2.x, you may be surprised by the changes in version 3.x.

There are both small and large changes to the GTK+ API and the Python classes that

wrap those libraries. While the basics for most widgets are unchanged, there are a lot

of small “gotchas” that can cause you grief until you understand why and where the

changes have been made.

2

The reason for most of these changes is due to a change in the GTK+ philosophy. The

GTK+ 2.x libraries were designed around consistency between all GTK+ programs, with

the use of GTK+ themes as the basis for that consistency. This philosophy completely

changed with the GTK+ libraries. While themes are still available, it is now easier to

create GTK+ programs that have their own look and feel separate from the current

GTK theme. While this gives the developer greater control, it also requires some extra

programming steps to achieve the look and feel. It also removes some APIs that make a

widget easy to create and control.

The following is a partial list of the differences between GTK+ 2.x and 3.x. Some of these

items have simple workarounds, but others require a little more work on the programmer’s

part because they are different enough to cause source code porting problems.

•	 Many standard stock icons have been removed, mostly the ones used

on push buttons and menu items. If you need these icons, you must

provide your own set.

•	 All the 2.x constants are now grouped in a 3.x Python class as

attributes. If you are porting source code, this is a major area that

needs to be addressed.

•	 Some containers have been eliminated. For instance, the Gtk.Hbox

and Gtk.Vbox widgets have been removed and you now must specify

the orientation of a Gtk.Box via a parameter when creating a new

Gtk.Box instance. Note that the Gtk.Box class is now a real class in

GTK+ 3.x, not an abstract class.

•	 Default packing for containers has been removed; all packing

parameters must be supplied to the API.

•	 Some standard dialogs have been removed. You must create your

own dialogs to replace them.

•	 There are two new major classes that are very useful for the overall

control of large and small applications: the Gtk.Application class

and the Gtk.ApplicationWindow class. While these classes are not

strictly needed for simple applications, you still find them useful

for even the simplest of applications. For that reason, we base all

the examples in this book on these two classes to wrap our widget

examples.

CHAPTER 1 Getting Started

3

Creating menus is much easier using the Gtk.Application and Gtk.ApplicationWindow

classes. This required complex programming in the GTK+ 2.x environment and is reduced to

creating an XML file to represent the menu you want to create in the 3.x environment.

�Installing GTK+ 3.x
Before you can create programs, you must install Python, GTK+, and all the dependent

libraries. This section covers installing GTK+ on Linux and other Unix-like operating

systems. It does not cover how to install GTK+ on macOS or Windows. You need to

research the correct way to install GTK+ and Python in those OS environments.

Most modern Linux distributions include Python and GTK+ as part of their

respective repositories. You simply need to select Python 3 (this is sometimes installed

by default) and GTK+ 3.x (use the latest version available, as shown in Figure 1-1) from

the package install program in your Linux distribution and then install those packages

along with all the dependent packages.

To test your installation, run the following command.

/usr/bin/gtk3-demo

Figure 1-1.  GTK+ 3 demo program

CHAPTER 1 Getting Started

4

If the program exists and the widget documentation window appears, then the GTK+

installation was successful.

�Summary
This chapter introduced GTK+ Version 3.x and Python 3 along with some installation

prerequisites. It presented some post-installation tests to ensure that GTK+ was

successfully installed. And it discussed some differences between GTK+ 2.x and 3.x.

After successfully installing GTK+ 3.x and Python 3, your environment should be

ready to build your first Python/GTK+ program.

Chapter 2 further discusses Gtk.Application and the Gtk.ApplicationWindow, the

base classes that you should use for all Python 3 GTK+ 3.x programs.

CHAPTER 1 Getting Started

5
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_2

CHAPTER 2

The Application and
ApplicationWindow
Classes
A new set of classes were introduced in GTK+ 3.x: Gtk.Application and

Gtk.ApplicationWindow. These classes are designed to be the base instances for your

GUI application. They wrap the application and the main window behavior of your

application. They have many built-in features and provide containers for the functions

in your application. The Gtk.Application and Gtk.ApplicationWindow classes

are described in detail in this chapter because they are the basis for all the example

programs in this book.

�The Gtk.Application Class
Gtk.Application is the base class of a GTK application. Its primary purpose is to separate

your program from Python __main__ function, which is a Python implementation detail.

The philosophy of Gtk.Application is that applications are interested in being told what

needs to happen and when it needs to happen in response to actions from the user. The

exact mechanism by which Python starts applications is uninteresting.

Gtk.Application exposes a set of signals (or virtual methods) that an application

should respond to.

•	 startup: Sets up the application when it first starts. The virtual

method name for this signal is do_startup.

•	 shutdown: Performs shutdown tasks. The virtual method name for

this signal is do_shutdown.

6

•	 activate: Shows the default first window of the application (like a new

document). The virtual method name for this signal is do_activate.

•	 open: Opens files and shows them in a new window. This

corresponds to someone trying to open a document (or documents)

using the application from the file browser, or similar. The virtual

method name for this signal is do_open.

When your application starts, the startup signal is fired. This gives you a chance to

perform initialization tasks that are not directly related to showing a new window. After this,

depending on how the application is started, either activate or open signal is called next.

The signal name and the receiving method name should not be the same. The

receiving method name should have an on_ prefix. For instance, a signal named paste

should have a connect call that looks something like the following.

action = Gio.SimpleAction.new("paste", None)

action.connect("activate", self.on_paste)

self.add_action(action)

Note that you have to specify the new signal name and the corresponding method

name. By convention in GTK+ 3.x, signals that are built into an existing class have

a do_ prefix for their corresponding method names. Callbacks should have method

names with an on_ prefix. Adding a prefix to the method name prevents inadvertently

overriding method names that are not a part of the signal mechanism.

Gtk.Application defaults to applications being single-instance. If the user attempts

to start a second instance of a single-instance application, then Gtk.Application signals

the first instance, and you receive additional activate or open signals. In this case, the

second instance exits immediately without calling startup or shutdown signals.

For this reason, you should do essentially no work at all from Python’s __main__

function. All startup initialization should be done in Gtk.Application do_startup. This

avoids wasting work in the second-instance case where the program exits immediately.

The application continues to run as long as it needs to. This is usually as long as there

are any open windows. You can also force the application to stay alive by using the hold

method.

On shutdown, you receive a shutdown signal where you can do any necessary

cleanup tasks (such as saving files to disk).

CHAPTER 2 The Application and ApplicationWindow Classes

7

Gtk.Application does not implement __main__ for you; you must do so yourself.

Your __main__ function should be as small as possible and do almost nothing except

create your Gtk.Application and run it. The “real work” should always be done in

response to the signals fired by Gtk.Application.

�Primary vs. Local Instance
The primary instance of an application is the first instance that is run. A remote instance

is an instance that has started but is not the primary instance. The term local instance is

refers to the current process, which may or may not be the primary instance.

Gtk.Application only emits signals in the primary instance. Calls to the Gtk.

Application API can be made in primary or remote instances (and are made from the

vantage of being the local instance). When the local instance is the primary instance,

method calls on Gtk.Application result in signals being emitted locally. When the local

instance is a remote instance, method calls result in messages being sent to the primary

instance and the signals are emitted there.

For example, calling the do_activate method on the primary instance emits the

activate signal. Calling it on a remote instance results in a message being sent to the

primary instance, and it emits the activate signal.

You rarely need to know if the local instance is primary or remote. In almost all cases,

you should call the Gtk.Application method that you are interested in and have it

forwarded or handled locally, as appropriate.

�Actions
An application can register a set of actions that it supports in addition to the default

activate and open actions. Actions are added to the application with the GActionMap

interface, and invoked or queried with the GActionGroup interface.

As with the activate and open signals, calling activate_action on the primary

instance activates the named action in the current process. Calling activate_action

on a remote instance sends a message to the primary instance, causing the action to be

activated there.

CHAPTER 2 The Application and ApplicationWindow Classes

8

�Dealing with the Command Line
Normally, Gtk.Application assumes that arguments passed on the command line are

files to be opened. If no arguments are passed, then it assumes that an application is

being launched to show its main window or an empty document. When files are given,

you receive these files (in the form of GFile) from the open signal; otherwise, you receive

an activate signal. It is recommended that new applications make use of this default

handling of command-line arguments.

If you want to deal with command-line arguments in more advanced ways, there are

several (complementary) mechanisms by which you can do this.

First, the handle-local-options signal is emitted, and the signal handler gets a

dictionary with the parsed options. To make use of this, you need to register your options

with the add_main_option_entries method. The signal handler can return a non-negative

value to end the process with this exit code, or a negative value to continue with the

regular handling of command-line options. A popular use of this signal is to implement a

--version argument that works without communicating with a remote instance.

If handle-local-options is not flexible enough for your needs, you can override the

local_command_line virtual function to entirely take over the handling of command-

line arguments in the local instance. If you do so, you are responsible for registering

the application and for handling a --help argument (the default local_command_line

function does this for you).

It is also possible to invoke actions from handle-local-options or local_command_line

in response to command-line arguments. For example, a mail client may choose to map the

--compose command-line argument to an invocation of its compose action. This is done by

calling activate_action from the local_command_line implementation. If the command

line being processed is in the primary instance, then the compose action is invoked locally. If

it is a remote instance, the action invocation is forwarded to the primary instance.

Note in particular that it is possible to use action activations instead of activate or

open. It is perfectly reasonable that an application could start without an activate signal

ever being emitted. activate is only supposed to be the default “started with no options”

signal. Actions are meant to be used for anything else.

Some applications may wish to perform even more advanced handling of command

lines, including controlling the life cycle of the remote instance and its exit status once

it quits, as well as forwarding the entire contents of the command-line arguments, the

environment, and forwarding stdin/stdout/ stderr. This can be accomplished using

the HANDLES_COMMAND_LINE option and the command-line signal.

CHAPTER 2 The Application and ApplicationWindow Classes

9

�Example
Listing 2-1 provides a very simple example of an instance derived from the Gtk.Application

class.

Listing 2-1.  An Example of the Gtk.Application Class

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 �flags=Gio.ApplicationFlags.HANDLES_COMMAND_LINE,

**kwargs)

 self.window = None

 �self.add_main_option("test", ord("t"), GLib.OptionFlags.NONE, GLib.

OptionArg.NONE, "Command line test", None)

 def do_startup(self):

 Gtk.Application.do_startup(self)

 action = Gio.SimpleAction.new("quit", None)

 action.connect("activate", self.on_quit)

 self.add_action(action)

 def do_activate(self):

 �# We only allow a single window and raise any existing ones

if not self.window:

 # Windows are associated with the application

 �# when the last one is closed the application shuts down

self.window = AppWindow(application=self, title="Main Window")

 self.window.present()

 def do_command_line(self, command_line):

 options = command_line.get_options_dict()

 if options.contains("test"):

 # This is printed on the main instance

 print("Test argument received")

 self.activate()

 return 0

CHAPTER 2 The Application and ApplicationWindow Classes

10

This example is a very simple instance of the Gtk.Application class. This example

will be enhanced throughout this book as you gain knowledge of GTK+ 3.x.

Line 23 of the example shows how to create an instance of the Gtk.ApplicationWindow

class.

The next section outlines the Gtk.ApplicationWindow class.

�The Gtk.ApplicationWindow Class
The Gtk.ApplicationWindow class is the main visible window for your application.

Under default conditions, this is the one and only main window visible to the user,

unless the application has been set to “multi-instance” (the default is “single-instance”).

Gtk.ApplicationWindow is a Gtk.Window subclass that offers extra functionality

for better integration with Gtk.Application features. Notably, it can handle both the

application menu as well as the menu bar (see Gtk.Application.set_app_menu() and

Gtk.Application.set_menubar()).

When the Gtk.ApplicationWindow is used in coordination with the Gtk.

Application class, there is a close relationship between the two classes. Both classes

create new actions (signals) that may be acted upon by either class. But the Gtk.

ApplicationWindow class is responsible for the full functionality of the widgets contained

in the window. It should be noted that the Gtk.ApplicationWindow class also creates a

connection for the delete-event that activates the do_quit method of the associated

Gtk.Application class.

�Actions
The Gtk.ApplicationWindow class implements the Gio.ActionGroup and Gio.

ActionMap interfaces to let you add window-specific actions exported by the associated

Gtk.Application with its application-wide actions. Window-specific actions are

prefixed with win. Prefix and application-wide actions are prefixed with the app. prefix.

Actions must be addressed with the prefixed name when referring to them from a Gio.

MenuModel.

Note that widgets placed inside the Gtk.ApplicationWindow class can also activate

these actions if they implement the Gtk.Actionable interface.

CHAPTER 2 The Application and ApplicationWindow Classes

11

�Locking
As with Gtk.Application, the GDK lock is acquired when processing actions arrive from

other processes, and should therefore be held when activating actions locally (if GDK

threads are enabled).

�Example
Listing 2-2 is a very simple version of the integration between the Gtk.Application class

and the Gtk.ApplicationWindow class. This example becomes the building block for all

subsequent examples in this book.

Listing 2-2.  An Example of the Gtk.Application and the Gtk.ApplicationWindow

Classes

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import GLib, Gio, Gtk

This would typically be its own

file MENU_XML="""

<?xml version="1.0" encoding="UTF-8"?> <interface>

 <menu id="app-menu">

 <section>

 �<attribute name="label" translatable="yes">Change label

</attribute> <item>

 <attribute name="action">win.change_label</attribute>

 <attribute name="target">String 1</attribute>

 �<attribute name="label" translatable="yes">String 1

</attribute> </item>

 <item>

 <attribute name="action">win.change_label</attribute>

 <attribute name="target">String 2</attribute>

 �<attribute name="label" translatable="yes">String 2

</attribute> </item>

CHAPTER 2 The Application and ApplicationWindow Classes

12

 <item>

 <attribute name="action">win.change_label</attribute>

 <attribute name="target">String 3</attribute>

 �<attribute name="label" translatable="yes">String 3

</attribute> </item>

 </section>

 <section>

 <item>

 <attribute name="action">win.maximize</attribute>

 �<attribute name="label" translatable="yes">Maximize

</attribute> </item>

 </section>

 <section>

 <item>

 <attribute name="action">app.about</attribute>

 <attribute name="label" translatable="yes">_About</attribute>

 </item>

 <item>

 <attribute name="action">app.quit</attribute>

 �<attribute name="label" translatable="yes">_Quit</attribute>

<attribute name="accel"><Primary>q</attribute>

 </item>

 </section>

 </menu>

</interface>

"""

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 # This will be in the windows group and have the "win" prefix

 max_action = Gio.SimpleAction.new_stateful("maximize", None,

 GLib.Variant.new_boolean(False))

CHAPTER 2 The Application and ApplicationWindow Classes

13

 max_action.connect("change-state", self.on_maximize_toggle)

 self.add_action(max_action)

 # Keep it in sync with the actual state

 self.connect("notify::is-maximized",

 lambda obj, pspec: max_action.set_state(

 GLib.Variant.new_boolean(obj.props.is_maximized)))

 lbl_variant = GLib.Variant.new_string("String 1")

 lbl_action = Gio.SimpleAction.new_stateful("change_label",

 lbl_variant.get_type(),

 lbl_variant)

 lbl_action.connect("change-state", self.on_change_label_state)

 self.add_action(lbl_action)

 self.label = Gtk.Label(label=lbl_variant.get_string(),

 margin=30)

 self.add(self.label)

 def on_change_label_state(self, action, value):

 action.set_state(value)

 self.label.set_text(value.get_string())

 def on_maximize_toggle(self, action, value):

 action.set_state(value)

 if value.get_boolean():

 self.maximize()

 else:

 self.unmaximize()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 flags=Gio.ApplicationFlags.HANDLES_COMMAND_LINE,

 **kwargs)

 self.window = None

 self.add_main_option("test", ord("t"),

 �GLib.OptionFlags.NONE, GLib.OptionArg.NONE,

"Command line test", None)

CHAPTER 2 The Application and ApplicationWindow Classes

14

 def do_startup(self):

 Gtk.Application.do_startup(self)

 action = Gio.SimpleAction.new("about", None)

 action.connect("activate", self.on_about)

 self.add_action(action)

 action = Gio.SimpleAction.new("quit", None)

 action.connect("activate", self.on_quit)

 self.add_action(action)

 builder = Gtk.Builder.new_from_string(MENU_XML, -1)

 self.set_app_menu(builder.get_object("app-menu"))

 def do_activate(self):

 �# We only allow a single window and raise any existing ones

if not self.window:

 # Windows are associated with the application

 �# When the last one is closed the application shuts down

self.window = AppWindow(application=self, title="Main Window")

 self.window.present()

 def do_command_line(self, command_line):

 options = command_line.get_options_dict()

 if options.contains("test"):

 # This is printed on the main instance

 print("Test argument received")

 self.activate()

 return 0

 def on_about(self, action, param):

 about_dialog = Gtk.AboutDialog(transient_for=self.window, modal=True)

 about_dialog.present()

 def on_quit(self, action, param):

 self.quit()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 2 The Application and ApplicationWindow Classes

15

This example is a full-blown program that should be run from the command

line. It modifies the command-line window and adds a menu to it for controlling the

application. Most of the menu options are non-functional examples but prove useful for

explaining how menu actions act and which class performs the actions specified by the

menu XML file.

The top three lines specify the environment for the Python program. Line 5

establishes the Python environment as version 3.x. This is required for all Python

programs running GTK 3.x. The next lines establish the Python and GTK imports. It

specifically imports the GTK 3.x import libraries. Make sure that you import the modules

using the gi interface so that you have the latest modules, because there may be more

than one set of modules installed on your system.

The next lines describe the menu XML interface. Each menu item is described

by one of three XML attributes. The first is the action attribute. It names an action

and the name prefix specifies which class receives the action signal. An app prefix

means that Gtk.Application processes the action signal. A win prefix means that Gtk.

ApplicationWindow processes the signal. The second attribute is target, which specifies

the string that displays in the menu item. The third attribute is label, which specifies

whether or not the target attribute string should be translated.

Normally, this XML information is stored in its own file and read at runtime, but to

simplify the example, we have included it inline.

The next lines describe the Gtk.ApplicationWindow subclass AppWindow, which

encapsulates the main window behavior and all the main window widgets. In this

example, there are no widgets contained in the main window. It only intercepts action

signals from the menu and acts on those signals.

The main thing to note about the menu signal methods is that they have the same

name as specified in the menu XML but with an on_ prefix. The next lines turn two of the

four window actions into automatic toggles. The next lines catch the other two signals as

method calls.

The Gtk.Application subclass Application encapsulates the application behavior.

It provides the application startup and command-line processing, and processes two

menu XML signals. As with the methods processed by Gtk.ApplicationWindow, the Gtk.

Application method names have an on_ prefix.

First, the initialization for the Gtk.Application subclass calls the superclass to

initialize it and then sets up a new command-line option.

CHAPTER 2 The Application and ApplicationWindow Classes

16

The next lines perform the activation activities for the class, and create the Gtk.

ApplicationWindow subclass.

Next, two signal methods are defined in the menu XML that are destined for the Gtk.

Application subclass.

At the bottom is the actual start of the Python program. The only work that should be

done here is to create the class or subclass of Gtk.Application.

�Summary
This chapter covered the Gtk.Application and the Gtk.ApplicationWindow classes

and the integration of the two classes. We covered how these classes can improve

your application and make it more object oriented. The classes can also improve the

readability and maintenance of your application.

In subsequent chapters, we cover most of the other GTK+ widgets while using

the classes covered in this chapter as the basis for integrating the widgets into sample

programs.

CHAPTER 2 The Application and ApplicationWindow Classes

17
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_3

CHAPTER 3

Some Simple GTK+
Applications
This chapter introduces some simple GTK+ applications and a few GTK+ widgets. We

cover topics that are utilized in the upcoming chapters and example applications.

The following concepts are covered in this chapter.

•	 The basic function and method calls used by all GTK+ Python

applications

•	 The object-oriented nature of the GTK+ widget system

•	 The role that signals, callbacks, and events play in your application

•	 How to alter textual styles with the Pango Text Markup Language

•	 Some useful functions and methods for widgets

•	 How to make a clickable label

•	 How to get and set properties (attributes) using the widget methods

It is important that you grasp the concepts presented so that you have a proper

foundation.

�Hello World
Practically every programming language book in the world starts with a Hello World

example. While this book is no different, the example it uses is more complicated than

most other language examples. This is because we base our example around the

Gtk.Application and Gtk.ApplicationWindow classes. This makes the example

18

program somewhat longer, and, at first glance, overblown for such a simple GTK+

window. But it also allows good explanations for how GTK+ works and how the Python

bindings wrap the APIs into a very good object-oriented system.

Listing 3-1 is one of the simplest applications in this book, but it provides the basis

for explaining how a GTK+ application should be organized and how the GTK+ hierarchy

of widgets work. This is the basic code that every GTK+ application you create in Python

should have!

Listing 3-1.  HelloWorld.py

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Main Window")

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 3 Some Simple GTK+ Applications

19

Figure 3-1 contains everything you need for a complete GTK+ 3.x Python program.

Figure 3-1.  HelloWorld.py

If you have previous experience with GTK+, you may notice some GTK+ 2.x common

elements are missing. We explicitly make this a Python 3 program at line 1. This is

necessary because the GTK+ 3.x modules are only available in Python version 3.x. This

declaration allows lines 4–6 to properly establish the GTK+ 3.x environment.

Lines 8–11 support the visible GTK+ window. The only activity we need to support

for this application is calling the super class to initialize it. But there seems to be

some missing activities! All of those missing elements are either contained in the

Gtk.ApplicationWindow superclass or they are supported in the Gtk.Application class.

One of the default supporting actions connects the delete-event to a default method to

quit the application.

Lines 13–23 support the application logic. One of the four default methods for the

Gtk.Application class are defined in our subclass. The do_activate method performs

the activation activities needed.

do_activate is called when the application is activated (after startup). In this case,

two functions are needed. First, we check to see if this is the initial call to the method,

and if it is, we create the Application GTK+ window instance. Second, we activate and

show (present) the main application window.

CHAPTER 3 Some Simple GTK+ Applications

20

Lines 25–27 are the only Python statements needed to start our application. No other

statements are necessary, and in fact, none should be added. All the application work

should take place in the Gtk.Application class or the Gtk.ApplicationWindow class or

their subclasses. This prevents any unnecessary work taking place for a “single instance”

application that has attempted to start up another application instance.

�GTK+ Widget Hierarchy
The GTK+ application programming interface is actually a C language API. However, it is

organized in such a way that an object-oriented language like Python can wrap the C API

so that the entire set of APIs are turned into a set of classes organized in a hierarchy.

The transition from GTK+ 2.x to 3.x made changes that have helped other languages

create object-oriented bindings that are easier to maintain and easier to implement.

For instance, while Python 2.x supported abstract classes, they were buried in the

collection classes and were hard to implement in your own code. Python 3.3 supplies

the collections.abc module, which makes it easy for you to subclass classes in the

module to create your own abstract classes. Also, the GTK+ 3.x API drastically reduces

the number of abstract classes. In the future, all of them will probably be eliminated.

The GTK+ 3.x object hierarchy is documented by the PyGObject API Reference

(http://lazka.github.io/ pgi-docs/#Gtk-3.0) document. This is the Python GTK+ 3.x

reference document. It covers everything you need to know about the Python object

bindings to GTK+, including the object hierarchy, supported classes, interfaces,

functions, methods, and properties. While the document is mostly comprehensive, it

lacks information concerning some new classes. We hope that this book provides that

information, as well excellent examples on how to use all the widgets and classes.

While it is important to have an understanding of the GTK+ hierarchy, it is still

possible to create good GUI applications with only a superficial understanding. But the

more you understand the hierarchy, the better control you have over your application.

�Extending HelloWorld.py
Even though Listing 3-1 is a complete application, obviously it is not very useful. So let’s

add useful features and method calls to provide visible information and visual appeal to

our application (see Listing 3-2).

CHAPTER 3 Some Simple GTK+ Applications

http://lazka.github.io

21

Listing 3-2.  HelloWorld with Label

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 label = Gtk.Label.new("Hello World!")

 label.set_selectable(True)

 self.add(label)

 self.set_size_request(200, 100)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Hello World!")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Figure 3-2 is the result of running Listing 3-2. Note that the label is already

highlighted.

CHAPTER 3 Some Simple GTK+ Applications

22

We now have an application that displays data, and thus is a little more useful. Let’s

take a look at the changes we made to the program to achieve this result.

Lines 12–15 are where most of the changes have been made. On line 12, we create

Gtk.Label with text “Hello World!” contained within it. On line 13, we make that text

selectable. This allows the user to select the text and copy it to the clipboard. On line 14,

we add the label to the Gtk.ApplicationWindow default container. All main windows in

GTK+ derive from Gtk.Container, so it is possible to add widgets to that container. Line

15 resizes Gtk.ApplicationWindow.

Line 27 shows all the widgets contained by Gtk.ApplicationWindow. We need this

method call because the present method does not perform that function. It only shows

the main window.

These are the only changes made to Listing 3-1. As you can see, it does not take a lot

of effort to add new functionality to a Python GTK+ application.

�The GTK.Label Widget
A GTK.Label widget was created in Listing 3-2. This was accomplished with the following

invocation.

label = Gtk.Label.new("Hello World!")

This call creates a new label with the specified text included. The text may

include Python escape sequences (such as "\n"), which GTK+ uses to format your

text on the screen.

Figure 3-2.  HelloWorld with label

CHAPTER 3 Some Simple GTK+ Applications

23

There are lots of useful methods that GTK.Label supports. The following is list of

some of the more useful ones.

•	 set_selectable: This method turns on/off the text’s selectability.

The default is off. This is very useful for things like error messages,

where the user may wish to copy the text to the clipboard.

•	 set_text: This method replaces the current label text with the

specified new text.

•	 set_text_with_mnemonic: This method replaces the current label

text with the specified new text. The new text may or may not have a

mnemonic contained within it. If characters in the text are preceded

by an underscore, they are underlined, which indicates that they

represent a keyboard accelerator called a mnemonic. The mnemonic

key can be used to activate another widget, chosen automatically, or

explicitly using Gtk.Label.set_mnemonic_widget.

•	 get_text: This method retrieves the current label text.

�Layout Containers
The Gtk.ApplicationWindow and Gtk.Window classes both indirectly derive from the

Gtk.Container widget. This means that all the methods in the Gtk.Container are

available to the derived windows.

By using the add method, widgets or other container types can be added to a main

window. That is how GTK.Label is added to the main window. It follows when you add a

widget to a container that a parent/child relationship is formed; the container becomes

the parent and the label becomes a child of the container.

The parent/child relationship between widgets is very important in GTK+ for many

reasons. For example, when a parent widget is destroyed, GTK+ recursively destroys all

the child widgets, no matter how deeply nested they are.

Containers also have a default sizing algorithm. This can be both good and bad

news. In many cases, the default sizing is just what you want; but in many cases, it is not.

You can override the default sizing by resizing the main window.

Another sizing helper for the container is the set_border_width method. It allows you

to create a border around the text so that when the user shrinks the window manually, the

window has a minimum size determined by the size of text and the border width.

There is more information on containers and layouts in Chapter 4.

CHAPTER 3 Some Simple GTK+ Applications

24

�Signals and Callbacks
GTK+ is a system that relies on signals and callback methods. A signal is a notification to your

application that the user has performed some action. You can tell GTK+ to run a method or

function when the signal is emitted. These are called callback methods/functions.

Caution  GTK+ signals are not the same as POSIX signals! Signals in GTK+
are propagated by events from the X Window System. Each provides separate
methods. These two signal types should not be used interchangeably.

After you initialize your user interface, control is given to the gtk_main() function

through the Gtk.Application class instance, which sleeps until a signal is emitted. At

this point, control is passed to other methods/functions.

As the programmer, you connect signals to their methods/callback functions. The

callback method/function is called when the action has occurred and the signal is

emitted, or when you have explicitly emitted the signal. You also have the capability of

stopping signals from being emitted at all.

Note I t is possible to connect signals at any point within your applications.
For example, new signals can be connected within callback methods/functions.
However, you should try to initialize mission-critical callbacks before calling gtk_
main() or the present() method in the Gtk.Application instance.

There are many types of signals, and just like functions, they are inherited from parent

structures. Many signals are generic to all widgets, such as "hide" and "grab-focus" or

specific to the widget such as the Gtk.RadioButton signal "group-changed". In any case,

widgets derived from a class can use all the signals available to all of its ancestors.

�Connecting the Signal
Our first example of connecting to a signal intercepts the "destroy" signal from a main

window so that we can choose how to handle that signal. One of the main reasons

for handling this signal ourselves is to perform an action prior to having the window

automatically destroyed by the GTK+ system.

widget.connect("destroy", self.on_window_destroy, extra_param)

CHAPTER 3 Some Simple GTK+ Applications

25

GTK+ emits the "destroy" signal when widget.destroy() is called on the widget

or when False is returned from a delete_event() callback method/function. If you

reference the API documentation, you see that the destroy signal belongs to the Gtk.

Object class. This means that every class in GTK+ inherits the signal. You can be notified

of the destruction of any GTK+ structure/instance.

There are two required parameters to every connect() call. The first is the name

of the signal you want to track. Each widget has many possible signals, all of which are

found in the API documentation. Remember that widgets are free to use the signals of

their ancestors, since each widget is actually an implementation of each of its ancestors.

You can use the “Object Hierarchy” section of the API to reference parent classes.

widget.connect("signal_name", function_name, extra_param)

When typing the signal name, the underscore and dash characters are

interchangeable. They are parsed as the same character, so it does not make any

difference which one you choose. I use the underscore character in all the examples

in this book.

The second parameter in the connect() method is the callback method/function

which is called when the signal is emitted. The format of the callback method/function

depends on the function prototype requirements of each specific signal. An example

callback method is shown in the next section.

The last parameter in the connect() method allows you to send extra parameters to

the callback method/function. Unlike the C version of the g_signal_connect() function,

the Python version of the connect() method call allows you to pass as many extra

parameters as you need for the callback method/function. This is very useful because

it prevents the artificial creation of a single variable container that wraps a number of

variables/classes that you wish to pass to a callback/method.

In this instance of connect(), a single label is passed to the callback method.

widget.connect("destroy", self.on_window_destroy, label)

The return value for connect() is the handler identifier of the signal. You can use

this with GObject.signal_handler_block(), GObject.signal_handler_unblock(),

and GObject.signal_handler_disconnect(). These functions stop a callback method/

function from being called, re-enable the callback function, and remove the signal

handler from a widget’s handler list, respectively. More information is in the API

documentation.

CHAPTER 3 Some Simple GTK+ Applications

26

�Callback Methods/Functions
Callback methods/functions specified in connect() are called when the signal is emitted

on the widget to which it was connected. For all signals, with the exception of events,

callback methods/functions are in the following form.

a callback function

def on_window_destroy(widget, extra_arg)

a callback method

def on_window_destroy(self, widget, extra_arg)

You can find an example format of a callback method/function for each signal in the

API documentation, but this is the generic format. The widget parameter is the object

that performed the connect() call.

There are other possible required arguments that may appear in the middle as well,

although this is not always the case. For these parameters, you need to reference the

documentation of the signal you are utilizing.

The last parameter of your callback method/function corresponds to the last parameter

of connect(). Remember that there can be as many of these optional arguments as you

need, but the number of extra parameters from the connect() call and the number of extra

arguments in the callback method/ function definition must be the same.

You should also note that the first argument to the method version of the callback is

the self argument required by Python in method definitions; otherwise, the function

and method definitions are the same.

�Events
Events are special types of signals that are emitted by the X Window System. They are

initially emitted by the X Window System and then sent from the window manager to

your application to be interpreted by the signal system provided by GLib. For example,

the "destroy" signal is emitted on the widget, but the "delete-event" event is first

recognized by the underlying Gdk.Window of the widget, and then emitted as a signal of

the widget.

CHAPTER 3 Some Simple GTK+ Applications

27

The first instance of an event you encountered was the "delete-event". The

"delete-event" signal is emitted when the user tries to close the window. The window

can be exited by clicking the Close button on the title bar, using the Close pop-up menu

item in the taskbar, or by any other means provided by the window manager.

Connecting events to a callback function is done in the same manner with connect()

as with other GTK + signals. However, your callback function is set up slightly differently.

an event callback function

def on_window_destroy(widget, event, extra_arg)

an event callback method

def on_window_destroy(self, widget, event, extra_arg)

The first difference in the callback method/function is the boolean return value.

If True is returned from an event callback, GTK+ assumes the event has already been

handled and it does not continue. By returning False, you are telling GTK+ to continue

handling the event. False is the default return value for the function, so you do not

need to use the "delete-event" signal in most cases. This is only useful if you want to

override the default signal handler.

For example, in many applications, you may want to confirm the exit of the program.

By using the following code, you can prevent the application from exiting if the user does

not want to quit.

an event callback method

def on_delete_event(self, widget, event, extra_arg):

 answer = # Ask the user if exiting is desired.

 if answer:

 return False

 else:

 return True

By returning False from the "delete-event" callback function, widget.destroy() is

automatically called on the widget. This signal automatically continues with the action,

so there is no need to connect to it unless you want to override the default.

In addition, the callback function includes the Gdk.Event parameter. Gdk.Event is a

union of the Gdk.EventType enumeration and all the available event structures. Let’s first

look at the Gdk.EventType enumeration.

CHAPTER 3 Some Simple GTK+ Applications

28

�Event Types
The Gdk.EventType enumeration provides a list of available event types. These can be

used to determine the type of event that has occurred, since you may not always know

what has happened.

For example, if you connect the "button-press-event" signal to a widget, there

are three different types of events that can cause the signal’s callback function to

be run: Gdk.EventType.BUTTON_PRESS, Gdk.EventType.2BUTTON_PRESS, and Gdk.

EventType.3BUTTON_PRESS. Double-clicks and triple-clicks emit the Gdk.EventType.

BUTTON_PRESS as a second event as well, so being able to distinguish between different

types of events is necessary.

Appendix B provides see a complete list of the events available to you. It shows the

signal name that is passed to connect(), the Gdk.EventType enumeration value, and a

description of the event.

Let’s look at the "delete-event" callback function. We already know that "delete-

event" is of the type Gdk.EventType.DELETE, but let’s assume for a moment that we did

not know that. We can easily test this by using the following conditional statement.

def delete_event(self, window, event, data):

 if event.type == Gdk.EventType.DELETE:

 return False

 return True

In this example, if the event type is Gdk.EventType.DELETE, False is returned, and

widget.destroy() is called on the widget; otherwise, True is returned, and no further

action is taken.

�Using Specific Event Structures
Sometimes, you may already know which type of event has been emitted. In the

following example, we know that a "key-press-event" is always emitted.

widget.connect("key-press-event", on_key_press)

In this case, it is safe to assume that the type of event is always Gdk.EventType.KEY_

PRESS, and the callback function can be declared as such.

def on_key_press(widget, event):

CHAPTER 3 Some Simple GTK+ Applications

29

Since we know that the type of event is a Gdk.EventType.KEY_PRESS, we do not

need access to all of the structures in Gdk.Event. We only have use for Gdk.EventKey,

which we can use instead of Gdk.Event in the callback method/function. Since the

event is already cast as Gdk.EventKey, we have direct access to only the elements in that

structure.

Gdk.EventKey.type # GDK_KEY_PRESS or GDK_KEY_RELEASE

Gdk.EventKey.window # The window that received the event

Gdk.EventKey.send_event # TRUE if the event used XSendEvent

Gdk.EventKey.time # The length of the event in milliseconds

Gdk.EventKey.state # The state of Control, Shift, and Alt

Gdk.EventKey.keyval # The key that was pressed

Gdk.EventKey.length # The length of string

Gdk.EventKey.string # A string approximating the entered text

Gdk.EventKey.hardware_keycode # �Raw code of the key that was pressed or

released

Gdk.EventKey.group # The keyboard group

Gdk.EventKey.is_modifier # Whether hardware_keycode was mapped

There are many useful properties in the Gdk.EventKey structure that we use

throughout the book. At some point, it would be useful for you to browse some of the

Gdk.Event structures in the API documentation. We cover a few of the most important

structures in this book, including Gdk.EventKey and Gdk.EventButton.

The only variable that is available in all the event structures is the event type, which

defines the type of event that has occurred. It is a good idea to always check the event

type to avoid handling it in the wrong way.

�Further GTK+ Methods
Before continuing on to further examples, I would like to draw your attention to a few

functions that will come in handy in later chapters and when you create your own GTK+

applications.

CHAPTER 3 Some Simple GTK+ Applications

30

�Gtk.Widget Methods
The Gtk.Widget structure contains many useful functions that you can use with any

widget. This section outlines a few that you need in a lot of your applications.

It is possible to destroy a widget by explicitly calling widget.destroy() on the object.

When invoked, widget.destroy() drops the reference count on the widget and all of

its children recursively. The widget, along with its children, are then destroyed and all

memory is freed.

widget.destroy()

Generally, this is only called on top-level widgets. It is usually only used to destroy

dialog windows and to implement menu items that quit the application. It is used in the

next example to quit the application when a button is clicked.

You can use widget.set_size_request() to set the minimum size of a widget. It

forces the widget to be smaller or larger than it would normally be. It does not, however,

resize the widget so that it is too small to be functional or able to draw itself on the screen.

widget.set_size_request(width, height)

By passing –1 to either parameter, you are telling GTK+ to use its natural size, or the

size that the widget would normally be allocated to if you do not define a custom size.

This is used if you want to specify only the height or only the width parameter. It also

allows you to reset the widget to its original size.

There is no way to set a widget with a width or height of less than 1 pixel, but by

passing 0 to either parameter, GTK+ makes the widget as small as possible. Again, it is

not resized so small that it’s non-functional or unable to draw itself.

Because of internationalization, there is a danger in setting the size of any widget.

The text may look great on your computer, but on a computer using a German

translation of your application, the widget may be too small or large for the text. Themes

also present issues with widget sizing, because widgets are defaulted to different sizes,

depending on the theme. Therefore, it is best to allow GTK+ to choose the size of widgets

and windows in most cases.

You can use widget.grab_focus() to force a widget to grab the keyboard focus. This

only work on widgets that can handle keyboard interaction. One example of a use for

widget.grab_focus() is sending the cursor to a text entry when the search toolbar is

shown in Firefox. It could also be used to give focus to a Gtk.Label that is selectable.

widget.grab_focus()

CHAPTER 3 Some Simple GTK+ Applications

31

Often, you want to set a widget as inactive. By calling widget.set_sensitive(), the

specified widget and all of its children are disabled or enabled. By setting a widget as

inactive, the user is prevented from interacting with the widget. Most widgets are also

grayed out when set as inactive.

widget.set_sensitive(boolean)

If you want to re-enable a widget and its children, you need only to call this method

on the same widget. Children are affected by the sensitivity of their parents, but they only

reflect the parents’ settings, instead of changing their properties.

�Gtk.Window Methods
You have now seen two examples using the Gtk.Window class. You learned how to set the

title of a window and add a child widget. Now, let’s explore a few more functions that

allow you to further customize windows.

All windows are set as resizable by default. This is desirable in most applications,

because each user has different size preferences. However, if there is a specific reason

for doing so, you can use window.set_resizable() to prevent the user from resizing the

window.

window.set_resizable(boolean)

Caution  You should note that the ability to resize is controlled by the window
manager, so this setting may not be honored in all cases!

The preceding caution brings up an important point. Much of what GTK+ does

interacts with the functionality provided by the window manager. Because of this, not all

of your window settings may be followed on all window managers. This is because your

settings are merely hints that are either used or ignored. You should keep in mind that

your requests may or may not be honored when designing applications with GTK+.

The default size of Gtk.Window can be set with window.set_default_size(), but

there are a few things to watch out for when using this method. If the minimum size of

the window is larger than the size you specify, this method is ignored by GTK+. It is also

ignored if you have previously set a larger size request.

window.set_default_size(width, height)

CHAPTER 3 Some Simple GTK+ Applications

32

Unlike widget.set_size_request(), window.set_default_size() only sets the

initial size of the window; it does not prevent the user from resizing it to a larger or

smaller size. If you set a height or width parameter to 0 , the window’s height or width is

set to the minimum possible size. If you pass –1 to either parameter, the window is set to

its natural size.

You can request that the window manager move the window to the specified location

with window.move(); however, the window manager is free to ignore this request. This is

true of all functions that require action from the window manager.

window.move(x, y)

By default, the position of the window on the screen is calculated with respect to

the top-left corner of the screen, but you can use window.set_gravity() to change this

assumption.

window.set_gravity(gravity)

This function defines the gravity of the widget, which is the point that layout

calculations consider (0, 0). Possible values for the Gdk.Gravity enumeration include

Gdk.Gravity.NORTH_WEST, Gdk.Gravity.NORTH, Gdk.Gravity.GRAVITY_NORTH_EAST,

Gdk.Gravity.WEST, Gdk.Gravity.CENTER, Gdk.Gravity.EAST, Gdk.Gravity.SOUTH_WEST,

Gdk.Gravity.SOUTH, Gdk.Gravity.SOUTH_EAST, and Gdk.Gravity.STATIC.

North, south, east, and west refer to the top, bottom, right, and left edges of the

screen. They are used to construct multiple gravity types. Gdk.Gravity.STATIC refers to

the top-left corner of the window itself, ignoring window decorations.

If your application has more than one window, you can set one as the parent with

window.set_transient_for(). This allows the window manager to do things such as

center the child above the parent or make sure one window is always on top of the other.

We explore the idea of multiple windows and transient relationships in Chapter 6 when

discussing dialogs.

window.set_transient_for(parent)

You can set the icon that appears in the taskbar and title bar of the window by calling

window.set_icon_from_file(). The size of the icon does not matter, because it is

resized when the desired size is known. This allows the scaled icon to have best quality.

window.set_icon_from_file(filename)

CHAPTER 3 Some Simple GTK+ Applications

33

True is returned if the icon was successfully loaded and set.

Caution I cons are a complex topic and have many behavioral complexities,
including icon sets, scaling, and interactions with themes. See the GTK+
documentation for more information.

�Process Pending Events
At times, you may want to process all pending events in an application. This is extremely

useful when you are running a piece of code that takes a long time to process. This

causes your application to appear frozen, because widgets are not redrawn if the CPU is

taken up by another process. For example, in an integrated development environment

that I created called OpenLDev, I have to update the user interface while a build

command is being processed; otherwise, the window would lock up and no build output

would be shown until the build was complete.

The following loop is the solution for this problem. It is the answer to a great number

of questions from new GTK+ programmers.

while Gtk.events_pending():

 Gtk.main_iteration()

The loop calls Gtk.main_iteration(), which processes the first pending event for

your application. This continues while Gtk.events_pending() returns True, which tells

you whether there are events waiting to be processed.

Using this loop is an easy solution to the freezing problem, but a better solution is

to use coding strategies that avoid the problem altogether. For example, you can use

idle functions found in GLib to call a function only when there are no actions of greater

importance to process.

�Buttons
Gtk.Button is a special kind of container that can only contain a single child. However,

that child can be a container itself, thus allowing a button to contain multiple widgets.

The Gtk.Button class is a clickable entity. It can be connected to a defined method of the

owning container or window.

CHAPTER 3 Some Simple GTK+ Applications

34

Gtk.Button is an action widget. That is, when it is clicked, an action is expected to be

taken. The programmer has full control of that action by processing the signal emitted

when the button is clicked. So let’s take a look at how Gtk.Button works in another

simple example (see Listing 3-3).

Listing 3-3.  HelloWorld with Button

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(25)

 button = Gtk.Button.new_with_mnemonic("_Close")

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

 self.add(button)

 self.set_size_request(200, 100)

 def on_button_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Hello World!")

 self.window.show_all()

 self.window.present()

CHAPTER 3 Some Simple GTK+ Applications

35

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Figure 3-3 shows the result of running Listing 3-3. Note how the button is centered

by default.

Figure 3-3.  HelloWorld with button

Those of you who are experienced GTK+ 2.x developers may wonder why we did

not use a stock button instead. Stock buttons have been deprecated since GTK+ 3.1 and

should not be used in new code. This may come as a huge surprise because this causes a

lot of work when upgrading a 2.x application to a 3.x application. But all is not as bad as it

first seems. By converting to non-stock buttons, your application becomes more portable

for all supported platforms.

Let's take a detailed look at the button code. There is some interesting code.

Line 12 sets the border width around the button to be created later. Lines 13–16

create the button and connect it to a method in the Gtk.Application instance. Line 13

creates a button with the mnemonic label "_Close". The underline indicates that the

letter C is the mnemonic. When the user presses Alt+C, the "clicked" signal is emitted

by the button.

Line 14 connects the "clicked" signal produced by the button to the on_button_

clicked method in the Gtk.ApplicationWindow instance. It does this by obtaining the

instance from the kwargs argument. The dictionary name application was assigned

a value on line 28, and that value was fetched on line 14 to point to the correct Gtk.

Application instance method.

CHAPTER 3 Some Simple GTK+ Applications

36

You may be wondering why we did not connect the button signal to a method local

to the Gtk.ApplicationWindow class. This is because the signal to quit the application

rightly belongs to the Gtk.Application class, not the Gtk.ApplicationWindow class.

This is one of those “gotchas” that can be very hard to understand and apply properly.

You need to think carefully when connecting signals to methods to make sure that the

correct class gets the signal. This is a roundabout method to process the "clicked"

signal. The normal way is to create your own method, like on_button_clicked, in the

Gtk.ApplicationWindow class and connect the signal to that method. We are only

showing this example to make the point that you can send signals to either the Gtk.

ApplicationWindow instance or the Gtk.Application instance.

Line 14 sets the relief style for the button. You should always use the Gtk.ReliefStyle.

NORMAL style unless you have good reasons for doing otherwise.

Line 16 adds the button to the Gtk.ApplicationWindow container. This works just

like adding a label, as shown in Listing 3-2.

Lines 19–20 process the "clicked" signal emitted from our button. Our only action is

to destroy the Gtk.ApplicationWindow instance.

We should note that when the last Gtk.ApplicationWindow instance is destroyed, the

Gtk.Application causes the application to exit.

�Test Your Understanding
In this chapter, you learned about the window, button, and label widgets. It is time to put

that knowledge into practice. In the following exercise, you employ your knowledge of

the structure of GTK+ applications, signals, and the GObject property system.

�Exercise 1: Using Events and Properties
This exercise expands on the first two examples in this chapter by creating a Gtk.

ApplicationWindow class that has the ability to destroy itself. You should set your first

name as the title of the window. A selectable Gtk.Label with your last name as the

default text string should be added as the child of the window.

Let’s consider other properties of this window: it should not be resizable and the

minimum size should be 300×100 pixels. The methods to perform these tasks were

discussed in this chapter.

CHAPTER 3 Some Simple GTK+ Applications

37

Next, by looking at the API documentation, connect the key-press-event signal to

the window. In the "key-press-event" callback function, switch the window title and

the label text. For example, the first time the callback method is called, the window title

should be set to your last name and the label text to your first name.

Once you have completed exercise 1, you can find a description of the solution

in Appendix D. The solution’s complete source code can be downloaded from www.

gtkbook.com.

Once you have completed this exercise, you are ready to move on to the next chapter,

which covers container widgets. These widgets allow your main window to contain more

than just a single widget, which was the case in all the examples in this chapter.

However, before you continue, you should know about www.gtkbook.com, which can

supplement Foundations of PyGTK Development. This web site is filled with downloads,

links to further GTK+ information, C and Python refresher tutorials, API documentation,

and more. You can use it as you go through this book to aid in your quest to learn GTK+.

�Summary
In this chapter, we introduced some simple GTK+ 3.x applications, along with some

simple widgets, which also introduced concepts that will be beneficial in later chapters.

Here are some of the concepts you learned in this chapter.

•	 The Gtk.Label class was introduced with an example program.

•	 The Gtk.Button class was introduced with an example program.

•	 The signals and methods to catch the signals were introduced. This

concept is covered in more depth in a later chapter.

•	 The concept of containers was introduced. This concept is covered in

more depth in Chapter 4.

In Chapter 4, we cover the Gtk.Container class and the vast array of container types

available.

CHAPTER 3 Some Simple GTK+ Applications

http://www.gtkbook.com
http://www.gtkbook.com
http://www.gtkbook.com

39
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_4

CHAPTER 4

Containers
Chapter 3 introduced the basic essentials needed for creating basic GTK+ applications.

It also introduced signals, callback methods, the Gtk.label class, the Gtk.Button class,

and the Gtk.Container class.

In this chapter, you expand our knowledge of the Gtk.Container class. Then we

show the two kinds of contained widgets: layout and decorator containers. Additionally,

we cover a number of derived widgets, including boxes, notebooks, handle boxes, and

expanders.

The last widget covered, Gtk.EventBox, allows widgets to take advantage of GDK events.

The following topics are covered.

•	 The purpose of the Gtk.Container class and its descendants

•	 How to use layout containers, including boxes, tables, grid, and panes

•	 When to used fixed containers

•	 How to provide events to all widgets using event boxes

�GTK.Container
The Gtk.Container class has been covered briefly in past sections, But we now cover the

class in more depth. This is necessary so that you have the necessary base knowledge

about containers so we may cover all the derived classes in subsequent sections.

The Gtk.Container class is an abstract class. Therefore you should never attempt to

create an instance of this class, only of the derived classes.

The main purpose of a container class is to allow a parent widget to contain one or

more child widgets. There are two type of container widgets in GTK+, those used for

laying out children and decorators and those that add some sort of functionality beyond

positioning children.

40

�Decorator Containers
In Chapter 3, you were introduced to Gtk.ApplicationWindow, a window derived from

Gtk.Window, which is derived from Gtk.Bin—a type of container class that has the

capability of holding only one child widget. Widgets derived from this class are called

decorator containers because they add some type of functionality to the child widget.

For example, a Gtk.Window provides it child with some extra functionality of being

placed in a top level widget. Other example decorators include the Gtk.Frame widget,

which draws a frame around it child, a Gtk.Button, which makes its child a clickable

button, and a Gtk.Expander which can hide or show its child from the user. All there

widgets use the add method for adding a child widget.

The Gtk.Bin only exposes one method, get_child. The only purpose of the Gtk.Bin

class is to provide an instantiable widget from which all subclasses that only require one

child widget can be derived. It is a central class for common base.

binwin = Gtk.Bin()

Widgets that derive from Gtk.Bin include windows, alignments, frames, buttons,

combo boxes, event boxes, expanders, handle boxes, scrolled windows, and tool items.

Many of these containers are covered in subsequent section of this chapter.

�Layout Containers
Another type of container widget provided by GTK+ is called a layout container.

These are widgets that are used to arrange multiple widgets. Layout containers can be

recognized by the fact that they are derived directly from Gtk.Container.

As the name implies, the purpose of layout containers is to correctly arrange their

children according to the user’s preferences, your instructions, and built-in rules. User

preferences include the use of themes and font preferences. These can be overridden,

but in most cases, you should honor the user’s preferences. There are also resizing rules

that govern all container widgets, which is covered in the next section.

Layout containers include boxes, fixed containers, paned widgets, icon views,

layouts, menu shells, notebooks, sockets, tables, text views, toolbars, and tree views. We

are covering most of the layout widgets throughout this chapter and the rest of the book.

More information on those we do not cover is available in the PyGObject API Reference

(http://lazka.github.io/pgi-docs/#Gtk-3.0) documentation.

CHAPTER 4 Containers

http://lazka.github.io/pgi-docs/#Gtk-3.0

41

�Resizing Children
In addition to arranging and decorating children, containers are tasked with resizing

child widgets. Resizing is performed in two phases: size requisition and size allocation.

In short, these two steps negotiate the size that is available to a widget. This is a recursive

process of communication between the widget, its ancestors, and its children.

Size requisition refers to the desired size of the child. The process begins at the

top-level widget, which asks its children for their preferred sizes. The children ask their

children and so on, until the last child is reached.

At this point, the last child decides what size it wants to be based on the space it

needs to be shown correctly on the screen and any size requests from the programmer.

For example, a Gtk.Label widget asks for enough space to fully display its text on the

screen or more space if you requested it to have a larger size.

The child then passes this size to its ancestors until the top-level widget receives the

amount of space needed based on its children’s requisitions.

Each widget stores its size preferences as width and height values in a Gtk.

Requisition object. Keep in mind that a requisition is only a request; it does not have to

be honored by the parent widget.

When the top-level widget has determined the amount of space it wants, size

allocation begins. If you have set the top-level widget as nonresizable, the widget will

never be resized; no further action occurs and requisitions are ignored; otherwise, the

top-level widget resizes itself to the desired size. It then pass the amount of available

space to its child widget. This process is repeated until all widgets have resized

themselves.

Size allocations for every widget are stored in one instance of the Gtk.Allocation

structure for each child. This structure is passed to child widgets for resizing with size_

allocate(). This function can be called explicitly by the programmer as well, but doing

so is not a good idea in the majority of cases.

In most situations, children are given the space they request, but there are certain

circumstances when this cannot happen. For example, a requisition is not honored

when the top-level widget cannot be resized.

Conversely, once a widget has been given a size allocation by its parent, the widget

has no choice but to redraw itself with the new size. Therefore, you should be careful

where you call size_allocate(). In most cases, set_size_request() is best to use for

resizing widgets.

CHAPTER 4 Containers

42

�Container Signals
The Gtk.Container class currently provides four signals. These are "add", "check_

resize", "remove", and "set_focus_child".

•	 "add": A child widget was added or packed into the container. This

signal is emitted even if you do not explicitly call add() but use the

widget’s built-in packing functions instead.

•	 "check_resize": The container is checking whether it needs to resize

for its children before taking further action.

•	 "remove": A child has been removed from the container.

•	 "set_focus_child": A child of the container has received focus

from the window manager. Now that you know the purpose of the

Gtk.Container class, we will progress onto other types of container

widgets. You have already learned about windows, a type of Gtk.Bin

widget, so we will begin this chapter with a layout container called

Gtk.Box.

�Horizontal and Vertical Boxes
Gtk.Box is a container widget that allows multiple children to be packed in a one-

dimensional, rectangular area. There are two types of boxes: a vertical box which packs

children into a single column, and a horizontal box which packs them into a single row.

Note I n GTK+ 2.x, the Gtk.Box was an abstract class. The two subclasses
Gtk.HBox and Gtk.VBox were used to create horizontal and vertical boxes
respectively. In GTK+ 3.x these two classes have been deprecated and the Gtk.Box
has become a real class from which both horizontal and vertical boxes can be created.

The graphical output of the application is shown in Listing 4-1. Notice that the

names are shown in the same order as they were added to the array, even though each

was packed at the start position. Notice that the names are shown in the same order as

they were added to the array, even though each was packed at the start position.

CHAPTER 4 Containers

43

Listing 4-1.  Vertical Boxes with Default Packing

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

names = ["Andrew", "Joe", "Samantha", "Jonathan"]

class AppWindow(Gtk.ApplicationWindow):

def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 for name in names:

 button = Gtk.Button.new_with_label(name)

 vbox.pack_start(button, True, True, 0)

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

 self.set_border_width(10)

 self.set_size_request(200, -1)

 self.add(vbox)

 self.show_all()

def on_button_clicked(self, widget):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Boxes")

 self.window.show_all()

 self.window.present()

CHAPTER 4 Containers

44

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Figure 4-1 shows the result of running Listing 4-1.

Figure 4-1.  Vertical boxes with default packing

In analyzing Listing 4-2, Gtk.Box uses the same set of methods. Gtk.Box uses the

same set of methods.

As with every widget, you need to initialize Gtk.Box before using the object. All

the parameters that are passed are keyword parameters. The default orientation if no

keyword "orientation" is passed the default is Gtk.Orientation.HORIZONTAL. Other

keywords are available, such as "spacing". If the "homogeneous" keyword is set to True,

all of the children are given the smallest amount of space that can fit every widget.

vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

The "spacing" keyword parameter places a default number of pixels of spacing

between each child and its neighbor. This value can be changed for individual cells as

children are added, if the box is not set as equally spaced.

Since you do not need further access to the labels in Listing 4-2 after they are added

to the widget, the application does not store individual pointers to each object. They are

all cleaned up automatically when the parent is destroyed. Each button is then added to

the box using a method called the packing.Gtk.Box widget.

CHAPTER 4 Containers

45

By adding widgets to the box with pack_start(), the child has three properties

automatically set. Expanding is set to True, which automatically provides the cell with

the extra space allocated to the box. This space is distributed evenly to all of the cells that

request it. The fill property is also set to True, which means the widget expands into all of

the extra space provided instead of filling it with padding. Lastly, the amount of padding

placed between the cell and its neighbors is set to zero pixels.

vbox.pack_start(button, True, True, 0)

Packing boxes can be slightly unintuitive because of the naming of functions. The

best way to think about it is in terms of where the packing begins. If you pack at the start

position, children are added with the first child appearing at the top or left. If you pack at

the end position, the first child appears at the bottom or right of the box.

It should also be noted that the pack_start() and pack_end() methods not

only specify the packing parameters, they also add the widget to the specified widget

instance. It is not necessary to call the add() method to add the widget if you call one of

packing methods. In fact, it is a runtime error if you attempt to add the same widget with

a packing method and the add() method.

Listing 4-2.  Vertical_Boxes Specifying Packing Parameters

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

names = ["Andrew", "Joe", "Samantha", "Jonathan"]

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 for name in names:

 button = Gtk.Button.new_with_label(name)

 vbox.pack_end(button, False, False, 5)

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

CHAPTER 4 Containers

46

 self.set_border_width(10)

 self.set_size_request(200, -1)

 self.add(vbox)

 self.show_all()

 def on_button_clicked(self, widget):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Boxes")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Since we packed each of the widgets starting at the end, they are shown in reverse

order in Figure 4-2). The packing began at the end of the box and packed each child

before the previous one. You are free to intersperse calls to start and end packing

functions. GTK+ keeps track of both reference positions. Since we packed each of the

widgets starting at the end, they are shown in reverse order. The packing began at the

end of the box and packed each child before the previous one. You are free to intersperse

calls to start and end packing functions. GTK+ keeps track of both reference positions.

CHAPTER 4 Containers

47

By setting the expand property to True, the cell expands so that it takes up additional

space allocated to the box that is not needed by the widgets. By setting the fill property

to True, the widget expands to fill extra space available to the cell. Table 4-1 offers a brief

description of all possible combinations of the expand and fill properties.

Figure 4-2.  Vertical_Boxes specifying packing parameters

Table 4-1.  Expand and Fill Properties

expand fill Result

True True The cell expand so that it takes up additional space allocated to the box, and

the child widget expand to fill that space.

True False The cell expand so that it takes up additional space, but the widget not expand.

Instead, the extra space is empty.

False True Neither the cell nor the widget expand to fill extra space. This is the same thing

as setting both properties to False.

False False Neither the cell nor the widget expand to fill extra space. If you resize the

window, the cell not resize itself.

CHAPTER 4 Containers

48

In the previous pack_end() call, each cell is told to place five pixels of spacing

between itself and any neighbor cells. Also, according to Table 4-1 neither the cell nor its

child widget expand to take up additional space provided to the box.

vbox.pack_end(button, True, True, 0)

Note I f you have experience programming with other graphical toolkits, the size
negotiation system provided by GTK+ may seem odd. However, you quickly learn
its benefits. GTK+ automatically takes care of resizing everything if you change a
user interface, instead of requiring you to reposition everything programmatically.
You will come to view this as a great benefit as you continue learning GTK+.

While you should try to finalize the order of elements in a Gtk.Boxwidget before

displaying it to the user, it is possible to reorder child widgets in a box with

reorder_child().

vbox.reorder_child(child_widget, position)

By using this method, you can move a child widget to a new position in the Gtk.Box.

The position of the first widget in a Gtk.Box container is indexed from zero. The widget

is placed in the last position of the box if you specify a position value of –1 or a value

greater than the number of children.

�Horizontal and Vertical Panes
Gtk.Paned is a special type of container widget that holds exactly two widgets. A resize

bar is placed between them, which allows the user to resize the two widgets by dragging

the bar in one direction or the other. When the bar is moved, either by user interaction or

programmatic calls, one of the two widgets shrinks while the other expands.

Note I n GTK+ 2.x, the Gtk.Paned was an abstract class. The two subclasses
Gtk.HPaned and Gtk.VPaned were used to create horizontal and vertical boxes
respectively. In GTK+ 3.x, these two classes have been deprecated and the Gtk.
Paned has become a real class from which both horizontal and vertical panes can
be created.

CHAPTER 4 Containers

49

There are two types of paned widgets: horizontal resizing and vertical resizing. As

with boxes, Gtk.Paned provides all the functions for both horizontal and vertical panes.

Listing 4-3 shows a simple example where two Gtk.Button widgets are placed as the

children of a horizontal pane.

Listing 4-3.  Horizontal Paned with Buttons

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 hpaned = Gtk.Paned.new(Gtk.Orientation.HORIZONTAL)

 button1 = Gtk.Button.new_with_label("Resize")

 button2 = Gtk.Button.new_with_label("Me!")

 button1.connect("clicked", self.on_button_clicked)

 button2.connect("clicked", self.on_button_clicked)

 hpaned.add1(button1)

 hpaned.add2(button2)

 self.add(hpaned)

 self.set_size_request(225, 150)

 self.show_all()

 def on_button_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 4 Containers

50

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Panes")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

As you can see in Figure 4-3 the Gtk.Paned widget places a vertical bar between its

two children. By dragging the bar, one widget shrinks while the other expands. In fact, it

is possible to move the bar so that one child is completely hidden from the user’s view.

You learn how to prevent this with the pack1() and pack2() methods.

Figure 4-3.  Horizontal paned with buttons

In Figure 4-3 we created a Gtk.Paned object with the following.

hpaned = Gtk.Paned.new(Gtk.Orientation.HORIZONTAL)

If you want to use a vertical paned widget instead, you need only to call the

following.

vpaned = Gtk.Paned.new(Gtk.Orientation.VERTICAL)

All of the Gtk.Paned functions then work with either type of paned widget.

CHAPTER 4 Containers

51

Since Gtk.Paned can only handle two children, GTK+ provides a function for packing

each child. In the following example, pack1() and pack2() methods were used to add

both children to Gtk.Paned. These functions use the default values for the resize and

shrink properties of the Gtk.Paned widget.

hpaned.add1(button1);

hpaned.add2(button2);

The preceding add1() and add2() method calls are from Listing 4-3 and are

equivalent to the following.

hpaned.pack1(label1, False, True);

hpaned.pack2(label2, True, True);

The second parameter in pack1() and pack2() specifies whether the child widget

should expand when the pane is resized. If you set this to False, no matter how much

larger you make the available area, the child widget does not expand.

The last parameter specifies whether the child can be made smaller than its size

requisition. In most cases, you want to set this to True so that a widget can be completely

hidden by the user by dragging the resize bar. If you want to prevent the user from doing

this, set the third parameter to False. Table 4-2 illustrates how the resize and shrink

properties interrelate.

Table 4-2.  Resize and Shrink Properties

resize shrink Result

True True The widget takes up all available space when the pane is resized, and the user

is able to make it smaller than its size requisition.

True False The widget takes up all available space when the pane is resized, but available

space must be greater than or equal to the widget’s size requisition.

False True The widget will not resize itself to take up additional space available in the

pane, but the user is able to make it smaller than its size requisition.

False False The widget will not resize itself to take up additional space available in the

pane, and the available space must be greater than or equal to the widget’s

size requisition.

CHAPTER 4 Containers

52

You can easily set the exact position of the resize bar with set_position(). The

position is calculated in pixels with respect to the top or left side of the container. If you

set the position of the bar to zero, it is moved all the way to the top or left if the widget

allows shrinking.

paned.set_position(position)

Most applications want to remember the position of the resize bar, so it can be

restored to the same location when the user next loads the application. The current

position of the resize bar can be retrieved with get_position().

pos = paned.get_position()

Gtk.Paned provides multiple signals, but one of the most useful is move-handle,

which tells you when the resizing bar has been moved. If you want to remember the

position of the resize bar, this tells you when you need to retrieve a new value.

�Grids
So far, all the layout container widgets I have covered only allow children to be packed in

one dimension.

The Gtk.Grid widget, however, allows you to pack children in two-dimensional space.

One advantage of using the Gtk.Grid widget over using multiple Gtk.Box widgets is

that children in adjacent rows and columns are automatically aligned with each other,

which is not the case with boxes within boxes. However, this is also a disadvantage,

because you will not always want everything to be lined up in this way.

Figure 4-4 shows a simple grid that contains three widgets. Notice that the single

label spans two columns. This illustrates the fact that grids allow one widget to span

multiple columns and/or rows as long as the region is rectangular.

Figure 4-4.  Grid displaying name

CHAPTER 4 Containers

53

Listing 4-4 inserts two Gtk.Label widgets and a Gtk.Entry widget into the two-by-

two area (you learn how to use the Gtk.Entry widget in Chapter 5, but this gives you a

taste of what is to come).

Listing 4-4.  Grids Displaying Name

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(150, 100)

 grid = Gtk.Grid.new()

 label1 = Gtk.Label.new("Enter the following information ...")

 label2 = Gtk.Label.new("Name: ")

 entry = Gtk.Entry.new()

 grid.attach(label1, 0, 0, 2, 1)

 grid.attach(label2, 0, 1, 1, 1)

 grid.attach(entry, 1, 1, 1, 1)

 grid.set_row_spacing(5)

 grid.set_column_spacing(5)

 self.add(grid)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 4 Containers

54

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Tables")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Grid Spacing
If you want to set the spacing for every column in a grid, you can use set_column_

spacing(). This function was used in set_row_spacing() to add padding between rows.

These functions override any previous settings of the grid.set_row_spacing() to add

padding between rows. These functions override any previous settings of the grid.

grid.set_column_spacing(5)

The grid.attach() method require five parameters, as follows.

Grid.attach(child_widget, left_pos, top_pos, width, height)

�Fixed Containers
The Gtk.Fixed widget is a type of layout container that allows you to place widgets by

the pixel. There are many problems that can arise when using this widget, but before we

explore the drawbacks, let’s look at a simple example.

Listing 4-5 shows the Gtk.Fixed widget that contains two buttons, one found at each

of the locations (0,0) and (20,30), with respect to the top-left corner of the widget.

Listing 4-5.  Specifying Exact Locations

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

CHAPTER 4 Containers

55

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 fixed = Gtk.Fixed.new()

 button1 = Gtk.Button.new_with_label("Pixel by pixel ...")

 button2 = Gtk.Button.new_with_label("you choose my fate.")

 button1.connect("clicked", self.on_button_clicked)

 button2.connect("clicked", self.on_button_clicked)

 fixed.put(button1, 0, 0)

 fixed.put(button2, 22, 35)

 self.add(fixed)

 self.show_all()

 def on_button_clicked(self, widget):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Fixed")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The Gtk.Fixed widget initialized with Gtk.Fixed.new() allows you to place widgets

with a specific size in a specific location. Placing widgets is performed with put() at

specified horizontal and vertical positions.

fixed.put(child, x, y)

CHAPTER 4 Containers

56

The top-left corner of the fixed container is referred to by location (0,0). You should

only be able to specify real locations for widgets or locations in positive space. The fixed

container resizes itself, so every widget is completely visible.

If you need to move a widget after it has been placed within a The Gtk.Fixed

container, you can use move(). You need to be careful not to overlap a widget that has

already been placed. The Gtk.Fixed widget does not provide notification in the case of

overlap. Instead, it tries to render the window with unpredictable results.

fixed.move(child, x, y)

This brings us to the inherent problems with using the Gtk.Fixed widget. The first

problem is that your users are free to use whatever theme they want. This means that the

size of text on the user’s machine may differ from the size of text on your machine unless

you explicitly set the font. The sizes of widgets vary among different user themes as well.

This can cause misalignment and overlap. This is illustrated in Figure 4-5, which shows

two screenshots, one with a small font size and one with a larger font size.

Figure 4-5.  Problems caused by different font sizes in a Gtk.Fixed container

CHAPTER 4 Containers

57

You can explicitly set the size and font of text to avoid overlap, but this is not advised

in most cases. Accessibility options are provided for users with low vision. If you change

their fonts, some users may not be able to read the text on the screen.

Another problem with using Gtk.Fixed arises when your application is translated

into other languages. A user interface may look great in English, but the displayed strings

in other languages may cause display problems, because the width is not constant.

Furthermore, languages that are read right to left, such as Hebrew and Arabic, cannot be

properly mirrored with the Gtk.Fixed widget. It is best to use a variable-sized container,

such as Gtk.Box or Gtk.Grid in this case.

Finally, it can be quite a pain adding and removing widgets from your graphical

interface when using a Gtk.Fixed container. Changing the user interface requires you

to reposition all of your widgets. If you have an application with a lot of widgets, this

presents a long-term maintenance problem.

On the other hand, you have grids, boxes, and various other automatically formatting

containers. If you need to add or remove a widget from the user interface, it is as easy

as adding or removing a cell. This makes maintenance much more efficient, which is

something you should consider in large applications.

Therefore, unless you know that none of the presented problems will plague your

application, you should use variable-sized containers instead of Gtk.Fixed. This

container was presented only so you know it is available if a suitable situation arises.

Even in suitable situations, flexible containers are almost always a better solution and

are the proper way of doing things.

�Expanders
The Gtk.Expander container can handle only one child. The child can be shown or

hidden by clicking the triangle to the left of the expander’s label. A before-and-after

screenshot of this action can be viewed in Figure 4-6.

CHAPTER 4 Containers

58

Listing 4-6 introduces you to the most important Gtk.Expander methods.

Listing 4-6.  Gtk.Expander Container

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 expander = Gtk.Expander.new_with_mnemonic("Click _Me For More!")

 label = Gtk.Label.new ("Hide me or show me,\nthat is your choice.")

 expander.add(label)

 expander.set_expanded(True)

 self.add(expander)

Figure 4-6.  A Gtk.Expander container

CHAPTER 4 Containers

59

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Hello World!")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Activating a Gtk.Expander widget cause it to be expanded or retracted depending on

its current state.

Tip  Mnemonics are available in almost every widget that displays a label. Where
available, you should always use this feature, because some users prefer to
navigate through applications with the keyboard.

If you wish to include an underscore character in the expander label, you should

prefix it with a second underscore. If you do not want to take advantage of the mnemonic

feature, you can use Gtk.Expander.new() to initialize the Gtk.Expander with a standard

string as the label, but providing mnemonics as an option to the user is always a good

idea. In normal expander labels, underscore characters are not parsed but are treated as

just another character.

The Gtk.Expander widget itself is derived from Gtk.Bin, which means that it can

only contain one child. As with other containers that hold one child, you need to use

expander.add() to add the child widget.

The child widget of a Gtk.Expander container can be shown or hidden by calling

expander.set_expanded().expander.set_expanded().

expander.set_expanded(boolean)

CHAPTER 4 Containers

60

By default, GTK+ does not add any spacing between the expander label and the child

widget. To add pixels of spacing, you can use expander.set_spacing() to add padding.

expander.set_spacing(spacing)

�Notebook
The Gtk.Notebook widget organizes child widgets into a number of pages. The user can

switch between these pages by clicking the tabs that appear along one edge of the widget.

You are able to specify the location of the tabs, although they appear along the top by

default. You can also hide the tabs altogether. Figure 4-7 shows a Gtk.Notebook widget

with two tabs that was created with the code in Listing 4-7.

Figure 4-7.  A notebook container with multiple pages

When creating a notebook container, you must specify a tab label widget and a child

widget for each tab. Tabs can be added to the front or back, inserted, reordered, and

removed.

Listing 4-7.  Container with Multiple Pages

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

CHAPTER 4 Containers

61

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, 100)

 notebook = Gtk.Notebook.new()

 label1 = Gtk.Label.new("Page 1")

 label2 = Gtk.Label.new("Page 2")

 child1 = Gtk.Label.new("Go to page 2 to find the answer.")

 child2 = Gtk.Label.new("Go to page 1 to find the answer.")

 notebook.append_page(child1, label1)

 notebook.append_page(child2, label2)

 notebook.set_tab_pos(Gtk.PositionType.BOTTOM)

 self.add(notebook)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Notebook")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

After you create a Gtk.Notebook, it is not very useful until you add tabs to it. To add

a tab to the end or beginning of the list of tabs, you can use notebook.append_page() or

notebook.prepend_page(), respectively. Each of these methods accepts a child widget,

and a widget to display in the tab, as shown next.

CHAPTER 4 Containers

62

Tip  The tab label does not have to be a Gtk.Label widget. For example, you
could use a Gtk.Box widget that contains a label and a close button. This allows
you to embed other useful widgets, such as buttons and images, into the tab label.

Each notebook page can only display one child widget. However, each of the

children can be another container, so each page can display many widgets. In fact, it is

possible to use Gtk.Notebook as the child widget of another Gtk.Notebook tab.

Caution  Placing notebooks within notebooks is possible but should be done with
caution, because it can easily confuse the user. If you must do this, make sure
that you place the child notebook’s tabs on a different side of the notebook than
its parent’s tabs. By doing this, the user is able to figure out what tabs belong to
which notebook.

If you want to insert a tab in a specific location, you can use notebook.insert_

page(). This function allows you to specify the integer location of the tab. The index of

all tabs located after the inserted tab increase by one.

notebook.insert_page (child, tab_label, position)

All three of the functions used to add tabs to a Gtk.Notebook return the integer

location of the tab you added or –1 if the action has failed.

�Notebook Properties
In Listing 4-7, the tab-position property was set for the Gtk.Notebook, which was done

with the following call.

notebook.set_tab_pos(position)

Tab position can be set in notebook.set_tab_pos() by using the Gtk.PositionType

enumeration. These include Gtk.PositionType.TOP, Gtk.PositionType.BOTTOM, Gtk.

PositionType.LEFT, and Gtk.PositionType.RIGHT.

CHAPTER 4 Containers

63

Notebooks are useful if you want to give the user multiple options, but you want

to show them in multiple stages. If you place a few in each tab and hide the tabs

with notebook.set_show_tabs(), you can progress the user back and forth through

the options. An example of this concept would be many of the wizards you see

throughout your operating system, similar to the functionality provided by the

Gtk.Assistant widget.

notebook.set_show_tabs(show_tabs)

At some point, the Gtk.Notebook runs out of room to store tabs in the allocated

space. To remedy this problem, you can set notebook tabs as scrollable with notebook.

set_scrollable().

notebook.set_scrollable(scrollable)

This property forces tabs to be hidden from the user. Arrows are provided so that

the user is able to scroll through the list of tabs. This is necessary because tabs are only

shown in one row or column.

If you resize the window so that all of the tabs cannot be shown, the tabs are made

scrollable. Scrolling also occurs if you make the font size large enough that the tabs

cannot all be drawn. You should always set this property to True if there is any chance

that the tabs will take up more than the allotted space.

�Tab Operations
GTK+ provides multiple functions that allow you to interact with tabs that already exist.

Before learning about these methods, it is useful to know that most of these cause the

change-current-page signal to be emitted. This signal is emitted when the current tab

that is in focus is changed.

If you can add tabs, there has to be a method to remove tabs as well. By using

notebook.remove_page(), you can remove a tab based on its index reference. If you

did not increase the reference count before adding the widget to the Gtk.Notebook, this

function releases the last reference and destroys the child.

notebook.remove_page(page_number)

CHAPTER 4 Containers

64

You can manually reorder the tabs by calling notebook.reorder_child(). You must

specify the child widget of the page you want to move and the location to where it should

be moved. If you specify a number that is greater than the number of tabs or a negative

number, the tab is moved to the end of the list.

notebook.reorder_child(child, position)

There are three methods provided for changing the current page. If you know the

specific index of the page you want to view, you can use notebook.set_current_page()

to move to that page.

notebook.set_current_page(page_number)

At times, you may also want switch to the next or previous tab, which can be done

with call notebook.next_page() or notebook.prev_page(). If a call to either of these

functions would cause the current tab to drop below zero or go above the current

number of tabs, nothing occurs; the call is ignored.

When deciding what page to move to, it is often useful to know the current page and

the total number of tabs. These values can be obtained with notebook.get_current_

page(), respectively.

�Event Boxes
Various widgets, including Gtk.Label, do not respond to GDK events, because they

do not have an associated GDK window. To fix this, GTK+ provides a container widget

called Gtk.EventBox. Event boxes catch events for the child widget by providing a GDK

window for the object.

Listing 4-8 captures the button-press-event signal by using an event box. The

text in the label is changed based on its current state when the label is double-clicked.

Nothing visible happens when a single click occurs, although the signal is still emitted in

that case (Gtk.Label) by using an event box. The text in the label is changed based on

its current state when the label is double-clicked. Nothing visible happens when a single

click occurs, although the signal is still emitted in that case.

CHAPTER 4 Containers

65

Listing 4-8.  Adding Events to Gtk.Label

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 50)

 eventbox = Gtk.EventBox.new()

 label = Gtk.Label.new("Double-Click Me!")

 eventbox.set_above_child(False)

 eventbox.connect("button_press_event", self.on_button_pressed, label)

 eventbox.add(label)

 self.add(eventbox)

 eventbox.set_events(Gdk.EventMask.BUTTON_PRESS_MASK)

 eventbox.realize()

 def on_button_pressed(self, eventbox, event, label):

 if event.type == Gdk.EventType._2BUTTON_PRESS:

 text = label.get_text()

 if text[0] == 'D':

 label.set_text("I Was Double-Clicked!")

 else:

 label.set_text("Double-Click Me Again!")

 return False

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 4 Containers

66

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Hello World!")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

When using an event box, you need to decide whether the event box’s Gdk.Window

should be positioned above the windows of its child or below them. If the event box

window is above, all events inside the event box go to the event box. If the window is

below, events in windows of child widgets first go to that widget and then to its parents.

Note I f you set the window’s position as below, events do go to child widgets
first. However, this is only the case for widgets that have associated GDK windows.
If the child is a Gtk.Label widget, it does not have the ability to detect events
on its own. Therefore, it does not matter whether you set the window’s position as
above or below in Listing 4-8.

The location of the event box window can be moved above or below its children

with eventbox.set_above_child(). By default, this property is set to False for all event

boxes. This means that all events are handled by the widget for which the signal was first

emitted. The event is then passed to its parent after the widget is finished.

eventbox.set_above_child(above_child)

Next, you need to add an event mask to the event box so that it knows what type of

events the widget receives. Values for the Gdk.EventMask enumeration that specify event

masks are shown in Table 4-3. A bitwise list of Gdk.EventMask values can be passed to

eventbox.set_events() if you need to set more than one.

CHAPTER 4 Containers

67

Table 4-3.  Gdk.EventMask Values

Value Description

Gdk.EventMask.EXPOSURE_MASK Accepts events when a widget is exposed.

Gdk.EventMask.POINTER_MOTION_MASK Accepts events emitted when the proximity of

the window is left.

Gdk.EventMask.POINTER_MOTION_HINT_MASK Limits the number of GDK_MOTION_NOTIFY

events, so they are not emitted every time the

mouse moves.

Gdk.EventMask.BUTTON_MOTION_MASK Accepts pointer motion events while any button

is pressed.

Gdk.EventMask.BUTTON1_MOTION_MASK Accepts pointer motion events while button 1 is

pressed.

Gdk.EventMask.BUTTON2_MOTION_MASK Accepts pointer motion events while button 2 is

pressed.

Gdk.EventMask.BUTTON3_MOTION_MASK Accepts pointer motion events while button 3 is

pressed.

Gdk.EventMask.BUTTON_PRESS_MASK Accepts mouse button press events.

Gdk.EventMask.BUTTON_RELEASE_MASK Accepts mouse button release events.

Gdk.EventMask.KEY_PRESS_MASK Accepts key press events from a keyboard.

Gdk.EventMask.KEY_RELEASE_MASK Accepts key release events from a keyboard.

Gdk.EventMask.ENTER_NOTIFY_MASK Accepts events emitted when the proximity of

the window is entered.

Gdk.EventMask.LEAVE_NOTIFY_MASK Accepts events emitted when the proximity of

the window is left.

Gdk.EventMask.FOCUS_CHANGE_MASK Accepts change of focus events.

Gdk.EventMask.STRUCTURE_MASK Accepts events emitted when changes to

window configurations occur.

Gdk.EventMask.PROPERTY_CHANGE_MASK Accepts changes to object properties.

(continued)

CHAPTER 4 Containers

68

You must call eventbox.set_events() before you call eventbox.realize() on the

widget. If a widget has already been realized by GTK+, you have to instead use eventbox.

add_events() to add event masks.

Before calling eventbox.realize(), your Gtk.EventBox does not yet have an

associated Gdk.Window or any other GDK widget resources. Normally, realization occurs

when the parent is realized, but event boxes are an exception. When you call window.

show() on a widget, it is automatically realized by GTK+. Event boxes are not realized

when you call window.show_all(), because they are set as invisible. Calling eventbox.

realize() on the event box is an easy way to work around this problem.

When you realize your event box, you need to make sure that it is already added as a

child to a top-level widget, or it will not work. This is because, when you realize a widget,

it automatically realizes its ancestors. If it has no ancestors, GTK+ is not happy, and

realization fails.

After the event box is realized, it has an associated Gdk.Window. Gdk.Window is a class

that refers to a rectangular region on the screen where a widget is drawn. It is not the

same thing as a Gtk.Window, which refers to a top-level window with a title bar and so

on. A Gtk.Window contains many Gdk.Window objects, one for each child widget. They are

used for drawing widgets on the screen.

Table 4-3.  (continued)

Value Description

Gdk.EventMask.VISIBILITY_NOTIFY_MASK Accepts change of visibility events.

Gdk.EventMask.PROXIMITY_IN_MASK Accepts events emitted when the mouse cursor

enters the proximity of the widget.

Gdk.EventMask.PROXIMITY_OUT_MASK Accepts events emitted when the mouse cursor

leaves the proximity of the widget.

Gdk.EventMask.SUBSTRUCTURE_MASK Accepts events that change the configuration of

child windows.

Gdk.EventMask.SCROLL_MASK Accepts all scroll events.

Gdk.EventMask.ALL_EVENTS_MASK Accepts all types of events.

CHAPTER 4 Containers

69

�Test Your Understanding
This chapter has introduced you to a number of container widgets that are included in

GTK+. The following two exercises allow you to practice what you have learned about a

few of these new widgets.

�Exercise 1: Using Multiple Containers
One important characteristic of containers is that each container can hold other

containers. To really drive this point home, in this example, you use a large number of

containers. The main window shows a Gtk.Notebook and two buttons along the bottom.

The notebook should have four pages. Each notebook page should hold a Gtk.

Button that moves to the next page (the Gtk.Button on the last page should wrap around

to the first page).

Create two buttons along the bottom of the window. The first should move to the

previous page in the Gtk.Notebook, wrapping to the last page if necessary. The second

button should close the window and exit the application when clicked.

Exercise 1 is a simple application to implement, but it illustrates a few important

points. First, it shows the usefulness of Gtk.Box, and how vertical and horizontal boxes

can be used together to create complex user interfaces.

It is true that this same application could be implemented with a Gtk.Grid as the

direct child of the window, but it is significantly easier to align the buttons along the

bottom with a horizontal box. You notice that the buttons were packed at the end of

the box, which aligns them to the right side of the box, and this is easier to implement

with boxes.

Also, you saw that containers can, and should, be used to hold other containers. For

example, in Exercise 1, a Gtk.Window holds a vertical Gtk.Box, which holds a horizontal

Gtk.Box and a Gtk.Notebook. This structure can become even more complex as your

application grows in size.

