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Preface

Calculus is one of those subjects that appears to have no boundaries, which is why
some books are so large and heavy! So when I started writing the first edition of this
book, I knew that it would not fall into this category. It would be around 200 pages
long and take the reader on a gentle journey through the subject, without placing too
many demands on their knowledge of mathematics.

The second edition reviewed the original text, corrected a few typos, and incor-
porated three extra chapters. I also extended the chapter on arc length to include the
parameterisation of curves.

In this third edition, I have reviewed the text, corrected a few typos, and
incorporated new chapters on vector differential operators and solving differential
equations.

The objective of the book remains the same: to inform the reader about functions
and their derivatives, and the inverse process: integration, which can be used for
computing area and volume. The emphasis on geometry gives the book relevance
to the computer graphics community and hopefully will provide the mathematical
background for professionalsworking in computer animation, games and allied disci-
plines to read and understand other books and technical papers where the differential
and integral notation is found.

The book divides into 18 chapters, with the obligatory chapters to introduce and
conclude the book. Chapter 2 reviews the ideas of functions, their notation and the
different types encountered in everyday mathematics. This can be skipped by readers
already familiar with the subject.

Chapter 3 introduces the idea of limits and derivatives, and how mathematicians
have adopted limits in preference to infinitesimals.Most authors introduce integration
as a separate subject, but I have included it in this chapter so that it is seen as an
antiderivative, rather than something independent.

Chapter 4 looks at derivatives and antiderivatives for a wide range of functions
such as polynomial, trigonometric, exponential and logarithmic. It also shows how
function sums, products, quotients and function of a function are differentiated.

Chapter 5 covers higher derivatives and how they are used to detect a local
maximum and minimum.
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Chapter 6 covers partial derivatives, which although easy to understand, have a
reputation for being difficult. This is possibly due to the symbols used, rather than
the underlying mathematics. The total derivative is introduced here as it is required
in a later chapter.

Chapter 7 introduces the standard techniques for integrating different types of
functions. This can be a large subject, and I have deliberately kept the examples
simple, in order to keep the reader interested and on top of the subject.

Chapter 8 shows how integration reveals the area under a graph and the concept
of the Riemann Sum. The idea of representing area or volume as the limiting sum of
some fundamental units is central to understanding calculus.

Chapter 9 deals with arc length, and uses a variety of worked examples to compute
the length of different curves and their parameterisation

Chapter 10 shows how single and double integrals are used to compute the surface
area of different objects. It is also a convenient point to introduce Jacobians, which,
hopefully, I have managed to explain convincingly.

Chapter 11 shows how single, double and triple integrals are used to compute
the volume of familiar objects. It also shows how the choice of a coordinate system
influences a solution’s complexity.

Chapter 12 covers vector-valued functions, and provides a short introduction to
this very large subject.

Chapter 13 is new, and covers three differential operators: grad, div and curl.
Chapter 14 shows how to calculate tangent and normal vectors for a variety of

curves and surfaces, which are useful in shading algorithms and physically-based
animation.

Chapter 15 showshowdifferential calculus is used tomanage geometric continuity
in B-splines and Bézier curves.

Chapter 16 looks at the curvature of curves such as a circle, helix, parabola and
parametric plane curves. It also shows how to compute the curvature of 2D quadratic
and cubic Bézier curves.

Chapter 17 is new, and explores a few techniques for solving first-order differential
equations.

I used Springer’s excellent author’s LATEX development kit on my Apple iMac,
which is so fast that I create an entire book in 3 or 4 seconds, just to change a single
character! This book contains around two hundred colour illustrations to provide
a strong visual interpretation for derivatives, antiderivatives and the calculation of
arc length, curvature, tangent vectors, area and volume. I used Apple’s Grapher
application for most of the graphs and rendered images, and Pages for the diagrams.

There is no way I could have written this book without the Internet and several
excellent books on calculus. One only has to Google ‘What is a Jacobian?’ to receive
over a thousand entries in about 1 second! YouTube also contains some highly infor-
mative presentations on virtually every aspect of calculus one could want. So I have
spent many hours watching, absorbing and disseminating videos, looking for vital
pieces of information that are key to understanding a topic.

The books I have referred to include: Teach Yourself Calculus by Hugh Neil,
Calculus of One Variable by Keith Hirst, Inside Calculus by George Exner, Short
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Calculus by Serge Lang,Differential Equations by Allan Struthers andMerle Potter,
and my all-time favourite:Mathematics from the Birth of Numbers by Jan Gullberg.
I acknowledge and thank all these authors for the influence they have had on this
book. One other book that has helped me is Digital Typography Using LATEX by
Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniou.

Writing any book can be a lonely activity, and finding someone willing to read an
early draft, and whose opinion one can trust, is extremely valuable. Consequently, I
thank Dr. Tony Crilly for his valuable feedback after reading the original manuscript.
Tony identified flaws in my reasoning and inconsistent notation, and I have incorpo-
rated his suggestions. However, I take full responsibility for any mistakes that may
have found their way into this publication.

Finally, I thank Helen Desmond, Editor for Computer Science, Springer UK, for
her continuing professional support.

Breinton, Herefordshire, UK
February 2023

John Vince
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Chapter 1
Introduction

1.1 What Is Calculus?

What is calculus? Well this is an easy question to answer. Basically, calculus has
two parts: differential and integral. Differential calculus is used for computing a
function’s rate of change relative to one of its arguments. Generally, one begins with
a function such as f (x), and as x changes, a corresponding change occurs in f (x).
Differentiating f (x)with respect to x , produces a second function f ′(x), which gives
the rate of change of f (x) for any x . For example, and without explaining why, if
f (x) = x2, then f ′(x) = 2x , and when x = 3, f (x) is changing 2 × 3 = 6 times
faster than x . Which is rather neat!

In practice, one also writes y = x2, or even y = f (x), which means that differ-
entiating is expressed in a variety of ways

f ′(x),
dy

dx
,

d

dx
f (x),

d

dx
y

thus for y = f (x) = x2, we can write

f ′(x) = 2x,
dy

dx
= 2x,

d

dx
f (x) = 2x,

d

dx
y = 2x .

Integral calculus reverses the operation, where integrating f ′(x), produces f (x),
or something similar. But surely, calculus can’t be as easy as this, you’re asking
yourself? Well, there are some problems, which is what this book is about. To begin
with, not all functions are easily differentiated, as they may contain hidden infinities
and discontinuities. Some functions are expressed as products or quotients, andmany
functions possess more than one argument. All these, and other conditions, must be
addressed. Furthermore, integrating a function produces some useful benefits, such
as calculating the area under a graph, the length of curves, and the surface area and
volume of objects. But more of this later.
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2 1 Introduction

But why should we be interested in rates of change? Well, say we have a function
that specifies the changing velocity of an object over time, then differentiating the
function gives the rate of change of the function over time, which is the object’s
acceleration. And knowing the object’s mass and acceleration, we can compute the
force responsible for the object’s acceleration. There are many more reasons for
having an interest in rates of change, which will emerge in the following chapters.

1.2 Where Is Calculus Used in Computer Graphics?

If you are lucky, you may work in computer graphics without having to use calculus,
but some people have no choice but to understand it, and use it in their work. For
example, we often join together curved lines and surfaces. Figure1.1 shows two
abutting curves,where the join is clearly visible. This is because the slope information
at the end of the first curve, does not match the slope information at the start of the
second curve. By expressing the curves as functions, differentiating them gives their
slopes at any point in the form of two other functions. These slope functions can also
be differentiated, and by ensuring that the original curves possess the samederivatives
at the join, a seamless join is created. The same process is used for abutting two or
more surface patches.

Calculus finds its way into other aspects of computer graphics such as digital
differential analysers (DDAs) for drawing lines and curves, interpolation, curvature,
arc-length parametrisation, fluid animation, rendering, animation, modelling, etc. In
later chapters I will show how calculus permits us to calculate surface normals to
curves and surfaces, and the curvature of different curves.

Fig. 1.1 Two abutting
curves without matching
slopes
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1.3 Who Else Should Read This Book?

Who else should read this book? I would say that almost anyone could read this book.
Basically, calculus is needed by mathematicians, scientists, physicists, engineers,
etc., and this book is just an introduction to the subject, with a bias towards computer
graphics.

1.4 Who Invented Calculus?

More than three-hundred years have passed since the English astronomer, physicist
and mathematician Isaac Newton (1643–1727) and the German mathematician Got-
tfried Leibniz (1646–1716) published their treaties describing calculus. So called
‘infinitesimals’ played a pivotal role in early calculus to determine tangents, area and
volume. Incorporating incredibly small quantities (infinitesimals) into a numerical
solution, means that products involving them can be ignored, whilst quotients could
be retained. The final solution takes the form of a ratio representing the change of a
function’s value, relative to a change in its independent variable.

Although infinitesimal quantities have helped mathematicians for more than two-
thousand years solve all sorts of problems, they were not widely accepted as a rig-
orous mathematical tool. In the latter part of the 19th century, they were replaced
by incremental changes that tend towards zero to form a limit identifying some
desired result. This was mainly due to the work of the German mathematician Karl
Weierstrass (1815–1897), and the French mathematician Augustin-Louis Cauchy
(1789–1857).

In spite of the basic ideas of calculus being relatively easy to understand, it has
a reputation for being difficult and intimidating. I believe that the problem lies in
the breadth and depth of calculus, in that it can be applied across a wide range
of disciplines, from electronics to cosmology, where the notation often becomes
extremely abstract with multiple integrals, multi-dimensional vector spaces and
matrices formed from partial differential operators. In this book I introduce the reader
to those elements of calculus that are both easy to understand and relevant to solving
various mathematical problems found in computer graphics.

On the one hand, perhaps you have studied calculus at some time, and have not
had the opportunity to use it regularly and become familiar with its ways, tricks and
analytical techniques. In which case, this book could awaken some distant memory
and reveal a subject with which you were once familiar. On the other hand, this might
be your first journey into theworld of functions, limits, differentials and integrals—in
which case, you should find the journey exciting!



Chapter 2
Functions

2.1 Introduction

In this chapter the notion of a function is introduced as a tool for generating one
numerical quantity from another. In particular, we look at equations, their variables
and anypossible sensitive conditions. This leads toward the idea of how fast a function
changes relative to its independent variable. The second part of the chapter introduces
two major operations of calculus: differentiating, and its inverse, integrating. This is
performed without any rigorous mathematical underpinning, and permits the reader
to develop an understanding of calculus without using limits.

2.2 Expressions, Variables, Constants and Equations

One of the first thingswe learn inmathematics is the construction of expressions, such
as 2(x + 5) − 2, using variables, constants and arithmetic operators. The next step
is to develop an equation, which is a mathematical statement, in symbols, declaring
that two things are exactly the same (or equivalent). For example, (2.1) is the equation
representing the surface area of a sphere

S = 4πr2 (2.1)

where S and r are variables. They are variables because they take on different values,
depending on the size of the sphere. S depends upon the changing value of r , and to
distinguish between the two, S is called the dependent variable, and r the independent
variable. Similarly, (2.2) is the equation for the volume of a torus

V = 2π2r2R (2.2)
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6 2 Functions

where the dependent variable V depends on the torus’s minor radius r and major
radius R, which are both independent variables. Note that both formulae include
constants 4,π and 2. There are no restrictions on the number of variables or constants
employed within an equation.

2.3 Functions

The concept of a function is that of a dependent relationship. Some equations merely
express an equality, such as 19 = 15 + 4, but a function is a special type of equa-
tion in which the value of one variable (the dependent variable) depends on, and is
determined by, the values of one or more other variables (the independent variables).
Thus, in the equation

S = 4πr2

one might say that S is a function of r , and in the equation

V = 2π2r2R

V is a function of r and R.
It is usual to write the independent variables, separated by commas, in brackets

immediately after the symbol for the dependent variable, and so the two equations
above are usually written

S(r) = 4πr2

and

V (r, R) = 2π2r2R.

The order of the independent variables is immaterial.
Mathematically, there is no difference between equations and functions, it is sim-

ply a question of notation. However, whenwe do not have an equation, we can use the
idea of a function to help us develop one. For example, no one has been able to find
an equation that generates the nth prime number, but I can declare a function P(n)

that pretends to perform this operation, such that P(1) = 2, P(2) = 3, P(3) = 5,
etc. At least this imaginary function P(n), permits me to move forward and reflect
upon its possible inner structure.

A mathematical function must have a precise definition. It must be predictable,
and ideally, work under all conditions.

We are all familiar with mathematical functions such as sin x , cos x , tan x ,
√
x ,

etc., where x is the independent variable. Such functions permit us to confidently
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write statements such as

sin 30◦ = 0.5

cos 90◦ = 0.0

tan 45◦ = 1.0√
16 = ±4

without worrying whether they will always provide a correct answer.
We often need to design a function to perform a specific task. For instance, if I

require a function y(x) to compute x2 + x + 6, the independent variable is x and the
function is written

y(x) = x2 + x + 6

such that

y(0) = 02 + 0 + 6 = 6

y(1) = 12 + 1 + 6 = 8

y(2) = 22 + 2 + 6 = 12

y(3) = 32 + 3 + 6 = 18.

2.3.1 Continuous and Discontinuous Functions

Understandably, a function’s value is sensitive to its independent variables. A simple
square-root function, for instance, expects a positive real number as its independent
variable, and registers an error condition for a negative value. On the other hand, a
useful square-root function would accept positive and negative numbers, and output
a real result for a positive input and a complex result for a negative input.

Another danger condition is the possibility of dividing by zero, which is not
permissible in mathematics. For example, the following function y(x) is undefined
for x = 1, and cannot be displayed on the graph shown in Fig. 2.1

y(x) = x2 + 1

x − 1

y(1) = 2

0

which is why mathematicians include a domain of definition in the specification of
a function
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Fig. 2.1 Graph of y = (x2 + 1)/(x − 1) showing the discontinuity at x = 1

y(x) = x2 + 1

x − 1
for x �= 1.

We can create equations or functions that lead to all sorts of mathematical anoma-
lies. For example, (2.3) creates the condition 0/0 when x = 4

y(x) = x − 4√
x − 2

(2.3)

y(4) = 0

0
.

Similarly, mathematicians would write (2.3) as

y(x) = x − 4√
x − 2

for x �= 4. (2.4)

Such conditions have no numerical value. However, this does not mean that these
functions are unsound—they are just sensitive to specific values of their independent
variable. Fortunately, there is a way of interpreting these results, as we will discover
in the next chapter.

2.3.2 Linear Graph Functions

Linear graph functions are probably the simplest functions we will ever encounter
and are based upon equations of the form
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Fig. 2.2 Graph of y = 0.5x + 2
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Fig. 2.3 Graph of y = 5 sin x

y = mx + c.

For example, the function y(x) = 0.5x + 2 is shown as a graph in Fig. 2.2, where
0.5 is the slope, and 2 is the intercept with the y-axis.

2.3.3 Periodic Functions

Periodic functions are also relatively simple and employ the trigonometric functions
sin, cos and tan. For example, the function y(x) = 5 sin x is shown over the range
−4π < x < 4π as a graph in Fig. 2.3, where the 5 is the amplitude of the sine wave,
and x is the angle in radians.
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Fig. 2.4 Graph of f (x) = 4x4 − 5x3 − 8x2 + 6x − 12

2.3.4 Polynomial Functions

Polynomial functions take the form

f (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a2x

2 + a1x + a0

where n takes on some value, and an are assorted constants. For example, the function
f (x) = 4x4 − 5x3 − 8x2 + 6x − 12 is shown in Fig. 2.4.

2.3.5 Function of a Function

In mathematics we often combine functions to describe some relationship succinctly.
For example, the trigonometric function

f (x) = sin(2x + 1)

is a function of a function. Here we have 2x + 1, which can be expressed as the
function

u(x) = 2x + 1

and the original function becomes

f (u(x)) = sin(u(x)).
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We can increase the depth of functions to any limit, and in the next chapter we
consider how such descriptions are untangled and analysed in calculus.

2.3.6 Other Functions

You are probably familiar with other functions such as exponential, logarithmic,
complex, vector, recursive, etc., which can be combined together to encode simple
equations such as

e = mc2

or something more difficult such as

A(k) = 1

N

N−1∑

j=0

f jω
− jk for k = 0, 1, . . . , N − 1.

2.4 A Function’s Rate of Change

Mathematicians are particularly interested in the rate at which a function changes
relative to its independent variable. Even youwould be interested in this characteristic
in the context of your salary or pension annuity. For example, I would like to know
if my pension fund is growing linearly with time; whether there is some sustained
increasing growth rate; or more importantly, if the fund is decreasing! This is what
calculus is about—it enables us to calculate how a function’s value changes, relative
to its independent variable.

The reason why calculus appears daunting, is that there is such a wide range
of functions to consider: linear, periodic, complex, polynomial, imaginary, rational,
exponential, logarithmic, vector, etc. However, we must not be intimidated by such
a wide spectrum, as the majority of functions employed in computer graphics are
relatively simple, and there are plenty of texts that show how specific functions are
tackled.

2.4.1 Slope of a Function

In the linear equation
y = mx + c

the independent variable is x , but y is also influenced by the constant c, which
determines the intercept with the y-axis, andm, which determines the graph’s slope.
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Fig. 2.5 Graph of y = mx + 2 for different values of m
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y = -2x + 1

y = 0.5x2-2x + 1

y = 0.5x2

Fig. 2.6 Graph of y = 0.5x2 − 2x + 1 showing its two components

Figure 2.5 shows this equation with 4 different values of m. For any value of x , the
slope always equals m, which is what linear means.

In the quadratic equation
y = ax2 + bx + c

y is dependent on x , but in a much more subtle way. It is a combination of two
components: a square law component ax2, and a linear component bx + c. Figure
2.6 shows these two components and their sum for the equation y = 0.5x2 − 2x + 1.

For any value of x , the slope is different. Figure 2.7 identifies three slopes on the
graph. For example, when x = 2, y = −1, and the slope is zero.When x = 4, y = 1,
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Fig. 2.7 Graph of y = 0.5x2 − 2x + 1 showing three gradients
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Fig. 2.8 Linear relationship between slope and x

and the slope looks as though it equals 2. And when x = 0, y = 1, the slope looks
as though it equals −2.

Even though we have only three samples, let’s plot the graph of the relationship
between x and the slopem, as shown in Fig. 2.8. Assuming that other values of slope
lie on the same straight line, then the equation relating the slope m to x is

m = x − 2.

Summarising: we have discovered that the slope of the function

f (x) = 0.5x2 − 2x + 1
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changes with the independent variable x , and is given by the function

f ′(x) = x − 2.

Note that f (x) is the original function, and f ′(x) (pronounced f prime of x) is the
function for the slope, which is a convention often used in calculus.

Remember that we have taken only three sample slopes, and assumed that there
is a linear relationship between the slope and x . Ideally, we should have sampled the
graph at many more points to increase our confidence, but I happen to know that we
are on solid ground!

Calculus enables us to compute the function for the slope from the original func-
tion. i.e. to compute f ′(x) from f (x)

f (x) = 0.5x2 − 2x + 1 (2.5)

f ′(x) = x − 2. (2.6)

Readers who are already familiar with calculus will know how to compute (2.6) from
(2.5), but for other readers, this is the technique:

1. Take each term of (2.5) in turn and replace axn by naxn−1.
2. Therefore 0.5x2 becomes x .
3. −2x , which can be written −2x1, becomes −2x0, which is −2.
4. 1 is ignored, as it is a constant.
5. Collecting up the terms we have

f ′(x) = x − 2.

This process is called differentiating a function, and is easy for this type of polyno-
mial. So easy in fact, we can differentiate the following function without thinking

f (x) = 12x4 + 6x3 − 4x2 + 3x − 8

f ′(x) = 48x3 + 18x2 − 8x + 3.

This is an amazing relationship, and is one of the reasonswhy calculus is so important.
If we can differentiate a polynomial function, surely we can reverse the operation

and compute the original function? Well of course! For example, if f ′(x) is given by

f ′(x) = 6x2 + 4x + 6 (2.7)

then this is the technique to compute the original function:

1. Take each term of (2.7) in turn and replace axn by 1
n+1ax

n+1.
2. Therefore 6x2 becomes 2x3.
3. 4x becomes 2x2.
4. 6 becomes 6x .
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Fig. 2.9 A sine curve over the range 0◦ to 360◦

5. Introduce a constant C which might have been present in the original function.
6. Collecting up the terms we have

f (x) = 2x3 + 2x2 + 6x + C.

This process is called integrating a function. Thus calculus is about differentiating
and integrating functions, which sounds rather easy, and in some cases it is true. The
problem is the breadth of functions that arise in mathematics, physics, geometry,
cosmology, science, etc. For example, how do we differentiate or integrate

f (x) = sin x + x
cosh x

cos2 x − ln x3
?

Personally, I don’t know, but hopefully, there is a solution somewhere.

2.4.2 Differentiating Periodic Functions

Now let’s try differentiating the sine function by sampling its slope at different points.
Figure 2.9 shows a sine curve over the range 0◦ to 360◦. Strictly speaking we should
be using radians, which implies that the range is 0 to 2π . However, when the scales
for the vertical and horizontal axes are equal, the slope is 1 at 0◦ and 360◦. The slope
is zero at 90◦ and 270◦, and −1 at 180◦. Figure 2.10 plots these slope values against
x and connects them with straight lines.

It should be clear from Fig. 2.9 that the slope of the sine wave does not change
linearly as shown in Fig. 2.10. The slope starts at 1, and for the first 20◦, or so, slowly
falls away, and then collapses to zero, as shown in Fig. 2.11, which is a cosine wave
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Fig. 2.10 Sampled slopes of a sine curve
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Fig. 2.11 The slope of a sine curve is a cosine curve

form. Thus, we can guess that differentiating a sine function creates a cosine function

f (x) = sin x

f ′(x) = cos x .

Consequently, integrating a cosine function creates a sine function. Now this analysis
is far from rigorous, but we will shortly provide one. Before moving on, let’s perform
a similar ‘guesstimate’ for the cosine function.

Figure 2.11 shows a cosine curve, where the slope is zero at 0◦, 180◦ and 360◦.
The slope equals−1 at 90◦, and equals 1 at 270◦. Figure 2.12 plots these slope values
against x and connects them with straight lines. Using the same argument for the
sine curve, this can be represented by f ′(x) = − sin x as shown in Fig. 2.13.
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Fig. 2.13 The slope of a cosine curve is a negative sine curve

Summarising, we have

f (x) = sin x

f ′(x) = cos x

f (x) = cos x

f ′(x) = − sin x

which illustrates the intimate relationship between the sine and cosine functions.
Just in case you are suspicious of these results, they can be confirmed by differ-

entiating the power series for the sine and cosine functions. For example, the sine
and cosine functions are represented by the series
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sin x = x − x3

3! + x5

5! − x7

7! + · · ·

cos x = 1 − x2

2! + x4

4! − x6

6! + · · ·

and differentiating the sine function using the above technique for a polynomial we
obtain

f ′(x) = 1 − x2

2! + x4

4! − x6

6! + · · ·

which is the cosine function. Similarly, differentiating the cosine function, we obtain

f ′(x) = −
(
x − x3

3! + x5

5! − x7

7! + · · ·
)

which is the negative sine function.
Finally, there is a series that when differentiated, remains the same

f (x) = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

f ′(x) = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

which is ex , and has a rate of growth equal to itself!

2.5 Summary

We have covered quite a lot in this chapter, but hopefully it was not too challenging,
bearing in mind the subject. We have covered the nature of simple functions and
noted that calculus is interested in a function’s rate of change, relative to its indepen-
dent variable. Differentiating a function creates another function that describes the
function’s rate of change relative to its independent variable. For simple polynomials,
this is a trivial algebraic operation, which can even be undertaken by software. For
trigonometric functions, there is a direct relationship between the sine and cosine
functions.

Integration is the reverse process, where the original function is derived from a
knowledge of the differentiated form. Much more will be said of this process in later
chapters.



Chapter 3
Limits and Derivatives

3.1 Introduction

This chapter covers the origins of calculus, the idea of infinitesimals, and the concept
of a function’s limiting value. It also shows the graphical interpretation of a derivative,
the substitution of derivative for differential coefficient, and some initial ideas of
integration. It concludes with some worked examples.

3.2 Some History of Calculus

Some quantities, such as the area of a circle or an ellipse, cannot be written precisely,
as they incorporate π , which is irrational, but also transcendental, i.e. not a root
of a single-variable polynomial whose coefficients are all integers. However, an
approximate value can be obtained by devising a definition that includes a parameter
that is made infinitesimally small. The techniques of limits and infinitesimals have
been used in mathematics for over two-thousand years, and paved the way towards
today’s calculus.

Although the principles of integral calculuswere being used byArchimedes (287–
212 B.C.) to compute areas, volumes and centres of gravity, it was Isaac Newton and
Gottfried Leibniz who are regarded as the true inventors of modern calculus. Leibniz
published his results in 1684, followed by Newton in 1704. However, Newton had
been using his Calculus of fluxions as early as 1665. Newton used two names to
describe his calculus: fluent and fluxion. Today, these have been replaced by function
and derivative, respectively, which were developed by Leibniz.

Up until recently, calculus was described using infinitesimals, which are numbers
so small, they can be ignored in certain products. However, Leibniz’s infinitesimals,
no matter how small they were, did not belong to an axiomatic mathematical sys-
tem, and eventually, Augustin-Louis Cauchy and Karl Weierstrass showed how they
could be replaced by limits. In this chapter I show how limits are used to measure a
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function’s rate of change accurately, instead of using intelligent guess work. Limiting
conditions also permit us to explore the behaviour of functions that are discontinuous
for particular values of their independent variable. For example, rational functions are
often sensitive to a specific value of their variable, which gives rise to themeaningless
condition 0/0. Limits permit us to handle such conditions.

We continue to apply limiting conditions to identify a function’s derivative, which
provides a powerful analytical tool for computing the derivative of function sums,
products and quotients.Webegin this chapter by exploring small numerical quantities
and how they can be ignored if they occur in certain products, but remain important
in quotients.

3.3 Small Numerical Quantities

The adjective small is a relative term, and requires clarification in the context of
numbers. For example, if numbers are in the hundreds, and also contain some decimal
component, then it seems reasonable to ignore digits after the 3rd decimal place for
any quick calculation. For instance

100.000003 × 200.000006 ≈ 20, 000

and ignoring the decimal part has no significant impact on the general accuracy of
the answer, which is measured in tens of thousands.

To develop an algebraic basis for this argument let’s divide a number into two
parts: a primary part x , and some very small secondary part δx (pronounced delta x).
In one of the above numbers, x = 100 and δx = 0.000003. Given two such numbers,
x1 and y1, their product is given by

x1 = x + δx

y1 = y + δy

x1y1 = (x + δx)(y + δy)

= xy + x · δy + y · δx + δx · δy.

Using x1 = 100.000003 and y1 = 200.000006 we have

x1y1 = 100 × 200 + 100 × 0.000006 + 200 × 0.000003 + 0.000003 × 0.000006

= 20, 000 + 0.0006 + 0.0006 + 0.00000000018

= 20, 000 + 0.0012 + 0.00000000018

= 20, 000.00120000018

where it is clear that the products x · δy, y · δx and δx · δy contribute very little to
the result. Furthermore, the smaller we make δx and δy, their contribution becomes
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even more insignificant. Just imagine if we reduce δx and δy to the level of quantum
phenomenon, i.e. 10−34, then their products play no part in every-day numbers. But
there is no need to stop there, we can make δx and δy as small as we like, e.g.
10−100,000,000,000. Later on we employ the device of reducing a number towards zero,
such that any products involving them can be dropped from any calculation.

Even though the product of two numbers less than zero is an even smaller number,
care must be taken with their quotients. For example, in the above scenario, where
δy = 0.000006 and δx = 0.000003

δy

δx
= 0.000006

0.000003
= 2

so we must watch out for such quotients.
From now on I will employ the term derivative to describe a function’s rate of

change relative to its independent variable. Iwill nowdescribe twoways of computing
a derivative, and provide a graphical interpretation of the process. The first way uses
simple algebraic equations, and the second way uses a functional representation.
Needless to say, they both give the same result.

3.4 Equations and Limits

3.4.1 Quadratic Function

Here is a simple algebraic approach using limits to compute the derivative of a
quadratic function. Starting with the function y = x2, let x change by δx , and let δy
be the corresponding change in y. We then have

y = x2

y + δy = (x + δx)2

= x2 + 2x · δx + (δx)2

δy = 2x · δx + (δx)2.

Dividing throughout by δx we have

δy

δx
= 2x + δx .

The ratio δy/δx provides a measure of how fast y changes relative to x , in increments
of δx . For example, when x = 10

δy

δx
= 20 + δx
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and if δx = 1, then δy/δx = 21. Equally, if δx = 0.001, then δy/δx = 20.001. By
making δx smaller and smaller, δy becomes equally smaller, and their ratio converges
towards a limiting value of 20.

In this case, as δx approaches zero, δy/δx approaches 2x , and is written

lim
δx→0

δy

δx
= 2x .

Thus in the limit, when δx = 0, we create a condition where δy is divided by zero—
which is a meaningless operation. However, if we hold onto the idea of a limit,
as δx → 0, it is obvious that the quotient δy/δx is converging towards 2x . The
subterfuge employed to avoid dividing by zero is to substitute another quotient dy/dx
to stand for the limiting condition

dy

dx
= lim

δx→0

δy

δx
= 2x .

dy/dx (pronounced dee y dee x) is the derivative of y = x2, i.e. 2x . For instance,
when x = 0, dy/dx = 0, and when x = 3, dy/dx = 6. The derivative dy/dx , is the
instantaneous rate at which y changes relative to x .

If we had represented this equation as a function

f (x) = x2

then dy/dx is another way of expressing f ′(x).
Now let’s introduce two constants into the original quadratic equation to see what

effect, if any, they have on the derivative. We begin with

y = ax2 + b

and increment x and y

y + δy = a(x + δx)2 + b

= a
(
x2 + 2x · δx + (δx)2

) + b

δy = a
(
2x · δx + (δx)2

)
.

Dividing throughout by δx

δy

δx
= a(2x + δx)

and the derivative is

dy

dx
= lim

δx→0

δy

δx
= 2ax .
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Thus we see the added constant b disappears (i.e. because it does not change), whilst
the multiplied constant a is transmitted through to the derivative.

3.4.2 Cubic Equation

Now let’s repeat the above analysis for y = x3

y = x3

y + δy = (x + δx)3

= x3 + 3x2 · δx + 3x · (δx)2 + (δx)3

δy = 3x2 · δx + 3x · (δx)2 + (δx)3.

Dividing throughout by δx

δy

δx
= 3x2 + 3x · δx + (δx)2.

Employing the idea of infinitesimals, one would argue that any term involving δx
can be ignored, because its numerical value is too small to make any contribution
to the result. Similarly, using the idea of limits, one would argue that as δx is made
increasingly smaller, towards zero, any term involving δx rapidly disappears.

Using limits, we have

lim
δx→0

δy

δx
= 3x2

or

dy

dx
= lim

δx→0

δy

δx
= 3x2.

We could also show that if y = ax3 + b then

dy

dx
= 3ax2.

This incremental technique can be used to compute the derivative of all sorts of
functions.

Ifwe continue computing the derivatives of higher-order polynomials,we discover
the following pattern
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y = x2,
dy

dx
= 2x

y = x3,
dy

dx
= 3x2

y = x4,
dy

dx
= 4x3

y = x5,
dy

dx
= 5x4.

Clearly, the rule is

y = xn,
dy

dx
= nxn−1

but we need to prove why this is so. The solution is found in the binomial expansion
for (x + δx)n , which can be divided into three components: decreasing terms of x ,
increasing terms of δx , and the terms of Pascal’s triangle.

For example, the individual terms of (x + δx)4 are

Decreasing terms of x : x4 x3 x2 x1 x0

Increasing terms of δx : (δx)0 (δx)1 (δx)2 (δx)3 (δx)4

The terms of Pascal’s triangle : 1 4 6 4 1

which when combined produce

x4 + 4x3 · δx + 6x2 · (δx)2 + 4x · (δx)3 + (δx)4.

Thus when we begin an incremental analysis

y = x4

y + δy = (x + δx)4

= x4 + 4x3 · δx + 6x2 · (δx)2 + 4x · (δx)3 + (δx)4

δy = 4x3 · δx + 6x2 · (δx)2 + 4x · (δx)3 + (δx)4.

Dividing throughout by δx

δy

δx
= 4x3 + 6x2 · δx + 4x · (δx)2 + (δx)3.

In the limit, as δx slides to zero, only the second term of the original binomial
expansion remains

4x3.
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The second term of the binomial expansion (1 + δx)n is always of the form

nxn−1

which is the proof we require.

3.4.3 Functions and Limits

In order to generalise the above findings, let’s approach the above analysis using
a function of the form y = f (x). We begin by noting some arbitrary value of its
independent variable and note the function’s value. In general terms, this is x and
f (x) respectively. We then increase x by a small amount δx , to give x + δx , and
measure the function’s value again: f (x + δx). The function’s change in value is
f (x + δx) − f (x), whilst the change in the independent variable is δx . The quotient
of these two quantities approximates to the function’s rate of change at x

f (x + δx) − f (x)

δx
. (3.1)

By making δx smaller and smaller towards zero, (3.1) converges towards a limiting
value expressed as

dy

dx
= lim

δx→0

f (x + δx) − f (x)

δx
(3.2)

which can be used to compute all sorts of functions. For example, to compute the
derivative of sin x we proceed as follows

y = sin x

y + δy = sin(x + δx).

Using the identity sin(A + B) = sin A · cos B + cos A · sin B, we have

y + δy = sin x · cos(δx) + cos x · sin(δx)
δy = sin x · cos(δx) + cos x · sin(δx) − sin x

= sin x · (cos(δx) − 1) + cos x · sin(δx).

Dividing throughout by δx we have

δy

δx
= sin x

δx
(cos(δx) − 1) + sin(δx)

δx
cos x .

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1 (See Appendix A),
and
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dy

dx
= cos x

which confirms our ‘guesstimate’ in Chap. 2.
Before moving on, let’s compute the derivative of cos x .

y = cos x

y + δy = cos(x + δx).

Using the identity cos(A + B) = cos A · cos B − sin A · sin B, we have

y + δy = cos x · cos(δx) − sin x · sin(δx)
δy = cos x · cos(δx) − sin x · sin(δx) − cos x

= cos x · (cos(δx) − 1) − sin x · sin(δx).

Dividing throughout by δx we have

δy

δx
= cos x

δx
(cos(δx) − 1) − sin(δx)

δx
sin x .

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1 (See Appendix A),
and

dy

dx
= − sin x

which also confirms our ‘guesstimate’. We will continue to employ this strategy to
compute the derivatives of other functions later on.

3.4.4 Graphical Interpretation of the Derivative

To illustrate this limiting process graphically, consider the scenario in Fig. 3.1 where
the sample point is P . In this case the function is f (x) = x2 and P’s coordinates
are (x, x2). We identify another point R, displaced δx to the right of P , with coor-
dinates (x + δx, x2). The point Q on the curve, vertically above R, has coordinates(
x + δx, (x + δx)2

)
. When δx is relatively small, the slope of the line PQ approxi-

mates to the function’s rate of change at P , which is the graph’s slope. This is given
by
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Fig. 3.1 Sketch of f (x) = x2

slope = QR

PR
= (x + δx)2 − x2

δx

= x2 + 2x · δx + (δx)2 − x2

δx

= 2x · δx + (δx)2

δx
= 2x + δx .

We can now reason that as δx is made smaller and smaller, Q approaches P , and
slope becomes the graph’s slope at P . This is the limiting condition

dy

dx
= lim

δx→0
(2x + δx) = 2x .

Thus, for any point with coordinates (x, x2), the slope is given by 2x . For example,
when x = 0, the slope is 0, and when x = 4, the slope is 8, etc.

3.4.5 Derivatives and Differentials

Given a function f (x), f ′(x) is the instantaneous change of f (x) for some x , and
is called the first derivative of f (x). For linear functions, this is constant, for other
functions, the derivative’s value changes with x and is represented by a function.

We also employ the individual elements dy and dx which are called differentials,
and historically, the derivative used to be called the differential coefficient, but has
now been dropped in favour of derivative. One can see how the idea of a differential



28 3 Limits and Derivatives

coefficient arose if we write, for example

dy

dx
= 3x

as

dy = dy

dx
dx

dy = 3x dx .

In this case, 3x acts like a coefficient of dx , nevertheless, we will continue with the
idea that the derivative represents a limiting condition.

For example, given

y = 6x3 − 4x2 + 8x + 6

then

dy

dx
= 18x2 − 8x + 8

which is the instantaneous change of y relative to x .When x = 1, dy/dx = 18 − 8 +
8 = 18, which means that y is changing 18 times faster than x . Using differentials,
we can write

dy = dy

dx
dx

= 18 dx

if we let dx = 1, then

dy = 18.

Gottfried Leibniz developed what has become known as Leibniz notation for
differentiation, where

dy

dx

is a composite definition for a derivative. Leibniz also treated them individually as
infinitesimals, which is no longer the case. It was the Italian mathematician and
astronomer Joseph-Louis Lagrange (1736–1813) who developed the prime mark
notation f ′(x) to denote the first derivative, with extra primemarks for higher deriva-
tives.

Personally, I find that separating dy/dx into dy and dx has useful pedagogic
uses, even if it is not mathematically correct! If you wish to discover more about
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this subject, then investigate Wikipedia (https://en.wikipedia.org/wik/Differential_
of_a_function). While you are about it, investigate the history of infinitesimals on
Wikipedia (https://en.wikipedia.org/wik/Infinitesimal).

3.4.6 Integration and Antiderivatives

If it is possible to differentiate a function, it seems reasonable to assume the existence
of an inverse process to convert a derivative back to its associated function. Fortu-
nately, this is the case, but there are some limitations. This inverse process is called
integration and reveals the antiderivative of a function.Many functions can be paired
together in the form of a derivative and an antiderivative, such as 2x with x2, and
cos x with sin x . However, there are many functions where it is impossible to derive
its antiderivative in a sybolic form. For example, there is no simple, finite functional
antiderivative for sin(x2) or (sin x)/x . To understand integration, let’s begin with a
simple derivative.

If we are given

dy

dx
= 18x2 − 8x + 8

it is not too difficult to reason that the original function could have been

y = 6x3 − 4x2 + 8x .

However, it could have also been

y = 6x3 − 4x2 + 8x + 2

or

y = 6x3 − 4x2 + 8x + 20

or with any other constant. Consequently, when integrating the original function, the
integration process has to include a constant

y = 6x3 − 4x2 + 8x + C.

The value of C is not always required, but it can be determined if we are given
some extra information, such as y = 10 when x = 0, then C = 10.

The notation for integration employs a curly ‘S’ symbol
∫
, which may seem

strange, but is short for sum and will be explained later. So, starting with

dy

dx
= 18x2 − 8x + 8

https://en.wikipedia.org/wik/Differential_of_a_function
https://en.wikipedia.org/wik/Differential_of_a_function
https://en.wikipedia.org/wik/Infinitesimal
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and integrate both sides, where the left-hand side becomes y, and the right-hand-side
becomes

y =
∫

(18x2 − 8x + 8) dx

although brackets are not always used

y =
∫

18x2 − 8x + 8 dx .

This equation reads: ‘y is the integral of 18x2 − 8x + 8dee x.’ Thedx is a differential
and derives from the application of calculus to the calculation of areas under a graph.
It also reminds us that x is the independent variable (https://en.wikipedia.org/wik/
Integral). In this case we can write the answer

dy

dx
= 18x2 − 8x + 8

y =
∫

18x2 − 8x + 8 dx

= 6x3 − 4x2 + 8x + C

where C is some constant.
Another example

dy

dx
= 6x2 + 10x

y =
∫

6x2 + 10x dx

= 2x3 + 5x2 + C.

Finally,

dy

dx
= 1

y =
∫

1 dx

= x + C.

The antiderivatives for the sine and cosine functions are written
∫

sin x dx = − cos x + C
∫

cos x dx = sin x + C

https://en.wikipedia.org/wik/Integral
https://en.wikipedia.org/wik/Integral
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which you may think obvious, as we have just computed their derivatives. How-
ever, the reason for introducing integration alongside differentiation, is to make you
familiar with the notation, and memorise the two distinct processes, as well as lay
the foundations for later chapters.

3.5 Summary

This chapter has shown how limits provide a useful tool for computing a function’s
derivative. Basically, the function’s independent variable is disturbed by a very small
quantity, typically δx , which alters the function’s value. The quotient

f (x + δx) − f (x)

δx

is a measure of the function’s rate of change relative to its independent variable. By
making δx smaller and smaller towards zero, we converge towards a limiting value
called the function’s derivative. Unfortunately, not all functions possess a derivative,
therefore we can only work with functions that can be differentiated. In the next
chapter we discover how to differentiate different types of functions and function
combinations.

We have also come across integration—the inverse of differentiation—and as we
compute the derivatives of other functions, the associated antiderivative will also be
included.

3.6 Worked Examples

3.6.1 Limiting Value of a Quotient 1

Find the limiting value of x8+x2

3x2−x3 , as x → 0.

Solution
First, we simplify the quotient by dividing the numerator and denominator by x2

x6 + 1

3 − x
.

We can now reason that as x → 0, (x6 + 1) → 1 and (3 − x) → 3, therefore

lim
x→0

x8 + x2

3x2 − x3
= 1

3

which is confirmed by the function’s graph in Fig. 3.2.
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Fig. 3.2 Graph of f (x) = x8+x2

3x2−x3

3.6.2 Limiting Value of a Quotient 2

Find the limiting value of x2−1
3x2−2x−1 , as x → 0.

Solution
First, we simplify the numerator and denominator

lim
x→0

(x + 1)(x − 1)

(3x + 1)(x − 1)
= lim

x→0

x + 1

3x + 1
.

We can now reason that as x → 0, (x + 1) → 1 and (3x + 1) → 1, therefore

lim
x→0

x2 − 1

3x2 − 2x − 1
= 1

which is confirmed by the function’s graph in Fig. 3.3.

3.6.3 Derivative

Differentiate y = 3x100 − 4.

Solution
Using dy

dx = nxn−1

dy

dx
= 300x99.
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Fig. 3.3 Graph of f (x) = x2−1
3x2−2x−1

3.6.4 Slope of a Polynomial

Find the slope of the graph y = 3x2 + 2x when x = 2.

Solution

dy

dx
= 6x + 2.

When x = 2

dy

dx
= 12 + 2 = 14

which is the slope.

3.6.5 Slope of a Periodic Function

Find the slope of y = 6 sin x when x = π/3.

Solution

dy

dx
= 6 cos x .

When x = π/3
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dy

dx
= 6 cos

(
π
3

)

= 6 × 0.5 = 3.

3.6.6 Integrate a Polynomial

Integrate dy/dx = 5x2 + 4x .

Solution

dy

dx
= 5x2 + 4x dx

y =
∫

5x2 + 4x dx

= 5
3 x

3 + 2x2 + C.

References
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Chapter 4
Derivatives and Antiderivatives

4.1 Introduction

Mathematical functions come in all sorts of shapes and sizes. Sometimes they are
described explicitly where y equals some function of its independent variable(s),
such as

y = x sin x

or implicitly where y, and its independent variable(s) are part of an equation, such
as

10 = x2 + y2.

A function may reference other functions, such as

y = sin(cos2 x)

or

y = x sin x .

There is no limit to theway functions can be combined, whichmakes it impossible
to cover every eventuality. Nevertheless, in this chapter we explore some useful
combinations that prepare us for any future surprises.

In the first sectionwe examine how to differentiate different types of functions, that
include sums, products and quotients, which are employed later on to differentiate
specific functions such as trigonometric, logarithmic and hyperbolic.Where relevant,
I include the appropriate antiderivative to complement its derivative.
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4.2 Differentiating Groups of Functions

So far, we have only considered simple individual functions, which unfortunately, do
not represent the equations found in mathematics, science, physics or even computer
graphics. In general, the functions we have to differentiate include sums of functions,
functions of functions, function products and function quotients. Let’s explore these
four scenarios.

4.2.1 Sums of Functions

A function normally computes a numerical value from its independent variable(s),
and if it can be differentiated, its derivative generates another function with the same
independent variable. Consequently, if a function contains two functions of x , such
as u and v, where

y = u(x) + v(x)

then

dy

dx
= du

dx
+ dv

dx

where we just sum their individual derivatives.
We can prove this by the following argument. Let x change by δx , which creates

a corresponding change of δy in y

y = u(x) + v(x)

y + δy = u(x + δx) + v(x + δx)

δy = u(x + δx) + v(x + δx) − (u(x) + v(x))

= u(x + δx) − u(x) + v(x + δx) − v(x)

δy

δx
= u(x + δx) − u(x)

δx
+ v(x + δx) − v(x)

δx
dy

dx
= lim

δx→0

u(x + δx) − u(x)

δx
+ lim

δx→0

v(x + δx) − v(x)

δx
dy

dx
= du

dx
+ dv

dx
.

This argument can be generalised to any number of functions. For example, let
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u(x) = 2x6

v(x) = 3x5

y = u(x) + v(x)

du

dx
= 12x5

dv

dx
= 15x4

then

dy

dx
= 12x5 + 15x4.

Similarly, let

u(x) = 2x6

v(x) = sin x

w(x) = cos x

y = u(x) + v(x) + w(x)

y = 2x6 + sin x + cos x

then

dy

dx
= 12x5 + cos x − sin x .

Figure 4.1 shows a graph of y = 2x6 + sin x + cos x and its derivative y = 12x5 +
cos x − sin x .

Differentiating such functions is relatively easy, so, too, is integrating. Given

dy

dx
= du

dx
+ dv

dx

then

y =
∫

u(x) dx +
∫

v(x) dx

=
∫

u(x) + v(x) dx

and given

dy

dx
= 12x5 + cos x − sin x
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Fig. 4.1 Graph of y = 2x6 + sin x + cos x and its derivative, y = 12x5 + cos x − sin x (dashed)

then

y =
∫

12x5 dx +
∫

cos x dx −
∫

sin x dx

= 2x6 + sin x + cos x + C.

4.2.2 Function of a Function

One of the advantages of modern mathematical notation is that it lends itself to
unlimited elaboration without introducing any new symbols. For example, the poly-
nomial 3x2 + 2x is easily raised to some power by adding brackets and an appropriate
index: (3x2 + 2x)2. Such an object is a function of a function, because the function
3x2 + 2x is subjected to a further squaring function. The question now is: how are
such functions differentiated? Well, the answer is relatively easy, but does introduce
some new ideas.

Imagine that person A swims twice as fast as person B, who in turn, swims three
times as fast as person C. It should be obvious that person A swims six (2 × 3)
times faster than person C. This product rule, also applies to derivatives, because if
y changes twice as fast as u, i.e. dy

du = 2, and u changes three times as fast as x , i.e.
du
dx = 3, then y changes six times as fast as x

dy

dx
= dy

du
· du
dx

.

To differentiate
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y = (3x2 + 2x)2

we substitute

u = 3x2 + 2x

then

y = u2

and

dy

du
= 2u

= 2(3x2 + 2x)

= 6x2 + 4x .

