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Preface

Calculus is one of those subjects that appears to have no boundaries, which is why
some Calculus books are so large and heavy! So when I started writing the first
edition of this book, I knew that it would not fall into this category. It would be
around 200 pages long and take the reader on a gentle journey through the subject,
without placing too many demands on their knowledge of mathematics.

Apart from reviewing the original text and correcting a few typos, this second
edition incorporates 3 extra chapters, and all 175 illustrations are in colour. I have
also extended Chap. 9 on arc length to include parameterisation of curves.

The objective of the book remains the same: to inform the reader about functions
and their derivatives, and the inverse process: integration, which can be used for
computing area and volume. The emphasis on geometry gives the book relevance to
the computer graphics community, and hopefully will provide the mathematical
background for professionals working in computer animation, games and allied
disciplines to read and understand other books and technical papers where differ-
ential and integral notation is found.

The book divides into 16 chapters, with the obligatory Introduction and
Conclusion chapters. Chapter 2 reviews the ideas of functions, their notation and the
different types encountered in everyday mathematics. This can be skipped by
readers already familiar with the subject.

Chapter 3 introduces the idea of limits and derivatives, and how mathematicians
have adopted limits in preference to infinitesimals. Most authors introduce inte-
gration as a separate subject, but I have included it in this chapter so that it is seen as
an antiderivative, rather than something independent.

Chapter 4 looks at derivatives and antiderivatives for a wide range of functions
such as polynomial, trigonometric, exponential and logarithmic. It also shows how
function sums, products, quotients and function of a function are differentiated.

Chapter 5 covers higher derivatives and how they are used to detect a local
maximum and minimum.
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viii Preface

Chapter 6 covers partial derivatives, which although are easy to understand, have
a reputation for being difficult. This is possibly due to the symbols used, rather than
the underlying mathematics. The total derivative is introduced here as it is required
in a later chapter.

Chapter 7 introduces the standard techniques for integrating different types of
functions. This can be a large subject, and I have deliberately kept the examples
simple in order to keep the reader interested and on top of the subject.

Chapter 8 shows how integration reveals the area under a graph and the concept
of the Riemann sum. The idea of representing area or volume as the limiting sum of
some fundamental unit, is central to understanding Calculus.

Chapter 9 deals with arc length, and uses a variety of worked examples to
compute the length of different curves and their parameterisation.

Chapter 10 shows how single and double integrals are used to compute the
surface area for different objects. It is also a convenient point to introduce
Jacobians, which hopefully I have managed to explain convincingly.

Chapter 11 shows how single, double and triple integrals are used to compute the
volume of familiar objects. It also shows how the choice of a coordinate system
influences a solution’s complexity.

Chapter 12 covers vector-valued functions, and provides a short introduction to
this very large subject.

Chapter 13 shows how to calculate tangent and normal vectors for a variety of
curves and surfaces, which will be useful in shading algorithms and physically
based animation.

Chapter 14 shows how differential Calculus is used to manage geometric con-
tinuity in B-splines and Bézier curves.

Chapter 15 looks at the curvature of curves such as a circle, helix, parabola and
parametric plane curves. It also shows how to compute the curvature of 2D
quadratic and cubic Bézier curves.

I used Springer’s excellent author’s LaTeX development kit on my Apple iMac,
which is so fast that I could recompile the entire book in 3 or 4 s, just to change a
single character! This book contains over 170 colour illustrations to provide a
strong visual interpretation for derivatives, antiderivatives and the calculation of arc
length, curvature, tangent vectors, area and volume. I used Apple’s Grapher
application for most of the graphs and rendered images, and Pages for the diagrams.

There is no way I could have written this book without the Internet and several
excellent books on Calculus. One only has to Google “What is a Jacobian?’ to
receive over a 1000 entries in about 0.25 s! YouTube also contains some highly
informative presentations on virtually every aspect of Calculus one could want. So I
have spent many hours watching, absorbing and disseminating videos, looking for
vital pieces of information that are key to understanding a topic.

The books I have referred to include: Teach Yourself Calculus, by Hugh Neil,
Calculus of One Variable, by Keith Hirst, Inside Calculus, by George Exner, Short
Calculus, by Serge Lang and my all-time favourite: Mathematics from the Birth of
Numbers, by Jan Gullberg. I acknowledge and thank all these authors for the
influence they have had on this book. One other book that has helped me is Digital



Preface ix

Typography Using LaTeX by Apostolos Syropoulos, Antonis Tsolomitis and Nick
Sofroniou.

Writing any book can be a lonely activity, and finding someone willing to read
an early draft, and whose opinion one can trust is extremely valuable.
Consequently, I thank Dr. Tony Crilly for his valuable feedback after reading the
final manuscript. Tony identified flaws in my reasoning and inconsistent notation,
and I have incorporated his suggestions. However, I take full responsibility for any
mistakes that may have found there way into this publication.

Finally, I would like to thank Helen Desmond, Editor for Computer Science,
Springer UK, for her continuing professional support.

Breinton, Herefordshire Professor Emeritus John Vince
January 2019 M.Tech, Ph.D., D.Sc., C.Eng.
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Chapter 1 ®)
Introduction Check for

1.1 What is Calculus?

Well this is an easy question to answer. Basically, Calculus has two parts: differential
and integral. Differential Calculus is used for computing a function’s rate of change
relative to one of its arguments. Generally, one begins with a function such as f(x),
and as x changes, a corresponding change occurs in f(x). Differentiating f (x) with
respect to x, produces a second function f’(x), which gives the rate of change of f (x)
for any x. For example, and without explaining why, if f(x) = x2, then f'(x) = 2x,
and when x = 3, f(x) is changing 2 x 3 = 6 times faster than x. Which is rather
neat!

In practice, one also writes y = x~, or even y = f(x), which means that differ-
entiating is expressed in a variety of ways:

2

o, 2 L, L
s s X), s
x dx dx dxy
thus for y = f(x) = x2, we can write
dy d d
’ _ — — —
f'(x) =2x, Tx 2x, T fx) = 2x, dxy 2x.

Integral Calculus reverses the operation, where integrating f'(x), produces f(x),
or something similar. But surely, Calculus can’t be as easy as this, you’re asking
yourself? Well, there are some problems, which is what this book is about. To begin
with, not all functions are easily differentiated, as they may contain hidden infinities
and discontinuities. Some functions are expressed as products or quotients, and many
functions possess more than one argument. All these, and other conditions, must be
addressed. Furthermore, integrating a function produces some useful benefits, such
as calculating the area under a graph, the length of curves, and the surface area and
volume of objects. But more of this later.

© Springer Nature Switzerland AG 2019 1
J. Vince, Calculus for Computer Graphics,
https://doi.org/10.1007/978-3-030-11376-6_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-11376-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-11376-6_1

2 1 Introduction

Fig. 1.1 Two abutting
curves without matching
slopes

But why should we be interested in rates of change? Well, say we have a function
that specifies the changing velocity of an object over time, then differentiating the
function gives the rate of change of the function over time, which is the object’s
acceleration. And knowing the object’s mass and acceleration, we can compute the
force responsible for the object’s acceleration. There are many more reasons for
having an interest in rates of change, which will emerge in the following chapters.

1.2 Where is Calculus Used in Computer Graphics?

If you are lucky, you may work in computer graphics without having to use Calculus,
but some people have no choice but to understand it, and use it in their work. For
example, we often join together curved lines and surfaces. Figure 1.1 shows two
abutting curves, where the join is clearly visible. This is because the slope information
at the end of the first curve, does not match the slope information at the start of the
second curve. By expressing the curves as functions, differentiating them gives their
slopes at any point in the form of two other functions. These slope functions can
also be differentiated, and by ensuring that the original curves possess the same
differentials at the join, a seamless join is created. The same process is used for
abutting two or more surface patches.

Calculus finds its way into other aspects of computer graphics such as digital
differential analysers (DDAs) for drawing lines and curves, interpolation, curvature,
arc-length parametrisation, fluid animation, rendering, animation, modelling, etc. In
later chapters I will show how Calculus permits us to calculate surface normals to
curves and surfaces, and the curvature of different curves.

1.3 Who Invented Calculus?

More than three-hundred years have passed since the English astronomer, physicist
and mathematician Isaac Newton (1643—1727) and the German mathematician Got-
tfried Leibniz (1646—-1716) published their treaties describing Calculus. So called
‘infinitesimals’ played a pivotal role in early Calculus to determine tangents, area and
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volume. Incorporating incredibly small quantities (infinitesimals) into a numerical
solution, means that products involving them can be ignored, whilst quotients are
retained. The final solution takes the form of a ratio representing the change of a
function’s value, relative to a change in its independent variable.

Although infinitesimal quantities have helped mathematicians for more than two-
thousand years solve all sorts of problems, they were not widely accepted as a rig-
orous mathematical tool. In the latter part of the 19th century, they were replaced
by incremental changes that tend towards zero to form a limit identifying some
desired result. This was mainly due to the work of the German mathematician Karl
Weierstrass (1815-1897), and the French mathematician Augustin-Louis Cauchy
(1789-1857).

In spite of the basic ideas of Calculus being relatively easy to understand, it has
a reputation for being difficult and intimidating. I believe that the problem lies in
the breadth and depth of Calculus, in that it can be applied across a wide range
of disciplines, from electronics to cosmology, where the notation often becomes
extremely abstract with multiple integrals, multi-dimensional vector spaces and
matrices formed from partial differential operators. In this book I introduce the reader
to those elements of Calculus that are both easy to understand and relevant to solving
various mathematical problems found in computer graphics.

Perhaps you have studied Calculus at some time, and have not had the opportunity
to use it regularly and become familiar with its ways, tricks and analytical techniques.
In which case, this book could awaken some distant memory and reveal a subject
with which you were once familiar. On the other hand, this might be your first journey
into the world of functions, limits, differentials and integrals — in which case, you
should find the journey exciting!



Chapter 2 ®)
Functions Check for

2.1 Introduction

In this chapter the notion of a function is introduced as a tool for generating one
numerical quantity from another. In particular, we look at equations, their variables
and any possible sensitive conditions. This leads toward the idea of how fast a function
changes relative to its independent variable. The second part of the chapter introduces
two major operations of Calculus: differentiating, and its inverse, integrating. This is
performed without any rigorous mathematical underpinning, and permits the reader
to develop an understanding of Calculus without using limits.

2.2 Expressions, Variables, Constants and Equations

One of the first things we learn in mathematics is the construction of expressions, such
as 2(x + 5) — 2, using variables, constants and arithmetic operators. The next step
is to develop an equation, which is a mathematical statement, in symbols, declaring
that two things are exactly the same (or equivalent). For example, (2.1) is the equation
representing the surface area of a sphere:

S =4nr? 2.1)

where S and r are variables. They are variables because they take on different values,
depending on the size of the sphere. S depends upon the changing value of r, and to
distinguish between the two, S is called the dependent variable, and r the independent
variable. Similarly, (2.2) is the equation for the volume of a torus:

V =2n°r’R (2.2)

© Springer Nature Switzerland AG 2019 5
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6 2 Functions

where the dependent variable V depends on the torus’s minor radius » and major
radius R, which are both independent variables. Note that both formulae include
constants 4, 7 and 2. There are no restrictions on the number of variables or constants
employed within an equation.

2.3 Functions

The concept of a function is that of a dependent relationship. Some equations merely
express an equality, such as 19 = 15 + 4, but a function is a special type of equa-
tion in which the value of one variable (the dependent variable) depends on, and is
determined by, the values of one or more other variables (the independent variables).
Thus, in the equation

S = dmr?

one might say that S is a function of r, and in the equation
V =21%r’R

V is a function of r and also of R.

It is usual to write the independent variables, separated by commas, in brackets
immediately after the symbol for the dependent variable, and so the two equations
above are usually written

S(r) = 4nr?

and
V(r, R) = 27°r*R.

The order of the independent variables is immaterial.

Mathematically, there is no difference between equations and functions, it is sim-
ply a question of notation. However, when we do not have an equation, we can use the
idea of a function to help us develop one. For example, no one has been able to find
an equation that generates the nth prime number, but I can declare a function P (n)
that pretends to perform this operation, such that P(1) =2, P(2) =3, P(3) =5,
etc. At least this imaginary function P (n), permits me to move forward and reflect
upon its possible inner structure.

A mathematical function must have a precise definition. It must be predictable,
and ideally, work under all conditions.

We are all familiar with mathematical functions such as sin x, cos x, tan x, \/x,
etc., where x is the independent variable. Such functions permit us to confidently
write statements such as
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sin30° = 0.5
c0s90° = 0.0
tan45° = 1.0

V16 =4

without worrying whether they will always provide a correct answer.

We often need to design a function to perform a specific task. For instance, if I
require a function y(x) to compute x> + x + 6, the independent variable is x and the
function is written

yx) = x> +x +6

such that

Y0 =0"+0+6=6
y)=1"+1+6=38
y2)=2>42+6=12
y3)=3*+3+6=18.

2.3.1 Continuous and Discontinuous Functions

Understandably, a function’s value is sensitive to its independent variables. A simple
square-root function, for instance, expects a positive real number as its independent
variable, and registers an error condition for a negative value. On the other hand, a
useful square-root function would accept positive and negative numbers, and output
a real result for a positive input and a complex result for a negative input.

Another danger condition is the possibility of dividing by zero, which is not
permissible in mathematics. For example, the following function y(x) is undefined
for x = 1, and cannot be displayed on the graph shown in Fig.2.1.

x2+1
y(x) =

x—1
(1)—2
=0

which is why mathematicians include a domain of definition in the specification of

a function:

x2+1

y(x) = for x # 1.

X —
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Fig. 2.1 Graph of DN
y=G+D/(x = 1)
showing the discontinuity at 20
x =1

10

We can create equations or functions that lead to all sorts of mathematical anomalies.
For example, (2.3) creates the condition 0/0 when x = 4

x—4

y(x) = m (2.3)
0

y4) = 6

Similarly, mathematicians would write (2.3) as

x—4
y(x) = —— forx #4.
Jx =2
Such conditions have no numerical value. However, this does not mean that these
functions are unsound—they are just sensitive to specific values of their independent

variable. Fortunately, there is a way of interpreting these results, as we will discover
in the next chapter.

2.3.2 Linear Functions

Linear functions are probably the simplest functions we will ever encounter and are
based upon equations of the form

y=mx +c.
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Fig. 2.2 Graph of A
y=05x+2 5

o
o
S
=V

Fig. 2.3 Graph of YA
y =S5sinx

4n -2 0, 2my 41y

=y

For example, the function y(x) = 0.5x + 2 is shown as a graph in Fig.2.2, where
0.5 is the slope, and 2 is the intercept with the y-axis.

2.3.3 Periodic Functions

Periodic functions are also relatively simple and employ the trigonometric functions
sin, cos and tan. For example, the function y(x) = 5sinx is shown over the range
—4m < x < 4w as a graph in Fig. 2.3, where the 5 is the amplitude of the sine wave,
and x is the angle in radians.

2.3.4 Polynomial Functions

Polynomial functions take the form

FO) = apx" + ap 1 X"V apox" b+ arx? +aix + ap
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Fig. 2.4 Graph of f(x) =
X
4x* —5x3 —8x% 4 6x — 12 Jx)4
20
10
1 0 1 2 X
=10

where n takes on some value, and a,, are assorted constants. For example, the function
f(x) =4x* — 5x3 — 8x? 4 6x — 12 is shown in Fig.2.4.

2.3.5 Function of a Function

In mathematics we often combine functions to describe some relationship succinctly.
For example, the trigonometric function

f(x) =sin(2x + 1)

is a function of a function. Here we have 2x + 1, which can be expressed as the
function
ux) =2x+1

and the original function becomes
S ux)) = sin(u(x)).

We can increase the depth of functions to any limit, and in the next chapter we
consider how such descriptions are untangled and analysed in Calculus.

2.3.6 Other Functions

You are probably familiar with other functions such as exponential, logarithmic,
complex, vector, recursive, etc., which can be combined together to encode simple
equations such as

e =mc?
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or something more difficult such as

N-—1
1 »
A(k)=ﬁggf,w * for k=0,1,...,N —1.
i

2.4 A Function’s Rate of Change

Mathematicians are particularly interested in the rate at which a function changes
relative to its independent variable. Even you would be interested in this characteristic
in the context of your salary or pension annuity. For example, I would like to know
if my pension fund is growing linearly with time; whether there is some sustained
increasing growth rate; or more importantly, if the fund is decreasing! This is what
Calculus is about—it enables us to calculate how a function’s value changes, relative
to its independent variable.

The reason why Calculus appears daunting, is that there is such a wide range
of functions to consider: linear, periodic, complex, polynomial, imaginary, rational,
exponential, logarithmic, vector, etc. However, we must not be intimidated by such
a wide spectrum, as the majority of functions employed in computer graphics are
relatively simple, and there are plenty of texts that show how specific functions are
tackled.

2.4.1 Slope of a Function

In the linear equation
y=mx +c¢

the independent variable is x, but y is also influenced by the constant ¢, which
determines the intercept with the y-axis, and m, which determines the graph’s slope.
Figure 2.5 shows this equation with 4 different values of m. For any value of x, the
slope always equals m, which is what linear means.
In the quadratic equation
y=ax’>+bx+c

y is dependent on x, but in a much more subtle way. It is a combination of two
components: a square law component ax?, and a linear component bx + c. Figure 2.6
shows these two components and their sum for the equation y = 0.5x> — 2x + 1.

For any value of x, the slope is different. Figure 2.7 identifies three slopes on the
graph. For example, when x = 2, y = —1, and the slope is zero. Whenx =4,y = 1,
and the slope looks as though it equals 2. And when x = 0, y = 1, the slope looks
as though it equals —2.
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Fig. 2.5 Graph of
y = mx + 2 for different
values of m

Fig. 2.6 Graph of
y=0.5x2—2x +1
showing its two components

Fig. 2.7 Graph of
y=05x2 —2x+1
showing three gradients

2 Functions
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Fig. 2.8 Linear relationship slope A
between slope and x 3

=y

Even though we have only three samples, let’s plot the graph of the relationship
between x and the slope m, as shown in Fig.2.8. Assuming that other values of slope
lie on the same straight line, then the equation relating the slope m to x is

m=x—2.
Summarising: we have discovered that the slope of the function
f(x) =0.5x>—2x + 1
changes with the independent variable x, and is given by the function
fl(x)=x-2.

Note that f(x) is the original function, and f’(x) (pronounced f prime of x) is the
function for the slope, which is a convention often used in Calculus.

Remember that we have taken only three sample slopes, and assumed that there
is a linear relationship between the slope and x. Ideally, we should have sampled the
graph at many more points to increase our confidence, but I happen to know that we
are on solid ground!

Calculus enables us to compute the function for the slope from the original func-
tion. i.e. to compute f'(x) from f(x):

fx)=0.5x2—2x + 1 (2.4)
fl(x)=x—2. (2.5)

Readers who are already familiar with Calculus will know how to compute (2.5)
from (2.4), but for other readers, this is the technique:
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Take each term of (2.4) in turn and replace ax” by nax"~'.
Therefore 0.5x2 becomes x.

—2x, which can be written —2x!, becomes —2x°, which is —2.
1 is ignored, as it is a constant.

Collecting up the terms we have

ke =

flx)=x—-2.

This process is called differentiating a function, and is easy for this type of polyno-
mial. So easy in fact, we can differentiate the following function without thinking:

fx)=12x* +6x> —4x2 +3x -8
f(x) = 48x> + 18x% — 8x + 3.

This is an amazing relationship, and is one of the reasons why Calculus is so impor-
tant.

If we can differentiate a polynomial function, surely we can reverse the operation
and compute the original function? Well of course! For example, if f'(x) is given by

fl(x) =6x>+4x+6 (2.6)

then this is the technique to compute the original function:

Take each term of (2.6) in turn and replace ax” by n'?ax”“.

Therefore 6x2 becomes 2x>.

4x becomes 2x°.

6 becomes 6x.

Introduce a constant C which might have been present in the original function.
Collecting up the terms we have

A

fx)=2x>+2x>+6x+C.

This process is called integrating a function. Thus Calculus is about differentiating
and integrating functions, which sounds rather easy, and in some cases it is true. The
problem is the breadth of functions that arise in mathematics, physics, geometry,
cosmology, science, etc. For example, how do we differentiate or integrate

: X
f(x) _ s x + cosh x 2

cos2x —Inx3’

Personally, I don’t know, but hopefully, there is a solution somewhere.
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Fig. 2.9 A sine curve over A
. 2

the range 0° to 360°
1
A )

0 90° 180° 270° 0°

Fig. 2.10 Sampled slopes of slope A
a sine curve 2

0 90° 180° 0° 360°

2.4.2 Differentiating Periodic Functions

Now let’s try differentiating the sine function by sampling its slope at different points.
Figure 2.9 shows a sine curve over the range 0°-360°. When the scales for the vertical
and horizontal axes are equal, the slope is 1 at 0° and 360°. The slope is zero at 90°
and 270°, and —1 at 180°. Figure 2.10 plots these slope values against x and connects
them with straight lines.

It should be clear from Fig.2.9 that the slope of the sine wave does not change
linearly as shown in Fig. 2.10. The slope starts at 1, and for the first 20°, or so, slowly
falls away, and then collapses to zero, as shown in Fig.2.11, which is a cosine wave
form. Thus, we can guess that differentiating a sine function creates a cosine function:

f(x) =sinx
f'(x) = cosx.

Consequently, integrating a cosine function creates a sine function. Now this analysis
is far from rigorous, but we will shortly provide one. Before moving on, let’s perform
a similar ‘guesstimate’ for the cosine function.
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Fig. 2.11 The slope of a
sine curve is a cosine curve

Fig. 2.12 Sampled slopes of
a cosine curve

Fig. 2.13 The slope of a
cosine curve is a negative
sine curve

Functions
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X
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90° 180° 0° 360°
-1
2
slope A
2
1
X
90° 0° 270° 360°
-1
2
S
2
1
X
90° 0° 270° 360°
-1
2

Figure2.11 shows a cosine curve, where the slope is zero at 0°, 180° and 360°.
The slope equals —1 at 90°, and equals 1 at 270°. Figure 2.12 plots these slope values
against x and connects them with straight lines. Using the same argument for the
sine curve, this can be represented by f’(x) = — sin x as shown in Fig.2.13.
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Summarising, we have:

f(x) =sinx
f'(x) =cosx
f(x) =cosx
f'(x) = —sinx

which illustrates the intimate relationship between the sine and cosine functions.

Just in case you are suspicious of these results, they can be confirmed by differ-
entiating the power series for the sine and cosine functions. For example, the sine
and cosine functions are represented by the series

x3 x5 x7
R TR T T

x2 x4 xé
cosv=logty et

and differentiating the sine function using the above technique for a polynomial we

obtain
2 4 46

/ — — — — — — ...
ffx)=1 2!—1-4! 6!+

which is the cosine function. Similarly, differentiating the cosine function, we obtain
, 2 X X
fo=—(x-2+- - 4...

which is the negative sine function.
Finally, there is a series that when differentiated, remains the same:

x2 .x3 .x4
f(X):1+X+2—!+§+4—!+"'
, x2 X xt
f(x)=1+x+2—!+§+4—!+-~-

which is e*, and has a rate of growth equal to itself!

2.5 Summary

We have covered quite a lot in this chapter, but hopefully it was not too challenging,
bearing in mind the subject. We have covered the nature of simple functions and
noted that Calculus is interested in a function’s rate of change, relative to its inde-
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pendent variable. Differentiating a function creates another function that describes
the function’s rate of change relative to its independent variable. For simple polyno-
mials, this is a trivial algebraic operation, which can even be undertaken by software.
For trigonometric functions, there is a direct relationship between the sine and cosine
functions.

Integration is the reverse process, where the original function is derived from a
knowledge of the differentiated form. Much more will be said of this process in later
chapters.



Chapter 3 ®)
Limits and Derivatives Check for

3.1 Introduction

Some quantities, such as the area of a circle or an ellipse, cannot be written precisely,
as they incorporate m, which is irrational, but also transcendental; i.e. not a root
of a single-variable polynomial whose coefficients are all integers. However, an
approximate value can be obtained by devising a definition that includes a parameter
that is made infinitesimally small. The techniques of limits and infinitesimals have
been used in mathematics for over two-thousand years, and paved the way towards
today’s Calculus.

Although the principles of integral Calculus were being used by Archimedes (287—
212 B.C.) to compute areas, volumes and centres of gravity, it was Isaac Newton and
Gottfried Leibniz who are regarded as the true inventors of modern Calculus. Leibniz
published his results in 1684, followed by Newton in 1704. However, Newton had
been using his Calculus of fluxions as early as 1665. Since then, Calculus has evolved
conceptually and in notation.

Up until recently, Calculus was described using infinitesimals, which are num-
bers so small, they can be ignored in certain products. However, infinitesimals, no
matter how small they are, do not belong to an axiomatic mathematical system, and
eventually, Augustin-Louis Cauchy and Karl Weierstrass showed how they could be
replaced by limits. In this chapter I show how limits are used to measure a function’s
rate of change accurately, instead of using intelligent guess work. Limiting condi-
tions also permit us to explore the behaviour of functions that are discontinuous for
particular values of their independent variable. For example, rational functions are
often sensitive to a specific value of their variable, which gives rise to the meaningless
condition 0/0. Limits permit us to handle such conditions.

‘We continue to apply limiting conditions to identify a function’s derivative, which
provides a powerful analytical tool for computing the derivative of function sums,
products and quotients. We begin this chapter by exploring small numerical quantities
and how they can be ignored if they occur in certain products, but remain important
in quotients.
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3.2 Small Numerical Quantities

The adjective small is a relative term, and requires clarification in the context of
numbers. For example, if numbers are in the hundreds, and also contain some decimal
component, then it seems reasonable to ignore digits after the 3rd decimal place for
any quick calculation. For instance,

100.000003 x 200.000006 = 20, 000

and ignoring the decimal part has no significant impact on the general accuracy of
the answer, which is measured in tens of thousands.

To develop an algebraic basis for this argument let’s divide a number into two
parts: a primary part x, and some very small secondary part §x (pronounced delta x).
In one of the above numbers, x = 100 and x = 0.000003. Given two such numbers,
x1 and yj, their product is given by

X1 =Xx+6x
yi=y+38y
x1y1 = (x +8x)(y + 8y)
=xy+x-8y+y-6x+x-6y.

Using x; = 100.000003 and y; = 200.000006 we have

x1y1 = 100 x 200 4 100 x 0.000006 + 200 x 0.000003 + 0.000003 x 0.000006
= 20,000 + 0.0006 + 0.0006 + 0.00000000018
= 20,000 + 0.0012 4 0.00000000018
= 20,000.00120000018

where it is clear that the products x - §y, y - §x and éx - §y contribute very little to
the result. Furthermore, the smaller we make éx and dy, their contribution becomes
even more insignificant. Just imagine if we reduce §x and 8y to the level of quantum
phenomenon, i.e. 10734, then their products play no part in every-day numbers. But
there is no need to stop there, we can make §x and Jy as small as we like, e.g.
10—100.000,000,000 T ater on we employ the device of reducing a number towards zero,
such that any products involving them can be dropped from any calculation.

Even though the product of two numbers less than zero is an even smaller number,
care must be taken with their quotients. For example, in the above scenario, where
8y = 0.000006 and 6x = 0.000003,

8y _ 0.000006
sx  0.000003

so we must watch out for such quotients.
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From now on I will employ the term derivative to describe a function’s rate of
change relative to its independent variable. I will now describe two ways of computing
a derivative, and provide a graphical interpretation of the process. The first way uses
simple algebraic equations, and the second way uses a functional representation.
Needless to say, they both give the same result.

3.3 Equations and Limits

3.3.1 Quadratic Function

Here is a simple algebraic approach using limits to compute the derivative of a
quadratic function. Starting with the function y = x2, let x change by 6x, and let §y
be the corresponding change in y. We then have

y=2x’

y+8y = (x +6x)°
=x2 4 2x - 8x + (8x)°
Sy = 2x - 8x + (8x)°.

Dividing throughout by §x we have

8
2 =2x + 6x.
ox

The ratio §y/§x provides a measure of how fast y changes relative to x, in increments
of 8x. For example, when x = 10

8_y =20+ éx,
8x
and if 6x = 1, then §y/éx = 21. Equally, if §x = 0.001, then §y/éx = 20.001. By
making §x smaller and smaller, §y becomes equally smaller, and their ratio converges
towards a limiting value of 20.
In this case, as §x approaches zero, §y/dx approaches 2x, and is written

sy

= 2x.
sx—0 Ox

Thus in the limit, when §x = 0, we create a condition where §y is divided by zero—
which is a meaningless operation. However, if we hold onto the idea of a limit,
as §x — 0, it is obvious that the quotient §y/5x is converging towards 2x. The
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subterfuge employed to avoid dividing by zero is to substitute another quotientdy/dx
to stand for the limiting condition:

dy . dy
— = lim — = 2x.
dx  8x—0 §x

dy/dx (pronounced dee y dee x) is the derivative of y = x2, i.e. 2x. For instance,

when x = 0,dy/dx = 0, and when x = 3, dy/dx = 6. The derivative dy/dx, is the
instantaneous rate at which y changes relative to x.
If we had represented this equation as a function:

f(x) =x?

then dy/dx is another way of expressing f’(x).
Now let’s introduce two constants into the original quadratic equation to see what
effect, if any, they have on the derivative. We begin with

y=ax’>+b
and increment x and y:

y+8y=a(x+8x)*+b
=a(x*+2x-8x + (x)*) +b
8y = a (2x - 8x + (6x)%).

Dividing throughout by §x:

8y
— =a2x + éx)
éx

and the derivative is

dy . dy
— = lim — = 2ax.
dx Sx—0 8x

Thus we see the added constant b disappears (i.e. because it does not change), whilst
the multiplied constant a is transmitted through to the derivative.

3.3.2 Cubic Equation

Now let’s repeat the above analysis for y = x:
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y=2x°

y+38y = (x +8x)°
= x> +3x% - 8x 4+ 3x(8x)* + (6x)>
8y = 3x% - 8x +3x(8x)% + (5x)°.

Dividing throughout by §x:

S_y =3x>+3x - 8x+ ((Sx)z.
ox
Employing the idea of infinitesimals, one would argue that any term involving §x
can be ignored, because its numerical value is too small to make any contribution
to the result. Similarly, using the idea of limits, one would argue that as x is made
increasingly smaller, towards zero, any term involving §x rapidly disappears.
Using limits, we have

8
im Y 3x?
sx—0 dx
or J 5
him 2 =3
dx sx—0 8x
We could also show that if y = ax® + b then
dy 2
— =3ax".
Ix ax

This incremental technique can be used to compute the derivative of all sorts of
functions.

If we continue computing the derivatives of higher-order polynomials, we discover
the following pattern:

dy
2
= s —:2
y=x Ix X
dy
3 2
=x°, — =3x
Y dx
dy
4 3
= s —:4
y=x I X
d
y:xs, —y:5x4.
dx

Clearly, the rule is

n dy _ n—1
X — =nx
dx
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but we need to prove why this is so. The solution is found in the binomial expansion
for (x 4+ 6x)", which can be divided into three components:

1. Decreasing terms of x.
2. Increasing terms of 5x.
3. The terms of Pascal’s triangle.

For example, the individual terms of (x + 8x)* are:

Decreasing terms of x: x* x3 x2 x! x0
Increasing terms of 8x: 6x)°  (6x)! Bx)>  (6x)}  (x)*
The terms of Pascal’s triangle: 1 4 6 4 1

which when combined produce
x* 4 4x3(8x) + 6x2(8x)% + 4x (8x)° + (5x)*.

Thus when we begin an incremental analysis:
y=x'
y+38y = (x +8x)*
_ 4 3 20542 3 4
=x"+4x7(6x) + 6x°(8x)" + 4x(5x)° + (6x)
8y = 4x3(8x) 4+ 6x2(8x) + 4x(8x)* + (8x)*.

Dividing throughout by §x:
1)
3—y — 43 4 6x2(5x)" + 4x(5x)% + (5x)°.
X
In the limit, as §x slides to zero, only the second term of the original binomial
expansion remains:
4x3.
The second term of the binomial expansion (1 + 8x)" is always of the form
n—1

nx

which is the proof we require.

3.3.3 Functions and Limits

In order to generalise the above findings, let’s approach the above analysis using
a function of the form y = f(x). We begin by noting some arbitrary value of its
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independent variable and note the function’s value. In general terms, this is x and
f(x) respectively. We then increase x by a small amount §x, to give x + éx, and
measure the function’s value again: f(x + éx). The function’s change in value is
f(x 4 8x) — f(x), whilst the change in the independent variable is §x. The quotient
of these two quantities approximates to the function’s rate of change at x:

fx +3dx) — f(x)
8x '

(3.1)

By making §x smaller and smaller towards zero, (3.1) converges towards a limiting

value expressed as
d 3x) —
Y _ im fx+68x) — f(x) (32)
dx 5x—0 8x

which can be used to compute all sorts of functions. For example, to compute the
derivative of sin x we proceed as follows:

y =sinx
y 48y = sin(x + 6x).

Using the identity sin(A + B) = sin A - cos B 4- cos A - sin B, we have

y 4+ 8y =sinx - cos(dx) + cosx - sin(dx)
8y = sinx - cos(dx) 4 cos x - sin(6x) — sin x

= sinx(cos(dx) — 1) + cos x - sin(x).
Dividing throughout by §x we have

3y sin x sin(éx)
- = (cos(6x) — 1) +
ox Sx

COS x.

In the limit as x — 0, (cos(6x) — 1) — 0 and sin(6x)/6x = 1 (See Appendix A),
and

which confirms our ‘guesstimate’ in Chap.2. Before moving on, let’s compute the
derivative of cos x.

y =cosx
y 4+ 8y = cos(x + 8x).

Using the identity cos(A + B) = cos A - cos B — sin A - sin B, we have
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¥+ 8y =cosx - cos(6x) — sinx - sin(§x)
8y = cosx - cos(dx) — sinx - sin(6x) — cos x

= cos x(cos(6x) — 1) — sinx - sin(8x).
Dividing throughout by §x we have

dy  cosx sin(6x) .
- = (cos(éx) — 1) — sin
8x Sx ox

In the limit as x — 0, (cos(éx) — 1) — 0 and sin(dx)/6x = 1 (See Appendix A),
and
dy
dx

= —sinx

which also confirms our ‘guesstimate’. We will continue to employ this strategy to
compute the derivatives of other functions later on.

3.3.4 Graphical Interpretation of the Derivative

To illustrate this limiting process graphically, consider the scenario in Fig. 3.1 where
the sample point is P. In this case the function is f(x) = x* and P’s coordinates
are (x, x%). We identify another point R, displaced 8x to the right of P, with coor-
dinates (x + 8x, x2). The point Q on the curve, vertically above R, has coordinates
(x +6x, (x + 8x)2). When §x is relatively small, the slope of the line P Q approxi-
mates to the function’s rate of change at P, which is the graph’s slope. This is given
by

OR (x + 8x)% — x?

PR ox

x% 4 2x(8x) + (6x)% — x?
dx

. 2x(8x) + (8x)?

N ox

= 2x + 6x.

slope =

We can now reason that as §x is made smaller and smaller, Q approaches P, and
slope becomes the graph’s slope at P. This is the limiting condition:

D lim (x4 6x) =2
dx = g o T oX) = X
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Fig. 3.1 Sketch of YA
fx) =x? 4 0
3
2
P R
]
1 0 1 2 X

Thus, for any point with coordinates (x, x2), the slope is given by 2x. For example,
when x = 0, the slope is 0, and when x = 4, the slope is 8, etc.