Once you have completed Exercise 1, move on to Exercise 2. In the next problem,

you use the paned container instead of a vertical box.

CHAPTER 4 Containers

70

�Exercise 2: Even More Containers
In this exercise, you expand upon the code you wrote in Exercise 1. Instead of using a

vertical Gtk.Box to hold the notebook and horizontal box of buttons, create a vertical

Gtk.Paned widget.

In addition to this change, you should hide the Gtk.Notebook tabs, so the user is not

able to switch between pages without pressing buttons. In this case, you not be able to

know when a page is being changed. Therefore, each button that is in a Gtk.Notebook

page should be contained by its own expander. The expander labels allow you to

differentiate between notebook pages.

Once you have completed Exercise 2, you will have had practice with Gtk.Box, Gtk.

Paned, Gtk.Notebook, and Gtk.Expander—four important containers used throughout

the rest of this book.

Before continuing on to the next chapter, you may want to test out a few of the

containers covered in this chapter that you did not need for Exercises 1 and 2. This

gives you practice using all of the containers, because later chapters do not review past

information.

�Summary
In this chapter, you learned about the two types of container widgets: decorators and

layout containers. Types of decorators covered were expanders, and event boxes. Types

of layout containers covered were boxes, panes, grids, fixed containers, and notebooks.

The event box container is seen in later chapters, because there are other widgets

besides Gtk.Label that cannot handle GDK events. This is specified when you learn

about these widgets. You will see most of the containers in later chapters as well.

While these containers are necessary for GTK+ application development, merely

displaying Gtk.Label and Gtk.Button widgets in containers is not very useful (or

interesting) in most applications. This type of application does little to accommodate

anything beyond basic user interaction.

Therefore, in the next chapter, you are going to learn about many widgets that allow

you to interact with the user. These widgets include types of buttons, toggles, text entries,

and spin buttons.

CHAPTER 4 Containers

71
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_5

CHAPTER 5

Basic Widgets
So far, you have not learned about any widgets that are designed to facilitate user

interaction—except Gtk.Button. That changes in this chapter, as we cover many types of

widgets that allow the user to make choices, change settings, or input information.

These widgets include push buttons, toggle buttons, check buttons, radio buttons,

color selection buttons, file chooser buttons, font selection buttons, text entries, and

number selection buttons.

In this chapter, you learn

•	 How to use clickable buttons with stock items.

•	 How to use types of toggle buttons, including check buttons and

radio buttons.

•	 How to use the entry widget for one-line, free-form text input.

•	 How to use the spin button widget for integer or floating-point

number selection.

•	 What sort of specialized buttons are available.

�Using Push Buttons
Previously, this section was titled “Using Stock Items.” But GTK+ 3.x stock items

have been deprecated, so I will show you how to create look-alike stock items out of

standard items.

Figure 5-1 shows how to create a look-alike stock Close button.

72

Use the code in Listing 5-1 to produce the look-alike stock button.

Listing 5-1.  Look-alike Stock Button

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new()

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 icon_theme = Gtk.IconTheme.get_default()

 icon = icon_theme.load_icon("window-close", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 hbox.add(image)

 label = Gtk.Label.new_with_mnemonic("_Close")

 hbox.add(label)

 hbox.set_homogeneous(True)

 button.add(hbox)

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

Figure 5-1.  Look-alike stock button

CHAPTER 5 Basic Widgets

73

 self.add(button)

 self.set_size_request(230, 100)

 def on_button_clicked(self, param):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Look-alike Stock Item”)

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The first task to create a custom button is to make a standard button and then

make a horizontal box. The next task is to create an image for the button. The following

statements accomplish that task.

icon_theme = Gtk.IconTheme.get_default()

icon = icon_theme.load_icon("window-close", -1,

Gtk.IconLookupFlags.FORCE_SIZE)

image = Gtk.Image.new_from_pixbuf(icon)

hbox.add(image)

The first statement gets the default GTK+ theme. Next we load the PixBuf icon from

the theme by name.

Next, we turn the PixBuf icon into an image and then add it to the horizontal box.

CHAPTER 5 Basic Widgets

74

Now we create a label an then add it to the horizontal box.

label = Gtk.Label.new_with_mnemonic("_Close")

hbox.add(label)

Now we can connect the button to our custom method, set the relief style for the

button, and then add the button to the Gtk.ApplicationWindow.

button.connect("clicked", self.on_button_clicked)

button.set_relief(Gtk.ReliefStyle.NORMAL)

self.add(button)

Tip  The icon image you want may or may not be in the default theme. You may
have to look at other themes to find an image you can use. You may need to install
a GTK+ theme in order to obtain access to a theme that fits your purpose.

�Toggle Buttons
The Gtk.ToggleButton widget is a type of Gtk.Button that holds its active or inactive

state after it is clicked. It is shown as pressed down when active. Clicking an active toggle

button causes it to return to its normal state. There are two widgets derived from Gtk.

ToggleButton: Gtk.CheckButton and Gtk.RadioButton.

You can create a new The Gtk.ToggleButton with one of three functions. To create

an empty toggle button, use Gtk.ToggleButton.new(). If you want the toggle button

to include a label by default, use Gtk.ToggleButton.new_with_label(). Lastly, Gtk.

ToggleButton also supports mnemonic labels with Gtk.ToggleButton.new_with_

mnemonic().

Figure 5-2 shows two Gtk.ToggleButton widgets that were created with two

mnemonic labels by calling the Gtk.ToggleButton.new_with_mnemonic() initializer.

The widgets in the screenshot were created with the code in Listing 5-2.

CHAPTER 5 Basic Widgets

75

In Listing 5-2, when one toggle button is activated, the other is disabled. The only

way to make it sensitive is to deactivate the original toggle button.

Listing 5-2.  Two Gtk.ToggleButton Widgets

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 �toggle1 = Gtk.ToggleButton.new_with_mnemonic("_Deactivate the other

one!")

 �toggle2 = Gtk.ToggleButton.new_with_mnemonic("_No! Deactivate that

one!")

 toggle1.connect("toggled", self.on_button_toggled, toggle2)

 toggle2.connect("toggled", self.on_button_toggled, toggle1)

 vbox.pack_start(toggle1, True, True, 1)

 vbox.pack_start(toggle2, True, True, 1)

 self.add(vbox)

Figure 5-2.  Two Gtk.ToggleButton widgets

CHAPTER 5 Basic Widgets

76

 def on_button_toggled(self, toggle, other_toggle):

 if (Gtk.ToggleButton.get_active(toggle)):

 other_toggle.set_sensitive(False)

 else:

 other_toggle.set_sensitive(True)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Toggle Buttons")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The only signal added by the Gtk.ToggleButton class is "toggled", which is emitted

when the user activates or deactivates the button. This signal was triggered in Listing 5-2

by one toggle button in order to disable the other.

In Listing 5-2 another important piece of information was shown: multiple widgets

can use the same callback method. We did not need to create a separate callback method

for each toggle button, since each required the same functionality. It is also possible to

connect one signal to multiple callback methods, although this is not recommended.

Instead, you should just implement the whole functionality in a single callback method.

�Check Buttons
In most cases, you will not want to use the Gtk.ToggleButton widget, because it looks

exactly like a normal Gtk.Button. Instead, GTK+ provides the Gtk.CheckButton widget,

which places a discrete toggle next to the display text. Gtk.CheckButton is derived from

the Gtk.ToggleButton class. Two instances of this widget are shown in Figure 5-3.

CHAPTER 5 Basic Widgets

77

As with toggle buttons, three functions are provided for Gtk.CheckButton

initialization. These include Gtk.CheckButton.new(), Gtk.CheckButton.new_with_

label(), and Gtk.CheckButton.new_with_mnemonic(). Gtk.CheckButton also inherits

the important “toggled” signal, which is used in Listing 5-3.

Listing 5-3.  Gtk.CheckButtons

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 check1 = Gtk.CheckButton.new_with_label("I am the main option.")

 check2 = Gtk.CheckButton.new_with_label("I rely on the other guy.")

 check2.set_sensitive(False)

 check1.connect("toggled", self.on_button_checked, check2)

 closebutton = Gtk.Button.new_with_mnemonic("_Close")

 closebutton.connect("clicked", self.on_button_close_clicked)

 vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)

Figure 5-3.  Two Gtk.CheckButton widgets

CHAPTER 5 Basic Widgets

78

 vbox.pack_start(check1, False, True, 0)

 vbox.pack_start(check2, False, True, 0)

 vbox.pack_start(closebutton, False, True, 0)

 self.add(vbox)

 def on_button_checked(self, check1, check2):

 if check1.get_active():

 check2.set_sensitive(True);

 else:

 check2.set_sensitive(False)

 def on_button_close_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Check Buttons")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Excluding the initialization methods, all functionality for check boxes is

implemented in the Gtk.ToggleButton class and its ancestors. Gtk.CheckButton is

merely a convenience widget, which provides the graphical differences from standard

Gtk.Button widgets.

CHAPTER 5 Basic Widgets

79

�Radio Buttons
The second type of widget derived from Gtk.ToggleButton is the radio button widget.

In fact, Gtk.RadioButton is actually derived from Gtk.CheckButton. Radio buttons are

toggles that are generally grouped together.

In a group, when one radio button is selected, all others are deselected. The group

forbids selecting multiple radio buttons at once. This allows you to provide multiple

options to the user where only one should be selected.

Note G TK+ does not provide a way to deselect a radio button, so one radio
button is not desirable. The user is not able to deselect the option! If you only need
one button, you should use a Gtk.CheckButton or Gtk.ToggleButton widget.

Radio buttons are drawn as a discrete circular toggle on the side of the label widget,

so that they can be differentiated from other types of toggle buttons. It is possible to draw

radio buttons with the same toggle as Gtk.CheckButton, but this should not be done

because it can confuse and frustrate the user. A group of four radio buttons in a vertical

box is shown in Figure 5-4.

Figure 5-4.  Four Gtk.RadioButton widgets

For radio buttons to work correctly, they must all be referenced to another radio

button in the group. Otherwise, all of the buttons would act as independent toggle

buttons. An example of how to use multiple radio buttons is shown in Listing 5-4.

CHAPTER 5 Basic Widgets

80

Listing 5-4.  Gtk.RadioButton

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 radio1 = Gtk.RadioButton.new_with_label(None, "I want to be clicked!")

 radio2 = Gtk.RadioButton.new_with_label_from_widget(radio1,

 "Click me instead!)

 radio3 = Gtk.RadioButton.new_with_label_from_widget(radio1,

 "No! Click me!”)

 radio4 = Gtk.RadioButton.new_with_label_from_widget(radio3,

 "No! Click me!”)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL,

 spacing=0) vbox.pack_start(radio1, False, False, 0)

 vbox.pack_start(radio2, False, False, 0)

 vbox.pack_start(radio3, False, False, 0)

 vbox.pack_start(radio4, False, False, 0)

 self.add(vbox)

 self.show_all()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 5 Basic Widgets

81

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Radio Buttons")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The first radio button in a group can be created with any of the following three

functions. However, if you want to use a Gtk.Label widget as the child, it is also possible

to use a mnemonic widget, so the toggle can be activated from the keyboard.

radiobutton = Gtk.RadioButton.new(list)

radiobutton = Gtk.RadioButton.new_with_label(list, "My label")

radiobutton = Gtk.RadioButton.new_with_mnemonic(list, "_My label")

However, there is a fourth way to both create multiple radio buttons and a list at

the same time. You do this by creating your first radio button without specifying a list.

Subsequent radio buttons are created referencing the first radio button created or any

other radio button that is a part of the internal group.

radio1 = Gtk.RadioButton.new_with_label(None, "I want to be clicked!")

radio2 = Gtk.RadioButton.new_with_label_from_widget(radio1, "Click me

instead!")

radio3 = Gtk.RadioButton.new_with_label_from_widget(radio1, "No! Click me!")

radio4 = Gtk.RadioButton.new_with_label_from_widget(radio3, "No! Click me

instead!

None is specified for the radio group in each call. This is because the simplest way to

create a group of radio buttons is to associate them to another widget in the group. By

using this method, you avoid having to use the GLib with singly linked lists, since the list

is created and managed for you automatically.

Referring the initialization function to a radio button that already exists creates

each of these. GTK+ adds the new radio button to the group from the specified widget.

Because of this, you need only refer to any widget that already exists within the desired

radio group.

CHAPTER 5 Basic Widgets

82

Lastly, every radio button in the group must be connected to the toggled signal.

When a radio button is selected, exactly two radio buttons emit the toggled signal,

because one is selected and another is deselected. You will not be able to catch all radio

button signals if you do not connect every radio button to toggled.

�Text Entries
The Gtk.Entry widget is a single line, free-form text entry widget. It is implemented in a

general manner, so that it can be molded to fit many types of solutions. It can be used for

text entry, password entry, and even number selections.

Gtk.Entry also implements the Gtk.Editable interface, which provides a large

number of functions that are created to handle selections of text. An example Gtk.Entry

widget is shown in Figure 5-5. This text entry is used for password entry.

Figure 5-5.  Gtk.Entry widget for passwords

Note  Gtk.Editable is a special type of object called an interface. An interface is
a set of APIs that are implemented by multiple widgets and used for consistency. You
learn how to implement and utilize interfaces in your own widgets in Chapter 12.

The Gtk.Entry widget considers all text to be standard strings. The only way it

differentiates between normal text and passwords is that a special character called an

invisibility character is shown instead of password content. Listing 5-5 shows you how

to use a Gtk.Entry widget for password entry. If you want to use a Gtk.Entry widget for

normal text entry, you need only to turn visibility on.

CHAPTER 5 Basic Widgets

83

Listing 5-5.  Gtk.Entry

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

import os

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 prompt_str = "What is the password for " + os.getlogin() + "?"

 question = Gtk.Label(prompt_str)

 label = Gtk.Label("Password:")

 passwd = Gtk.Entry()

 passwd.set_visibility(False)

 passwd.set_invisible_char("*")

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_start(label, False, False, 5)

 hbox.pack_start(passwd, False, False, 5)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(question, False, False, 0)

 vbox.pack_start(hbox, False, False, 0)

 self.add(vbox)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 5 Basic Widgets

84

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Password")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Entry Properties
The Gtk.Entry widget is a highly flexible widget, because it was designed to be employed

in the maximum number of instances. This can be seen from the wide array of properties

provided by the class. A sampling of the most important of those is included in this

section. For a full list of properties, you should reference Appendix A.

Oftentimes, you want to restrict the length of the free-form text entered into an

entry widget because of string limitations of the value. In the following function

prototype, entry.set_max_length() limits the text of the entry to a maximum number

of characters. This can be useful when you want to limit the length of user names,

passwords, or other length-sensitive information.

entry.set_max_length(max_chars)

Invisibility characters facilitate password entries in GTK+. The invisibility character

is the character that replace the actual password content in the entry, which can be set

with entry.set_invisible_char(). The default character for the entry is an asterisk.

entry.set_invisible_char(single_char)

entry.set_visibility(boolean)

After specifying the invisibility character, you can hide all entered text by setting

visibility to False with entry.set_visibility(). You are still able to retrieve the

actual content of the entry programmatically, even though it is hidden from view.

CHAPTER 5 Basic Widgets

85

�Inserting Text into a Gtk.Entry Widget
In GTK+ 3.x there is only one way to replace all the text in a Gtk.Entry widget. The

method entry.set_text() overwrites the whole content of the text entry with the given

string. However, this is only useful if you no longer care about the current text displayed

by the widget.

entry.set_text(text)

The current text displayed by Gtk.Entry can be retrieved with entry.get_text().

This string is used internally by the widget and must never be freed or modified in

any way. It is also possible to use entry.insert_text() to insert text into a Gtk.Entry

widget. The parameter to entry.insert_text() specify both the text to insert and the

character position to insert the text.

�Spin Buttons
The Gtk.SpinButton widget is a number selection widget that is capable of handling

integers and floating-point numbers. It is derived from Gtk.Entry, so Gtk.SpinButton

inherits all of its functions and signals.

�Adjustments
Before covering the Gtk.SpinButton widget, you must understand the Gtk.Adjustment

class. Gtk.Adjustment is one of the few classes in GTK+ that is not considered a widget,

because it is derived directly from Gtk.Object. It is used for several widgets, including

spin buttons, view ports, and the multiple widgets derived from Gtk.Range.

New adjustments are created with Gtk.Adjustment.new(). Once added to a widget,

memory management of the adjustment is handled by the widget, so you do not have to

worry about this aspect of the object.

Gtk.Adjustment.new(initial_value, lower_range, upper_range,

 step_increment, page_increment, page_size)

CHAPTER 5 Basic Widgets

86

New adjustments are initialized with six parameters. A list of these parameters

follows.

•	 initial_value: The value stored by the adjustment when it is

initialized. This corresponds to the value property of the Gtk.

Adjustment class.

•	 lower_range: The minimum value the adjustment is allowed to hold.

This corresponds to the lower property of the Gtk.Adjustment class.

•	 lower_range: The maximum value the adjustment is allowed to hold.

This corresponds to the upper property of the Gtk.Adjustment class.

•	 step_increment: The increment to make the smallest change

possible. If you want to count all integers between 1 and 10, the

increment would be set to 1.

•	 page_increment: The increment to make when Page Up or Page

Down is pressed. This is almost always larger than the step_

increment.

•	 page_size: The size of a page. This value does not have much use

in a Gtk.SpinButton, so it should be set to the same value as page_

increment or to 0.

There are two useful signals provided by the Gtk.Adjustment class: changed and

value-changed. The "changed" signal is emitted when one or more properties of the

adjustment have been altered, excluding the value property. The "value-changed"

signal is emitted when the current value of the adjustment has been altered.

�A Spin Button Example
The spin button widget allows the user to select an integer or floating-point number by

incrementing or decrementing with the up or down arrows. The user can still type in a

value with the keyboard, and it is displayed as the nearest acceptable value if it is out of

range. Figure 5-6 shows two spin buttons in action that display an integer and a floating-

point number.

CHAPTER 5 Basic Widgets

87

Spin buttons show integer or floating-point numbers. In actuality, numbers are

stored as double values. The spin button handles rounding the number to the correct

number of decimal places. Listing 5-6 is a simple example that creates both integer and

floating-point number spin buttons.

Listing 5-6.  Integer and Floating-Point Number Selection

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 integer = Gtk.Adjustment(5.0, 0.0, 10.0, 1.0, 2.0, 2.0)

 float_pt = Gtk.Adjustment(5.0, 0.0, 1.0, 0.1, 0.5, 0.5)

 spin_int = Gtk.SpinButton()

 spin_int.set_adjustment(integer)

 spin_int.set_increments(1.0, 0)

 spin_int.set_digits(0)

 spin_float = Gtk.SpinButton()

 spin_float.set_adjustment(float_pt)

 spin_float.set_increments(0.1, 0)

Figure 5-6.  Spin buttons

CHAPTER 5 Basic Widgets

88

 spin_float.set_digits(1)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(spin_int, False, False, 5)

 vbox.pack_start(spin_float, False, False, 5)

 self.add(vbox)

 self.set_size_request(180, 100)

 self.show_all()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Spin Buttons")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Before creating the spin buttons, you should create the adjustments. You can also

initialize the spin button with a None adjustment, but it is set as insensitive. After your

adjustments are initialized, you can create new spin buttons with Gtk.SpinButton.new().

The other two parameters in the initialization function specify the climb rate of the spin

button and the number of decimal places to display. The climb rate is how much the value

should be incremented or decremented when a (+) or (-) sign is pressed.

Gtk.SpinButton.new(climb_rate, digits)

Alternatively, you can create a new spin button with Gtk.SpinButton.new_with_

range(), which automatically creates a new adjustment based on the minimum,

maximum, and step values you specify. The initial value is set to the minimum value

plus a page increment of ten times the step_increment by default. The precision of the

widget is automatically set to the value of step_increment.

CHAPTER 5 Basic Widgets

89

Gtk.SpinButton.new_with_range (minimum_value, maximum_value, step_increment)

You can call spinbutton.set_digits() to set a new precision of the spin button and

spinbutton.set_value() to set a new value. The value is automatically altered if it is out

of bounds of the spin button.

spin_button.set_value(value)

�Horizontal and Vertical Scales
Another type of widget called a scale allows you to provide a horizontal or vertical slider

that can choose an integer or a floating-point number. Gtk.Scale is both a horizontal

scale widget and a vertical scale widget. In GTK+ 2.x the Gtk.Scale was an abstract class.

The two subclasses Gtk.HScale and Gtk.VScale were used to create horizontal and

vertical scales respectively. In GTK+ 3.x these two classes have been deprecated and the

Gtk.Scale has become a real class from which both horizontal and vertical boxes can be

created.

The functionality of the Gtk.Scale widget is not much different from Gtk.

SpinButton. It is often used when you want to restrict the user from entering values,

since the value is chosen by moving the slider. Figure 5-7 shows a screenshot of two

horizontal scale widgets.

Figure 5-7.  Horizontal scale widgets

Scales provide essentially the same functionality as spin buttons, except using a

slider chooses the number. To show the similarities between the widgets, Listing 5-7

implements the same functionality as Listing 5-6: two sliders allow the user to select an

integer and a floating-point number.

CHAPTER 5 Basic Widgets

90

Listing 5-7.  Integer and Floating-Point Number Selection

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, -1)

 �scale_int = Gtk.Scale.new_with_range(Gtk.Orientation.HORIZONTAL,

0.0, 10.0, 1.0)

 �scale_float = Gtk.Scale.new_with_range(Gtk.Orientation.HORIZONTAL,

0.0, 1.0, 0.1)

 scale_int.set_digits(0)

 scale_float.set_digits(1)

 scale_int.set_value_pos(Gtk.PositionType.RIGHT)

 scale_float.set_value_pos(Gtk.PositionType.LEFT)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(scale_int, False, False, 5)

 vbox.pack_start(scale_float, False, False, 5)

 self.add(vbox)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Scales")

CHAPTER 5 Basic Widgets

91

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

There are multiple ways to create new scale widgets. The first is with Gtk.

Scale.new(), which accepts a Gtk.Adjustment that defines how the scale works.

Gtk.Scale.new(adjustment)

Alternatively, you can create scales with Gtk.Scale.new_with_range(). This function

accepts the minimum value, the maximum value, and the step increment of the scale.

Gtk.Scale.new_with_range(minimum, maximum, step)

Since the value of the scale is always stored as a double , you need to define the

number of decimal places to show with scale.set_digits() if the default value is not

what you want. The default number of decimal places is calculated based on the number

of decimal places provided for the step increment. For example, if you provide a step

increment of 0.01, two decimal places are displayed by default.

scale.set_digits (digits)

Depending on what type of scale widget you are using, you may want to change

where the value is displayed with scale.set_value_pos(). Positions are defined by

the Gtk.PositionType enumeration, and they are Gtk.PositionType.LEFT, Gtk.

PositionType.RIGHT. Gtk.PositionType.TOP, and Gtk.PositionType.BOTTOM. You can

also use scale.set_draw_value() to hide the value from the user’s view altogether.

scale.set_value_pos(pos)

Gtk.Scale is derived from a widget called Gtk.Range. This widget is an abstract type

that provides the ability to handle an adjustment. You should use scale.get_value()

to retrieve the current value of the scale. Gtk.Range also provides the “value-changed”

signal, which is emitted when the user changes the position of the scale.

Gtk.Adjustment widgets may also be shared with other widgets. A single Gtk.

Adjustment may be shared with the Gtk.SpinButton and a Gtk.Scale widgets. See the

GTK documentation for more information.

CHAPTER 5 Basic Widgets

92

�Additional Buttons
While the Gtk.Button widget allows you to create your own custom buttons, GTK+

provides three additional button widgets that are at your disposal: the color selection

button, file chooser button, and font selection button.

Each of the sections covering these three widgets also cover other important

concepts, such as the Gtk.Color class, file filters, and Pango fonts. These concepts are

used in later chapters, so it is a good idea to get a grasp of them now.

�Color Button
The Gtk.ColorButton widget provides a simple way for you to allow your users to select

a specific color. These colors can be specified as six-digit hexadecimal values or the RGB

value. The color button itself displays the selected color in a rectangular block set as the

child widget of the button. Figure 5-8 is an example of this.

Figure 5-8.  Color selection dialog

CHAPTER 5 Basic Widgets

93

�A Gtk.ColorButton Example

When clicked, the color button opens a dialog that allows the user to enter in the color

value or browse for a choice on the color wheel. The color wheel is provided so the user

is not required to know the numeric values of the colors. Listing 5-8 shows how to use

the Gtk.ColorButton widget in an application.

Listing 5-8.  Gtk.ColorButton and Gdk.Color

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

from gi.repository import Gdk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 color = Gdk.RGBA(red=0, green=.33, blue=.66, alpha=1.0)

 color = Gdk.RGBA.to_color(color)

 button = Gtk.ColorButton.new_with_color(color)

 button.set_title("Select a Color!")

 label = Gtk.Label("Look at my color!")

 label.modify_fg(Gtk.StateType.NORMAL, color)

 button.connect("color_set", self.on_color_changed, label)

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_start(button, False, False, 5)

 hbox.pack_start(label, False, False, 5)

 self.add(hbox)

 def on_color_changed(self, button, label):

 color = button.get_color()

 label.modify_fg(Gtk.StateType.NORMAL, color)

CHAPTER 5 Basic Widgets

94

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Color Button")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

In most cases, you want to create a Gtk.ColorButton with an initial color value,

which is done by specifying a Gdk.Color object to button = Gtk.ColorButton.new_

with_color(). The default color, if none is provided, is opaque black with the alpha

option disabled.

�Storing Colors in Gdk.Color

Gdk.Color is a class that stores red, green, and blue values for a color. These values can

be retrieved or set using the method shown next. The fourth available value is the pixel

object. It automatically stores the index of the color when it is allocated in a color map,

so there is usually no need for you to alter this value.

After creating a new Gdk.Color object, if you already know the red, green, and blue

values of the color, you can specify them in the following manner. Red, green, and blue

values are stored as unsigned integer values ranging from 0 to 65,535, where 65,535

indicates full-color intensity. For example, the following color refers to white.

mycolorobj = Gdk.Color.new()

mycolorobj.red = 65535

mycolorobj.green = 65535

mycolorobj.blue = 65535

CHAPTER 5 Basic Widgets

95

�Using the Color Button

After setting your initial color, you can choose the title that is given to the color selection

dialog with button.set_title(). By default, the title is “Pick a Color”, so it is not

necessary to set this value if you are content with this title.

button.get_color()

label.modify_fg(Gtk.StateType.NORMAL, color)

In Listing 5-8, the foreground color was set in the normal widget state, which is what

state all labels are in, by and large, unless they are selectable. There are five options for

the Gtk.StateType enumeration that can be used in label.modify_fg(). You can reset

the widget’s foreground color to the default value by passing a None color.

�File Chooser Buttons
The Gtk.FileChooserButton widget provides an easy method for you to ask users to

choose a file or a folder. It implements the functionality of the file selection framework

provided by GTK+. Figure 5-9 shows a file chooser button set to select a folder and a

button set to select a file.

Figure 5-9.  File chooser buttons

When the user clicks a Gtk.FileChooserButton, an instance of Gtk.

FileChooserDialog is opened that allows the user to browse and select one file or one

folder, depending on the type of button you created.

CHAPTER 5 Basic Widgets

96

Note  You do not learn how to use the Gtk.FileChooserDialog widget until
Chapter 6, but you do not need to directly interface with it at this point, because
Gtk.FileChooserButton handles all interactions with the dialog.

�A Gtk.FileChooserButton Example

You are able to change basic settings, such as the currently selected file, the current

folder, and the title of the file selection window. Listing 5-9 shows you how to use both

types of file chooser buttons.

Listing 5-9.  Using the File Chooser Button

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

from pathlib import Path

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 label = Gtk.Label("")

 chooser1 = Gtk.FileChooserButton("Choose a Folder.",

 Gtk.FileChooserAction.SELECT_FOLDER)

 chooser2 = Gtk.FileChooserButton("Choose a Folder.",

 Gtk.FileChooserAction.OPEN)

 chooser1.connect("selection_changed",

 self.on_folder_changed, chooser2)

 chooser2.connect("selection_changed",

 self.on_file_changed, label)

CHAPTER 5 Basic Widgets

97

 chooser1.set_current_folder(str(Path.home()))

 chooser2.set_current_folder(str(Path.home()))

 filter1 = Gtk.FileFilter()

 filter2 = Gtk.FileFilter()

 filter1.set_name("Image Files")

 filter2.set_name("All Files")

 filter1.add_pattern("*.png")

 filter1.add_pattern("*.jpg")

 filter1.add_pattern("*.gif")

 filter2.add_pattern("*")

 chooser2.add_filter(filter1)

 chooser2.add_filter(filter2)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(chooser1, False, False, 0)

 vbox.pack_start(chooser2, False, False, 0)

 vbox.pack_start(label, False, False, 0)

 self.add(vbox)

 self.set_size_request(240, -1)

 def on_folder_changed(self,

 chooser1, chooser2): folder =

 chooser1.get_filename()

 chooser2.set_current_folder(folder)

 def on_file_changed(self, chooser2, label):

 file = chooser2.get_filename()

 label.set_text(file)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 5 Basic Widgets

98

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="File Chooser

Button")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

File chooser button widgets are created with Gtk.FileChooserButton.new(). This

widget is able to serve two purposes: selecting a single file or a single folder. There are four

types of file choosers that can be created (the remaining two are covered in Chapter 6),

but file chooser buttons support only Gtk.FileChooserAction.OPEN and Gtk.

FileChooserAction.SELECT_FOLDER.

�Gtk.FileChooser

The Gtk.FileChooserButton widget is an implementation of the functionality provided

by the Gtk.FileChooser class. This means that, while the button is not derived from

Gtk.FileChooser, it can still utilize all the methods defined by Gtk.FileChooser. Quite a

few of the methods in Listing 5-9 utilize functions provided by Gtk.FileChooser.

In Listing 5-9, chooser1.set_current_folder() was used to set the current folder

of each file chooser button to the user’s home directory. The contents of this folder is

shown when the user initially clicks a file chooser button unless it is changed through

some other means. This method returns True if the folder was successfully changed.

chooser1.set_current_folder(filename)

The Path.home() method is a utility module provided by Python that returns the

current user’s home directory. As with most features in pathlib, this method is platform

independent.

This brings up a useful characteristic of the file chooser interface; it can be used

to browse many types of file structures, whether it is on a UNIX or Windows machine.

This is especially useful if you want your application to be designed for multiple

operating systems.

CHAPTER 5 Basic Widgets

99

Since the file chooser button only allows one file to be selected at a time, you can use

chooser1.get_filename()to retrieve the currently selected file or folder, depending on

the type of file chooser button. If no file is selected, this function returns None.

filename = chooser1.get_filename()

At this point, you have enough information about the Gtk.FileChooser class to

implement file chooser buttons. Gtk.FileChooser is covered in more depth in the next

chapter when you learn about the Gtk.FileChooserDialog widget.

�File Filters

Gtk.FileFilter objects allow you to restrict the files shown in the file chooser. For

example, in Listing 5-9, only PNG, JPG, and GIF files could be viewed and chosen by the

user when the Image Files filter was selected.

File filters are created with Gtk.FileFilter.new(). Therefore, you need to use

filefilter.set_name() to set a displayed name for the filter type. If you provide more

than one filter, this name allows the user to switch between them.

filefilter = Gtk.FileFilter.new ();

filefilter.set_name (name)

Lastly, for a filter to be complete you need to add types of files to show. The standard

way of doing this is with filefilter.add_pattern() as shown in the following code

snippet. This function allows you to specify a format for the filenames that are to be

shown. Usually identifying file extensions that should be shown does this. You can use

the asterisk character as a wildcard for any type of filtering function.

filefilter.add_pattern (pattern)

Tip  As in Listing 5-9, you may want to provide an All Files filter that shows
every file in the directory. To do this, you should create a filter with only one pattern
set to the wildcard character. If you do not provide this filter, the user will never be
able to view any files that do not match a pattern provided by another filter.

CHAPTER 5 Basic Widgets

100

You can also specify filter patterns with filefilter.add_mime_type() by specifying

the Multipurpose Internet Mail Extensions (MIME) type. For example, image/* shows all

files that are an image MIME type. The problem with this function is that you need to be

familiar with MIME types. However, the advantage of using MIME types is that you do

not need to specify every file extension for a filter. It allows you to generalize to all files in

a specific MIME category.

filefilter.add_mime_type(mime_type)

After you create the filter, it needs to be added to the file chooser, which can be done

with filechooser.add_filter(). Once you supply the filters, the first specified filters is

used by default in the file chooser. The user is able to switch between types if you have

specified multiple filters.

filechooser.add_filter (filter)

�Font Buttons
Gtk.FontButton is another type of specialized button that allows the user to select font

parameters that correspond to fonts currently residing on the user’s system. Font options

are chosen in a font selection dialog that is displayed when the user clicks the button.

These options include the font name, style options, and font size. An example

Gtk.FontButton widget is displayed in Figure 5-10.

Figure 5-10.  Font selection buttons

Font button widgets are initialized with Gtk.FontButton.new_with_font(), which

allows you to specify the initial font. The font is provided as a string in the following

format: Family Style Size. Each of the parameters is optional; the default font for Gtk.

FontButton is Sans 12, which provides no style parameters.

CHAPTER 5 Basic Widgets

101

“Family” refers to the formal font name, such as Sans, Serif, or Arial. Style options

can vary between fonts, but they normally include Italic, Bold, and Bold Italic. If you

choose a Regular font style, no font style is specified. The size is the point size of the text,

such as 12 or 12.5.

�A Gtk.FontButton Example

Listing 5-10 creates a Gtk.FontButton widget that is initialized with a Sans Bold 12 font.

When the chosen font in the button is changed, the new font is applied to a Gtk.Label

widget packed below the font button.

Listing 5-10.  Using the Font Button

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

from gi.repository import Pango

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 label = Gtk.Label("Look at the font!")

 initial_font = Pango.font_description_from_string("Sans Bold 12")

 label.modify_font(initial_font)

 button = Gtk.FontButton.new_with_font("Sans Bold 12")

 button.set_title("Choose a Font")

 button.connect("font_set", self.on_font_changed, label)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(button, False, False, 0)

 vbox.pack_start(label, False, False, 0)

 self.add(vbox)

CHAPTER 5 Basic Widgets

102

 def on_font_changed(self, button, label):

 font = button.get_font()

 desc = Pango.font_description_from_string(font)

 buffer = "Font: " + font

 label.set_text(buffer)

 label.modify_font(desc)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Font Button")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Using Font Selection Buttons

The code in Listing 5-10 gives the first sampling of the Pango.FontDescription class that

you have run across. The Pango.FontDescription class is used to parse font style strings.

You can create and use a new font description from a font string, such as Sans Bold 12, by

calling Pango.font_description_from_string() as follows.

initial_font = Pango.font_description_from_string("Sans Bold 12")

label.modify_font(initial_font)

After creating a font description, modify_font() can be called to set the font of the

widget’s text. This function edits the font description object stored by the widget’s Gtk.

StyleContext property.

CHAPTER 5 Basic Widgets

103

In Listing 5-10, the label’s text was set to the font stored by the Gtk.FontButton when

the “font-set” signal was emitted. You can retrieve the whole font description string

stored by the font button with fontbutton.get_font_name(), which was used to retrieve

the font string displayed by the label.

fontbutton.get_font_name()

In Listing 5-10, the new font style was applied to the Gtk.Label. However, if you set

fontbutton.set_use_font() and fontbutton.set_use_size() to True, the font button

uses the font family and size when rendering its text. This allows the user to preview the

text in the font button. This is turned off for font buttons by default.

fontbutton.set_use_font(boolean)

fontbutton.set_use_size(boolean)

�Test Your Understanding
In this chapter, you learned about a number of basic widgets, such as Gtk.Entry, Gtk.

SpinButton, and various types of toggles and buttons. In the following two exercises, you

are creating two applications to practice using these widgets.

�Exercise 1: Renaming Files
In this exercise, use a Gtk.FileChooserButton widget to allow the user to choose a file

on the system. Next, use a Gtk.Entry widget that allows the user to specify a new name

for the file. (Note that you can find functions for the file utilities required by this exercise

in the Python documentation.)

If the file was successfully renamed, you should disable the Gtk.Entry widget

and button until the user chooses a new file. If the user does not have permission to

rename the file that is selected, then the Gtk.Entry widget and button should be set

as insensitive as well. When you complete this exercise, you can find the solution in

Appendix D.

This exercise makes use of two widgets covered in this chapter: Gtk.Entry and

Gtk.FileChooserButton. It also requires you to use multiple utility functions provided

by Python, including functions to rename a file and retrieve information about the

permissions of an existing file.

CHAPTER 5 Basic Widgets

104

Although you are not learning about any Python file functions, you may also want

to experiment with some other file-related utility functions, such as the ability to create

directories, change file permissions, and move throughout a directory structure. Python

provides a lot of functionality, and it is worthwhile to explore the API documentation in

your free time.

�Exercise 2: Spin Buttons and Scales
In this exercise, create three widgets: a spin button, a horizontal scale, and a check

button. The spin button and horizontal scale should be set with the same initial value

and bounds. If the check button is selected, the two adjustment widgets should be

synchronized to the same value. This means that when the user changes the value of one

widget, the other is changed to the same value.

Since both widgets support integers and floating-point numbers, you should

implement this exercise with various numbers of decimal places. You should also

practice creating spin buttons and scales both with adjustments and by using the

convenience initializers.

�Summary
In this chapter, you have learned about the following nine new widgets that provide you

with a meaningful way to interact with your users.

•	 Gtk.ToggleButton: A type of Gtk.Button widget that holds its active

or inactive state after it is clicked. It is shown as pressed down when it

is active.

•	 Gtk.CheckButton: Derived from Gtk.ToggleButton, this widget is

drawn as a discrete toggle next to the displayed text. This allows it to

be differentiated from a Gtk.Button.

•	 Gtk.RadioButton: You can group multiple radio button widgets

together so that only one toggle in the group can be activated at once.

•	 Gtk.Entry: This widget allows the user to enter free-form text on a

single line. It also facilitates password entry.

CHAPTER 5 Basic Widgets

105

•	 Gtk.SpinButton: Derived from Gtk.Entry, spin buttons allow the

user to select or enter an integer or floating-point number within a

predefined range.

•	 Gtk.Scale: Similar to the spin button, this widget allows the user to

select an integer or floating-point number by moving a vertical or

horizontal slider.

•	 Gtk.ColorButton: This special type of button allows the user to select

a specific color along with an optional alpha value.

•	 Gtk.FileChooserButton: This special type of button allows the user

to select a single file or folder that already exists on the system.

•	 Gtk.FontButton: This special type of button allows the user to select

a font family, style, and size.

In the next chapter, you learn how to create your own custom dialogs using the

Gtk.Dialog class and about a number of dialogs that are built into GTK+. By the end of

Chapter 6, you have a decent grasp of the most important simple widgets available to you

in GTK+. From there, we continue on to more complex topics.

CHAPTER 5 Basic Widgets

107
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_6

CHAPTER 6

Dialogs
This chapter introduces you to a special type of window called a dialog. Dialogs are

windows that supplement the top-level window. The dialog is provided by Gtk.Dialog,

a child class of Gtk.Window, extended with additional functionality. This means that it

is possible to implement your entire interface in one or more dialogs, while leaving the

main window hidden.

You can do anything with a dialog, such as display a message or prompt the user to

select an option. Their purpose is to enhance user experience by providing some type of

transient functionality.

In the first part of the chapter, you learn how to use Gtk.Dialog to create your

own custom dialogs. The next section introduces the large number of built-in dialogs

provided by GTK+. Lastly, you learn about a widget called Gtk.Assistant that allows

you to create dialogs with multiple pages; assistants are meant to help the user through a

multistage process.

In this chapter, you learn the following.

•	 How to create your own custom dialogs using the Gtk.Dialog widget

•	 How to give general information, error messages, and warnings to the

user with the Gtk.MessageDialog widget

•	 How to provide information about your application with Gtk.

AboutDialog

•	 What types of file chooser dialogs are available

•	 The ways to collect information with font and color selection dialogs

•	 How to create dialogs with multiple pages using the Gtk.Assistant

widget

108

�Creating Your Own Dialogs
A dialog is a special type of Gtk.Window that supplements the top-level window. It can

give the user a message, retrieve information from the user, or provide some other

transient type of action.

Dialog widgets are split in half by an invisible horizontal separator. The top part is

where you place the main part of the dialog’s user interface. The bottom half is called

the action area, and it holds a collection of buttons. When clicked, each button emits a

unique response identifier that tells the programmer which button was clicked.

In most ways, the dialog widget can be treated as a window, because it is derived

from the Gtk.Window class. However, when you have multiple windows, a parent-child

relationship should be established between the dialog and the top-level window when

the dialog is meant to supplement the top-level window.

vbox = mydialog.get_content_area()

Gtk.Dialog provides access a vertical box that has the action area defined at bottom

of the box. The content area has yet to be defined. To define it you begin packing widgets

at start of the vertical box. Therefore you must always use the pack_start() to add

widgets to a Gtk.Dialog class. Buttons can easily be added to the action area with the

add_button(button_text, response_id) method call.

Note  It is possible to manually implement the functionality of Gtk.Dialog by
creating a Gtk.Window with all of the same widgets and establishing window
relationships with set_transient_for() in addition to other functions provided
by Gtk.Window. Gtk.Dialog is simply a convenience widget that provides
standard methods.

Both the action area and a separator are packed at the end of the dialog’s vertical box.

The provided by Gtk.Box (vbox) holds all the dialog content. Because the action area is

packed at the end, you should use pack_start() to add widgets to a Gtk.Dialog as follows.

vbox = mydialog.get_ac_area()

vbox.pack_start (child, expand, fill, padding)

By packing widgets at the start of the box, the action area and the separator always

remains at the bottom of the dialog.

CHAPTER 6 Dialogs

109

�Creating a Message Dialog
One advantage of Gtk.Dialog is that, no matter how complex the content of your dialog

is, the same basic concepts can be applied to every dialog. To illustrate this, we begin by

creating a very simple dialog that gives the user a message. Figure 6-1 is a screenshot of

this dialog.

Figure 6-1.  A message dialog created programmatically

Listing 6-1 creates a simple dialog that notifies the user when the clicked signal is

emitted by the button. This functionality is provided by the Gtk.MessageDialog widget,

which is covered in a later section of this chapter.

Listing 6-1.  Your First Custom Dialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new_with_mnemonic("_Click Me")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 self.set_size_request(150, 50)

CHAPTER 6 Dialogs

110

 def on_button_clicked(self, button, parent):

 dialog = Gtk.Dialog(title="Information", parent=parent,

 flags=Gtk.DialogFlags.MODAL)

 dialog.add_button("Ok", Gtk.ResponseType.OK)

 label = Gtk.Label("The button was clicked.")

 image = Gtk.Image.new_from_icon_name("dialog-information",

 Gtk.IconSize.DIALOG)

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_start(image, False, False, 0)

 hbox.pack_start(label, False, False, 0)

 dialog.vbox.pack_start(hbox, False, False, 0)

 dialog.show_all()

 dialog.run()

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Dialogs")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Creating the Dialog

The first thing you need to do when the button in the main window is clicked is create

the Gtk.Dialog widget with Gtk.Dialog.new_with_buttons(). The first two parameters

of this function specify the title of the dialog, a pointer to the parent window, and the

modality flag.

CHAPTER 6 Dialogs

111

dialog = Gtk.Dialog(title="Information", parent=parent, flags=Gtk.

DialogFlags.MODA

The dialog is set as the transient window of the parent window, which allows

the window manager to center the dialog over the main window and keep it on top

if necessary. This can be achieved for arbitrary windows by calling window.set_

transient_for(). You can also provide None if you do not want the dialog to have or

recognize a parent window.

Next, you can specify one or more dialog flags. Options for this parameter are given

by the Gtk.DialogFlags enumeration. There are three available values, which are shown

in the following list.

•	 Gtk.DialogFlags.MODAL: Force the dialog to remain in focus on

top of the parent window until closed. The user is prevented from

interacting with the parent.

•	 Gtk.DialogFlags.DESTROY_WITH_PARENT: Destroy the dialog when

the parent is destroyed, but do not force the dialog to be in focus. This

creates a nonmodal dialog unless you call dialog.run().

•	 Gtk.DialogFlags.USE_HEADER_BAR: Create a dialog with actions in

the header bar instead of the action area.

In Listing 6-1, specifying Gtk.DialogFlags.MODAL created a modal dialog. It is not

necessary to specify a title or parent window; the values can be set to None. However, you

should always set the title, so it can be drawn in the window manager; otherwise, the

user has difficulty choosing the desired window.

In Listing 6-1, an OK button with a response of Gtk.ResponseType.OK was added to

the dialog.

In GTK+ 2.x, all dialogs placed a horizontal separator between the main content and

the action area of the dialog by default. That separator has been deprecated in GTK+ 3.x.

After the child widgets are created, they need to be added to the dialog. As I

previously stated, child widgets are added to the dialog by calling box.pack_start().

The dialog is packed as follows.

image = Gtk.Image.new_from_icon_name("dialog-information", Gtk.IconSize.

DIALOG)

hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

CHAPTER 6 Dialogs

112

hbox.pack_start(image, False, False, 0)

hbox.pack_start(label, False, False, 0)

dialog.vbox.pack_start(hbox, False, False, 0)

At this point, you need to show the dialog and its child widgets, because dialog.

run()only calls dialog.show() on the dialog itself. To do this, call dialog.show_all()

on the dialog. If you do not show the widgets, only the separator and action area is visible

when dialog.run() is called.

�Response Identifiers

When a dialog is fully constructed, one method of showing the dialog is by calling

dialog.run(). This function returns an integer called a response identifier when

complete. It also prevents the user from interacting with anything outside of the dialog

until it is destroyed or an action area button is clicked.

dialog.run()

Internally, dialog.run() creates a new main loop for the dialog, which prevents

you from interacting with its parent window until a response identifier is emitted or the

user closes the dialog. Regardless of what dialog flags you set, the dialog is always modal

when you call this method, because it calls dialog.set_modal().

If the dialog is manually destroyed by using a method provided by the window

manager, Gtk.ResponseType.NONE is returned; otherwise, dialog.run() returns

the response identifier referring to the button that was clicked. A full list of available

response identifiers from the Gtk.ResponseType enumeration is shown in Table 6-1.

You should always use the identifier’s available values instead of random integer values,

since they could change in future versions of GTK+.

CHAPTER 6 Dialogs

113

Of course, when you create your own dialogs and when using many of the built-in

dialogs covered in the next few pages, you are free to choose which response identifier

to use. However, you should try to resist the urge to apply a Gtk.ResponseType.CANCEL

identifier to an OK button, or some other type of absurdity along those lines.

Note  You are free to create your own response identifiers, but you should use
positive numbers, since all of the built-in identifiers are negative. This allows you to
avoid conflicts when more identifiers are added in future versions of GTK+.

After the dialog returns a response identifier, you need to make sure to call dialog.

destroy(), or it will cause a memory leak. GTK+ makes sure all of the dialog’s children

are destroyed, but you need to remember to initiate the process.

By calling dialog.destroy(), all of the parent’s children are destroyed and its

reference count drops. When an object’s reference count reaches zero, the object is

finalized, and its memory freed.

Table 6-1.  Gtk.ResponseType Enumeration Values

Identifiers Value Description

Gtk.ResponseType.NONE –1 Returned if an action widget has no response

ID, or if the dialog is programmatically hidden or

destroyed.

Gtk.ResponseType.APPLY –10 Returned by Apply buttons in GTK+ dialogs.

Gtk.ResponseType.HELP –11 Returned by Help buttons in GTK+ dialogs.

Gtk.ResponseType.REJECT –2 Generic response ID, not used by GTK+ dialogs.

Gtk.ResponseType.ACCEPT –3 Generic response ID, not used by GTK+ dialogs.

Gtk.ResponseType.DELETE_EVENT –4 Returned if the dialog is deleted.

Gtk.ResponseType.OK –5 Returned by OK buttons in GTK + dialogs.

Gtk.ResponseType.CANCEL –6 Returned by Cancel buttons in GTK+ dialogs.

Gtk.ResponseType.CLOSE –7 Returned by Close buttons in GTK+ dialogs.

Gtk.ResponseType.YES –8 Returned by Yes buttons in GTK + dialogs.

Gtk.ResponseType.No –9 Returned by No buttons in GTK+ dialogs.

CHAPTER 6 Dialogs

114

�The Gtk.Image Widget

Listing 6-1 introduces another new widget called Gtk.Image. Images can be loaded in a

wide variety of ways, but one advantage of Gtk.Image is that it displays the named image

“image-missing” if the loading has failed. It is also derived from Gtk.Widget, so it can be

added as a child of a container unlike other image objects, such as Gdk.Pixbuf.

In our example, new_from_icon_name() created the Gtk.Image widget from a named

theme item.

image = Gtk.Image.new_from_icon_name("dialog-information", Gtk.IconSize.DIALOG)

When loading an image, you also need to specify a size for the image. GTK+

automatically looks for a stock icon for the given size and resizes the image to that

size if none is found. Available size parameters are specified by the Gtk.IconTheme

enumeration, as seen in the following list.

•	 Gtk.IconSize.INVALID: Unspecified size

•	 Gtk.IconSize.MENU: 16×16 pixels

•	 Gtk.IconSize.SMALL_TOOLBAR: 18×18 pixels

•	 Gtk.IconSize.LARGE_TOOLBAR: 24×24 pixels

•	 Gtk.IconSize.BUTTON: 24×24 pixels

•	 Gtk.IconSize.DND: 32×32 pixels

•	 Gtk.IconSize.DIALOG: 48×48 pixels

As you can see, theme Gtk.Image objects are usually used for smaller images, such

as those that appear in buttons, menus, and dialogs, since theme images are provided in

a discrete number of standard sizes. In Listing 6-1, the image was set to Gtk.IconSize.

DIALOG or 48×48 pixels.

Multiple initialization functions for Gtk.Image are provided, which are described in

the API documentation, but new_from_file() and new_from_pixbuf() are especially

important to future examples in this book.

Gtk.Image.new_from_file(filename)

CHAPTER 6 Dialogs

115

Gtk.Image automatically detects the image type of the file specified to new_from_

file(). If the image cannot be loaded, it displays a broken-image icon. Therefore, this

function never returns a None object. Gtk.Image also supports animations that occur

within the image file.

Calling new_from_pixbuf() creates a new Gtk.Image widget out of a previously

initialized Gdk.Pixbuf. Unlike new_from_file(), you can use this function to easily figure

out whether the image is successfully loaded since you first have to create a Gdk.Pixbuf.

Gdk.Image.new_from_pixbuf(pixbuf)

You need to note that the Gtk.Image creates its own references to the Gdk.Pixbuf, so you

need to release your reference to the object if it should be destroyed with the Gtk.Image.

�Nonmodal Message Dialog
By calling dialog.run(), your dialog is always set as modal, which is not always

desirable. To create a nonmodal dialog, you need to connect to Gtk.Dialog’s

response signal.

In Listing 6-2, the message dialog from Figure 6-1 is reimplemented as a nonmodal

dialog. You should try clicking the button in the main window multiple times in a row.

This shows how you can not only create multiple instances of the same dialog but also

access the main window from a nonmodal dialog.

Listing 6-2.  A Nonmodal Message Dialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new_with_mnemonic("_Click Me")

CHAPTER 6 Dialogs

116

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 self.set_size_request(150, 50)

 self.show_all()

 def on_button_clicked(self, button, parent):

 dialog = Gtk.Dialog(title="Information", parent=parent)

 dialog.add_button("Ok", Gtk.ResponseType.OK)

 label = Gtk.Label("The button was clicked.")

 image = Gtk.Image.new_from_icon_name("dialog-information",

 Gtk.IconSize.DIALOG)

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_start(image, False, False, 0)

 hbox.pack_start(label, False, False, 0)

 dialog.vbox.pack_start(hbox, False, False, 0)

 dialog.connect("response", self.on_dialog_button_clicked)

 dialog.show_all()

 def on_dialog_button_clicked(self, dialog, response):

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Dialogs")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 6 Dialogs

117

Creating a nonmodal dialog is very similar to the previous example, except you do

not want to call dialog.run(). By calling this function, a modal dialog is created by

blocking the parent window’s main loop regardless of the dialog flags.

Tip  You can still create a modal dialog without using dialog.run() by setting
the Gtk.DialogFlags.MODAL flag. You can then connect to the response signal.
This function simply provides a convenient way to create modal dialogs and handle
response identifiers within one function.

By connecting to Gtk.Dialog’s response signal, you can wait for a response identifier

to be emitted. By using this method, the dialog is not automatically unreferenced when

a response identifier is emitted. The response callback method receives the dialog, the

response identifier that was emitted, and the optional data parameter.

One of the most important decisions you have to make when designing a dialog is

whether it is modal or nonmodal. As a rule of thumb, if the action needs to be completed

before the user can continue working with the application, then the dialog should be

modal. Examples of this would be message dialogs, dialogs that ask the user a question,

and dialogs to open a file.

If there is no reason why the user cannot continue working while the dialog is open,

you should use a nonmodal dialog. You also need to remember that multiple instances

of nonmodal dialogs can be created unless you prevent this programmatically, so dialogs

that must have only one instance should be created as modal.

�Another Dialog Example
Now that you have created a simple message dialog from scratch, it is time to produce

a more complex dialog. In Listing 6-3, a few pieces of basic information about the user

are propagated using Python’s utility functions. A dialog, which is shown in Figure 6-2,

allows you to edit each piece of information.

CHAPTER 6 Dialogs

118

This information is, of course, not actually changed within the user’s system; the new

text is simply output to the screen. This example illustrates the fact that, regardless of the

complexity of the dialog, the basic principles of how to handle response identifiers are

still the only ones that are necessary.

You could easily implement this as a nonmodal dialog as well, although this would

not be of much use since the dialog itself is the application’s top-level window.

Listing 6-3.  Editing Information in a Dialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

import os

import getpass

import socket

import pwd

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new_with_mnemonic("_Click Me")

Figure 6-2.  A simple Gtk.Dialog widget

CHAPTER 6 Dialogs

119

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 self.set_size_request(180, 50)

 self.show_all()

 def on_button_clicked(self, button, parent):

 dialog = Gtk.Dialog(title="Edit User Information",

 parent=parent, flags=Gtk.DialogFlags.MODAL)

 dialog.add_button("Ok", Gtk.ResponseType.OK)

 dialog.add_button("Cancel", Gtk.ResponseType.CANCEL)

 dialog.set_default_response(Gtk.ResponseType.OK)

 lbl1 = Gtk.Label("User Name:")

 lbl2 = Gtk.Label("Real Name:")

 lbl3 = Gtk.Label("Home Dir:")

 lbl4 = Gtk.Label("Host Name:")

 user = Gtk.Entry()

 real_name = Gtk.Entry()

 home = Gtk.Entry()

 host = Gtk.Entry()

 user.set_text(getpass.getuser())

 real_name.set_text(pwd.getpwuid(os.getuid())[4])

 home.set_text(os.environ['HOME'])

 host.set_text(socket.gethostname())

 grid = Gtk.Grid()

 grid.attach(lbl1, 0, 0, 1, 1)

 grid.attach(lbl2, 0, 1, 1, 1)

 grid.attach(lbl3, 0, 2, 1, 1)

 grid.attach(lbl4, 0, 3, 1, 1)

 grid.attach(user, 1, 0, 1, 1)

 grid.attach(real_name, 1, 1, 1, 1)

 grid.attach(home, 1, 2, 1, 1)

 grid.attach(host, 1, 3, 1, 1)

 dialog.vbox.pack_start(grid, False, False, 5)

 dialog.show_all()

 result = dialog.run()

CHAPTER 6 Dialogs

120

 if result == Gtk.ResponseType.OK:

 print("User Name: " + user.get_text())

 print("Real Name: " +

 real_name.get_text()) print("Home: " +

 home.get_text()) print("Host: " +

 host.get_text())

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Simple Dialog")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The proper way to handle any modal dialog is to use the response identifiers,

deriving the correct response based on the clicked button. Since there was only one

response that needed to be deliberately detected, a conditional if statement was used in

Listing 6-3.

However, let’s assume that you need to handle multiple response identifiers. In this

case, an if statement would be a better solution, since it was created to compare a single

variable to multiple selections, as shown in the following code snippet.

result = dialog.run()

if result == Gtk.ResponseType.OK:

 # ... Handle result ...

elif result == Gtk.ResponseType.APPLY:

 # ... Handle result ...

CHAPTER 6 Dialogs

121

else:

 # ... Handle default result ...

dialog.destroy()

�Built-in Dialogs
There are many types of dialogs already built into GTK+. Although not all of the

available dialogs are covered in this chapter, you are given a strong understanding of

the concepts needed to use any built-in dialog. This section covers Gtk.MessageDialog,

GtkAboutDialog, Gtk.FileChooserDialog, Gtk.FontChooserDialog, and Gtk.

ColorChooserDialog.

�Message Dialogs
Message dialogs give one of four types of informational messages: general information,

error messages, warnings, and questions. This type of dialog decides the icon to display,

the title of the dialog, and the buttons to add.

There is also a general type provided that makes no assumption as to the content of

the message. In most cases, you will not want to use this, since the four provided types

would fill most of your needs.

It is very simple to re-create the Gtk.MessageDialog widget. The first two examples

implemented a simple message dialog, but Gtk.MessageDialog already provides this

functionality, so you should not need to re-create the widget. Using Gtk.MessageDialog

saves on typing and avoids the need to re-create this widget many times, since most

applications make heavy use of Gtk.MessageDialog. It also provides a uniform look for

message dialogs across all GTK+ applications.

Figure 6-3 shows an example of a Gtk.MessageDialog (compare this to Figure 6-1),

which gives the user visual notification of a button’s clicked signal.

CHAPTER 6 Dialogs

122

Since the content of the message is not critical, its type is set to a general message.

This message dialog can be produced using the code shown in Listing 6-4.

Listing 6-4.  Using a Gtk.MessageDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new_with_mnemonic("_Click Me")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 self.set_size_request(150, 50)

 def on_button_clicked(self, button, parent):

 dialog = Gtk.MessageDialog(type=Gtk.MessageType.INFO, parent=parent,

 flags=Gtk.DialogFlags.MODAL,

 buttons=("Ok", Gtk.ResponseType.OK),

 text="The button was clicked.",

 title="Information")

 dialog.run()

 dialog.destroy()

Figure 6-3.  A Gtk.MessageDialog widget

CHAPTER 6 Dialogs

123

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Dialogs")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

After the button in the main window is clicked, this example creates a new Gtk.

MessageDialog.

The parent window can be set to None if necessary, but in most cases, a parent-child

relationship should be established. If you do not set a parent widget, the message dialog

will not be centered above the parent window.

Message dialogs should be addressed by the user immediately, because they present

some type of important message or critical question that needs the user’s attention. By

not setting a parent window, the message dialog can be easily ignored, which is not the

desired action in most cases.

dialog = Gtk.MessageDialog.(type=Gtk.MessageType.INFO, parent=parent, \

 flags=Gtk.DialogFlags.MODAL, \

 buttons=("Ok", Gtk.ResponseType.OK), \

 text="The button was clicked.", \

 title="Information")

You specify one or more dialog flags. Options for this parameter are given by the Gtk.

DialogFlags enumeration that was used when creating custom dialogs in the previous

three examples.

CHAPTER 6 Dialogs

124

Unlike GTK+ 2.x, the 3.x Gtk.MessageDialog does not use any positional parameters.

Instead, it uses keyword parameters exclusively. Also note that Gtk.MessageDialog does

not use a new method. This is because Gtk.MessageDialog creates a subclass of Gtk.

MessageDialog and the keywords determine what kind subclass is created.

Also note that the light bulb icon image is missing from the message dialog. This is

due to philosophy changes in GTK+ 3.x. If you must have icons in your dialogs then you

need to use Gtk.Dialog to hand create your dialogs.

Multiple buttons are supported by including a comma-separated list of buttons/

response ids using the "buttons" keyword.

You have no control over the visual formatting of the message provided to Gtk.

MessageDialog. If you would like to use the Pango Text Markup Language to format the

message dialog’s text, you can leave out the "text" keyword from the Gtk.MessageDialog

call. Then call set_markup(str) method with a string of Pango markup to set the text of

the message.

It is possible to add a secondary text to the message dialog, which causes the first

message to be set as bold with format_secondary_text(). The text string provided to

this function should be similar to the format supported by the C printf().

This feature is very useful, because it allows you to give a quick summary in the

primary text and go into detail with the secondary text.

�About Dialogs
The Gtk.AboutDialog widget provides you with a simple way to provide the user with

information about an application. This dialog is usually displayed when the item in

the Help menu is chosen. However, since menus are not covered until Chapter 10, our

example dialog is used as the top-level window.

Various types of information are shown with Gtk.AboutDialog, including the name

of the application, copyright, current version, license content, authors, documenters,

artists, and translators. Because an application won’t have all of this information, every

property is optional. The main window displays only the basic information, which is

seen along with the author credits in Figure 6-4.

CHAPTER 6 Dialogs

125

Figure 6-4.  An About credit dialog and author credit

CHAPTER 6 Dialogs

126

By clicking the Credits button, the user is presented with any authors, documenters,

translators, and artists that are provided. The License button pops up a new dialog that

shows the given license content.

Listing 6-5 is a simple example that shows you how to use every available property of

the Gtk.AboutDialog widget.

Listing 6-5.  Using a Gtk.AboutDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, GdkPixbuf

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 button = Gtk.Button.new_with_mnemonic("_Click Me")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 self.set_size_request(150, 50)

 self.show_all()

 def on_button_clicked(self, button, parent):

 authors = ["Author #1", "Author #2"]

 documenters = ["Documenter #1", "Documenter

 #2"] dialog = Gtk.AboutDialog(parent=parent)

 logo = GdkPixbuf.Pixbuf.new_from_file("./logo.png")

 if logo != None:

 dialog.set_logo(logo)

 else:

 print("A GdkPixbuf Error has occurred.")

 dialog.set_name("Gtk.AboutDialog")

 dialog.set_version("3.0")

 dialog.set_copyright("(C) 2007 Andrew Krause")

CHAPTER 6 Dialogs

127

 dialog.set_comments("All about Gtk.AboutDialog")

 dialog.set_license("Free to all!")

 dialog.set_website("http://book.andrewKrause.net")

 dialog.set_website_label("book.andrewkrause.net")

 dialog.set_authors(authors)

 dialog.set_documenters(documenters)

 dialog.set_translator_credits("Translator #1\nTranslator #2")

 dialog.connect("response", self.on_dialog_button_clicked)

 dialog.run()

 def on_dialog_button_clicked(self, dialog, response):

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="About Dialog")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Many properties are available for you to set when creating your own Gtk.

AboutDialog instance. Table 6-2 summarizes those options that were used in Listing 6-5.

If the license is not specified, the License button is not visible. The Credits button is not

visible if there are no credits.

CHAPTER 6 Dialogs

128

Unlike author, artist, and documenter credits, the translator credits are only a single

string. This is because the translator string should be set to the person that translated the

language currently in use. Internationalization and gettext are not topics for this book.

For more information, you should visit www.gnu.org/software/gettext.

�Gdk.Pixbuf

GdkPixbuf is a class that contains information about an image stored in memory. It allows

you to build images manually by placing shapes or pixels or to load a pre-built image from

a file. The latter is preferred in most cases, so that is what is covered in this book.

Since GdkPixbuf is derived from GObject, it supports referencing. This means

that the same image can be used in multiple locations in a program by increasing the

reference count with ref(). Dereferencing GdkPixbuf objects (pixbufs) is performed

automatically in almost all cases.

Table 6-2.  Gtk.AboutDialog Option Values

Property Description

program_name The application’s name.

version The current version of the application the user is running.

copyright A short copyright string that should not span more than one or two lines.

comments A short description of the application that should not span more than one or

two lines.

license License information that is displayed in a secondary dialog. Setting this to

None hides the License button.

web site The home page URL of the application.

web site_label A label that is displayed instead of the URL.

authors A Python list of authors who have contributed code to the project.

artists A Python list of artists who have created graphics for the project.

documenters A Python list of documenters who have written documentation for the project.

translator_credits A string that specifies the translator(s) of the current language.

logo Usually loaded from a file, this Gdk.Pixbuf object is the application’s logo.

CHAPTER 6 Dialogs

http://www.gnu.org/software/gettext

129

To load a pixbuf from a file, you can use GdkPixbuf.new_from_file(), which was

used in Listing 6-5. This function loads the image with an initial size set to the actual size

of the image.

logo = GdkPixbuf.Pixbuf.new_from_file("./logo.png")

After you load the image, you can resize it with scale_simple(). This function

accepts the new size parameters of the Gdk.Pixbuf and the interpolation mode to use

for the scaling.

pixbuf.scale_simple(dest_width, dest_height, interp_type)

The following are the four GdkPixbuf.InterpType modes.

•	 GdkPixbuf.InterpType.NEAREST: Sampling is performed on the

nearest neighboring pixel. This mode is very fast, but it produces the

lowest quality of scaling. It should never be used for scaling an image

to a smaller size!

•	 GdkPixbuf.InterpType.TILES: This mode renders every pixel as a

shape of color and uses antialiasing for the edges. This is similar to

using GdkPixbuf.InterpType.NEAREST for making an image larger or

GdkPixbuf.InterpType.BILINEAR for reducing its size.

•	 GdkPixbuf.InterpType.BILINEAR: This mode is the best mode for

resizing images in both directions, because it has a balance between

its speed and the quality of the image.

•	 GdkPixbuf.InterpType.HYPER: While it is very high quality, this

method is also very slow. It should only be used when speed is not

a concern. Therefore, it should never be used for any application

that the user would expect a fast display time. In one function call,

GdkPixbuf.new_from_file_at_size() conveniently resizes the

image immediately after it loads from the file.

Many other features are provided in the GdkPixbuf class, but only a few of these are

covered, as needed. For further information on GdkPixbuf, you should reference the API

documentation.

CHAPTER 6 Dialogs

130

�Gtk.FileChooser Dialogs
In the last chapter, you learned about Gtk.FileChooser and the Gtk.FileChooserButton

widget. Recall that Gtk.FileChooser is not a widget, but an abstract class. Abstract classes

differ from real classes, because they may not implement the methods they declare.

GTK+ provides the following three widgets that subclass the Gtk.FileChooser class.

•	 Gtk.FileChooserButton: The file chooser button was covered in the

previous chapter. It allows the user to choose one file or folder by

displaying a Gtk.FileChooser dialog when clicked.

•	 Gtk.FileChooserDialog: This is the actual widget that allows the

user to choose a file folder. It can also facilitate the creation of a folder

or saving of a file. When you use Gtk.FileChooserDialog, you are

actually using a file chooser widget packed into a Gtk.Dialog.

•	 Gtk.FileChooserWidget: This is the actual widget that allows the

user to choose a file folder. It can also facilitate the creation of a folder

or saving of a file. When you use Gtk.FileChooserDialog, you are

actually using a file chooser widget packed into a Gtk.Dialog.

You have already learned about Gtk.FileChooserButton and have used a file

chooser to open one file and to select a directory. There are three other abilities provided

by the file chooser widget. In the next three examples, you learn how to use a file chooser

dialog to save a file, create a directory, and choose multiple files.

�Saving Files

Figure 6-5 shows a Gtk.FileChooserDialog widget that is saving a file. You will notice

that it is similar to the next two figures as well, because all types of file chooser dialogs

have a consistent look so that it is minimally confusing to new users and maximally

efficient to all. The widget also uses the same code to implement each dialog type to

minimize the amount of necessary code.

CHAPTER 6 Dialogs

131

File chooser dialogs are used in the same way as the previous two dialogs covered

in this chapter, except you need to handle the response code returned by Gtk.Dialog.

new(). Listing 6-6 allows the user to choose a file name and sets the button’s text to that

file name if the correct response identifier is returned.

Figure 6-5.  A file chooser dialog for saving

CHAPTER 6 Dialogs

132

Listing 6-6.  Using a Gtk.AboutDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 button = Gtk.Button.new_with_label("Save as ...")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 def on_button_clicked(self, button, parentwin):

 dialog = Gtk.FileChooserDialog(title="Save file as ...",

 parent=parentwin,

 action=Gtk.FileChooserAction.SAVE,

 buttons=("_Cancel",

 Gtk.ResponseType.CANCEL,

 "_Save", Gtk.ResponseType.ACCEPT))

 response = dialog.run()

 if response == Gtk.ResponseType.ACCEPT:

 filename = dialog.get_filename()

 button.set_label(filename)

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 6 Dialogs

133

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Save a File")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

All file chooser dialogs are created with the Gtk.FileChooserDialog() regardless

of what options you choose. As with other dialogs, you begin by setting the title of the

dialog and the parent window. The parent window should always be set, because file

chooser dialogs should be modal.

dialog = Gtk.FileChooserDialog(title="Save file as ...", \

 parent=parentwin, \

 action=Gtk.FileChooserAction.SAVE, \

 buttons=("_Cancel", Gtk.ResponseType.CANCEL, \

 "_Save", Gtk.ResponseType.ACCEPT))

Next, as with file chooser buttons, you have to choose the action of file chooser that

is created. All four action types provided by the Gtk.FileChooser abstract class are

available to Gtk.FileChooserDialog. These are described in the following list.

•	 Gtk.FileChooserAction.SAVE: The user is prompted to enter a file

name and browse throughout the file system for a location. The

returned file is the chosen path with the new file name appended to

the end. Gtk.FileChooser provides methods that allow you to ask for

confirmation if the user enters a file name that already exists.

•	 Gtk.FileChooserAction.OPEN: The file chooser only allows the user

to select one or more files that already exist on the user’s system.

The user is able to browse throughout the file system or choose a

bookmarked location.

CHAPTER 6 Dialogs

134

•	 Gtk.FileChooserAction.SELECT_FOLDER: This is very similar to

the save action, because it allows the user to choose a location and

specify a new folder name. The user can enter a new folder name that

is created when the file chooser returns or click the Create Folder

button, shown in Figure 5-6, which creates a new folder in the current

directory.

•	 Gtk.FileChooserAction.CREATE_FOLDER: This is very similar to

the save action, because it allows the user to choose a location and

specify a new folder name. The user can enter a new folder name that

is created when the file chooser returns or click the Create Folder

button, shown in Figure 5-6, which creates a new folder in the current

directory.

Lastly, you have to provide a name/response ID list of buttons to add to the action

area. In Listing 6-6, when the Cancel button is clicked, Gtk.ResponseType.CANCEL is

emitted, and when the Save button is clicked, GTK_RESPONSE_ACCEPT is emitted.

�Creating a Folder

GTK+ allows you not only to select a folder but also to create a folder. A Gtk.

FileChooserDialog widget using this type can be seen in Figure 6-6, which is a

screenshot of Listing 6-7.

CHAPTER 6 Dialogs

135

The dialog in Listing 6-7 handles creating the new folder when accepted by the user,

so you do not need to take any further action beyond destroying the dialog.

Listing 6-7.  Using a Gtk.AboutDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

Figure 6-6.  A file chooser dialog for creating a folder

CHAPTER 6 Dialogs

136

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 button = Gtk.Button.new_with_label("Create a Folder ...")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 def on_button_clicked(self, button, parentwin):

 dialog = Gtk.FileChooserDialog(title="Create a Folder ...",

 parent=parentwin,

 action=Gtk.FileChooserAction.SAVE,

 buttons=("_Cancel",

 Gtk.ResponseType.CANCEL,

 "_Ok", Gtk.ResponseType.OK))

 response = dialog.run()

 if response == Gtk.ResponseType.OK:

 filename = dialog.get_filename()

 print("Creating directory: %s\n" % filename)

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Create Folder")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 6 Dialogs

137

The full folder name of the dialog can be retrieved by using the same function that

retrieved the file name in the previous example, get_filename(). The standard os.

mkdir() method from the os module creates a folder in the specified location on all

supported operating systems.

�Selecting Multiple Files

Figure 6-7 shows a standard file chooser dialog that allows the user to choose a file. The

difference between Gtk.FileChooserDialog and Gtk.FileChooserButton using the

Gtk.FileChooserAction.OPEN type is that dialogs are capable of selecting multiple files

while buttons are restricted to one file.

Figure 6-7.  A file chooser dialog for selecting multiple files

CHAPTER 6 Dialogs

138

Listing 6-8 shows you how to handle multiple file selections. It is very similar to

single file selections except for the fact that selections are returned in a Python list.

Listing 6-8.  Using A Gtk.FileChooserDialog to Select Multiple Files

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 button = Gtk.Button.new_with_label("Open file(s) ...")

 button.connect("clicked", self.on_button_clicked, self)

 self.add(button)

 def on_button_clicked(self, button, parentwin):

 dialog = Gtk.FileChooserDialog(title="Open file(s) ...",

 parent=parentwin,

 action=Gtk.FileChooserAction.OPEN,

 buttons=("_Cancel",

 Gtk.ResponseType.CANCEL,

 "_Open", Gtk.ResponseType.ACCEPT))

 dialog.set_select_multiple(True)

 response = dialog.run()

 if response == Gtk.ResponseType.ACCEPT:

 filenames = dialog.get_filenames()

 i = 0

 while i < len(filenames):

 file = filenames[i]

 print(file + " was selected.")

 i += 1

 dialog.destroy()

CHAPTER 6 Dialogs

139

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Open Nultiple

Files")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The get_filenames() function returns a Python list of the selected file(s).

filenames = dialog.get_filenames()

�Color Selection Dialogs
In the previous chapter, you learned about the Gtk.ColorButton widget, which allowed

the user to select a color. After clicking that button, the user was presented with a dialog.

Although not specified at the time, that dialog was a Gtk.ColorSelectionDialog widget.

Similar to Gtk.FileChooserDialog, the color selection dialog is actually a Gtk.

Dialog container with a Gtk.ColorSelection widget packed as its child widget. Gtk.

ColorSelection can easily be used on its own. However, since a dialog is a natural way

of presenting the widget, GTK+ provides Gtk.ColorSelectionDialog. A color selection

dialog is shown in Figure 6-8.

CHAPTER 6 Dialogs

140

Listing 6-9 contains a top-level window that has two buttons. When the first button

is clicked, a modal Gtk.ColorSelectionDialog is created. The other button creates a

nonmodal Gtk.ColorSelectionDialog. Each chooses global color and opacity values.

This example also loops through program arguments, setting the initial color value if

provided. This allows you to pass an initial color when launching the application.

Listing 6-9.  Using a Gtk.ColorSelectionDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

global_color = Gdk.RGBA(red=.50, green=.50, blue=.50,

alpha=1.0).to_color() global_alpha = 65535

class AppWindow(Gtk.ApplicationWindow):

Figure 6-8.  A file chooser dialog for selecting multiple files

CHAPTER 6 Dialogs

141

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 modal = Gtk.Button.new_with_label("Modal")

 nonmodal = Gtk.Button.new_with_label("Non-Modal")

 modal.connect("clicked", self.on_run_color_selection_dialog,

 self, True)

 nonmodal.connect("clicked", self.on_run_color_selection_dialog,

 self, False)

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_start(modal, False, False, 5)

 hbox.pack_start(nonmodal, False, False, 5)

 self.add(hbox)

 def on_dialog_response(self, dialog, result):

 if result == Gtk.ResponseType.OK:

 colorsel = dialog.get_color_selection()

 alpha = colorsel.get_current_alpha()

 color = colorsel.get_current_color()

 print(color.to_string())

 global_color = color

 global_alpha = alpha

 dialog.destroy()

 def on_run_color_selection_dialog(self, button, window, domodal):

 if domodal:

 title = ("Choose Color -- Modal")

 else:

 title = ("Choose Color -- Non-Modal")

 dialog = Gtk.ColorSelectionDialog(title=title, parent=window,

 modal=domodal)

 colorsel = dialog.get_color_selection()

 colorsel.set_has_opacity_control(True)

 colorsel.set_current_color(global_color)

 dialog.connect("response", self.on_dialog_response)

 dialog.show_all()

CHAPTER 6 Dialogs

142

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Color Selection Dialog”)

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The only function provided by the Gtk.ColorSelectionDialog class is Gtk.

ColorSelectionDialog(). The following code can get the selected color.

alpha = colorsel.get_current_alpha()

color = colorsel.get_current_color()

print(color.to_string())

Gtk.ColorSelectionDialog provides direct access to its four available child widgets.

The first, colorsel is the Gtk.ColorSelection widget that facilitates color selection. The

other three are an OK button, a Cancel button, and a Help button. By default, the Help

button is hidden. You can use show() or the show_all() method to set it visible.

As with Listing 6-2, this example connects to the response signal, which receives all

of the response identifiers regardless of whether the dialog is modal or nonmodal. The

dialog is set as modal or nonmodal with the "modal" keyword on the insanitation of the

Gtk.ColorSelectionDialog class.

Gtk.ColorSelectionDialog(title=title, parent=window, modal=domodal)

Listing 6-9 shows a fourth color property apart from its RGB values, its opacity (alpha

value). Ranging between 0 and 65,535, this value regulates how transparent the color is

drawn, where 0 is fully transparent and 65,535 is opaque. By default, the opacity control

CHAPTER 6 Dialogs

143

is turned off within color selection widgets. You can call the method set_has_opacity_

control() to enable the feature.

colorsel.set_has_opacity_control(boolean)

When opacity is turned on, the hexadecimal color value is sixteen digits long, four

digits for each of the values: red, green, blue, and alpha. You must use colorsel.get_

current_alpha() to retrieve its value from the color selection widget.

�Font Selection Dialogs
The font selection dialog is a dialog that allows the user to select a font and

is the dialog shown when a Gtk.FontButton button is clicked. As with Gtk.

ColorSelectionDialog, direct access to the action area buttons is provided through

the Gtk.FontSelectionDialog structure. An example font selection dialog is shown in

Figure 6-9, which should look similar to the one you saw in the last chapter.

Figure 6-9.  A font selection dialog

Figure 6-9 is the result of running Listing 6-10.

CHAPTER 6 Dialogs

144

Listing 6-10.  Using a Gtk.FontSelectionDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 100)

 button = Gtk.Button.new_with_label("Run Font Selection Dialog")

 button.connect("clicked", self.on_run_font_selection_dialog)

 self.add(button)

 def on_run_font_selection_dialog(self, button):

 dialog = Gtk.FontSelectionDialog(title="Choose a Font",

 �buttons=("Apply",

Gtk.ResponseType.APPLY),

 parent=self)

 dialog.set_preview_text("GTK+ 3 Development With Python")

 dialog.connect("response", self.on_dialog_response)

 dialog.run()

 def on_dialog_response(self, dialog, response):

 �if response == Gtk.ResponseType.OK or response ==

Gtk.ResponseType.APPLY:

 font = dialog.get_font_name()

 message = Gtk.MessageDialog(title="Selected Font",

 flags=Gtk.DialogFlags.MODAL,

 type=Gtk.MessageType.INFO,

 text=font,

 buttons=("Ok", Gtk.ResponseType.OK),

 parent=dialog);

CHAPTER 6 Dialogs

145

 message.run()

 message.destroy()

 if response == Gtk.ResponseType.OK:

 dialog.destroy()

 else:

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Font Selection Dialog”)

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The font selection dialog initialization function, Gtk.FontSelectionDialog(),

returns a new Gtk.FontSelectionDialog widget with the specified title.

The dialog itself contains three buttons: OK, Apply, and Cancel. They emit the Gtk.

ResponseType.OK, Gtk.ResponseType.APPLY, and Gtk.ResponseType.CANCEL signals

respectively.

There is no need to create a modal dialog, because the font selection dialog is

connected to a response signal.

If the user clicks the OK button, the user is presented with the selected font, and the

dialog is destroyed. By clicking Apply, the selected font is presented to the user, but the

dialog is not destroyed. This allows you to apply the new font so the user can view the

changes without closing the dialog.

CHAPTER 6 Dialogs

146

The font selection widget contains a Gtk.Entry widget that allows the user to

preview the font. By default, the preview text is set to “abcdefghijk ABCDEFGHIJK”. This

is somewhat boring, so I decided to reset it to “GTK+ 3 Development With Python”, the

title of this book.

The last methods provided by Gtk.FontSelectionDialog() allow you to set and

retrieve the current font string. The font string used by dialog.set_font_name()

and dialog.get_font_name() is in the same format that we parsed with Pango.

FontDescription in the previous chapter.

�Dialogs with Multiple Pages
With the release of GTK+ 2.10, a widget called Gtk.Assistant was introduced. Gtk.

Assistant makes it easier to create dialogs with multiple stages, because you do not

have to programmatically create the whole dialog. This allows you to split otherwise

complex dialogs, into steps that guide the user. This functionality is implemented by

what are often referred to as wizards in various applications.

Figure 6-10 shows the first page of a simple Gtk.Assistant widget, which was

created using the code in Listing 6-11. This example begins by giving the user general

information. The next page will not allow the user to proceed until text is entered in

a Gtk.Entry widget. The third page will not allow the user to proceed until a Gtk.

CheckButton button is activated. The fourth page will not let you do anything until the

progress bar is filled, and the last page gives a summary of what has happened. This is

the general flow that every Gtk.Assistant widget should follow.