Next, we require du
dx

u = 3x2 + 2x

du

dx
= 6x + 2

therefore, we can write

dy

dx
= dy

du
· du
dx

= (6x2 + 4x)(6x + 2)

= 36x3 + 36x2 + 8x .

This result is easily verified by expanding the original polynomial and differentiating

y = (3x2 + 2x)2

= (3x2 + 2x)(3x2 + 2x)

= 9x4 + 12x3 + 4x2

dy

dx
= 36x3 + 36x2 + 8x .

Figure 4.2 shows the graph of y = (3x2 + 2x)2 and its derivative, dy
dx = 36x3 +

36x2 + 8x .
To differentiate y = sin(ax), which is a function of a function, we proceed as

follows
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Fig. 4.2 Graph of y = (3x2 + 2x)2 and its derivative, dy
dx = 36x3 + 36x2 + 8x (dashed)

y = sin(ax)

substitute u for ax

y = sin u

dy

du
= cos u

= cos(ax).

Next, we require du
dx

u = ax

du

dx
= a

therefore, we can write

dy

dx
= dy

du
· du
dx

= cos(ax) · a
= a cos(ax).

Consequently, given

dy

dx
= cos(ax)
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then

y =
∫

cos(ax) dx

= 1
a sin(ax) + C.

Similarly, given

dy

dx
= sin(ax)

then

y =
∫

sin(ax) dx

= − 1
a cos(ax) + C.

The equation y = sin(x2) is also a function of a function, and is differentiated as
follows

y = sin(x2)

substitute u for x2

y = sin u

dy

du
= cos u

= cos(x2).

Next, we require du
dx

u = x2

du

dx
= 2x

therefore, we can write

dy

dx
= dy

du
· du
dx

= cos(x2) · 2x
= 2x cos(x2).

Figure 4.3 shows a graph of y = sin(x2) and its derivative, dy
dx = 2x cos(x2).
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Fig. 4.3 Graph of y = sin(x2) and its derivative, dy
dx = 2x cos(x2) (dashed)

In general, there can be any depth of functions within a function, which permits
us to write the chain rule for derivatives

dy

dx
= dy

du
· du
dv

· dv

dw
· dw
dx

4.2.3 Function Products

Function products occur frequently in every-day mathematics, and involve the prod-
uct of two, or more functions. Here are three simple examples

y = (3x2 + 2x)(2x2 + 3x)

y = sin x · cos x
y = x2 sin x .

When it comes to differentiating function products of the form

y = uv

it seems natural to assume that

dy

dx
= du

dx
· dv
dx

(4.1)

which, unfortunately, is incorrect. For example, in the case of
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y = (3x2 + 2x)(2x2 + 3x)

differentiating using (4.1) produces

dy

dx
= (6x + 2)(4x + 3)

= 24x2 + 26x + 6.

However, if we expand the original product and then differentiate, we obtain

y = (3x2 + 2x)(2x2 + 3x)

= 6x4 + 13x3 + 6x2

dy

dx
= 24x3 + 39x2 + 12x

which is correct, but differs from the first result. Obviously, (4.1) must be wrong. So
let’s return to first principles and discover the correct rule.

So far, we have incremented the independent variable—normally x—by δx to
discover the change in y—normally δy. Next, we see how the same notation can be
used to increment functions.

Given the following functions of x , u and v, where

y = uv

if x increases by δx , then there will be corresponding changes of δu, δv and δy, in
u, v and y respectively. Therefore

y + δy = (u + δu)(v + δv)

= uv + u · δv + v · δu + δu · δv

δy = u · δv + v · δu + δu · δv.

Dividing throughout by δx we have

δy

δx
= u

δv

δx
+ v

δu

δx
+ δu

δv

δx
.

In the limiting condition

dy

dx
= lim

δx→0

(
u

δv

δx

)
+ lim

δx→0

(
v
δu

δx

)
+ lim

δx→0

(
δu

δv

δx

)
.

As δx → 0, then δu → 0 and
(
δu δv

δx

) → 0. Therefore
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Fig. 4.4 Graph of y = (3x2 + 2x)(2x2 + 3x) and its derivative, dy
dx = 24x3 + 39x2 + 12x

(dashed)

dy

dx
= u

dv

dx
+ v

du

dx
. (4.2)

Using (4.2) for the original function product

u = 3x2 + 2x

v = 2x2 + 3x

y = uv

du

dx
= 6x + 2

dv

dx
= 4x + 3

dy

dx
= u

dv

dx
+ v

du

dx
= (3x2 + 2x)(4x + 3) + (2x2 + 3x)(6x + 2)

= (12x3 + 17x2 + 6x) + (12x3 + 22x2 + 6x)

= 24x3 + 39x2 + 12x

which agrees with our previous prediction. Figure 4.4 shows the graph of y = (3x2 +
2x)(2x2 + 3x) and its derivative, dy

dx = 24x3 + 39x2 + 12x .
The equation y = sin x · cos x contains the product of two functions and is dif-

ferentiated using (4.2) as follows
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y = sin x · cos x
u = sin x

du

dx
= cos x

v = cos x

dv

dx
= − sin x

dy

dx
= u

dv

dx
+ v

du

dx
= sin x(− sin x) + cos x · cos x
= cos2 x − sin2 x

= cos(2x).

Anotherway of differentiating the function product, is by using the identity sin(2x) =
2 sin x · cos x , where we can rewrite the original function as

y = sin x · cos x
= 1

2 sin(2x)

dy

dx
= cos(2x)

which confirms the above derivative. Now let’s consider the antiderivative of cos(2x).
Given

dy

dx
= cos(2x)

then

y =
∫

cos(2x) dx

= 1
2 sin(2x) + C

= sin x · cos x + C.

Figure 4.5 shows the graph of y = sin x · cos x and its derivative, dy
dx = cos(2x).

4.2.4 Function Quotients

Next, we investigate how to differentiate the quotient of two functions. We begin
with two functions of x , u and v, where
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Fig. 4.5 Graph of y = sin x · cos x and its derivative, dy
dx = cos 2x (dashed)

y = u

v

which makes y also a function of x . We now increment x by δx and measure the
change in u as δu, and the change in v as δv. Consequently, the change in y is δy

y + δy = u + δu

v + δv

δy = u + δu

v + δv
− u

v

= v(u + δu) − u(v + δv)

v(v + δv)

= v · δu − u · δv

v(v + δv)
.

Dividing throughout by δx we have

δy

δx
=

v
δu

δx
− u

δv

δx
v(v + δv)

.

As δx → 0, δu, δv and δy also tend towards zero, and the limiting conditions are

dy

dx
= lim

δx→0

δy

δx

v
du

dx
= lim

δx→0
v
δu

δx
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u
dv

dx
= lim

δx→0
u

δv

δx
v2 = lim

δx→0
v(v + δv)

therefore

dy

dx
=

v
du

dx
− u

dv

dx
v2

.

As an example, let’s differentiate

y = x3 + 2x2 + 3x + 6

x2 + 3
.

Substitute u = x3 + 2x2 + 3x + 6 and v = x2 + 3, then

du

dx
= 3x2 + 4x + 3

dv

dx
= 2x

dy

dx
= (x2 + 3)(3x2 + 4x + 3) − (x3 + 2x2 + 3x + 6)(2x)

(x2 + 3)2

= (3x4 + 4x3 + 3x2 + 9x2 + 12x + 9) − (2x4 + 4x3 + 6x2 + 12x)

x4 + 6x2 + 9

= x4 + 6x2 + 9

x4 + 6x2 + 9
= 1

which is not a surprising result when one sees that the original function has the factors

y = (x2 + 3)(x + 2)

x2 + 3
= x + 2

whose derivative is 1. Figure 4.6 shows a graph of y = (x2 + 3)(x + 2)/(x2 + 3)
and its derivative, dy

dx = 1.

4.2.5 Summary: Groups of Functions

Table 4.1 shows the rules for differentiating function sums, products, quotients and
function of a function.
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Fig. 4.6 Graph of y = (x2 + 3)(x + 2)/(x2 + 3) and its derivative, dy
dx = 1 (dashed)

Table 4.1 Rules for differentiating function combinations

Function dy/dx

y = u(x) ± v(x)
du

dx
± dv

dx

y = u(v(x))
dy

du
· du
dx

y = u(x) · v(x) u
dv

dx
+ v

du

dx

y = u(x)/v(x)
v
du

dx
− u

dv

dx
v2

4.3 Differentiating Implicit Functions

Functions conveniently fall into two types: explicit and implicit. On the one hand, an
explicit function describes a function in terms of its independent variable(s), such as

y = a sin x + b cos x

where the value of y is determined by the values of a, b and x . On the other hand,
an implicit function, such as

x2 + y2 = 25

combines the function’s name with its definition. In this case, it is easy to untangle
the explicit form
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y =
√
25 − x2.

So far, we have only considered differentiating explicit functions, so now let’s exam-
ine how to differentiate implicit functions. Let’s begin with a simple explicit function
and differentiate it as it is converted into its implicit form.

Let

y = 2x2 + 3x + 4 (4.3)

differentiating (4.3)

dy

dx
= 4x + 3.

Let’s start the conversion into the implicit form by bringing the constant 4 over to
the left-hand side of (4.3)

y − 4 = 2x2 + 3x (4.4)

differentiating (4.4)

dy

dx
= 4x + 3.

Bringing 4 and 3x across to the left-hand side of (4.3)

y − 3x − 4 = 2x2 (4.5)

differentiating (4.5)

dy

dx
− 3 = 4x

dy

dx
= 4x + 3. (4.6)

Finally, we have

y − 2x2 − 3x − 4 = 0 (4.7)

differentiating (4.7)

dy

dx
− 4x − 3 = 0

dy

dx
= 4x + 3
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which seems straight forward.
The reason for working through this example is to remind us that when y is differ-

entiated we get dy/dx . Consequently, the following examples should be understood

y + sin x + 4x = 0

dy

dx
+ cos x + 4 = 0

dy

dx
= − cos x − 4.

y + x2 − cos x = 0

dy

dx
+ 2x + sin x = 0

dy

dx
= −2x − sin x .

But how do we differentiate y2 + x2 = r2? Well, the important difference between
this implicit function and previous functions, is that it involves a function of a func-
tion. y is not only a function of x , but is squared, which means that we must employ
the chain rule described earlier

dy

dx
= dy

du
· du
dx

.

Therefore, given

y2 + x2 = r2

2y
dy

dx
+ 2x = 0

dy

dx
= −2x

2y

= −x√
r2 − x2

.

This is readily confirmed by expressing the original function in its explicit form and
differentiating

y = (r2 − x2)
1
2

which is a function of a function. Let u = r2 − x2, then

u = r2 − x2

du

dx
= −2x .
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As y = u
1
2 , then

dy

du
= 1

2u
− 1

2

= 1

2u
1
2

= 1

2
√
r2 − x2

.

However

dy

dx
= dy

du
· du
dx

= −2x

2
√
r2 − x2

= −x√
r2 − x2

which agrees with the implicit differentiated form.
As an another example, let’s find dy/dx for

x2 − y2 + 4x = 6y. (4.8)

Differentiating (4.8)

2x − 2y
dy

dx
+ 4 = 6

dy

dx
. (4.9)

Rearranging (4.9)

2x + 4 = 6
dy

dx
+ 2y

dy

dx

= dy

dx
(6 + 2y)

dy

dx
= 2x + 4

6 + 2y
.

If, for example, we have to find the slope of x2 − y2 + 4x = 6y at the point (4, 3),
then we simply substitute x = 4 and y = 3 in dy/dx to obtain the answer 1.
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Finally, let’s differentiate xn + yn = an

xn + yn = an

nxn−1 + nyn−1 dy

dx
= 0

dy

dx
= −nxn−1

nyn−1

dy

dx
= − xn−1

yn−1
.

4.4 Differentiating Exponential and Logarithmic Functions

4.4.1 Exponential Functions

Exponential functions have the form y = ax , where the independent variable is the
exponent. Such functions are used to describe various forms of growth or decay, from
the compound interest law, to the rate at which a cup of tea cools down. One special
value of a is 2.718 282.., called e, where

e = lim
n→∞

(
1 + 1

n

)n

.

Raising e to the power x

ex = lim
n→∞

(
1 + x

n

)n

which, using the Binomial Theorem, is

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

If we let

y = ex

= 1 + x + x2

2! + x3

3! + x4

4! + · · ·
dy

dx
= 1 + x + x2

2! + x3

3! + x4

4! + · · ·
= ex
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y = exy = e-x

Fig. 4.7 Graphs of y = ex and y = e−x

which is itself. Figure 4.7 shows graphs of y = ex and y = e−x .
Now let’s differentiate y = ax . We know from the rules of logarithms that

log xn = n log x

therefore, given

y = ax

then taking natural logarithms

ln y = ln ax = x ln a

therefore

y = ex ln a

which means that

ax = ex ln a .

Consequently

d

dx
ax = d

dx
ex ln a

= ex ln a ln a

= ax ln a.
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Similarly, it can be shown that

y = e−x ,
dy

dx
= −e−x

y = eax ,
dy

dx
= aeax

y = e−ax ,
dy

dx
= −ae−ax

y = ax ,
dy

dx
= ax ln a

y = a−x ,
dy

dx
= −a−x ln a.

The exponential antiderivatives are written

∫
ex dx = ex + C

∫
e−x dx = −e−x + C

∫
eax dx = 1

a e
ax + C

∫
e−ax dx = − 1

a e
ax + C

∫
ax dx = 1

ln a
ax + C

∫
a−x dx = − 1

ln a
a−x + C.

4.4.2 Logarithmic Functions

Given a function of the form

y = ln x

then

x = ey .
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Fig. 4.8 Graph of y = ln x and its derivative, dy
dx = 1

x (green)

Therefore

dx

dy
= ey

= x

dy

dx
= 1

x
.

Thus

d

dx
ln x = 1

x
.

Figure 4.8 shows the graph of y = ln x and its derivative, dy
dx = 1

x . Conversely,

∫
1

x
dx = ln |x | + C.

When differentiating logarithms to a base a, we employ the conversion formula

y = loga x

= ln x · loga e

whose derivative is

dy

dx
= 1

x
loga e.

When a = 10, then log10 e = 0.4343... and
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Fig. 4.9 Graph of y = log10 x and its derivative, dy
dx ≈ 0.4343

x (green)

Table 4.2 Rules for differentiating exponential and logarithmic functions

f (x) dy/dx

ex ex

e−x −e−x

eax aeax

e−ax −aeax

ax ax ln a

a−x −a−x ln a

ln x 1
x

loga x
1
x loga e

log10 x ≈ 0.4343
x

d

dx
log10 x ≈ 0.4343

x
.

Figure 4.9 shows the graph of y = log10 x and its derivative, dy
dx ≈ 0.4343

x .

4.4.3 Summary: Exponential and Logarithmic Functions

Table 4.2 shows the rules for differentiating exponential and logarithmic functions,
and Table 4.3 shows the rules for integrating exponential functions.
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Table 4.3 Rules for integrating exponential functions

f (x)
∫

f (x) dx

ex ex + C

e−x −e−x + C

eax 1
a e

ax + C

e−ax − 1
a e

−ax + C

ax 1
ln a a

x + C

a−x − 1
ln a a

−x + C

4.5 Differentiating Trigonometric Functions

So far, we have only differentiated two trigonometric functions: sin x and cos x , so
let’s add tan x , csc x , sec x and cot x to the list, as well as their inverse forms. This
section employs the following trigonometric identities

sec(ax) = 1/ cos(ax)

csc(ax) = 1/ sin(ax)

cot(ax) = 1/ tan(ax)

tan ax = sin(ax)

cos(ax)

1 + tan2(ax) = sec2(ax)

sin2 x + cos2 x = 1.

4.5.1 Differentiating tan

Rather than return to first principles and start incrementing x by δx , we can employ
the rules for differentiating different function combinations andvarious trigonometric
identities. In the case of tan(ax), this can be written as

tan(ax) = sin(ax)

cos(ax)

and employ the quotient rule

dy

dx
=

v
du

dx
− u

dv

dx
v2

.
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Fig. 4.10 Graph of y = tan x and its derivative y = sec2 x (dashed)

Therefore, let u = sin(ax) and v = cos(ax), and

dy

dx
= a cos(ax) · cos(ax) + a sin(ax) · sin(ax)

cos2(ax)

= a(cos2(ax) + sin2(ax))

cos2(ax)

= a

cos2(ax)

= a sec2(ax).

Figure 4.10 shows a graph of y = tan x and its derivative y = sec2 x .
It follows that

∫
sec2(ax) dx = 1

a tan(ax) + C.

4.5.2 Differentiating csc

Using the quotient rule

y = csc(ax)

= 1

sin(ax)
dy

dx
= 0 − a cos(ax)

sin2(ax)
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Fig. 4.11 Graph of y = csc x and its derivative y = − csc x · cot x (dashed)

= −a cos(ax)

sin2(ax)

= − a

sin(ax)
· cos(ax)
sin(ax)

= −a csc(ax) · cot(ax).

Figure 4.11 shows a graph of y = csc x and its derivative y = − csc x · cot x .
It follows that

∫
csc(ax) · cot(ax) dx = − 1

a csc(ax) + C.

4.5.3 Differentiating sec

Using the quotient rule

y = sec(ax)

= 1

cos(ax)
dy

dx
= −(−a sin(ax))

cos2(ax)

= a sin(ax)

cos2(ax)

= a

cos(ax)
· sin(ax)
cos(ax)
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Fig. 4.12 Graph of y = sec x and its derivative y = sec x · tan x (dashed)

= a sec(ax) · tan(ax).

Figure 4.12 shows a graph of y = sec x and its derivative y = − sec x · tan x .
It follows that

∫
sec(ax) · tan(ax) dx = 1

a sec(ax) + C.

4.5.4 Differentiating cot

Using the quotient rule

y = cot(ax)

= 1

tan(ax)

dy

dx
= −a sec2(ax)

tan2(ax)

= − a

cos2(ax)
· cos

2(ax)

sin2(ax)

= − a

sin2(ax)

= −a csc2(ax).

Figure 4.13 shows a graph of y = cot x and its derivative y = − csc2 x .
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Fig. 4.13 Graph of y = cot x and its derivative, dy
dx = − csc2 x (dashed)

It follows that
∫

csc2(ax) dx = − 1
a cot(ax) + C.

4.5.5 Differentiating arcsin, arccos and arctan

These inverse functions are solved using a clever strategy.
Let

x = sin y

then

y = arcsin x .

Differentiating the first expression, we have

dx

dy
= cos y

dy

dx
= 1

cos y

and as sin2 y + cos2 y = 1, then
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cos y =
√
1 − sin2 y =

√
1 − x2

and

d

dx
arcsin x = 1√

1 − x2
.

Using a similar technique, it can be shown that

d

dx
arccos x = − 1√

1 − x2

d

dx
arctan x = 1

1 + x2
.

It follows that
∫

dx√
1 − x2

= arcsin x + C
∫

dx

1 + x2
= arctan x + C.

4.5.6 Differentiating arccsc, arcsec and arccot

Let

y = arccsc x

then

x = csc y

= 1

sin y
dx

dy
= − cos y

sin2 y

dy

dx
= − sin2 y

cos y

= − 1

x2
x√

x2 − 1
d

dx
arccsc x = − 1

x
√
x2 − 1

.
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Table 4.4 The rules for differentiating trigonometric functions

y dy/dx

sin(ax) a cos(ax)

cos(ax) −a sin(ax)

tan(ax) a sec2(ax)

csc(ax) −a csc(ax) · cot(ax)
sec(ax) a sec(ax) · tan(ax)
cot(ax) −a csc2(ax)

Similarly

d

dx
arcsec x = 1

x
√
x2 − 1

d

dx
arccot x = − 1

x2 + 1
.

It follows
∫

dx

x
√
x2 − 1

= arcsec |x | + C
∫

dx

x2 + 1
= − arccot x + C.

4.5.7 Summary: Trigonometric Functions

Table 4.4 shows the rules for differentiating trigonometric functions, and Table 4.5
shows the rules for differentiating inverse trigonometric functions. Table 4.6 shows
the rules for integrating trigonometric functions, and Table 4.7 shows the rules for
integrating inverse trigonometric functions.

4.6 Differentiating Hyperbolic Functions

Trigonometric functions are useful for parametric, circular motion, whereas, hyper-
bolic functions arise in equations for the absorption of light,mechanics and in integral
calculus. Figure 4.14 shows graphs of the unit circle and a hyperbolawhose respective
equations are
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Table 4.5 The rules for differentiating inverse trigonometric functions

y dy/dx

arcsin x
1√

1 − x2

arccos x − 1√
1 − x2

arctan x
1

1 + x2

arccsc x − 1

x
√
x2 − 1

arcsec x
1

x
√
x2 − 1

arccot x − 1

x2 + 1

Table 4.6 The rules for integrating trigonometric functions

f (x)
∫

f (x) dx

sin(ax) − 1
a cos(ax) + C

cos(ax) 1
a sin(ax) + C

sec2(ax) 1
a tan(ax) + C

csc(ax) · cot(ax) − 1
a csc(ax) + C

sec(ax) · tan(ax) 1
a sec(ax) + C

csc2(ax) − 1
a cot(ax) + C

Table 4.7 The rules for integrating inverse trigonometric functions

f (x)
∫

f (x) dx

1√
1 − x2

arcsin x + C

1

1 + x2
arctan x + C

1

x
√
x2 − 1

arcsec |x | + C
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x2 + y2 = 1

x2 − y2 = 1

where the only difference between them is a sign. The parametric form for the
trigonometric, or circular functions and the hyperbolic functions are respectively

sin2 x + cos2 x = 1

cosh2 x − sinh2 x = 1.

The three hyperbolic functions have the following definitions

sinh x = ex − e−x

2

cosh x = ex + e−x

2

tanh x = sinh x

cosh x
= e2x − 1

e2x + 1

and their reciprocals are

cosech x = 1

sinh x
= 2

ex − e−x

sech x = 1

cosh x
= 2

ex + e−x

coth x = 1

tanh x
= e2x + 1

e2x − 1
.

Other useful identities include

sech 2x = 1 − tanh2 x

cosech 2x = coth2 x − 1.

The coordinates of P and Q in Fig. 4.14 are given by P(cos θ, sin θ) and Q(cosh x,
sinh x).

Table 4.8 shows the names of the three hyperbolic functions, their reciprocals and
inverse forms. As these functions are based upon ex and e−x , they are relatively easy
to differentiate, which we now investigate.
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Fig. 4.14 Graphs of the unit circle x2 + y2 = 1 and the hyperbola x2 − y2 = 1

Table 4.8 Hyperbolic function names

Function Reciprocal Inverse function Inverse reciprocal

sinh cosech arsinh arcsch

cosh sech arcosh arsech

tanh coth artanh arcoth

4.6.1 Differentiating sinh, cosh and tanh

The hyperbolic functions are differentiated as follows.
Let

y = sinh x

then

y = ex − e−x

2
dy

dx
= ex + e−x

2
d

dx
sinh x = cosh x .

Figure 4.15 shows a graph of sinh x and its derivative cosh x .
It follows that

∫
cosh x dx = sinh x + C.
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Fig. 4.15 Graph of sinh x and its derivative cosh x (dashed)

Let

y = cosh x

then

y = ex + e−x

2
dy

dx
= ex − e−x

2
d

dx
cosh x = sinh x .

Figure 4.16 shows a graph of cosh x and its derivative sinh x .
It follows that

∫
sinh x dx = cosh x + C.

To differentiate tanh x we employ the quotient rule, and the parametric form of
the hyperbola.

Let

y = tanh x

then

y = sinh x

cosh x
dy

dx
= cosh x · cosh x − sinh x · sinh x

cosh2 x
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Fig. 4.16 Graph of cosh x and its derivative sinh x (dashed)

= cosh2 x − sinh2 x

cosh2 x

= 1

cosh2 x
d

dx
tanh x = sech 2x .

Figure 4.17 shows a graph of tanh x and its derivative sech2 x .

It follows that
∫

sech 2x dx = tanh x + C.

4.6.2 Differentiating cosech, sech and coth

The hyperbolic reciprocals are differentiated as follows.
Let

y = cosech x

then

y = 1

sinh x
dy

dx
= − cosh x

sinh2 x
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Fig. 4.17 Graph of tanh x and its derivative sech2 x (dashed)

= −1

sinh x
· cosh x
sinh x

d

dx
cosech x = − cosech x · coth x .

It follows that
∫

cosech x · coth x dx = − cosech x + C.

Let

y = sech x

then

y = 1

cosh x
dy

dx
= − sinh x

cosh2 x

= −1

cosh x
· sinh x
cosh x

d

dx
sech x = − sech x · tanh x .

It follows that
∫

sech x · tanh x dx = − sech x + C.
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Let

y = coth x

then

y = 1

tanh x

= cosh x

sinh x
dy

dx
= sinh2 x − cosh2 x

sinh2 x

= −1

sinh2 x
d

dx
coth x = − cosech 2x .

It follows that
∫

cosech 2x dx = − coth x + C.

4.6.3 Differentiating arsinh, arcosh and artanh

The inverse hyperbolic functions are differentiated as follows.
Let

y = arsinh x

then

x = sinh y

dx

dy
= cosh y

dy

dx
= 1

cosh y
= 1√

1 + sinh2 y
d

dx
arsinh x = 1√

1 + x2
.

It follows that
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∫
dx√
1 + x2

= arsinh x + C.

Let

y = arcosh x

then

x = cosh y

dx

dy
= sinh y

dy

dx
= 1

sinh y
= 1√

cosh2 y − 1
d

dx
arcosh x = 1√

x2 − 1
.

It follows that
∫

dx√
x2 − 1

= arcosh x + C.

Let

y = artanh x

then

x = tanh y

dx

dy
= sech 2y

dy

dx
= 1

sech 2y
= 1

1 − tanh2 y
d

dx
artanh x = 1

1 − x2
.

It follows that
∫

dx

1 − x2
= artanh x + C.
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4.6.4 Differentiating arcsch, arsech and arcoth

The inverse, reciprocal hyperbolic functions are differentiated as follows.
Let

y = arcsch x

then

x = cosech y = 1

sinh y
dx

dy
= − cosh y

sinh2 y

dy

dx
= − sinh2 y

cosh y
d

dx
arcsch x = − 1

x
√
1 + x2

.

It follows that
∫

dx

x
√
1 + x2

= − arcsch x + C.

Let

y = arsech x

then

x = sech y = 1

cosh y
dx

dy
= − sinh y

cosh2 y

dy

dx
= − cosh2 y

sinh y
d

dx
arsech x = − 1

x
√
1 − x2

.

It follows that
∫

dx

x
√
1 − x2

= − arsech x + C.

Let



4.7 Summary 73

Table 4.9 The rules for differentiating hyperbolic functions

y dy/dx

sinh x cosh x

cosh x sinh x

tanh x sech2 x

cosech x − cosech x · coth x
sech x − sech x · tanh x
coth x − cosech2 x

y = arcoth x

then

x = coth y = cosh y

sinh y

dx

dy
= sinh2 y − cosh2 y

sinh2 y

dy

dx
= sinh2 y

sinh2 y − cosh2 y
d

dx
arcoth x = − 1

x2 − 1
.

It follows that
∫

dx

x2 − 1
= − arcoth x + C.

4.6.5 Summary: Hyperbolic Functions

Table 4.9 shows the rules for differentiating hyperbolic functions, and Table 4.10
shows the rules for the inverse, hyperbolic functions. Table 4.11 shows the rules
for integrating hyperbolic functions, and Table 4.12 shows the rules for integrating
inverse, hyperbolic functions.

4.7 Summary

In this chapter we have seen how to differentiate generic functions such as sums,
products, quotients and a function of a function, and we have also seen how to
address explicit and implicit forms. These techniques were then used to differen-
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Table 4.10 The rules for differentiating inverse hyperbolic functions

y dy/dx

arsinh x
1√

1 + x2

arcosh x
1√

x2 − 1

artanh x
1

1 − x2

arcsch x − 1

x
√
1 + x2

arsech x − 1

x
√
1 − x2

arcoth x − 1

x2 − 1

Table 4.11 The rules for integrating hyperbolic functions

f (x)
∫

f (x) dx

sinh x cosh x + C

cosh x sinh x + C

sech2 x tanh x + C

Table 4.12 The rules for integrating inverse hyperbolic functions

f (x)
∫

f (x) dx

1√
1 + x2

arsinh x + C

1√
x2 − 1

arcosh x + C

1

1 − x2
artanh x + C

tiate exponential, logarithmic, trigonometric and hyperbolic functions, which will
be employed in later chapters to solve various problems. Where relevant, integrals
of certain functions have been included to show the intimate relationship between
derivatives and antiderivatives.

Hopefully, it is nowclear that differentiation is like anoperator—in that it describes
how fast a function changes relative to its independent variable in the form of another
function.What we have not yet considered is repeated differentiation and its physical
meaning, which is the subject of the next chapter.



Chapter 5
Higher Derivatives

5.1 Introduction

There are three sections to this chapter: The first showswhat happenswhen a function
is repeatedly differentiated; the second shows how these higher derivatives resolve
local minimum and maximum conditions; and the third section provides a physical
interpretation for these derivatives. Let’s begin by finding the higher derivatives of
simple polynomials.

5.2 Higher Derivatives of a Polynomial

We have previously seen that polynomials of the form

y = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0

are differentiated as follows

dy

dx
= nanx

n−1 + (n − 1)an−1x
n−2 + · · · + 2a2x + a1.

For example, let
y = 3x3 + 2x2 − 5x

then
dy

dx
= 9x2 + 4x − 5

which describes how fast the original function changes with x .
Figure 5.1 shows the graph of y = 3x3 + 2x2 − 5x and its derivative y = 9x2 +

4x − 5, and we can see that when x = −1 there is a local maximum, where the

© Springer Nature Switzerland AG 2023
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-2 -1 0 1 2

-4

-2

2

4

Fig. 5.1 Graph of y = 3x3 + 2x2 − 5x and its derivative dy
dx = 9x2 + 4x − 5 (dashed)

function reaches a value of 4, then begins a downward journey to 0, where the slope
is −5. Similarly, when x � 0.55, there is a point where the function reaches a local
minimum with a value of approximately −1.65. The slope is zero at both points,
which is reflected in the graph of the derivative.

Having differentiated the function once, there is nothing to prevent us differen-
tiating a second time, but first we require a way to annotate the process, which is
performed as follows. At a general level, let y be some function of x , then the first
derivative is

dy

dx
.

The second derivative is found by differentiating the first derivative

d

dx

(
dy

dx

)

and is written
d2y

dx2
.

Similarly, the third derivative is
d3y

dx3

and the nth derivative
dn y

dxn
.
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When a function is expressed as f (x), its derivative is written f ′(x). The second
derivative is written f ′′(x), and so on for higher derivatives.

Returning to the original function, the first and second derivatives are

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4

and the third and fourth derivatives are

d3y

dx3
= 18

d4y

dx4
= 0.

Figure 5.2 shows the original function and the first two derivatives. The graph of
the first derivative shows the slope of the original function, whereas the graph of
the second derivative shows the slope of the first derivative. These graphs help us
identify a local maximum and minimum. By inspection of Fig. 5.2, when the first
derivative equals zero, there is a local maximum or a local minimum. This is when

dy

dx
= 0

9x2 + 4x − 5 = 0.

-2 -1 0 1 2

-4

-2

2

4

Fig. 5.2 Graph of y = 3x3 + 2x2 − 5x , its first derivative dy
dx = 9x2 + 4x − 5 (short dashes) and

its second derivative d2 y
dx2

= 18x + 4 (long dashes)
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Solving this quadratic in x we have

x = −b ± √
b2 − 4ac

2a

where a = 9, b = 4, c = −5

x = −4 ± √
16 + 180

18
x1 = −1, x2 ≈ 0.555

which confirms our earlier analysis. However, what we don’t know, without referring
to the graphs, whether it is a minimum, or a maximum.

5.3 Identifying a Local Maximum or Minimum

Figure 5.3 shows a function containing a local maximum of 5 when x = −1. Note
that as the independent variable x , increases from −2 towards 0, the slope of the
graph changes from positive to negative, passing through zero at x = −1. This is
shown in the function’s first derivative, which is the straight line passing through the
points (−2, 6), (−1, 0) and (0, −6). In this example these conditions imply that
the slope of the second derivative must be negative

d2y

dx2
= −ve.

Figure 5.4 shows another function containing a localminimumof 5when x = −1.
Note that as the independent variable x , increases from −2 towards 0, the slope of
the graph changes from negative to positive, passing through zero at x = −1. This is
shown in the function’s first derivative, which is the straight line passing through the
points (−2, −6), (−1, 0) and (0, 6). In this example these conditions imply that
the slope of the second derivative must be positive

d2y

dx2
= +ve.

We can now apply this observation to the original function for the two values of x ,
x1 = −1, x2 ≈ 0.555



5.3 Identifying a Local Maximum or Minimum 79
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Fig. 5.3 A function containing a local maximum, and its first derivative (dashed)
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Fig. 5.4 A function containing a local minimum, and its first derivative (dashed)

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4

= 18 × (−1) = −18

= 18 × (0.555) = +10.

Which confirms that when x = −1 there is a local maximum, and when x ≈ 0.555,
there is a local minimum, as shown in Fig. 5.1.
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The second derivative test says that if the second derivative is positive, evaluated
at x = a, the solution of

dy

dx
= 0

then x = a gives a local minimum. Correspondingly, if the second derivative is
negative, evaluated at x = a, the solution of

dy

dx
= 0

then x = a gives a local maximum.
Let’s repeat this technique for

y = −3x3 + 9x

whose derivative is

dy

dx
= −9x2 + 9

and second derivative

d2y

dx2
= −18x

as shown in Fig. 5.5. For a local maximum or minimum, the first derivative equals
zero

−9x2 + 9 = 0

which implies that x = ±1.
The sign of the second derivative determines whether there is a local minimum

or maximum.

d2y

dx2
= −18x

= −18 × (−1) = +ve

= −18 × (+1) = −ve.

Therefore, when x = −1 there is a local minimum, and when x = +1 there is a local
maximum, as confirmed by Fig. 5.5.
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Fig. 5.5 Graph of y = −3x3 + 9x , its first derivative y = −9x2 + 9 (short dashes) and its second
derivative y = −18x (long dashes)

5.4 Derivatives and Motion

The first derivative of a simple function of x is its instantaneous slope, which may
be a linear function or some other function. Higher derivatives are the slopes of their
respective functions. For example, for the sine function

y = sin x

dy

dx
= cos x

d2y

dx2
= − sin x

d3y

dx3
= − cos x

d4y

dx4
= sin x .

A similar cycle emerges for the cosine function. However, when the independent
variable is time, higher derivatives can give the velocity and acceleration of an object,
where velocity is the rate of change of position with respect to time, and acceleration
is the rate of change of velocity with respect to time.

Let

position = s(t)

then
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Fig. 5.6 The position of an object falling under the pull of gravity

velocity v = ds

dt

and

acceleration a = dv

dt
= d2s

dt2
.

For example, when an object is dropped from a height h0 close to the Earth, it
experiences a downward acceleration of g = 9.8 m/s2, and falls a distance d

d = − 1
2gt

2.

Observe that a distance measured vertically upwards is positive, and a distance mea-
sured downwards is negative. Consequently, its instantaneous height is given by

s(t) = h0 − 1
2gt

2. (5.1)

Figure 5.6 shows the height of the object at different times during its fall, and Table
5.1 gives corresponding values of t , d and s(t), with a starting height h0 = 20 m.

Differentiating (5.1) with respect to time gives the object’s instantaneous
velocity v

s(t) = h0 − 1
2gt

2

v = ds

dt
= −gt (5.2)
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Table 5.1 The height of an
object and distance travelled
at different times during its
fall

t d s(t)

0 0 20

0.5 −1.225 18.775

1 −4.9 15.1

1.5 −11.025 8.975

2.02 −20 0

and after 2.02 s, the object is travelling at approximately 19.8 m/s.
Differentiating (5.2) with respect to time gives the instantaneous acceleration of

the object

v = −gt

a = dv

dt
= d2s

dt2
= −g

and after 2.02 s, the object remains accelerating at a constant −9.8 m/s2.
If the object is subjected to an initial vertical velocity of v0, after t seconds it

travels a distance of v0t , which permits us to write a general equation for the object’s
height as

s(t) = h0 + v0t − 1
2gt

2. (5.3)

Differentiating (5.3) gives the instantaneous velocity

v = ds

dt
= v0 − gt . (5.4)

Differentiating (5.4) gives the instantaneous acceleration

a = dv

dt
= d2s

dt2
= −g.

If we set the initial velocity to v0 = 6 m/s and maintain the same starting height
h0 = 20, Fig. 5.7 shows the resulting motion.
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Fig. 5.7 The position of an object falling under the pull of gravity with an initial upward velocity
of 6 m/s

5.5 Summary

In this chapter we have seen how a function can be repeatedly differentiated to reveal
higher derivatives. These, in turn, can be used to identify points of local maxima and
minima. They can also be used to identify the velocity and acceleration of an object.

5.5.1 Summary of Formulae

Position, velocity and acceleration

position = s(t)

velocity v = ds

dt

acceleration a = d2s

dt2
.

Distance an object falls under gravity

d = − 1
2gt

2.

Instantaneous height
s(t) = h0 − 1

2gt
2.



Chapter 6
Partial Derivatives

6.1 Introduction

In this chapterwe investigate derivatives of functionswithmore than one independent
variable, and how such derivatives are annotated. We also explore the second-order
form of these derivatives.

6.2 Partial Derivatives

Up to this point, we have used functions with one independent variable, such as
y = f (x). However, we must be able to compute derivatives of functions with more
than one independent variable, such as y = f (u, v, w). The technique employed
is to assume that only one variable changes, whilst the other variables are constant.
Thismeans that a function can possess several derivatives—one for each independent
variable. Such derivatives are called partial derivatives and employ a new symbol ∂ ,
which can be read as ‘partial dee’.

Given a function f (u, v, w), the three partial derivatives are defined as

∂ f

∂u
= lim

h→0

f (u + h, v, w) − f (u, v, w)

h
∂ f

∂v
= lim

h→0

f (u, v + h, w) − f (u, v, w)

h
∂ f

∂w
= lim

h→0

f (u, v, w + h) − f (u, v, w)

h
.

For example, a function for the volume of a cylinder is

V (r, h) = πr2h

© Springer Nature Switzerland AG 2023
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where r is the radius, and h is the height. Say we wish to compute the function’s
partial derivative with respect to r . First, the partial derivative is written

∂V

∂r
.

Second, we hold h constant, whilst allowing r to change. Thismeans that the function
becomes

V (r, h) = kr2 (6.1)

where k = πh. Thus the partial derivative of (6.1) with respect to r is

∂V

∂r
= 2kr

= 2πhr.

Next, by holding r constant, and allowing h to change, we have

∂V

∂h
= πr2.

Sometimes, for purposes of clarification, the partial derivatives identify the constant
variable(s)

(
∂V

∂r

)
h

= 2πhr

(
∂V

∂h

)
r

= πr2.

Partial differentiation is subject to the same rules for ordinary differentiation—we just
to have to remember which independent variable changes, and those held constant.
As with ordinary derivatives, we can compute higher-order partial derivatives. For
example, consider the function

f (u, v) = u4 + 2u3v2 − 4v3.

The first partial derivatives are

∂ f

∂u
= 4u3 + 6u2v2

∂ f

∂v
= 4u3v − 12v2

and the second-order partial derivatives are
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∂2 f

∂u2
= 12u2 + 12uv2

∂2 f

∂v2
= 4u3 − 24v.

Similarly, given
f (u, v) = sin(4u) · cos(5v)

the first partial derivatives are

∂ f

∂u
= 4 cos(4u) · cos(5v)

∂ f

∂v
= −5 sin(4u) · sin(5v)

and the second-order partial derivatives are

∂2 f

∂u2
= −16 sin(4u) · cos(5v)

∂2 f

∂v2
= −25 sin(4u) · cos(5v).

In general, given f (u, v) = uv, then

∂ f

∂u
= v

∂ f

∂v
= u

and the second-order partial derivatives are

∂2 f

∂u2
= 0

∂2 f

∂v2
= 0.

Similarly, given f (u, v) = u/v, then

∂ f

∂u
= 1

v
∂ f

∂v
= − u

v2

and the second-order partial derivatives are
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∂2 f

∂u2
= 0

∂2 f

∂v2
= 2u

v3
.

Finally, given f (u, v) = uv, then

∂ f

∂u
= vuv−1

whereas, ∂ f/∂v requires some explaining. First, given

f (u, v) = uv

taking natural logs, we have
ln f (u, v) = v ln u

and
f (u, v) = ev ln u .

Therefore

∂ f

∂v
= ev ln u ln u

= uv ln u.

The second-order partial derivatives are

∂2 f

∂u2
= v(v − 1)uv−2

∂2 f

∂v2
= uv ln2 u.

6.2.1 Visualising Partial Derivatives

Functions of the form y = f (x) are represented by a 2D graph, and the function’s
derivative f ′(x) represents the graph’s slope at any point x . Functions of the form
z = f (x, y) can be represented by a 3D surface, like the one shown in Fig. 6.1,
which is z(x, y) = 4x2 − 2y2. The two partial derivatives are
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Fig. 6.1 Surface of
z = 4x2 − 2y2 using a
right-handed axial system
with a vertical z-axis

∂z

∂x
= 8x

∂z

∂y
= −4y

where ∂z/∂x is the slope of the surface in the x-direction, as shown in Fig. 6.2, and
∂z/∂y is the slope of the surface in the y-direction, as shown in Fig. 6.3.

The second-order partial derivatives are

∂2z

∂x2
= 8 = +ve

∂2z

∂y2
= −4 = −ve.

As ∂2z/∂x2 is positive, there is a local minimum in the x-direction, and as ∂2z/∂y2

is negative, there is a local maximum in the y-direction, as confirmed by Figs. 6.2
and 6.3.

6.2.2 Mixed Partial Derivatives

We have seen that, given a function of the form f (u, v), the partial derivatives
∂ f/∂u and ∂ f/∂v provide the relative instantaneous changes in f and u, and f
and v, respectively, whilst the second independent variable remains fixed. However,
nothing prevents us from differentiating ∂ f/∂u with respect to v, whilst keeping u
constant

∂

∂v

(
∂ f

∂u

)
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Fig. 6.2 ∂z/∂x describes the
slopes of these contour lines

Fig. 6.3 ∂z/∂y describes the
slopes of these contour lines

which is also written as
∂2 f

∂v∂u

and is a mixed partial derivative. For example, let

f (u, v) = u3v4

then
∂ f

∂u
= 3u2v4

and
∂2 f

∂v∂u
= 12u2v3.
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However, it should be no surprise that reversing the differentiation gives the same
result. Let

f (u, v) = u3v4

then
∂ f

∂v
= 4u3v3

and
∂2 f

∂u∂v
= 12u2v3.

Generally, for continuous functions, we can write

∂2 f

∂u∂v
= ∂2 f

∂v∂u
.

For example, the formula for the volume of a cylinder is given by V (r, h) = πr2h,
where r and h are the cylinder’s radius and height, respectively. The mixed partial
derivative is computed as follows

V (r, h) = πr2h

∂V

∂r
= 2πhr

∂2V

∂h∂r
= 2πr

or

V (r, h) = πr2h

∂V

∂h
= πr2

∂2V

∂r∂h
= 2πr.

As a second example, let

f (u, v) = sin(4u) · cos(3v)

then

∂ f

∂u
= 4 cos(4u) · cos(3v)

∂2 f

∂v∂u
= −12 cos(4u) · sin(3v)
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or

∂ f

∂v
= −3 sin(4u) · sin(3v)

∂2 f

∂u∂v
= −12 cos(4u) · sin(3v).

6.3 Chain Rule

In Chap. 4 we came across the chain rule for computing the derivatives of functions
of functions. For example, to compute the derivative of y = sin(x2) we substitute
u = x2, then

y = sin u

dy

du
= cos u

= cos(x2).

Next, we compute du/dx

u = x2

du

dx
= 2x

and dy/dx is the product of the two derivatives using the chain rule

dy

dx
= dy

du
· du
dx

= cos(x2) · 2x
= 2x cos(x2).

But say we have a function where w is a function of two variables x and y, which in
turn, are a function of u and v. Then we have

w = f (x, y)

x = r(u, v)

y = s(u, v).

With such a scenario, we have the following partial derivatives
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∂w

∂x
,

∂w

∂y
∂w

∂u
,

∂w

∂v
∂x

∂u
,

∂x

∂v
∂y

∂u
,

∂y

∂v
.

These are chained together as follows

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u
(6.2)

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
. (6.3)

For example, given

w(x, y) = 2x + 3y

x(u, v) = u2 + v2

y(u, v) = u2 − v2

then

∂w

∂x
= 2,

∂w

∂y
= 3

∂x

∂u
= 2u,

∂x

∂v
= 2v

∂y

∂u
= 2u,

∂y

∂v
= −2v

and plugging these into (6.2) and (6.3) we have

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u

= 2 × 2u + 3 × 2u

= 10u

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v

= 2 × 2v + 3 × (−2v)

= −2v.

Thus, when u = 2 and v = 1
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∂w

∂u
= 20, and

∂w

∂v
= −2.

6.4 Total Derivative

Given a function with three independent variables, such as w = f (x, y, t), where
x = g(t) and y = h(t), there are three primary partial derivatives

∂w

∂x
,

∂w

∂y
and

∂w

∂t

which show the differential change of w with x , y and t respectively. There are also
three derivatives dx

dt
,

dy

dt
and

dt

dt

where dt/dt = 1. The partial and ordinary derivatives can be combined to create the
total derivative which is written

dw

dt
= ∂w

∂x
· dx
dt

+ ∂w

∂y
· dy
dt

+ ∂w

∂t
.

dw/dt measures the instantaneous change of w relative to t , when all three indepen-
dent variables change. For example, given

w(x, y, t) = x2 + xy + y3 + t2

x(t) = 2t

y(t) = t − 1

then

dx

dt
= 2

dy

dt
= 1

∂w

∂x
= 2x + y

= 4t + t − 1

= 5t − 1

∂w

∂y
= x + 3y2

= 2t + 3(t − 1)2

= 3t2 − 4t + 3
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∂w

∂t
= 2t

dw

dt
= ∂w

∂x
· dx
dt

+ ∂w

∂y
· dy
dt

+ ∂w

∂t

= (5t − 1)2 + (3t2 − 4t + 3)1 + 2t

= 3t2 + 8t + 1

and the total derivative equals

dw

dt
= 3t2 + 8t + 1

and when t = 1, dw/dt = 12.

6.5 Second-Order and Higher Partial Derivatives

Like ordinary derivatives, it is also possible to take second-order and higher partial
derivatives.

6.6 Summary

When a function has two or more independent variables, a partial derivative records
the instantaneous rate of change relative to one variable, while the others are held
constant.

6.6.1 Summary of Formulae

Mixed partial derivatives

w = f (u, v)

∂2w

∂u∂v
= ∂2w

∂v∂u
.
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The chain rule

w = f (x, y)

x = r(u, v)

y = s(u, v)

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u
∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
.

