
Basic Math for
Game Development
with Unity 3D

A Beginner’s Guide to Mathematical
Foundations
—
Second Edition
—
Kelvin Sung
Gregory Smith

Basic Math for
Game Development

with Unity 3D
A Beginner’s Guide to Mathematical

Foundations

Second Edition

Kelvin Sung
Gregory Smith

Figures and illustrations: Clover Wai

Basic Math for Game Development with Unity 3D: A Beginner’s Guide to
Mathematical Foundations, Second Edition

ISBN-13 (pbk): 978-1-4842-9884-8		 ISBN-13 (electronic): 978-1-4842-9885-5
https://doi.org/10.1007/978-1-4842-9885-5

Copyright © 2023 by Kelvin Sung, Gregory Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

Paper in this product is recyclable

Kelvin Sung
Bothell, WA, USA

Gregory Smith
Caldwell, ID, USA

https://doi.org/10.1007/978-1-4842-9885-5

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.

—Kelvin Sung

To my wife and our little one, thank you for making
my life better each and every day.

—Gregory Smith

v

Table of Contents

About the Authors��� xi

Acknowledgments�� xiii

Introduction��xv

Chapter 1: �Introduction and Learning Environment�� 1

Introduction�� 1

Choice of Unity Engine��� 3

Setting Up Your Development Environment��� 4

Notes on Installing Unity��� 5

Unity Editor Environment��� 5

Opening the Intro to Unity Project�� 7

Working with the Unity Editor��� 8

Working with MyScript��� 14

To Learn More About Working with Unity�� 23

How to Use This Book�� 23

Summary��� 24

References��� 25

Chapter 2: �Intervals and Bounding Boxes��� 27

Introduction�� 27

Review of Cartesian Coordinate System�� 28

Intervals: Min-Max Range�� 30

Working with Examples in Unity��� 31

The Interval Bounds in 1D Example�� 32

Axis-Aligned Bounding Boxes: Intervals in Three Dimensions��� 42

The Box Bounds Intervals in 3D Example��� 44

vi

Collision of Intervals��� 52

The Interval Bound Intersections Example��� 54

Collision of Bounding Boxes��� 59

The Box Bound Intersections Example��� 60

Final Words on Bounding Boxes��� 70

The Unity Bounds Class�� 70

Summary��� 72

Chapter 3: �Distances and Bounding Spheres�� 73

Introduction�� 73

Distances Between Positions��� 74

The Positions and Distances Example�� 76

Sphere Colliders or Bounding Spheres�� 82

The Sphere Bounds Example�� 84

Collision of Bounding Spheres��� 89

The Sphere Bound Intersections Example�� 90

The Unity BoundingSphere Class��� 94

Summary��� 94

Chapter 4: �Vectors��� 97

Introduction�� 97

Vectors: Relating Two Points�� 99

Position Vectors��� 102

Following a Vector�� 103

Following a Vector from Different Positions��� 104

The Position Vectors Example�� 106

Vector Algebra: Scaling�� 121

Normalization of Vectors�� 124

Direction of Vectors�� 125

The Vector Scaling and Normalization Example��� 126

Application of Vector: Velocity�� 137

The Velocity and Aiming Example��� 139

Table of Contents

vii

Vector Algebra: Addition and Subtraction��� 148

Rules of Vector Addition and Subtraction��� 149

Addition and Subtraction with the Zero Vector��� 150

Vectors in an Equation�� 151

Geometric Interpretation of Vector Addition and Subtraction��� 151

The Vector Add and Sub Example��� 154

Examine the Scene��� 155

Analyze Controller MyScript Component�� 155

Interact with the Example�� 156

Details of MyScript��� 158

Takeaway from This Example��� 161

Application of Vector Algebra��� 162

The Windy Condition Example�� 163

Summary��� 169

Chapter 5: �Vector Dot Products��� 171

Introduction�� 171

Vector Dot Product: Relating Two Vectors�� 173

Definition of Vector Dot Product��� 174

Properties of Vector Dot Product�� 175

The Angle Between Two Vectors��� 177

The Angle Between Vectors Example��� 181

Vector Projections�� 189

The Vector Projections Example��� 191

Representation of a Line Segment��� 198

Inside-Outside Test of a General 1D Interval�� 200

The Line Interval Bound Example��� 204