3.3.5 Derivatives and Differentials

Given a function f(x), df/dx represents the instantaneous change of f for some
x, and is called the first derivative of f(x). For linear functions, this is constant,
for other functions, the derivative’s value changes with x and is represented by a
function.

The elements df, dy and dx are called differentials, and historically, the derivative
used to be called the differential coefficient, but has now been dropped in favour of
derivative. One can see how the idea of a differential coefficient arose if we write,
for example:

d
& 3x
dx
as
dy = 3x dx.

In this case, 3x acts like a coefficient of dx, nevertheless, we will use the word
derivative. It is worth noting that if y = x, then dy/dx = 1, or dy = dx. The two
differentials are individual algebraic quantities, which permits us to write statements
such as

dy 1

— = 3x, dy = 3x dx, dx = —dy.

dx 3x

For example, given
y=6x>—4x*+8x+6
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then d
& 18x2 —8x 48
dx

which is the instantaneous change of y relative to x. When x = 1, dy/dx = 18 —
8 + 8 = 18, which means that y is changing 18 times faster than x. Consequently,
dx/dy = 1/18.
Gottfried Leibniz developed what has become known as Leibniz notation for
differentiation, where
dy
dx

is a composite definition for a derivative. Leibniz also treated them individually as
infinitesimals, which is no longer the case. It was Joseph Lagrange who developed
the prime mark notation f'(x) to denote the first derivative, with extra prime marks
for higher derivatives.

Personally, I find that separating dy/dx into dy and dx has useful pedagogic uses,
even if it is not mathematically rigorous!

3.3.6 Integration and Antiderivatives

Ifitis possible to differentiate a function, it seems reasonable to assume the existence
of an inverse process to convert a derivative back to its associated function. Fortu-
nately, this is the case, but there are some limitations. This inverse process is called
integration and reveals the antiderivative of a function. Many functions can be paired
together in the form of a derivative and an antiderivative, such as 2x with x2, and
cos x with sin x. However, there are many functions where it is impossible to derive
its antiderivative in a precise form. For example, there is no simple, finite functional
antiderivative for sin(x?) or (sin x)/x. To understand integration, let’s begin with a
simple derivative.

If we are given

d
&Y 18x% — 8x +8
dx

it is not too difficult to reason that the original function could have been
y = 6x° — 4x? + 8x.
Howeyver, it could have also been

y = 6x> —4x> +8x +2
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or
y = 6x> —4x% 4+ 8x 420

or with any other constant. Consequently, when integrating the original function, the
integration process has to include a constant:

y=6x>—4x>+8x+C.

The value of C is not always required, but it can be determined if we are given some
extra information, such as y = 10 when x = 0, then C = 10.

The notation for integration employs a curly ‘S’ symbol |, which may seem
strange, but is short for sum and will be explained later. So, starting with

d
& 18k —8x 48
dx

we rewrite this as
dy = (18x* — 8x + 8)dx

and integrate both sides, where dy becomes y and the right-hand-side becomes
/(18x2 — 8x +8) dx
although brackets are not always used:

y=/18x2—8x—|—8dx.

This equation reads: ‘y is the integral of 18x> — 8x 4 8dee x.” The dx reminds us
that x is the independent variable. In this case we can write the answer:

d
4 18y —8x +8
dx
dy = 18x* — 8x + 8 dx
y=/18x2—8x+8dx
=6x3—4x>+8x+C

where C is some constant.
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Another example:

d
4 6x 4 10x
dx

dy = 6x* + 10x dx

y=/6x2+10xdx

=23 +5x* +C.
Finally,

d

@&y

dx

dy =1dx
y:/ldx

=x+C.

The antiderivatives for the sine and cosine functions are written:
/sinx dx = —cosx +C

/cosx dx =sinx + C

which you may think obvious, as we have just computed their derivatives. How-
ever, the reason for introducing integration alongside differentiation, is to make you
familiar with the notation, and memorise the two distinct processes, as well as lay
the foundations for later chapters.

3.4 Summary

This chapter has shown how limits provide a useful tool for computing a function’s
derivative. Basically, the function’s independent variable is disturbed by a very small
quantity, typically 8x, which alters the function’s value. The quotient

Sx+6dx)— f(x)
Sx

is a measure of the function’s rate of change relative to its independent variable. By
making §x smaller and smaller towards zero, we converge towards a limiting value
called the function’s derivative. Unfortunately, not all functions possess a derivative,
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therefore we can only work with functions that can be differentiated. In the next
chapter we discover how to differentiate different types of functions and function
combinations.

We have also come across integration—the inverse of differentiation—and as we
compute the derivatives of other functions, the associated antiderivative will also be
included.

3.5 Worked Examples

3.5.1 Limiting Value of a Quotient

Find the limiting value of S
X“—X

First, we simplify the quotient by dividing the numerator and denominator by x?:

asx — 0.

X041
3—x

We can now reason that as x — 0, (x® + 1) — 1 and (3 — x) — 3, therefore,

. x8 +)c2 1
Iim — = 3
x—03x2 — x3

which is confirmed by the function’s graph in Fig. 3.2.

3.5.2 Limiting Value of a Quotient

asx — 0.

. el x2—1
Find the limiting value of T

Fig. 3.2 Graph of

8,,2
fx) = 3);;13
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Fig. 3.3 Graph of YA

f@) = 555
1 ¥

Ry

=
o
-
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First, we simplify the numerator and denominator:

x+Dx-1 . x+1
im —————— = lim .
=0 Bx+Dx—-1) x>0 3x+1

We can now reason thatas x — 0, (x +1) — 1 and (3x + 1) — 1, therefore,

. x2—1
Iim ——— =1
x—0 3x2—2x—1

which is confirmed by the function’s graph in Fig. 3.3.

3.5.3 Derivative

Differentiate y = 3x'% — 4,
Using % =nx""1:
dy
—= =300x".
dx

3.5.4 Slope of a Polynomial

Find the slope of the graph y = 3x? + 2x when x = 2.

dy
— =6 2.
dx X +

When x = 2,
dy
—— =124+2=14
dx +
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which is the slope.

3.5.5 Slope of a Periodic Function

Find the slope of y = 6sinx when x = 7/3.

d
i =6cosx.

dx

When x = 7/3

3.5.6 Integrate a Polynomial

Integrate dy/dx = 5x* + 4x.
dy = 5x% +4x dx

y=/5x2+4xdx

= §x3 +2x2 +C

33



Chapter 4 ®)
Derivatives and Antiderivatives Check for

4.1 Introduction

Mathematical functions come in all sorts of shapes and sizes. Sometimes they are
described explicitly where y equals some function of its independent variable(s),
such as

y = Xxsinx

or implicitly where y, and its independent variable(s) are part of an equation, such
as

x?+y2=10.
A function may reference other functions, such as
y = sin(cos2 X)

or
sinx

y=x

There is no limit to the way functions can be combined, which makes it impossible
to cover every eventuality. Nevertheless, in this chapter we explore some useful
combinations that prepare us for any future surprises.

In the first section we examine how to differentiate different types of functions, that
include sums, products and quotients, which are employed later on to differentiate
specific functions such as trigonometric, logarithmic and hyperbolic. Where relevant,
I include the appropriate antiderivative to complement its derivative.
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4.2 Differentiating Groups of Functions

So far, we have only considered simple individual functions, which unfortunately, do
not represent the equations found in mathematics, science, physics or even computer
graphics. In general, the functions we have to differentiate include sums of functions,
functions of functions, function products and function quotients. Let’s explore these
four scenarios.

4.2.1 Sums of Functions

A function normally computes a numerical value from its independent variable(s),
and if it can be differentiated, its derivative generates another function with the same
independent variable. Consequently, if a function contains two functions of x, such
as u and v, where

y =u(x) +v(x)

which can be abbreviated to

y=u+v
then
dy du dv
— = — 4+ —
dx dx dx

where we just sum their individual derivatives. For example, let

u=2x°
v =3x>
y=u-+v
y =2x% 4+ 3x°
then 4
O 1245 41524,
dx
Similarly, let
u=2x°
v =sinx

W = COS X
y=u+v+w
y

= 2x% + sinx + cos x
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Fig. 4.1 Graph of
y = 2x° + sin x + cos x and

its derivative,
y = 12x° + cosx — sinx

(dashed)

then 4
Y = 12x° + cosx — sin x.

dx

Figure 4.1 shows a graph of y = 2x® + sin x + cos x and its derivative y = 12x° +
cos x — sin x. Differentiating such functions is relatively easy, so too, is integrating.

Given
dy du dv
dx ~ dx = dx
then
y = /u dx +/vdx
= /(u +v) dx
and given
d
o 12x° 4+ cos x — sin x.
dx

then
dy = 12x° 4 cos x — sinx dx

y:/12x5dx+/cosxdx—/sinxdx

= 2x% + sinx + cosx + C.



38 4 Derivatives and Antiderivatives

4.2.2 Function of a Function

One of the advantages of modern mathematical notation is that it lends itself to
unlimited elaboration without introducing any new symbols. For example, the poly-
nomial 3x2 4 2x is easily raised to some power by adding brackets and an appropriate
index: (3x% + 2x)2. Such an object is a function of a function, because the function
3x% + 2x is subjected to a further squaring function. The question now is: how are
such functions differentiated? Well, the answer is relatively easy, but does introduce
some new ideas.

Imagine that person A swims twice as fast as person B, who in turn, swims three
times as fast as person C. It should be obvious that person A swims six (2 x 3)
times faster than person C. This product rule, also applies to derivatives, because if

y changes twice as fast as u, i.e. % = 2, and u changes three times as fast as x, i.e.
44 = 3, then y changes six times as fast as x:

dy dy du

dx ~ du dx’

To differentiate
y = (3x% + 2x)?

we substitute

u=73x>+2x
then
y=u’
and
d
& 2u
du
=2(3x% + 2x)
= 6x% + 4x.
Next, we require %:
u=3x>42x
M _ 6 g2
== —6x
dx

therefore, we can write
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Fig. 4.2 Graph of
y = (3x% 4+ 2x)? and its

derivative,
& =36x3 +36x7 + 8x

=Y

(dashed)

dy dy du
dx du dx

= (6x2 + 4x)(6x + 2)
= 36x> + 36x2 + 8x.

This result is easily verified by expanding the original polynomial and differentiating

y = (3x% + 2x)?
= (3x% 4+ 2x)(3x% + 2x)
= Ox* 4 12x3 + 442
d
2X = 36x% + 36x + 8x.
x
Figure 4.2 showsagraphof y = (3x2 + 2x)? and its derivative, 2 = 36x> + 36x2 +

To differentiate y = sin(ax), which is a function of a function, we proceed as

8x.
follows:

y = sin(ax).

Substitute u for ax:
y =sinu
dy
—— =cosu
du
= cos(ax).

du.

Next, we require &:
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u=ax
du
— =a
dx
therefore, we can write
dy dy du
dx  du dx
= cos(ax)a
= acos(ax).
Consequently, given
dy
— = cos(ax)

dx

then

y= /cos(ax) dx
= i sin(ax) + C.
Similarly, given

d
ﬁ = sin(ax)

then
y= fsin(ax) dx
= —% cos(ax) + C.

The equation y = sin(x?) is also a function of a function, and is differentiated as
follows:

y= sin(xz).
Substitute u for x2:
y =sinu
y
—— =cosu
du
= cos(xz).

s du,
Next, we require &:
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Fig. 4.3 Graph of XA
y = sin(x?) and its I .o
derivative d—{ = 2x cos(x?) h n 0

s I
dashed 4 ) "\ \ I 1
'
(dashed) i o A IR
1K ™ N 4 ;o T
[ ", fon [ b [
Vo " [ [ P
AT I \ R T
| I \ -~ |
| T \ -7 < ! !
\ ! ! - \ ' ) ! \,‘Z
T T T
\‘7‘1‘ 3‘\’_/2/ < .0 1\\ \24/\\3\/'%
\ ) oY k- . ) vl
I [ v A i
[ [ [ vy oo Uy
“‘ [ [ N o \‘\
1 ! - = I
| P! i 4 I o
! . Vo
Iy V! ! v
| V! . Y
! !
\ \ I
| /) !
[ Y
\
\l -8

therefore, we can write

dy dy du
dx — du dx
= cos(x2)2x

=2x cos(xz).
Figure 4.3 shows a graph of y = sin(x?) and its derivative, % = 2x cos(x?). In
general, there can be any depth of functions within a function, which permits us to
write the chain rule for derivatives:

4.2.3 Function Products

Function products occur frequently in every-day mathematics, and involve the prod-
uct of two, or more functions. Here are three simple examples:

y = (3x% + 2x)(2x% + 3x)
y =sinx - cosx

y = x*sinx.

When it comes to differentiating function products of the form
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y=uv
it seems natural to assume that
dy du dv
—_— = — 4.1)
dx dx dx

which, unfortunately, is incorrect. For example, in the case of
y = (3x% + 2x)(2x% 4 3x)

differentiating using (4.1) produces

d
& (6x +2)(dx +3)
dx

= 24x? 4 26x + 6.

However, if we expand the original product and then differentiate, we obtain

y = (3x% + 2x)(2x% + 3x)
= 6x* + 13x3 + 612

d
O oax? +39x% + 12
dx

which is correct, but differs from the first result. Obviously, (4.1) must be wrong. So
let’s return to first principles and discover the correct rule.

So far, we have incremented the independent variable—normally x—by §x to
discover the change in y—normally dy. Next, we see how the same notation can be
used to increment functions.

Given the following functions of x, u and v, where

Yy =uv

if x increases by éx, then there will be corresponding changes of du, §v and 8y, in
u, v and y respectively. Therefore,

y4+8y = (u+du)y(v+v)
=uv +udv +véu + du - v
8y = udv + véu + du - év.

Dividing throughout by §x we have

8y 8v du sv
— =u—+v 1) .
&x &x ox ox
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In the limiting condition:

dy ) Sv . Su . sv
—=1Ilim (u— )+ 1lim [(v— )+ lim (du— ).
dx §x—0 Sx §x—0 o0X §x—0 oxX

As §x — 0, then du — 0 and ((Su g—;) — 0. Therefore,

d d d
dy _ dv_ du

—_— 42
dx dx dx (4.2)

Using (4.2) for the original function product:

u=3x2+2x
v=2x>+3x
y=uv

du

— =06 2

dx ot

dv

— =4 3

dx T

dy dv du
_:u_+v_

dx dx dx
= (3x? 4 2x)(4x + 3) + (2x% + 3x)(6x + 2)

= (12x% + 17x% + 6x) + (12x> + 22x% + 6x)
= 24x> +39x% 4+ 12x

which agrees with our previous prediction. Figure 4.4 shows the graph of y = (3x2 +
2x)(2x2 + 3x) and its derivative, % = 24x3 4+ 39x2 + 12x.

The equation y = sin x cos x contains the product of two functions and is differ-
entiated using (4.2) as follows:

Fig. 4.4 Graph of

y = (3x2 +2x)(2x% + 3x)
and its derivative,

P =24x3 +39x% + 12x
(dashed)

=V
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y =sinXx - cosx

u =sinx
du
— =Cosx
dx
V= CoSx
dv .
— = —sinx
dx
dy dv du
— =yu— +v_

dx dx dx
= sin x(— sin x) 4+ cos x - cos x
= cos®x — sin® x

= cos(2x).
Using the identity sin(2x) = 2 sin x - cos x, we can rewrite the original function as

y =sinx - cosx
dy

y % sin(2x)
X

= cos(2x)

which confirms the above derivative. Now let’s consider the antiderivative of cos(2x).

Given

dy
z7 2
I cos(2x)

then

y= /cos(Zx) dx
= 1sin2x) +C

=sinx -cosx + C.

Figure 4.5 shows the graph of y = sinx - cos x and its derivative, % = cos(2x).

4.2.4 Function Quotients

Next, we investigate how to differentiate the quotient of two functions. We begin
with two functions of x, u and v, where

u
y=-
v
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45
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which makes y also a function of x.

We now increment x by §x and measure the change in u as §u, and the change in
v as §v. Consequently, the change in y is §y:

u+u

v+ v
u+déu u
8y = - =
v+ v %
_ v(u + Su) — u(v + év)
N v(v +év)
_ véu — udv

T v+

y+68y =

Dividing throughout by §x we have

Su Y%
5_)’ _ va u8x
8x vy +8v)

As éx — 0, du, 6v and §y also tend towards zero, and the limiting conditions are

dy . dy
— = lim —
dx Sx—0 Ox
du . Su
v— = lim v—
dx Ssx—0  Ox
dv . Sv
u— = lim u—
dx sx—0 Sx

2 .
=1 8
v axlino v(v 4 46v)

therefore,
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Fig. 4.6 Graph of y = In
2 +3)x+2)/(x2+3)
and its derivative, % =1
(dashed)

du dv
d_y _ vdx udx

dx V2

As an example, let’s differentiate

_x3+2x2+3x+6
V= x24+3 '

Substitute u = x3 4+ 2x2 4+ 3x + 6 and v = x% + 3, then

d
3 dx 43
dx
dv
— =2x
dx
dy (x> +3)(3x% 4 4x +3) — (x* + 2x* + 3x + 6)(2x)
dx (x243)2
. Bx* +4x3 +3x2 4+ 9x2 + 12x +9) — 2x* 4+ 4x3 + 612 + 12x)
N x*+6x2+9
_ x*+6x24+9
x4+ 6x2 49
=1

which is not a surprising result when one sees that the original function has the factors

_ *2+3)(x +2) _

213 x+2

whose derivative is 1. Figure 4.6 shows a graph of y = (x> 4+ 3)(x +2)/(x%> +3)
dy

and its derivative, 7= = 1.
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Table 4.1 Rules for differentiating function combinations

Function dy/dx
=u(x) £v(x) dliﬂ
y=u(x) £v(x P
=u((x)) dy du
y v du__dx
=u(x) - v(x) e
y=u(x) v(x U v
du dv
V— —u—
¥ = u(@)/v(x) T

4.2.5 Summary: Groups of Functions

Table 4.1 shows the rules for differentiating function sums, products, quotients and
function of a function.

4.3 Differentiating Implicit Functions

Functions conveniently fall into two types: explicit and implicit. An explicit function,
describes a function in terms of its independent variable(s), such as

y =asinx + bcosx

where the value of y is determined by the values of a, b and x. On the other hand,
an implicit function, such as

x>+ y2 =25
combines the function’s name with its definition. In this case, it is easy to untangle

the explicit form:
y=+/25—x2,

So far, we have only considered differentiating explicit functions, so now let’s exam-
ine how to differentiate implicit functions. Let’s begin with a simple explicit function
and differentiate it as it is converted into its implicit form.

Let

y=2x>4+3x+4

then 4
y
— =4 3.
dx ot
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Now let’s start the conversion into the implicit form by bringing the constant 4 over
to the left-hand side:
y —4 =2x*+3x

differentiating both sides:
d

X

Bringing 4 and 3x across to the left-hand side:
y —3x —4 =2x2
differentiating both sides:

dy

— —-3=4

dx *
dy
— =4 3.
dx o

Finally, we have
y—2x*=3x—-4=0

differentiating both sides:

d
4y —3=0
dx

dy
S —dx +3
dx et

which seems straight forward.
The reason for working through this example is to remind us that when y is differ-
entiated we get dy/dx. Consequently, the following examples should be understood:

y+sinx +4x =0

d
—y+cosx+4=0
dx

dy
— = —cosx — 4.
dx o
y+x2—cosx =0
dy .
— +2x +sinx =0
dx
d
o9 —2x —sinx.

dx
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But how do we differentiate y*> + x?> = r2? Well, the important difference between
this implicit function and previous functions, is that it involves a function of a func-
tion. y is not only a function of x, but is squared, which means that we must employ
the chain rule described earlier:

dy dy du

dx du dx’
Therefore, given

NP

dy
2y— +2x=0
ydx+ *
dy —2x

dx 2y
—Xx

/¥ — x2

This is readily confirmed by expressing the original function in its explicit form and

differentiating:
y =07 —x")2

which is a function of a function.
Let u = r? — x2, then

du
— = —2x
dx
Asy:u%,then
dy 1 -1
=2
1
_ZM%
1

However,
dy dy du
dx ~ du dx
_ —2x
BN
_ —Xx
N

which agrees with the implicit differentiated form.
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As an another example, let’s find dy/dx for
x? — y* +4x = 6y.

Differentiating, we have
dy dy
2x —2y—+4=6—.
o Y dx + dx

Rearranging the terms, we have

dy dy
2 4=6—+2y—
rr dx+ ydx
dy
=——(6+2
dx( +2y)
dy 2x+4
dx ~ 6+2y’

If, for example, we have to find the slope of x> — y? + 4x = 6y at the point (4, 3),
then we simply substitute x = 4 and y = 3 in dy/dx to obtain the answer 1.
Finally, let’s differentiate x" 4+ y" = a™:

xn +yn — an
d

nx"! 4 ny”fl—y =0
dx
dy nx"~!
dx ~— ny™!
dy _ xnfl
dx - yn—l )

4.4 Differentiating Exponential and Logarithmic Functions

4.4.1 Exponential Functions

Exponential functions have the form y = a*, where the independent variable is the
exponent. Such functions are used to describe various forms of growth or decay, from
the compound interest law, to the rate at which a cup of tea cools down. One special
value of a is 2.718 282.., called e, where

1\"
e = lim (1 + —> .
n—o00 n
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Fig. 4.7 Graphs of y = ¢*
andy =e™*

"N
Y=

Raising e to the power x:

1 nx
= lim (l + —)
n—o00 n

which, using the Binomial Theorem, is

)C2 )C3 )C4
_1+x+—+§+—+
If we let
y=e
Dy +x2+x3+x4+
dx 3!
=e".

X

which is itself. Figure 4.7 shows graphsof y = e* and y = e~
Now let’s differentiate y = a*. We know from the rules of logarithms that

logx™ = nlogx

therefore, given

then taking natural logarithms:
Iny=1Ina* =xlna

therefore
xIna
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which means that

ax — exlna.
Consequently,
iax — iexlnu
dx dx
=Ina- e
=lna-a*.
Similarly, it can be shown that
dy
= e_x, _—— —e_x
Y dx
dy
— gax7 = aeax
Y dx
dy
— e—ax’ PR _ae—ax
Y dx
dy
=a', — =Ina-a*
Y dx
d
y=a", d_y =—Ina-a™".
X

The exponential antiderivatives are written:
/ efdx=e"+C

/e_" dx =—e " +C

4.4.2 Logarithmic Functions

Given a function of the form
y=Inx
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Fig. 4.8 Graphof y = Inx D/
and its derivative, % = % 2 \
(dashed)
1
1 0 q 2 3 4 5 6 x
-1
2
then
x=e
Therefore,
dx _
dy
=x
dy 1
dx ~ x
Thus
—Inx = -
X X

Figure 4.8 shows the graph of y = In x and its derivative, Z—ch = }7 Conversely,

1
/—dx =In|x|+ C.
X
When differentiating logarithms to a base a, we employ the conversion formula:

y= IOga)C
=Inx-log,e

whose derivative is

1
— = -1 .
dx x 08a¢

When a = 10, then log;, e = 0.434 3... and
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Fig. 4.9 Graph of
y = logjo x and its

s dy 04343
derivative, 53 ~ 22242

(dashed)

4 Derivatives and Antiderivatives

YA

Table 4.2 Rules for differentiating exponential and logarithmic functions

fx) dy/dx

e* e*

e —e

eax aed)(

e—ax _aeax

a* Ina-a*
a* —Ina-a™*
Inx %

log, x Xl log, e
log o X ~ 0.4343

Figure 4.9 shows the graph of y = log,, x and its derivative, j—y Ay 04343

d 1
logjox ~ —0.4343

X

4.4.3 Summary: Exponential and Logarithmic Functions

Table 4.2 shows the rules for differentiating exponential and logarithmic functions,
and Table 4.3 shows the rules for integrating exponential functions.

4.5 Differentiating Trigonometric Functions

So far, we have only differentiated two trigonometric functions: sin x and cos x, so

let’s add tan x, csc x, sec x and cot x to the list, as well as their inverse forms.
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Table 4.3 Rules for integrating exponential functions

f ) [ f(x)dx

e* ef+C

e —e 4+ C
s éeax +C
e—ax _%e—ax +C
a* ﬁa" +C
a=* —ﬁa*x +C

4.5.1 Differentiating tan

Rather than return to first principles and start incrementing x by dx, we can employ
the rules for differentiating different function combinations and various trigonometric
identities. In the case of tan(ax), this can be written as

sin(ax)
tan(ax) = ——
cos(ax)
and employ the quotient rule:
du dv
dy _"ax " "ax
dx V2 '

Therefore, let u = sin(ax) and v = cos(ax), and

dy  acos(ax) - cos(ax) + asin(ax) - sin(ax)

dx cos2(ax)

a(cos?(ax) + sin’(ax)

cosZ(ax)
a

cos2(ax)
a(l + tan®(ax)).

Figure 4.10 shows a graph of y = tan x and its derivative y = 1 + tan® x.
It follows that

sec’(ax) dx = L tan(ax) + C.
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Fig. 4.10 Graph of
y = tanx and its derivative
y=1+ tan? x (dashed)

4.5.2 Differentiating csc

Using the quotient rule:

csc(ax)
1
sin(ax)
dy 0—acos(ax)

<
I

dx sin®(ax)
—a cos(ax)
sin?(ax)
a cos(ax)

sin(ax)  sin(ax)

= —acsc(ax) - cot(ax).

Figure 4.11 shows a graph of y = cscx and its derivative y = —csc x - cot x.
It follows that

/csc(ax) -cot(ax) dx = —% csc(ax) + C.

4.5.3 Differentiating sec

Using the quotient rule:

y = sec(ax)
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Fig. 4.11 Graph of

y = cscx and its derivative
y = —cscx cot x (dashed)

Fig. 4.12 Graph of

y = sec x and its derivative
y = sec x tan x (dashed)

57

2 = of

1
cos(ax)
dy  —(—asin(ax))
dx cos2(ax)
a sin(ax)
cos?(ax)

a sin(ax)

cos(ax) . cos(ax)
= asec(ax) - tan(ax).

on

=Y

Figure 4.12 shows a graph of y = cscx and its derivative y = —csc x - cot x.

It follows that

/sec(ax) -tan(ax) dx = isec(ax) + C.
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Fig. 4.13 Graph of

y = cotx and its derivative,
% =—-( +c0t2x)
(dashed)

4 Derivatives and Antiderivatives

N

N

N

4.5.4 Differentiating cot

Using the quotient rule:

cot(ax)
1

tan(ax)
—a sec?(ax)
tan? (ax)
a cos?(ax)

cos?(ax) sin’(ax)
a

sin®(ax)
—a csc? (ax)

—a(1 + cot?(ax)).

Figure 4.13 shows a graph of y = cot x and its derivative y = —(1 + cot? x).

It follows that

cscz(ax) dx = —% cot(ax) + C.

4.5.5 Differentiating arcsin, arccos and arctan

These inverse functions are solved using a clever strategy.
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Let
X =siny

then
y = arcsin x.

Differentiating the first expression, we have

dx

E:cosy
dy 1
a_cosy

and as sin? y + cos?> y = 1, then

cosy =4/1 —sin?y =1 —x2

and |
— arcsinxy = —.
RV
Using a similar technique, it can be shown that
1
— arccos X = ————
dx V1—x2
d 1
— arctanx = .
dx 1+ x2

It follows that

dx
——— —arcsinx + C
/ V1 —x2

/ dx
—— =—arctanx + C.
1+ x2

4.5.6 Differentiating arccsc, arcsec and arccot

Let
y = arccsc x

59
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then
X =cscy
1
" siny
dx  —cosy
dy  sin’y
dy —sin’y
dx  cosy
_ 1 X
R N
1
—arcescx = ————.
dx x/x2—1
Similarly,
d 1
—arcsecx =
dx xvx2—1
1
—arccotx = —
dx x2 41
It follows:
/ dx x|+ C
————— = arcsec |x
xv/x2—1
/ dx
= —arccotx + C.
x24+1

4.5.7 Summary: Trigonometric Functions

Table 4.4 shows the rules for differentiating trigonometric functions, and Table 4.5
shows the rules for differentiating inverse trigonometric functions.

Table 4.6 shows the rules for integrating trigonometric functions, and Table 4.7
shows the rules for integrating inverse trigonometric functions.
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Table 4.4 The rules for differentiating trigonometric functions

y dy/dx

sin(ax) a cos(ax)

cos(ax) —asin(ax)

tan(ax) a(l + tan%(ax))
csc(ax) —acsc(ax) - cot(ax)
sec(ax) asec(ax) - tan(ax)
cot(ax) —a(1 + cot?(ax))

Table 4.5 The rules for differentiating inverse trigonometric functions

y dy/dx
. 1
arcsin x _
/1 —1)62
arccos x -
«/11 —x2
arctan x
1+ x21
arccsc x
X 1x2 —1
arcsec x _—
xx/xi —1
arccot x —
x24+1

Table 4.6 The rules for integrating trigonometric functions

f(x) [ f(x) dx
sin(ax) —Lcos(ax) + C
cos(ax) % sin(ax) + C
sec?(ax) % tan(ax) + C
csc(ax) - cot(ax) —}1 csc(ax) +C
sec(ax) - tan(ax) % sec(ax) + C
csc?(ax) —é cot(ax) +C

Table 4.7 The rules for integrating inverse trigonometric functions

fx) [ f(x) dx
1
J1T=x2 arcsinx + C
1
1+ x2 arctanx + C
xvx2 -1 arcsec x| + C
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4.6 Differentiating Hyperbolic Functions

Trigonometric functions are useful for parametric, circular motion, whereas, hyper-
bolic functions arise in equations for the absorption of light, mechanics and in integral
Calculus. Figure 4.14 shows graphs of the unit circle and a hyperbola whose respec-
tive equations are

x2+y2:1

x2—y2:1

where the only difference between them is a sign. The parametric form for the
trigonometric, or circular functions and the hyperbolic functions are respectively:

sin?6 + cos? 6 = 1

cosh? x — sinh? x = 1.

The three hyperbolic functions have the following definitions:

inh et —e
sinhx =
2
coshx = ¢ te
2
sinh x e — 1
tanh x = = —
coshx e 41
and their reciprocals are:
1 2
cosechx = — =
sinh x er —e™*
1 2
sechx = =
cosh x er +e™*
1 e +1
cothx = = .

tanhx e2¥ —1

Other useful identities include:

sech?x = 1 — tanh® x

cosech? = coth®x — 1.

The coordinates of P and Q in Fig. 4.14 are given by P(cosf,sinf) and
Q(cosh x, sinh x). Table 4.8 shows the names of the three hyperbolic functions,
their reciprocals and inverse forms. As these functions are based upon ¢* and e™*
they are relatively easy to differentiate, which we now investigate.

’
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Fig. 4.14 Graphs of the unit A
circle x> + y? = 1 and the
hyperbola x? — y? = 1 2 0
P

-4 2 3 4 f
Table 4.8 Hyperbolic function names
Function Reciprocal Inverse function Inverse reciprocal
sinh cosech arsinh arcsch
cosh sech arcosh arsech
tanh coth artanh arcoth

4.6.1 Differentiating sinh, cosh and tanh

The hyperbolic functions are differentiated as follows.

Let
y = sinh x
then
_ ef —e
YT
dy e +e
dx 2

— sinh x = cosh x.
dx

Figure 4.15 shows a graph of sinh x and its derivative cosh x.
It follows that

/coshx dx = sinhx + C.

Let
y = cosh x
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Fig. 4.15 Graph of sinh x
and its derivative cosh x
5 4 35 2 4 0 I T 1
-1
-2
Fig. 4.16 Graph of cosh x yA
and its derivative sinh x 3
2
pl-
54 B8 2 2 s 4 i
-1
2
then
eX + e—x
Y 2
dy e —e™*
dx 2
d .
— coshx = sinh x.
dx

Figure 4.16 shows a graph of cosh x and its derivative sinh x.
It follows that

/sinhx dx =coshx + C.

To differentiate tanh x we employ the quotient rule, and the parametric form of
the hyperbola.

Let
y = tanh x



4.6 Differentiating Hyperbolic Functions 65

Fig. 4.17 Graph of tanh x yA
and its derivative sech 2x

2 1 1 5 1
-1
then
sinh x
y =

cosh x

dy  coshx -coshx —sinhx - sinhx

dx cosh? x
cosh? x — sinh? x 1

cosh? x cosh? x

— tanh x = sechx.
dx

Figure 4.17 shows a graph of tanh x and its derivative sech %x.

4.6.2 Differentiating cosech, sech and coth

The hyperbolic reciprocals are differentiated as follows.

Let
y = cosech x
then
1
= sinh x
dy  —coshx
dx  sinh®x

d—cosech x = —cosech x - coth x.
x
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Let
y = sech x
then
1
= cosh x
dy —sinhx
dx  cosh?x
d
—sechx = —sechx - tanh x.
X
Let
y = coth x
then
_ 1 _ cosh x
Y= @nhx _ sinhx
dy sinh? x — cosh? x .
dx — sinh? x " sinh?x
d
— cothx = —cosech %x.

dx

4.6.3 Differentiating arsinh, arcosh and artanh

The inverse hyperbolic functions are differentiated as follows.
Let

y = arsinh x
then

x =sinhy
dx
— = cosh
dy Y
dy 1 1
dx coshy /1 4sinh?y

1
—arsinhx =

dx V1422
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It follows that
/ dx sinh x + C
—— =ar .
V14 x2
Let
y = arcosh x
then
x =coshy
dx h
— =sin
dy Y
dy 1 1
dx sinhy  /cosh?y —1
d 1
—arcoshx = .
dx x2 -1
It follows that
/ dx hx+C
——— =arcoshx .
Vxt -1
Let
y = artanh x
then
x =tanhy
d
% _ sech?y
dy
dy 1 1
dx  sech?y 1 —tanh?y
d 1
—artanhx = ——.
dx 1 —x2

It follows that

dx
.2 = artanh x + C.

4.6.4 Differentiating arcsch, arsech and arcoth

The inverse, reciprocal hyperbolic functions are differentiated as follows.

67
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Let

then

It follows that

Let

then

It follows that

Let

4 Derivatives and Antiderivatives

y = arcsch x

1
x =cosechy = —
sinh y
dx  —coshy
dy  sinh’y
dy —sinh?y
dx ~ coshy

d b 1

—arcschxy = ——————.

dx x+/ 1+ x?

/ dx hx+C
——— = —arcschx .
x+/ 1+ x2

y = arsech x
x =sechy =
Y coshy
dx  —sinhy
dy cosh? y
dy  —cosh’y
dx  sinhy
1

—arsechx = —————.

dx x+/1—x2

/ dx hx+C
————— = —arsechx .
x/ 1 —x2

y = arcoth x
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Table 4.9 The rules for differentiating hyperbolic functions

y dy/dx

sinh x cosh x

cosh x sinh x

tanh x sech 2x

cosech x —cosech x - coth x
sech x —sech x - tanh x
coth x —cosech 2x

Table 4.10 The rules for differentiating inverse hyperbolic functions

y dy/dx
1
arsinh x _—
/1 il- x2
arcosh x _—
«/xl2 —1
artanh x P —
1— x21
arcsch x _
x4/ 11+ x2
arsech x _
xvll —x2
arcoth x —
x2—1
then
cosh
x =cothy = — Y
sinh y
dx  sinh®y — cosh?y
dy sinh? y
dy sinh? y
dx  sinh®y — cosh?y
d 1
—arcothx = — .
dx x2 -1

It follows that

dx
T = —arcothx + C.
x J—
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Table 4.11 The rules for integrating hyperbolic functions

f ) [ f(x)dx
sinh x coshx +C
cosh x sinhx 4+ C
sech 2x tanhx 4+ C

Table 4.12 The rules for integrating inverse hyperbolic functions

fx) [ f(x)dx
1
—_— arsinhx + C
V14 x2
1
E— arcoshx + C
2 —
I
T—2 artanh x 4+ C

4.6.5 Summary: Hyperbolic Functions

Table 4.9 shows the rules for differentiating hyperbolic functions, and Table 4.10
shows the rules for the inverse, hyperbolic functions.