CHAPTER 6 Dialogs

147

Listing 6-11.  The Gtk.Assistant Widget

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

import time

class assistant(Gtk.Assistant):

 progress = None

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_size_request(450, 300)

 self.set_title("Gtk.Assistant Example")

 self.connect("destroy", Gtk.main_quit, None)

Figure 6-10.  The first page of a Gtk.Assistant widget

CHAPTER 6 Dialogs

148

 # create page 0

 page0_widget = Gtk.Label("This in an example of a Gtk.Assistant. By\n"

 + "clicking the forward button, you can " +

 "continue\nto the next section!")

 self.append_page(page0_widget)

 self.set_page_title(page0_widget, "Introduction")

 self.set_page_type(page0_widget, Gtk.AssistantPageType.INTRO)

 self.set_page_complete(page0_widget, True)

 # create page 1

 �page1_widget = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL,

spacing=5)

 label = Gtk.Label("Your Name: ")

 entry = Gtk.Entry()

 page1_widget.pack_start(label, False, False, 5)

 page1_widget.pack_start(entry, False, False, 5)

 self.append_page(page1_widget)

 self.set_page_title(page1_widget, "")

 self.set_page_type(page1_widget, Gtk.AssistantPageType.CONTENT)

 self.set_page_complete(page1_widget, False)

 # create page 2

 page2_widget = Gtk.CheckButton.new_with_label("Click me to Continue!")

 self.append_page(page2_widget)

 self.set_page_title(page2_widget, "Click the Check Button")

 self.set_page_type(page2_widget, Gtk.AssistantPageType.CONTENT)

 self.set_page_complete(page2_widget, False)

 # create page 3

 page3_widget = Gtk.Alignment.new(0.5, 0.5, 0.0, 0.0)

 button = Gtk.Button.new_with_label("Click Me!")

 self.progress = Gtk.ProgressBar()

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=5)

 hbox.pack_start(self.progress, True, False, 5)

 hbox.pack_start(button, False, False, 5)

 page3_widget.add(hbox)

 self.append_page(page3_widget)

 self.set_page_title(page3_widget, "Click the Check Button")

 self.set_page_type(page3_widget, Gtk.AssistantPageType.PROGRESS)

CHAPTER 6 Dialogs

149

 self.set_page_complete(page3_widget, False)

 # create page 4

 �page4_widget = Gtk.Label("Text has been entered in the label and

the\n" + "combo box is clicked. If you are done, then\n"

 + "it is time to leave!")

 self.append_page(page4_widget)

 self.set_page_title(page4_widget, "Confirmation")

 self.set_page_type(page4_widget, Gtk.AssistantPageType.CONFIRM)

 self.set_page_complete(page4_widget, True)

 # set up the callbacks

 entry.connect("changed",self.entry_changed)

 # page2_widget.connect("toggled",self.button_toggle)

 button.connect("clicked", self.button_clicked)

 self.connect("cancel", self.assistant_canceled)

 self.connect("close", self.assistant_close)

 def entry_changed(self, entry):

 text = entry.get_text()

 num = self.get_current_page()

 page = self.get_nth_page(num)

 self.set_page_complete(page, len(text) > 0)

 def button_toggled(self, toggle):

 active = toggle.get_active()

 self.set_page_complete(toggle, active)

 def button_clicked(self, button):

 percent = 0.0

 button.set_sensitive(False)

 page = self.get_nth_page(3)

 while (percent <= 100.0):

 message = str(percent) + " complete"

 print(message)

 self.progress.set_fraction(percent / 100.0)

 self.progress.set_text(message)

CHAPTER 6 Dialogs

150

 while (Gtk.events_pending()):

 Gtk.main_iteration()

 time.sleep(1)

 percent += 5.0

 self.set_page_complete(page, True)

 def assistant_canceled(self, response):

 self.destroy()

 def assistant_close(self, response):

 print("You would apply your changes

 now!") self.destroy()

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)

 self.set_border_width(25)

 button = Gtk.Button.new_with_mnemonic("_Open Assistant")

 button.connect("clicked", self.on_start_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

 self.add(button)

 self.set_size_request(200, 100)

 def on_start_button_clicked(self, button):

 assistant()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp", **kwargs)

 self.window = None

def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Gtk.Assistant")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 6 Dialogs

151

�Creating Gtk.Assistant Pages
A Gtk.Assistant widget is a dialog with multiple pages, although it is actually not

derived from Gtk.Dialog. By calling Gtk.Assistant(), you create a new Gtk.Assistant

widget with no initial pages.

index = assistant.append_page(widget)

There is no actual page widget for assistants, because each page is actually a

child widget that is added with assistant.prepend_page(), assistant.append_

page(), or assistant.insert_page(). Each of these functions accepts the child

widget (added as the contents of the page) and returns the new page’s index. Each

page has a number of properties that can be set, each of which is optional. A list of

these options follows.

•	 Page title: Every page should have a title, so the user knows what it is

for. Your first page should be an introductory page that tells the user

information about the assistant. The last page must be a summary

or confirmation page that makes sure the user is ready to apply the

previous changes.

•	 Header image: In the top panel, you can display an optional image to

the left of the title. This is often the application’s logo or an image that

complements the assistant’s purpose.

•	 Side image: This optional image is placed along the left side of the

assistant beside the main page content. It is used for aesthetic appeal.

•	 Page type: The page type must always be set, or it defaults to Gtk.

AssistantPageType.CONTENT. The last page must always be a

confirmation or summary page. You should also make the first page

an introductory page that gives the user information about what task

the assistant performs.

CHAPTER 6 Dialogs

152

After you have set the page’s properties, you must choose what type of page it is.

There are five types of pages. The first page should always be Gtk.AssistantPageType.

INTRO. The last page should always be Gtk.AssistantPageType.CONFIRM or

Gtk.AssistantPageType.SUMMARY—if your assistant does not end with one of those two

types of pages, it will not work correctly. All the available page types are described in the

following list.

•	 Gtk.AssistantPageType.CONTENT: This type of page has general

content, which means it is used for almost every page in the assistant.

It should never be used for the last page in an assistant.

•	 Gtk.AssistantPageType.INTRO: This type of page has introductory

information for the user. This should only be set for the first page in

the assistant. Although not required, introductory pages give the user

direction; they should be used in most assistants.

•	 Gtk.AssistantPageType.CONFIRM: The page allows the user to

confirm or deny a set of changes. It is typically used for changes

that cannot be undone or may cause something to break if not set

correctly. This should only be set for the last page of the assistant.

•	 Gtk.AssistantPageType.SUMMARY: The page gives a summary of the

changes that have occurred. This should only be set for the last page

of the assistant.

•	 Gtk.AssistantPageType.PROGRESS: When a task takes a long time to

complete, this blocks the assistant until the page is marked as complete.

The difference between this page and a normal content page is that all

of the buttons are disabled and the user is prevented from closing the

assistant.

Caution  If you do not set the last page type as Gtk.AssistantPageType.
CONFIRM or Gtk.AssistantPageType.SUMMARY, your application will abort
with a GTK+ error when computing the last button state.

CHAPTER 6 Dialogs

153

Since Gtk.Assistant is not derived from Gtk.Dialog, you cannot use dialog.run()

(or any other Gtk.Dialog method) on this widget. Instead, the following four signals are

provided for you to handle button-clicked signals.

•	 "apply": This signal is emitted when the Apply button or Forward

button clicks any assistant page.

•	 "cancel": This signal is emitted when the Cancel button clicks any

assistant page.

•	 "close": This signal is emitted when the Close button or Apply

button on the last page in the assistant is clicked.

•	 "prepare": Before making a new page visible, this signal is emitted so

that you can do any preparation work before it is visible to the user.

You can connect to all Gtk.Assistant signals with assistant.connect() or any other

signal connection function provided by GLib. Excluding "prepare", the callback methods

for Gtk.Assistant signals receive the assistant and the user data parameter. The callback

method for the prepare signal also accepts the child widget of the current page.

By default, every page is set as incomplete. You have to manually set each page as

complete when the time is right with assistant.set_page_complete() or the Gtk.

Assistant will not be able to proceed to the next page.

assistant.set_page_complete(page, boolean)

On every page, a Cancel button is displayed in addition to a few others. On pages

other than the first one, a Back button is displayed that is always sensitive. This allows

you to visit the previously displayed page and make changes.

Note  The page that is visited when the user clicks the Back button is not always
the previous page according to the page index. It is the previously displayed page,
which may be different based on how you defined the page flow of your assistant.

On every page except the last, a Forward button is placed, which allows the user to

move to the next page. On the last page, an Apply button is displayed that allows the

user to apply the changes. However, until the page is set as complete, the assistant sets

the Forward or Apply button as insensitive. This allows you to prevent the user from

proceeding until some action is taken.

CHAPTER 6 Dialogs

154

In Listing 6-11, the first and last pages of the assistant were set as complete, because

they were merely informative pages. This is the case in most assistants, since they should

begin with an introduction page and end with a confirmation or summary page.

The other two pages are where it becomes interesting. On the second page, we want

to make sure that the user cannot proceed until text is entered in the Gtk.Entry widget.

It would seem that we should just check when text has been inserted and be done with it.

However, what happens if the user deletes all of the text? In this case, the forward

button should be disabled yet again. To handle both of these actions, you can use Gtk.

Editable’s changed signal. This allows you to check the current state of the text in the

entry upon every change, as in Listing 6-11.

On the third page, we want to enable the forward button only when the check button

is active. To do this, we used the toggled signal of Gtk.ToggleButton to check the current

state of the check button. Based on this state, the forward button’s sensitivity was set.

The fourth page has a type of Gtk.AssistantPageType.PROGRESS, which disables all

actions until the page is set as complete. The user is instructed to click a button, which

begins the process of filling a Gtk.ProgressBar widget 10 percent every second. When

the progress bar is filled, the page is set as complete.

�Gtk.ProgressBar
The Gtk.Assistant example introduced another new widget called Gtk.ProgressBar.

Progress bars are a simple way to show how much of a process has been completed and

is useful for processes that take a long time to handle. Progress bars give the user a visual

cue that progress is being made, so they do not think the program has frozen.

New progress bars are created with Gtk.ProgressBar(). The implementation of

Gtk.ProgressBar was made a lot simpler with the release of GTK+ 2.0, so be careful

when using the API documentation, because a number of the displayed functions and

properties are depreciated. The two examples following show you how to correctly use

the Gtk.ProgressBar widget.

percent = 0.0

button.set_sensitive(False)

page = self.get_nth_page(3)

while (percent <= 100.0):

 message = str(percent) + " complete"

 print(message)

CHAPTER 6 Dialogs

155

 self.progress.set_fraction(percent / 100.0)

 self.progress.set_text(message)

 while (Gtk.events_pending()):

 Gtk.main_iteration()

 time.sleep(1)

 percent += 5.0

You may also want to display text that can complement the progress bar. In the

preceding example, progress.set_text() displayed the percent complete statistic,

which is superimposed on the progress bar widget.

If you are not able to detect the progress of the process, you can use pulses. In the

preceding example, progress.pulse() moved the progress bar one step for every

pending event that was processed. You can set the pulse step with progress.set_pulse_

step().

progress.set_pulse_step(0.1)

while (Gtk.events_pending ()):

 Gtk.main_iteration()

 progress.pulse()

By setting the pulse step to 0.1, the progress bar fills up in the first ten steps and

clears itself in the next ten. This process continues for as long as you continue pulsing

the progress bar.

�Page Forward Methods
There are times that you may want to skip to specific assistant pages if conditions are

correct. For example, let’s assume your application is creating a new project. Depending

on the chosen language, you want to jump to either the third or fourth page. In this case,

you want to define your own Gtk.AssistantPageFunc method for forward motion.

You can use assistant.set_forward_page_func() to define a new page forward

function for the assistant. By default, GTK+ increments directly through the pages in

order, one page at a time. By defining a new forward function, you can define the flow.

assistant.set_forward_page_func(page_func, data)

CHAPTER 6 Dialogs

156

For example, assistant_forward() is a simple Gtk.AssistantPageFunc

implementation that moves from page two to either three or four, depending on the

condition returned by decide_next_page().

def assistant_forward(self, current_page, data):

 next_page = 0;

 if current_page == 0:

 next_page = 1

 elif current_page == 1:

 next_page = (decide_next_page() ? 2 : 3)

 elif current_page == 2 or current_page == 3:

 next_page = 4

 else:

 next_page = -1

 return next_page

Note  By returning –1 from a page forward function, the user is presented with
a critical error and the assistant will not move to another page. The critical error
message will tell the user that the page flow is broken.

In the assistant.forward() method, flow is changed based on the Boolean value

returned by the fictional function decide_next_page(). In either case, the last page is

page 4. If the current page is not within bounds, –1 is returned, so an exception is thrown

by GTK+.

While this Gtk.Assistant example is very simple, implementations of this widget

can become very complex as they expand in number of pages. This widget could be re-

created with a dialog, a Gtk.Notebook with hidden tabs, and a few buttons. (I have had to

do that very thing multiple times!), but it makes the process a lot easier.)

�Test Your Understanding
In the exercise for this chapter, you are creating custom dialogs of your own. Each of

the dialogs is an implementation of a type of file chooser dialog. However, you are

embedding a Gtk.FileChooserWidget into a Gtk.Dialog to re-create the functionality of

the built-in dialogs.

CHAPTER 6 Dialogs

157

�Exercise 1: Implementing File Chooser Dialogs
In this exercise, you create a window with four buttons. Each button opens a different

dialog when clicked, which implements one of the four Gtk.FileChooser actions. You

should use Gtk.FileChooserWidget added to Gtk.Dialog instead of the prebuilt

Gtk.FileChooserDialog.

•	 Your dialog implements a Gtk.FileChooserAction.SAVE file chooser

dialog. The chosen file name should be printed to the screen.

•	 Your dialog implements a Gtk.FileChooserAction.CREATE_FOLDER

file chooser dialog. The new folder name should be printed to the

screen. You have to manually create the new folder with a Python

function.

•	 Your dialog implements a Gtk.FileChooserAction.OPEN file chooser

dialog. The chosen file names should be printed to the screen.

•	 Your dialog implements a Gtk.FileChooserAction.SELECT_FOLDER

file chooser dialog. The chosen folder path should be printed to the

screen.

You need to set each of the dialogs to a decent size so that the entire content is visible

to the user. If you get stuck during this exercise, you can find a solution in Appendix D.

�Summary
In this chapter, you learned how to create your own custom dialogs. To do this, you need

to first initialize the dialog. Then, action area buttons need to be added as well as the

main content to the dialog’s vertical Gtk.Box.

Dialogs can be created as modal or nonmodal. A modal dialog created with dialog.

run() blocks the user from interacting with the parent window until it is destroyed by

creating a main loop for the dialog. It also centers the dialog above its parent window.

Nonmodal dialogs allow the user to interact with any other window in the application

and will not force focus on the dialog.

CHAPTER 6 Dialogs

158

After learning about the built-in dialogs, you learned about multiple types of built-in

dialogs provided by GTK+.

•	 Message dialog (Gtk.MessageDialog): Provides a general message,

error message, warning, or simple yes/no question to the user.

•	 About dialog (Gtk.AboutDialog): Shows information about the

application, including version, copyright, license, authors, and

others.

•	 File chooser dialog (Gtk.FileChooserDialog): Allows the user to

choose a file, choose multiple files, save a file, choose a directory, or

create a directory.

•	 Color selection dialog (Gtk.ColorSelectionDialog): Allows the user

to choose a color along with an optional opacity value.

•	 Font selection dialog (Gtk.FontSelectionDialog): Allows the user to

choose a font and its size and style properties.

The last section of this chapter showed you a widget called Gtk.Assistant, which

was introduced in GTK+ 2.10. It allows you to create dialogs with multiple stages. It is

important to note that assistants are not actually a type of Gtk.Dialog widget but are

directly derived from the Gtk.Window class. This means that you have to handle these by

connecting signals in the main loop instead of calling dialog.run().

You now have a firm understanding of many important aspects of GTK+. The

Chapter 9 explains the multiline text entry widget called Gtk.TextView. Other topics

include the clipboard and the Gtk.SourceView library.

CHAPTER 6 Dialogs

159
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_7

CHAPTER 7

Python and GTK+
Now that you have a reasonable grasp of GTK+ and a number of simple widgets, it

is time to move to the details of how Python and GTK+ work together. We also cover

other Python aspects that will be useful for your projects, as well as some useful

PGObject libraries.

Although this book is not a comprehensive guide to Python, we examine several

topics used by GTK+ that are not usually covered by basic Python programming guides.

�Arguments and Keyword Arguments
Keyword parameters and arguments are used throughout the GTK+ library to pass class

instance property values from class to subclass to subclass, and so on. So let’s examine

this phenomenon closely.

The most important thing to understand about GTK+ class properties is that they

are implemented as Python properties in PyGTK. This means that a reference to a

property class and methods should be replaced as a standard Python class and methods

when accessed. The following example shows how to access the Gtk.Window property

named title.

win = Gtk.Window()

title = win.props.title

The property can also be set using standard Python methods.

win = Gtk.Window()

win.props.title = "My Main Window"

Of course, the Gtk.Window class also supplies the get_title() and set_title()

methods to perform the same tasks, but the shortcut Python methods also perform the

same tasks. The choice as to which methods you use is entirely up to you.

160

Now that you understand that GTK+ properties are implemented as Python

properties, we can move on to describing how to use and pass keyword arguments to

classes. Let’s continue looking at Gtk.Window and how you create instances of that class.

The class definition for Gtk.Window looks like this:

class Gtk.Window(Gtk.Bin):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

So, what are these *args and **kwargs arguments/parameters and what do they

do? PyGTK uses this methodology to pass property names and values to class instances.

When a class instance receives these arguments, it has the choice to use them, pass them

on to the super class, or simply throw them away. Most of the time, it uses the ones that

match the properties that the class defines. It then locates the corresponding value and

assigns it to the corresponding property name. It does this task using code similar to the

code in Listing 7-1.

Listing 7-1.  Keyword Arguments

class MyWindow(Gtk.Window):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 for arg in argv:

 print("Another arg through *argv :",arg) for kw in keywords:

 print(kw, ":", keywords[kw])

Not shown in the example are formal arguments. There is a required order for

arguments: formal arguments must all appear first in the argument list, followed by all

args arguments, and finally, by all the keyword arguments. The following example shows

the formal declaration for how this must work.

function(formal_args, args, kwargs)

Chapter 7 Python and GTK+

161

The following are calling statements that use formal arguments, variable arguments,

and keyword arguments.

function using formal and variable args def function1(title, modal, *args):

calling function1

function1("My title", False, # variable args follow

 "Peaches", "and", "Cream")

function1("My Window", True) # Only formal args, no variable args

function1(True) # Invalid!!! Missing one formal arg

function using formal and keyword args def function2(title, modal, **kwargs)

calling function2

function2("My title", True, parent=window, accept_focus=True) function2("My

Window", False) # Only formal args, no keyword args

function2(parent=window) # Invalid, no formal args

There are many other variations of these examples, but if you follow these three

simple rules, you should have no problem coping with all the variations:

•	 Formal arguments must all appear in the argument list first. If there

are no formal arguments, then they can be absent from the argument

list. There can be as many formal arguments as you need.

•	 Variable arguments must all appear next in the argument list. If

there are no variable arguments, then they can be absent from the

argument list. There can be as many variable arguments as you need.

•	 Keyword arguments must all appear last in the argument list. If

there are no keyword arguments, then they can be absent from the

argument list. There can be as many keyword arguments as you need.

PyGTK rarely uses formal arguments; it uses variable and keyword arguments almost

exclusively. This makes it a little easier to cope with instantiating all the GTK+ classes.

Just remember that GTK+ ignores any keyword arguments that are not also property

names. This is very useful when you want to establish and manage your own properties.

Chapter 7 Python and GTK+

162

�Logging
Logging tracks events that happen when software runs. The software developer adds

logging calls to their code to indicate that certain events have occurred. An event is

described by a descriptive message that can optionally contain variable data (i.e.,

data that is potentially different for each occurrence of the event). Events also have an

importance that the developer ascribes to the event; the importance can also be called

the level or severity.

�When to Use Logging
Logging provides a set of convenience functions for simple logging usage. These are

debug(), info(), warning(), error(), and critical(). Table 7-1 describes when to use

logging for common tasks and the best tool to use for each task.

Table 7-1.  Logging Tasks

Task You Want to Perform Best Tool for the Task

Display console output for ordinary use of a

command-line script or program

print()

Report events that occur during normal operation

of a program (e.g., status monitoring or fault

investigation)

logging.info() (or logging.debug() for

very detailed output for diagnostic purposes)

Issue a warning for a particular runtime event logging.warning() if there is nothing the

client application can do about the situation, but

the event should still be noted

Report an error for a particular runtime event Raise an exception

Report suppression of an error without raising an

exception (e.g., error handler in a long-running

server process)

logging.error(), logging.exception()

or logging.critical() as appropriate for

the specific error and application domain

The logging functions are named after the level or severity of the events that they

track. The standard levels and their applicability are described in Table 7-2 (in increasing

order of severity).

Chapter 7 Python and GTK+

http://logging.info

163

The default level is WARNING, which means that only events of this level and above

will be tracked, unless the logging package is configured to do otherwise.

Events that are tracked can be handled in different ways. The simplest way of

handling tracked events is to print them to the console. Another common way is to write

them to a disk file.

�Some Simple Examples
The following is a very simple example.

import logging

logging.warning('Watch out!') # will print a message to the console

logging.info('I told you so') # will not print anything

If you type these lines into a script and run it, you see the following printed on the

console.

WARNING:root:Watch out!

The INFO message doesn’t appear because the default level is WARNING. The

printed message includes the indication of the level and the description of the event

provided in the logging call (i.e., Watch out!). Don’t worry about the “root” part for now;

it is explained later. The actual output can be formatted quite flexibly if you need that;

formatting options are also explained later.

Table 7-2.  Logging Levels

Level When It’s Used

DEBUG Detailed information, typically of interest only when diagnosing problems.

INFO Confirmation that things are working as expected.

WARNING An indication that something unexpected happened, or indicative of some problem in

the near future (e.g., disk space low). The software is still working as expected.

ERROR Due to a more serious problem, the software has not been able to perform a function.

CRITICAL A serious error indicating that the program itself may be unable to continue running.

Chapter 7 Python and GTK+

164

�Logging to a File
Recording logging events in a file is a very common, so let’s look at that next. Be sure

to try the following in a newly started Python interpreter; don’t just continue from the

session described earlier.

import logging

logging.basicConfig(filename='example.log',level=logging.DEBUG)

logging.debug('This message should go to the log file')

logging.info('So should this')

logging.warning('And this, too')

And now if we open the file and look at what we have, we should find the log

messages.

DEBUG:root:This message should go to the log file INFO:root:So should this

WARNING:root:And this, too

This example also shows how you can set the logging level, which acts as the

threshold for tracking. In this case, because we set the threshold to DEBUG, all of the

messages were printed.

If you want to set the logging level from a command-line option, such as

--log=INFO

and you have the value of the parameter passed for --log in a loglevel variable, you

can use

getattr(logging, loglevel.upper())

to get the value, which you pass to basicConfig() via the level argument.

You may want to error check any user input value, perhaps as in the following example.

assuming loglevel is bound to the string value obtained from the

command line argument. Convert to upper case to allow the user to

specify --log=DEBUG or --log=debug

numeric_level = getattr(logging, loglevel.upper(), None)

if not isinstance(numeric_level, int):

 raise ValueError('Invalid log level: %s' % loglevel)

logging.basicConfig(level=numeric_level, ...)

Chapter 7 Python and GTK+

165

The call to basicConfig() should come before any calls to debug(), info(), and so

forth. As it’s intended as a one-off simple configuration facility, only the first call actually

does anything; subsequent calls are effectively no-ops.

If you run the preceding script several times, the messages from successive runs are

appended to the example.log file. If you want each run to start afresh, not remembering

the messages from earlier runs, you can specify the filemode argument, by changing the

call in the example to this:

logging.basicConfig(filename='example.log', filemode='w', level=logging.DEBUG)

The output is the same as before, but the log file is no longer appended, so the

messages from earlier runs are lost.

�Logging from Multiple Modules
If your program consists of multiple modules, the following is an example of how you

could organize logging in it.

myapp.py

import logging

import mylib

def main():

 logging.basicConfig(filename='myapp.log', level=logging.INFO)

 logging.info('Started')

 mylib.do_something()

 logging.info('Finished')

if __name__ == '__main__':

 main()

mylib.py

import logging

def do_something():

logging.info('Doing something')

If you run myapp.py, you should see this in myapp.log:

INFO:root:Started INFO:root:Doing something INFO:root:Finished

Chapter 7 Python and GTK+

166

This is hopefully what you were expecting to see. You can generalize this to multiple

modules using the pattern in mylib.py. Note that for this simple usage pattern, apart

from looking at the event description, you won’t know where in your application your

messages came from by looking in the log file. If you want to track the location of your

messages, you’ll need to refer to the documentation beyond this tutorial level.

�Logging Variable Data
To log variable data, use a format string for the event description message and append

the variable data as arguments; for example,

import logging

logging.warning('%s before you %s', 'Look', 'leap!')

displays

WARNING:root:Look before you leap!

As you can see, merging variable data into the event description message uses the

old, %-style of string formatting. This is for backward compatibility; the logging package

predates newer formatting options, such as str.format() and string.Template. These

newer formatting options are supported, but exploring them is outside the scope of this

book. See the Python documentation for more information.

�Changing the Format of Displayed Messages
To change the format that is used to display messages, you need to specify the format

you want to use.

import logging

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)

logging.debug('This message should appear on the console')

logging.info('So should this')

logging.warning('And this, too')

This should print something like the following.

2010-12-12 11:41:42,612 is when this event was logged.

Chapter 7 Python and GTK+

167

The default format for date/time display is ISO8601 or [RFC 3339]. If you need

more control over the formatting of the date/time, provide a datefmt argument to

basicConfig(), as follows.

import logging

logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y

%I:%M:%S % logging.warning('is when this event was logged.')

This displays something like the following.

12/12/2010 11:46:36 AM is when this event was logged.

The format of the datefmt argument is the same as supported by time.strftime().

�Exceptions
Running exceptions in GTK+, application are the same as running any standard Python

program. Since the GTK module is simply a standard Python module that wraps the

GTK+ APIs, the library implementation morphs all GTK+ exceptions into standard

Python exceptions. The result of this is that you do not need to worry about catching

Glib.Error errors. None will ever be thrown by the GTK module.

That does not mean that you can ignore standard Python exceptions. You should

plan for any exceptions in your application, just the way you would for any Python

application. Let’s review some principals of Python exceptions.

�Raising Exceptions
Exceptions are raised automatically when something goes wrong in your application.

Before we take a look at how to handle an exception, let’s take a look at how you can raise

exceptions manually—and even create your own kinds of exceptions.

�The Raise Statement

You raise an exception with the raise statement, which takes an argument that is either

a class (which should subclass the Exception class) or an instance. When using a class

as an argument, an instance of the class is automatically created. The following is an

example of using the built-in Exception class.

Chapter 7 Python and GTK+

168

>>> raise Exception

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

Exception

> raise Exception('overload') Traceback (most recent call last):

 File "<stdin>", line 1, in <module> Exception: overload

The first example raises a generic exception with no information about what went

wrong. The second example added the error message overload.

Many built-in classes are available. A full description of all the exception classes

are available in the Python Library Reference in the “Built-in Exceptions” section. The

following lists the class hierarchy for all the Python 3.x exceptions.

BaseException

 +-- SystemExit

 +-- KeyboardInterrupt

 +-- GeneratorExit

 +-- Exception

 +-- StopIteration

 +-- StopAsyncIteration

 +-- ArithmeticError

 | +-- FloatingPointError

 | +-- OverflowError

 | +-- ZeroDivisionError

 +-- AssertionError

 +-- AttributeError

 +-- BufferError

 +-- EOFError

 +-- ImportError

 | +-- ModuleNotFoundError

 +-- LookupError

 | +-- IndexError

 | +-- KeyError

 +-- MemoryError

 +-- NameError

 | +-- UnboundLocalError

Chapter 7 Python and GTK+

169

 +-- OSError

 | +-- BlockingIOError

 | +-- ChildProcessError

 | +-- ConnectionError

 | | +-- BrokenPipeError

 | | +-- ConnectionAbortedError

 | | +-- ConnectionRefusedError

 | | +-- ConnectionResetError

 | +-- FileExistsError

 | +-- FileNotFoundError

 | +-- InterruptedError

 | +-- IsADirectoryError

 | +-- NotADirectoryError

 | +-- PermissionError

 | +-- ProcessLookupError

 | +-- TimeoutError

 +-- ReferenceError

 +-- RuntimeError

 | +-- NotImplementedError

 | +-- RecursionError

 +-- SyntaxError

 |

 +-- IndentationError

 | +-- TabError

 +-- SystemError

 +-- TypeError

 +-- ValueError

 | +-- UnicodeError

 | +-- UnicodeDecodeError

 | +-- UnicodeEncodeError

 | +-- UnicodeTranslateError

Chapter 7 Python and GTK+

170

 +-- Warning

 +-- DeprecationWarning

 +-- PendingDeprecationWarning

 +-- RuntimeWarning

 +-- SyntaxWarning

 +-- UserWarning

 +-- FutureWarning

 +-- ImportWarning

 +-- UnicodeWarning

 +-- BytesWarning

 +-- ResourceWarning

�Custom Exception Classes

There are a lot of built-in exceptions that cover a lot of ground. But there times when you

might want to create your own exception class. For example, there is no GTK+ exception

class, so you might have a need to create your own. This gives you a chance to selectively

handle exceptions based on their class. Thus, if you wanted to handle GTK runtime

errors, you would need a separate class for the exceptions.

You create such an exception just like you would any other class, but be sure to

subclass the Exception class (either directly or indirectly, which means that subclassing

any other built-in exception is okay). The following shows how to write a custom

exception class.

class GtkCustomException)Exception): pass

Feel free to add your own methods to class as you need them.

�Catching Exceptions
Of course, raising an exception is only the first part of exceptions. The really useful part

is catching (or trapping) and handling exceptions in your own application code. You do

this with the try and except statements. Let’s take a look at a simple example.

x = input('Enter the first number: ')

y = input('Enter the second number: ')

print(x/y)

Chapter 7 Python and GTK+

171

This works nicely until the user enters zero as the second number.

Enter the first number: 10

Enter the second number: 0

Traceback (most recent call last):

 File "<stdin>", line 3, in <module>

ZeroDivisionError: division by zero

To catch the exception and perform some error handling (like printing a more

friendly error message), you could rewrite the program like this:

try:

 x = input('Enter the first number: ')

 y = input('Enter the second number: ')

 print(x/y)

except ZeroDivisionError:

 print('The second number can not be zero!')

Although this solution might seem overblown for such a simple case, when

hundreds of division statements are used throughout an application, this would be a

more reasonable case.

Note E xceptions propagate out of functions and methods to where they are
called, and if they are not caught there either, the exceptions will “bubble up”
to the top level of the program. This means that you can use try and except
statements to catch exceptions that are raised in your own and other people’s code
(modules, function, classes, etc.).

�Raising and Reraising Exceptions
Exceptions can be raised inside other exceptions, passing the exception on to a

higher level of code. To do this, the subsequent exception must be called without any

arguments via the raise statement.

Chapter 7 Python and GTK+

172

The following is an example of this very useful technique. The example passes the

ZeroDivisionException to a higher level of code if the exception is not suppressed.

class SuppressedDivision:

 suppressed = False

 def calc(self, expr):

 try:

 return eval(expr)

 except ZeroDivisionError:

 if self.suppressed:

 print('Division by zero is illegal!')

 else:

 raise

As you can see, when the calculation is not suppressed, the ZeroDivisionException

is caught but passed on to the higher level of code, where it will be caught and handled.

�Catching Multiple Exceptions
The try and except block can also catch and process more than one exception. To see

how this works, let’s enhance the previous example to catch the TypeError exception.

class SuppressedDivision:

 suppressed = False

 def calc(self, expr):

 try:

 return eval(expr)

 except ZeroDivisionError:

 if self.suppressed:

 print('Division by zero is illegal!')

 else:

 raise

 except TypeError:

 if self.suppressed:

 print('One of the operands was not a valid number!')

 else:

 raise

Chapter 7 Python and GTK+

173

Now we begin to see the power of the try and except code block and using

exceptions. In the preceding example, we are using the interpreter’s ability to examine all

the variables of the calculation, instead of writing essentially the same code ourselves to

process all the variables to find out if the calculation works before we process it.

We can also combine both exceptions into a single block of code, as follows.

class SuppressedDivision:

 suppressed = False

 def calc(self, expr):

 try:

 return eval(expr)

 except ZeroDivisionError, TypeError:

 if self.suppressed:

 print('One or both operands is illegal!')

 else:

 raise

We can also capture the object that causes the exception.

class SuppressedDivision:

 suppressed = False

 def calc(self, expr):

 try:

 return eval(expr)

 except (ZeroDivisionError, TypeError_, e:

 if self.suppressed:

 print('The value "' + str(e) '" is illegal!')

 else:

 raise

There is much more to processing exceptions but this information is enough to whet

your appetite.

You should consult with your Python resources for more complete information on

exceptions.

Chapter 7 Python and GTK+

175
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_8

CHAPTER 8

Text View Widget
This chapter teaches you how to use the Gtk.TextView widget. The text view widget is

similar to a Gtk.Entry widget, except it is capable of holding text that spans multiple

lines. Scrolled windows allow the document to exist beyond the bounds of the screen.

Before you learn about Gtk.TextView, this chapter begins by introducing a few new

widgets. The first two widgets are scrolled windows and viewports. Scrolled windows are

composed of two scrollbars that scroll the child widget. A few widgets support scrolling

already, including Gtk.Layout, Gtk.TreeView, and Gtk.TextView. For all other widgets

that you want to scroll, you need to add them first to a Gtk.Viewport widget, which gives

its child widget scrolling abilities.

In this chapter, you learn the following:

•	 How to use scrolled windows and viewports

•	 How to use the Gtk.TextView widget and apply text buffers

•	 The functions that text iterators and text marks perform when dealing

with buffers

•	 Methods for applying styles to the whole or part of a document

•	 How to cut, copy, and paste to and from the clipboard

•	 How to insert images and child widgets into a text view

�Scrolled Windows
Before you can learn about the Gtk.TextView widget, you need to learn about two

container widgets called Gtk.ScrolledWindow and Gtk.Viewport. Scrolled windows use

two scrollbars to allow a widget to take up more space than is visible on the screen. This

widget allows the Gtk.TextView widget to contain documents that expand beyond the

bounds of the window.

176

Both scrollbars in the scrolled window have associated Gtk.Adjustment objects.

These adjustments track the current position and range of a scrollbar; however, you will

not need to directly access the adjustments in most cases.

A scrollbar’s Gtk.Adjustment holds information about scroll bounds, steps, and

its current position. The value variable is the current position of the scrollbar between

the bounds. This variable must always be between the lower and upper values, which

are the bounds of the adjustment. The page_size is the area that can be visible on

the screen at one time, depending on the size of the widget. The step_increment and

page_increment variables are used for stepping when an arrow is pressed or when the

Page Down key is pressed.

Figure 8-1 is a screenshot of the window created with the code in Listing 8-1.

Both scrollbars are enabled because the table containing the buttons is larger than

the visible area.

Figure 8-1.  A synchronized scrolled window and viewport

Listing 8-1 shows how to use scrolled windows and viewports. As a scrollbar moves, the

viewport scrolls as well because the adjustments are synchronized. Try to resize the window

to see how the scrollbars react to becoming larger and smaller than the child widget.

CHAPTER 8 Text View Widget

177

Listing 8-1.  Using Scrolled Windows

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 grid1 = Gtk.Grid.new()

 grid2 = Gtk.Grid.new()

 grid1.set_column_homogeneous = True

 grid2.set_column_homogeneous = True

 grid1.set_row_homogeneous = True

 grid2.set_row_homogeneous = True

 grid1.set_column_spacing = 5

 grid2.set_column_spacing = 5

 grid1.set_row_spacing = 5

 grid2.set_row_spacing = 5

 i = 0

 while i < 10:

 j = 0

 while j < 10:

 button = Gtk.Button.new_with_label("Close")

 button.set_relief(Gtk.ReliefStyle.NONE)

 button.connect("clicked", self.on_button_clicked)

 grid1.attach(button, i, j, 1, 1)

 button = Gtk.Button.new_with_label("Close")

 button.set_relief(Gtk.ReliefStyle.NONE)

 button.connect("clicked", self.on_button_clicked)

 grid2.attach(button, i, j, 1, 1)

 j += 1

 i += 1

CHAPTER 8 Text View Widget

178

 swin = Gtk.ScrolledWindow.new(None, None)

 horizontal = swin.get_hadjustment()

 vertical = swin.get_vadjustment()

 viewport = Gtk.Viewport.new(horizontal, vertical)

 swin.set_border_width(5)

 swin.set_propagate_natural_width(True)

 swin.set_propagate_natural_height(True)

 viewport.set_border_width(5)

 swin.set_policy (Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC)

 swin.add_with_viewport(grid1)

 viewport.add(grid2)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 vbox.set_homogeneous = True

 vbox.pack_start(viewport, True, True, 5)

 vbox.pack_start(swin, True, True, 5)

 self.add (vbox)

 self.show_all()

 def on_button_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Scrolled Windows & Viewports")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 8 Text View Widget

179

Newly scrolled windows are created with Gtk.ScrolledWindow.new(). In Listing 8-1

each parameter is set to None , which causes the scrolled window to create two default

adjustments for you. In most cases, you want to use the default adjustments, but it is also

possible to specify your own horizontal and vertical adjustments for the scroll bars.

The adjustments in this example are used when the new viewport is created with

Gtk.Viewport.new(). The viewport adjustments are initialized with those from the

scrolled window, which makes sure that both containers are scrolled at the same time.

As you set up a scrollable window, the first decision you need to make is when the

scrollbars will be visible. In this example, Gtk.PolicyType.AUTOMATIC was used for

both scrollbars so that each is only shown when needed. Gtk.PolicyType.ALWAYS is the

default policy for both scrollbars. The following are three enumeration values provided

by Gtk.PolicyType.

•	 Gtk.PolicyType.ALWAYS: The scrollbar is always visible. It is

displayed as disabled or grayed out if scrolling is not possible.

•	 Gtk.PolicyType.AUTOMATIC: The scrollbar is only visible if scrolling is

possible. If it is not needed, the scrollbar temporarily disappears.

•	 Gtk.PolicyType.NEVER: The scrollbar is never shown.

Another property, although not used by very many applications, is the placement of

the scrollbars. In most applications, you want the scrollbars to appear along the bottom

and the right side of the widget, which is the default functionality.

However, if you want to change this, you can call set_placement(). This function

receives a Gtk.CornerType value, which defines where the content is placed with respect

to the scrollbars. For example, the default value is Gtk.CornerType.TOP_LEFT, because

the content normally appears above and to the left of the scrollbars.

swin.set_placement(window_placement)

Available Gtk.CornerType values include Gtk.CornerType.TOP_LEFT, Gtk.

CornerType.BOTTOM_LEFT, Gtk.CornerType.TOP_RIGHT, and Gtk.CornerType.BOTTOM_

RIGHT, which define where the content is placed with respect to the scrollbars.

CHAPTER 8 Text View Widget

180

Caution I t is a very rare occasion when set_placement() should be used!
In almost every possible case, you should not use this function, because it can
confuse the user. Unless you have a good reason for changing the placement, use
the default value.

It is possible to set the shadow type of the widget with respect to the child widget by

calling set_shadow_type().

swin.set_shadow_type(type)

In Chapter 4, you learned how to use the Gtk.ShadowType enumeration along with

handle boxes to set the type of border to place around the child widget. The same values

as before set the shadow type of a scrolled window.

After you have set up a scrolled window, you should add a child widget for it to be of

any use. There are two possible ways to do this, and the method is chosen based on the

type of child widget. If you are using a Gtk.TextView, Gtk.TreeView, Gtk.IconView, Gtk.

Viewport, or Gtk.Layout widget, you should use the default add() method, since all five

of these widgets include native scrolling support.

All other GTK+ widgets do not have native scrolling support. For those widgets,

add_with_viewport() should be used. This function gives the child scrolling support by

first packing it into a container widget called a Gtk.Viewport. This widget implements

scrolling ability for the child widget that lacks its own support. The viewport is then

automatically added to the scrolled window.

Caution  You should never pack Gtk.TextView, Gtk.TreeView, Gtk.IconView,
Gtk.Viewport, or Gtk.Layout widgets into a scrolled window with add_with_
viewport(), because scrolling may not be performed correctly on the widget!

It is possible to manually add a widget to a new Gtk.Viewport and then add that

viewport to a scrolled window with add(), but the convenience function allows you to

ignore the viewport completely.

The scrolled window is simply a container with scrollbars. Neither the container nor

the scrollbars perform any action by themselves. Scrolling is handled by the child widget,

which is why the child must already have native scrolling support to work correctly with

the Gtk.ScrolledWindow widget.

CHAPTER 8 Text View Widget

181

When you add a child widget that has scrolling support, a function is called to add

adjustments for each axis. Nothing is done unless the child widget has scrolling support,

which is why a viewport is required by most widgets. When the scrollbar is clicked

and dragged by the user, the value in the adjustment changes, which causes the value-

changed signal to be emitted. This action also causes the child widget to render itself

accordingly.

Because the Gtk.Viewport widget did not have any scrollbars of its own, it relied

completely on the adjustments to define its current position on the screen. The

scrollbars are used in the Gtk.ScrolledWindow widget as an easy mechanism for

adjusting the current value of the adjustment.

�Text Views
The Gtk.TextView widget displays multiple lines of text of a document. It provides

many ways to customize the whole of a document or individual portions of it. It is even

possible to insert GdkPixbuf objects and child widgets into a document. Gtk.TextView is

the first reasonably involved widget you have encountered up to this point, so the rest of

this chapter is dedicated to many aspects of the widget. It is a very versatile widget that

you need to use in many GTK+ applications.

The first few examples of this chapter may lead you to believe that Gtk.TextView can

only display simple documents, but that is not the case. It can also display many types of

rich text, word processing, and interactive documents that are used by a wide variety of

applications. You learn how to do this in the sections that follow.

Figure 8-2 introduces you to a simple text view window that allows you to enter text

and do some basic layout design. But it also does not have many features and is lacking

features found in many word processors.

Figure 8-2.  A Gtk.TextView widget

CHAPTER 8 Text View Widget

182

Text views are used in every type of text and document editing application that

uses GTK+. If you have ever used AbiWord, gedit, or most other text editors created for

GNOME, you have used the Gtk.TextView widget. It is also used in the Gaim application

in instant message windows. (In fact, all the examples in this book were created in the

OpenLDev application, which uses Gtk.TextView for source code editing!)

�Text Buffers
Each text view displays the contents of a class called Gtk.TextBuffer. Text buffers store

the current state of the content within a text view. They hold text, images, child widgets,

text tags, and all other information necessary for rendering the document.

A single text buffer is capable of being displayed by multiple text views, but each text

view has only one associated buffer. Most programmers do not take advantage of this

feature, but it becomes important when you learn how to embed child widgets into a text

buffer in a later section.

As with all text widgets in GTK+, text is stored as UTF-8 strings. UTF-8 is a type of

character encoding that uses from 1 byte to 4 bytes for every character. To differentiate

the number of bytes that a character takes up, “0” always precedes a character that is 1

byte, “110” precedes 2-byte characters, “1110” comes before 3-byte sequences, and so

on. UTF-8 characters that span multiple bytes have “10” in the two most significant bits

of the rest of the bytes.

By doing this, the basic 128 ASCII characters are still supported, because an

additional 7 bits are available in a single-byte character after the initial “0”. UTF-8 also

provides support for characters in many other languages. This method also avoids small

byte sequences occurring within larger byte sequences.

When handling text buffers, you need to know two terms: offset and index. The word

“offset” refers to one character. UTF-8 characters may span one or more bytes within the

buffer, so a character offset in a Gtk.TextBuffer may not be a single byte long.

Caution  The word “index” refers to an individual byte. You need to be careful
when stepping through a text buffer in later examples, because you cannot refer to
an index that is between two character offsets.

CHAPTER 8 Text View Widget

183

Listing 8-2 illustrates one of the simplest text view examples you could create. A new

Gtk.TextView widget is created. Its buffer is retrieved, and text is inserted into the buffer.

A scrolled window then contains the text view.

Listing 8-2.  A Simple Gtk.TextView Example

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, 150)

 textview = Gtk.TextView.new()

 buffer = textview.get_buffer()

 text = "Your 1st GtkTextView widget!"

 buffer.set_text(text, len(text))

 scrolled_win = Gtk.ScrolledWindow.new (None, None)

 scrolled_win.add(textview)

 self.add(scrolled_win)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Text Views")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 8 Text View Widget

184

Most new Gtk.TextView widgets are created with Gtk.TextView.new(). By using

this function, an empty buffer is created for you. This default buffer can be replaced later

with set_buffer() or retrieved with get_buffer().

If you want to set the initial buffer to one that you have already created, you can

create the text view with Gtk.TextView.new_with_buffer(). In most cases, it is easier to

simply use the default text buffer.

Once you have access to a Gtk.TextBuffer object, there are many ways to add

content, but the easiest method is to call set_text(). This function receives a text buffer,

a UTF-8 text string to set as the buffer’s new text, and the length of the text.

set_text(text, length)

If the text string is NULL-terminated, you can use –1 as the length of the string. This

function silently fails if a null character is found before the specified length of text.

The current contents of the buffer are completely replaced by the new text string. In

the “Text Iterators and Marks” section, you are introduced to functions that allow you to

insert text into a buffer without overwriting the current content that are more suitable for

inserting large amounts of text.

Recall from the previous section that there are five widgets that have native scrolling

abilities, including the Gtk.TextView widget. Because text views already have the

facilities to manage adjustments, container.add() should always add them to scrolled

windows.

�Text View Properties
Gtk.TextView was created to be a very versatile widget. Because of this, many properties

are provided for the widget. In this section, you learn about a number of these widget

properties.

One feature that makes the text view widget extremely useful is that you are able to

apply changes to the whole or only an individual part of the widget. Text tags change the

properties of a segment of text. Customizing only a part of the document is covered in a

later section of this chapter.

Listing 8-3 shows many of the properties that can customize the contents of Gtk.

TextBuffer. You should note that many of these properties could be overridden in

individual sections of a document with text tags.

CHAPTER 8 Text View Widget

185

Listing 8-3.  Using Gtk.TextView Properties

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Pango

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(260, 150)

 font = Pango.font_description_from_string("Monospace Bold 10")

 textview = Gtk.TextView.new()

 textview.modify_font(font)

 textview.set_wrap_mode(Gtk.WrapMode.WORD)

 textview.set_justification(Gtk.Justification.RIGHT)

 textview.set_editable(True)

 textview.set_cursor_visible(True)

 textview.set_pixels_above_lines(5)

 textview.set_pixels_below_lines(5)

 textview.set_pixels_inside_wrap(5)

 textview.set_left_margin(10)

 textview.set_right_margin(10)

 buffer = textview.get_buffer()

 text = "This is some text!\nChange me!\nPlease!"

 buffer.set_text(text, len(text))

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.ALWAYS)

 scrolled_win.add(textview)

 self.add(scrolled_win)

CHAPTER 8 Text View Widget

186

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Text Views Properties")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The best way to explain what each of Gtk.TextView’s properties does is to show you

a screenshot of the result, which can be viewed in Figure 8-3. You should compile the

application on your own machine and try changing the values used in Listing 8-3 to get a

feel for what they do as well.

Figure 8-3.  Gtk.TextView with nondefault properties

It is possible to change the font and colors of individual parts of the text view content,

but as shown in Listing 8-3 it is still possible to use the functions from past chapters to

change the content of the whole widget. This is useful when editing documents that have

a consistent style, such as text files.

CHAPTER 8 Text View Widget

187

When dealing with a widget that displays text on multiple lines, you need to decide

if and how text is wrapped. In Listing 8-3 the wrap mode was set to Gtk.WrapMode.WORD

with set_wrap_mode(). This setting wraps the text but does not split a word over two

lines. There are four types of wrap modes available in the Gtk.WrapMode enumeration.

•	 Gtk.WrapMode.NONE: No wrapping occurs. If a scrolled window

contains the view, the scrollbar expands; otherwise, the text view

expands on the screen. If a scrolled window does not contain the

Gtk.TextView widget, it expands the widget horizontally.

•	 Gtk.WrapMode.CHAR: Wrap to the character, even if the wrap point

occurs in the middle of a word. This is usually not a good choice for a

text editor, since it splits words over two lines.

•	 Gtk.WrapMode.WORD: Fill up the line with the largest number of words

possible but do not break a word to wrap. Instead, bring the whole

word onto the next line.

•	 Gtk.WrapMode.WORD_CHAR: Wrap in the same way as GTK_WRAP_

WORD, but if a whole word takes up more than one visible width of

the text view, wrap it by the character.

At times, you may want to prevent the user from editing the document. The editable

property can be changed for the entire text view with set_editable(). It is worth

noting that with text tags, you can override set_editable() for certain sections of the

document, so it is not always an end-all solution.

Contrast this with set_sensitive(), which prevents the user from interacting

with the widget at all. If a text view is set as not editable, the user is still able to perform

operations on the text that do not require the text buffer to be edited, such as selecting

text. Setting a text view as insensitive prevents the user from performing any of these

actions.

When you disable editing within a document, it is also useful to stop the cursor from

being visible with set_cursor_visible(). By default, both of these properties are set to

True, so both need to be changed to keep them in sync.

By default, there is no extra spacing placed between lines, but Listing 8-3 shows

you how to add spacing above a line, below a line, and between wrapped lines. These

functions add extra space between lines, so you can assume that there is already enough

spacing between lines. In most cases, you should not use this feature, because spacing

may not look correct to the user.

CHAPTER 8 Text View Widget

188

Justification is another important property of text views, especially when

dealing with rich text documents. There are four default justification values: Gtk.

Justification.LEFT, Gtk.Justification.RIGHT, Gtk.Justification.CENTER, and

Gtk.Justification.FILL.

Justification can be set for the whole text view with set_justification(), but it can

be overridden for specific sections of text with text tags. In most cases, you want to use

the default Gtk.Justification.LEFT justification unless the user wants it to be changed.

Text is aligned to the left of the view by default.

textview.set_justification(justification)

The last properties set by Listing 8-3 were the left and right margins. By default, there is

no extra margin space added to either the left or right side, but you can add a certain number

of pixels to the left with set_left_margin() or to the right with set_right_margin().

�Pango Tab Arrays
Tabs added to a text view are set to a default width, but there are times when you want

to change that. For example, in a source code editor, one user may want to indent

two spaces while another may want to indent five spaces. GTK+ provides the Pango.

TabArray object, which defines a new tab size.

When changing the default tab size, you first calculate the number of horizontal

pixels the tab takes up based on the current font. The following make_tab_array()

function can calculate a new tab size. The function begins by creating a string out of the

desired number of spaces. That string is then translated into a Pango.Layout object,

which retrieves the pixel width of the displayed string. Lastly, the Pango.Layout is

translated into a Pango.TabArray, which can be applied to a text view.

def make_tab_array(fontdesc, tab_size, textview):

 if tab_size < 100:

 return

 tab_string = ' ' * tab_size

 layout = Gtk.Widget.create_pango_layout(textview, tab_string)

 layout.set_font_description(fontdesc)

 (width, height) = layout.get_pixel_size()

 tab_array = Pango.TabArray.new(1, True)

 tab_array.set_tab(0, Pango.TabAlign.LEFT, width)

 textview.set_tabs(tab_array)

CHAPTER 8 Text View Widget

189

The Pango.Layout object represents a whole paragraph of text. Normally, Pango

uses it internally for laying out text within a widget. However, it can be employed by this

example to calculate the width of the tab string.

We begin by creating a new Pango.Layout object from the Gtk.TextView and

creating the tab string with Gtk.Widget.create_pango_layout(). This uses the default

font description of the text view. This is fine if the whole document has the same font

applied to it. Pango.Layout describes how to render a paragraph of text.

layout = Gtk.Widget.create_pango_layout(textview, tab_string)

If the font varies within the document, or it has not already been applied to the text

view, you want to specify the font to use for the calculations. You can set the font of a

Pango.Layout with set_font_description(). This uses a Pango.FontDescription

object to describe the layout’s font.

layout.set_font_description(fd)

Once you have correctly configured your Pango.Layout, the width of the string can be

retrieved with get_pixel_size(). This is the calculated space that the string takes up within

the buffer, which should be added when the user presses the Tab key within the widget.

(width, height) = layout.get_pixel_size()

Now that you have retrieved the width of the tab, you need to create a new Pango.

TabArray with Pango.TabArray.new(). This function receives the number of elements

that should be added to the array and notification of whether the size of each element is

going to be specified in pixels.

tab_array = Pango.TabArray.new(1, True)

You should always create the tab array with only one element, because there is only

one tab type supported at this time. If True is not specified for the second parameter,

tabs are stored as Pango units; 1 pixel is equal to 1,024 Pango units.

Before applying the tab array, you need to add the width. This is done with set_

tab(). The integer “0” refers to the first element in the Pango.TabArray, the only one

that should ever exist. Pango.TabAlign.LEFT must always be specified for the second

parameter, because it is currently the only supported value. The last parameter is the

width of the tab in pixels.

tab_array.set_tab(0, Pango.TabAlign.LEFT, width)

CHAPTER 8 Text View Widget

190

When you receive the tab array back from the function, you need to apply it to the

whole of the text view with set_tab(). This makes sure that all tabs within the text view

are set to the same width. However, as with all other text view properties, this value can

be overridden for individual paragraphs or sections of text.

textview.set_tabs(tab_array)

�Text Iterators and Marks
When manipulating text within a Gtk.TextBuffer, there are two objects that can keep

track of a position within the buffer: Gtk.TextIter and Gtk.TextMark. Functions are

provided by GTK + to translate between these two types of objects.

Text iterators represent a position between two characters in a buffer. They are

utilized when manipulating text within a buffer. The problem presented by text

iterators is that they automatically become invalidated when a text buffer is edited.

Even if the same text is inserted and then removed from the buffer, the text iterator

becomes invalidated, because iterators are meant to be allocated on the stack and used

immediately.

For keeping track of a position throughout changes within a text buffer, the Gtk.

TextMark object is provided. Text marks remain intact while buffers are manipulated and

move their position based on how the buffer is manipulated. You can retrieve an iterator

pointing to a text mark with get_iter_at_mark(), which makes marks ideal for tracking

a position in the document.

get_iter_at_mark(iter, mark)

Text marks act as though they are invisible cursors within the text, changing position

depending on how the text is edited. If text is added before the mark, it moves to the right

so that it remains in the same textual position.

By default, text marks have a gravity set to the right. This means that it moves to

the right as text is added. Let us assume that the text surrounding a mark is deleted.

The mark moves to the position between the two pieces of text on either side of the

deleted text. Then, if text is inserted at the text mark, because of its right gravity setting, it

remains on the right side of the inserted text. This is similar to the cursor, because as text

is inserted, the cursor remains to the right of the inserted text.

CHAPTER 8 Text View Widget

191

Tip  By default, text marks are invisible within the text. However, you can set a
Gtk.TextMark as visible by calling set_visible(), which places a vertical bar
to indicate where it is located.

Text marks can be accessed in two ways. You can retrieve a text mark at a specific

Gtk.TextIter location. It is also possible to set up a text mark with a string as its name,

which makes marks easy to keep track of.

Two default text marks are always provided by GTK+ for every Gtk.TextBuffer:

insert and selection_bound. The insert text mark refers to the current cursor position

within the buffer. The selection_bound text mark refers to the boundary of selected

text if there is any selected text. If no text is selected, these two marks point to the same

position.

The "insert" and "selection_bound" text marks are extremely useful when

manipulating buffers. They can be manipulated to automatically select or deselect text

within a buffer and help you figure out where text should logically be inserted within a

buffer.

�Editing the Text Buffer
GTK+ provides a wide array of functions for retrieving text iterators as well as

manipulating text buffers. In this section, you see a few of the most important of these

methods in use in Listing 8-4, and then you are introduced to many more. Figure 8-4

displays an application that inserts and retrieves the text with a Gtk.TextBuffer.

Figure 8-4.  An application using a Gtk.TextView widget

CHAPTER 8 Text View Widget

192

Listing 8-4 is a simple example that performs two functions. When the Insert Text

button shown in Figure 8-4 is clicked, the string shown in the Gtk.Entry widget is

inserted at the current cursor position. When the Get Text button is clicked, any selected

text is output with print().

Listing 8-4.  Using Text Iterators

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(-1, -1)

 textview = Gtk.TextView.new()

 entry = Gtk.Entry.new()

 insert_button = Gtk.Button.new_with_label("Insert Text")

 retrieve = Gtk.Button.new_with_label("Get Text")

 �insert_button.connect("clicked", self.on_insert_text, (entry, textview))

 �retrieve.connect("clicked", self.on_retrieve_text, (entry, textview))

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.add(textview)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(entry, True, True, 0)

 hbox.pack_start(insert_button, True, True, 0)

 hbox.pack_start(retrieve, True, True, 0)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 vbox.pack_start(scrolled_win, True, True, 0)

 vbox.pack_start(hbox, True, True, 0)

 self.add(vbox)

 self.show_all()

 def on_insert_text(self, button, w):

 buffer = w[1].get_buffer()

 text = w[0].get_text()

CHAPTER 8 Text View Widget

193

 mark = buffer.get_insert()

 iter = buffer.get_iter_at_mark(mark)

 buffer.insert(iter, text, len(text))

 def on_retrieve_text(self, button, w):

 buffer = w[1].get_buffer()

 (start, end) = buffer.get_selection_bounds()

 text = buffer.get_text(start, end, False)

 print(text)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Text Iterators")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

An important property of iterators is that the same iterator can be used repeatedly,

because iterators become invalidated every time you edit a text buffer. In this way, you

can continue to reuse the same Gtk.TextIter object instead of creating a huge number

of variables.

�Retrieving Text Iterators and Marks
As stated before, there are quite a number of functions available for retrieving text

iterators and text marks, many of which is used throughout this chapter.

Listing 8-4 begins by retrieving the insert mark with buffer.get_insert(). It is

also possible to use buffer.get_selection_bound() to retrieve the “selection_bound”

text mark.

mark = buffer.get_insert()

iter = buffer.get_iter_at_mark(mark)

CHAPTER 8 Text View Widget

194

Once you have retrieved a mark, you can translate it into a text iterator with

textbuffer.get_iter_at_mark(), so that it can manipulate the buffer.

The other function presented by Listing 8-4 for retrieving text iterators is buffer.

get_selection_bounds(), which returns the iterators located at the insert and

selection_bound marks. You can set one or both of the text iterator parameters to None,

which prevent the value from returning, although it would make more sense to use the

functions for the specific mark if you only need one or the other.

When retrieving the contents of a buffer, you need to specify a start and end iterator

for the slice of text. If you want to get the whole contents of the document, you need

iterators pointing to the beginning and end of the document, which can be retrieved

with buffer.get_bounds().

buffer.get_bounds(start, end)

It is also possible to retrieve only the beginning or end iterator for the text buffer

independently of the other with buffer.get_start_iter() or buffer.get_end_iter().

Text within a buffer can be retrieved with buffer.get_text(). It returns all the text

between the start and end iterators. If the last parameter is set to True, then invisible text

is also returned.

buffer.get_text(start, end, boolean)

Caution  You should only use buffer.get_text() for retrieving the whole
contents of a buffer. It ignores any image or widget objects embedded in the
text buffer, so character indexes may not correspond to the correct location. For
retrieving individual parts of a text buffer, use buffer.get_slice() instead.

Recall that the offset refers to the number of individual characters within the buffer.

These characters can be one or more bytes long. The buffer.get_iter_at_offset()

function allows you to retrieve the iterator at the location of a specific offset from the

beginning of the buffer.

buffer.get_iter_at_offset(iter, character_offset)

GTK+ also provides buffer.get_iter_at_line_index(), which chooses a position

of an individual byte on the specified line. You should be extremely careful when using

this function, because the index must always point to the beginning of a UTF-8 character.

Remember that characters in UTF-8 may not be only a single byte!

CHAPTER 8 Text View Widget

195

Rather than choosing a character offset, you can retrieve the first iterator on a

specified line with buffer.get_iter_at_line().

buffer.get_iter_at_line(iter, character_offset)

If you want to retrieve the iterator at an offset from the first character of a specific

line, buffer.get_iter_at_line_offset()does the trick.

�Changing Text Buffer Contents
You have already learned how to reset the contents of a whole text buffer, but it is also

useful to edit only a portion of a document. There are a number of functions provided for

this purpose. Listing 8-4 shows you how to insert text into a buffer.

If you need to insert text in an arbitrary position of the buffer, you should use

buffer.insert(). To do this, you need a Gtk.TextIter pointing to the insertion point,

the text string to insert into the buffer that must be UTF-8, and the length of the text.

buffer.get_insert()

When this function is called, the text buffer emits the insert-text signal, and the text

iterator is invalidated. However, the text iterator is then reinitialized to the end of the

inserted text.

A convenience method named insert_at_cursor() can call buffer.insert() at the

cursor’s current position. This can easily be implemented by using the insert text mark,

but it helps you avoid repetitive calls.

buffer.insert_at_cursor(text, length)

You can delete the text between two text iterators with gtk_text_buffer_delete().

The order in which you specify the iterators is irrelevant, because the method

automatically places them in the correct order.

buffer.delete(start, end)

This function emits the "delete-range" signal, and both iterators are invalidated.

However, the start and end iterators are both reinitialized to the start location of the

deleted text.

CHAPTER 8 Text View Widget

196

�Cutting, Copying, and Pasting Text
Figure 8-5 shows a text view with an entry field and buttons that can access the clipboard

functions via the text view object.

Figure 8-5.  Gtk.TextView clipboard buttons

Three clipboard options are cut, copy, and paste, which are standard to almost all

text editors. They are built into every Gtk.TextView widget. However, there are times that

you want to implement your own versions of these functions to include in an application

menu or toolbar.

Listing 8-5 gives an example of each of these methods. When one of the three Gtk.

Button widgets is clicked, some action is initialized. Try using the buttons and the right-

click menu to show that both use the same Gtk.Clipboard object. These functions can also

be called by using the built-in keyboard accelerators, which are Ctrl+C, Ctrl+X, and Ctrl+V.

Listing 8-5.  Using Text Iterators

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

CHAPTER 8 Text View Widget

197

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 textview = Gtk.TextView.new()

 cut = Gtk.Button.new_with_label("Cut")

 copy = Gtk.Button.new_with_label("Copy")

 paste = Gtk.Button.new_with_label("Paste")

 cut.connect("clicked", self.on_cut_clicked, textview)

 copy.connect("clicked", self.on_copy_clicked, textview)

 paste.connect("clicked", self.on_paste_clicked, textview)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_size_request(300, 200)

 scrolled_win.add(textview)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(cut, True, True, 0)

 hbox.pack_start(copy, True, True, 0)

 hbox.pack_start(paste, True, True, 0)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 vbox.pack_start(scrolled_win, True, True, 0)

 vbox.pack_start(hbox, True, True, 0)

 self.add(vbox)

 def on_cut_clicked(self, button, textview):

 clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))

 buffer = textview.get_buffer()

 buffer.cut_clipboard(clipboard, True)

 def on_copy_clicked(self, button, textview):

 clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))

 buffer = textview.get_buffer()

 buffer.copy_clipboard(clipboard)

 def on_paste_clicked(self, button, textview):

 clipboard = Gtk.Clipboard.get(Gdk.Atom.intern("CLIPBOARD", False))

 buffer = textview.get_buffer()

 buffer.paste_clipboard (clipboard, None, True)

CHAPTER 8 Text View Widget

198

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Cut, Copy &

Paste")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Gtk.Clipboard is a central class where data can be transferred easily between

applications. To retrieve a clipboard that has already been created, you should use

clipboard.get(). GTK+ 3.x only supplies a single default clipboard. GTK+ 2.x provided

named clipboards but that functionality is no longer supported.

Note W hile it is possible to create your own Gtk.Clipboard objects, when
performing basic tasks, you should use the default clipboard. You can retrieve it
by executing the method Gdk.Atom.intern("CLIPBOARD", False) to Gtk.
Clipboard.get().

It is feasible to directly interact with the Gtk.Clipboard object that you have created,

adding and removing data from it. However, when performing simple tasks including

copying and retrieving text strings for a Gtk.TextView widget, it makes more sense to use

Gtk.TextBuffer’s built-in methods.

The simplest of Gtk.TextBuffer’s three clipboard actions is copying text, which can

be done with the following:

buffer.copy_clipboard(clipboard)

CHAPTER 8 Text View Widget

199

The second clipboard function, buffer.cut_clipboard(clipboard, True) copies

the selection to the clipboard as well as removing it from the buffer. If any of the selected

text does not have the editable flag set, it is set to the third parameter of this function. This

function copies not only text but also embedded objects such as images and text tags.

buffer.cut_clipboard(clipboard, True)

The last clipboard function, buffer.paste_clipboard() first retrieves the content of

the clipboard. Next, the function does one of two things. If the second parameter, which

accepts a Gtk.TextIter, has been specified, the content is inserted at the point of that

iterator. If you specify None for the third parameter, the content is inserted at the cursor.

buffer.paste_clipboard (clipboard, None, True)

If any of the content that is going to be pasted does not have the editable flag set,

then it is set automatically to default_editable. In most cases, you want to set this

parameter to True, because it allows the pasted content to be edited. You should also

note that the paste operation is asynchronous.

�Searching the Text Buffer
In most applications that use the Gtk.TextView widget, you need to search through a text

buffer in one or more instances. GTK+ provides two functions for finding text in a buffer:

forward_search() and backward_search().

The following example shows you how to use the first of these functions to search

for a text string in a Gtk.TextBuffer; a screenshot of the example is shown in Figure 8-6.

The example begins when the user clicks the Find button.

CHAPTER 8 Text View Widget

200

The application in Listing 8-6 searches for all instances of the specified string within

the text buffer. A dialog is presented to the user, displaying how many times the string

was found in the document.

Listing 8-6.  Using The Gtk.TextIter Find Function

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 textview = Gtk.TextView.new()

 entry = Gtk.Entry.new()

 entry.set_text("Search for ...")

 find = Gtk.Button.new_with_label("Find")

Figure 8-6.  An application that searches a text buffer

CHAPTER 8 Text View Widget

201

 find.connect("clicked", self.on_find_clicked, (textview, entry))

 scrolled_win = Gtk.ScrolledWindow.new (None, None)

 scrolled_win.set_size_request(250, 200)

 scrolled_win.add(textview)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(entry, True, True, 0)

 hbox.pack_start(find, True, True, 0)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 vbox.pack_start(scrolled_win, True, True, 0)

 vbox.pack_start(hbox, True, True, 0)

 self.add(vbox)

 def on_find_clicked(self, button, w):

 find = w[1].get_text()

 find_len = len(find)

 buffer = w[0].get_buffer()

 start = buffer.get_start_iter()

 end_itr = buffer.get_end_iter()

 i = 0

 while True:

 end = start.copy()

 end.forward_chars(find_len)

 text = buffer.get_text(start, end, False)

 if text == find:

 i += 1

 start.forward_chars(find_len)

 else:

 start.forward_char()

 if end.compare(end_itr) == 0:

 break

 �output = "The string '"+find+"' was found " + str(i) +

" times!"

 dialog = Gtk.MessageDialog(parent=self,

 flags=Gtk.DialogFlags.MODAL,

 message_type=Gtk.MessageType.INFO,

 text=output, title="Information",

 buttons=("OK", Gtk.ResponseType.OK))

CHAPTER 8 Text View Widget

202

 dialog.run()

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Searching Buffers")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The first thing the search function needs to do is retrieve the lower and upper search

bound of the document with buffer.get_start_iter() and buffer.get_end_iter().

We use the end upper bound limit for testing purposes later in the code.

end = start.copy()

end.forward_chars(find_len)

The search loop begins by setting up an end Gtk.TextIter and then incremented by

the length of the search string. This creates a slice of the buffer equal to the length of the

search string.

text = buffer.get_text(start, end, False)

The buffer.get_text() retrieves the text between the two Gtk.TextIter’s. The

third parameter is a boolean specifying whether only text is retrieved or to include other

markers in the text.

if text == find:

 i += 1

 start.forward_chars(find_len)

CHAPTER 8 Text View Widget

203

else:

 start.forward_char()

if end.compare(end_itr) == 0:

 break

Next, we test if the search string matches the string from the buffer. If a match was

found then we increment our match counter and move the start Gtk.TextIter past the

string we found in the buffer. If a match was not found then increment the start Gtk.

TextIter by one character. Lastly, we test upper search bound Gtk.TextIter is equal to

the end of the buffer and break out of our endless loop if the two are equal.

After we break out of the loop, we report the search results to the user.

�Scrolling Text Buffers
GTK+ does not automatically scroll to search matches that you select. To do this, you

need to first call buffer.create_mark() to create a temporary Gtk.TextMark at the

location of the found text.

buffer.create_mark(name, location, left_gravity)

The second parameter of buffer.create_mark() allows you to specify a text string

as a name for the mark. This name can reference the mark later without the actual

mark object. The mark is created at the location of the specified text iterator. The last

parameter creates a mark with left gravity if set to True.

Then, use view.scroll_mark_onscreen() to scroll the buffer, so the mark is on the

screen. After you are finished with the mark, you can remove it from the buffer with

buffer.delete_mark().

textview.scroll_mark_onscreen(mark)

The problem with view.scroll_mark_onscreen() is that it only scrolls the minimum

distance to show the mark on the screen. For example, you may want the mark to be

centered within the buffer. To specify alignment parameters for where the mark appears

within the visible buffer, call textview.scroll_to_mark().

textview.scroll_to_mark(mark, margin, use_align, xalign, yalign)

CHAPTER 8 Text View Widget

204

You begin by placing a margin, which reduces the scrollable area. The margin must

be specified as a floating-point number, which reduces the area by that factor. In most

cases, you want to use 0.0 as the margin so the area is not reduced at all.

If you specify False for the use_align parameter, the function scrolls the minimal

distance to get the mark onscreen; otherwise, the function uses the two alignment

parameters as guides, which allows you to specify horizontal and vertical alignment of

the mark within the visible area.

An alignment of 0.0 refers to the left or top of the visible area, 1.0 refers to the right or

bottom and 0.5 refers to the center. The function scrolls as far as possible, but it may not

be able to scroll the mark to the specified position. For example, it is impossible to scroll

the last line in a buffer to the top if the buffer is larger than one character tall.

There is another function, textview.scroll_to_iter(), which behaves in the same

manner as textview.scroll_to_mark(). The only difference is that it receives a Gtk.

TextIter instead of a Gtk.TextMark for the location, although in most cases, you should

use text marks.

�Text Tags
There are many functions provided for changing properties of all the text within a

Gtk.TextBuffer, which have been covered in previous sections. But, as previously

mentioned, it is also possible to change the display properties of only an individual

section of text with the Gtk.TextTag object.

Text tags allow you to create documents where the text style varies among different

parts of the text, which is commonly called rich text editing. A screenshot of a Gtk.

TextView that uses multiple text styles is shown in Figure 8-7.

CHAPTER 8 Text View Widget

205

Text tags are actually a very simple concept to apply. In Listing 8-7 an application

is created that allows the user to apply multiple styles or remove all the tags from the

selection. After reading the rest of this section, you might want to try out other text

properties by altering Listing 8-7 to include different style options.

Listing 8-7.  Using Text Iterators

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Pango

text_to_scales = [("Quarter Sized", 0.25),

 �("Double Extra Small", 0.5787037037037), ("Extra Small",

0.6444444444444), ("Small", 0.8333333333333), ("Medium",

1.0), ("Large", 1.2), ("Extra Large", 1.4399999999999),

("Double Extra Large", 1.728), ("Double Sized", 2.0)]

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(500, -1)

Figure 8-7.  Formatted text within a text buffer

CHAPTER 8 Text View Widget

206

 textview = Gtk.TextView.new()

 buffer = textview.get_buffer()

 buffer.create_tag("bold", weight=Pango.Weight.BOLD)

 buffer.create_tag("italic", style=Pango.Style.ITALIC)

 buffer.create_tag("strike", strikethrough=True)

 buffer.create_tag("underline", underline=Pango.Underline.SINGLE)

 bold = Gtk.Button.new_with_label("Bold")

 italic = Gtk.Button.new_with_label("Italic")

 strike = Gtk.Button.new_with_label("Strike")

 underline = Gtk.Button.new_with_label("Underline")

 clear = Gtk.Button.new_with_label("Clear")

 scale_button = Gtk.ComboBoxText.new()

 i = 0

 while i < len(text_to_scales):

 (name, scale) = text_to_scales[i]

 scale_button.append_text(name)

 buffer.create_tag(tag_name=name, scale=scale)

 i += 1

 bold.__setattr__("tag", "bold")

 italic.__setattr__("tag", "italic")

 strike.__setattr__("tag", "strike")

 underline.__setattr__("tag", "underline")

 bold.connect("clicked", self.on_format, textview)

 italic.connect("clicked", self.on_format, textview)

 strike.connect("clicked", self.on_format, textview)

 underline.connect("clicked", self.on_format, textview)

 clear.connect("clicked", self.on_clear_clicked, textview)

 scale_button.connect("changed", self.on_scale_changed, textview)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 vbox.pack_start(bold, False, False, 0)

 vbox.pack_start(italic, False, False, 0)

 vbox.pack_start(strike, False, False, 0)

 vbox.pack_start(underline, False, False, 0)

 vbox.pack_start(scale_button, False, False, 0)

 vbox.pack_start(clear, False, False, 0)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

CHAPTER 8 Text View Widget

207

 scrolled_win.add(textview)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.ALWAYS)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(scrolled_win, True, True, 0)

 hbox.pack_start(vbox, False, True, 0)

 self.add(hbox)

 def on_format(self, button, textview):

 tagname = button.tag

 buffer = textview.get_buffer()

 (start, end) = buffer.get_selection_bounds()

 buffer.apply_tag_by_name(tagname, start, end)

 def on_scale_changed(self, button, textview):

 if button.get_active() == -1:

 return

 text = button.get_active_text()

 button.__setattr__("tag", text)

 self.on_format(button, textview)

 button.set_active(-1)

 def on_clear_clicked(self, button, textview):

 buffer = textview.get_buffer()

 (start, end) = buffer.get_selection_bounds()

 buffer.remove_all_tags(start, end)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Text Tags")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 8 Text View Widget

208

When you create a text tag, you normally have to add it to a Gtk.TextBuffer’s tag

table, an object that holds all the tags available to a text buffer. You can create a new Gtk.

TextTag object with Gtk.TextTag.new() and then add it to the tag table. However, you

can do this all in one step with buffer.create_tag().

buffer.create_tag(tag_name, property_name=value)

The first parameter specifies the name of the tag to be added to the table Gtk.

TextTag. This name can reference a tag for which you do not have the Gtk.TextTag

object anymore. The next parameters are a set of keyword/value list of Gtk.TextTag style

properties and their values.

For example, if you wanted to create a text tag that sets the background and

foreground colors as black and white respectively, you could use the following method.

This function returns the text tag that was created, although it has already been added to

the text buffer’s tag table.

buffer.create_tag("colors", background="#000000", foreground="#FFFFFF")

There are a large number of style properties available in GTK+.

Once you have created a text tag and added it to a Gtk.TextBuffer’s tag table, you

can apply it to ranges of text. In Listing 8-7 the tag is applied to selected text when a

button is clicked. If there is no selected text, the cursor position is set to the style. All text

typed at that position would have the tag applied as well.

Tags are generally applied to text with buffer.apply_tag_by_name(). The tag is

applied to the text between the start and end iterators. If you still have access to the Gtk.

TextTag object, you can also apply a tag with buffer.apply_tag().

buffer.apply_tag_by_name(tag_name, start, end)

Although not used in Listing 8-7 it is possible to remove a tag from an area of text

with buffer.remove_tag_by_name(). This function removes all instances of the tag

between the two iterators if they exist.

buffer.remove_tag_by_name(tag_name, start, end)

CHAPTER 8 Text View Widget

209

Note  These functions only remove tags from a certain range of text. If the tag
was added to a larger range of text than the range specified, the tag is removed for
the smaller range, and new bounds are created on either side of the selection. You
can test this with the application in Listing 8-7.

If you have access to the Gtk.TextTag object, you can remove the tag with buffer.

remove_tag().

It is also possible to remove every tag within a range with buffer.remove_all_tags().

�Inserting Images
In some applications, you may want to insert images into a text buffer. This can easily be

done with Gdk.Pixbuf objects. In Figure 8-8, two images were inserted into a text buffer

as Gdk.Pixbuf objects.

Figure 8-8.  Formatted text within a text buffer

Adding a pixbuf to a Gtk.TextBuffer is performed in three steps. First, you must

create the pixbuf object and retrieve the Gtk.TextIter where it is inserted. Then, you

can use buffer.insert_pixbuf() to add it to the buffer. Listing 8-8 shows the process of

creating a Gdk.Pixbuf object from a file and adding it to a text buffer.

CHAPTER 8 Text View Widget

210

Listing 8-8.  Inserting Images into Text Buffers

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(200, 150)

 textview = Gtk.TextView.new()

 buffer = textview.get_buffer()

 text = " Undo\n Redo"

 buffer.set_text(text, len(text))

 icon_theme = Gtk.IconTheme.get_default()

 undo = icon_theme.load_icon("edit-undo", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 line = buffer.get_iter_at_line (0)

 buffer.insert_pixbuf(line, undo)

 redo = icon_theme.load_icon("edit-redo", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 line = buffer.get_iter_at_line (1)

 buffer.insert_pixbuf(line, redo)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.add(textview)

 self.add (scrolled_win)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 8 Text View Widget

211

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Pixbufs")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Inserting a Gdk.Pixbuf object into a text buffer is done with buffer.insert_

pixbuf(). The Gdk.Pixbuf object is inserted at the specified location, which can be any

valid text iterator in the buffer.

buffer.insert_pixbuf(iter, pixbuf)

Pixbufs are handled differently by various functions. For example, buffer.get_

slice() places the 0xFFFC character where a pixbuf is located. However, the 0xFFFC

character can occur as an actual character in the buffer, so that is not a reliable indicator

of the location of a pixbuf.

Another example is buffer.get_text(), which completely ignores nontextual

elements, so there is no way to check for pixbufs within the text using this function.

Therefore, if you are using pixbufs in a Gtk.TextBuffer, it is best to retrieve text from

the buffer with buffer.get_slice(). You can then use iter.get_pixbuf() to check

whether the 0xFFFC character represents a Gdk.Pixbuf object; it returns None if a pixbuf

is not found at that location.

iter.get_pixbuf()

�Inserting Child Widgets
Inserting widgets into a text buffer is a little more complicated than pixbufs, because

you must notify both the text buffer and the text view to embed the widget. You begin by

creating a Gtk.TextChildAnchor object, which marks the placement of the widget within

the Gtk.TextBuffer. Then, you add the widget to the Gtk.TextView widget.

CHAPTER 8 Text View Widget

212

Figure 8-9 shows a Gtk.TextView widget that contains a child Gtk.Button widget.

Listing 8-9 creates this window. When the button is pressed, self.destroy is called,

which terminates the application.

Figure 8-9.  A child widget inserted into a text buffer

Listing 8-9.  Inserting Child Widgets into a Text Buffer

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(25)

 self.set_border_width(10)

 self.set_size_request(250, 100)

 textview = Gtk.TextView.new()

 buffer = textview.get_buffer()

 text = "\n Click to exit!"

 buffer.set_text(text, len(text))

 iter = buffer.get_iter_at_offset(8)

 anchor = buffer.create_child_anchor(iter)

 button = Gtk.Button.new_with_label("the button")

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

CHAPTER 8 Text View Widget

213

 textview.add_child_at_anchor(button, anchor)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.add(textview)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.ALWAYS)

 self.add(scrolled_win)

 def on_button_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Child Widgets")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

When creating a Gtk.TextChildAnchor, you need to initialize it and insert it into a

Gtk.TextBuffer. You can do this by calling buffer.create_child_anchor().

buffer.create_child_anchor(iter)

A child anchor is created at the location of the specified text iterator. This child

anchor is simply a mark that tells GTK+ that a child widget can be added to that point

within the text buffer.

Next, you need to use textview.add_child_at_anchor() to add a child widget to the

anchor point. As with Gdk.Pixbuf objects, child widgets appear as the 0xFFFC character.

This means that, if you see that character, you need to check whether it is a child widget

or a pixbuf, because they are indistinguishable otherwise.

textview.add_child_at_anchor(child, anchor)

CHAPTER 8 Text View Widget

214

To check whether a child widget is at the location of an 0xFFFC character, you should

call iter.get_child_anchor(), which returns None if a child anchor is not located at that

position.

iter.get_child_anchor()

You can then retrieve a list of the widgets added at the anchor point with anchor.

get_widgets(). You need to note that only one child widget can be added at a single

anchor, so the returned list usually contains only one element.

anchor.get_widgets()

The exception is when you are using the same buffer for multiple text views. In this

case, multiple widgets can be added to the same anchor in the text views, as long as no

text view contains more than one widget. This is because of the fact that the child widget

is attached to an anchor handled by the text view instead of the text buffer.

�Gtk.SourceView
Gtk.SourceView is a widget that is not actually a part of the GTK+ libraries. It is an

external library to extend the Gtk.TextView widget. If you have ever used gedit, you have

experienced the Gtk.SourceView widget.

There is a large list of features that the Gtk.SourceView widget adds to text views. A

few of the most notable ones follow:

•	 Line numbering

•	 Syntax highlighting for many programming and scripting languages

•	 Printing support for documents containing syntax highlighting

•	 Automatic indentation

•	 Bracket matching

•	 Undo/Redo support

•	 Source markers for denoting locations in source code

•	 Highlighting the current line

CHAPTER 8 Text View Widget

215

Figure shows a screenshot of gedit using the Gtk.SourceView widget. It has line

numbering, syntax highlighting, bracket matching, and line highlighting turned on.

Figure 8-10.  A child widget inserted into a text buffer

The Gtk.SourceView library has an entire separate API documentation, which can

be viewed at http://gtksourceview.sourceforge.net.

�Test Your Understanding
The following exercise instructs you to create a text editing application with basic

functionality. It gives you practice on interacting with a Gtk.TextView widget.

CHAPTER 8 Text View Widget

http://gtksourceview.sourceforge.net

216

�Exercise 1: Text Editor
Use the Gtk.TextView widget to create a simple text editor. You should have the ability to

perform multiple text editing functions, including creating a new document, opening a

file, saving a file, searching the document, cutting text, copying text, and pasting text.

When creating a new document, you should make sure that the user actually wants

to continue, because all changes are lost. When the Save button is pressed, it should

always ask where to save the file. Once you have finished this exercise, a solution is

shown in Appendix D.

Hint  This is a much larger GTK+ application than any previously created in this
book, so you may want to take a few minutes to plan your solution on paper before
diving right into the code. Then, implement one function at a time, making sure it
works before continuing on to the next feature. We expand on this exercise in later
chapters as well, so keep your solution handy!

This is the first instance of the Text Editor application that you are working on

throughout this book. In the last few chapters of this book, you learn new elements that

help you create a fully featured text editor.

The application is expanded in Chapter 10, where you add a menu and a toolbar. In

Chapter 13, you add printing support and the ability to remember past open files and

searches.

A solution to this exercise is in Appendix D. Much of the functionality of the text

editor solution has been implemented by other examples in this chapter. Therefore,

most of the solution should look familiar to you. It is a bare minimum solution, and I

encourage you to expand on the basic requirements of the exercise for more practice.

�Summary
In this chapter, you learned all about the Gtk.TextView, which allows you to display

multiple lines of text. Text views are usually contained by a special type of Gtk.Bin

container called Gtk.ScrolledWindow that gives scrollbars to the child widget to

implement scrolling abilities.

CHAPTER 8 Text View Widget

217

A Gtk.TextBuffer handles text within a view. Text buffers allow you to change many

different properties of the whole or portions of the text using text tags. They also provide

cut, copy, and paste functions.

You can move throughout a text buffer by using Gtk.TextIter objects, but text

iterators become invalid once the text buffer is changed. Text iterators can search

forward or backward throughout a document. To keep a location over changes of a

buffer, you need to use text marks. Text views are capable of displaying not only text but

also images and child widgets. Child widgets are added at anchor points throughout a

text buffer.

The last section of the chapter briefly introduced the Gtk.SourceView widget, which

extends the functionality of the Gtk.TextView widget. It can be used when you need

features such as syntax highlighting and line numbering.

In Chapter 9, you are introduced to two new widgets: combo boxes and tree views.

Combo boxes allow you to select one option from a drop-down list. Tree views allow you

to select one or more options from a list usually contained by a scrolled window. Gtk.

TreeView is the most difficult widget that is covered in this book, so take your time with

the next chapter.

CHAPTER 8 Text View Widget

219
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_9

CHAPTER 9

Tree View Widget
This chapter show you how to use the Gtk.ScrolledWindow widget in combination with

another powerful widget known as Gtk.TreeView. The tree view widget can be used to

display data in lists or trees that span one or many columns. For example, a Gtk.TreeView

can be used to implement a file browser or display the build the output of an integrated

development environment.