The total derivative

w = f (x, y, t)

dw

dt
= ∂w

∂x
· dx
dt

+ ∂w

∂y
· dy
dt

+ ∂w

∂t
.

6.7 Worked Examples

6.7.1 Partial Derivative

The volume of a torus is given by V = 2π2Rr2, where the major and minor axes are

R and r , respectively. Calculate the partial derivatives
∂V

∂R
and

∂V

∂r
.

Solution

V = 2π2Rr2

∂V

∂R
= 2π2r2

∂V

∂r
= 4π2Rr.

6.7.2 First and Second-Order Partial Derivatives

Given f (u, v) = u5 − 3u2v3 − 2v4, calculate the first and second-order partial

derivatives
∂ f

∂u
,
∂2 f

∂u2
,
∂ f

∂v
, and

∂2 f

∂v2
.
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Solution

f (u, v) = u5 − 3u2v3 − 2v4

∂ f

∂u
= 5u4 − 6uv3

∂2 f

∂u2
= 20u3 − 6v3

∂ f

∂v
= −9u2v2 − 8v3

∂2 f

∂v2
= −18u2v − 24v2.

6.7.3 Mixed Partial Derivative

Given f (u, v) = u5 − 3u2v3 − 2v4, calculate the mixed partial derivative
∂ f

∂v∂u
.

Solution

f (u, v) = u5 − 3u2v3 − 2v4

∂ f

∂u
= 5u4 − 6uv3

∂ f

∂v∂u
= −18uv2.

6.7.4 Chained Partial Derivatives

Givenw(x, y) = 6x − 2y, where x(u, v) = u3 − v2 and y(u, v) = u − v, calculate
∂x

∂u
and

∂x

∂v
. Calculate the partial derivatives for u = 1 and v = 1.

Solution

w(x, y) = 6x − 2y

x(u, v) = u3 − v2

y(u, v) = u − v

then

∂w

∂x
= 6

∂w

∂y
= −2
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∂x

∂u
= 3u2

∂x

∂v
= −2v

∂y

∂u
= 1

∂y

∂v
= −1

using the chain rule, we have

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u

= 6 × 3u2 − 2 × 1

= 18u2 − 2

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v

= −6 × 2v − 2 × (−1)

= −12v + 2.

Thus, when u = 1 and v = 1

∂w

∂u
= 16, and

∂w

∂v
= −10.

6.7.5 Total Derivative

Given w(x, y, t) = x2 + 3xy + 2y2 + t3 where x(t) = 3t and y(t) = t − 2, calcu-

late the total derivative
dw

dt
, and find its value when t = 1.

Solution

w(x, y, t) = x2 + 3xy + 2y2 + t3

x(t) = 3t

y(t) = t − 2

then
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dx

dt
= 3

dy

dt
= 1

∂w

∂x
= 2x + 3y

= 6t + t − 2

= 7t − 2

∂w

∂y
= 3x + 4y

= 9t + 4(t − 2)

= 13t − 8

∂w

∂t
= 3t2

dw

dt
= ∂w

∂x
· dx
dt

+ ∂w

∂y
· dy
dt

+ ∂w

∂t

= (7t − 2)3 + (13t − 8)1 + 3t2

= 21t − 6 + 13t − 8 + 3t2

= 3t2 + 34t − 14

and the total derivative equals

dw

dt
= 3t2 + 34t − 14

and when t = 1, dw/dt = 23.



Chapter 7
Integral Calculus

7.1 Introduction

In this chapter I develop the idea that integration is the inverse of differentiation, and
examine standard algebraic strategies for integrating functions, where the derivative
is unknown; these include simple algebraic manipulation, trigonometric identities,
integration by parts, integration by substitution and integration using partial fractions.

7.2 Indefinite Integral

In previous chapters we have seen that given a simple function, such as

y = sin x + 23

dy

dx
= cos x

and the constant term 23 disappears. Inverting the process, we begin with

dy

dx
= cos x

and integrate

y =
∫

cos x dx

= sin x + C.
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An integral of the form ∫
f (x) dx

is known as an indefinite integral; and as we don’t knowwhether the original function
contains a constant term, a constant C has to be included. Its value remains undeter-
mined unless we are told something about the original function. In this example, if
we are told that when x = π

2 , y = 24, then

24 = sin
(

π
2

) + C

= 1 + C

C = 23.

7.3 Standard Integration Formulae

In earlier chapters, I have included indefinite integrals for most of the derivatives we
have examined. For example, knowing that

d

dx
sin x = cos x

then the inverse operation is

∫
cos x dx = sin x + C.

For convenience, they are shown again in Table 7.1.
All the integrals in Table 7.1, and many more, can be found on the Internet and

in most books on calculus. However, the problem facing us now is how to integrate
functions that don’t fall into the above formats, which is what we consider next.

7.4 Integrating Techniques

7.4.1 Continuous Functions

Functions come in all sorts of shapes and sizes, which is why we have to be very
careful before they are differentiated or integrated. If a function contains any form of
discontinuity, then it cannot be differentiated or integrated. For example, the square-
wave function shown in Fig. 7.1 cannot be differentiated as it contains discontinuities.
Consequently, to be very precise, we identify an interval [a, b], over which a function
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Table 7.1 Functions and their integrals

Function Integral Function Integral

xn 1
n+1 x

n+1 + C sec(ax) · tan(ax) 1
a sec(ax) + C

ex ex + C csc2(ax) − 1
a cot(ax) + C

e−x −e−x + C
1√

1 − x2
arcsin x + C

eax 1
a e

ax + C
1

1 + x2
arctan x + C

e−ax − 1
a e

−ax + C
1

x
√
x2 − 1

arcsec|x | + C

ax 1
ln a a

x + C; 0 <

a �= 1
sinh x cosh x + C

a−x − 1
ln a a

−x + C cosh x sinh x + C

sin(ax) − 1
a cos(ax) + C sech2x tanh x + C

cos(ax) 1
a sin(ax) + C

1√
1 + x2

arsinhx + C

sec2(ax) 1
a tan(ax) + C

1√
x2 − 1

arcoshx + C

csc(ax) · cot(ax) − 1
a csc(ax) + C

1

1 − x2
artanhx + C

-1 0 1 2 3 4 5 6 7 8

-2

-1

1

2

Fig. 7.1 A discontinuous square-wave function

is analysed, and stipulate that it must be continuous over this interval. For example,
a and b define the upper and lower bounds of the interval x ∈ [a, b], then we can
say that for f (x) to be continuous
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lim
h→0

f (x + h) = f (x).

Even this needs further clarification as h must not take x outside of the permitted
interval. So, from now on, we assume that all functions are continuous and can be
integrated without fear of singularities.

7.4.2 Difficult Functions

Some functions cannot be differentiated easily. For example, the derivative of
(sin x)/x does not exist, which precludes the possibility of its integration. Figure
7.2 shows this function, and even though it is continuous, its derivative and integral
can only be approximated. Similarly, the derivative of

√
x · sin x does not exist, and

also precludes the possibility of its integration. Figure 7.3 shows this continuous
function. So now let’s examine how most functions have to be rearranged to secure
their integration.

Let’s demonstrate through a series of examples how a function can bemanipulated
to permit it to be integrated.

7.4.3 Trigonometric Identities

Sometimes it is possible to simplify the integrand by substituting a trigonomet-
ric identity. For example, the identity sin2 x = 1

2 (1 − cos(2x)) converts the square
function of x into a double-angle representation

-3 -2 - 0 2 3

-1

1

Fig. 7.2 Graph of y = (sin x)/x
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0 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

Fig. 7.3 Graph of y = √
x · sin x

∫
sin2 x dx = 1

2

∫
(1 − cos(2x)) dx

= 1
2

∫
1 dx − 1

2

∫
cos(2x) dx

= 1
2 x − 1

4 sin(2x) + C.

Figure 7.4 shows the graphs of y = sin2 x and y = 1
2 x − 1

4 sin(2x).
Similarly, the identity cos2 x = 1

2 (cos(2x) + 1) converts the square function of x
into a double-angle representation

-2 - 0 2

-4

-3

-2

-1

1

2

3

4

Fig. 7.4 The graphs of y = sin2 x (dashed) and y = 1
2 x − 1

4 sin(2x)
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-2 - 0 2

-4

-3

-2

-1

1

2

3

4

Fig. 7.5 The graphs of y = cos2 x (dashed) and y = 1
4 sin(2x) + 1

2 x

∫
cos2 x dx = 1

2

∫
(cos(2x) + 1) dx

= 1
2

∫
cos(2x) dx + 1

2

∫
1 dx

= 1
4 sin(2x) + 1

2 x + C.

Figure 7.5 shows the graphs of y = cos2 x and y = 1
4 sin(2x) + 1

2 x .
To integrate tan2 x we use the identity sec2 x = 1 + tan2 x

∫
tan2 x dx =

∫
(sec2 x − 1) dx

=
∫

sec2 x dx −
∫

1 dx

= tan x − x + C.

Figure 7.6 shows the graphs of y = tan2 x and y = tan x − x .
To evaluate

∫
sin(3x) · cos x dx , we use the identity

2 sin a · cos b = sin(a + b) + sin(a − b)

which converts the integrand’s product into the sum and difference of two angles



7.4 Integrating Techniques 107

-2 - 0 2

-4

4

Fig. 7.6 The graphs of y = tan2 x (dashed) and y = tan x − x

-2 - 0 2

-1

1

Fig. 7.7 The graphs of y = sin(3x) · cos x (dashed) and y = − 1
8 cos(4x) − 1

4 cos(2x)

sin(3x) · cos x = 1
2 (sin(4x) + sin(2x))∫

sin(3x) · cos x dx = 1
2

∫
sin(4x) + sin(2x) dx

= 1
2

∫
sin(4x) dx + 1

2

∫
sin(2x) dx

= − 1
8 cos(4x) − 1

4 cos(2x) + C.

Figure 7.7 shows the graphs of y = sin(3x) · cos x and y = − 1
8 cos(4x) − 1

4 cos(2x).
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0 2

-4

4

8

Fig. 7.8 The graphs of y = 2/ 4
√
x (dashed) and y = 8x

3
4 /3

7.4.4 Exponent Notation

Sometimes it’s convenient to replace radicals by exponent notation. For example, to
evaluate

∫
2
4√x

dx , the 2 is moved outside the integral, and the integrand is converted
into an exponent form

2
∫

1
4
√
x
dx = 2

∫
x− 1

4 dx

= 2

(
x

3
4

3
4

)
+ C

= 2
(
4
3 x

3
4

)
+ C

= 8
3 x

3
4 + C.

Figure 7.8 shows the graphs of y = 2/ 4
√
x and y = 8x

3
4 /3.

7.4.5 Completing the Square

Sometimes, an integrand can be simplified by completing the square. For example,
to evaluate ∫

1

x2 − 4x + 8
dx

we note the following.
We have already seen that
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∫
1

1 + x2
dx = arctan x + C

and it’s not too difficult to prove that

∫
1

a2 + x2
dx = 1

a
arctan

( x
a

)
+ C.

Therefore, if we can manipulate an integrand into this form, then the integral will
reduce to an arctan result. The following needs no manipulation

∫
1

4 + x2
dx = 1

2 arctan
( x
2

)
+ C.

However, the original integrand has x2 − 4x + 8 as the denominator, which is
resolved by completing the square

x2 − 4x + 8 = 4 + (x − 2)2.

Therefore
∫

1

x2 − 4x + 8
dx =

∫
1

22 + (x − 2)2
dx

= 1
2 arctan

(
x − 2

2

)
+C.

Figure 7.9 shows the graphs of y = 1/(x2 − 4x + 8) and y = 1
2 arctan

(
x−2
2

)
.

To evaluate

-2 - 0 2

-1

1

Fig. 7.9 The graphs of y = 1/(x2 − 4x + 8) (dashed) and y = 1
2 arctan

( x−2
2

)
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-2 - 0

-1

1

Fig. 7.10 The graphs of y = 1/(x2 + 6x + 10) dashed) and y = arctan(x + 3)

∫
1

x2 + 6x + 10
dx .

we use the above arctan function as follows
∫

1

x2 + 6x + 10
dx =

∫
1

12 + (x + 3)2
dx

= arctan(x + 3) + C.

Figure 7.10 shows the graphs of y = 1/(x2 + 6x + 10) and y = arctan(x + 3).

7.4.6 The Integrand Contains a Derivative

Let’s consider the situation when the integrand contains a function and its derivative,
as in ∫

arctan x

1 + x2
dx .

Knowing that
d

dx
arctan x = 1

1 + x2

let u = arctan x , then
du

dx
= 1

1 + x2
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- 0

-2

-1

1

2

Fig. 7.11 The graphs of y = arctan x/(1 + x2) (dashed) and y = 1
2 arctan

2 x

and
∫

arctan x

1 + x2
dx =

∫
u du

= 1
2u

2 + C

= 1
2 arctan

2 x + C.

Figure 7.11 shows the graphs of y = arctan x/(1 + x2) and y = 1
2 arctan

2 x .
Here is another example involving sin x and cos x

∫
cos x

sin x
dx .

Knowing that
d

dx
sin x = cos x

let u = sin x , then
du

dx
= cos x

and
∫

cos x

sin x
dx =

∫
1

u
du

= ln |u| + C

= ln | sin x | + C.

Figure 7.12 shows the graphs of y = cos x/ sin x and y = ln | sin x |.
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-2 - 0 2

-2

-1

1

2

Fig. 7.12 The graphs of y = cos x/ sin x (dashed) and y = ln | sin x |

Now let’s reverse the sin x and cos x functions
∫

sin x

cos x
dx .

Knowing that
d

dx
cos x = − sin x

let u = cos x , then
du

dx
= − sin x

and
∫

sin x

cos x
dx = −

∫
1

u
du

= − ln |u| + C

= − ln | cos x | + C

= ln | cos x |−1 + C

= ln | sec x | + C.

Figure 7.13 shows the graphs of y = sin x/ cos x and y = ln | sec x |.
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-2 - 0 2

-2

-1

1

2

Fig. 7.13 The graphs of y = sin x/ cos x (dashed) and y = ln | sec x |

7.4.7 Converting the Integrand into a Series of Fractions

Integration is often made easier by converting an integrand into a series of frac-
tions. Here are two examples where the denominator is divided into each term of the
numerator.

∫
4x3 + x2 − 8 + 12x cos x

4x
dx .

∫
4x3 + x2 − 8 + 12x cos x

4x
dx =

∫
x2 dx + 1

4

∫
x dx − 2

∫
1

x
dx + 3

∫
cos x dx

= 1
3 x

3 + 1
8 x

2 − 2 ln |x | + 3 sin x + C.

Figure 7.14 shows thegraphs of y = (4x3 + x2 − 8 + 12x cos x)/4x and y = 1
3 x

3 +
1
8 x

2 − 2 ln |x | + 3 sin x .
In this example the denominator cos x is divided into the three terms of the numer-

ator
∫

2 sin x + cos x + sec x

cos x
dx .

∫
2 sin x + cos x + sec x

cos x
dx = 2

∫
tan x dx +

∫
1 dx +

∫
sec2 x dx

= 2 ln | sec x | + x + tan x + C.
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Fig. 7.14 The graphs of y = (4x3 + x2 − 8 + 12x cos x)/4x (dashed) and y = 1
3 x

3 + 1
8 x

2 −
2 ln |x | + 3 sin x

-2 - 0 2

-2

2

Fig. 7.15 The graphs of y = (2 sin x + cos x + sec x)/ cos x (dashed) and y = 2 ln | sec x | + x +
tan x

Figure 7.15 shows the graphs of y = (2 sin x + cos x + sec x)/ cos x and
y = 2 ln | sec x | + x + tan x .

7.4.8 Integration by Parts

Integration by parts is based upon the rule for differentiating function products where

d

dx
uv = u

dv

dx
+ v

du

dx
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and integrating throughout, we have

uv =
∫

uv′ dx +
∫

vu′ dx

which rearranged, gives

∫
uv′ dx = uv −

∫
vu′ dx .

Thus, if an integrand contains a product of two functions, we can attempt to integrate
it by parts. Let’s start with ∫

x sin x dx .

In this case, we try the following

u = x and v′ = sin x

therefore
u′ = 1 and v = C1 − cos x .

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = x(C1 − cos x) −

∫
(C1 − cos x)(1) dx

= C1x − x cos x − C1x + sin x + C

= −x cos x + sin x + C.

Figure 7.16 shows the graphs of y = x sin x and y = −x cos x + sin x .
Note the problems that arise if we make the wrong substitution

u = sin x and v′ = x

therefore
u′ = cos x and v = 1

2 x
2 + C1

Integrating by parts
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Fig. 7.16 The graphs of y = x sin x (dashed) and y = −x cos x + sin x

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = sin x

(
1
2 x

2 + C1
) −

∫ (
1
2 x

2 + C1
)
cos x dx

which requires to be integrated by parts, and is even more difficult, which suggests
that we made the wrong substitution.

Now let’s try something similar, but with the cos function

∫
x cos x dx .

In this case, we try the following

u = x and v′ = cos x

therefore
u′ = 1 and v = sin x + C1.

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫
x cos x dx = x(sin x + C1) −

∫
(sin x + C1)(1) dx

= x sin x + C1x + cos x − C1x + C

= x sin x + cos x + C.
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Fig. 7.17 The graphs of y = x cos x (dashed) and y = x sin x + cos x

Figure 7.17 shows the graphs of y = x cos x and y = x sin x + cos x .

Let’s develop the last example by changing the x multiplier into x2

∫
x2 cos x dx .

In this case, we try the following

u = x2 and v′ = cos x

therefore
u′ = 2x and v = sin x + C1.

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 cos x dx = x2(sin x + C1) − 2

∫
(sin x + C1)(x) dx

= x2 sin x + C1x
2 − 2C1

∫
x dx − 2

∫
x sin x dx

= x2 sin x + C1x
2 − 2C1

(
1
2 x

2 + C2
) − 2

∫
x sin x dx

= x2 sin x − C3 − 2
∫

x sin x dx .

At this point we come across
∫
x sin x dx , which we have already solved
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Fig. 7.18 The graphs of y = x2 cos x (dashed) and y = x2 sin x + 2x cos x − 2 sin x

∫
x2 cos x dx = x2 sin x − C3 − 2(−x cos x + sin x + C4)

= x2 sin x − C3 + 2x cos x − 2 sin x − C5

= x2 sin x + 2x cos x − 2 sin x + C.

Figure 7.18 shows the graphs of y = x2 cos x and y = x2 sin x + 2x cos x − 2 sin x .
Now let’s evaluate ∫

x2 sin x dx .

In this case, we try the following

u = x2 and v′ = sin x

therefore
u′ = 2x and v = − cos x + C1.

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 sin x dx = x2(− cos x + C1) − 2

∫
(− cos x + C1)(x) dx

= −x2 cos x + C1x
2 − 2C1

∫
x dx + 2

∫
x cos x dx

= −x2 cos x + C1x
2 − 2C1

(
1
2 x

2 + C2
) + 2

∫
x cos x dx

= −x2 cos x − C3 + 2
∫

x cos x dx .
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Fig. 7.19 The graphs of y = x2 sin x (dashed) and y = −x2 cos x + 2x sin x + 2 cos x

At this point we come across
∫
x cos x dx , which we have already solved

∫
x2 sin x dx = −x2 cos x − C3 + 2(x sin x + cos x + C4)

= −x2 cos x − C3 + 2x sin x + 2 cos x + C5

= −x2 cos x + 2x sin x + 2 cos x + C.

Figure 7.19 shows the graphs of y = x2 sin x and y = −x2 cos x + 2x sin x +
2 cos x .

In future, we omit the integration constant, as it is cancelled out during the inte-
gration calculation. The next example is

∫
x ln x dx .

In this case, we try the following

u = ln x and v′ = x

therefore

u′ = 1

x
and v = 1

2 x
2.

Integrating by parts
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Fig. 7.20 The graphs of y = x ln x (dashed) and y = 1
2 x

2 ln x − 1
4 x

2

∫
uv′ dx = uv −

∫
vu′ dx

∫
x ln x dx = 1

2 x
2 ln x −

∫ (
1
2 x

2) 1

x
dx

= 1
2 x

2 ln x − 1
2

∫
x dx

= 1
2 x

2 ln x − 1
4 x

2 + C.

Figure 7.20 shows the graphs of y = x ln x and y = 1
2 x

2 ln x − 1
4 x

2.
Although the following integrand does not look as though it can be integrated by

parts ∫ √
1 + x2 dx .

if we rewrite it as ∫ √
1 + x2(1) dx .

then we can use the formula.
Let

u =
√
1 + x2 and v′ = 1

therefore
u′ = x√

1 + x2
and v = x .
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Fig. 7.21 The graphs of y = √
1 + x2 (dashed) and y = 1

2 x
√
1 + x2 + 1

2 arsinhx

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
x2√
1 + x2

dx .

Now we simplify the right-hand integrand

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
(1 + x2) − 1√

1 + x2
dx

= x
√
1 + x2 −

∫
1 + x2√
1 + x2

dx +
∫

1√
1 + x2

dx

= x
√
1 + x2 −

∫ √
1 + x2 dx + arsinhx + C1.

Now we have the original integrand on the right-hand side, therefore

2
∫ √

1 + x2 dx = x
√
1 + x2 + arsinhx + C1

∫ √
1 + x2 dx = 1

2 x
√
1 + x2 + 1

2 arsinhx + C.

Figure 7.21 shows the graphs of y = √
1 + x2 and y = 1

2 x
√
1 + x2 + 1

2 arsinhx .
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7.4.9 Integrating by Substitution

Integration by substitution is based upon the chain rule for differentiating a function
of a function, which states that if y is a function of u, which in turn is a function of
x , then

dy

dx
= dy

du
· du
dx

.

This integrand ∫
x2

√
x3 dx .

is easily solved by rewriting it

∫
x2

√
x3 dx =

∫
x

7
2 dx

= 2
9 x

9
2 + C.

However, introducing a constant term within the square-root requires integration by
substitution. For example ∫

x2
√
x3 + 1 dx .

First, we let u = x3 + 1, then

du

dx
= 3x2 or

dx

du
= 1

3x2
.

Substituting u and dx in the integrand gives

∫
x2

√
x3 + 1 dx =

∫
x2

√
u

1

3x2
du

= 1
3

∫ √
u du

= 1
3

∫
u

1
2 du

= 1
3 · 2

3u
3
2 + C

= 2
9 (x

3 + 1)
3
2 + C.

Figure 7.22 shows the graphs of y = x2
√
x3 + 1 and y = 2

9 (x
3 + 1)

3
2 .

Let’s try ∫
2 sin x · cos x dx .
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-1 0 1
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1

2

Fig. 7.22 The graphs of y = x2
√
x3 + 1 (dashed) and y = 2

9 (x3 + 1)
3
2

Integrating by substitution we let u = sin x , then

du

dx
= cos x or

dx

du
= 1

cos x
.

Substituting u and dx in the integrand gives

∫
2 sin x · cos x dx = 2

∫
u cos x

1

cos x
du

= 2
∫

u du

= u2 + C1

= sin2 x + C.

Figure 7.23 shows the graphs of y = 2 sin x · cos x and y = sin2 x .
The next example looks difficult, but turns out to be simple

∫
2ecos(2x) sin x · cos x dx .

Integrating by substitution, let u = cos(2x), then

du

dx
= −2 sin(2x) or

dx

du
= − 1

2 sin(2x)
.

Substituting a double-angle identity, u and du
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Fig. 7.23 The graphs of y = 2 sin x · cos x (dashed) and y = sin2 x
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Fig. 7.24 The graphs of y = 2ecos(2x) sin x · cos x (dashed) and y = − 1
2 e

cos(2x)

∫
2ecos(2x) sin x · cos x dx = −

∫
eu sin(2x)

1

2 sin(2x)
du

= − 1
2

∫
eu du

= − 1
2 e

u + C

= − 1
2 e

cos(2x) + C.

Figure 7.24 shows the graphs of y = 2ecos(2x) sin x · cos x and y = − 1
2 e

cos(2x).
Now let’s try ∫

cos x

(1 + sin x)3
dx .
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Integrating by substitution, let u = 1 + sin x , then

du

dx
= cos x or

dx

du
= 1

cos x
.

∫
cos x

(1 + sin x)3
dx =

∫
cos x

u3
1

cos x
du

=
∫

u−3 du

= − 1
2u

−2 + C

= − 1
2 (1 + sin x)−2 + C

= − 1

2(1 + sin x)2
+ C.

Figure 7.25 shows the graphs of y = cos x
(1+sin x)3 and y = − 1

2(1+sin x)2 .
Finally, an easy one ∫

sin(2x) dx .

Integrating by substitution, let u = 2x , then

du

dx
= 2 or

dx

du
= 1

2 .

-2 - 0 2

-4

-3

-2

-1

1

2

3

4

Fig. 7.25 The graphs of y = cos x
(1+sin x)3

(dashed) and y = − 1
2(1+sin x)2
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-2 - 0 2

-1

1

Fig. 7.26 The graphs of y = sin(2x) (dashed) and y = − 1
2 cos(2x)

∫
sin(2x) dx = 1

2

∫
sin u du

= − 1
2 cos u + C

= − 1
2 cos(2x) + C.

Figure 7.26 shows the graphs of y = sin(2x) and y = − 1
2 cos(2x).

7.4.10 Partial Fractions

Integration by partial fractions is used when an integrand’s denominator contains
a product that can be split into two fractions. For example, it should be possible to
convert ∫

3x + 4

(x + 1)(x + 2)
dx

into ∫
A

x + 1
dx +

∫
B

x + 2
dx

which individually, are easy to integrate. Let’s compute A and B

3x + 4

(x + 1)(x + 2)
= A

x + 1
+ B

x + 2

3x + 4 = A(x + 2) + B(x + 1)

= Ax + 2A + Bx + B.
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Fig. 7.27 The graphs of y = 3x+4
(x+1)(x+2) (dashed) and y = ln(x + 1) + 2 ln(x + 2)

Equating constants and terms in x

4 = 2A + B (7.1)

3 = A + B. (7.2)

Subtracting (7.2) from (7.1), gives A = 1 and B = 2. Therefore

∫
3x + 4

(x + 1)(x + 2)
dx =

∫
1

x + 1
dx +

∫
2

x + 2
dx

= ln(x + 1) + 2 ln(x + 2) + C.

Figure 7.27 shows the graphs of y = 3x+4
(x+1)(x+2) and y = ln(x + 1) + 2 ln(x + 2).

Now let’s try ∫
5x − 7

(x − 1)(x − 2)
dx .

Integrating by partial fractions

5x − 7

(x − 1)(x − 2)
= A

x − 1
+ B

x − 2

5x − 7 = A(x − 2) + B(x − 1)

= Ax + Bx − 2A − B.

Equating constants and terms in x

−7 = −2A − B (7.3)

5 = A + B. (7.4)
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Fig. 7.28 The graphs of y = 5x−7
(x−1)(x−2) (dashed) and y = 2 ln(x − 1) + 3 ln(x − 2)

Subtracting (7.3) from (7.4), gives A = 2 and B = 3. Therefore

∫
3x + 4

(x − 1)(x − 2)
dx =

∫
2

x − 1
dx +

∫
3

x − 2
dx

= 2 ln(x − 1) + 3 ln(x − 2) + C.

Figure 7.28 shows the graphs of y = 5x−7
(x−1)(x−2) and y = 2 ln(x − 1) + 3 ln(x − 2).

The next example requires fractions

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx .

Integrating by partial fractions

6x2 + 5x − 2

x3 + x2 − 2x
= A

x
+ B

x + 2
+ C

x − 1
6x2 + 5x − 2 = A(x + 2)(x − 1) + Bx(x − 1) + Cx(x + 2)

= Ax2 + Ax − 2A + Bx2 − Bx + Cx2 + 2Cx .

Equating constants, terms in x and x2

−2 = −2A (7.5)

5 = A − B + 2C (7.6)

6 = A + B + C. (7.7)
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Fig. 7.29 The graphs of y = 6x2+5x−2
x3+x2−2x

(dashed) and y = ln x + 2 ln(x + 2) + 3 ln(x − 1)

Manipulating (7.5), (7.6) and (7.7): A = 1, B = 2 and C = 3, therefore

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx =

∫
1

x
dx +

∫
2

x + 2
dx +

∫
3

x − 1
dx

= ln x + 2 ln(x + 2) + 3 ln(x − 1) + C.

Figure 7.29 shows the graphs of y = 6x2+5x−2
x3+x2−2x and y = ln x + 2 ln(x + 2) + 3

ln(x − 1).

7.5 Summary

This chapter introduced a collection of strategies that should be consideredwhen inte-
grating a function. It is far from complete, and one must expect that some integrands
will prove extremely difficult to solve, and software has to be used to reveal a numer-
ical solution.
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7.6 Worked Examples

7.6.1 Trigonometric Identities

Evaluate
∫
cos2 x + 4 dx .

Solution
Using the identity cos2 x = 1

2 (cos(2x) + 1)

∫
cos2 x + 4 dx = 1

2

∫
cos(2x) + 1 dx +

∫
4 dx

= 1
2

∫
cos(2x) dx + 1

2

∫
1 dx +

∫
4 dx

= 1
2

∫
cos(2x) dx +

∫
4.5 dx

= 1
4 sin(2x) + 4.5x + C.

Therefore,
∫
cos2 x + 4 dx = 1

4 sin(2x) + 4.5x + C.

7.6.2 Exponent Notation

Evaluate
∫

4
5 5√x

dx .

Solution

4

5

∫
1
5
√
x
dx = 4

5

∫
x− 1

5 dx

= 4

5

(
5
4 x

4
5

)
+ C

= x
4
5 + C.

Therefore,
∫

4
5 5√x

dx = x
4
5 + C .

7.6.3 Completing the Square

Evaluate
∫

1
x2+8x+17 dx .
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Solution
Use

∫
1

1+(x+a)2
dx = arctan(x + a) + C as follows

∫
1

x2 + 8x + 17
dx =

∫
1

1 + (x + 4)2
dx

= arctan(x + 4) + C.

Therefore,
∫

1
x2+8x+17 dx = arctan(x + 4) + C .

7.6.4 The Integrand Contains a Derivative

Evaluate
∫

2x
x2 dx .

Solution
Knowing d

dx x
2 = 2x , let u = x2, then du

dx = 2x , and

∫
2x

x2
dx =

∫
2x

u

1

2x
du

=
∫

1

u
du

= ln |u| + C

= ln x2 + C.

Therefore,
∫

2x
x2 dx = ln x2 + C .

7.6.5 Converting the Integrand into a Series of Fractions

Evaluate
∫

5x4+x2−10+15x cos x
5x dx .

Solution

∫
5x4 + x2 − 10 + 15x cos x

5x
dx =

∫
x3 dx + 1

5

∫
x dx − 2

∫
1

x
dx + 3

∫
cos x dx

= 1
4 x

4 + 1
10 x

2 − 2 ln |x | + 3 sin x + C.

Therefore,
∫

5x4+x2−10+15x cos x
5x dx = 1

4 x
4 + 1

10 x
2 − 2 ln |x | + 3 sin x + C .
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7.6.6 Integration by Parts

Evaluate
∫
x cos x dx .

Solution
We try the following

u = x and v′ = cos x

therefore
u′ = 1 and v = sin x + C1.

Integrating by parts

∫
uv′ dx = uv −

∫
vu′ dx

∫
x cos x dx = x(sin x + C1) −

∫
sin x + C1 dx

= x sin x + xC1 − C1

∫
1 dx −

∫
sin x dx

= x sin x + xC1 − C1 (x + C2) + cos x + C3

= x sin x + cos x + C.

Therefore,
∫
x cos x dx = x sin x + cos x + C .

7.6.7 Integrating by Substitution

Evaluate
∫
x
√
x2 + 1 dx .

Solution
Let u = x2 + 1, then

du

dx
= 2x or

dx

du
= 1

2x
.

Substituting u and dx in the integrand gives
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∫
x
√
x2 + 1 dx =

∫
x
√
u

1

2x
du

= 1
2

∫ √
u du

= 1
2

∫
u

1
2 du

= 1
2 · 2

3u
3
2 + C

= 1
3 (x

2 + 1)
3
2 + C.

Therefore,
∫
x
√
x2 + 1 dx = 1

3 (x
2 + 1)

3
2 + C .

7.6.8 Partial Fractions

Evaluate
∫

3x+2
(x+3)(x+2) dx .

Solution
Let’s attempt to change the integral to

∫
A

x + 3
dx +

∫
B

x + 2
dx

which individually, are easy to integrate. Compute A and B

3x + 2

(x + 3)(x + 2)
= A

x + 3
+ B

x + 2

3x + 2 = A(x + 2) + B(x + 3)

= Ax + 2A + Bx + 3B.

Equating constants and terms in x

2 = 2A + 3B (7.8)

3 = A + B. (7.9)

Multiply (7.9) by −3 and add to (7.8).

A = 7 and B = −4 therefore

∫
3x + 2

(x + 3)(x + 2)
dx = 7

∫
1

x + 3
dx − 4

∫
1

x + 2
dx

= 7 ln(x + 3) − 4 ln(x + 2) + C.



Chapter 8
Area Under a Graph

8.1 Introduction

The ability to calculate the area under a graph is one of the most important features
of integral calculus. Prior to calculus, area was computed by dividing a zone into
very small strips and summing the individual areas. The accuracy of the result is
improved simply by making the strips smaller and smaller, taking the result towards
some limiting value. In this chapter I show how integral calculus provides a way to
compute the area between a function’s graph and the x- and y-axis.

8.2 Calculating Areas

Before considering the relationship between area and integration, let’s see how area
is calculated using functions and simple geometry.

Figure 8.1 shows the graph of y = 1, where the area A(x) of the shaded zone is

A(x) = x, x > 0.

For example, A(4) = 4, and A(10) = 10. An interesting observation is that the
derivative of A(x) is the equation of the line

d A

dx
= 1 = y.

Figure 8.2 shows the graph of y = 2x . The area A(x) of the shaded triangle is
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Fig. 8.1 Area of the shaded
zone is A(x) = x

Fig. 8.2 Area of the shaded
zone is A(x) = x2

A(x) = 1
2base · height

= 1
2 x · 2x

= x2.

Thus, A(4) = 16, and A(5) = 25. Once again, the derivative of A(x) is the equation
of the line

d A

dx
= 2x = y

which is no coincidence.
Finally, Fig. 8.3 shows a circle where x2 + y2 = r2, and the curve of the first

quadrant is described by the function

y =
√
r2 − x2, x ∈ [0, r ].

The total area of the shaded zones is the sum of the two parts: B(θ) and C(θ). The
function is defined in terms of the angle θ , such that

x = r sin θ

y = r cos θ
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Fig. 8.3 Graph of
y = √

r2 − x2

then

B(θ) = 1
2r

2θ

C(θ) = 1
2 (r cos θ)(r sin θ) = 1

4r
2 sin(2θ)

A(θ) = B(θ) + C(θ)

= 1
2r

2
(
θ + 1

2 sin(2θ)
)
.

Differentiating A(θ)

d A

dθ
= 1

2r
2 (1 + cos(2θ)) = r2 cos2 θ.

But we want the derivative with respect to x , which requires the chain rule

d A

dx
= d A

dθ
· dθ

dx

where

dx

dθ
= r cos θ

or

dθ

dx
= 1

r cos θ

therefore

d A

dx
= r2 cos2 θ

r cos θ
= r cos θ = y
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which is the equation for the quadrant. When θ = π/2, A(π/2) equals the area of a
quadrant of a unit-radius circle

A
(

π
2

) = 1
2r

2
(
θ + 1

2 sin(2θ)
)

= 1
2

(
1
2π + 1

2 sin π
)

= 1
2

(
1
2π

)

= 1
4π

and the area of a unit-radius circle is four quadrants: A(θ) = π .
Hopefully, these three examples provide strong evidence that the derivative of the

function for the area under a graph, equals the graph’s function

d A

dx
= f (x)

then

A =
∫

f (x) dx . (8.1)

The dx in (8.1) causes untold problems. It is a differential, and reminds us that the
variable of integration is x . (https://en.wikipedia.org/wiki/Integral) It is also appears
in the definition of area under a curve, as best described by the Riemann Sum, which
is described later in this chapter.

Now let’s prove this observation usingFig. 8.4,which shows a continuous function
y = f (x). Next, we define a function A(x) to represent the area under the graph over
the interval [a, x]. δA is the area increment between x and x + δx , and

δA ≈ f (x) · δx .

We can also reason that

Fig. 8.4 Relationship
between y = f (x) and A(x)

https://en.wikipedia.org/wiki/Integral
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Fig. 8.5 A(b) is the area
under the graph y = f (x),
x ∈ [0, b]

δA = A(x + δx) − A(x) ≈ f (x) · δx

and the derivative d A/dx is the limiting condition

d A

dx
= lim

δx→0

A(x + δx) − A(x)

δx
= lim

δx→0

f (x) · δx

δx
= f (x)

thus

d A

dx
= f (x)

whose antiderivative is

A(x) =
∫

f (x) dx .

The function A(x) computes the area over the interval x ∈ [a, b] and is represented
by

A(x) =
∫ b

a
f (x) dx

which is called the integral or definite integral.
Let’s assume that A(b) is the area under the graph of f (x) over the interval

x ∈ [0, b], as shown in Fig. 8.5, and is written

A(b) =
∫ b

0
f (x) dx .

Similarly, let A(a) be the area under the graph of f (x) over the interval x ∈ [0, a],
as shown in Fig. 8.6, and is written
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Fig. 8.6 A(a) is the area
under the graph y = f (x),
x ∈ [0, a]

Fig. 8.7 A(b) − A(a) is the
area under the graph
y = f (x), x ∈ [a, b]

A(a) =
∫ a

0
f (x) dx .

Figure 8.7 shows that the area of the shaded zone over the interval x ∈ [a, b] is
calculated by

A(b) − A(a)

which is written

A(b) − A(a) =
∫ b

0
f (x) dx −

∫ a

0
f (x) dx

and is contracted to

A(b) − A(a) =
∫ b

a
f (x) dx . (8.2)

The Fundamental Theorem of Calculus states that the definite integral

∫ b

a
f (x) dx = F(b) − F(a)
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where

F(a) =
∫

f (x) dx, x = a

F(b) =
∫

f (x) dx, x = b.

In order to compute the area beneath a graph of f (x) over the interval x ∈ [a, b],
we first integrate the graph’s function

F(x) =
∫

f (x) dx

and then calculate the area, which is the difference

F(b) − F(a).

Let’s show how (8.2) is used in the context of the earlier three examples.
We start by calculating the area under y = 1, over the interval x ∈ [1, 4], as shown

in Fig. 8.8. Beginning with

A =
∫ 4

1
1 dx .

Next, we integrate the function, and transfer the interval bounds employing the sub-

stitution symbol
∣∣∣
4

1
, or square brackets

[ ]4

1
. Using

∣∣∣
4

1
, we have

A = x
∣∣∣
4

1

= 4 − 1

= 3

or using
[ ]4

1
, we have

A =
[
x
]4

1

= 4 − 1

= 3.

Next, we calculate the area under y = 2x , over the interval x ∈ [1, 4], as shown
in Fig. 8.9. We begin with

A =
∫ 4

1
2x dx
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Fig. 8.8 Area under the
graph is

∫ 4
1 1 dx

x

y
y = 1

1

1 4

A =
4

1
1dx

Fig. 8.9 Area under the
graph is

∫ 4
1 2x dx

and integrate the function and evaluate the area

A = [
x2

]4
1

= 16 − 1

= 15.

Last, we calculate the area under y = √
r2 − x2, over the interval x ∈ [0, r ],

which is the equation for the quadrant of a circle, as shown in Fig. 8.3. We begin
with

A =
∫ r

0

√
r2 − x2 dx . (8.3)

Unfortunately, (8.3) contains a function of a function, which is resolved by substi-
tuting another independent variable. In this case, the geometry of the circle suggests

x = r sin θ

therefore
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√
r2 − x2 =

√
r2 − r2 sin2 θ

= r
√
1 − sin2 θ

= r cos θ

and

dx

dθ
= r cos θ. (8.4)

However, changing the independent variable requires changing the interval for the
integral. In this case, changing x ∈ [0, r ] into θ ∈ [θ1, θ2]:

When x = 0, r sin θ1 = 0, therefore θ1 = 0.
When x = r , r sin θ2 = r , therefore θ2 = π/2.
Thus, the new interval is θ ∈ [0, π/2].
Finally, the dx in (8.3) has to be changed into dθ , which using (8.4) makes

dx = r cos θ dθ.

We are now in a position to rewrite the original integral using θ as the independent
variable

A =
∫ π

2

0
(r cos θ)(r cos θ) dθ

= r2
∫ π

2

0
cos2 θ dθ

= 1
2r

2
∫ π

2

0
1 + cos(2θ) dθ

= 1
2r

2
[
θ + 1

2 sin(2θ)
] π

2

0

= 1
2r

2 · 1
2π

= 1
4πr

2

which makes the area of a full circle πr2.

8.3 Positive and Negative Areas

Area in the real world is always a positive quantity—nomatter how it is measured. In
calculus, however, the integral is a signed quantity, such that areas above the x-axis
are positive, whilst areas below the x-axis are negative. This can be illustrated by
computing the area of the positive and negative parts of a sine wave.



144 8 Area Under a Graph

Fig. 8.10 The two areas
associated with a sine wave

Figure 8.10 shows a sine wave over one cycle, where the area above the x-axis is
labelled A1, and the area below the x-axis is labelled A2. These areas are computed
as follows

A1 =
∫ π

0
sin x dx

=
[

− cos x
]π

0

= 1 + 1

= 2.

However, A2 gives a negative result

A2 =
∫ 2π

π

sin x dx

=
[

− cos x
]2π

π

= −1 − 1

= −2.

Thismeans that the area is zero over the interval x ∈ [0, 2π ]. Consequently, onemust
be very careful using this technique for functions that are negative in the interval
under investigation. Figure 8.11 shows sin x over the interval x ∈ [0, π ] and its
accumulated area.
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Fig. 8.11 The accumulated area of a sine wave

8.4 Area Between Two Functions

Figure 8.12 shows the graphs of y = x2 and y = x3, with two areas labelled A1 and
A2. A1 is the area trapped between the two graphs over the interval x ∈ [−1, 0] and
A2 is the area trapped between the two graphs over the interval x ∈ [0, 1]. These
areas are calculated very easily: in the case of A1 we sum the individual areas under
the two graphs, remembering to reverse the sign for the area associated with y = x3.
For A2 we subtract the individual areas under the two graphs.

A1 =
∫ 0

−1
x2 dx −

∫ 0

−1
x3 dx

=
[
1
3 x

3
]0

−1
−

[
1
4 x

4
]0

−1

= 1
3 + 1

4

= 7
12 .

A2 =
∫ 1

0
x2 dx −

∫ 1

0
x3 dx

=
[
1
3 x

3
]1

0
−

[
1
4 x

4
]1

0

= 1
3 − 1

4

= 1
12 .
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Fig. 8.12 Two areas between y = x2 and y = x3

Note, that in both cases the calculation is the same, which implies that when we
employ

A =
∫ b

a

(
f (x) − g(x)

)
dx .

A is always the area trapped between f (x) and g(x) over the interval x ∈ [a, b].
Let’s take another example, by computing the area A between y = sin x and the

line y = 1
2 , as shown in Fig. 8.13. The horizontal line intersects the sine curve at

x = 30◦ and x = 150◦, marked in radians as 0.5236 and 2.618 respectively.

A =
∫ 5π/6

π/6
sin x dx −

∫ 5π/6

π/6

1
2 dx

=
[

− cos x
]5π/6

π/6
−

[
1
2 x

]5π/6

π/6

=
(√

3

2
+

√
3

2

)

− 1
2

(
5π

6
− π

6

)

= √
3 − 1

3π

≈ 0.685.
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Fig. 8.13 The area between y = sin x and y = 0.5

Fig. 8.14 The areas between the x-axis and the y-axis

8.5 Areas with the y-Axis

So far we have only calculated areas between a function and the x-axis. So let’s
compute the area between a function and the y-axis. Figure 8.14 shows the function
y = x2 over the interval x ∈ [0, 4], where A1 is the area between the curve and the
x-axis, and A2 is the area between the curve and y-axis. The sum A1 + A2 must
equal 4 × 16 = 64, which is a useful control. Let’s compute A1
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A1 =
∫ 4

0
x2 dx

=
[
1
3 x

3
]4

0

= 64

3
≈ 21.333

whichmeans that A2 ≈ 42.666. To compute A2 we construct an integral relative to dy
with a corresponding interval. If y = x2 then x = y

1
2 , and the interval is y ∈ [0, 16]

A2 =
∫ 16

0
y

1
2 dy

=
[
2
3 y

3
2

]16

0

= 2
364

≈ 42.666.

8.6 Area with Parametric Functions

When working with functions of the form y = f (x), the area under its curve and the
x-axis over the interval x ∈ [a, b] is

A =
∫ b

a
f (x) dx .

However, if the curve has a parametric form where

x = fx (t) and y = fy(t)

then we can derive an equivalent integral as follows.

First, we need to establish equivalent limits [α, β] for t , such that

a = fx (α) and b = fy(β).

Second, any point on the curve has corresponding Cartesian and parametric coordi-
nates

x and fx (t)

y = f (x) and fy(t).
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Third

x = fx (t)

dx = f ′
x (t) dt

A =
∫ b

a
f (x) dx

=
∫ β

α

fy(t) · f ′
x (t) dt

therefore

A =
∫ β

α

fy(t) · f ′
x (t) dt. (8.5)

Let’s apply (8.5) using the parametric equations for a circle

x = −r cos t

y = r sin t.

as shown in Fig. 8.15. Remember that the Cartesian interval is [a, b] left to right,
and the polar interval [α, β], must also be left to right, which is why x = −r cos t .
Therefore

f ′
x (t) = r sin t

fy(t) = r sin t

A =
∫ β

α

fy(t) · f ′
x (t) dt

=
∫ π

0
r sin t · r sin t dt

= r2
∫ π

0
sin2 t dt

= 1
2r

2
∫ π

0
1 − cos(2t) dt

= 1
2r

2
[
t + 1

2 sin(2t)
]π

0

= 1
2πr

2

which makes the area of a full circle πr2.
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Fig. 8.15 The parametric functions for a circle

8.7 Bernhard Riemann

The German mathematician Bernhard Riemann (1826–1866) (pronounced ‘Ree-
man’) made major contributions to various areas of mathematics, including integral
calculus, where his name is associated with a formal method for summing areas and
volumes. Through the Riemann Sum, Riemann provides an elegant and consistent
notation for describing single, double and triple integrals when calculating area and
volume. I will show how the Riemann Sum explains why the area under a curve is
the function’s integral. But first, I need to explain some incidental notation used in
the description.

8.7.1 Domains and Intervals

Consider any continuous, real-valued function f (x)which returns ameaningful value
for a wide range of x-values. For example, the function f (x) = x2 works with any
negative or positive x . This is called the domain of f (x) and written using interval
notation as (−∞, ∞), where the parentheses () remind us not to include −∞ and
∞ in the domain, as they have no definite value. When we wish to focus upon a
specific domain such as a ≤ x ≤ b, then we write [a, b], where the square brackets
remind us to include a and b in the domain. The function f (x) = √

x returns a real
value, so long as x ≥ 0, which means that its domain is [0, ∞).