Line to Point Distance�� 210

The Line to Point Distance Example��� 212

Line to Line Distance�� 218

The Line to Line Distance Example��� 222

Summary��� 230

Table of Contents

viii

Vector Dot Product Definition and Implications�� 231

Interpreting the Dot Product Results�� 232

Insights into the Subtended Angle�� 232

The Line Equations��� 233

Chapter 6: �Vector Cross Products and 2D Planes�� 235

Introduction�� 235

3�D Coordinate System Convention��� 237

Unity Follows the Left-Handed Coordinate System�� 238

Vector Cross Product: The Perpendicular Direction��� 239

Definition of Vector Cross Product�� 240

Geometric Interpretation of Vector Cross Products�� 242

Properties of Vector Cross Product��� 243

The Vector Cross Products Example��� 244

The Vector Plane Equation��� 252

The Position Pn on a Plane�� 255

Given a Position on a Plane�� 256

Positions on 2D Planes��� 256

The Vector Plane Equations Example��� 257

Axis Frames and 2D Regions��� 265

Bounds on a 2D Plane�� 267

The Axis Frames and 2D Regions Example�� 268

Projections onto 2D Planes�� 274

The Point to Plane Projections Example��� 277

Line to Plane Intersection�� 283

The Line Plane Intersections Example�� 285

Mirrored Reflection Across a Plane�� 292

The Reflection Direction��� 293

The Line Reflections Example�� 294

Summary��� 301

Table of Contents

ix

Chapter 7: �Axis Frames and Vector Components�� 303

Introduction�� 303

Positions in the Cartesian Axis Frame�� 306

Components of a Position Vector�� 307

The Components of Cartesian Axis Frame Example��� 308

Positions in General Axis Frames��� 312

Review of Axis Frame Derivation�� 313

Position Vectors in General Axis Frames�� 314

Components of Position Vectors��� 315

The Components of Any Frame Example�� 318

Vectors in Axis Frames��� 325

Vector Components�� 326

The Vectors in Any Frame Example�� 330

Motion Control in Axis Frames��� 338

The Motion in Axis Frame Example�� 340

Axis Frames in Unity�� 346

Summary��� 347

Chapter 8: �Quaternions and Rotations��� 349

Introduction�� 349

Rotation Terminologies�� 351

Quaternion: Tuple of Four��� 352

Encoding of Angle and Axis�� 354

Rotation Operation�� 354

Quaternion Rotation Limitation��� 355

Rotating Positions and Vectors��� 356

The Rotation with Quaternion Example�� 356

Quaternion Concatenation��� 366

The Quaternion Concatenation Example�� 368

Aligning Vector Directions�� 375

The Align Vector Directions Example�� 376

Table of Contents

x

Interpolation and Chasing Behavior��� 384

Interpolation: Gradual Changes�� 385

The Chasing or Home-In Behavior�� 387

The Chasing Behavior Example�� 388

Aligning Axis Frames�� 393

The Unity Quaternion Class�� 396

The Align Frames Example��� 397

Summary��� 405

Chapter 9: �Conclusion�� 407

The Final Comprehensive Example�� 408

Examine the Scene��� 409

Analyze Controller MyScript Component�� 411

Interact with the Example�� 413

Details of MyScript��� 424

Takeaway from This Example��� 436

What’s Next�� 438

Index�� 441

Table of Contents

xi

About the Authors

Kelvin Sung is Professor with the Computing and Software Systems Division at the

University of Washington Bothell (UWB). He received his Ph.D. in Computer Science

from the University of Illinois at Urbana-Champaign. Kelvin’s background is in computer

graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront

(now part of Autodesk), where he played a key role in designing and implementing the

Maya Renderer, an Academy Award–winning image generation system. At UWB, funded

by Microsoft Research and the National Science Foundation, Kelvin’s work focuses on

the intersection of video game mechanics, solutions to real-world problems, and mobile

technologies. Together with his students and colleagues, Kelvin has co-authored six

books: one in computer graphics and the others in 2D game engines with Apress.