Gtk.TreeView is an involved widget, because it provides a wide variety of features, so

be sure to carefully read through each section of this chapter. However, once you learn

this powerful widget, you are able to apply it in many applications.

This chapter introduces you to a large number of features provided by Gtk.TreeView.

The information presented in this chapter enables you to mold the tree view widget to

meet your needs. Specifically, in this chapter, you learn the following.

•	 What objects are used to create a Gtk.TreeView and how its model-

view-controller design makes it unique

•	 How to create lists and tree structures with the Gtk.TreeView widget

•	 When to use Gtk.TreePath, Gtk.TreeIter, or Gtk.TreeRowReference

to reference rows within a Gtk.TreeView

•	 How to handle double-clicks, single row selections, and multiple row

selections

•	 How to create editable tree view cells or customize individual cells

with cell renderer functions

•	 The widgets you can embed within a cell, including toggle buttons,

pixbufs, spin buttons, combo boxes, progress bars, and keyboard

accelerator strings

220

�Parts of a Tree View
The Gtk.TreeView widget is used to display data organized as a list or a tree. The data

displayed in the view is organized into columns and rows. The user is able to select one

or multiple rows within the tree view using the mouse or keyboard. A screenshot of the

Nautilus application using Gtk.TreeView is shown in Figure 9-1.

Figure 9-1.  Using The Gtk.TreeView widget

Gtk.TreeView is a difficult widget to use and an even more difficult widget

to understand, so this whole chapter is dedicated to using it. However, once you

understand how the widget works, you are able to apply it to a wide variety of

applications, because it is possible to customize almost every aspect of the way the

widget is displayed to the user.

What makes Gtk.TreeView unique is that it follows a design concept that is

commonly referred to as model-view-controller (MVC) design. MVC is a design method

where the information and the way it is rendered are completely independent of each

other, similar to the relationship between Gtk.TextView and Gtk.TextBuffer.

CHAPTER 9 Tree View Widget

221

�Gtk.TreeModel
Data itself is stored within classes that implement the Gtk.TreeModel interface. GTK+

provides four types of built-in tree model classes, but only Gtk.ListStore and Gtk.

TreeStore is covered in this chapter.

The Gtk.TreeModel interface provides a standard set of methods for retrieving

general information about the data that is stored. For example, it allows you to get the

number of rows in the tree and the number of children of a certain row. Gtk.TreeModel

also gives you a way to retrieve the data that is stored in a specific row of the store.

Note  Models, renderers, and columns are referred to as objects instead of
widgets, even though they are a part of the GTK+ library. This is an important
distinction—since they are not derived from Gtk.Widget, they do not have the
same set of functions, properties, and signals that are available to GTK+ widgets.

Gtk.ListStore allows you to create a list of elements with multiple columns. Each

row is a child of the root node, so only one level of rows is displayed. Basically, Gtk.

ListStore is a tree structure that has no hierarchy. It is only provided because faster

algorithms exist for interacting with models that do not have any child items.

Gtk.TreeStore provides the same functionality as Gtk.ListStore, except the data

can be organized into a multilayered tree. GTK+ provides a method for creating your

own custom model types as well, but the two available types should be suitable in most

cases.

While Gtk.ListStore and Gtk.TreeStore should fit most applications, a time may

come when you need to implement your own store object. For example, if it needs

to hold a huge number of rows, you should create a new model that is more efficient.

In Chapter 12, you learn how to create new classes derived from GObject, which can

be used as a guide to get you started deriving a new class that implements the Gtk.

TreeModel interface.

After you have created the tree model, the view is used to display the data. By

separating the tree view and its model, you are able to display the same set of data

in multiple views. These views can be exact copies of each other, or the data can be

displayed in varying ways. All the views are updated simultaneously as you make

alterations to a model.

CHAPTER 9 Tree View Widget

222

Tip W hile it may not immediately seem beneficial to display the same set of
data in multiple tree views, consider a file browser. If you need to display the same
set of files in multiple file browsers, using the same model for each view would
save memory as well as make your program run considerably faster. This is also
useful when you want to provide multiple display options for the file browser. When
switching between display modes, you do not need to alter the data itself.

Models are composed of columns that contain the same data type and rows that

hold each set of data. Each model column can hold a single type of data. A tree model

column should not be confused with a tree view column, which is composed of a single

header but may be rendered with data from multiple model columns. For example, a

tree column may display a text string that has a foreground color defined by a model

column that is not visible to the user. Figure 9-2 illustrates the difference between model

columns and tree columns.

Figure 9-2.  The relationship between model and tree columns

CHAPTER 9 Tree View Widget

223

Each row within a model contains one piece of data corresponding to each model

column. In Figure 9-2, each row contains a text string and a Gdk.Color value. These two

values are used to display the text with the corresponding color in the tree column. You

learn how to implement this in code later in this chapter. For now, you should simply

understand the differences between the two types of columns and how they relate.

New list and tree stores are created with a number of columns, each defined by

an existing GObject.TYPE. Usually, you need to use only those already implemented

in GLib. For example, if you want to display text you can use GObject.TYPE_STRING,

GObject.TYPE_BOOLEAN, and a few of the number types like GObject.TYPE_INT.

Tip  Since it is possible to store an arbitrary data type with GObject.
TYPE_POINTER, one or more tree model columns can be used to simply store
information about every row. You just need to be careful when there are a large
number of rows, because memory usage quickly escalates. You also have to take
care of freeing the pointers yourself.

�Gtk.TreeViewColumn and Gtk.CellRenderer
As previously mentioned, a tree view displays one or more Gtk.TreeViewColumn objects.

Tree columns are composed of a header and cells of data that are organized into one

column. Each tree view column also contains one or more visible columns of data. For

example, in a file browser, a tree view column may contain one column of images and

one column of file names.

The header of the Gtk.TreeViewColumn widget contains a title that describes what

data is held in the cells below. If you make the column sortable, the rows are sorted when

one of the column headers is clicked.

Tree view columns do not actually render anything to the screen. This is done with

an object derived from Gtk.CellRenderer. Cell renderers are packed into tree view

columns similar to how you add widgets into a horizontal box. Each tree view column

can contain one or more cell renderers, which are used to render the data. For example,

in a file browser, the image column would be rendered with

Gtk.CellRendererPixbuf and the file name with Gtk.CellRendererText. An

example of this was shown in Figure 9-1.

CHAPTER 9 Tree View Widget

224

Each cell renderer is responsible for rendering a column of cells, one for every row

in the tree view. It begins with the first row, rendering its cell and then proceeding to the

next row down until the whole column, or part of the column, is rendered.

In GTK+ 3 the g_object_set() function is no longer available. So you must add

attributes to the renderer. Column attributes correspond to tree model columns and are

associated with cell renderer properties, as shown in Figure 9-3. These properties are

applied to each cell as it is rendered.

Figure 9-3.  Applying cell renderer properties

In Figure 9-3, there are two tree model columns with the types GObject.TYPE_STRING

and Gdk.RGBA. These are applied to Gtk.CellRendererText’s text and foreground

properties and used to render the tree view column accordingly.

An additional way to change cell renderer properties is by defining a cell data

function. This function is called for every row in the tree view before it is rendered. This

allows you to customize how every cell is rendered without the need for the data to be

CHAPTER 9 Tree View Widget

225

stored in a tree model. For example, a cell data function can be used to define how many

decimal places of a floating-point number to display. Cell data functions are covered in

detail in the “Cell Data Methods” section of this chapter.

This chapter also covers cell renderers that are used to display text (strings, numbers,

and Boolean values), toggle buttons, spin buttons, progress bars, pixbufs, combo boxes,

and keyboard accelerators. In addition, you can create custom cell renderer types, but

this is usually not needed, since GTK+ now provides such a wide variety of types.

This section has taught you what objects are needed to use the Gtk.TreeView

widget, what they do, and how they interrelate. Now that you have a basic

understanding of the Gtk.TreeView widget, the next section has a simple example of

the Gtk.ListStore tree model.

�Using Gtk.ListStore
Recall from the previous section that Gtk.TreeModel is simply an interface implemented

by data stores, such as Gtk.ListStore. Gtk.ListStore is used to create lists of data that

have no hierarchical relationship among rows.

In this section, a simple Grocery List application is implemented that contains three

columns, all of which use Gtk.CellRendererText. Figure 9-4 is a screenshot of this

application. The first column is a boolean value displaying True or False that defines

whether or not the product should be purchased.

Tip  You usually do not want to display Boolean values as text, because if
you have many Boolean columns, it becomes unmanageable for the user.
Instead, you want to use toggle buttons. You learn how to do this with Gtk.
CellRendererToggle in a later section. Boolean values are often also used as
column attributes to define cell renderer properties.

CHAPTER 9 Tree View Widget

226

Listing 9-1 creates a Gtk.ListStore object, which displays a list of groceries. In

addition to displaying the products, the list store also displays whether to buy the

product and how many of them to buy.

This Grocery List application is used for many examples throughout the rest of

the chapter. Therefore, the content of some functions may be excluded later on if it

is presented in previous examples. Also, to keep things organized, in every example,

setup_tree_view() is used to set up columns and renderers. Full code listings for every

example can be downloaded at www.gtkbook.com.

Listing 9-1.  Using a Gtk.FontSelectionDialog

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, GObject

BUY_IT = 0

QUANTITY = 1

PRODUCT = 2

GroceryItem = ((True, 1, "Paper Towels"),

 (True, 2, "Bread"),

 (False, 1, "Butter"),

 (True, 1, "Milk"),

 (False, 3, "Chips"),

 (True, 4, "Soda"))

Figure 9-4.  A tree view widget using a Gtk.ListStore tree model

CHAPTER 9 Tree View Widget

http://www.gtkbook.com

227

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, 175)

 treeview = Gtk.TreeView.new()

 self.setup_tree_view(treeview)

 store = Gtk.ListStore.new((GObject.TYPE_BOOLEAN,

 GObject.TYPE_INT,

 GObject.TYPE_STRING))

 for row in GroceryItem:

 iter = store.append(None)

 store.set(iter, BUY_IT, row[BUY_IT], QUANTITY,

 row[QUANTITY], PRODUCT, row[PRODUCT])

 treeview.set_model(store)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.AUTOMATIC)

 scrolled_win.add(treeview)

 self.add(scrolled_win)

 def setup_tree_view(self, treeview):

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Buy", renderer, text=BUY_IT)

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)

 treeview.append_column(column)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 9 Tree View Widget

228

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Grocery List")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Creating the Tree View
Creating the Gtk.TreeView widget is the easiest part of the process. You need only to

call Gtk.TreeView.new(). A tree model can easily be applied to a Gtk.TreeView after

initialization with treeview.set_model(store).

Until GTK+ 3 came along, there were functions to hide/unhide the column header

for a Gtk.TreeViewColumn. Those functions have been deprecated in GTK+ 3 and now all

column headers are always visible.

Gtk.TreeViewColumn headers provide more functionality beyond column titles for

some tree views. In sortable tree models, clicking the column header can initiate sorting

of all of the rows according to the data held in the corresponding column. It also gives a

visual indication of the sort order of the column if applicable. You should not hide the

headers if the user needs them to sort the tree view rows.

As a GTK+ developer, you should be very careful about changing visual properties.

Users have the ability to choose themes that fit their needs, and you can make your

application unusable by changing how widgets are displayed.

�Renderers and Columns
After creating the Gtk.TreeView, you need to add one or more columns to the view for

it to be of any use. Each Gtk.TreeViewColumn is composed of a header, which displays a

short description of its content, and at least one cell renderer. Tree view columns do not

actually render any content. Tree view columns hold one or more cell renderers that are

used to draw the data on the screen.

CHAPTER 9 Tree View Widget

229

All cell renderers are derived from the Gtk.CellRenderer class and are referred to

as objects in this chapter, because Gtk.CellRenderer is derived directly from GObject,

not from Gtk.Widget. Each cell renderer contains a number of properties that determine

how the data is drawn within a cell.

The Gtk.CellRenderer class provides common properties to all derivative renderers,

including background color, size parameters, alignments, visibility, sensitivity, and

padding. A full list of Gtk.CellRenderer properties can be found in Appendix A. It also

provides the editing-canceled and editing-started signals, which allow you to implement

editing in custom cell renderers.

In Listing 9-1, you were introduced to Gtk.CellRendererText, which is capable

of rendering strings, numbers, and boolean values as text. Textual cell renderers are

initialized with Gtk.CellRendererText.new().

Gtk.CellRendererText provides a number of additional properties that dictate how

each cell is rendered. You should always set the text property, which is the string that is

displayed in the cell. The rest of the properties are similar to those used with text tags.

Gtk.CellRendererText contains a large number of properties that dictate how every

row is rendered. renderer.foreground-rgba() was used in the following example to

set the foreground color of every piece of text in the renderer to orange. Some properties

have a corresponding set property as well, which must be set to True if you want the

value to be used. For example, you should set foreground-set to True for the changes

takes effect.

renderer.props.foreground-rgba = Gdk.RGBA(red=1.0, green=0.65, blue=0.0,

 alpha=1.0)

After you create a cell renderer, it needs to be added to a Gtk.TreeViewColumn. Tree

view columns can be created with Gtk.TreeViewColumn() if you only want the column

to display one cell renderer. In the following code, a tree view column is created with the

title “Buy” and a renderer with one attribute. This attribute is referred to as BUY_IT (with

a value of 0) when the Gtk.ListStore is populated.

column = Gtk.TreeViewColumn("Buy", renderer, text=BUY_IT)

The preceding function accepts a string to display in the column header, a cell

renderer, and a list of attributes. Each attribute contains a string that refers to the

renderer property and the tree view column number. The important thing to realize is

CHAPTER 9 Tree View Widget

230

that the column number provided to Gtk.TreeViewColumn() refers to the tree model

column, which may not be the same as the number of tree model columns or cell

renderers used by the tree view.

It turns out that the Gtk.TreeViewColumn() is very hard to implement piecemeal

in Python 3. It is not just convenience method, but the preferred method for creating a

Gtk.TreeViewColumn(). The following code snippet is the correct way to create a Gtk.

TreeViewColumn() in Python 3 and assign at least one attribute.

renderer = Gtk.CellRendererText.new()

column = Gtk.TreeViewColumn("Buy", renderer, text=BUY_IT)

treeview.append_column(column)

If you want to add multiple renderers to the tree view column, you need to pack each

renderer and set its attributes separately. For example, in a file manager, you might want

to include a text and an image renderer in the same column. However, if every column

only needs one cell renderer, it is easiest to use Gtk.TreeViewColumn().

Note I f you want a property, such as the foreground color, set to the same value for
every row in the column, you should apply that property directly to the cell renderer
with renderer.foreground-rgba(). However, if the property varies depending
on the row, you should add it as an attribute of the column for the given renderer.

After you have finished setting up a tree view column, it needs to be added to the

tree view with treeview.append_column(column). Columns may also be added into an

arbitrary position of the tree view with treeview.insert_column(column) or removed

from the view with treeview.remove_column(column).

�Creating the Gtk.ListStore
The tree view columns are now set up with the desired cell renderers, so it is time to

create the tree model that interfaces between the renderers and the tree view. For the

example found in Listing 9-1, we used Gtk.ListStore so that the items would be shown

as a list of elements.

CHAPTER 9 Tree View Widget

231

New list stores are created with Gtk.ListStore.new(). This function accepts the

number of columns and the type of the data each column holds. In Listing 9-1, the list

store has three columns that store boolean, integer, and string data types.

Gtk.ListStore.new((GObject.TYPE_BOOLEAN, GObject.TYPE_INT,

 GObject.TYPE_STRING))

In Python 3, the column type parameters are formed into a tuple. That tells the

method not only the column type but also the number of columns.

After creating the list store, you need to add rows with store.append(None) for it to

be of any use. This method appends a new row to the list store, and the iterator is set to

point to the new row. You learn more about tree iterators in a later section of this chapter.

For now, it is adequate for you to know that it points to the new tree view row.

iter = store.append(None)

store.set(iter, BUY_IT, row[BUY_IT], QUANTITY, row[QUANTITY],

 PRODUCT, row[PRODUCT])

Next, we need to set which column and what values are to be loaded with data. This

is done with the store.set() method. One or more rows can be set with this method.

The preceding example stores values in each column of the row from left to right, but the

column can be listed in any order since we are also specifying the column number where

the value is loaded.

Note  Gtk.CellRendererText automatically converts Boolean values and
numbers into text strings that can be rendered on the screen. Therefore, the
type of data applied to a text attribute column does not have to be text itself, but
just has to be consistent with the list store column type that was defined during
initialization of the Gtk.ListStore.

There are multiple other functions for adding rows to a list store, including store.

prepend() and store.insert(). A full list of available functions can be found in the Gtk.

ListStore API documentation.

CHAPTER 9 Tree View Widget

232

In addition to adding rows, you can also remove them with store.remove(). This

function removes the row that Gtk.TreeIter refers to. After the row is removed, the

iterator points to the next row in the list store, and the function returns True. If the last

row was just removed, the iterator becomes invalid, and the function returns False.

store.remove(iter)

In addition, store.clear() is provided, which can be used to remove all rows from a

list store. You are left with a Gtk.ListStore that contains no data.

After the list store is created, you need to call treeview.set_model() to add it to the

tree view. By calling this method, the reference count of the tree model is incremented

by one.

�Using Gtk.TreeStore
There is one other type of built-in tree model called Gtk.TreeStore, which organizes

rows into a multilevel tree structure. It is possible to implement a list with a Gtk.

TreeStore tree model as well, but this is not recommended because some overhead is

added when the object assumes that the row may have one or more children.

Figure 9-5 shows an example tree store, which contains two root elements, each

with children of its own. By clicking the expander to the left of a row with children, you

can show or hide its children. This is similar to the functionality provided by the Gtk.

Expander widget.

Figure 9-5.  A tree view widget using a Gtk.TreeStore tree model

CHAPTER 9 Tree View Widget

233

The only difference between a Gtk.TreeView implemented with a Gtk.TreeStore

instead of a Gtk.ListStore is in the creation of the store. Adding columns and renderers

is performed in the same manner with both models, because columns are a part of the

view not the model. Executing Listing 9-2 will produce the dialog in Figure 9-5.

Listing 9-2.  Creating a Gtk.TreeStore

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, GObject

BUY_IT = 0

QUANTITY = 1

PRODUCT = 2

PRODUCT_CATEGORY = 0

PRODUCT_CHILD = 1

GroceryItem = ((PRODUCT_CATEGORY, True, 0, "Cleaning Supplies"),

 (PRODUCT_CHILD, True, 1, "Paper Towels"),

 (PRODUCT_CHILD, True, 3, "Toilet Paper"),

 (PRODUCT_CATEGORY, True, 0, "Food"),

 (PRODUCT_CHILD, True, 2, "Bread"),

 (PRODUCT_CHILD, False, 1, "Butter"),

 (PRODUCT_CHILD, True, 1, "Milk"),

 (PRODUCT_CHILD, False, 3, "Chips"),

 (PRODUCT_CHILD, True, 4, "Soda"))

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(275, 270)

 treeview = Gtk.TreeView.new()

 self.setup_tree_view(treeview)

CHAPTER 9 Tree View Widget

234

 store = Gtk.TreeStore.new((GObject.TYPE_BOOLEAN,

 GObject.TYPE_INT,

 GObject.TYPE_STRING))

 iter = None

 i = 0

 for row in GroceryItem:

 (ptype, buy, quant, prod) = row

 if ptype == PRODUCT_CATEGORY:

 j = i + 1

 (ptype1, buy1, quant1, prod1) = GroceryItem[j]

 while j < len(GroceryItem) and ptype1 == PRODUCT_CHILD:

 if buy1:

 quant += quant1

 j += 1;

 if j < len(GroceryItem):

 �(ptype1, buy1, quant1, prod1) = GroceryItem[j]

iter = store.append(None)

 store.set(iter, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

 else:

 child = store.append(iter)

 store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

 i += 1

 treeview.set_model(store)

 treeview.expand_all()

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.AUTOMATIC)

 scrolled_win.add(treeview)

 self.add(scrolled_win)

 def setup_tree_view(self, treeview):

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Buy", renderer, text=BUY_IT)

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

CHAPTER 9 Tree View Widget

235

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)

 treeview.append_column(column)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Grocery List")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Tree stores are initialized with Gtk.TreeStore.new(), which accepts the same

parameters as Gtk.ListStore.new(). The column type parameters are formed into a

tuple. That tells the method not only the column type but also the number of columns.

Adding rows to a tree store is a little different than adding rows to a list store. You

add rows to a tree store with store.append(), which accepts one iterator or None. The

iterator should point to the parent row of the new row. The method returns an iterator

that points to the inserted row when the function returns, and the second.

iter = store.append(None)

In the preceding call to store.append(), a root element was appended to the list by

passing None as the parent iterator. The iter tree iterator returned by the method was set

to the location of the new row.

In the second call to store.append(), which follows, the row is added as a child of

iter. Next, the child tree iterator is returned set to the current location of the new row

within the tree store when the method returns.

child = store.append(iter)

CHAPTER 9 Tree View Widget

236

As with list stores, there are many methods available for adding rows to a tree store.

These include store.insert(), store.prepend(), and store.insert_before() to

name a few. For a full list of methods, you should reference the Gtk.TreeStore API

documentation.

After you add a row to the tree store, it is simply an empty row with no data. To add

data to the row, call store.set(). This function works in the same way as store.set().

It accepts the tree store, a tree iterator pointing to the location of the row, and a list of

column-data pairs. These column numbers correspond to those you used when setting

up the cell renderer attributes.

store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

In addition to adding rows to a tree store, you can also remove them with store.

remove(). This function removes the row that is referred to by Gtk.TreeIter. After the

row is removed, iter points to the next row in the tree store, and the function returns

True. If the row that you removed was the last in the tree store, the iterator becomes

invalid, and the function returns False.

store.remove(iter)

In addition, store.clear() is provided, which can be used to remove all rows from a

tree store. You are left with a Gtk.TreeStore that contains no data.

In Listing 9-2, treeview.expand_all() is called to expand all of the rows. This is a

recursive function that expands every possible row, although it only affects tree models

that have child-parent row relationships. In addition, you can collapse all of the rows

with treeview.collapse_all(). By default, all rows are collapsed.

�Referencing Rows
Three objects are available for referring to a specific row within a tree model; each

has its own unique advantages. They are Gtk.TreePath, Gtk.TreeIter, and Gtk.

TreeRowReference. In the following sections, you learn how each object works and how

to use them within your own programs.

CHAPTER 9 Tree View Widget

237

�Tree Paths
For example, if you are presented with the string 3:7:5, you would start at the fourth

root element (recall that indexing begins at zero, so element three is actually the fourth

element in the level). You would next proceed to the eighth child of that root element.

The row in question is that child’s sixth child.

To illustrate this graphically, Figure 9-6 shows the tree view created in Figure 9-5 with

the tree paths labeled. Each root element is referred to as only one element, 0 and 1. The

first root element has two children, referred to as 0:0 and 0:1.

Figure 9-6.  Tree paths for a tree view using Gtk.TreeStore

Two functions are provided that allow you to convert back and forth between a

path and its equivalent string: treepath.to_string() and Gtk.TreePath.new_from_

string(). You usually do not have to deal with the string path directly unless you are

trying to save the state of a tree view, but using it helps in understanding the way tree

paths work.

Listing 9-3 gives a short example of using tree paths. It begins by creating a new path

that points to the Bread product row. Next, treepath.up() moves up one level in the

path. When you convert the path back into a string, you see that the resulting output is 1,

pointing to the Food row.

CHAPTER 9 Tree View Widget

238

Listing 9-3.  Converting Between Paths and Strings

treepath = Gtk.TreePath.new_from_string("1:0")

treepath.up(path)

str = treepath.to_string(path)

print(str)

Tip I f you need to get a tree iterator and only have the path string available,
you can convert the string into a Gtk.TreePath and then to a Gtk.TreeIter.
However, a better solution would be to skip the intermediate step with
treemodel.get_iter_from_string(), which converts a tree path string
directly into a tree iterator.

In addition to treepath.up(), there are other functions that allow you to navigate

through a tree model. You can use treepath.down() to move to the child row and

treepath.next() or treepath.prev() to move to the next or previous row in the same

level. When you move to the previous row or parent row, False is returned if it was not

successful.

At times, you may need to have a tree path as a list of integers instead of a string. The

treepath.get_indices() function returns the integers that compose the path string.

treepath.get_indices(path)

Problems can arise with tree paths when a row is added or removed from the tree

model. The path could end up pointing to a different row within the tree or, worse, a row

that does not exist anymore! For example, if a tree path points to the last element of a tree

and you remove that row, it now points beyond the limits of the tree. To get around this

problem, you can convert the tree path into a tree row reference.

�Tree Row References
Gtk.TreeRowReference objects are used to watch a tree model for changes. Internally,

they connect to the "row-inserted", "row-deleted", and "rows-reordered" signals,

updating the stored path based on the changes.

CHAPTER 9 Tree View Widget

239

New tree row references are created with Gtk.TreeRowReference.new() from an

existing Gtk.TreeModel and Gtk.TreePath. The tree path copied into the row reference

is updated as changes occur within the model.

treerowref.new(model, path)

When you need to retrieve the path, you can use treerowref.get_path(), which

returns None if the row no longer exists within the model. Tree row references are able

to update the tree path based on changes within the tree model, but if you remove all

elements from the same level as the tree path’s row, it no longer has a row to point to.

You should be aware that tree row references do add a small bit of overhead processing

when adding, removing, or sorting rows within a tree model, since the references have to

handle all of the signals emitted by these actions. This overhead does not matter for most

applications, because there will not be enough rows for the user to notice. However, if your

application contains a large number of rows, you should use tree row references wisely.

�Tree Iterators
GTK+ provides the Gtk.TreeIter object, which can be used to reference a specific row

within a Gtk.TreeModel. These iterators are used internally by models, which means that

you should never directly alter the content of a tree iterator.

You have already seen multiple instances of Gtk.TreeIter, from which you can

discern that tree iterators are used in a similar way to Gtk.TreeIter. Tree iterators

are used for manipulation of tree models. Tree paths, however, are used to point to

rows within a tree model in a way that provides a human-readable interface. Tree row

references can be used to make sure that tree paths adjust where they point throughout

changes of a tree model.

GTK+ provides a number of built-in methods to perform operations on the tree

iterators. Typically, iterators are used to add rows to a model, set the content of a row,

and retrieve the content of a model. In Figure 9-1 and Figure 9-2, tree iterators were

used to add rows to Gtk.ListStore and Gtk.TreeStore models and then set the initial

content of each row.

Gtk.TreeModel provides a number of iter_*() methods, which can be used to move

iterators and retrieve information about them. For example, to move to the next iterator

position, you could use treemodel.iter_next(), which returns True if the action was

successful. A full list of available functions can be found in the Gtk.TreeModel API

documentation.

CHAPTER 9 Tree View Widget

240

It is easy to convert between tree iterators and tree paths with the use of treemodel.

get_path() and treemodel.get_iter(). The tree path or iterator must be valid for

either of these functions to work correctly. Listing 9-4 gives a short example of how to

convert between Gtk.TreeIter and Gtk.TreePath.

Listing 9-4.  Converting Between Paths and Iterators

path = treemodel.get_path(model, iter)

iter = treemodel.get_iter(model, path)

The first method in Listing 9-4, treemodel.get_path() converts a valid tree iterator

into a tree path. That path is then sent to treemodel.get_iter(), which converts it back

into an iterator. Notice that the second method accepts two parameters.

One problem presented by Gtk.TreeIter is that the iterator is not guaranteed to

exist after a model is edited. This is not true in all cases, and you can use treemodel.

get_flags() to check the Gtk.TreeModelFlags.ITERS_PERSIST flag, which is turned

on by default for Gtk.ListStore and Gtk.TreeStore. If this flag is set, the tree iterator is

always valid as long as the row exists.

treemodel.get_flags()

Even if the iterator is set to persist, it is not a good idea to store tree iterator objects,

since they are used internally by tree models. Instead, you should use tree row references

to keep track of rows over time, since references will not become invalidated when the

tree model changes.

�Adding Rows and Handling Selections
Both of the examples that you have been given up to this point define the tree model

during startup. The content does not change after it is initially set. In this section, the

Grocery List application is expanded to allow the user to add and remove products. Before

the example is introduced, you learn how to handle single and multiple selections.

CHAPTER 9 Tree View Widget

241

�Single Selections
Selection information is held for each tree view by a Gtk.TreeSelection object. You can

retrieve this object with treeview.get_selection(). A Gtk.TreeSelection object is

automatically created for you for every Gtk.TreeView, so there is never a need to create

your own tree selection.

Caution  Gtk.TreeSelection provides one signal, “changed”, which is
emitted when the selection has changed. You should be careful when using this
signal, because it is not always reliable. It can be emitted when no changes occur
by the user selecting a row that is already selected. Therefore, it is best to use the
signals provided by Gtk.TreeView for selection handling, which is in Appendix B.

Tree views support multiple types of selections. You can change the selection type

with treeselection.set_mode(). Selection types are defined by the Gtk.SelectionMode

enumeration, which includes the following values.

•	 Gtk.SelectionMode.NONE: The user is prohibited from selecting any

rows.

•	 Gtk.SelectionMode.SINGLE: The user may select up to one row,

though it is possible that no row is selected. By default, tree selections

are initialized with Gtk.SelectionMode.SINGLE.

•	 Gtk.SelectionMode.BROWSE: The user is able to select exactly one

row. In some rare cases, there may not be a selected row. This option

actually prohibits the user from deselecting a row except when the

selection is moved to another row.

•	 Gtk.SelectionMode.MULTIPLE: The user may select any number

of rows. The user is able to use the Ctrl and Shift keys to select

additional elements or ranges of elements.

If you have defined the selection type as Gtk.SelectionMode.SINGLE or

Gtk.SelectionMode.BROWSE, you can be sure that only one row is selected. For tree

views with one selection, you can use treeselection.get_selected() to retrieve the

selected row.

treeselection.get_selected(model, iter)

CHAPTER 9 Tree View Widget

242

The treeselection.get_selected() method can be used to retrieve the tree model

associated with the Gtk.TreeSelection object and a tree iterator pointing to the selected

row. True is returned if the model and iterator were successfully set. This function will

not work with a selection mode of Gtk.SelectionMode.MULTIPLE!

If no row has been selected, the tree iterator is set to None, and False is returned

from the function. Therefore, treeselection.get_selected() can also be used as a test

to check whether or not there is a selected row.

�Multiple Selections
If your tree selection allows multiple rows to be selected (Gtk.SelectionMode.

MULTIPLE), you have two options for handling selections, calling a function for every row

or retrieving all of the selected rows as a Python list. Your first option is to call a function

for every selected row with treeselection.selected_foreach().

treeselection.selected_foreach(selected, foreach_func, None)

This function allows you to call selected_foreach_func() for every selected row,

passing an optional data parameter. In the preceding example, None was passed to the

function. The function must be either a Python function or method, an example of which

is seen in Listing 9-5. The function in Listing 9-5 retrieves the product string and prints it

to the screen.

Listing 9-5.  Selected for-each Function

foreach_func(model, path, iter, data)

 (text,) = model.get(iter, PRODUCT)

 print ("Selected Product: %s" % text)

Note  You should not modify the tree model or selection from within the
foreach_func implementation! GTK+ gives critical errors to the user if you do
so, because invalid tree paths and iterators may result.

Also note the method model.get() always return a tuple, even if you only ask for
a single column.

CHAPTER 9 Tree View Widget

243

One problem with using tree selection foreach_func functions is that you are not

able to manipulate the selection from within the function. To remedy this problem, a

better solution would be to use treeselection.get_selected_rows(), which returns a

Python list of Gtk.TreePath objects, each pointing to a selected row.

treeselection.get_selected_rows(model)

You can then perform some operation on each row within the list. However, you

need to be careful. If you need to edit the tree model within the List, you want to

first convert all of the tree paths to tree row references, so they continue to be valid

throughout the duration of your actions.

If you want to loop through all of the rows manually, you are also able to use

treeselection.count_selected_rows(), which returns the number of rows that are

currently selected.

�Adding New Rows
Now that you have been introduced to selections, it is time to add the ability to add new

products to the list.

The only difference in this example in comparison to the previous Grocery List

application is visible in Figure 9-7, which shows that an Add and Remove buttons were

added along the bottom of the tree view. Also, the selection mode was changed to allow

the user to select multiple rows at a time.

Figure 9-7.  Editing an item in the grocery list

CHAPTER 9 Tree View Widget

244

Listing 9-6 is the implementation of the callback function that is run when the user

clicks the Add button. It presents the user with a Gtk.Dialog that asks the user to choose

a category, enter a product name and quantity of products to buy, and select whether or

not to purchase the product.

If all of the fields are valid, the row is added under the chosen category. Also, if the

user specified that the product should be purchased, the quantity is added to the total

quantity of the category.

Listing 9-6.  Adding a New Product

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, GObject

BUY_IT = 0

QUANTITY = 1

PRODUCT = 2

PRODUCT_CATEGORY = 0

PRODUCT_CHILD = 1

GroceryItem = �((PRODUCT_CATEGORY, True, 0, "Cleaning Supplies"), (

PRODUCT_CHILD, True, 1, "Paper Towels"),

 �(PRODUCT_CHILD, True, 3, "Toilet Paper"), (PRODUCT_CATEGORY,

True, 0, "Food"), (PRODUCT_CHILD, True, 2, "Bread"),

 (PRODUCT_CHILD, False, 1, "Butter"),

 (PRODUCT_CHILD, True, 1, "Milk"),

 (PRODUCT_CHILD, False, 3, "Chips"),

 (PRODUCT_CHILD, True, 4, "Soda"))

class AddDialog(Gtk.Dialog):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 parent = kwargs['parent']

 # set up buttons

 self.add_button("Add", Gtk.ResponseType.OK)

CHAPTER 9 Tree View Widget

245

 self.add_button("Cancel", Gtk.ResponseType.CANCEL)

 # set up dialog widgets

 combobox = Gtk.ComboBoxText.new()

 entry = Gtk.Entry.new()

 spin = Gtk.SpinButton.new_with_range(0, 100, 1)

 check = Gtk.CheckButton.new_with_mnemonic("_Buy the Product")

 spin.set_digits(0)

 # Add all of the categories to the combo box. for row in GroceryItem:

 (ptype, buy, quant, prod) = row

 if ptype == PRODUCT_CATEGORY:

 combobox.append_text(prod)

 # create a grid

 grid = Gtk.Grid.new()

 grid.set_row_spacing (5)

 grid.set_column_spacing(5)

 # fill out the grid

 grid.attach(Gtk.Label.new("Category:"), 0, 0, 1, 1)

 grid.attach(Gtk.Label.new("Product:"), 0, 1, 1, 1)

 grid.attach(Gtk.Label.new("Quantity:"), 0, 2, 1, 1)

 grid.attach(combobox, 1, 0, 1, 1)

 grid.attach(entry, 1, 1, 1, 1)

 grid.attach(spin, 1, 2, 1, 1)

 grid.attach(check, 1, 3, 1, 1)

 �self.get_content_area().pack_start(grid, True, True, 5)

self.show_all()

 # run the dialog and check the results

 if self.run() != Gtk.ResponseType.OK:

 self.destroy()

 return

 quantity = spin.get_value()

 product = entry.get_text()

 category = combobox.get_active_text()

 buy = check.get_active()

CHAPTER 9 Tree View Widget

246

 if product == "" or category == None:

 print("All of the fields were not correctly filled out!")

 return

 model = parent.get_treeview().get_model();

 iter = model.get_iter_from_string("0")

 # Retrieve an iterator pointing to the selected category. while iter:

 (name,) = model.get(iter, PRODUCT)

 if name == None or name.lower() == category.lower():

 break

 iter = model.iter_next(iter)

 #

 #

 �# Convert the category iterator to a path so that it # will not

become invalid and add the new product as a child of the category.

 path = model.get_path(iter)

 child = model.append(iter)

 model.set(child, BUY_IT, buy, QUANTITY, quantity, PRODUCT, product)

 �# Add the quantity to the running total if it is to be purchased.

if buy:

 iter = model.get_iter(path)

 (i,) = model.get(iter, QUANTITY) i += quantity

 model.set(iter, QUANTITY, i)

 self.destroy()

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(275, 270)

 self.treeview = Gtk.TreeView.new()

 self.setup_tree_view(self.treeview)

 store = Gtk.TreeStore.new((GObject.TYPE_BOOLEAN,

 GObject.TYPE_INT,

 GObject.TYPE_STRING))

CHAPTER 9 Tree View Widget

247

 iter = None

 i = 0

 for row in GroceryItem:

 (ptype, buy, quant, prod) = row

 if ptype == PRODUCT_CATEGORY:

 j = i + 1

 (ptype1, buy1, quant1, prod1) = GroceryItem[j]

 while j < len(GroceryItem) and ptype1 == PRODUCT_CHILD:

 if buy1:

 quant += quant1

 j += 1;

 if j < len(GroceryItem):

 �(ptype1, buy1, quant1, prod1) = GroceryItem[j]

iter = store.append(None)

 store.set(iter, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

 else:

 child = store.append(iter)

 store.set(child, BUY_IT, buy, QUANTITY, quant, PRODUCT, prod)

 i += 1

 self.treeview.set_model(store)

 self.treeview.expand_all()

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.AUTOMATIC)

 scrolled_win.add(self.treeview)

 button_add = Gtk.Button.new_with_label("Add")

 button_add.connect("clicked", self.on_add_button_clicked, self)

 button_remove = Gtk.Button.new_with_label("Remove")

 hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL, spacing=0)

 hbox.pack_end(button_remove, False, True, 5)

 hbox.pack_end(button_add, False, True, 5)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_end(hbox, False, True, 5)

 vbox.pack_end(scrolled_win, True, True, 5)

 self.add(vbox)

CHAPTER 9 Tree View Widget

248

 def setup_tree_view(self, treeview):

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Buy", renderer, text=BUY_IT)

 self.treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)

 treeview.append_column(column)

 def on_add_button_clicked(self, button, parent):

 dialog = AddDialog(title="Add a Product", parent=parent,

 flags=Gtk.DialogFlags.MODAL)

 def get_treeview(self):

 return self.treeview

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Grocery List")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 9 Tree View Widget

249

�Retrieving Row Data

Retrieving the values stored in a tree model row is very similar to adding a row. In Listing

9-6 model.get_iter_from_string() is first used to retrieve a tree iterator that points to

the first row in the tree view. This corresponds to the first category.

Next, model.iter_next() is used to loop through all of the root-level rows. For each

root-level row, the following code is run. First, the product name is retrieved with model.

get(). This function works like treestore.set(), which accepts a Gtk.TreeModel,

an iterator pointing to a row, and a list of one or more column numbers. This method

always returns a tuple even if you supply a single column as a parameter.

(name,) = model.get(iter, PRODUCT)

if name.lower() == category.lower():

 break

Then the current product is compared to the chosen category name. If the two

strings match, the loop is exited, because the correct category was found. The iter

variable now points to the selected category.

�Adding a New Row

Adding new rows to the tree model is done in the same way as they were originally

added during startup. In the following code, the Gtk.TreeIter that points to the chosen

category is first converted into a tree path, since it becomes invalidated when the tree

store is changed. Note that it does not have to be converted to a tree row reference,

because its location will not possibly change.

path = model.get_path(iter)

child = model.append(iter)

model.set(child, BUY_IT, buy, QUANTITY, quantity, PRODUCT, product)

Next, a new row is appended with treestore.append(), where iter is the parent

row. That row is populated with treestore.set(), using the data entered by the user in

the dialog.

CHAPTER 9 Tree View Widget

250

�Combo Boxes

Listing 9-6 introduces a new widget called Gtk.ComboBox.

Gtk.ComboBox is a widget that allows the user to choose from a number of options in

a drop-down list.

The combo box displays the selected choice in its normal state. Combo boxes can be

used in two different ways, depending on what method you use to instantiate the widget,

either with a custom Gtk.TreeModel or with a default model with only a single column of

strings.

In Listing 9-6 a new Gtk.ComboBox was created with Gtk.ComboBoxText.new(),

which creates a specialized combo box that contains only one column of strings. This is

simply a convenience method, because the drop-down list of a combo box is internally

handled with a Gtk.TreeModel. This allows you to easily append and prepend options

and insert new options with the following methods.

combobox.append_text(text)

combobox.prepend_text(text)

combobox.insert_text(position, text)

The first function combobox.get_active_text() returns an integer that refers to the

index of the current row or -1 if there is no selection. This can be converted into a string

and then into a Gtk.TreePath. Also, combobox.get_active_iter() retrieves an iterator

pointing to the selected row, returning True if the iterator was set.

�Removing Multiple Rows

The next step is to add the ability to remove products from the list. Since we have added

the ability for multiple rows to be selected, the code must also be able to remove more

than one row.

Listing 9-7 implements two methods. The first method, remove_row(), is called for

every selected row, removing the row if it is not a category. If the removed row was to

be purchased, its quantity is removed from the category’s running total. The second

function, remove_products(), is the method that is run when the Remove button is

clicked.

CHAPTER 9 Tree View Widget

251

Listing 9-7.  Removing One or More Products

 def remove_row(self, ref, model):

 �# Convert the tree row reference to a path and retrieve the

iterator. path = ref.get_path()

 iter = model.get_iter(path)

 # Only remove the row if it is not a root row.

 parent = model.iter_parent(iter)

 if parent:

 (buy, quantity) = model.get(iter, BUY_IT, QUANTITY)

 (pnum,) = model.get(parent, QUANTITY)

 if (buy):

 pnum -= quantity

 model.set(parent, QUANTITY, pnum)

 iter = model.get_iter(path)

 model.remove(iter)

 def remove_products(self, button, treeview):

 selection = treeview.get_selection()

 model = treeview.get_model()

 rows = selection.get_selected_rows(model)

 # Create tree row references to all of the selected rows.

references = []

 for data in rows:

 ref = Gtk.TreeRowReference.new(model, data)

 references.append(ref)

 for ref in references:

 self.remove_row(ref, model)

When the Remove button is pressed, the remove_products() method is called. This

function begins by calling selection.get_selected_rows()to retrieve a Python list of

tree paths that point to the selected rows. Since the application is altering the rows, the

list of paths is converted into a list of row references. This makes sure that all of the tree

paths remain valid.

After the paths are converted to tree row references, the list is iterated via a Python

for statement and the remove_row() method is called for every item. Within remove_

row(), a new function is used to check whether the row is a category.

CHAPTER 9 Tree View Widget

252

If the selected row is a category, we know that it is a root element and have no

parents. Therefore, the following model.iter_parent() call performs two tasks. First,

if the parent iterator is not set, this method returns False, and the category row is not

removed. If the row has a parent, which means that it is a product, the parent iterator is

set and used later in the function.

parent = model.iter_parent(iter)

Second, the function retrieves information about the selected product and its

parent category. If the product is set to be purchased, its quantity is subtracted from

the total product count displayed by the category. Since changing this data invalidates

the iterator, the path is converted into an iterator, and the row is removed from the tree

model.

�Handling Double-clicks
Double-clicks are handled with the row-activated signal of the Gtk.TreeView . The

signal is emitted when the user double-clicks a row, when the user presses the spacebar,

Shift+spacebar, Return, or Enter on a noneditable row, or when you call treeview.row_

activated().

Listing 9-8.  Editing a Clicked Row

def row_activated(self, treeview, path, column, data):

 model = treeview.get_model()

 if model.get_iter(path))

 # Handle the selection ...

In Listing 9-8, the callback method row_activated() is called when the user

activates a row within the tree view. The activated row is retrieved from the tree path

object with treemodel.get_iter(). From there, you are free to use whatever functions/

methods you have learned thus far to retrieve or alter the content of the row.

CHAPTER 9 Tree View Widget

253

�Editable Text Renderers
It would be very useful to allow the user to edit the contents of a tree view. This could be

accomplished by presenting a dialog that contains a Gtk.Entry, in which the user would

be able to edit the content of a cell. However, GTK+ provides a much simpler way to edit

textual components that is integrated into the tree cell by using Gtk.CellRendererText’s

edited signal.

When a user clicks a cell in the selected row that is marked as editable, a Gtk.Entry

is placed in the cell that contains the current contents of the cell. An example of a cell

being edited is shown in Figure 9-8.

Figure 9-8.  An editable cell

After the user presses the Enter key or removes focus from the text entry, the edited

widget is emitted. You need to connect to this signal and apply the changes once it is

emitted. Listing 9-9 shows you how to create the Gtk.ListStore Grocery List application

where the product column is editable.

Listing 9-9.  Editing a Cell’s Text

 def set_up_treeview(self, treeview):

 renderer = Gtk.CellRenderer.Text.new()

 �column = Gtk.TreeViewColumn.new_with_attributes("Buy", renderer,

"text", BUY_IT)

CHAPTER 9 Tree View Widget

254

 treeview.append_column(column)

 renderer = Gtk.CellRendererText.new()

 �column = Gtk.TreeViewColumn.new_with_attributes("Count", renderer,

"text", QUANTITY)

 treeview.append_column(column)

 �# Set up the third column in the tree view to be editable. renderer

= Gtk.CellRendererText.new() renderer.set_property("editable",

True) renderer.connect("edited", self.cell_edited, treeview)

 �column = Gtk.TreeViewColumn.new_with_attributes("Product",

renderer, "text", PRODUCT)

 treeview.append_column(column)

 def cell_edited(self, renderer, path, new_text, treeview):Tree View Widget

 if len(new_text) > 0:

 model = treeview.get_model()

 iter = model.get_iter_from_string(path)

 if iter:

 model.set(iter, PRODUCT, new_text)

Creating editable Gtk.CellRendererText cells is a very simple process. The first

thing you need to do is set the editable and editable-set properties of the text renderer to

True.

renderer.set_property("editable", True)

Remember that setting the editable property applies it to the whole column of data

that is drawn by the renderer. If you want to specify row by row whether the cell should

be editable, you should add it as an attribute of the column.

The next thing you need to do is connect the cell renderer to the edited signal

provided by Gtk.CellRendererText. The callback function for this signal receives the

cell renderer, a Gtk.TreePath string pointing to the edited row, and the new text that was

entered by the user. This signal is emitted when the user presses the Enter key or moves

focus from the cell’s Gtk.Entry while the cell is being edited.

CHAPTER 9 Tree View Widget

255

The edited signal is necessary, because changes are not automatically applied to the

cell. This allows you to filter out invalid entries. For example, in Listing 9-9, the new text

is not applied when the new string is empty.

iter = model.get_iter_from_string(path)

if iter:

 model.set(iter, PRODUCT, new_text)

Once you are ready to apply the text, you can convert the Gtk.TreePath string

directly into a Gtk.TreeIter with model.get_iter_from_string(). This function

returns True if the iterator was successfully set, which means that the path string points

to a valid row.

Caution  You always want to check that the path is valid, even though it is
supplied by GTK+, because there is a chance that the row has been removed or
moved since the callback function was initialized.

After you retrieve the Gtk.TreeIter, you can use model.set() to apply the new text

string to the column. In Listing 9-9, new_text was applied to the PRODUCT column of

the Gtk.ListStore.

�Cell Data Methods
If you need to further customize every cell before it is rendered to the screen, you can use

cell data methods. They allow you to tinker with every property of each individual cell.

For example, you can set the foreground color based on the content of the cell or restrict

the number of decimal places a floating-point number that are shown. It can also be

used to set properties that are calculated during runtime.

Figure 9-9, which creates a color list, shows an application that uses cell data

functions to set the background color of each cell based on the text property of the

Gtk.CellRendererText.

CHAPTER 9 Tree View Widget

256

Caution  Make sure not to use cell data functions if you have a large number of
rows in your tree model. Cell data functions process every cell in the column before it
is rendered, so they can significantly slow down tree models with many rows.

In Listing 9-10, a cell data function is used to set the background color to the value of

the color string stored by the cell. The foreground color is also set to white for every cell,

although this could also be applied to the whole renderer with the model.set(). This

application shows a list of the 256 web-safe colors.

Listing 9-10.  Using Cell Data Functions

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk, GObject

clr = ("00", "33", "66", "99", "CC", "FF")

COLOR = 0

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

Figure 9-9.  Screenshot of Listing 9-10

CHAPTER 9 Tree View Widget

257

 self.set_size_request(250, 175)

 treeview = Gtk.TreeView.new()

 self.setup_tree_view(treeview)

 store = Gtk.ListStore.new((GObject.TYPE_STRING,

 GObject.TYPE_STRING, GObject.TYPE_STRING))

 for var1 in clr:

 for var2 in clr:

 for var3 in clr:

 color = "#" + var1 + var2 + var3

 iter = store.append()

 store.set(iter, (COLOR,), (color,))

 treeview.set_model(store)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.AUTOMATIC)

 scrolled_win.add(treeview)

 self.add(scrolled_win)

 def setup_tree_view(self, treeview):

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn.new()

 column.pack_start(renderer, True)

 column.add_attribute(renderer, "text", COLOR)

 column.set_title("Standard Colors")

 treeview.append_column(column)

 column.set_cell_data_func(renderer, self.cell_data_func, None)

 def cell_data_func(self, column, renderer, model, iter, data):

 # Get the color string stored by the column and make it the

 # foreground color

 (text,) = model.get(iter, COLOR)

 renderer.props.foreground_rgba = Gdk.RGBA(red=1.0, green=1.0,

 blue=1.0, alpha=1.0)

 red = int(text[1:3], 16) / 255

CHAPTER 9 Tree View Widget

258

 green = int(text[3:5], 16) / 255 blue = int(text[5:7], 16) / 255

 renderer.props.background_rgba = Gdk.RGBA(red=red, green=green,

 blue=blue, alpha=1.0)

 renderer.props.text = text

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp", **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Color List")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Another example of a useful cell data function is when you are using floating-point

numbers, and you need to control the number of decimal places that are displayed. In

fact, that example is used when you learn about spin button cell renderers in the “Spin

Button Renderers” section of this chapter.

Once you have set up your cell data function, you need to connect it to a specific

column by calling column.set_cell_data_func(). The last two parameters of

this function allow you to supply data that is passed to the cell data function and

an additional function that is called to destroy the data. You can set both of these

parameters to None if they are not necessary.

column.set_cell_data_func(renderer, self.cell_data_func, None)

If you have added a cell data function to a column that you now want to remove, you

should call column.set_cell_data_func() function parameter set to None.

As previously stated, cell data functions should only be used when you have a

definite need for fine-tuning the rendering of the data. In most cases, you want to

use additional column attributes or column.property_set() to change properties,

CHAPTER 9 Tree View Widget

259

depending on the scope of the settings. As a rule of thumb, cell data functions should

only be used to apply settings that cannot be handled with column attributes or may not

be set for every cell.

�Cell Renderers
Up to this point, you have only learned about one type of cell renderer, Gtk.

CellRendererText. This renderer allows you to display strings, numbers, and Boolean

values as text. You are able to customize how the text is displayed with cell renderer

attributes and cell data functions and allow it to be edited by the user.

GTK+ provides a large number of cell renderers that can display other types of

widgets besides text. These are toggle buttons, images, spin buttons, combo boxes,

progress bars, and accelerators, which are all covered in this chapter.

�Toggle Button Renderers
Displaying Boolean values as “TRUE” or “FALSE” with Gtk.CellRendererText is a bit

tacky, and it takes up a large amount of valuable space in each row, especially when

there are a lot of visible Boolean columns. You might be thinking that it would be nice if

you could display a check button for Boolean values instead of text strings. It turns out

that you can — with the help of a type of cell renderer named Gtk.CellRendererToggle.

By default, toggle button cell renderers are drawn as a check button, as shown in

Figure 9-10. You can also set up toggle button renderers to be drawn as radio buttons,

but you need to manage the radio button functionality yourself.

Figure 9-10.  Toggle button renderers

CHAPTER 9 Tree View Widget

260

As with editable text renderers, you have to manually apply the changes performed

by the user; otherwise, the button will not toggle visually on the screen. Because of

this, Gtk.CellRendererToggle provides the toggled signal, which is emitted when the

user presses the check button. Listing 9-11 presents a toggled callback function for

the Grocery List application. In this version of the application, the BUY_IT column is

rendered with Gtk.CellRendererToggle.

Listing 9-11.  Using Cell Data Functions

def buy_it_toggled(renderer, path, treeview):

 model = treeview.get_model()

 iter = model.get_iter_from_string(path)

 if iter:

 (value,) = model.get(iter, BUY_IT)

 model.set_row(iter, (!value, None))

Toggle cell renderers are created with Gtk.CellRendererToggle.new(). After

creating a toggle cell renderer, you want to set its activatable property to True so that

it can be toggled; otherwise, the user will not be able to toggle the button (which can

be useful if you only want to display a setting but not allow it to be edited). column.

property_set() can be used to apply this setting to every cell.

Next, the active property should be added as a column attribute instead of text,

which was used by Gtk.CellRendererText. This property is set to True or False,

depending on the desired state of the toggle button.

Then, you should connect the Gtk.CellRendererToggle cell renderer to a callback

function for the toggled signal. Listing 9-11 gives an example callback function for the

toggled signal. This callback function receives the cell renderer and a Gtk.TreePath

string pointing to the row that contains the toggle button.

Within the callback function, you need to manually toggle the current value

displayed by the toggle button as shown in the following two lines of code. The emission

of a toggled signal only tells you that the user wants the button to be toggled; it does not

perform the action for you.

(value,) = model.get(iter, BUY_IT)

model.set_row(iter, (!value, None))

CHAPTER 9 Tree View Widget

261

To toggle the value, you can use model.get() to retrieve the current value stored

by the cell. Since the cell is storing a Boolean value, you can set the new value to the

opposite of the current in model.set_row().

As previously mentioned, Gtk.CellRendererToggle also allows you to render the

toggle as a radio button. This can be initially set to the renderer by changing the radio

property with renderer.set_radio().

renderer.set_radio(radio)

You need to realize that the only thing that is changed by setting radio to True is the

rendering of the toggle button! You have to manually implement the functionality of a

radio button through your toggled callback function. This includes activating the new

toggle button and deactivating the previously selected toggle button.

�Pixbuf Renderers
Adding images in the form of GdkPixbuf objects as a column in a Gtk.TreeView is a very

useful feature provided by Gtk.CellRendererPixbuf. An example of a pixbuf renderer is

shown in Figure 9-11, in which there is a small icon to the left of each item.

Figure 9-11.  Pixbuf renderers

CHAPTER 9 Tree View Widget

262

You have already learned almost everything necessary to add GdkPixbuf images to a tree

view in previous sections, but Listing 9-12 presents a simple example to guide you. There is

no need to create a separate column header for pixbufs in most cases, so Listing 9-12 shows

you how to include multiple renderers in one column. Pixbuf cell renderers are extremely

useful in types of tree view implementations, such as file system browsers.

Listing 9-12.  GdkPixbuf Cell Renderers

def set_up_treeview(self, treeview):

 column = Gtk.TreeViewColumn.new()

 column.set_resizable(True)

 column.set_title("Some Items")

 renderer = Gtk.CellRendererPixbuf.new()

 �# it is important to pack the renderer BEFORE adding attributes!!

column.pack_start(renderer, False) column.add_attribute(renderer,

"pixbuf", ICON)

 renderer = Gtk.CellRendererText.new()

 �# it is important to pack the renderer BEFORE adding attributes!!

column.pack_start(renderer, True) column.add_attribute(renderer,

"text", ICON_NAME) treeview.append_column(column)

New Gtk.CellRendererPixbuf objects are created with Gtk.CellRendererPixbuf.

new(). You then want to add the renderer to the column. Since there is multiple

renderers Gtk.CellRendererPixbuf.new() in our column, you can use column.pack_

start() to add the renderer to the column. It is important to pack the renderer into the

column BEFORE adding an attributes. Failure to do this invalidates the renderer and you

receive a runtime warning and no data appears in the column.

Next, you need to add attributes to the column for the Gtk.CellRendererPixbuf.

In Listing 9-12, the pixbuf property was used so that we could load a custom icon

from a file. However, pixbufs are not the only type of image supported by Gtk.

CellRendererPixbuf.

If you are using a Gtk.TreeStore, it is useful to display a different pixbuf when the

row is expanded and when it is retracted. To do this, you can specify two GdkPixbuf

objects to pixbuf-expander-open and pixbuf-expander-closed. For example, you may

want to do this to display an open folder when the row is expanded and a closed folder

when the row is retracted.

CHAPTER 9 Tree View Widget

263

When you create the tree model, you need to use a new type called GdkPixbuf.

Pixbuf, which stores GdkPixbuf objects in each model column. Every time you add a

GdkPixbuf to a tree model column, its reference count is incremented by one.

�Spin Button Renderers
In Chapter 5, you learned how to use the Gtk.SpinButton widget. While

Gtk.CellRendererText can display numbers, a better option is to use Gtk.

CellRendererSpin. Instead of displaying a Gtk.Entry when the content is to be edited, a

Gtk.SpinButton is used. An example of a cell rendered with Gtk.CellRendererSpin that

is being edited is shown in Figure 9-12.

Figure 9-12.  Spin button renderers

You notice that the floating-point numbers in the first column in Figure 9-12 show

multiple decimal places. You can set the number of decimal places shown in the spin

button but not the displayed text. To decrease or eliminate the number of decimal

places, you should use a cell data function. An example of a cell data function that hides

decimal places is shown in Listing 9-13.

Listing 9-13.  Cell Data Function for Floating-Point Numbers

def cell_edited(self, renderer, path, new_text, treeview):

 �# Retrieve the current value stored by the spin button renderer's

adjustme adjustment = renderer.get_property("adjustment")

 value = "%.0f" % adjustment.get_value() model = treeview.get_model()

 iter = model.get_iter_from_string(path) if iter:

 model.set(iter, QUANTITY, value)

CHAPTER 9 Tree View Widget

264

Recall that if you want to dictate the number of decimal places shown by a floating-

point number in a column using Gtk.CellRendererText or another derived renderer,

you need to use a cell data function. In Listing 9-13, a sample cell data function was

shown that reads in the current floating-point number and forces the renderer to display

no decimal places. This is necessary because Gtk.CellRendererSpin stores numbers as

floating-point numbers.

Gtk.CellRendererSpin is compatible with both integers and floating-point

numbers, because its parameters are stored in a Gtk.Adjustment. Listing 9-13 is an

implementation of the Grocery List application in which the Quantity column is

rendered with Gtk.CellRendererSpin.

Listing 9-14.  Spin Button Cell Renderers

def setup_tree_view(self, renderer, column, adj):

 adj = Gtk.Adjustment.new(0.0, 0.0, 100.0, 1.0, 2.0, 2.0)

 renderer = Gtk.CellRendererSpin(editable=True, adjustment=adj, digits=0)

 column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

 treeview.append_column(column)

 renderer.connect("edited", self.cell_edited, treeview)

 # Add a cell renderer for the PRODUCT column

New Gtk.CellRendererSpin objects are created with Gtk.CellRendererSpin().

When you create the renderer, you should set the editable, adjustment, and digits

properties of the object, as follows.

Gtk.CellRendererSpin(editable=True, adjustment=adj, digits=0)

Gtk.CellRendererSpin provides three properties: adjustment, climb rate, and

digits. These are stored in a Gtk.Adjustment defining the spin button’s properties, the

acceleration rate when an arrow button is held down, and the number of decimal places

to display in the spin button respectively. The climb rate and number of decimals to

display are both set to zero by default.

After setting up the cell renderer, you should then connect to the edited signal to the

cell renderer, which is used to apply the new value chosen by the user to the cell. There

is usually no need to filter this value, because the adjustment already limits the values

allowed by the cell. The callback function is run after the user presses the Enter key or

moves focus from the spin button of a cell that is being edited.

CHAPTER 9 Tree View Widget

265

Within the cell_edited()callback method in Listing 9-14 you need to first retrieve

the adjustment of the spin button renderer, because it stores the new value that is to be

displayed. This new value can then be applied to the given cell.

Note  Although the edited signal of a Gtk.CellRendererText still receives
the new_text parameter, this should not be used. The parameter does not store a
textual version of the spin button’s value. Furthermore, the value used in model.
set() that replaces the current value must be supplied as a floating-point
number, so a string is not acceptable regardless of its contents.

You can retrieve the adjustment’s value with renderer.get_property("adjustment"),

applying it to the appropriate column. if the QUANTITY column is used to display a

floating-point number (GObject.TYPE_FLOAT), you can use the returned type in its current

state. We have instead chosen to convert the float value to a string value.

When creating the tree model, the column must be of the type GObject.TYPE_FLOAT,

even if you want to store an integer. You should use cell data functions to limit the

number of decimal places displayed by each cell.

�Combo Box Renderers
Gtk.CellRendererCombo provides a cell renderer for a widget that you have just learned

about, Gtk.ComboBox. Combo box cell renderers are useful, because they allow you to

present multiple predefined options to the user. Gtk.CellRendererCombo renders text

in a similar way to Gtk.CellRendererText, but instead of showing a Gtk.Entry widget

when editing, a Gtk.ComboBox widget is presented to the user. An example of a

Gtk.CellRendererCombo cell being edited is shown in Figure 9-13.

CHAPTER 9 Tree View Widget

266

To use Gtk.CellRendererCombo, you need to create a Gtk.TreeModel for every cell in

the column. In Listing 9-15, the QUANTITY column of the Grocery List application from

Listing 9-1 is rendered with Gtk.CellRendererCombo.

Listing 9-15.  Combo Box Cell Renderers

def setup_tree_view(self, treeview):

 # Create a GtkListStore that will be used for the combo box

 renderer. model = Gtk.ListStore.new((GObject.TYPE_STRING,

 GObject.TYPE_STRING))

 iter = model.append()

 model.set(iter, 0, "None")

 iter = model.append()

 model.set(iter, 0, "One")

 iter = model.append()

 model.set(iter, 0, "Half a Dozen")

 iter = model.append()

 model.set(iter, 0, "Dozen")

 iter = model.append()

 model.set(iter, 0, "Two Dozen")

 # Create the GtkCellRendererCombo and add the tree model. Then, add the

 # renderer to a new column and add the column to the GtkTreeView.

 renderer = Gtk.CellRendererCombo(text_column=0, editable=True,

 has_entry=True, model=model)

Figure 9-13.  A combo box cell renderer

CHAPTER 9 Tree View Widget

267

 column = Gtk.TreeViewColumn("Count", renderer, text=QUANTITY)

 treeview.append_column(column)

 renderer.connect("edited", self.cell_edited, treeview)

 renderer = Gtk.CellRendererText.new()

 column = Gtk.TreeViewColumn("Product", renderer, text=PRODUCT)

 treeview.append_column(column)

def cell_edited(self, renderer, path, new_text, treeview):

 # Make sure the text is not empty. If not, apply it to the tree view

 cell. if new_text != "":

 model = treeview.get_model()

 iter = model.get_iter_from_string(path)

 if iter:

 model.set(iter, QUANTITY, new_text)

New combo box cell renderers are created with Gtk.CellRendererCombo(). Gtk.

CellRendererCombo has three properties in addition to those inherited from Gtk.

CellRendererText: "has_entry", "model", and "text_column".

renderer = Gtk.CellRendererCombo(text_column=0, editable=True,

 has_entry=True, model=model)

The first property you need to set is "text_column", which refers to the column in

the combo box’s tree model that is displayed in the cell renderer. This must be a type

supported by Gtk.CellRendererText, such as GObject.TYPE_STRING, GObject.TYPE_

INT, or GObject.TYPE_BOOLEAN. The model property is a Gtk.TreeModel that is used as

the content of the combo box. You must also set the editable property to True, so the cell

content may be edited.

Lastly, there is a widget called Gtk.ComboBoxEntry that gives the user choices like

a normal combo box, but it also uses a Gtk.Entry widget to allow the user to enter a

custom string instead of choosing an existing option. To allow this functionality with

a combo box cell renderer, you must set the has-entry property to True. This is turned

on by default, which means that you must turn it off to restrict the choices to those that

appear in Gtk.CellRendererCombo’s tree model.

CHAPTER 9 Tree View Widget

268

As with other cell renderers derived from Gtk.CellRendererText, you want to use

the text field as the column attribute and set its initial text when creating the tree view’s

model. You can then use the edited signal to apply the text to the tree model. In Listing 9-

15, the changes are only applied when the "new_text" string is not empty, since the user

is free to enter free-form text as well.

�Progress Bar Renderers
Another type of cell renderer is Gtk.CellRendererProgress, which implements the Gtk.

ProgressBar widget. While progress bars support pulsing, Gtk.CellRendererProgress

only allows you to set the current value of the progress bar. Figure 9-14 shows a Gtk.

TreeView widget that has a progress bar cell renderer in the second column, which

displays textual feedback.

Figure 9-14.  Progress bar cell renderers

Progress bar cell renderers are another easy feature to implement in a program.

You can use Gtk.CellRendererProgress() to create new Gtk.CellRendererProgress

objects. Gtk.CellRendererProgress provides two properties: "text" and "value". The

progress bar state is defined by the "value" property, which is an integer with a value

between 0 and 100. A value of 0 refers to an empty progress bar, and 100 refers to a full

progress bar. Since it is stored as an integer, the tree model column corresponding to the

value of the progress bar should have the type GObject.TYPE_INT.

The second property provided by Gtk.CellRendererProgress is text. This property

is a string that is drawn over the top of the progress bar. This property can be ignored

in some cases, but it is usually a good idea to give the user more information about the

progress of a process. Examples of possible progress bar strings are “67% Complete”, “3 of

80 Files Processed”, “Installing foo . . .”, and so on.

CHAPTER 9 Tree View Widget

269

Gtk.CellRendererProgress is a useful cell renderer in some cases, but you should

be careful when you deploy it. You should avoid using multiple progress bars in one row,

because doing so could confuse the user and takes up a lot of horizontal space. Also, tree

views with many rows appear messy. In many cases, it would be better for the user to use

a textual cell renderer instead of a progress bar cell renderer.

However, there are some cases where Gtk.CellRendererProgress is a good choice.

For example, if your application has to manage multiple downloads at the same time,

progress bar cell renderers are an easy way to give coherent feedback about progress for

each download.

�Keyboard Accelerator Renderers
GTK+ 2.10 introduced a new type of cell renderer called Gtk.CellRendererAccel, which

displays a textual representation of a keyboard accelerator. An example of an accelerator

cell renderer is shown in Figure 9-15.

Figure 9-15.  Accelerator cell renderers

Listing 9-16 creates a list of actions along with their keyboard accelerators.

This type of tree view could be used to allow the user to edit the accelerators for an

application. The accelerator is displayed as text, since the renderer is derived from

Gtk.CellRendererText.

To edit the accelerator, the user needs to click the cell once. The cell then shows a

string asking for a key. The new key code is added, along with any mask keys, such as Ctrl

and Shift, into the cell. Basically, the first keyboard shortcut pressed is displayed by the cell.

CHAPTER 9 Tree View Widget

270

Listing 9-16.  Combo Box Cell Renderers

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk, GObject

ACTION = 0

MASK = 1

VALUE = 2

list = [("Cut", Gdk.ModifierType.CONTROL_MASK, Gdk.KEY_X), ("Copy",

Gdk.ModifierType.CONTROL_MASK, Gdk.KEY_C), ("Paste", Gdk.ModifierType.

CONTROL_MASK, Gdk.KEY_V), ("New", Gdk.ModifierType.CONTROL_MASK, Gdk.

KEY_N), ("Open", Gdk.ModifierType.CONTROL_MASK, Gdk.KEY_O), ("Print",

Gdk.ModifierType.CONTROL_MASK, Gdk.KEY_P)]

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_size_request(250, 250)

 treeview = Gtk.TreeView.new()

 self.setup_tree_view(treeview)

 store = Gtk.ListStore(GObject.TYPE_STRING,

 GObject.TYPE_INT, GObject.TYPE_UINT)

 for row in list:

 (action, mask, value) = row

 iter = store.append(None)

 store.set(iter, ACTION, action, MASK, mask, VALUE, value)

 treeview.set_model(store)

 scrolled_win = Gtk.ScrolledWindow.new(None, None)

 scrolled_win.set_policy(Gtk.PolicyType.AUTOMATIC,

 Gtk.PolicyType.AUTOMATIC)

 scrolled_win.add(treeview)

 self.add(scrolled_win)

CHAPTER 9 Tree View Widget

271

 def setup_tree_view(self, treeview):

 renderer = Gtk.CellRendererAccel()

 column = Gtk.TreeViewColumn("Action", renderer, text=ACTION)

 treeview.append_column(column)

 �renderer = Gtk.CellRendererAccel(accel_mode=Gtk.

CellRendererAccelMode.GTK, editable=True)

 �column = Gtk.TreeViewColumn("Key", renderer, accel_mods=MASK,

accel_key=VALUE)

 treeview.append_column(column)

 renderer.connect("accel_edited", self.accel_edited, treeview)

 �def accel_edited(self, renderer, path, accel_key, mask, hardware_

keycode, treeview):

 model = treeview.get_model()

 iter = model.get_iter_from_string(path)

 if iter:

 model.set(iter, MASK, mask, VALUE, accel_key)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Accelerator

Keys")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 9 Tree View Widget

272

You can use Gtk.CellRendererAccel() to create new Gtk.CellRendererAccel

objects. Gtk.CellRendererAccel provides the following four properties that can be

accessed with renderer.get().

•	 Gdk.ModifierType.SHIFT_MASK: The Shift key.

•	 Gdk.ModifierType.CONTROL_MASK: The Ctrl key.

•	 Gdk.ModifierType.MOD_MASK,Gdk.ModifierType.MOD2_MASK, Gdk.

ModifierType.MOD3_MASK,Gdk.ModifierType.MOD4_MASK, Gdk.

ModifierType.MOD5_MASK: The first modifier usually represents the Alt

key, but these are interpreted based on your X server mapping of the

keys. They can also correspond to the Meta, Super, or Hyper key.

•	 Gdk.ModifierType.SUPER_MASK: Introduced in 2.10, this allows you to

explicitly state the Super modifier. This modifier may not be available

on all systems!

•	 Gdk.ModifierType.HYPER_MASK: Introduced in 2.10, this allows you to

explicitly state the Hyper modifier. This modifier may not be available

on all systems!

•	 Gdk.ModifierType.META_MODIFIER: Introduced in 2.10, this allows

you to explicitly state the Meta modifier. This modifier may not be

available on all systems!

In most cases, you want to set the modifier mask (acel-mods) and the accelerator key

value (accel-key) as two attributes of the tree view column using Gtk.CellRendererAccel.

In this case, the modifier mask is of type GObject.TYPE_INT, and the accelerator key value

GObject.TYPE_UINT. Because of this, you want to make sure to case the Gdk.ModifierType

value to an int when setting the content of the modifier mask column.

store = Gtk.ListStore(GObject.TYPE_STRING, GObject.TYPE_INT, GObject.TYPE_

UINT)

Gtk.CellRendererAccel provides two signals. The first, accel-cleared, allows you to

reset the accelerator when the user removes the current value. In most cases, you will not

need to do this unless you have a default value that you want the accelerator to revert to.

CHAPTER 9 Tree View Widget

273

Of greater importance, accel-edited allows you to apply changes that the user

makes to the keyboard accelerator, as long as you set the editable property to True. The

callback function receives a path string to the row in question along with the accelerator

key code, mask and hardware key code. In the callback function, you can apply the

changes with store.set(), as you would with any other editable type of cell.

�Test Your Understanding
In Exercise 1, you have the opportunity to practice using the Gtk.TreeView widget, along

with multiple types of cell renderers. This is an extremely important exercise for you to

try, because you need to use the Gtk.TreeView widget in many applications. As always,

when you are finished, you can find one possible solution in Appendix D.

�Exercise 1: File Browser
By now, you have probably had enough of Grocery List applications, so let’s try

something different. In this exercise, create a file browser using the Gtk.TreeView

widget. You should use Gtk.ListStore for the file browser and allow the user to browse

through the file system.

The file browser should show images to differentiate among directories and files.

Images are found in the downloadable source code at www.gtkbook.com. You can also

use the Python directory utility functions to retrieve directory content. Double-clicking a

directory should move you to that location.

�Summary
In this chapter, you learned how to use the Gtk.TreeView widget. This widget allows

you to display lists and tree structures of data with Gtk.ListStore and Gtk.TreeStore

respectively. You also learned the relationship among the tree view, tree model,

columns, and cell renderers and how to use each of the objects.

Next, you learned about the types of objects that can be used to refer to a row within

the tree view. These include tree iterators, paths, and row references. Each of these

objects has its own advantages and disadvantages. Tree iterators can be used directly

with models, but they become invalid when the tree model changes. Tree paths are

CHAPTER 9 Tree View Widget

http://www.gtkbook.com

274

easily understandable, because they have associated human-readable strings, but may

not point to the same row if the tree model is changed. Lastly, tree row references are

useful, because they remain valid for as long as the row exists, even when the model is

changed.

You next learned how to handle selections of one row or multiple rows. With

multiple row selections, you can use a for-each function, or you can get a Python list of

the selected rows. A useful signal when dealing with selections is Gtk.TreeView’s row-

activated signal, which allows you to handle double-clicks.

After that, you learned how to create editable cells with Gtk.CellRendererText’s

edited signal, which displays a Gtk.Entry to allow the user to edit the content in the cell.

Cell data functions can also be connected to columns. These cell data functions allow

you to customize each cell before it is rendered to the screen.

Lastly, you learned about a number of cell renderers that allow you to display toggle

buttons, pixbufs, spin buttons, combo boxes, progress bars, and keyboard accelerator

strings. You were also introduced to the Gtk.ComboBox widget.

Congratulations! You are now familiar with one of the hardest and most versatile

widgets provided by GTK+. In the next chapter, you learn how to create menus,

toolbars, and pop-up menus. You also learn how to automate menu creation with user

interface (UI) files.

CHAPTER 9 Tree View Widget

275
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_10

CHAPTER 10

Menus and Toolbars
This chapter teaches you how to create pop-up menus, menu bars, and toolbars. You

begin by creating each manually, so you learn how the widgets are constructed. This

gives you a firm understanding of all of the concepts on which menus and toolbars rely.

After you understand each widget, you are introduced to Gtk.Builder, which allows

you to dynamically create menus and toolbars through custom XML files. Each user

interface file is loaded, and each element applied to a corresponding action object,

which tells the item how it is displayed and how it acts.

In this chapter, you learn the following.

•	 How to create pop-up menus, menu bars, and toolbars

•	 How to apply keyboard accelerators to menu items

•	 What the Gtk.StatusBar widget is and how you can use it to provide

more information to the user about a menu item

•	 What types of menu and toolbar items are provided by GTK+

•	 How to dynamically create menus and toolbars with UI files

•	 How to create custom stock items with Gtk.IconFactory

�Pop-up Menus
You begin this chapter by learning how to create a pop-up menu. A pop-up menu

is a Gtk.Menu widget that is displayed to the user when the right mouse button is

clicked while hovering above certain widgets. Some widgets, such as Gtk.Entry and

Gtk.TextView, already have pop-up menus built into the widget by default.

276

If you want to change the pop-up menu of a widget that offers one by default, you

should edit the supplied Gtk.Menu widget in the pop-up callback function. For example,

both Gtk.Entry and Gtk.TextView have a populate-popup signal, which receives the

Gtk.Menu that is going to be displayed. You can edit this menu in any way you see fit

before displaying it to the user.

�Creating a Pop-up Menu
For most widgets, you need to create your own pop-up menu. In this section, you are

going to learn how to supply a pop-up menu to a Gtk.ProgressBar widget. The pop-up

menu we are going to implement is presented in Figure 10-1.

Figure 10-1.  A simple pop-up menu with three menu items

The three pop-up menu items pulse the progress bar, set it as 100 percent complete,

and clear it. In Listing 10-1, an event box contains the progress bar. Because Gtk.

ProgressBar, like Gtk.Label, is not able to detect GDK events by itself, we need to catch

button-press-event signals using an event box.

Listing 10-1.  Simple Pop-up Menu

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

CHAPTER 10 Menus and Toolbars

277

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, -1)

 �# Create all of the necessary widgets and initialize the pop-up

menu. menu = Gtk.Menu.new()

 eventbox = Gtk.EventBox.new()

 �progress = Gtk.ProgressBar.new() progress.set_text("Nothing Yet

Happened")

 progress.set_show_text(True) self.create_popup_menu(menu, progress)

 progress.set_pulse_step(0.05) eventbox.set_above_child(False)

 �eventbox.connect("button_press_event", self.button_press_event,

menu) eventbox.add(progress)

 self.add(eventbox)

 eventbox.set_events(Gdk.EventMask.BUTTON_PRESS_MASK)

 eventbox.realize()

 def create_popup_menu(self, menu, progress):

 pulse = Gtk.MenuItem.new_with_label("Pulse Progress")

 fill = Gtk.MenuItem.new_with_label("Set as Complete")

 clear = Gtk.MenuItem.new_with_label("Clear Progress")

 separator = Gtk.SeparatorMenuItem.new()

 pulse.connect("activate", self.pulse_activated, progress)

 fill.connect("activate", self.fill_activated, progress)

 clear.connect("activate", self.clear_activated, progress)

 menu.append(pulse)

 menu.append(separator)

 menu.append(fill)

 menu.append(clear)

 menu.attach_to_widget(progress, None)

 menu.show_all()

CHAPTER 10 Menus and Toolbars

278

 def button_press_event(self, eventbox, event, menu):

 pass

 def pulse_activated(self, item, progress):

 pass

 def fill_activated(self, item, progress):

 pass

 def clear_activated(self, item, progress):

 pass

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Pop-up Menus")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

In most cases, you want to use button-press-event to detect when the user wants

the pop-up menu to be shown. This allows you to check whether the right mouse button

was clicked. If the right mouse button was clicked, Gdk.EventButton’s button member is

equal to 3.

However, Gtk.Widget also provides the popup-menu signal, which is activated when

the user presses built-in key accelerators to activate the pop-up menu. Most users use

the mouse to activate pop-up menus, so this is not usually a factor in GTK+ applications.

Nevertheless, if you would like to handle this signal as well, you should create a third

function that displays the pop-up menu that is called by both callback functions.

CHAPTER 10 Menus and Toolbars

279

New menus are created with Gtk.Menu.new(). The menu is initialized with no initial

content, so the next step is to create menu items.

In this section, we cover two types of menu items. The first is the base class for

all other types of menu items, Gtk.MenuItem. There are three initialization functions

provided for Gtk.MenuItem: Gtk.MenuItem.new(), Gtk.MenuItem.new_with_label(),

and Gtk.MenuItem.new_with_mnemonic().

pulse = Gtk.MenuItem.new_with_label("Pulse Progress")

In most cases, you do not need to use the Gtk.MenuItem.new(), because a menu

item with no content is not of much use. If you use that function to initialize the menu

item, you have to construct each aspect of the menu in code instead of allowing GTK+ to

handle the specifics.

Note  Menu item mnemonics are not the same thing as keyboard accelerators. A
mnemonic activates the menu item when the user presses Alt and the appropriate
alphanumeric key while the menu has focus. A keyboard accelerator is a custom
key combination that causes a callback function to be run when the combination is
pressed. You learn about keyboard accelerators for menus in the next section.

The other type of basic menu item is Gtk.SeparatorMenuItem, which places a

generic separator at its location. You can use Gtk.SeparatorMenuItem.new() to create a

new separator menu item.

Separators are extremely important when designing a menu structure, because they

organize menu items into groups so that the user can easily find the appropriate item.

For example, in the File menu, menu items are often organized into groups that open

files, save files, print files, and close the application. Rarely should you have many menu

items listed without a separator in between them (e.g., a list of recent files might appear

without a separator). In most cases, you should group similar menu items together and

place a separator between adjacent groups.

After the menu items are created, you need to connect each menu item to the

activate signal, which is emitted when the user selects the item. Alternatively, you can

use the activate-item signal, which is also emitted when a submenu of the given menu

item is displayed. There is no discernable difference between the two unless the menu

item expands into a submenu.

CHAPTER 10 Menus and Toolbars

280

Each activate and activate-item callback function receives the Gtk.MenuItem widget

that initiated the action and any data you need to pass to the function. In Listing 10-2,

three menu item callback functions are provided to pulse the progress bar, fill it to 100

percent complete, and clear all progress.

Now that you have created all of the menu items, you need to add them to the menu.

Gtk.Menu is derived from Gtk.MenuShell, which is an abstract base class that contains

and displays submenus and menu items. Menu items can be added to a menu shell with

menu.append(). This function appends each item to the end of the menu shell.

menu.append(pulse)

Additionally, you can use menu.prepend() or menu.insert() add a menu item to

the beginning of the menu or insert it into an arbitrary position respectively. Positions

accepted by menu.insert() begin with an index of zero.

After setting all of the Gtk.Menu’s children as visible, you should call menu.attach_

to_widget() so that the pop-up menu is associated to a specific widget. This function

accepts the pop-up menu and the widget that it is attached to.

menu.attach_to_widget(progress, None)

The last parameter of menu.attach_to_widget() accepts a Gtk.MenuDetachFunc,

which can call a specific function when the menu is detached from the widget.

�Pop-up Menu Callback Methods
After creating the necessary widgets, you need to handle the button-press-event signal,

which is shown in Listing 10-2. In this example, the pop-up menu is displayed every time

the right mouse button clicks the progress bar.

Listing 10-2.  Callback Functions for the Simple Pop-up Menu

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

CHAPTER 10 Menus and Toolbars

281

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, -1)

 # Create all of the necessary widgets and initialize the pop-up

 menu. menu = Gtk.Menu.new()

 eventbox = Gtk.EventBox.new() progress =

 Gtk.ProgressBar.new()

 progress.set_text("Nothing Yet Happened")

 progress.set_show_text(True) self.create_popup_menu(menu, progress)

 progress.set_pulse_step(0.05) eventbox.set_above_child(False)

 �eventbox.connect("button_press_event", self.button_press_event,

menu) eventbox.add(progress)

 self.add(eventbox)

 �eventbox.set_events(Gdk.EventMask.BUTTON_PRESS_MASK) eventbox.realize()

 def create_popup_menu(self, menu, progress):

 pulse = Gtk.MenuItem.new_with_label("Pulse Progress")

 fill = Gtk.MenuItem.new_with_label("Set as Complete")

 clear = Gtk.MenuItem.new_with_label("Clear Progress")

 separator = Gtk.SeparatorMenuItem.new()

 pulse.connect("activate", self.pulse_activated, progress)

 fill.connect("activate", self.fill_activated, progress)

 clear.connect("activate", self.clear_activated, progress)

 menu.append(pulse)

 menu.append(separator)

 menu.append(fill)

 menu.append(clear)

 menu.attach_to_widget(progress, None)

 menu.show_all()

 def button_press_event(self, eventbox, event, menu):

 �if event.button == 3 and event.type == Gdk.EventType.BUTTON_PRESS: menu.

popup(None, None, None, None, event.button, event.time) return True

 return False

CHAPTER 10 Menus and Toolbars

282

 def pulse_activated(self, item, progress):

 progress.pulse()

 progress.set_text("Pulse!")

 def fill_activated(self, item, progress):

 progress.set_fraction(1.0)

 progress.set_text("One Hundred Percent")

 def clear_activated(self, item, progress):

 progress.set_fraction(0.0)

 progress.set_text("Reset to Zero")

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Pop-up Menus")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

In the button-press-event callback function in Listing 10-2, you can use menu.

popup() to display the menu on the screen.

menu.popup(parent_menu_shell, parent_menu_item, func, func_data, button,

event_time)

In Listing 10-2 all parameters were set to None except for the mouse button that

was clicked to cause the event (event ➤ button) and the time when the event occurred

(event.time). If the pop-up menu was activated by something other than a button, you

should supply 0 to the button parameter.