Table 4.11 shows the rules for integrating hyperbolic functions, and Table 4.12
shows the rules for integrating inverse, hyperbolic functions.

4.7 Summary

In this chapter we have seen how to differentiate generic functions such as sums,
products, quotients and a function of a function, and we have also seen how to
address explicit and implicit forms. These techniques were then used to differen-
tiate exponential, logarithmic, trigonometric and hyperbolic functions, which will
be employed in later chapters to solve various problems. Where relevant, integrals
of certain functions have been included to show the intimate relationship between
derivatives and antiderivatives.

Hopefully, itis now clear that differentiation is like an operator—in that it describes
how fast a function changes relative to its independent variable in the form of another
function. What we have not yet considered is repeated differentiation and its physical
meaning, which is the subject of the next chapter.



Chapter 5 ®)
Higher Derivatives e

5.1 Introduction

There are three sections to this chapter: The first shows what happens when a function
is repeatedly differentiated; the second shows how these higher derivatives resolve
local minimum and maximum conditions; and the third section provides a physical
interpretation for these derivatives. Let’s begin by finding the higher derivatives of
simple polynomials.

5.2 Higher Derivatives of a Polynomial

We have previously seen that polynomials of the form
y=apx" + a1 X"+ Farx* +aix +ap

are differentiated as follows:

dy _ n—1 n—2
— = na,x + (n—1Da,_1x + -4 2a0x + a;.
dx
For example, let
y =3x> +2x% — 5x

then 4
£ oy 4ax—5
dx
which describes how the slope of the original function changes with x.
Figure 5.1 shows the graph of y = 3x3 + 2x2 — 5x and its derivative y = 9x? +
4x — 5, and we can see that when x = —1 there is a local maximum, where the

© Springer Nature Switzerland AG 2019 71
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Fig. 5.1 Graph of ' 3/ .
y = 3x3 +2x% — 5x and its \ 4 !
derivative v ;
9 = 9x? + 4x — 5 (dashed) \ /
\ 2 /!
: ,
!
\\ //
\ >
2 1 0 / 27§
\ ,/
\ '2 )
\\ //
R 4

function reaches a value of 4, then begins a downward journey to 0, where the slope
is —5. Similarly, when x =~ 0.55, there is a point where the function reaches a local
minimum with a value of approximately —1.65. The slope is zero at both points,
which is reflected in the graph of the derivative.

Having differentiated the function once, there is nothing to prevent us differen-
tiating a second time, but first we require a way to annotate the process, which is

performed as follows. At a general level, let y be some function of x, then the first
derivative is

dy
dx’

The second derivative is found by differentiating the first derivative:

d (dy
dx \dx

d2y
dx?’

and is written:

Similarly, the third derivative is
d*y
dx3
and the nth derivative: ;
d"y
dxn’

When a function is expressed as f(x), its derivative is written f’(x). The second
derivative is written f”(x), and so on for higher derivatives.
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Returning to the original function, the first and second derivatives are

d
Y o2 4ax—5
dx

dzy

X

and the third and fourth derivatives are

d3y
dx3
d4y _
dx*

=18

Figure 5.2 shows the original function and the first two derivatives. The graph of
the first derivative shows the slope of the original function, whereas the graph of
the second derivative shows the slope of the first derivative. These graphs help us
identify a local maximum and minimum. By inspection of Fig. 5.2, when the first
derivative equals zero, there is a local maximum or a local minimum. Algebraically,
this is when

d
Y _o
dx

9x2 +4x —5=0.

Solving this quadratic in x we have

_ —b + Vb?% —4dac

* 2a

wherea =9, b=4, ¢c=-5:

—4+.4/164 180

r=
18

X1 = —1, Xy = 0.555

which confirms our earlier analysis. However, what we don’t know, without referring
to the graphs, whether it is a minimum, or a maximum.

5.3 Identifying a Local Maximum or Minimum

Figure 5.3 shows a function containing a local maximum of 5 when x = —1. Note
that as the independent variable x, increases from —2 towards 0, the slope of the
graph changes from positive to negative, passing through zero at x = —1. This is
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Fig. 5.2 Graph of Ia
y= 3x3 4+ 2x2 — 5y, its first | 4
derivative
9 = 9x2 4 4x — 5 (short :
dashes) and its second 2
2 L
derivative % =18x+4
(long dashes) >
2 1 0 2 f
-2
-4
Fig. 5.3 A function N y A
containing a local maximum, Q\\ 6
and its first derivative .
(dashed) 4
2
2 . 0 Ty
: 2
N4
6%

shown in the function’s first derivative, which is the straight line passing through the
points (—2, 6), (—1,0) and (0, —6). In this example these conditions imply that the
slope of the second derivative must be negative:

d*y

ﬁ = —Ve.

Figure 5.4 shows another function containing a local minimum of 5 when x = —1.
Note that as the independent variable x, increases from —2 towards 0, the slope of
the graph changes from negative to positive, passing through zero at x = —1. This
is shown in the function’s first derivative, which is the straight line passing through
the points (—2, —6), (—1, 0) and (0, 6). In this example these conditions imply that
the slope of the second derivative must be positive:

2
y

— = +ve.

dx? +
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Fig. 5.4 A function y
containing a local minimum, Gﬁ
and its first derivative ,’/
(dashed) 4

=Y

We can now apply this observation to the original function for the two values of
x,x; =—1, x, =0.555:

D _ gy +4x—5
=2 _ 0 x —
dx
dzy
=18 x (—1)=—18
= 18 x (0.555) = +10.
‘Which confirms that when x = —1 there is a local maximum, and when x = 0.555,

there is a local minimum, as shown in Fig. 5.1.
The second derivative test says that if the second derivative is positive, evaluated
at x = a, the solution of
dy
= =0,
dx

then x = a gives a local minimum. Correspondingly, if the second derivative is
negative, evaluated at x = a, the solution of

d

o,

dx

then x = a gives a local maximum.
Let’s repeat this technique for

y = —3x>+9x
whose derivative is

— =-9x"+9
dx o
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Fig. 5.5 Graph of yA
y = —3x3 4 9x, its first 24
derivative y = —9x2 49 i\
(short dashes) and its second 8
derivative y = —18x (long 12
dashes) o
6
2 1 1 2 X
6
12
-18 0
and second derivative
d’y
-5 = —18x
X

as shown in Fig. 5.5. For a local maximum or minimum, the first derivative equals
Zero:
—9x*+9=0

which implies that x = £1.
The sign of the second derivative determines whether there is a local minimum
or maximum.

d2
2Y _ 1sx
dx?
=—18 x (—=1) = +ve
= —18 x (+1) = —ve
therefore, when x = —1 there is a local minimum, and when x = +1 there is a local

maximum, as confirmed by Fig. 5.5.

5.4 Derivatives and Motion

The first derivative of a simple function of x is its instantaneous slope, which may
be a linear function or some other function. Higher derivatives are the slopes of their
respective functions. For example, for the sine function

y =sinx

y
—— = CcoSXx
dx
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Table 5.1 The height of an

. . t d s(1)
object and distance travelled
at different times during its 0 20
fall 0.5 —1.225 18.775
1 —4.9 15.1
1.5 —11.025 8.975
2.02 -20 0
@ = —sinx
dx?
d3—y = —COSXx
dx3
Q =sinx
dx* '

A similar cycle emerges for the cosine function. However, when the independent
variable is time, higher derivatives can give the velocity and acceleration of an object,
where velocity is the rate of change of position with respect to time, and acceleration
is the rate of change of velocity with respect to time.

Let
position = s(¢)
then
velocity v = @
dt
and
dv  d*s

accelerationa = — = —="
dt dt

For example, when an object is dropped from a height 4 close to the earth, it
experiences a downward acceleration of g = 9.8 m/s2, and falls a distance d:

d= —%gtz.

Observe that a distance measured vertically upwards is positive, and a distance mea-
sured downwards is negative. Consequently, its instantaneous height is given by

s(t) = ho — Lgt*. (5.1)

Figure 5.6 shows the height of the object at different times during its fall, and Table
5.1 gives corresponding values of ¢, d and s(¢), with a starting height 7y = 20 m.

Differentiating (5.1) with respect to time gives the object’s instantaneous
velocity v:
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Fig. 5.6 The position of an
object falling under the pull
of gravity

\ 4

s(t) = ho — 1gt*

ds , (5.2)
vV=—=— .
dt &
and after 2.02 s, the object is travelling at approximately 19.8 m/s.
Differentiating (5.2) with respect to time gives the instantaneous acceleration of
the object:

v=—gt
_ dv _ d?s _
T dr df? §

and after 2.02 s, the object remains accelerating at a constant —9.8 m/s.

If the object is subjected to an initial vertical velocity of vy, after ¢ seconds it
travels a distance of vot, which permits us to write a general equation for the object’s
height as

s(t) = ho + vot — 381>, (5.3)

Differentiating (5.3) gives the instantaneous velocity:

ds t (5.4)
Vy=-— =y — gt. .
di 0— &

Differentiating (5.4) gives the instantaneous acceleration:

_ dv _ d?s

“Ca T T

If we set the initial velocity to vo = 6 m/s and maintain the same starting height
ho = 20, Fig. 5.7 shows the resulting motion.
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Fig. 5.7 The position of an
object falling under the pull
of gravity with an initial
upward velocity of 6 m/s

5.5 Summary

79

s(?)

In this chapter we have seen how a function can be repeatedly differentiated to reveal
higher derivatives. These, in turn, can be used to identify points of local maxima and
minima. They can also be used to identify the velocity and acceleration of an object.

5.5.1 Summary of Formulae

Position, Velocity and Acceleration

position = s(t)

Jocit ds
velocity v = —
y dt

d?*s

accelerationa = —.
de?

Distance an Object Falls Under Gravity

Instantaneous Height

d= —%gtz.

s(t) = hy — %gtz.
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Partial Derivatives Check for

6.1 Introduction

In this chapter we investigate derivatives of functions with more than one independent
variable, and how such derivatives are annotated. We also explore the second-order
form of these derivatives.

6.2 Partial Derivatives

Up to this point, we have used functions with one independent variable, such as
y = f(x). However, we must be able to compute derivatives of functions with more
than one independent variable, such as y = f(u, v, w). The technique employed is
to assume that only one variable changes, whilst the other variables are held constant.
This means that a function can possess several derivatives —one for each independent
variable. Such derivatives are called partial derivatives and employ a new symbol 9,
which can be read as ‘partial dee’.
Given a function f(u, v, w), the three partial derivatives are defined as

of lim fu+h,v,w)— f(u,v,w)
— = 11

ou  h—0 h

af . f(u,v+h,W)_f(u,V,W)
— = lim

av  h—0 h

af . fu,v,w+h)— f(u,v,w)
— = lim .
ow  h—0 h

For example, a function for the volume of a cylinder is
V(r,h) = 7r’h
© Springer Nature Switzerland AG 2019 81
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where r is the radius, and % is the height. Say we wish to compute the function’s
partial derivative with respect to r. First, the partial derivative is written

A%
ar
Second, we hold % constant, whilst allowing r to change. This means that the function

becomes
V(r, h) = kr? 6.1)

where k = mh. Thus the partial derivative of (6.1) with respect to r is

oV
— = 2kr
or

= 2mhr.

Next, by holding r constant, and allowing % to change, we have

v s
— =T7r.
oh

Sometimes, for purposes of clarification, the partial derivatives identify the constant

variable(s):
aVv
<—> =2mhr
ar J,

A% 5
— ) =nr-.
oh ),

Partial differentiation is subject to the same rules for ordinary differentiation — we just
to have to remember which independent variable changes, and those held constant.
As with ordinary derivatives, we can compute higher-order partial derivatives. For
example, consider the function

fu,v) = ut + 2uv? — 43,
The first partial derivatives are

)

= 4> + 6uV?
ou
B
—f = 4udy — 1202
v

and the second-order partial derivatives are
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82

S_J; = 12u% + 12u0?
u

82

a—f = du® — 24v.
%

Similarly, given
f(u,v) =sin(4u) - cos(5v)

the first partial derivatives are

af

— =4 cos(4u) - cos(5v)
u

3 _ s sinau) - sin(sv)
av

and the second-order partial derivatives are

82

—f = —16sin(4u) - cos(5v)
ou?

32

—f = —25sin(4u) - cos(5v).
2

In general, given f(u,v) = uv, then

af
— =V
ou
of _

v

and the second-order partial derivatives are

82f _
uz
82f

FlE
Similarly, given f(u,v) = u/v, then

i _
du
o __u

v v2

1
v

and the second-order partial derivatives are

83
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2 f _

ou2

2 f _ 2u

vz 3
Finally, given f(u,v) = u”, then

af _ v—1

— =yu

ou

whereas, df/dv requires some explaining. First, given
flu,v)y=u"
taking natural logs of both sides, we have

In f(u,v) =vinu

and
f(u, V) — evlnu'
Therefore,
)
_f — 6‘vlnu Inu
av
=u'lnu.

The second-order partial derivatives are

82

8—{ =v(v—Du"?
u

82

T2 J; =u"In’u.
v

6.2.1 Visualising Partial Derivatives

6 Partial Derivatives

Functions of the form y = f(x) are represented by a 2D graph, and the function’s
derivative f’(x) represents the graph’s slope at any point x. Functions of the form
z = f(x, y) can be represented by a 3D surface, like the one shown in Fig. 6.1, which

is z(x, y) = 4x? — 2y2. The two partial derivatives are
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Fig. 6.1 Surface of

7 = 4x? — 2y? using a
right-handed axial system
with a vertical z-axis

Fig. 6.2 0z/0x describes the
slopes of these contour lines

0z

= _8
0x x
d

2 _ 4
dy

where 9z/0x is the slope of the surface in the x-direction, as shown in Fig. 6.2, and
dz/dy is the slope of the surface in the y-direction, as shown in Fig. 6.3.
The second-order partial derivatives are

P gy
— =8 =+4ve
0x2

32

S 4= —ve.
dy?

As 8%z/3x? is positive, there is a local minimum in the x-direction, and as 82z/3y?
is negative, there is a local maximum in the y-direction, as confirmed by Figs. 6.2
and 6.3.
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Fig. 6.3 9z/0y describes the
slopes of these contour lines

6.2.2 Mixed Partial Derivatives

‘We have seen that, given a function of the form f (u, v), the partial derivatives df/du
and df/dv provide the relative instantaneous changes in f and u, and f and v,
respectively, whilst the second independent variable remains fixed. However, nothing
prevents us from differentiating df/du with respect to v, whilst keeping u constant:

a (of
ov \ du
82f
dvou

which is also written as

and is a mixed partial derivative. For example, let

fu,v) = wiht

then 5
—f = 3u®*
ou
and 5
0
f = 12u®3.
ovou

However, it should be no surprise that reversing the differentiation gives the same
result. Let
fu,v) = wihvt

then
af
av

= 443}



6.2 Partial Derivatives 87

and
% f
ouov

= 12u®?3.

Generally, for continuous functions, we can write

82f B 82f
qudv ~ dvou’

For example, the formula for the volume of a cylinder is given by V(r, h) = mr2h,
where r and & are the cylinder’s radius and height, respectively. The mixed partial
derivative is computed as follows.

V(r,h) = 7r’h
av
— =2mhr
or
a2V
=2nr
ohor
or
V(r,h) = nr’h
EXY%
T
32V
=27r
aroh

As a second example, let
f(u,v) =sin(4u) - cos(3v)
then

% = 4 cos(4u) - cos(3v)
ou

82f
ovou

= —12cos(4u) - sin(3v)

or

af . .
— = —3sin(4u) - sin(3v)
av

% f
ouov

= —12cos(4u) - sin(3v).
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6.3 Chain Rule

In Chap.4 we came across the chain rule for computing the derivatives of functions

of functions. For example, to compute the derivative of y = sin(x?) we substitute
2

u = x°, then

y =sinu
L _ cosu
d

u
= cos(xz).

Next, we compute du /dx:

u=x2

du
— =2x
dx

and dy/dx is the product of the two derivatives using the chain rule:

dy dy du
dx  du dx
= cos(xz) -2x
=2x COS(XZ).

But say we have a function where w is a function of two variables x and y, which in
turn, are a function of # and v. Then we have

w= f(x,y)
x =r(u,v)
y =s(u,v).

With such a scenario, we have the following partial derivatives:

ow  ow
ax’ dy
ow  ow
du’ v
dx  Ox
du’ v
dy 9y

du’ v’
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These are chained together as follows:

ow ow Jdx ow 0

—=—~—+—-—y (6.2)
ou dx Jdu dy du

ow dw dx Ow 0

—=—-—+—~—y. (6.3)
av dx dv  dy Ov

For example, given

w(x,y) =2x + 3y

x(u,v) = u® +1?

y(u,v) = u® —v?

then
ow ow
— =2, — =3
ox ay
0
2 2u, B_x =2y
ou av
0 0
o 2u, o —2v
ou av

and plugging these into (6.2) and (6.3) we have

ow dw Jdx ow Jy

30 ox au 'y ou
=2Xx2u+3x2u
= 10u

ow dw Jdx ow dy

v ax v oy v
=2x2v+3x(—2v)

= —2v.

Thus, whenu =2 andv =1

a_w =20, and a_w = -2.
ou av
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6.4 Total Derivative

Given a function with three independent variables, such as w = f(x, y, t), where
x = g(t) and y = h(t), there are three primary partial derivatives

ow  ow ow
_’ — an —
dx dy at

which show the differential change of w with x, y and ¢ respectively. There are also
three derivatives

de dyoodr

ar’ ar M w
where dt /dt = 1. The partial and ordinary derivatives can be combined to create the
total derivative which is written

dw 0w dx 0w dy ow

@ k@ Ty ar T

dw/dt measures the instantaneous change of w relative to 7, when all three indepen-
dent variables change. For example, given

w(x,y,t)=x2+xy+y3+t2

x(t) =2t
y@)y=t-1
then
dx
— =2
dt
d
9 _q
dt
ow
—=2x+y=4+t—-1=5t-1
0x
3_W_ 2 _ 2 2 _
3 =x+3y"=2t4+3¢—-1)"=3t"—4r+3
y
0
A
ot

dw ow dx ow dy Oow

dt _§'Z+5'dt+ at
(5t — D2+ @2 —dt +3) +2r =32 +8t + 1

and the total derivative equals
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d
AL Vo VO |
dt

and whent = 1, dw/dt = 12.

6.5 Second-Order and Higher Partial Derivatives

Like ordinary derivatives, it is also possible to take second-order and higher partial
derivatives.

6.6 Summary

When a function has two or more independent variables, a partial derivative records
the instantaneous rate of change relative to one variable, while the others are held
constant.

6.6.1 Summary of Formulae

Mixed Partial Derivatives

w= f(u,v)
9%w _ 3w
qudv  dvdu’
The Chain Rule
w= f(x,y)
x=r(u,v)
y=s(u,v)
ow  ow 8x+8w dy
du  dx du 9y Ou
8w_8w 8x+8w ady
v ax dv  dy dv
The Total Derivative

w=f(x,y1)
dw dw dx ow dy ow

@ o @ Ty w T



Chapter 7 ®)
Integral Calculus e

7.1 Introduction

In this chapter I develop the idea that integration is the inverse of differentiation, and
examine standard algebraic strategies for integrating functions, where the derivative
is unknown; these include simple algebraic manipulation, trigonometric identities,
integration by parts, integration by substitution and integration using partial fractions.

7.2 Indefinite Integral

In previous chapters we have seen that given a simple function, such as

y =sinx + 23
dy
—— =cosx
dx

and the constant term 23 disappears. Inverting the process, we begin with
dy = cosx dx

and integrate both sides:

y:/cosx dx

=sinx + C.

ff(X) dx

© Springer Nature Switzerland AG 2019 93
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is known as an indefinite integral; and as we don’t know whether the original function
contains a constant term, a constant C has to be included. Its value remains undeter-
mined unless we are told something about the original function. In this example, if
we are told that when x = %, y = 24, then

24=sin(%)+C

7.3 Standard Integration Formulae

In earlier chapters, I have included indefinite integrals for most of the derivatives we
have examined. For example, knowing that

— sinx = cosx

dx

then the inverse operation is
/cosx dx =sinx + C.

For convenience, here they are again:

1
"dx = ——x""' 4+ C; -1
/x X n+1x + n#

/exdxzex—i—C
Ydx=—-e"+C

/e“" dx = %e’” +C

/e’” dx = —1e™ ™ 4 C

a

e

1
[axdx:—ax—i—C; 0<a#1
Ina

1
/a’x dx =——a "+ C
Ina

/sin(ax) dx = —% cos(ax) + C
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/ cos(ax) dx = 1sin(ax) + C
/ sec’(ax) dx = L tan(ax) + C
/csc(ax) -cot(ax) dx = —% csc(ax) + C
/ sec(ax) - tan(ax) dx = ¢l¢ sec(ax) + C
/cscz(ax) dx = —% cot(ax) + C
/ ! d inx +C
——— dx = arcsin x
V1 —x?
1
f —— dx = arctanx + C
14 x2
1
———— dx = arcsec |x| + C
/ xa/x2 —1
/sinhx dx =coshx 4+ C
/coshx dx =sinhx + C
f sech?x dx = tanhx + C
/ ! d inhx 4+ C
—— dx = arsinh x
V1 4+ x2
1
/ VxZ—1

1
/— dx = artanhx + C.
1 —x2

dx = arcoshx + C

All the above integrals, and many more, can be found on the internet and in most
books on Calculus. However, the problem facing us now is how to integrate functions
that don’t fall into the above formats, which is what we consider next.

7.4 Integration Techniques

7.4.1 Continuous Functions

Functions come in all sorts of shapes and sizes, which is why we have to be very
careful before they are differentiated or integrated. If a function contains any form
of discontinuity, then it cannot be differentiated or integrated. For example, the
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Fig. 7.1 A discontinuous y
square-wave function
2
1
1 0 1 2 3 4 5 6 7 8 X
=t
-2

square-wave function shown in Fig. 7.1 cannot be differentiated as it contains discon-
tinuities. Consequently, to be very precise, we identify an interval [a, b], over which
a function is analysed, and stipulate that it must be continuous over this interval. For
example, a and b define the upper and lower bounds of the interval x € [a, b], then
we can say that for f(x) to be continuous

lim £ (c+h) = f(x).

Even this needs further clarification as & must not take x outside of the permitted
interval. So, from now on, we assume that all functions are continuous and can be
integrated without fear of singularities.

7.4.2 Difficult Functions

Some functions cannot be differentiated easily. For example, the derivative of sin x /x
does not exist, which precludes the possibility of its integration. Figure 7.2 shows

Fig. 7.2 Graph of y
y = (sinx)/x

—<3n 2 A 0 N2 3m X
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Fig. 7.3 Graph of )‘{
y = 4/xsinx
3
2
1
0 mn 2 3 4 5 6m X
-1
2
-3
-4

this function, and even though it is continuous, its derivative and integral can only be
approximated. Similarly, the derivative of ,/x sin x does not exist, and also precludes
the possibility of its integration. Figure 7.3 shows this continuous function. So now
let’s examine how most functions have to be rearranged to secure their integration.

Let’s demonstrate through a series of examples how a function can be manipulated
to permit it to be integrated.

7.4.3 Trigonometric ldentities

Sometimes it is possible to simplify the integrand by substituting a trigonomet-
ric identity. For example, the identity sin® x = %(1 — cos(2x)) converts the square
function of x into a double-angle representation:

/sinzx dx = %f(l —cos(2x)) dx

:%/ldx—%/cos(bc)dx

1x — Isin(2x) + C.

Figure 7.4 shows the graphs of y = sin?> x and y = %x - }1 sin(2x).
Similarly, the identity cos® x = %(cos(Zx) + 1) converts the square function of x
into a double-angle representation:

/cos2 x dx

: / (cos(2x) + 1) dx

%fcos(2x) dx+%f1dx

= i sin(2x) + %x + C.
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Fig. 7.4 The graphs of YA
y = sin? x (broken line) and 4
= %x — %sin(2x) 3
2
. )
e E N ER £33
-1
2
-3
-4
Fig. 7.5 The graphs of YA
y = cos? x (broken line) and 4
y= jisin(Zx) + %x 3
2
2w — T
-1
2
-3
-4

Figure 7.5 shows the graphs of y = cos’> x and y = % sin(2x) + %x.
To integrate tan? x we use the identity sec’> x = 1 + tan? x:

/tanzx dx = /(seczx —1)dx

=/se02xdx—/1dx

=tanx —x + C.

Figure 7.6 shows the graphs of y = tan’ x and y = tanx — x.
To evaluate f sin(3x) - cos x dx, we use the identity:

2sina - cosb = sin(a + b) + sin(a — b)
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Fig. 7.6 The graphs of
y= tan? x (broken line) and
y=tanx —x

o

-4
Fig. 7.7 The graphs of YA
y = sin(3x) - cos x (broken
line) and y = ) : 1
—1 cos(4x) — § cos(2x) A 3 iy :
X

which converts the integrand’s product into the sum and difference of two angles:
sin(3x) - cosx = % (sin(4x) + sin(2x))

/sin(3x) -cosx dx = %/sin(4x) + sin(2x) dx

3 / sin(4x) dx + 3 / sin(2x) dx
—% cos(4x) — % cos(2x) + C.

Figure 7.7 shows the graphs of y = sin(3x) - cosxandy = —% cos(4x) — 3—‘ cos(2x).

7.4.4 Exponent Notation

Sometimes it’s convenient to replace radicals by exponent notation. For example, to
evaluate [ ;‘/%? dx, the 2 is moved outside the integral, and the integrand is converted
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Fig. 7.8 The graphs of YA

y = 2/.x (broken line) and 8

y=8xi/3
4,
0 m 2n ;C
-4

into an exponent form:

Figure 7.8 shows the graphs of y = 2//x and y = 8x3/3.

7.4.5 Completing the Square

Sometimes, an integrand can be simplified by completing the square. For example,

to evaluate
1
—— dx
x2 —4x +8

we note the following.
We have already seen that

1
/ dx = arctanx + C
1+ x2

and it’s not too difficult to prove that

1 1 X
/— dx = — arctan (—) + C.
a? + x2 a a
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Fig. 7.9 The graphs of r
y=1/(x*—4x +8) 1
(broken line) and
_ 1 x—2
y = 3 arctan (352)
T T o n o x

Therefore, if we can manipulate an integrand into this form, then the integral will

reduce to an arctan result. The following needs no manipulation:

v/;dx = larctan(£> +C
4+ x? 2 2 '

However, the original integrand has x> — 4x + 8 as the denominator, which is

resolved by completing the square:
2 _ 2
x*—4dx+8 =4+ (x —2)°.

Therefore,

1 1
= 4
/x2—4x+8 x /22+(x—2)2 o

I x—2
= 5 arctan > +C.

Figure 7.9 shows the graphs of y = 1/(x? — 4x + 8) and y = 1 arctan (*52).

To evaluate |
/ '
x24+6x+10

we use the above arctan function as follows

1 1
/—dx:/—dx
x246x+10 12 + (x +3)2

= arctan(x + 3) + C.

Figure 7.10 shows the graphs of y = 1/(x? 4 6x + 10) and y = arctan(x + 3).
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Fig. 7.10 The graphs of y

——
y=1/(x? + 6x + 10)
(broken line) and 1

y = arctan(x + 3)

o1 E 0 X

7.4.6 The Integrand Contains a Derivative
Let’s consider the situation when the integrand contains a function and its derivative,
as in
arctan x
/ ALY
1+ x2

Knowing that

1
— arctan x =
1+ x2
let u = arctan x, then
du _ 1
dx 1+ x2

and

arctan x
—dx = fu du
1+ x2

=4

arctan’ x + C.

[SIE ]

Figure7.11 shows the graphs of y = arctanx/(1 + x?) and y = 1 arctan® x.
Here is another example involving sin x and cos x:

coS x
- dx
sin x

— sinx = cosx
dx

Knowing that
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Fig. 7.11 The graphs of y
y = arctanx /(1 + x2)
(broken line) and 2
y = % arctan?® x
— 1
= - 7=
-1
2
Fig. 7.12 The graphs of ' ' A
y = cos x/ sin x (broken : ! » !

line) and y = In | sin x|

let u = sin x, then

du
— =COSX
dx
and
Ccos X 1
- dx = | —du
sin x u
=In|u|l+C
=In|sinx|+ C.

Figure 7.12 shows the graphs of y = cosx/sinx and y = In | sin x|.

Now let’s reverse the sin x and cos x functions:
sin x
/ dx.
coS X

— Ccosx = —sinx

dx

Knowing that
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Fig. 7.13 The graphs of
y = sinx/ cosx (broken
line) and y = In | sec x|

let u = cos x, then

du .
— = —sinx
dx
du = —sinx dx
and
i 1
/smx dx:—/—du
CoS x u
=—Inju|+C
= —In|cosx|+C
=In|cosx|' +C
=In|secx|+ C.

Figure 7.13 shows the graphs of y = sinx/cosx and y = In | sec x|.

7.4.7 Converting the Integrand into a Series of Fractions

Integration is often made easier by converting an integrand into a series of fractions.
Here are two examples where the denominator is divided into each term of the
numerator.

/‘ 4x3 + x2 — 8 4+ 12x cosx
dx.

4x
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Fig. 7.14 The graphs of
y=@x3+x? -8+

12x cos x) /4x (broken line)
and y = %x3 + %xz -
2In|x| 4+ 3sinx

-2n - o| / n 2n x

dx =

/ 4x3 +x2 =8+ 12x cosx
4x

—

1
xzdx—i-%/xdx—Z/fdx+3/cosxdx
X

x3 4+ 4x* = 2In|x| + 3sinx + C.

LI —

Figure 7.14 shows the graphs of y = (4x® + x> — 8 4+ 12x cosx)/4xand y = %x3 +
£x2 —21In x| + 3sinx.

In this example the denominator cos x is divided into the three terms of the numer-
ator:

/ 2sinx + cosx + secx
dx.

COSs x

26
/ Sinx 4 cos x + secx dx=2/tanx dx+/ldx+/seczx dx
coS x

=2In|secx|+x +tanx + C.

Figure7.15 shows the graphs of y = (2sinx + cosx + secx)/cosx and y = 21In|
secx| 4+ x + tanx.

7.4.8 Integration by Parts

Integration by parts is based upon the rule for differentiating function products where
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Fig. 7.15 The graphs of g LoYh
y = (2sinx +cosx +
sec x)/ cos x (broken line) 2 :
and ' b i

y=2In|secx|+ x 4+ tanx

-2n - 0, 2n X

and integrating throughout, we have

uv:/uv’dx—i—/vu’dx
/uv’dx:uv—/vu’dx.

Thus, if an integrand contains a product of two functions, we can attempt to integrate
it by parts. Let’s start with
/ xsinx dx.

In this case, we try the following:

which rearranged, gives

u=x and Vv =sinx

therefore
W' =1 and v=C; —cosx.

Integrating by parts:

/uv'dx:uv—/vu'dx

/xsinx dx = x(C; —cosx) — /(Cl —cosx)(1) dx

=Cix —xcosx —Cix +sinx +C

= —xcosx +sinx + C.
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Fig. 7.16 The graphs of

y = x sinx (broken line) and g
y = —xcosx + sinx 8
4
-4
-8
Figure 7.16 shows the graphs of y = x sinx and y = —x cos x + sin x.

Note the problems that arise if we make the wrong substitution:
u=sinx and v =x

therefore
u' =cosx and v = %xz + Cy

Integrating by parts:

/uv’dx:uv—/vu’dx

/xsinx dx=sinx(%x2~|—C1)—f(%x2+C1)cosx dx

which requires to be integrated by parts, and is even more difficult, which suggests
that we made the wrong substitution.

Now let’s try something similar, but with the cos function:

/xcosx dx.

In this case, we try the following:

u=x and Vv =cosx

therefore
' =1 and v=sinx + C;.
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Fig. 7.17 The graphs of

y
y = x cos x (broken line)
and y = x sinx + cos x 8
4
;»70 =

Integrating by parts:

/uﬁdx:uv—/w/dx

/xcosx dx :x(sinx+C1)—/(sinx+C1)(1) dx

=xsinx +Cix +cosx —Cix+C

=xsinx +cosx + C.

Figure 7.17 shows the graphs of y = x cosx and y = x sinx + cos x.
Let’s develop the last example by changing the x multiplier into x?:

/xz cosx dx.

In this case, we try the following:

u=x> and v =cosx

therefore
' =2x and v =sinx + C;.

Integrating by parts:

/uv’dx:uv—/vu’dx

/xzcosx dx = x*(sinx + Cy) — 2/(sinx +C)(x) dx
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Fig. 7.18 The graphs of y
y = x2 cos x (broken line) 60
and y =

2

x“sinx + 2x cosx — 2sinx 40

109

-20

-40

-60

:xzsinx—kclx2 —2C1/x dx —2/xsinx dx
=x?sinx + Cjx* —2C; (3x* + C2) — Z/x sinx dx
=x%sinx — C; — Z/xsinx dx.

At this point we come across [ x sinx dx, which we have already solved:

/x2 cosx dx = x>sinx — C3 —2(—xcosx +sinx + Cy)
= x%sinx — C3 + 2xcosx — 2sinx — Cs

= x2sinx + 2xcosx — 2sinx + C

Figure 7.18 shows the graphs of y = x? cos x and y = x? sin x + 2x cos x — 2sin x.

Now let’s evaluate
/ x?sinx dx.
In this case, we try the following:

u=x> and v =sinx

therefore
' =2x and v=—cosx + Cj.
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Fig. 7.19 The graphs of
y= x2 sin x (broken line)
and y = —x2cosx +

2x sinx + 2 cosx

Integrating by parts:

/uv’ dx =

7 Integral Calculus

40

2n 0w\ 2n

-40

-80

uv—/vu’ dx

/xz sinx dx = x>(—cosx + Cy) — 2/(— cosx + Cy)(x) dx

At this point we come

/x2 sin x

Figure 7.19 shows the graphsof y = x

—x2cosx+C1x2—2C1/x dx—i—Z/xcosx dx
—x?cosx + Cix* —2C (3x% + C,) +2/xcosx dx

—x%cosx — Cs + 2/xcosx dx.
across f x cos x dx, which we have already solved:

dx = —x%>cosx — Cs + 2(x sinx 4+ cosx + Cy)

= —x2cosx — C3 +2xsinx + 2cosx + Cs

= —x2cosx + 2xsinx +2cosx + C

2 2

sinxandy = —x~cosx + 2x sinx + 2 cos x.

In future, we omit the integration constant, as it is cancelled out during the inte-
gration calculation. The next example is

fxlnx dx.
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Fig. 7.20 The graphs of A
5

y = x Inx (broken line) and

y = %xz Inx — %xz

In this case, we try the following:
u=Inx and Vv =x

therefore

Integrating by parts:

/uv/dxzuv—/vu/dx
/xlnx dx:%lenx—/(%xz))]—cdx
=%x21nx—%fxdx
=1x’Inx — {x* + C.

Figure 7.20 shows the graphs of y = xInx and y = %xz Inx — }txz.

Although the following integrand does not look as though it can be integrated by

parts,
/\/ 14 x2dx.

if we rewrite it as

/\/1 +x2(1) dx.
then we can use the formula.

Let
u=+v14+x2 and v =1
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therefore .
W =——— and v =x.
V142
Integrating by parts:

/uv/dx:uv—/vu/dx

/.\/1+x2dx—x\/1+x2 /m

Now we simplify the right-hand integrand:
(1+x>—-1
VI+x2dx=xv1+x%2— | ——— dx
/ V14 x2

1+x 1
=xv1+x2—- x+f—dx
V1 +x2 V14 x2

:x\/l—i—xz—/\/l—i—xz dx + arsinhx + C;.