Some functions, like f (x) = 1/(x − 2) are sensitive to just one value—in this
case when x = 2—which creates a divide by zero. Therefore, there are two intervals:
(−∞, 2) and (2, ∞), which in set notation is written

(−∞, 2) ∪ (2, ∞).
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Fig. 8.16 The graph of
function f (x) over the
interval [a, b]

We are normally at liberty to choose the domain of a function—provided that we can
actually compute it. The domain then becomes part of the definition of a function.

8.7.2 The Riemann Sum

Figure 8.16 shows a function f (x) divided into eight equal sub-intervals where

Δx = b − a

8

and
a = x0 < x1 < x2 < · · · < x7 < x8 = b.

In order to compute the area under the curve over the interval [a, b], the interval
is divided into some large number of sub-intervals. In this case, eight, which is not
very large, but convenient to illustrate. Each sub-interval becomes a rectangle with a
commonwidthΔx and a different height. The area of the first rectangular sub-interval
shown shaded, can be calculated in various ways. We can take the left-most height
x0 and form the product x0Δx , or we can take the right-most height x1 and form
the product x1Δx . On the other hand, we could take the mean of the two heights
(x0 + x1)/2 and form the product (x0 + x1)Δx/2. A solution that shows no bias
towards either left, right or centre, is to let x∗

i be anywhere in a specific sub-interval
Δxi , then the area of the rectangle associated with the sub-interval is f (x∗

i )Δxi , and
the sum of the rectangular areas is given by

A =
8∑

i=1

f (x∗
i )Δxi .
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Dividing the interval into eight equal sub-intervals will not generate a very accurate
result for the area under the graph. But increasing it to eight-thousand or eight-
million, will take us towards some limiting value. Rather than specify some specific
large number, it is common practice to employ n, and let n tend towards infinity,
which is written

A =
n∑

i=1

f (x∗
i )Δxi . (8.6)

The right-hand side of (8.6) is called a Riemann Sum, of which there are many. For
the above description, I have assumed that the sub-intervals are equal, which is not
a necessary requirement.

If the number of sub-intervals is n, then

Δx = b − a

n

and the definite integral is defined as

∫ b

a
f (x) dx = lim

n→∞

n∑

i=1

f (x∗
i )Δxi .

In later chapters, double and triple integrals are used to compute areas and volumes,
and require us to think carefully about their meaning and what they are doing. Divid-
ing space into sub-intervals, sub-areas or sub-volumes, provides a consistent strategy
for increasing our understanding of the subject.

8.8 Summary

In this chapter we have discovered the double role of integration. Integrating a func-
tion reveals another function, whose derivative is the function under investigation.
Simultaneously, integrating a function computes the area between the function’s
graph and the x- or y-axis. Although the concept of area in every-day life is an
unsigned quantity, within mathematics, and in particular calculus, area is a signed
quality, and one must be careful when making such calculations.

Reference
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Chapter 9
Arc Length and Parameterisation
of Curves

9.1 Introduction

In previous chapters we have seen how calculus reveals the slope and the area under
a function’s graph, and it should be no surprise that it can be used to compute the arc
length of a continuous function. However, although the formula for the arc length
results in a simple integrand, it is not always possible to integrate, and other numerical
techniques have to be used.

Vector-valued functions are widely used for curve generation, and we explore
strategies for computing the arc lengths of a circle, parabola, ellipse, hyperbolic
cosh, helix, 2D and 3D quadratic Bézier curves. We then investigate the arc-length
parameterisation of a 3D line and helix curve, and show how points are positioned
on these using a square law distribution. Finally, I show how to deal with functions
expressed in polar coordinates. In order to compute a function’s arc length using
integration, we first need to understand the mean-value theorem.

9.2 Lagrange’s Mean-Value Theorem

The French mathematician Joseph-Louis Lagrange (1736–1813) is acknowledged as
being the first person to state the mean-value theorem

A function f (x) that is continuous in the closed interval [a, b] and differentiable in the open
interval ]a, b[ has in this interval at least one value c such that f ′(c) equals

f ′(c) = f (b) − f (a)

b − a
.

Figure 9.1 illustrates the geometry behind this theorem, where we see the graph of
a function f (x), which has no discontinuities over the interval x ∈ [a, b]. Although
not shown, we assume that the function is differentiable outside the bounds of the
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J. Vince, Calculus for Computer Graphics,
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Fig. 9.1 The secant’s slope
equals the tangent

interval. The slope of the line (secant) connecting the points (a, f (a)) and (b, f (b))
is

f (b) − f (a)

b − a

and the mean-value theorem states that this slope equals the tangent at another point
c, where a < c < b. One can easily visualise this from Fig. 9.1 by tracking the slope
of f (x) over the interval x ∈ [a, b]. At x = a, the slope, given by f ′(a), has some
positive value, whereas at x = b, the slope, given by f ′(b), has some negative value.
Clearly, the secant’s slope is less than f ′(a) and greater than f ′(b) and must equal
f ′(c), somewhere betweena andb. Lagrange provided a rigorousmathematical proof
for any function within the constraints of the theorem. We call upon this theorem in
the next section.

9.3 Arc Length

In every-day life we can measure the length of a curved surface by laying a flexi-
ble tape measure upon it and taking a reading. Given the graph of a mathematical
function, we can measure its length by reducing it to a chain of straight lines and
summing their individual lengths. Although this is rather crude, accuracy is improved
by making the straight lines increasingly shorter. This is the approach we employ in
the following analysis.

Figure 9.2 shows part of a curve divided into n intervals where any sample point
Pi has coordinates (xi , yi ), where 0 < i < n. Using the theorem of Pythagoras, the
distance between two points Pi and Pi+1 is given by

Δs =
√

(xi+1 − xi )2 + (yi+1 − yi )2

=
√

(Δxi )2 + (Δyi )2
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Fig. 9.2 The chain of
straight-line segments
approximates to the curve’s
length

and the approximate length between P0 and Pn is given by

s ≈
n∑

i=1

√
(Δxi )2 + (Δyi )2.

As n tends towards infinity, then in the limit

s = lim
n→∞

n∑

i=1

√
(Δxi )2 + (Δyi )2

= lim
n→∞

n∑

i=1

√

1 +
(

Δyi
Δxi

)2

Δxi . (9.1)

Lagrange’s mean-value theorem states that there must be a value x j , such that xi−1 <

x j < xi , where

f ′(x j ) = f (xi ) − f (xi−1)

xi − xi−1

= yi − yi−1

xi − xi−1

= Δyi
Δxi

.

Therefore, (9.1) becomes

s = lim
n→∞

n∑

i=1

√

1 +
(
f ′(x j )

)2
Δxi
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and

s =
∫ b

a

√

1 +
(
dy

dx

)2

dx, x ∈ [a, b]. (9.2)

9.3.1 Arc Length of a Straight Line

Let’s test (9.2) by finding the length of the straight line y = 3
4 x , over the interval

x ∈ [0, 4], which using simple geometry is 5.

dy

dx
= 3

4

therefore

s =
∫ 4

0

√

1 +
(
dy

dx

)2

dx

=
∫ 4

0

√
1 + (

3
4

)2
dx

=
√

25
16

∫ 4

0
dx

= 5
4

∫ 4

0
dx

= 5
4

[
x

]4

0

= 5.

9.3.2 Arc Length of a Circle

Figure 9.3 shows a semi-circle with radius r , where y = √
r2 − x2. Therefore

dy

dx
= 1

2 (r
2 − x2)−1/2 · (−2x)

= −x√
r2 − x2

(
dy

dx

)2

= x2

r2 − x2
.
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Fig. 9.3 A semi-circle with
radius r

Integrating over the interval x ∈ [−r, r ], which is doubled to give the circle’s
circumference

s = 2
∫ r

−r

√

1 +
(
dy

dx

)2

dx

= 2
∫ r

−r

√

1 + x2

r2 − x2
dx

= 2
∫ r

−r

√
r2

r2 − x2
dx

= 2r
∫ r

−r

dx√
r2 − x2

= 2r

[
arcsin

( x
r

) ]r

−r

= 2r
(
1
2π + 1

2π
)

= 2πr.

9.3.3 Arc Length of a Parabola

Let’s compute the arc length of the parabola y = 0.5x2, over the interval x ∈ [0, 4],
where dy/dx = x
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s =
∫ 4

0

√

1 +
(
dy

dx

)2

dx

=
∫ 4

0

√
1 + x2 dx .

To remove the radical we let x = tan θ where dx/dθ = sec2 θ and continue with an
indefinite integral. Therefore

s =
∫ √

1 + tan2 θ · sec2 θ dθ

=
∫ √

sec2 θ · sec2 θ dθ

=
∫

sec θ · sec2 θ dθ.

Having removed the radical, we are now left with a product, which is integrated by
parts, by letting

u = sec θ and v′ = sec2 θ,

which means that

u′ = sec θ · tan θ and v = tan θ.

Therefore
∫

uv′ dθ = uv −
∫

vu′ dθ

∫
sec θ · sec2 θ dθ = sec θ · tan θ −

∫
tan θ · sec θ · tan θ dθ

= sec θ · tan θ −
∫

sec θ · tan2 θ dθ

= sec θ · tan θ −
∫

sec θ · (sec2 θ − 1) dθ

= sec θ · tan θ −
∫

sec3 θ dθ +
∫

sec θ dθ

2
∫

sec3 θ dθ = sec θ · tan θ +
∫

sec θ dθ

∫
sec3 θ dθ = 1

2 sec θ · tan θ + 1
2

∫
sec θ dθ

= 1
2 sec θ · tan θ + 1

2 ln
∣∣ sec θ + tan θ

∣∣ + C.
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Fig. 9.4 Graph of y = 0.5x2

Now let’s convert this result back to the original functionwhere x = tan θ and sec θ =√
1 + x2 and reintroduce the limits [0, 4]

1
2 sec θ · tan θ + 1

2 ln
∣∣ sec θ + tan θ

∣∣ + C = 1
2 x

√
1 + x2 + 1

2 ln
∣∣
√
1 + x2 + x

∣∣ + C

therefore

∫ 4

0

√
1 + x2 dx =

[
1
2 x

√
1 + x2 + 1

2 ln
∣∣
√
1 + x2 + x

∣∣
]4

0

.

Evaluating this result, we get

∫ 4

0

√
1 + x2 dx =

[
1
2 x

√
1 + x2 + 1

2 ln
∣∣
√
1 + x2 + x

∣∣
]4

0

=
(
2
√
17 + 1

2 ln
∣∣
√
17 + 4

∣∣
)

− 1
2 ln

∣∣1
∣∣

≈ 2
√
17 + 1

2 ln
∣∣
√
17 + 4

∣∣

≈ 8.2462 + 1.04735

≈ 9.294.

Figure 9.4 shows the graph of y = 0.5x2 over the interval x ∈ [0, 4], where the
length of the straight line joining (0, 0) and (4, 8) is

√
80 ≈ 8.94, which provides a

minimumvalue for the arc length. And by reducing the parabola to a chain of straight-
line segments whose Δx = 0.25, the arc length equals 9.291, which confirms the
accuracy of the above answer.

Before moving on, here is an alternative solution to the original integral

∫ √
1 + x2 dx .
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To remove the radical we let x = sinh θ where dx/dθ = cosh θ and continue with
an indefinite integral. Therefore

s =
∫ √

1 + sinh2 θ · cosh θ dθ

=
∫ √

cosh2 θ · cosh θ dθ

=
∫

cosh2 θ dθ.

But 2 cosh2 θ = cosh(2θ) + 1, therefore

s = 1
2

∫
cosh(2θ) + 1 dθ

= 1
2

∫
cosh(2θ) + 1

2

∫
1 dθ

= 1
4 sinh(2θ) + 1

2θ + C.

But sinh(2θ) = 2 cosh θ · sinh θ , therefore

s = 1
2 cosh θ · sinh θ + 1

2θ + C. (9.3)

Apart from the constant C , (9.3) contains two parts. The first part is transformed
back to the original independent variable x by substituting sinh θ = x and cosh θ =√
1 + x2

1
2 cosh θ · sinh θ = 1

2 x
√
1 + x2.

The second part is transformed back to the original independent variable x as follows

x = sinh θ

= 1
2

(
eθ − e−θ

)

2x = eθ − e−θ

2xeθ = (
eθ

)2 − 1
(
eθ

)2 − 2xeθ − 1 = 0

which is a quadratic in eθ , where a = 1, b = −2x, c = −1. Therefore
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eθ = −b ± √
b2 − 4ac

2a

= 2x ± √
4x2 + 4

2

= x ±
√
1 + x2.

However, as eθ > 1, therefore

eθ = x +
√
1 + x2

θ = ln
∣∣∣x +

√
1 + x2

∣∣∣

1
2θ = 1

2 ln
∣∣∣x +

√
1 + x2

∣∣∣.

Combining these two parts together, and introducing a definite integral, we have

∫ √
1 + x2 dx = 1

2 x
√
1 + x2 + 1

2 ln
∣∣∣
√
1 + x2 + x

∣∣∣ (9.4)

which agrees with the first result.
Using the same technique, one can show that

∫ √
x2 + a2 = 1

2 x
√
x2 + a2 + 1

2a
2 ln

∣∣∣x +
√
x2 + a2

∣∣∣ + C (9.5)
∫ √

x2 − a2 = 1
2 x

√
x2 + a2 − 1

2a
2 ln

∣∣∣x +
√
x2 + a2

∣∣∣ + C. (9.6)

9.3.4 Arc Length of y = x
3
2

Let’s find the length of the curve y = x
3
2 over the interval x ∈ [0, 4].

dy

dx
= 3

2 x
1
2

therefore

s =
∫ 4

0

√

1 +
(
dy

dx

)2
dx

=
∫ 4

0

√
1 + 9

4 x dx

=
∫ 4

0

(
1 + 9

4 x
) 1
2 dx
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Let u = 1 + 9
4 x , then

dx
du = 4

9 .
The limits for u are

x = 0, u = 1

x = 4, u = 10

s = 4
9

∫ 10

1
u

1
2 du

= 4
9

[
2
3u

3
2

]10

1

≈ 8
27 (31.62277 − 1)

≈ 9.07.

9.3.5 Arc Length of a Sine Curve

A radical inside the integrand does present problems, and often makes it difficult to
integrate the expression. For example, consider the apparently, simple task of finding
the arc length of y = sin x over the interval x ∈ [0, 2π ].

dy

dx
= cos x

therefore

s =
∫ 2π

0

√

1 +
(
dy

dx

)2

dx

=
∫ 2π

0

√
1 + cos2 x dx .

At this point, we have a problem, as it is not obvious how to integrate
√
1 + cos2 x . It

is what is called an elliptic integral of the second kind, and beyond the remit of this
introductory book. Dividing the sine wave into a series of line segments, and using
the theorem of Pythagoras, we discover that the length converges as follows

10◦ steps ≈ 7.6373564

5◦ steps ≈ 7.6396352

2◦ steps ≈ 7.6402736

1◦ steps ≈ 7.6403648.
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9.3.6 Arc Length of a Hyperbolic Cosine Function

Finding the arc length of y = 3 cosh
(
1
3 x

)
over the interval x ∈ [−3, 3] turns out to

be much easier than y = sin x

dy

dx
= sinh

(
1
3 x

)

therefore

s =
∫ 3

−3

√

1 +
(
dy

dx

)2

dx

=
∫ 3

−3

√
1 + sinh2

(
1
3 x

)
dx

=
∫ 3

−3

√
cosh2

(
1
3 x

)
dx

=
∫ 3

−3
cosh

(
1
3 x

)
dx

=
[
3 sinh

(
1
3 x

) ]3

−3

= 3 (sinh 1 − sinh(−1))

= 3

(
e1 − e−1

2
− e−1 − e1

2

)

= 3
(
e1 − e−1

)

≈ 7.05.

Figure 9.5 shows the graph of y = 3 cosh
(
1
3 x

)
.

Fig. 9.5 The graph of
y = 3 cosh

( 1
3 x

)
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9.3.7 Arc Length of Parametric Functions

Parametric functions take the form

x = fx (t)

y = fy(t)

where fx and fy are independent functions, but share a common parameter t . In order
to compute the arc length of such a function we need to derive the derivative dy/dx .
The individual derivatives are dx/dt and dy/dt and can be combined to produce
dy/dx as follows

dy

dx
= dy/dt

dx/dt

which means that (9.2) can be written as

s =
∫ b

a

√√√√1 +
(
dy/dt

dx/dt

)2

dx

=
∫ b

a

√
(dx/dt)2 + (dy/dt)2

(dx/dt)2
dx

=
∫ b

a

√√√√
(
dx

dt

)2

+
(
dy

dt

)2 dt

dx
dx

s =
∫ b

a

√√√√
(
dx

dt

)2

+
(
dy

dt

)2

dt. (9.7)

A similar analysis can be performed for 3D parametric curves, where we have

x = fx (t)

y = fy(t)

z = fz(t)

and

s =
∫ b

a

√(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

dt. (9.8)

Writing a parametric function as a Cartesian vector

r(t) = x(t)i + y(t)j + z(t)k
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its derivative is

r′(t) = x ′(t)i + y′(t)j + z′(t)k.

The derivative, r′(t) is the tangent vector to the curve, whose magnitude is ||r′(t)||,
therefore

||r′(t)|| =
√(

x ′(t)
)2 +

(
y′(t)

)2 +
(
z′(t)

)2
. (9.9)

We can use (9.7) and (9.8) to solve various problems in two and three dimensions.

9.3.8 Arc Length of a Circle

Let’s start with the parametric equation of a circle with radius r , by computing the
arc length of one quadrant, and multiplying this by 4

r(t) = x(t)i + y(t)j, t ∈ [0, 2π ]
x(t) = r cos t

y(t) = r sin t.

Differentiating x(t) and y(t)

dx

dt
= −r sin t

dy

dt
= r cos t

and substituting them in (9.7)

s = 4
∫ π/2

0

√( − r sin t
)2 + (

r cos t
)2

dt

= 4r
∫ π/2

0

√
sin2 t + cos2 t dt

= 4r
∫ π/2

0
1 dt

= 4r

[
t

]π/2

0

= 2πr.
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9.3.9 Arc Length of an Ellipse

Let’s follow the circle with an ellipse, which is represented parametrically

r(t) = x(t)i + y(t)j, t ∈ [0, 2π ]
x(t) = a cos t

y(t) = b sin t.

Differentiating x(t) and y(t)

dx

dt
= −a sin t

dy

dt
= b cos t

and substituting them in (9.7)

s = 4
∫ π/2

0

√( − a sin t
)2 + (

b cos t
)2

dt

= 4
∫ π/2

0

√
a2 sin2 t + b2 cos2 t dt

= 4
∫ π/2

0

√
a2(1 − cos2 t) + b2 cos2 t dt

= 4
∫ π/2

0

√
a2 − (a2 − b2) cos2 t dt

= 4a
∫ π/2

0

√
1 − ε2 cos2 t dt (9.10)

where ε = √
1 − b2/a2 is the eccentricity of the ellipse. Equation (9.10) is an ellip-

tic integral, and can only be solved numerically, as no standard function is avail-
able. However, using the binomial theorem, and cosine integrals (https://www.pages.
pacificcoast.net/~cazelais/250a/ellipse-length.pdf), it can be shown that

s = 2πa

(

1 −
(
1

2

)2
ε2

1
−

(
1 · 3
2 · 4

)2
ε4

3
−

(
1 · 3 · 5
2 · 4 · 6

)2
ε6

5
−

(
1 · 3 · 5 · 7
2 · 4 · 6 · 8

)2
ε8

7
− · · ·

)

.

(9.11)

Given an ellipse where a = 5 and b = 4, then ε = 0.6. Let’s compute (9.11) by
including increasing number of terms

https://www.pages.pacificcoast.net/~cazelais/250a/ellipse-length.pdf
https://www.pages.pacificcoast.net/~cazelais/250a/ellipse-length.pdf
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Fig. 9.6 A constant-pitch
helix

s ≈ 2πa

(

1 −
(
1

2

)2 ε2

1

)

≈ 28.58849

s ≈ 2πa

(

1 −
(
1

2

)2 ε2

1
−

(
1 · 3
2 · 4

)2 ε4

3

)

≈ 28.58242

s ≈ 2πa

(

1 −
(
1

2

)2 ε2

1
−

(
1 · 3
2 · 4

)2 ε4

3
−

(
1 · 3 · 5
2 · 4 · 6

)2 ε6

5

)

≈ 28.36901

s ≈ 2πa

(

1 −
(
1

2

)2 ε2

1
−

(
1 · 3
2 · 4

)2 ε4

3
−

(
1 · 3 · 5
2 · 4 · 6

)2 ε6

5
−

(
1 · 3 · 5 · 7
2 · 4 · 6 · 8

)2 ε8

7

)

≈ 28.36338

therefore, the ellipse’s perimeter is approximately 28.36.

9.3.10 Arc Length of a Helix

A constant-pitch helix is shown in Fig. 9.6, and can be defined as

r(t) = r cos t i + r sin tj + tk

where r is the radius in the xy -plane. If r = 2, then

r(t) = 2 cos t i + 2 sin tj + tk.
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Its arc length is computed using

r′(t) = −2 sin t i + 2 cos tj + k

where t ∈ [0, 4π ]. Therefore, using (9.8)

s =
∫ 4π

0

√
4 sin2 t + 4 cos2 t + 1 dt

= √
5

∫ 4π

0
1 dt

= √
5

[
t

]4π

0

≈ 28.1.

Thus the length of the helix over two turns is ≈ 28.1.

9.3.11 Arc Length of a 2D Quadratic Bézier Curve

For an introduction to Bézier curves, seemy bookMathematics for Computer Graph-
ics (2).

A 2D quadratic Bézier curve is represented as

r(t) =
[
x(t)
y(t)

]
, t ∈ [0, 1]

x(t) = x0(1 − 2t + t2) + x1(2t − 2t2) + x2t
2

y(t) = y0(1 − 2t + t2) + y1(2t − 2t2) + y2t
2.

Differentiating x(t) and y(t)

dx

dt
= x0(2t − 2) + x1(2 − 4t) + x22t

dy

dt
= y0(2t − 2) + y1(2 − 4t) + y22t.

Let’s take a simple example, with P0 = (0, 0), P1 = (1, 1) and P2 = (2, 1), as
shown in Fig. 9.7. Using Pythagoras, the arc length must be slightly longer than√
5 ≈ 2.236. Therefore
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Fig. 9.7 A 2D Bézier curve

dx

dt
= 2

dy

dt
= 2 − 2t

s =
∫ 1

0

√
22 + (2 − 2t)2 dt

=
∫ 1

0

√
8 − 8t + 4t2 dt

= 2
∫ 1

0

√
t2 − 2t + 2 dt

= 2
∫ 1

0

√
(t − 1)2 + 12 dt.

Using (9.5)

∫ √
x2 + a2 dx = 1

2 x
√
x2 + a2 + 1

2a
2 ln

∣∣∣x +
√
x2 + a2

∣∣∣ + C

therefore, let x = t − 1 and a = 1

s =
[
2

(
t − 1

2

√
t2 − 2t + 2 + 1

2 ln
∣∣∣t − 1 +

√
t2 − 2t + 2

∣∣∣
) ]1

0

=
[
(t − 1)

√
t2 − 2t + 2 + ln

∣∣∣t − 1 +
√
t2 − 2t + 2

∣∣∣
]1

0

= −√
2 + ln

∣∣∣−1 + √
2
∣∣∣

≈ 2.296.
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Table 9.1 Computing the line-segment lengths

t x y Δx Δy (Δx)2 (Δy)2
√

(Δx)2 + (Δy)2

0 0 0 0 0 0 0 0

0.2 0.4 0.36 0.4 0.36 0.16 0.1296 0.538145

0.4 0.8 0.64 0.4 0.28 0.16 0.0784 0.488262

0.6 1.2 0.84 0.4 0.2 0.16 0.04 0.447214

0.8 1.6 0.96 0.4 0.12 0.16 0.0144 0.417612

1 2 1 0.4 0.04 0.16 0.0016 0.401995

By making P1 = (1, 0.5), the Bézier curve becomes a straight line with length
√
5.

dx

dt
= 2

dy

dt
= 1

s =
∫ 1

0

√
22 + 12 dt

= √
5

[
t

]1

0

≈ 2.236.

We can approximate the arc length by reducing the curve to a chain of straight-line
segments, and summing their lengths. Table 9.1 shows the calculations. The sum of
the right-hand column gives the total length of the line segments, which is 2.293,
and is very close to the integral: 2.296.

9.3.12 Arc Length of a 3D Quadratic Bézier Curve

A 3D quadratic Bézier curve is represented as

r(t) =
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ , t ∈ [0, 1]

x(t) = x0(1 − 2t + t2) + x1(2t − 2t2) + x2t
2

y(t) = y0(1 − 2t + t2) + y1(2t − 2t2) + y2t
2

z(t) = z0(1 − 2t + t2) + z1(2t − 2t2) + z2t
2.
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Differentiating x(t), y(t) and z(t)

dx

dt
= x1(2t − 2) + x2(2 − 4t) + x32t

dy

dt
= y1(2t − 2) + y2(2 − 4t) + y32t

dz

dt
= z1(2t − 2) + z2(2 − 4t) + z32t.

Let’s take a simple example, with P0 = (0, 0, 0), P1 = (1, 1, 1) and P2 =
(2, 1, 1). Therefore

dx

dt
= 2

dy

dt
= 2 − 2t

dz

dt
= 2 − 2t

s =
∫ 1

0

√(
2
)2 + (

2 − 2t
)2 + (

2 − 2t)2 dt

=
∫ 1

0

√
8 − 8t + 4t2 + 4 − 8t + 4t2 dt

=
∫ 1

0

√
8t2 − 16t + 12 dt

= 2
√
2

∫ 1

0

√
t2 − 2t + 1.5 dt

= 2
√
2

∫ 1

0

√

(t − 1)2 +
(
1/

√
2
)2

dt.

Using (9.5)
∫ √

x2 + a2 dx = 1
2 x

√
x2 + a2 + 1

2a
2 ln

∣∣∣x +
√
x2 + a2

∣∣∣ + C

therefore, let x = t − 1 and a = 1/
√
2

s = 2
√
2

[ (
t − 1

2

√
t2 − 2t + 1.5 + 1

2×2 ln
∣∣∣t − 1 +

√
t2 − 2t + 1.5

∣∣∣
) ]1

0

= 2
√
2

((
1
4 ln

∣∣∣
√
0.5

∣∣∣
)

−
(−1

2

√
1.5 + 1

4 ln
∣∣∣−1 + √

1.5
∣∣∣
))

≈ 2
√
2
(

− 0.086643 −
(
−0.612372 − 0.373197

))

≈ 2
√
2
(

− 0.086643 + 0.837117
)

≈ 2
√
2 · 0.92376

≈ 2.612788.
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9.3.13 Arc Length Parameterisation of a 3D Line

One useful tool in computer animation is the ability to move along a 3D curve
in a controlled manner. Unfortunately, this turns out to be a difficult calculation,
as it involves integrating a function within a radical, and very often there is no
standard solution. This means employing some high-level mathematics to secure an
approximate numerical solution.

In this section we examine the arc-length parameterisation of a straight line, and
in the following section for a parametric helix curve.

A vector-valued function normally takes the form

r(t) = x(t)i + y(t)j + z(t)k

r′(t) = x ′(t)i + y′(t)j + z′(t)k

||r′(t)|| =
√(

x ′(t)
)2 + (

y′(t)
)2 + (

z′(t)
)2

therefore, we can define an arc length function as

s(t) =
∫ t

a
||r′(u)|| du

=
∫ t

a

√(
x ′(t)

)2 + (
y′(t)

)2 + (
z′(t)

)2
du

and the Fundamental Theorem of Calculus states (https://en.wikipedia.org/wiki/
fundamental_theorem_of_calculus), if f (u) is well behaved, and

s(t) =
∫ t

a
f (u) du

then

ds

dt
= f (t),

therefore

ds

dt
= ||r′(t)||.

For example, (9.12) describes a 2D straight line 5 units long

r(t) = 4t i + 3tj, t ∈ [0, 1] (9.12)

where any point is determined by the value of t .When t = 1, the line’s length is 5, and
when t = 0.5, the line’s length is 2.5. Clearly, the line’s length s is given by s = 5t .

https://en.wikipedia.org/wiki/fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/fundamental_theorem_of_calculus
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The parameter t , which could stand for time, but is probably just an independent
parameter. Now say we wish to write (9.12) using the line’s length s, then we must
change every occurrence of t fo

r(s) = 4
5 si + 3

5 sj, s ∈ [0, t].

Knowing that s = 5t , means that t = s/5. We can now locate points anywhere along
the line as a proportion of the line’s length s.

If (9.12) is written generally

r(t) = at i + btj, t ∈ [0, 1]

the line’s length is
√
a2 + b2, and any distance along the line is given by

s = t
√
a2 + b2

therefore

t = s√
a2 + b2

and

r(s) = as√
a2 + b2

i + bs√
a2 + b2

j.

For a 3D line

r(t) =
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ , t ∈ [0, 1]

x(t) = at

y(t) = bt

z(t) = ct

r(t (s)) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

as√
a2 + b2 + c2

bs√
a2 + b2 + c2

cs√
a2 + b2 + c2

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The above reasoning seems straight forward, but we must find a strategy using cal-
culus, so that we can parameterise 3D curves in terms of their arc length. So let’s use
calculus to parameterise a 3D straight line.
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Starting with the vector-valued function (9.13)

r(t) =
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦ , t ∈ [0, 1] (9.13)

x(t) = at

y(t) = bt

z(t) = ct.

Differentiate r(t)

r′(t) =
⎡

⎣
a
b
c

⎤

⎦ .

The length of r′(t) is

||r′(t)|| =
√
a2 + b2 + c2.

We already know that

s(t) =
∫

||r′(t)|| dt

but this integrates with respect to t , and we want to integrate the arc length over the
interval [0, t]. Therefore, we use another parameter, say u, such that

s(t) =
∫ t

0
||r′(u)|| du.

Therefore, we can write

s(t) =
∫ t

0
||r′(u)|| du

=
∫ t

0

√
a2 + b2 + c2 du

=
[
u
√
a2 + b2 + c2

]t

0

= t
√
a2 + b2 + c2.



9.3 Arc Length 175

So s = t
√
a2 + b2 + c2 and t = s√

a2+b2+c2
. Substituting t back in (9.13)

r(t (s)) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

as√
a2 + b2 + c2

bs√
a2 + b2 + c2

cs√
a2 + b2 + c2

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (9.14)

With the limits of t being [0, 1], the limits of s in (9.14) are
[
0, t

√
a2 + b2 + c2

]
.

9.3.14 Arc Length Parameterisation of a Helix

Now let’s apply the above reasoning to a helix curve, which is chosen to keep the
maths simple. Starting with the vector-valued function

r(t) =
⎡

⎣
a cos t
a sin t
bt

⎤

⎦ , t ∈ [0, 2π ] (9.15)

differentiating (9.15)

r′(t) =
⎡

⎣
−a sin t
a cos t

b

⎤

⎦ .

The length of the tangent vector r′(t) is

||r′(t)|| =
√
a2 sin2 t + a2 cos2 t + b2

=
√
a2

(
sin2 t + cos2 t

) + b2

=
√
a2 + b2.

The arc length of the helix over the interval [0, t] is

s(t) =
∫ t

o
||r′(u)|| du

=
∫ t

o

√
a2 + b2 du

=
√
a2 + b2

∫ t

o
1 du
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=
√
a2 + b2

[
u

]t

0

= t
√
a2 + b2.

Therefore, t = s√
a2+b2

, which substituted in (9.15) gives

r(t (s)) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a cos

(
s√

a2 + b2

)

a sin

(
s√

a2 + b2

)

bs√
a2 + b2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, s ∈
[
0, t

√
a2 + b2

]
. (9.16)

Let’s illustrate (9.16) with an example.
Given a = 4, b = 3, and t ∈ [0, 2π ], then s ∈ [0, 5t]

r(s) =
⎡

⎣
4 cos (s/5)
4 sin (s/5)

3s/5

⎤

⎦

r(0) =
⎡

⎣
4 cos (0)
4 sin (0)

0

⎤

⎦ =
⎡

⎣
4
0
0

⎤

⎦

r(10π) =
⎡

⎣
4 cos (2π)

4 sin (2π)

6π

⎤

⎦ =
⎡

⎣
4
0
6π

⎤

⎦ .

9.3.15 Positioning Points on a Straight Line Using a Square
Law

One canposition points on a line or a fixed-pitch helix using their parametric equation.
Nevertheless, Iwill show this process in terms of arc length. To illustrate this, consider
the original 2D line equation

r(s) =
[

4
5 s
3
5 s

]

, s ∈ [0, 5].

Rewriting this as
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Table 9.2 The value of r(s) for different values of s

s (s/5)2 r(s)

0 0 [0, 0]
0.5 0.01 [0.04, 0.03]
1 0.04 [0.16, 0.12]
1.5 0.09 [0.36, 0.27]
2 0.16 [0.64, 0.48]
2.5 0.25 [1, 0.75]
3 0.36 [1.44, 1.08]
3.5 0.49 [1.96, 1.47]
4 0.64 [2.56, 1.92]
4.5 0.81 [3.24, 2.43]
5 1.0 [5, 3]

Fig. 9.8 Points located along a line with a square-law distribution

r(s) =
⎡

⎢
⎣
4

( s
5

)2

3
( s
5

)2

⎤

⎥
⎦ , s ∈ [0, 5]

locates points along the line with a square-law distribution. Table 9.2 shows the
values of r(s) for different values of s, and Fig. 9.8 shows the points located along
the line.
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Table 9.3 The value of r(s) for different values of s

s s2/5 2πs2/5 r(s)

0 0 0 [2, 0, 0]
0.2236 0.01 0.063 [1.996, 0.126, 0.063]
0.4472 0.04 0.251 [1.937, 0.497, 0.251]
0.6708 0.09 0.565 [1.689, 1.071, 0.565]
0.8944 0.16 1.005 [1.072, 1.688, 1.005]
1.118 0.25 1.571 [0, 2, 1.571]
1.3416 0.36 2.262 [−1.275, 1.541, 2.262]
1.5652 0.49 3.079 [−1.996, 0.125, 3.079]
1.7888 0.64 4.021 [−1.275, −1.541, 4.021]
2.0124 0.81 5.089 [0.736, −1.859, 5.089]
2.236 1.0 6.283 [2, 0, 6.283]

9.3.16 Positioning Points on a Helix Curve Using a Square
Law

Now let’s arrange points along a helix using a square law. We start with the vector-
valued function for a helix

r(t) =
⎡

⎣
2 cos t
2 sin t

t

⎤

⎦ , t ∈ [0, 2π ]

which becomes

r(s) =

⎡

⎢⎢
⎣

2 cos
(
s/

√
5
)

2 sin
(
s/

√
5
)

s/
√
5

⎤

⎥⎥
⎦ , s ∈

[
0, 2π

√
5
]

=

⎡

⎢⎢
⎣

2 cos
(
2πs/

√
5
)

2 sin
(
2πs/

√
5
)

2πs/
√
5

⎤

⎥⎥
⎦ , s ∈

[
0,

√
5
]

(9.17)

=
⎡

⎣
2 cos

(
2πs2/5

)

2 sin
(
2πs2/5

)

2πs2/5

⎤

⎦ , s ∈
[
0,

√
5
]
. (9.18)

(9.17) locates points along the helix as a linear function of the arc length, but by
squaring s/

√
5, we obtain a square-law distribution (9.18). Table 9.3 shows the

necessary calculations, and Fig. 9.9 shows the helix, looking down the z-axis.
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Fig. 9.9 Points located
along a helix with a
square-law distribution

Fig. 9.10 The
correspondence between
Cartesian and polar
coordinates

Naturally, we could have used any type of law to distribute the points. This is not
the problem. The real problem is securing a vector-valued function for the arc-length
parameterisation. We have already seen the difficulty in computing the arc length of
a Bézier curve, and cubic B-splines are equally obscure.

9.3.17 Arc Length Using Polar Coordinates

Polar coordinates are sometimes more convenient than Cartesian coordinates when
describing functions involving trigonometric functions. For example, Fig. 9.10 shows
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the correspondence between a point (x, y) and its polar coordinates (r, θ), where

x = r cos θ

y = r sin θ

and as r = f (θ), we have the product of two functions. Rewriting (9.7) in terms of
θ we have

s =
∫ θ2

θ1

√(
dx

dθ

)2

+
(
dy

dθ

)2

dθ. (9.19)

To find dx/dθ and dy/dθ we have to employ the product rule

x = u(θ) · v(θ)

dx

dθ
= u(θ)

dv

dθ
+ v(θ)

du

dθ

therefore

x = r cos θ

dx

dθ
= −r sin θ + dr

dθ
cos θ (9.20)

y = r sin θ

dy

dθ
= r cos θ + dr

dθ
sin θ. (9.21)

Substituting (9.20) and (9.21) in (9.19)

s =
∫ θ2

θ1

√(
− r sin θ + dr

dθ
cos θ

)2

+
(
r cos θ + dr

dθ
sin θ

)2

dθ

=
∫ θ2

θ1

√

r2 sin2 θ +
(
dr

dθ

)2

cos2 θ + r2 cos2 θ +
(
dr

dθ

)2

sin2 θ dθ

=
∫ θ2

θ1

√

r2 +
(
dr

dθ

)2

dθ

therefore, the arc length is

s =
∫ θ2

θ1

√

r2 +
(
dr

dθ

)2

dθ. (9.22)

Let’s test (9.22) with the arc length of a circle, where r = 2 and θ ∈ [0, 2π ].
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Fig. 9.11 Polar graph of r = 2e0.2θ

Therefore

dr

dθ
= 0

and

s =
∫ 2π

0

√
22 + 02 dθ

= 2
∫ 2π

0
1 dθ

= 2

[
θ

]2π

0

= 4π

which is very compact, as well as correct. Now let’s compute the length of a loga-
rithmic spiral.

Figure 9.11 shows the graph of a logarithmic spiral r = 2e0.2θ where θ ∈ [0, 2π ],
whose length is calculated using (9.22) as follows.

r = 2e0.2θ

dr

dθ
= 0.4e0.2θ

s =
∫ 2π

0

√

r2 +
(
dr

dθ

)2

dθ
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=
∫ 2π

0

√(
2e0.2θ

)2 + (
0.4e0.2θ

)2
dθ

=
∫ 2π

0

√
4e0.4θ + 0.16e0.4θ dθ

=
∫ 2π

0

√
4.16e0.4θ dθ

= √
4.16

∫ 2π

0
e0.2θ dθ

=
√
4.16
0.2

[
e0.2θ

]2π

0

=
√
4.16
0.2

(
e0.4π − e0

)

≈
√
4.16
0.2 (3.5136 − 1)

≈ 25.634.

9.4 Summary

In this chapter we have computed the arc length of various functions using integra-
tion. However, all of the integrands contain a radical, which often makes integration
difficult, if not impossible, without resorting to numerical techniques or employing
software solutions.

9.4.1 Summary of Formulae

Explicit functions

y = f (x)

s =
∫ b

a

√

1 +
(
dy

dx

)2

dx .

2D Parametric functions

r(t) =
[
x(t)
y(t)

]

s =
∫ b

a

√(
dx

dt

)2

+
(
dy

dt

)2

dt.
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3D Parametric functions

r(t) =
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦

s =
∫ b

a

√(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

dt.

Polar coordinates

r = f (θ)

s =
∫ θ2

θ1

√

r2 +
(
dr

dθ

)2

dθ.

9.5 Worked Examples

9.5.1 Arc Length of a Straight Line

Find the length of the straight line y = x , over the interval x ∈ [2, 4].

Solution

dy

dx
= 1

therefore

s =
∫ 4

2

√

1 +
(
dy

dx

)2

dx

=
∫ 4

2

√
1 + (1)2 dx

= √
2

∫ 4

2
1 dx

= √
2

[
x

]4

2

≈ 2.828.

The length of the straight line y = x , over the interval x ∈ [2, 4] is approximately
2.828.



184 9 Arc Length and Parameterisation of Curves

9.5.2 Arc Length of a Circle

Find the length of a 1 unit radius quadrant.

Solution
Integrate over the interval x ∈ [0, 1].

y =
√
1 − x2

dy

dx
= 1

2 (1 − x2)−1/2 · (−2x)

= −x√
1 − x2

s =
∫ 1

0

√

1 +
(
dy

dx

)2

dx

=
∫ 1

0

√

1 + x2

1 − x2
dx

=
∫ 1

0

√
1

1 − x2
dx

=
∫ 1

0

dx√
1 − x2

=
[
arcsin x

]1

0

= (
π
2

)

= π

2
.

The length of a 1 unit radius quadrant is π
2 .

9.5.3 Arc Length of y = 2x
3
2

Find the length of the curve y = 2x
3
2 over the interval x ∈ [0, 2].

Solution

y = 2x
3
2

dy

dx
= 6

2 x
1
2 = 3x

1
2
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therefore

s =
∫ 2

0

√

1 +
(
dy

dx

)2

dx

=
∫ 2

0

√
1 + 9x dx

=
∫ 2

0
(1 + 9x)

1
2 dx

Let u = 1 + 9x , then dx
du = 1

9 .

The limits for u are

x = 0, u = 1

x = 2, u = 19

s = 1
9

∫ 19

1
u

1
2 du

= 1
9

[
2
3u

3
2

]19

1

≈ 2
27 (82.819 − 1)

≈ 6.06.

The length of the curve y = 2x
3
2 over the interval x ∈ [0, 2] is approximately 6.06.

9.5.4 Arc Length of a Helix

Find the length of one turn of a fixed-pitch helix of radius 4.

Solution

r(t) = r cos t i + r sin tj + tk

where r is the radius in the xy -plane. If r = 4, then

r(t) = 4 cos t i + 4 sin tj + tk.

Its arc length is computed using

r′(t) = −4 sin t i + 4 cos tj + k
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where t ∈ [0, 2π ]. Therefore, using (9.8)

s =
∫ 2π

0

√
16 sin2 t + 16 cos2 t + 1 dt

= √
17

∫ 2π

0
1 dt

= √
17

[
t

]2π

0

≈ 25.9.

Thus the length of the helix over one turn is ≈ 25.9.
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Chapter 10
Surface Area

10.1 Introduction

In Chap. 8 I showed how to compute the area under a graph using integration,
and in this chapter I describe how single and double integration are used to compute
surface areas and regions bounded by functions. Also in this chapter, we come across
Jacobians, which are used to convert an integral from one coordinate system to
another. To start, let’s examine surfaces of revolution.

10.2 Surface of Revolution

A surface of revolution is a popular 3Dmodelling technique used in computer graph-
ics for creating objects such as wine glasses and vases, where a contour is rotated
about an axis. Integral calculus provides a way to compute the area of such surfaces
using

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx (10.1)

where y = f (x) and is differentiable over the interval x ∈ [a, b].
To derive (10.1), consider the scenario shown in Fig. 10.1, where points P and Q

are on a continuous curve generated by the function y = f (x). The curve over the
interval x ∈ [a, b] is to be rotated 360◦ about the x-axis.

The coordinates of P and Q are (xi , yi ) and (xi+1, yi+1) respectively, Δxi =
xi+1 − xi , and Δsi approximate to the arc length between P and Q

Δsi ≈
√
1 + ( f ′(c))2Δxi

where c is some x ∈ [a, b] satisfying Lagrange’s mean-value theorem.

© Springer Nature Switzerland AG 2023
J. Vince, Calculus for Computer Graphics,
https://doi.org/10.1007/978-3-031-28117-4_10

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28117-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-28117-4_10


188 10 Surface Area

Fig. 10.1 The geometry to
create a surface of revolution

x

y

P Q

yi yi+1

xi+1xi

Δxi

Δsi

y = f(x)

To compute the area ΔSi swept out by the line segment PQ when rotated 360◦
about the x-axis, we use the mean radius ri

ri = yi+1 + yi
2

such that

ΔSi ≈ 2πriΔsi

≈ 2π

(
yi+1 + yi

2

) √
1 + ( f ′(c))2Δxi .

As Δxi → 0, yi+1 ≈ yi ≈ f (c), therefore

ΔSi ≈ 2π f (c)
√
1 + ( f ′(c))2Δxi .

Consequently, the total area swept by the arc about the x-axis is

S = lim
n→∞

n∑
i=1

2π f (c)
√
1 + ( f ′(c))2Δxi

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx . (10.2)

Similarly, the total area swept by the arc about the y-axis is

S = 2π
∫ b

a
f (y)

√
1 +

(
dx

dy

)2

dy. (10.3)

Let’s use (10.2) and (10.3) with various functions.
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Fig. 10.2 Surface area of a
cylinder

x

y

y = rr h

10.2.1 Surface Area of a Cylinder

To compute the surface are of a cylinder we employ the geometry shown in Fig.
10.2, where a straight horizontal line is rotated 360◦ about the x-axis. The function
is simply y = r , and x ∈ [0, h]. As y = r , dy/dx = 0, and

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx

= 2πr
∫ h

0
1 dx

= 2πr
[
x

]h
0

= 2πrh

which is correct.

10.2.2 Surface Area of a Right Cone

To compute the surface area of a right cone we employ the function y = r x/h, where
r is the cone’s radius and h its height, as shown in Fig. 10.3. Therefore

y = r

h
x

dy

dx
= r

h

s =
√
h2 + r2
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Fig. 10.3 The geometry
used to compute the surface
area of a right cone

x

y

r
h

y =
r

h
x

s

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx

= 2π
∫ h

0

r

h
x

√
1 + r2

h2
dx

= 2πr

h

∫ h

0
x

√
h2 + r2

h2
dx

= 2πr

h2

∫ h

0
x
√
h2 + r2 dx

= 2πrs

h2

∫ h

0
x dx

= 2πrs

h2
· 1
2

[
x2

]h
0

= πrs

h2
h2

= πrs

which is correct.
Reversing the line’s slope to y = r(1 − x/h) as shown in Fig. 10.4 we have

y = r

(
1 − x

h

)

dy

dx
= − r

h

s =
√
h2 + r2

S = 2πr
∫ h

0

(
1 − x

h

) √
1 + r2

h2
dx
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Fig. 10.4 Surface area of a
right cone

x

y

r
h

s
y = r 1 − x

h

Fig. 10.5 The surface of a
right cone created by
sweeping a line about the
x-axis

= 2πr

h

∫ h

0
(h − x)

√
h2 + r2

h
dx

= 2πrs

h2
[
hx − 1

2 x
2
]h
0

= 2πrs

h2
(
h2 − 1

2h
2
)

= 2πrs

h2
1
2h

2

= πrs.

Figure 10.5 shows a view of the swept conical surface.
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Fig. 10.6 A unit semi-circle

-1 0 1

1

10.2.3 Surface Area of a Sphere

The surface area of a sphere is S = 4πr2, and is derived as follows.
Figure 10.6 shows a unit semi-circle and Fig. 10.7 shows the surface of revolution

when this is swept 360◦ about the x-axis. The equation of a circle is x2 + y2 = r2

over the interval x ∈ [−r, r ] therefore

f (x) = y =
√
r2 − x2.