CHAPTER 10 Menus and Toolbars

283

Note  If the action was invoked by a popup-menu signal, the event time will not
be available. In that case, you can use Gtk.get_current_event_time(). This
function returns the timestamp of the current event or Gdk.CURRENT_TIME if
there are no recent events.

Usually, parent_menu_shell, parent_menu_item, func, and func_data are set to

None , because they are used when the menu is a part of a menu bar structure. The

parent_menu_shell widget is the menu shell that contains the item that caused the pop-

up initialization. Alternatively, you can supply parent_menu_item, which is the menu

item that caused the pop-up initialization.

Gtk.MenuPositionFunc is a function that decides at what position on the screen

the menu should be drawn. It accepts func_data as an optional last parameter. These

parameters are not frequently used in applications, so they can safely be set to None.

In our example, the pop-up menu was already associated with the progress bar, so it is

drawn in the correct location.

�Keyboard Accelerators
When creating a menu, one of the most important things to do is to set up keyboard

accelerators. A keyboard accelerator is a key combination created from one accelerator

key and one or more modifiers, such as Ctrl or Shift. When the user presses the key

combination, the appropriate signal is emitted.

Listing 10-3 is an extension of the progress bar pop-up menu application that adds

keyboard accelerators to the menu items. The progress bar is pulsed when the user

presses Ctrl+P, filled with Ctrl+F, and cleared with Ctrl+C.

Listing 10-3.  Adding Accelerators to Menu Items

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

CHAPTER 10 Menus and Toolbars

284

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, -1)

 �# Create all of the necessary widgets and initialize the pop-up

menu. menu = Gtk.Menu.new()

 �eventbox = Gtk.EventBox.new() progress = Gtk.ProgressBar.new()

progress.set_text("Nothing Yet Happened") progress.set_show_

text(True) self.create_popup_menu(menu, progress) progress.set_

pulse_step(0.05) eventbox.set_above_child(False)

 �eventbox.connect("button_press_event", self.button_press_event,

menu) eventbox.add(progress)

 self.add(eventbox)

 eventbox.set_events(Gdk.EventMask.BUTTON_PRESS_MASK)

 eventbox.realize()

 def create_popup_menu(self, menu, progress):

 group = Gtk.AccelGroup.new()

 self.add_accel_group(group)

 menu.set_accel_group(group)

 pulse = Gtk.MenuItem.new_with_label("Pulse Progress")

 fill = Gtk.MenuItem.new_with_label("Set as Complete")

 clear = Gtk.MenuItem.new_with_label("Clear Progress")

 separator = Gtk.SeparatorMenuItem.new()

 # Add the necessary keyboard accelerators.

 �pulse.add_accelerator("activate", group, Gdk.KEY_P, Gdk.

ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)

 �fill.add_accelerator("activate", group, Gdk.KEY_F, Gdk.

ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)

 �clear.add_accelerator("activate", group, Gdk.KEY_C, Gdk.

ModifierType.CONTROL, Gtk.AccelFlags.VISIBLE)

 pulse.connect("activate", self.pulse_activated, progress)

 fill.connect("activate", self.fill_activated, progress)

 clear.connect("activate", self.clear_activated, progress)

CHAPTER 10 Menus and Toolbars

285

 menu.append(pulse)

 menu.append(separator)

 menu.append(fill)

 menu.append(clear)

 menu.attach_to_widget(progress, None)

 menu.show_all()

 def button_press_event(self, eventbox, event, menu):

 �if event.button == 3 and event.type == Gdk.EventType.BUTTON_PRESS:

menu.popup(None, None, None, None, event.button, event.time)

return True

 return False

 def pulse_activated(self, item, progress):

 progress.pulse()

 progress.set_text("Pulse!")

 def fill_activated(self, item, progress):

 progress.set_fraction(1.0)

 progress.set_text("One Hundred Percent")

 def clear_activated(self, item, progress):

 progress.set_fraction(0.0)

 progress.set_text("Reset to Zero")

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Pop-up Menus")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 10 Menus and Toolbars

286

Keyboard accelerators are stored as an instance of Gtk.AccelGroup. To implement

accelerators in your application, you need to create a new accelerator group with Gtk.

AccelGroup.new(). This accelerator group must be added to the Gtk.Window where the

menu appears for it to take effect. It must also be associated with any menus that take

advantage of its accelerators. In Listing 10-3, this is performed immediately after creating

the Gtk.AccelGroup with self.add_accel_group() and menu.set_accel_group().

It is possible to manually create keyboard accelerators with Gtk.AccelMap, but in

most cases, widget.add_accelerator() provides all of the necessary functionality.

The only problem that this method presents is that the user cannot change keyboard

accelerators created with this function during runtime.

widget.add_accelerator(signal_name, group, accel_key, mods, flags)

To add an accelerator to a widget, you can use widget.add_accelerator(), which

emits the signal specified by signal_name on the widget when the user presses the key

combination. You need to specify your accelerator group to the function, which must be

associated with the window and the menu as previously stated.

An accelerator key and one or more modifier keys form the complete key

combination. A list of available accelerator keys is available in the PyGObject API

Reference. All the definitions for the available keys can be included by with the

statement import GDK.

Modifiers are specified by the Gdk.ModifierType enumeration. The most often

used modifiers are Gdk.ModifierType.SHIFT_MASK, Gdk.ModifierType.CONTROL_MASK,

and Gdk.ModifierType.MOD1_MASK, which correspond to the Shift, Ctrl, and Alt keys

respectively.

Tip  When dealing with key codes, you need to be careful because you many
need to supply multiple keys for the same action in some cases. For example, if
you want to catch the number 1 key, you need to watch for Gdk.KEY_1 and Gdk.
KEY_KP_1 - they correspond to the 1 key at the top of the keyboard and the 1 key
on the numeric keypad.

The last parameter of widget.add_accelerator() is an accelerator flag. There are

three flags defined by the Gtk.AccelFlags enumeration. The accelerator is visible in a

label if Gtk.AccelFlags.VISIBLE is set. Gtk.AccelFlags.LOCKED prevents the user from

modifying the accelerator. Gtk.AccelFlags.MASK sets both flags for the widget accelerator.

CHAPTER 10 Menus and Toolbars

287

�Status Bar Hints
Usually placed along the bottom of the main window, the Gtk.Statusbar widget can

give the user further information about what is going on in the application. A status bar

can also be very useful with menus, because you can provide more information to the

user about the functionality of the menu item that the mouse cursor is hovering over. A

screenshot of a status bar is shown in Figure 10-2.

Figure 10-2.  A pop-up menu with status bar hints

�The Status Bar Widget
While the status bar can only display one message at a time, the widget actually stores a

stack of messages. The currently displayed message is on the top of the stack. When you

pop a message from the stack, the previous message is displayed. If there are no more

strings left on the stack after you pop a message from the top, no message is displayed on

the status bar.

New status bar widgets are created with Gtk.Ststusbar.new(). This creates a new

Gtk.Statusbar widget with an empty message stack. Before you are able to add or

remove a message from the new status bar’s stack, you must retrieve a context identifier

with statusbar.get_context_id().

id = statusbar.get_context_id(description)

The context identifier is a unique unsigned integer that is associated with a context

description string. This identifier is used for all messages of a specific type, which allows

you to categorize messages on the stack.

CHAPTER 10 Menus and Toolbars

288

For example, if your status bar holds hyperlinks and IP addresses, you could create

two context identifiers from the strings “URL” and “IP”. When you push or pop messages

to and from the stack, you have to specify a context identifier. This allows separate parts

of your application to push and pop messages to and from the status bar message stack

without affecting each other.

Tip  It is important to use different context identifiers for different categories of
messages. If one part of your application is trying to give a message to the user
while the other is trying to remove its own message, you do not want the wrong
message to be popped from the stack!

After you generate a context identifier, you can add a message to the top of the status

bar’s stack with statusbar.push(). This function returns a unique message identifier for

the string that was just added. This identifier can be used later to remove the message

from the stack, regardless of its location.

statusbar.push(context_id, message)

There are two ways to remove a message from the stack. If you want to remove a

message from the top of the stack for a specific context ID, you can use statusbar.

pop(). This function removes the message that is highest on the status bar’s stack with a

context identifier of context_id.

statusbar.pop(context_id)

It is also possible to remove a specific message from the status bar’s message stack

with statusbar.remove(). To do this, you must provide the context identifier of the

message and the message identifier of the message you want to remove, which was

returned by statusbar.push() when it was added.

statusbar.remove(context_id, message_id)

CHAPTER 10 Menus and Toolbars

289

�Menu Item Information
One useful role of the status bar is to give the user more information about the menu

item the mouse cursor is currently hovering over. An example of this was shown in

Figure 10-2, which is a screenshot of the progress bar pop-up menu application in

Listing 10-4.

To implement status bar hints, you should connect each of your menu items to Gtk.

Widget’s "enter-notify-event" and "leave-notify-event" signals. Listing 10-4 shows

the progress bar pop-up menu application you have already learned about, except status

bar hints are provided when the mouse cursor moves over a menu item.

Listing 10-4.  Displaying More Information About a Menu Item

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

class AppMenuItem(Gtk.MenuItem):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 def __setattr__(self, name, value):

 self.__dict__[name] = value

 def __getattr__(self, name):

 return self.__dict__[name]

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.set_size_request(250, -1)

 �# Create all of the necessary widgets and initialize the pop-up

menu. menu = Gtk.Menu.new()

 eventbox = Gtk.EventBox.new() progress = Gtk.ProgressBar.new()

CHAPTER 10 Menus and Toolbars

290

 progress.set_text("Nothing Yet Happened")

 progress.set_show_text(True)

 statusbar = Gtk.Statusbar.new()

 self.create_popup_menu(menu, progress, statusbar)

 progress.set_pulse_step(0.05)

 eventbox.set_above_child(False)

 eventbox.connect("button_press_event", self.button_press_event, menu)

 eventbox.add(progress)

 vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(eventbox, False, True, 0)

 vbox.pack_start(statusbar, False, True, 0)

 self.add(vbox)

 eventbox.set_events(Gdk.EventMask.BUTTON_PRESS_MASK)

 eventbox.realize()

 def create_popup_menu(self, menu, progress, statusbar):

 pulse = AppMenuItem(label="Pulse Progress")

 fill = AppMenuItem(label="Set as Complete")

 clear = AppMenuItem(label="Clear Progress")

 separator = Gtk.SeparatorMenuItem.new()

 pulse.connect("activate", self.pulse_activated, progress)

 fill.connect("activate", self.fill_activated, progress)

 clear.connect("activate", self.clear_activated, progress)

 �Connect signals to each menu item for status bar messages. pulse.

connect("enter-notify-event", self.statusbar_hint, statusbar)

pulse.connect("leave-notify-event", self.statusbar_hint, statusbar)

fill.connect("enter-notify-event", self.statusbar_hint, statusbar)

fill.connect("leave-notify-event", self.statusbar_hint, statusbar)

clear.connect("enter-notify-event", self.statusbar_hint, statusbar)

clear.connect("leave-notify-event", self.statusbar_hint, statusbar)

pulse.__setattr__("menuhint", "Pulse the progress bar one step.")

fill.__setattr__("menuhint", "Set the progress bar to 100%.")

clear.__setattr__("menuhint", "Clear the progress bar to 0%.")

menu.append(pulse)

CHAPTER 10 Menus and Toolbars

291

 menu.append(separator)

 menu.append(fill)

 menu.append(clear)

 menu.attach_to_widget(progress, None) menu.show_all()

 def button_press_event(self, eventbox, event, menu):

 �if event.button == 3 and event.type == Gdk.EventType.BUTTON_PRESS:

menu.popup(None, None, None, None, event.button, event.time)

return True

 return False

 def pulse_activated(self, item, progress):

 progress.pulse()

 progress.set_text("Pulse!")

 def fill_activated(self, item, progress):

 progress.set_fraction(1.0)

 progress.set_text("One Hundred Percent")

 �def clear_activated(self, item, progress): progress.set_fraction(0.0)

progress.set_text("Reset to Zero")

 �def statusbar_hint(self, menuitem, event, statusbar): id = statusbar.

get_context_id("MenuItemHints")

 if event.type == Gdk.EventType.ENTER_NOTIFY:

 hint = menuitem.__getattr__("menuhint")

 id = statusbar.push(id, hint)

 elif event.type == Gdk.EventType.LEAVE_NOTIFY:

 statusbar.pop(id)

 return False

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

CHAPTER 10 Menus and Toolbars

292

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Pop-up Menus")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

When implementing status bar hints, you first need to figure out what signals are

necessary. We want to be able to add a message to the status bar when the mouse cursor

moves over the menu item and remove it when the mouse cursor leaves. From this

description, using "enter-notify-event" and "leave-notify-event" is a good solution.

Since the GTK+ 3 interface to Python 3 does not implement the get_data() and

set_data() methods on GTK+ objects, we need to subclass the Gtk.MenuItem class to

implement the corresponding Python 3 attributes. This methodology is used on some

other examples in this book as well.

One advantage of using these two signals is that we only need one callback function,

because the prototype for each receives a Gdk.EventProximity object. From this

object, we can discern between Gdk.EventType.ENTER_NOTIFY and Gdk.EventType.

LEAVE_NOTIFY events. You want to return False from the callback function, because you

do not want to prevent GTK+ from handling the event; you only want to enhance what is

performed when it is emitted.

Within the statusbar_hint() callback method, you should first retrieve a context

identifier for the menu item messages. You can use whatever string you want, as long as

your application remembers what was used. Listing 10-4 described all the menu item

messages added to the status bar. If other parts of the application used the status bar,

using a different context identifier would leave the menu item hints untouched.

id = statusbar.get_context_id("MenuItemHints")

If the event type is Gdk.EventType.ENTER_NOTIFY, you need to show the message

to the user. In the create_popup_menu() method, a data parameter was added to each

menu item called "menuhint". This is a more in-depth description of what the menu

item does, which is displayed to the user.

hint = menuitem.__getattr__("menuhint")

statusbar.push(id, hint)

CHAPTER 10 Menus and Toolbars

293

Then, with statusbar.push(), the message can be added to the status bar under the

"MenuItemHints" context identifier. This message is placed on the top of the stack and

displayed to the user. You may want to consider processing all GTK+ events after calling

this method, since the user interface should reflect the changes immediately.

However, if the event type is Gdk.EventType.LEAVE_NOTIFY, you need to remove

the last menu item message that was added with the same context identifier. The most

recent message can be removed from the stack with statusbar.pop().

�Menu Items
Thus far, you have learned about flat menus that display label and separator menu items.

It is also possible to add a submenu to an existing menu item. GTK+ also provides a

number of other Gtk.MenuItem objects. Figure 10-3 shows a pop-up menu that contains

a submenu along with image, check, and radio menu items.

Figure 10-3.  Image, check, and radio menu items

CHAPTER 10 Menus and Toolbars

294

�Submenus
Submenus in GTK+ are not created by a separate type of menu item widget but by calling

menuitem.set_submenu(). This method calls menu.attach_to_widget() to attach the

submenu to the menu item and places an arrow beside the menu item to show that it

now has a submenu. If the menu item already has a submenu, it is replaced with the

given Gtk.Menu widget.

menuitem.set_submenu(submenu)

Submenus are very useful if you have a list of very specific options that would clutter

an otherwise organized menu structure. When using a submenu, you can use the

“activate-item” signal provided by the Gtk.MenuItem widget, which is emitted when the

menu item displays its submenu.

In addition to Gtk.MenuItem and menu item separators, there are three other types

of menu item objects: image, check, and radio menu items; these are covered in the

remainder of this section.

�Image Menu Items

Warning  The Gtk.ImageMenuItem class has been deprecated since GTK+ 3.1.
Do not use it in new code and be aware it could disappear completely in a newer
version of GTK+.

Gtk.ImageMenuItem is very similar to its parent class Gtk.MenuItem except it shows

a small image to the left of the menu item label. There are four functions provided for

creating a new image menu item.

The first function, imagemenuitem.new() creates a new Gtk.ImageMenuItem object

with an empty label and no associated image. You can use image menu item’s image

property to set the image displayed by the menu item.

Gtk.ImageMenuItem.new()

Additionally, you can create a new image menu item from a stock identifier with Gtk.

ImageMenuItem.new_from_stock(). This function creates the Gtk.ImageMenuItem with the

label and image associated with stock_id. This function accepts stock identifier strings.

Gtk.ImageMenuItem.new_from_stock(stockid, accel_group)

CHAPTER 10 Menus and Toolbars

295

The second parameter of this function accepts an accelerator group, which is set

to the default accelerator of the stock item. If you want to manually set the keyboard

accelerator for the menu item as we did in Listing 10-3, you can specify None for this

parameter.

Also, you can use Gtk.ImageMenuItem.new_with_label() to create a new Gtk.

ImageMenuItem initially with only a label. Later, you can use the image property to add

an image widget. GTK+ also provided the method imagemenuitem.set_image(), which

allows you to edit the image property of the widget.

Gtk.ImageMenuItem.new_with_label(label)

Also, GTK+ provides Gtk.ImageMenuItem.new_with_mnemonic(), which creates an

image menu item with a mnemonic label. As with the previous method, you have to set

the image property after the menu item is created.

�Check Menu Items
Gtk.CheckMenuItem allows you to create a menu item that displays a check symbol

beside the label, depending on whether its Boolean active property is True or False. This

would allow the user to view whether an option is activated or deactivated.

As with Gtk.MenuItem, three initialization functions are provided.

Gtk.CheckMenuItem.new(), Gtk.CheckItem.new_with_label(), and Gtk.

CheckMenuItem.new_with_mnemonic(). These functions create a Gtk.CheckMenuItem

with no label, with an initial label, or with a mnemonic label, respectively.

Gtk.CheckMenuItem.new()

Gtk.CheckMenuItem.new_with_label(label)

Gtk.CheckMenuItem.new_with_mnemonic(label)

As previously stated, the current state of the check menu item is held by the active

property of the widget. GTK+ provides two functions, checkmenuitem.set_active() and

checkmenuitem.get_active() to set and retrieve the active value.

As with all check button widgets, you are able to use the "toggled" signal, which is

emitted when the user toggles the state of the menu item. GTK+ takes care of updating

the state of the check button, so this signal is simply to allow you to update your

application to reflect the changed value.

CHAPTER 10 Menus and Toolbars

296

Gtk.CheckMenuItem also provides checkmenuitem.set_inconsistent(), which

alters the inconsistent property of the menu item. When set to True, the check menu

item displays a third “in between” state that is neither active nor inactive. This can show

the user that a choice must be made that has yet to be set or that the property is both set

and unset for different parts of a selection.

�Radio Menu Items
Gtk.RadioMenuItem is a widget derived from Gtk.CheckMenuItem. It is rendered as a

radio button instead of a check button by setting check menu item’s draw-as-radio

property to True. Radio menu items work the same way as normal radio buttons.

The first radio button should be created with one of the following functions. You can

set the radio button group to None, since requisite elements are added to the group by

referencing the first element. These functions create an empty menu item, a menu item

with a label, and a menu item with a mnemonic, respectively.

Gtk.RadioMenuItem.new(group)

Gtk.RadioMenuItem.new_with_label(group, text)

Gtk.RadioMenuItem.new_with_mnemonic(group, text)

All other radio menu items should be created with one of the following three

functions, which add it to the radio button group associated with group. These

functions create an empty menu item, a menu item with a label, and a menu item with a

mnemonic, respectively.

Gtk.RadioMenuItem.new_from_widget(group)

Gtk.RadioMenuItem.new_from_widget_with_label(group, text)

Gtk.RadioMenuItem.new_from_widget_with_mnemonic(group, text)

�Menu Bars
Gtk.MenuBar is a widget that organizes multiple pop-up menus into a horizontal or

vertical row. Each root element is a Gtk.MenuItem that pops down into a submenu.

An instance of Gtk.MenuBar is usually displayed along the top of the main application

window to provide access to functionality provided by the application. An example

menu bar is shown in Figure 10-4.

CHAPTER 10 Menus and Toolbars

297

In Listing 10-5, a Gtk.MenuBar widget is created with three menus: File, Edit, and

Help. Each of the menus is actually a Gtk.MenuItem with a submenu. A number of menu

items are then added to each submenu.

Listing 10-5.  Creating Groups of Menus

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_size_request(250, -1)

 menubar = Gtk.MenuBar.new()

 file = Gtk.MenuItem.new_with_label("File")

 edit = Gtk.MenuItem.new_with_label("Edit")

 help = Gtk.MenuItem.new_with_label("Help")

 filemenu = Gtk.Menu.new()

 editmenu = Gtk.Menu.new()

 helpmenu = Gtk.Menu.new()

 file.set_submenu(filemenu)

 edit.set_submenu(editmenu)

 help.set_submenu(helpmenu)

 menubar.append(file)

 menubar.append(edit)

 menubar.append(help)

Figure 10-4.  Menu bar with three menus

CHAPTER 10 Menus and Toolbars

298

 # Create the File menu content.

 new = Gtk.MenuItem.new_with_label("New")

 open = Gtk.MenuItem.new_with_label("Open")

 filemenu.append(new)

 filemenu.append(open)

 # Create the Edit menu content.

 cut = Gtk.MenuItem.new_with_label("Cut")

 copy = Gtk.MenuItem.new_with_label("Copy")

 paste = Gtk.MenuItem.new_with_label("Paste")

 editmenu.append(cut)

 editmenu.append(copy)

 editmenu.append(paste)

 # Create the Help menu content.

 contents = Gtk.MenuItem.new_with_label("Help")

 about = Gtk.MenuItem.new_with_label("About")

 helpmenu.append(contents)

 helpmenu.append(about)

 self.add(menubar)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Menu Bars")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

New Gtk.MenuBar widgets are created with Gtk.MenuBar.new(). This creates an

empty menu shell into which you can add content.

CHAPTER 10 Menus and Toolbars

299

After you create the menu bar, you can define the pack direction of the menu bar

items with menubar.set_pack_direction(). Values for the pack_direction property are

defined by the Gtk.PackDirection enumeration and include Gtk.PackDirection.LTR,

Gtk.PackDirection.RTL, Gtk.PackDirection.TTB, or Gtk.PackDirection.BTT. These

pack the menu items from left to right, right to left, top to bottom, or bottom to top,

respectively. By default, child widgets are packed from left to right.

Gtk.MenuBar also provides another property called child-pack-direction, which

sets what direction the menu items of the menu bar’s children are packed. In other

words, it controls how submenu items are packed. Values for this property are also

defined by the Gtk.PackDirection enumeration.

Each child item in the menu bar is actually a Gtk.MenuItem widget. Since Gtk.

MenuBar is derived from Gtk.MenuShell, you can use the menuitem.append() method to

add an item to the bar as shown in the following line.

menubar.append(file)

You can also use file.prepend() or file.insert() to add an item to the beginning

or in an arbitrary position of the menu bar.

You next need to call file.set_submenu() to add a submenu to each of the root

menu items. Each of the submenus is a Gtk.Menu widget created in the same way as pop-

up menus. GTK+ then takes care of showing submenus to the user when necessary.

file.set_submenu(filemenu)

�Toolbars
A Gtk.Toolbar is a type of container that holds a number of widgets in a horizontal or

vertical row. It is meant to allow easy customization of a large number of widgets with

very little trouble. Typically, toolbars hold tool buttons that can display an image along

with a text string. However, toolbars are actually able to hold any type of widget. A

toolbar holding four tool buttons and a separator is shown in Figure 10-5.

CHAPTER 10 Menus and Toolbars

300

In Listing 10-6, a simple toolbar is created that shows five tool items in a horizontal

row. Each toolbar item displays an icon and a label that describes the purpose of the

item. The toolbar is also set to display an arrow that provides access to toolbar items that

do not fit in the menu.

In this example, a toolbar provides cut, copy, paste, and select-all functionality to a

Gtk.Entry widget. The AppWindow() method creates the toolbar, packing it above the

Gtk.Entry. It then calls create_toolbar(), which populates the toolbar with tool items

and connects the necessary signals.

Listing 10-6.  Creating a Gtk.Toolbar Widget

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 toolbar = Gtk.Toolbar.new()

 entry = Gtk.Entry.new()

 vbox.pack_start(toolbar, True, False, 0)

 vbox.pack_start(entry, True, False, 0)

 self.create_toolbar(toolbar, entry)

 self.add(vbox)

 self.set_size_request(310, 75)

Figure 10-5.  A toolbar showing both images and text

CHAPTER 10 Menus and Toolbars

301

 �def create_toolbar(self, toolbar, entry): icon_theme = Gtk.IconTheme.

get_default()

 icon = icon_theme.load_icon("edit-cut", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 cut = Gtk.ToolButton.new(image, "Cut")

 icon = icon_theme.load_icon("edit-copy", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 copy = Gtk.ToolButton.new(image, "Copy")

 icon = icon_theme.load_icon("edit-paste", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 paste = Gtk.ToolButton.new(image, "Paste")

 �icon = icon_theme.load_icon("edit-select-all", -1,

Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 selectall = Gtk.ToolButton.new(image, "Select All")

 separator = Gtk.SeparatorToolItem.new()

 toolbar.set_show_arrow(True)

 toolbar.set_style(Gtk.ToolbarStyle.BOTH)

 toolbar.insert(cut, 0)

 toolbar.insert(copy, 1)

 toolbar.insert(paste, 2)

 toolbar.insert(separator, 3)

 toolbar.insert(selectall, 4)

 cut.connect("clicked", self.cut_clipboard, entry)

 copy.connect("clicked", self.copy_clipboard, entry)

 paste.connect("clicked", self.paste_clipboard, entry)

 selectall.connect("clicked", self.select_all, entry)

 def cut_clipboard(self, button, entry):

 entry.cut_clipboard()

 def copy_clipboard(self, button, entry):

 entry.copy_clipboard()

CHAPTER 10 Menus and Toolbars

302

 def paste_clipboard(self, button, entry):

 entry.paste_clipboard()

 def select_all(self, button, entry):

 entry.select_region(0, -1)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Toolbar")

 self.window.show_all()

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

New toolbars are created with Gtk.Toolbar.new(), which was called before the

create_toolbar() function shown in Listing 10-6. This creates an empty Gtk.Toolbar

widget in which you can add tool buttons.

Gtk.Toolbar provides a number of properties for customizing how it appears and

interacts with the user, including the orientation, button style, and the ability to give

access to items that do not fit in the toolbar.

If all of the toolbar items cannot be displayed on the toolbar because there is not

enough room, then an overflow menu appears if you set toolbar.set_show_arrow() to

True. If all of the items can be displayed on the toolbar, the arrow is hidden from view.

toolbar.set_show_arrow(boolean)

Another Gtk.Toolbar property is the style by which all of the menu items are

displayed, which is set with toolbar.set_style(). You should note that this property

could be overridden by the theme, so you should provide the option of using the default

style by calling toolbar.unset_style(). There are four toolbar styles, which are defined

by the Gtk.ToolbarStyle enumeration.

CHAPTER 10 Menus and Toolbars

303

•	 Gtk.ToolbarStyle.ICONS: Show only icons for each tool button in

the toolbar.

•	 Gtk.ToolbarStyle.TEXT: how only labels for each tool button in the

toolbar.

•	 Gtk.ToolbarStyle.BOTH: Show both icons and labels for each tool

button, where the icon is located above its label.

•	 Gtk.ToolbarStyle.BOTH_HORIZ: Show both icons and labels for each

tool button, where the icon is to the left of the label. The label text of a

tool item is only shown if the "is-important" property for the item is

set to True.

Another important property of the toolbar is the orientation that can be set with

toolbar.set_orientation(). There are two possible values defined by the Gtk.

Orientation enumeration, Gtk.Orientation.HORIZONTAL and Gtk.Orientation.

VERTICAL, which can make the toolbar horizontal (default) or vertical.

�Toolbar Items
Listing 10-6 introduces three important tool item types: Gtk.ToolItem, Gtk.ToolButton,

and Gtk.SeparatorToolItem. All tool buttons are derived from the Gtk.ToolItem class,

which holds basic properties that are used by all tool items.

If you are using the Gtk.ToolbarStyle.BOTH_HORIZ style, then an essential property

installed in Gtk.ToolItem is the "is-important" setting. The label text of the toolbar

item is only shown for this style if this property is set to True.

As with menus, separator tool items are provided by Gtk.SeparatorToolItem and

are created with Gtk.SeparatorToolItem.new(). Separator tool items have a draw

property, which draws a separator when set to True. If you set draw to False, it places

padding at its location without any visual separator.

Tip  If you set the expand property of a Gtk.SeparatorToolItem to True and
its draw property to False, you force all tool items after the separator to the end
of the toolbar.

CHAPTER 10 Menus and Toolbars

304

Most toolbar items are of the type Gtk.ToolButton. Gtk.ToolButton provides only the

single initialization method Gtk.ToolButton.new() as all other initialization methods have

been deprecated since GTK+ 3.1. Gtk.ToolButton.new() can create a Gtk.ToolButton

with a custom icon and label. Each of these properties can be set to None.

Gtk.ToolButton.new(icon, label)

It is possible to manually set the label and icon after initialization with toolbutton.

set_label() and toolbutton.set_icon_widget(). These functions provide access to

tool button’s label and icon-widget properties.

Additionally, you can define your own widget to use instead of the default Gtk.Label

widget of the tool button with toolbutton.set_label_widget(). This allows you to

embed an arbitrary widget, such as an entry or combo box, into the tool button. If this

property is set to None, the default label is used.

toolbutton.set_label_widget(label_widget)

After you create the toolbar items, you can insert each Gtk.ToolItem into the toolbar

with toolbar.insert().

toolbar.insert(item, pos)

The second parameter of toolbar.insert() accepts the position to insert the

item into the toolbar. Tool button positions are indexed from zero. A negative position

appends the item to the end of the toolbar.

�Toggle Tool Buttons
Gtk.ToggleToolButton is derived from Gtk.ToolButton, and therefore only implements

initialization and toggle abilities. Toggle tool buttons provide the functionality of a Gtk.

ToggleButton widget in the form of a toolbar item. It allows the user to view whether the

option is set or unset.

Toggle tool buttons are tool buttons that remain depressed when the active property

is set to True. You can use the toggled signal to receive notification when the state of the

toggle button has been changed.

There is only one way to create a new Gtk.ToggleToolButton. This is with Gtk.

ToggleToolButton.new(), which creates an empty tool button. You can then use the

methods provided by Gtk.ToolButton to add a label and image.

Gtk.ToggleToolButton.new()

CHAPTER 10 Menus and Toolbars

305

�Radio Tool Buttons
Gtk.RadioToolButton is derived from Gtk.ToggleToolButton, so it inherits the “active”

property and "toggled" signal. Therefore, the widget only needs to give a way for you to

create new radio tool buttons and add them to a radio group.

A radio tool button should be created with Gtk.RadioToolButton.new(), where

the radio group is set to None. This creates a default initial radio group for the radio tool

button.

Gtk.RadioToolButton.new(group)

Gtk.RadioToolButton inherits functions from Gtk.ToolButton, which provides

functions and properties that can then set the label of the radio tool button, if necessary.

All requisite elements should be created with Gtk.RadioToolButton.from_

widget(). Setting group as the first radio tool button adds all requisite items added to the

same group.

Gtk.RadioToolButton.new_from_widget(group)

Gtk.RadioToolButton provides one property, group, which is another radio tool

button that belongs to the radio group. This allows you to link all of the radio buttons

together so that only one is selected at a time.

�Menu Tool Buttons
Gtk.MenuToolButton, derived from Gtk.ToggleToolButton, allows you to attach a menu

to a tool button. The widget places an arrow beside the image and label that provides

access to the associated menu. For example, you could use Gtk.MenuToolButton to add a

list of recently opened files to a toolbar button. Figure 10-6 is a screenshot of a menu tool

button that is used for this purpose.

CHAPTER 10 Menus and Toolbars

306

Listing 10-7 shows you how to implement a menu tool button. The actual tool button

is created in a similar way as any other Gtk.ToolButton except there is an extra step of

attaching a menu to the Gtk.MenuToolButton widget.

Listing 10-7.  Using Gtk.MenuToolButton

recent = Gtk.Menu.new()

Add a number of menu items where each corresponds to one recent file.

icon_theme = Gtk.IconTheme.get_default()

icon = icon_theme.load_icon("document-open", -1,

Gtk.IconLookupFlags.FORCE_SIZE)

image = Gtk.Image.new_from_pixbuf(icon)

open = Gtk.MenuToolButton.new(image, "Open")

open.set_menu(recent)

In Listing 10-7, the menu tool button was created with an image and a label with

Gtk.MenuToolButton.new(image, label). You can set either of these parameters to

None if you want to set them at a later time using Gtk.ToolButton properties.

Gtk.MenuToolButton.new(image, label)

Figure 10-6.  A menu tool button showing recently opened files

CHAPTER 10 Menus and Toolbars

307

What makes Gtk.MenuToolButton unique is that an arrow to the right of the tool

button provides the user with access to a menu. The tool button’s menu is set with

menutoolbutton.set_menu() or by setting the menu property to a Gtk.Menu widget.

This menu is displayed to the user when the arrow is clicked.

�Dynamic Menu Creation

Note  The Gtk.UIManager was deprecated in GTK+ 3.1 so the creation and
loading of UI files are not covered in this section. Instead, the new Gtk.Builder
class and its associated XML files are covered. Gtk.Builder is a more powerful
and flexible system for managing external user interface descriptions and actions.
It also provides addition capabilities and reduces the amount of work needed to
create and manage user interfaces.

While it is possible to manually create every menu and toolbar item, doing so

can take up a large amount of space and cause you to have to code monotonously for

longer than necessary. To automate menu and toolbar creation, GTK+ allows you to

dynamically create menus from XML files.

The Gtk.Builder class can create many user interface objects, including menus,

menu bars, pop-up menus, entire dialogs, main windows, and many others. This section

concentrates on different types of menus, but you should keep in mind that Gtk.Builder

can build many other kinds of user interface objects.

�Creating XML Files
User interface files are constructed in XML format. All of the content has to be contained

between <interface> and </interface> tags. One type of dynamic UI that you can create is

a Gtk.Menu with the <menu> tag shown in Listing 10-8.

CHAPTER 10 Menus and Toolbars

308

Listing 10-8.  Menu UI File

<?xml version="1.0" encoding="UTF-8"?>

<interface>

 <menu id="menubar">

 <submenu>

 <attribute name="label">File</attribute>

 </submenu>

 <submenu>

 <attribute name="label">Edit</attribute>

 </submenu>

 <submenu>

 <attribute name="label">Choices</attribute>

 </submenu>

 <submenu>

 <attribute name="label">Help</attribute>

 </submenu>

 </menu>

</interface>

Every menu and item tag should have a unique ID associated with it so that you can

access that item directly from your code. While not necessary, you should always add the

name property to every menu and item. The name property can access the actual widget.

Each <menu> can have any number of <item> children. Both of these tags must

be closed according to normal XML rules. If a tag does not have a closing tag (e.g.,

<menu/>), you must place a forward slash character (/) at the end of the tag so the

parser knows the tag has ended.

Each <menu> and <item> tags can have other children as well, such as the <section>

and <attribute> tags. The <section> tag organizes <item> tags. The <attribute> tags are

used to describe (i.e., add properties) to both <menu> and <item> tags.

The <attribute> tag has multiple purposes but one purpose common to all <item>

tags is the one containing the label property. This property supplies the label string that

is visible on the <item>. In this case, the <item> tags correspond to a Gtk.MenuItem label

attribute specifies the string that appears in the menu item.

CHAPTER 10 Menus and Toolbars

309

Another <attribute> tag that appears with each <item> tags is the action attribute.

This tag specifies the action to be taken when the <item> is clicked. The action specified

is closely tied to the Gtk.Application and the Gtk.ApplicationWindow class (or

their subclasses). The target of each action specifies which class instance—the Gtk.

ApplicationWindow or the Gtk.Application—creates the Gio.SimpleAction and

connects it to a method in the same class instance for processing the action. You can

think of the <attribute> action tag as a kind of signal name that is an alias for the real

signal to be processed.

The action attribute is applied to all elements except top-level widgets and separators.

When loading the UI file to associate a Gtk.Action object to each element, Gtk.Builder

uses the action attributes. Gtk.Action holds information about how the item is drawn and

what callback method should be called, if any, when the item is activated.

Separators can be placed in a menu with the <separator/> tag. You do not

need to provide name or action information for separators, because a generic

Gtk.SeparatorMenuItem is added.

In addition to menu bars, you can create toolbars in a UI file with the <toolbar> tag,

as shown in Listing 10-9.

Listing 10-9.  Toolbar UI File

<?xml version='1.0' encoding='utf-8' ?>

<interface>

<requires lib='gtk+' version='3.4'/>

<object class='GtkToolbar' id='toolbar'>

 <property name='visible'>True</property>

 <property name='can_focus'>False</property>

 <child>

 <object class='GtkToolButton' id='toolbutton_new'>

 �<property name='visible'>True</property> <property name=

'can_focus'>False</property>

 �<property name='tooltip_text' translatable='yes'>New Standard

</property> <property name='action_name'>app.newstandard</property>

 <property name='icon_name'>document-new</property>

 </object>

 <packing>

CHAPTER 10 Menus and Toolbars

310

 �<property name='expand'>False</property> <property name=

'homogeneous'>True</property>

 </packing>

 </child>

 <child>

 �<object class='GtkToolButton' id='toolbutton_quit'> <property

name='visible'>True</property> <property name='can_focus'>False</property>

 �<property name='tooltip_text' translatable='yes'>Quit</property>

<property name='action_name'>app.quit</property>

 <property name='icon_name'>application-exit</property> </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

</child>

</object>

</interface>

Each toolbar can contain any number of <toolitem> elements. Tool items are

specified in the same manner as menu items, with an action ("action") and an ID. You

can use the ID for elements in separate UI files, but you should not use the same names

if, for example, the toolbar and menu bar are located in the same file.

However, you can and should use the same action for multiple elements. This causes

each element to be drawn in the same way and to be connected to the same callback

method. The advantage of this is that you need to define only one Gtk.Action for each

item type. For example, the same action is used for the Cut element in the UI files in

Listing 10-8 through 10-10.

Tip  While the toolbar, menu bar, and pop-up menu were split into separate UI
files, you can include as many of these widgets as you want in one file. The only
requirement is that the whole file content is contained between the <interface>
and </interface> tags.

CHAPTER 10 Menus and Toolbars

311

In addition to toolbars and menu bars, it is possible to define pop-up menus in a UI

file, as illustrated in Listing 10-10. Notice that there are repeated actions in Listing 10-8,

Listing 10-9, and Listing 10-10. Repeating actions allows you to define only a single Gtk.

Action object instead of separate objects for each instance of an action.

Listing 10-10.  Pop-up UI File

<?xml version='1.0' encoding='utf-8' ?>

<interface>

 <menu id="app-menu">

 <section>

 <item>

 �<attribute name="label">About</attribute> <attribute

name="action">app.about</attribute>

 </item>

 <item>

 �<attribute name="label">Quit</attribute> <attribute

name="action">app.quit</attribute>

 </item>

 </section>

 </menu>

</interface>

The last type of top-level widget supported by UI files is the pop-up menu, denoted

by the <popup> tag. Since a pop-up menu is the same thing as a normal menu, you can

still use <menuitem> elements as children.

�Loading XML Files
After you create your UI files, you need to load them into your application and retrieve

the necessary widgets. To do this, you need to utilize the functionality provided by Gtk.

ActionGroup and Gtk.Builder.

Gtk.ActionGroup is a set of items with name, stock identifier, label, keyboard

accelerator, tooltip, and callback methods. The name of the each action can be set to an

action parameter from a UI file to associate it with a UI element.

CHAPTER 10 Menus and Toolbars

312

Gtk.Builder is a class that allows you to dynamically load one or more user interface

definitions. It automatically creates an accelerator group based on associated action

groups and allows you to reference widgets based on the "ID" parameter from the UI file.

In Listing 10-11, Gtk.UIManager loads the menu bar and toolbar from the UI files in

Listing 10-10. The resulting application is shown in Figure 10-7.

Figure 10-7.  A menu bar and a toolbar that are dynamically loaded

Each of the menu and tool items in the application are connected to empty callback

methods, because this example is only meant to show you how to dynamically load

menus and toolbars from UI definitions. You implement callback methods with actual

content in the two exercises found at the end of this chapter.

Listing 10-11.  Loading a Menu with Gtk.Builder

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 def change_label(self):

 pass

 def maximize(self):

 pass

CHAPTER 10 Menus and Toolbars

313

 def about(self):

 pass

 def quit(self):

 self.destroy()

 def newstandard(self):

 pass

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Hello World!")

 builder = Gtk.Builder()

 builder.add_from_file("./Menu_XML_File.ui")

 builder.add_from_file("./Toolbar_UI_File.xml")

 builder.connect_signals(self.window)

 self.set_menubar(builder.get_object("menubar"))

 self.window.add(builder.get_object("toolbar"))

 self.window.present()

 if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

�Test Your Understanding
The following two exercises give an overview of what you have learned about menus and

toolbars throughout the chapter.

In addition to completing them, you may want to create examples of pop-up menus

with other widgets that do not support them by default. Also, after finishing both of these

exercises, you should expand them by creating your own stock icons that are used in

place of the default items.

CHAPTER 10 Menus and Toolbars

314

�Exercise 1: Toolbars
In Chapter 8, you created a simple text editor using the Gtk.TextView widget. In this

exercise, expand on that application and provide a toolbar for actions instead of a

vertical box filled with Gtk.Button widgets.

Although manual toolbar creation is possible, in most applications, you want to

utilize the Gtk.Builder method for toolbar creation. Therefore, use that method in this

exercise. You should also create your own with Gtk.IconFactory.

Oftentimes, it is advantageous for an application to provide the toolbar as a child of a

handle box. Do this for your text editor, placing the toolbar above the text view. Also, set

up the toolbar so that the textual descriptor is shown below every tool button.

This first exercise taught you how to build your own toolbars. It also showed you

how to use the Gtk.HandleBox container. In the next exercise, you reimplement the Text

Editor application with a menu bar.

�Exercise 2: Menu Bars
In this exercise, implement the same application as in Exercise 1, except use a menu bar

this time. You should continue to use Gtk.Builder, but the menu does not need to be

contained by a Gtk.HandleBox.

Since tooltips are not shown for menu items automatically, use a status bar to

provide more information about each item. The menu bar should contain two menus:

File and Edit. You should also provide a Quit menu item in the File menu.

�Summary
In this chapter, you learned two methods for creating menus, toolbars, and menu bars.

The first method was the manual method, which was more difficult but introduced you

to all of the necessary widgets.

The first example showed you how to use basic menu items to implement a pop-

up menu for a progress bar. This example was expanded on to provide keyboard

accelerators and more information to the user with the Gtk.Statusbar widget. You also

learned about submenus as well as image, toggle, and radio menu items.

CHAPTER 10 Menus and Toolbars

315

The next section showed you how to use menu items with submenus to implement

a menu bar with a Gtk.MenuShell. This menu bar could be displayed horizontally or

vertically and forward or backward.

Toolbars are simply a horizontal or vertical list of buttons. Each button contains an

icon and label text. You learned about three additional types of toolbar buttons: toggles,

radio buttons, and tool buttons with a supplemental menu.

Then, after much hard work, you were taught how to create dynamically loadable

menus. Each menu or toolbar is held in a UI definition file, which is loaded by the Gtk.

Builder class. The Builder associates each object with the appropriate action and

creates the widgets according to the UI definition.

Last, you learned how to create your own custom icons. It is necessary to create your

own icons, because arrays of actions require an identifier to add an icon to an action.

In the next chapter, we are going to take a short break from coding and cover the

design of graphical user interfaces with the Glade user interface builder. This application

creates user interface XML files, which can be dynamically loaded when your application

starts. You then learn how to handle these files programmatically with Gtk.Builder.

CHAPTER 10 Menus and Toolbars

317
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_11

CHAPTER 11

Dynamic User Interfaces
By now, you have learned a great deal about GTK+ and its supporting libraries, and you

are able to create fairly complex applications. However, manually writing all of the code

to create and configure the widgets and behavior for these applications can quickly

become tedious.

The Glade user interface builder removes the need for you to write all of that code

by allowing you to design your UI graphically. It supports the GTK+ library of widgets as

well as various widgets from the GNOME libraries. User interfaces are saved as XML files,

which can dynamically build your application’s user interface.

The last part of this chapter covers Gtk.Builder, a library that can dynamically load

the XML files. Gtk.Builder creates all the necessary widgets and allows you to connect

any signals defined in Glade.

Note  This chapter covers the user interface of Glade that is current at the time
of this writing. It is possible that this may change in the future, but any changes
should be an easy transition from the instructions provided in this chapter.

In this chapter, you learn the following.

•	 Issues you should keep in mind when designing graphical user

interfaces (GUIs)

•	 How to design custom graphical user interfaces with Glade

•	 How to dynamically load Glade user interfaces with Gtk.Builder

318

�User Interface Design
In this chapter, you are going to learn how to use Glade 3 and Gtk.Builder to implement

dynamic user interfaces. However, it is prudent to first learn a few concepts that you

should keep in mind when designing graphical user interfaces. These concepts can help

you to avoid confusing and frustrating users in the future.

You also have to realize that, while you know how to use your application because

you designed it, you need to do as much as possible to help the user make sense of

it. Whether the user is an expert or a novice, each user should be able to use your

application with the shortest possible learning curve. That said, the following sections

include many tips and design decisions to help you achieve this level of intuitiveness.

They also improve the maintainability of your application.

�Know Your Users
When designing a user interface, the most important thing to consider is your audience.

Are they all experienced with the task at hand, or will some need more help than others?

Can you model your user interface after one that they are already familiar with, or is this

something completely new?

One of the biggest possible mistakes is to make rash generalizations about your

users’ skill level. You may think that the way you lay out your application makes sense,

but that is because you designed it. You should place yourself in the users’ position,

understanding they will have no prior knowledge about how to use your application.

To avoid confusion, take time to study similar applications, taking note of what

design decisions seem successful and which cause problems. For example, if you are

creating an application to be used in the GNOME desktop environment, you should

check out the GNOME Human Interface Guidelines (http://developer.gnome.org),

which can help you lay out a design that is used for other compliant applications.

Another thing to consider when designing a user interface is accessibility. Users

may have vision problems that could inhibit them from using an application. The

Accessibility Toolkit provides many facilities for GTK+ applications to make them

compatible with screen readers. GTK+ also relies heavily on themes, which is why you

should avoid setting the font, when possible, or provide the user with a way to change it.

CHAPTER 11 Dynamic User Interfaces

http://developer.gnome.org

319

Your language is another consideration when designing the user interface. First,

you should always use jargon that is familiar to the users. For example, you are free to

use mathematical terms in an engineering application, but you should not do so in a

web browser.

Many applications are translated into other languages when they become popular,

which may cause problems if you use words or images that could be offensive in other

cultures.

�Keep the Design Simple
Once you know your audience, it becomes a lot simpler to design an effective user

interface, but you can still run into problems if the interface is too difficult or cluttered.

Always try to reduce the number of widgets on the screen to a reasonable number.

For example, if you need to provide many choices to the user where only one can be

selected, you might be tempted to use a lot of radio buttons. However, a better solution

may be to use a Gtk.ComboBox, which significantly decreases the number of required

widgets.

The Gtk.Notebook container is extremely useful for grouping similar option groups

that would otherwise clutter a huge page. In many applications, this widget groups

widgets that relate or depend on each other into a preferences dialog.

Menu layout is also another problematic area, because it is not always done in a

sensible manner. When possible, you should use standard menus, such as File, Edit, View,

Help, Format, and Window. These menus are familiar to users who are experienced with

computing, and users expect them. Because of this, these menus should contain standard

items as well. For example, the File menu should contain items for manipulating files,

printing, and exiting the application. You should investigate how other applications lay

out their menu items if you are not sure where to place a particular item.

Repetitive jobs, or those that the user performs often, should always be made quick

and easy. There are multiple ways to do this. The most important is to provide keyboard

accelerators for many actions —pressing Ctrl+O on the keyboard is a lot faster than

clicking the File menu and the Open menu item.

CHAPTER 11 Dynamic User Interfaces

320

Note  Whenever possible, you should always use standard keyboard accelerators,
such as Ctrl+X for cutting and Ctrl+N for creating something new. This significantly
decreases the initial learning curve for users of your application. In fact, some
keyboard accelerators are already built into many widgets, such as Ctrl+X for
cutting the selection in text widgets.

It may take some time for your users to become accustomed to keyboard

accelerators, which is why toolbars are also extremely useful for repetitive options. You

need to find a balance between placing too few and too many items on a toolbar, though.

A cluttered toolbar scares and confuses the user, but a toolbar with too few items is

useless. If you have a large number of items that users might want on toolbars, it would

make sense to allow the users to customize the toolbars themselves.

�Always Be Consistent
Consistency is important when designing a graphical user interface, and GTK+ makes

this extremely easy. First, GTK+ provides many stock items that should always be used

in favor of homegrown items where possible. The user will already be familiar with the

icons for the stock items and will know how to use them.

Caution S tock items can be very dangerous if you do not use them correctly. You
should never use a stock item for an action for which it was not originally intended.
For example, you should not use GTK_STOCK_REMOVE icon for a subtraction
operation just because it looks like a “minus sign.” The icons are defined by the
user’s theme; they may not always look the way you assume.

Speaking of themes, you should fall back on the settings provided by a theme

whenever possible. This helps you create a consistent look—not only throughout your

application but across the entire desktop environment. Since themes are applied to

all applications throughout a desktop, your application is consistent with most other

applications that the user runs.

CHAPTER 11 Dynamic User Interfaces

321

In those few cases where you do need to deviate from the defaults provided by the

user’s theme, you should always give the user a way to change the settings or to just use

the system defaults. This is especially important when dealing with fonts and colors,

because your changes can render your application unusable with some themes.

Another advantage of consistency is that the user learns how to use your application

much faster. The user needs to learn only one design instead of many. If you do not use

a consistent layout for your application and supplemental dialogs, the user is presented

with a brand-new adventure with every new window.

�Keep the User in the Loop
One thing that can turn off a user of your application very quickly is if it is not responsive

for a long period of time. Most computer users are accustomed to a bug or two, but if

your application is processing information and remains unresponsive for quite a while,

the user may give up.

To avoid this, there are two possible solutions. The first is to make your application

more efficient. However, if your application is not to blame, or there is no way to make

it more efficient, you should use progress bars. A progress bar tells the user that your

application is still working. Just make sure to update your progress bar! If you do not

know how long the process will take, another option would be to pulse the progress bar

and provide messages that update the user on the process’s progress.

Also, remember the following loop from Chapter 3.

while Gtk.events_pending():

 Gtk.main_iteration()

This loop makes sure that the user interface is updated, even when the processor

is busy processing another task. If you do not update the user interface during a CPU-

intensive process, the application may be unresponsive to the user until it is finished!

You should also provide your users with feedback when actions are performed. If a

document is being saved, you should mark it as unmodified or display a message in the

status bar. If you do not provide feedback to the user when an action is performed, it may

be assumed that the action was not performed.

Message dialogs are a very useful way to provide feedback, but they should be used

only when necessary. The user will become frustrated if message dialogs appear too

often, which is why only critical errors and warnings should be reported this way.

CHAPTER 11 Dynamic User Interfaces

322

�We All Make Mistakes
Whether you are an expert or a novice, we all make mistakes. Because of this, you should

always forgive your users. After all, everyone has at one time or another pressed an

incorrect button that resulted in losing a large amount of work. In a properly designed

application, this should never occur.

For basic actions that cannot be easily undone by the user, you should provide the

ability to undo the action. For example, these basic actions could include deleting an

item from our Grocery List application or moving text within a text view.

For actions that cannot be undone, you should always provide a confirmation dialog.

It should explicitly state that this action cannot be undone and ask whether the user

wants to continue. For example, you should always ask the user whether the application

should be closed when there are documents with unsaved changes. People have been

using software for years and have come to expect a confirmation dialog box for actions

that cannot be undone.

�The Glade User Interface Builder
One factor that can make or break a GUI toolkit is whether it can rapidly deploy

applications. While the user interface is extremely important to the success of an

application, it should not be the most consuming aspect of the development process.

Glade is a tool that allows you to quickly and efficiently design graphical user

interfaces so that you can move onto other aspects of your code. User interfaces are

saved as an XML file that describes the widget structure, the properties of each widget,

and any signal handlers you associated with each. Gtk.Builder can then load the user

interface file to dynamically build it on application load. This allows you to alter the user

interface aesthetically without the need to recompile the application.

Note  Older versions of Glade allowed you to generate source code instead of
saving the user interface in an XML file. This method is deprecated, because it is
difficult to manage when you want to change your user interface. Therefore, you
should follow the method provided in this chapter.

CHAPTER 11 Dynamic User Interfaces

323

You need to realize from the start what Glade is and what it is not. Glade designs the

user interface of an application, set up signals that are associated with callback methods

implemented in your code, and take care of common widget properties. However, Glade

is not a code editor or an integrated development environment. The files it outputs must

be loaded by your application, and you must implement all of the callback methods in

your code. Glade is just meant to simplify the process of initializing your application’s

graphical user interface and connecting signals.

Tip  Glade 3.22.1, the version used in this book, now allows integrated
development environments, such as Anjuta, to embed it into their user interfaces.
These IDEs provide a complete, start-to-finish solution for deploying GTK+
applications.

Another advantage of Glade is that, since the user interfaces are stored as XML files,

they are independent of the language. Any language that has wrapped the functionality

provided by Gtk.Builder can load user interfaces. This means that the same graphical

user interface designer can be used regardless of the programming language you choose.

Before continuing with the rest of this chapter, you should install Glade and the

development package for Gtk.Builder from your operating system’s package manager.

Alternatively, you can download and compile the sources from glade.gnome.org.

Also, you should make sure to follow along and create this application while reading

the rest of the chapter. This gives you a chance to learn your way around the Glade 3

application, so you can get as much practice as possible while you have this book to

guide you.

�The Glade Interface
When you launch Glade for the first time, you see a main window with three panes: the

main window tree view, the widget palette, and the widget property editor. Figure 11-1

is a screenshot of the main Glade application window with a project opened from the

FileBrowser.glade.

CHAPTER 11 Dynamic User Interfaces

http://gnome.org

324

The main tree view window facilitates Glade project management. The Main

Window Title Bar shows a list of the currently open projects, allowing you to switch

among them. The left pane also includes the widget tree view, which shows the widget

containment of the project with focus.

The widget tree view shows the parent-to-child container relationships within a

project. It is possible to have multiple top-level widgets. However, in Figure 11-1 window

is the only top-level widget of the FileBrowser.glade.

This pane is where you specify project options, save the project, and load existing

projects. The Popup menus in this window also provide many other options that can

help you when working with projects, such as undoing and redoing actions.

Note  If you decide to work with Glade 2 instead of Glade 3, make sure to save
often. Undo and redo support was not implemented in the older versions of Glade,
and it is very frustrating if you accidentally overwrite an hour of work with one
wrong mouse click!

Figure 11-1.  The Glade main window

CHAPTER 11 Dynamic User Interfaces

325

The middle pane shown when you launch Glade 3 has buttons for selecting widgets

from a widget palette, which lists all of the widgets available to you for designing your

applications. A screenshot of the one of the widget palettes is shown in Figure 11-2.

Figure 11-2.  A Glade widget palette

By default, there are five categories of widgets that can be displayed: top-level

widgets, containers, widgets used for control, display widgets, and composite and

depreciated widgets. You should not use any widgets in the GTK+ Obsolete list in new

applications, because they are depreciated and may be removed in future releases.

In addition to the default categories of widgets, you may find other categories

that include additional widget libraries. These include widgets added for the GNOME

libraries or other custom widget libraries.

CHAPTER 11 Dynamic User Interfaces

326

Through the View menu, you can change the layout of the widget palette. Figure 11-2

shows a widget palette that is set to show both icons and text. However, you can show only

text or only icons depending on what style you are most comfortable with.

To add a new top-level widget to the widget layout pane, all you need to do is click

the icon of the desired widget in the Toplevels section. A new top-level widget is then

displayed and added to the widget tree in the left pane. To add non-top-level widgets,

you need to first click the icon of the desired widget and then click your mouse where the

widget should be placed. You must click an empty cell in a container widget for the non-

top-level widget to be inserted into the user interface.

�Creating the Window
In this chapter, you are going to be creating a simple file browser application with

Glade and Gtk.Builder. You begin by creating a new project by clicking on the new

project button at the top of the main Glade window or by using the blank project

created for you when the application loads. You can open an existing project by

clicking on the Open button at the top of the main Glade window if you return to this

tutorial at a later time.

After you have a blank project, you can begin by creating a new top-level

Gtk.Window by clicking the Window icon in the Toplevels widget palette. In the

new window, you see a mesh pattern in the interior of the widget, as displayed in

Figure 11-3. This pattern designates a region where a child widget can be added to a

container. After selecting a non-top-level widget from the widget palette, you must

click this region to add the widget to the container. Follow this method for adding all

non-top-level widgets.

CHAPTER 11 Dynamic User Interfaces

327

After you create the top-level window, you notice changes in the content of the

widget Properties pane, shown in Figure 11-4. In this pane, you can customize all of the

properties of each widget that is supported in Glade.

Note  While Glade allows you to edit many widget properties, some actions
simply have to be performed in the code. Therefore, you should not view Glade as a
replacement for everything that you have learned thus far in the book. You are still
doing a lot of GTK+ development in most applications.

The widget Properties window displayed in Figure 11-4 has a complete list of the

various options. The pane is divided into sections, which categorize the basic options

that are specific to the widget type that is currently selected. For example, the Gtk.

Window widget allows you to specify the window’s type, title, ability to be resized, default

size, and so on.

Figure 11-3.  The Default Gtk.Window widget

CHAPTER 11 Dynamic User Interfaces

328

The ID field, which is scrolled beyond the bounds of the scrolled window in

Figure 11-4 gives a unique name to the widget. Glade automatically assigns a name to

each widget that is unique for the current project, but these are generic names. If you

plan to reference a widget from within your application, you should give it an ID that

means something. It can easily become confusing when you have to load three Gtk.

TreeView3 widgets named treeview1, treeview2, and treeview3!

Figure 11-4.  The widget properties pane

CHAPTER 11 Dynamic User Interfaces

329

The Packing tab provides basic information about how the widget reacts to changes

in the size of its parent widget, such as expanding and filling. Common properties are

those provided by Gtk.Widget and are available to all widgets. For example, you can

provide a size request in this tab.

Note  Packing options are a bit unintuitive when first working with Glade, because
properties are set by the child instead of the parent container. For example,
packing options for the children of a Gtk.Box are provided in the Packing tab of
the children themselves instead of the parent container.

The Signals tab allows you to define signals for each widget that is connected by

Gtk.Builder. Lastly, the Accessibility tab, designated by the handicapped symbol, gives

options that are used for accessibility support.

As you will recall from the first example in this book, an empty Gtk.Window widget

is not of any use except for illustrating how to create one. Since the file browser needs

multiple widgets packed into the main window for this application, the next step is to

add a vertical box container. Select the Box widget from the palette and click inside the

grid pattern of window to insert a Gtk.Box widget into the window. You can then use

the Properties pane to adjust the orientation of the box (vertical or horizontal) and the

number of panes the Gtk.Box contains. Figure 11-5 shows the adjustments necessary for

the Gtk.Box properties.

Figure 11-5.  The Default Gtk.Window widget

CHAPTER 11 Dynamic User Interfaces

330

By default, three cells are created to hold child widgets, but you can change this to

any number of items greater than zero. The default of three is how many child widgets

we need.

By default, a Gtk.Box has a vertical orientation but you can change the orientation to

horizontal if needed.

Note  Do not worry if you are not sure how many widgets the container will hold.
You can add or remove cells in the General tab in the widget Properties pane. You
can then change the position of a widget within the box under the Packing tab. You
are also still able to edit the user interface with your code after it is built by Gtk.
Builder!

After adding the vertical box, you see three separate, empty container meshes; notice

the changes in the Properties pane and the widget tree view pane. To these meshes, we

will add a toolbar, an address bar, and a tree view.

�Adding a Toolbar
The old handle box widget has long been deprecated since most of the widgets it was

meant to contain have been enhanced to dynamically hide their content. The Gtk.

Toolbar is one of the widgets that has been enhanced in this way. That means we can

directly add the toolbar to the vertical Gtk.Box we added to the main window previously.

When the toolbar widget is added it only appears as a thin strip in the top pane of the

vertical box. This is because it does not yet contain any buttons. And the method to add

buttons to the toolbar is not immediately obvious. To add buttons to the toolbar right-

click on the Gtk.Toolbar entry in the Glade tree view pane and a pop-up menu labeled

Edit... appears, which then shows the dialog in Figure 11-6.

CHAPTER 11 Dynamic User Interfaces

331

The toolbar editor allows you to add any supported type of item to a toolbar. To add

a new item, you need only to click the Add button. This presents you with a pane in the

editor dialog with which you can modify the new button’s properties. Be careful here

as your version of Glade may present you the option of using stock buttons. Stock items

have all been deprecated so you must create your own custom buttons instead.

After you add a new tool button, the next step is to choose what type of widget it

should be by selecting an option from the Type combo box. The types of toolbar items

included in the combo box are a generic tool button containing an image and a label,

toggles, radio buttons, menu tool buttons, tool items, and separators. When you select

a new type, the dialog immediately changes to allow you to edit properties for the

chosen type.

Figure 11-6.  The toolbar editor

CHAPTER 11 Dynamic User Interfaces

332

For example, in Figure 11-6 the selected tool button is of the type Gtk.MenuToolButton.

Every toolbar item gives you the option of whether it should be visible when the toolbar

is horizontal or vertical. This allows you to hide the toolbar item when the toolbar has a

vertical orientation but show it to the user when the toolbar is horizontal.

Menu tool buttons also allow you to choose a label and image to display in the tool

item. An image can be a stock image, an existing image file, or an identifier of a custom

icon theme depending on what option you choose.

Along the bottom of the toolbar editor, you see a tree view that allows you to connect

signals to each tool button. Glade provides a number of named callback methods for

you to choose from that are based on the signal name and the name you gave the toolbar

item. You are also able to enter your own custom callback method name. It is possible to

specify data to pass to each method function through Gtk.Builder, so you can usually

leave the “User data” parameter blank. In Figure 11-6 a callback method by the name

on_back_clicked() was connected to Gtk.MenuToolButton’s "clicked" signal.

When you load the user interface with Gtk.Builder, you have two choices for

connecting the callback methods defined in the Glade file with those in your code. If

you want to manually connect each callback method, you can name the signal handler

whatever you choose, as long as the name is unique. However, Gtk.Builder provides a

function that automatically connects all of the signals to the appropriate symbols in your

executable or Python program. To use this feature, the callback method name you define

in Glade must match the name of the function in your code!

The Packing tab includes options to determine padding around the widget, whether

the packing is from the start or end of the box, and to determine the widget’s position

within the container. These properties are exactly equivalent to the settings you used

when adding child widgets to Gtk.Box with box.pack_start() and friends.

Tip Y ou should remember from Chapter 4 that a table was provided that
illustrates what the expand and fill properties do to child widgets of a Gtk.Box
widget. Glade is a perfect opportunity for you to experiment with packing options
to gain a better understanding of how they affect the widget. Therefore, take a
moment to experiment with the various packing options!

CHAPTER 11 Dynamic User Interfaces

333

After completing the toolbar and fixing packing preferences, your application should

look like Figure 11-7.

Figure 11-7.  The toolbar in action

The toolbar shown in Figure 11-7 contains two menu tool buttons used for moving

forward and backward through the user’s browsing history. There are also tool buttons

for moving to the parent directory, refreshing the current view, removing a file, moving to

the home directory, and viewing file information. Each of these tool buttons is connected

to a callback method that you must implement in your code for the application.

�Completing the File Browser
The next step in creating our file browser is to create the address bar that shows the users

the current location and allow them to enter a new location. This means that we need a

horizontal box with three widgets, as shown in Figure 11-8. The three widgets are a label

describing the content held in the Gtk.Entry widget, the Gtk.Entry widget that holds

the current location, and a button that moves to the location when pressed.

CHAPTER 11 Dynamic User Interfaces

334

To create the button in Figure 11-8 a horizontal Gtk.Box with two child widgets was

added to the button: a Gtk.Image widget set to the GTK_STOCK_JUMP_TO stock image

and a Gtk.Label widget named Go.

The last step is to add a Gtk.ScrolledWindow widget to the last cell in the vertical box

and a Gtk.TreeView widget to that container. The completed file browser user interface is

shown in Figure 11-9. However, we are not yet finished editing the application in Glade.

Figure 11-9.  The file browser

Figure 11-8.  The file browser

CHAPTER 11 Dynamic User Interfaces

335

�Making Changes
The file browser is completely designed, but now I have decided that it should include

a Gtk.StatusBar widget along the bottom of the window! Making changes to the user

interface can be tricky, so this section walks you through a few challenging actions.

The first step in adding the status bar is to extend the number of child widgets

contained by the main vertical Gtk.Box widget. To do this, choose the vertical box from

the widget tree view. In the Properties pane, you can increase the number of children

with the “Number of items” property in the General tab. This adds a new empty space at

the end of the vertical box into which you can add a status bar widget.

If you need to reorder the children of a vertical or horizontal box, you first need to

select the widget you want to move. Then, under the Packing tab in the Properties pane,

you can choose a new position by changing the value of its spin button. You are able to

see the child widget moving to its new position as you change spin button’s value. The

positions of surrounding child widgets are automatically adjusted to reflect the changes.

Another problematic task can result if you decide that you need to stuff a container

into a location where another widget is already added. For example, let’s assume that

you have decided to place a horizontal pane in place of the scrolled window in the file

browser application. You first need to select the widget from the widget tree view in the

main window and remove it by pressing Ctrl+X. After this, an empty box is displayed, in

which you can add the horizontal pane. Next, select the pane where the scrolled window

should be placed and press Ctrl+V.

Making changes to a user interface used to be a touchy topic with Glade 2, because

it did not support undo and redo actions. It used to be very easy to make a mistake and

lose hours of work by accidentally deleting your top-level widget, since you could not

undo any actions. Now that Glade 3 includes undo and redo support, you do not have to

worry as much.

�Widget Signals
The last step for this application is to set up signals for all of the widgets. Figure 11-10

shows the Signals tab of the widget properties editor for the Go button. The Gtk.Button

widget is connected to the clicked signal, which calls on_button_clicked() when

emitted.

CHAPTER 11 Dynamic User Interfaces

336

In addition to the “clicked” signal, you need to connect to a few others. Each of the

tool items should be connected to Gtk.ToolButton’s clicked signal with the exception

of the separators. Also, you should connect the Gtk.Entry to activate, which is emitted

when the user presses the Enter key when the entry has focus.

Note  This application is only a design for a simple file browser that is meant
to show you how to design applications with Glade 3. The code needed for the
application to be more than just a design is implemented in Chapter 14.

Figure 11-10.  A widget signal editor

CHAPTER 11 Dynamic User Interfaces

337

As for the tree view, you should connect it to row-activated. When a row is activated,

the user is shown more information about the file, or it navigates to the chosen directory.

A list of the widgets along with their signals and callback methods is provided in

Table 11-1 so that you can easily follow along with this example.

Table 11-1.  Widget Signals

Widget Description Signal Callback Method

Gtk.Button Go button “clicked” on_go_clicked()

Gtk.Entry Location entry “activate” on_location_activate()

Gtk.MenuToolButtonBack “clicked” on_back_clicked()

Gtk.MenuToolButtonForward “clicked” on_forward_clicked()

Gtk.ToolButton Up “clicked” on_up_clicked()

Gtk.ToolButton Refresh “clicked” on_refresh_clicked()

Gtk.ToolButton Home “clicked” on_home_clicked()

Gtk.ToolButton Delete “clicked” on_delete_clicked()

Gtk.ToolButton Information “clicked” on_info_clicked()

Gtk.TreeView File browser “row-activated” on_row_activated()

Gtk.Window Main window “destroy” on_window_destroy()

�Creating a Menu
In addition to toolbars, it is possible to create menus in Glade 3. Figure 11-11 shows the

menu bar editor, which is very similar to the toolbar editor. It supports normal menu

items and those rendered with images, check buttons, radio buttons, and separators.

CHAPTER 11 Dynamic User Interfaces

338

Caution  The Glade 3.22.1 editor currently still uses Stock Items for Menu Items.
All Stock Items are deprecated so you really should be using your own custom
menu items, only this version of Glade does not support custom menu items. You
may need to edit the XML produced by Glade to create your own custom entries.

You now know of three ways to create menus; this raises the question of which one

is best. Every method has its advantages and disadvantages, so let’s take a look at each

method.

Figure 11-11.  The menu bar editor

CHAPTER 11 Dynamic User Interfaces

339

You first learned how to create menus manually, molding each object to your needs.

This method is good to use with smaller menus, because the code will not take up a lot

of space and the implementation is located entirely in one place. However, if your menu

grows in size or contains more than just basic items, the code can become tedious to

maintain and take up a lot of space.

Next, you learned how to use Gtk.Builder with UI definitions to dynamically

create menus. This method simplified menu creation, because you could define a large

number of actions in a small amount of space. Also, since menus are constructed from

UI definitions, allowing the user to edit a menu is extremely simple. This is clearly the

preferred method of menu creation if you are not using Glade to design your application.

Glade also presents a very attractive method of menu creation, because after its

initial design, maintenance is simple. It also requires no code to create the menu, since

Gtk.Builder constructs it for you. However, one problem with this method is that it is

not as easy to allow the user to alter the layout of menus and toolbars as with the UI file

method.

One method that can easily be employed is to pack all of your widgets with respect

to the end of the vertical box or whatever container you use as the child of the main

window. Then, when your application loads, you can simply pack the menu created

by Gtk.Builder into the window with box.pack_start(). Nevertheless, if you do not

need to allow your users to customize the menu, it makes sense to do all menu creation

through Glade.

Now that you are finished creating the user interface, you can save it as a

FileBrowser.glade file, where project can be replaced by a name of your choice. This

file can be loaded with respect to the location of the application or from an absolute

path.

�Using Gtk.Builder
After you design your application in Glade, the next step is to load the user interface with

Gtk.Builder.

This GTK+ class parses the Glade user interface and creates all of the necessary

widgets at runtime.

Gtk.Builder provides the methods necessary to create and hold the user interface

loaded from an XML file. It can also connect signals added in the Glade file to callback

methods within your application.

CHAPTER 11 Dynamic User Interfaces

340

Another advantage of Gtk.Builder is that overhead is added only during

initialization, and this is negligible compared to an interface created directly from code.

After initialization, there is virtually no overhead added to the application. For example,

Gtk.Builder connects signal handlers internally in the same way as your own code, so

this requires no extra processing.

Since Gtk.Builder handles all of the widget initialization and the layout was already

designed in Glade 3, the length of your code base can be significantly reduced. Take,

for example, Listing 11-1, which would be significantly longer if you had to hand-code

everything.

Listing 11-1.  Loading the User Interface

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class SignalHandlers():

 def on_back_clicked(self, button):

 pass

 def on_forward_clicked(self, button):

 pass

 def on_up_clicked(self, button):

 pass

 def on_refresh_clicked(self, button):

 pass

 def on_home_clicked(self, button):

 pass

 def on_delete_clicked(self, button):

 pass

CHAPTER 11 Dynamic User Interfaces

341

 def on_info_clicked(self, button):

 pass

 def on_go_clicked(self, button):

 pass

 def on_location_activate(self, button):

 pass

 def on_row_activated(self, button):

 pass

 def on_window_destroy(self, button):

 pass

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 builder = Gtk.Builder()

 builder.add_from_file("./FileBrowser.glade")

 self.window = builder.get_object("main_window")

 self.add_window(self.window)

 builder.connect_signals(SignalHandlers())

 self.add_window(self.window)

 self.window.show_all()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 11 Dynamic User Interfaces

342

�Loading a User Interface
Loading a Glade user interface is done with builder.add_from_file(). This is the

first Gtk.Builder method you should call, although it should be called after getting an

instance of Gtk.Builder. It parses the user interface provided by the XML file, creates

all of the necessary widgets, and provides facilities for translation. The only parameter

needed by the builder.add_from_file() method is the path to your Glade project file.

builder = Gtk.Builder()

builder.add_from_file("./FileBrowser.glade")

Next, you need to fetch the "main_window", connect all the signals, and lastly add the

window to the Gtk.Application class instance.

self.window = builder.get_object("main_window")

builder.connect_signals(SignalHandlers())

self.add_window(self.window)

The builder.get_object() needs one parameter which is the ID you assigned to the

Gtk.Window main window in your Glade project. From this Gtk.Builder can determine

all the child widgets that belong to the main window from reading the XML. It can then

construct the window from the XML definition.

After constructing the main window, we need to assign all the signal handlers. Gtk.

Builder can do this automatically if we supply a special Python class that contains

nothing but the signal handler methods. The builder.connect_signals() method does

this by supplying an instance of our signal handler class to it as a parameter.

Finally, we need to add the window constructed by Gtk.Builder to our Gtk.

Application. This window now becomes controlled by our Gtk.Builder instance. While

it is not a full Gtk.ApplicationWindow it acts very much like one as far as controlling the

new window. Note that we use the window.show_all() to show the window instead of

the window.present() method because our new window has no present() method.

It really is as simple as that. The File Browser window appears immediately and you

are off and running. All that is left to do is fill all the signal handler methods, create the

store for the Gtk.TreeView widget, build the window initialization code, and you have a

working application.

CHAPTER 11 Dynamic User Interfaces

343

�Test Your Understanding
These two exercises are especially important for you to become a proficient GTK+

developer. It is not practical to programmatically design every aspect of large

applications, because it takes too long.

Instead, you should be using Glade to design the user interface and Gtk.Builder

to load that design and connect signals. By doing this, you are able to quickly finish the

graphical aspects of your applications and get to the backend code that makes your

applications work.

�Exercise 1: Glade Text Editor
This exercise implements the text editor from the “Test Your Understanding” Exercise

1 section in Glade. The toolbar in the text editor should be implemented completely in

Glade.

This exercise should not require extra coding if you still have the exercise solution

from the previous chapter. You can also find the solution to “Test Your Understanding”

section on the book’s web site at www.gtkbook.com. This exercise gives you a chance to

learn your way around Glade 3 and test out many widget properties.

After you design an application with a toolbar, it is an easy transition to add a menu

bar. In larger applications, you should provide both of these options to the user. In the

following exercise, you add a menu bar to the text editor application.

�Exercise 2: Glade Text Editor with Menus
You have implemented the text editor with a menu bar. In this exercise, redesign the

application from that exercise using Glade and Gtk.Builder. First, you should implement

the menu with Python and GTK+, which allows you to use both together. Second, you

should implement the menu again in Glade.

As with the previous exercise, the solution for Exercise 2 is at www.gtkbook.com.

Using the downloadable solution allows you skip coding the callback functions because

you already did that in the previous chapter.

CHAPTER 11 Dynamic User Interfaces

http://www.gtkbook.com
http://www.gtkbook.com

344

�Summary
In this chapter, we took a short break from coding and looked into issues that you need

to consider when designing a graphical user interface. In short, you must always keep

your users in mind. You need to know what to expect of your users and cater to their

needs in every aspect of the application.

Next, you learned how to design graphical user interfaces using Glade 3. The ability

to quickly deploy the graphical aspects of an application is necessary when considering a

GUI toolkit, and GTK+ has Glade to fill this need.

Glade allows you to design every aspect of your user interface, including widget

properties, layout, and signal handlers. User interfaces are saved as readable XML files

that describe the structure of your application.

After designing an application in Glade 3, you can dynamically load the user

interface with Gtk.Builder. This GTK+ class parses the Glade user interface and creates

all the necessary widgets at runtime. It also provides functions for connecting signal

handlers declared in Glade to callback methods within your application.

In the next chapter, we are going to get back to coding and delve into the

complexities of the GObject system. You learn how to create your own GObject classes by

deriving new widgets and classes, as well as how to create a widget from scratch.

CHAPTER 11 Dynamic User Interfaces

345
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_12

CHAPTER 12

Custom Widgets
By now, you have learned a great deal about GTK+ and its supporting libraries. You have

enough knowledge to use the widgets provided by PyGTK to create complex applications

of your own.

However, one thing that you have not yet learned is how to create your own widgets.

Therefore, this chapter is dedicated to deriving new classes from existing GTK+ classes.

You are guided through some examples to show you how easy this is done using PyGTK.

In this chapter, you learn how to derive new classes and widgets from GTK+ widgets.

We provide several examples of how to do this and discuss some of the problems you

might encounter along the way.

�An Image/Label Button
Since GTK+ 3.1, all stock items have been deprecated. While I agree with this decision,

I was disappointed that the Gtk.Button was not extended to include an option for a

button to display both an image and text. After eliminating the use-stock property,

a Gtk.Button can only display text or an image, but not both at the same time.

The workaround for this is easily implemented but is extremely repetitive, and

it is not object-oriented at all. You can see an example of how the workaround is

implemented in the “Using Push Buttons” section. You can easily see that this solution

would be very repetitive if you have a lot of buttons to code, and you are not making

good use of code reuse with this implementation.

Another point of contention is that the programmer is forced to look up the real

image they want from a string. What if the new implementation did that work for you and

all you needed to supply to the new widget was the lookup string? After all, you probably

want to use an image from the user’s default theme, so just let the new widget do all

that work.

346

Figure 12-1 shows an image label button created by the program shown in

Listing 12-1. This simple implementation shows how to extend the functionality

and style of a standard Gtk.Button.

Listing 12-1 shows the class implementation for the ImageLabelButton.

Listing 12-1.  ImageLabelButton Class Implementation

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class ImageLabelButton(Gtk.Button):

 def __init__(self, orientation=Gtk.Orientation.HORIZONTAL,

 image="image-missing", label="Missing", *args,

 **kwargs):

 super().__init__(*args, **kwargs)

 # now set up more properties

 hbox = Gtk.Box(orientation, spacing=0)

 if not isinstance(image, str):

 raise TypeError("Expected str, got %s instead." % str(image))

 icon_theme = Gtk.IconTheme.get_default()

 icon = icon_theme.load_icon(image, -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 img = Gtk.Image.new_from_pixbuf(icon)

Figure 12-1.  An ImageLabelButton at work

CHAPTER 12 Custom Widgets

347

 hbox.pack_start(img, True, True, 0)

 img.set_halign(Gtk.Align.END)

 if not isinstance(label, str):

 raise TypeError("Expected str, got %s instead." % str(label))

 if len(label) > 15:

 �raise ValueError("The length of str may not exceed 15

characters.")

 labelwidget = Gtk.Label(label)

 hbox.pack_start(labelwidget, True, True, 0)

 labelwidget.set_halign(Gtk.Align.START)

 self.add(hbox)

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_border_width(25)

 button = ImageLabelButton(image="window-close", label="Close")

 button.connect("clicked", self.on_button_clicked)

 button.set_relief(Gtk.ReliefStyle.NORMAL)

 self.add(button)

 self.set_size_request(170, 50)

 def on_button_clicked(self, button):

 self.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="ImageLabelButton")

 self.window.show_all()

 self.window.present()

CHAPTER 12 Custom Widgets

348

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The first point to understand is that when a Gtk.Button is created, the style of

the button is set when you assign either the image or label property. Once assigned,

the style of the button can never be changed. That is also the case for the new

ImageLabelButton.

To start our discussion, let’s take a closer look at the initialization of the widget. We

allow two new properties and override one Gtk.Button existing property. The property

label overrides the parent property but is used in the same way as the text for the label

widget. The properties orientation and image are new. They are used, respectively, to

specify the orientation of the label/image (horizontal or vertical) and the string name to

look up the corresponding default theme icon.

The rest of the initialization code is straightforward. Create a Gtk.Box with either

the default orientation or the one specified by the keyword argument. Next, if the image

keyword is specified, look up the name in the default user theme, fetch the icon, and add

the image to Gtk.Box. Next, if the label is specified, create a Gtk.Label and add that to

Gtk.Box. Lastly, add the box to the button.

We changed the Gtk.ImageLabelButton class by adjusting the alignment of the

image and the label text so that they remain centered together no matter how the button

is sized. We used the set_halign() method and turned off the fill and expand properties

used in the pack_start() method.

Note that we do not override any other methods or properties of the underlying

Gtk.Button. In this case, there is no need to modify the button in any other way.

ImageLabelButton behaves as a normal Gtk.Button would. Therefore, we have

accomplished our mission of creating a new class of button.

Most importantly, there is some error detection code in the new class to catch

invalid data types and values. It cannot be stressed enough that you provide this kind

argument checking. The lack of proper error messages and proper error detection can

ruin all the work you put into a new class because it does not provide enough debug

information to correct even minor mistakes or problems, which will cause your class to

fall into disuse.

CHAPTER 12 Custom Widgets

349

�Custom Message Dialogs
Another reason to subclass GTK+ widgets is to save work by integrating more behavior

into the widget. For instance, a standard GTK+ dialog requires a lot of initialization

before you ever display the dialog. You can solve a repeated amount of work by

integrating a standard look-and-feel to all of your message dialogs.

The way to reduce the amount of work necessary to create a dialog is to create a

design that includes all the features you need, with either default settings or parameters

that can activate additional options/values. In Listing 12-2, let’s look at a customized

question dialog to see how this can work.

Listing 12-2.  A Customized Question Dialog Implementation

class ooQuestionDialog(Gtk.Dialog):

hbox = None

vbox = None

 def __init__(self, title="Error!", parent=None,

 flags=Gtk.DialogFlags.MODAL, buttons=("NO",

 Gtk.ResponseType.NO, "_YES",

 Gtk.ResponseType.YES)):

 super().__init__(title=title, parent=parent, flags=flags,

 buttons=buttons)

 self.vbox = self.get_content_area()

 �self.hbox = Gtk.Box(orientation=Gtk.Orientation.HORIZONTAL,

spacing=5)

 icon_theme = Gtk.IconTheme.get_default()

 icon = icon_theme.load_icon("dialog-question", 48,

 Gtk.IconLookupFlags.FORCE_SVG)

 image = Gtk.Image.new_from_pixbuf(icon)

 self.hbox.pack_start(image, False, False, 5)

 self.vbox.add(self.hbox)

 def set_message(self, message, add_msg=None):

 self.hbox.pack_start(Gtk.Label(message), False, False, 5)

 if add_msg != None:

CHAPTER 12 Custom Widgets

350

 expander = Gtk.Expander.new_with_mnemonic(\ "_Click

 me for more information.")

 expander.add(Gtk.Label(add_msg))

 self.vbox.pack_start(expander, False, False, 10)

 def run(self):

 self.show_all()

 response = super().run()

 self.destroy()

 return response

This dialog has a predefined design that is common to all of our message dialogs. It

contains the following elements.

•	 There are separate classes for each type of message dialog.