Now we have the original integrand on the right-hand side, therefore

2/\/1 4+ x%2dx =xv/14+x% +arsinhx + C;
/\/1 +x2 dx = {xv/1+ x2 + Jarsinhx + C.

Figure 7.21 shows the graphs of y = +/1 +x2 and y = %x«/l +x2 4+ %arsinhx.

Fig. 7.21 The graphs of y
y = +/1 4 x2 (broken line) 3
and y =

1xv/T+27 + Larsinh x 2
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7.4.9 Integration by Substitution

Integration by substitution is based upon the chain rule for differentiating a function
of a function, which states that if y is a function of u, which in turn is a function of

x, then
dy dy du

dx du dx’
This integrand

/xzx/; dx.

is easily solved by rewriting it:

[S1EN}
U
=

/XZ«/)C3 dx = | x

X

(ST}

oI
+
Q

However, introducing a constant term within the square-root requires integration by
substitution. For example,
[T Ta

First, we let u = x> + 1, then

d 1
au =3x? or dx = —du.
dx 3x2

Substituting # and dx in the integrand gives
1
/xzx/x3 +1dx = /xzﬁ qu
X
= %/\/ﬁdu

_1 i
—§/u2du

W=

=2+ 1) +C.

Figure 7.22 shows the graphs of y = x?+/x3 + T and y = 2(x* + 1):.
Let’s try

/Zsinx -cosx dx.
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Fig. 7.22 The graphs of
y = x2/x3 4+ 1 (broken

. 2,3 3
line) and y = §(x° + 1)2

Integrating by substitution we let # = sin x, then

du
— =cosx or dx =

du.
dx COS X

Substituting # and dx in the integrand gives

du

. 1
2sinx -cosx dx =2 | ucosx
COS X

=2fudu

=u’+C

=sin’x + C.

Figure 7.23 shows the graphs of y = 2sinx - cos x and y = sin® x.

Fig. 7.2} The graphs of y
y = 2sinx - cos x (broken
line) and y = sin? x 2
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Fig. 7.24 The graphs of y
y = 2% gin x - cos x H

(broken line) and
y= _%ecos(2x)

The next example looks difficult, but turns out to be simple:
/ 262 ginx - cos x dx.

Integrating by substitution, let u = cos(2x), then

du . 1
— = —2sin(2x) or dx = ———du.
dx 2sin(2x)

Substituting a double-angle identity, # and du:

1
/26005(2") sinx - cosx dx = — / e" sin(2x) ————du
2 sin(2x)

:—%/e”du

_ _ 1, u
=—5e¢'+C
— _%ecos(ZJr)_’_C'

Figure 7.24 shows the graphs of y = 2¢°*?% sinx - cosx and y = —1¢°().
Now let’s try
cos X
(1 +sinx)?

Integrating by substitution, let # = 1 4 sin x, then

du 1
— =cosx or dx =
dx COS X

du.
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Fig. 7.25 The graphs of ! y
y= ﬁ (broken line) ‘

and y = — 550

2n x

Ccos X d /cosx 1 J
—_—— dx = u
(1 +sinx)3 ud cosx

:/u_3 du

= —%u‘z—i—C

= —%(1 +sinx) 24+ C
1

2(1 + sinx)? +C

Ccos

Figure7.25 shows the graphs of y = 775=55 and y = —m
Finally, an easy one:

fsin(Zx) dx.

Integrating by substitution, let # = 2x, then

d
_u:2 or dx:%du.
dx

/sin(Zx) dx = %/Sinu du

:—%cosu—i—C

= —% cos(2x) +C

Figure 7.26 shows the graphs of y = sin(2x) and y = —% cos(2x).
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Fig. 7.26 The graphs of y
y = sin(2x) (broken line)
and y = —% cos(2x)
3
2mn | 1 | 0] | n "‘.“ ’P’_n x

7.4.10 Partial Fractions

Integration by partial fractions is used when an integrand’s denominator contains
a product that can be split into two fractions. For example, it should be possible to

convert
3x +4

x+Dx+2)

into
A

B
—d —d
x+1 x+/x+2 o

which individually, are easy to integrate. Let’s compute A and B:

3x +4 A B
GrDE+2) x4l x+2
3x4+4=Ax+2)+Bx+1)
= Ax +2A+ Bx + B.

Equating constants and terms in x:

4=2A+B (7.1)
3=A+B (7.2)

Subtracting (7.2) from (7.1), gives A = 1 and B = 2. Therefore,

3x +4 1 2
—dx=f dx+/
x+1DHx+2) x+1 x+2

=Inx+1)+2In(x+2)+C.

dx
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Fig. 7.27 The graphs of : VY
y = % (broken line) g —
and ‘ i
y=In(x + 1)+ 2In(x +2)

Figure 7.27 shows the graphs of y = % and y =In(x + 1) +2In(x + 2).
Now let’s try

/ 5x — dx.
(x — 1)(X -2)

Integrating by partial fractions:

5x—17 A B
G-Do—2 x—1 x_2

Sx —T=Ax—-—2)+Bx—-1)

= Ax + Bx —2A — B.

Equating constants and terms in x:

—7=-24—-B (7.3)
5=A+B (7.4)

Subtracting (7.3) from (7.4), gives A = 2 and B = 3. Therefore,

3x +4 2 3
dx = dx + dx
(x—l)(x—2) x—1 x =2

=2In(x —1)+3In(x —2) + C.

Figure 7.28 shows the graphs of y = andy =2In(x — 1) + 3In(x — 2).

(x— 1)(x 2)
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Fig. 7.28 The graphs of

y= % (broken line)
and y =

2In(x — 1) + 31In(x — 2)

YA
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The next example requires fractions:

/ 6x% +5x —2
x3 4+ x2—2x
Integrating by partial fractions:

6x2+5x—2_A B C

Bl —2x  x

x+x+2+x—1

6x24+5x —2=A(x+2)(x =)+ Bx(x = 1) + Cx(x +2)
= Ax> 4+ Ax —2A + Bx* — Bx + Cx* + 2Cx.

Equating constants, terms in x and x?:

—2=-24
5=A-B+2C
6=A+B+C

Manipulating (7.5), (7.6) and (7.7): A =1, B = 2 and C = 3, therefore,

6x>+5x —2 1 2
T Tt x= ~d =
/x3+x2—2x * /x x+/x+2 x—l—/

=Inx+2In(x+2)+3In(x — 1)+ C.

Figure 7.29 shows the graphs of y = 6x?+5x—2

dx.

(7.5)
(7.6)

7.7)

824522 and y = Inx +2In(x +2) +3In
(x — 1.
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Fig. 7.29 The graphs of | YA \
245, . ' | v
= fﬁﬁ%ﬁ (broken line) ! ne \
andy =Inx 4+ 2In(x + | !
2)+3In(x — 1) \ ' <
+ 2 . - -
4 -3 2 -1 of v 1 2 3 4 X
Bl N \\\ -2l \\
| \‘\_4 :

7.5 Summary

This chapter introduced a collection of strategies that should be considered when
integrating a function. It is far from complete, and one must expect that some inte-
grands will prove extremely difficult to solve, and software has to be used to reveal
a numerical solution.



Chapter 8 ®)
Area Under a Graph oo

8.1 Introduction

The ability to calculate the area under a graph is one of the most important discoveries
of integral Calculus. Prior to Calculus, area was computed by dividing a zone into
very small strips and summing the individual areas. The accuracy of the result is
improved simply by making the strips smaller and smaller, taking the result towards
some limiting value. In this chapter I show how integral Calculus provides a way to
compute the area between a function’s graph and the x- and y-axis.

8.2 Calculating Areas

Before considering the relationship between area and integration, let’s see how area
is calculated using functions and simple geometry.
Figure 8.1 shows the graph of y = 1, where the area A(x) of the shaded zone is

Ax)=x, x>0.

For example, A(4) =4, and A(10) = 10. An interesting observation is that the
derivative of A(x) is the equation of the line:

dA 1=
ax
Figure 8.2 shows the graph of y = 2x. The area A(x) of the shaded triangle is

Alx) = %base -height

.
=3x 2x

= xz.
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122 8 Area Under a Graph

Fig. 8.1 Area of the shaded

. Y
zone is A(x) = x y=1
1
Alx) ==
T Xz
Fig. 8.2 Area of the shaded Y
zone is A(x) = x2
Yy =2z
A(z) = 2°
x T

Fig. 8.3 Graph of

y =12 — 12

Thus, A(4) = 16, and A(5) = 25. Once again, the derivative of A(x) is the equation
of the line:
dA 5
—_— = LX =
dx Y
which is no coincidence.
Finally, Fig.8.3 shows a circle where x> + y?> = r?, and the curve of the first
quadrant is described by the function
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y=+rt—x% xe€[0,r]

The total area of the shaded zones is the sum of the two parts: B(0) and C(6). The
function is defined in terms of the angle 6, such that

X =rsin6

y =rcosé.

Therefore,
B(©) = 1r*0
C(®) = 1(rcos0)(rsin@) = 1r*sin(20)
A(0) = B(0) + C(0)
= 1r% (6 + 1 sin(20)).
Differentiating A(0):
dA

=5 = 1r* (1 4 cos(20)) = r* cos® 6.

But we want the derivative with respect to x, which requires the chain rule:

dA . dA dob
dx  do dx
where
X
— =rcosb
do
or
o 1
dx ~ rcosf
therefore
dA r2cos? 0 P
— = ———— =rcosf =
dx rcosf Y

which is the equation for the quadrant. When 6 = /2, A(7r/2) equals the area of a
quadrant of a unit-radius circle:

A(Z) = 1r* (0 + Lsin(20))
T+ %sinn)
7)

1
2
1
2

1
2
1
2
_ 1
-2
1
Z?T

and the area of a unit-radius circle is four quadrants: A(6) = .
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Fig. 8.4 Relationship

between y = f(x) and A(x) y
y= f(x)
/\
A(z) 6A
a T x+ 6z x

Hopefully, these three examples provide strong evidence that the derivative of the
function for the area under a graph, equals the graph’s function:

dA
il f(x)
and
dA = f(x)dx
which implies that
A= / f(x) dx.

Now let’s prove this observation using Fig. 8.4, which shows a continuous function
y = f(x).Next, we define a function A (x) to represent the area under the graph over
the interval [a, x]. § A is the area increment between x and x + §x, and

SA =~ f(x)-éx.
We can also reason that
A =Ax+d6x)—Ax) = f(x)-6x
and the derivative d A /dx is the limiting condition

dA . A(x +6x) — Ax) . f(x)-éx
— — lim = lim
dx Sx—0 5x Sx—0 Sx

= fx)

thus, J
A
ax =T
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Fig. 8.5 A(b) is the area
under the graph y = f(x),
x € [0, b]

This can be rearranged as
dA = f(x)dx

whose antiderivative is

Ax) = / f(x) dx.
The function A(x) computes the area over the interval x € [a, b] and is represented
by
b
a0 = [ fwas
which is called the integral or definite integral.

Let’s assume that A(b) is the area under the graph of f(x) over the interval
x € [0, b], as shown in Fig. 8.5, and is written

b
AB) = | F@&) dx.
0

Similarly, let A(a) be the area under the graph of f(x) over the interval x € [0, a],
as shown in Fig. 8.6, and is written

A(a) = /a f(x) dx.
0

Figure 8.7 shows that the area of the shaded zone over the interval x € [a, b] is
calculated by
A(b) — A(a)

which is written

b a
A(b)—A(a):/ Fx) dx—f F(x) dx
0 0
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Fig. 8.6 A(a) is the area y
under the graph y = f(x),
x €0, al

Fig. 8.7 A(b) — A(a) is the Y
area under the graph
y=f(x),x €la,bl]

and is contracted to

b
A(b)—A(a):/ f(x) dx. 8.1)

The fundamental theorem of Calculus states that the definite integral

/bf(X)dX=F(b)—F(a)
where

F(a):/f(x) dx, x=a

F(b) =/f(x) dx, x=b.

In order to compute the area beneath a graph of f (x) over the interval x € [a, b], we
first integrate the graph’s function

F(x):/f(x) dx
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Fig. 8.8 Area under the
graph is f14 1 dx

and then calculate the area, which is the difference
F(b) — F(a).

Let’s show how (8.1) is used in the context of the earlier three examples.
We start by calculating the area under y = 1, over the interval x € [1, 4], as shown

in Fig. 8.8. Beginning with
4
A =/ 1dx.
1

Next, we integrate the function, and transfer the interval bounds employing the sub-
4

, we have
1

4 4
stitution symbol | , or square brackets [ ] . Using
1 1

A:x’
1

—4-1

4
or using [ ] , we have
1

Next, we calculate the area under y = 2x, over the interval x € [1, 4], as shown
in Fig. 8.9. We begin with
4
A= / 2x dx
1
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Fig. 8.9 Area under the
graph is f14 2x dx

and integrate the function and evaluate the area

A= x?
1

=16—-1
= 15.

Last, we calculate the areaunder y = +/r2 — x2, overtheintervalx € [0, r], which
is the equation for the quadrant of a circle, as shown in Fig. 8.3. We begin with

A= / Vit —x%dx. 8.2)
0

Unfortunately, (8.2) contains a function of a function, which is resolved by substi-
tuting another independent variable. In this case, the geometry of the circle suggests

X =rsinf
therefore,
V2 —x2=rcosb
and i
@ rcosf. (8.3)
do

However, changing the independent variable requires changing the interval for the
integral. In this case, changing x € [0, r] into 6 € [0, 6,]:

When x =0, rsinf; =0, therefore §; = 0.

Whenx =r, rsinf, =r, therefore 6, = m/2.

Thus, the new interval is 6 € [0, 7 /2].

Finally, the dx in (8.2) has to be changed into d6, which using (8.3) makes
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Fig. 8.10 The two areas
associated with a sine wave

129

Yy =sinz

27
Ay Ay = / sin zdx
U B 2m
X

Ay :/ sin xdz Ay
Jo

dx =rcos6 df.

We are now in a position to rewrite the original integral using 6 as the independent

variable:

/ ’ (rcosB)(rcosf) do
0

r2/2 cos? 0 do
0

Bl— RI— D=

which makes the area of a full circle 7 r2.

8.3 Positive and Negative Areas

Area in the real world is always a positive quantity—no matter how it is measured. In
Calculus, however, the integral is a signed quantity, such that areas above the x-axis
are positive, whilst areas below the x-axis are negative. This can be illustrated by
computing the area of the positive and negative parts of a sine wave.

Figure 8.10 shows a sine wave over one cycle, where the area above the x-axis is
labelled A1, and the area below the x-axis is labelled A,. These areas are computed

as follows.
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Fig. 8.11 The accumulated y
area of a sine wave

A =/ sinx dx
0

b4
— COS X

1+1
=2.

However, A, gives a negative result:

2
AZ:/ sinx dx
T

2w
= —COSX
=—-1-1
= -2.

This means that the area is zero over the interval x € [0, 27 ]. Consequently, one must
be very careful using this technique for functions that are negative in the interval under
investigation.

Figure 8.11 shows sin x over the interval x € [0, ] and its accumulated area.

8.4 Area Between Two Functions

Figure 8.12 shows the graphs of y = x? and y = x>, with two areas labelled A| and
A,. A is the area trapped between the two graphs over the interval x € [—1, 0] and
A; is the area trapped between the two graphs over the interval x € [0, 1]. These
areas are calculated very easily: in the case of A| we sum the individual areas under
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Fig. 8.12 Two areas

between y = x2 and y = x3

131

the two graphs, remembering to reverse the sign for the area associated with y = x>.
For A, we subtract the individual areas under the two graphs.

0 0
A1=/x2dx—/ x3 dx
-1 -1

w

‘ 0

W=
=

-1

5|\‘ Wl
.
ST

W= W=
FNE

Sl=

Note, that in both cases the calculation is the same, which implies that when we

employ

A= /b (f0 - g)) dx

A is always the area trapped between f(x) and g(x) over the interval x € [a, b].

Let’s take another example, by computing the area A between y = sinx and the
line y = % as shown in Fig.8.13. The horizontal line intersects the sine curve at
x = 30° and x = 150°, marked in radians as 0.5236 and 2.618 respectively.
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Fig. 8.13 The area between y
y=sinxand y =0.5

8 Area Under a Graph

8.5 Areas with the y-Axis

0.5236 2.618

So far we have only calculated areas between a function and the x-axis. So let’s
compute the area between a function and the y-axis. Figure 8.14 shows the function
y = x? over the interval x € [0, 4], where A, is the area between the curve and the
x-axis, and A, is the area between the curve and y-axis. The sum A; + A, must
equal 4 x 16 = 64, which is a useful control. Let’s compute A;.

A

4
/ x%dx
0
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Fig. 8.14 The areas between y _la
the x-axis and the y-axis 1

<
Il
=

which means that A, ~ 42.666. To compute A, we construct an integral relative tody
. . . 1 . .
with a corresponding interval. If y = x? then x = yZ, and the interval is y € [0, 16]:

6
A2=/ y2dy
0

_2 3 16

= 3y2 0
2

— 264

~ 42.666

8.6 Area with Parametric Functions

When working with functions of the form y = f(x), the area under its curve and the
x-axis over the interval x € [a, b] is

b
A= / f(x) dx.
However, if the curve has a parametric form where

x = fi(t) and y = f,(t)

then we can derive an equivalent integral as follows.
First, we need to establish equivalent limits [, 8] for ¢, such that

a= fy(x) and bzfy(,B)

Second, any point on the curve has corresponding Cartesian and parametric coordi-

nates:
x and f, (1)
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y=f) and f,().

Third,
X = fx (3]
dx = f.(1) dt
b
A= / f(x)dx
aﬂ
_ / £@ - £l di
therefore

B
A=/ L@ - fi@) dr.

Let’s apply (8.4) using the parametric equations for a circle

X = —rcost

y =rsint.

8 Area Under a Graph

8.4)

as shown in Fig. 8.15. Remember that the Cartesian interval is [a, b] left to right,
and the polar interval [¢, 8], must also be left to right, which is why x = —r cos?.

Therefore,

fi(@) =rsint
fy(@) =rsint

B
A=/ @) - fi(@) dt

b g
:/ rsint -rsint dt
0

T
= r2/ sin’t dt
0

= %ﬂ/ 1 — cos(2¢t) dt
0

b4
0

[NST o ST

#2[e+ sinen]
2

r

which makes the area of a full circle 772.
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Fig. 8.15 The parametric
functions for a circle

-rcos(?)

8.7 Bernhard Riemann

The German mathematician Bernhard Riemann (1826-1866) (pronounced ‘Ree-
man’) made major contributions to various areas of mathematics, including integral
Calculus, where his name is associated with a formal method for summing areas and
volumes. Through the Riemann Sum, Riemann provides an elegant and consistent
notation for describing single, double and triple integrals when calculating area and
volume. I will show how the Riemann Sum explains why the area under a curve is
the function’s integral. But first, I need to explain some incidental notation used in
the description.

8.7.1 Domains and Intervals

Consider any continuous, real-valued function f (x) which returns a meaningful value
for a wide range of x-values. For example, the function f(x) = x? works with any
negative or positive x. This is called the domain of f(x) and written using interval
notation as (—oo, 00), where the parentheses () remind us not to include —oo and co
in the domain, as they have no definite value. When we wish to focus upon a specific
domain such as a < x < b, then we write [a, b], where the square brackets remind
us to include a and b in the domain. The function f(x) = /x returns a real value,
so long as x > 0, which means that its domain is [0, 00).

Some functions, like f(x) = 1/(x — 2) are sensitive to just one value—in this
case when x = 2—which creates a divide by zero. Therefore, there are two intervals:
(=00, 2) and (2, 0c0), which in set notation is written

(—00,2) U (2, 00).

We are normally at liberty to choose the domain of a function—provided that we can
actually compute it. The domain then becomes part of the definition of a function.



136 8 Area Under a Graph

8.7.2 The Riemann Sum

Figure 8.16 shows a function f(x) divided into eight equal sub-intervals where

Ax =

8

and
a=Xx) <X <Xp<---<X7<xg3=>b.

In order to compute the area under the curve over the interval [a, b], the interval
is divided into some large number of sub-intervals. In this case, eight, which is not
very large, but convenient to illustrate. Each sub-interval becomes a rectangle with a
common width Ax and a different height. The area of the first rectangular sub-interval
shown shaded, can be calculated in various ways. We can take the left-most height
xo and form the product xyAx, or we can take the right-most height x; and form
the product x; Ax. On the other hand, we could take the mean of the two heights
(xo + x1)/2 and form the product (x¢ + x1)Ax/2. A solution that shows no bias
towards either left, right or centre, is to let x} be anywhere in a specific sub-interval
Ax;, then the area of the rectangle associated with the sub-interval is f(x) Ax;, and
the sum of the rectangular areas is given by

8
A= Z f(x)Ax;.

i=1

Dividing the interval into eight equal sub-intervals will not generate a very accurate
result for the area under the graph. But increasing it to eight-thousand or eight-
million, will take us towards some limiting value. Rather than specify some specific
large number, it is common practice to employ #, and let n tend towards infinity,
which is written

A=) fGHAx:. (8.5)

i=l1

The right-hand side of (8.5) is called a Riemann Sum, of which there are many. For
the above description, I have assumed that the sub-intervals are equal, which is not
a necessary requirement.

If the number of sub-intervals is 7, then

Ax =

and the definite integral is defined as
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Fig. 8.16 The graph of
function f(x) over the
interval [a, b]

y = f(x)

ho hi ihs ;hg ;h4 ;}15 ;}L(g %h7 /Lg
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g 1 T2 3 T4 Ty Tg 7 T8 X

b n
f f@x) dx = lim D) Ax;.

i=1

In later chapters, double and triple integrals are used to compute areas and volumes,
and require us to think carefully about their meaning and what they are doing. Divid-
ing space into sub-intervals, sub-areas or sub-volumes, provides a consistent strategy
for increasing our understanding of the subject.

8.8 Summary

In this chapter we have discovered the double role of integration. Integrating a func-
tion reveals another function, whose derivative is the function under investigation.
Simultaneously, integrating a function computes the area between the function’s
graph and the x- or y-axis. Although the concept of area in every-day life is an
unsigned quantity, within mathematics, and in particular Calculus, area is a signed
quality, and one must be careful when making such calculations.



Chapter 9 ®)
Arc Length and Parameterisation e
of Curves

9.1 Introduction

In previous chapters we have seen how Calculus reveals the slope and the area under
a function’s graph, and it should be no surprise that it can be used to compute the arc
length of a continuous function. However, although the formula for the arc length
results in a simple integrand, it is not always possible to integrate, and other numerical
techniques have to be used.

Vector-valued functions are widely used for curve generation, and we explore
strategies for computing the arc lengths of a circle, parabola, ellipse, hyperbolic
cosh, helix, 2D and 3D quadratic Bézier curves. We then investigate the arc-length
parameterisation of a 3D line and helix curve, and show how points are positioned
on these using a square law distribution. Finally, I show how to deal with functions
expressed in polar coordinates. In order to compute a function’s arc length using
integration, we first need to understand the mean-value theorem.

9.2 Lagrange’s Mean-Value Theorem

The French mathematician Joseph Louis Lagrange (1736-1813) is acknowledged as
being the first person to state the mean-value theorem:

A function f(x) that is continuous in the closed interval [a, b] and differentiable in the open
interval ]a, b[ has in this interval at least one value ¢ such that f/(c) equals

f®) - f@)

fler ===

Figure 9.1 illustrates the geometry behind this theorem, where we see the graph of
a function f(x), which has no discontinuities over the interval x € [a, b]. Although
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Fig. 9.1 The secant’s slope A
equals the tangent

tangent

secant

v

not shown, we assume that the function is differentiable outside the bounds of
the interval. The slope of the line (secant) connecting the points (a, f(a)) and

(b, f(b)) is

S ) — f(a)
b—a

and the mean-value theorem states that this slope equals the tangent at another point
¢, where a < ¢ < b. One can easily visualise this from Fig. 9.1 by tracking the slope
of f(x) over the interval x € [a, b]. At x = a, the slope, given by f’(a), has some
positive value, whereas at x = b, the slope, given by f’(b), has some negative value.
Clearly, the secant’s slope is less than f’(a) and greater than f’(b) and must equal
f'(c), somewhere between a and b. Lagrange provided a rigorous mathematical proof
for any function within the constraints of the theorem. We call upon this theorem in
the next section.

9.3 Arc Length

In every-day life we can measure the length of a curved surface by laying a flexi-
ble tape measure upon it and taking a reading. Given the graph of a mathematical
function, we can measure its length by reducing it to a chain of straight lines and
summing their individual lengths. Although this is rather crude, accuracy is improved
by making the straight lines increasingly shorter. This is the approach we employ in
the following analysis.

Figure 9.2 shows part of a curve divided into » intervals where any sample point
P; has coordinates (x;, y;), where 0 < i < n. Using the theorem of Pythagoras, the
distance between two points P; and P, is given by

As =/ (xig1 — x)% + ip1 — 31)?

=V (Ax;)? + (Ay)?
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Fig. 9.2 The chain of
straight-line segments
approximates to the
curve’s length

o Tr1 I Tn €T
and the approximate length between Py and P, is given by
s~ Y V(Ax) + (A2

i=1

As n tends towards infinity, then in the limit

— 1i 2 )2
s = lim Z (Ax;)? + (Ay)

n 2

Ay;
= li 1+ (=) Ax 9.1
nzi.zZl_zl +(Axi) x ©-1)

Lagrange’s mean-value theorem states that there must be a value x;, such that x;_; <
Xj < x;, where

Sxi) — fxiz1)
Xi — Xi—1

Vi — Yi—1

Xi — Xi—1

_ v

- AX,' ’

flxj) =

Therefore, (9.1) becomes

s=lim Y 1+ (f/(xj))2 Ax;
i=1
b 2
K} :/ 1+ <d_y> dx, x €la,b]. 9.2)
p V dx

and
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9.3.1 Arc Length of a Straight Line

Let’s test (9.2) by finding the length of the straight line y = %x, over the interval
x € [0, 4], which using simple geometry is 5.

dy

—3
dx 4
therefore,
4 2
dy
= 1 -1 d
s + (dx) X
4 2
= [Vi+@ e

Il
S— 5— 55— s—
oy

INI
QU
=

|
Bl
=
B~

9.3.2 Arc Length of a Circle

Figure 9.3 shows a semi-circle with radius r, where y = +/r2 — x2. Therefore,

Fig. 9.3 A semi-circle with yA
radius r
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o 162 =xH)72 . (=2x)
X

—X

P
dy 2_ x?
dx )] — r2—x%

Integrating over the interval x € [—r, r], which is doubled to give the circle’s

circumference:
s=2/j‘/1+ d_y 2dx
_zf_/

—r —x

= 2r arcsin (f>

P
—2r (b + 4)
=2mr.

2

9.3.3 Arc Length of a Parabola

Let’s compute the arc length of the parabola y = 0.5x2, over the interval x € [0, 4],

where dy/dx = x:
4 dy 2
= 1 — ) d
! fov +<dx) §

4
=/ V14 x2dx.
0

To remove the radical we let x = tan 6 where dx /d6 = sec? 6 and continue with an
indefinite integral. Therefore,



144 9 Arc Length and Parameterisation of Curves

s:/\/1+tan29'se029d9
=fVSec29-seCZQd9
=fsec€-sec29 do.

Having removed the radical, we are now left with a product, which is integrated by
parts, by letting
u=-sect and v = sec?0,

which means that
u =secH-tanf and v = tané.

Therefore,

/uv’d@:uv—/vu’d@

/sec@~se029 d9:sec@-tan@—/tan@-se09~tan9 do

secO - tan @ —/sec@ -tan” 6 do

secé-tan@—/sec@-(secze—l) do
=sec@~tan9—/se030 d9+/sec9 do
2fsec30 d@:sec@-tan@—i—fsec@ do

/sec39 d@:%sec@-tan9+%/sec9 do

= %sec@ -tan 6 + %lnisecé—i-tane + C.

Now let’s convert this result back to the original function where x = tan6 and
secd = +/1 + x? and reintroduce the limits [0, 4]:

%sec@~tan9+%ln|sec@ +tan6|+C=%x l+x2+%ln|\/1+x2+x|+C

therefore

4
/ VId+xtdx=ixy/1+x2+1In|V1+x2 + x| ‘z.
0
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Fig. 9.4 Graph of y = 0.5x> Ay /

v

Evaluating this result, we get

4
/ VI+xtdx=ixy/14+x2+1In|vV1+x? +x| ‘Z
0
(2v17+ 10 [VIT +4]) = 11n]1]

~ 2V17 4 3 1In |17 + 4|
~ 8.2462 + 1.04735
~9.294.

Figure 9.4 shows the graph of y = 0.5x? over the interval x € [0, 4], where the length
of the straight line joining (0, 0) and (4, 8) is v/80 ~ 8.94, which provides a minimum
value for the arc length. And by reducing the parabola to a chain of straight-line
segments whose Ax = (.25, the arc length equals 9.291, which confirms the accuracy
of the above answer.

Before moving on, here is an alternative solution to the original integral

/\/1+x2 dx.

To remove the radical we let x = sinh 6 where dx/d6 = cosh 6 and continue with
an indefinite integral. Therefore,

s =/\/1+sinh29-cosh9 do
=/\/cosh29~cosh9 de

= /cosh29 deo.
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But 2 cosh? 6 = cosh(20) + 1, therefore,

s = %fcosh(ZG) +14d6

%/cosh(29)+%/ld0

1sinh(20) + 16 + C.

But sinh(26) = 2 cosh 6 - sinh 6, therefore,
s = 1 cosh® -sinh6 + 16 + C. (9.3)

Apart from the constant C, (9.3) contains two parts. The first part is transformed
back to the original independent variable x by substituting sinh & = x and cosh6 =

V14 x2%
Lcosh® -sinh@ = 1xy/1+x2.
The second part is transformed back to the original independent variable x as follows:

x = sinh 6
SRS

2x =¢ —e?

2xe? = (69)2 -1
(60)2 —2x¢ —1=0

which is a quadratic in ¢’ wherea = 1, b = —2x, ¢ = —1. Therefore,
gy —bxb?—4dac
€= 2a
2x £ V/4x2 + 4
= f
=x+V1+x2

However, as ¢/ > 1, therefore,

e =x++/1+x2
9:1n|x+\/1+x2|
30 = 3In|x +v1+x2|.
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Combining these two parts together, and introducing a definite integral, we have

/\/1+x2dx:%x 1+x2+ 1In|v1+x2+x|

which agrees with the first result.
Using the same technique, one can show that

/\/xz—i—az: Ixvx+a*+ia*n|x + Va2 +a?|+ C

/‘\/x2 —a? = %x\/xz +a?— %azln|x +Vx2+a? +C.

9.3.4 Arc Length of y = x3

Let’s find the length of the curve y = x> over the interval x € [0, 4].

dy_

1
= zx?
dx

[NS]I08)

therefore,

Letu =1+ %x,then dx = g du.
The limits for u are:

x=0, u=1,
x=4, u=10,
0
_ 4 5
s—9/ u? du
1
10
3
:i.gui
9°3 |

2

+(31.62277 — 1)
~ 9.07.

9.4)

9.5)

(9.6)
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9.3.5 Arc Length of a Sine Curve

A radical inside the integrand does present problems, and often makes it difficult to
integrate the expression. For example, consider the apparently, simple task of finding
the arc length of y = sin x over the interval x € [0, 2r].

therefore,

2 2
dy
= 1 — ] d
! /o y +(dx> g
2
= v14cos?x dx.
0

At this point, we have a problem, as it is not obvious how to integrate +/1 + cos? x. It
is what is called an elliptic integral of the second kind, and beyond the remit of this
introductory book. Dividing the sine wave into a series of line segments, and using
the theorem of Pythagoras, we discover that the length converges as follows:

10° steps ~ 7.6373564
5° steps ~ 7.6396352
2° steps ~ 7.6402736
1° steps &~ 7.6403648.

9.3.6 Arc Length of a Hyperbolic Cosine Function

Finding the arc length of y = 3 cosh (%x) over the interval x € [—3, 3] turns out to
be much easier than y = sin x:

therefore,

N

(98]
—
+
7N
SY
==
N—"
2
U
=

1 + sinh? (3x) dx

J.
r

-3
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Fig. 9.5 The graph of
y = 3cosh (1x)

Xl

149

A

v

3

=/ ,/coshz (%x) dx
-3
3

:/ cosh (%x) dx
-3

3
— 3sinh (1 ‘

Sin. (3)6) 4
= 3[sinh 1 — sinh(—1)]

s el ! _e—l_el
2 2

=3 (e1 — e’l)
~ 7.05.

Figure 9.5 shows the graph of y = 3 cosh (%x)

9.3.7 Arc Length of Parametric Functions

Parametric functions take the form

X = fx([)
y = fy(t)

where f, and f) are independent functions, but share a common parameter ¢. In order
to compute the arc length of such a function we need to derive the derivative dy/dx.
The individual derivatives are dx/dt and dy/dt and can be combined to produce

dy/dx as follows

dy dy/dt
dx — dx/dt
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which means that (9.2) can be written as

b dy/dt\’
S:,/(; 1+<m) dx

/b \/ (dx/dt)? + (dy/dr)?
= dx

(dx/d1)?
bolrdx\®  (dy\’ dt
-/ /(E) +<z> ax
b dx\’ dy :
) (L) @ o7

A similar analysis can be performed for 3D parametric curves, where we have

X = fx(t)
y= fy(t)
7= f(t)

and

b 2 2 2
dx dy dz
= — — — | dt. 9.8
* /a \/<dt) +<dt) +<dt) ©8)
Writing a parametric function as a Cartesian vector:

r(t) =x@)i+ y@®)j+z()k

its derivative is
r'(t) =x'(0i+ Yy 0j+ 7Ok

The derivative, r'(¢) is the tangent vector to the curve, whose magnitude is ||r'(¢)|],

therefore,
ol = (vo) + (vo) + (o) ©9)

We can use (9.7) and (9.8) to solve various problems in two and three dimensions.

9.3.8 Arc Length of a Circle

Let’s start with the parametric equation of a circle with radius r, by computing the
arc length of one quadrant, and multiplying this by 4:
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r(t) =x@)i+ y@)j, te€l0,2r]
x(t) =rcost
y(t) = rsint.

Differentiating x(¢) and y(¢):
dx in
— = —rsin
dt
dy
— =rcost
dt

and substituting them in (9.7):

/2 2 2
s=4/ \/(—rsint) +(rcost) dt
0
/2
=4r/ Vsin?t + cos?t dt
0

/2
= 4r/ 1dt
0

/2
=A4rt

0
=27r.

9.3.9 Arc Length of an Ellipse

Let’s follow the circle with an ellipse, which is represented parametrically:

r(t) =x@®)i+y@®j, tel0,2nr]
x(t) = acost

y(t) = bsint.