Gregory Smith is a software engineer at Virtual Heroes, a company that focuses

on creating training and simulation software in Unreal Engine. He received his

undergraduate degree in Computer Science from Northwest Nazarene University in 2018

and earned a Master of Computer Science and Software Engineering degree from the

University of Washington Bothell in 2020. Gregory also owns his own game company,

Plus 2 Studios, which he works on in his spare time.

xiii

Acknowledgments

This book and the projects it relates to stem from the results of the authors’ attempts

to understand how to engage learners in exploring knowledge related to interactive

computer graphics, introductory programming, and video games. Past funding for

related projects includes support from the National Science Foundation for the projects

“Essential Concepts for Building Interactive Computer Graphics Applications” (Award

Number, CCLI-EMD, NSF, DUE-0442420) and “Game-Themed CS1/2: Empowering the

Faculty” (Award Number DUE-1140410). Projects supported by Microsoft Research and

Microsoft Research Connections include “XNA Based Game-Themed Programming

Assignments for CS1/2” (Award Number 15871) and “A Traditional Game-Themed CS1

Class” (Award Number 16531). All of these past projects have laid the foundation for

our perspectives and presentation of the materials in this book. We would also like to

thank NSF officers Suzanne Westbrook, Jane Prey, Valerie Bar, and Paul Tymann for

their invaluable discussions and encouragements, as well as Donald Brinkman and Kent

Foster as they continue to be our best advocate and supporters at Microsoft. Lastly, we

remember and continue to miss Steve Cunningham, John Nordlinger, and Lee Dirks for

their early recognition of our vision and ideas.

A thank you must also go out to our students, whose honest, even when brutal,

feedbacks and suggestions from CSS385: Introduction to Game Development, CSS451:

3D Computer Graphics, CSS452: Game Engine Development, and CSS551: Advanced

3D Computer Graphics at the University of Washington Bothell inspired us to explore

the approach to present these materials based on an accessible game engine. They have

tested, retested, contributed to, and assisted in the formation and organization of the

contents of this book. The second author of this book is an alumnus of CSS551.

It must also be mentioned that the teaching brown bag hosted by Yusuf Pisan offered

the opportunity for the discussions with Yusuf, Johnny Lin, Lesley Kalmin, and Mike

Stiber on the topics of linear algebra applications which sparked the initial idea for this

book. A sincere thank you goes to Yusuf for his enthusiasm and energy in organizing us

and, of course, for the delicious-looking Tim Tam; one day, I will try them.

xiv

We also want to thank Spandana Chatterjee for believing in our ideas, her patience,

and continual efficient and effective support. Nirmal Selvaraj organized everything and

ensured proper progress was ongoing.

Lastly, a thank you must go to Peter Shirley, our technical reviewer, whose frank and

precise comments made this a much easier to understand book.

The vehicle models used are free assets, UAA - City Props - Vehicles, downloaded

from the Unity Asset Store under the Unity-EULA. The cone shape that represents the

arrow heads for the axis frames and vectors in all examples is created based on the

utilities developed and shared by Wolfram Kresse available at https://wiki.unity3d.

com/index.php/CreateCone. The cosine function plot from Figure 5-5 is based on a

screenshot taken from www.desmos.com/calculator/nqfu5lxaij.

Acknowledgments

https://wiki.unity3d.com/index.php/CreateCone
https://wiki.unity3d.com/index.php/CreateCone
http://www.desmos.com/calculator/nqfu5lxaij

xv

Introduction

Welcome to Basic Math for Game Development with Unity 3D. Because you have picked

up this book, you are probably interested in finding out more about the mathematics

involved in game development or, maybe, in the details of fascinating applications like

Unity. This can be the perfect book to begin with your exploration.

This book uses interactive examples in Unity to present each mathematical concept

discussed, taking you on a hands-on journey of learning. The coverage of each topic

always follows a pattern. First, the concept and its relevancy in video game functionality

are described. Second, the mathematics, with a focus on applicability in game

development and interactive computer graphics, are derived. Finally, an implementation

of the concept and derived mathematics are demonstrated as an example in Unity.