•	 The dialog always contains an icon. The icon displayed is dependent

on the type of dialog being displayed (message, information,

error, etc.).

•	 The dialog always displays a primary message.

•	 The number and type of buttons displayed have a logical default that

can be overridden by the user.

•	 All dialogs default to modal.

•	 An additional message can also be displayed in the dialog. It is

enclosed in an expander that can be used any time the dialog is

displayed.

•	 There are two additional methods supplied with the class. The

first method, set_message(), sets both the primary dialog

message and an optional additional message. The second method,

run(), shows the dialog, runs the dialog, destroys the dialog, and

returns the response_id. The run() method is optional if you

want a non-modal dialog displayed. Of course, you have to supply

additional functionality in the run() dialog to make that happen.

CHAPTER 12 Custom Widgets

351

It is very simple to instantiate and run the dialog. The following code performs all the

necessary tasks to open the dialog.

dialog = ooQuestionDialog(parent=parentwin)

dialog.set_message("This is a test message.\nAnother line.",

 add_msg="An extra message line.”)

response = dialog.run()

It is obvious that loading the custom design into the dialog has both advantages and

disadvantages. The main disadvantage is combining the design and the functionality

together. The big advantage is that should you wish to change the design, there is only

one place to modify it.

From this example, it should be an easy exercise for the user to create similar

subclasses for error, message, information, and warning dialogs. Just remember that

consistency is the key to this task.

�Multithreaded Applications
Multithreaded applications are at the core of any high-end GTK+ application, which

is any application that utilizes databases, network communication, client-server

activities, interprocess communications, and any other process that uses long running

transactions. All of these applications require either multiple processes or threads to

manage the communications to and from the separate entities to supply and receive

information from each other.

GTK+ is a single thread library. It is not thread safe to access its API from multiple

threads. All API calls must come from the main thread of the application. This means

that long-running transactions can make the user interface seem to freeze, sometimes

for very long periods of time.

The key to solving this problem is to move all long-running transactions to other

threads. But, this is not easy because it involves setting up threads and supplying

some type of thread safe communications for two or more threads or processes to

utilize.

Most books on the topic of GUIs usually ignore this problem and concentrate on the

GUI itself. This is a great disservice to the reader because just about any GUI application

that the reader encounters in their professional life is multithreaded, but the reader has

no experience in this type of application.

CHAPTER 12 Custom Widgets

352

This book supplies an example to give you a better idea of what a multithreaded

application looks like and the basics on how to organize it. The example is not the only

way to architect a multithreaded application, but it does supply all the basics for such

an application. The details and methods might be different for your project, but you are

following the same basic outline supplied by our example.

Listing 12-3 is the example multithreaded application. It is a very simple program

that requests information from another thread, and the main thread correctly waits for

the supplier thread to provide the data. We describe this example in some detail after

the listing.

Listing 12-3.  Multithreaded Application

#!/usr/bin/python3

import sys, threading, queue, time

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

def dbsim(q1, q2):

 while True:

 data = q1.get()

 # the request is always the same for our purpose

 items = {'lname':"Bunny", 'fname':"Bugs",

 'street':"Termite Terrace", 'city':"Hollywood",

 'state':"California", 'zip':"99999", 'employer':"Warner

 Bros.", 'position':"Cartoon character", 'credits':"Rabbit

 Hood, Haredevil Hare, What's Up Doc?"}

 q2.put(items)

 q1.task_done()

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.lname = None

 self.fname = None

 self.street = None

CHAPTER 12 Custom Widgets

353

 self.city = None

 self.state = None

 self.zip = None

 self.employer = None

 self.position = None

 self.credits = None

 self.q1 = queue.Queue()

 self.q2 = queue.Queue()

 self.thrd = threading.Thread(target=dbsim, daemon=True,

 args=(self.q1, self.q1, self.q2))

 self.thrd.start()

 # window setup

 self.set_border_width(10)

 grid = Gtk.Grid.new()

 grid.set_column_spacing(5)

 grid.set_row_spacing(5)

 # name

 label = Gtk.Label.new("Last name:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 0, 0, 1, 1)

 self.lname = Gtk.Entry.new()

 grid.attach(self.lname, 1, 0, 1, 1)

 label = Gtk.Label.new("First name:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 2, 0, 1, 1)

 self.fname = Gtk.Entry.new()

 grid.attach(self.fname, 3, 0, 1, 1)

 # address

 label = Gtk.Label.new("Street:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 0, 1, 1, 1)

 self.street = Gtk.Entry.new()

 grid.attach(self.street, 1, 1, 1, 1)

 label = Gtk.Label.new("City:")

 label.set_halign(Gtk.Align.END)

CHAPTER 12 Custom Widgets

354

 grid.attach(label, 2, 1, 1, 1)

 self.city = Gtk.Entry.new()

 grid.attach(self.city, 3, 1, 1, 1)

 label = Gtk.Label.new("State:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 0, 2, 1, 1)

 self.state = Gtk.Entry.new()

 grid.attach(self.state, 1, 2, 1, 1)

 label = Gtk.Label.new("Zip:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 2, 2, 1, 1)

 self.zip = Gtk.Entry.new()

 grid.attach(self.zip, 3, 2, 1, 1)

 # employment status

 label = Gtk.Label.new("Employer:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 0, 3, 1, 1)

 self.employer = Gtk.Entry.new()

 grid.attach(self.employer, 1, 3, 1, 1)

 label = Gtk.Label.new("Position:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 2, 3, 1, 1)

 self.position = Gtk.Entry.new()

 grid.attach(self.position, 3, 3, 1, 1)

 label = Gtk.Label.new("Credits:")

 label.set_halign(Gtk.Align.END)

 grid.attach(label, 0, 4, 1, 1)

 self.credits = Gtk.Entry.new()

 grid.attach(self.credits, 1, 4, 3, 1)

 # buttons

 bb = Gtk.ButtonBox(Gtk.Orientation.HORIZONTAL)

 load_button = Gtk.Button.new_with_label("Load")

 bb.pack_end(load_button, False, False, 0)

 load_button.connect("clicked", self.on_load_button_clicked)

 save_button = Gtk.Button.new_with_label("Save")

CHAPTER 12 Custom Widgets

355

 bb.pack_end(save_button, False, False, 0)

 save_button.connect("clicked", self.on_save_button_clicked)

 cancel_button = Gtk.Button.new_with_label("Cancel")

 bb.pack_end(cancel_button, False, False, 0)

 cancel_button.connect("clicked", self.on_cancel_button_clicked)

 # box setup

 vbox = Gtk.Box.new(orientation=Gtk.Orientation.VERTICAL,

 spacing=5) vbox.add(grid)

 vbox.add(bb)

 self.add(vbox)

 def on_cancel_button_clicked(self, button):

 self.destroy()

 def on_load_button_clicked(self, button):

 self.q1.put('request')

 # wait for the results to be

 queued data = None

 while Gtk.events_pending() or data ==

 None: Gtk.main_iteration()

 try:

 data = self.q2.get(block=False)

 except queue.Empty:

 continue

 self.lname.set_text(data['lname'])

 self.fname.set_text(data['fname'])

 self.street.set_text(data['street'])

 self.city.set_text(data['city'])

 self.state.set_text(data['state'])

 self.zip.set_text(data['zip'])

 self.employer.set_text(data['employer'])

 self.position.set_text(data['position'])

 self.credits.set_text(data['credits'])

 self.q2.task_done()

CHAPTER 12 Custom Widgets

356

 def on_save_button_clicked(self, button):

 self.lname.set_text("")

 self.fname.set_text("")

 self.street.set_text("")

 self.city.set_text("")

 self.state.set_text("")

 self.zip.set_text("")

 self.employer.set_text("")

 self.position.set_text("")

 self.credits.set_text("")

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Multi-Thread")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

Before we examine the listing in detail, let’s describe the application requirements

and see how we satisfied those requirements.

Our application is a simulation of a database client and a server—all in a single

multithreaded program. The main window requests data from the threaded server

and waits for a response. The server waits for a request and then supplies the data

back to the client. The client side of the application is a simple GTK+ application

that displays the data fetched from the server. The server is a single Python function

running in a thread. It waits for a request, provides the data, and then waits for the

next request.

CHAPTER 12 Custom Widgets

357

The key to all of this is that the GTK+ client does not freeze, no matter how long the

server takes to provide the data back to the client. This allows the application (and all

other applications) to continue processing desktop events.

Let’s start our examination of the listing right at the top—the dbsim server function,

which stands for database simulator. We kept this function as simple as possible to

reveal the basic functionality. The code is an endless loop that waits for a transaction to

appear on a queue. q1.get() tries to read a transaction off the queue and waits to return

when a transaction becomes available. dbsim does nothing with the transaction data;

instead, it just builds a Python dictionary. It then puts the dictionary on a return queue

with the q2.put(items). Finally, processing returns to the top of the forever loop and

waits for the next transaction.

The solution shown here works fine for a single client, but breaks down when

multiple clients try to access the server because there is no way to synchronize the client

requests with the returned data. We would need to enhance the application to provide

that level of synchronization.

If you want to experiment with longer transaction times from the server, insert a

time.sleep() statement between the q1.get() and the q2.put(items) statements. This

provides the proof that the client does not freeze during a long-running transaction.

Now let’s see how the client works. The client is a standard GTK+ application,

except for the on_load_button_clicked() method. This method accesses the database

simulator thread to obtain the information to fill out the entry fields displayed on the

main window. The first task is to send the request to the database simulator. It does this

by placing a request on a queue that is read by the simulator.

Now we come to the hard part. How do we wait for the returned information without

putting the main thread to sleep? We do this by placing the method in a loop that

processes pending events until the information is available from the server. Let’s take a

look at that tight loop.

while Gtk.events_pending() or data == None:

 Gtk.main_iteration()

 try:

 data = self.q2.get(block=False)

 except queue.Empty:

 continue

CHAPTER 12 Custom Widgets

358

The while statement starts the loop by checking to see if there are pending GTK+

events to process and whether data has been placed in the target variable. If either

condition is True, the tight loop is entered. Next, we process a single GTK+ event (if one

is ready). Next, we try to fetch data from the server. self.q2.get(block=False) is a non-

blocking request. If the queue is empty, then an exception is raised and then ignored

because we need to continue the loop until the data is available.

Once the data is successfully fetched, the on_load_button_clicked() method

continues by filling out the displayed entry fields with the supplied information.

There is one more piece to this puzzle. Take a look at the statement that created the

server thread.

self.thrd = threading.Thread(target=dbsim, daemon=True, args=(self.q1,

self.q2))

The key part of this statement is the daemon=True argument, which allows the thread

to watch for the main thread to finish, and when it does, it kills the server thread so that

the application ends gracefully.

This application example has all the basic for communication between two threads.

We have two queues for requests and returned data. We have a thread that performs

all the long-running transactions needed by the client. And finally, we have a client

that does not freeze while waiting for information from the server. This is the basic

architecture for a multithreaded GUI application.

�The Proper Way to Align Widgets
Prior to GTK+ 3.0, the proper way to align widgets was through the Gtk.Alignment

class. This class was deprecated starting with GTK+ 3.0, thus seeming to eliminate

an easy way to align widgets. But in truth, there are two methods in the Gtk.Widget

class that can align widgets in any container: the halign() and the valign()

methods.

These methods are easy to use and provide the type of alignment that the

programmer desires in 90% of cases. Listing 12-4 shows how using the Gtk.Widget

alignment methods produce all the types of alignment provided by the halign() and

valign() methods.

CHAPTER 12 Custom Widgets

359

Listing 12-4.  Aligning Widgets

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs) :

 super().__init__(*args, **kwargs)

 self.set_border_width(10)

 self.resize(300, 100)

 # create a grid

 grid1 = Gtk.Grid()

 grid1.height = 2

 grid1.width = 2

 grid1.set_column_homogeneous(True)

 grid1.set_row_homogeneous(True)

 self.add(grid1)

 # build the aligned labels

 label1 = Gtk.Label('Top left Aligned')

 label1.can_focus = False

 label1.set_halign(Gtk.Align.START)

 label1.set_valign(Gtk.Align.START)

 grid1.attach(label1, 0, 0, 1, 1)

 label2 = Gtk.Label('Top right Aligned')

 label2.can_focus = False

 label2.set_halign(Gtk.Align.END)

 label2.set_valign(Gtk.Align.START)

 grid1.attach(label2, 1, 0, 1, 1)

 label3 = Gtk.Label('Bottom left Aligned')

 label3.can_focus = False

 label3.set_halign(Gtk.Align.START)

 label3.set_valign(Gtk.Align.END)

CHAPTER 12 Custom Widgets

360

 grid1.attach(label3, 0, 1, 1, 1)

 label4 = Gtk.Label('Bottom right Aligned')

 label4.can_focus = False

 label4.set_halign(Gtk.Align.END)

 label4.set_valign(Gtk.Align.END)

 grid1.attach(label4, 1, 1, 1, 1)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 �gtk_version = float(str(Gtk.MAJOR_VERSION)+'.'+str(Gtk.MINOR_VERSION))

 if gtk_version < 3.16:

 print('There is a bug in versions of GTK older that 3.16.')

 print('Your version is not new enough to prevent this bug from')

 print('causing problems in the display of this solution.')

 exit(0)

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Alignment")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

When you run this example, you see four different alignments displayed, as shown in

Figure 12-2.

CHAPTER 12 Custom Widgets

361

The following code snippet shows how to align a single label widget to the top-left

corner of a Gtk.Grid cell.

label1.set_halign(Gtk.Align.START)

label1.set_valign(Gtk.Align.START)

As you can see, aligning a widget is really simple, and the overhead is reduced

because we are not invoking a new class for each aligned widget. This method of aligning

widgets should be sufficient for most of your application needs.

�Summary
This chapter presented three widget customization examples, which should provide

enough information for you to create your own custom widgets. There are many more

possibilities to increase the usability and quality of your applications.

Figure 12-2.  Alignment example

CHAPTER 12 Custom Widgets

363
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_13

CHAPTER 13

More GTK Widgets
You have learned, by now, almost everything this book has to teach you. However, there

are a number of widgets that did not quite fit into previous chapters. Therefore, this

chapter covers those widgets.

The first two widgets are used for drawing and are named Gtk.DrawingArea

and Gtk.Layout. These two widgets are very similar except the Gtk.Layout widget

allows you to embed arbitrary widgets into it in addition to using functions for

drawing.

In addition, you learn about Gtk.Entry widgets that support automatic completion

and calendars. Lastly, you are introduced to widgets that were added in GTK+ 2.10

including status icons, printing support, and recent file managers.

In this chapter, you learn the following.

•	 How to use the drawing widgets Gtk.DrawingArea and Gtk.Layout

•	 How to use the Gtk.Calendar widget to track information about

months of the year

•	 How to use widgets introduced in GTK+ 2.10 that provide recent file

tracking, printing support, and status icons

•	 How to implement automatic completion in a Gtk.Entry widget by

applying a Gtk.EntryCompletion object

�Drawing Widgets
Gtk.DrawingArea only provides one method, Gtk.DrawingArea.new(), which accepts no

parameters and returns a new drawing area widget.

Gtk.DrawingArea.new()

364

To begin using the widget, you only need to use the supplied by the parent widget

Gdk.Window to draw on the area. Remember that a Gdk.Window object is also a Gdk.

Drawable object.

One advantage of Gtk.DrawingArea is that it derives from Gtk.Widget, which

means that it can be connected to GDK events. There are a number of events to which

you want to connect your drawing area. You first want to connect to realize so that

you can handle any tasks that need to be performed when the widget is instantiated,

such as creating GDK resources. The "configure-event" signal notifies you when

you have to handle a change in the size of the widget. Also, "expose-event" allows

you to redraw the widget when a portion is exposed that was previously hidden. The

"expose-event" signal is especially important, because if you want the content of the

drawing area to persist over "expose-event" callbacks, you have to redraw its content.

Lastly, you can connect to button and mouse click events so that the user can interact

with the widget.

Note  To receive certain types of events, you need to add them to the list
of widget events that are supported with widget.add_events(). Also, to
receive keyboard input from the user, you need to set the widget.set_can_
focus(True) flag, since only focused widgets can detect key presses.

�A Drawing Area Example
Listing 13-1 implements a simple drawing program using the Gtk.DrawingArea

widget. Since the introduction of GTK+ 3 the Cairo drawing library has replaced the

old drawing primitives used in earlier versions of GTK+. This library differs from the

old primitives in that it use vector graphics to draw shapes instead of using freehand

techniques. Vector graphics are interesting because they don’t lose clarity when

resized or transformed.

Figure 13-1 is a screenshot of this application.

CHAPTER 13 More GTK Widgets

365

While this is a very simple program, it nonetheless shows how to interact with the

Gtk.DrawingArea widget.

Figure 13-1.  A drawing area widget with text drawn with the mouse

CHAPTER 13 More GTK Widgets

366

Listing 13-1.  The Drawing Area Widget

#!/usr/bin/python3

import sys

import cairo

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Gdk

SIZE = 30

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.set_size_request(450, 550)

 drawingarea = Gtk.DrawingArea()

 self.add(drawingarea)

 drawingarea.connect('draw', self.draw)

 def triangle(self, ctx):

 ctx.move_to(SIZE, 0)

 ctx.rel_line_to(SIZE, 2 * SIZE)

 ctx.rel_line_to(-2 * SIZE, 0)

 ctx.close_path()

 def square(self, ctx):

 ctx.move_to(0, 0)

 ctx.rel_line_to(2 * SIZE, 0)

 ctx.rel_line_to(0, 2 * SIZE)

 ctx.rel_line_to(-2 * SIZE, 0)

 ctx.close_path()

 def bowtie(self, ctx):

 ctx.move_to(0, 0)

 ctx.rel_line_to(2 * SIZE, 2 * SIZE)

 ctx.rel_line_to(-2 * SIZE, 0)

 ctx.rel_line_to(2 * SIZE, -2 * SIZE)

 ctx.close_path()

CHAPTER 13 More GTK Widgets

367

 def inf(self, ctx):

 ctx.move_to(0, SIZE)

 ctx.rel_curve_to(0, SIZE, SIZE, SIZE, 2 * SIZE, 0)

 ctx.rel_curve_to(SIZE, -SIZE, 2 * SIZE, -SIZE, 2 * SIZE, 0)

 ctx.rel_curve_to(0, SIZE, -SIZE, SIZE, -2 * SIZE, 0)

 ctx.rel_curve_to(-SIZE, -SIZE, -2 * SIZE, -SIZE, -2 * SIZE, 0)

 ctx.close_path()

 def draw_shapes(self, ctx, x, y, fill):

 ctx.save()

 ctx.new_path()

 ctx.translate(x + SIZE, y + SIZE)

 self.bowtie(ctx)

 if fill:

 ctx.fill()

 else:

 ctx.stroke()

 ctx.new_path()

 ctx.translate(3 * SIZE, 0)

 self.square(ctx)

 if fill:

 ctx.fill()

 else:

 ctx.stroke()

 ctx.new_path()

 ctx.translate(3 * SIZE, 0)

 self.triangle(ctx)

 if fill:

 ctx.fill()

 else:

 ctx.stroke()

 ctx.new_path()

 ctx.translate(3 * SIZE, 0)

 self.inf(ctx)

 if fill:

 ctx.fill()

CHAPTER 13 More GTK Widgets

368

 else:

 ctx.stroke()

 ctx.restore()

 def fill_shapes(self, ctx, x, y):

 self.draw_shapes(ctx, x, y, True)

 def stroke_shapes(self, ctx, x, y):

 self.draw_shapes(ctx, x, y, False)

 def draw(self, da, ctx):

 ctx.set_source_rgb(0, 0, 0)

 ctx.set_line_width(SIZE / 4)

 ctx.set_tolerance(0.1)

 ctx.set_line_join(cairo.LINE_JOIN_ROUND)

 ctx.set_dash([SIZE / 4.0, SIZE / 4.0], 0)

 self.stroke_shapes(ctx, 0, 0)

 ctx.set_dash([], 0)

 self.stroke_shapes(ctx, 0, 3 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_BEVEL)

 self.stroke_shapes(ctx, 0, 6 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_MITER)

 self.stroke_shapes(ctx, 0, 9 * SIZE)

 self.fill_shapes(ctx, 0, 12 * SIZE)

 ctx.set_line_join(cairo.LINE_JOIN_BEVEL)

 self.fill_shapes(ctx, 0, 15 * SIZE)

 ctx.set_source_rgb(1, 0, 0)

 self.stroke_shapes(ctx, 0, 15 * SIZE)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",**kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Drawing Areas")

CHAPTER 13 More GTK Widgets

369

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

The best way to understand how to use Cairo is to imagine that you are an artist

using a paintbrush to draw out a shape on canvas.

To begin, you can choose a few characteristics of your brush. You can choose the

thickness of your brush and the color you want to paint with. You can also choose the

shape of your brush tip. You can choose either a circle or a square.

Once you have chosen your brush, you are ready to start painting. You have to be

quite precise when describing what you want to appear.

First, decide where you want to place your brush on the canvas. You do this by supplying

an x and a y coordinate. Next, you define how you want your brush stroke to look—an arc, a

straight line, and so forth. Finally, you define the point where you want your stroke to end,

again by supplying an x and a y coordinate. Triangles and squares are very easy to do!

More complex graphics are generated using variations of the above theme with a few

additions, such as Fills (coloring in), transformations (zooming in, moving), and so forth,

using the Python interface to Cairo.

Nearly all the work revolves around using the cairo.Context (or cairo_t in the

Cairo C API). This is the object that you send your drawing commands to. There are a few

options available to initialize this object in different ways.

It is very important to know that there is a difference between the coordinates that you

are describing your graphics on and the coordinates that you are displaying your graphics

on. When giving a presentation, you draw on your transparent acetate beforehand, and

then display it on your overhead projector. Cairo calls the transparent acetate that the

user space coordinates and the projected image that the device space coordinates.

When initializing the Cairo context object, we tell it how our description should be

displayed. To do this, we supply a transformation matrix. Modifying the transformation

matrix can lead to some very interesting results.

One of Cairo’s most powerful features is that it can output graphics in many different

formats (it can use multiple back ends). For printing, we can have Cairo translate our

graphics into postscript to send to the printer. For onscreen display, Cairo can

translate our graphics into something gtk can understand for hardware-accelerated

rendering! It has many more important and useful target back ends. On initializing the

CHAPTER 13 More GTK Widgets

370

cairo.Context, we set its target back end, supplying a few details (such as color depth

and size), as seen in the next example.

�The Layout Widget
In addition to Gtk.DrawingArea, GTK+ provides another drawing widget called Gtk.Layout.

This widget is actually a container and differs from Gtk.DrawingArea in that it supports not

only drawing primitives but also child widgets. In addition, Gtk.Layout provides scrolling

support natively, so it does not need a viewport when added to a scrolled window.

Note O ne important distinction to note with layouts is that you should draw
to Gtk.Layout’s bin_window member instead of Gtk.Widget’s window . For
example, you need to draw to the parent binary window, not the layout window.
You can obtain the binary window by calling the layout.get_bin_window()
method. This allows child widgets to be correctly embedded into the widget.

New Gtk.Layout widgets are created with Gtk.Layout.new(), which accepts

horizontal and vertical adjustments. Adjustments are created for you if you pass None to

both function parameters. Since Gtk.Layout has native scrolling support, it can be much

more useful than Gtk.DrawingArea when you need to use it with a scrolled window.

However, Gtk.Layout does add some overhead, since it is capable of containing

widgets as well. Because of this, Gtk.DrawingArea is a better choice if you only need to

draw on the widget’s Gdk.Window.

Child widgets are added to a Gtk.Layout container with layout.put(), which places

the child with respect to the top-left corner of the container. Since Gtk.Layout is derived

directly from Gtk.Container, it is able to support multiple children.

layout.put(child_widget, x, y)

A call to layout.move()can be used later to relocate the child widget to another

location in the Gtk.Layout container.

Caution  Because you place child widgets at specific horizontal and vertical
locations, Gtk.Layout presents the same problems as Gtk.Fixed. You need to
be careful of these when using the layout widget! You can read more about Gtk.
Fixed widget issues in the “Fixed Containers” section in Chapter 4.

CHAPTER 13 More GTK Widgets

371

Lastly, if you want to force the layout to be a specific size, you can send new width

and height parameters to layout.set_size(). You should use this method instead of

layout.set_size_request(), because it adjusts the adjustment parameters as well.

layout.set_size(width, height)

Also, unlike size requests, the layout sizing function requires unsigned numbers.

This means that you must specify an absolute size for the layout widget. This size should

be the total size of the layout, including portions of the widget that are not visible on

the screen because they are beyond the bounds of the scrolling area! The size of a Gtk.

Layout widget defaults to 100×100 pixels.

�Calendars
GTK+ provides the Gtk.Calendar widget, which is a widget that displays one month of

a calendar. It allows the user to move among months and years with scroll arrows, as

shown in Figure 13-2. You can also display three-letter abbreviations of the day names

and week numbers for the chosen year.

Figure 13-2.  Gtk.Calendar widget

CHAPTER 13 More GTK Widgets

372

New Gtk.Calendar widgets are created with Gtk.Calendar.new(). By default, the

current date is selected. Therefore, the current month and year stored by the computer

are also displayed. You can retrieve the selected date with calendar.get_date() or

select a new day with calendar.select_day(). To deselect the currently selected day,

you should use calendar.select_day() with a date value of zero.

To customize how the Gtk.Calendar widget is displayed and how it interacts with

the user, you should use calendar.set_display_options() to set a bitwise list of

Gtk.CalendarDisplayOptions values. The following are nondeprecated values of this

enumeration.

•	 Gtk.CalendarDisplayOptions.SHOW_HEADING: If set, the name of the

month and the year are displayed.

•	 Gtk.CalendarDisplayOptions.SHOW_DAY_NAMES: If set, a three-letter

abbreviation of each day is shown above the corresponding column

of dates. They are rendered between the heading and the main

calendar content.

•	 Gtk.CalendarDisplayOptions.SHOW_DETAILS: Shows only a when

details are provided. See calendar.set_detail_func().

•	 Gtk.CalendarDisplayOptions.NO_MONTH_CHANGE: Stops the user

from changing the current month of the calendar. If this flag is not

set, you are presented with arrows that allow you to go to the next or

previous month. By default, the arrows are enabled.

•	 Gtk.CalendarDisplayOptions.SHOW_WEEK_NUMBERS: Displays the

week number along the left side of the calendar for the current year.

The week numbers are hidden by default.

In addition to selecting a single day, you can mark as many days in the month as you

want one at a time with calendar.mark_day(). This function returns True if the day was

successfully marked.

calendar.mark_day(day)

There are two signals available for detecting when the user selects a day. The first

signal, "day-selected", is emitted when the user selects a new day with the mouse

or the keyboard. The "day-selected-double-click" signal is emitted when the user

selects a day by double-clicking it. This means that you should not need the "button-

press-event" signal with the Gtk.Calendar widget in most cases.

CHAPTER 13 More GTK Widgets

373

�Printing Support
GTK+ 2.10 introduced a number of new widgets and objects that add printing support

to the library. While there are many objects in this API, in most instances, you only need

to directly interact with Gtk.PrintOperation, which is a high-level printing API that can

be used across multiple platforms. It acts as a front-end interface for handling most print

operations.

In this section, we implement an application that prints the content of a text file

that the user selects in a Gtk.FileChooserButton widget. Figure 13-3 is a screenshot

of the default print dialog on a Linux system. The user selects a file from the disk using

a Gtk.FileChooserButton widget, and clicks the Print button in the main window to

open this dialog.

Figure 13-3.  Printing dialog

CHAPTER 13 More GTK Widgets

374

Listing 13-2 begins by defining the necessary data structures for the application and

setting up the user interface. The PrintData class holds information about the current

print job, which helps with rendering the final product. Widgets is a simple structure that

provides access to multiple widgets and the print job information in callback methods.

Listing 13-2.  GTK+ Printing Example

#!/usr/bin/python3

import sys

import math

from os.path import expanduser

import gi

gi.require_version('Gtk', '3.0')

gi.require_version('PangoCairo', '1.0')

from gi.repository import Gtk, cairo, Pango, PangoCairo

class Widgets:

 def __init__(self):

 self.window = None

 self.chooser = None

 self.data = None

 self.settings = Gtk.PrintSettings.new()

class PrintData:

 def __init__(self):

 self.filename = None

 self.fontsize = None

 self.lines_per_page = None

 self.lines = None

 self.total_lines = None

 self.total_pages = None

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.HEADER_HEIGHT = 20.0

CHAPTER 13 More GTK Widgets

375

 self.HEADER_GAP = 8.5

 w = Widgets()

 w.window = self

 self.set_border_width(10)

 w.chooser = Gtk.FileChooserButton.new ("Select a File",

 Gtk.FileChooserAction.OPEN)

 w.chooser.set_current_folder(expanduser("~"))

 print = Gtk.Button.new_with_label("Print")

 print.connect("clicked", self.print_file, w)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(w.chooser, False, False, 0)

 hbox.pack_start(print, False, False, 0)

 self.add(hbox)

 def print_file(self, button, w):

 filename = w.chooser.get_filename()

 if filename == None:

 return

 operation = Gtk.PrintOperation.new()

 if w.settings != None:

 operation.set_print_settings(w.settings)

 w.data = PrintData()

 w.data.filename = filename

 w.data.font_size = 10.0

 operation.connect("begin_print", self.begin_print, w)

 operation.connect("draw_page", self.draw_page, w)

 operation.connect("end_print", self.end_print, w)

 res = operation.run(Gtk.PrintOperationAction.PRINT_DIALOG,

 w.window)

 if res == Gtk.PrintOperationResult.APPLY:

 if w.settings != None:

 w.settings = None

 settings = operation.get_print_settings()

 elif res == Gtk.PrintOperationResult.ERROR:

CHAPTER 13 More GTK Widgets

376

 dialog = Gtk.MessageDialog.new(w.window,

 �Gtk.DialogFlags.DESTROY_WITH_

PARENT,

 Gtk.MessageType.ERROR,

 Gtk.ButtonsType.S_CLOSE,

 "Print operation error.")

 dialog.run()

 dialog.destroy()

 def begin_print(self, operation, context, w):

 w.data.lines = []

 f = open(w.data.filename)

 for line in f:

 w.data.lines.append(line)

 f.close()

 w.data.total_lines = len(w.data.lines)

 height = context.get_height() - self.HEADER_HEIGHT –

 self.HEADER_GAP w.data.lines_per_page = math.floor(height /

 (w.data.font_size + 3)) w.data.total_pages =

 (w.data.total_lines - 1) / w.data.lines_per_page+1

 operation.set_n_pages(w.data.total_pages)

 def draw_page(self, operation, context, page_nr, w):

 cr = context.get_cairo_context()

 width = context.get_width()

 layout = context.create_pango_layout()

 desc = Pango.font_description_from_string("Monospace")

 desc.set_size(w.data.font_size * Pango.SCALE)

 layout.set_font_description(desc)

 layout.set_text(w.data.filename, -1)

 layout.set_width(-1)

 layout.set_alignment(Pango.Alignment.LEFT)

 (width, height) = layout.get_size()

 text_height = height / Pango.SCALE

 cr.move_to(0, (self.HEADER_HEIGHT - text_height) / 2)

 PangoCairo.show_layout(cr, layout)

 page_str = "%d of %d" % (page_nr + 1, w.data.total_pages)

CHAPTER 13 More GTK Widgets

377

 layout.set_text(page_str, -1)

 (width, height) = layout.get_size()

 layout.set_alignment(Pango.Alignment.RIGHT)

 cr.move_to(width - (width / Pango.SCALE),

 (self.HEADER_HEIGHT - text_height) / 2)

 PangoCairo.show_layout(cr, layout)

 cr.move_to(0, self.HEADER_HEIGHT + self.HEADER_GAP)

 line = page_nr * w.data.lines_per_page

 i = 0

 while i < w.data.lines_per_page and line <

 w.data.total_lines:

 layout.set_text(w.data.lines[line], -1)

 PangoCairo.show_layout(cr, layout)

 cr.rel_move_to(0, w.data.font_size + 3)

 line += 1

 i += 1

 def end_print(self, operation, context, w):

 w.data.lines = None

 w.data = None

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self,

 title="Calendar")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 13 More GTK Widgets

378

Two values are defined at the top of AppWindow class in Listing 13-2 called HEADER_

HEIGHT and HEADER_GAP. HEADER_HEIGHT is the amount of space that is available for

the header text to be rendered. This displays information, such as the file name and

page number. HEADER_GAP is padding placed between the header and the actual page

content.

The PrintData class stores information about the current print job. This includes

the location of the file on the disk, the size of the font, the number of lines that can be

rendered on a single page, the file’s content, the total number of lines, and the total

number of pages.

�Print Operations
The next step is to implement the print_file callback method that runs when the Print

button is clicked. This method is implemented in Listing 13-2. It takes care of creating

the PrintData, connecting all the necessary signals, and creating the print operation.

The first step in printing is to create a new print operation, which is done by calling

Gtk.PrintOperation.new(). What makes Gtk.PrintOperation unique is that it uses the

platform’s native print dialog if there is one available. On platforms like UNIX, which do

not provide such a dialog, Gtk.PrintUnixDialog or the GNOME dialog is used.

Note  For most applications, you should use the Gtk.PrintOperation
methods when possible, instead of directly interacting with the print objects. Gtk.
PrintOperation was created as a platform-independent printing solution, which
cannot be easily reimplemented without a lot of code.

The next step is to call operation.set_print_settings() to apply print settings to

the operation. In this application, the Gtk.PrintSettings object is stored as an attribute

in the Widgets class instance. If the print operation is successful, you should store the

current print settings so that these same settings can be applied to future print jobs.

You then set up the PrintData class by allocating a new instance. The file

name is set to the currently selected file in the Gtk.FileChooserButton, which was

already confirmed to exist. The print font size is also set to 10.0 points. In text editing

applications, you would usually retrieve this font from Gtk.TextView’s current font. In

more complex printing applications, the font size may vary throughout a document, but

this is a simple example meant only to get you started.

CHAPTER 13 More GTK Widgets

379

Next, we connect to three Gtk.PrintOperation signals, which are discussed

in detail later in this section. In short, begin_print is called before the pages are

rendered and can be used for setting the number of pages and doing necessary

preparation. The draw_page signal is called for every page in the print job so that it

can be rendered. Lastly, the end_print signal is called after the print operation has

completed, regardless of whether it succeeded or failed. This callback method cleans

up after the print job. A number of other signals can be used throughout the print

operation. A full list is in Appendix B.

Once the print operation has been set up, the next step is to begin the printing

by calling operation.run(). This method is where you define which task the print

operation performs.

operation.run(action, parent)

The Gtk.PrintOperationAction enumeration, shown in the following list, defines

which printing task the print operation performs. To print the document, you should use

Gtk.PrintOperationAction.PRINT_DIALOG.

•	 Gtk.PrintOperationAction.ERROR: Some type of error has occurred

in the print operation.

•	 Gtk.PrintOperationAction.PREVIEW: Preview the print job that is

performed with the current settings. This uses the same callbacks for

rendering as the print operation, so it should take little work to get it

up and running.

•	 Gtk.PrintOperationAction.PRINT: Start printing using the current

printing settings without presenting the print dialog. You should

only do this if you are 100 percent sure that the user approves of

this action. For example, you should have already presented a

confirmation dialog to the user.

•	 Gtk.PrintOperationAction.EXPORTPRINT: Export the print job to a

file. To use this setting, you have to set the export-filename property

prior to running the operation.

The last two parameters of operation.run() allow you to define a parent window

to use for the print dialog to use None to ignore this parameter. This function does not

return until all of the pages have been rendered and are sent to the printer.

CHAPTER 13 More GTK Widgets

380

When the function does give back control, it returns a Gtk.PrintOperationResult

enumeration value. These values give you instructions on what task you should perform

next, and whether the print operation succeeded or failed. The four enumeration values

are shown in the following list.

•	 Gtk.PrintOperationResult.ERROR: Some type of error has occurred

in the print operation.

•	 Gtk.PrintOperationResult.APPLY: Print settings were changed.

Therefore, they should be stored immediately so that changes are not

lost.

•	 Gtk.PrintOperationResult.CANCEL: The user cancelled the print

operation, and you should not save the changes to the print settings.

•	 Gtk.PrintOperationResult.PROGRESS: The print operation has yet

to be completed. You only get this value if you are running the task

asynchronously.

It is possible to run the print operation asynchronously, which means that

operation.run() may return before the pages have been rendered. This is set with

operation.set_allow_async(). You should note that not all platforms allow this

operation, so you should be prepared for this not to work!

If you run the print operation asynchronously, you can use the done signal to

retrieve notification when the printing has completed. At this point, you are given the

print operation results, and you need to handle it accordingly.

After handling the print operation result, you should also handle the resulting error if

it was set and if it exists.

A full list of possible errors under the Gtk.PrintError domain can be found in

Appendix E.

One unique feature provided by Gtk.PrintOperation is the ability to show a

progress dialog while the print operation is running. This is turned off by default, but it

can be turned on with operation.set_show_progress(). This is especially useful if you

allow the user to run multiple print operations at the same time.

operation.set_show_progress(boolean)

CHAPTER 13 More GTK Widgets

381

It may be necessary at times to cancel a current print job, which can be done by

calling operation.cancel(). This function is usually used within a begin_print,

paginate, or draw_page callback method. It also allows you to provide a Cancel button

so that the user can stop in the middle of an active print operation.

operation_cancel()

It is also possible to give a unique name to the print job, which identifies it within an

external print monitoring application. Print jobs are given names with operation.set_

job_name(). If this is not set, GTK+ automatically designates a name for the print job and

numbers consecutive print jobs accordingly.

If you are running the print job asynchronously, you may want to retrieve the

current status of the print job. By calling operation.get_status(), a Gtk.PrintStatus

enumeration value is returned, which gives more information about the status of the

print job. The following is a list of possible print job status values.

•	 Gtk.PrintStatus.INITIAL: The print operation has yet to begin. This

status is returned while the print dialog is still visible because it is the

default initial value.

•	 Gtk.PrintStatus.PREPARING: The print operation is being split into

pages, and the begin-print signal was emitted.

•	 Gtk.PrintStatus.GENERATING_DATA: The pages are being rendered.

This is set while the draw-page signal is being emitted. No data has

been sent to the printer at this point.

•	 Gtk.PrintStatus.SENDING_DATA: Data about the print job is being

sent to the printer.

•	 Gtk.PrintStatus.PENDING: All of the data has been sent to the

printer, but the job has yet to be processed. It is possible that the

printer may be stopped.

•	 Gtk.PrintStatus.PENDING_ISSUE: There was a problem during the

printing. For example, the printer could be out of paper, or there

could be a paper jam.

•	 Gtk.PrintStatus.PRINTING: The printer is currently processing the

print job.

CHAPTER 13 More GTK Widgets

382

•	 Gtk.PrintStatus.FINISHED: The print job has been successfully

completed.

•	 Gtk.PrintStatus.FINISHED_ABORTED: The print job was aborted. No

further action is taken unless you run the job again.

The value returned by operation.get_status() can be used within applications,

since it is a numerical value. However, GTK+ also provides the ability to retrieve a string

with operation.get_status_string(), which is a human-readable description of

the print job status. It is used for debugging output or displaying more information to

the user about the print job. For example, it could be displayed on a status bar or in a

message dialog.

�Beginning the Print Operation
Now that the print operation is set up, it is time to implement the necessary signal

callback methods. The “begin-print” signal is emitted when the user initiates printing,

which means that all settings have been finalized from the user’s point of view.

In Listing 13-2, the begin_print callback method first retrieves the contents of the

file and splits it into the number of lines. The total number of lines is then calculated,

which can retrieve the number of pages.

To calculate the number of pages required by the print operation, you need

to figure out how many lines can be rendered on every page. The total height of

every page is retrieved with context.get_height(), which is stored in a Gtk.

PrintContext object. Gtk.PrintContext stores information about how to draw the

page. For example, it stores the page setup, width and height dimensions, and dots

per inch in both directions. We go into more detail in the draw_page callback method

later in this chapter.

Once you have the total height of the page that is available for rendering text, the next

step is to divide that height by the font size of the text plus 3 pixels of spacing to be added

between each line. The floor() function rounds down the number of lines per page so

that clipping does not occur along the bottom of every full page.

Once you have the number of lines per page, you can calculate the number of pages.

Then, you must send this value to operation.set_n_pages() by the end of this callback

method. The number of pages are used so that GTK+ knows how many times to call the

draw_page callback method. This must be set to a positive value so that rendering does

not begin until it is changed from its default –1 value.

CHAPTER 13 More GTK Widgets

383

�Rendering Pages
The next step is to implement the draw_page callback method, which is called once for

every page that needs to be rendered. This callback method requires the introduction of

a library called Cairo. It is a vector graphics library that renders print operations, among

other things.

Listing 13-2 begins by retrieving the Cairo drawing context for the current Gtk.

PrintContext with context.get_cairo_context(). The returned context object renders

print content and then applies it to the PangoLayout.

At the beginning of this callback method, we also need to retrieve two other values

from the Gtk.PrintContext. The first is context.get_width(), which returns the width

of the document. Notice that we do not need to retrieve the height of the page, since we

have already calculated the number of lines that fit on each page. If the text is wider than

the page, it is clipped. You have to alter this example to avoid clipping the document.

Caution  The width returned by the Gtk.PrintContext is in pixels. You need to
be careful because different functions may use alternative scales, such as Pango
units or points!

The next step is to create a PangoLayout with context.create_pango_layout(),

which is used for the print context. You should create Pango layouts in this manner for

print operations, because the print context already has the correct font metrics applied.

The next operation performed by this function is to add the file name to the top-left

corner of the page. To start, layout.set_text() sets the current text stored by the layout

to the file name. The width of the layout is set to –1 so that the file name does not wrap

at forward slash characters. The text is also aligned to the left of the layout with layout.

set_alignment().

Now that the text is added to the layout, cr.move_to() moves the current point in the

Cairo context to the left of the page and the center of the header. Note that the height of

the PangoLayout must first be reduced by a factor of Pango.SCALE!

cairo.move_to(x, y)

Next, we call cr.show_layout()to draw the PangoLayout on the Cairo context. The

top-left corner of the layout is rendered at the current point in the Cairo context. This is

why it was first necessary to move to the desired position with cr.move_to().

cairo.show_layout(layout)

CHAPTER 13 More GTK Widgets

384

After rendering the file name, the same method adds the page count to the top-right

corner of each page. You should again note that the width returned by the PangoLayout had

to be scaled down by Pango.SCALE so that it would be in the same units as other Cairo values.

The next step is to render all of the lines for the current page. We begin by moving to

the left of the page, HEADER_GAP units below the header. Then, each line is incrementally

rendered to the Cairo context with cr.show_layout(). One interesting thing to note is

that the cursor position in the loop is moved with cr.rel_move_to().

cairo.rel_move_to(dx, dy)

This function moves the current position relative to the previous position. Therefore,

after a line is rendered, the current position is moved down one line, which is equal to

the font size of the text since the font is monospace.

Tip  By moving the cursor relative to the previous position, it is easy to add an
arbitrary amount of spacing between each line of text and the adjacent one as long
as this additional height was previously taken into consideration when calculating
the number of pages in the begin_print callback method.

When developing with GTK+, you have the whole Cairo library available to you.

More basics are covered in the “Cairo Drawing Context” section of this chapter; however,

if you are implementing printing in your own applications, you should take the time to

learn more about this library from the Cairo API documentation.

�Finalizing the Print Operation
After all of the pages have been rendered, the "end-print" signal is emitted. Listing 13-2

shows the end_print callback method, which is used for the signal. It resets modified

attributes of the PrintData instance.

�Cairo Drawing Context
Cairo is a graphics-rendering library that is used throughout the GTK+ library. In

the context of this book, Cairo renders pages during a print operation. This section

introduces you to the Pycairo library and some of the classes and drawing methods

associated with them.

CHAPTER 13 More GTK Widgets

385

Pages of a print operation in GTK+ are rendered as Cairo context objects. This object

allows you to render text, draw various shapes and lines, and fill clipped areas with color.

Let us look at a few methods provided by Cairo for manipulating Cairo drawing contexts.

�Drawing Paths
Shapes in Cairo contexts are rendered with paths. A new path is created with cairo.

new_path(). You can then retrieve a copy of the new path with cairo.copy_path() and

add new lines and shapes to the path.

cairo.copy_path()

There are a number of functions provided for drawing paths, which are listed

in Table 13-1. More information about each function can be found in the Cairo API

documentation.

Table 13-1.  Cairo Path-Drawing Methods

Method Description

cairo.arc() Draw an arc in the current path. You must provide the radius of the

arc, horizontal and vertical positions of its center, and the start and

end angle of the curve in radians.

cairo.curve_to() Create a Bezier curve in the current path. You must provide the end

position of the curve and two control points that calculate the curve.

cairo.line_to() Draw a line from the current position to the specified point. The

current position is simply moved if an initial point does not exist.

cairo.move_to() Move to a new position in the context, which causes a new subpath to

be created.

cairo.rectangle() Draw a rectangle in the current path. You must provide the coordinates

of the top-left corner of the rectangle, its width, and its height.

cairo.rel_curve_to() This function is the same as cairo.curve_to(), except it is drawn

with respect to the current position.

cairo.rel_line_to() This function is the same as cairo.line_to(), except it is drawn

with respect to the current position.

cairo.rel_move_to() This function is the same as cairo.move_to(), except it is drawn

with respect to the current position.

CHAPTER 13 More GTK Widgets

386

When you are finished with a subpath, you can close it with cairo.path_close().

This encloses the current path so that it can be filled with a color if necessary.

�Rendering Options
The current color used for drawing operations on a source is cairo.set_source_rgb().

The color is used until a new color is set. In addition to choosing a color, you can use

cairo.set_source_rgba(), which accepts a fifth alpha parameter. Each of the color

parameters is a floating-point number between 0.0 and 1.0.

After you have moved to a specific point and set the source color, you can fill the

current path with cairo.fill(), which accepts only the context. Alternatively, you can

fill a rectangular area with cairo.fill_extents(). This function calculates an area with

corners of (x1,y1) and (x2,y2), filling all of the area that is in between those points that is

also contained by the current path.

cairo.fill_extents(x1, y1, x2, y2)

Drawing operations, such as curves, can cause edges to become jagged. To fix this,

Cairo provides antialiasing to drawings with cairo.set_antialias().

cairo.set_antialias(antialias)

Antialiasing settings are provided by the cairo.Antialias enumeration. The

following is a list of values provided by this enumeration.

•	 cairo.Antialias.DEFAULT: The default antialiasing algorithm is

used.

•	 cairo.Antialias.NONE: No antialiasing occurs; instead, an alpha

mask is used.

•	 cairo.Antialias.GRAY: Uses only a single color for antialiasing. This

color is not necessarily gray but is chosen based on the foreground

and background colors.

•	 cairo.Antialias.SUBPIXEL: Uses subpixel shading provided by LCD

screens.

This is simply a short introduction to Cairo drawing contexts. For further information

about Cairo, you should reference its API documentation at www.cairographics.org.

CHAPTER 13 More GTK Widgets

http://www.cairographics.org

387

�Recent Files
In GTK+ 2.10, a new API was introduced that allows you to keep track of recently opened

files across applications. In this section, we are going to implement this functionality in

the simple text editing application. This application with a recent file chooser is shown

in Figure 13-4. Later, in this chapter’s exercise, you are going to add recent file support to

your text editor.

Figure 13-4.  Recent file chooser dialog

The code in Listing 13-3 sets up the text editing application. Two buttons allow you

to open an existing file using a Gtk.FileChooserDialog and save your changes.

Then, there is a Gtk.MenuToolButton that provides two functions. When the button

is clicked, a Gtk.RecentChooserDialog is displayed that allows you to select a recent

file from the list. The menu in the Gtk.MenuToolButton widget is of the type Gtk.

RecentChooserMenu, which shows the ten most recent files.

CHAPTER 13 More GTK Widgets

388

Listing 13-3.  Remembering Recently Opened Files

#!/usr/bin/python3

import sys

import urllib

from urllib.request import pathname2url

import os

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, Pango

class Widgets():

 def __init__(self):

 self.window = None

 self.textview = None

 self.recent = None

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 w = Widgets()

 w.window = self

 self.set_border_width(5)

 self.set_size_request(600, 400)

 w.textview = Gtk.TextView.new()

 fd = Pango.font_description_from_string("Monospace 10")

 self.modify_font(fd)

 swin = Gtk.ScrolledWindow.new(None, None)

 openbutton = Gtk.Button.new_with_label("open")

 save = Gtk.Button.new_with_label("Save")

 icon_theme = Gtk.IconTheme.get_default()

 icon = icon_theme.load_icon("document-open", -1,

 Gtk.IconLookupFlags.FORCE_SIZE)

 image = Gtk.Image.new_from_pixbuf(icon)

 w.recent = Gtk.MenuToolButton.new(image, "Recent Files")

CHAPTER 13 More GTK Widgets

389

 manager = Gtk.RecentManager.get_default()

 menu = Gtk.RecentChooserMenu.new_for_manager(manager)

 w.recent.set_menu(menu)

 menu.set_show_not_found(False)

 menu.set_local_only(True)

 menu.set_limit(10)

 menu.set_sort_type(Gtk.RecentSortType.MRU)

 menu.connect("selection-done", self.menu_activated, w)

 openbutton.connect("clicked", self.open_file, w)

 save.connect("clicked", self.save_file, w)

 w.recent.connect("clicked", self.open_recent_file, w)

 hbox = Gtk.Box.new(Gtk.Orientation.HORIZONTAL, 5)

 hbox.pack_start(openbutton, False, False, 0)

 hbox.pack_start(save, False, False, 0)

 hbox.pack_start(w.recent, False, False, 0)

 vbox = Gtk.Box.new(Gtk.Orientation.VERTICAL, 5)

 swin.add(w.textview)

 vbox.pack_start(hbox, False, False, 0)

 vbox.pack_start(swin, True, True, 0)

 w.window.add(vbox)

 def save_file(self, save, w):

 filename = w.window.get_title()

 buffer = w.textview.get_buffer()

 (start, end) = buffer.get_bounds()

 content = buffer.get_text(start, end, False)

 f = open(filename, 'w')

 f.write(content)

 f.close()

 def menu_activated(self, menu, w):

 filename = menu.get_current_uri()

 if filename != None:

 fn = os.path.basename(filename)

 f = open(fn, 'r')

 contents = f.read()

CHAPTER 13 More GTK Widgets

390

 f.close()

 w.window.set_title(fn)

 buffer = w.textview.get_buffer()

 buffer.set_text(content, -1)

 else:

 print("The file '%s' could not be read!" % filename)

 def open_file(self, openbutton, w):

 dialog = Gtk.FileChooserDialog(�title="Open File", parent=w.window,

 �action=Gtk.FileChooserAction.OPEN,

 �buttons=("Cancel", Gtk.ResponseType.

CANCEL,"Open", Gtk.ResponseType.OK))

 if dialog.run() == Gtk.ResponseType.OK:

 filename = dialog.get_filename()

 content = ""

 f = open(filename, 'r')

 content = f.read()

 f.close()

 if len(content) > 0:

 # Create a new recently used

 resource. data = Gtk.RecentData()

 data.display_name = None

 data.description = None

 data.mime_type = "text/plain"

 data.app_name =

 os.path.basename(__file__)

 data.app_exec = " " + data.app_name +

 "%u" #data.groups = ["testapp", None]

 data.is_private = False

 url = pathname2url(filename)

 # Add the recently used resource to the default

 recent manager. manager =

 Gtk.RecentManager.get_default()

 result = manager.add_full(url, data)

 # Load the file and set the filename as the title of

CHAPTER 13 More GTK Widgets

391

 the window. w.window.set_title(filename)

 buffer =

 w.textview.get_buffer()

 buffer.set_text(content,-1)

 dialog.destroy()

 def open_recent_file(self, recent, w):

 manager = Gtk.RecentManager.get_default()

 dialog = Gtk.RecentChooserDialog(title="Open Recent File",

 parent=w.window,

 recent_manager=manager,

 buttons=("Cancel",

 Gtk.ResponseType.CANCEL,

 "Open",

 Gtk.ResponseType.OK))

 # Add a filter that will display all of the files in

 the dialog. filter = Gtk.RecentFilter.new()

 filter.set_name("All Files")

 filter.add_pattern("*") dialog.add_filter(filter)

 # Add another filter that will only display plain

 text files. filter = Gtk.RecentFilter.new()

 filter.set_name("Plain Text")

 filter.add_mime_type("text/plain")

 dialog.add_filter(filter)

 dialog.set_show_not_found(False)

 dialog.set_local_only(True)

 dialog.set_limit(10)

 dialog.set_sort_type(Gtk.RecentSortType.MRU)

 if dialog.run() == Gtk.ResponseType.OK:

 filename = dialog.get_current_uri()

 if filename != None:

 # Remove the "file://" prefix from the beginning of the

 # URI if it exists.

 content = ""

 fn = os.path.basename(filename)

CHAPTER 13 More GTK Widgets

392

 f = open(fn, 'r')

 contents = f.read()

 f.close()

 if len(content) > 0:

 w.window.set_title(fn)

 buffer = w.textview.get_buffer()

 buffer.set_text(content, -1)

 else:

 print("The file '%s' could not be read!" % filename)

 dialog.destroy()

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 self.window = AppWindow(application=self, title="Recent Files")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

A central class called Gtk.RecentManager handles recent file information. It is

possible to create your own from scratch, but if you want to share recent files across

applications, you can retrieve the default with Gtk.RecentManager.get_default().

This allows you to share recent files with applications, such as gedit, GNOME’s recent

documents menu, and others that take advantage of the Gtk.RecentManager API.

CHAPTER 13 More GTK Widgets

393

We next create a new Gtk.RecentChooserMenu widget from the default Gtk.

RecentManager. This menu displays recent files and (optionally) number the menu items

created with Gtk.RecentChooserMenu.new_for_manager(). The files are not numbered

by default, but this property can be changed by setting "show-numbers" to True or by

calling menu.set_show_numbers().

Gtk.RecentChooserMenu implements the Gtk.RecentChooser interface, which

provides the functionality you need for interacting with the widget. In Listing 13-3,

a number of Gtk.RecentChooser properties customize the menu. These also apply to

two other widgets that implement the Gtk.RecentChooser interface:

Gtk.RecentChooserDialog and Gtk.RecentChooserWidget.

It is possible that recent files in the list have been removed since they were added. In

this case, you may not want to display them in the list. You can hide recent files that no

longer exist with rchooser.set_show_not_found(). This property only works with files

that are located on the local machine.

Tip  You may actually want to show files that are not found to the user. If the user
selects a file that does not exist, you can then easily remove it from the list after
informing the user about the problem.

By default, only local files are shown, which means that they have a file:// Uniform

Resource Identifier (URI) prefix. A URI refers to things, such as file locations or Internet

addresses based on their prefixes. Using only the file:// prefix guarantees that they are

located on the local machine. You can set this property to False to show recent files that

are located at a remote location. You should note that remote files are not filtered out if

they no longer exist!

If the list includes a large number of recent files, you probably will not want to list

all of them in the menu. A menu with a hundred items is quite large! Therefore, you can

use recentchooser.set_limit()to set a maximum number of recent items that are

displayed in the menu.

recentchooser.set_limit(limit)

When you set a limit on the number of elements, which files are shown depends

on the sort type you defined with recentchooser.set_sort_type(). By default, this

is set to Gtk.RecentSortType.NONE. The following are the available values in the Gtk.

RecentSortType enumeration.

CHAPTER 13 More GTK Widgets

394

•	 Gtk.RecentSortType.NONE: The list of recent files is not sorted at all

and is returned in the order that they appear. This should not be used

when you are limiting the number of elements that are displayed,

because you cannot predict which files will be displayed!

•	 Gtk.RecentSortType.MRU: Sorts the most recently added files first

in the list. This is most likely the sorting method you want to use,

because it places the most recent file at the beginning of the list.

•	 Gtk.RecentSortType.LRU: Sorts the least-recently added files first in

the list.

•	 Gtk.RecentSortType.CUSTOM: Uses a custom sorting function to sort

the recent files. To use this, you need recentmanager.set_sort_

func() to define the sorting method.

The last part of this example saves the file under the specified name. When a file is

opened in this text editor, the window title is set to the file name. This file name is used

to save the file. Therefore, be careful because this simple text editor cannot be used to

create new files!

�Recent Chooser Menu
You have just learned about the Gtk.RecentChooserMenu widget. Listing 13-3

implements the "selection-done" callback method that was connected to it. This

function retrieves the selected URI and opens the file if it exists.

You can use recentchooser.get_current_uri() to retrieve the currently selected

recent file, since only one item can be selected. Since we restricted the menu to only

displaying local files, we need to remove the file:// prefix from the URI. If you are

allowing remote files to be displayed, you may need to remove different prefixes from the

URI, such as http://. You can use the Python method os.path.basename() to remove

URI prefixes.

os.path.basename(filename)

os.path.basename(filename)

After the prefix is removed, we attempt to open the file. If the file was successfully

opened, the window title is set to the file name and the file is opened; otherwise, a

warning is presented to the user that the file could not be opened.

CHAPTER 13 More GTK Widgets

395

�Adding Recent Files
When the Open button is pressed, we want to allow the user to select a file to open

from a Gtk.FileChooserDialog. If the file is opened, it is added to the default Gtk.

RecentManager.

If the file is successfully opened, recentmanager.add_full() adds it as a

new recent item to the default Gtk.RecentManager. To use this method, you

need two items. First, you need the URI, which is created by appending the file

name to file:// to show that it is a local file. This file name can be built with

pathname2url() from the url import.

pathname2url(filepath)

Secondly, you need an instance of the Gtk.RecentData class. The content of this

class are a set of attributes that describe the data needed to store the file information

to the Gtk.RecentManager. display_name displays a shortened name instead of the file

name, and description is a short description of the file. Both of these values can safely

be set to None.

You then have to specify a MIME type for the file, the name of your application, and

the command line used to open the file. The name of your application can be retrieved

by calling the Python library method os.path.basename(__file__). There a number of

ways to get the program name but you can also safely set this to None.

Next, groups is a list of strings that designate what groups the resource belongs to.

You are able to use this to filter out files that do not belong to a specific group.

The last member, is_private, specifies whether this resource is available to

applications that did not register it. By setting this to True, you can prevent other

applications that use the Gtk.RecentManager API from displaying this recent file.

Once you construct the Gtk.RecentData instance, it can be added along with the

recent file URI as a new resource with recentmanager.add_full(). You can also add

a new recent item with recentmanager.add_item(), which creates a Gtk.RecentData

object for you.

To remove a recent item, call recentmanager.remove_item(). This function returns

True if a file with the specified URI is successfully removed. If not, an error under

theGtk.RecentManagerError domain is set. You can also remove all recent items from

the list with recentmanager.purge_items().

recentmanagerremove_item(uri)

CHAPTER 13 More GTK Widgets

396

Caution  You should avoid purging all of the items in the default Gtk.
RecentManager! This removes recent items that are registered by every
application, which the user probably does not want since your application should
not alter recent resources from other applications.

�Recent Chooser Dialog
GTK+ also provides a widget called Gtk.RecentChooserDialog, which displays recent

files in a convenient dialog. This widget implements the Gtk.RecentChooser interface,

so it is very similar in functionality to Gtk.RecentChooserMenu. In Listing 13-3, open_

recent_file shows how to allow the user to open a recent file with this widget.

New Gtk.RecentChooserDialog widgets are created in a similar way to dialogs

with Gtk.RecentChooserDialog(). This function accepts a title for the dialog, a parent

window, a Gtk.RecentManager widget to display, and pairs of buttons and response

identifiers.

Listing 13-3 introduces recent file filters. New Gtk.RecentFilter objects are created

with Gtk.RecentFilter.new(). Filters display only recent files that follow installed

patterns.

filter.set_name("All Files")

filter.add_pattern("*")

dialog.add_filter(filter)

The next step is to set the name of the filter. This name is displayed in the combo

box where the user chooses which filter to use. There are many ways to create filters,

including with filter.add_pattern(), which finds filters with matching patterns. The

asterisk character can be used as the wildcard. There are also functions for matching

MIME types, image file types, application names, group names, and ages in days. Next,

use recentchooser.add_filter() to add the Gtk.RecentFilter to the recent chooser.

With the Gtk.RecentChooserDialog widgets, it is possible to choose multiple files

with recentchooser.set_select_multiple(). If the user can select multiple files, you

want to use recentchooser.get_uris() to retrieve all of the selected files.

recentchooser.get_uris(length)

This function also returns the number of elements in the list of strings.

CHAPTER 13 More GTK Widgets

397

�Automatic Completion
You learned about the Gtk.Entry widget in Chapter 5, but GTK+ also provides the Gtk.

EntryCompletion object. Gtk.EntryCompletion is derived from GObject and provides

the user with automatic completion in Gtk.Entry. Figure 13-5 shows an example Gtk.

Entry that is providing the user with multiple selections. Note that the user also has the

option of ignoring the choices and entering an arbitrary string.

Listing 13-4 implements a Gtk.Entry widget that asks you to enter the name of a

GTK+ widget. All of the strings in the Gtk.EntryCompletion widget that have the same

prefix as the entered text are displayed as choices. This example shows just how easy it is

to get automatic completion up and running.

Listing 13-4.  Automatic Completion

#!/usr/bin/python3

import sys

import gi

gi.require_version('Gtk', '3.0')

from gi.repository import Gtk, GObject

Figure 13-5.  Gtk.EntryCompletion automatic completion

CHAPTER 13 More GTK Widgets

398

class AppWindow(Gtk.ApplicationWindow):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 widgets = ["GtkDialog", "GtkWindow", "GtkContainer",

 "GtkWidget"] self.set_border_width(10)

 label = Gtk.Label.new("Enter a widget in the following GtkEntry:")

 entry = Gtk.Entry.new()

 # Create a GtkListStore that will hold autocompletion

 possibilities. types = (GObject.TYPE_STRING,)

 store = Gtk.ListStore.new(types) for widget in widgets:

 iter = store.append() store.set(iter, 0, widget)

 completion = Gtk.EntryCompletion.new()

 entry.set_completion(completion)

 completion.set_model(store)

 completion.set_text_column(0)

 vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL, spacing=0)

 vbox.pack_start(label, False, False, 0)

 vbox.pack_start(entry, False, False, 0)

 self.add(vbox)

class Application(Gtk.Application):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, application_id="org.example.myapp",

 **kwargs)

 self.window = None

 def do_activate(self):

 if not self.window:

 �self.window = AppWindow(application=self, title="Automatic

Completion")

 self.window.show_all()

 self.window.present()

if __name__ == "__main__":

 app = Application()

 app.run(sys.argv)

CHAPTER 13 More GTK Widgets

399

To implement a Gtk.EntryCompletion, you need to first create a new Gtk.ListStore

that displays the choices. The model in this example only has one textual column, but it

is acceptable to provide a more complex Gtk.ListStore as long as one column is of the

type GObject.TYPE_STRING.

New Gtk.EntryCompletion objects are created with Gtk.EntryCompletion.new().

You can then apply it to an existing Gtk.Entry widget with entry.set_completion().

GTK+ takes care of displaying matches and applying the choices by default.

Next, completion.set_model() applies the tree model to the Gtk.EntryCompletion

object. If there was already a model applied to the object, it is replaced. You also have

to use completion.set_text_column() to designate which column contains the string,

since models do not have to be only a single column. If you do not set the text column,

automatic completion will not work because the text column is set to –1 by default.

It is possible to display as much of the prefix as is common to all of the matches with

completion.set_inline_completion(). You should note that inline completion is case

sensitive, but automatic completion is not! If you are using this, you may want to set

completion.set_popup_single_match(), which prevents the pop-up menu from being

displayed when there is only a single match.

You can use completion.set_popup_set_width() to force the pop-up menu to be

the same width as the Gtk.Entry widget. This corresponds to Gtk.EntryCompletion’s

popupset_width property.

If there are a lot of matches, you may want to set the minimum match length with

completion.set_minimum_key_length(). This is useful when there is such a large

number of elements in the list that it would take a long time for the list to be rendered on

the screen.

�Test Your Understanding
In this chapter’s exercise, you finish the text editing application that has been the

focus of multiple exercises in past chapters. It requires you to integrate the automatic

completion, printing, and recent file capabilities into your application.

�Exercise 1: Creating a Full Text Editor
In this exercise, you complete the text editor that you have been creating in the last few

chapters. You add three new features to the application.

CHAPTER 13 More GTK Widgets

400

First, add the automatic completion feature, which should be implemented to

remember past searches in the search toolbar. The application has to remember

the past searches for only the current instance of the application runtimes. Next,

add printing support, which includes printing and print preview abilities. Printing

support can be easily implemented with the high-level Gtk.PrintOperation class.

Lastly, instruct the text editor to remember the last five files loaded using the Gtk.

RecentManager class.

So that you do not have to rewrite previous aspects of the application, you should use

the solution to a Chapter 11 exercise or download that solution from this book’s official

web site.

�Summary
In this chapter, you learned about a number of widgets that did not quite fit into previous

chapters. These widgets and objects are summarized in the following list.

•	 Gtk.DrawingArea: An empty widget that is meant to allow you to

draw on its Gdk.Window object, which is also a Gdk.Drawable object.

•	 Gtk.Layout: This widget is like Gtk.DrawingArea, except it allows

you to embed widgets within its interface as well. It introduces

overhead, so you should| not use this widget if you want only drawing

capabilities.

•	 Gtk.Calendar: Display a single month for the chosen year. This

widget allows the user to select a date, and you can mark multiple

dates programmatically.

•	 Gtk.PrintOperation: A high-level printing API that is platform

independent. There are many other objects provided for

implementing printing support, but most actions should be handled

with the Gtk.PrintOperation class so that it functions across

multiple platforms.

CHAPTER 13 More GTK Widgets

401

•	 Gtk.RecentManager: A simple class for managing lists of recent

files. These lists can be shared across applications. Menu and dialog

widgets are provided for displaying recent files.

•	 Gtk.EntryCompletion: Provide automatic completion support to

Gtk.Entry widgets. The choices are composed of a Gtk.ListStore

object filled with possible matches.

You have now learned all of the topics that this book intended to introduce. In the

next chapter, you are presented with five complete applications that take advantage of

topics that were covered in the past 12 chapters.

CHAPTER 13 More GTK Widgets

403
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0_14

CHAPTER 14

Integrating Everything
So far, you have had an in-depth view of everything that you can do with GTK+ and

associated technologies. In this chapter, we’re going to put this knowledge to work by

building a few applications.

This chapter introduces five full applications: the file browser that was designed in

Chapter 11, a calculator, a ping utility, a hangman game, and a calendar. However, the

source code for the examples is not contained in this chapter. The code for each of the

applications in this chapter can be downloaded from www.gtkbook.com.

I will conclude this final chapter of the book by offering pointers to other learning

resources so that you can continue expanding your GTK+ knowledge.

�File Browser
In Chapter 11, you implemented the user interface of a file browser application in Glade.

The user interface was dynamically loaded, and all the signals were autoconnected with

Gtk.Builder.

At the end of Chapter 11, you were told that the callback methods would be

implemented in this chapter, and we will do so now. Figure 14-1 shows the file browser

application when it is first launched. It is displaying the root folder.

http://www.gtkbook.com

404

The file browsing capabilities are of special interest in this application. They

are very similar to those in Chapter 9’s “Exercise 1: File Browser” section. In that

exercise, you created a simple application using a Gtk.TreeView widget that could

browse the user’s file system. The current location of the file browser is stored in a

linked list from which the full path can be built. Each node in the list is one part of

the path, and the directory separator is placed between each string to build the full

path. A Gtk.Entry widget is also provided to allow the user to edit the path with

the keyboard.

Navigation through the file system can be done using a few different methods. The

location can be entered in the address bar, although the validity of the location must be

verified when the Gtk.Entry widget is activated. In addition to this method, the user can

Figure 14-1.  The file browser using Gtk.TreeView

CHAPTER 14 Integrating Everything

405

use the Back, Forward, Up, or Home toolbar buttons to navigate through the browsing

history, move to the parent directory, or go to the home directory, respectively. Lastly,

Gtk.TreeView’s row-activated signal allows the user to move into the selected directory

or view information about the selected file.

A Gtk.StatusBar widget is placed along the bottom of the window. It keeps track of

the total number of items in the current directory and the total size of these items. The

sources for this example, along with the four other applications in this chapter, can be

downloaded from www.gtkbook.com.

�Calculator
A calculator is a simple application that is implemented in most GUI programming

books. This example is meant to show you just how easy it is to implement a calculator.

Figure 14-2 is a screenshot of the application.

Figure 14-2.  A simple calculator application

CHAPTER 14 Integrating Everything

http://www.gtkbook.com

406

This calculator application was designed in Glade, so the user interface was

completed with absolutely no code. Since most of the widgets in this example are Gtk.

Button widgets, the clicked and destroy signals were the only two needed.

The calculator allows the user to enter numbers with an optional decimal point,

perform four basic operations (add, subtract, multiply, and divide), negate numbers, and

calculate square roots and exponents. To cut down on the number of callback methods

needed, all the numbers and the decimal place were connected to a single callback

method called num_clicked(), and the four basic operations and the power operations

were connected to one another. This allows you to take advantage of the fact that these

groups of operations need a lot of similar code to work.

When a number or the decimal point button is clicked, the character is

appended to the end of the current value, although the length of the number

is restricted to ten digits. When an operation button is clicked, the operation is

performed, and the new value is stored. It also sets a flag called clear_flag that

tells the calculator that a new number should be started when the user presses a

number or decimal place.

�Ping Utility
In this program, you learn how to use channels in the GLib library to communicate

with applications through pipes. A ping utility application is displayed in Figure 14-3;

it allows the user to ping an address a specific number of times or continually until the

application is stopped.

CHAPTER 14 Integrating Everything

407

In this application, the GLib spawn_async_with_pipes() function is used to fork an

instance of the ping application with the specified address. The shell command received

by this function was parsed with the shell_parse_argv() function so that it was in

the correct format. The Ping button is disabled, which prevents the user from running

multiple instances of the child process.

After spawning the child process, the output pipe is used to create a new Channel

object that watches the pipe for read data. When data is ready to be read, it is parsed so

that statistics for each ping can be displayed in a Gtk.TreeView widget. This continues

for the specified number of times or until the user stops the child.

When a child process is running, a Stop button is enabled, which allows the user

to kill the child process before it completes. This function simply calls the following

instance of the os.killpg() function, which forces the child process to close.

Figure 14-3.  A ping utility application

CHAPTER 14 Integrating Everything

408

When the process is killed, the pipe is destroyed, which causes the channel to shut

down in the watch function. This ensures that we are able to reuse the same Channel

object for the next child process.

�Calendar
The last application in this chapter creates a calendar that organizes events for the

user. It uses the Gtk.Calendar widget to allow the user to browse dates. Gtk.TreeView

displays events on the given day. Figure 14-4 shows this calendar application.

Most of the code to create the calendar application should look very familiar,

because it uses functions introduced in previous chapters. In addition to the familiar

functions, the application uses the XML parser provided by XML-SAX to open calendar

files, which are stored as XML files. An example calendar file that contains one event is

shown in Listing 14-1.

Figure 14-4.  A calendar application with two events

CHAPTER 14 Integrating Everything

409

Listing 14-1.  Calendar File

<calendar>

 <event>

 <name>Release of the Book</name>

 <location>Everywhere</location>

 <day>16</day>

 <month>3</month>

 <year>2007</year>

 <start>All Day</start>

 <end></end>

 </event>

</calendar>

A new calendar is created by clicking the New toolbar button, which asks for a

calendar file name and location. The calendar is saved every time you add or remove

an event, so a Save button is not provided. You can also open an existing calendar by

pressing the Open toolbar button.

�Markup Parser Functions
To open a calendar, this application uses XML-SAX’s parser to retrieve the contents of the

file. This parser is very easy to use and supports basic XML files. The first thing you need

to do to use the parser is define a new xmlparser object. This object has many attributes,

including four user-defined functions that you need to code yourself; I cover them one at

a time. Any of these functions can be set to None.

The first method, StartElement(), is called for every open tag, such as <calendar>

and <event>. This function receives the name of the tag element along with arrays of

attribute names and values. This allows you to differentiate between starting elements,

checking for attributes when appropriate. In the calendar application, this function is

used to free all the temporary data stored for the previous event, creating a clean slate for

the next event.

StartElement(name, attributes)

CHAPTER 14 Integrating Everything

410

The next method, EndElement(), is called for every close tag, such as </calendar>

and </event>. It is also called for tags that have no close tag, such as <tag/>. Similar to

the previous method, it accepts the tag name. In the calendar application, it is used to

add the event to the global tree if the </event> tag has been reached.

EndElement(name)

The CharacterData() method is called for the data found between StartElement()

and EndElement() calls. It accepts the text between the two tags as well as the length of

the text. This function is called in the calendar application to read the content of an event.

CharacterData(data)

Note  The CharacterData() method is not only called for tags that contain
strings but also for tags that call other tags; therefore, this function may have a
text parameter filled with spaces and new line characters!

�Parsing the XML File
The parsing of the XML text is done with an xmlparser object. You can create a new

parser with xml.sax.parse(filename, contenthandler):

xml.sax.parse(filename, contenthandler))

This function creates and returns a new xmlparser object.

XML-SAX can also do XML namespace processing for you. See the documentation

for more information.

�Further Resources
Congratulations! You have now completed reading this book, and you know enough

to develop and manage complex GTK+ applications. However, you may be wondering

where you should go from here. There are a number of libraries and resources that will

become indispensable as you begin developing applications on your own.

The first resource is the book’s web site (www.gtkbook.com). This site includes links

to online resources for GTK + developers, as well as tutorials on topics that did not fit

CHAPTER 14 Integrating Everything

http://www.gtkbook.com

411

in this book. You can use it as a starting point for finding help with GTK+ application

development.

Another great resource is the GTK+ web site (www.gtk.org). This site includes

information about mailing lists, downloads, and bug tracking for GTK+. You can find

up-to-date documentation on this site as well.

The GNOME developer’s web site (http://developer.gnome.org) is also an ideal

place to learn more. In addition to GTK+ and its supporting libraries, there are a number

of other libraries used to develop applications for GNOME that you will continually run

across. The following list briefly summarizes a few of these libraries.

•	 The PyGObject API Reference (http://lazka.github.io/pgi-docs)

is a one-stop web site for all things related to Python, GNOME, GTK+,

ATK, GDK, and many other libraries.

•	 The Pycairo API Reference (http://pycairo.readthedocs.io/

en/latest/reference/index.html) has documentation for all the

Python APIs for Cairo.

•	 The Python web site (www.python.org) has documentation for all

versions of Python 2.x and 3.x. It includes references, tutorials,

how-to’s, FAQs, PyPi, and information about the Python Software

Foundation.

�Summary
You have become familiar with a large portion of GTK+ and its supporting libraries. This

knowledge can be used to implement graphical user interfaces for applications on many

platforms.

This book is intended to give you a thorough understanding of GTK+, and I

hope that it will continue to be a valuable resource as you develop applications. The

appendixes are indispensable references for topics that are not always thoroughly

documented in the API documentation; they can be used even when you become an

expert. The last appendix provides short descriptions of exercise solutions and tips on

how to complete them.

Now that you have this knowledge, practice and experience will help you become a

great graphical application developer. You have everything you need to continue on your

own. I hope you have had as much fun reading this book as I have had writing it!

CHAPTER 14 Integrating Everything

http://www.gtk.org
http://developer.gnome.org
http://lazka.github.io/pgi-docs
http://pycairo.readthedocs.io/en/latest/reference/index.html
http://pycairo.readthedocs.io/en/latest/reference/index.html
http://www.python.org

413
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

APPENDIX A

�GTK+ Properties
Python provides the property system used by GTK+, which allows you to customize how

widgets interact with the user and how they are drawn on the screen. In the following

sections, you are provided with a complete reference to the widget and child properties

available in GTK+ 3.

�GTK+ Properties
Every class derived from GObject can create any number of properties. In GTK+, these

properties store information about the current state of the widget. For example,

Gtk.Button has a property called relief that defines the type of relief border used by the

button in its normal state.

In the following code, object.relief was used to retrieve the current value stored

by the button’s relief property. This method accepts a single property name and

returns the value of the property. You can also use object.relief(value) to set each

object property.

relief = button.props.relief

There are a great number of properties available to widgets; Tables A-1 through A-132

provide a full properties list for each widget and object in GTK+ 3. Remember that

object properties are inherited from parent widgets, so you should investigate a widget’s

hierarchy for a full list of properties. For more information on each object, you should

reference the API documentation.

https://doi.org/10.1007/978-1-4842-4179-0

414

Caution  In the GTK+ C API, property names may contain one or more dashes.
Since these dashes are interpreted by Python as the subtraction operator, all
Python property names substitute underscores for dashes in all property names.
For instance, the property name logo-icon-name becomes logo_icon_name in a
Python program.

Table A-1.  Gtk.AboutDialog Properties

Property Type Description

artists string A list of individuals who helped create the artwork used by the

application. This often includes information such as an e-mail

address or URL for each artist, which is displayed as a link.

authors string A list of individuals who helped program the application. This

often includes information such as an e-mail address or URL

for each programmer, which is displayed as a link.

comments string A short string that describes the general functionality of the

program. This is displayed in the main dialog window, so it

should not be too long.

copyright string Copyright information about the application. This is displayed

in the main dialog window, so it should not be too long.

An example copyright string would be “(C) Copyright 2018

Author”.

documenters string A list of individuals who helped write documentation for the

application. This often includes information such as an e-mail

address or URL for each documenter, which is displayed

as a link.

license string The content of the license for the application. This is displayed

with a Gtk.TextView widget in a secondary dialog, so the

length of the string does not matter.

license-type Gtk.License The license type of the program.

(continued)

Appendix A GTK+ Properties

415

Table A-1.  (continued)

Property Type Description

logo GdkPixbuf An image that is displayed as the application’s logo in the main

window. If this is not set, window.get_default_icon_

list() is used.

logo-icon-name string An icon name from the icon theme to use as the logo in the

main About dialog. If this is set, it takes precedence over the

logo property.

program-name string The name of the application to display in the main

About dialog. If you do not set this property, GLib.get_

application_name() is used.

translator-credits string A string that holds information about the translator(s) for the

current language. It should be set as translatable, so each

translator can provide a custom string. This often includes

information such as an e-mail address or URL for each

translator, which is displayed as a link.

version string The version of the application that the user is running.

website string A URL to the homepage for the application. This string must be

prefixed with http://.

website-label string A label to display in place of the web site URL. If this is not set,

website is set as the URL label.

wrap-license boolean If set to True, the license content is wrapped.

Table A-2.  GtkAccelGroup Properties

Property Type Description

is-locked boolean Is the accel group locked.

modifier-mask Gdk.ModifierType Modifier Mask.

Appendix A GTK+ Properties

416

Table A-4.  Gtk.Accessible Properties

Property Type Description

widget Gtk.Widget The widget referenced by this accessible.

Table A-3.  Gtk.AccelLabel Properties

Property Type Description

accel-closure GObject.Closure The closure that should be watched for changes to the

keyboard accelerator.

accel-widget Gtk.Widget The widget that should be watched for changes to the

keyboard accelerator.

Table A-5.  Gtk.Adjustment Properties

Property Type Description

lower double The minimum double value that the adjustment can reach.

page-increment double The increment that is shifted when moving one page forward or

backward.

page-size double The size of a page of the adjustment. You should set this to zero

when you use Gtk.Adjustment for Gtk.SpinButton.

step-increment double The increment that is moved in an individual step. For example,

with Gtk.SpinButton, a single step is taken when an arrow

button is pressed.

upper double The maximum double value that the adjustment can reach.

value double The current value of the adjustment, which is always between lower

and upper.

Appendix A GTK+ Properties

417

Table A-6.  Gtk.AppChooserButton Properties

Property Type Description

heading string The text to show at the top of the dialog.

show-default-item boolean Whether the combobox should show the default application on top.

show-dialog-item boolean Whether the combobox should include an item that triggers a

Gtk.AppChooserDialog.

Table A-7.  Gtk.AppChooserDialog Properties

Property Type Description

gfile Gio.File The Gio.File used by the app chooser dialog.

heading string The text to show at the top of the dialog.

Table A-8.  Gtk.AppChooserWidget Properties

Property Type Description

default-text string The default text appearing when there are no applications.

show-all boolean Whether the widget should show all applications.

show-default boolean Whether the widget should show the default application.

show-fallback boolean Whether the widget should show fallback applications.

show-other boolean Whether the widget should show other applications.

show-recommended boolean Whether the widget should show recommended applications.

Table A-9.  Gtk.Application Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.

app-menu Gio.MenuModel The Gio.MenuModel for the application menu.

menubar Gio.MenuModel The Gio.MenuModel for the menubar.

register-session boolean Register with the session manager.

Appendix A GTK+ Properties

418

Table A-10.  Gtk.ApplicationWindow Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.

show-menubar boolean True if the window should show a menubar at the top of the

window.

Table A-11.  Gtk.Arrow Properties

Property Type Description

active-window Gtk.Window The window that most recently had focus.

arrow-type Gtk.ArrowType The direction the arrow should point.

shadow-type Gtk.ShadowType Appearance of the shadow surrounding the arrow.

Table A-12.  Gtk.AspectFrame Properties

Property Type Description

obey-child boolean Force aspect ratio to match that of the frame’s child.

ratio float Aspect ratio if obey_child is False.

shadow-type float Appearance of the shadow surrounding the arrow.

xalign float X alignment of the child.

yalign float Y alignment of the child.

Table A-13.  Gtk.Assistant Properties

Property Type Description

use-header-bar integer Use Header Bar for actions.

Appendix A GTK+ Properties

419

Table A-15.  Gtk.Builder Properties

Property Type Description

translation-domain string The translation domain used by gettext().

Table A-14.  Gtk.Box Properties

Property Type Description

baseline-position Gtk.BaselinePosition The position of the baseline aligned widgets if

extra space is available.

homogeneous boolean Whether the children should all be the same size.

spacing integer The amount of space between children.

Table A-16.  Gtk.Button Properties

Property Type Description

always-show-image boolean Whether the image is always shown.

image Gtk.Widget Child widget to appear next to the button text.

image-position Gtk.PositionType The position of the image relative to the text.

label string Text of the label widget inside the button, if the

button contains a label widget.

relief Gtk.ReliefStyle The border relief style.

use-underline boolean If set, an underline in the text indicates the next

character should be used for the mnemonic

accelerator key.

Table A-17.  Gtk.ButtonBox Properties

Property Type Description

layout-style Gtk.ButtonBoxStyle How to lay out the buttons in the box. Possible values

are spread, edge, start and end.

Appendix A GTK+ Properties

420

Table A-18.  Gtk.Calendar Properties

Property Type Description

day integer The selected day (as a number between 1 and 31, or 0 to

unselect the current day.

detail-height-rows integer Details height in rows.

detail-width-chars integer Details width in characters.

month integer The selected month (as a number between 0 and 11).

no-month-change boolean If True, the selected month cannot be changed.

show-day-names boolean If True, day names are displayed.

show-details boolean If True, details are shown.

show-heading boolean If True, a heading is displayed.

show-week-numbers boolean If True, week numbers are displayed.

year integer The selected year.