Differentiating x (¢) and y(f):

dx .
— = —qasint
dt

d

o =bcost

dt
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and substituting them in (9.7):

/2
s:4/ \/(—asint)2+(bcost)2dt
0

/2
:4] \/azsinzt—l-bzcosztdt
0

/2
=4f Va2(1 = cos? 1) + b2 cos? ¢ dt
0

/2
:4/ Va2 = (a2 — b?) cos? t dt
0

/2
=4a / 1 —€2cos?t dt (9.10)
0

where € = /1 — b?/a? is the eccentricity of the ellipse. Equation (9.10) is an elliptic
integral, and can only be solved numerically, as no standard function is available.
However, using the binomial theorem, and cosine integrals (www.pages.pacificcoast.
net/~cazelais/250a/ellipse-length.pdf), it can be shown that

1\2 €2 1-3\2 &4 1-3.5\2 ¢ 1-3.5.7\2¢8
s=2mall—-(=) ——|— —_— = — -\ =]
2) 1 2.4) 3 2.4.6) 5 2.4.6-8) 7

©.11)

Given an ellipse where @ =5 and b = 4, then € = 0.6. Let’s compute (9.11) by
including increasing number of terms:

1 262
s~2ma|1— 7) € ) ~ 28.58849
2 1
1 2 2 1.3 2 4
s~2ral1—(= i— ) ~ 2858242
2) 1 2 3
1 2 2 1.3 2 4 .5 2 6
s~oral1-(=) & (=2 :, € ) ~ 2836901
2) 1T \23) 3 2 %) 5
ora (1 1\2 €2 1.3\2 &4 1.3.5 1357%8 2836338
Aorall—|z) —=|—) & — = = - ) ® s
2) 1 \24) 3 246 2468 7

therefore, the ellipse’s perimeter is approximately 28.36.

9.3.10 Arc Length of a Helix

A constant-pitch helix is shown in Fig. 9.6, and can be defined as


www.pages.pacificcoast.net/~cazelais/250a/ellipse-length.pdf
www.pages.pacificcoast.net/~cazelais/250a/ellipse-length.pdf
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Fig. 9.6 A constant-pitch
helix

r(t) = rcosti+ rsintj+tk
where r is the radius in the xy-plane. If » = 2, then
r(t) = 2costi+ 2sintj + tk.
Its arc length is computed using
r'(t) = —2sinti+2costj+k

where t € [0, 4rr]. Therefore, using (9.8)

4
s = \/4sin2t+4coszt+ldt
0

4
= V5 dt

0
= /5t
~ 28.1.

4
0

Thus the length of the helix over two turns is ~ 28.1.

9.3.11 Arc Length of a 2D Quadratic Bézier Curve

For an introduction to Bézier curves, see my book Mathematics for Computer Graph-
ics, Vince (2017).
A 2D quadratic Bézier curve is represented as:

| x@®
r(t) = [y(t)}, tel0, 1]

x(t) = xo(1 = 2t 4+ 12) + x1(2t — 21%) + xo1>
Y(6) = yo(l = 2t +12) + yi (2t — 21%) + yot>.
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Fig. 9.7 A 2D Bézier curve YA

1 Pl P2

o
N
=Y

Differentiating x (¢) and y(¢):

d
d—f — X021 —2) 4 x1 (2 — 41) + x2t

d
d—f = yo(2t —2) + y1(2 — 41) + y221.

Let’s take a simple example, with Py = (0, 0), P, = (1, 1) and P, = (2, 1), as shown
inFig.9.7. Using Pythagoras, the arc length must be slightly longer than /5 ~ 2.236.
Therefore,

dx

E:
d
Dy
dt
1
s=f V22 + (2 —21)* dt
0
1
=/ V8 — 8t + 412 dt
0
1
:2/ V2 =2t +2dt
0
1
=2/ VE—12+12dr.
0
Using (9.5):

/\/xz+a2 dx = ix x2+a2+%azln‘x+\/x2+a2’+c

therefore,letx =t —1anda =1
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t x y Ax Ay (Ax)? (Ay)? V(Ax)? + (Ay)?
0 0 0 0 0 0 0 0

0.2 0.4 0.36 0.4 0.36 0.16 0.1296 | 0.538145

0.4 0.8 0.64 0.4 0.28 0.16 0.0784 | 0.488262

0.6 1.2 0.84 0.4 0.2 0.16 0.04 0.447214

0.8 1.6 0.96 0.4 0.12 0.16 0.0144  |0.417612

1 2 1 0.4 0.04 0.16 0.0016 | 0.401995

r—1
s:2<T t2—2t+2+%ln‘t—l—I—\/t2—2t+2‘>
=(t—1)\/t2—2t+2+1n‘(t—1)+\/t2—2t+2‘

=—«/§+ln)—l+«/§‘

A 2.296.

1
0

1
0

By making P; = (1, 0.5), the Bézier curve becomes a straight line with length V5.

dx
— =2
dt
d
Yy
dt

1
s:/ V22t 12dr
0

_ V|
~ 2.236.

We can approximate the arc length by reducing the curve to a chain of straight-line
segments, and summing their lengths. Table 9.1 shows the calculations. The sum of
the right-hand column gives the total length of the line segments, which is 2.293,
and is very close to the integral: 2.296.

9.3.12 Arc Length of a 3D Quadratic Bézier Curve

A 3D quadratic Bézier curve is represented as:
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x(1)
r@6)=|y@® |, tel0, 1]
z(1)

x(t) = xo(1 = 2t + 12) + x1(2t — 2t%) + xo1>
y(t) = yo(l — 2t + 1) + y1 (2t — 26%) + yot*
2(1) = zo(1 = 21 + %) 4+ 212t — 2%) + 701>,

Differentiating x(¢), y(¢) and z(¢):

d

d—f = X, (21 —2) + x2(2 — 41) + x321
dy

i vi(2t —2) + y2(2 — 4t) + y32t
dz

E =712t —2) + 22(2 — 4t) + z32t.

Let’s take a simple example, with Py = (0,0,0), P, =(1,1,1)and P, = (2, 1, 1).
Therefore,

dx_
dr

d
Qo
dr

d

—Z_z 2

s—/\/ (2 —21) +(2—2t)2dt

=/ V8 — 8t +4r2+4—8t +42dr
0

1
=/ 812 — 16t + 12 dr
0

1
=2ﬁ/ V2 =2t +1.5dt
0

=2\/§/:\/(t— 1)2+(1/\/§)2 dt
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Using (9.5):

/\/)cz+a2 dx = %x x2+a2+%azln‘x+\/x2+a2’ +C
therefore,letx =t —1anda =1 /\/5

(-1
s=2ﬁ<T t2—2t+1.5+ﬁln‘t—1+\/t2—2t+1.5‘)

=2v2((41[v05]) - (FVI5+m|-1+V13)))
~ 24/2 (—0.086643 — (—0.612372 — 0.373197))
~ 24/2 (—0.086643 + 0.837117)

~ 24/2 -0.92376
~ 2.612788.

1
0

9.3.13 Arc Length Parameterisation of a 3D Line

One useful tool in computer animation is the ability to move along a 3D curve
in a controlled manner. Unfortunately, this turns out to be a difficult calculation,
as it involves integrating a function within a radical, and very often there is no
standard solution. This means employing some high-level mathematics to secure an
approximate numerical solution.

In this section we examine the arc-length parameterisation of a straight line, and
in the following section for a parametric helix curve.

A vector-valued function normally takes the form:

r(t) =x@®i+ y@®)j+z(@)k
() =x'0i+y®j+ 0k

IOl =/ (F0) + (Y ©) + (2 0)’

therefore, we can define an arc length function as

s(1) =/ X ()| du =/ \/(x/(t))z + (1) + (1) du

and the fundamental theorem of Calculus states (https://en.wikipedia.org/wiki/
Fundamental_theorem_of_Calculus), if f(u) is well behaved, and


https://en.wikipedia.org/wiki/Fundamental_theorem_of_Calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_Calculus
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s(1) =/ fu) du

then d
s
PR — 1),
T f@
therefore,
ol
dr '

For example, (9.12) describes a 2D straight line 5 units long:

r(z) =4ti+3tj, te]0, 1] (9.12)
where any point is determined by the value of 1. Whent = 1, theline’s lengthis 5, and
when ¢ = 0.5, the line’s length is 2.5. Clearly, the line’s length s is given by s = 5¢.
The parameter ¢, which could stand for time, but is probably just an independent
parameter. Now say we wish to write (9.12) using the line’s length s, then we must
change every occurrence of ¢ for s:

r(s) = g—‘si—i— %sj, s € [0, t].
Knowing that s = 5¢, means that r = 5/5. We can now locate points anywhere along
the line as a proportion of the line’s length s.
If (9.12) is written generally:
r(t) =ati+ btj, tel0, 1]

the line’s length is v/a? + b?%, and any distance along the line is given by

s =ty a*+ b?
therefore t = s/+/a® + b%, and

r(s) as i bs .
s) = .
Jatr  Jarp
For a 3D line
x(1)
r@@)=|y@® |, tel0, 1]
z(t)
x(t) = at
y(t) = bt

z(t) = ct
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as
Va2 +b? 4 c?
bs

R BN

cs
Va2 +b? 4 c?

The above reasoning seems straight forward, but we must find a strategy using Cal-
culus, so that we can parameterise 3D curves in terms of their arc length. So let’s use
Calculus to parameterise a 3D straight line.

Starting with the vector-valued function (9.13):

x(1)
r¢) =| y@ |, tel0, 1] (9.13)
z(t)
x(t) = at
y(t) = bt
z(t) = ct.
Differentiate r(t)
a
r@)=|»>
c

The length of /() is

X' (01l = Va? + 57 + 2.

We already know that
s(t) = / |Ir’ ()] dt

but this integrates with respect to ¢, and we want to integrate the arc length over the
interval [0, t]. Therefore, we use another parameter, say u, such that

$() =/0 F )1 e

Therefore, we can write
t
$(1) = / [ o)l d
0
t
:/ var+b2+c?du
0
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t
= uva*+ b* + 2 ‘0
=tva? + b? + 2.

Sos =tva?+b*+c?and t = s/~/a* + b% + ¢%. Substituting ¢ back in (9.13):
_ as _
va?+b*+c?
bs
r(t(s)) = JEtRt a3 | (9.14)

cS

va?+b? 4 c?

With the limits of ¢ being [0, 1], the limits of s in (9.14) are [0, tva? +b? + 2 ]

9.3.14 Arc Length Parameterisation of a Helix

Now let’s apply the above reasoning to a helix curve, which is chosen to keep the
maths simple. Starting with the vector-valued function

acost
r(¢t)=| asint |, te€l0, 27] (9.15)
bt
and differentiating:
—asint
r'(t) = | acost
b

The length of the tangent vector r’(¢) is

[Ir' )| = Va?sin?t 4+ a2 cos? t + b>

= /a? (sin* 1 + cos? 1) + b2
=+a?+ b2,

The arc length of the helix over the interval [0, ] is

s() =/ I ) | du

t
=/ a2+ b2 du
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= uva?+ b? ‘;
=tva? + b,

Therefore, t = s/+/a? + b%, which substituted in (9.15) gives:

_ ) )
o <Ja2—W>
r(t(s)) = | asin (ﬁ) L ose [o, a2 +b2]. (9.16)
a
bs
L a? + b?

Let’s illustrate (9.16) with an example.
Givena =4, b =3,andt € [0, 2], then s € [0, 5¢]

4 cos (s/5)

r(s) = | 4sin(s/5)
3s/5

[ 4 cos (0)

r(0)=| 4sin(0) | =

0

4 cos (2m) 4

r(10mr) = | 4sin(2x) (= O
67[ 67T

S O &

9.3.15 Positioning Points on a Straight Line Using
a Square Law

One can position points on a line or a fixed-pitch helix using their parametric equation.
Nevertheless, I will show this process in terms of arc length. To illustrate this, consider
the original 2D line equation:

r(s) = |:

N

N

(IS TEN

:|, s € [0, 5].



162 9 Arc Length and Parameterisation of Curves

r!‘abl.e 9.2 The value of r(s) s (s/5)2 ()
for different values of s
0 0 [0, 0]
0.5 0.01 [0.04, 0.03]
1 0.04 [0.16, 0.12]
1.5 0.09 [0.36, 0.27]
2 0.16 [0.64, 0.48]
2.5 0.25 [1, 0.75]
3 0.36 [1.44, 1.08]
3.5 0.49 [1.96, 1.47]
4 0.64 [2.56, 1.92]
4.5 0.81 [3.24, 2.43]
5 1.0 (5, 3]
Fig. 9.8 Points located Y
along a line with a 3
square-law distribution
2
1
1 On 1 2 3 4 X

Rewriting this as
$\2
+(5)
5
$\2
(5)
5

locates points along the line with a square-law distribution. Table 9.2 shows the values
of r(s) for different values of s, and Fig. 9.8 shows the points located along the line.

r(s) = , selo, 5]

9.3.16 Positioning Points on a Helix Curve Using
a Square Law

Now let’s arrange points along a helix using a square law. We start with the vector-
valued function for a helix
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2cost
r(t) = | 2sint |, t €0, 2]
t

which becomes

[ 2 cos (s/ﬁ)

r) = | 25in(5/v5) |+ s € [0, 23]

s/V/5

[ 2cos (27rs /ﬁ)

= | 2sin (2ns/¢§) , se [0, ﬁ] 9.17)

275 /N5

[ 2cos (25%/5)

= | 2sin(275%/5) |, se[0.v5]. 9.18)
2ms?/5

Equation (9.17) locates points along the helix as a linear function of the arc length,
but by squaring s/+/5, we obtain a square-law distribution (9.18). Table9.3 shows
the necessary calculations, and Fig. 9.9 shows the helix, looking down the z-axis.

Naturally, we could have used any type of law to distribute the points. This is not
the problem. The real problem is securing a vector-valued function for the arc-length
parameterisation. We have already seen the difficulty in computing the arc length of
a Bézier curve, and cubic B-splines are equally obscure.

Table 9.3 The value of r(s) for different values of s

s s2/5 2ms2/5 r(s)

0 0 0 [2, 0, 0]

0.2236 0.01 0.063 [1.996, 0.126, 0.063]
0.4472 0.04 0.251 [1.937, 0.497, 0.251]
0.6708 0.09 0.565 [1.689, 1.071, 0.565]
0.8944 0.16 1.005 [1.072, 1.688, 1.005]
1.118 0.25 1.571 [0, 2, 1.571]

1.3416 0.36 2.262 [—1.275, 1.541, 2.262]
1.5652 0.49 3.079 [—1.996, 0.125, 3.079]
1.7888 0.64 4.021 [—1.275, —1.541, 4.021]
2.0124 0.81 5.089 [0.736, —1.859, 5.089]
2.236 1.0 6.283 [2, 0, 6.283]
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Fig. 9.9 Points located
along a helix with a
square-law distribution

9.3.17 Arc Length Using Polar Coordinates

Polar coordinates are sometimes more convenient than Cartesian coordinates when
describing functions involving trigonometric functions. For example, Fig. 9.10 shows
the correspondence between a point (x, y) and its polar coordinates (r, ), where

X =rcosf

y =rsinf

and as r = f(6), we have the product of two functions. Rewriting (9.7) in terms of

6 we have
fgz dx 2+ dy 2d9 (9.19)
S = —_— —_— . .
.V \ae a6

To find dx/d6 and dy/d6 we have to employ the product rule:

x =u@)-v(®)

x (9)dv+ (Q)du
a0 " TV a0

Fig. 9.10 The Yy
correspondence between ]) P(z,y)
Carteslan andpolar QT ? P(r,0)
coordinates !

r Y
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therefore,
x =rcosf
d_x = —rsinf + ﬂ cosf (9.20)
deo deo
y =rsinf
d_y =rcosf + ﬂ sin 0 9.21)
deo deo

substituting (9.20) and (9.21) in (9.19):

02 dr
= —rsinf + — cos 6
Ky [‘:] ( rsimo + 70 Ccos )
& dr\’ dr\’
= [‘;] \/,,2 sin? 6 + (ﬁ) cos20 + r2cos?6 + (é) sin% 0 do

02 dr 2
= 2+ (2L we
/e, r (cw)

therefore, the arc length is
02 ) dr\’
= + == d6b. 9.22
' /9 ’ (de) ©-22)

Let’s test (9.22) with the arc length of a circle, where r = 2 and 6 € [0, 27].
Therefore,

2 2
+ rcos@~|—d—rsin9 do
do

dr
-0
do
and
2
s = 22 4+ 02 d6
0
2
= 2/ 1d6
0
2
=26
0
=4

which is very compact, as well as correct. Now let’s compute the length of a loga-
rithmic spiral.

Figure9.11 shows the graph of a logarithmic spiral r = 2¢°2? where 6 < [0, 2],
whose length is calculated using (9.22) as follows.
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Fig. 9.11 Polar graph of Ya
r=2 e0.2(9 5

-7.5 -5

r = 2%

ar _ g g

do
2 2
d
s =/ NIEES (_r) do
0 do
2 > 3
_ / J@e02) 4 (0.4e02)
0
2
= V4e%4 +0.16e%94 40
0
2
= V4.16€%4 46

0

2
=/4.16 / "7 4o
0

2

__ v/4.16 0.20
— _O'2 . e

0

- T - )

~ ~4.16
~ VEIS (35136 — 1)
~ 25.634.

9.4 Summary

In this chapter we have computed the arc length of various functions using integra-
tion. However, all of the integrands contain a radical, which often makes integration
difficult, if not impossible, without resorting to numerical techniques or employing
software solutions.
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9.4.1 Summary of Formulae

Explicit Functions

fx)

/ ()
§ =
dx
2D Parametric Functions
x(1)
r(t) =
® [y(r)]

S‘/\/ dr)zd"

3D Parametric Functions

x(1)
r) = | y@
z(t)
2 2
dz
Polar Coordinates
r=f©)
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Chapter 10 ®)
Surface Area Creck for

10.1 Introduction

In Chap. 8 I showed how to compute the area under a graph using integration, and
in this chapter I describe how single and double integration are used to compute
surface areas and regions bounded by functions. Also in this chapter, we come across
Jacobians, which are used to convert an integral from one coordinate system to
another. To start, let’s examine surfaces of revolution.

10.2 Surface of Revolution

A surface of revolution is a popular 3D modelling technique used in computer graph-
ics for creating objects such as wine glasses and vases, where a contour is rotated
about an axis. Integral Calculus provides a way to compute the area of such surfaces

using
b / 2
S = 271/ fx) 1+ (d_y) dx (10.1)
a d'x

where y = f(x) and is differentiable over the interval x € [a, b].

To derive (10.1), consider the scenario shown in Fig. 10.1, where points P and Q
are on a continuous curve generated by the function y = f(x). The curve over the
interval x € [a, b] is to be rotated 360° about the x-axis.

The coordinates of P and Q are (x;, y;) and (x;41, y;+1) respectively, Ax; =
Xi+1 — X;, and As; approximate to the arc length between P and Q:

As; 14 (f(©)*Ax;

where c is some x € [a, b] satisfying Lagrange’s mean-value theorem.

© Springer Nature Switzerland AG 2019 169
J. Vince, Calculus for Computer Graphics,
https://doi.org/10.1007/978-3-030-11376-6_10
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Fig. 10.1 The geometry to o
create a surface of revolution Yy y=1 <'>

To compute the area AS; swept out by the line segment P Q when rotated 360°
about the x-axis, we use the mean radius r;:

Vil T Vi
rp = ——
2

such that

AS; = 2mr; As;
~ 2 <yl+lT—i_yl) /1 + (f/(c))ZAxl_.

As Ax; — 0, yir1 & y; ® f(c), therefore

AS; ~ 2 f (/14 (f/(c))* Ax;.

Consequently, the total area swept by the arc about the x-axis is

S = lim Y27/ () 1+ (/') Ax;

i=1
b 2
S = 271/ fx) 1+ (d_y) dx. (10.2)
p V dx

Similarly, the total area swept by the arc about the y-axis is

b dx\*
S=27[/ f), 1+ (5) dy. (10.3)

Let’s use (10.2) and (10.3) with various functions.



10.2 Surface of Revolution 171

Fig. 10.2 Surface area of a
‘ Yy
cylinder

10.2.1 Surface Area of a Cylinder

To compute the surface are of a cylinder we employ the geometry shown in Fig. 10.2,
where a straight horizontal line is rotated 360° about the x-axis. The function is simply
y=r,andx € [0,h]. Asy =r,dy/dx =0, and

b dv\2
S=271/ f(x)‘/1+(—y> dx

p dx

h
=2nrf 1dx

0

h

=2nr~x‘

=2nrh

which is correct.

10.2.2 Surface Area of a Right Cone

To compute the surface area of a right cone we employ the function y = rx/h, where
r is the cone’s radius and 4 its height, as shown in Fig. 10.3. Therefore,

_r
y=,x
dy_r
dx h

s =+h?+r?

b 2
S = Zn/ fx) 1+ (a’_y) dx
a dx
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Fig. 10.3 The geometry

used to compute the surface Y
area of a right cone Y = ir
Y=
S
r
h

X
Fig. 10.4 Surface area of a Yy
right cone

S x
: e (-5)
h
X

h oy r2
:27[/0 Ex 1+ﬁdx

_2nrfh h2 4 r2
T

2 h
= ﬂ/ xvVhr+r2dx

dx

K2 2o
_ 2mrs |,
~h
h2 2
=7rs

which is correct.
Reversing the line’s slope to y = r(1 — x/h) as shown in Fig. 10.4 we have

= (1-3)
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Fig. 10.5 The surface of a
right cone created by
sweeping a line about the
X-axis

Figure 10.5 shows a view of the swept conical surface.

10.2.3 Surface Area of a Sphere

The surface area of a sphere is § = 4772, and is derived as follows.

173

Figure 10.6 shows a unit semi-circle and Fig. 10.7 shows the surface of revolution

when this is swept 360° about the x-axis. The equation of a circle is x> + y> = r

2
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Fig. 10.6 A unit semi-circle

Fig. 10.7 The surface of
revolution formed by
sweeping a semi-circle
through 360°

over the interval x € [—r, r] therefore,

F) =y ==

To find f'(x), let

u=r?—x*
du
=2
dx *

y=+u

d 1 1
A WS Vo -

du 2 NN
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dy dy du 1 (—2x) —X
—_— = (—2X) = ———
dx du d.X 212 — x2 r2 — x2

which is substituted in (10.1):

_271/ f(x)dl—{— dx

_277,'/ Vv —X2\/ \/:2> dx
r 2

=27 [ Vr?2—x2 1+( 2x_ 2) dx

=21 \/ D R —

=27Tr/ 1dx

r

Vet

=2nr-x

—r

=2mr2r

=4mr?.

10.2.4 Surface Area of a Paraboloid

To compute the surface area of a paraboloid we rotate the parabola function y = x?2

about the y-axis, as shown in Fig. 10.8.

2

y=x
x= 5
dx_ 1
d

y 2y
—2n/ f(y),/1+ dy
—Zn/f 1+(\/_) dy

1
1
=2 1+ —d
ﬂ/oﬁ T
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Fig. 10.8 A parabola to be y
rotated about the y-axis

y =x2

—271 f

4y+

2y
:n/O Jay F1dy.

Let u = 4y + 1, therefore, du/dy = 4, or dy = du /4. The limits for u are 1 and 5.

_Zn/f

5
Szzf Vi du
4 J,

5
=%f1 u'? du

T 5 3]

!

% (V5 - V1)
12

:6<
-5 (v

Figure 10.9 shows a similar parabolic surface.

10.3 Surface Area Using Parametric Functions

The standard equation to compute surface area is
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Fig. 10.9 A parabolic
surface

b dy 2
Szbaff@hﬂ+<—) dx (10.4)
a dx

where the curve represented by f(x) is rotated about the x-axis. In order to convert
(10.4) to accept the following parametric equations

x = fi()
y= fy(t)~

First, we need to establish equivalent limits [¢, 8] for ¢, such that
a= fi(x) and b= fy(,B)

Second, any point on the curve has corresponding Cartesian and parametric coordi-
nates:
x and f,(¢)

y=/f() and fy().
Third, we compute dy/dx from the individual derivatives dx/dt and dy/dt:

dy dy dt
dx ~ dt dx

which means that (10.4) can be written as

p dy dt\’
S=h/ mn1+<E-E>dx

p dxdt)? + (dydt)?
=2ﬂf ﬁm/(xi;$gft)dx
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we have

which is correct.

s dx\° [dy\*d
=27r/ fy(t)\/<d—);) +(d—f> édx

B 2 2
s=a [ (%) + (%)

For example, to create a unit-sphere from the parametric equations for a semi-circle

X

= fy(t) = —cost

y = fy(t) =sint

dx
dt
dy
dt

S

=sint
= cost

B dx\’ dy :

T
=2 / sin #v/sin® 7 + cos? ¢ dt
0
T

=2rr/ sint dt
0

g

= —2m - cost

=2r(1+1)
=4

To rotate about the y-axis (10.5) becomes
) /ﬁf(t) dx2+ dyzdz
=2 X — — .
o dt dt

10.4 Double Integrals

10 Surface Area

(10.5)

Up to this point we have only employed single integrals to compute area, but just as
it is possible to differentiate a function several times, it is also possible to integrate
a function several times. For example, to integrate

2= f(x,y) =x7y
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over the interval x € [0, 3], then we write

3 3
/ fx,y) dx:/ x2y dx
0 0

3
1.3
:—xy’
3 0

= Oy.

But say we now want to integrate 9y over the interval y € [0, 2], we write

2 2
/9ydy:9/ydy
0 0

These two individual steps can be combined in the form of a double integral:

2 03
/ / x2y dx dy
0o Jo
where the inner integral is evaluated first, followed by the outer integral:
2 (3 2 3
/ / xzydxdy:/ %x‘%‘ ydy

0o Jo 0 0

2
=9 / ydy

0

= 18.

Note that reversing the integrals has no effect on the result:

3 2 3 2
//xzydydxzf %yz‘xzdx
0o Jo 0 0
3
:2/ x? dx
0

179
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Let’s take another example:

2 2 2 2
//3xy3dxdy:3/ %xz‘ v dy
o J1 0 1
2
=§/ v dy
0

9 1.4
z'zy‘

18.

0

10.5 Jacobians

In spite of a relatively short life, the German mathematician Carl Gustav Jacob Jacobi
(1804-1851) made a significant contribution to mathematics in the areas of elliptic
functions, number theory, differential equations and in particular, the Jacobian matrix
and determinant.

The Jacobian matrix is used in equations of differentials when changing variables,
and its determinant, the Jacobian determinant, provides a scaling factor in multiple
integrals when changing the independent variable. I will provide three applications
of the determinant, showing its use in one, two and three dimensions.

10.5.1 1D Jacobian

In order to integrate some integrals, we often have to substitute a new variable. For
example, to integrate

4
/ V2x +1dx
1

it is convenient to substitute u = 2x + 1, where du/dx = 2 ordx/du = 1/2, calcu-
late new limits for u: i.e. 3 and 9, and integrate with respect to u:

4 9 dx
f «/2x+ldx:[ ﬁd—du
1 3

u

9
=%/ Ju du
3
9

_1 12
—2/; u'cdu

12,32
2 3

3
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3/2 3/2
=1 -3
~127-52)
~ 7.3.

The factor 1/2 is introduced because x changes half as fast as u. This scaling factor is
known as a Jacobian, and is the derivative dx /du. We can also write itas dx /du, even
though there is only one variable, as the partial notation keeps the Jacobians consistent
as we increase the number of dimensions. Furthermore, we are only interested in the
magnitude of the Jacobian, not its sign.

The scaling factor could also be another function. For example, to integrate

2
X
_ 4
/0 2122

it is convenient to substitute u = x? 4+ 2, where du/dx = 2x or dx/du = 1/2x,
calculate new limits for u: i.e. 2 and 6, and integrate with respect to u:

/2 X J /6x dxd
——dx = — —du
0 (x2+2)2 > u? du

In this case, the scaling factor is 1 /2x, which is the corresponding Jacobian, however,
this time its value is a function of x.

10.5.2 2D Jacobian

When defining double integrals using Cartesian coordinates, one normally ends up
with something like
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Fig. 10.10 The rectangle

C1C2C3Cy in Cartesian constant
space
C 4 03
constant y
dA dy
Cy dx Cy
X
Fig. 10.11 The rectangle v
Py P, P3 Py in parametric constant u
space
P P P

constant v

dv

Py du Py

b
/ F.y) dx dy

where dx dy is regarded as the area of an infinitesimally small rectangle, and is often
represented by d A. But if we move from Cartesian coordinates to polar coordinates
and work with functions of the form g(p, 6), there is a temptation to substitute g (o, 6)
for f(x, y) and (dp dO) for (dx dy), which is incorrect. The reason why, is that the
differential area of a rectangular region in Cartesian coordinates does not equal
the differential area of a corresponding region in polar coordinates. The Jacobian
determinant provides us with the adjustment necessary to carry out this substitution,
which in this case is p, and (dx dy) is replaced by (p dp d6). I will describe a
general solution to this problem, which is found on various internet websites, but in
particular http://mathforum.org/dr.math/.

Figure 10.10 shows an infinitesimally small rectangle defined by the points
CC,C5Cy4 in Cartesian coordinates. The vertical broken lines identify lines of con-
stant x, and the horizontal broken lines identify lines of constant y. The rectangle’s
width and height are dx and dy, respectively, which makes dA = dx dy. Similarly,
Fig. 10.11 shows an infinitesimally small rectangle defined by the points P; P, Pz P,
in another coordinate system. The vertical broken lines identify lines of constant u,
and the horizontal broken lines identify lines of constant v. The rectangle’s width
and height are du and dv, respectively.


http://mathforum.org/dr.math/

10.5 Jacobians

183
Fig. 10.12 The parametric W
points Py P, P3 P4 in ) ‘@0\\,
Cartesian space O™
: Py
p4\/ o = constant v
K dAy. \
‘\\ . ,»/7*:’\%0**7—7;;
o Py
- Pl\:
u

We now create two single-valued functions mapping parametric coordinates (u, v)
into Cartesian coordinates (x, y):

x=f(u,v) and y=g(u,v)

where for every (x, y) there is a unique (u, v). There are also two single-valued
functions mapping Cartesian coordinates (x, y) into parametric coordinates (u, v):

u=F(x,y) and v =G(x,y).

For example, given
u=x>+y> and v=x>—y>2

then

2 2

Next, we take the points in #v-space and map them into their corresponding Cartesian
points as shown in Fig. 10.12. The resulting shape depends entirely upon the nature
of the mapping functions f(u,v) and g(u, v); however, we anticipate that they are
curved in some way and bounded by contours of constant u and v.

If the area of this differential region equals the Cartesian rectangle dx dy, then
dx dy can be replaced by du dv. If not, we must compensate for any stretching or
contraction. The problem therefore, is to compute the area of this curvilinear rectangle
P, P, P3Py in Fig. 10.12 and compare it to the area of the rectangle C;C,C3Cy in
Fig. 10.10. This is resolved by assuming that when this rectangle is infinitesimally
small, curves can be approximated by lines, and the area of the triangle P P, Py is

half the area of the required region. The area of the triangle is easily computed using
the determinant

1 11
% X1 X2 X4
Y1 Y2 ya
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where (x1, y1), (x2, ¥2) and (x4, y4) are the triangle’s vertices taken in anticlockwise
sequence. Reversing the sequence, reverses the sign, which is why the absolute value
is added at the end of the proof. However, if we assume that the area of the curvilinear
region is twice the area of the triangle, then

111
Area of (P1 P2P3P4) = dA1 = |X]1 X2 X4 |. (106)
Y1 Y2 Ya

The next stage is to derive a function relating the differentials dx and dy with
du and dv, so that the triangle’s coordinates can be determined. These functions are
simply the total differentials for f and g:

x = f(u,v)
y=g@,v)

0 0
dx = —xdu + —xdv
ou av

As with many mathematical solutions we can save ourselves a lot of work by
making a simple assumption, which in this case is that the coordinates of P, are
(x1, ¥1), and the coordinates of P, and P, are of the form (x; + dx, y; + dy).

Starting with P, with coordinates (x3, y,), then

X = x| +dx

2=y +dy

d 0
X) =X + —xdu + —xdv
ou av
0 0
Y2 = )1 —+ —ydu + _de
ou av
but as P; and P, lie on a contour where v is constant, dv = 0, which means that

0x
Xy =X + —du
ou

dy
ou

y2 = y1 + —du.

Next, P4 with coordinates (x4, y4), then

X4 =x1 +dx

Y4 =y +dy
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X4 =Xx1 +

ax
ou

185

0x
av

du + —dv

0 0
ya=y1+ 2 du + 2
ou av

but as P; and P4 lie on a contour where u is constant, du = 0, which means that

0
X4 = X1 + —xdv
v
0
ya=y+ 2,
av

We now plug the coordinates for P;, P, and Py into (10.6):

1

yiyi+

1

axd 0x
dA, = x1x1+£ u x|+
dy
ou

1

—dv
av .

a
du y + —ydv
av

Rather than expand the determinant, let’s simplify it by subtracting column 1 from

columns 2 and 3:
1

dA, = | ™

which becomes

dA; =

The determinant now contains the common term du dv, which is taken outside:

0x
Ju
dy
u

dA

Finally, we write this as

_ )

dA,
a(u,v)

where J is the Jacobian determinant

du

0x

av

9y du dv.

av
dv=1|J|dudv
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dx ox
ou v
dy dy
ou ov

Therefore, for the region R, we can write

// F(x,y)dxdy:// F(f(u,v),gu,v)) |J| dudv
R(x,y) R(u,v)

Let’s evaluate J for converting Cartesian to polar coordinates, where

therefore,

X = pcosf
y = psiné
0x
8—:0059, a—z—psmé’, — =sinf), — = pcosh,

cosf —psiné
sinf pcos6

= pcos’6 + psin® 6
=p

therefore, dx dy is replaced by p dp d6.

10.5.3 3D Jacobian

The Jacobian determinant generalises to higher dimensions, and in three dimensions

becomes

dx dx dx
du Jdv ow
dy dy 9y
du Jdv ow
dz 0z 0z
du dv ow

(10.7)

and is used in with triple integrals for calculating volumes. For example, in the next
chapter I will show how a triple integral using spherical coordinates is converted into
Cartesian coordinates using the appropriate Jacobian. For the moment, let’s evaluate
the Jacobian determinant. Figure 10.13 shows the convention used for converting the
point (x, y, z) into spherical polar coordinates (o, ¢, ). From Fig. 10.13 we see that
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Fig. 10.13 Spherical polar 2
coordinates

i
i

i

i

/ i
1) |
i

i

.

i

i

X = psing¢ - cosH
y=psing -siné

7= pcos¢
the partial derivatives are
ox in ¢ P by 8 P ox in - sinf
— =sin¢g -cosf, — = pcos¢-cosf, — = —psin¢ - sinb,
9p g " a0 °
8_y =sing - sind, 2 pcos¢ -sinb, 8_y = psing - cosb,
ap ap a0
0z a 9z
—chosqb, —Zz—psind), —ZZO.
ap ap a0

Substituting these partials in (10.7):

sin¢g - cos@ pcos¢ -cosf —psing - sin 6
J =|sin¢g -sinf pcos¢-sinf psing - cosb
cos ¢ —psing 0

which expands to

det = ,02 coszd) . cos? 8 - sin ¢ + ,02 sin’ ¢ - sin® 6 + ,02 sin’ ¢ - cos? 6 + p2 sin ¢ - sin? 6 - cos? ¢
= <p2 sin’ ¢+ p2 sing - cos? q&)(sin2 6 + cos? 9)
= ,o2 sin ¢ (sin2 ¢+ cos? ¢>
= ,02 sin¢.

Normally, we take the absolute value of the Jacobian determinant, but in this case,
¢ € [0, ], and p? sin ¢ is always positive. Thus p? sin ¢ d¢ d6 replaces dx dy dz
in the appropriate integral.
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When using cylindrical coordinates, where

x=pcosp, y=psing,

the Jacobian is p:

0x
u
dy
ou
9z

du

:p.