To find f ′(x), let

u = r2 − x2

du

dx
= −2x

y = √
u

dy

du
= 1

2u
−1/2

= 1

2
√
u

= 1

2
√
r2 − x2

dy

dx
= dy

du
· du
dx

= 1

2
√
r2 − x2

(−2x)

= −x√
r2 − x2

which is substituted in (10.1)
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Fig. 10.7 The surface of
revolution formed by
sweeping a semi-circle
through 360◦

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx

= 2π
∫ r

−r

√
r2 − x2

√
1 +

( −x√
r2 − x2

)2

dx

= 2π
∫ r

−r

√
r2 − x2

√
1 +

(
x2

r2 − x2

)
dx

= 2π
∫ r

−r

√
r2 − x2

r√
r2 − x2

dx

= 2πr
∫ r

−r
1 dx

= 2πr
[
x

]r
−r

= 2πr2r

= 4πr2.

10.2.4 Surface Area of a Paraboloid

To compute the surface area of a paraboloid we rotate the parabola function y = x2

about the y-axis, as shown in Fig. 10.8.
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-1 0 1

1 y=x2

Fig. 10.8 A parabola to be rotated about the y-axis

y = x2

x = √
y

dx

dy
= 1

2
√
y

S = 2π
∫ b

a
f (y)

√
1 +

(
dx

dy

)2

dy

= 2π
∫ 1

0

√
y

√
1 +

(
1

2
√
y

)2

dy

= 2π
∫ 1

0

√
y

√
1 + 1

4y
dy

= 2π
∫ 1

0

√
y

√
4y + 1

4y
dy

= 2π
∫ 1

0

√
y

√
4y + 1

2
√
y

dy

= π

∫ 1

0

√
4y + 1 dy.

Let u = 4y + 1, therefore, du/dy = 4, or dy/du = 1/4. The limits for u are 1 and 5.
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Fig. 10.9 A parabolic
surface

S = π

4

∫ 5

1

√
u du

= π

4

∫ 5

1
u1/2 du

= π

4
· 2
3

[
u3/2

]5
1

= π

6

(√
53 −

√
13

)

= π

6

(√
125 − 1

)

≈ 5.33.

Figure 10.9 shows a similar parabolic surface.

10.3 Surface Area Using Parametric Functions

The standard equation to compute surface area is

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx (10.4)

where the curve represented by f (x) is rotated about the x-axis. In order to convert
(10.4) to accept the following parametric equations

x = fx (t)

y = fy(t).

First, we need to establish equivalent limits [α, β] for t , such that
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a = fx (α) and b = fy(β).

Second, any point on the curve has corresponding Cartesian and parametric coordi-
nates

x and fx (t)

y = f (x) and fy(t).

Third, we compute dy/dx from the individual derivatives dx/dt and dy/dt

dy

dx
= dy

dt
· dt

dx

which means that (10.4) can be written as

S = 2π
∫ β

α

fy(t)

√
1 +

(
dy

dt
· dt

dx

)2

dx

= 2π
∫ β

α

fy(t)

√
(dxdt)2 + (dydt)2

(dxdt)2
dx

= 2π
∫ β

α

fy(t)

√(
dx

dt

)2

+
(
dy

dt

)2 dt

dx
dx

S = 2π
∫ β

α

fy(t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt. (10.5)

For example, to create a unit-sphere from the parametric equations for a semi-circle
we have

x = fx (t) = − cos t

y = fy(t) = sin t

dx

dt
= sin t

dy

dt
= cos t

S = 2π
∫ β

α

fy(t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt

= 2π
∫ π

0
sin t

√
sin2 t + cos2 t dt

= 2π
∫ π

0
sin t dt
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= −2π
[
cos t

]π

0

= 2π(1 + 1)

= 4π

which is correct.
To rotate about the y-axis (10.5) becomes

S = 2π
∫ β

α

fx (t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

10.4 Double Integrals

Up to this point we have only employed single integrals to compute area, but just as
it is possible to differentiate a function several times, it is also possible to integrate
a function several times. For example, to integrate

z = f (x, y) = x2y

over the interval x ∈ [0, 3], then we write

∫ 3

0
f (x, y) dx =

∫ 3

0
x2y dx

= y
[
1
3 x

3
]3
0

= 9y.

But say we now want to integrate 9y over the interval y ∈ [0, 2], we write
∫ 2

0
9y dy = 9

∫ 2

0
y dy

= 9
[
1
2 y

2
]2
0

= 18.

These two individual steps can be combined in the form of a double integral

∫ 2

0

∫ 3

0
x2y dx dy

where the inner integral is evaluated first, followed by the outer integral
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∫ 2

0

∫ 3

0
x2y dx dy =

∫ 2

0

[
1
3 x

3]3
0 y dy

= 9
∫ 2

0
y dy

= 9
[
1
2 y

2
]2
0

= 18.

Note that reversing the integrals has no effect on the result

∫ 3

0

∫ 2

0
x2y dy dx =

∫ 3

0

[
1
2 y

2
]2
0 x

2 dx

= 2
∫ 3

0
x2 dx

= 2
[
1
3 x

3
]3
0

= 18.

Let’s take another example

∫ 2

0

∫ 2

1
3xy3 dx dy = 3

∫ 2

0

[
1
2 x

2
]2
1 y

3 dy

= 9
2

∫ 2

0
y3 dy

= 9
2

[
1
4 y

4
]2
0

= 18.

10.5 Jacobians

In spite of a relatively short life, the Germanmathematician Carl Gustav Jacob Jacobi
(1804–1851) made a significant contribution to mathematics in the areas of elliptic
functions, number theory, differential equations and in particular, the Jacobianmatrix
and determinant.

The Jacobianmatrix is used in equations of differentials when changing variables,
and its determinant, the Jacobian determinant, provides a scaling factor in multiple
integrals when changing the independent variable. I will provide three applications
of the determinant, showing its use in one, two and three dimensions.
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10.5.1 1D Jacobian

In order to integrate some integrals, we often have to substitute a new variable. For
example, to integrate ∫ 4

1

√
2x + 1 dx

it is convenient to substitute u = 2x + 1, where du/dx = 2 or dx/du = 1/2, calcu-
late new limits for u, i.e. 3 and 9, and integrate with respect to u

∫ 4

1

√
2x + 1 dx =

∫ 9

3

√
u
dx

du
du

= 1
2

∫ 9

3

√
u du

= 1
2

∫ 9

3
u1/2 du

= 1
2

[
2
3u

3/2
]9
3

= 1
3

(
93/2 − 33/2

)
≈ 1

3 (27 − 5.2)

≈ 7.3.

The factor 1/2 is introduced because x changes half as fast as u. This scaling factor is
known as a Jacobian, and is the derivative dx/du.We can alsowrite it as ∂x/∂u, even
though there is only one variable, as the partial notation keeps the Jacobians consistent
as we increase the number of dimensions. Furthermore, we are only interested in the
magnitude of the Jacobian, not its sign.

The scaling factor could also be another function. For example, to integrate

∫ 2

0

x

(x2 + 2)2
dx

it is convenient to substitute u = x2 + 2, where du/dx = 2x or dx/du = 1/2x ,
calculate new limits for u, i.e. 2 and 6, and integrate with respect to u

∫ 2

0

x

(x2 + 2)2
dx =

∫ 6

2

x

u2
dx

du
du

= 1

2x

∫ 6

2

x

u2
du

= 1
2

∫ 6

2

1

u2
du
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= 1
2

∫ 6

2
u−2 du

= 1
2

[−1

u

]6

2

= 1
2

(
− 1

6 + 1
2

)

= 1
6 .

In this case, the scaling factor is 1/2x , which is the corresponding Jacobian, however,
this time its value is a function of x .

10.5.2 2D Jacobian

When defining double integrals using Cartesian coordinates, one normally ends up
with something like ∫ b

a
f (x, y) dx dy

where dx dy is regarded as the area of an infinitesimally small rectangle, and is often
represented by d A. But if we move from Cartesian coordinates to polar coordinates
and work with functions of the form g(ρ, θ), there is a temptation to substitute
g(ρ, θ) for f (x, y) and (dρ dθ) for (dx dy), which is incorrect. The reason why,
is that the differential area of a rectangular region in Cartesian coordinates does
not equal the differential area of a corresponding region in polar coordinates. The
Jacobian determinant provides us with the adjustment necessary to carry out this
substitution, which in this case is ρ, and (dx dy) is replaced by (ρ dρ dθ). I will
describe a general solution to this problem, which is found on various Internet web-
sites (https://mathforum.org/dr.math).

Figure 10.10 shows an infinitesimally small rectangle defined by the points
C1C2C3C4 in Cartesian coordinates. The vertical broken lines identify lines of con-
stant x , and the horizontal broken lines identify lines of constant y. The rectangle’s
width and height are dx and dy, respectively, which makes d A = dx dy. Similarly,
Fig. 10.11 shows an infinitesimally small rectangle defined by the points P1P2P3P4
in another coordinate system. The vertical broken lines identify lines of constant u,
and the horizontal broken lines identify lines of constant v. The rectangle’s width
and height are du and dv, respectively.

We now create two single-valued functionsmapping parametric coordinates (u, v)
into Cartesian coordinates (x, y)

x = f (u, v) and y = g(u, v)

https://mathforum.org/dr.math


10.5 Jacobians 201

Fig. 10.10 The rectangle
C1C2C3C4 in Cartesian
space

x

y

C1 C2

C3C4

dA

dx

dy

constant x

constant y

Fig. 10.11 The rectangle
P1P2P3P4 in parametric
space constant u

constant v

du

dv

P1 P2

P3P4

u

v

where for every (x, y) there is a unique (u, v). There are also two single-valued
functions mapping Cartesian coordinates (x, y) into parametric coordinates (u, v)

u = F(x, y) and v = G(x, y).

For example, given

u = x2 + y2 and v = x2 − y2

then

x =
√
u + v

2
and y =

√
u − v

2
.

Next, we take the points in uv-space andmap them into their corresponding Cartesian
points as shown in Fig. 10.12. The resulting shape depends entirely upon the nature
of the mapping functions f (u, v) and g(u, v); however, we anticipate that they are
curved in some way and bounded by contours of constant u and v.
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Fig. 10.12 The parametric
points P1P2P3P4 in
Cartesian space

con
stan

t u

constant v

P1

P2

P3

P4

u

v

dA1

If the area of this differential region equals the Cartesian rectangle dx dy, then
dx dy can be replaced by du dv. If not, we must compensate for any stretching or
contraction. Theproblem therefore, is to compute the area of this curvilinear rectangle
P1P2P3P4 in Fig. 10.12 and compare it to the area of the rectangle C1C2C3C4 in
Fig. 10.10. This is resolved by assuming that when this rectangle is infinitesimally
small, curves can be approximated by lines, and the area of the triangle P1P2P4 is
half the area of the required region. The area of the triangle is easily computed using
the determinant

1
2

∣∣∣∣∣∣
1 1 1
x1 x2 x4
y1 y2 y4

∣∣∣∣∣∣
where (x1, y1), (x2, y2) and (x4, y4) are the triangle’s vertices taken in anticlockwise
sequence. Reversing the sequence, reverses the sign, which is why the absolute value
is added at the end of the proof. However, if we assume that the area of the curvilinear
region is twice the area of the triangle, then

Area of (P1P2P3P4) = d A1 =
∣∣∣∣∣∣
1 1 1
x1 x2 x4
y1 y2 y4

∣∣∣∣∣∣ . (10.6)

The next stage is to derive a function relating the differentials dx and dy with
du and dv, so that the triangle’s coordinates can be determined. These functions are
simply the total differentials for f and g

x = f (u, v)

y = g(u, v)

dx = ∂x

∂u
du + ∂x

∂v
dv



10.5 Jacobians 203

dy = ∂y

∂u
du + ∂y

∂v
dv.

As with many mathematical solutions we can save ourselves a lot of work by
making a simple assumption, which in this case is that the coordinates of P1 are
(x1, y1), and the coordinates of P2 and P4 are of the form (x1 + dx, y1 + dy).

Starting with P2 with coordinates (x2, y2), then

x2 = x1 + dx

y2 = y1 + dy

x2 = x1 + ∂x

∂u
du + ∂x

∂v
dv

y2 = y1 + ∂y

∂u
du + ∂y

∂v
dv

but as P1 and P2 lie on a contour where v is constant, dv = 0, which means that

x2 = x1 + ∂x

∂u
du

y2 = y1 + ∂y

∂u
du.

Next, P4 with coordinates (x4, y4), then

x4 = x1 + dx

y4 = y1 + dy

x4 = x1 + ∂x

∂u
du + ∂x

∂v
dv

y4 = y1 + ∂y

∂u
du + ∂y

∂v
dv

but as P1 and P4 lie on a contour where u is constant, du = 0, which means that

x4 = x1 + ∂x

∂v
dv

y4 = y1 + ∂y

∂v
dv.

We now plug the coordinates for P1, P2 and P4 into (10.6)
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d A1 =

∣∣∣∣∣∣∣∣∣

1 1 1

x1 x1 + ∂x

∂u
du x1 + ∂x

∂v
dv

y1 y1 + ∂y

∂u
du y1 + ∂y

∂v
dv

∣∣∣∣∣∣∣∣∣
.

Rather than expand the determinant, let’s simplify it by subtracting column 1 from
columns 2 and 3

d A1 =

∣∣∣∣∣∣∣∣∣

1 0 0

x1
∂x

∂u
du

∂x

∂v
dv

y1
∂y

∂u
du

∂y

∂v
dv

∣∣∣∣∣∣∣∣∣
which becomes

d A1 =

∣∣∣∣∣∣∣

∂x

∂u
du

∂x

∂v
dv

∂y

∂u
du

∂y

∂v
dv

∣∣∣∣∣∣∣
.

The determinant now contains the common term du dv, which is taken outside

d A1 =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
du dv.

Finally, we write this as

d A1 = ∂(x, y)

∂(u, v)
du dv = |J | du dv

where J is the Jacobian determinant

J =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
.

Therefore, for the region R, we can write

∫ ∫
R(x, y)

F(x, y) dx dy =
∫ ∫

R(u, v)
F ( f (u, v), g(u, v)) |J | du dv

Let’s evaluate J for converting Cartesian to polar coordinates, where
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x = ρ cos θ

y = ρ sin θ

ρ =
√
x2 + y2

therefore

∂x

∂ρ
= cos θ

∂x

∂θ
= −ρ sin θ

∂y

∂ρ
= sin θ

∂y

∂θ
= ρ cos θ

J =
∣∣∣∣ cos θ −ρ sin θ

sin θ ρ cos θ

∣∣∣∣
= ρ cos2 θ + ρ sin2 θ

= ρ

therefore, dx dy is replaced by ρ dρ dθ .

10.5.3 3D Jacobian

The Jacobian determinant generalises to higher dimensions, and in three dimensions
becomes

J =

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣
(10.7)

and is used in with triple integrals for calculating volumes. For example, in the next
chapter I will show how a triple integral using spherical coordinates is converted into
Cartesian coordinates using the appropriate Jacobian. For the moment, let’s evaluate
the Jacobian determinant. Figure 10.13 shows the convention used for converting the
point (x, y, z) into spherical polar coordinates (ρ, φ, θ). From Fig. 10.13 we see
that
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Fig. 10.13 Spherical polar
coordinates

x

y

z

φ

θ

ρ

(ρ, φ, θ) ≡ (x, y, z)

x = ρ sin φ · cos θ

y = ρ sin φ · sin θ

z = ρ cosφ

the partial derivatives are

∂x

∂ρ
= sin φ · cos θ,

∂x

∂φ
= ρ cosφ · cos θ,

∂x

∂θ
= −ρ sin φ · sin θ

∂y

∂ρ
= sin φ · sin θ,

∂y

∂φ
= ρ cosφ · sin θ,

∂y

∂θ
= ρ sin φ · cos θ

∂z

∂ρ
= cosφ,

∂z

∂φ
= −ρ sin φ,

∂z

∂θ
= 0.

Substituting these partials in (10.7)

J =
∣∣∣∣∣∣
sin φ · cos θ ρ cosφ · cos θ −ρ sin φ · sin θ

sin φ · sin θ ρ cosφ · sin θ ρ sin φ · cos θ

cosφ −ρ sin φ 0

∣∣∣∣∣∣
which expands to

det = ρ2 cos2 φ · cos2 θ · sin φ + ρ2 sin3 φ · sin2 θ + ρ2 sin3 φ · cos2 θ + ρ2 sin φ · sin2 θ · cos2 φ

=
(
ρ2 sin3 φ + ρ2 sin φ · cos2 φ)(sin2 θ + cos2 θ

)

= ρ2 sin φ
(
sin2 φ + cos2 φ

)

= ρ2 sin φ.

Normally, we take the absolute value of the Jacobian determinant, but in this case,
φ ∈ [0, π ], and ρ2 sin φ is always positive. Thus ρ2 sin φ dφ dθ replaces dx dy dz
in the appropriate integral.
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When using cylindrical coordinates, where

x = ρ cosφ, y = ρ sin φ, z = z

the Jacobian is ρ

J =

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣
cosφ −ρ sin φ 0
sin φ ρ cosφ 0
0 0 1

∣∣∣∣∣∣
= ρ cos2 φ + ρ sin2 φ

= ρ.

Thus the first three Jacobians are

J1 = ∂x

∂u
, J2 =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
, J3 =

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣
which are often compressed to

J1 = ∂x

∂u
, J2 = ∂(x, y)

∂(u, v)
, J3 = ∂(x, y, z)

∂(u, v,w)
.

10.6 Double Integrals for Calculating Area

I will now illustrate how double integrals are used for calculating area, and in the next
chapter, show how they are also used for calculating volume. To begin, look what
happens when we integrate f (x, y) = 1 over the interval x ∈ [a, b], and y ∈ [c, d]

∫ d

c

∫ b

a
f (x, y) dx dy =

∫ d

c

∫ b

a
1 dx dy

=
∫ d

c

[
x
]b
a
dy
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Fig. 10.14 The projection of
z = f (x, y) on the xy-plane

x
y

z

A

a

b

c
d

R

P1
P2

P3

P4

z = f(x, y)

=
∫ d

c
(b − a) dy

= (b − a)

∫ d

c
1 dy

= (b − a)
[
y

]d
c

= (b − a)(d − c).

The result is the product of the x- and y-intervals, which is the region A formed
by a 3D surface projected onto the xy-plane, as shown in Fig. 10.14. The actual area
of the surface created by z = f (x, y) bounded by the points P1, P2, P3 and P4 is
given by

R =
∫ d

c

∫ b

a

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy. (10.8)

Let’s show how (10.8) is used to compute area.
The first example is simple and is shown in Fig. 10.15, where z = f (x, y) = y.

The intervals are x ∈ [0, 2] and y ∈ [0, 1]. By inspection, the area equals 2√2. Cal-
culating the partial derivatives, we have

∂z

∂x
= 0, and

∂z

∂y
= 1

therefore, (10.8) becomes

R =
∫ 1

0

∫ 2

0

√
1 + 02 + 12 dx dy



10.6 Double Integrals for Calculating Area 209

Fig. 10.15 Part of the
surface z = y

1

x

y

z

z = y

1

R

2

= √
2

∫ 1

0

∫ 2

0
1 dx dy

= √
2

∫ 1

0

[
x

]2
0
dy

= 2
√
2

∫ 1

0
1 dy

= 2
√
2

[
y

]1
0

= 2
√
2.

The second example is shown in Fig. 10.16, where z = f (x, y) = 4x + 2y. The
intervals are x ∈ [0, 1] and y ∈ [0, 1]. Calculating the partial derivatives, we have

∂z

∂x
= 4, and

∂z

∂y
= 2

therefore, (10.8) becomes

R =
∫ 1

0

∫ 1

0

√
1 + 42 + 22 dx dy

= √
21

∫ 1

0

∫ 1

0
1 dx dy

= √
21

∫ 1

0

[
x

]1
0
dy

= √
21

∫ 1

0
1 dy

= √
21

[
y

]1
0

= √
21.
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Fig. 10.16 Part of the
surface z = 4x + 2y

The above examples have been chosen so that the radical within the integrand reduces
to some numerical value. Unfortunately, this is not always the case, and integration
has to involve software or numerical methods.

10.7 Summary

In this chapter we have derived formulae to compute the surface area of contours
rotated about the x- and y-axis. The important formulae are repeated below.

10.7.1 Summary of Formulae

Rotate about the x-axis

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx .
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Rotate about the y-axis

S = 2π
∫ b

a
f (y)

√
1 +

(
dx

dy

)2

dy.

If the function is described parametrically with x = fx (t) and y = fy(t) where t ∈
[α, β], then
Rotate about the x-axis

S = 2π
∫ β

α

fy(t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

Rotate about the y-axis

S = 2π
∫ β

α

fx (t)

√(
dx

dt

)2

+
(
dy

dt

)2

dt.

Double integrals for calculating the area of surfaces described by functions of the
form z = f (x, y), then

Cartesian coordinates

R =
∫ ∫

R

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

Cylindrical polar coordinates

R =
∫ ∫

R

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

ρ dρ dθ.

Spherical polar coordinates

R =
∫ ∫

R

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

ρ2 sin φ dφ dθ.

The first three Jacobian determinants

J1 = ∂x

∂u
, J2 =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
, J3 =

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣
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which are often written as

J1 = ∂x

∂u
, J2 = ∂(x, y)

∂(u, v)
, J3 = ∂(x, y, z)

∂(u, v, w)
.

10.8 Worked Examples

10.8.1 Surface Area of a Cylinder

Find the total surface area S of a cylinder h = 10cm long and a radius r = 5cm,
with end caps.

Solution
Let the cylinder be aligned such that the length is along the x-axis. Then, y = r = 5,
and dy/dx = 0 where

S = 2πr2 + 2π
∫ 10

0
f (x)

√
1 +

(
dy

dx

)2

dx

= 2π25 + 2π5
∫ 10

0
1 dx

= 50π + 10π
[
x

]10
0

= 50π + 100π

= 150π cm2.

The surface area is approximately 471.24 cm2.

10.8.2 Surface Area Swept Out by a Function

Find the surface area S swept by revolving y = 3
√
x about the x-axis for the interval

x ∈ [0, 3].
Solution

S = 2π
∫ 3

0
f (x)

√
1 +

(
dy

dx

)2

dx

y = 3
√
x

dy

dx
= x−1/2
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(
dy

dx

)2

= x−1

= 2π
∫ 3

0
3
√
x
√
1 + x−1 dx

= 6π
∫ 3

0

√
x + 1 dx

Let u = x + 1, then du/dx = 1 and dx/du = 1, and the differential dx = du.
The limits for u are u ∈ [1, 4].

S = 6π
∫ 4

1

√
u du

= 6π
[
2
3u

3/2
]4
1

= 4π(8 − 1)

= 28π cm2.

The surface area is approximately 87.96 cm2.

10.8.3 Double Integrals

Using a double integral, integrate z = x3y3 over the intervals x ∈ [0, 3], y ∈ [1, 4].
Solution

∫ 4

1

∫ 3

0
x3y3 dx dy =

∫ 4

1

[
1
4 x

4
]3
0 y

3 dy

= 81
4

∫ 4

1
y3 dy

= 81
4

[
1
4 y

4
]4
1

= 81
16 (256 − 1)

≈ 1290.94.

10.8.4 Area Using Double Integral

Find the area of the plane z = f (x, y) = x over the intervals x ∈ [0, 2] and y ∈
[0, 2].



214 10 Surface Area

Solution
By inspection, the area equals 4

√
2. Calculating the partial derivatives, we have

∂z

∂x
= 1, and

∂z

∂y
= 0

therefore

R =
∫ 2

0

∫ 2

0

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dx dy

=
∫ 2

0

∫ 2

0

√
1 + 12 + 02 dx dy

= √
2

∫ 2

0

∫ 2

0
1 dx dy

= √
2

∫ 2

0

[
x

]2
0
dy

= 2
√
2

∫ 2

0
1 dy

= 2
√
2

[
y

]2
0

= 4
√
2.
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Chapter 11
Volume

11.1 Introduction

In this chapter I introduce four techniques for calculating the volume of various
geometric objects. Two techniques are associated with solids of revolution, where
an object is cut into flat slices or concentric cylindrical shells and summed over the
object’s extent using a single integral. The third technique employs two integrals
where the first computes the area of a slice through a volume, and the second sums
these areas over the object’s extent. The fourth technique employs three integrals to
sum the volume of an object. We start with the slicing technique.

11.2 Solid of Revolution: Disks

In Chap. 10 we saw that the area of a swept surface is calculated using

S = 2π
∫ b

a
f (x)

√
1 +

(
dy

dx

)2

dx .

Now let’s show that the contained volume is given by

V = π

∫ b

a
( f (x))2 dx .

Figure 11.1 shows a contour described by y = f (x) rotated about the x-axis
creating a solid of revolution. If we imagine this object cut into a series of thin
slices, then the entire volume is the sum of the volumes of the individual slices.
However, if we cut a real solid of revolution into a collection of slices, it is highly
likely that each slice forms a right conical frustum, where the diameter of one side
differs slightly from the other side. Therefore, our numerical strategy assumes that
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Fig. 11.1 Dividing a volume
of revolution into small disks

the slices are infinitesimally thin, and are thin disks with a volume equal to πr2Δx .
Figure 11.1 shows a point P(xi , yi ) on the contour touching a disk with radius f (xi )
and thickness Δx . Therefore, the volume of the disk is

Vi = π ( f (xi ))
2 Δx .

Dividing the contour into n such disks, and letting n tend towards infinity, the entire
volume is given by

V = lim
n→∞

n∑
i=1

π ( f (xi ))
2 Δx

which in integral form is

V = π

∫ b

a
( f (x))2 dx . (11.1)

Let’s apply (11.1) to the same objects used for computing the surface area of surfaces
of revolution.

11.2.1 Volume of a Cylinder

The geometry required to compute the volume of a cylinder is shown in Fig. 11.2,
where y = r is the radius, and h is the height. Therefore, using (11.1) we have
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Fig. 11.2 Computing the
volume of a cylinder

h y = r

x

y

z

V = π

∫ b

a
( f (x))2 dx

= π

∫ h

0
r2 dx

= πr2
∫ h

0
1 dx

= πr2
[
x

]h
0

= πr2h.

11.2.2 Volume of a Right Cone

The geometry required to compute the volume of a right cone is shown in Fig. 11.3,
where y = r x/h. Therefore, using (11.1) we have

V = π

∫ b

a
( f (x))2 dx

= π

∫ h

0

r2

h2
x2 dx

= πr2

h2

∫ h

0
x2 dx

= πr2

h2

[
1
3 x

3
]h
0

= πr2

h2
1
3h

3

= 1
3πr2h.
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Fig. 11.3 Computing the
volume of a right cone

Fig. 11.4 Reversing the
orientation of a right cone

Reversing the orientation of the cone as shown in Fig. 11.4, such that y = r(1 −
x/h) we have

V = π

∫ b

a
( f (x))2 dx

= π

∫ h

0
r2

(
1 − x

h

)2
dx

= πr2
∫ h

0

(
1 − x

h

)2
dx

= πr2
∫ h

0

(
1 − 2x

h
+ x2

h2

)
dx

= πr2
[
x − x2

h
+ x3

3h2

]h
0

= πr2
(
h − h + 1

3h
)

= 1
3πr2h.
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We could have also integrated this as follows

V = π

∫ b

a
( f (x))2 dx

= π

∫ h

0
r2

(
1 − x

h

)2
dx

= πr2
∫ h

0

(
1 − x

h

)2
dx .

Substituting

u = 1 − x

h

where du/dx = −1/h, or dx/du = −h, and calculating new limits for u, u ∈ [1, 0],
we have

V = πr2
∫ 0

1
u2(−h) du

= πr2h
∫ 1

0
u2 du

= πr2h
[
1
3u

3]1
0

= 1
3πr

2h.

11.2.3 Volume of a Right Conical Frustum

Figure 11.5 shows the geometry to compute the volume of a right conical frustum,
but this time the contour is rotated about the y-axis. The integral to achieve this is

V = π

∫ b

a
( f (y))2 dy

and the contour to be rotated about the y-axis is

x =
(
1 − y

H

)
r1

with the integral for the volume

V = πr21

∫ h

0

(
1 − y

H

)2
dy.
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Fig. 11.5 Computing the
volume of a right conical
frustum

However, in reality, we will not know the value of H , but we would know the values
of r1 and r2. Therefore, with a little manipulation, the contour can be written as

x = hr1 + y(r2 − r1)

h

which confirms that when y = 0, x = r1, and when y = h, x = r2. Therefore, the
volume can be written in terms of r1, r2 and h as

V = π

h2

∫ h

0
(hr1 + y(r2 − r1))

2 dy

= π

h2

∫ h

0
h2r21 + 2hr1y(r2 − r1) + y2(r2 − r1)

2 dy

= π

h2

[
h2r21 y + hr1y

2(r2 − r1) + 1
3 y

3
(
r22 − 2r1r2 + r21

) ]h

0

= π

h2
(
h3r21 + h3r1(r2 − r1) + 1

3h
3
(
r22 − 2r1r2 + r21

))

= πh

3

(
3r21 + 3r1r2 − 3r21 + r22 − 2r1r2 + r21

)

= πh

3

(
r21 + r22 + r1r2

)
.

For example, when r1 = 2 cm, r2 = 4 cm and h = 3 cm, then

V = 3π

3

(
22 + 42 + 8

) = 28π cm3.
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Fig. 11.6 The contour used
to form a sphere

0

x
r-r

y
y2 = r2 - x2

r

11.2.4 Volume of a Sphere

A sphere is easily created by rotating a semi-circle about the x- or y-axis, as shown
in Fig. 11.6, where the equation of the contour is given by

y2 = r2 − x2.

Using (11.1), the volume is

V = π

∫ r

−r
y2 dx

= π

∫ r

−r

(
r2 − x2

)
dx

= π
[
r2x − 1

3 x
3
]r
−r

= π
(
r3 − 1

3r
3 + r3 − 1

3r
3
)

= 4
3πr

3.

11.2.5 Volume of an Ellipsoid

Figure 11.7 shows part of an ellipse, which when rotated about the x-axis creates a
3D ellipsoid. Using (11.1) with the equation for an ellipse

1 =
( x
a

)2 +
( y

b

)2

we have
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Fig. 11.7 The contour used
to form an ellipsoid

0

x
a-a

y

b

y2 = b2

a2
(
a2 − x2

)

where the ellipsoid’s volume is given by

V = π

∫ a

−a
y2 dx

= π
b2

a2

∫ a

−a

(
a2 − x2

)
dx

= π
b2

a2
[
a2x − 1

3 x
3]a

−a

= π
b2

a2
(
a3 − 1

3a
3 + a3 − 1

3a
3
)

= 4
3πab

2.

Figure 11.8 shows an ellipsoid.
Sweeping the ellipse about the y-axis creates another ellipsoid, with a different

volume given by

V = π

∫ b

−b
x2 dy

= π
a2

b2

∫ b

−b

(
b2 − y2

)
dy

= π
a2

b2
[
b2y − 1

3 y
3
]b
−b

= π
a2

b2
(
b3 − 1

3b
3 + b3 − 1

3b
3
)

= 4
3πa

2b.
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Fig. 11.8 An ellipsoid

Observe that in both cases when a = b = r , the object is a sphere with a volume of
4
3πr

3.

11.2.6 Volume of a Paraboloid

Figure 11.9 shows a parabola, which when rotated about the y-axis forms a 3D
paraboloid To rotate about the y-axis the equation of the parabola is

x = √
y

where y ∈ [0, h]. The volume of the paraboloid is

V = π

∫ h

0
x2 dy

= π

∫ h

0
y dy

= π
[
1
2 y

2
]h
0

= 1
2πh

2.

If x ∈ [0, 1], then h = 1, and the volume is π/2. Figure 11.10 shows a paraboloid.
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Fig. 11.9 A parabola, which
when rotated about the
y-axis creates a paraboloid

0 x

y
h

y = x2

Fig. 11.10 A paraboloid

11.3 Solid of Revolution: Shells

A solid of revolution can also be constructed from a collection of concentric cylindri-
cal shells as shown in Fig. 11.11, where the object’s shape is defined by the contour
y = f (x) which is rotated about the y-axis. Figure 11.12 shows one of the cylindri-
cal shells with a radius of xi , f (xi ) high and Δx thick. As the shell is assumed to be
infinitesimally thin, the volume of the shell is

Vi = 2πxi f (xi )Δx .

Dividing the solid into n such shells, and letting n tend towards infinity, the entire
volume is given by

V = lim
n→∞

n∑
i=1

2πxi f (xi ) Δx

which in integral form is
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Fig. 11.11 A series of
concentric shells

Fig. 11.12 Dimensions for
one concentric shell

V = 2π
∫ b

a
x f (x) dx . (11.2)

Similarly, when the contour is rotated about the x-axis, the integral is

V = 2π
∫ d

c
y f (y) dy. (11.3)

Let’s test (11.2) and (11.3) with various contours.

11.3.1 Volume of a Cylinder

Figure 11.13 shows the 2D geometry to create a cylinder with radius r , and height h
to be rotated about the y-axis. Using (11.2) the volume is
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Fig. 11.13 The 2D
geometry used to create a
cylinder

V = 2π
∫ b

a
x f (x) dx

= 2π
∫ r

0
xh dx

= 2πh
[
1
2 x

2
]r
0

= πr2h.

11.3.2 Volume of a Right Cone

Figure 11.14 shows a 2D straight line represented by y = h(1 − x/r), which when
rotated about the y-axis sweeps out a right cone with radius r , and height h. Its
volume is given by

V = 2π
∫ r

0
x f (x) dx

= 2π
∫ r

0
xh

(
1 − x

r

)
dx

= 2πh
∫ r

0

(
x − x2

r

)
dx

= 2πh

[
1
2 x

2 − 1
3

x3

r

]r

0

= 2πh
(
1
2r

2 − 1
3r

2)
= 1

3πr
2h.
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Fig. 11.14 The 2D
geometry used to create a
right cone

11.3.3 Volume of a Hemisphere

Figure 11.15 shows the 2Dgeometry to create a hemispherewith radius r to be rotated
about the y-axis. As we have seen before, it is convenient to use polar coordinates
when dealing with circles and spheres, therefore, our equations are

x = r cos θ and y = r sin θ.

The original interval for x is x ∈ [0, r ], which for θ is θ ∈ [π/2, 0]. Therefore
dx

dθ
= −r sin θ or using differentials dx = −r sin θ dθ.

Using (11.2) the volume is

V = 2π
∫ r

0
x f (x) dx

= 2π
∫ 0

π/2
(r cos θ · r sin θ (−r sin θ)) dθ

= −2πr3
∫ 0

π/2
cos θ · sin2 θ dθ

= −2πr3
∫ 0

π/2
cos θ

(
1 − cos2 θ

)
dθ

= −2πr3
∫ 0

π/2
cos θ dθ + 2πr3

∫ 0

π/2
cos3 θ dθ

= −2πr3
[
sin θ

]0
π/2

+ 2πr3
∫ 0

π/2
cos3 θ dθ

= 2πr3 + 2πr3
∫ 0

π/2
cos3 θ dθ.
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Fig. 11.15 The 2D
geometry used to create a
hemisphere

0 x

r

y

rcos

rsin

From Appendix B, we see that

∫
cos3 θ dθ = 1

3 sin θ · cos2 θ + 2
3 sin θ + C.

Therefore

V = 2πr3 + 2πr3
[
1
3 sin θ · cos2 θ + 2

3 sin θ
]0
π/2

= 2πr3 − 2πr3 23
= 2

3πr
3

which makes a sphere’s volume 4
3πr

3.

11.3.4 Volume of a Paraboloid

We have already seen that the volume of a paraboloid using y = x2 is 1
2πh

2, where
h is the height. The following shell method computes the volume surrounding the
paraboloid, which using (11.2) gives

V = 2π
∫ r

0
x f (x) dx

= 2π
∫ r

0
x · x2 dx

= 2π
∫ r

0
x3 dx

= 2π
[
1
4 x

4
]r
0

= 1
2πr

4
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Fig. 11.16 The 2D
geometry used to create a
paraboloid

0 x

y

h

y = h - x2

r

and if x ∈ [0, 1], then h = r2, and V = 1
2πh

2. Which shows that the volume of
inner paraboloid equals the enclosing volume. In order to compute the volume of a
paraboloid using the shell technique, the parabola has to be inverted, as shown in
Fig. 11.16.

V = 2π
∫ r

0
x f (x) dx

= 2π
∫ r

0
x

(
h − x2

)
dx

= 2π
∫ r

0
xh − x3 dx

= 2π
[
1
2 x

2h − 1
4 x

4]r
0

= 2π
(
1
2r

2h − 1
4r

4
)
.

But in our equation, h = r2, therefore

V = 2π
(
1
2h

2 − 1
4h

2)
= 1

2πh
2.

11.4 Volumes with Double Integrals

Figure 11.17 illustrates a 3D function where z = f (x, y) over a region R defined
by the limits a ≤ x ≤ b and c ≤ y ≤ d, whose area is projected onto the xy-plane.
If we consider a small rectangular tile on the xy-plane with dimensions Δx and Δy,
the volume of this column is approximately
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Fig. 11.17 A surface
created by z = f (x, y)

ΔV ≈ f (xi , y j )Δx .Δy

where i and j identify a specific tile. Therefore, the total volume is

V ≈
∑
i, j

f (xi , y j )Δx .Δy.

In the limit

V = lim
Δx,Δy→0

∑
i, j

f (xi , y j )Δx .Δy

or in integral form

V =
∫ b

a

∫ d

c
f (x, y) dx dy

where the inner integral is evaluated first, followed by the outer integral. The integral
can be written in two ways

V =
∫ b

a

∫ d

c
f (x, y) dx dy =

∫ d

c

∫ b

a
f (x, y) dy dx . (11.4)

Let’s apply (11.4) in various scenarios.
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Fig. 11.18 A rectangular
box

11.4.1 Objects with a Rectangular Base

11.4.2 Rectangular Box

Figure 11.18 shows a rectangular box whose top surface is defined by z = h, with
base dimensions (x2 − x1) and (y2 − y1), where the enclosed volume is

V = h(x2 − x1)(y2 − y1).

This is confirmed by (11.4) as follows

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ y2

y1

∫ x2

x1

h dx dy

= h
∫ y2

y1

∫ x2

x1

1 dx dy

= h
∫ y2

y1

[
x

]x2
x1
dy

= h
∫ y2

y1

(x2 − x1) dy

= h(x2 − x1)
∫ y2

y1

1 dy

= h(x2 − x1)
[
y
]y2
y1

= h(x2 − x1)(y2 − y1).
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Fig. 11.19 A rectangular
prism

11.4.3 Rectangular Prism

Figure 11.19 shows a rectangular prism whose top sloping surface is defined by
z = h(1 − x/a), with base dimensions a and b, where the enclosed volume is

V = 1
2hab.

This is confirmed by (11.4) as follows

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ b

0

∫ a

0
h

(
1 − x

a

)
dx dy

= h
∫ b

0

∫ a

0

(
1 − x

a

)
dx dy

= h
∫ b

0

[
x − 1

2

x2

a

]a

0

dy

= h
∫ b

0

(
a − 1

2a
)
dy

= 1
2ha

∫ b

0
1 dy

= 1
2ha

[
y
]b
0

= 1
2hab.
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Fig. 11.20 An object with a
curved top

11.4.4 Curved Top

Figure 11.20 shows an object with a square base and curved top defined by z =
x2 + y. Given that {x, y} ∈ [0, 1], then the enclosed volume is

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ 1

0

∫ 1

0

(
x2 + y

)
dx dy

=
∫ 1

0

[
1
3 x

3 + xy
]1
0 dy

=
∫ 1

0

(
y + 1

3

)
dy

=
[
1
2 y

2 + 1
3 y

]1
0

= 1
2 + 1

3

= 5
6 .
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11.4.5 Objects with a Circular Base

The same double integral works with polar coordinates, which enables us to compute
the volume of objects with a circular base. We have already seen that when moving
from Cartesian coordinates to polar coordinates, the appropriate Jacobian must be
included. In this case, the following substitutions are

x = ρ cos θ

y = ρ sin θ

dx dy = ρ dρ dθ

which transforms (11.4) into

V =
∫ b

a

∫ d

c
f (x, y) dx dy =

∫ 2π

0

∫ r

0
f (ρ cos θ, ρ sin θ)ρ dρ dθ. (11.5)

Let’s test (11.5) using various objects.

11.4.6 Cylinder

The volume of a cylinder with radius r and f (ρ cos θ, ρ sin θ) = h is πr2h, which
is confirmed as follows

V =
∫ 2π

0

∫ r

0
f (ρ cos θ, ρ sin θ) ρ dρ dθ

=
∫ 2π

0

∫ r

0
hρ dρ dθ

= h
∫ 2π

0

[
1
2ρ

2
]r
0
dθ

= 1
2r

2h
∫ 2π

0
1 dθ

= 1
2r

2h
[
θ

]2π
0

= πr2h.
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Fig. 11.21 Cross section of
a cylinder and intersecting
plane

11.4.7 Truncated Cylinder

The volume of a truncated cylinder is calculated by forming the intersection of a
cylinder and an oblique plane. The following proof confirms that the volume equals
πr2h, because the cylinder’s height, h, is the z-axis. To illustrate this, Fig. 11.21
shows a side projection of a cylinder intersecting the plane: z = h − λx/r , where
λ controls the slope of the plane. It is clear that the two cross-hatched triangles are
equal, which is why the volume is unchanged

V =
∫ 2π

0

∫ r

0
f (ρ cos θ, ρ sin θ) ρ dρ dθ

=
∫ 2π

0

∫ r

0

(
h − λρ cos θ

r

)
ρ dρ dθ

=
∫ 2π

0

∫ a

0

(
ρh − λρ2 cos θ

r

)
dρ dθ

=
∫ 2π

0

[
1
2ρ

2h − λρ3 cos θ

3r

]r

0

dθ

=
∫ 2π

0

(
1
2r

2h − 1
3λr

2 cos θ
)
dθ

= 1
6r

2
∫ 2π

0
(3h − 2λ cos θ) dθ

= 1
6r

2
[
3hθ − 2λ sin θ

]2π
0

= 1
6r

26πh

= πr2h.
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Fig. 11.22 A cross-section
of parabola intersecting a
cylinder

-2 0 2 4

2

4

x

z

z = x2/2+2

If the radius is 2, and the height 4, then the volume is 16π . Observe that the result
is independent of λ. Taking this cylinder and intersecting it with the parabola, z =
2 + 1

2 x
2 as shown in Fig. 11.22, the volume reduces to 10π

V =
∫ 2π

0

∫ 2

0

(
2 + 1

2 x
2
)
ρ dρ dθ

=
∫ 2π

0

∫ 2

0

(
2 + 1

2ρ
2 cos2 θ

)
ρ dρ dθ

=
∫ 2π

0

∫ 2

0

(
2ρ + 1

2ρ
3 cos2 θ

)
dρ dθ

=
∫ 2π

0

[
ρ2 + 1

8ρ
4 cos2 θ

]2
0
dθ

=
∫ 2π

0
4 + 2 cos2 θ dθ

=
∫ 2π

0
5 + cos 2θ dθ

=
[
5θ + 1

2 sin 2θ
]2π
0

= 10π.

11.5 Volumes with Triple Integrals

The double integral for calculating volume is

∫∫

R

f (x, y) dx dy or
∫∫

R

f (x, y) d A
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where the region R is divided into a matrix of small areas represented by dx dy or
d A. The Riemann sum notation is

∫∫

R

f (x, y) d A = lim
n→∞

n∑
i=1

f (xi , yi ) ΔAi .

This notation can be generalised into a triple integral for calculating volume

∫∫∫

R

f (x, y, z) dx dy dz or
∫∫∫

R

f (x, y, z) dV

where the region R is divided into amatrix of small volumes represented by dx dy dz
or dV . The Riemann sum notation is

∫∫

R

f (x, y, z) dV = lim
n→∞

n∑
i=1

f (xi , yi , zi ) ΔVi .

Let’s apply (11.6), where each integral identifies its interval of integration, to various
3D objects and calculate their volume.

V =
∫ b

a

∫ d

c

∫ f

e
f (x, y, z) dx dy dz. (11.6)

11.5.1 Rectangular Box

Figure 11.23 shows the Cartesian coordinates for a rectangular box, with x-, y- and
z-lengths are (x2 − x1), (y2 − y1) and (z2 − z1) respectively, and whose volume is
calculated using (11.6) as follows

V =
∫ b

a

∫ d

c

∫ f

e
f (x, y, z) dx dy dz

=
∫ z2

z1

∫ y2

y1

∫ x2

x1

1 dx dy dz.

Together, the three integrals create the product of three lengths

x2 − x1, y2 − y1, z2 − z1

which form the volume of the box
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Fig. 11.23 Cartesian
coordinates for a rectangular
box

V =
∫ z2

z1

∫ y2

y1

[
x

]x2
x1
dy dz

= (x2 − x1)
∫ z2

z1

∫ y2

y1

1 dy dz

= (x2 − x1)
∫ z2

z1

[
y
]y2
y1
dz

= (x2 − x1)(y2 − y1)
∫ z2

z1

1 dz

= (x2 − x1)(y2 − y1)
[
z
]z2
z1

= (x2 − x1)(y2 − y1)(z2 − z1)

which confirms that the volume is the product of the box’s linear measurements.

11.5.2 Volume of a Cylinder

Figure 11.24 shows a quadrant of a cylinder with radius r , and height h. Its volume
is computed by dividing the enclosed space into cuboids with a volume ΔVi =
δx · δy · δz. In the limit, as δx , δy and δz tend towards zero, the entire volume is a
Riemann sum, and a triple integral

V =
∫ h

0

∫ r

0

∫ √
r2−y2

0
1 dx dy dz. (11.7)
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Fig. 11.24 The first
quadrant of a circular arc

The solution looks neater if the integrals are evaluated as follows

V =
∫ r

0

∫ √
r2−y2

0

∫ h

0
1 dz dx dy

=
∫ r

0

∫ √
r2−y2

0

[
z
]h
0
dx dy

= h
∫ r

0

∫ √
r2−y2

0
1 dx dy

= h
∫ r

0

[
x

]√r2−y2

0
dy

= h
∫ r

0

√
r2 − y2 dy.

Let y = r sin θ , then

dy

dθ
= r cos θ

or using differentials

dy = dy

dθ
dθ = r cos θ dθ

and the interval for θ is θ ∈ [0, π/2], therefore
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V = h
∫ π/2

0

√
r2 − r2 sin2 θ · r cos θ dθ

= r2h
∫ π/2

0
cos2 θ dθ

= 1
2r

2h
∫ π/2

0
(1 + cos(2θ)) dθ

= 1
2r

2h
[
θ + 1

2 sin(2θ)
]π/2

0

= 1
4πr

2h.