Table A-19.  Gtk.CellArea Properties

Property Type Description

edit-widget Gtk.CellEditable The widget currently editing the edited cell.

edited-cell Gtk.CellEditable The cell that is currently being edited.

focus-cell Gtk.CellEditable The cell, which currently has focus.

Table A-20.  Gtk.CellAreaBox Properties

Property Type Description

spacing integer Space that is inserted between cells.

Appendix A GTK+ Properties

421

Table A-21.  Gtk.CellAreaContext Properties

Property Type Description

area Gtk.CellArea The Cell Area this context was created for.

minimum-height integer Minimum cached height.

minimum-width integer Minimum cached width.

natural-height integer Natural cached height.

natural-width integer Natural cached width.

Table A-22.  Gtk.CellRenderer Properties

Property Type Description

cell-background string Cell background color as a string.

cell-background-set boolean Whether the cell background color is set.

minimum-width integer Minimum cached width.

editing boolean Whether the cell renderer is currently in

editing mode.

height integer The fixed height.

is-expanded boolean Row is an expander row, and is expanded.

is-expander boolean Row has children.

mode Gtk.CellRendererMode Editable mode of the Gtk.CellRenderer.

sensitive boolean xlib.Display the cell sensitive.

visible boolean xlib.Display the cell.

width integer The fixed width.

xalign float The x-align.

xpad integer The xpad.

yalign float The y-align.

ypad integer The ypad.

Appendix A GTK+ Properties

422

Table A-23.  Gtk.CellRendererAccel Properties

Property Type Description

accel-key integer The keyval of the accelerator.

accel-mode Gtk.CellRendererAccelMode The type of accelerators.

accel-mods Gdk.ModifierType The modifier mask of the accelerator.

keycode integer The hardware keycode of the accelerator.

Table A-24.  Gtk.CellRendererCombo Properties

Property Type Description

has-entry boolean If False, don’t allow to enter strings other than the chosen ones.

model Gtk.TreeModel The model containing the possible values for the combo box.

text-column integer A column in the data source model to get the strings from.

Table A-25.  Gtk.CellRendererPixbuf Properties

Property Type Description

gicon Gio.Icon The Gio.Icon being displayed.

icon-name string The name of the icon from the icon theme.

pixbuf GdkPixbuf.Pixbuf The pixbuf to render.

pixbuf-expander-closed GdkPixbuf.Pixbuf Pixbuf for closed expander.

pixbuf-expander-open GdkPixbuf.Pixbuf Pixbuf for open expander.

stock-detail string Render detail to pass to the theme engine.

stock-size integer The Gtk.IconSize value that specifies the

size of the rendered icon.

surface cairo.Surface The surface to render.

Appendix A GTK+ Properties

423

Table A-26.  Gtk.CellRendererProgress Properties

Property Type Description

inverted boolean Invert the direction in which the progress bar grows.

text string Text on the progress bar.

text-xalign float The horizontal text alignment, from 0 (left) to 1 (right). Reversed for RTL

layouts.

text-yalign float The vertical text alignment, from 0 (top) to 1 (bottom).

value integer Value of the progress bar.

Table A-27.  Gtk.CellRendererSpin Properties

Property Type Description

adjustment Gtk.Adjustment The adjustment that holds the value of the spin button.

climb-rate float The acceleration rate when you hold down a button.

digits integer The number of decimal places to display.

Table A-28.  Gtk.CellRendererSpinner Properties

Property Type Description

active boolean Whether the spinner is active (i.e.. shown) in the cell.

pulse integer Pulse of the spinner.

size Gtk.IconSize The Gtk.IconSize value that specifies the size of the rendered

spinner.

Appendix A GTK+ Properties

424

Table A-29.  Gtk.CellRendererText Properties

Property Type Description

align-set boolean Whether this tag affects the alignment

mode.

alignment Pango.Alignment How to align the lines.

attributes Pango.AttrListe A list of style attributes to apply to the text

of the renderer.

background Gdk.RGBA Background color as a Gdk.RGBA.

background-set boolean Whether this tag affects the background

color.

editable boolean Whether the text can be modified by the

user.

editable-set boolean Whether this tag affects text editability.

ellipsize Pango.EllipsizeMode The preferred place to ellipsize the string,

if the cell renderer does not have enough

room to display the entire string.

family string Name of the font family, e.g. Sans,

Helvetica, Times, Monospace.

family-set boolean Whether this tag affects the font family.

font string Font description as a string, e.g. “Sans

Italic 12”.

font-desc Pango.FontDescription Font description as a Pango.

FontDescription struct.

foreground string Foreground color as a string.

foreground-rgba Gdk.RGBA Foreground color as a Gdk.RGBA.

foreground-set bool Whether this tag affects the foreground

color.

language-set boolean Whether this tag affects the language that

the text is rendered as.

(continued)

Appendix A GTK+ Properties

425

Property Type Description

language-set boolean Whether this tag affects the language that

the text is rendered as.

markup string Marked up text to render.

max-width-chars integer The maximum width of the cell, in

characters.

placeholder-text string Text rendered when an editable cell is

empty.

rise integer Offset of text above the baseline (below

the baseline if rise is negative).

rise-set boolean Whether this tag affects the rise.

scale float Font scaling factor.

scale-set boolean Whether this tag scales the font size by a

factor.

single-paragraph-mode boolean Whether to keep all text in a single

paragraph.

size integer Font size.

size-points float Font size in points.

size-set boolean Whether this tag affects the font size.

stretch Pango.Stretch Font stretch.

stretch-set boolean Whether this tag affects the font stretch.

strikethrough boolean Whether to strike through the text.

strikethrought-set boolean Whether this tag affects strikethrough.

style Pango.Style Font style.

style-set boolean Whether this tag affects the font style.

text string Text to render.

underline Pango.Underline Style of underline for this text.

Table A-29.  (continued)

(continued)

Appendix A GTK+ Properties

426

Property Type Description

underline-set boolean Whether this tag affects underlining.

variant Pango.Variant Font variant.

variant-set boolean Whether this tag affects the font variant.

weight integer Font weight.

weight-set boolean Whether this tag affects the font weight.

width-chars integer The desired width of the label, in

characters.

wrap-mode Pango.WrapMode How to break the string into multiple lines,

if the cell renderer does not have enough

room to display the entire string.

wrap-width integer The width at which the text is wrapped.

Table A-29.  (continued)

Table A-30.  Gtk.CellRendererToggle Properties

Property Type Description

activatable boolean The toggle button can be activated.

active boolean The toggle state of the button

inconsistent boolean The inconsistent state of the button.

radio integer Draw the toggle button as a radio button.

Appendix A GTK+ Properties

427

Table A-31.  Gtk.CellView Properties

Property Type Description

background string Background color as a string.

background-rgba Gdk.RGBA Background color as a Gdk.RGBA.

background-set boolean Whether this tag affects the background color.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

cell-area-context Gtk.CellAreaContext The Gtk.CellAreaContext used to compute

the geometry of the cell view.

draw-sensitive boolean Whether to force cells to be drawn in a sensitive

state.

fit-model boolean Whether to request enough space for every row

in the model.

model Gtk.TreeModel The model for cell view.

Table A-32.  Gtk.CheckMenuItem Properties

Property Type Description

active boolean Whether the menu item is checked.

draw-as-radio boolean Whether the menu item looks like a radio menu item.

inconsistent boolean Whether to display an “inconsistent” state.

Table A-33.  Gtk.ColorButton Properties

Property Type Description

alpha integer The selected opacity value (0 fully transparent, 65535 fully opaque).

show-editor boolean Whether to show the color editor right away.

title string The title of the color selection dialog.

Appendix A GTK+ Properties

428

Table A-35.  Gtk.ColorChooserWidget Properties

Property Type Description

show-editor boolean Show editor.

Table A-34.  Gtk.ColorChooserDialog Properties

Property Type Description

show-editor boolean Show editor.

Table A-36.  Gtk.ColorSelection Properties

Property Type Description

current-alpha integer The current opacity value (0 fully transparent, 65535 fully opaque).

current-rgba Gdk.RGBA The current RGBA color.

has-opacity-control boolean Whether the color selector should allow setting opacity.

has-palette boolean Whether a palette should be used.

Table A-37.  Gtk.ColorSelectionDialog Properties

Property Type Description

cancel-button Gtk.Widget The cancel button of the dialog.

color-selection Gtk.Widget The color selection embedded in the dialog.

help-button Gtk.Widget The help button of the dialog.

ok-button Gtk.Widget The OK button of the dialog.

Appendix A GTK+ Properties

429

Table A-38.  Gtk.ComboBox Properties

Property Type Description

active integer The item that is currently active.

active-id string The value of the id column for the active row.

button-sensitivity Gtk.SensitivityType Whether the drop-down button is sensitive

when the model is empty.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

column-span-column integer Gtk.TreeModel column containing the

column span values.

entry-text-column integer The column in the combo box’s model to

associate with strings from the entry if the

combo was created with Gtk.ComboBox.

has_entry = True.

has-entry boolean Whether combo box has an entry.

has-frame boolean Whether the combo box draws a frame

around the child.

id-column integer The column in the combo box’s model that

provides string IDs for the values in the

model.

model Gtk.TreeModel The model for the combo box.

popup-fixed-width boolean Whether the pop-up’s width should be a fixed

width matching the allocated width of the

combo box.

popup-shown boolean Whether the combo’s drop-down is shown.

row-span-column integer Gtk.TreeModel column containing the row

span values.

wrap-width integer Wrap width for laying out the items in a grid.

Appendix A GTK+ Properties

430

Table A-39.  Gtk.Container Properties

Property Type Description

border-width integer The width of the empty border outside the containers children.

Table A-40.  Gtk.Dialog Properties

Property Type Description

use-header-bar integer Use Header Bar for actions.

Table A-41.  Gtk.Entry Properties

Property Type Description

activates-default boolean Whether to activate the default widget

(such as the default button in a dialog)

when Enter is pressed.

attributes Pango.AttrList A list of style attributes to apply to the

text of the entry.

buffer Gtk.EntryBuffer Text buffer object that actually stores

entry text.

caps-lock-warning boolean Whether password entries show a

warning when Caps Lock is on.

completion Gtk.EntryCompletion The auxiliary completion object.

cursor-position integer The current position of the insertion

cursor in chars.

editable boolean Whether the entry contents can be

edited.

has-frame boolean False removes outside bevel from

entry.

im-module string Which IM module should be used.

input-hints Gtk.InputHints Hints for the text field behavior.

(continued)

Appendix A GTK+ Properties

431

Property Type Description

input-purpose Gtk.InputPurpose Purpose of the text field.

max-length integer Maximum number of characters for

this entry. Zero if no maximum.

overwrite-mode boolean Whether new text overwrites existing

text.

placeholder-text string Show text in the entry when it’s empty

and unfocused.

populate-all boolean Whether to emit “populate-popup”

signal for touch pop-ups.

primary-icon-activatable boolean Whether the primary icon is

activatable.

primary-icon-gicon Gio.Icon Gio.Icon for primary icon.

primary-icon-name string Icon name for primary icon.

primary-icon-pixbuf GdkPixbuf.Pixbuf Primary pixbuf for the entry.

primary-icon-sensitive boolean Whether the primary icon is sensitive.

primary-icon-storage-type Gtk.ImageType The representation being used for

primary icon.

primary-icon-tooltip-markup string The contents of the tooltip on the

primary icon.

primary-icon-tooltip-text string The contents of the tooltip on the

primary icon.

progress-fraction float The current fraction of the task that’s

been completed.

progress-pulse-step float The fraction of total entry width to move

the progress bouncing block for each call

to Gtk.Entry.progress_pulse().

scroll-offset integer Number of pixels of the entry scrolled

off the screen to the left.

(continued)

Table A-41.  (continued)

Appendix A GTK+ Properties

432

Property Type Description

secondary-icon-activatable boolean Whether the secondary icon is

activatable.

secondary-icon-gicon Gio.Icon Gio.Icon for secondary icon.

secondary-icon-name string Icon name for secondary icon.

secondary-icon-pixbuf GdkPixbuf.Pixbuf Secondary pixbuf for the entry.

secondary-icon-sensitive boolean Whether the secondary icon is

sensitive.

secondary-icon-storage-type Gtk.ImageType The representation being used for

secondary icon.

secondary-icon-tooltip-markup string The contents of the tooltip on the

secondary icon.

secondary-icon-tooltip-text string The contents of the tooltip on the

secondary icon.

selection-bound integer The position of the opposite end of the

selection from the cursor in chars.

show-emoji-icon boolean Whether to show an icon for Emoji.

tabs Pango.TabArray A list of tabstop locations to apply to

the text of the entry.

text string The contents of the entry.

text-length integer Length of the text currently in the entry.

truncate-multiline boolean Whether to truncate multiline pastes

to one line.

visibility boolean False displays the “invisible str” instead

of the actual text (password mode).

width-chars integer Number of characters to leave space

for in the entry.

xalign float The horizontal alignment, from 0 (left)

to 1 (right). Reversed for RTL layouts.

Table A-41.  (continued)

Appendix A GTK+ Properties

433

Table A-42.  Gtk.EntryBuffer Properties

Property Type Description

length integer Length of the text currently in the buffer.

max-length integer Maximum number of characters for this entry. Zero if no maximum.

text string The contents of the buffer.

Table A-43.  Gtk.EntryCompletion Properties

Property Type Description

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

inline-completion boolean Whether the common prefix should be inserted

automatically.

inline-selection boolean If set to True, the prefix that is common to all

choices is added to the text. For this property to

work, text-column must be set.

minimum-key-length integer Minimum length of the search key in order to look

up matches.

model Gtk.TreeModel The model to find matches in.

popup-completion boolean Whether the completions should be shown in a pop-

up window.

popup-set-width boolean If True, the pop-up window has the same size as

the entry.

popup-single-match boolean If True, the pop-up window appears for a single

match.

text-column integer The column of the model containing the strings.

Appendix A GTK+ Properties

434

Table A-44.  Gtk.EventBox Properties

Property Type Description

above-child boolean Whether the event-trapping window of the eventbox is above the

window of the child widget as opposed to below it.

visible-window boolean Whether the event box is visible, as opposed to invisible and only used

to trap events.

Table A-45.  Gtk.EventController Properties

Property Type Description

propagation-phase Gtk.PropagationPhase Propagation phase at which this controller is run.

widget Gtk.Widget Widget the gesture relates to.

Table A-46.  Gtk.Expander Properties

Property Type Description

expanded boolean Whether the expander has been opened to reveal the child

widget.

label string Text of the expander’s label.

label-fill boolean Whether the label widget should fill all available horizontal space.

label-widget Gtk.Widget A widget to display in place of the usual expander label.

resize-toplevel boolean Whether the expander resizes the top-level window upon

expanding and collapsing.

use-markup boolean The text of the label includes XML markup. See Pango.parse_

markup().

use-underline boolean If set, an underline in the text indicates the next character should

be used for the mnemonic accelerator key.

Appendix A GTK+ Properties

435

Table A-47.  Gtk.FileChooserButton Properties

Property Type Description

dialog Gtk.FileChooser The file chooser dialog to use.

title string The title of the file chooser dialog.

width-chars integer The desired width of the button widget, in characters.

Table A-49.  Gtk.FileChooserWidget Properties

Property Type Description

search-mode boolean Search mode.

subtitle string Subtitle.

Table A-48.  Gtk.FileChooserNative Properties

Property Type Description

accept-label string The label on the accept button.

cancel-label string The label on the cancel button.

Table A-50.  Gtk.FlowBox Properties

Property Type Description

activate-on-single-click boolean Activate row on a single click.

column-spacing integer The amount of horizontal space between two

children in pixels.

homogeneous boolean Whether the children should all be the same size.

max-children-per-line integer The maximum amount of children to request

space for consecutively in the given orientation.

min-children-per-line integer The minimum number of children to allocate

consecutively in the given orientation.

row-spacing integer The amount of vertical space between two

children.

selection-mode Gtk.SelectionMode The selection mode.

Appendix A GTK+ Properties

436

Table A-51.  Gtk.FontButton Properties

Property Type Description

show-size boolean Whether selected font size is shown in the label.

show-style boolean Whether the selected font style is shown in the label.

title string The title of the font chooser dialog.

Whether the label is drawn in

the selected font

boolean Whether the label is drawn in the selected font.

use-size boolean Whether the label is drawn with the selected font size.

Table A-52.  Gtk.FontSelection Properties

Property Type Description

font-name string The string that represents this font.

preview-text string The text to display in order to demonstrate the selected font.

Table A-53.  Gtk.Frame Properties

Property Type Description

label string Text of the frame’s label.

label-widget Gtk.Widget A widget to display in place of the usual frame label.

label-xalign float The horizontal alignment of the label.

shadow-type Gtk.ShadowType Appearance of the frame border.

Appendix A GTK+ Properties

437

Table A-54.  Gtk.GLArea Properties

Property Type Description

auto-render boolean Whether the Gtk.GLArea renders on each redraw.

context Gdk.GLContext The GL context.

has-alpha boolean Whether the color buffer has an alpha component.

has-depth-buffer boolean Whether a depth buffer is allocated.

has-stencil-buffer boolean Whether a stencil buffer is allocated.

use-es boolean Whether the context uses OpenGL or OpenGL ES.

Table A-55.  Gtk.Gesture Properties

Property Type Description

n-points integer Number of points needed to trigger the gesture.

window Gdk.Window Gdk.Window to receive events about.

Table A-56.  Gtk.GestureLongPress Properties

Property Type Description

delay-factor float Factor by which to modify the default timeout.

Table A-57.  Gtk.GesturePan Properties

Property Type Description

orientation Gtk.Orientation Allowed orientations.

Table A-58.  Gtk.GestureSingle Properties

Property Type Description

button integer Button number to listen to.

exclusive boolean Whether the gesture is exclusive.

touch-only boolean Whether the gesture handles only touch events.

Appendix A GTK+ Properties

438

Table A-59.  Gtk.Grid Properties

Property Type Description

baseline-row integer The row to align to the baseline when valign is Gtk.Align.

BASELINE.

column-homogeneous boolean If True, the columns are all the same width.

column-spacing integer The amount of space between two consecutive columns.

row-homogeneous boolean If True, the rows are all the same height.

row-spacing integer The amount of space between two consecutive rows.

Table A-60.  Gtk.HeaderBar Properties

Property Type Description

custom-title Gtk.Widget Custom title widget to display.

decoration-layout string The layout for window decorations.

decoration-layout-set boolean Whether the decoration-layout property has been set.

has-subtitle boolean Whether to reserve space for a subtitle.

show-close-button boolean Whether to show window decorations.

spacing integer The amount of space between children.

subtitle string The subtitle to display.

title string The title to display.

Table A-61.  Gtk.IMContext Properties

Property Type Description

input-hints Gtk.InputHints Hints for the text field behavior.

input-purpose Gtk.InputPurpose Purpose of the text field.

Appendix A GTK+ Properties

439

Table A-62.  Gtk.IconView Properties

Property Type Description

activate-on-single-click boolean Activate row on a single click.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

column-spacing integer Space that is inserted between grid columns.

columns integer Number of columns to display.

item-orientation Gtk.Orientation How the text and icon of each item are

positioned relative to each other.

item-padding integer Padding around icon view items.

item-width integer The width used for each item.

markup-column integer Model column used to retrieve the text if using

Pango markup.

model Gtk.TreeModel The model for the icon view.

pixbuf-column integer Model column used to retrieve the icon pixbuf

from.

reorderable boolean View is reorderable.

row-spacing integer Space that is inserted between grid rows.

selection-mode Gtk.SelectionMode The selection mode.

spacing integer Space that is inserted between cells of an item.

text-column integer Model column used to retrieve the text from.

tooltip-column integer The column in the model containing the tooltip

texts for the items.

Table A-63.  Gtk.ListBox Properties

Property Type Description

activate-on-single-click boolean Activate row on a single click.

selection-mode Gtk.SelectionMode The selection mode.

Appendix A GTK+ Properties

440

Table A-65.  Gtk.LockButton Properties

Property Type Description

permission Gio.Permission The Gio.Permission object controlling this button.

text-lock string The text to display when prompting the user to lock.

text-unlock string The text to display when prompting the user to unlock.

tooltip-lock string The tooltip to display when prompting the user to lock.

tooltip-not-authorized string The tooltip to display when prompting the user cannot

obtain authorization.

tooltip-unlock string The tooltip to display when prompting the user to unlock.

Table A-64.  Gtk.ListBoxRow Properties

Property Type Description

activatable boolean Whether this row can be activated.

selectable boolean Whether this row can be selected.

Table A-66.  Gtk.Menu Properties

Property Type Description

accel-group Gtk.AccelGroup The accel group holding accelerators for the

menu.

accel-path string An accel path used to conveniently construct

accel paths of child items.

active integer The currently selected menu item.

anchor-hints Gdk.AnchorHints Positioning hints for when the menu might fall

off-screen.

attach-widget Gtk.Widget The widget the menu is attached to.

menu-type-hint Gdk.WindowTypeHint Menu window type hint.

(continued)

Appendix A GTK+ Properties

441

Property Type Description

monitor integer The monitor that the menu pops up on.

rect-anchor-dx integer Rect anchor horizontal offset.

rect-anchor-dy integer Rect anchor vertical offset.

reserve-toggle-size boolean A boolean that indicates whether the menu

reserves space for toggles and icons.

Table A-66.  (continued)

Table A-67.  Gtk.MenuBar Properties

Property Type Description

child-pack-direction Gtk.PackDirection The child pack direction of the menubar.

pack-direction Gtk.PackDirection The pack direction of the menubar.

Table A-68.  Gtk.MenuButton Properties

Property Type Description

align-widget Gtk.Container The parent widget that the menu should align with.

direction Gtk.ArrowType The direction the arrow should point.

menu-model Gio.MenuModel The model from which the pop-up is made.

popover Gtk.Popover The pop-over.

popup Gtk.Menu The drop-down menu.

use-popover boolean Use a pop-over instead of a menu.

Appendix A GTK+ Properties

442

Table A-69.  Gtk.MenuItem Properties

Property Type Description

accel-path string Sets the accelerator path of the menu item.

label string The text for the child label.

submenu Gtk.Menu The submenu attached to the menu item, or None if it has none.

use-underline boolean If set, an underline in the text indicates the next character should be

used for the mnemonic accelerator key.

Table A-70.  Gtk.MenuShell Properties

Property Type Description

take-focus boolean A boolean that determines whether the menu grabs the keyboard focus.

Table A-71.  Gtk.MenuToolButton Properties

Property Type Description

menu Gtk.Menu The drop-down menu.

Table A-72.  Gtk.MessageDialog Properties

Property Type Description

buttons Gtk.ButtonsType The buttons shown in the message dialog.

message-area Gtk.Widget Gtk.Box that holds the dialog’s primary and

secondary labels.

message-type Gtk.MessageType Whether the color buffer has an alpha component.

secondary-text String The secondary text of the message dialog

secondary-use-markup boolean The secondary text includes Pango markup.

text string The primary text of the message dialog.

use-markup boolean The primary text of the title includes Pango markup.

Appendix A GTK+ Properties

443

Table A-73.  Gtk.ModelButton Properties

Property Type Description

active boolean Active.

centered boolean Whether to center the contents.

icon Gio.Icon The icon.

iconic boolean Whether to prefer the icon over text.

inverted boolean Whether the menu is a parent.

menu-name string The name of the menu to open.

role Gtk.ButtonRole The role of this button.

text string The text.

Table A-74.  Gtk.MountOperation Properties

Property Type Description

is-showing boolean Are we showing a dialog?

parent Gtk.Window The parent window.

screen Gdk.Screen The screen where this window is displayed.

Table A-75.  Gtk.NativeDialog Properties

Property Type Description

modal boolean If True, the dialog is modal (other windows are not usable while

this one is up)

title string The title of the dialog.

transient-for Gtk.Window The transient parent of the dialog.

visible boolean Whether the dialog is currently visible.

Appendix A GTK+ Properties

444

Table A-77.  Gtk.NumerableIcon Properties

Property Type Description

background-icon Gio.Icon The icon for the number emblem background.

background-icon-name string The icon name for the number emblem

background.

count integer The count of the emblem currently displayed.

label string The label to be displayed over the icon.

style-context Gtk.StyleContext The style context to theme the icon appearance.

Table A-76.  Gtk.Notebook Properties

Property Type Description

enable-popup boolean If True, pressing the right mouse button on the notebook

pops up a menu that you can use to go to a page.

group-name string Group name for tab drag and drop.

page integer The index of the current page.

scrollable boolean If True, scroll arrows are added if there are too many

tabs to fit.

show-border boolean Whether the border should be shown.

show-tabs boolean Whether tabs should be shown.

tab-pos Gtk.PositionType Which side of the notebook holds the tabs.

Table A-78.  Gtk.PadController Properties

Property Type Description

action-group Gio.ActionGroup Action group to launch actions from.

pad Gdk.Device Pad device to control.

Appendix A GTK+ Properties

445

Table A-79.  Gtk.Paned Properties

Property Type Description

max-position integer Largest possible value for the “position” property.

min-position integer Smallest possible value for the “position” property.

position-set boolean True if the Position property should be used.

wide-handle boolean Whether the paned should have a prominent handle.

Table A-80.  Gtk.PlacesSidebar Properties

Property Type Description

local-only boolean Whether the sidebar only includes local files.

location Gio.File The location to highlight in the sidebar.

open-flags Gtk.PlacesOpenFlags Modes in which the calling application can

open locations selected in the sidebar.

populate-all boolean Whether to emit “populate-popup” for

pop-ups that are not menus.

show-desktop boolean Whether the sidebar includes a built-in

shortcut to the Desktop folder.

show-enter-location boolean Whether the sidebar includes a built-in

shortcut to manually enter a location.

show-other-locations boolean Whether the sidebar includes an item to

show external locations.

show-recent boolean Whether the sidebar includes a built-in

shortcut for recent files.

show-starred-location boolean Whether the sidebar includes an item to

show starred files.

show-trash boolean Whether the sidebar includes a built-in

shortcut to the Trash location.

Appendix A GTK+ Properties

446

Table A-81.  Gtk.Plug Properties

Property Type Description

embedded boolean Whether the plug is embedded.

socket-window Gdk.Window The window of the socket the plug is embedded in.

Table A-82.  Gtk.Popover Properties

Property Type Description

constrain-to Gtk.PopoverConstraint Constraint for the popover position.

modal boolean Whether the popover is modal.

pointing-to Gdk.Rectangle Rectangle the bubble window points to.

position Gtk.PositionType Position to place the bubble window.

position Gtk.Widget Widget the bubble window points to.

Table A-83.  Gtk.PopoverMenu Properties

Property Type Description

visible-submenu string The name of the visible submenu.

Table A-84.  Gtk.PrintOperation Properties

Property Type Description

allow-async boolean True if print process may run asynchronous.

current-page integer The current page in the document.

custom-tab-label string Label for the tab containing custom widgets.

default-page-setup Gtk.PageSetup The Gtk.PageSetup used by default.

embed-page-setup boolean True if page setup combos are embedded in

Gtk.PrintUnixDialog.

(continued)

Appendix A GTK+ Properties

447

Property Type Description

export-filename string Export filename.

has-selection boolean True if a selection exists.

job-name string A string used for identifying the print job.

n-pages integer The number of pages in the document.

n-pages-to-print integer The number of pages that print.

print-settings Gtk.PrintSettings The Gtk.PrintSettings used for initializing

the dialog.

show-progress boolean True if a progress dialog is shown while

printing.

status Gtk.PrintStatus The status of the print operation.

status-string string A human-readable description of the status.

support-selection boolean True if the print operation supports print of

selection.

track-print-status boolean True if the print operation continues to report

on the print job status after the print data has

been sent to the printer or print server.

unit Gtk.Unit The unit in which distances can be measured in

the context.

use-full-page boolean True if the origin of the context should be at

the corner of the page and not the corner of the

imageable area.

Table A-84.  (continued)

Appendix A GTK+ Properties

448

Table A-85.  Gtk.ProgressBar Properties

Property Type Description

ellipsize Pango.EllipsizeMode The preferred place to ellipsize the string, if the progress

bar does not have enough room to display the entire

string, if at all.

fraction float The fraction of total work that has been completed.

inverted boolean Invert the direction in which the progress bar grows.

pulse-step float The fraction of total progress to move the bouncing block

when pulsed.

show-text boolean Whether the progress is shown as text.

text string Text to be displayed in the progress bar.

Table A-86.  Gtk.RadioButton Properties

Property Type Description

group Gtk.RadioButton The radio button whose group this widget belongs to.

Table A-87.  Gtk.RadioMenuItem Properties

Property Type Description

group Gtk.RadioMenuItem The radio menu item whose group this widget belongs to.

Table A-88.  Gtk.RadioToolButton Properties

Property Type Description

group Gtk.RadioToolButton The radio tool button whose group this button belongs to.

Appendix A GTK+ Properties

449

Table A-89.  Gtk.Range Properties

Property Type Description

adjustment Gtk.Adjustment The Gtk.Adjustment that contains the

current value of this range object.

fill-level float The fill level.

inverted boolean Invert direction slider moves to increase

range value.

lower-stepper-sensitivity Gtk.SensitivityType The sensitivity policy for the stepper that

points to the adjustment’s lower side.

restrict-to-fill-level boolean Whether to restrict the upper boundary to

the fill level.

round-digits integer The number of digits to round the value to.

show-fill-level boolean Whether to display a fill level indicator

graphics on trough.

upper-stepper-sensitivity Gtk.SensitivityType The sensitivity policy for the stepper that

points to the adjustment’s upper side.

Table A-90.  Gtk.RecentChooserMenu Properties

Property Type Description

show-numbers boolean Whether the items should be displayed with a number.

Table A-91.  Gtk.RecentManager Properties

Property Type Description

filename string The full path to the file to be used to store and read the list.

size integer The size of the recently used resources list.

Appendix A GTK+ Properties

450

Table A-92.  Gtk.RendererCellAccessible Properties

Property Type Description

renderer Gtk.CellRenderer The cell renderer represented by this accessible.

Table A-93.  Gtk.Revealer Properties

Property Type Description

child-revealed boolean Whether the child is revealed and the

animation target reached.

reveal-child boolean Whether the container should reveal the

child.

transition-duration integer The animation duration, in milliseconds.

transition-type Gtk.RevealerTransitionType The type of animation used to transition.

Table A-94.  Gtk.Scale Properties

Property Type Description

digits integer The number of decimal places that are displayed in the

value.

draw-value boolean Whether the current value is displayed as a string next to

the slider.

has-origin boolean Whether the scale has an origin.

value-pos Gtk.PositionType The position in which the current value is displayed.

Table A-95.  Gtk.ScaleButton Properties

Property Type Description

adjustment Gtk.Adjustment The Gtk.Adjustment that contains the current value of this

scale button object.

icons string List of icon names.

size Gtk.IconSize The icon size.

value float The value of the scale.

Appendix A GTK+ Properties

451

Table A-96.  Gtk.ScrolledWindow Properties

Property Type Description

hadjustment Gtk.Adjustment The Gtk.Adjustment for the horizontal position.

hscrollbar-policy Gtk.PolicyType When the horizontal scrollbar is displayed.

max-content-height integer The maximum height that the scrolled window

allocates to its content.

max-content-width integer The maximum width that the scrolled window

allocates to its content.

min-content-height integer The minimum height that the scrolled window

allocates to its content.

min-content-width integer The minimum width that the scrolled window

allocates to its content.

overlay-scrolling boolean Overlay scrolling mode.

propagate-natural-height boolean Propagate Natural Height.

propagate-natural-width boolean Propagate Natural Width.

shadow-type Gtk.ShadowType Style of bevel around the contents.

vadjustment Gtk.Adjustment The Gtk.Adjustment for the vertical position.

vscrollbar-policy Gtk.PolicyType When the vertical scrollbar is displayed.

window-placement Gtk.CornerType Where the contents are located with respect to

the scrollbars.

Table A-97.  Gtk.SearchBar Properties

Property Type Description

search-mode-enabled boolean Whether the search mode is on and the search bar shown.

has-origin boolean Whether to show the close button in the toolbar.

Table A-98.  Gtk.SeparatorToolItem Properties

Property Type Description

draw boolean Whether the separator is drawn, or just blank.

Appendix A GTK+ Properties

452

Table A-99.  Gtk.Settings Properties

Property Type Description

gtk-alternative-button-order boolean Whether buttons in dialogs should use the

alternative button order.

gtk-alternative-sort-arrows boolean Whether the direction of the sort indicators in list

and tree views is inverted compared to the default

(where down means ascending).

gtk-application-prefer-dark-theme boolean Whether the application prefers to have a dark

theme.

gtk-cursor-blink boolean Whether the cursor should blink.

gtk-cursor-blink-time integer Length of the cursor blink cycle, in milliseconds.

gtk-cursor-blink-timeout integer Time after which the cursor stops blinking, in

seconds.

gtk-cursor-theme-name string Name of the cursor theme to use, or None to use

the default theme.

gtk-cursor-theme-size integer Size to use for cursors, or 0 to use the default size.

gtk-decoration-layout string The layout for window decorations.

gtk-dialogs-use-header boolean Whether built-in GTK+ dialogs should use a header

bar instead of an action area.

gtk-dnd-drag-threshold integer Number of pixels the cursor can move before

dragging.

gtk-double-click-distance integer Maximum distance allowed between two clicks for

them to be considered a double click (in pixels).

gtk-double-click-time integer Maximum time allowed between two clicks

for them to be considered a double click (in

milliseconds).

gtk-enable-accels boolean Whether menu items should have accelerators.

gtk-enable-animations boolean Whether to enable toolkit-wide animations.

gtk-enable-event-sounds boolean Whether to play any event sounds at all.

(continued)

Appendix A GTK+ Properties

453

Property Type Description

gtk-enable-input-feedback-sounds boolean Whether to play event sounds as feedback to user

input.

gtk-enable-input-feedback-sounds boolean Whether a middle click on a mouse should paste

the ‘PRIMARY’ clipboard content at the cursor

location.

gtk-entry-password-hint-timeout integer How long to show the last input character in hidden

entries.

gtk-enable-primary-paste boolean Whether a middle click on a mouse should paste

the ‘PRIMARY’ clipboard content at the cursor

location.

gtk-entry-select-on-focus boolean Whether to select the contents of an entry when it

is focused.

gtk-error-bell boolean When True, keyboard navigation and other errors

cause a beep.

gtk-font-name string The default font family and size to use.

gtk-fontconfig-timestamp integer Timestamp of current fontconfig configuration.

gtk-icon-theme-name string Name of icon theme to use.

gtk-im-module string Which IM module should be used by default.

gtk-key-theme-name string Name of key theme to load.

gtk-keynav-use-caret boolean Whether to show cursor in text.

gtk-label-select-on-focus boolean Whether to select the contents of a selectable label

when it is focused.

gtk-long-press-time integer Time for a button/touch press to be considered a

long press (in milliseconds).

gtk-modules string List of currently active GTK modules.

gtk-primary-button-warps-slider boolean Whether a primary click on the trough should warp

the slider into position.

Table A-99.  (continued)

(continued)

Appendix A GTK+ Properties

454

Property Type Description

gtk-print-backends string List of the GtkPrintBackend backends to use by

default.

gtk-print-preview-command string Command to run when displaying a print preview.

gtk-recent-files-enabled boolean Whether GTK+ remembers recent files.

gtk-recent-files-max-age integer Maximum age of recently used files, in days.

gtk-shell-shows-app-menu boolean Set to True if the desktop environment is

displaying the app menu, False if the app should

display it itself.

gtk-shell-shows-desktop boolean Set to True gtk-shell-shows-desktop, False if not.

gtk-shell-shows-menubar boolean Set to True if the desktop environment is

displaying the menubar, False if the app should

display it itself.

gtk-sound-theme-name string XDG sound theme name.

gtk-split-cursor boolean Whether two cursors should be displayed for mixed

left-to-right and right-to-left text.

gtk-theme-name string Name of theme to load.

gtk-titlebar-double-click string The action to take on titlebar double-click.

gtk-titlebar-middle-click string The action to take on titlebar middle-click.

gtk-titlebar-right-click string The action to take on titlebar right-click.

gtk-xft-antialias integer Whether to antialias Xft fonts; 0=no,

1=yes, –1=default.

gtk-xft-dpi integer Resolution for Xft, in 1024 * dots/inch. –1 to use

default value.

gtk-xft-hinting integer Whether to hint Xft fonts; 0=no, 1=yes, –1=default.

gtk-xft-hintstyle string What degree of hinting to use; hintnone,

hintslight, hintmedium, or hintfull.

gtk-xft-rgba string Type of subpixel antialiasing; none, rgb, bgr, vrgb,

vbgr.

Table A-99.  (continued)

Appendix A GTK+ Properties

455

Table A-101.  Gtk.ShortcutsGroup Properties

Property Type Description

accel-size-group Gtk.SizeGroup Accelerator Size Group.

height integer Height.

title string Title.

title-size-group Gtk.SizeGroup Title Size Group.

view string View.

Table A-100.  Gtk.ShortcutLabel Properties

Property Type Description

accelerator string Accelerator.

disabled-text string Disabled text.

Table A-102.  Gtk.ShortcutsSection Properties

Property Type Description

max-height integer Maximum Height.

section-name string Section Name.

title string Title.

view-name string View Name.

Appendix A GTK+ Properties

456

Table A-103.  Gtk.ShortcutsShortcut Properties

Property Type Description

accel-size-group Gtk.SizeGroup Accelerator Size Group.

accelerator string The accelerator keys for shortcuts of type

‘Accelerator’.

action-name string The name of the action.

direction Gtk.TextDirection Text direction for which this shortcut is active.

icon Gio.Icon The icon to show for shortcuts of type ‘Other Gesture’.

icon-set boolean Whether an icon has been set.

shortcut-type Gtk.ShortcutType The type of shortcut that is represented.

subtitle string A short description for the gesture.

subtitle-set boolean Whether a subtitle has been set.

title string A short description for the shortcut.

title-size-group Gtk.SizeGroup Title Size Group.

Table A-104.  Gtk.ShortcutsWindow Properties

Property Type Description

section-name string Section Name.

view-name string View Name.

Table A-105.  Gtk.SizeGroup Properties

Property Type Description

mode Gtk.SizeGroupMode The directions in which the size group affects the

requested sizes of its component widgets.

Appendix A GTK+ Properties

457

Table A-107.  Gtk.Spinner Properties

Property Type Description

active boolean Whether the spinner is active.

Table A-106.  Gtk.SpinButton Properties

Property Type Description

adjustment Gtk.Adjustment The adjustment that holds the value of the

spin button.

climb-rate float The acceleration rate when you hold down

a button.

digits integer The number of decimal places to display.

numeric boolean Whether non-numeric characters should

be ignored.

snap-to-ticks boolean Whether erroneous values are

automatically changed to a spin button’s

nearest step increment.

update-policy Gtk.SpinButtonUpdatePolicyt Whether the spin button should update

always, or only when the value is legal.

value float Reads the current value, or sets a new

value.

wrap boolean Whether a spin button should wrap upon

reaching its limits.

Appendix A GTK+ Properties

458

Table A-108.  Gtk.Stack Properties

Property Type Description

hhomogeneous boolean Horizontally homogeneous sizing.

homogeneous boolean Homogeneous sizing.

interpolate-size boolean Whether or not the size should smoothly

change when changing between differently

sized children.

transition-duration integer The animation duration, in milliseconds.

transition-running boolean Whether or not the transition is currently

running.

transition-type Gtk.StackTransitionType The type of animation used to transition.

vhomogeneous boolean Vertically homogeneous sizing.

visible-child Gtk.Widget The widget currently visible in the stack.

visible-child-name string The name of the widget currently visible in

the stack.

Table A-109.  Gtk.StackSidebar Properties

Property Type Description

stack Gtk.Stack Associated stack for this Gtk.StackSidebar.

Table A-110.  Gtk.StackSwitcher Properties

Property Type Description

icon-size integer Symbolic size to use for named icon.

stack Gtk.Stack Associated stack for this Gtk.StackSidebar.

Appendix A GTK+ Properties

459

Table A-111.  Gtk.StyleContext Properties

Property Type Description

paint-clock Gdk.FrameClock The associated Gdk.FrameClock.

parent Gtk.StyleContext The parent style context.

screen Gdk.Screen The associated Gdk.Screen.

Table A-112.  Gtk.Switch Properties

Property Type Description

active boolean Whether the switch is on or off.

state boolean The backend state.

Table A-113.  Gtk.TextBuffer Properties

Property Type Description

copy-target-list Gtk.TargetList The list of targets this buffer supports for clipboard

copying and DND source.

cursor-position integer The position of the insert mark (as offset from the

beginning of the buffer).

has-selection boolean Whether the buffer has some text currently selected.

paste-target-list Gtk.TargetList The list of targets this buffer supports for clipboard

pasting and DND destination.

tag-table Gtk.TextTagTable Text Tag Table.

text string Current text of the buffer.

Table A-114.  Gtk.TextMark Properties

Property Type Description

left-gravity bool Whether the mark has left gravity.

name string Mark name.

Appendix A GTK+ Properties

460

Table A-115.  Gtk.TextTag Properties

Property Type Description

accumulative-margin bool Whether left and right margins

accumulate.

background string Background color as a string.

background-full-height bool Whether the background color fills

the entire line height or only the

height of the tagged characters.

background-full-height-set bool Whether this tag affects background

height.

background-rgba Gdk.RGBA Background color as a Gdk.RGBA.

background-set boolean Whether this tag affects the

background color.

direction Gtk.TextDirection Text direction, e.g. right-to-left or

left-to-right.

editable boolean Whether the text can be modified by

the user.

editable-set boolean Whether this tag affects text

editability.

fallback boolean Whether font fallback is enabled.

fallback-set boolean Whether this tag affects font

fallback.

family string Name of the font family, e.g. Sans,

Helvetica, Times, Monospace.

family-set boolean Whether this tag affects the font

family.

font string Font description as a string, e.g.

“Sans Italic 12”.

font-desc Pango.FontDescription Font description as a Pango.

FontDescription class.

(continued)

Appendix A GTK+ Properties

461

Property Type Description

font-features-set boolean Whether this tag affects font

features.

foreground string Foreground color as a string.

foreground-rgba Gdk.RGBA Foreground color as a Gdk.RGBA.

foreground-set boolean Whether this tag affects the

foreground color.

indent integer Amount to indent the paragraph, in

pixels.

indent-set boolean Whether this tag affects indentation.

invisible boolean Whether this text is hidden.

invisible-set boolean Whether this tag affects text

visibility.

justification Gtk.Justification Left, right, or center justification.

justification-set boolean Whether this tag affects paragraph

justification.

language string The language this text is in, as an

ISO code. Pango can use this as a

hint when rendering the text. If not

set, an appropriate default is used.

language-set boolean Whether this tag affects the

language that the text is rendered

as.

left-margin integer Width of the left margin in pixels.

left-margin-set boolean Whether this tag affects the left

margin.

letter-spacing integer Extra spacing between graphemes.

letter-spacing-set boolean Whether this tag affects letter

spacing.

(continued)

Table A-115.  (continued)

Appendix A GTK+ Properties

462

Property Type Description

name string Name used to refer to the text tag.

None for anonymous tags.

paragraph-background string Paragraph background color as a

string.

paragraph-background-rgba Gdk.RGBA Paragraph background RGBA as a

Gdk.RGBA.

paragraph-background-set boolean Whether this tag affects the

paragraph background color.

pixels-above-lines integer Pixels of blank space above

paragraphs.

pixels-above-lines-set boolean Whether this tag affects the number

of pixels above lines.

pixels-below-lines integer Pixels of blank space below

paragraphs.

pixels-below-lines-set boolean Whether this tag affects the number

of pixels below lines.

pixels-inside-wrap integer Pixels of blank space between

wrapped lines in a paragraph.

pixels-inside-wrap-set boolean Whether this tag affects the number

of pixels between wrapped lines.

right-margin integer Width of the right margin in pixels.

right-margin-set boolean Whether this tag affects the right

margin.

rise integer Offset of text above the baseline

(below the baseline if rise is

negative) in Pango units.

rise-set boolean Whether this tag affects the rise.

(continued)

Table A-115.  (continued)

Appendix A GTK+ Properties

463

Property Type Description

scale float Font size as a scale factor relative

to the default font size. This properly

adapts to theme changes etc. so is

recommended. Pango predefines

scales, such as PANGO_SCALE_X_

LARGE, which is defined in C as the

value (1.2 * 1.2).

scale-set boolean Whether this tag scales the font size

by a factor.

size integer Font size in Pango units.

size-points float Font size in points.

size-set boolean Whether this tag affects the font

size.

stretch Pango.Stretch Font stretch as a Pango.Stretch, e.g.

Pango.Stretch.CONDENSED

stretch-set boolean Whether this tag affects the font

stretch.

strikethrough boolean Whether to strike through the text.

strikethrough-rgba Gdk.RGBA Color of strikethrough for this text.

strikethrough-rgba-set boolean Whether this tag affects

strikethrough color.

strikethrough-set boolean Whether this tag affects

strikethrough.

style Pango.Style Font style as a Pango.Style, e.g.

Pango.Style.ITALIC.

style-set boolean Whether this tag affects the font

style.

tabs Pango.TabArray Custom tabs for this text.

(continued)

Table A-115.  (continued)

Appendix A GTK+ Properties

464

Property Type Description

tabs-set boolean Whether this tag affects tabs.

underline Pango.TabArray Style of underline for this text.

underline-rgba Gdk.RGBAy Color of underline for this text.

underline-rgba-set boolean Whether this tag affects underlining

color.

underline-set boolean Whether this tag affects underlining.

variant Pango.Variant Font variant as a Pango.Variant, e.g.

Pango.Variant.SMALL_CAPS

variant-set boolean Whether this tag affects the font

variant.

weight integer Font weight as an integer, see

predefined values in Pango.

Weight; for example, Pango.

Weight.BOLD.

weight-set boolean Whether this tag affects the font

weight.

wrap-mode Gtk.WrapMode Whether to wrap lines never, at

word boundaries, or at character

boundaries.

wrap-mode-set boolean Whether this tag affects line wrap

mode.

Table A-115.  (continued)

Appendix A GTK+ Properties

465

Table A-116.  Gtk.TextView Properties

Property Type Description

accepts-tab bool Whether Tab results in a tab character being

entered.

bottom-margin integer Height of the bottom margin in pixels.

buffer Gtk.TextBuffer The buffer that is displayed.

cursor-visible boolean If the insertion cursor is shown.

editable boolean Whether the text can be modified by the user.

im-module string Which IM module should be used.

indent integer Amount to indent the paragraph, in pixels.

input-hints Gtk.InputHints Hints for the text field behavior.

input-purpose Gtk.InputPurpose Purpose of the text field.

justification Gtk.Justification Left, right, or center justification.

left-margin integer Width of the left margin in pixels.

monospace boolean Whether to use a monospace font.

overwrite boolean Whether entered text overwrites existing contents.

pixels-above-lines integer Pixels of blank space above paragraphs.

pixels-below-lines integer Pixels of blank space below paragraphs.

pixels-inside-wrap integer Pixels of blank space between wrapped lines in a

paragraph.

populate-all boolean Whether to emit the “populate-popup” signal for

touch pop-ups.

right-margin integer Width of the right margin in pixels.

tabs Pango.TabArray Custom tabs for this text.

top-margin integer Height of the top margin in pixels.

wrap-mode Gtk.WrapMode Whether to wrap lines never, at word boundaries,

or at character boundaries.

Appendix A GTK+ Properties

466

Table A-117.  Gtk.ThemingEngine Properties

Property Type Description

name string Theming engine name.

Table A-118.  Gtk.ToggleButton Properties

Property Type Description

active boolean If the toggle button should be pressed in.

draw-indicator boolean If the toggle part of the button is displayed.

inconsistent boolean If the toggle button is in an “in between” state.

Table A-119.  Gtk.ToggleToolButton Properties

Property Type Description

active boolean If the toggle button should be pressed in.

Table A-120.  Gtk.ToolButton Properties

Property Type Description

icon-name string The name of the themed icon displayed on the item.

icon-widget Gtk.Widget Icon widget to display in the item.

label string Text to show in the item..

label-widget Gtk.Widget Widget to use as the item label.

use-underline boolean If set, an underline in the label property indicates that the next

character should be used for the mnemonic accelerator key in

the overflow menu.

Appendix A GTK+ Properties

467

Table A-121.  Gtk.ToolItem Properties

Property Type Description

is-important boolean Whether the toolbar item is considered important. When True, toolbar

buttons show text in Gtk.ToolbarStyle.BOTH_HORIZ mode.

visible-horizontal boolean Whether the toolbar item is visible when the toolbar is in a

horizontal orientation.

visible-vertical boolean Whether the toolbar item is visible when the toolbar is in a vertical

orientation.

Table A-122.  Gtk.ToolItemGroup Properties

Property Type Description

collapsed boolean Whether the group has been collapsed and items are

hidden.

ellipsize Pango.EllipsizeMode Ellipsize for item group headers.

header-relief Gtk.ReliefStyle Relief of the group header button.

label string The human-readable title of this item group.

label-widget Gtk.Widget A widget to display in place of the usual label.

Table A-123.  Gtk.ToolPalette Properties

Property Type Description

icon-size Gtk.IconSize Size of icons in this tool palette.

icon-size-set boolean Whether the icon-size property has been set.

toolbar-style Gtk.ToolbarStyle Style of items in the tool palette.

Appendix A GTK+ Properties

468

Table A-124.  Gtk.Toolbar Properties

Property Type Description

icon-size Gtk.IconSize Size of icons in this toolbar.

icon-size-set boolean Whether the icon-size property has been set.

show-arrow boolean If an arrow should be shown if the toolbar doesn’t fit.

toolbar-style Gtk.ToolbarStyle How to draw the toolbar.

Table A-125.  Gtk.TreeModelFilter Properties

Property Type Description

child-model Gtk.TreeModel The model for the filtermodel to filter.

virtual-root Gtk.TreePath The virtual root (relative to the child model) for this filtermodel.

Table A-126.  Gtk.TreeModelSort Properties

Property Type Description

model Gtk.TreeModel The model for the TreeModelSort to sort.

Table A-127.  Gtk.TreeSelection Properties

Property Type Description

mode Gtk.SelectionMode Selection mode.

Appendix A GTK+ Properties

469

Table A-128.  Gtk.TreeView Properties

Property Type Description

activate-on-single-

click

boolean Activate row on a single click.

enable-grid-lines Gtk.TreeViewGridLines Whether grid lines should be drawn in the tree

view.

enable-search boolean View allows user to search through columns

interactively.

enable-tree-lines boolean Whether tree lines should be drawn in the tree

view.

expander-column Gtk.TreeViewColumn Set the column for the expander column.

fixed-height-mode boolean Speeds up Gtk.TreeView by assuming that

all rows have the same height.

headers-clickable boolean Column headers respond to click events.

headers-visible boolean Show the column header buttons.

hover-expand boolean Whether rows should be expanded/collapsed

when the pointer moves over them.

hover-selection boolean Whether the selection should follow the

pointer.

level-indentation integer Extra indentation for each level.

model Gtk.TreeModel The model for the tree view.

reorderable boolean View is reorderable.

rubber-banding boolean Whether to enable selection of multiple items

by dragging the mouse pointer.

search-column integer Model column to search through during

interactive search.

show-expanders boolean View has expanders.

tooltip-column integer The column in the model containing the tooltip

texts for the rows.

Appendix A GTK+ Properties

470

Table A-129.  Gtk.TreeViewColumn Properties

Property Type Description

alignment float X Alignment of the column header text or

widget.

cell-area Gtk.CellArea The Gtk.CellArea used to layout cells.

clickable boolean Whether the header can be clicked.

expand boolean Column gets share of extra width allocated

to the widget.

fixed-width integer Current fixed width of the column.

max-width integer Maximum allowed width of the column.

min-width integer Minimum allowed width of the column.

reorderable boolean Whether the column can be reordered

around the headers.

resizable boolean Column is user-resizable.

sizing Gtk.TreeViewColumnSizing Resize mode of the column.

sort-column-id integer Logical sort column ID this column sorts on

when selected for sorting.

sort-indicator boolean Whether to show a sort indicator.

sort-order Gtk.SortType Sort direction the sort indicator should

indicate.

spacing integer Space that is inserted between cells.

title string Title to appear in column header.

visible boolean Whether to display the column.

widget Gtk.Widget Widget to put in column header button

instead of column title.

width integer Current width of the column.

x-offset integer Current X position of the column.

Appendix A GTK+ Properties

471

Table A-130.  Gtk.VolumeButton Properties

Property Type Description

use-symbolic boolean Whether to use symbolic icons.

Table A-131.  Gtk.Widget Properties

Property Type Description

app-paintable boolean Whether the application paints directly on the widget.

can-default boolean Whether the widget can be the default widget.

can-focus boolean Whether the widget can accept the input focus

composite-child boolean Whether the widget is part of a composite widget.

events Gdk.EventMask The event mask that decides what kind of Gdk.

EventMask this widget gets.

expand boolean Whether widget wants to expand in both directions.

focus-on-click boolean Whether the widget should grab focus when it is clicked

with the mouse.

halign Gtk.Align How to position in extra horizontal space.

has-default boolean Whether the widget is the default widget.

has-focus boolean Whether the widget has the input focus.

has-tooltip boolean Whether this widget has a tooltip.

height-request integer Override for height request of the widget, or –1 if natural

request should be used.

hexpand boolean Whether widget wants more horizontal space.

hexpand-set boolean Whether to use the hexpand property.

is-focus boolean Whether the widget is the focus widget within the toplevel.

margin integer Pixels of extra space on all four sides.

margin-bottom integer Pixels of extra space on the bottom side.

margin-end integer Pixels of extra space on the end.

(continued)

Appendix A GTK+ Properties

472

Property Type Description

margin-start integer Pixels of extra space on the start.

margin-top integer Pixels of extra space on the top side.

name string The name of the widget.

no-show-all boolean Whether Gtk.Widget.show_all() should not affect

this widget.

opacity float The opacity of the widget, from 0 to 1.

parent Gtk.Container The parent widget of this widget. Must be a Container

widget.

receives-default boolean If True, the widget receive the default action when it is

focused.

scale-factor integer The scaling factor of the window.

sensitive boolean Whether the widget responds to input.

tooltip-markup string The contents of the tooltip for this widget.

tooltip-text string The contents of the tooltip for this widget.

valign Gtk.Align How to position in extra vertical space.

vexpand boolean Whether widget wants more vertical space.

vexpand-set boolean Whether to use the vexpand property.

visible boolean Whether the widget is visible.

width-request integer Override for width request of the widget, or –1 if natural

request should be used.

window Gdk.Window The widget’s window if it is realized.

Table A-131.  (continued)

Appendix A GTK+ Properties

473

Table A-132.  Gtk.Window Properties

Property Type Description

accept-focus boolean True if the window should receive the input

focus.

application Gtk.Application The Gtk.Application for the window.

attached-to Gtk.Widget The widget where the window is attached.

decorated boolean Whether the window should be decorated by

the window manager.

default-height integer The default height of the window, used when

initially showing the window.

default-width integer The default width of the window, used when

initially showing the window.

deletable boolean Whether the window frame should have a

close button.

destroy-with-parent boolean If this window should be destroyed when the

parent is destroyed.

focus-on-map boolean True if the window should receive the input

focus when mapped.

focus-visible boolean Whether focus rectangles are currently

visible in this window.

gravity Gdk.Gravity The window gravity of the window.

has-toplevel-focus boolean If this window’s titlebar should be hidden

when the window is maximized.

icon GdkPixbuf.Pixbuf Icon for this window.

icon-name string Name of the themed icon for this window.

is-active boolean Whether the toplevel is the current active

window.

is-maximized boolean Whether the window is maximized.

(continued)

Appendix A GTK+ Properties

474

Property Type Description

mnemonics-visible boolean Whether mnemonics are currently visible in

this window.

modal boolean If True, the window is modal (other windows

are not usable while this one is up).

resizable boolean If True, users can resize the window.

role string Unique identifier for the window to be used

when restoring a session.

screen Gdk.Screen The screen where this window is displayed.

skip-pager-hint boolean True if the window should not be in the

pager.

skip-taskbar-hint boolean True if the window should not be in the task

bar.

startup-id string Unique startup identifier for the window used

by startup-notification.

title string The title of the window.

transient-for Gtk.Window The transient parent of the dialog.

type Gdk.WindowTypeHint Hint to help the desktop environment

understand what kind of window this is and

how to treat it.

urgency-hint bool True if the window should be brought to the

user’s attention.

window-position Gtk.WindowPosition The initial position of the window.

Table A-132.  (continued)

Appendix A GTK+ Properties

475

�Child Widget Properties
A few containers in GTK+ have properties that are assigned to every child of the

container. Table A-133 through Table A-149 describes these properties.

Caution  In the GTK+ C API property, names may contain one or more dashes.
Since these dashes are interpreted by Python as the subtraction operator, all
Python property names substitute underscores for dashes in all property names.
For instance, the property name logo-icon-name becomes logo_icon_name in a
Python program.

Table A-133.  Gtk.ActionBar Child Properties

Property Type Description

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with

reference to the start or end of the parent.

position integer The index of the child in the parent.

Table A-134.  Gtk.Assistant Child Properties

Property Type Description

complete boolean Whether all required fields on the page have been

filled out.

has-padding boolean Whether the assistant adds padding around the page.

header-image GdkPixbuf.Pixbuf Header image for the assistant page.

page-type Gtk.AssistantPageType The type of the assistant page.

sidebar-image GdkPixbuf.Pixbuf Sidebar image for the assistant page.

title string The title of the assistant page.

Appendix A GTK+ Properties

476

Table A-135.  Gtk.Box Child Properties

Property Type Description

expand boolean Whether the child should receive extra space when the parent grows.

fill boolean Whether extra space given to the child should be allocated to the

child or used as padding.

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with

reference to the start or end of the parent.

padding integer Extra space to put between the child and its neighbors, in pixels.

position integer The index of the child in the parent.

Table A-136.  Gtk.ButtonBox Child Properties

Property Type Description

non-homogeneous boolean If True, the child is not subject to homogeneous sizing.

secondary boolean If True, the child appears in a secondary group of children,

suitable for, e.g., help buttons.

Table A-137.  Gtk.Fixed Child Properties

Property Type Description

x integer X position of child widget.

y integer Y position of child widget.

Table A-138.  Gtk.Grid Child Properties

Property Type Description

height integer The number of rows that a child spans.

left-attach integer The column number to attach the left side of the child to.

top-attach integer The row number to attach the top side of a child widget to.

width integer The number of columns that a child spans.

Appendix A GTK+ Properties

477

Table A-139.  Gtk.HeaderBar Child Properties

Property Type Description

pack-type Gtk.PackType A Gtk.PackType indicating whether the child is packed with

reference to the start or end of the parent.

position integer The index of the child in the parent.

Table A-140.  Gtk.Layout Child Properties

Property Type Description

x integer X position of child widget.

y integer Y position of child widget.

Table A-141.  Gtk.Menu Child Properties

Property Type Description

bottom-attach integer The row number to attach the bottom of the child to.

left-attach integer The column number to attach the left side of the child to.

right-attach integer The column number to attach the right side of the child to.

top-attach integer The row number to attach the top side of a child widget to.

Table A-142.  Gtk.Notebook Child Properties

Property Type Description

detachable boolean Whether the tab is detachable.

menu-label string The string displayed in the child’s menu entry.

position integer The index of the child in the parent.

reorderable boolean Whether the tab is reorderable by user action.

tab-expand boolean Whether to expand the child’s tab.

tab-fill boolean Whether the child’s tab should fill the allocated area.

tab-label string The string displayed on the child’s tab label.

Appendix A GTK+ Properties

478

Table A-144.  Gtk.Paned Child Properties

Property Type Description

resize boolean If True, the child expands and shrinks along with the paned widget.

shrink boolean If True, the child can be made smaller than its requisition.

Table A-143.  Gtk.Overlay Child Properties

Property Type Description

index integer The index of the overlay in the parent, –1 for the main child.

pass-through boolean Pass through input, does not affect main child.

Table A-145.  Gtk.PopoverMenu Child Properties

Property Type Description

position integer The index of the child in the parent.

submenu string The name of the submenu.

Table A-146.  Gtk.Stack Child Properties

Property Type Description

icon-name string The icon name of the child page.

name string The name of the child page.

needs-attention boolean Whether this page needs attention.

position integer The index of the child in the parent.

title string The title of the child page.

Appendix A GTK+ Properties

479

Table A-147.  Gtk.ToolItemGroup Child Properties

Property Type Description

expand boolean Whether the item should receive extra space when the group grows.

fill boolean Whether the item should fill the available space.

homogeneous boolean Whether the item should be the same size as other homogeneous items.

new-row boolean Whether the item should start a new row.

position integer Position of the item within this group.

Table A-148.  Gtk.ToolPalette Child Properties

Property Type Description

exclusive boolean Whether the item group should be the only expanded at a given times.

expand boolean Whether the item group should receive extra space when the palette

grows.

Table A-149.  Gtk.Toolbar Child Properties

Property Type Description

expand boolean Whether the item should receive extra space when the toolbar grows.

homogeneous boolean Whether the item should be the same size as other homogeneous

items.

Appendix A GTK+ Properties

481
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

APPENDIX B

�GTK+ Signals

GTK+ is a system that relies on signals and callback methods/functions. A signal is a

notification to your application that the user has performed some action. When a

signal is emitted, you can tell GTK+ to run a method/function called a callback

method/function.

To connect a signal, you can use the object.connect() function, which accepts

three parameters. The signal_name is a string representing the signal. A list of signal

names can be found in the tables throughout this appendix.

object.signal(signal_name, handler, data)

The second parameter is the name of the callback method/function that is called

when the signal is emitted. The form for each callback function is found in the GTK+

API documentation; however, many of the function prototypes have incomplete

documentation, so you can find more information about nonstandard parameters in the

signal reference tables throughout this appendix.

The last parameter of object.connect() allows you to send data of an arbitrary type

to the callback method/function.

This appendix provides a complete list of events and signals available to GTK+

objects and widgets. The first section provides information about the GDK event types

available to Gtk.Widget and derivative classes (see Table B-1). The sections that follow

provide a complete list of signal names and a description for every object with signals

in GTK+.

https://doi.org/10.1007/978-1-4842-4179-0

482

�Events
Events are a special type of signal that are emitted by the X Window System. Once

emitted, they are sent from the window manager to your application to be interpreted by

the signal system provided by GLib.

In doing this, you can use the same signal connection and callback function

methods as with normal signals. One difference is that event callback functions return

a boolean value. If you return True, no further action will happen. If you return the

default value of False, GTK+ will continue to handle the event. Table B-1 lists the

Gtk.Widget event types.

Table B-1.  Gtk.Widget Event Types

Signal Name Gdk.EventType Value Description

delete-event Gdk.EventType.

DELETE

The window manager requested that the top-level

window be destroyed. This can be used to confirm

the deletion of the window.

destroy-event Gdk.EventType.

DESTROY

The widget’s Gdk.Window was destroyed. You

should not use this signal, because the widget is

usually disconnected before it can be emitted.

expose-event Gdk.EventType.

EXPOSE

A new part of the widget was shown and needs to

be drawn.

This is emitted when the window was previously

obscured by another object.

motion-notify-

event

Gdk.EventType.

MOTION_NO

The IFY mouse cursor has moved while within the

proximity of the widget.

button-press-

event

Gdk.EventType.

BUTTON_PRESS

A mouse button was clicked once. This is emitted

along with Gdk.EventType.2BUTTON_PRESS and

Gdk.EventType.3BUTTON_PRESS events.

button-press-

event

Gdk.EventType.

2BUTTON_PRESS

A mouse button was clicked twice. This also emits

Gdk.EventType.BUTTON_PRESS, so you need

to check the event type in the method/callback

function.

(continued)

Appendix B GTK+ Signals

483

Signal Name Gdk.EventType Value Description

button-press-

event

Gdk.EventType.

3BUTTON_PRESS

A mouse button was clicked twice. This also emits

Gdk.EventType.BUTTON_PRESS, so you need

to check the event type in the method/callback

function.

button-release-

event

Gdk.EventType.

BUTTON_RELEASE

A previously clicked mouse button was released.

key-press-event Gdk.EventType.

KEY_PRESS

A keyboard key was pressed. You can return True

to prevent any text from being entered or actions

being taken because of the key press.

key-release-event Gdk.EventType.

KEY_RELEASE

A previously pressed keyboard key was released.

This is usually not as useful as “key-press-event”.

enter-notify-event Gdk.EventType.

ENTER_NOTIFY

The mouse cursor entered the proximity of the

widget.

leave-notify-event Gdk.EventType.

LEAVE_NOTIFY

The mouse cursor exited the proximity of the

widget.

focus-in-event Gdk.EventType.

FOCUS_CHANGE

Keyboard focus entered the widget from another

widget within the window.

focus-out-event Gdk.EventType.

FOCUS_CHANGE

Keyboard focus left the widget for another widget

within the window.

configure-event Gdk.EventType.

CONFIGURE

The size, position, or stacking order of the widget

changed. This is normally emitted when a new size

is allocated for the widget.

map-event Gdk.EventType.

MAP

The widget was mapped to the display.

unmap-event Gdk.EventType.

UNMAP

The widget was unmapped from the display.

property-notify-

event

Gdk.EventType.

PROPERTY_NOTIFY

A property of the widget has been changed or

deleted. You can use this to track changes to a

specific widget property stored by GObject.

Table B-1.  (continued)

(continued)

Appendix B GTK+ Signals

484

Signal Name Gdk.EventType Value Description

selection-clear-

event

Gdk.EventType.

SELECTION_CLEAR

The application no longer has ownership of a

selection, so it needs to be cleared.

selection-request-

event

Gdk.EventType.

SELECTION_REQUEST

The selection of the widget was requested by

another application.

selection-notify-

event

Gdk.EventType.

SELECTION_NOTIFY

The owner of a selection responded to a selection

conversion request.

proximity-in-event Gdk.EventType.

PROXIMITY_IN

An input device has come in contact with a sensing

surface, such as a pen on a touch screen.

proximity-out-event Gdk.EventType.

PROXIMITY_OUT

An input device, such as a pen on a touch screen,

has broken off contact with a sensing surface.

event Gdk.EventType.

DRAG_ENTER

The mouse pointer entered the widget while a drag

action was in progress.

event Gdk.EventType.

DRAG_LEAVE

The mouse pointer left the widget while a drag

action was in progress.

event Gdk.EventType.

DRAG_MOTION

The mouse pointer moved within the widget while a

drag action was in progress.

event Gdk.EventType.

DRAG_STATUS

The current status of a drag action was changed.

event Gdk.EventType.

DROP_START

A drop action on the widget began.

event Gdk.EventType.

DROP_FINISHED

A drop action on the widget completed.

client-event Gdk.EventType.

CLIENT_EVENT

An event for the widget was received from another

application.

visibility-notify-event Gdk.EventType.

VISIBILITY NOTIFY

The visibility of the widget changed. For example,

some portion of it has been covered or uncovered.

Table B-1.  (continued)

(continued)

Appendix B GTK+ Signals

485

�Widget Signals
Tables B-2 through B-69 provide a complete list of signals for each class in GTK+ that has

signals. In addition to signal names, a description is provided for each item. If the signal

does not follow the standard signal prototype, the additional parameters are listed; these

additional parameters do not include the user data pointer.

Signal Name Gdk.EventType Value Description

no-expose-event Gdk.EventType.

NO_EXPOSE

The source region was completely available when

parts of a drawable area were copied.

scroll-event Gdk.EventType.

SCROLL

The widget has been scrolled in one direction or

another. This allows you to update the widget’s

visible area.

window-state-event Gdk.EventType.

WINDOW_STATE

The state of the widget has changed. If the widget

is a top-level window, this can happen when it is

minimized, maximized, made sticky, made into an

icon, and so forth.

event Gdk.EventType.

SETTING

A setting was added, removed, or modified for the

widget.

event Gdk.EventType.

OWNER_CHANGE

The owner of the widget has changed. This event

was introduced in GTK+ 2.6.

grab-broken-event Gdk.EventType.

GRAB_BROKEN

The widget was grabbed by the pointer or the

keyboard, but it was broken. This can happen

when the window becomes invisible or when a

user attempts to repeat a grab. This event was

introduced in GTK+ 2.8.

Table B-1.  (continued)

Appendix B GTK+ Signals

486

Table B-2.  Gtk.AccelGroup Signals

Signal Name Additional Parameters Description

accel-activate GObject.Object

acceleratable, integer keyval,

Gdk.ModifierType modifier

The accel-activate signal is an

implementation detail of Gtk.

AccelGroup and not meant to be

used by applications.

accel-changed GObject.Object

acceleratable,integer keyval,

Gdk.ModifierType modifier

The accel-changed signal is emitted

when an entry is added to or

removed from the accel group.

Table B-3.  Gtk.AccelMap Signals

Signal Name Additional Parameters Description

changed string accel_path, integer accel_key,

Gdk.ModifierType accel_mods

Notifies about a change in the global

accelerator map.

Table B-4.  Gtk.Adjustment Signals

Signal Name Additional
Parameters

Description

changed None Emitted when one or more of the

Gtk.Adjustment properties have

been changed, other than the Gtk.

Adjustment value property.

value-changed None Emitted when the Gtk.Adjustment

value property has been changed.

Table B-5.  Gtk.AppChooserButton Signals

Signal Name Additional Parameters Description

custom-item-

activated

string item_name Emitted when a custom item, previously added

with Gtk.AppChooserButton.append_

custom_ is activated from the drop-down menu.

Appendix B GTK+ Signals

487

Table B-6.  Gtk.AppChooserWidget Signals

Signal Name Additional Parameters Description

application-activated Gio.AppInfo

application

Emitted when an application item is

activated from the widget’s list.

application-selected Gio.AppInfo

application

Emitted when an application item is

selected from the widget’s list.

populate-popup Gtk.Menu menu, Gio.

AppInfo application

Emitted when a context menu is about

to pop up over an application item.

Table B-7.  Gtk.Application Signals

Signal Name Additional
Parameters

Description

window-added Emitted when a Gtk.Window is added to application

through Gtk.Application.add_window().

window-removed window Emitted when a Gtk.Window is removed from

application,

either as a side-effect of being destroyed or explicitly

through Gtk.Application.remove_ window().

Table B-8.  Gtk.Assistant Signals

Signal Name Additional Parameters Description

apply None The Apply button or the Forward button was clicked

any Gtk.Assistant page.

cancel None The Cancel button was clicked any Gtk.

Assistant page.

close None The Close button or the Apply button was clicked

the last page in the Gtk.Assistant.

escape None

prepare Gtk.Widget page A new page is about to become visible. This

signal was emitted so that you can perform any

preparation tasks before it is visible to the user.

Appendix B GTK+ Signals

488

Table B-10.  Gtk.Calendar Signals

Signal Name Additional Parameters Description

day-selected None Emitted when the user selects a day.

day-selected-

double-click

None Emitted when the user double-clicks a day.

month-changed None Emitted when the user clicks a button to

change the selected month on a calendar.

next-month None Emitted when the user switched to the

next month.

next-year None Emitted when user switched to the next year.

prev-month None Emitted when the user switched to the

previous month.

prev-year None Emitted when user switched to the

previous year.

Table B-9.  Gtk.Button Signals

Signal Name Additional Parameters Description

activate The “activate” signal on Gtk.Button is an action

signal and emitting it causes the button to animate

press then release.

clicked Emitted when the button has been activated

(pressed and released).

Appendix B GTK+ Signals

489

Table B-11.  Gtk.CellArea Signals

Signal Name Additional Parameters Description

add-editable Gtk.CellRenderer renderer,

Gtk.CellEditable editable,

Gdk.Rectangle cell_area,

Gtk.TreePath path

Indicates that editing has started on

renderer and that editable should be

added to the owning cell-layouting

widget at cell_area.

apply-attributes Gtk.TreeModel model, Gtk.

TreeIter iter, boolean is_

expander, boolean is_expanded

This signal is emitted whenever

applying attributes to area from model.

focus-changed Gtk.CellRenderer renderer,

Gtk.TreePath path

Indicates that focus changed on this

area.

remove-editable Gtk.CellRenderer renderer,

Gtk.CellEditable editable

Indicates that editing finished on

renderer and that editable should

be removed from the owning cell-

layouting widget.

Table B-12.  Gtk.CellRenderer Signals

Signal Name Additional Parameters Description

editing-canceled None This signal is emitted when the user

cancels the process of editing a cell.

editing-started GtkCellEditable

editable, string path

This signal is emitted when a cell

starts to be edited.

Table B-13.  Gtk.CellRendererAccel Signals

Signal Name Additional Parameters Description

accel-cleared string path_string Emitted when the user has

removed the accelerator.

accel-edited string path_string, integer accel_

key, Gdk.ModifierType accel_

mods, integer hardware_keycode

Emitted when the user has

selected a new accelerator.

Appendix B GTK+ Signals

490

Table B-18.  Gtk.Clipboard Signals

Signal Name Additional Parameters Description

owner-change Gdk.EventOwnerChange

event

The “owner-change” signal is emitted when GTK+

receives an event that indicates that the ownership

of the selection associated with clipboard has

changed.

Table B-17.  Gtk.CheckMenuItem Signals

Signal Name Additional Parameters Description

toggled None This signal is emitted when the

state of the check box is changed.

Table B-16.  Gtk.CellRendererToggle Signals

Signal Name Additional Parameters Description

toggled string path_string The “toggled” signal is emitted

when the cell is toggled.

Table B-15.  Gtk.CellRendererText Signals

Signal Name Additional Parameters Description

edited string path_string,

string new_text

This signal is emitted after

renderer has been edited.

Table B-14.  Gtk.CellRendererCombo Signals

Signal Name Additional Parameters Description

changed string path_string, Gtk.

TreeIter new_iter

This signal is emitted each time after the user

selected an item in the combo box, either by

using the mouse or the arrow keys.

Appendix B GTK+ Signals

491

Table B-21.  Gtk.ComboBox Signals

Signal Name Additional Parameters Description

changed None The changed signal is emitted when the active

item is changed.

format-entry-text string path For combo boxes that are created with an entry

(See Gtk.ComboBox.has-entry).

move-active Gtk.ScrollType

scroll_type

The “move-active” signal is a keybinding signal

that is emitted to move the active selection.

popdown None The “popdown” signal is a keybinding signal that

is emitted to popdown the combo box list.

popup None The “popup” signal is a keybinding signal that is

emitted to pop up the combo box list.

Table B-20.  Gtk.ColorSelection Signals

Signal Name Additional Parameters Description

color-changed None This signal is emitted when the color

changes in the Gtk.ColorSelection

according to its update policy.

Table B-19.  Gtk.ColorButton Signals

Signal Name Additional Parameters Description

color-set None The “color-set” signal is emitted

when the user selects a color.

Appendix B GTK+ Signals

492

Table B-24.  Gtk.Dialog Signals

Signal Name Additional Parameters Description

close None The “close” signal is a keybinding

signal that is emitted when the user

uses a keybinding to close the dialog.

response integer Emitted when an action widget is

clicked, the dialog receives a delete

event, or the application programmer

calls Gtk.Dialog.response().

Table B-23.  Gtk.CssProvider Signals

Signal Name Additional Parameters Description

parsing-error Gtk.CssSection section Signals that a parsing error occurred.

Table B-22.  Gtk.Container Signals

Signal Name Additional Parameters Description

add Gtk.Widget child A child widget was added or packed into the

container. This signal is emitted even if you do not

explicitly call object.container_add() but use

the widget’s built-in packing functions instead.

check-resize None The container checks whether it needs to be resized

before adding a child widget.

remove Gtk.Widget child A child widget was removed from the container.

set-focus-child Gtk.Widget child A container’s child widget gained focus from the

window manager.

Appendix B GTK+ Signals

493

Table B-25.  Gtk.Entry Signals

Signal Name Additional Parameters Description

activate None The “activate” signal is emitted when the

user hits the Enter key.

backspace None The “backspace” signal is a keybinding

signal that is emitted when the user asks

for it.

copy-clipboard None The “copy-clipboard” signal is a keybinding

signal that is emitted to copy the selection

to the clipboard.

cut-clipboard None The “cut-clipboard” signal is a keybinding

signal that is emitted to cut the selection to

the clipboard.

delete-from-cursor Gtk.DeleteType type,

integer num_deletions

d

C

The “icon-press” signal is emitted when an

activatable icon is clicked.

icon-press Gtk.EntryIconPosition

pos, Gtk.

EntryIconPosition

event

The “icon-press” signal is emitted when an

activatable icon is clicked.

icon-release Gtk.EntryIconPosition

pos, Gtk.

EntryIconPosition

event

The “icon-release” signal is emitted on the

button release from a mouse click over an

activatable icon.

insert-at-cursor string new_text The “insert-at-cursor” signal is a

keybinding signal that is emitted when the

user initiates the insertion of a fixed string

at the cursor.

(continued)

Appendix B GTK+ Signals

494

Table B-25.  (continued)

Signal Name Additional Parameters Description

insert-emoji None The “insert-emoji” signal is a keybinding

signal that is emitted to present the Emoji

chooser for the entry.

move-cursor Gtk.MovementStep

step, integer num_steps,

boolean extended

The “move-cursor” signal is a keybinding

signal that is emitted when the user

initiates a cursor movement.

paste-clipboard None The “paste-clipboard” signal is a keybinding

signal that is emitted to paste the contents

of the clipboard into the text view.

populate-popup Gtk.Widget popup The “populate-popup” signal is emitted before

showing the context menu of the entry.

preedit-changed string preedit If an input method is used, the typed text is

not immediately be committed to the buffer.

toggle-overwrite None The “toggle-overwrite” signal is a

keybinding signal that is emitted to toggle

the overwrite mode of the entry.

Table B-27.  Gtk.EntryCompletion Signals

Signal Name Additional Parameters Description

action_activated integer index Emitted when an action

is activated.

Table B-26.  Gtk.EntryBuffer Signals

Signal Name Additional Parameters Description

deleted_text integer position, integer

n_chars

This signal is emitted after text

is deleted from the buffer.

inserted_text integer position, string chars,

integer n_chars

This signal is emitted after text

is inserted into the buffer.

Appendix B GTK+ Signals

495

Table B-28.  Gtk.Expander Signals

Signal Name Additional Parameters Description

activate None Emitted when an

action is activated.

Table B-29.  Gtk.FileChooserButton Signals

Signal Name Additional Parameters Description

file_set None The “file-set” signal is emitted when the

user selects a file. Note that this signal is

only emitted when the user changes the file.

Table B-30.  Gtk.FileChooserWidget Signals

Signal Name Additional
Parameters

Description

desktop_folder None The “desktop-folder” signal is a keybinding signal that is

emitted when the user asks for it. This is used to make the

file chooser show the user’s Desktop folder in the file list.

down_folder None The “down-folder” signal is a keybinding signal that is

emitted when the user asks for it.

home_folder None The “home-folder” signal is a keybinding signal that is

emitted when the user asks for it.

location_popup string path The “location-popup” signal is a keybinding signal that is

emitted when the user asks for it.

location_popup_

on_paste

None The “location-popup-on-paste” signal is a keybinding signal

that is emitted when the user asks for it.

location_toggle_

popup

None The “location-toggle-popup” signal is a keybinding signal

that is emitted when the user asks for it.

places_shortcut None The “places-shortcut” signal is a keybinding signal that is

emitted when the user asks for it.

(continued)

Appendix B GTK+ Signals

496

Signal Name Additional
Parameters

Description

quick_bookmark integer

bookmark_

index

The “quick-bookmark” signal is a keybinding signal that is

emitted when the user asks for it.

recent_shortcut None The “recent-shortcut” signal is a keybinding signal that is

emitted when the user asks for it.

search_shortcut None The “search-shortcut” signal is a keybinding signal that is

emitted when the user asks for it.

show_hidden None The “show-hidden” signal is a keybinding signal that is

emitted when the user asks for it.

up_folder None The “up-folder” signal is a keybinding signal that is emitted

when the user asks for it.

Table B-30.  (continued)

Table B-31.  Gtk.FlowBox Signals

Signal Name Additional Parameters Description

activate_cursor_child None The “activate-cursor-child” signal is a

keybinding signal that is emitted when the

user activates the box.

child_activated Gtk.FlowBoxChild

child

The “child-activated” signal is emitted when

a child has been activated by the user.

move_cursor Gtk.MovementStep

step, integer count

The “move-cursor” signal is a keybinding

signal that is emitted when the user

initiates a cursor movement.

select_all None The “select-all” signal is a keybinding signal

that is emitted to select all children of the

box, if the selection mode permits it.

(continued)

Appendix B GTK+ Signals

497

Signal Name Additional Parameters Description

selected_children_

changed

None The “selected-children-changed” signal is

emitted when the set of selected children

changes.

toggle_cursor_child None The “toggle-cursor-child” signal is a

keybinding signal that toggles the selection

of the child that has the focus.

unselect_all None The “unselect-all” signal is a keybinding

signal that is emitted to unselect all children

of the box, if the selection mode permits it.

Table B-31.  (continued)

Table B-32.  Gtk.FlowBoxChild Signals

Signal
Name

Additional
Parameters

Description

activate None The “activate” signal is emitted when the user activates

a child widget in a Gtk.FlowBox, either by clicking or

double-clicking, or by using the Space or Enter key.

Table B-33.  Gtk.FontButton Signals

Signal
Name

Additional
Parameters

Description

font_set None The “font-set” signal is emitted when

the user selects a font. When handling

this signal, use Gtk.FontButton.

get_font_name() to find out that

font was just selected.

Appendix B GTK+ Signals

498

Table B-34.  Gtk.GLArea Signals

Signal Name Additional
Parameters

Description

create_context Gdk.GLContext

context

The “create-context” signal is emitted when the widget

is being realized, and allows you to override how the GL

context is created. This is useful when you want to reuse

an existing GL context, or if you want to try creating

different kinds of GL options.

render None The “render” signal is emitted every time the contents of

the Gtk.GLArea should be redrawn.

resize integer width,

integer height

The “resize” signal is emitted once when the widget

is realized, and then each time the widget is changed

while realized. This is useful in order to keep GL state

up to date with the widget size, like for instance camera

properties that may depend on the width/height ratio.

Table B-35.  Gtk.Gesture Signals

Signal Name Additional Parameters Description

begin Gdk.EventSequence

sequence

This signal is emitted when the gesture is

recognized. This means the number of touch

sequences matches Gtk.Gesture.n-

points(), and the Gtk.Gesture.check

handler() returned True.

render Gdk.EventSequence

sequence

This signal is emitted whenever a sequence

is cancelled. This usually happens on active

touches when Gtk.EventController.

reset() is called on gesture (manually, due

to grabs…), or the individual sequence was

claimed by parent widgets’ controllers.

(continued)

Appendix B GTK+ Signals

499

Table B-36.  Gtk.GestureDrag Signals

Signal Name Additional Parameters Description

drag_begin Gtk.GestureDrag gesture_

drag, float startx, float starty

This signal is emitted whenever

dragging starts.

drag_end Gtk.GestureDrag gesture_

drag, float startx, float starty

This signal is emitted whenever

the dragging is finished.

drag_update Gtk.GestureDrag gesture_

drag, float startx, float starty

This signal is emitted whenever

the dragging point moves.