Through interacting with these examples, you will have the opportunity to explore

the implications and limitations of each concept. Additionally, you can examine the

effects of manipulating the various related parameters. Lastly, and very importantly,

you can study the accompanied source code and understand the details of the

implementations.

In Chapter 2, you will begin by reviewing simple number intervals in the Cartesian

Coordinate System. Chapters 3 and 4 let you examine and learn about vectors and the

rules of their operations to formally relate positions in 3D space. Chapters 5 and 6

study the vector dot and cross products to relate vectors and the space that defines

them. Chapter 7 leads you to work in multiple coordinate spaces simultaneously to

address compound issues such as describing motions inside a navigating spaceship.

Chapter 8 introduces quaternions and the rotation operator and Chapter 9 concludes

with the basic math involved in game development. Throughout this book, you will

learn the mathematical and implementation details of bounding boxes; bounding

spheres; motion controls; ray castings; projecting points to lines and planes; computing

intersections between fast-traveling objects; projecting objects onto 2D planes to create

shadows; computing reflections; working in multiple coordinate spaces; rotations to

align vectors; and much more!

xvi

�Who Should Read This Book
This book is targeted toward video game enthusiasts and hobbyists who have some

background in basic object-oriented programming. For example, if you are a student

who has taken an introductory programming course, or are a self-taught programming

enthusiast, you will be able to follow the concepts and code presented in this book with

little trouble. If you do not have any programming background in general, it is suggested

that you first become comfortable with the C# programming language before tackling

the content provided in this book.

Besides a basic understanding of object-oriented programming, you will also need

to be familiar with the Cartesian Coordinate System, basic algebra, and knowledge in

trigonometry. Experience and working knowledge with Unity are not required.

�Code Samples
Every chapter in this book includes examples that let you interactively experiment with

and learn the new materials. You can download the source code for all the projects from

the following page: www.apress.com/.

Introduction

http://www.apress.com/

1
© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_1

CHAPTER 1

Introduction and Learning
Environment
After completing this chapter, you will be able to

•	 Know the details of what this book is about

•	 Understand the style that this book uses to present concepts

•	 Install Unity and an Integrated Development Environment (IDE) for

developing programming code

•	 Access the accompanying source code and run the example projects

•	 Understand the Unity terminology used throughout this book

•	 Begin to appreciate the intricate details of math for game

development

�Introduction
When you think of math in a video game, you may picture health bars, attack stats,

experience points, and other game mechanics. You may not consider the underlying

math that enables the in-game physics world, such as calculating gravity, movements,

or enemy chasing behaviors. Additionally, you may not consider physical interaction in

a mathematical manner, such as collisions between different objects and the reflections

of these objects after they collide. These underlying mathematical computations are

critical to implementing a successful video game. When creating a game, whether you

intend on using a game engine or you intend on performing the computations yourself,

understanding the details and knowing how the underlying mathematics work and

when to use them to create what you want, where you want, is vital.

https://doi.org/10.1007/978-1-4842-9885-5_1

2

Traditionally, math is taught without any application contexts. Typically, theories

are developed based on abstract symbols, formulas are derived to support these

theories, and then numbers are used to verify the formulas. You are tested on whether

you can generate the correct solution based on how the formulas are applied. It is

believed that learning math in this manner has the benefit of granting learners the

ability to understand the concepts being taught at the pure abstraction level. Then,

once understood, the application of these concepts to different disciplinary contexts

becomes straightforward. For many learners, this assumption is certainly true. However,

for other types of learners, it can be difficult to appreciate the intricate details in the

abstract without concrete examples or applications to build off. This fact is recognized

by educators and often story problems are introduced after a basic understanding is

established to help learners gain insights and appreciate the formulas. This learning

approach is taken on and exploited in the context of linear algebra and video games.

This book takes you on the journey of learning linear algebra, a branch of

mathematics that is the foundation of interactive graphical applications, like video

games. While the underlying theories can be abstract and complicated, the application

of these theories in graphical object interactions is relatively straightforward. For this

reason, this book approaches linear algebra topics in a concrete manner, based around

game-like examples that you can interact with. Through this book, you will learn a flavor

of linear algebra that is directly applicable to video games and interactive computer

graphics as a whole.