As there are four such quadrants, the cylinder’s volume is πr2h.
Cartesian coordinates are not best suited for thiswork—it ismuchmore convenient

to employ cylindrical polar coordinates, where

x = ρ cosφ, y = ρ sin φ, z = z

and the Jacobian is ρ. Therefore, (11.7) is written to represent the entire volume as

V =
∫ h

0

∫ 2π

0

∫ r

0
ρ dρ dφ dz

which is integrated as follows

V =
∫ h

0

∫ 2π

0

∫ r

0
ρ dρ dφ dz

=
∫ h

0

∫ 2π

0

[
1
2ρ

2
]r
0
dφ dz

= 1
2r

2
∫ h

0

∫ 2π

0
1 dφ dz

= 1
2r

2
∫ h

0

[
φ

]2π
0

dz

= πr2
∫ h

0
1 dz

= πr2
[
z
]h
0

= πr2h.



11.5 Volumes with Triple Integrals 241

Fig. 11.25 Spherical Polar
Coordinates

11.5.3 Volume of a Sphere

Figure 11.25 shows how a sphere is defined using spherical polar coordinates, where
any point has the coordinates (ρ, φ, θ). In order to compute its volume, the following
intervals apply:ρ ∈ [0, r ],φ ∈ [0, π ], and θ ∈ [0, 2π ]. Using the Jacobianρ2 sin φ,
the volume is

V =
∫ 2π

0

∫ π

0

∫ r

0
ρ2 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π

0

[
1
3ρ

3
]r
0
sin φ dφ dθ

= 1
3r

3
∫ 2π

0

∫ π

0
sin φ dφ dθ

= 1
3r

3
∫ 2π

0

[
− cosφ

]π

0
dθ

= 2
3r

3
∫ 2π

0
1 dθ

= 2
3r

3
[
θ

]2π
0

= 4
3πr

3.
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Fig. 11.26 A cone with
cylindrical coordinates

11.5.4 Volume of a Cone

The triple integral provides another way to compute the volume of a cone, and is
best evaluated using cylindrical polar coordinates, rather than Cartesian coordinates.
Figure 11.26 shows an inverted cone with height h and radius r . The equation for
the cone is given by

z = h

r

√
x2 + y2

where any point in the cone has a distance ρ = √
x2 + y2 from the z-axis. Thus when

ρ = r , z = h, and when ρ = 0, z = 0, which provides the cone’s shape. We are only
interested in the volume between z = 0 and z = h.

Thus the intervals for the three cylindrical coordinates are:φ ∈ [0, 2π ],ρ ∈ [0, r ]
and z ∈ [

h
r ρ, h

]
, and using the Jacobian ρ, the triple integral is

V =
∫ r

0

∫ 2π

0

∫ h

hρ/r
dφ dz ρ dρ.

Integrating from the inside outwards, we have

V =
∫ r

0

∫ h

hρ/r

∫ 2π

0
dφ dz ρ dρ

=
∫ r

0

∫ h

hρ/r

∫ 2π

0
dφ dz ρ dρ

=
∫ r

0

∫ h

hρ/r

[
φ

]2π
0

dz ρ dρ

= 2π
∫ r

0

∫ h

hρ/r
1 dz ρ dρ
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= 2π
∫ r

0

[
z
]h
hρ/r

ρ dρ

= 2π
∫ r

0

(
h − hρ

r

)
ρ dρ

= 2π
∫ r

0

(
hρ − hρ2

r

)
dρ

= 2π

[
1
2hρ

2 − hρ3

3r

]r

0

= 2π
(
1
2hr

2 − 1
3hr

2
)

= 2π

6

(
3hr2 − 2hr2

)

= 1
3πhr

2.

11.6 Summary

Integral calculus is a powerful tool for computing volume, whether it be using single,
double or triple integrals, and this chapter has covered four techniques using the
following formulae.

11.6.1 Summary of Formulae

Slicing: Rotating f (x) about the x-axis

V = π

∫ b

a
( f (x))2 dx .

Slicing: Rotating f (y) about the y-axis

V = π

∫ b

a
( f (y))2 dy.

Shells: Rotating f (x) about the x-axis

V = 2π
∫ b

a
x f (x) dx .

Shells: Rotating f (x) about the y-axis
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V = 2π
∫ b

a
y f (y) dy.

Surface function f (x, y) using rectangular coordinates

V =
∫ b

a

∫ d

c
f (x, y) dx dy =

∫ d

c

∫ b

a
f (x, y) dy dx .

Surface function f (x, y) using polar coordinates

V =
∫ b

a

∫ d

c
f (x, y) dx dy =

∫ ρmax

ρmin

∫ θmax

θmin

f (ρ cos θ, ρ sin θ) ρ dθ dρ.

Triple integral using rectangular coordinates

V =
∫ b

a

∫ d

c

∫ f

e
f (x, y, z) dx dy dz.

Triple integral using cylindrical polar coordinates

V =
∫ zmax

zmin

∫ φmax

φmin

∫ ρmax

ρmin

f (ρ, φ, z) ρ dρ dφ dz.

11.7 Worked Examples

11.7.1 Volume of a Cylinder

Find the volume of a cylinder whose radius is r = 5 cm, and height is h = 10 cm.

Solution
Using Fig. 11.2, where y = r = 5 and h = 10, then using (11.1) we have

V = π

∫ b

a
( f (x))2 dx

= π

∫ 10

0
r2 dx

= π

∫ 10

0
25 dx

= 25π
∫ 10

0
1 dx

= 25π
[
x

]10
0

= 250π cm3.
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Fig. 11.27 A cone where
y = x3/2

50

5

10

11.7.2 Volume of a Right Cone

Find the volume of a cone whose contour is defined by y = r x3/2/h where r = 5
cm, and h = 5 cm.

Solution
With reference to Fig. 11.27, and y = r x3/2/h, then using (11.1) we have

V = π

∫ b

a
( f (x))2 dx

= πr2

h2

∫ h

0
x3 dx

= πr2

h2

[
1
4 x

4
]h
0

= πr2

h2
1
4h

4

= 1
4πr

2h2

= 1
4π25 × 25

≈ 490.87cm3.

11.7.3 Quadratic Rectangular Prism

Find the volume of the quadratic prism shown in Fig. 11.28 whose top surface is
defined by z = h(1 − x2/a2) cm, with base dimensions a = 5 cm and b = 5 cm.



246 11 Volume

Fig. 11.28 A quadratic
rectangular prism

x

y

z

z = 10 1− x2

25

(5, 0, 0) (5, 5, 0)

(0, 5, 0)

(0, 5, 10)

x

10

5(0, 0, 10)

Solution

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ b

0

∫ a

0
h

(
1 − x2

a2

)
dx dy

= h
∫ b

0

∫ a

0

(
1 − x2

a2

)
dx dy

= h
∫ b

0

[
x − 1

3

x3

a2

]a

0

dy

= h
∫ b

0

(
a − 1

3a
)
dy

= 2
3ha

∫ b

0
1 dy

= 2
3ha

[
y
]b
0

= 2
3hab

where h = 10 cm, a = 5 cm and b = 5 cm, therefore V ≈ 166.67 cm3.

11.7.4 Curved Top

Find the volume of the object shown in Fig. 11.29 with a curved top surface defined
by f (x, y) = 1.5x + y2 cm, where {x, y} ∈ [0, 2] cm.
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Fig. 11.29 An object with a
curved top defined by
z = 1.5x + y2

Solution

V =
∫ y2

y1

∫ x2

x1

f (x, y) dx dy

=
∫ 2

0

∫ 2

0

(
1.5x + y2

)
dx dy

=
∫ 2

0

[
3
2
1
2 x

2 + xy2
]2
0
dy

=
∫ 2

0

(
3 + 2y2

)
dy

=
[
3y + 2

3 y
3
]2
0

= 6 + 16
3

= 111
3

The volume of the object is 111
3 cm3.
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Fig. 11.30 A cylinder with a
curved top defined by z =
f (x, y) = x/2 + y3 + 1

x

y

z

z = f(x, y) =
x

2
+ y3 + 1

x2 + y2 = 1

11.7.5 Cylinder with a Curved Top

Find the volume of the object shown in Fig. 11.30 with a top surface defined by
f (x, y) = x/2 + y3 + 1, the bottom surface by the xy-plane and radius r = 1. All
dimensions are in centimetres.

Solution

V =
∫ 2π

0

∫ r

0
f (ρ cos θ, ρ sin θ) ρ dρ dθ

=
∫ 2π

0

∫ r

0

(
ρ cos θ

2
+ ρ3 sin3 θ + 1

)
ρ dρ dθ

=
∫ 2π

0

∫ r

0

(
ρ2 cos θ

2
+ ρ4 sin3 θ + ρ

)
dρ dθ

=
∫ 2π

0

[
ρ3 cos θ

6
+ ρ5 sin3 θ

5
+ ρ2

2

]r

0

dθ

=
∫ 2π

0

(
r3 cos θ

6
+ r5 sin3 θ

5
+ r2

2

)
dθ

=
∫ 2π

0

(
cos θ

6
+ sin3 θ

5
+ 1

2

)
dθ

=
∫ 2π

0

(
cos θ

6
+ (1 − cos2 θ) sin θ

5
+ 1

2

)
dθ

=
∫ 2π

0

(
cos θ

6
+ sin θ

5
− cos2 θ sin θ

5
+ 1

2

)
dθ

=
[
sin θ

6
− cos θ

5
+ cos3 θ

15
+ θ

2

]2π
0

= π.

The object’s volume is π cm3.



Chapter 12
Vector-Valued Functions

12.1 Introduction

So far, all the functions we have differentiated or integrated have been real-valued
functions, such as

f (x) = x + sin x

where f (x) is a real value.However, as vectors play such an important role in physics,
mechanics, motion, etc., it is essential that we understand how to differentiate and
integrate vector-valued functions such as

p(t) = x(t)i + y(t)j + z(t)k

where i, j and k are unit basis vectors. This chapter introduces how such functions
are differentiated and integrated.

12.2 Differentiating Vector Functions

The position of a point P(x, y) on the plane is located using a vector

p = x i + yj

or a point P(x, y, z) in 3D space as

p = x i + yj + zk.

If the point is moving and controlled by a time-based function with parameter t , then
the position vector has the form

© Springer Nature Switzerland AG 2023
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p(t) = x(t)i + y(t)j

or in 3D

p(t) = x(t)i + y(t)j + z(t)k.

The derivative of p(t) is another vector formed from the derivatives of x(t), y(t) and
z(t)

d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j

or in 3D

d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j + dz

dt
k.

For example, given

p(t) = 10 sin t i + 5t2j + 20 cos tk

then

d

dt
p(t) = 10 cos t i + 10tj − 20 sin tk.

12.2.1 Velocity and Speed

As p(t) gives the position of a point at time t , its derivative gives the rate of change of
the position with respect to time, i.e. its velocity. For example, if p(t) is the position
of a point P at time t , P’s change in position from t to t + Δt is

Δp = p(t + Δt) − p(t).

Dividing by Δt

Δp
Δt

= p(t + Δt) − p(t)

Δt
.

In the limit as Δt → 0 we have

d

dt
p(t) = v(t) = lim

Δt→0

p(t + Δt) − p(t)

Δt
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Fig. 12.1 Velocity of P at
time t

Fig. 12.2 Position and
velocity vectors for P

which is the velocity of P at time t . Figure 12.1 shows this diagrammatically. For
example, if the functions controlling a particle are x(t) = 3 cos t , y(t) = 4 sin t and
z(t) = 5t , then

p(t) = 3 cos t i + 4 sin tj + 5tk

and differentiating p(t) gives the velocity vector

v(t) = −3 sin t i + 4 cos tj + 5k.

Figure 12.2 shows a point P moving along a trajectory defined by its position vector
p(t). P’s velocity is represented by v(t) which is tangential to the trajectory at P .

Given the position vector for a particle P

p(t) = x(t)i + y(t)j + z(t)k

the speed of P is given by

‖v(t)‖ =
√(

dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

.
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In the case of

v(t) = −3 sin t i + 4 cos tj + 5k

the speed is

‖v(t)‖ =
√

(−3 sin t)2 + (4 cos t)2 + 52

=
√
9 sin2 t + 16 cos2 t + 25

and at time t = 0

‖v(0)‖ = √
16 + 25 = √

41

and at time t = π/2

‖v(π/2)‖ = √
9 + 25 = √

34.

12.2.2 Acceleration

The acceleration of a particle with position vector p(t) is the second derivative of
p(t), or the derivative of P’s velocity vector

a(t) = p′′(t) = v′(t) = d2x

dt2
i + d2y

dt2
j + d2z

dt2
k.

In the case of

p(t) = 3 cos t i + 4 sin tj + 5tk

v(t) = −3 sin t i + 4 cos tj + 5k

a(t) = −3 cos t i − 4 sin tj.

12.2.3 Rules for Differentiating Vector-Valued Functions

Vector-valued functions are treated just like vectors, in that they can be added, sub-
tracted, scaled and multiplied, which leads to the following rules for their differen-
tiation
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d

dt

(
p(t) ± q(t)

) = d

dt
p(t) ± d

dt
q(t) addition and subtraction

d

dt

(
λp(t)

) = λ
d

dt
p(t) where λ ∈ R, scalar multiplier

d

dt

(
f (t)p(t)

) = f (t)p′(t) + f ′(t)p(t) function multiplier
d

dt

(
p(t) · q(t)

) = p(t) · q′(t) + p′(t) · q(t) dot product

d

dt

(
p(t) × q(t)

) = p(t) × q′(t) + p′(t) × q(t) cross product
d

dt

(
p( f (t))

) = p′( f (t)) f ′(t) function of a function.

12.3 Integrating Vector-Valued Functions

The integral of a vector-valued function is just its antiderivative, where each term is
integrated individually. For example, given

p(t) = x(t)i + y(t)i + z(t)k

then ∫ b

a
p(t) dt =

∫ b

a
x(t)i dt +

∫ b

a
y(t)i dt +

∫ b

a
z(t)k dt.

Integrating the velocity vector used before

v(t) = −3 sin t i + 4 cos tj + 5k

then ∫
v(t) dt =

∫
−3 sin t i dt +

∫
4 cos tj dt +

∫
5k dt

= −3
∫

sin t i dt + 4
∫

cos tj dt + 5
∫

1k dt

= 3 cos t i + 4 sin tj + 5tk + C.

We have already seen that

v(t) = d

dt
p(t)

a(t) = d

dt
v(t)

therefore
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p(t) =
∫

v(t) dt

v(t) =
∫

a(t) dt.

12.3.1 Distance Fallen by an Object

If an object falls under the influence of gravity (9.8 m/s2) for 3 s, its velocity at any
time is given by

v(t) =
∫

9.8 dt

= 9.8t + C1.

Assuming that its initial velocity is zero, then v(0) = 0 and C1 = 0. Therefore

p(t) =
∫

9.8t dt

= 9.8
2 t2 + C2

= 4.9t2 + C2.

But p(0) = 0 and C2 = 0, therefore

p(t) = 4.9t2.

Consequently, after 3 s, the object has fallen 4.9 × 32 = 40.1 m.
If the object had been given an initial downward velocity of 1 m/s, then C1 = 1,
which means that

p(t) =
∫

9.8t + 1 dt

= 9.8
2 t2 + t + C2

= 4.9t2 + t + C2.

But p(0) = 0 and C2 = 0, therefore

p(t) = 4.9t2 + t.

Consequently, after 3 s, the object has fallen 4.9 × 32 + 3 = 43.1 m.
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12.3.2 Position of a Moving Object

Let’s compute an object’s position after 2 s if it is following a parametric curve such
that its velocity is

v(t) = t2i + tj + t3k

starting at the origin at time t = 0

p(t) =
∫

v(t) dt

=
∫

t2i + tj + t3k dt

=
∫

t2i dt +
∫

tj dt +
∫

t3k dt

= 1
3 t

3i + 1
2 t

2j + 1
4 t

4k + C.

But if p(0) = 0i + 0j + 0k then the vector C = 0i + 0j + 0k and

p(t) = 1
3 t

3i + 1
2 t

2j + 1
4 t

4k.

Consequently, after 2 s, the object is at

p(2) = 1
32

3i + 1
22

2j + 1
42

4k

= 8
3 i + 2j + 4k

which is the point (8/3, 2, 4).

12.4 Summary

The calculus of vector-based functions is a large and complex subject, and in this short
chapter we have only covered the basic principles for differentiating and integrating
simple functions, which are summarised next.

12.4.1 Summary of Formulae

Given a function of the form

p(t) = x(t)i + y(t)j + z(t)k
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its derivative is

d

dt
p(t) = p′(t) = dx

dt
i + dy

dt
j + dz

dt
k

its integral is

∫
p(t) dt =

∫
x(t)i dt +

∫
y(t)i dt +

∫
z(t)k dt.

Ifp(t) is a time-based position vector, its derivative is a velocity vector, and its second
derivative is an acceleration vector

p(t) = x(t)i + y(t)j + z(t)k

v(t) = dx

dt
i + dy

dt
j + dz

dt
k

a(t) = d2x

dt2
i + d2y

dt2
j + d2z

dt2
k.

The magnitude of v(t) represents speed

‖v(t)‖ =
√(

dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

and for acceleration

‖a(t)‖ =
√(

d2x

dt2

)2

+
(
d2y

dt2

)2

+
(
d2z

dt2

)2

.

12.5 Worked Examples

12.5.1 Differentiating a Position Vector

Differentiate p(t) = 3 sin t i + 4t2j + 5 cos tk.

Solution

p(t) = 3 sin t i + 4t2j + 5 cos tk
d

dt
p(t) = 3 cos t i + 8tj − 5 sin tk.
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12.5.2 Speed of an Object at Different Times

Find the speed of an object whose velocity is given by v(t) = −5 sin t i + 6 cos tj +
3k at t = 0 and t = π/2.

Solution
Velocity is given by

v(t) = −5 sin t i + 6 cos tj + 3k.

the speed is

‖v(t)‖ =
√

(−5 sin t)2 + (6 cos t)2 + 32

=
√
25 sin2 t + 36 cos2 t + 9

the speed at time t = 0

‖v(0)‖ = √
36 + 9 = √

45

the speed at time t = π/2

‖v(π/2)‖ = √
25 + 9 = √

34.

12.5.3 Velocity and Acceleration of an Object at Different
Times

Find the velocity and acceleration at t = 0 and t = π/2 of an object whose position
vector is given by p(t) = −5 sin t i + 4 cos tj + 3tk.

Solution

p(t) = −5 sin t i + 4 cos tj + 3tk

therefore

v(t) = d

dt
p(t) = −5 cos t i − 4 sin tj + 3k

a(t) = d

dt
v(t) = 5 sin t i − 4 cos tj.

At time t = 0
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v(0) = −5i + 3k

a(0) = −4j.

At time t = π/2

v(π/2) = −4j + 3k

a(π/2) = 5i.

12.5.4 Distance Fallen by an Object

Find the distance fallen by an object after 5 s, with an initial velocity of zero. The
acceleration due to gravity is 9.8 m/s2.

Solution

v(t) =
∫

9.8 dt

= 9.8t + C1.

With an initial velocity of zero, then v(0) = 0 and C1 = 0. Therefore

p(t) =
∫

9.8t dt

= 9.8
2 t2 + C2

= 4.9t2 + C2.

But p(0) = 0 and C2 = 0, therefore

p(t) = 4.9t2.

Consequently, after 5 s, the object has fallen 4.9 × 52 = 122.5 m.

12.5.5 Position of a Moving Object

Find an object’s position after 3 s if it is following a parametric curve such that its
velocity is v(t) = t i + t2j + t3k.

Solution

v(t) = t i + t2j + t3k
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starting at the origin at time t = 0

p(t) =
∫

v(t) dt

=
∫

t i + t2j + t3k dt

=
∫

t i dt +
∫

t 2j dt +
∫

t3k dt

= 1
2 t

2i + 1
3 t

3j + 1
4 t

4k + C.

But p(0) = 0i + 0j + 0k, therefore, the vector C = 0i + 0j + 0k and

p(t) = 1
2 t

2i + 1
3 t

3j + 1
4 t

4k.

Consequently, after 3 s, the object is at

p(3) = 1
23

2i + 1
33

3j + 1
43

4k

= 4.5i + 9j + 20.25k

which is the point (4.5, 9, 20.25).



Chapter 13
Vector Differential Operators

13.1 Introduction

This chapter covers the mathematical objects: scalar and vector fields, and the three
vector differential operators: grad, div and curl. It begins with an overview of scalar
and vector fields, followed by the gradient of a scalar field, the divergence and curl
of a vector field.

The figures employ a simple colour key where blue equates with a low scalar
value or small vector, moving through the rainbow to red, which equates with a high
scalar value or large vector.

13.2 Scalar Fields

A scalar field is a set of scalars normally associated with physical space, where such
scalars are derived empirically, or from mathematical functions. Some examples of
empirical scalar fields include:

• Bank of England interest rate over time.
• Barometric pressure or temperature in a weather map.
• Depth of oceans over the surface of the Earth.
• Height, weight, BMI, age, gender, etc., for a group of people.

The data for the above examples will be in various formats such as one-, two-,
three-dimensional arrays, Cartesian coordinates, spherical coordinates, etc.

Figure 13.1 shows an image of a scalar field in R2 described by (13.1)

f (x, y) = sin(xy) (13.1)

where
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Fig. 13.1 Scalar field in R2 for f (x, y) = sin(xy)

f (1, 1) = sin(1) ≈ 0.8415, is an orange-red pixel.

f (−1, 1) = sin(−1) ≈ −0.8415, is a light-blue pixel.

Figure 13.2 shows an image of a scalar field in R
3 described by (13.2)

f (x, y, z) = sin(xyz) (13.2)

where

f (1, 1, 1) = sin(1) ≈ 0.8415, is the nearest orange-red voxel.

f (−1, −1, 1) = sin(1) ≈ 0.8415, is the farthest orange-red voxel.

Although Figs. 13.1 and 13.2 show granularity, the mathematical functions are con-
tinuous over the fields they describe.

13.3 Vector Fields

A vector field is a set of vectors normally associated with physical space, where such
vectors are derived empirically, or from mathematical functions. Some examples of
empirical vector fields include:
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Fig. 13.2 Scalar field in R3 for f (x, y, z) = sin(xyz)
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Fig. 13.3 Vector field in R
2 for F(x, y) = sin yi + sin xj

• Speed and direction of people in a photograph.
• Motion of gases in a 3D volume.
• Wind magnitude and direction over the surface of the Earth.
• Intensity and direction of a magnetic field around an electrical conductor.

Figure 13.3 shows a vector field in R2 described by (13.3)

F(x, y) = sin yi + sin xj (13.3)
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Fig. 13.4 Vector field in R
3 for F(x, y, z) = x i + yj + zk

where

F(1, 1) = sin(1)i + sin(1)j

=
[
0.8415
0.8415

]
, is shown as a blue arrow.

F(−1, 1) = sin(1)i + sin(−1)j

=
[

0.8415
−0.8415

]
, is shown as a green arrow.

Figure 13.4 shows a vector field in R3 described by (13.4)

F(x, y, z) = x i + yj + zk (13.4)

where

F(5, 5, 5) = 5i + 5j + 5k, is shown red.

F(5, −5, 5) = 5i − 5j + 5k, is shown blue.

3D scalar and vector fields are difficult to illustrate using a single image, and are best
seen using a computer capable of animating the images in real time.

The previous chapter showed how vector-valued functions are differentiated and
integrated, and now we introduce three differential vector operators: grad, div and
curl, which reveal features of scalar and vector fields.
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13.4 The Gradient of a Scalar Field

The grad or gradient differential vector operator computes the gradient of a scalar
field, and is represented by the∇ symbol, and called either ‘del’ or ‘nabla’. When we
are dealing with functions of the form f (x, y) or f (x, y, z), we assume that f is
differentiable at all points (x, y) or (x, y, z). For example, given a scalar field inR2

described by f (x, y), each (x, y) creates a scalar value, and ∇ f (x, y) shows the
scalar gradient at this point in the form of a 2D vector. Similarly, for a scalar field in
R

3 described by f (x, y, z), each (x, y, z) creates a scalar value, and ∇ f (x, y, z)
shows the scalar gradient at this point in the form of a 3D vector.

In one, two and three dimensions, ∇ is defined as

∇ =
[

∂

∂x

]
= i

∂

∂x
≡ ∂

∂x
i

∇ =

⎡
⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎦ = i

∂

∂x
+ j

∂

∂y
≡ ∂

∂x
i + ∂

∂y
j

∇ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
≡ ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.

If the function f (x, y, z) represents a scalar field, then ∇ f creates a vector field for
different values of (x, y, z)

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

13.4.1 Gradient of a Scalar Field in R
2

Let’s illustrate the gradient of a scalar field in R2 with two examples.
Figure 13.5, shows a scalar field for the function f (x, y) = 0.8x2y, and Fig. 13.6

shows the 2D vector field created by ∇ f (x, y), calculated as follows

f (x, y) = 0.8x2y

∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j
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Fig. 13.5 Scalar field in R2 for the function f (x, y) = 0.8x2y
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Fig. 13.6 Vector field in R
2 created by ∇ f (x, y) = 1.6xyi + 0.8x2j
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Fig. 13.7 Scalar field in R2 for the function f (x, y) = √
x2 + y2

∂ f

∂x
= 1.6xy

∂ f

∂y
= 0.8x2

∇ f (x, y) = 1.6xyi + 0.8x2j.

Figure 13.7 shows a scalar field in R2 for the function f (x, y) = √
x2 + y2, and

Fig. 13.8 shows the vector field in R2, calculated as follows. Notice that the vectors
are orthogonal to the constant value contours; this is exploited to compute surface
normal vectors.

We begin by letting u = x2 + y2, then f (x, y) = u
1
2 , and differentiating

∂ f

∂x
= ∂ f

∂u

∂u

∂x
∂ f

∂u
= 1

2
√
u

= 1

2
√
x2 + y2

∂u

∂x
= 2x

∂ f

∂x
= x√

x2 + y2

∂ f

∂y
= ∂ f

∂u

∂u

∂y
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Fig. 13.8 Vector field in R
2 created by ∇ f (x, y) = x√

x2+y2
i + y√

x2+y2
j

∂u

∂y
= 2y

∂ f

∂y
= y√

x2 + y2

∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j

= x√
x2 + y2

i + y√
x2 + y2

j.

13.4.2 Gradient of a Scalar Field in R
3

Figure 13.9 shows a simple scalar field in R3 for the function function f (x, y, z) =
xy + yz, and Fig. 13.10 shows the resulting vector field, calculated as follows

f (x, y, z) = xy + yz

∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

∂ f

∂x
= y

∂ f

∂y
= x + z
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Fig. 13.9 Scalar field in R3

for the function
f (x, y, z) = xy + yz

Fig. 13.10 Vector field in
R
3 for the function

f (x, y, z) =
yi + (x + z)j + yk

∂ f

∂z
= y

∇ f (x, y) = yi + (x + z)j + yk.
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8 65 68 73 80 89 100 113 128

7 50 53 58 65 74 85 98 113

6 37 40 45 52 61 72 85 100

5 26 29 34 41 50 61 74 89

4 17 20 25 32 41 52 65 80

3 10 13 18 25 34 45 58 73

2 5 8 13 20 29 40 53 68

1 2 5 10 17 26 37 50 65

1 2 3 4 5 6 7 8 x

y

∇f(4, 2) = 8i+ 4j

Fig. 13.11 A scalar field for f (x, y) = x2 + y2

13.4.3 Surface Normal Vectors

One useful application of the grad differential operator is creating a vector orthogonal
to a curve inR2, or a surface inR3. If a function is of the form f (x, y, z) = constant,
for example the equation of a circle f (x, y) = x2 + y2 = r2, or the equation of a
sphere f (x, y, z) = x2 + y2 + z2 = r2, ∇ f creates a vector normal to the function
at any point.

Figure 13.11 shows an array of scalars for the function f (x, y) = x2 + y2. For
example, the cell with coordinates (5, 5) contains 50, as 50 = 52 + 52. In reality, a
scalar field is continuous, rather than discrete, as shown in Fig. 13.11.

One can see from Fig. 13.11 that this scalar field comprises a family of concentric
contours, one, of which, is sketched in the figure.

Taking the partial derivative of f (x, y) = x2 + y2 in the x-direction

∂ f

∂x
= 2x

gives the instantaneous rate of change at any point (x, y) irrespective of the value
of y. Similarly, taking the partial derivative of f (x, y) = x2 + y2 in the y-direction

∂ f

∂y
= 2y

gives the instantaneous rate of change at any point (x, y) irrespective of the value
of x .
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But we know that the differential operator ∇ maps a scalar field to a vector field
using these partial derivatives as follows

∇ f (x, y) =

⎡
⎢⎢⎣

∂ f

∂x
∂ f

∂y

⎤
⎥⎥⎦ = ∂ f

∂x
i + ∂ f

∂y
j

= 2x i + 2yj.

For example, when x = 4 and y = 2

∇ f (4, 2) = 8i + 4j

which is sketched in Fig. 13.11. Observe that the vector is orthogonal to the contour.
In fact, all vectors are orthogonal to all such contours. In other words, the vector is
normal to any curve defined by the function f (x, y) = x2 + y2. For example, the
equation of a circle is

x2 + y2 = r2

where r is the radius. Therefore, we can create a function

f (x, y) = x2 + y2 − r2 = 0.

Therefore

∇ f = 2x i + 2yj

which is the normal vector at (x, y), as shown in Fig. 13.11.
Although the above reasoning seems acceptable, here is the mathematical proof.
Given a surface f (x, y, z) = c, where c is a constant, let P(x, y, z) be a point

on the surface with position vector p = x i + yj + zk. Then

∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

dp = dx i + dyj + dzk

and dp must lie in the tangent plane at P . But

d f = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz = 0

which can be expressed as the dot product
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(
∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k
)

· (dx i + dyj + dzk) = 0

∇ f · dp = 0.

For ∇ f · dp = 0 to be true, they must be orthogonal.
In general, given a function f (x, y) = c or f (x, y, z) = c, then a normal vector

n is

n = ∇ f

and a unit normal vector is

n̂ = ∇ f

‖∇ f ‖ .

For 3D functions, such as f (x, y, z) = 2xy + 3z = 0

∂ f

∂x
= 2y

∂ f

∂y
= 2x

∂ f

∂z
= 3

∇ f = 2yi + 2xj + 3k.

Figure 13.12 shows the surface of the function f (x, y, z) = 2xy + 3z = 0, and two
normal vectors calculated as follows.

When x = y = 1, then z = −2/3, then ∇ f = 2i + 2j + 3k, which is shown in
red.

When x = 5 and z = 4, then y = −1.2, then ∇ f = −2.4i + 10j + 3k, which is
shown in blue.

The next chapter is devoted to calculating tangent and normal vectors for different
surfaces.

13.5 The Divergence of a Vector Field

Illustrations of vector fields are only a crude approximation of what is actually
happening in space. To begin with, vectors in the form of arrows are an artifice,
as they attempt to simulate the magnitude and direction of something represented by
a vector-valued function, be it a liquid, dust storm, electromagnetic force, etc.A liquid
such as water, is not compressible under normal conditions, so if we inspect a specific
volume of water, the number of water molecules entering the volume is balanced by
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Fig. 13.12 The surface of the function f (x, y, z) = 2xy + 3z = 0

-2 - 0 2

4

-2

2

4

Fig. 13.13 A 2D vector field simulating water movement

the number of water molecules leaving. In this case, we say the divergence of the
vector field at any point is zero. See Fig. 13.13.

In the case of airborne dust particles, they are compressible, as the number of
particles in a unit volume of air depends on the local pressure forces, so if we inspect
a specific volumeof dust, the number of dust particles entering the volume, is different
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Fig. 13.14 A vector field simulating a dust storm

to the number of dust particles leaving. In this case, we say the divergence of the
vector field changes from point to point. See Fig. 13.14.

Consider a 3D vector field F(x, y, z) defined by three functions R(x, y, z),
S(x, y, z), T (x, y, z), (13.5)

F = Ri + Sj + Tk. (13.5)

The divergence of F is defined as

div F = ∂R

∂x
i + ∂S

∂y
j + ∂T

∂z
k. (13.6)

Equation (13.6) can also be written as a scalar (dot) product

div F =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

·
(
Ri + Sj + Tk

)
(13.7)

and substituting the differential operator ∇, (13.7) becomes

div F = ∇ · F.

For example, let’s find the divergence of the vector field F = 3x i − xyj + 2yz2k

∇ · F = ∂

∂x
(3x) + ∂

∂y
(−xy) + ∂

∂z

(
2yz2

)
= 3 − x + 4yz.
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Fig. 13.15 The scalar field
for ∇ · F = 3 − x + 4yz

Substituting different values of x, y, z, we get

∇ · F(0, 0, 0) = 3

∇ · F(4, 0, 0) = −1

∇ · F(−4, 0, 0) = 7

∇ · F(4, 4, 0) = −1

∇ · F(4, −4, 0) = −1

∇ · F(4, 4, 4) = 63

which shows that the divergence of F changes from point to point. Figure 13.15
shows the divergence values for ∇ · F = 3 − x + 4yz, with the top red cube equal
to (5, 5, 5).

Now let’s consider the function F(x, y, z) = x i + yj + zk, shown in Fig. 13.16,
where

∇ · F = ∂

∂x
x + ∂

∂y
y + ∂

∂z
z

= 1 + 1 + 1

= 3.

Which shows that the divergence is positive when the vector flow is away from a
point. Similarly, the divergence is negative when the vector flow is towards a point.
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Fig. 13.16 The vector field for F(x, y, z) = x i + yj + zk

13.6 Curl of a Vector Field

Having seen that the differential operator ∇ can be used with a scalar field ∇F , and
in conjunction with a vector field as a dot product ∇ · F, it is only natural to wonder
if it can be used with a vector field with the cross product. Well it can, and creates
what is known as the curl of a vector field, and is defined as

curl F = ∇ × F.

If F = Ri + Sj + Tk, and using a determinant to represent a cross product, we have

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
R S T

∣∣∣∣∣∣∣∣
=

(
∂T

∂y
− ∂S

∂z

)
i −

(
∂T

∂x
− ∂R

∂z

)
j +

(
∂S

∂x
− ∂R

∂y

)
k.

For example, with F = −yi + xj + 0k, then R = −yi, S = xj and T = 0k, then

∂T

∂y
= 0,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = 0i
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Fig. 13.17 The vector field for f = −yi + xj + 0k

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j

∂S

∂x
= 1,

∂R

∂y
= −1

(
∂S

∂x
− ∂R

∂y

)
k = 2k

∇ × F = 0i + 0j + 2k.

Figure 13.17 shows the vector field for F = −yi + xj + 0k looking down the k
axis. The image also includes several unit vectors drawn in mauve using the vector
function, which confirm that the vector function possesses rotational qualities. It is
this curling of the vector field about a vector—in this case the k-axis—that ∇ × F
measures. A positive value indicates a counter-clockwise rotation, and a negative
value, a clockwise rotation, and a zero value indicates no rotation.

Figure 13.18 shows a 3D view of the same vector function, looking down the
k-axis. Once again, it is clear that the vector field is rotating about the k-axis, and
the curl ∇ × F = 2k is a measure of this rotation.

Now let’s consider a similar vector field F = 0i + zj − yk, then R = 0i, S = zj
and T = −yk, that is rotating about the i-axis, then
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Fig. 13.18 The vector field
for F = −yi + xj + 0k

∂T

∂y
= −1,

∂S

∂z
= 1

(
∂T

∂y
− ∂S

∂z

)
i = −2i

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j

∂S

∂x
= 0,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = 0k

∇ × F = −2i + 0j + 0k.

This time the result is negative, which is shown in Fig. 13.19 looking down the i-axis,
as a clockwise rotation.

Finally, if the vector function is F = x i + yj + 0k, then R = x i, S = yj and T =
0k, then
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Fig. 13.19 The vector field
for F = 0i + zj − yk

∂T

∂y
= 0,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = 0i

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j

∂S

∂x
= 0,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = 0k

∇ × F = 0i + 0j + 0k.

The result is zero curl, as confirmed by Fig. 13.20.



280 13 Vector Differential Operators

5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

i

j

Fig. 13.20 The vector field for F = x i + yj + 0k

13.7 Summary

This chapter introduced the mathematical objects: scalar and vector fields, and the
three vector differential operators: grad, div and curl. This is only the beginning of
a very large subject, however, some readers may consider going down this path.

13.7.1 Summary of Formulae

The grad or gradient differential operator ∇ is defined as

∇ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

= ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.

The gradient of a scalar field f (x, y, z) is

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

If a function f (x, y) or f (x, y, z) equals a constant, then a normal vector n is
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n = ∇ f

and a unit normal vector is

n̂ = ∇ f

‖∇ f ‖ .

The divergence of a vector field is defined as

div f = ∇ · f .

The curl of a vector field is defined as

curl f = ∇ × f .

13.8 Worked Examples

13.8.1 Gradient of a Scalar Field

Calculate the gradient of the scalar field f (x, y, z) = x2 + y3 + z4 at (1, 2, 3).

Solution

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

f (x, y, z) = x2 + y3 + z4

∂ f

∂x
= 2x

∂ f

∂y
= 3y2

∂ f

∂z
= 4z3

∇ f (x, y, z) = 2x i + 3y2j + 4z3k

∇ f (1, 2, 3) = 2i + 12j + 108k.

13.8.2 Normal Vector to an Ellipse

Calculate four normal vectors for an ellipse.

Solution
The equation of an ellipse is
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Fig. 13.21 Four normal vectors for an ellipse

x2

a2
+ y2

b2
= 1.

Therefore

f (x, y) = x2

a2
+ y2

b2
− 1

∇ f = 2x

a2
i + 2y

b2
j.

Substituting a = 2, b = 1.5 and (x, y) = (2, 0), (0, 1.5), (−2, 0), (0, −1.5)

∇ f (2, 0) = 4
4 i + 0

2.25 j

n(2, 0) = 1i + 0j

∇ f (0, 1.5) = 0
4 i + 3

2.25 j

n(0, 1.5) = 0i + 1j

∇ f (−2, 0) = −4
4 i + 0

2.25 j

n(2, 0) = −1i + 0j

∇ f (0, −1.5) = 0
4 i − 3

2.25 j

n(0, −1.5) = 0i − 1j.

Shown in Fig. 13.21.
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13.8.3 Divergence of a Vector Field

Calculate thedivergenceof thevectorfieldF(x, y, z) = x2i + y3j + z4k, at (1, 2, 1).

Solution

div F = ∇ · F
∇ · F = ∂

∂x
x2 + ∂

∂y
y3 + ∂

∂z
z4

= 2x + 3y2 + 4z3

∇ · F(1, 2, 1) = 2 + 12 + 4 = 18.

13.8.4 Curl of a Vector Field

Calculate the curl of the vector field F(x, y, z) = x2zi + xy3j + yz4k.

Solution

curl F = ∇ × F

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
R S T

∣∣∣∣∣∣∣∣
=

(
∂T

∂y
− ∂S

∂z

)
i −

(
∂T

∂x
− ∂R

∂z

)
j +

(
∂S

∂x
− ∂R

∂y

)
k

R = x2z, S = xy3, T = yz4

∂T

∂y
= z4,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = z4i

∂T

∂x
= 0,

∂R

∂z
= x2

−
(

∂T

∂x
− ∂R

∂z

)
j = x2j

∂S

∂x
= y3,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = y3k

∇ × f = z4i + x2j + y3k.



Chapter 14
Tangent and Normal Vectors

14.1 Introduction

In this chapter I describe how to calculate tangent and normal vectors on various
curves and surfaces. I beginwith the notation used to describe vector-valued functions
and definitions for a tangent and normal vector. This includes the grad operator, and
how it is used to compute the gradient of a scalar field. I then show how these vectors
are computed for a line, parabola, circle, ellipse, sine curve, cosh curve, helix, Bézier
curve, bilinear patch, quadratic Bézier patch, sphere and a torus.

14.2 Notation

The following chapters refer to many vector-valued parametric functions, for which
there are three popular forms of notation. The first employs a row vector

r(t) = [x(t) y(t) z(t)]

the second, a column vector

r(t) =
⎡
⎣
x(t)
y(t)
z(t)

⎤
⎦

and the third, a Cartesian vector

r(t) = x(t)i + y(t)j + z(t)k.

I will tend to use column vectors and Cartesian notation to describe vector-valued
functions.
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14.3 Tangent Vector to a Curve

We know that the derivative of a function measures the rate of change of the function
with respect to some parameter. In terms of the function’s graph, the derivative is the
slope of the graph at a point. For instance, the function y(x) = x3, the first derivative
is y′(x) = 3x2, as shown in Fig. 14.1. The derivative is also the slope of the tangent
vector, whose magnitude and direction depend upon the form of parameterisation
used for the function. For example, defining a cubic as

r(t) = t i + t3j

the tangent vector is

dr
dt

= r′(t) = i + 3t2j

whose magnitude is

‖r′(t)‖ =
√

(1)2 + (
3t2

)2 =
√
1 + 9t4.

Figure 14.2 shows the cubic curve, with five tangent vectors for

t = −0.75, −0.5, 0.0, 0.5, 0.75

which reflect the slope of the curve at the five points. However, in definitions for
curvature, a unit tangent vector is important, which requires dividing the tangent
vector by its magnitude

Fig. 14.1 The graphs of y = x3, (blue) and y′ = 3x2, (green) its derivative
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Fig. 14.2 The graph of y = x3, and five tangent vectors

Fig. 14.3 The graph of y = x3, and five unit tangent vectors

T(t) = r′(t)
||r′(t)|| .

T(t) is defined, only if r′(t) �= 0.
The rate of change of the unit tangent vector gives the curvature κ(t) at any point

along the curve length s

κ(t) = dT
ds

which is covered in detail in Chap. 16. Figure 14.3 shows the cubic curve with five
unit tangent vectors.

Generally, for a vector-valued function r(t), that is continuously differentiable

r(t) =
[
x(t)
y(t)

]
∈ R

2, r(t) =
⎡
⎣
x(t)
y(t)
z(t)

⎤
⎦ ∈ R

3
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its tangent vector is

dr
dt

= r′(t) =
[
x ′(t)
y′(t)

]
�= 0,

dr
dt

= r′(t) =
⎡
⎣
x ′(t)
y′(t)
z′(t)

⎤
⎦ �= 0.

For example, a constant pitch helix with radius ρ, is defined as

r(t) =
⎡
⎣

ρ cos t
ρ sin t
ct

⎤
⎦ = ρ cos t i + ρ sin tj + ctk

therefore, its tangent vector is

r′(t) =
⎡
⎣

−ρ sin t
ρ cos t

c

⎤
⎦ = −ρ sin t i + ρ cos tj + ck.

14.4 Normal Vector to a Curve

Ideally, a normal vector is orthogonal to a curve or surface, and orthogonal to its
associated tangent vector. However, it would useful to confirm this mathematically.
Once again, we are interested in the unit form, denoted by N(t).

By definition

||T(t)|| = 1

therefore

||T(t)||2 = 1

and as the dot product T(t) · T(t) = 1

||T(t)||2 = T(t) · T(t) = 1 (14.1)

Differentiating (14.1), and bearing in mind that the dot product is commutative, we
get

d

dt
[T(t) · T(t)] = T′(t) · T(t) + T · T′(t)

= 2T′(t) · T(t) = 0.
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Fig. 14.4 The graph of y = x3, with unit tangent vectors (green), and unit normal vectors (red)

For T′(t) · T(t) = 0, T′(t) must be orthogonal to T(t), or T′(t) = 0.
Thus we can define N(t) as

N(t) = T′(t)
||T′(t)|| .

Also, given a tangent vector T(t)

T(t) =
[

λ1

λ2

]
= λ1i + λ2j

then two vectors exist, perpendicular to T(t)

Na =
[−λ2

λ1

]
= −λ2i + λ1j

and

Nb =
[

λ2

−λ1

]
= λ2i − λ1j

as the dot productNa · T(t) = Nb · T(t) = 0,whichmeans thatNa andNb are normal
vectors. Furthermore, if T(t) is a unit vector, so too, are Na and Nb.

But which one should we choose? Figure 14.4 shows a convention, where we see
the unit normal vectors directed towards the zone containing the centre of curvature.
This is called the principal normal vector. Another convention is to place the normal
vector on one’s right-hand side whilst traversing the curve.

You will notice from Fig. 14.4 that there is no normal vector when t = 0. Let’s
see why.
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Fig. 14.5 Geometry for a
parametric line

r′(t) = i + 3t2j

r′(0) = i
∣∣∣∣r′(t)

∣∣∣∣ =
√
1 + 9t4∣∣∣∣r′(0)

∣∣∣∣ = 1

T(0) = i

T′(0) = 0.

So here is a case when T′(t) = 0.

14.4.1 Unit Tangent and Normal Vectors to a Line

Figure 14.5 shows the geometry for a parametric line, where P1(x1, y1) and P(x, y)
are two points on the line, and vector s provides the line’s direction. Let’s define
r1, s, r(t)

r1 = x1i + y1j

s = xs i + ysj

r(t) = r1 + ts

= (x1 + xst)i + (y1 + yst)j.

Differentiating r(t)

r′(t) = xs i + ysj

whose magnitude is

∣∣∣∣r′(t)
∣∣∣∣ =

√
x2s + y2s .
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Fig. 14.6 A unit tangent and normal vector to a line

Therefore

T = xs i + ysj√
x2s + y2s

.

Figure 14.6 shows the graph of

r(t) = 2t i + (1 + t)j

therefore

T = 2i + j√
5

≈ 0.8944i + 0.4472j

as shown in Fig. 14.6.
Differentiating T gives a zero vector, therefore our definition of N can’t be used.

So I’ll use one of the two options described above for a perpendicular vector

N = −0.4472i + 0.8944j

as shown in Fig. 14.6.
Using the grad operator, we can find the unit normal vector using the line equation

0 = ys(x − x1) − xs(y − y1)

f (x, y) = ysx − xs y − ysx1 + xs y1
∇ f = ys i − xsj

N = ys i − xsj√
y2s + x2s

.
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Evaluating N for xs = 2, ys = 1

N = i − 2j√
1 + 4

≈ 0.4472i − 0.8944j

as shown in Fig. 14.6.
For a 3D line

r(t) = (x1 + xst)i + (y1 + yst)j + (z1 + zs t)k

r′(t) = xs i + ysj + zsk

T = xs i + ysj + zsk√
x2s + y2s + z2s

however, there is no unique normal vector, but a normal plane.

14.4.2 Unit Tangent and Normal Vectors to a Parabola

We normally write a parabolic equation as

y = ax2 + bx + c

where for different values of x there is a corresponding value of y, which describes
the familiar parabolic curve. However, we require this to be described as a vector-
valued function. Working in two dimensions, I will align the x-component with the
i unit vector, and the y-component with the j unit vector, and use a parameter t to
drive the entire process. Thus it will take the general form

r(t) = dt i + (
at2 + bt + c

)
j

with suitable values for a, b, c, d. Therefore, consider the parabola

r(t) = 2t i + (
1.5 − 1.5t2

)
j, t ∈ [−1, 1].

Differentiating r(t)

r′(t) = 2i − 3tj

whose magnitude is

∣∣∣∣r′(t)
∣∣∣∣ =

√
4 + 9t2.