Thus the first three Jacobians are

0x

ox u
Ji=—, h=

1= 2 8_y

ou

which are often compressed to

Ji

0x
v
dy
ov
9z
v

0x
av
dy
ov

dx a(x, y)
=—, h= ,
ou o(u,v)

0x
ow
dy
ow
a9z
ow

0

cos¢p —psing 0
=|sing pcos¢ O
0

= pcos’ ¢ + psin’ ¢

1

Jy =

3 =

ox
ou
dy

ou
0z

ou

10.6 Double Integrals for Calculating Area

=2,

ox
av
dy

av
0z

av

0x
ow
dy
ow
9z

ow

(x,y,2)
A, v, w)’

10 Surface Area

I will now illustrate how double integrals are used for calculating area, and in the next
chapter, show how they are also used for calculating volume. To begin, look what
happens when we integrate f(x, y) = 1 over the interval x € [a, b],and y € [c, d]:

dy

b
1dxdy
b

d b d
[ remscar=[ |
C a Ld a
/ x
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Fig. 10.14 The projection of
z = f(x,y) on the xy-plane

= | (b—a)dy
‘ d
=(0b—a) 1dy
‘ d
=0b-ay|
= (b —a)d— o).

The result is the product of the x- and y-intervals, which is the region A formed
by a 3D surface projected onto the xy-plane, as shown in Fig. 10.14. The actual area
of the surface created by z = f(x, y) bounded by the points P;, P,, P; and P; is

given by
d b 9 2 9 2
R:/‘/vh+(£>+<£>dx®. (10.8)
¢ Ja dx dy
Let’s show how (10.8) is used to compute area. The first example is simple and
is shown in Fig.10.15, where z = f(x, y) = y. The intervals are x € [0, 2] and

y € [0, 1]. By inspection, the area equals 2+/2. Calculating the partial derivatives,
we have

d ad
% _ 0, and %
ax ay

1

therefore, (10.8) becomes

1 2
R://\/1+02+12dxdy
o Jo

1 2
zﬁ//Idxdy
o Jo
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Fig. 10.15 Part of the
surface z =y

Fig. 10.16 Part of the
surface 7 = 4x + 2y

[
=x/§/x‘ dy

0 0

1
=2«/§/1dy

0

1
-2/,
=22.

The second example is shown in Fig. 10.16, where z = f(x, y) = 4x + 2y. The
intervals are x € [0, 1] and y € [0, 1]. Calculating the partial derivatives, we have
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a d
% 4, and % _ 2,
ax ay

therefore, (10.8) becomes
1 pl
R:/ / V1+42+4+22dx dy
o Jo
1 pl
=\/21/ / 1dxdy
o Jo
Lo
:v21/ x‘ dy
0 0
1
:v21/ 1dy
0

1
-
=+/21.

We can also calculate the area of the surface z = 4x + 2y contained within a
specific region on the xy-plane as follows. For example, say the region is defined by
2iyi=1

as shown in Fig. 10.17, we calculate the area as follows.

To begin, we use polar coordinates instead of Cartesian coordinates, incorporating
the vital Jacobian, and rewrite (10.8) as

/2 1 P 2 P 2
R:/ / 1+ (=) +(=) pdpde. (10.9)
0 0 0x By
The inner integral integrates over the interval p € [0, 1], and the outer integral inte-
grates over the interval 8 € [0, /2]. Using the same equations, we have

/2 1 9 2 9 2
sz / 14+ () +(Z) pdpas
0 0 8)6 8_))
7/2 pl
=/ f\/l+42+22pdpd9
0 0

/2 pl
=\/21/ / o dp do
0 0
/2 1
= ¢21/ P ‘0 do
0
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Fig. 10.17 The graph of ‘
z = 4x + 2y intersecting the
cylinder defined by

x2 4+ y? = 1 on the xy-plane

/2
= V21/ 1do
0

-]

_ V217
)
~7.2.

For a third example, Fig. 10.18 shows part of a cone z = 4,/x2 + y? intersecting a
cylinder defined by x> + y? = 1 on the xy-plane. Let’s calculate the area of the cone

contained within the cylindrical region over p € [0, 1], and 6 € [0, 7 /2].
The partial derivatives are

0z 4x 0z 4y
=————, and

ax a2ty By Jaita?

therefore, using (10.9) we have

7/2 pl 9 2 9 2
R:/ f\/1+(—z> +<—Z) p dp db
0 0 dx By
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Fig. 10.18 The graph of

z = 4y/x% + y? intersecting
the cylinder defined by
x2 4+ y2 =1 on the xy-plane

2 4y 2
+ pdpdb
Vx4 y? ) (,/x2 + y2>
”/2 16x2 16y2
T +y? T +y
71/2
0 0
/2 1
_ \/17/ P ‘ do
0 0
/2
= v17/ 1d6
0

)
— V176 ‘:
_ 177

2
~ 6.48.

2,od,ode

The above examples have been carefully chosen so that the radical within the inte-
grand reduces to some numerical value. Unfortunately, this is not always the case,
and integration has to involve software or numerical methods.
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10.7 Summary

In this chapter we have derived formulae to compute the surface area of contours
rotated about the x- and y-axis. The important formulae are repeated below.

10.7.1 Summary of Formulae

Rotate About the x-axis

b 2
S = 2;1/ Foo 1+ (d—y> dx.
a dx

Rotate About the y-axis

b dX 2
Szzn/ £ 1+(@) dy.

If the function is described parametrically with x = f,(¢) and y = f,(¢) where t €
[a, B], then:

Rotate About the x-axis

B 2 2
S = 2nf fy(t)\/cli_):) + (%) dt.

Rotate About the y-axis

p dx\’ dy g
S=2 Lt — — ) dt.
g f”‘/(dr) " (dt)
Double integrals for calculating the area of surfaces described by functions of the
form z = f(x, y), then:

Cartesian Coordinates

=)+ ()

Spherical Polar Coordinates

=)+ () s
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The First Three Jacobian Determinants

0x

ox u
Ji=—, L=

=3, 2 B_y

ou

which are often written as

J=—,
! ou

0x
av
dy
av

ox a(x,y)
Jr = ,
o(u,v)

Jy =

0x
ou
dy
ou
0z
ou

ox
av
dy
av
0z
av

0x
ow
dy
ow
d9z

ow

_0(x, y,2)
o Au, v, w)’
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Chapter 11 )
Volume crec

11.1 Introduction

In this chapter I introduce four techniques for calculating the volume of various
geometric objects. Two techniques are associated with solids of revolution, where
an object is cut into flat slices or concentric cylindrical shells and summed over the
object’s extent using a single integral. The third technique employs two integrals
where the first computes the area of a slice through a volume, and the second sums
these areas over the object’s extent. The fourth technique employs three integrals to
sum the volume of an object. We start with the slicing technique.

11.2 Solid of Revolution: Disks

In Chap. 10 we saw that the area of a swept surface is calculated using

b / 2
S = 27[/ fx),/ 1+ (d_y) dx.
a dx

Now let’s show that the contained volume is given by

b
1% =7r/ (f(x))? dx.

Figure 11.1 shows a contour described by y = f(x) rotated about the x-axis
creating a solid of revolution. If we imagine this object cut into a series of thin
slices, then the entire volume is the sum of the volumes of the individual slices.
However, if we cut a real solid of revolution into a collection of slices, it is highly
likely that each slice forms a right conical frustum, where the diameter of one side
differs slightly from the other side. Therefore, our numerical strategy assumes that
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Fig. 11.1 Dividing a volume
y=1(

of revolution into small disks \E‘yl)/

Z///T;T-Aﬁ——
the slices are infinitesimally thin, and are thin disks with a volume equal to 7> Ax.

Figure 11.1 shows a point P (x;, y;) on the contour touching a disk with radius f(x;)
and thickness Ax. Therefore, the volume of the disk is

Vi =7 (f(x))* Ax.

Dividing the contour into n such disks, and letting n tend towards infinity, the entire
volume is given by

— 1i )2
V= nlgr;o E_l T (f(x;))” Ax
which in integral form is

b
V:n/(ﬂmfdx (11.1)

Let’s apply (11.1) to the same objects used for computing the surface area of surfaces
of revolution.

11.2.1 Volume of a Cylinder

The geometry required to compute the volume of a cylinder is shown in Fig. 11.2,
where y = r (the radius) and 4 is the height. Therefore, using (11.1) we have

b
Ven f () dx

h
=71/ r? dx
0
h
=nr2/ 1dx
0

=7TI’2')C‘
0

= 7r2h.
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Fig. 11.2 Computing the y
volume of a cylinder

199

N

11.2.2 Volume of a Right Cone

The geometry required to compute the volume of a right cone is shown in Fig.
where y = rx/h. Therefore, using (11.1) we have

b
V=n/(ﬂwﬁdx

hrZ 2d
=T —X X
o h?

11.3,

Reversing the orientation of the cone as shown in Fig. 11.4, such that y = r(1 —

x/h) we have

b
V=n/<ﬂmfw
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Fig. 11.3 Computing the
volume of a right cone

We could have also integrated this as follows:
b
V=nf<ﬂnfdx
a
b 22
=7 r (1 — —) dx
0 h
h 2
=nr2/ (1 — f) dx.
0 h

Substituting
X
=1-=
" I
where du/dx = —1/h, or dx = —h du, and calculating new limits for u: [1, 0],
we have

0
V= mzf u*(—h) du
1

1
= m’zh/ u® du
0

11.2.3 Volume of a Right Conical Frustum

Figure 11.5 shows the geometry to compute the volume of a right conical frustum,
but this time the contour is rotated about the y-axis. The integral to achieve this is

b
V=n/(ﬂwf@
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Fig. 11.4 Reversing the
orientation of a right cone

Fig. 11.5 Computing the y |
volume of a right conical
frustum

and the contour to be rotated about the y-axis is

= (1-2)n
H

with the integral for the volume:

h 2
V= nrf/ (1 — l) dy.
0 H

However, in reality, we will not know the value of H, but we would know the values
of r| and r,. Therefore, with a little manipulation, the contour can be written as

‘o hri + y(ra —r1)
B h

which confirms that when y = 0, x = r{, and when y = h, x = r,. Therefore, the
volume can be written in terms of r{, r, and A as:

x (" 5
V:ﬁ/ (hri +y(r2 — 1)) dy
0

h
T
= ﬁf Wori 4 2hriy(ry = 1) + y*(ra — n)* dy
0
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Fig. 11.6 A semi-circle y
used to form a sphere y2 =72 x2

= hl [h rly —l—hrly (r, —ry) —|— ( 22— 2r ry +r12)]g
%(/’l?’ —|—h3r1(r2—r1)+ h3(r2—2r1r2+r1))
mh
=3 (3}’l + 3r1ry — 317 + 12 —2r1r2+r1)
h
:%(rlz+r22+r1r2).

For example, when r; =2 cm, r, =4 cm and 2 = 3 cm, then

V:S?n(22+42+8)=28n cm’.

11.2.4 Volume of a Sphere

A sphere is easily created by rotating a semi-circle about the x- or y-axis, as shown
in Fig. 11.6, where the equation of the contour is given by

L

Using (11.1), the volume is

_ 2. 1.37
_zr[rx X7,
=7T(r3—%r3+r3—%r%)
— 4,3

= 37r.
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Fig. 11.7 Part of an ellipse y
used to form an ellipsoid

-a

11.2.5 Volume of an Ellipsoid

Figure 11.7 shows part of an ellipse, which when rotated about the x-axis creates a
3D ellipsoid. Using (11.1) with the equation for an ellipse:

()

b2
y2 — ; (a2 _ x2)

we have

where the ellipsoid’s volume is given by

a
V:n/ y? dx
—a

= nb—2 ’ (a2 —xz) dx
a? J_,
= n—2 [azx — 1x3]a
a2 3 —a
2
= na—2 (a3 - %a3 +a3 — %a3)
= ;—‘ymbz.

Figure 11.8 shows an ellipsoid.
Sweeping the ellipse about the y-axis creates another ellipsoid, with a different

volume given by
b
V=nm / xdy
—b
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Fig. 11.8 An ellipsoid

Fig. 11.9 A parabola, which y
when rotated aboutthe Ih ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
y-axis creates a paraboloid
y=x
0 X

2
42 1,377
7oz [0y = 5L,
(12
=7 (b* — 57 +b° — 1)
=3na’b

Observe that in both cases when a = b = r, the object is a sphere with a volume of

4 3
37'[7' .

11.2.6 Volume of a Paraboloid

Figure 11.9 shows a parabola, which when rotated about the y-axis forms a 3D
paraboloid To rotate about the y-axis the equation of the parabola is

x= 3

where y € [0, i]. The volume of the paraboloid is

h
V=nf x2dy
0
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Fig. 11.10 A paraboloid

Fig. 11.11 A series of
concentric shells

h
1.2
:ﬂ—y’
27 o
_1_32
—Znh.

If x € [0, 1], then & = 1, and the volume is 7z /2. Figure 11.10 shows a paraboloid.

11.3 Solid of Revolution: Shells

A solid of revolution can also be constructed from a collection of concentric cylindri-
cal shells as shown in Fig. 11.11, where the object’s shape is defined by the contour
y = f(x) which is rotated about the y-axis. Figure 11.13 shows one of the cylindri-
cal shells with a radius of x;, f(x;) high and Ax thick. As the shell is assumed to be
infinitesimally thin, the volume of the shell is

Vi =2mx; f(x;)Ax.
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Fig. 11.12 Dimensions for y y = f(x)
one concentric shell

Dividing the solid into n such shells, and letting n tend towards infinity, the entire
volume is given by

V= nlirroloz;2nxif(x;) Ax

which in integral form is

b
V:27‘r/ x f(x) dx. (11.2)

Similarly, when the contour is rotated about the x-axis, the integral is

d
V= 27{/ y f(y) dy. (11.3)

Let’s test (11.2) and (11.3) with various contours.

11.3.1 Volume of a Cylinder

Figure 11.12 shows the geometry to create a cylinder with radius r, and height & to
be rotated about the y-axis. Using (11.2) the volume is

b
V:2n/ x f(x)dx

=27r/ xh dx
0
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Fig. 11.13 The geometry vl
used to create a cylinder
h y=nh
0 r X

11.3.2 Volume of a Right Cone

Figure 11.14 shows a straight line represented by y = k(1 — x/r), which when
rotated about the y-axis sweeps out a right cone with radius r, and height 4. Its

volume is given by

11.3.3 Volume of a Sphere

Figure 11.15 shows the geometry to create a hemisphere with radius r to be rotated
about the y-axis. As we have seen before, it is convenient to use polar coordinates
when dealing with circles and spheres, therefore, our equations are

x =rcosf and y =rsinf.
The original interval for x is x € [0, r], which for 6 is 6 € [ /2, 0]. Therefore,

dx

— = —rsinf or dx = —rsinf d6.
do
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Fig. 11.14 The geometry »t
used to create a right cone

Fig. 11.15 The geometry yA
used to create a hemisphere

rsin@ T

o rcos6 X

Using (11.2) the volume is

V=27r/ x f(x)dx
0
0
=2nf (rcosf -rsinf (—rsinf)) do
/2

0
= —271r3[ cos® - sin’ 6 do
/2

0
= —27'rr3/ cos (1 — cos? 9) do
/2

0 0
= —2nr3/ cosf do + 2nr3/ cos® 0 do
/2 /2

= 273 .sin®

0 0
+27rr3/ cos’ 6 do
7/2 /2
0

=27 + 2nr3f cos® 0 do.
/2

From Appendix B, we see that

/cos39 do = %sin9~coszt9+%sin9—i—c.
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Therefore,

_ 3 3 . 2 2 o 0
V =27r3 4+ 2773 [Lsin6 - cos G—i—gsm@]ﬂ/z

=27r3 = 27¢3

_ 2.3
—37'[}"

[

which makes a sphere’s volume %nr3.

11.3.4 Volume of a Paraboloid

We have already seen that the volume of a paraboloid using y = x? is %nhz, where
h is the height. The following shell method computes the volume surrounding the
paraboloid, which using (11.2) gives

and if x € [0, 1], then h = r2, and V = %nhz. Which shows that the volume of
inner paraboloid equals the enclosing volume. In order to compute the volume of a
paraboloid using the shell technique, the parabola has to be inverted, as shown in
Fig. 11.16.

Fig. 11.16 The geometry
used to create a paraboloid
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Fig. 11.17 A surface
created by z = f(x, y)

But in our equation, & = r2, therefore,

V =2 (3h* — 1h?)

_ 132
—27rh.

11.4 Volumes with Double Integrals

Figure 11.17 illustrates a 3D function where z = f(x, y) over a region R defined
by the limits @ < x < b and ¢ < y < d, whose area is projected onto the xy-plane.
If we consider a small rectangular tile on the xy-plane with dimensions Ax and Ay,
the volume of this column is approximately

AV & f(x, y)) Ax. Ay

where i and j identify a specific tile. Therefore, the total volume is

V ~ Zf(xi, vj)Ax.Ay.

iJ
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In the limit

Ax,Ay—0

b pd
V://f(x,y)dxdy

where the inner integral is evaluated first, followed by the outer integral. The integral
can be written in two ways:

b pd d b
V=//f(x,y)dxdy://f(x,y)dydx. (11.4)

Let’s apply (11.4) in various scenarios.

V= lim Zf(xi,yj)Ax.Ay
i,

or in integral form:

11.4.1 Objects with a Rectangular Base

Fig. 11.18 A rectangular i
box
(x2,y1, 1)
: ! . (x1,y2,0)
z=h
(2, y1, M) o 7 (x5, y,, )
/ O
7 7 (1,2, 0)
/
P ).
o (x2,1,0) (x2,¥2,0)

X

11.4.2 Rectangular Box

Figure 11.18 shows a rectangular box whose top surface is defined by z = k, with
base dimensions (x, — x1) and (y, — y;), where the enclosed volume is

V =h(xy — x1)(y2 — y1).
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This is confirmed by (11.4) as follows:

Y2 X2
v= [ reyaxay
i Jxi
y2 X2
= / / hdxdy
Y1 X1
V2 px
= hf f 1dx dy
Y1 X1

1

=h(x2 —x1)(y2 — y1).

11.4.3 Rectangular Prism

Volume

Figure 11.19 shows a rectangular prism whose top sloping surface is defined by
z = h(1 — x/a), with base dimensions a and b, where the enclosed volume is

V = %hab.

Fig. 11.19 A prism zt

0,5,0) ¥

Aa,00 (a,b,0)
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This is confirmed by (11.4) as follows:

y2 X2
V:/ / f(x,y)dx dy
Y1 X1

11.4.4 Curved Top

Figure 11.20 shows an object with a square base and curved top defined by z =
X+ y. Given that {x, y} € [0, 1], then the enclosed volume is:

Fig. 11.20 An object with a
curved top
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[
J
=/0'[%x ol @
J

11.4.5 Objects with a Circular Base

The same double integral works with polar coordinates, which enables us to compute
the volume of objects with a circular base. We have already seen that when moving
from Cartesian coordinates to polar coordinates, the appropriate Jacobian must be
included. In this case, the following substitutions are:

X = pcosf
y = psinf
dx dy = pdpdf

which transforms (11.4) into

b d 2 r
=/ / f(x,y)dx dy:/ / f(pcosB, psinf)p dp db. (11.5)
a c 0 0

Let’s test (11.5) using various objects.

11.4.6 Cylinder

The volume of a cylinder with radius 7 and f(p cos@, psin®) = h is wr2h, which
is confirmed as follows:
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Fig. 11.21 Cross section of B Ax
a cylinder and intersecting z=h- P
plane e\
h
x i 0

2 r
V:/ / f(pcosf, psin®)p dp db
0o Jo
2 r
= / hp dp do
0o Jo

27112
:h =
I

do

11.4.7 Truncated Cylinder

The volume of a truncated cylinder is calculated by forming the intersection of a
cylinder and an oblique plane. The following proof confirms that the volume equals
7r2h, because the cylinder’s height, &, is the z-axis. To illustrate this, Fig. 11.21
shows a side projection of a cylinder intersecting the plane: z = h — Ax/r, where
A controls the slope of the plane. It is clear that the two cross-hatched triangles are
equal, which is why the volume is unchanged:

2 r
V=/ / f(pcosf, psin®)p dp db
0o Jo

2 r A ]

:/ / (h— pcos )pdpd@
0 0 r
2 a A 2 0

2/ / (ph—ﬂ) dp do
0 0 r
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Fig. 11.22 A cross-section
of parabola intersecting a
cylinder

11 Volume

ZA

4 : =x*2+2

2 A 0
/ [ h 03 cos i| 40
0 3r 0

2
/ (3 r2h — lkr cos) do

(=]

|
o=

r? / (Bh —2Acos6) db
0

[3h9 2 sin 9]

r26mwh
rh.

1,
6"
1
6"
=7nr

If the radius is 2, and the height 4, then the volume is 167r. Observe that the result
is independent of A. Taking this cylinder and intersecting it with the parabola, z =
2+ %xz as shown in Fig. 11.22, the volume reduces to 107:

2
/ / 2+ pdpd@

2 2
/ *cos’0) p dp d
0

Il
S— 5— 5— 55— 55— S

2w 2
/ 20+ 1p?cos®0) dp db
0

2
[,02 ,0 cos 0] do

2

44+ 2cos’0 do

2
54+ cos26 db

2w
=[50+ 4sin20]

p—

Or.
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11.5 Volumes with Triple Integrals

The double integral for calculating area is

fff(x,y)dxdy or //f(x,y)dA
R

R

where the region R is divided into a matrix of small areas represented by dx dy or
dA. The Riemann sum notation is

J[ rexisyda= im 3 rein aa
R i=1

This notation can be generalised into a triple integral for calculating volume:

// f(x,y,2)dx dydz or // fx,y,2)dV
R R

where the region R is divided into a matrix of small volumes represented by dx dy dz
or dV. The Riemann sum notation is

//f(x,y,z) dV = lim E Sy yiyzi) AVi.
n—oo _1
R =

Let’s apply (11.6), where each integral identifies its interval of integration, to various
3D objects and calculate their volume.

b pd pf
V:///f(x,y,z)dxdydz. (11.6)

11.5.1 Rectangular Box

Figure 11.23 shows the Cartesian coordinates for a rectangular box, with x-, y- and
z-lengths are (x; — x1), (y2 — y1) and (z2 — z;) respectively, and whose volume is
calculated using (11.6) as follows.

b pd of
V:f / / f(x,y,2)dx dy dz
aZZ ‘ y2e X2
= / / / 1dx dy dz.
21 RA X1
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Fig. 11.23 Cartesian z4
coordinates for a rectangular
box
(x2,¥1)22) o (%1, Y2, 22)
|
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A !
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o (x2,¥1,21) (x2,¥2,21)

X

Together, the three integrals create the product of three lengths:

X2 — X1, Y2—DY1, 22— 21

which form the volume of the box:

22 y2
sz / X
21 Y1
22 2
=(x2—x1)/ / ldydz
a Iy
22
= (x2 _xl)f y
21

= (1, —m)(yz—yl)/~ 1 dz

X2
dy dz
X

2
dz
Vi

22

=@ —x)(2—y1)-z

21

= (x2 —x)(y2 — yD(z2 — z1)

which confirms that the volume is the product of the box’s linear measurements.

11.5.2 Volume of a Cylinder

Figure 11.24 shows a quadrant of a cylinder with radius 7, and height 4. Its volume
is computed by dividing the enclosed space into cuboids with a volume AV; =
8x - 8y - 6z. In the limit, as §x, 8y and &z tend towards zero, the entire volume is a
Riemann sum, and a triple integral:

h r m
Vv :/ f / 1dx dy dz. (11.7)
0o Jo Jo
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Fig. 11.24 The first
quadrant of a circular arc
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The solution looks neater if the integrals are evaluated as follows

ropaJri=yr ph
V= / / / ldzdxdy
0 Jo 0

r Jri—y? h
2/ / z ‘ dx dy
o Jo 0

/s
=h// 1dxdy

o Jo

W =
=h/x‘

d
0 y

0
:h/ S =2 dy.
0
Let y = rsin6, then
d
_yzrcose or dy=rcosf db
do

and the interval for 0 is 0 € [0, /2], therefore,

/2
V:h/ Vr2 —r2sin%6 - rcosé do
0
/2
=r’h / cos’ 6 do
0

/2
= %rzh./ (1 4 cos26) do
0

— 124[0 + Lsin20]™"”
=3r —|—251n90
=%nr2h.

As there are four such quadrants, the cylinder’s volume is 7 72h.
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Cartesian coordinates are not best suited for this work—it is much more convenient
to employ cylindrical polar coordinates, where

X =pcos¢, y=psing, z=z

and the Jacobian is p. Therefore, (11.7) is written to represent the entire volume as

h 2 r
V= / / / pdpdodz
o Jo Jo
which is integrated as follows:
h 2w r
V = / f / pdpdpdz
o Jo Jo
h 2 r
= / / %p2 0 d¢) dZ
o Jo
h 2w
= %rzf / 1dédz
0o Jo
h 2
1,2
= Er ‘/(; ¢) 0
h
= an/ 1dz
0

:nrz-z‘

dz

0
= nr’h.
11.5.3 Volume of a Sphere

Figure 11.25 shows how a sphere is defined using spherical polar coordinates, where
any point has the coordinates (p, ¢, 6). In order to compute its volume, the following
intervals apply: p € [0,r], ¢ € [0, 7], and 8 € [0, 2rr]. Using the Jacobian p2sing,

the volume is
2 T r
V:/ / f p’sing dp d¢ do
0 o Jo

2 T
-1
2 b4
r3/ /sin¢d¢d€
0 0

2w p
=%r3f —cos¢‘ do
0
0

103 sing do do
0

W=
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Fig. 11.25 Spherical polar t
coordinates e

Fig. 11.26 A cone with
cylindrical coordinates

-
2w
=§r3/ 1d6
0
23 2
_§r~
0
_4_.3
—37'H'.

11.5.4 Volume of a Cone

The triple integral provides another way to compute the volume of a cone, and is
best evaluated using cylindrical polar coordinates, rather than Cartesian coordinates.
Figure 11.26 shows an inverted cone with height 4 and radius r. The equation for

the cone is given by

h
z= ;\/xz +y?
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where any point in the cone has a distance p = /x% + y2 from the z-axis. Thus when
p =r,z =h,and when p = 0, z = 0, which provides the cone’s shape. We are only
interested in the volume between z = 0 and z = A.

Thus the intervals for the three cylindrical coordinates are: ¢ € [0, 2], p € [0, r]
and z € [2p, h], and using the Jacobian p, the triple integral is

r 2 h
0 JO hp/r
Integrating from the inside outwards, we have
r h 2
= / / / de dz p dp
0 JnosrJo
r h 2
_ / / / do dz p dp
0 Jhp/r JO
r h 27
J L0l
hp/r
= 2;1/ / 1dz pdp
hp/r

o]
o (-
[

dz pdp

hp/r

=2m %hr2 — %hrz)
2

= % (3hr2 — 2hr?)

= %nhrz.

11.6 Summary

Integral Calculus is a powerful tool for computing volume, whether it be using
single, double or triple integrals, and this chapter has covered four techniques using
the following formulae.
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11.6.1 Summary of Formulae
Slicing: Rotating f (x) about the x-axis
b
1% :n/ (f(x))? dx.
Slicing: Rotating f (y) about the y-axis
b
v=r [ o d.

Shells: Rotating f (x) about the x-axis

b
V:Zn/ x f(x) dx.

a

Shells: Rotating f (x) about the y-axis

b
V=2ﬂ/ y f(y)dy.

Surface function f(x, y) using rectangular coordinates

b pd d pb
sz[f(x,y)dxdyzfff(x,y)dydx.

Surface function f(x, y) using polar coordinates

b d Pmax Omax
V=/ / f(x,y)dxdy:/ f(pcosh, psind) p db dp.

min Omin

Triple integral using rectangular coordinates

b pd pf
V=///f(x,y,z)dxdydz.

Triple integral using cylindrical polar coordinates

Zmax [ Pmax [ Pmax
V=/ f / f(p,¢,2) pdpdgdz.
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Chapter 12 ®)
Vector-Valued Functions Geda

12.1 Introduction

So far, all the functions we have differentiated or integrated have been real-valued
functions, such as

f(x) =x +sinx
where x is a real value. However, as vectors play such an important role in physics,

mechanics, motion, etc., it is essential that we understand how to differentiate and
integrate vector-valued functions such as

p(t) =x@®)i+ y@®)j+z(nHk

where i, j and k are unit basis vectors. This chapter introduces how such functions
are differentiated and integrated.

12.2 Differentiating Vector Functions

The position of a point P (x, y) on the plane is located using a vector:
p = xi+yj
or a point P(x, y, z) in 3D space as

p =xi+ yj+ zk.
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If the point is moving and controlled by a time-based function with parameter ¢, then
the position vector has the form:

p@) = x(i+ y@)j

or in 3D space
p(t) = x(i+ y(®)j + z(t)k.

The derivative of p(¢) is another vector formed from the derivatives of x (), y(¢) and

z(1):

d o ‘o dx n dy.
J— — = —1 —_—
dtp P dt dtJ
or in 3D: J 4 4 4
X, Y. Z
—p@®) =p'(t) = —i+ —j+ —k.
g PO =P O =Gt It

For example, given
p(t) = 10sin i + 5¢%j 4 20 cos rk

then i
Ep(t) = 10cos ti + 10¢j — 20 sin rk.

12.2.1 Velocity and Speed

As p(t) gives the position of a point at time 7, its derivative gives the rate of change of
the position with respect to time, i.e. its velocity. For example, if p(¢) is the position
of a point P at time ¢, P’s change in position from ¢ to ¢ + At is

Ap = p(t + At) — p(1).
Dividing throughout by At:

Ap _ pt+ A1) —p)
At At '

In the limit as At — 0 we have

p( + Ar) —p(@)

d .
g PO =v@) = lim Ar

which is the velocity of P at time ¢. Figure 12.2 shows this diagrammatically.
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Fig. 12.1 Velocity of P at p(t+At) —p(D)
time ¢ -

Fig. 12.2 Position and
velocity vectors for P

For example, if the functions controlling a particle are x(#) = 3cos¢?, y(t) =
4sint and z(t) = 5¢, then

p(t) = 3costi+ 4sintj+ 5tk
and differentiating p(¢) gives the velocity vector:
v(t) = —3sinti 4+ 4 costj + Sk.
Figure 12.2 shows a point P moving along a trajectory defined by its position vector
p(t). P’s velocity is represented by v(#) which is tangential to the trajectory at P
(Fig.12.2).

Given the position vector for a particle P,

p@) = x(Oi+ y@®)j+z(Hk

the speed of P is given by
2 2 2
dx dy dz
Nl=,/l— — — .
o \/<dr) +<dr> +<dr>

v(t) = —3sinti + 4 costj + Sk.

In the case of
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the speed is

V()| = /(=3 sin?)2 + (dcost)? + 52
—V/9sin2 ¢ + 16 cos? 1 + 25

and attime r = 0

V()| = V16 + 25 = V41

and at time t = /2

V()| = V9 + 25 = +/34.

12.2.2 Acceleration

The acceleration of a particle with position vector p(¢) is the second derivative of
p(?), or the derivative of P’s velocity vector:

d’x, d*y, d’z
H=p'®)=v(Et) = —i+—=j+ —k
a() =p (1) =v () PTERRrer Ry

In the case of

p(#) = 3costi+ 4sintj+ S5tk
v(t) = —3sinti 4+ 4 costj + S5k
a(t) = —3costi — 4sintj.

12.2.3 Rules for Differentiating Vector-Valued Functions

Vector-valued functions are treated just like vectors, in that they can be added, sub-
tracted, scaled and multiplied, which leads to the following rules for their differen-
tiation:

d d d
E(P(l ) +q()) = Ep(t) + Eq(l) addition and subtraction
d d
E(Ap(r)) = Ad—tp(t) where A € R, scalar multiplier
d
E(f(t)p(t)) = f(Op' () + f/(H)p(t) function multiplier
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d
Z(p(t) -q(t)) =p@)-q'(t) + p'(1) - q(t) dot product

d
E(p(t) x q(1)) = p(t) x q'(t) + p'(t) x q(1) cross product

%(p(f(t))) = p’(f(t))f’(t) function of a function.

12.3 Integrating Vector-Valued Functions

The integral of a vector-valued function is just its antiderivative, where each term is
integrated individually. For example, given

p(t) =x@®)i+ y@®)i+ z(H)k

b b b b
/ p@) dt:/ x(t)idt+/ y(t)i dt+/ z(Hk dt.

then

Similarly,

/p(t) dt = /x(t)i dt +/y(t)i dt +/z(t)k dt + C.
Integrating the velocity vector used before:

v(t) = —3sinti + 4 costj+ S5k

fv(t) dt:/—3sintidt+/4costjdt+/5kdt+c

:—3fsintidt+4/costjdt+5/1kdt+C

then

= 3costi+ 4sintj+ Stk 4+ C.
We have already seen that
Q) a Q)
v(t) = —
dtp

a() = —-v(1)
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therefore,

p() = /V(l) dt

v(t) = /a(t) dt.

12.3.1 Velocity of a Falling Object

If an object falls under the influence of gravity (9.8 m/s) for 3s, its velocity at any
time is given by

v(t) = /9.8 dt =9.8t 4+ C;.
Assuming that its initial velocity is zero, then v(0) = 0, and C; = 0. Therefore,
p@t) = f9.8t dt = 2812 + C, = 4.9 + C,.
But p(0) = 0, and C, = 0, therefore,
p(r) = 4.9¢%.
Consequently, after 3 s, the object has fallen 4.9 x 32 =40.1 m.

If the object had been given an initial downward velocity of 1 m/s, then C; = 1,
which means that

P(t)=/9.8t+1dt= W2 4+ Cr =497 + 1+ Co.
But p(0) = 0, and C, = 0, therefore,
p(t) =4.9* 1.

Consequently, after 3s, the object has fallen 4.9 x 3% 4+ 3 = 43.1 m.

12.3.2 Position of a Moving Object

Let’s compute an object’s position after 2 s if it is following a parametric curve such
that its velocity is
v(r) =rfi+1j+ 1k
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starting at the origin at time ¢ = 0.

p@) = /v(t) dt+C

=/ﬁ+m+ﬁkm+c

/ﬂm+/gm+/ﬁkm+c

= i+ 370+ 1'%k + C.

But p(0) = 0i + 0j + Ok, therefore, the vector C = 0i + 0j + Ok, and
p(t) = i+ 12+ 'k
Consequently, after 2 s, the object is at

PQ2) = 2%+ 32% + ;2°k
= Ji+2j+4k

which is the point (8/3, 2, 4).

12.4 Summary

The Calculus of vector-based functions is a large and complex subject, and in this
short chapter we have only covered the basic principles for differentiating and inte-
grating simple functions, which are summarised next.

12.4.1 Summary of Formulae

Given a function of the form
p() = x®i+ y@®)j+z()k

its derivative is

d dx dy dz
—p()=p' (1) = —i+—j+—Kk
dtp() P dtl+dt‘]+dt
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its integral is

/p(t) dt:/x(t)i dt+/y(t)i dt—l—/z(t)k dt +C

and definite integral:

b b b b
/ p@) dt:/ x(t)idt+/ y(t)i dt+/ z(H)k dt.

If p(¢) is a time-based position vector, its derivative is a velocity vector, and its second
derivative is an acceleration vector:

p() =x@®i+ y@®)j+z()k

dx, dy. dz
H=—i+—j+ —k
v = dt i+ dt'] + dt
dzx d’y, d’z
t e — R
a@) = Sy dt2 It dt?

The magnitude of v(¢) represents speed:

2 2 2

dx dy dz

)] = — —_—

vol= \/<dr> +(dr> +<dr)

and for acceleration:

2 2 2

aoi= | (C5) 4 (42) 4 (42
dr? dt? di2)




Chapter 13 ®)
Tangent and Normal Vectors i

13.1 Introduction

In this chapter I describe how to calculate tangent and normal vectors on various
curves and surfaces. I begin with the notation used to describe vector-valued functions
and definitions for a tangent and normal vector. This includes an introduction to the
grad operator, and how it is used to compute the gradient of a scalar field. I then show
how these vectors are computed for a line, parabola, circle, ellipse, sine curve, cosh
curve, helix, Bézier curve, bilinear patch, quadratic Bézier patch, sphere and a torus.