Every math concept presented in this book is accompanied with concrete examples

that you can interact with and are relevant to video game development. It is the intent of

this book that you will learn and know how to apply the concepts in solving the problems

you are likely to encounter during game development. A direct consequence of this

focused approach is that readers may find it challenging to apply the knowledge gained

throughout this book to other disciplines, like machine learning or computer vision. For

example, the dot product, which will be covered in Chapter 5, can be used to calculate

intersection positions, and it can also be used in machine learning algorithms as a data

reduction tool; however, this book will only focus on the video game applications of

the dot product. If you are looking for general knowledge in linear algebra, you should

consider a more traditional textbook. Such a book is likely to cover concepts at levels that

are suitable for applications for multiple problem spaces. If you are interested in solving

problems specific to interacting graphical objects, especially for game development,

then this is the perfect book for you.

Chapter 1 Introduction and Learning Environment

3

After the introduction to the game engine and terminologies in this chapter,

Chapter 2 reviews the Cartesian Coordinate System and number intervals leading to

the exploration of one of the most widely used tools in game development—bounding

boxes. Chapter 3 continues bounding volume exploration by examining bounding

spheres while also beginning the investigation of relationships between positions.

Chapter 4 introduces vectors to formalize the relationships between positions in 3D

space and applies vector concepts in controlling and manipulating object motions under

external effects like wind or current flow. Chapter 5 presents the vector dot products

to relate vectors, represents line segments based on vectors, and demonstrates the

application of these concepts in computing distances between objects and motion paths

when approximating potential collisions. Chapter 6 discusses the vector cross product,

derives the space that defines vectors, defines vector plane equation, and illustrates

the application of these concepts in computing intersections and reflections of moving

objects and 2D planes. Chapter 7 examines the axis frame, or the derived space that

contains vectors, analyzes the representation of vectors in different axis frames, and

explains how to work with movements in axis frames that are dynamically changing,

such as object motions in a navigating spaceship. Chapter 8 introduces the quaternion

as a tool for rotating vectors, analyzes the relevant properties of quaternions, and

demonstrates the alignments of 3D spaces based on quaternions. Finally, Chapter 9

summarizes all of the concepts presented in an aggregated example.

�Choice of Unity Engine
Unity is the choice of platform for presenting the mathematical concepts covered in

this book for three reasons. First, Unity provides elaborate utilities and efficient support

for its user to implement and visualize solutions based on mathematical formulas. Its

application programming interface (API) implements the basic and many advanced

linear algebra functionalities, while the Entity-Component-System (ECS) game object

architecture allows straightforward user scripting. These qualities give Unity a close

pairing of math concepts to your programming code, assisting in the visualization of the

mathematical solution that you are trying to understand. This close pairing cannot be

understated and is the backbone of this book.

The second reason for choosing Unity is that, being a game engine, the system allows

for a high degree of intractability with the solution as well as the ability to visualize that

solution. For example, in addition to being able to examine the results of a ray and 2D

Chapter 1 Introduction and Learning Environment

4

plane intersection computation in real time, you will also be able to manipulate the

ray and the 2D plane to observe the effects on the intersection. The ability to interact,

manipulate, and examine the application of mathematical concepts in real time will give

you a greater understanding and appreciation for that concept. Third and finally, Unity

is chosen because there is no better way to learn math concepts for video games than

through a popular game engine!

While this book is meant for readers who may be interested in building a video game

in Unity, the focus of this book is on the math concepts and their implementations and

not on how to use Unity. This book teaches the basic mathematical concepts that are

relevant to video game development using Unity as a teaching instrument. This book

does not teach how to use the math provided by Unity in building video games. You

should focus on understanding the math rather than the Unity-specific functionality.

For example, a position in 3D space in Unity is located at transform.localPosition;

you should focus on working with that position and not be concerned about the Unity.

Transform class. Ultimately, you should be able to take what you have learned in this

book and apply to developing games in any game engine.