Therefore
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Fig. 14.7 Three unit tangent and normal vectors for a parabola

T(t) = 2i − 3tj√
4 + 9t2

Evaluating T(t) for t = −1, 0, 1, we get

T(−1) = 2i + 3j√
13

≈ 0.555i + 0.832j

T(0) = 2i√
4

= i

T(1) = 2i − 3j√
13

≈ 0.555i − 0.832j

as shown in Fig. 14.7.
Computing T′(t) and normalising will be rather messy, so I’ll choose one of two

perpendicular vectors. So given the following unit tangent vectors

T(−1) ≈ 0.555i + 0.832j

T(0) = i + 0j

T(1) ≈ 0.555i − 0.832j

N(−1) ≈ 0.832i − 0.555j

N(0) = −j

N(1) ≈ −0.832i − 0.555j

which point in the direction of the principal normal vector, as shown in Fig. 14.7.
Using the grad operator, we can find the unit normal vector as follows
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x = 2t

t = 1
2 x

y = 1.5 − 1.5t2

= 1.5 − 1.5
x2

4

f (x, y) = y + 1.5
x2

4
− 1.5

∇ f = 3
4 x i + j

N(x, y) =
3
4 x i + j√
9
16 x

2 + 1
.

Evaluating N(x, y) for three different positions

N(−2, 0) =
−6
4 i + j√
9
164 + 1

= −1.5i + j√
3.25

≈ −0.832i + 0.555j

N(0, 1.5) = 0i + j√
1

= j

N(2, 0) =
6
4 i + j√
9
164 + 1

= 1.5i + j√
3.25

≈ 0.832i + 0.555j

as shown in Fig. 14.7.

14.4.3 Unit Tangent and Normal Vectors to a Circle

Let’s find the function describing the tangent vector to a circle. We start with the
following definition for a circle

r(t) = r cos t i + r sin tj, t ∈ [0, 2π ].

Differentiating r(t)

r′(t) = −r sin t i + r cos tj

whose magnitude is

∣∣∣∣r′(t)
∣∣∣∣ =

√( − r sin t
)2 + (

r cos t
)2 = r.
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Fig. 14.8 Four unit tangent and normal vectors for a circle

And we see that the magnitude of the tangent vector remains constant at the circle’s
radius r . Therefore

T(t) = r′(t)
r

= − sin t i + cos tj.

Evaluating T(t) for four values of t

T(0) = j

T(π/2 = −i

T(π) = −j

T(3π/2) = i

as shown in Fig. 14.8.
To find N(t) we differentiate T(t) = − sin t i + cos tj

N(t) = T′(t) = − cos t i − sin tj.

Evaluating N(t) for four values of t

N(0) = −i

N(π/2) = −j

N(π) = i

N(3π/2) = j

as shown in Fig. 14.8.
Using the grad operator, we can find the unit normal vector as follows
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x2 + y2 = r2

f (x, y) = x2 + y2 − r2

∇ f = 2x i + 2yj

N(x, y) = 2x i + 2yj√
4x2 + 4y2

.

Evaluating N(x, y) for the same positions before, where r = 1

N(1, 0) = 2i + 0j√
4

= i

N(0, 1) = 0i + 3j√
4

= j

N(−1, 0) = −2i + 0j√
4

= −i

N(0, −1) = 0i − 2j√
4

= −j

as shown in Fig. 14.8.

14.4.4 Unit Tangent and Normal Vectors to an Ellipse

Having found the unit tangent and normal vectors for a circle, an ellipse should be
similar. Let’s define an ellipse as

r(t) = a cos t i + b sin tj, t ∈ [0, 2π ].

Differentiating r(t)

r′(t) = −a sin t i + b cos tj

whose magnitude is

∣∣∣∣r′(t)
∣∣∣∣ =

√( − a sin t
)2 + (

b cos t
)2

=
√
a2 sin2 t + b2 cos2 t

=
√
a2

(
1 − cos2 t

) + b2 cos2 t

=
√
a2 − (

a2 − b2
)
cos2 t

= a
√
1 − ε2 cos2 t
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where ε = √
1 − b2/a2 is the eccentricity of the ellipse.

Therefore

T(t) = −a sin t i + b cos tj

a
√
1 − ε2 cos2 t

.

As an example, let’s define an ellipse with a = 2 and b = 1.5, which makes the
eccentricity

ε =
√
1 − 1.52/22 = √

0.4375.

Evaluating T(t) for four values of t

T(0) = 1.5j

2
√
1 − 0.4375

= j

T(π/2) = − −2i

2
√
1

= −i

T(π) = −1.5j

2
√
1 − 0.4375

= −j

T(3π/2) = 2i

2
√
1

= i

as shown in Fig. 14.9.
Once again, there is no need to differentiate T(t) to find N(t). We simply use the

perpendicular strategy explained above. Therefore

Fig. 14.9 Four unit tangent and normal vectors for an ellipse
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N(0) = −i

N(π/2) = −j

N(π) = i

N(3π/2) = j

as shown in Fig. 14.9.
Using the grad operator, we can find the unit normal vector as follows

x2

a2
+ y2

b2
= 1

f (x, y) = x2

a2
+ y2

b2
− 1

∇ f = 2x

a2
i + 2y

b2
j.

Substituting a = 2, b = 1.5 and (x, y) = (2, 0), (0, 1.5), (−2, 0), (0, −1.5)

∇ f (2, 0) = 4
4 i + 0

2.25 j

N(2, 0) = i

∇ f (0, 1.5) = 0
4 i + 3

2.25 j

N(0, 1.5) = j

∇ f (−2, 0) = −4
4 i + 0

2.25 j

N(2, 0) = −i

∇ f (0, −1.5) = 0
4 i − 3

2.25 j

N(0, −1.5) = −j

as shown in Fig. 14.9.

14.4.5 Unit Tangent and Normal Vectors to a Sine Curve

Let’s calculate the tangent and normal vectors to a sine waveform. This may be of
interest in the rendering of sinusoidal waves. We define one period of a sine curve as

r(t) = t i + 2 sin tj, t ∈ [0, 2π ].

Differentiating r(t)

r′(t) = i + 2 cos tj

whose magnitude is
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∣∣∣∣r′(t)
∣∣∣∣ =

√
1 + 4 cos2 t .

Therefore

T(t) = i + 2 cos tj√
1 + 4 cos2 t

.

Evaluating T(t) for four values of t

T(0) = i + 2j√
5

≈ 0.4472i + 0.8944j

T(π/2) = i√
1

= i

T(π) = i − 2j√
5

≈ 0.4472i − 0.8944j

T(3π/2) = i√
1

= i

as shown in Fig. 14.10. To differentiate T(t) and normalise it, looks as though it
requires considerable work, so we’ll take the easy root as before. Therefore

N(0) ≈ 0.8944i − 0.4472j

N(π/2) = −j

N(π) ≈ −0.8944i − 0.4472j

N(3π/2) = j

as shown in Fig. 14.10.
Using the grad operator, we can find the unit normal vector as follows

Fig. 14.10 Four unit tangent and normal vectors for a sine curve
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y = 2 sin x

f (x, y) = y − 2 sin x = 0

∇ f = −2 cos x i + j

N(x) = −2 cos x i + j√
1 + 4 cos2 x

.

Evaluating N(x) for four values of x

N(0) = −2i + j√
5

≈ −0.8944i + 0.4472j

N(π/2) = j

N(π) ≈ 0.8944i + 0.4472j

N(3π/2) = −j

as shown in Fig. 14.10.

14.4.6 Unit Tangent and Normal Vectors to a Cosh Curve

Now let’s calculate the tangent and normal vectors to a cosh curve, also called a
catenary. We define part of a cosh curve as

r(t) = t i + 3 cosh
(
t
3

)
j, t ∈ [−3, 3].

Differentiating r(t)

r′(t) = i + sinh
(
t
3

)
j

whose magnitude is

∣∣∣∣r′(t)
∣∣∣∣ =

√
1 + sinh2

(
t
3

) = cosh
(
t
3

)
.

Therefore

T(t) = i + sinh
(
t
3

)
j

cosh
(
t
3

) .

Let’s find T(t) for three values of t
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T(−3) = i − 1.1752j
1.5431

≈ 0.6481i − 0.7616j

T(0) = i

T(3) = i + 1.1752j
1.5431

≈ 0.6481i + 0.7616j

as shown in Fig. 14.11.
This time, let’s differentiate T(t) and normalise it

T(t) = i + sinh
(
t
3

)
j

cosh
(
t
3

) = sech
(
t
3

)
i + tanh

(
t
3

)
j

T′(t) = − 1
3

(
sech

(
t
3

)
tanh

(
t
3

)
i + sech2

(
t
3

)
j
)

= − 1
3

(
sinh

(
t
3

)

cosh 2
(
t
3

) i + 1

cosh 2
(
t
3

) j
)

∣∣∣∣T′(t)
∣∣∣∣ = 1

3

√
sinh 2

(
t
3

)

cosh 4
(
t
3

) + 1

cosh 4
(
t
3

) = 1
3 sech

(
t
3

)

N(t) = − cosh
(
t
3

) (
sinh

(
t
3

)

cosh 2
(
t
3

) i + 1

cosh 2
(
t
3

) j
)

= − tanh
(
t
3

)
i + sech

(
t
3

)
j.

Note that this is one of the options if we had taken the easy route! Therefore

N(−3) ≈ 0.7616i + 0.6481j

N(0) = j

N(3) ≈ −0.7616i + 0.6481j

as shown in Fig. 14.11.
Using the grad operator, we can find the unit normal vector as follows

y = 3 cosh
(
t
3

)

f (x, y) = y − 3 cosh
(
t
3

)

∇ f = − sinh
(
t
3

)
i + j

N(x) = − sinh
(
t
3

)
i + j√

1 + sinh2
(
t
3

)

= − sinh
(
t
3

)
i + j

cosh
(
t
3

)

= − tanh
(
t
3

)
i + sech

(
t
3

)
j

which gives the same result as before.
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Fig. 14.11 Three unit tangent and normal vectors for 3 cosh(x/3)

14.4.7 Unit Tangent and Normal Vectors to a Helix

A helix is a 3D curve and used in nature to store the genetic code of all living
organisms. It can have a variable radius, and also a variable pitch. However, a fixed
radius and constant-pitch helix is a popular curve used for illustrating tangent and
normal vectors. Let’s define a helix as

r(t) = 2 cos t i + 2 sin tj + tk, t ∈ [0, 4π ].

Differentiating r(t)

r′(t) = −2 sin t i + 2 cos tj + k

whose magnitude is

‖r(t)‖ =
√
4 sin2 t + 4 cos2 t + 1 = √

5.

Therefore

T(t) = 1√
5
(−2 sin t i + 2 cos tj + k)

Evaluating T(t) for different values of t
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Fig. 14.12 Three unit
tangent and normal vectors
for a helix

T(0) = 1√
5
(2j + k) ≈ 0.8944j + 0.4472k

T(π/2) = 1√
5
(−2i + k) ≈ −0.8944i + 0.4472k

T(π) = 1√
5
(−2j + k) ≈ −0.8944j + 0.4472k

as shown in Fig. 14.12.
Differentiating T(t) and normalising

T′(t) = 1√
5
(−2 cos t i − 2 sin tj)

∥∥T′(t)
∥∥ = 1√

5

√
4 cos2 t + 4 sin2 t = 2√

5

N(t) =
1√
5
(−2 cos t i − 2 sin tj)

2√
5

= − cos t i − sin tj.

Evaluating N(t) for different values of t

N(0) = −i

N(π/2) = −j

N(π) = i

as shown in Fig. 14.12.

14.4.8 Unit Tangent and Normal Vectors to a Quadratic
Bézier Curve

Quadratic curves are normally expressed using a basis functionB(t), which generates
values using the parameter t . I will derive the derivative of a general basis function
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in Chap. 15. A 2D quadratic curve is expressed using a column vector as

r(t) =
[
x(t)
y(t)

]
, t ∈ [0, 1]

x(t) = B2,0(t)x0 + B2,1(t)x1 + B2,2(t)x2
y(t) = B2,0(t)y0 + B2,1(t)y1 + B2,2(t)y2

B2,0 = (1 − t)2

B2,1 = 2t (1 − t)

B2,2 = t2

algebraically

r(t) = B2,0(t)P0 + B2,1(t)P1 + B2,2(t)P2, t ∈ [0, 1]

where P0, P1, P2 are position vectors for the control point P0, P1, P2.
But a Cartesian vector is rarely used. So, for the time being, I will use algebraic

notation.
Let’s start with the following 2D quadratic Bézier curve

r(t) = P0(1 − t)2 + 2P1t (1 − t) + P2t
2, t ∈ [0, 1].

Differentiating r(t)

r′(t) = −2P0(1 − t) + 2P1(1 − 2t) + 2P2t

= −2P0 + 2P0t + 2P1 − 4P1t + 2P2t

= 2(P1 − P0)(1 − t) + 2(P2 − P1)t

= 2
(
(P1 − P0)(1 − t) + (P2 − P1)t

)

x ′(t) = 2
(
(x1 − x0)(1 − t) + (x2 − x1)t

)

y′(t) = 2
(
(y1 − y0)(1 − t) + (y2 − y1)t

)

whose magnitude is

‖r′(t)‖ =
√(

x ′(t)
)2 + (

y′(t)
)2

.

Therefore

T(t) = 2[(P1 − P0)(1 − t) + (P2 − P1)t]√(
x ′(t)

)2 + (
y′(t)

)2 .

Now let’s substitute specific values forP0, P1, P2, P0 = (0, 0), P1 = (1, 1), P2 =
(2, 1). Therefore
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Fig. 14.13 Three unit tangent and normal vectors for a quadratic Bézier curve

x ′(t) = 2
(
(1 − 0)(1 − t) + (2 − 1)t

) = 2

y′(t) = 2
(
(1 − 0)(1 − t) + (1 − 1)t

) = 2(1 − t)

T(t) = 2i + 2(1 − t)j√
4 + 4(1 − t)2

= i + (1 − t)j√
1 + (1 − t)2

Evaluating T(t) for different values of t

T(0) = i + j√
2

≈ 0.7071i + 0.7071j

T(0.5) = i + 0.5j√
1.25

≈ 0.8944i + 0.4472j

T(1) = i

as shown in Fig. 14.13. DifferentiatingT(t) and normalising looks like a lot of work,
so we’ll take the easy route. Therefore

N(0) ≈ 0.7071i − 0.7071j

N(0.5) ≈ 0.4472i − 0.8944j

N(1) = −j

as shown in Fig. 14.13.
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14.5 Unit Tangent and Normal Vectors to a Surface

In the following examples I show how to calculate the tangent and normal vectors
to a bilinear patch, a Bézier patch, a sphere and a torus. They each require a slightly
different approach, which is explained for each surface.

14.5.1 Unit Normal Vectors to a Bilinear Patch

Bilinear patches are constructed from a pair of lines using linear interpolation. For
example, given two lines defined by their position vectors

L1 = (P0, P1), L2 = (P2, P3)

we can linearly interpolate along the lines using

A(u) = (1 − u)P0 + uP1, u ∈ [0, 1]
B(u) = (1 − u)P2 + uP3, u ∈ [0, 1]

and then linearly interpolate between A(u) and B(u)

r(u, v) = (1 − v)A(u) + vB(u), v ∈ [0, 1]
= (1 − v)

(
(1 − u)P0 + uP1

) + v
(
(1 − u)P2 + uP3

)

= (1 − v)(1 − u)P0 + u(1 − v)P1 + v(1 − u)P2 + uvP3.

We now compute the partial derivatives for u and v

∂r
∂u

= −(1 − v)P0 + (1 − v) P1 − vP2 + vP3

= (1 − v)(P1 − P0) + v(P3 − P2)

∂r
∂v

= −(1 − u)P0 − uP1 + (1 − u)P2 + uP3

= (1 − u)(P2 − P0) + u(P3 − P1).

∂r
∂u and ∂r

∂v encode a pair of orthogonal tangent vectors, whose cross-product is a
vector normal.

Let’s demonstrate this with an example. Given
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P0 = 0i + 0j + 0k

P1 = 0i + 2j + k

P2 = 2i + 0j + 0k

P3 = 2i + 2j − k

then

∂r
∂u

= 0i + (
2(1 − v) + 2v

)
j + (

(1 − v) − v
)
k

= 0i + 2j + (1 − 2v)k
∂r
∂v

= (
2(1 − u) + 2u

)
i + 0j − 2uk

= 2i + 0j − 2uk.

We can now calculate their cross product

T′(u, v) =
∣∣∣∣∣∣
i j k
2 0 −2u
0 2 1 − 2v

∣∣∣∣∣∣
= 4ui + (4v − 2)j + 4k

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
magnitude, for different values of u and v.

N(0, 0) = −2j + 4k√
20

≈ −0.4472j + 0.8944k

N(1, 0) = 4i − 2j + 4k√
34

≈ 0.686i − 0.343j + 0.686k

N(0, 1) = 2j + 4k√
20

≈ 0.4472j + 0.8944k

N(1, 1) = 4i + 2j + 4k√
34

≈ 0.686i + 0.343j + 0.686k

N(0.5, 0.5) = 2i + 4k√
2

≈ 0.4472i + 0.8944k

as shown in Fig. 14.14.

14.5.2 Unit Normal Vectors to a Quadratic Bézier Patch

Bézier proposed a matrix of nine control points to determine the geometry of a
quadratic patch, as shown in Fig. 14.15. Any point on the patch is defined by
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Fig. 14.14 Five unit normal
vectors for a bilinear surface

Fig. 14.15 A quadratic
Bézier surface patch

Puv = [u2 u 1]
⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
P00 P01 P02
P10 P11 P12
P20 P21 P22

⎤
⎦

⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦ .

The individual x-, y- and z-coordinates are obtained by substituting the x-, y- and
z-values for the central P matrix.

Let’s illustrate the process with an example. Given the following points

P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 0, 0)

P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 1, 1)

P20 = (0, 0, 2), P21 = (1, 1, 2), P22 = (2, 0, 2)

we can write
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xuv = [u2 u 1]
⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
0 1 2
0 1 2
0 1 2

⎤
⎦

⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

xuv = [u2 u 1]
⎡
⎣
0 0 0
0 0 0
0 2 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

xuv = 2v

yuv = [u2 u 1]
⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
0 1 0
1 2 1
0 1 0

⎤
⎦

⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

yuv = [u2 u 1]
⎡
⎣

0 0 −2
0 0 2

−2 2 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

yuv = 2(u + v − u2 − v2)

zuv = [u2 u 1]
⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
0 0 0
1 1 1
2 2 2

⎤
⎦

⎡
⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

zuv = [u2 u 1]
⎡
⎣
0 0 0
0 0 2
0 0 0

⎤
⎦

⎡
⎣
v2

v
1

⎤
⎦

zuv = 2u.

Therefore, any point on the surface patch has coordinates

puv = 2vi + 2
(
u + v − u2 − v2

)
j + 2uk.

To calculate a unit vector normal to the surface we first calculate two tangent vectors
using ∂p

∂u and ∂p
∂v , take their cross product, and normalise the resulting vector.

∂p
∂u

= 0i + 2(1 − 2u)j + 2k

∂p
∂v

= 2i + 2(1 − 2v)j + 0k.

We can now compute their cross product

∣∣∣∣∣∣
i j k
0 2 − 4u 2
2 2 − 4v 0

∣∣∣∣∣∣
= (8v − 4)i + 4j + (8u − 4)k

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
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Fig. 14.16 Five unit normal
vectors for a quadratic
Bézier patch

magnitude, for different values of u and v.

N(0, 0) = −4i + 4j − 4k√
48

≈ −0.5774i + 0.5774j − 0.5774k

N(1, 0) = −4i + 4j + 4k√
48

≈ −0.5774i + 0.5774j + 0.5774k

N(0, 1) = 4i + 4j − 4k√
48

≈ 0.5774i + 0.5774j − 0.5774k

N(1, 1) = 4i + 4j + 4k√
48

≈ 0.5774i + 0.5774j + 0.5774k

N(0.5, 0.5) = 0i + 4j + 0k√
16

≈ 0i + j + 0k

as shown in Fig. 14.16.

14.5.3 Unit Tangent and Normal Vector to a Sphere

It should not be too difficult to find the tangent and normal vectors for a sphere. So
let’s start with the equation for a sphere with radius r in Cartesian coordinates as

r2 = x2 + y2 + z2.

Therefore, we can declare a function

f (x, y, z) = x2 + y2 + z2 − r2.
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This is best solved using the notation of a gradient vector ∇, where

∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

Therefore

∂ f

∂x
= 2x

∂ f

∂y
= 2y

∂ f

∂z
= 2z

∇ f = 2x i + 2yj + 2zk

which is a vector normal to the sphere.
Let’s compute the unit normal vector for different points on a sphere using

N = ∇ f

‖∇ f ‖ .

But in order to identify points on the sphere’s surface, it is easier to use spherical
coordinates, where

x = r sin φ · cos θ

y = r sin φ · sin θ

z = r cosφ

therefore

∇ f (r, φ, θ) = 2r sin φ · cos θ i + 2r sin φ · sin θ j + 2r cosφkN
(
5, π

2 , 0
)

= 10i + 0j + 0k√
100

= i

N
(
5, π

2 , π
2

) = 0i + 10j + 0k√
100

= j

N (5, 0, 0) = 0i + 0j + 10k√
100

= k

N
(
5, π

4 , 0
) = 5

√
2i + 0j + 5

√
2k√

100
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Fig. 14.17 Five unit normal
vectors for a sphere

≈ 0.7071i + 0j + 0.071k

N
(
5, π

4 , π
2

) = 0i + 5
√
2j + 5

√
2k√

100
≈ 0i + 0.7071j + 0.071k

as shown in Fig. 14.17. There is no unique tangent vector, only a unique tangent
plane.

14.5.4 Unit Tangent and Normal Vectors to a Torus

Lastly, let’s find the tangent and normal vectors for a torus. The equation for a torus
with major radius R and minor radius r is

r(θ, φ) =
⎡
⎣

(R + r cos θ) · cosφ

(R + r cos θ) · sin φ

r sin θ

⎤
⎦ , (θ, φ) ∈ [0, 2π ].

The tangent vectors are given by ∂r
∂φ

and ∂r
∂θ

∂r
∂φ

=
⎡
⎣

−(R + r cos θ) · sin φ

(R + r cos θ) · cosφ

0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣

−r sin θ · cosφ

−r sin θ · sin φ

r cos θ

⎤
⎦ .

For example, let R = 3 and r = 1, then
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Fig. 14.18 The tangent vectors (green) and normal vector (red) on the left are for θ = φ = 0. The
vectors on the right are for θ = φ = π/2

∂r
∂φ

=
⎡
⎣

−(3 + cos θ) · sin φ

(3 + cos θ) · cosφ

0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣

− sin θ · cosφ

− sin θ · sin φ

cos θ

⎤
⎦

and when θ = φ = 0

∂r
∂φ

=
⎡
⎣
0
4
0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣
0
0
1

⎤
⎦

which are shown in Fig. 14.18 as unit vectors.
If we now compute the cross product ∂r

∂φ
× ∂r

∂θ
, we obtain the normal vector at that

point

N =
∣∣∣∣∣∣
i j k
0 4 0
0 0 1

∣∣∣∣∣∣
= 4i

which is shown in Fig. 14.18.
Let’s compute a similar set of vectors for θ = φ = π/2

∂r
∂φ

=
⎡
⎣

− (
3 + cos

(
π
2

)) · sin (
π
2

)
(
3 + cos

(
π
2

)) · cos (
π
2

)
0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣

− sin
(

π
2

) · cos (
π
2

)
− sin

(
π
2

) · sin (
π
2

)
cos θ

⎤
⎦

∂r
∂φ

=
⎡
⎣

−3
0
0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣

0
−1
0

⎤
⎦

which are shown in Fig. 14.18 as unit vectors.
If we now compute the cross product ∂r

∂φ
× ∂r

∂θ
, we obtain the normal vector at that

point
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N =
∣∣∣∣∣∣
i j k

−3 0 0
0 −1 0

∣∣∣∣∣∣
= 3k

which is shown in Fig. 14.18.

14.6 Summary

This chapter has shown how to calculate tangent and normal vectors to various curves
and surfaces. The very same techniques can be applied to other curves and surfaces,
but there is no guarantee that normalising vectors will always be an easy calculation.

14.6.1 Summary of Formulae

Unit tangent vector

r(t) = x(t)i + y(t)j + z(t)k

T(t) = r′(t)
||r′(t)|| .

Unit normal vector
N(t) = T′(t)

||T′(t)|| .

Unit tangent and normal vector to a line

2D line

r(t) = (x1 + xst)i + (y1 + yst)j

r′(t) = xs i + ysj

T = xs i + ysj√
x2s + y2s

= λ1i + λ2j

N = −λ2i + λ1j or = λ2i − λ1j.

3D line

r(t) = (x1 + xst)i + (y1 + yst)j + (z1 + zs t)k

r′(t) = xs i + ysj + zsk

T = xs i + ysj + zsk√
x2s + y2s + z2s

.
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Unit tangent and normal vector to a circle

r(t) = r cos t i + r sin tj

T(t) = − sin t i + cos tj

N(t) = − cos t i − sin tj.

Unit tangent and normal vector to an ellipse

r(t) = a cos t i + b sin tj

ε =
√
1 − b2/a2

T(t) = −a sin t i + b cos tj

a
√
1 − ε2 cos2 t

= λ1i + λ2j

N = −λ2i + λ1j or = λ2i − λ1j.

Unit tangent and normal vector to a quadratic Bézier curve

r(t) = P0(1 − t)2 + 2P1t (1 − t) + P2t
2, t ∈ [0, 1]

x(t) = B2,0(t)x0 + B2,1(t)x1 + B2,2(t)x2
y(t) = B2,0(t)y0 + B2,1(t)y1 + B2,2(t)y2
x ′(t) = 2[(x1 − x0)(1 − t) + (x2 − x1)t]
y′(t) = 2[(y1 − y0)(1 − t) + (y2 − y1)t]

T(t) = 2
(
(P1 − P0)(1 − t) + (P2 − P1)t

)
√(

x ′(t)
)2 + (

y′(t)
)2 = λ1i + λ2j

N = −λ2i + λ1j or = λ2i − λ1j.

Unit tangent and normal vector to a bilinear patch

L1 = (P0, P1)

L2 = (P2, P3)

r(u, v) = (1 − v)(1 − u)P0 + u(1 − v)P1 + v(1 − u)P2 + uvP3

∂r
∂u

= (1 − v)(P1 − P0) + v(P3 − P2) = λu1i + λu2j + λu3k

∂r
∂v

= (1 − u)(P2 − P0) + u(P3 − P1) = λv1i + λv2j + λv3k

T′(u, v) = ∂r
∂u

× ∂r
∂v

=
∣∣∣∣∣∣
i j k

λu1 λu2 λu3

λv1 λv2 λv3

∣∣∣∣∣∣

N(t) = T′(t)
||T′(t)|| .
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Unit normal vector to a sphere

f (x, y, z) = x2 + y2 + z2 − r2

∇ f = 2x i + 2yj + 2zk

N(x, y, z) = ∇ f

‖∇ f ‖
x = r sin φ · cos θ

y = r sin φ · sin θ

z = r cosφ

∇ f (r, φ, θ) = 2r sin φ · cos θ i + 2r sin φ · sin θ j + 2r cosφk.

Unit tangent and normal vector to a torus

r(θ, φ) =
⎡
⎣

(R + r cos θ) · cosφ

(R + r cos θ) · sin φ

r sin θ

⎤
⎦ , (θ, φ) ∈ [0, 2π ]

∂r
∂φ

=
⎡
⎣

−(R + r cos θ) · sin φ

(R + r cos θ) · cosφ

0

⎤
⎦ ,

∂r
∂θ

=
⎡
⎣

−r sin θ · cosφ

−r sin θ · sin φ

r cos θ

⎤
⎦

N(θ, φ) = ∂r
∂φ

× ∂r
∂θ

.



Chapter 15
Continuity

15.1 Introduction

In this chapter I explain how geometric continuity is ensured between segments
of B-splines and Bézier curves. To begin the analysis, we return to the definition
of uniform B-splines and how polynomials are chosen to provide the geometric
continuity between curve segments.

15.2 B-Splines

B-splines, like Bézier curves, use polynomials to generate a curve segment. But,
unlike Bézier curves, B-splines employ a series of control points that determine the
curve’s local geometry. This feature ensures that only a small portion of the curve is
changed when a control point is moved.

There are two types of B-splines: rational and non-rational splines, which divide
into two further categories: uniform and non-uniform. Rational B-splines are formed
from the ratio of two polynomials such as

x(t) = X (t)

W (t)
, y(t) = Y (t)

W (t)
, z(t) = Z(t)

W (t)
.

Although this appears to introduce an unnecessary complication, the division by a
second polynomial brings certain advantages:

• They describe perfect circles, ellipses, parabolas and hyperbolas, whereas non-
rational curves can only approximate these curves.

• They are invariant of their control points when subjected to rotation, scaling,
translation and perspective transformations, whereas non-rational curves lose this
geometric integrity.

• They allow weights to be used at the control points to push and pull the curve.
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An explanation of uniform and non-uniform types is best left until you understand
the idea of splines. So, without knowing the meaning of uniform, let’s begin with
uniform B-splines.

15.2.1 Uniform B-Splines

A B-spline is constructed from a string of curve segments whose geometry is deter-
mined by a group of local control points. These curves are known as piecewise poly-
nomials. A curve segment does not have to pass through a control point, although
this may be desirable at the two end points.

CubicB-splines are very common, as they provide a geometry that is one step away
from simple quadratics, and possess continuity characteristics that make the joins
between the segments invisible. In order to understand their construction consider
the scenario in Fig. 15.1. Here we see a group of (m + 1) control points P0, P1, P2,
... Pm which determine the shape of a cubic curve constructed from a series of curve
segments S0, S1, S2, ... Sm−3.

As the curve is cubic, curve segment Si is influenced by Pi , Pi+1, Pi+2, Pi+3, and
curve segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+4. And as there are (m + 1)
control points, there are (m − 2) curve segments.

A single segment Si (t) of a B-spline curve is defined by

Si (t) =
3∑

r=0

Pi+r Br (t), for 0 ≤ t ≤ 1

Pi

Pi+1

Pi+2

Pi+3

Pi+4

Pi+5

Si
Si+1

Si+2 Si+3

Fig. 15.1 The construction of a uniform non-rational B-spline curve
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0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t

v

v = (1-t)3/6

v = (-3t3+3t2+3t+1)/6

v = t3/6

v = (3t3-6t2+4)/6

Fig. 15.2 The B-spline basis functions

where

B0(t) = 1
6

( − t3 + 3t2 − 3t + 1
) = 1

6 (1 − t)3 (15.1)

B1(t) = 1
6

(
3t3 − 6t2 + 4

)
(15.2)

B2(t) = 1
6

( − 3t3 + 3t2 + 3t + 1
)

(15.3)

B3(t) = 1
6 t

3. (15.4)

These are the B-spline basis functions and are shown in Fig. 15.2.
Although it is not apparent, these four curve segments are part of one curve. The

basis function B3(t) starts at zero and rises to ≈ 0.166 at t = 1. It is taken over by
B2(t) at t = 0, which rises to ≈ 0.166 at t = 1. The next segment is B1(t) and takes
over at t = 0 and falls to ≈ 0.166 at t = 1. Finally, B0(t) takes over at ≈ 0.166 and
falls to zero at t = 1. Equations (15.1) – (15.4) are represented in matrix form by

Q1(t) = [t3 t2 t 1] 1
6

⎡

⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

Pi

Pi+1

Pi+2

Pi+3

⎤

⎥⎥⎦ . (15.5)

Let’s now illustrate how (15.5) works.We first identify the control pointsPi ,Pi+1,
Pi+2, etc. Let these be (0, 1), (1, 3), (2, 0), (4, 1), (4, 3), (2, 2) and (2, 3). They
can be seen in Fig. 15.3 connected together by straight lines. If we take the first four
control points: (0, 1), (1, 3), (2, 0), (4, 1), and subject the x- and y-coordinates
to the matrix in (15.5) over the range 0 ≤ t ≤ 1 we obtain the first B-spline curve
segment shown in Fig. 15.3. If we move along one control point and take the next
group of control points (1, 3), (2, 0), (4, 1), (4, 3), we obtain the second B-spline
curve segment. This is repeated a further two times.
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0 1 2 3 4
0

1

2

3

x

y

x

Fig. 15.3 Four curve segments forming a B-spline curve

Figure 15.3 shows the four curve segments, and it is obvious that even though
there are four discrete segments, they join together perfectly. This is no accident.
The slopes at the end points of the basis curves are designed to match the slopes of
their neighbours and ultimately keep the geometric curve continuous.

15.2.2 B-Spline Continuity

Constructing curves from several segments can only succeed if the slope of the
abutting curves match. As we are dealing with curves whose slopes are changing
everywhere, it will be necessary to ensure that even the rate of change of slopes is
matched at the join. This aspect of curve design is called geometric continuity and
is determined by the continuity properties of the basis function. Let’s explore such
features.

The first level of curve continuity C0, ensures that the physical end of one basis
curve corresponds with the following, e.g. Si (1) = Si+1(0).We know that this occurs
from the basis graphs shown in Fig. 15.2. The second level of curve continuity C1,
ensures that the slope at the end of one basis curve matches that of the following
curve. This is confirmed by differentiating the basis functions (15.1) – (15.4)

B ′
0(t) = 1

6

( − 3t2 + 6t − 3
)

(15.6)

B ′
1(t) = 1

6

(
9t2 − 12t

)
(15.7)

B ′
2(t) = 1

6

( − 9t2 + 6t + 3
)

(15.8)

B ′
3(t) = 1

6

(
3t2

)
. (15.9)
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Table 15.1 Continuity properties of cubic B-splines

t t t

C0 0 1 C1 0 1 C2 0 1

B3(t) 0 1/6 B ′
3(t) 0 0.5 B ′′

3 (t) 0 1

B2(t) 1/6 2/3 B ′
2(t) 0.5 0 B ′′

2 (t) 1 −2

B1(t) 2/3 1/6 B ′
1(t) 0 −0.5 B ′′

1 (t) −2 1

B0(t) 1/6 0 B ′
0(t) −0.5 0 B ′′

0 (t) 1 0

Evaluating (15.6) – (15.9) for t = 0 and t = 1, we discover the slopes 0.5, 0,
−0.5, 0 for the joins between B3, B2, B1, B0. The third level of curve continu-
ity C2, ensures that the rate of change of slope at the end of one basis curve matches
that of the following curve. This is confirmed by differentiating (15.6) – (15.9)

B ′′
0 (t) = −t + 1 (15.10)

B ′′
1 (t) = 3t − 2 (15.11)

B ′′
2 (t) = −3t + 1 (15.12)

B ′′
3 (t) = t. (15.13)

Evaluating (15.10) – (15.13) for t = 0 and t = 1, we discover the values 1, 2, 1, 0
for the joins between B3, B2, B1, B0. These combined continuity results are tabulated
in Table 15.1.

15.3 Derivatives of a Bézier Curve

In this section I describe how to calculate the first derivative of a Bézier curve by
differentiating the basis function.

A Bézier curve with n + 1 control points P0, P1, . . . ,Pn is defined by

r(t) =
n∑

i=0

Bn,i (t)Pi

where the basis function is

Bn,i (t) = n!
i !(n − i)! t

i (1 − t)n−i .

For example, a quadratic Bézier curve with 3 control points, n = 2
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B2,i (t) = 2!
i !(2 − i)! t

i (1 − t)2−i

B2,0(t) = 2!
0!2! t

0(1 − t)2−0 = (1 − t)2

B2,1(t) = 2!
1!(2 − 1)! t

1(1 − t)2−1 = 2t (1 − t)

B2,2(t) = 2!
2!(2 − 2)! t

2(1 − t)2−2 = t2

and a cubic Bézier curve with 4 control points, n = 3

B3,i (t) = 3!
i !(3 − i)! t

i (1 − t)3−i

B3,0(t) = 3!
0!3! t

0(1 − t)3−0 = (1 − t)3

B3,1(t) = 3!
1!(3 − 1)! t

1(1 − t)3−1 = 3t (1 − t)2

B3,2(t) = 3!
2!(3 − 2)! t

2(1 − t)3−2 = 3t2(1 − t)

B3,3(t) = 3!
2!(3 − 3)! t

2(1 − t)3−3 = t3.

Therefore, for a 3D curve with 4 control points Pi (xi , yi , zi ), 0 ≤ i ≤ 3

r(t) =
⎡

⎣
x(t)
y(t)
z(t)

⎤

⎦

x(t) = (1 − t)3x0 + 3t (1 − t)2x1 + 3t2(1 − t)x2 + t3x3

y(t) = (1 − t)3y0 + 3t (1 − t)2y1 + 3t2(1 − t)y2 + t3y3

z(t) = (1 − t)3z0 + 3t (1 − t)2z1 + 3t2(1 − t)z2 + t3z3.

To find the derivative of r(t), we first differentiate the basis function B3,i (t)

B ′
3,0(t) = −3(1 − t)2 = −3B2,0(t)

B ′
3,1(t) = 3(1 − t)2 − 6t (1 − t) = 3B2,0(t) − 3B2,1(t)

B ′
3,2(t) = −3t2 + 6t (1 − t) = 3B2,1(t) − 3B2,2(t)

B ′
3,3(t) = 3t2 = 3B2,2(t)

where we see that the derivative of a cubic Bézier curve is expressed in terms of a
quadratic Bézier curve; consequently
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r′(t) = −3P0B2,0(t) + 3P1
[
B2,0(t) − B2,1(t)

] + 3P2
[
B2,1(t) − B2,2(t)

] + 3P3B2,2(t)

= 3 (P1 − P0) B2,0(t) + 3 (P2 − P1) B2,1(t) + 3 (P3 − P2) B2,2(t). (15.14)

In order to generalise (15.14) we differentiate the basis function

d

dt
Bn,i = −(n − i)

n!
i !(n − i)! t

i (1 − t)n−i−1 + i
n!

i !(n − i)! t
i−1(1 − t)n−i

= −(n − i)
n(n − 1)!

i !(n − i)(n − 1 − i)! t
i (1 − t)n−1−i + i

n(n − 1)!
i(i − 1)!(n − i)! t

i−1(1 − t)n−i

= −n
(n − 1)!

i !(n − 1 − i)! t
i (1 − t)n−1−i + n

(n − 1)!
(i − 1)!(n − i)! t

i−1(1 − t)n−i

B ′
n,i = −nBn−1,i (t) + nBn−1,i−1(t)

= n
(
Bn−1,i−1(t) − Bn−1,i (t)

)
.

Therefore

r′(t) =
n∑

i=0

Pi B
′
n,i (t)

= n
n∑

i=0

Pi
(
Bn−1,i−1(t) − Bn−1,i (t)

)

= n
n∑

i=0

Pi Bn−1,i−1(t) − n
n∑

i=0

Pi Bn−1,i (t).

In the second sum

n
n∑

i=0

Pi Bn−1,i (t)

when i = n, Bn−1,n = 0, which permits the range of i to be reduced to n − 1

r′(t) = n
n∑

i=0

Pi Bn−1,i−1(t) − n
n−1∑

i=0

Pi Bn−1,i (t).

Next, the first sum is adjusted to sum to n − 1

r′(t) = n
n−1∑

i=0

Pi+1Bn−1,i (t) − n
n−1∑

i=0

Pi Bn−1,i (t)

r′(t) = n
n−1∑

i=0

(Pi+1 − Pi )Bn−1,i (t).
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Fig. 15.4 A 2D cubic Bézier curve

For a cubic, n = 3

r′(t) = 3 (P1 − P0) B2,0(t) + 3 (P2 − P1) B2,1(t) + 3 (P3 − P2) B2,2(t)

which is the same as (15.14).
Let’s calculate the first derivative of the following cubic Bézier curve.
The control points are P0 = (0, 0), P1 = (0, 1), P2 = (1, 1), P3 = (2, 0) as

shown in Fig. 15.4.
Therefore

x ′(t) = 3(0 − 0)(1 − t)2 + 3(1 − 0)2t (1 − t) + 3(2 − 1)t2

= 6t (1 − t) + 3t2

= 6t − 3t2

y′(t) = 3(1 − 0)(1 − t)2 + 3(1 − 1)2t (1 − t) + 3(0 − 1)t2

= 3(1 − t)2 − 3t2

= 3 − 6t.

The original parametric functions must give the same result

x(t) = (1 − t)30 + 3t (1 − t)20 + 3t2(1 − t)1 + t32

= 3t2 − t3

x ′(t) = 6t − 3t2

y(t) = (1 − t)30 + 3t (1 − t)21 + 3t2(1 − t)1 + t30

= 3t (1 − 2t + t2) + 3t2 − 3t3

= 3t − 3t2

y′(t) = 3 − 6t.
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The derivatives at t = 0 and t = 1 are

x ′(0) = 0

y′(0) = 3

x ′(1) = 3

y′(1) = −3.

The derivatives x ′(t) and y′(t) are with respect to t . To find dy/dx we divide y′(t)
by x ′(t)

dy

dx
=

dy
dt
dx
dt

= 3 − 6t

6t − 3t2
= 1 − 2t

2t − t2
.

When t = 0, dy
dx = ∞, and when t = 1, dy

dx = −1, which correspond to the slopes of
the first and last line segments respectively. See Fig. 15.4. This is always the case,
because

r′(t) = 3 (P1 − P0) B2,0(t) + 3 (P2 − P1) B2,1(t) + 3 (P3 − P2) B2,2(t)

r′(0) = 3 (P1 − P0) B2,0(t)

x ′(0) = 3(x1 − x0)B2,0(t)

y′(0) = 3(y1 − y0)B2,0(t)

dy

dx
= y′(0)

x ′(0)
= y1 − y0

x1 − x0
r′(1) = 3 (P3 − P2) B2,2(t)

x ′(1) = 3(x3 − x2)B2,2(t)

y′(1) = 3(y3 − y2)B2,2(t)

dy

dx
= y′(1)

x ′(1)
= y3 − y2

x3 − x2
.

The second derivative is stated without proof as

r′′(t) =
n−2∑

i=0

n(n − 1) (Pi+2 − 2Pi+1 + Pi ) Bn−2,i (t).

Using the example shown in Fig. 15.4, P0 = (0, 0), P1 = (0, 1), P2 = (1, 1), P3
= (2, 0)

x ′′(t) = 3 × 2 [(1 − 2 × 0 + 0) (1 − t) + (2 − 2 × 1 + 0) t]

= 6(1 − t)

y′′(t) = 3 × 2 [(1 − 2 × 1 + 0) (1 − t) + (0 − 2 × 1 + 1) t]

= 6 [−(1 − t) − t] = −6.
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The first derivative is

dy

dx
= 1 − 2t

2t − t2

which equals zero, when t = 0.5. The second derivative is

d2y

dx2
= y′′(t)

x ′′(2)
= −6

6(1 − t)

which is negative at t = 0.5, therefore, there is a maximum value at this point.

15.4 Summary

Fortunately, geometric continuity is reasonably easy to illustrate–it’s just a question
of differentiating the basis functions. However, there are many other types of curves,
where the same technique can be applied.



Chapter 16
Curvature

16.1 Introduction

In this chapter I describe the mathematical definition of curvature, and show how to
compute the curvature of a circle, helix, parabola, sine curve, Bézier curve, and a
graph described by an explicit equation.

16.2 Curvature

When we hold a curved object, we can tell immediately the tightness of the curved
surface. Similarly, when driving along a twisting roadway, the forces on our body
reflect the curvature of the path taken by the vehicle. Curvature is expressed mathe-
matically in a variety of ways, and we will see the benefits and drawbacks of each
one.

With reference to Fig. 16.1, the curve at point P is approximately equal to part of
a circular arc with radius R. Therefore, the curvature κ (kappa), of the curve at P is
defined as κ = 1/R. The reciprocal of R is chosen so that a small radius corresponds
to a large curvature, and a large radius, a small curvature. One can see that the curve
at point Q is almost a straight line, which corresponds to a very large circle, and
therefore a small curvature. This circle is called the osculating circle.

We can see that some curves such as a circular arc, and a linear helix, have a
constant curvature, whereas a parabola, elliptical arc, quadratic curve, etc., have
different degrees of curvature along their length.

In order to calculate κ , we investigate how fast unit tangent vectors change along
the curve. Unit vectors are chosen, otherwise the tangent-vector length influences
the rate of change. Figure 16.2 shows a curve with unit tangent vectors placed at the
points A, B, C and D. It is clear that at points of high curvature, the associated unit
tangent vectors change faster than those at points of low curvature. This measure of
curvature is expressed as
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Fig. 16.1 The curvature at
P is defined by κ = 1

R
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R
κ =
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Fig. 16.2 The unit tangent
vectors at different points
along a curve
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κ =
∥
∥
∥
∥

dT
ds

∥
∥
∥
∥

.

Note that the derivative is relative to the arc length s, which can be a problem to
compute, and the reason for taking the absolute value is to remove any negative sign
that may arise. Curvature is regarded as an unsigned quantity. Let’s see how this
definition behaves in practice.

16.2.1 Curvature of a Circle

Consider the vector-valued function r(t) for a circle of radius r

r(t) =
[

r cos t
r sin t

]

, t ∈ [0, 2π ]

its derivative is the tangent vector on the curve
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r′(t) =
[−r sin t
r cos t

]

.

The unit tangent vector function T(t) is

T(t) = r′(t)
‖r′(t)‖

but

‖r′(t)‖ =
√

(−r sin t)2 + (r cos t)2

= r

therefore

T(t) = r′(t)
r

=
[− sin t

cos t

]

.

Now

κ =
∥
∥
∥
∥

dT
ds

∥
∥
∥
∥

but as we don’t know dT/ds, we use the chain rule to redefine κ

κ =

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

∥
∥
∥
∥

ds

dt

∥
∥
∥
∥

.

We have already seen that

ds

dt
= ‖r′(t)‖

which equals r , and

dT
dt

=
[− cos t

− sin t

]

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

=
√

(− cos t)2 + (− sin t)2

= 1
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therefore

κ = 1

r

which agrees with the original definition of curvature.

16.2.2 Curvature of a Helix

For this example we employ a helix with a constant pitch and radius a

r(t) =
⎡

⎣

a cos t
a sin t
bt

⎤

⎦ , t ∈ [0, 2π ]

its derivative is the tangent vector on the curve

r′(t) =
⎡

⎣

−a sin t
a cos t

b

⎤

⎦ .

The unit tangent vector function T(t) is

T(t) = r′(t)
‖r′(t)‖

where

‖r′(t)‖ =
√

(−a sin t)2 + (a cos t)2 + b2

=
√

a2 sin2 t + a2 cos2 t + b2

=
√

a2
(

sin2 t + cos2 t
) + b2

=
√

a2 + b2

therefore

T(t) = r′(t)√
a2 + b2

= 1√
a2 + b2

⎡

⎣

−a sin t
a cos t

b

⎤

⎦ .
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Now

κ =

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

∥
∥
∥
∥

ds

dt

∥
∥
∥
∥

.

where

dT
dt

= 1√
a2 + b2

⎡

⎣

−a cos t
−a sin t

0

⎤

⎦

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

= a√
a2 + b2

ds

dt
= ∥

∥r′(t)
∥
∥

=
√

a2 + b2

κ = |a|
a2 + b2

.