Signal Name Additional Parameters Description

end Gdk.EventSequence

sequence

This signal is emitted when the gesture is

recognized. This means the number of touch

sequences matches Gtk.Gesture.n-

points(), and the Gtk.Gesture.check

handler() returned True.

sequence_state_

changed

Gdk.EventSequence

sequence, Gtk.

EventSequenceState

state

This signal is emitted whenever a sequence

state changes.

Table B-35.  (continued)

Table B-37.  Gtk.GestureLongPress Signals

Signal Name Additional Parameters Description

cancelled None Gtk.GestureLongPress “pressed” happened.

pressed float x, float y This signal is emitted whenever a press goes

unmoved/unreleased longer than what the GTK+

defaults tell.

Appendix B GTK+ Signals

500

Table B-42.  Gtk.GestureZoom Signals

Signal Name Additional Parameters Description

scale_changed float scale This signal is emitted whenever the distance

between both tracked sequences changes.

Table B-41.  Gtk.GestureSwipe Signals

Signal Name Additional Parameters Description

swipe float velocity_x, float

velocity_y

This signal is emitted when the recognized

gesture is finished, velocity and direction are

a product of previously recorded events.

Table B-38.  Gtk.GestureMultiPress Signals

Signal Name Additional Parameters Description

pressed integer n_press, float x,

float y

This signal is emitted whenever

a button or touch press happens.

Table B-40.  Gtk.GestureRotate Signals

Signal Name Additional Parameters Description

pan float angle, float angle_delta This signal is emitted when the angle

between both tracked points changes.

Table B-39.  Gtk.GesturePan Signals

Signal Name Additional Parameters Description

pan Gtk.PanDirection

direction, float offset

This signal is emitted once a panning

gesture along the expected axis is detected.

Appendix B GTK+ Signals

501

Table B-43.  Gtk.IMContext Signals

Signal Name Additional
Parameters

Description

commit string str The “commit” signal is emitted when a complete input

sequence has been entered by the user. This can be a

single character immediately after a key press or the

final result of pre-editing.

delete_surrounding integer offset,

integer n_chars

The “delete-surrounding” signal is emitted when the

input method needs to delete all or part of the context

surrounding the cursor.

preedit_changed None The “preedit-changed” signal is emitted whenever

the preedit sequence currently being entered has

changed. It is also emitted at the end of a preedit

sequence, in that case Gtk.IMContext.get_

preedit_string() returns the empty string.

preedit_end None The “preedit-end” signal is emitted when a pre-editing

sequence has been completed or canceled.

retrieve_surrounding None The “retrieve-surrounding” signal is emitted when

the input method requires the context surrounding

the cursor. The callback should set the input method

surrounding context by calling the Gtk.IMContext.

set_surrounding() method.

Table B-44.  Gtk.IconTheme Signals

Signal Name Additional Parameters Description

changed None Emitted when the current icon theme is switched

or GTK + detects that a change has occurred in the

contents of the current icon theme.

Appendix B GTK+ Signals

502

Table B-45.  Gtk.IconView Signals

Signal Name Additional Parameters Description

activate_cursor_item None A keybinding signal that is emitted

when the user activates the currently

focused item.

item_activated Gtk.TreePath path The “item-activated” signal is emitted

when the method Gtk.IconView.item_

activated() is called, when the user

double clicks an item with the “activate-

on-single-click” property set to False, or

when the user single clicks an item when

the “activate-on-single-click” property set to

True. It is also emitted when a non-editable

item is selected and one of the keys: Space,

Return or Enter is pressed.

move_cursor Gtk.MovementStep

step, integer count

The “move-cursor” signal is a keybinding

signal that is emitted when the user

initiates a cursor movement.

select_all None A keybinding signal that is emitted when

the user selects all items.

select_cursor_item None A keybinding signal that is emitted when

the user selects the item that is currently

focused.

selection_changed None The “selection-changed” signal is emitted

when the selection (i.e. the set of selected

items) changes.

toggle_cursor_item None A keybinding signal that is emitted when

the user toggles whether the currently

focused item is selected or not. The exact

effect of this depend on the selection mode.

unselect_all None A keybinding signal that is emitted when

the user unselects all items.

Appendix B GTK+ Signals

503

Table B-46.  Gtk.InfoBar Signals

Signal Name Additional Parameters Description

close None The “close” signal is a keybinding signal that is

emitted when the user uses a keybinding to dismiss

the info bar.

response integer response_id Emitted when an action widget is clicked or the

application programmer calls Gtk.Dialog.

response(). The response_id depends on that

action widget was clicked.

Table B-47.  Gtk.Label Signals

Signal Name Additional Parameters Description

activate_current_link None A keybinding signal that is emitted when

the user activates a link in the label.

activate_link string uri The signal that is emitted to activate a

URI. Applications may connect to it to

override the default behavior, which is to

call Gtk.show_uri_on_window()

copy_clipboard None The “copy-clipboard” signal is a

keybinding signal that is emitted to copy

the selection to the clipboard.

move_cursor Gtk.MovementStep step,

integer count, boolean

extend_selection

The “move-cursor” signal is a keybinding

signal that is emitted when the user

initiates a cursor movement. If the cursor

is not visible in entry, this signal causes

the viewport to be moved instead.

populate_popup Gtk.Menu menu The “populate-popup” signal is emitted

before showing the context menu of the

label. Note that only selectable labels have

context menus.

Appendix B GTK+ Signals

504

Table B-50.  Gtk.ListBox Signals

Signal Name Additional Parameters Description

activate_cursor_row None

move_cursor Gtk.MovementStep

object, integer p0

row_activated Gtk.ListBoxRow row The “row-activated” signal is emitted when a

row has been activated by the user.

row_selected Gtk.ListBoxRow row The “row-selected” signal is emitted when a

new row is selected, or (with a None row) when

the selection is cleared.

select_all None The “select-all” signal is a keybinding signal

that is emitted to select all children of the box,

if the selection mode permits it.

selected_rows_

changed

None The “selected-rows-changed” signal is emitted

when the set of selected rows changes.

toggle_cursor_row None

unselect_all None The “unselect-all” signal is a keybinding signal

that is emitted to unselect all children of the

box, if the selection mode permits it.

Table B-49.  Gtk.LinkButton Signals

Signal Name Additional Parameters Description

activate_link None The “activate-link” signal is emitted each time

the Gtk.LinkButton has been clicked.

Table B-48.  Gtk.LevelBar Signals

Signal Name Additional Parameters Description

offset_changed string name Emitted when an offset specified on the bar

changes value as an effect to Gtk.LevelBar.

add_offset_value() being called.

Appendix B GTK+ Signals

505

Table B-52.  Gtk.Menu Signals

Signal Name Additional Parameters Description

move_scroll Gtk.ScrollType

scroll_type

popped_up object flipped_rect, object

final_rect, boolean flipped_x,

boolean flipped_y

Emitted when the position of menu is finalized

after being popped up using Gtk.Menu.popup_

at_rect(), Gtk.Menu.popup_at_widget(),

or Gtk.Menu.popup_at_pointer().

Table B-51.  Gtk.ListBoxRow Signals

Signal Name Additional Parameters Description

activate None If you want to be notified when the user activates a

row (by key or not), use the Gtk.ListBox “row-

activated” signal on the row’s parent Gtk.ListBox.

Table B-53.  Gtk.MenuItem Signals

Signal Name Additional Parameters Description

move_scroll Gtk.ScrollType

scroll_type

The user scrolled the menu with one of the

Gtk.ScrollType values.

activate None Emitted when the item is activated.

activate_item None Emitted when the item is activated, but also

if the menu item has a submenu. For normal

applications, the relevant signal is Gtk.

MenuItem “activate”.

deselect None

select None

toggle_size_allocate integer object The menu item was allocated with a new size.

toggle_size_request integer object The menu item requested a new size.

Appendix B GTK+ Signals

506

Table B-54.  Gtk.MenuShell Signals

Signal Name Additional Parameters Description

activate_current boolean force_hide An action signal that activates the current menu

item within the menu shell.

cancel None An action signal that cancels the selection within

the menu shell. Causes the Gtk.MenuShell

“selection- done” signal to be emitted.

cycle_focus Gtk.DirectionType

direction

A keybinding signal that moves the focus in the

given direction.

deactivate None This signal is emitted when a menu shell is

deactivated.

insert Gtk.Widget child,

integer position

The “insert” signal is emitted when a new Gtk.

MenuItem is added to a Gtk.MenuShell.

A separate signal is used instead of Gtk.

Container “add” because of the need for an

additional position parameter.

move_current Gtk.

MenuDirectionType

direction

A keybinding signal that moves the current menu

item in the direction specified by direction.

move_selected integer distance The “move-selected” signal is emitted to move the

selection to another item.

selection_done None This signal is emitted when a selection has been

completed within a menu shell.

Table B-55.  Gtk.MenuToolButton Signals

Signal Name Additional
Parameters

Description

show_menu None The “show-menu” signal

is emitted before the

menu is shown.

Appendix B GTK+ Signals

507

Table B-56.  Gtk.NativeDialog Signals

Signal Name Additional Parameters Description

response integer Emitted when the user responds to the dialog.

Table B-57.  Gtk.Notebook Signals

Signal Name Additional Parameters Description

change_current_

page

integer The page currently shown by Gtk.Notebook

was changed.

create_window Gtk.Widget page,

integer x, integer y

The “create-window” signal is emitted when a

detachable tab is dropped on the root window.

focus_tab Gtk.NotebookTab The focus was moved by

move_focus_out Gtk.DirectionType

object

The focus was moved out of the Gtk.

NotebookTab widget in the given direction.

page_added Gtk.Widget child,

integer page_num

the “page-added” signal is emitted in the

notebook right after a page is added to the

notebook.

page_removed Gtk.Widget child,

integer page_num

The “page-removed” signal is emitted in the

notebook right after a page is removed from

the notebook.

page_reordered Gtk.Widget child,

integer page_num

The “page-reordered” signal is emitted in

the notebook right after a page has been

reordered.

reorder_tab Gtk.DirectionType

direction, boolean p0

select_page boolean A new page was selected for

switch_page Gtk.Widget child,

integer page_num

Emitted when the user or a function changes

the current page.

Appendix B GTK+ Signals

508

Table B-58.  Gtk.Overlay Signals

Signal Name Additional Parameters Description

get_child_

position

Gtk.Widget widget The “get-child-position” signal is emitted to determine

the position and size of any overlay child widgets. A

handler for this signal should fill allocation with the

desired position and size for widget, relative to the

‘main’ child of overlay.

Table B-59.  Gtk.Paned Signals

Signal Name Additional
Parameters

Description

accept_position None The “accept-position” signal is a keybinding signal that

is emitted to accept the current position of the handle

when moving it using key bindings.

cancel_position None The “cancel-position” signal is a keybinding signal that

is emitted to cancel moving the position of the handle

using key bindings. The position of the handle is reset

to the value prior to moving it.

cycle_child_focus boolean reversed The “cycle-child-focus” signal is a keybinding signal

that is emitted to cycle the focus between the children

of the paned.

cycle_handle_

focus

boolean reversed The “cycle-handle-focus” signal is a keybinding signal

that is emitted to cycle whether the paned should grab

focus to allow the user to change position of the handle

by using key bindings.

move_handle Gtk.ScrollType

scroll_type

The “move-handle” signal is a keybinding signal that

is emitted to move the handle when the user is using

key bindings to move it.

toggle_handle_

focus

None The “toggle-handle-focus” is a keybinding signal that is

emitted to accept the current position of the handle and

then move focus to the next widget in the focus chain.

Appendix B GTK+ Signals

509

Table B-60.  Gtk.PlacesSidebar Signals

Signal Name Additional Parameters Description

drag_action_ask integer action The places sidebar emits this signal when

it needs to ask the application to pop up a

menu to ask the user for that drag action to

perform.

drag_action_

requested

Gdk.DragContext, Gio.

File dest_file, Gio.

File src_file_list

When the user starts a drag-and- drop

operation and the sidebar needs to ask the

application for that drag action to perform,

then the sidebar emits this signal.

drag_perform_drop Gio.File dest_file,

Gio.File src_file_

list, integer action

The places sidebar emits this signal when

the user completes a drag-and-drop

operation and one of the sidebar’s items is

the destination. This item is in the dest_

file, and the source_file_list has the

list of files that are dropped into it and that

should be copied/moved/etc. based on the

specified action.

mount Gio.MountOperation

mount_operation

The places sidebar emits this signal when

it starts a new operation because the user

clicked some location that needs mounting.

In this way the application using the Gtk.

PlacesSidebar can track the progress

of the operation and, for example, show a

notification.

open_location Gio.File location,

Gtk.PlacesOpenFlags

open_flags

The places sidebar emits this signal when

the user selects a location in it. The calling

application should display the contents of

that location; for example, a file manager

should show a list of files in the specified

location.

(continued)

Appendix B GTK+ Signals

510

Signal Name Additional Parameters Description

populate_popup Gtk.Widget container,

Gio.File selected_

item, Gio.Volume

selected volume

The places sidebar emits this signal when

the user invokes a contextual pop-up on

one of its items. In the signal handler, the

application may add extra items to the menu

as appropriate. For example, a file manager

may want to add a “Properties” command to

the menu.

show_connect_to_

server

None The places sidebar emits this signal when

it needs the calling application to present a

way to connect directly to a network server.

For example, the application may bring up

a dialog box asking for a URL like “sftp://

ftp.example.com”. It is up to the application

to create the corresponding mount by using,

for example, Gio.File.mount_enclosing

_volume().

show_enter_location None The places sidebar emits this signal when

it needs the calling application to present a

way to directly enter a location. For example,

the application may bring up a dialog box

asking for a URL like “http://http.

example.com”.

show_error_message string primary, string

secondary

The places sidebar emits this signal when

it needs the calling application to present

an error message. Most of these messages

refer to mounting or unmounting media, for

example, when a drive cannot be started for

some reason.

Table B-60.  (continued)

(continued)

Appendix B GTK+ Signals

http://example.com
http://http.example.com
http://http.example.com

511

Signal Name Additional Parameters Description

show_other_

locations_with_flags

Gtk.PlacesOpenFlags

open_flags

The places sidebar emits this signal when

it needs the calling application to present a

way to show other locations e.g. drives and

network access points. For example, the

application may bring up a page showing

persistent volumes and discovered network

addresses.

show_starred_

location

Gtk.PlacesOpenFlags

object_flags

The places sidebar emits this signal when

it needs the calling application to present

a way to show the starred files. In GNOME,

starred files are implemented by setting the

nao:predefined-tag-favorite tag in the tracker

database.

unmount Gio.MountOperation

mount_operation

The places sidebar emits this signal when it

starts a new operation because the user for

example ejected some drive or unmounted a

mount. In this way the application using the

Gtk.PlacesSidebar a track the progress

of the operation and, for example, show a

notification.

Table B-60.  (continued)

Appendix B GTK+ Signals

512

Table B-62.  Gtk.Popover Signals

Signal Name Additional Parameters Description

closed None

Table B-61.  Gtk.Plug Signals

Signal Name Additional Parameters Description

plug None Emitted when the plug becomes embedded in a socket.

Table B-63.  Gtk.PrintOperation Signals

Signal Name Additional Parameters Description

begin_print Gtk.PrintContext

context

Emitted after the user has finished changing

print settings in the dialog, before the actual

rendering starts.

create_custom_widget None Emitted when displaying the print dialog.

If you return a widget in a handler for this

signal it is added to a custom tab in the

print dialog. You typically return a container

widget with multiple widgets in it.

custom_widget_apply Gtk.Widget widget Emitted right before Gtk.

PrintOperation “begin-print” if you

added a custom widget in the Gtk.

PrintOperation “create-custom-widget”

handler. When you get this signal you should

read the information from the custom

widgets, as the widgets are not guaranteed

to be around at a later time.

done Gtk.

PrintOperationResult

result

Emitted when the print operation run has

finished doing everything required for

printing.

(continued)

Appendix B GTK+ Signals

513

Signal Name Additional Parameters Description

draw_page Gtk.PrintContext

context, integer page_nr

Emitted for every page that is printed. The

signal handler must render the page_nr’s

page onto the Cairo context obtained from

context using Gtk.PrintContext.get_

cairo_context(

end_print Gtk.PrintContext

context

Emitted after all pages have been rendered.

A handler for this signal can clean up any

resources that have been allocated in the

Gtk.PrintOperation “begin-print”

handler.

paginate Gtk.PrintContext

context

Emitted after the Gtk.PrintOperation

“begin-print” signal, but before the actual

rendering starts. It keeps getting emitted until

a connected signal handler returns True.

preview preview, Gtk.

PrintContext

context, Gtk.Window

parent

Gtk.PrintOperationPreview is

emitted when a preview is requested from

the native dialog.

request_page_setup Gtk.PrintContext

context, integer pagre_

nr, Gtk.PageSetup

setup

Emitted once for every page that is printed,

to give the application a chance to modify

the page setup. Any changes done to setup

are enforced only for printing this page.

status_changed None Emitted at between the various phases of

the print operation. See Gtk.PrintStatus

for the phases that are being discriminated.

Use Gtk.PrintOperation.get_

status() to find out the current status.

update_custom_widget Gtk.Widget widget,

Gtk.PageSetup setup,

Gtk.PrintSettings

settings

Emitted after change of selected printer.

The actual page setup and print settings are

passed to the custom widget, which can

actualize itself according to this change.

Table B-63.  (continued)

Appendix B GTK+ Signals

514

Table B-64.  Gtk.RadioButton Signals

Signal Name Additional
Parameters

Description

group_changed None Emitted when the group of radio buttons that a radio button

belongs to changes. This is emitted when a radio button

switches from being alone to being part of a group of 2 or more

buttons, or vice-versa, and when a button is moved from one

group of 2 or more buttons to a different one, but not when the

composition of the group that a button belongs to changes.

Table B-66.  Gtk.Range Signals

Signal Name Additional Parameters Description

adjust_bounds float value Emitted before clamping a value, to give the

application a chance to adjust the bounds.

change_values Gtk.ScrollType

scroll_type, float

value

The Gtk.Range “change-value” signal is emitted

when a scroll action is performed on a range. It

allows an application to determine the type of

scroll event that occurred and the resultant new

value. The application can handle the event itself

and return True to prevent further processing. Or,

by returning False, it can pass the event to other

handlers until the default GTK+ handler is reached.

move_slider Gtk.ScrollType

step

Virtual function that moves the slider. Used for

keybindings.

value_changed None Emitted when the range value changes.

Table B-65.  Gtk.RadioMenuItem Signals

Signal Name Additional
Parameters

Description

group_changed None The radio button switched to a new group, or it

was removed from a radio group altogether.

Appendix B GTK+ Signals

515

Table B-67.  Gtk.RecentManager Signals

Signal
Name

Additional
Parameters

Description

changed None Emitted when the current recently used

resources manager changes its contents,

either by calling Gtk.RecentManager.

add_item() or by another application.

Table B-68.  Gtk.Scale Signals

Signal Name Additional
Parameters

Description

format_value float value Signal that allows you to change how the scale

value is displayed. Connect a signal handler that

returns an allocated string representing value. That

string is then used to display the scale’s value.

Table B-69.  Gtk.ScaleButton Signals

Signal Name Additional
Parameters

Description

popdown None The “popdown” signal is a keybinding signal

that is emitted to popdown the scale widget.

popup None The “popup” signal is a keybinding signal that

is emitted to pop up the scale widget.

value_changed float value The “value-changed” signal is emitted when

the value field has changed.

Appendix B GTK+ Signals

516

Table B-70.  Gtk.ScrolledWindow Signals

Signal Name Additional Parameters Description

edge_overshot Gtk.PositionType pos The “edge-overshot” signal is emitted

whenever user initiated scrolling makes the

scrolled window firmly surpass (i.e., with

some edge resistance) the lower or upper

limits defined by the adjustment in that

orientation.

edge_reached Gtk.PositionType pos The “edge-reached” signal is emitted

whenever user-initiated scrolling makes the

scrolled window exactly reaches the lower

or upper limits defined by the adjustment in

that orientation.

move_focus_out Gtk.ScrollType scroll,

boolean horizontal

The “move-focus-out” signal is a keybinding

signal that is emitted when focus is moved

away from the scrolled window by a

keybinding.

The Gtk.Widget “move-focus” signal is

emitted with direction_type on this

scrolled windows toplevel parent in the

container hierarchy. The default bindings for

this signal are and .

scroll_child Gtk.DirectionType

direction_type

The “scroll-child” signal is a keybinding

signal that is emitted when a keybinding

that scrolls is pressed. The horizontal or

vertical adjustment is updated that triggers

a signal that the scrolled windows child may

listen to and scroll itself.

Appendix B GTK+ Signals

517

Table B-71.  Gtk.SearchEntry Signals

Signal Name Additional
Parameters

Description

next_match None The “next-match” signal is a keybinding signal that is

emitted when the user initiates a move to the next match

for the current search string.

previous_match None The “previous-match” signal is a keybinding signal that

is emitted when the user initiates a move to the previous

match for the current search string.

search_changed None The Gtk.SearchEntry “search-changed” signal is

emitted with a short delay of 150 milliseconds after the last

change to the entry text.

stop_search None The “stop-search” signal is a keybinding signal that is

emitted when the user stops a search via keyboard input.

Table B-72.  Gtk.ShortcutsWindow Signals

Signal Name Additional Parameters Description

close integer object The “close” signal is a keybinding signal

that is emitted when the user uses a

keybinding to close the window.

Table B-73.  Gtk.Socket Signals

Signal Name Additional Parameters Description

plug_added None This signal is emitted when a client is successfully

added to the socket.

plug_removed None This signal is emitted when a client is removed from

the socket. The default action is to destroy the Gtk.

Socket widget, so if you want to reuse it you must

add a signal handler that returns True.

Appendix B GTK+ Signals

518

Table B-74.  Gtk.SpinButton Signals

Signal Name Additional Parameters Description

change_value Gtk.ScrollType

scroll

The “change-value” signal is a keybinding signal

that is emitted when the user initiates a value

change.

input None The “input” signal can be used to influence

the conversion of the users input into a double

value. The signal handler is expected to use

Gtk.Entry.get_text() to retrieve the text

of the entry and set new_value to the new

value.

output None The “output” signal can be used to change to

formatting of the value that is displayed in the

spin buttons entry.

value_changed None The “value-changed” signal is emitted when the

value represented by spinbutton changes. Also

see the Gtk.SpinButton “output” signal.

wrapped None The “wrapped” signal is emitted right after the

spinbutton wraps from its maximum to minimum

value or vice-versa.

Table B-75.  Gtk.Statusbar Signals

Signal Name Additional Parameters Description

text_popped integer context_id, string text Emitted whenever a new message is popped

off a status bar’s stack.

text_pushed integer context_id, string text Emitted whenever a new message is pushed

onto a status bar’s stack.

Appendix B GTK+ Signals

519

Table B-77.  Gtk.Switch Signals

Signal Name Additional Parameters Description

activate None The “activate” signal on Gtk.Switch is an action

signal and emitting it causes the switch to animate.

Applications should never connect to this signal, but

use the “notify_active” signal.

state_set boolean state The “state-set” signal on Gtk.Switch is emitted to

change the underlying state. It is emitted when the user

changes the switch position. The default handler keeps

the state in sync with the Gtk.Switch active property.

Table B-76.  Gtk.StyleContext Signals

Signal Name Additional Parameters Description

changed None The “changed” signal is emitted when there

is a change in the Gtk.StyleContext.

Table B-78.  Gtk.TextBuffer Signals

Signal Name Additional Parameters Description

apply_tag Gtk.TextTag tag, Gtk.

TextIter start, Gtk.

TextIter end

The “apply-tag” signal is emitted to

apply a tag to a range of text in a Gtk.

TextBuffer. Applying actually occurs in

the default handler.

begin_user_action None The “begin-user-action” signal is emitted

at the beginning of a single user-visible

operation on a Gtk.TextBuffer.

changed None The “changed” signal is emitted when the

content of a Gtk.TextBuffer has changed.

end_user_action None The “end-user-action” signal is emitted at

the end of a single user-visible operation on

the Gtk.TextBuffer.

(continued)

Appendix B GTK+ Signals

520

Table B-78.  (continued)

Signal Name Additional Parameters Description

insert_child_anchor Gtk.TextIter location,

Gtk.TextChildAnchor

anchor

The “insert-child-anchor” signal is emitted

to insert a Gtk.TextChildAnchor in a

Gtk.TextBuffer. Insertion actually occurs

in the default handler.

insert_pixbuf Gtk.TextIter location,

GdkPixbuf.Pixbuf

pixbuf

The “insert-pixbuf” signal is emitted to

insert a GdkPixbuf.Pixbuf in a Gtk.

TextBuffer. Insertion actually occurs in

the default handler.

insert_text Gtk.TextIter location,

string test, integer len

The “insert-text” signal is emitted to insert

text in a Gtk.TextBuffer. Insertion

actually occurs in the default handler.

mark_deleted Gtk.TextMark mark The “mark-deleted” signal is emitted as

notification after a Gtk.TextMark is

deleted.

mark_set Gtk.TextIter location,

Gtk.TextMark mark

The “mark-set” signal is emitted as

notification after a Gtk.TextMark is set.

modified_changed None The “modified-changed” signal is

emitted when the modified bit of a Gtk.

TextBuffer flips.

paste_done Gtk.Clipboard

clipboard

The “paste-done” signal is emitted after

paste operation has been completed. This is

useful to properly scroll the view to the end

of the pasted text. See Gtk.TextBuffer.

paste_clipboard() for more details.

remove_tag Gtk.TextTag tag, Gtk.

TextIter start, Gtk.

TextIter end

The “remove-tag” signal is emitted to

remove all occurrences of tag from a range

of text in a Gtk.TextBuffer. Removal

actually occurs in the default handler.

Appendix B GTK+ Signals

521

Table B-79.  Gtk.TextTag Signals

Signal Name Additional Parameters Description

event GObject.Object object,

Gdk.Event event, Gtk.

TextIter iter

The “event” signal is emitted when

an event occurs on a region of the

buffer marked with this tag.

Table B-80.  Gtk.TextTagTable Signals

Signal Name Additional Parameters Description

tag_added Gtk.TextTag tag A GtkTextTag object was added to the tag table.

tag_changed Gtk.TextTag tag,

boolean size_changed

A property of a tag contained by the tag table was

changed. The size of the displayed text can be

changed by other properties besides the size, such

as weight and font family.

tag_removed Gtk.TextTag tag A Gtk.TextTag object was removed from the tag

table.

Table B-81.  Gtk.TextView Signals

Signal Name Additional Parameters Description

backspace None The “backspace” signal is a keybinding signal

that is emitted when the user asks for it.

copy_clipboard None The “copy-clipboard” signal is a keybinding

signal that is emitted to copy the selection to the

clipboard.

cut_clipboard None The “cut-clipboard” signal is a keybinding

signal that is emitted to cut the selection to the

clipboard.

delete_from_cursor Gtk.DeleteType type,

integer count

Text was deleted from around cursor.

(continued)

Appendix B GTK+ Signals

522

Signal Name Additional Parameters Description

extend_selection granularity, Gtk.

TextIter location,

Gtk.TextIter start,

Gtk.TextIter end

Gtk.TextExtendSelection The “extend-

selection” signal is emitted when the selection

needs to be extended at location.

insert_at_cursor string string The “insert-at-cursor” signal is a keybinding

signal that is emitted when the user initiates the

insertion of a fixed string at the cursor.

insert_emoji None The “insert-emoji” signal is a keybinding signal

that is emitted to present the Emoji chooser for

the text view.

move_cursor Gtk.MovementStep

step, integer count,

boolean extended_

selection

The “move-cursor” signal is a keybinding signal

that is emitted when the user initiates a cursor

movement. If the cursor is not visible in text view,

this signal causes the viewport to be moved

instead.

move_viewport Gtk.ScrollStep step,

integer count

The “move-viewport” signal is a keybinding

signal that can be bound to key combinations

to allow the user to move the viewport, i.e.

change what part of the text view is visible in a

containing scrolled window.

paste_clipboard None The “paste-clipboard” signal is a keybinding

signal that is emitted to paste the contents of

the clipboard into the text view.

populate_popup Gtk.Widget popup The “populate-popup” signal is emitted before

showing the context menu of the text view.

preedit_changed string preedit If an input method is used, the typed text is not

immediately committed to the buffer. So if you

are interested in the text, connect to this signal.

Table B-81.  (continued)

(continued)

Appendix B GTK+ Signals

523

Signal Name Additional Parameters Description

select_all boolean select The “select-all” signal is a keybinding signal that

is emitted to select or unselect the complete

contents of the text view.

set_anchor None The “set-anchor” signal is a keybinding signal

that is emitted when the user initiates setting

the “anchor” mark. The “anchor” mark is placed

at the same position as the “insert” mark.

toggle_cursor_

visible

None The “toggle-cursor-visible” signal is a keybinding

signal that is emitted to toggle the Gtk.

TextView cursor-visible property.

toggle_overwrite None The “toggle-overwrite” signal is a keybinding

signal that is emitted to toggle the overwrite

mode of the text view.

Table B-81.  (continued)

Table B-82.  Gtk.ToggleButton Signals

Signal Name Additional Parameters Description

toggled None Should be connected if you wish to

perform an action whenever the Gtk.

ToggleButton’s state is changed.

Table B-83.  Gtk.ToggleToolButton Signals

Signal Name Additional Parameters Description

toggled None Emitted whenever the toggle

tool button changes state.

Appendix B GTK+ Signals

524

Table B-84.  Gtk.ToolButton Signals

Signal Name Additional
Parameters

Description

clicked None This signal is emitted when the tool button is clicked

with the mouse or activated with the keyboard.

Table B-85.  Gtk.ToolItem Signals

Signal Name Additional
Parameters

Description

create_menu_proxy None This signal is emitted when the toolbar needs

information from tool item about whether the item

should appear in the toolbar overflow menu.

toolbar_reconfigured None This signal is emitted when some property of the

toolbar that the item is a child of changes.

Table B-86.  Gtk.Toolbar Signals

Signal Name Additional Parameters Description

focus_home_or_end boolean focus_home A keybinding signal used internally

by GTK+. This signal can’t be used in

application code.

orientation_changed Gtk.Orientation

orientation_changed

Emitted when the orientation of the

toolbar changes.

popup_context_menu Gtk.Orientation

orientation

Emitted when the user right-clicks

the toolbar or uses the keybinding to

display a pop-up menu.

style_changed Gtk.ToolbarStyle style Emitted when the style of the toolbar

changes.

Appendix B GTK+ Signals

525

Table B-87.  Gtk.TreeSelection Signals

Signal Name Additional
Parameters

Description

changed None Emitted whenever the selection has (possibly)

changed. Please note that this signal is mostly a

hint.

Table B-88.  Gtk.TreeView Signals

Signal Name Additional Parameters Description

columns_changed None The number of columns of the treeview has

changed.

cursor_changed None The position of the cursor (focused cell) has

changed.

expand_collapse_

cursor_row

boolean object, boolean p0,

boolean p1

A row located at the cursor position needs to

expanded or collapsed.

move_cursor Gtk.MovementStep

step, integer direction

The Gtk.TreeView “move-cursor” signal is a

keybinding signal that is emitted when the user

presses one of the cursor keys.

row_activated Gtk.TreePath path,

Gtk.TreeViewColumn

column

The “row-activated” signal is emitted when the

method Gtk.TreeView.row_activated()

is called, when the user double clicks a treeview

row with the “activate-on-single-click” property

set to False, or when the user single clicks

a row when the “activate-on-single-click”

property set to True.

row_collapsed Gtk.TreeIter iter,

Gtk.TreePath path

The given row has been collapsed (child nodes

are hidden).

row_expanded Gtk.TreeIter iter,

Gtk.TreePath path

The given row has been expanded (child nodes

are shown).

(continued)

Appendix B GTK+ Signals

526

Signal Name Additional Parameters Description

select_all None All of the rows within the tree view were

selected. This can be done by pressing Ctrl+A

or Ctrl +.

select_cursor_

parent

None The user pressed the Backspace key while the

row had cursor focus.

select_cursor_

row

boolean object A noneditable row was selected by pressing one

of the following key bindings: space bar, Shift

+space bar, Return, or Enter.

start_interactive_

search

None The user pressed Crtl+F while the tree view

had focus.

test_collapse_

row

Gtk.TreeIter iter,

Gtk.TreePath path

The given row is about to be collapsed (hide its

children nodes). Use this signal if you need to

control the collapsibility of individual rows.

test_expand_

row

Gtk.TreeIter iter,

Gtk.TreePath path

The given row is about to be expanded (show

its children nodes). Use this signal if you need to

control the expandability of individual rows.

toggle_cursor_

row

None The user pressed Ctrl+spacebar while a row

had focus.

unselect_all None All of the rows in a tree view were deselected

by pressing Shift +Ctrl+A or Shift+Ctrl+/.

Table B-88.  (continued)

Table B-89.  Gtk.TreeViewColumn Signals

Signal Name Additional
Parameters

Description

clicked None The user pressed the tree view column’s header button. This

usually causes the tree view’s rows to be sorted according

to that column in views that support sorting.

Appendix B GTK+ Signals

527

Table B-90.  Gtk.Widget Signals

Signal Name Additional Parameters Description

accel_closures_changed None

button_press_event Gdk.EventButton event The “button-press-event” signal is

emitted when a button (typically

from a mouse) is pressed.

button_release_event Gdk.EventButton event The “button-release-event” signal

is emitted when a button (typically

from a mouse) is released.

can_activate_accel integer signal_id Determines whether an

accelerator that activates the

signal identified by signal_id can

currently be activated.

child_notify GObject.ParamSpec child_

property

The “child-notify” signal is emitted

for each ‘child property [child-

properties]’ that has changed on

an object. The signal’s detail holds

the property name.

configure_event Gdk.EventConfigure event The “configure-event” signal is

emitted when the size, position or

stacking of the widget’s window

has changed.

damage_event Gdk.EventExpose event Emitted when a redirected

window belonging to widget

is drawn into. The region/area

members of the event shows what

area of the redirected drawable

was drawn into.

delete_event Gdk.Event event The “delete-event” signal is

emitted if a user requests that a

toplevel window is closed.

(continued)

Appendix B GTK+ Signals

528

Signal Name Additional Parameters Description

destroy None Signals that all holders of a

reference to the widget should

release the reference that they

hold. May result in finalization of

the widget if all references are

released.

destroy_event Gdk.Event event The “destroy-event” signal is

emitted when a Gdk.Window

is destroyed. You rarely get this

signal, because most widgets

disconnect themselves from their

window before they destroy it, so

no widget owns the window at

destroy time.

direction_changed Gtk.TextDirection

previous_direction

The “direction-changed” signal is

emitted when the text direction of

a widget changes.

drag_begin Gdk.DragContext context The “drag-begin” signal is emitted

on the drag source when a drag

is started. A typical reason to

connect to this signal is to set

up a custom drag icon with e.g.

Gtk.Widget.drag_source_

set_icon_pix

drag_data_delete Gdk.DragContext context The “drag-data-delete” signal

is emitted on the drag source

when a drag with the action

Gdk.DragAction.MOVE is

successfully completed.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

529

Signal Name Additional Parameters Description

drag_data_get Gdk.DragContext context,

Gtk.SelectionData data,

integer info, integer time

The “drag-data-get” signal is

emitted on the drag source when

the drop site requests the data

that is dragged.

drag_data_received Gdk.DragContext context,

integer x, integer y, Gtk.

SelectionData data, integer

info, integer time

The “drag-data-received” signal is

emitted on the drop site when the

dragged data has been received.

drag_drop Gdk.DragContext context,

integer x, integer y, integer time

The “drag-drop” signal is emitted

on the drop site when the user

drops the data onto the widget.

drag_end Gdk.DragContext context The “drag-end” signal is emitted

on the drag source when a drag is

finished.

drag_failed Gdk.DragContext context,

Gtk.DragResult result

The “drag-failed” signal is emitted

on the drag source when a drag

has failed.

drag_leave Gdk.DragContext context,

integer time

The “drag-leave” signal is emitted

on the drop site when the cursor

leaves the widget.

drag_motion Gdk.DragContext context,

integer x, integer y, integer time

The “drag-motion” signal is

emitted on the drop site when the

user moves the cursor over the

widget during a drag.

draw cairo.Context cr This signal is emitted when a

widget is supposed to render itself.

enter_notify_event Gdk.EventCrossing event The “enter-notify-event” is

emitted when the pointer enters

the widget’s window.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

530

Signal Name Additional Parameters Description

event Gdk.Event event The GTK+ main loop emits three

signals for each GDK event

delivered to a widget: one generic

“event” signal, another, more

specific, signal that matches the

type of event delivered (e.g. Gtk.

Widget “key-press-event”) and

finally a generic Gtk.Widget

“event-after” signal.

event_after Gdk.Event event After the emission of the Gtk.

Widget “event” signal and

(optionally) the second more

specific signal, “event-after” is

emitted regardless of the previous

two signals handlers return

values.

focus Gtk.DirectionType

direction

The widget received focus.

focus_in_event Gdk.EventFocus event The “focus-in-event” signal is

emitted when the keyboard focus

enters the widget’s window.

focus_out_event Gdk.EventFocus event The “focus-out-event” signal is

emitted when the keyboard focus

leaves the widget’s window.

grab_broken_event Gdk.EventGrabBroken

event

Emitted when a pointer or

keyboard grab on a window

belonging to widget is broken.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

531

Signal Name Additional Parameters Description

grab_focus None The widget forced focus on

itself by calling widget.

grab_focus(). This signal can

also be initiated with mnemonic

accelerators.

grab_notify boolean was_grabbed The “grab-notify” signal is

emitted when a widget becomes

shadowed by a GTK+ grab (not

a pointer or keyboard grab)

on another widget, or when it

becomes unshadowed due to a

grab being removed.

hide None The “hide” signal is emitted when

widget is hidden, for example with

Gtk.Widget.hide().

hierarchy_changed Gtk.Widget previous_

toplevel

The “hierarchy-changed” signal is

emitted when the anchored state

of a widget changes.

key_press_event Gdk.EventKey event The “key-press-event” signal is

emitted when a key is pressed.

The signal emission reoccurs at

the key-repeat rate when the key

is kept pressed.

key_release_event Gdk.EventKey event The “key-release-event” signal is

emitted when a key is released.

keynav_failed Gtk.DirectionType

direction

Emitted if keyboard navigation

fails. See Gtk.Widget.keynav_

failed() for details.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

532

Signal Name Additional Parameters Description

leave_notify_event Gdk.EventCrossing event The “leave-notify-event” is

emitted when the pointer leaves

the widget’s window.

map None The “map” signal is emitted when

widget is going to be mapped.

map_event Gdk.EventAny event The “map-event” signal is

emitted when the widget’s

window is mapped. A window is

mapped when it becomes visible

on the screen.

mnemonic_activate boolean group_cycling The default handler for this

signal activates widget if group_

cycling is False, or just makes

widget grab focus if group_

cycling is True.

motion_notify_event Gdk.EventMotion event The “motion-notify-event” signal

is emitted when the pointer moves

over the widget’s Gdk.Window.

move_focus Gtk.Widget old_parent The “parent-set” signal is emitted

when a new parent has been set

on a widget.

popup_menu None This signal is emitted whenever

a widget should pop up a context

menu.

property_notify_event Gdk.EventProperty event The “property-notify-event” signal

is emitted when a property on

the widget’s window has been

changed or deleted.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

533

Signal Name Additional Parameters Description

proximity_in_event Gdk.EventProximity

event

To receive this signal the Gdk.

Window associated to the

widget needs to enable the Gdk.

EventMask.PROXIMITY _IN_

MASK mask.

proximity_out_event Gdk.EventProximity

event

To receive this signal the Gdk.

Window associated to the

widget needs to enable the Gdk.

EventMask.PROXIMITY _OUT_

MASK mask.

query_tooltip integer x, integer y, boolean

keyboard_mode, Gtk.

Tooltip tooltip

Emitted when Gtk.Widget

has-tooltip is True and the hover

timeout has expired with the

cursor hovering “above” widget;

or emitted when widget got focus

in keyboard mode.

realize None The “realize” signal is emitted

when widget is associated with

a Gdk.Window, which means

that Gtk.Widget.realize()

has been called or the widget has

been mapped (that is, it is going to

be drawn).

screen_changed Gdk.Screen

previous_screen

The “screen-changed” signal is

emitted when the screen of a

widget has changed.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

534

Signal Name Additional Parameters Description

scroll_event Gdk.EventScroll event The “scroll-event” signal is

emitted when a button in the 4 to

7 range is pressed. Wheel mice

are usually configured to generate

button press events for buttons 4

and 5 when the wheel is turned.

selection_clear_event Gdk.EventSelection

event

The “selection-clear-event” signal

is emitted when the widget’s

window has lost ownership of a

selection.

selection_get Gtk.SelectionData

data, integer info, integer time

Selection data was requested

from the widget.

selection_notify_event Gtk.SelectionData data

selection_received Gtk.SelectionData data,

integer time

selection_request_event Gdk.EventSelection

event

The “selection-request-event”

signal is emitted when another

client requests ownership of the

selection owned by the widget’s

window.

show_help Gtk.WidgetHelpType

help_type

The user requested help with

the widget by pressing Ctrl

+F1. Help types are defined

by Gtk.WidgetHelpType,

which is composed of

Gtk.WidgetHelpType.

HELP _TOOLTIP and Gtk.

WidgetHelpType.WHATS _THIS.

size_allocate Gdk.Rectangle allocation The widget was given a new size

allocation.

Table B-90.  (continued)

(continued)

Appendix B GTK+ Signals

535

Signal Name Additional Parameters Description

state_flags_changed Gtk.StateFlags flags

style_updated None The “style-updated” signal is a

convenience signal that is emitted

when the Gtk.StyleContext

“changed” signal is emitted on

the widget’s associated Gtk.

StyleContext.

touch_event None

unmap None The “unmap” signal is emitted

when widget is going to be

unmapped, which means that

either it or any of its parents up to

the toplevel widget have been set

as hidden.

unmap_event Gdk.EventAny event The “unmap-event” signal

is emitted when the widget’s

window is unmapped. A window

is unmapped when it becomes

invisible on the screen.

unrealize None The “unrealize” signal is emitted

when the Gdk.Window associated

with widget is destroyed.

visibility_notify_event Gdk.EventVisibility

event

The “visibility-notify-event”

is emitted when the widget’s

window is obscured or

unobscured.

window_state_event Gdk.EventWindowState

event

The “window-state-event” is

emitted when the state of the

toplevel window associated to the

widget changes.

Table B-90.  (continued)

Appendix B GTK+ Signals

536

Table B-91.  Gtk.Window Signals

Signal Name Additional
Parameters

Description

activate-default None The “activate-default” signal is a keybinding signal that

is emitted when the user activates the default widget of

window.

activate-focus None The “activate-focus” signal is a keybinding signal that

is emitted when the user activates the currently focused

widget of window.

enable-debugging None The “enable-debugging” signal is a keybinding signal

that is emitted when the user enables or disables

interactive debugging.

keys-changed None The “keys-changed” signal is emitted when the set of

accelerators or mnemonics that are associated with

window changes.

set-focus Gtk.Widget The focus was changed to a different child in the

window.

Appendix B GTK+ Signals

537
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

APPENDIX C

�GTK+ Styles
GTK+ provides many ways to customize the styles of widgets. Most widget style

customization is done through style properties.

This appendix provides a reference to the default Pango Text Attribute Markup

Language and Gtk.TextTag styles.

�Default RC File Styles
Until GTK+ 3.x, styles were governed by the Gtk.Style class, RC files that defined user

styles, the Pango markup language, and the Gtk.TextTag class. Since the introduction

of GTK+ 3.x, RC files and the Gtk.Style class have been deprecated. A new class, Gtk.

StyleContext, was introduced to replace the Gtk.Style class, but RC files remain

deprecated and have no replacement.

�Pango
The Pango Text Attribute Markup Language allows you to change text styles with XML

tags in certain widgets, such as Gtk.Label, using the set_markup method.

The tag can be used with many attributes to define the styles of text. For

example, Text sets the text between the tags

with the specified font. Table C-1 lists the tag’s supported attributes.

https://doi.org/10.1007/978-1-4842-4179-0

538

Table C-1.  Span Tag Attributes

Attribute Description

background A value that describes the background color.

Possible values include the hexadecimal RGB value in the form #RRGGBB or a

supported color name like blue.

face A font family name, such as Sans or Monospace. This tag is the same thing

as font_family.

fallback When enabled, which is the default, the system tries to find the font that most

closely matches the specified font. You should not turn this off, but if it is

necessary, you should use a value of False.

font_desc A font description string that would be supported by Pango.

FontDescription, such as "Sans Bold 12".

font_family A font family name, such as Sans or Monospace. This tag is the same thing

as face.

foreground A value that describes the foreground color. Possible values include the

hexadecimal RGB value in the form #RRGGBB or a supported color name like

blue.

lang A language code that states what language the text string is in.

rise This value allows you to create superscripts and subscripts by specifying a

vertical displacement, in 10,000ths of an em unit. Negative values create a

subscript, and positive values create a superscript.

size The size of the font, in 1,024ths of a point. You can also use xx-small, x-small,

small, medium, large, x-large, xx-large, larger, or smaller. Absolute sizes are

usually easier to specify by using font_desc.

stretch How much the text is stretched. Possible values include ultracondensed,

extracondensed, condensed, semicondensed, normal,

semiexpanded, expanded, extraexpanded, and ultraexpanded.

strikethrough You should specify true to place a single line through the text or false to

turn it off.

(continued)

Appendix C GTK+ Styles

539

Pango also provides a number of convenience tags. These tags can be used in place

of various attributes. As with the tag, you must always provide a closing

tag (e.g.,).

•	 : Make the font bold, which is equivalent to <span

weight="bold">.

•	 <big>: Make the font larger than the current font, which is equivalent

to .

•	 <i>: Equivalent to , which makes the font

italic.

•	 <s>: Strike through the text, which is equivalent to <span

strikethrough="true">, which makes the font italic.

•	 <sub>: Make the text string subscript. This uses the default value for

subscript text.

•	 <sup>: Make the text string superscript. This uses the default value for

superscript text.

•	 <small>: Make the font larger than the current font, which is

equivalent to .

•	 <small>: Make the font larger than the current font, which is

equivalent to .

Table C-1.  (continued)

Attribute Description

strikethrough_color A value that describes the strikethrough line color. Possible values include

the hexadecimal RGB value in the form #RRGGBB or a supported color

name like blue.

variant A value of normal or smallcaps, which allows text to be rendered as all capital

letters.

weight The weight of the text. Possible values include ultralight, light, normal,

bold , ultrabold , heavy , and a numeric weight value.

Appendix C GTK+ Styles

540

•	 <tt>: Make the font a monospace font. This can be used for code

segments or other strings that require monospaced characters.

•	 <u>: Underline the text, which is equivalent to <span

underline="single">.

�Gtk.TextTag Styles
Text tags allow you to define styles for specific sections of Gtk.TextBuffer. Table C-2 is

a complete list of styles supported by Gtk.TextBuffer along with a description of what

type of values each style supports using the create_tag and apply_tag methods.

Table C-2.  Gtk.TextTag Style Properties

Property Type Description

accumulative-margin boolean Whether left and right margins

accumulate.

background string The background color as a

hexadecimal string. Strings should

be specified in the following format:

#RRGGBB.

background-full-height boolean Indicates whether the background

color fills the entire line height or only

the height of each individual character.

background-full-height-set boolean Whether this tag affects background

height.

background-full-height-set boolean Whether this tag affects background

height.

background-set boolean Whether this tag affects the

background color.

direction Gtk.TextDirection Text direction (e.g., right-to-left or

left-to-right).

(continued)

Appendix C GTK+ Styles

541

Table C-2.  (continued)

Property Type Description

editable boolean Indicates whether the text can be

modified.

editable-set boolean Whether this tag affects text editability.

fallback boolean Whether font fallback is enabled.

fallback-set boolean Whether this tag affects font fallback.

family string Name of the font family (e.g., Sans,

Helvetica, Times, Monospace).

family-set boolean Whether this tag affects the font

family.

font string Font description as a string (e.g.,

Sans Italic 12).

font-desc Pango.FontDescription Font description as a Pango.

FontDescription class.

font-features string OpenType Font Features to use.

font-features-set boolean Whether this tag affects font features.

foreground string Foreground color as a string.

foreground-rgba Gdk.RGBA Foreground color as a Gdk.RGBA.

foreground-set boolean Whether this tag affects the

foreground color.

indent integer Amount to indent the paragraph, in

pixels.

indent-set boolean Whether this tag affects indentation.

invisible boolean Whether this text is hidden.

invisible-set boolean Whether this tag affects text visibility.

justification Gtk.Justification Left, right, or center justification.

justification-set boolean Whether this tag affects paragraph

justification.

(continued)

Appendix C GTK+ Styles

542

Table C-2.  (continued)

Property Type Description

language string The language this text is in, as an ISO

code. Pango can use this as a hint

when rendering the text. If not set, an

appropriate default is used.

language-set boolean Whether this tag affects the language

the text is rendered in.

left-margin integer Width of the left margin in pixels.

left-margin-set boolean Whether this tag affects the left

margin.

letter-spacing integer Extra spacing between graphemes.

letter-spacing-set boolean Whether this tag affects letter spacing.

name string Name used to refer to the text tag.

None for anonymous tags.

paragraph-background string Paragraph background color as a

string.

paragraph-background-rgba Gdk.RGBA Paragraph background RGBA as a

Gdk.RGBA.

paragraph-background-set boolean Whether this tag affects the paragraph

background color.

pixels-above-lines integer Pixels of blank space above

paragraphs.

pixels-above-lines-set boolean Whether this tag affects the number of

pixels above lines.

pixels-below-lines integer Pixels of blank space below

paragraphs.

pixels-below-lines-set boolean Whether this tag affects the number of

pixels above lines.

(continued)

Appendix C GTK+ Styles

543

Table C-2.  (continued)

Property Type Description

pixels-inside-wrap integer Pixels of blank space between

wrapped lines in a paragraph.

pixels-inside-wrap-set boolean Whether this tag affects the number of

pixels between wrapped lines.

right-margin integer Width of the right margin in pixels.

right-margin-set boolean Whether this tag affects the right

margin.

rise integer Offset of text above the baseline

(below the baseline if rise is negative)

in Pango units.

rise-set boolean Whether this tag affects the rise.

scale float Font size as a scale factor relative

to the default font size. This properly

adapts to theme changes, and so

forth, so it is recommended.

scale-set boolean Whether this tag scales the font size

by a factor.

size integer Font size in Pango units.

size-points float Font size in points.

size-set boolean Whether this tag affects the font size.

stretch Pango.Stretch Font stretch as a Pango.Stretch

(e.g., Pango.Stretch.CONDENSED).

stretch-set boolean Whether this tag affects the font

stretch.

strikethrough boolean Whether to strike through the text.

strikethrough-rgba Gdk.RGBA Color of strikethrough for this text.

strikethrough-rgba-set boolean Whether this tag affects strikethrough

color.

(continued)

Appendix C GTK+ Styles

544

Property Type Description

style Pango.Style Font style as a Pango.Style, (e.g.,

Pango.Style.ITALIC).

style-set boolean Whether this tag affects the font style.

tabs Pango.TabArray Custom tabs for this text.

tabs-set boolean Whether this tag affects tabs.

underline Pango.Underline Style of underline for this text.

underline-rgba Gdk.RGBA Color of underline for this text.

underline-rgba-set boolean Whether this tag affects underlining

color.

underline-set boolean Whether this tag affects underlining.

variant Pango.Variant Font variant as a Pango.Variant

(e.g., Pango.Variant.SMALL_

CAPS).

variant-set boolean Whether this tag affects the font

variant.

weight integer Font weight as an integer, see

predefined values in Pango.Weight;

for example, Pango.Weight.BOLD.

weight-set boolean Whether this tag affects the font

weight.

wrap-mode Gtk.WrapMode Whether to wrap lines never, at

word boundaries, or at character

boundaries.

wrap-mode-set boolean Whether this tag affects line wrap

mode.

Table C-2.  (continued)

Appendix C GTK+ Styles

545
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

APPENDIX D

�Exercises Solutions and
Hints
This appendix walks you through the solutions for each of the exercises found in this

book, although the full code for the solutions can be downloaded from www.gtkbook.com.

If you get stuck, this appendix gives you the tools to solve the exercises before you look at

the code. You can then reference the downloadable solutions to see how I implemented

each of the exercise applications.

Note  As the exercises become more complex, the solutions may differ greatly
from your implementations. Even if your application works successfully, you should
check out the downloadable solutions for comparison.

�Chapter 3, Exercise 1: Using Events and Properties
The solution for this exercise should appear very similar to the exercises found

throughout Chapter 3. To begin, your application should include the following four basic

steps that are required by every Python GTK+ application.

	 1.	 Create the Gtk.Application instance.

	 2.	 Create the Gtk.ApplicationWindow instances.

	 3.	 Show the Gtk.ApplicationWindow instance using the show_all()

method.

	 4.	 Activate the Gtk.ApplicationWindow instance using the

present() method.

https://doi.org/10.1007/978-1-4842-4179-0
http://www.gtkbook.com

546

In addition to these basic steps, you must also add a Gtk.Label widget to the top-

level window. This label widget can be set as selectable with set_selectable(). Next,

you should connect the Gtk.ApplicationWindow widget to the "key-press-event"

signal, which is called every time the user presses a key when the window has focus.

Note  The “key-press-event” does not work if it is connected to the Gtk.Label
widget! In Chapter 4, you learn that the label widget cannot receive GDK events
because it does not have its own Gdk.Window.

In the "key-press-event" callback method, you can use the following Python code

to determine whether the label is currently displaying the first or last name.

if string1.lower() == string2.lower():

The window and label text should be switched accordingly. You should then return

False so that the application continues to handle the "key-press-event".

Another solution is to just swap the window title and label text unconditionally. This

is the approach used in the supplied exercise solution.

�Chapter 4, Exercise 1: Using Multiple Containers
This exercise helps you gain experience using a variety of container widgets that were

covered in Chapter 4, including Gtk.Notebook and Gtk.Box. Let’s analyze the content of

each of these containers.

The Gtk.Notebook container should contain four tabs. Each tab in a notebook is

associated with a label widget and a child widget. The append_page() method can

be used to add new pages to a notebook. Each of these tabs should contain a Gtk.

Button widget that is connected to the clicked signal. When a button is clicked, the

notebook should move to the next page, wrapping around when the last page is reached.

Connecting each clicked signal to the same callback function can do this.

Within the callback method, which is called next_tab() in the downloadable

solution, you first need to check the page number. If the page number is less than three,

you can simply call next_page() to move to the next page; otherwise, you can use

set_current_page() to set the page number to zero. This same method can be used for

moving to the previous page in the notebook.

Appendix D Exercises Solutions and Hints

547

The next container is a horizontal Gtk.Box that holds two buttons. The first button

should move to the previous page in the Gtk.Notebook container when pressed. You

can use the same method for moving to the next page for moving to the previous page,

although it has to be reversed. The other button should close the window and exit the

application when clicked. These buttons can be packed with pack_end() so that they

appear against the right side of the horizontal box instead of the left side.

The last container in the application is a vertical Gtk.Box widget that should hold the

Gtk.Notebook and horizontal Gtk.Box widgets. This vertical box can be packed into the

top-level Gtk.Window widget to complete the application’s user interface.

�Chapter 4, Exercise 2: Even More Containers
This exercise solution is very similar to the previous exercise. The first difference is that

the Gtk.Notebook tabs should be hidden with set_show_tabs(). Then, a Gtk.Expander

container should be placed between each Gtk.Button widget and the Notebook tab. This

allows you to show and hide the button found in each tab. The expander’s label can also

be used to tell you which tab is currently displayed.

The last difference is that, instead of using a vertical Gtk.Box widget to pack the

notebook and horizontal box, you should use a vertical Gtk.Paned widget. This container

allows you to redistribute the allocated space for each of its two children by dragging the

horizontal separator located between the two widgets.

�Chapter 5, Exercise 1: Renaming Files
In this exercise, you need to use several widgets that you learned about in Chapter 5,

including the stock buttons Gtk.Entry and Gtk.FileChooserButton. The purpose of this

exercise is to allow the user to rename the selected file with a function built into Python.

The first step is to set up your user interface, which includes three interactive

widgets. The first is a file chooser button, created with Gtk.FileChooserButton.new().

The chooser’s action should be set to Gtk.FileChooserAction.OPEN. This allows you

to select only a single file. The set_current_folder() function can be used to set the

current folder of the file chooser button to the user’s home directory, found using the

Python method os.path.expanduser('~').

Appendix D Exercises Solutions and Hints

548

This Gtk.FileChooserButton widget should be connected to the "selection-

changed" signal. Within its callback function, you need to verify whether the file can be

renamed. This can be done with a Python method called os.access(). The following

call can use used within your application.

ret = os.access("/tmp/foo.txt", os.F_OK | os.W_OK)

If the file cannot be accessed or changed by the current user, the Gtk.Entry and Gtk.

Button widgets should be disabled. This can be done by sending the opposite Boolean

value as mode to the widget via the method set_sensitive().

The next widget in the exercise is a Gtk.Entry , which allows the user to enter a new

name for the widget. This is a new name for the file excluding the location, since this file

name is appended to the Gtk.FileChooserButton’s location when the file is renamed.

The last widget, the Gtk.Button, should call the renaming function when clicked.

Within the button’s callback method, you first need to retrieve the current file and

location from the file chooser button. The location, along with the content of the Gtk.

Entry widget, can be used to build a new absolute path for the file. Lastly, you should use

the Python os.rename(src, dest) function to rename the file. You should note that you

must import the Python os module for any of the functions to work!

import os

�Chapter 5, Exercise 2: Spin Buttons and Scales
This exercise is very different from the previous exercise; it lets you practice with the

Gtk.CheckButton, Gtk.SpinButton, and Gtk.Scale widgets. When the check button is

activated, the values of the spin button and horizontal scale should be synchronized;

otherwise, they can move independently of each other.

To do this, the first step is to create two identical adjustments, one for each range

widget. The toggle button in the solution is active on application launch so that the

values are immediately synced.

The next step is to connect each of the range widgets to the same callback method/

function for the "value-changed" signal. Within this function, the first step is to retrieve

the current values of the spin button and scale. If the toggle button is active, these values

are compared. Action is only taken if the values are not the same so that the value-

changed signal is not repeatedly emitted.

Appendix D Exercises Solutions and Hints

549

Lastly, the callback function can use the Python built-in isinstance() function to

figure out which type of widget holds the new value. Based on the result of the test, the

other widget should be given the new value.

�Chapter 6, Exercise 1: Implementing File Chooser
Dialogs
In this chapter’s only exercise, you are supposed to re-create the four types of file chooser

dialogs by embedding a Gtk.FileChooserWidget widget into a Gtk.Dialog widget. The

results of each action can simply be printed to standard output.

The main application window includes four buttons, one for each of the Gtk.

FileChooserWidget action types, where the Gtk.FileChooserAction.OPEN action allows

you to select multiple files. These buttons can be packed into a vertical box and then into

the top-level window.

Each of the callback functions follows the same pattern. It first creates a Gtk.Dialog

widget and packs a Gtk.FileChooserWidget above the dialog’s action area by packing

the dialog’s vbox member with pack_start().

The next step is to run the dialog with run(). If the returned result is the response

associated with acceptance of the action, you should output what would occur with

print(). For example, you should tell the user that the file is saved; the folder has been

created; the files is opened; or the folder was selected. In a Gtk.FileChooserAction.

OPEN action, you should output all the selected files.

�Chapter 8, Exercise 1: Text Editor
This exercise is the first instance of the text editor application that you encounter. It asks

you to implement all of the functionality of the text editor.

Note  The downloadable exercise solution includes only very basic functionality of
a text editor. It is meant to get you started if you are having trouble. However, you
are encouraged to continue to expand your text editor implementation beyond the
provided solution!

Appendix D Exercises Solutions and Hints

550

There are a number of callback functions implemented for the text editor. These are

the ability to create a new file; open an existing file; save the file; cut, copy, and paste

selected text; and search for text in the document.

To create a new document, you should first ask the user whether or not the

application should continue with a Gtk.MessageDialog widget. If the user chooses to

continue, the downloadable exercise solution simply clears the Gtk.TextBuffer object

and destroys the dialog; otherwise, the dialog is just destroyed.

Opening a document in the provided solution does not ask the user for confirmation,

since it is easy to cancel the operation from the Gtk.FileChooserDialog widget. The

file chooser dialog has an action type of Gtk.FileChooserAction.OPEN. When a file is

selected, its contents are read with the Python method read() and written into the text

buffer. Saving in the exercise solution asks for a new file name every time the button is

pressed. It calls write() to save the text to the selected file.

The clipboard functions are similar to those provided in Chapter 8’s clipboard

example. It uses the built-in text buffer functions for cut, copy, and paste actions. These

actions are performed on the default clipboard, Gdk.SELECTION_CLIPBOARD.

�Chapter 9, Exercise 1: File Browser
In this chapter’s exercise, you implement a very simple file browser. It allows the user to

browse throughout the system’s file structure and differentiate between files and folders.

This exercise is meant to give you practice using the Gtk.TreeView widget. In Chapter 14,

it greatly expands into a more functional file browser.

The first step is to configure the tree view, which includes a single column. This

column includes two cell renderers, one for a GdkPixbuf and one for the file or folder

name, so you have to use the expanded method of tree view column creation that was

discussed in Chapter 9. The first cell renderer should use Gtk.CellRendererPixbuf and

the second, Gtk.CellRendererText.

The tree model, a Gtk.ListStore is created with two columns with types of

GdkPixbuf.Pixbuf and GObject.TYPE_STRING.

After the tree model is created in the downloadable exercise solution, the populate_

tree_model() method is called, which displays the root folder of the file system on

startup. The current path displayed by the file browser is stored in a global linked list

called current_path. If the list is empty, the root folder is displayed; otherwise, a path is

built out of the list’s content, and the ".." directory entry is added to the tree model.

Appendix D Exercises Solutions and Hints

551

Then, GDir is used to walk through the contents of the directory, adding each file or

folder to the tree model. You can use os.path.isdir(location)to check whether each is

a file or folder, displaying the correct icon depending on the result.

The last step is to handle directory moves, which is done with Gtk.TreeView’s

"row-activated" signal. If the selection is the ".." entry, then the last element in the

path is removed, and the tree model repopulated; otherwise, the new path is built out

of the current location and the selection. If the selection is a folder, then the tree model

is repopulated in the new directory. If it is a file, then the action is ignored and nothing

else is done.

�Chapter 10, Exercise 1: Toolbars
This exercise alters Listing 10-1 (a simple pop-up menu) by replacing the buttons along

the side with a Gtk.Toolbar created with Gtk.Builder. The following XML file can be

used for creating the toolbar.

<?xml version='1.0' encoding='utf-8' ?>

<interface>

 <requires lib='gtk+' version='3.4'/>

 <object class='GtkToolbar' id='toolbar'>

 <property name='visible'>True</property>

 <property name='can_focus'>False</property>

 <child>

 �<object class='GtkToolButton' id='toolbutton_new'> <property name=

'visible'>True</property> <property name='can_focus'>False</property>

 �<property name='tooltip_text' translatable='yes'>New Standard

</property>

 �<property name='action_name'>app.on_newstandard</property>

<property name='icon_name'>document-new</property>

 </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

Appendix D Exercises Solutions and Hints

552

 <child>

 �<object class='GtkToolButton' id='toolbutton_open'> <property

name='visible'>True</property> <property name='can_focus'>False

</property>

 �<property name='tooltip_text' translatable='yes'>Open Standard

</property> <property name='action_name'>app.on_openstandard</property>

 <property name='icon_name'>document-open</property> </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

 <child>

 �<object class='GtkToolButton' id='toolbutton_save'> <property

name='visible'>True</property> <property name='can_focus'>False

</property>

 �<property name='tooltip_text' translatable='yes'>Save Standard

</property> <property name='action_name'>app.on_savestandard</property>

 <property name='icon_name'>document-save</property> </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

 <child>

 �<object class='GtkSeparatorToolItem' id='toolbutton_separator'>

<property name='visible'>True</property>

 <property name='can_focus'>False</property> </object>

 </child>

 <child>

 �<object class='GtkToolButton' id='toolbutton_cut'> <property

name='visible'>True</property> <property name='can_focus'>False

</property>

 �<property name='tooltip_text' translatable='yes'>Cut Standard

</property> <property name='action_name'>win.on_cutstandard</property>

 <property name='icon_name'>edit-cut</property> </object>

Appendix D Exercises Solutions and Hints

553

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

 <child>

 �<object class='GtkToolButton' id='toolbutton_copy'> <property

name='visible'>True</property> <property name='can_focus'>False

</property>

 �<property name='tooltip_text' translatable='yes'>Copy Standard

</property> <property name='action_name'>win.on_copystandard</property>

 <property name='icon_name'>edit-copy</property> </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

 <child>

 �<object class='GtkToolButton' id='toolbutton_paste'> <property

name='visible'>True</property> <property name='can_focus'>False

</property>

 �<property name='tooltip_text' translatable='yes'>Paste Standard

</property> <property name='action_name'>win.on_pastestandard

</property>

 <property name='icon_name'>edit-paste</property> </object>

 <packing>

 <property name='expand'>False</property>

 <property name='homogeneous'>True</property>

 </packing>

 </child>

 </object>

</interface>

Within your application, you next need to create signal callback methods to process

the signals generated by the callbacks. The rest of the text editor’s implementation is the

same as in Listing 10-1.

Appendix D Exercises Solutions and Hints

554

�Chapter 10, Exercise 2: Menu Bars
This exercise is an alteration of Listing 10-1, where the buttons along the side are moved

to a Gtk.MenuBar widget created with Gtk.Builder. The following UI file can be used for

creating the toolbar.

 <?xml version="1.0" encoding="UTF-8"?>

 <!-- Generated with glade 3.22.1 -->

 <interface>

 <requires lib="gtk+" version="3.20"/>

 <object class="GtkMenuBar" id='menubar'>

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <child>

 <object class="GtkMenuItem">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="label" translatable="yes">_File</property>

 �<property name="use_underline">True</property> <child

type="submenu">

 <object class="GtkMenu">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <child>

 �<object class="GtkImageMenuItem"> <property name="label">

gtk-new</property> <property name="visible">True</property>

<property name="can_focus">False</property> <property

name="use_stock">True</property>

 �<signal name="activate" handler="app.on_menu_new"

swapped="no"/> </object>

 </child>

 <child>

 <object class="GtkImageMenuItem">

 <property name="label">gtk-open</property>

 <property name="visible">True</property>

 <property name="can_focus">False</property>

Appendix D Exercises Solutions and Hints

555

 <property name="use_stock">True</property>

 �<signal name="activate" handler="app.on_menu_open"

swapped="no"/> </object>

 </child>

 <child>

 <object class="GtkImageMenuItem">

 <property name="label">gtk-save</property>

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="use_stock">True</property>

 �<signal name="activate" handler="app.on_menu_save"

swapped="no"/> </object>

 </child>

 </object>

 </child>

 </object>

 </child>

 <child>

 <object class="GtkMenuItem">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 �<property name="label" translatable="yes">_Edit</property>

<property name="use_underline">True</property> <child type="submenu">

 <object class="GtkMenu">

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <child>

 �<object class="GtkImageMenuItem"> <property name="label">

gtk-cut</property> <property name="visible">True</property>

<property name="can_focus">False</property> <property

name="use_stock">True</property>

 �<signal name="activate" handler="win.on_menu_cut"

swapped="no"/>

 </object>

 </child>

Appendix D Exercises Solutions and Hints

556

 <child>

 <object class="GtkImageMenuItem">

 <property name="label">gtk-copy</property>

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="use_stock">True</property>

 �<signal name="activate" handler="win.on_menu_copy"

swapped="no"/> </object>

 </child>

 <child>

 <object class="GtkImageMenuItem">

 <property name="label">gtk-paste</property>

 <property name="visible">True</property>

 <property name="can_focus">False</property>

 <property name="use_stock">True</property>

 �<signal name="activate" handler="win.on_menu_paste"

swapped="no"/> </object>

 </child>

 </object>

 </child>

 </object>

 </child>

 </object>

</interface>

Within your application, you next need to create an the callback methods/functions

that is associated with each of the toolbar items in the UI file. The rest of the exercise is

the same as in Listing 10-1.

�Chapter 11, Exercise 1: Glade Text Editor
This exercise expands on the Glade main window (see Listing 11-1), yet again by asking

you to redesign the whole user interface in Glade. Instead of using buttons, you should

implement a toolbar for text editing functions. You can then use Gtk.Builder to load the

graphical user interface and connect the necessary signals. Figure D-1 is a screenshot of

the application for this exercise using a toolbar.

Appendix D Exercises Solutions and Hints

557

Within your application, you next need to create signal callback methods to process

the signals generated by the callbacks. The rest of the text editor’s implementation is the

same as in Listing 10-1.

�Chapter 11, Exercise 2: Glade Text Editor
with Menus
This exercise also expands on Listing 11-1. You to redesign the whole user interface in

Glade. This time, though, instead of using buttons, you should implement a menu bar for

text editing functions. You can then use Gtk.Builder to load the graphical user interface

and connect the necessary signals. Figure D-2 is a screenshot of the application for this

exercise using a menu bar.

Figure D-1.  The text editor application with a toolbar designed in Glade

Appendix D Exercises Solutions and Hints

558

�Chapter 13, Exercise 1: Full Text Editor
This last text editor exercise is an extension of Listing 13-1, “The Drawing Area Widget.”

In it, you should add two additional features. The first is printing support, which allows

the user to print the current text in the Gtk.TextBuffer widget. The printing support in

the downloadable solution for this exercise is very similar to the printing example built

in Chapter 13, so you should check out that example’s description for more information

about how this solution works.

Figure D-2.  The text editor application with a menu bar in Glade

Appendix D Exercises Solutions and Hints

559

The other additional feature is a recent file chooser menu for the Open toolbar item.

To create this, you must convert the Open toolbar item to a Gtk.MenuToolItem widget.

The default recent manager, obtained with recentmanager.get_default(), can be used

to provide the recent files. Then, you can create the recent file chooser menu with

Gtk.RecentChoooserMenu.new_for_manager(). This menu should be added to the Open

menu tool button’s Gtk.Menu. You can use the selection-done signal to figure out which

menu item is selected and what file should be opened.

Appendix D Exercises Solutions and Hints

561
© W. David Ashley and Andrew Krause 2019
W. D. Ashley and A. Krause, Foundations of PyGTK Development,
https://doi.org/10.1007/978-1-4842-4179-0

Index

A
Adjustment, see Gtk.Adjustment

B
Button, check, see Gtk.CheckButton
Button, color, see Gtk.ColorButton
Button, file chooser, see Gtk.

FileChooserButton
Button, font, see Gtk.FontButton
Button, push, see Gtk.Button
Button, radio, see Gtk.RadioButton
Button, spin, see Gtk.SpinButton
Button, toggle, see Gtk.ToggleButton

C, D
Check button, see Gtk.CheckButton
Chooser button, file, see Gtk.

FileChooserButton
Chooser, file, see Gtk.FileChooser
Color button, see Gtk.ColorButton

E
Entry, text, see Gtk.Entry

F
File chooser, see Gtk.FileChooser
File chooser button, see Gtk.

FileChooserButton

File filter, see Gtk.FileFilter
Filter, file, see Gtk.FileFilter
Font button, see Gtk.FontButton

G, H, I, J, K, L, M, N, O
Gdk.Color, 93–94, 223

methods
new(), 94

GLib, 1, 26, 33, 81, 153, 223, 406–407, 482
Gtk.Adjustment, 85–86, 91, 176, 264, 416,

423, 449–451, 457, 486
methods

new(), 85
Gtk.Button, 33–34, 37, 39–40, 49, 69–71,

74, 76, 78, 92, 104, 196, 212, 314,
335, 337, 345–346, 348, 406, 413,
419, 488, 546–548

methods
set_relief(), 74

Stock items, 71
Gtk.CheckButton, 74, 76–79,

104, 146, 548
methods

new(), 77
new_with_mnemonic(), 77

Gtk.Color, 92
methods

new_with_color(), 94
Gtk.ColorButton, 92–94, 105, 139, 427, 491

methods

https://doi.org/10.1007/978-1-4842-4179-0

562

get_color(), 95
set_title(), 95

Gtk.Dialog, 105, 107–110, 115, 117–118,
124, 130, 139, 151, 153, 156–158,
244, 430, 492, 549

Gtk.Editable, 82, 154
Gtk.Entry, 53, 82–85, 103–105, 146, 154,

175, 192, 253–254, 263, 265, 267,
274–276, 300, 333, 336–337, 363,
397, 399, 401, 404, 493–494, 547–548

methods
insert_text(), 85
set_invisible_char(), 84
set_text(), 85
set_visibility(), 84

properties, 430–432
Gtk.FileChooser, 98–99, 157

methods
add_filter(), 100

Gtk.FileChooserAction, 98, 133–134, 137,
157, 547, 549–550

Gtk.FileChooserButton, 95–98, 103,
105, 130, 137, 373, 378, 435, 495,
547–548

methods
get_filename(), 99, 137, 139
new(), 98, 547
set_current_folder(), 98, 547

Gtk.FileChooserDialog, 95–96, 99, 121,
130–135, 137–139, 157–158, 387,
395, 550

Gtk.FileFilter, 99
methods

add_mime_type(), 100
add_pattern(), 99, 396
new(), 99
set_name(), 99

Gtk.FontButton, 100–103, 105, 143,
436, 497

methods
get_font_name(), 103, 497
new_with_font(), 100
set_use_font(), 103
set_use_size(), 103

Gtk.IconTheme
methods

get_default(), 73, 306
load_icon(), 73, 306

Gtk.Image
methods

Gtk.Label, 22–23, 30, 36–37, 39, 41, 53, 62,
64–66, 70, 81, 101, 103, 276, 304,
334, 348, 503, 537, 546

methods
modify_fg(), 95
new_with_mnemonic(), 74

Gtk.Object, 25, 85
Gtk.PositionType, 62, 91, 419, 444, 446,

450, 516
Gtk.RadioButton, 24, 74, 79–80, 104,

448, 514
methods

new(), 81
new_with_label(), 81
new_with_label_from_widget(), 81
new_with_mnemonic(), 81

Gtk.Range, 85, 91, 449, 514
Gtk.Scale, 89, 91, 105, 450, 515, 548

methods
get_value(), 91
new(), 91
new_with_range(), 91
set_digits(), 91
set_draw_value(), 91
set_value_pos(), 91

Gtk.ColorButton (cont.)

Index

563

Gtk.SpinButton, 85–86, 89, 91, 103, 105,
263, 416, 457, 518, 548

methods
new(), 88
new_with_range(), 88
set_digits(), 89

Gtk.StateType, 95
Gtk.ToggleButton, 74–76, 78–79, 104, 154,

304, 466, 523
methods

new(), 74
new_with_label(), 74
new_with_mnemonic(), 74

P, Q
Pango

methods
font_description_from_string(), 102

Pango.FontDescription, 102, 146, 189, 424,
460, 538, 541

Push button, see Gtk.Button

R
Radio button,

see Gtk.RadioButton

S
Scale, see Gtk.Scale
Spin button, see

Gtk.SpinButton

T, U, V, W, X, Y, Z
Text entry, see Gtk.Entry
Toggle button, see Gtk.ToggleButton

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started

	Differences Between GTK+ 2.x and 3.x
	Installing GTK+ 3.x
	Summary

	Chapter 2: The Application and ApplicationWindow Classes

	The Gtk.Application Class
	Primary vs. Local Instance
	Actions
	Dealing with the Command Line
	Example
	The Gtk.ApplicationWindow Class
	Actions
	Locking
	Example
	Summary

	Chapter 3: Some Simple GTK+ Applications

	Hello World
	GTK+ Widget Hierarchy
	Extending HelloWorld.py
	The GTK.Label Widget
	Layout Containers

	Signals and Callbacks
	Connecting the Signal
	Callback Methods/Functions

	Events
	Event Types
	Using Specific Event Structures

	Further GTK+ Methods
	Gtk.Widget Methods
	Gtk.Window Methods
	Process Pending Events

	Buttons
	Test Your Understanding
	Exercise 1: Using Events and Properties

	Summary

	Chapter 4: Containers

	GTK.Container
	Decorator Containers
	Layout Containers
	Resizing Children
	Container Signals

	Horizontal and Vertical Boxes
	Horizontal and Vertical Panes
	Grids
	Grid Spacing

	Fixed Containers
	Expanders
	Notebook
	Notebook Properties
	Tab Operations

	Event Boxes
	Test Your Understanding
	Exercise 1: Using Multiple Containers
	Exercise 2: Even More Containers

	Summary

	Chapter 5: Basic Widgets

	Using Push Buttons
	Toggle Buttons
	Check Buttons
	Radio Buttons

	Text Entries
	Entry Properties
	Inserting Text into a Gtk.Entry Widget

	Spin Buttons
	Adjustments
	A Spin Button Example

	Horizontal and Vertical Scales
	Additional Buttons
	Color Button
	A Gtk.ColorButton Example
	Storing Colors in Gdk.Color
	Using the Color Button

	File Chooser Buttons
	A Gtk.FileChooserButton Example
	Gtk.FileChooser
	File Filters

	Font Buttons
	A Gtk.FontButton Example
	Using Font Selection Buttons

	Test Your Understanding
	Exercise 1: Renaming Files
	Exercise 2: Spin Buttons and Scales

	Summary

	Chapter 6: Dialogs

	Creating Your Own Dialogs
	Creating a Message Dialog
	Creating the Dialog
	Response Identifiers
	The Gtk.Image Widget

	Nonmodal Message Dialog
	Another Dialog Example

	Built-in Dialogs
	Message Dialogs
	About Dialogs
	Gdk.Pixbuf

	Gtk.FileChooser Dialogs
	Saving Files
	Creating a Folder
	Selecting Multiple Files

	Color Selection Dialogs
	Font Selection Dialogs

	Dialogs with Multiple Pages
	Creating Gtk.Assistant Pages
	Gtk.ProgressBar
	Page Forward Methods

	Test Your Understanding
	Exercise 1: Implementing File Chooser Dialogs

	Summary

	Chapter 7: Python and GTK+

	Arguments and Keyword Arguments
	Logging
	When to Use Logging
	Some Simple Examples
	Logging to a File
	Logging from Multiple Modules
	Logging Variable Data
	Changing the Format of Displayed Messages

	Exceptions
	Raising Exceptions
	The Raise Statement
	Custom Exception Classes

	Catching Exceptions
	Raising and Reraising Exceptions
	Catching Multiple Exceptions

	Chapter 8: Text View Widget

	Scrolled Windows
	Text Views
	Text Buffers
	Text View Properties
	Pango Tab Arrays

	Text Iterators and Marks
	Editing the Text Buffer
	Retrieving Text Iterators and Marks
	Changing Text Buffer Contents
	Cutting, Copying, and Pasting Text
	Searching the Text Buffer
	Scrolling Text Buffers

	Text Tags
	Inserting Images
	Inserting Child Widgets
	Gtk.SourceView
	Test Your Understanding
	Exercise 1: Text Editor

	Summary

	Chapter 9: Tree View Widget

	Parts of a Tree View
	Gtk.TreeModel
	Gtk.TreeViewColumn and Gtk.CellRenderer

	Using Gtk.ListStore
	Creating the Tree View
	Renderers and Columns
	Creating the Gtk.ListStore

	Using Gtk.TreeStore
	Referencing Rows
	Tree Paths
	Tree Row References
	Tree Iterators

	Adding Rows and Handling Selections
	Single Selections
	Multiple Selections
	Adding New Rows
	Retrieving Row Data
	Adding a New Row
	Combo Boxes
	Removing Multiple Rows

	Handling Double-clicks

	Editable Text Renderers
	Cell Data Methods
	Cell Renderers
	Toggle Button Renderers
	Pixbuf Renderers
	Spin Button Renderers
	Combo Box Renderers
	Progress Bar Renderers
	Keyboard Accelerator Renderers

	Test Your Understanding
	Exercise 1: File Browser

	Summary

	Chapter 10: Menus and Toolbars

	Pop-up Menus
	Creating a Pop-up Menu
	Pop-up Menu Callback Methods

	Keyboard Accelerators
	Status Bar Hints
	The Status Bar Widget
	Menu Item Information

	Menu Items
	Submenus
	Image Menu Items
	Check Menu Items
	Radio Menu Items

	Menu Bars
	Toolbars
	Toolbar Items
	Toggle Tool Buttons
	Radio Tool Buttons
	Menu Tool Buttons

	Dynamic Menu Creation
	Creating XML Files
	Loading XML Files

	Test Your Understanding
	Exercise 1: Toolbars
	Exercise 2: Menu Bars

	Summary

	Chapter 11: Dynamic User Interfaces

	User Interface Design
	Know Your Users
	Keep the Design Simple
	Always Be Consistent
	Keep the User in the Loop
	We All Make Mistakes

	The Glade User Interface Builder
	The Glade Interface
	Creating the Window
	Adding a Toolbar
	Completing the File Browser
	Making Changes
	Widget Signals
	Creating a Menu

	Using Gtk.Builder
	Loading a User Interface

	Test Your Understanding
	Exercise 1: Glade Text Editor
	Exercise 2: Glade Text Editor with Menus

	Summary

	Chapter 12: Custom Widgets

	An Image/Label Button
	Custom Message Dialogs
	Multithreaded Applications
	The Proper Way to Align Widgets
	Summary

	Chapter 13: More GTK Widgets

	Drawing Widgets
	A Drawing Area Example
	The Layout Widget

	Calendars
	Printing Support
	Print Operations
	Beginning the Print Operation
	Rendering Pages
	Finalizing the Print Operation

	Cairo Drawing Context
	Drawing Paths
	Rendering Options

	Recent Files
	Recent Chooser Menu
	Adding Recent Files
	Recent Chooser Dialog

	Automatic Completion
	Test Your Understanding
	Exercise 1: Creating a Full Text Editor

	Summary

	Chapter 14: Integrating Everything

	File Browser
	Calculator
	Ping Utility
	Calendar
	Markup Parser Functions
	Parsing the XML File

	Further Resources
	Summary

	Appendix A: GTK+ Properties

	GTK+ Properties
	Child Widget Properties

	Appendix B: GTK+ Signals

	Events
	Widget Signals

	Appendix C: GTK+ Styles

	Default RC File Styles
	Pango
	Gtk.TextTag Styles

	Appendix D: Exercises Solutions and Hints

	Chapter 3, Exercise 1: Using Events and Properties
	Chapter 4, Exercise 1: Using Multiple Containers
	Chapter 4, Exercise 2: Even More Containers
	Chapter 5, Exercise 1: Renaming Files
	Chapter 5, Exercise 2: Spin Buttons and Scales
	Chapter 6, Exercise 1: Implementing File Chooser Dialogs
	Chapter 8, Exercise 1: Text Editor
	Chapter 9, Exercise 1: File Browser
	Chapter 10, Exercise 1: Toolbars
	Chapter 10, Exercise 2: Menu Bars
	Chapter 11, Exercise 1: Glade Text Editor
	Chapter 11, Exercise 2: Glade Text Editor with Menus
	Chapter 13, Exercise 1: Full Text Editor

	Index