Note U nity Technologies is the name of the company; the game engine is most
often referred to as Unity, though it is sometimes called Unity 3D. For simplicity,
this book refers to the entire game engine system as Unity.

�Setting Up Your Development Environment
There are two main applications that you will work with when using Unity. The first is

the game engine editor, which will be referred to as Unity or Unity Editor throughout this

book. The Unity Editor can be thought of as the graphical interface to the Unity game

engine. The second application you will need is a script editing Integrated Development

Environment (IDE). Microsoft’s Visual Studio Community 2019 is the IDE of choice for

developing the C# script examples in this book. This software will be referred to as the

Script Editor, or the IDE, throughout the rest of this book.

To begin your download and installation of Unity and Visual Studio Community

2019, go to https://store.unity.com/download?ref=personal, accept the terms, and

then download Unity Hub.

Chapter 1 Introduction and Learning Environment

https://store.unity.com/download?ref=personal

5

Note  If you ever find yourself stuck at a certain point in this book, whether on
installing Unity or just using it, there is a plethora of tutorials online, many of which
were referenced in the development of this book and will be listed at the end of
this chapter.

�Notes on Installing Unity
This book is based on Unity in its most basic form. Unless you know what to specify

when installing features or desire extra features, it is suggested you follow the default

settings. Please begin downloading, installing, and launching the Unity Hub if you

haven’t already. When Unity Hub is up and running, navigate to the Installs tab on

the left side, and select the Install Editor button in the top right. From here, you will

be prompted with a list of different Unity versions. The version that this book uses is

2021.3.25f1. If you do not see this version in the selected list, you can go to this link

https://unity3d.com/get-unity/download/archive and find it there to download.

It should be noted that while this book is based on Unity 2021.3.25f1, any version at or

newer than this version should suffice but is not guaranteed.

After selecting your Unity version, you will be prompted with options to install

extra features. As mentioned previously, this textbook only requires the default options.

These options, if you are running on Windows 10 or 11, should only be the suggested

IDE, “Microsoft Visual Studio Community 2019.” If you already have Visual Studio 2019

installed, then you may uncheck that option. Once you have selected all the features

you want, begin the install process and then move onto the next section to begin

familiarizing yourself with the source code used throughout this book.

�Unity Editor Environment
It should be noted, again, that in this book Unity is used as a tool for learning math

concepts for game development and not as a game building editor. This means many

Unity-specific and game building–related information that do not pertain to the concept

at hand will simply be skipped. For example, this book does not discuss how to create

or save Scenes or how to build a final executable game. If these are subjects of interests,

you should consider research through the many online tutorials or for example refer

Chapter 1 Introduction and Learning Environment

https://unity3d.com/get-unity/download/archive

6

to the Learn tab of the Unity Hub. It should also be noted that all examples throughout

this book will be run and interacted with through the editor and not as games. This will

become clearer as the first example is discussed.

Now that you have Unity and the IDE installed and ready to go, you can refer to the

GitHub repository located at https://github.com/Apress/Basic-Math-for-Game-

Development-with-Unity-3D. After downloading the repository, open Unity Hub and

add the Chapter-1Introduction project. Directions on how to do this can be seen in

Figure 1-1.

Figure 1-1.  Opening Chapter-1-Introduction (the Intro to Unity Project) from
Unity Hub

As Figure 1-1 shows, to add a project, navigate to the Projects tab and then select

the Open button. From here, navigate to where you downloaded the source code to this

book. You will notice that the file structure is organized according to chapters. The first

example you should open using the Open button is Chapter-1-Introduction. Note that

after a project is opened, you need to click the newly opened project to launch it.

Figure 1-1 also establishes where the Learn tab is located. Here you can view and

select Unity sponsored tutorials. The “Foundational Tutorial” category contains tutorials

that will be very helpful to those who have never used Unity before as it contains

tutorials such as “Welcome to Unity Essentials” and “Explore the Unity Editor.” At the

end of this chapter, there are some additional suggestions as to which tutorials to follow

if you are new to Unity or just need a refresher.

Chapter 1 Introduction and Learning Environment

https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D
https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D

7

�Opening the Intro to Unity Project
To open a project from Unity Hub, simply click it. The first time you try to open any

projects from this book, you will encounter the following two steps:

•	 Unity will invite you to select the version to use; you can simply select

the version you just installed.