13.2 Notation

The following chapters refer to many vector-valued parametric functions, for which
there are three popular forms of notation. The first employs a row vector:

r(t) = [x(1) y() z(@®)],

the second, a column vector:
x(1)
r@t)=1|y@ |,
z(1)

and the third, a Cartesian vector:
r(t) =x@®)i+ y@®)j+ z(t)k.

I will tend to use column vectors and Cartesian notation to describe vector-valued
functions.
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Fig. 13.1 The graphs of YA
y= x3, (blue) and y = 3x2,
(green) its derivative 1
2 1 0 1 2 X

13.3 Tangent Vector to a Curve

We know that the derivative of a function measures the rate of change of the function
with respect to some parameter. In terms of the function’s graph, the derivative is the
slope of the graph at a point. For instance, the function y(x) = x?, the first derivative
is y'(x) = 3x2, as shown in Fig. 13.1. The derivative is also the slope of the tangent
vector, whose magnitude and direction depend upon the form of parameterisation
used for the function. For example, defining a cubic as

r(r) = ti+ 13j

the tangent vector is

dr r'(1) =i+ 3%
_——= =1
dt J

whose magnitude is

IF o] =2+ (32)* = V1 +9r*.

Figure 13.2 shows the cubic curve, with five tangent vectors fort = —0.75, —0.5,
0.0, 0.5, 0.75, which reflect the slope of the curve at the five points. However, in
definitions for curvature, a unit tangent vector is important, which requires dividing
the tangent vector by its magnitude:

r'(t)

T = ———.
O =1rol

T(t) is defined, only if r'(¢) # 0.
The rate of change of the unit tangent vector gives the curvature « (¢) at any point
along the curve length s:
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Fig. 13.2 The graph of
y = x3, and five tangent
vectors

Fig. 13.3 The graph of
y= x3, and five unit tangent
vectors

235

o dT
k() = —
ds

which is covered in detail in Chap. 15. Figure 13.3 shows the cubic curve with five

unit tangent vectors.

Generally, for a vector-valued function r(¢), that is continuously differentiable

r(t) = [

its tangent vector is

dr_ ) —
Z_r()_[

x(1)
r)= |y | eR’
z(1)
dr ) x;(t)
EZPU)Z Y@ | #0.
(1)

For example, a constant pitch helix with radius p, is defined as
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pcost
r(t) = | psint | = pcosti+ psintj+ ctk
ct

therefore, its tangent vector is

—psint
r'(t)=| pcost | =—psinti+ pcostj+ ck.
c

13.4 Normal Vector to a Curve

Ideally, a normal vector is orthogonal to a curve or surface, and orthogonal to its
associated tangent vector. However, it would useful to confirm this mathematically.
Once again, we are interested in the unit form, denoted by N(z).
By definition:
ITOI =1

therefore,
IT®I* =1

and as the dot product T(¢) - T(¢) = 1
ITOI> =T@) - T@) =1 (13.1)

Differentiating (13.1), and bearing in mind that the dot product is commutative, we
get
d / /
T [T@) - TO]=T@) - T@)+T-T' @)
=2T'(t) - T(¢t) = 0.
For T'(¢) - T(z) = 0, T'(¢) must be orthogonal to T(z), or T'(¢) = 0.
Thus we can define N(¢) as

T'(1)

N() = .
O =TT

Also, given a tangent vector T(#):

A . .
T(t) = [x;] = A+ Aoj
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Fig. 13.4 The graph of y
y = x3, with unit tangent

vectors (green), and unit

normal vectors (red)

then two vectors exist, perpendicular to T(¢):

|- s . N T P
<¢—|:M:|— Al +Aqj or Nb_|:_)‘11|_/\21 Ald

asthedotproductN, - T(¢) = N, - T(¢#) = 0, which means that N, and N, are normal
vectors. Furthermore, if T(¢) is a unit vector, so too, are N, and N,,.

But which one should we choose? Figure 13.4 shows a convention, where we see
the unit normal vectors directed towards the zone containing the centre of curvature.
This is called the principal normal vector. Another convention is to place the normal
vector on one’s right-hand side whilst traversing the curve.

You will notice from Fig. 13.4 that there is no normal vector when ¢ = 0. Let’s
see why.

r'(t) =i+ 3%

r(0) =i
'@ =v1+9*
IF Ol =1

TO) =i

T'(0) = 0.

So here is a case when T'(¢) = 0.

13.5 Gradient of a Scalar Field

The grad operator V, called ‘del’ or ‘nabla’ is a very useful idea for computing
normal vectors within scalar fields. So first, let’s define a scalar field.
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Fig. 13.5 A scalar field for Y 4

f(xsy)=X2+Y2
8 65 68 73 80 89 100 113 128

= 8i+4j

For our purpose, a scalar field is a 2D or 3D space where any point is represented
by a scalar value, such as height, temperature or the value of a geometric function.
On the other hand, any point in a vector field is represented by a vector, rather than a
scalar. Figure 13.5 shows an array of scalars that obey the rule f (x, y) = x> 4+ y2. For
example, the cell with (x, y) coordinates (5, 5) contains 50, because 50 = 5 4 52.
In reality, a scalar field is continuous, rather than discrete, as shown in Fig. 13.5.

One can see from Fig. 13.5 that this scalar field comprises a family of concentric
contours, one of which is sketched in the figure.

Taking the partial derivative of f(x, y) = x> + y? in the x-direction:

af
ax

2x

gives the instantaneous rate of change at any point (x, y) irrespective of the value of
y. Similarly, taking the partial derivative of f(x, y) = x* + y? in the y-direction:

9
dy

gives the instantaneous rate of change at any point (x, y) irrespective of the value of
X.

The grad operator maps a scalar field to a vector field using these partial derivatives
as follows:

o aof .,  of,
\V4 s = 3 = — _—
fx,y) [gi] it 7y

= 2xi + 2yj.
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For example, when x =4 and y = 2:
Vf4,2) =8i+4j

which is sketched in Fig. 13.5. Observe that the vector is orthogonal to the contour.
In fact, all vectors are orthogonal to all such contours. In other words, the vector is
normal to any curve defined by the function f(x, y) = x> + y2. For example, the
equation of a circle is

X2+ y2 =r

where r is the radius. Therefore, we can create a function
fay=x*+y =r’=0.

Therefore,
Vf =2xi+2yj

which is the normal vector at (x, y), as shown in Fig. 13.5. To create a unit normal
vector, we divide by the magnitude of the vector:

N Y
IV 7l

For functions with three variables, the grad operator creates a 3D vector. For
example:

fx,y,2) =2xy+3z

af
R,
0x Y
0
—f=2x
dy
d
of _ 4
a9z

Vf =2yi+2xj+ 3k

which is normal to a surface defined by f(x, y, z) = 2xy + 3z.
I will employ the grad operator to create a normal vector to some of the following
curves and surfaces.
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Fig. 13.6 Geometry for a Yy
parametric line

13.5.1 Unit Tangent and Normal Vectors to a Line

Figure 13.6 shows the geometry for a parametric line, where P;(x;, y;) and P(x, y)
are two points on the line, and vector s provides the line’s direction. Let’s define
ry,s, r(t):
ry = x1i+ yij
s = x,i + y,j
r(t) =r; +1s
= (x1 + x:0)i + (1 + y51)j-

Differentiating r(¢):
r' (1) = x,i + yij

X O] = /=2 +57.

Xd =+ s

whose magnitude is

Therefore,
T =
Figure 13.7 shows the graph of
r(t) =2ti+ (1 +1)j

therefore

S
+

i

~ 0.8944i + 0.4472j

as shown in Fig. 13.7.
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Fig. 13.7 A unit tangent and 7
normal vector to a line 3
2
4 3 -2 -1 0 1 2 3 4 X
-1

Differentiating T gives a zero vector, therefore our definition of N can’t be used.
So I’ll use one of the two options described above for a perpendicular vector:

N = —0.4472i 4 0.8944;j

as shown in Fig. 13.7.
Using the grad operator, we can find the unit normal vector using the line equation:

0=y,(x —x1)—x(y —y1)
Fx,y) = yex — Xy — ysX1 + Xs )1

Vf=yi—x]j
_ Vsl — X

N= .
Vi +
Evaluating N for x;, =2, y, = 1:

i—2j
T+4

~ (0.4472i — 0.8944j

N =

as shown in Fig. 13.7.
For a 3D line:
r(t) = (.Xl + xst)i + (yl + yst)j + (Zl + Zst)k
l'/(l‘) = x,i+ ys.i +zk
X5l + ysj + 2K

Va2 42+ 22

however, there is no unique normal vector, only a normal plane.

T =
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13.5.2 Unit Tangent and Normal Vectors to a Parabola

‘We normally write a parabolic equation as

y=ax*+bx+c
where for different values of x there is a corresponding value of y, which describes
the familiar parabolic curve. However, we require this to be described as a vector-
valued function. Working in two dimensions, I will align the x-component with the

i unit vector, and the y-component with the j unit vector, and use a parameter ¢ to
drive the entire process. Thus it will take the general form

r(t) =dti+ (at> + bt +¢)
with suitable values for a, b, ¢, d. Therefore, consider the parabola
r() =2ti+ (1.5 - 1.5¢%)j, te[-1 1]

Differentiating r(f):
r'(t) = 2i — 3tj

whose magnitude is

[Ir'®)|| = v4+ 92

Therefore,
2i — 3¢j
Tt = ——
V4492
Evaluating T(z) forr = —1, 0, 1, we get
2i + 3j
T(-1) = ~ (0.555i + 0.832j
/13 !
T(0) 2i .
= — =1
J4
2i — 3j
T(1) = ~ (0.555i — 0.832j
V13 J

as shown in Fig. 13.8.
Computing T’(¢) and normalising will be rather messy, so I’ll choose one of two
perpendicular vectors. So given the following unit tangent vectors:
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Fig. 13.8 Three unit tangent YA
and normal vectors for a 4
parabola 5

3 E\ -1 0 1 3X

T(—1) ~ 0.555i + 0.832j
T(0) = i+ 0j
T(1) ~ 0.5551 — 0.832j
N(=1) ~ 0.832i — 0.555j
N©) = —j
N(1) ~ —0.832i — 0.555j

which point in the direction of the principal normal vector, as shown in Fig. 13.8.
Using the grad operator, we can find the unit normal vector as follows:

x =2t
t:%x
y=15—1.5¢
2
—15-15%
4
x2
fx,y)=y+ I'SZ —1.5
Vf=3xi+]j
%xi+j

N(x,y) = 42
Jaxi+1

Evaluating N(x, y) for three different positions:

6 | s . s
=i+ —1.5
N(=2,0)= 213 _ J%Jm—o.832i+o.555j
9 .
Joat
-
N, 1.5) = 213

V1
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Si+i 15i+]

N(2,0) = =
\/%4+ 1 V3.25

~ 0.832i + 0.555j

as shown in Fig. 13.8.

13.5.3 Unit Tangent and Normal Vectors to a Circle

Let’s find the function describing the tangent vector to a circle. We start with the
following definition for a circle:

r(t) =rcosti+rsintj, t€[0,2n].

Differentiating r(z):
r'(t) = —rsinti + r cos tj

whose magnitude is

F®|| = \/(—rsint)z—i- (rcost)2 =r.

And we see that the magnitude of the tangent vector remains constant at the circle’s
radius r. Therefore,

'(t
T(t) = r_() = —sinti + costj.
r

Evaluating T (¢) for four values of ¢:

T0°) =j
T(90°) = —i
T(180°) = —j

T(270°) =i

as shown in Fig. 13.9.
To find N(¢) we differentiate T(t) = — sin fi 4+ cos ]

N(t) = T'(t) = —costi — sintj.

Evaluating N(#) for four values of ¢:



13.5 Gradient of a Scalar Field 245

N(0°) = —i
N(90°) = —j

N(180°) =i

N(270°) =

as shown in Fig. 13.9.
Using the grad operator, we can find the unit normal vector as follows:

x2+y2 — r2
[y =x>+y"—r?
Vf = 2xi+2yj
2xi+ 2yj

VA2 +4y?

Evaluating N(x, y) for the same positions before, where r = 1:

N(x, y) =

2i + 0j
N0y = 2
Nz
0i + 3j
N@©, 1) = =]
V4
—2i+ 0j
N(—1,0) = ﬁ —
N/
NO. —1) 0i — 2j
, — = = —J
V4
as shown in Fig. 13.9.
Fig. 13.9 Four unit tangent )3’ A
and normal vectors for a 1
circle
17
5 4 3 1 54 s x
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13.5.4 Unit Tangent and Normal Vectors to an Ellipse

Having found the unit tangent and normal vectors for a circle, an ellipse should be
similar. Let’s define an ellipse as

r(t) =acosti+ bsintj, t e [0,2r]

Differentiating r(¢):
r'(t) = —asinti + b costj

whose magnitude is

[r'®]| = \/( — asin t)2 + (bcost)2

= \/a2 sin® 7 + b2 cos? ¢

= \/az(l — cost) + b?cos? ¢

=./a? — (a2 — bz) cos? ¢
=av 1 —€2cos?t

where € = /1 — b2 /a? is the eccentricity of the ellipse.

Therefore . .
—asinti+ b costj

av1—eZcosit

As an example, let’s define an ellipse with a = 2 and b = 1.5, which makes the
eccentricity:

T(t) =

e =+/1—1.52/22 = /0.4375.

Evaluating T () for four values of #:

1.5
TO) = ———"° _ —j
© 2104375 °
_2i
TO0°) = — —— = —j
(90°) Wi
T(180°) = i B
“o/i-0435
2i
TQ70°) = — =i
(270%) 21

as shown in Fig. 13.10. Once again, there is no need to differentiate T(¢) to find N(z).
We simply use the perpendicular strategy explained above. Therefore,
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as shown in Fig. 13.10.
Using the grad operator, we can find the unit normal vector as follows:

Substituting a =2, b = 1.5 and (x, y) = (2, 0), (0, 1.5), (-2, 0), (0, —1.5):

as shown in Fig. 13.10.

Fig. 13.10 Four unit tangent
and normal vectors for an

ellipse

N(0°) = —i

N(90°) = —j
N(180°) =i
N(270°) =

2y
a2+ﬁ_1
X2 2
f(x»}’)Za—z'Fﬁ—l
2x, 2y,

0 .
+ 553

3 .
+EJ

3 .
~ 325

247

Vf(2,0) =%
N2,0) =i
V£0,1.5) =%
N, 1.5) = j
Vf(=2,0) = 2+ 5%
N(2,0) = —i
V£, -15 =3
N(©, —1.5) = —j
VRN
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13.5.5 Unit Tangent and Normal Vectors to a Sine Curve

Let’s calculate the tangent and normal vectors to a sine waveform. This may be of
interest in the rendering of sinusoidal waves. We define one period of a sine curve as

r(t) =ti+ 2sintj, t€[0,2x].

Differentiating r(¢):
r'(t) =i+ 2costj

whose magnitude is

||r/(t)|| =+/1+4cos?t.

Therefore,
T() = i+ 2costj '
A1+ 4cos?t
Evaluating T(z) for four values of #:
. i+ 2j . .
T(0°) = ~ 0.4472i1 + 0.8944)
V5
i
TO0) = — =i
V1
T(180°) -2 0.4472i — 0.8944j
= ~ 0. i—0. j
V5
i
TQ270°) = — =i
V1
as shown in Fig. 13.11.
Fig. 13.11 Four unit tangent Ya
and normal vectors for a sine 3 A
curve
2
1
10 1 7 8 9x
-1
2
-3




13.5 Gradient of a Scalar Field 249

To differentiate T(¢#) and normalise it, looks as though it requires considerable
work, so we’ll take the easy root as before. Therefore,

N(0°) ~ 0.8944i — 0.4472j

N(90°) = —j
N(180°) ~ —0.8944i — 0.4472j
N(Q270°) =

as shown in Fig. 13.11.
Using the grad operator, we can find the unit normal vector as follows:

y =2sinx
f(x,y)=y—2sinx =0
Vf=—-2cosxi+j

—2cosxi+j

N(x) = =207
V1 44cos?x

Evaluating N(x) for four values of x:

N(0) 2t 0.8944i + 0.4472j
= ~ —0U. 1 .
NG !

N(/2) =j
N() ~ 0.8944i + 0.4472j
NGm/2) = —j

as shown in Fig. 13.11.

13.5.6 Unit Tangent and Normal Vectors to a cosh Curve

Now let’s calculate the tangent and normal vectors to a cosh curve, also called a
catenary. We define part of a cosh curve as

r(1) =ri+3cosh (£)j, te[-3,3]

Differentiating r(z):
r'(1) =i+ sinh (§)]

whose magnitude is
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Fig. 13.12 Three unit
tangent and normal vectors
for 3 cosh(x/3)

Therefore,

Let’s find T(¢) for three values of #:
i

T(-3) =
TO) =i

T@3) =

as shown in Fig. 13.12.

This time, let’s differentiate T'(¢) and normalise it:

= —tanh (

Tangent and Normal Vectors

W~

~ (0.6481i — 0.7616j

~ 0.6481i + 0.7616j

)i+ tanh (%) j
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Note that this is one of the options if we had taken the easy route!
Therefore,

N(—-3) = 0.7616i + 0.6481j
N©O) =j
N(@3) ~ —0.7616i + 0.6481j

as shown in Fig. 13.12.
Using the grad operator, we can find the unit normal vector as follows:

y = 3cosh (%)
f(x,y) =y —3cosh (%)
Vf=—sinh(§)i+]
—sinh (§)i+j
1 + sinh? (%)
—sinh (§)i+j
cosh (%)
= —tanh ()i +sech (£)j

Nx) =

which gives the same result as before.

13.5.7 Unit Tangent and Normal Vectors to a Helix

A helix is a 3D curve and used in nature to store the genetic code of all living
organisms. It can have a variable radius, and also a variable pitch. However, a fixed
radius and constant-pitch helix is a popular curve used for illustrating tangent and
normal vectors. Let’s define a helix as

r(t) = 2costi+ 2sintj+tk, te[0,4n].

Differentiating r(¢):
r'(t) = —2sinti+ 2costj+k

whose magnitude is

Ie@)|| = vV4sin®t +4cos2t + 1 = /5.

Therefore,
T@) = % (=2sinti + 2costj+ k)
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/

Fig. 13.13 Three unit
tangent and normal vectors
for a helix

Evaluating T(¢) for different values of ¢:

T(0) = % (2j + k) ~ 0.8944j + 0.4472k
T(n/2) = % (—2i + k) &~ —0.8944i + 0.4472k
T(n) = % (—2j + k) ~ —0.8944j + 0.4472k

as shown in Fig. 13.13.
Differentiating T(¢#) and normalising:

T () = % (—2costi — 2sin tj)

IT'0)] = LV4cos?r +dsin’r = 2

| . L.
—= (—2cos ti — 2sin tj)
N@) = /3 5 = —costi —sintj.

NG

Evaluating N(¢) for different values of ¢:

N(0) = —i
N(r/2) = —j
N(t) =i

as shown in Fig. 13.13.
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13.5.8 Unit Tangent and Normal Vectors to a Quadratic
Bézier Curve

Quadratic curves are normally expressed using a basis function B(z), which generates
values using the parameter . I will derive the derivative of a general basis function
in Chap. 14. A 2D quadratic curve is expressed using a column vector as

| x@®
r(t)_[y(t)] t |0, 1]

x(t) =By o(t)xo + By 1 (t)x1 + Boa(t)x2
() =Boo()yo + B 1(1)yr + Ba2()y2

Byo=(1—-1)?
B, =2t(1—-1)
Bz,z = tz

algebraically:
r(1) =By o(t)Po + B2 1 ()P + B2 2 (P2, 7 € [0, 1]

where Py, Py, P, are position vectors for the control point Py, Py, P;.

But a Cartesian vector is rarely used. So, for the time being, I will use algebraic
notation.

Let’s start with the following 2D quadratic Bézier curve:

r(t) =Po(1 — 1) + 2Pt (1 — 1) + Por?, 1t €10, 1].
Differentiating r(¢):

/(1) = —2Po(1 — 1) + 2P (1 — 2) + 2P»¢
= —2P¢ + 2Pt + 2P| — 4Pt + 2P,t
=2(P; —Po)(1 —1) +2(P, — Py)¢
=2((Py —Po)(1 — 1) + (P, — P)1)

x'(1) =2((x1 —xo)(1 — 1) + (x2 — x1)1)

Y'(0) =2((1 = yo) (1 — 1) + (y2 — y1)t)

whose magnitude is

IF Ol = (v 0) + (V)

Therefore,
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2[(P) —Po)(1 — 1) + (P, — Py)r]
JEO) + (o)

Now let’s substitute specific values for Py, Py, P, Py = (0,0), P, = (1, 1), P, =
(2, 1). Therefore,

T(t) =

) =2(1=0)(1 -1+ Q2—1r)=2
Y0 =2((1 =01 — 1)+ (1 —1t) =2(1 —1)
2i+2(1-0j i+ —0j

T(r) = =
® Vé+4a -0 J1+0—-1)2

Evaluating T (¢) for different values of ¢:

T(0) = 3 ~ 070711 + 0.7071
NG
i+0.5j
T(0.5) = +1 2; ~ 0.8944i + 0.4472j
T(l) =i

as shown in Fig. 13.14. Differentiating T(¢) and normalising looks like a lot of work,
so we’ll take the easy route. Therefore,

N(0) ~ 0.7071i — 0.7071j
N(0.5) ~ 0.4472i — 0.8944;j

N =—j
as shown in Fig. 13.14.
Fig. 13.14 Three unit v/
tangent and normal vectors 2 7'y
for a quadratic Bézier curve
1 p——————»
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13.6 Unit Tangent and Normal Vectors to a Surface

In the following examples I show how to calculate the tangent and normal vectors
to a bilinear patch, a Bézier patch, a sphere and a torus. They each require a slightly
different approach, which is explained for each surface.

13.6.1 Unit Normal Vectors to a Bilinear Patch

Bilinear patches are constructed from a pair of lines using linear interpolation. For
example, given two lines defined by their position vectors:

Ly =@y, P)), L= (P, P3)
we can linearly interpolate along the lines using

Alw) =00 —-u)Py+uP;, uel0,1]
Bu)=({0—u)P,+uP;, uel0,]1]

and then linearly interpolate between A (x) and B(u):

r(u,v) = (1 —v)A(w) + vBm), vel0,1]
=(1- v)((l —u)Py + uPl) + v((l —u)P, + uP3)
={0—-v)—uwPo+u(l—v)Pi+v({1 —u)P, +uvPs.

We now compute the partial derivatives for u and v:

9
a_r =—(1—v)Py+ (1 —v) P, — vP; + vPs
u
=1 —-v)[P; —Py) +v(P; —Pr)
d
a—r =—0—-uwPy—uPi+ {1 —u)Pr + uP;
v

=1 —-u)Py;—Py) +uP; —Pyp).

g—; and % encode a pair of orthogonal tangent vectors, whose cross-product is a
vector normal.

Let’s demonstrate this with an example. Given:

Py = 0i + 0j + Ok
P, =0i+2j+k
P, = 2i + 0j + Ok
P,=2i+2j—k
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then

f=0i+(2(1—v)+2v)j+((1—u)—v)k

ou
=0i+2j+ (1 —-2v)k
ar . .
3_ = (2(1 —u)+ 2u)1 + 0j — 2uk
v
= 2i+ 0j — 2uk.

We can now calculate their cross product:

ij k
T(u,v) =2 0 —2u |=4ui+ (4v—2)j+4k
02 1-2v

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
magnitude, for different values of u and v.

—2j + 4k
N(0,0) = — T2 _0.4472j + 0.8944K
V20
4i — 2j + 4k ) )
N(1,0) = —m 0.686i — 0.343j + 0.686k
2j + 4k ,
N, 1) = 5 0.4472j + 0.8944k
4i + 2j + 4k ) )
N(1, 1) = — 0.686i + 0.343 + 0.686k
2i + 4k ,
N(0.5,0.5) = ~ 0.4472i 4 0.8944k

V2
as shown in Fig. 13.15.

13.6.2 Unit Normal Vectors to a Quadratic Bézier Patch

Bézier proposed a matrix of nine control points to determine the geometry of a
quadratic patch, as shown in Fig. 13.16. Any point on the patch is defined by

2

1 -2 1 P()Q P01 P02 1 -2 1 v
P,=[u?> u 11| =2 2 0]||Po Py Pn -2 20 v
1 0 O0|| Py Py Pn 1 00 1
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Fig. 13.15 Five unit normal N
vectors for a bilinear surface

Fig. 13.16 A quadratic
Bézier surface patch

g P2

The individual x-, y- and z-coordinates are obtained by substituting the x-, y- and
z-values for the central P matrix.
Let’s illustrate the process with an example. Given the following points:

Pyy=1(0,0,0, Pn=(1,10, Pp=(2,0 0
Po=(@©, 1,1, Pu=(1,2,1), Pp=2,1,1
Py=1(0,0,2), Pi=(1,1,2), Pp=(2,0,2)
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we can write

1 -2 1701 2 1 =2 17 [?
Xw=[u>u 11| -2 20|01 2]|]|-=2 20 v
1 00|01 2 1 00 1
[0 0 0] [0?
Xow=1[u> u 1110 0 0 v
(020 1
Xy = 20
T 1 -2 17010 1 =2 17 [?
Yoo=[u* u 11| -2 2 0 1 21 -2 20
i 00[[0 10 1 00 1
F 0 0 —27[?
Yoo=[u> u 11| 00 2 v
|22 of]|1
Yo = 2(u + v — u? —v?)
T 1 =2 177000 1 =2 17 [?
Zuw = [W> u 11| =2 0 111 -2 20
! 0][222 1 00 1

00
Zww=[u> u 110 0
00

Zuy = 2U.
Therefore, any point on the surface patch has coordinates
Puv = 2vi+2 (u 4+ v — u® — v?) j + 2uk.

To calculate a unit vector normal to the surface we first calculate two tangent vectors
using g—z and Z—ﬂ, take their cross product, and normalise the resulting vector.

9
8—p=0i+2(1—2u)j+2k
u

wp . .
30 = 2i +2(1 — 2v)j + Ok.
v

We can now compute their cross product:

J
—4u

2 =@Bv—4)i+4j+ Bu—4k
2—4v

SR
o
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Fig. 13.17 Five unit normal A
vectors for a quadratic
Bézier patch

[

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
magnitude, for different values of u and v.

—dit4j— 4k

N, 0) = == & 05774+ 0.5T74)  0.5774k
44 4j+ 4k _ ,

N(1L0) = == 2L & —0.5774i + 05774 + 0.5774k
4i+ 4j — 4k , ,

NO. 1) = = % 05774 +0.5774) — 05774k
4+ 4j + 4k

N(, 1) = % ~ 0.5774i + 0.5774j + 0.5774k
Oi+4j+0k . .

N@©0.5,0.5 = = 3T < 0i+j+ 0k
J16

as shown in Fig. 13.17.

13.6.3 Unit Tangent and Normal Vector to a Sphere

It should not be too difficult to find the tangent and normal vectors for a sphere. So
let’s start with the equation for a sphere with radius r in Cartesian coordinates as

PLITIR I
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Therefore, we can declare a function:

f,y,0=x>+y"+22 —r%

This is best solved using the notation of a gradient vector V, where

\Y i+ = —k

! 8xl Tt
Therefore,

0

—f =2x

0x

0

0y

dy

af

]

0z ¢

Vf =2xi+2yj+2zk

which is a vector normal to the sphere.
Let’s compute the unit normal vector for different points on a sphere using

Vi
VA

But in order to identify points on the sphere’s surface, it is easier to use spherical
coordinates, where

X =rsing -cosf
y=rsing -sinf

7 =rcos¢
therefore,

Vf@r,¢,0) =2rsing - cosfi+ 2rsing - sindj + 2r cos pk

10i + 0j + Ok

N(5.2,0)= T IFR _;
/100

0i + 10j + OK
N(5 %, 2 —
(5.3.%5) = 100 J

0i + 0j + 10k
N(S,0,0)zﬁzk

10

S
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Fig. 13.18 Five unit normal
vectors for a sphere

_ 5V2i+0j+5v2k

N(5,%,0 ~ (0.7071i + 0j + 0.071k
( 2 ) 100 J
0i + 5v/2j + 5+/2k
N(5 %, %)= ~ 0i +0.7071j + 0.071k
( Z 2) 100 J

as shown in Fig. 13.18. There is no unique tangent vector, only a unique tangent
plane.

13.6.4 Unit Tangent and Normal Vectors to a Torus

Lastly, let’s find the tangent and normal vectors for a torus. The equation for a torus
with major radius R and minor radius r is

(R +rcosf)-cos¢

r(,¢)=| (R+rcosf)-sing [, (0,¢)€]0,2n].
rsin6

The tangent vectors are given by g—; and g—g:

9r —(R +rcosf) -sing or —rsinf - cos ¢
Fyie (R+rcosf)-cos¢p |, 30 = —rsinf - sin ¢
¢ 0 rcos O
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Fig. 13.19 The tangent
vectors (green) and normal
vector (red) on the left are
for & = ¢ = 0. The vectors
on the right are for
0=¢p=m/2

For example, let R = 3 and r = 1, then

or —(3 +cosH) -sing ar —sinf - cos ¢
— =| (34cosf)-cos¢p |, 36 = —sin6 - sin ¢
¢ 0 J cos 6
and when 6§ = ¢ = 0:
0 0
L I T I
ap 0 a0 1

which are shown in Fig. 13.19 as unit vectors.
If we now compute the cross product 2£ x g—g, we obtain the normal vector at that

. 3¢
point:

which is shown in Fig. 13.19.
Let’s compute a similar set of vectors for 6 = ¢ = 7/2:

oy _—:534—00551)) - sin ET%) or —si.n (%) - cos (%)
Fr (3 + cos (50) -cos(Z) |, 35 = | —sin (Eo)s-esm (%)
- -3 0
o [ e |
¢ 0 a0 0
which are shown in Fig. 13.19 as unit vectors.
If we now compute the cross product g—; X g—g, we obtain the normal vector at that

point:
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J
N=|-3 0
0 -1

=3k

o o

which is shown in Fig. 13.19.

13.7 Summary

This chapter has shown how to calculate tangent and normal vectors to various curves
and surfaces. The very same techniques can be applied to other curves and surfaces,
but there is no guarantee that normalising vectors will always be an easy calculation.

13.7.1 Summary of Formulae

Unit Tangent Vector

r(t) =x@®)i+y@®)j+z@)k

r(1)
T = .
O = w0l

Unit Normal Vector
T'(1)

Tl

N()

Unit Tangent and Normal Vector to a Line

2D line:
r(t) = (xp +x)i + (v + yst)j
I'/(Z‘) = x,i+ ysj
X, j
T= 2PN
VA
N = —Ai+ A1, or = Ai— Aqj.
3D line:

r(t) = (x1 +x:Di+ (1 + y)j + (21 + 2k
I‘/(l‘) = xsi + ysj + Zsk
xsi + ygj + Zsk

ATy 22
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Unit Tangent and Normal Vector to a Circle

r(t) = rcosti—+ rsintj
T(t) = — sinti + costj
N(t) = —costi — sintj.

Unit Tangent and Normal Vector to an Ellipse

r(t) = acosti+ bsintj

e =+1-b2ja

—asinti+ b costj

av/'1 —e€?cos?t

N:—)»gi—{-)\]j or :)\.2i_)\.]j.

T(t) = = M+ Aoj

Unit Tangent and Normal Vector to a Quadratic Bézier Curve

r(t) = Po(1 —1)> +2P1t(1 — 1) + Pot?, 1t €[0,1]
x(t) = By o(t)xo + Ba1(£)x1 + Ba2()x2
(&) = Bao()yo + Bo1(H)y1 + Ba2(H)y2
x'(t) = 2[(x; — x0)(1 — 1) + (x2 — x)1]
¥ (@) =2[(y1 = yo) (1 = 1) + (y2 — y1)1]
2((Py = Po)(1 — 1) + (P — Py)r)

T@) = = = = Mi+ Ao
JEo) + (o)
N = —hi+Aj, or = Ai—Aj.
Unit Tangent and Normal Vector to a Bilinear Patch
Ly = (Po,Py)
Ly = (P, P3)
r(u,v) = (1 —v)(1 —uw)Py+u(l —v)P; + vl — u)P, + uvP;
ar
Py (1 =v)(Py = Po) + v(P3 — P2) = A1l + A2 + Auzk
ar
55 = (L= w)(P2 = Po) + u(P; —P)) = Aol + Ayoj + Aysk
, ar  Or ik
T(l/l, U) = 8_ X 8_ =|Aul A2 Au3
“ v )"vl )\UZ )Vv3
T (¢
N() (1)

ol
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Unit Normal Vector to a Sphere

fe,y, ) =x*+y"+2—r?

Vf =2xi+2yj+2zk
vf
IV

X =rsing - cosf

N(x,y,2) =

y=rsing -sinf
Z =rcos¢
Vf @, ¢,0) =2rsing - cosbi+ 2rsin¢ - sin0j + 2r cos pk.

Unit Tangent and Normal Vector to a Torus

[ (R +7rcosh)-cos¢
r@@,¢)=| (R+rcosf)-sing |, (@,¢)€]0,2n]
i rsin 6
ar [ —(R +rcosH) -sing ar —rsiné - cos ¢
— =| (R+rcosb)-cos¢p |, — = | —rsinf -sin¢
9¢ i 0 90 rcos
ar  Or
N@, ¢) = — x

dp a6



Chapter 14 )
Continuity cne

14.1 Introduction

In this chapter I explain how geometric continuity is ensured between segments
of B-splines and Bézier curves. To begin the analysis, we return to the definition
of uniform B-splines and how polynomials are chosen to provide the geometric
continuity between curve segments.

14.2 B-Splines

B-splines, like Bézier curves, use polynomials to generate a curve segment. But,
unlike Bézier curves, B-splines employ a series of control points that determine the
curve’s local geometry. This feature ensures that only a small portion of the curve is
changed when a control point is moved.

There are two types of B-splines: rational and non-rational splines, which divide
into two further categories: uniform and non-uniform. Rational B-splines are formed
from the ratio of two polynomials such as

{0}

_ Y@
W@’

_ Z(t)
= W_(t)’ ZV7

x(1) W

y(®) z(1)

Although this appears to introduce an unnecessary complication, the division by a
second polynomial brings certain advantages:

e They describe perfect circles, ellipses, parabolas and hyperbolas, whereas non-
rational curves can only approximate these curves.

e They are invariant of their control points when subjected to rotation, scaling,
translation and perspective transformations, whereas non-rational curves lose this
geometric integrity.

e They allow weights to be used at the control points to push and pull the curve.

© Springer Nature Switzerland AG 2019 267
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Fig. 14.1 The construction
of a uniform non-rational
B-spline curve

An explanation of uniform and non-uniform types is best left until you understand
the idea of splines. So, without knowing the meaning of uniform, let’s begin with
uniform B-splines.

14.2.1 Uniform B-Splines

A B-spline is constructed from a string of curve segments whose geometry is deter-
mined by a group of local control points. These curves are known as piecewise poly-
nomials. A curve segment does not have to pass through a control point, although
this may be desirable at the two end points.

Cubic B-splines are very common, as they provide a geometry that is one step away
from simple quadratics, and possess continuity characteristics that make the joins
between the segments invisible. In order to understand their construction consider
the scenario in Fig. 14.1. Here we see a group of (m + 1) control points Py, Py,
P,, ..., P, which determine the shape of a cubic curve constructed from a series of
curve segments So, S1, Sz, ..., Sp_3.