Note that when b = 0, κ = 1/a, which is what one would expect.
Let’s illustrate this with an example where a = 3 and b = 0.25, as shown in Fig.

16.3. Therefore

κ = 3

32 + 0.252
= 3

9.0625
≈ 0.331.

Thus the curvature is ≈ 0.331, and the radius of the osculating circle is ≈ 3.0208,
which is slightly larger than the underling circle for the helix.

16.2.3 Curvature of a Parabola

A simple parabola such as y = x2, is written as vector-valued function as

r(t) =
[

t
t2

]

its derivative is the tangent vector on the curve

r′(t) =
[

1
2t

]

.
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Fig. 16.3 A helix where
x = 3 cos t, y = 3 sin t,
z = 0.25t and t ∈ [0, 4π ]

The unit tangent vector function T(t) is

T(t) = r′(t)
‖r′(t)‖

where

‖r′(t)‖ =
√

1 + 4t2

therefore

T(t) = r′(t)√
1 + 4t2

=
[

1/
√
1 + 4t2

2t/
√
1 + 4t2

]

.

Differentiating y = 1/
(

1 + 4t2
) 1

2

Let u = 1 + 4t2

y = u− 1
2

dy

du
= − 1

2u
− 3

2

= − 1

2(1 + 4t2)
3
2
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du

dt
= 8t

dy

dt
= dy

du
· du
dt

= − 8t

2(1 + 4t2)
3
2

= − 4t

(1 + 4t2)
3
2

.

Differentiating the quotient y = 2t/(1 + 4t2)
1
2

dy

dt
= 2(1 + 4t2)

1
2 − 2t d

dx (1 + 4t2)
1
2

1 + 4t2

=
2(1 + 4t2)

1
2 − 2t

(
1
2 (1 + 4t2)− 1

2 (8t)
)

1 + 4t2

= 2(1 + 4t2)
1
2 − 8t2(1 + 4t2)− 1

2

1 + 4t2

= 2(1 + 4t2) − 8t2

(1 + 4t2)
3
2

= 2

(1 + 4t2)
3
2

therefore

dT
dt

=

⎡

⎢
⎢
⎣

− 4t

(1 + 4t2)
3
2

2

(1 + 4t2)
3
2

⎤

⎥
⎥
⎦

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

=

√
√
√
√
√

⎛

⎝− 4t
(

1 + 4t2
) 3

2

⎞

⎠

2

+
⎛

⎝
2

(

1 + 4t2
) 3

2

⎞

⎠

2

=
√

16t2 + 4

(1 + 4t2)3
=

√

4(1 + 4t2)

(1 + 4t2)3

= 2

1 + 4t2
.
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Fig. 16.4 The parabola y = x2 with the osculating circle, radius 0.5

But

κ =

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

∥
∥
∥
∥

ds

dt

∥
∥
∥
∥

.

where

ds

dt
= (1 + 4t2)

1
2

therefore

κ(t) = 2

(1 + 4t2)(1 + 4t2)
1
2

= 2

(1 + 4t2)
3
2

.

When t = 0, then κ = 2, as shown in Fig. 16.4. Naturally, as one moves away from
this trough in the curve, the radius of curvature increases, and κ decreases.

I am sure you will agree, that the above proof is incredibly long, and there must
be a better way. Fortunately, there is, and it is shown in the next section.
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16.2.4 Parametric Plane Curve

Given a 2D parametric plane curve

r(t) =
[

x(t)
y(t)

]

its curvature is

κ(t) =
∥
∥x ′(t) · y′′(t) − y′(t) · x ′′(t)

∥
∥

(

x ′(t)2 + y′(t)2
) 3

2

where

x ′ = dx

dt
, y′ = dy

dt

x ′′ = d2x

dt2
, y′′ = d2y

dt2
.

Let’s try a parabola

x(t) = t, y(t) = t2

x ′(t) = 1, y′(t) = 2t

x ′′(t) = 0, y′′(t) = 2.

Therefore

κ = ‖1 × 2 − 2t × 0‖
(

1 + 4t2
) 3

2

= 2
(

1 + 4t2
) 3

2

.

When t = 0, κ = 2. This is a much simpler method of calculating curvature, and
there is a 3D version which we examine later.

Now let’s try a sine curve

x(t) = t, y(t) = sin t

x ′(t) = 1, y′(t) = cos t

x ′′(t) = 0, y′′(t) = − sin t.
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-1 0 1 2 3

-1

1

Fig. 16.5 A sine curve y = sin x with the osculating circle, radius 1

Therefore

κ = |− sin t |
(

1 + cos2 t
) 3

2

.

When t = 0, κ = 0, and when t = π/2, κ = 1, as shown in Fig. 16.5.
In order to calculate the curvature of 3D parametric curves, we use (16.1)

κ =
√

(z′′ · y′ − y′′ · z′)2 + (x ′′ · z′ − z′′ · x ′)2 + (y′′ · x ′ − x ′′ · y′)2
(

x ′2 + y′2 + z′2) 3
2

. (16.1)

Given a vector-valued function

r(t) =
⎡

⎣

x(t)
y(t)
z(t)

⎤

⎦ , r′(t) =
⎡

⎣

x ′(t)
y′(t)
z′(t)

⎤

⎦ , r′′(t) =
⎡

⎣

x ′′(t)
y′′(t)
z′′(t)

⎤

⎦ .

r′(t) is the tangent vector to the curve, and r′′(t) is the rate of change of the tangent
vector. The cross-product r′(t) × r′′(t) is a measure of the curvature, whose magni-

tude is the numerator in (16.1). The denominator
(

x ′2 + y′2 + z′2) 3
2 , is the required

scaling factor. Let’s use (16.1) to calculate the curvature of a constant pitch helix.

r(t) =
⎡

⎣

a cos t
a sin t
bt

⎤

⎦ , r′(t) =
⎡

⎣

−a sin t
a cos t

b

⎤

⎦ , r′′(t) =
⎡

⎣

−a cos t
−a sin t

0

⎤

⎦ .
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Therefore

κ =
√

(−ab sin t)2 + (−ab cos t)2 + (

a2 sin2 t + a2 cos2 t
)2

(

a2 cos2 t + a2 sin2 t + b2t2
) 3

2

=
√

a2b2 sin2 t + a2b2 cos2 t + a4
(

a2 + b2
) 3

2

=
√
a2b2 + a4

(

a2 + b2
) 3

2

= a
(

a2 + b2
) 1

2

(

a2 + b2
) 3

2

= a

a2 + b2

which agrees with the result for the previous helix.

16.2.5 Curvature of a Graph

When a curve is expressed as an explicit function, the curvature κ is

κ =
∣
∣y′′(t)

∣
∣

(

1 + y′(t)2
) 3

2

.

For a sine curve

y = sin t

y′(t) = cos t

y′′(t) = − sin t.

Therefore

κ = | − sin t |
(

1 + cos2 t
) 3

2

which is the same as a parametric plane curve.
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Applying this formula for a parabola

y = t2

y′(t) = 2t

y′′(t) = 2

κ = 2
(

1 + 4t2
) 3

2

which agrees with the previous result, and is much simpler.

16.2.6 Curvature of a 2D Quadratic Bézier Curve

A 2D quadratic Bézier curve is defined as

r(t) = P0(1 − t)2 + 2P1t (1 − t) + P2t
2

which has the following first and second derivatives

r′(t) = −2P0(1 − t) + 2P1(1 − 2t) + 2P2t

= −2P0 + 2P0t + 2P1 − 4P1t + 2P2t

= 2(P1 − P0)(1 − t) + 2(P2 − P1)t

= 2[(P1 − P0)(1 − t) + (P2 − P1)t]
r′′(t) = 2(P0 − 2P1 + P2).

We can now use

κ(t) =
∥
∥x ′(t) · y′′(t) − y′(t) · x ′′(t)

∥
∥

(

x ′(t)2 + y′(t)2
) 3

2

(16.2)

to find the curvature. For example, Fig. 16.6 shows a Bézier curve with control
points P0 = (0, 0), P1 = (2, 4), P2 = (4, 0), which generate the following first
and second derivatives at t = 0.5

x ′(0.5) = 2[2(1 − 0.5) + 1] = 4

y′(0.5) = 2[4(1 − 0.5) − 2] = 0

x ′′(0.5) = 2(0 − 4 + 4) = 0

y′′(0.5) = 2(0 − 8 + 0) = −16.
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Fig. 16.6 A Bézier curve with the osculating circle, radius 1

Plugging these into (16.2), we get

κ(0.5) = ‖−64 − 0‖
(16 + 0)

3
2

= 1

which is confirmed by the unit-radius osculating circle in Fig. 16.6.

16.2.7 Curvature of a 2D Cubic Bézier Curve

A 2D cubic Bézier curve is defined as

r(t) = P0(1 − t)3 + 3P1t (1 − t)2 + 3P2t
2(1 − t) + P3t

3

which has the following first and second derivatives

r′(t) = −3P0(1 − t)2 + 3P1(1 − 4t + 3t2) + 3P2(2t − 3t2) + 3P3t
2

= −3P0(1 − t)2 + 3P1(1 − t)2 − 3P12t (1 − t) + 3P22t (1 − t) − 3P2t
2 + 3P3t

2

= 3
(

(P1 − P0)(1 − t)2 + (P2 − P1)2t (1 − t) + (P3 − P2)t
2
)

r′′(t) = 3(P1 − P0)(−2 + 2t) + 3(P2 − P1)(2 − 4t) + 3(P3 − P2)2t

= −3(P1 − P0)2(1 − t) + 3(P2 − P1)2(1 − t) − 3(P2 − P1)2t + 3(P3 − P2)2t

= 6 ((P2 − 2P1 + P0)(1 − t) + (P3 − 2P2 + P1)t)

We can now use (16.2) to find the curvature. For example, Fig. 16.7 shows a
Bézier curve with control points P0 = (0, 0), P1 = (1, 1), P2 = (2, 1), P3(3, 0),
which generate the following first and second derivatives at t = 0.5
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1
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P2P1

P3

Fig. 16.7 A cubic Bézier curve with the osculating circle, radius 1.5

x ′(0.5) = 3
(
1
4 + 1

2 + 1
4

) = 3

y′(0.5) = 3
(
1
4 − 1

4

) = 0

x ′′(0.5) = 6 (0) = 0

y′′(0.5) = 6
(− 1

2 − 1
2

) = −6.

Plugging these into (16.2), we get

κ(0.5) = ‖ − 18‖
9

3
2

≈ 0.6667

which makes the radius of the osculating circle 1.5, as shown in Fig. 16.7.

16.3 Summary

Curvature has quite a simple definition, yet it some cases, requires tiresome levels of
algebraic manipulation to secure an answer. Half the problem is choosing the most
useful way of describing the original function.

16.3.1 Summary of Formulae

Curvature κ

κ = 1

R
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where R is the radius of the osculating circle.

κ =
∥
∥
∥
∥

dT
ds

∥
∥
∥
∥

where T is the unit tangent vector at a point along the arc length s.

κ =

∥
∥
∥
∥

dT
dt

∥
∥
∥
∥

∥
∥
∥
∥

ds

dt

∥
∥
∥
∥

where

ds

dt
= ‖r′(t)‖.

Curvature of a helix

r(t) =
⎡

⎣

a cos t
a sin t
bt

⎤

⎦ , t ∈ [0, 2π ]

κ = a

a2 + b2
.

Curvature of a parabola

r(t) =
[

t
t2

]

κ(t) = 2

(1 + 4t2)
3
2

.

Curvature of a 2D parametric plane curve

κ(t) =
∥
∥x ′ · y′′ − y′ · x ′′∥∥

(

x ′2 + y′2) 3
2

.

Curvature of a 3D parametric plane curve

κ(t) =
√

(z′′ · y′ − y′′ · z′)2 + (x ′′ · z′ − z′′ · x ′)2 + (y′′ · x ′ − x ′′ · y′)2
(

x ′2 + y′2 + z′2) 3
2

.



342 16 Curvature

Curvature of a graph

κ(t) =
∥
∥y′′(t)

∥
∥

(

1 + y′(t)2
) 3

2

.

16.4 Worked Examples

16.4.1 Curvature of a Circle

What is the curvature of the circle whose equation is

r(t) =
[

5 cos t
5 sin t

]

, t ∈ [0, 2π ]

Solution

κ = 1

5
= 0.2

the curvature is 0.2.

16.4.2 Curvature of a Helix

What is the curvature of the helix whose equation is

r(t) =
⎡

⎣

3 cos t
3 sin t
0.4t

⎤

⎦ , t ∈ [0, 2π ]

Solution

κ = 3

32 + 0.42

= 3

9.16
≈ 0.328

the curvature is approximately 0.328.



Chapter 17
Solving Differential Equations

17.1 Introduction

I have already mentioned that books on calculus tend to be thick, and they do not
always include a section on solving differential equations—this subject is normally
left to authors who publish equally thick books, thus making it extremely difficult
to master the subject. However, a book I can thoroughly recommend, as it has been
so helpful in researching this chapter, is Differential Equations by Struthers and
Potter (2019). However, this chapter provides a quick introduction to the subject,
and describes the equations involving first-order differential notation that arise in
problem solving. I would like to acknowledge the influence my favourite maths
book has had on preparing this chapter, not to mention the Internet! (Gullberg 1997).

17.2 What Is a Differential Equation?

A differential equation (DE) is an equation containing an unknown function and one
or more of its derivatives. The task is to find the function, which may or may not be
possible. For example, all of the following are DEs

dN

dt
= kN

(
1 − N

A

)

dh

dt
= −k

√
h

dy

dx
= 6y

d2y

dt2
− dy

dt
− 23y = 0.

© Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-28117-4_17
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The above equations are called ordinary DEs (ODEs), whereas

∂2 f

∂x2
+ ∂2 f

∂ y2
= 0

is a partial DE, and is beyond the remit of this chapter.

17.3 Basic Concepts

Some ODEs are extremely easy to solve. For example, to solve the equation

dy

dx
= 3x2

we simply integrate the equation

∫
dy

dx
dx = 3

∫
x2 dx

y = x3 + C.

Similarly

dy

dx
= cos x

again, we integrate the equation

∫
dy

dx
dx =

∫
cos x dx

y = sin x + C.

However, the following equation requires us to think about a solution

2xy
dy

dx
= x2 + 2y2.

17.3.1 Order and Degree

The order of a DE is the order of the highest derivative in the equation. For example,
the order of the following DEs begin at 1 and increase by 1 each time
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dy

dx
= 2x2 + 10x + 2 first-order DE

d2y

dx2
= 7x + 9 second-order DE

d3y

dx3
= 5 third-order DE.

The degree of a polynomial is the highest of the degrees of its individual terms with
non-zero coefficients.Consequently, the degreeof aDE,whose terms are polynomials
in the derivatives, is defined as the highest power of the highest-order derivative. For
example, the following are all first-degree DEs

dy

dx
+ 6xy = x2 first-degree DE

x
d2y

dx2
+ dy

dx
= 20 first-degree DE

x
d2y

dx2
−

(
dy

dx

)3

= 1 first-degree DE.

Whereas

(
dy

dx

)2

+ 4xy = 2x2 second-degree DE

x

(
d2y

dx2

)2

+ dy

dx
= 6 second-degree DE

x

(
d2y

dx2

)2

+
(
dy

dx

)3

= 23 second-degree DE.

17.3.2 General Solution to a Differential Equation

When we integrate a function to solve a DE we introduce the constant C , whose
value fixes a specific solution rather than a general solution. For instance, to solve
(17.1)

dy

dx
= 4x3 (17.1)

we integrate (17.1)
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∫
dy

dx
dx = 4

∫
x3 dx

y = x4 + C. (17.2)

Equation (17.2) is a general solution to the originalDE,where the value ofC identifies
a specific solution. For example, if we are told that when x = 2, y = 24, thenC = 8,
and y = x4 + 8.

17.4 Solving First-Order Ordinary Differential Equations

First-order ODEs comprise a group of equations involving a first-order derivative
and are solved using a variety of techniques. Second-order ODEs are solved using
similar techniques, but include a second-order derivative, and require more work to
identify a solution. Let’s begin with the technique called separation of variables.

17.4.1 Separation of Variables

Although it is possible to separate the variables on some first-order ODEs, it is not
always possible. However, when it is, we exploit the differential form of a derivative
where y′ is used as follows

dy = y′ dx

where dy and dx are differentials. Or one can simply break the rule that the derivative
cannot be divided in two.

We anticipate a general solution to an ODE by introducing functions as follows

d

dx
f (x) = g(x)h( f (x))

y = f (x)

dy

dx
= g(x)h(y).

Next, we multiply the equation by dx and divide it by h(y)

dy

h(y)
= g(x) dx .

Thus, we have separated the variables into ys on the left, and xs on the right.
Here is an example.

dy

dt
= ky. (17.3)
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Equation (17.3) is solved by separating similar variables to either side of the equals
sign. In this case, moving the ys to the left, and the ts to the right

dy

dt
= ky

1

y
dy = k dt. (17.4)

Next we integrate (17.4)

∫
1

y
dy =

∫
k dt

ln y = kt + C1. (17.5)

We can simplify (17.5)

y = ekt+C1

= ekt eC1

C = eC1

y = Cekt . (17.6)

Thus (17.6) shows the result. But to prove that it is correct, we should see that it’s
possible to replicate the original equation using (17.6).
Differentiate (17.6)

dy

dt
= kCekt (17.7)

substitute (17.6) in (17.7)

dy

dt
= ky.

Another example is to solve

dy

dx
= 6x(y − 5). (17.8)

Separate variables

1

y − 5
dy = 6x dx . (17.9)

Next we integrate (17.9)
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∫
1

y − 5
dy = 6

∫
x dx

ln(y − 5) = 3x2 + C1. (17.10)

We simplify (17.10)

y − 5 = eC1e3x
2

C = eC1

y = 5 + Ce3x
2
. (17.11)

To test this solution, we must show that it’s possible to replicate the original equation
using (17.11)
Differentiate (17.11)

dy

dx
= 6xCe3x

2
(17.12)

substitute (17.11) in (17.12)

dy

dx
= 6x(y − 5).

17.4.2 Substitution of Variables

First-order ODEs are not always solved using the previous technique of separating
variables. However, it may help if the ODE is homogeneous, and then a variable is
substituted by some suitable function. First, a reminder of what makes a function
homogeneous.

The word homogeneous means ‘has a consistent structure’ and is employed in
mathematics in various ways. Wikipedia (https://en.wikipedia.org/wiki/Homogene
ous_function) defines a homogeneous function as

a function of several variables such that, if all its arguments are multiplied by a scalar, then
its value is multiplied by some power of this scalar, called the degree of homogeneity, or
simply degree; that is, if k is an integer, a function f of n variables is homogeneous of degree
k if

f (sx1, ..., sxn) = sk f (x1, ..., xn)

for every
x1, ..., xn, and s �= 0.

An example of a homogeneous function of degree 2 is

f (x, y) = x2 + y2

https://en.wikipedia.org/wiki/Homogeneous_function
https://en.wikipedia.org/wiki/Homogeneous_function
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because

f (kx, ky) = (kx)2 + (ky)2

= k2(x2 + y2)

= k2 f (x, y).

Thus, an equation is said to be homogeneous if all of its terms have the same degree.
It also means that the equation equals zero, such as dy

dx − x2 = 0.
For example, (17.13) as it stands, cannot be solved using the technique of sepa-

rating its variables, however, by making a substitution it becomes possible

dy

dx
= x + 2y

3x
(17.13)

introduce the substitution y = xu, where u is a function of x

y = xu (17.14)

differentiate (17.14) using the product rule

dy

dx
= u + x

du

dx
(17.15)

substitute (17.15) in (17.13)

u + x
du

dx
= x + 2y

3x
(17.16)

substitute (17.14) in (17.16)

u + x
du

dx
= x + 2xu

3x
(17.17)

simplify (17.17)

u + x
du

dx
= 1 + 2u

3
(17.18)

separate the variables in (17.18)
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x
du

dx
= 1 + 2u

3
− u

x du = 1 − u

3
dx

1

1 − u
du = 1

3x
dx (17.19)

integrate (17.19)

∫
1

1 − u
du =

∫
1

3x
dx

− ln(1 − u) = 1
3 ln x + C1

ln(1 − u)−1 = ln
(
x1/3

) + lnC2

1

1 − u
= C2x

1/3 (17.20)

substitute u = y/x in (17.20)

1

1 − y/x
= C2x

1/3

x

x − y
= C2x

1/3

x

C2x1/3
= x − y

y = x − x

C2x1/3

y = x − Cx2/3. (17.21)

Thus (17.21) shows the result. To test this solution, we must show that it’s possible
to replicate the original equation using (17.21).
Differentiate (17.21)

dy

dx
= 1 − 2

3Cx−1/3 (17.22)

calculate C from (17.21) and substitute it in (17.22)
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C = x−2/3(x − y)

dy

dx
= 1 − 2

3 x
−1/3x−2/3(x − y)

= 1 − 2
3 x

−1(x − y)

= 1 − 2
3 + 2

3

y

x

= 1
3 + 2

3

y

x
dy

dx
= x + 2y

3x
.

17.4.3 Integrating Factor

An integrating factor is a function used to modify an ODE, and puts it in a form that
makes it easy to solve. For example, (17.23) is a nonhomogeneous first-order linear
ODE

y′ + p(x) · y = f (x). (17.23)

At the heart of the technique is the product rule

d

dx
[v(x) · y] = v(x) · y′ + v′(x) · y (17.24)

and we compare the left-hand side of (17.23) with the right-hand side of (17.24) for
any similarity

y′ + p(x) · y v(x) · y′ + v′(x) · y.

They are similar, but if we multiply (17.23) by a function v(x) we have

v(x) · y′ + v(x)p(x) · y = v(x) f (x) (17.25)

and make the comparison again

v(x) · y′ + v(x)p(x) · y v(x) · y′ + v′(x) · y.

To be identical, v(x)p(x) = v′(x). Assuming that there is such a function, the asso-
ciated product rule for (17.25) is

d

dx
[v(x) · y] = v(x) f (x). (17.26)
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Finally, we integrate (17.26)

v(x) · y =
∫

v(x) f (x) dx

and

y = 1

v(x)

∫
v(x) f (x) dx . (17.27)

Without going into the reasons why, v(x) = e
∫
p(x) dx is the integrating factor.

Let’s start again with the same ODE

y′ + p(x) · y = f (x)

and v(x) is the integrating factor function

v(x) = e
∫
p(x) dx

then the general solution of the first-order linear ODE becomes

y = 1

e
∫
p(x) dx

∫
f (x) e

∫
p(x) dx dx .

For example, to solve the linear DE

dy

dx
+ 2y = 2.

The integrating factor is

e
∫
2 dx = e2x

and the solution is

y = 1

e2x

∫
2e2x dx

= e−2x
(
2
2 e

2x + C
)

= 1 + Ce−2x .

For another example, let’s solve the following DE

x
dy

dx
− y = 3x4. (17.28)

Rearranging (17.28), we have
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dy

dx
− 1

x
y = 3x3. (17.29)

The integrating factor is

e
∫
(−x−1 dx = e− ∫

(x−1 dx

= e− ln x

= x−1

which gives y from (17.29)

y = 1

x−1
3
∫

x3 x−1 dx

= 3x
∫

x2 dx

= 3x

(
x3

3
+ C

)

= x4 + C1x .

17.5 Applications

17.5.1 Growth Models

During my early days as a programmer I met Prof. Patrick Riley who was working
on growth models in cancer cells. He had asked me to write a program using his
growth model and display the results on a graph plotter. At the heart of cell growth
is the differential equation

dN

dt
= r N

which summarises what is going on: N is the population of cells at time t , dN/dt
is the rate of cell growth, r is a coefficient of growth. I used a network of hexagonal
zones to represent a 2D layer of cells, and a network of dodecahedra to represent a
3D volume of cells.

In order to solve this equation we work as follows.

dN

dt
= r N (17.30)

separate variables in (17.30)
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Fig. 17.1 The graph of N = 10er0.19

1

N
dN = r dt (17.31)

integrate (17.31)

∫
1

N
dN =

∫
r dt

ln N = r t + C

N = er t+C

N = N0e
r t . (17.32)

Thus, the cell population at time t is N = N0er t , where N0 is the number of cells at
time t = 0. Figure 17.1 shows the graph of N = N0er t , where N0 = 10 and r = 0.19.

This model of cell growth is unconstrained by any boundary, food supply, etc.,
and was extended by the Belgian mathematician Pierre Francois Verhulst in the mid
1830s (https://en.wikipedia.org/wiki/Pierre_Franois_Verhulst). Verhulst’s logistic
equation was

dN

dt
= r N − αN 2

which became

dN

dt
= r N

(
1 − N

A

)

where A is a constant representing the environment’s capacity to support the growth
rate. The equation is nonlinear and can’t be solved using the techniques discussed so
far; nevertheless, it can be solved, and results in limiting the rate of growth.

https://en.wikipedia.org/wiki/Pierre_Franois_Verhulst
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17.5.2 Compound Interest

When money is deposited in a bank it normally attracts interest. On the one hand,
if the sum of money remains constant, and the interest is paid separately, this is
simple interest. On the other hand, if the interest is added to the initial sum, and
attracts a growing amount of interest, it is compound interest. The two models will
be described to show the benefits of compound interest.

Given the following

P is the initial sum invested

r is the interest rate as a decimal

t is the time in years

n is the number of times interest is compounded in one year

P · r · t · n is the simple interest paid after t years.

For example, if P = £100, r = 0.05, t = 5, n = 1 the total interest paid is 100 ×
0.05 × 5 = £25.

If the interest is added to the sum invested in the compound interest model, the
amount invested becomes A, and is computed using

A = P
(
1 + r

n

)nt

and with the above figures

A = 100(1 + 0.05)5 ≈ £127.63.

Thus the interest is slightly more than that offered by the simple model. But say the
interest is calculated every half-year, A becomes

A = 100

(
1 + 0.05

2

)2×5

≈ £128.08.

The interest increases slightly, and one is tempted to increase the frequency to a daily
rate

A = 100

(
1 + 0.05

365

)365×5

≈ £128.4.

Again, the interest increases, but only very slightly. Increasing the frequency to every
minute, A becomes
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A = 100

(
1 + 0.05

365 × 24 × 60

)1825×24×60

≈ £128.40.

We have detected a limit, which is determined by

(
1 + r

n

)n

whose limiting value is

er = lim
n→∞

(
1 + r

n

)n
.

To calculate the amount invested, A over t years, we have

A = Per t .

Thus, compound interest is calculated continuously, and is similar to a growthmodel.
Using the above figures we have

A = 100e0.05×5 ≈ £128.40.

Next, to express compound interest as a DE we use (17.33), where P becomes a
function of t , and P(0) is the initial deposit

dP

dt
= r P(t). (17.33)

We have solved a similar equation before–separate variables in (17.33)

1

P(t)
dP = r dt (17.34)

integrate (17.34)

∫
1

P(t)
dP =

∫
r dt

ln P(t) = r t + C1 (17.35)

rearrange (17.35)

P(t) = er t+C1

P(t) = Cer t

but we know that P(0) = 100, therefore
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C = 100

P(t) = 100e0.05t . (17.36)

Equation (17.36) gives the principal after t years.

P(1) = 100e0.05 ≈ £105.13

P(2) = 100e0.1 ≈ £110.52

P(3) = 100e0.15 ≈ £116.18

P(4) = 100e0.2 ≈ £122.14

P(5) = 100e0.25 ≈ £128.40.

The above description of compound interest assumes that interest is compounded
continuously.

17.5.3 Radiocarbon Dating

Radiocarbon dating is a technique for estimating the age of a dead organism that has
been exposed to the radioactive decay exhibited by 14C. It was developed byWillard
Libby at the University of Chicago in the late 1940s, and exploits the half-life of
14C, (5, 730 years ± 30 years), which permits the technique to date artefacts about
50,000 years ago. Readers interested in radiocarbon dating should look at the entry
for Wikipedia (https://en.wikipedia.org/wiki/Radiocarbon_dating).

The DE associated with the technique is

dR

dt
= λR(t)

where R(t) is the radiation level at time t , λ is the decay constant of 14C.
Solving the equation using previously described methods gives

R(t) = R(0)eλt

Using a half-life of 5730 ± 30 years

0.5 × R(0) = R(0)eλ(5730±30)

λ = ln 0.5

5730 ± 30
.

If at t = x years, there is 80% left of the 14C at R(0), then

https://en.wikipedia.org/wiki/Radiocarbon_dating
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0.8 × R(0) = R(0)eλx

0.8 = eλx

ln 0.8 = λx

x = ln 0.8

λ

= (5730 ± 30) × ln 0.8

ln 0.5
= 1844 ± 10 years.

Thus, the tested specimen is about 1844 ± 10 years.

17.6 Worked Examples

17.6.1 Direct Integration

Solve dy
dx = 3x2 + 2x + cos x .

Solution

dy

dx
= 3x2 + 2x + cos x (17.37)

integrate (17.37)

∫
dy

dx
dx =

∫ (
3x2 + 2x + cos x

)
dx (17.38)

y = x3 + x2 + sin x + C (17.39)

which is the solution.

17.6.2 Separation of Variables 1

Solve the homogeneous, first-order DE y′ + y = 0 and verify your answer.

Solution
Write the equation in non-prime style
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dy

dx
+ y = 0

dy

dx
= −y (17.40)

separate variables in (17.40)

1

y
dy = −1 dx (17.41)

integrate (17.41)

∫
1

y
dy = −

∫
1 dx

ln y = −x + C1 (17.42)

rearrange (17.42)

y = e−x+C1

y = Ce−x . (17.43)

To show that the solution is correct we must be able to create the original equation
using (17.43).
Differentiate (17.43)

dy

dx
= −Ce−x (17.44)

combine (17.44) with (17.43)

−Ce−x + Ce−x = 0.

17.6.3 Separation of Variables 2

Solve dy
dt + (

1 + 4t3
)
y = 0 by separating its variables, and verify your answer.

Solution

dy

dt
+ (

1 + 4t3
)
y = 0 (17.45)

rearrange (17.45)
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dy

dt
= − (

1 + 4t3
)
y (17.46)

separate variables in (17.46)

1

y
dy = − (

1 + 4t3
)
dt (17.47)

integrate (17.47)

∫
1

y
dy = −

∫ (
1 + 4t3

)
dt

ln y = −t − t4 + C

y = e−t−t4+C

= eCe−t−t4

y = ke−t−t4 . (17.48)

To show that the solution is correct we must be able to create the original equation
using (17.48).
Differentiate (17.48)

dy

dx
= k

(−1 − 4t3
)
e−t−t4 (17.49)

substitute (17.48) in (17.49)

dy

dx
= (−1 − 4t3

)
y

dy

dx
+ (

1 + 4t3
)
y = 0.

17.6.4 Substitution of Variables

Solve the homogeneous equation 2xy dy
dx = x2 + 2y2 by substitution of variables.

Verify your answer.

Solution

2xy
dy

dx
= x2 + 2y2

dy

dx
= x2 + 2y2

2xy
(17.50)
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introduce the substitution y = xg, where g is a function of x

y = xg (17.51)

differentiate (17.51) using the product rule

dy

dx
= g + x

dg

dx
(17.52)

substitute (17.52) in (17.50)

g + x
dg

dx
= x2 + 2y2

2xy
(17.53)

substitute (17.51) in (17.53)

g + x
dg

dx
= x2 + 2 (xg)2

2x2g

x
dg

dx
= x2 + 2x2g2

2x2g
− g

= x2 + 2x2g2 − 2x2g2

2x2g

= 1

2g
(17.54)

separate variables in (17.54)

2g dg = 1

x
dx (17.55)

integrate (17.55)

∫
2g dg =

∫
1

x
dx

g2 = ln x + C (17.56)

substitute g = y/x in (17.56)

y2

x2
= ln x + C (17.57)

y2 = x2 ln x + Cx2. (17.58)

If we are told that y(1) = 0, then C = 0 and
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y2 = x2 ln x .

To show that the solution is correct we must be able to create the original equation
using (17.58).
Differentiate (17.58)

2y
dy

dx
= x + 2x ln x + 2xC (17.59)

calculate C from (17.57)

C = y2

x2
− ln x

substitute C in (17.59)

2y
dy

dx
= x + 2x ln x + 2x

(
y2

x2
− ln x

)
(17.60)

= x + 2x

(
y2

x2

)

= x + 2

(
y2

x

)

2xy
dy

dx
= x2 + 2y2.

17.6.5 Integrating Factor 1

Solve the DE x dy
dx − y = x3

2 using an integrating factor.

Solution

x
dy

dx
− y = 2x3

rearrange the DE

dy

dx
− 1

x
y = 2x2.

The integrating factor is e
∫ −x−1 dx
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e
∫ −x−1 dx = e− ∫

x−1 dx

= e− ∫
x−1 dx

= e− ln x

= x−1

therefore

y = 1

x−1

∫
2x2x−1 dx

= x
∫

2x dx

= x
(
x2 + C

)
y = x3 + Cx .

17.6.6 Integrating Factor 2

Solve the DE x2 dy
dx + 2xy = cos x using an integrating factor.

Solution

x2
dy

dx
+ 2xy = cos x

rearrange the DE

dy

dx
+ 2

x
y = cos x

x2

The integrating factor is e
∫

2
x dx

e
∫

2
x dx = e2 ln x

= x2

therefore

y = 1

x2

∫
cos x

x2
x2 dx

= 1

x2

∫
cos x dx

y = 1

x2
(sin x + C) .
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17.6.7 Compound Interest

Calculate the compound interest for each year accumulated by £1000 for 5 years at
an interest rate of 10%.

Solution
Compound interest is 1000er t − 1000 = 1000(er t − 1).

Interest after 1 year is 1000(e0.1×1 − 1) ≈ £105.171.

Interest after 2 years is 1000(e0.1×2 − 1) ≈ £221.403.

Interest after 3 years is 1000(e0.1×3 − 1) ≈ £349.859.

Interest after 4 years is 1000(e0.1×4 − 1) ≈ £491.825.

Interest after 5 years is 1000(e0.1×5 − 1) ≈ £648.721.

17.6.8 Radiocarbon Dating

Calculate the age of an organic sample where the half-life of 14C is 5730 ± 30 years,
and there is 70% left.

Solution

R(t) = R(0)eλt .

Using a half-life of 5730 ± 30 years

0.5 × R(0) = R(0)eλ(5730±30)

λ = ln 0.5

5730 ± 30
.

If at t = x years, there is 70% left of the 14C at R(0), then

0.7 × R(0) = R(0)eλx

0.7 = eλx

ln 0.7 = λx

x = ln 0.7

λ

= (5730 ± 30) × ln 0.7

ln 0.5
= 2948 ± 15 years.

Thus, the age of the organic specimen is about 2948 ± 15 years.
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Chapter 18
Conclusion

Calculus is such a large subject, that everything one investigates leads to something
else, and one is tempted to write about it and explain how and why it works. Conse-
quently, when I started writing this book I had clear objectives about what to include
and what to leave out. Having reached this final chapter, I feel that I have achieved
this objective, even though I have introduced chapters I had not planned including!
There have been moments when I was tempted to include more topics and more
examples and turn this book into similar books on calculus that are extremely large
and daunting to open.

Hopefully, the topics I have included will inspire you to read other books on
calculus and consolidate your knowledge and understanding of this important branch
of mathematics.
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Appendix A
Limit of (sin θ)/θ

This appendix proves that

lim
θ→0

sin θ

θ
= 1, where θ is in radians.

From high-school mathematics we know that sin θ ≈ θ , for small values of θ . For
example

sin 0.1 ≈ 0.099833

sin 0.05 ≈ 0.04998

sin 0.01 ≈ 0.0099998

and

sin 0.1

0.1
≈ 0.99833

sin 0.05

0.05
≈ 0.99958

sin 0.01

0.01
≈ 0.99998.

Therefore, we can reason that in the limit, as θ → 0

lim
θ→0

sin θ

θ
= 1.

Figure A.1 shows a graph of (sin θ)/θ , which confirms this result. However, this is
an observation, rather than a proof. So, let’s pursue a geometric line of reasoning.

From Fig. A.2 we see as the circle’s radius is unity, OA = OB = 1, and AC =
tan θ . As part of the strategy, we need to calculate the area of the triangle �OAB,
the sector OAB and the �OAC
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Fig. A.1 Graph of (sin θ)/θ

Fig. A.2 Unit radius circle with trigonometric ratios

Area of �OAB = �ODB + �DAB

= 1
2 cos θ · sin θ + 1

2 (1 − cos θ) · sin θ

= 1
2 cos θ · sin θ + 1

2 sin θ − 1
2 cos θ · sin θ

= 1
2 sin θ.

Area of sector OAB = θ

2π
π(1)2 = 1

2θ.

Area of �OAC = 1
2 (1) tan θ = 1

2 tan θ.
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From the geometry of a circle, we know that

1
2 sin θ < 1

2θ < 1
2 tan θ

sin θ < θ <
sin θ

cos θ

1 <
θ

sin θ
<

1

cos θ

1 >
sin θ

θ
> cos θ

and as θ → 0, cos θ → 1 and
sin θ

θ
→ 1. This holds, even for negative values of θ ,

because

sin(−θ)

−θ
= − sin θ

−θ
= sin θ

θ
.

Therefore

lim
θ→0

sin θ

θ
= 1.



Appendix B
Integrating cosn θ

This appendix shows how to evaluate
∫
cosn θ dθ .

We start with
∫

cosn x dx =
∫

cos x · cosn−1 x dx .

Let u = cosn−1 x and v′ = cos x , then

u′ = −(n − 1) cosn−2 x · sin x

and

v = sin x .

Integrating by parts

∫
uv′ dx = uv −

∫
v u′ dx + C

∫
cosn−1 x · cos x dx = cosn−1 x · sin x +

∫
sin x · (n − 1) cosn−2 x · sin x dx + C

= sin x · cosn−1 x + (n − 1)
∫

sin2 x · cosn−2 x dx + C

= sin x · cosn−1 x + (n − 1)
∫ (

1 − cos2 x
)

· cosn−2 x dx + C

= sin x · cosn−1 x + (n − 1)
∫

cosn−2 dx − (n − 1)
∫

cosn x dx + C

n
∫

cosn x dx = sin x · cosn−1 x + (n − 1)
∫

cosn−2 dx + C

∫
cosn x dx = sin x · cosn−1 x

n
+ n − 1

n

∫
cosn−2 dx + C
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where n is an integer, �= 0.
Similarly

∫
sinn x dx = −cos x · sinn−1 x

n
+ n − 1

n

∫
sinn−2 dx + C.

For example

∫
cos3 x dx = 1

3 sin x · cos2 x + 2
3 sin x + C.
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A
Acceleration, 81, 252, 257
Antiderivative, 29, 35
Arc length, 153

circle, 156, 165, 184
cosh function, 163
ellipse, 166
helix, 167, 175, 185
parabola, 157
parameterisation, 172, 175
parametric function, 164
polar coordinates, 179
sine curve, 162
straight line, 156, 183
3D line, 172
3D quadratic Bézier curve, 170
2D quadratic Bézier curve, 168

Area
between two functions, 145
circle, 136
cone, 189
cylinder, 189
double integrals, 197, 207
negative, 143
paraboloid, 193
parametric functions, 148, 195
positive, 143
right cone, 189
sphere, 192
surface, 187
surface of revolution, 187
under a graph, 135
with the y-axis, 147

B
Basis functions, 319

Bézier curve, 168, 170, 338, 339
Bilinear patch, 306

unit normal vector, 306
unit tangent vector, 306

Binomial expansion, 24
Box volume, 237
B-spline, 317

continuity, 320

C
Cartesian vector, 285
Cauchy, Augustin-Louis, 3, 19
Cell growth, 353
Chain rule, 92
Circle, 294

curvature, 328
parametric, 294
unit normal vector, 294
unit tangent vector, 294

Column vector, 285
Cone

surface area, 189
volume, 217, 226, 242, 245

Continuity, 19, 320
Continuous function, 7, 102
Control point, 318
Cosh curve, 300

unit normal vector, 300
unit tangent vector, 300

Cubic equation, 23
Curl, 276

vector field, 276, 283
Curvature, 327

circle, 328
graph, 337
helix, 330, 336
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parabola, 331, 335, 338
sine curve, 335, 337
2D cubic Bézier curve, 339
2D quadratic Bézier curve, 338

Cylinder
surface area, 189
volume, 216, 225, 238, 244

D
Definite integral, 139
Dependent variable, 5
Derivative, 19, 27, 35

Bézier curve, 321
circular curve, 328
cubic Bézier curve, 321
graphical interpretation, 26
helical curve, 330
parabolic curve, 331
partial, 85
quadratic Bézier curve, 321
total, 94
2D cubic Bézier curve, 339
2D quadratic Bézier curve, 338

Derivatives and motion, 81
Differential, 27
Differential equation, 343

ordinary, 344
partial, 344

Differentiating, 36
arccos function, 61
arccot function, 62
arccsc function, 62
arcosh function, 70
arcoth function, 72
arcsch function, 72
arcsec function, 62
arcsin function, 61
arctan function, 61
arsech function, 72
arsinh function, 70
artanh function, 70
cosech function, 68
cosh function, 66
cot function, 60
coth function, 68
csc function, 58
exponential functions, 52
function of a function, 38
function products, 42
function quotients, 45
hyperbolic functions, 63
implicit functions, 48

logarithmic functions, 54
partial, 86
periodic functions, 15
sec function, 59
sech function, 68
sine function, 39
sinh function, 66
sums of functions, 36
tan function, 57
tanh function, 66
trigonometric functions, 57
vector functions, 249
vector-valued function, 256

Discontinuous function, 7
Distance fallen, 254, 258
Div, 272
Divergence, 272

vector field, 272, 283
Domain, 150
Dot product, 288
Double integrals, 197

volume, 229

E
Ellipse, 166, 296

eccentricity, 166
parametric, 296
unit normal vector, 296
unit tangent vector, 296

Ellipsoid
volume, 221

Elliptic integral, 166

F
Field

scalar, 261
vector, 262

Function, 5, 6, 25
continuous, 7, 102
cubic, 23
differentiation, 15
discontinuous, 7
integration, 15
linear graph, 8
periodic, 9
polynomial, 10
quadratic, 21
rate of change, 11
real-valued, 150
second derivative, 80
slope, 11
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vector-valued, 249
Function of a function, 10

differentiating, 38
Fundamental Theorem of Calculus, 140

G
Geometric continuity, 320
Grad, 265
Gradient, 265

scalar field, 265, 281
scalar field in R2, 265
scalar field in R3, 268

H
Helix, 175, 302

curvature, 330
unit normal vector, 302
unit tangent vector, 302

Hemisphere volume, 227
Higher derivatives, 75
Homogeneous, 348

I
Indefinite integral, 101
Independent variable, 5
Infinitesimals, 3, 19
Integral definite, 139
Integrating

arccos function, 61
arccot function, 62
arccsc function, 62
arcsec function, 62
arcsin function, 61
arctan function, 61
by parts, 114, 132
by substitution, 122, 132
completing the square, 108, 130
cosh function, 66
cot function, 60
csc function, 58
difficult functions, 104
exponential function, 54
integrand contains a derivative, 110, 131
logarithmic function, 55
partial fractions, 126, 133
radicals, 108, 130
sec function, 59
series of functions, 113, 131
sinh function, 67
tan function, 57
techniques, 102

trigonometric functions, 130
trigonometric identities, 104
vector-valued functions, 253

Integrating factor, 351
Integration, 29
Interval, 150

J
Jacobian, 198

determinant, 198
matrix, 198

Jacobi, Carl Gustav Jacob, 198

K
Kappa, 327

L
Lagrange, Joseph-Louis, 28, 153
Lagrange’s Mean-Value Theorem, 153
Leibniz, Gottfried, 3, 19, 28
Leibniz notation, 28
Limits, 19, 25
Line, 290

unit normal vector, 290
unit tangent vector, 290

Linear graph function, 8

M
Maxima, 78
Mean-value theorem, 153
Minima, 78
Mixed partial derivative, 89

N
Nabla, 265
Newton, Isaac, 3, 19
Non-rational B-spline, 317
Normal, 281

vector, 270, 285
Notation, 285

O
Ordinary differential equation, 344
Osculating circle, 327

P
Parabola, 292, 331, 335
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curvature, 331
parametric, 292
unit normal vector, 292
unit tangent vector, 292

Paraboloid
area, 193
volume, 223, 228

Parameterisation, 153, 286
helix, 175
3D line, 172

Parametric
bilinear patch, 306
circle, 294
cosh curve, 300
ellipse, 296
helix, 302
parabola, 292
plane curve, 335
quadratic Bézier curve, 303
quadratic Bézier patch, 307
sine curve, 298
sphere, 310
torus, 312
2D line equation, 290
vector-valued function, 285

Parametric function area, 195
Partial derivative, 85

chain rule, 92
first, 87
mixed, 89
second, 87
visualising, 88

Partial differential equation, 344
Pascal’s triangle, 24
Periodic function, 9
Plane curve, 335
Polynomial function, 10
Position, 81
Position vector, 251, 255, 258
Prime mark notation, 28
Principal normal vector, 289

Q
Quadratic Bézier curve, 168, 170, 303

unit normal vector, 303
unit tangent vector, 303

Quadratic Bézier patch, 307
unit normal vector, 307
unit tangent vector, 307

Quadratic function, 21

R
Radiocarbon dating, 357
Rational B-spline, 317
Riemann, Bernhard, 150
Riemann sum, 150
Right cone

surface area, 189
volume, 217, 226, 245

Row vector, 285

S
Scalar field, 261
Second derivative, 80
Sine

curve, 298, 335
differentiating, 39

Sine curve
unit normal vector, 298
unit tangent vector, 298

Slope of a function, 11
Solid of revolution

disk method, 215
shell method, 224

Speed, 250, 257
Sphere, 310

area, 192
unit normal vector, 310
unit tangent vector, 310
volume, 221, 241

Substitution of variables, 348
Surface

area, 187
of revolution, 187

Surface normal, 270

T
Tangent vector, 285, 327

unit, 286, 329
3D parametric curve, 336
3D quadratic Bézier curve, 170
Torus, 312

unit normal vector, 312
unit tangent vector, 312

Total derivative, 94
Triple integral volume, 236
2D cubic Bézier curve, 339
2D quadratic Bézier curve, 168, 338

U
Uniform B-spline, 318
Unit tangent vector, 329
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V
Variable

dependent, 5
independent, 5

Vector
Cartesian, 285
column, 285
field, 262
normal, 270, 285
principal normal, 289
row, 285
tangent, 285
unit tangent, 286

Vector-valued
function, 249
operator, 261

Velocity, 81, 250, 257
Verhulst, Pierre Francois, 354

Volume, 215
box, 231, 237
cone, 217, 226, 242, 245
cylinder, 216, 225, 238, 244
double integrals, 229
ellipsoid, 221
hemisphere, 227
paraboloid, 223, 228
prism, 232, 245
right cone, 217, 226, 245
right conical frustum, 219
solid of revolution, 215
sphere, 221, 241
triple integral, 236

W
Weierstrass, Karl, 3, 19
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