As the curve is cubic, curve segment S; is influenced by P;, P;, P;ys, P;y3, and
curve segment S, is influenced by P; |, P; 15, P13, Pi14. And as there are (m + 1)
control points, there are (m — 2) curve segments.

A single segment S; (¢) of a B-spline curve is defined by

3
Si(t)=) Pir,B,(1), for 0<r=<1

r=0
where
Bo(t) = (- 437 =3t +1)=1(1—1) (14.1)
Bi(t) = 1 (3t — 61 +4) (14.2)
By(t) = (=37 + 32 +3r + 1) (14.3)
By(t) = 1r. (14.4)
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Fig. 14.2 The B-spline basis YA
functions

OBy = (38-612+4)/6

0.5

v=(1-1)3/6 v=1/6

~Y

0 0.25 0.5 0.75 1

These are the B-spline basis functions and are shown in Fig. 14.2.

Although it is not apparent, these four curve segments are part of one curve. The
basis function B;(f) starts at zero and rises to ~0.166 at t+ = 1. It is taken over by
By () att = 0, which rises to 20.166 at = 1. The next segment is B (¢) and takes
over at t = 0 and falls to ~0.166 at t = 1. Finally, By(¢) takes over at ~0.166 and
falls to zero at t = 1. Equations (14.1)—(14.4) are represented in matrix form by

-1 3 =31 P;
_ 3 2 l 3 _6 3 0 P[+1
Q=" 7 1+ gl 3 o 3, P (14.5)
1 4 1 0]|]|Pys

Let’s now illustrate how (14.5) works. We first identify the control points P;, P; |,
P; ., etc. Let these be (0, 1), (1, 3), (2, 0), (4, 1), (4, 3), (2, 2)and (2, 3). They
can be seen in Fig. 14.3 connected together by straight lines. If we take the first four
control points: (0, 1), (1, 3), (2, 0), (4, 1), and subject the x- and y-coordinates
to the matrix in (14.5) over the range 0 < ¢t < 1 we obtain the first B-spline curve
segment shown in Fig. 14.3. If we move along one control point and take the next
group of control points (1, 3), (2, 0), (4, 1), (4, 3), we obtain the second B-spline
curve segment. This is repeated a further two times.

Figure 14.3 shows the four curve segments, and it is obvious that even though
there are four discrete segments, they join together perfectly. This is no accident.
The slopes at the end points of the basis curves are designed to match the slopes of
their neighbours and ultimately keep the geometric curve continuous.

14.2.2 B-Spline Continuity

Constructing curves from several segments can only succeed if the slope of the
abutting curves match. As we are dealing with curves whose slopes are changing
everywhere, it will be necessary to ensure that even the rate of change of slopes is
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Fig. 14.3 Four curve
segments forming a B-spline

\—"

0 1 2 3 4

YA

;,lV

matched at the join. This aspect of curve design is called geometric continuity and
is determined by the continuity properties of the basis function. Let’s explore such
features.

The first level of curve continuity C°, ensures that the physical end of one basis
curve corresponds with the following, e.g. S; (1) = S, (0). We know that this occurs
from the basis graphs shown in Fig. 14.2. The second level of curve continuity C!,
ensures that the slope at the end of one basis curve matches that of the following
curve. This is confirmed by differentiating the basis functions (14.1)—(14.4):

By(t) = +(— 31> + 6t —3) (14.6)
Bi(t) = £(9* — 121) (14.7)
By(t) = +(— 91> + 61 4 3) (14.8)
Bi(1) = £(31%). (14.9)

Evaluating (14.6)—(14.9) fort = Oandt = 1, we discover the slopes0.5, 0, —0.5, 0
for the joins between B3, By, By, By. The third level of curve continuity C 2 ensures
that the rate of change of slope at the end of one basis curve matches that of the
following curve. This is confirmed by differentiating (14.6)—(14.9):

Bj(t) = -1+ 1 (14.10)
Bi(t) =3t -2 (14.11)
BJ(t) = =3t + 1 (14.12)
Bl(t) =1. (14.13)

Evaluating (14.10)—(14.13) for t = 0 and r = 1, we discover the values 1, 2, 1, 0
for the joins between Bs, B,, By, By. These combined continuity results are tabulated
in Table 14.1.
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Table 14.1 Continuity properties of cubic B-splines

t t t

0 0 1 c! 0 1 C? 0 1
B3(t) |0 1/6 By(t) |0 0.5 By (1) 0 1
Ba(1) 1/6 2/3 By() 0.5 0 By(t) 1 -2
Bi(t) |2/3 1/6 Bj(t) |0 —0.5 B/(t) |-2 1
By (1) 1/6 0 B)(1) —0.5 0 BJ(t) 1 0

14.3 Derivatives of a Bézier Curve

In this section I describe how to calculate the first derivative of a Bézier curve by
differentiating the basis function.
A Bézier curve with n + 1 control points Py, Py, ..., P, is defined by

r(t) =Y B,i()P;
i=0

where the basis function is

n! . .
B,i(t) = mt’(l 0"

For example, a quadratic Bézier curve with 3 control points, n = 2:

21 .
Byi(t) = mﬂ(l —1)*
Byo(t) = %to(l —1)*7° = (1 —1)?
By (1) = mtl(l -n*! =2 -1
Bys(t) = ﬁtz(l -2 =4

and a cubic Bézier curve with 4 control points, n = 3:

Bs (1) = mfi(l — 1)

3!
B3 o(t) = W’O“ -1 =(-1)’
B3 (1) = Ltl(l -0 =31 —1)?

1nE—1)!
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3!
B3 (1) = mt2(1 -0¥? =320 -1

Bis(t) = 1= =1

213 -13)

Therefore, for a 3D curve with 4 control points P; (x;, y;, z;), 0 <i <3:

x(1)
r(t) = | y(@
z(1)

x(®) =1 —=1)3x+3t(1 — 1)%x; + 3621 — Dxa + 23
y@) =1 =1y +3t(1 — 1)y +3t>(1 = )y2 + 173
2() = (1 — 1)z + 3t(1 — )%z + 3620 — )72 + £23.

To find the derivative of r(z), we first differentiate the basis function B3 ; (¢):

B () ==3(1—1)° = —3B,(t)

By () =31—1)>—6t(1—1)  =3Byo(t) —3By(t)
B, (t) = =3t +6t(1 — 1) =3B,1(t) — 3By, (1)
B, () =317 =3By, (1)

where we see that the derivative of a cubic Bézier curve is expressed in terms of a
quadratic Bézier curve; consequently:

r'(t) = =3P Byo(t) + 3P [B2,0(t) — B2, 1(1)] + 3P2 [Ba,1(t) — Boa(t)] + 3P3B2 2 (1)
=3P —Py) By o(t) +3 P2 —P1) By 1 (1) +3(P3 — P2) By (0). (14.14)

In order to generalise (14.14) we differentiate the basis function:

n!

o, Yo anmiel imlyy  an—i
ar B = mn =D aen =0 LT YL St
N TRt | N DR RS [t | NS A
I Ty w (LA M sy LA G
_ (n—1)! i1 _ pn—1—i (n = D! i—lg _pn—i
RTTr P LA ) T T D —yt 470
By i =—nBy_1i(t) +nBy_1;-1(t)

n,i

=n(By—1,i—1(1) = By_1,i ().

Therefore,
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r(t) = ZPiB,;_,.(t)

i=0

=nY P (By1i-1(t) = By_1.:(0))
i=0

=n ZPiBn—l,i—l(t) —n ZPiBn—l,i(t)~
i=0 i=0

In the second sum

n ’Zl Pi anl,i (t)
i=0

wheni = n, B,_;, = 0, which permits the range of i to be reduced ton — 1:

n n—1
v'(6)=nY PiB, ;1) —n Yy PiBy1:(0).
i=0 i=0
Next, the first sum is adjusted to sumton — 1:
n—1 n—1
v =nY PiaBu1i(t)—n Y PiB, ;)
i=0 i=0
n—1
v =nY (P —P)B, 1 ().
i=0

For a cubic, n = 3:
r'(t) =3 (P; —Pg) Boo(t) + 3 (P, — Py) By 1 (t) + 3 (P3 — P2) Bys (1)

which is the same as (14.14).

Let’s calculate the first derivative of the following cubic Bézier curve.

The control points are Py = (0,0), P, = (0, 1), P, = (1, 1), P; = (2, 0) asshown
in Fig. 14.4. Therefore,

X'(1) =30-0)1 —1)? 431 —0)02(1 — 1) + 32 — 1)¢?
=61(1 —1t) + 31>

= 61 — 3t?
V() =31 —=0)1—0)2+3(1 —D2t(1 —1) + 30— 1)r?
=3(1 —1)?* -3¢

=3 — 6¢.
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The original parametric functions must give the same result:

x() =1 =0%0+3(1 —0)?0+ 321 — 1)1 + 12
=3¢ — ¢

xX'(t) = 6t — 3¢>

y@©) =1 —1)32043t(1 —1)*14+3t>(1 — 1)1 + 30
=3r(1 =2t +1%) + 31> — 3¢
=31 — 312

y'(t) =3 — 6t.

The derivatives at t = 0 and r = 1 are

14 Continuity

x'(0)=0
y'(©0)=3
X'(1) =3
y'(1) =-3.
The derivatives x'(z) and y’(¢) are with respect to ¢. To find dy/dx we divide y’'(¢)
by x'(¢):
d
d_y=£f= 3 — 61 _ 1—2¢
dx Z_x 6t —3t2 2t —1?’
t
Whent =0, % = 00, and whent =1, ;l,—i’ = —1, which correspond to the slopes of

the first and last line segments respectively. See Fig. 14.4. This is always the case,

because:

r'(t) =3Py — Po) Boo(t) + 3 (P2 —Py) By 1 (1) + 3 (P3 — Py) B (1)

r'(0) =3 (P, — Py) Bo(1)
x'(0) = 3(x; — x0)Ba,o(t)
¥'(0) = 3(y1 — yo)Ba,o(?)
dy _ YO _yi—
dx x'0) x1—xo
r'(1) =3 (P3 — P2) Br1(1)
x'(1) = 3(x3 — x2) B2 (1)
y' (1) = 3(y3 — y2) B22 (1)
dy YD) _y—m
dx x'(1) x3—x
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Fig. 14.4 A 2D cubic Bézier YA
curve P, P,
L
f% P3
1 0 1 2 X

The second derivative is stated without proof as

n—2

r'() = nn — 1) (Piyy — 2Py + Pi) B, 2 (t).
i=0

Using the example shownin Fig. 14.4, Py = (0,0), P, = (0,1), P, =(1,1), P; =
(2,0)

X'0)=3x2[1-2x0+0)(1—1)+Q2—-2x1+4+0)1]
=6(1—1)
V') =3x2[1-2x1+01—-)+0—-2x1+1)¢]
=6[—(1—1)—t]=—6.
The first derivative equals
dy 1-—2¢
dx 2 —12

which equals zero, when ¢t = 0.5. The second derivative equals

d’y _y'(t) =6
dx2 " x"(2)  6(1—1)

which is negative at r = 0.5, therefore, there is a maximum value at this point.

144 Summary

Fortunately, geometric continuity is reasonably easy to illustrate: it’s just a question
of differentiating the basis functions. However, there are many other types of curves,
where the same technique can be applied.



Chapter 15 ®)
Curvature ot

15.1 Introduction

In this chapter I describe the mathematical definition of curvature, and show how to
compute the curvature of a circle, helix, parabola, sine curve, Bézier curve, and a
graph described by an explicit equation.

15.2 Curvature

When we hold a curved object, we can tell immediately the tightness of the curved
surface. Similarly, when driving along a twisting roadway, the forces on our body
reflect the curvature of the path taken by the vehicle. Curvature is expressed mathe-
matically in a variety of ways, and we will see the benefits and drawbacks of each
one.

With reference to Fig. 15.1, the curve at point P is approximately equal to part of
a circular arc with radius R. Therefore, the curvature « (kappa), of the curve at P is
defined as k = 1/R. The reciprocal of R is chosen so that a small radius corresponds
to a large curvature, and a large radius, a small curvature. One can see that the curve
at point Q is almost a straight line, which corresponds to a very large circle, and
therefore a small curvature. This circle is called the osculating circle.

We can see that some curves such as a circular arc, and a linear helix, have a
constant curvature, whereas a parabola, elliptical arc, quadratic curve, etc., have
different degrees of curvature along their length.

In order to calculate x, we investigate how fast unit tangent vectors change along
the curve. Unit vectors are chosen, otherwise the tangent-vector length influences
the rate of change. Figure 15.2 shows a curve with unit tangent vectors placed at the
points A, B, C and D. It is clear that at points of high curvature, the associated unit
tangent vectors change faster than those at points of low curvature. This measure of
curvature is expressed as

© Springer Nature Switzerland AG 2019 277
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Fig. 15.1 The curvature at

P is defined by k = % Yy
X
Fig. 15.2 The unit tangent y
vectors at different points
along a curve
x

HdT
K=|l—
ds

Note that the derivative is relative to the arc length s, which can be a problem to
compute, and the reason for taking the absolute value is to remove any negative sign
that may arise. Curvature is regarded as an unsigned quantity. Let’s see how this
definition behaves in practice.

15.2.1 Curvature of a Circle

Consider the vector-valued function r(¢) for a circle of radius r:

7 COS t
r(t) = [rsinti|’ t €[0,2r]

its derivative is the tangent vector on the curve:

, —rsint
r()= .
@) |:rcost:|
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The unit tangent vector function T(¢) is

/(¢
T(4) = r'(r)
[Ir' (D)
but
IIE'(D)]] = v/ (=rsint)2 + (reost)2 =r
therefore,
/l‘ o
() = =© =[ S“”]
r cost
Now,
HdT
K=|l—
ds

but as we don’t know d'T/ds, we use the chain rule to redefine «:

dT
&
= Tds
|
We have already seen that
b [Ie' ()]
dt

which equals r, and

E_ —cost
t | —sint

d
dT
H— =/(—cost)> 4 (—sint)2 =1
dt
therefore, |
K= -
,

which agrees with the original definition of curvature.

15.2.2 Curvature of a Helix

For this example we employ a helix with a constant pitch and radius a:

279
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acost
r(t) = | asint |, te[0, 2]
bt

its derivative is the tangent vector on the curve:
—asint

r'(t) =| acost
b

The unit tangent vector function T(¢) is

r (1)
T = —
O =T

where

IIF'(D)]] = V(—asint)? + (acost)? + b?

:\/a2sin2t+azcoszt+b2

=./a? (sin2 t + cos? t) + b2
= a2 + b2

therefore,

() | —a s1ntt
a cos

\/a2+b2:\/a2+b2 b

T@) =

Now,

where

AT 1 —acost
— =———| —asint
dt /a2 + b2 0
dT _ a
dt || Va1 b?

G _ ol = Ve 5

dr

15

Curvature
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Fig. 15.3 A helix where A
x =3cost, y= =
3sint, z = 0.25¢ and
t €[0,4nr] &

a
K=——>.
a’+b?

Note that when b = 0, k = 1/a, which is what one would expect.
Let’s illustrate this with an example where a = 3 and b = 0.25, as shown in
Fig. 15.3. Therefore,

3 3
KT 321025 T 9.0625

Thus, the curvature is & 0.331, and the radius of the osculating circle is ~ 3.0208,
which is slightly larger than the underling circle for the helix.

15.2.3 Curvature of a Parabola

2

A simple parabola such as y = x?, is written as vector-valued function as

r(r) = [fz}

its derivative is the tangent vector on the curve:

r'() = |:21t:| .

The unit tangent vector function T(¢) is



282 15
() = r'(t)
[le" ()]
where
X' (O] =V 1+ 42
therefore,
v T[T
J1 + 412 2t/ 1+412 |
1
Differentiating y = 1/ (1 4 4¢%)>:
Letu = 1+ 4%
_1
y=u ?
& _ o
d - 2 - 2 3
u 2(1 + 412)3
du
— =8t
dt
dy dy du _ 8t
dt — du dt (1 +42)3
. 4¢
(1 + 412)2

Differentiating the quotient y = 2¢/(1 + 41%)2:

dy  2(1+41%)7 =2t L(1 44122

ar 1+ 472
21+ 477 =2 (30 +47) 72 81)
- 1+ 412
21+ 417 — 82 (1 + 417
N 1 + 412
_2(1441%) — 817
(1+412)
2
(14 412)3
therefore,
4
d_T _ (14412)3
dt 2

3
(14+412) 7

Curvature



15.2 Curvature 283

Fig. 15.4 The parabola Yy
y = x? with the osculating
circle, radius 0.5

1 0 1 X
=t
and
2 2
dT 4t 2
ar = - 7| t 3
(1+4r2)° (14 42)°
e +4 AL+ 412)
SV A 423 | (1 +4e2)3
_ 2
T
But
dT
= dt
 lds
dt
where
9 _ (1 44}
dt
therefore,
2 2
K (1)

441+ 42 (1 +42)3

When ¢ = 0, then k = 2, as shown in Fig. 15.4. Naturally, as one moves away from
this trough in the curve, the radius of curvature increases, and « decreases.

I am sure you will agree, that the above proof is incredibly long, and there must
be a better way. Fortunately, there is, and it is shown in the next section.

15.2.4 Parametric Plane Curve

Given a 2D parametric plane curve:
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| x@
r = [y(t)}

|[x' (@) - y" (@) = y'(@) - x" ()|

its curvature is

k(1) = 3
(x'()?+y'(1)?)?
where
, _dx , _dy
X = -, y = —_—
dt dt
dr?’ dr?’

Let’s try a parabola

x(t)=t, y@t)=1>
X =1, Y@ =2t
X"t =0, y'(t)=2.

Therefore,

111 x 2 — 2t x 0]

(1+4r2)}
2

(1 +412)%'

When t = 0, «k = 2. This is a much simpler method of calculating curvature, and
there is a 3D version which we examine later.
Now let’s try a sine curve:

x(t) =t, y(t) = sint
x't)y=1, y'(t) =cost
x"(t) =0, y'(t)=—sint.

Therefore,
| — sin t|
K =

14 cos?t 3
(

When t =0, k =0, and when t = /2, « = 1, as shown in Fig. 15.5.
In order to calculate the curvature of 3D parametric curves, we use (15.1):
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Fig. 15.5 A sine curve A
y = sin x with the osculating 1
circle, radius 1

V&Y D =) (0 ) (15.1)

(_x/2 + y/2 +Z/2)%

Given a vector-valued function:

x(1) x'(1) x"(1)
r) =y |, YO=|y® |, ro=]|y®
z(1) Z(t) Z'(t)

r'(¢) is the tangent vector to the curve, and r”(¢) is the rate of change of the tangent

vector. The cross-product r'(¢) x r”(¢) is a measure of the curvature, whose magni-
3

tude is the numerator in (15.1). The denominator (x? + y"* + z?)2, is the required

scaling factor. Let’s use (15.1) to calculate the curvature of a constant pitch helix.

acost —asint —acost
r(t)=| asint |, r(¢)=| acost |, r’(t)=| —asint
bt b 0
Therefore,
. . 2
\/(—ab sint)> + (—abcost)” + (a?sin® t + a® cos? 1)
K =

3
(a®cos?t + a?sin® t 4 b212)?

_ \/azb2 sin®t + a?b? cos? t + a*
- (a2 +b?)’
VT

(a® + bz)%

a (a2 + bz)%
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—

5

_a
a4 b?

which agrees with the result for the previous helix.

15.2.5 Curvature of a Graph

When a curve is expressed as an explicit function, the curvature « is

_ ’y”(l‘)‘
(1 + y/(t)z)%

For a sine curve:

y =sint
y'(t) = cost
y'(t) = —sint.
Therefore,
| — sint|
K= 5
(1 + cos? t) 2

which is the same as a parametric plane curve.
Applying this formula for a parabola:

y=1r
y'(t) =2t
y'(t) =2
2
K = — %
(1+412)2

which agrees with the previous result, and is much simpler.

15.2.6 Curvature of a 2D Quadratic Bézier Curve

A 2D quadratic Bézier curve is defined as

r(r) = Po(1 — 1)> + 2Pt (1 — 1) + Por?

Curvature
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Fig. 15.6 A Bézier curve YA
. o P,
with the osculating circle, "
radius 1
3
2
1
P, P, N
2 1 0 1 2 3 4 5 6 7 X
-1

which has the following first and second derivatives:

r'(1) = —2Po(1 — 1) + 2P, (1 — 21) + 2Pyt
—0Py + 2Pyt + 2P, — 4P,1 + 2Pyt
=2(P; —Po)(1 —1) +2(P, — Py)¢
=2[(P; —Py)(1 — 1) + (P2 — Py)1]
(1) = 2(Py — 2P, + P»).

‘We can now use

|[x"@) - y"(1) — y'(1) - x" (1)

() = :
(02 +y'(0?)°

(15.2)

to find the curvature. For example, Fig.15.6 shows a Bézier curve with control
points Py = (0,0), P, = (2,4), P, = (4, 0), which generate the following first and
second derivatives at t = 0.5:

x'(0.5) = 2[2(1 — 0.5) + 1] = 4
y(0.5) = 2[4(1 —0.5) — 2] = 0
x"(05) =20—4+4) =0
y"(0.5) = 2(0 — 8+ 0) = —16.

Plugging these into (15.2), we get

—64—0
I I_,

k(0.5) = _
(16 + 0)?

which is confirmed by the unit-radius osculating circle in Fig. 15.6.
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15.2.7 Curvature of a 2D Cubic Bézier Curve

A 2D cubic Bézier curve is defined as
r(t) =Po(1 —1)> + 3Pt (1 — 1)® +3Pot>(1 — 1) + P3¢°
which has the following first and second derivatives:

r'(1) = —=3Po(1 — )2 + 3P (1 — 4t + 312) + 3P, (21 — 3t2) + 3P312
= —3Py(1 — )2 + 3P (1 — 1)2 — 3P 2t (1 — 1) + 3P22t (1 — t) — 3P5t% + 3P312
=3 (1 = Po)(1 =) + P2 = P21 = 1) + (B3 — Po)r?)

(1) =3P —Po)(=2+2t) +3(P> — P1)(2 — 41) + 3(P3 — P»)2t
=-3P; —Po)2(1 —t) + 3P, —P)2(1 —t) —3(Py — P1)2t + 3(P3 — P»)2¢
=6((P2 —2P; +Po)(1 — 1) + (P3 — 2P, + Py)1)

We can now use (15.2) to find the curvature. For example, Fig. 15.7 shows a Bézier
curve with control points Py = (0,0), P, = (1,1), P, = (2,1), P53(3,0), which
generate the following first and second derivatives at t = 0.5:

x"(0.5 =6(0)=0
y'(0.5) =6(—3—1) =—6.

Plugging these into (15.2), we get

-8
K(0.5) = ——— ~ 0.6667
93

which makes the radius of the osculating circle 1.5, as shown in Fig. 15.7.

15.3 Summary

Curvature has quite a simple definition, yet it some cases, requires tiresome levels of
algebraic manipulation to secure an answer. Half the problem is choosing the most
useful way of describing the original function.
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Fig. 15.7 A cubic Bézier YA
curve with the osculating
circle, radius 1.5 1 P | P2
Py Py
1 0 1 2 3 X
-1

15.3.1 Summary of Formulae

Curvature «

where R is the radius of the osculating circle.

dT
ds

where T is the unit tangent vector at a point along the arc length s.

dT
. — dt
“lds
dt
where
ARTRI
dr ’
Curvature of a Helix
acost
r(t) = | asint |, te[0, 2]
bt
a

a?+ b2’
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r(r) = [,Z]

k(1)

Curvature of a Parabola

(1 +42)3

Curvature of a 2D Parametric Plane Curve

Hx/.y//_y/.x//H

k(1) = 3
(XIZ +y/2)§

Curvature of a 3D Parametric Plane Curve

\/(Z” Yy =y Z/)Z + ("7 —7"- x/)2 + (- x —x"- y/)2
3 .
(XIZ +y/2 +Z/2)§

k() =

Curvature of a Graph

@l
(1+y@?)

k() =

(NI



Chapter 16 ®)
Conclusion ot

Calculus is such a large subject, that everything one investigates leads to something
else, and one is tempted to write about it and explain how and why it works. Conse-
quently, when I started writing this book I had clear objectives about what to include
and what to leave out. Having reached this final chapter, I feel that I have achieved
this objective. There have been moments when I was tempted to include more top-
ics and more examples and turn this book into similar books on Calculus that are
extremely large and daunting to open.

Hopefully, the topics I have included will inspire you to read other books on
Calculus and consolidate your knowledge and understanding of this important branch
of mathematics.
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Appendix A
Limit of (sin§)/0

This appendix proves that

. sind .. .
lim =1, where 6 is in radians.
0—-0 0

From high-school mathematics we know that sin 6 = 6, for small values of 6. For
example:

sin0.1 =~ 0.099833
sin 0.05 ~ 0.04998
sin 0.01 =~ 0.0099998

and

in0.1
sin0-1 - 0.99833

sin (j.OS
0.05
sin 0.01

0.01

~ (0.99958

~ 0.99998.

Therefore, we can reason that in the limit, as 6 — 0:

. sind
lim =1.
-0 @

Figure A.1 shows a graph of (sin#)/6, which confirms this result. However, this is
an observation, rather than a proof. So, let’s pursue a geometric line of reasoning.

From Fig. A.2 we see as the circle’s radius is unity, OA = OB = 1, and AC =
tan 0. As part of the strategy, we need to calculate the area of the triangle AOAB,
the sector OAB and the AOAC:

© Springer Nature Switzerland AG 2019 293
J. Vince, Calculus for Computer Graphics,
https://doi.org/10.1007/978-3-030-11376-6


https://doi.org/10.1007/978-3-030-11376-6

294 Appendix A: Limit of (sin6)/6

Fig. A.1 Graph of (sin6)/6 y
]
0
-3n -2mn g 0 m 2n 3n X
-1
Fig. A.2 Unit radius circle ¥
. X . . C
with trigonometric ratios N ,f:
/ // \\\B//
/ /,?k\ E
/ L7 p ) tand
/ //' sing i N\
o oA
| . . W
\ o cosd D ;‘A x
Areaof AOAB =AODB+ ADAB
= %cos@ -sinf + %(1 —cosf) -siné
= %cos@ -sin@ + % sinf — %cos@ -sin 6
— 1
= 5sin6.
0 2 _ 1
Area of sector OAB = —m(1)” = 50.
2w

Area of AOAC = %(l)tane = %tan@.

From the geometry of a circle, we know that

1 1 1
zsme < 56 < Etané‘
. sin &
sinf < 6 <

cos 6

0 1
- <
sin O cosf

sin 6
0

1<

1> > cosf
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andas @ — 0,cosf — 1 and 517 — 1. This holds, even for negative values of 9,

because . . .
sin(—8) _ —siné _ sin 6

Therefore,




Appendix B
Integrating cos”

This appendix shows how to evaluate [ cos" 6 d6.
We start with

cos" x dx = /cosx .cos" ! x dx.

Let u = cos" ' x and v/ = cos x, then

/

u' =—(n—1)cos" 2

X -sinx

and
v =sinx.

Integrating by parts:

/uv’dx:uv—/vt/dx—l—C

/ cos” ' x - cosx dx = cos" ! x - sinx +/sinx -(n—1cos" 2x -sinx dx +C
=sinx-cos" x4+ (n — 1)/sin2x ccos" Zxdx+C
=sinx-cos" x4+ (n — 1)/ (1 — cos? x) ccos" 2xdx+C
=sinx-cos" 'x 4+ (1 —1) / cos" 2 dx —(n—1) / cos" x dx +C

n/cos”x dx =sinx -cos" 'x +(n — 1)/005”’2 dx +C

: —1
sinx-cos"'x n—1 _
/cos"xdx: + /cos” 2dx+cC
n n

where 7 is an integer, # 0.
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Similarly,

con—1

. cosx-sin""'x n-—1 L

fsm”x dx = — + /sm” 2dx+C.
n n

For example,

/cos3x dx = %sinx -cos? x + %sinx+C.
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A
Acceleration, 76, 228
Antiderivative, 28, 35
Arc length, 139
circle, 142, 150
cosh function, 148
ellipse, 151
helix, 152, 160
parabola, 143
parameterisation, 157, 160
parametric function, 149
polar coordinates, 164
sine curve, 148
straight line, 142
3D line, 157
3D quadratic Bézier curve, 155
2D quadratic Bézier curve, 153
Area
between two functions, 130
circle, 122
cone, 171
cylinder, 171
double integrals, 178, 188
negative, 129
paraboloid, 175
parametric functions, 133, 176
positive, 129
right cone, 171
sphere, 173
surface, 169
surface of revolution, 169
under a graph, 121
with the y-axis, 132

B
Bézier curve, 153, 155, 286, 288
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Bilinear patch, 255
unit normal vector, 255
unit tangent vector, 255
Binomial expansion, 24
Box
volume, 217
B-spline, 267
continuity, 269

C
Cartesian vector, 233
Cauchy, Augustin-Louis, 2, 19
Chain rule, 88
Circle, 244
curvature, 278
unit normal vector, 244
unit tangent vector, 244
Column vector, 233
Cone
surface area, 171
volume, 199, 207, 221
Continuity, 19, 269
Continuous function, 7, 95
Control point, 268
Cosh curve, 249
unit normal vector, 249
unit tangent vector, 249
Cubic equation, 22
Curvature, 277
circle, 278
graph, 286
helix, 279, 285
parabola, 281, 284, 286
sine curve, 284, 286
2D cubic Bézier curve, 288
2D quadratic Bézier curve, 286
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Cylinder
surface area, 171
volume, 198, 206, 218

D

Definite integral, 125

Dependent variable, 5

Derivative, 19, 27, 35
Bézier curve, 271
circular curve, 278
cubic Bézier curve, 271

graphical interpretation, 26

helical curve, 280
parabolic curve, 281
partial, 81

quadratic Bézier curve, 271

total, 90

2D cubic Bézier curve, 288
2D quadratic Bézier curve, 286

Derivatives and motion, 76

Differential, 27

Differentiating, 36
arccos function, 58
arccot function, 59
arccsc function, 59
arcosh function, 66
arcoth function, 67
arcsch function, 67
arcsec function, 59
arcsin function, 58
arctan function, 58
arsech function, 67
arsinh function, 66
artanh function, 66
cosech function, 65
cosh function, 63
cot function, 58
coth function, 65
csc function, 56

exponential functions, 50
function of a function, 38

function products, 41
function quotients, 44

hyperbolic functions, 62

implicit functions, 47

logarithmic functions, 52

periodic functions, 15
sec function, 56

sech function, 65
sine function, 39

sinh function, 63
sums of functions, 36

tan function, 55
tanh function, 63

trigonometric functions, 54

vector functions, 225
Differentiation
partial, 82
Discontinuous function, 7
Domain, 135
Dot product, 236
Double integrals, 178
volume, 210

E
Ellipse, 151, 246
eccentricity, 152

unit normal vector, 246
unit tangent vector, 246

Ellipsoid
volume, 203
Elliptic integral, 152

F

Function, 5, 6, 24
continuous, 7, 95
cubic, 22
differentiation, 14
discontinuous, 7
integration, 14
linear, 8
periodic, 9
polynomial, 9
quadratic, 21
rate of change, 11
real-valued, 135
second derivative, 76
slope, 11
vector-valued, 225

Function of a function, 10
differentiating, 38

Index

Fundamental theorem of Calculus, 126

G
Geometric
continuity, 269

Gradient of the scalar field, 237

H
Helix, 160, 251
curvature, 279
unit normal vector, 251
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unit tangent vector, 251
Higher derivatives, 71

I
Indefinite integral, 93
Independent variable, 5
Infinitesimals, 19
Integral
definite, 125
Integrating
arccos function, 58
arccot function, 59
arccsc function, 59
arcosh function, 67
arcoth function, 69
arcsch function, 68
arcsec function, 59
arcsin function, 58
arctan function, 58
arsech function, 68
arsinh function, 67
artanh function, 67
cot function, 58
csc function, 56
exponential function, 52
logarithmic function, 53
sec function, 56
tan function, 55
vector-valued functions, 229
Integration, 28
completing the square, 100
difficult functions, 96
integrand contains a derivative, 102
partial fractions, 117
by parts, 105
radicals, 99
by substitution, 113
techniques, 95
trigonometric identities, 97
Interval, 135

J
Jacobian, 180
determinant, 180
matrix, 180
Jacobi, Carl Gustav Jacob, 180

K
Kappa, 277

L
Lagrange, Joseph Louis, 28, 139
Lagrange’s Mean-Value Theorem, 139
Leibniz, Gottfried, 2, 28
Leibniz notation, 28
Limits, 19, 24
Line, 240
unit normal vector, 240
unit tangent vector, 240
Linear function, 8

M

Maxima, 73

Mean-value theorem, 139
Minima, 73

Mixed partial derivative, 86

N

Nabla, 237

Newton, Isaac, 2
Non-rational B-spline, 267
Normal vector, 233
Notation, 233

(0]
Osculating circle, 277

P
Parabola, 242, 281, 284
curvature, 281
unit normal vector, 242
unit tangent vector, 242
Paraboloid
area, 175
volume, 204, 209
Parameterisation, 139, 234
helix, 160
3D line, 157
Parametric
bilinear patch, 255
circle, 244
cosh curve, 249
ellipse, 246
helix, 251
parabola, 242
plane curve, 283
quadratic Bézier curve, 253
quadratic Bézier patch, 256
sine curve, 248
sphere, 259
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torus, 261

2D line equation, 240

vector-valued function, 233
Parametric function

area, 176
Partial derivative, 81

chain rule, 88

first, 83

mixed, 86

second, 83

visualising, 84
Pascal’s triangle, 24
Periodic function, 9
Plane curve, 283
Polynomial function, 9
Position, 76
Prime mark notation, 28
Principal normal vector, 237

Q
Quadratic Bézier curve, 153, 155, 253
unit normal vector, 253
unit tangent vector, 253
Quadratic Bézier patch, 256
unit normal vector, 256
unit tangent vector, 256
Quadratic function, 21

R
Rational

B-spline, 267
Riemann, Bernhard, 135
Riemann sum, 135
Right cone

surface area, 171

volume, 199, 207
Row vector, 233

S
Scalar field, 237
Second derivative, 76
Sine
curve, 248, 284
differentiating, 39
Sine curve
unit normal vector, 248
unit tangent vector, 248
Slope of a function, 11
Solid of revolution
disk method, 197
shell method, 205

Speed, 226
Sphere, 259
area, 173
unit normal vector, 259
unit tangent vector, 259
volume, 202, 207, 220
Surface
area, 169
of revolution, 169

T
Tangent vector, 233, 277
unit, 234, 279
3D parametric curve, 284
3D quadratic Bézier curve, 155
Torus, 261
unit normal vector, 261
unit tangent vector, 261
Total derivative, 90
Triple integral
volume, 217
2D cubic Bézier curve, 288
2D quadratic Bézier curve, 153, 286

U
Uniform B-spline, 268
Unit tangent vector, 279

A\
Variable
dependent, 5
independent, 5
Vector
Cartesian, 233
column, 233
normal, 233
principal normal, 237
row, 233
tangent, 233
unit tangent, 234
Vector differential operator, 237
Vector-valued function, 225
Velocity, 76, 226
Volume, 197
box, 211, 217
cone, 199, 207, 221
cylinder, 198, 206, 218
double integrals, 210
ellipsoid, 203
paraboloid, 204, 209
prism, 212

Index
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right cone, 199, 207 W

right conical frustum, 200 Weierstrass, Karl, 2, 19
solid of revolution, 197

sphere, 202, 207, 220

triple integral, 217
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