•	 Unity will display an information dialog box titled, “Opening Project

in Non-Matching Editor Installation,” you can simply click the

Continue button.

The first time opening a project will take a while for Unity to copy the support library

and perform system configuration. Once you open Chapter1-Introduction, you should

be confronted with a window similar to the screenshot in Figure 1-2. If you do not see a

screen similar to that of Figure 1-2, make sure the IntroToUnity scene is open and not

an Untitled scene. To open the IntroToUnity scene, find it in Asset folder under the

Project Tab and double-click to open it.

Figure 1-2.  Running the IntroToUnity scene in the Chapter-1Introduction project

Chapter 1 Introduction and Learning Environment

8

Figure 1-2 shows a very simple scene. There is the Controller game object and

three different spheres. Each sphere is named after the design pattern placed upon it:

CheckerSphere, BrickSphere, and StripeSphere. In this screenshot, the Controller

object is selected so you can observe the MyScript component on the right. The

Controller object and the MyScript component are present in every example in this

book and will be described in detail. The purpose of this example is to familiarize you

with how examples are organized and to establish terminologies that will be used

throughout the book.

�Working with the Unity Editor
Figure 1-2 is an example of what the Unity Editor looks like and is one of the two editors

you will be working in. The other editor, the Script Editor, or IDE, will be discussed later.

Figure 1-3 illustrates the various functionalities of the Unity Editor.

Figure 1-3.  The Unity Editor Environment

Chapter 1 Introduction and Learning Environment

9

Figure 1-3 overlays the editor in Figure 1-2 with labels identifying the different

windows presented by the Unity Editor and establishes the terminologies that will be

used from here on:

•	 A: The Play and Pause buttons: In the top-center area, you can see

the Play and Pause buttons. These buttons control the running

(or playing) of the game. Feel free to click the Play button, give the

system a few seconds to load, and then observe the movements of

the spheres in the scene. If you click the Play button again, the game

will stop running. You will learn more about and work with these

buttons later.

•	 B: The Scene View window: The main 3D window in the top-left

region of the Unity Editor is the main area for performing interactive

editing. In Figure 1-2, this window is displaying the Scene View of

the game.

•	 C: The Scene and the Game View tabs: Above the Editor Window

(B), you can spot the Scene and Game tabs. If you select the Game

tab, then Unity will switch to the Game View which is what a player

will see in an actual game. An example of the Scene View next to the

Game View can be seen in Figure 1-4.

Chapter 1 Introduction and Learning Environment

10

Figure 1-4.  The Scene View (top) and the Game View (bottom)

Note P lease pay attention to the differences between the Scene and Game
Views. The Scene View is meant for the game designer to set up a game scene,
while the Game View is what a player of the game would observe while playing the
game. While both views can be invaluable tools for examining the intricate details
of the mathematical concepts, you will be working exclusively with the Scene View.

Chapter 1 Introduction and Learning Environment

11

Note T o help distinguish between the Scene and the Game Views, as depicted
in Figure 1-4, in all the examples for this book, the Scene View has a skybox-like
background, while the Game View window has a constant, light blue backdrop.
Once again, you will be working exclusively with the Scene View, the view with the
skybox-like background.

EXERCISE

Working with the Scene View Window

Left-click and drag the Scene View tab to see that you can configure and place the Scene

View window at different configuration locations throughout the Unity Editor or even outside as

an independent window. This is the case for most of the Unity tabs, including the Game View

window. Figure 1-4 shows the Scene View and Game View windows as two separate windows

that can be examined simultaneously.

Figure 1-5 is a close-up view of the Hierarchy Window, which is labeled as D in

Figure 1-3.

Figure 1-5.  The Hierarchy Window

Note T he crossed-out finger icon next to the last object, zIgnoreThisObject,
disables click-select functionality in the editor window. In all examples, objects that
are not meant to be interacted will have the crossed-out icon next to them.

Chapter 1 Introduction and Learning Environment

12

•	 D: The Hierarchy window: In the Unity Editor, this window

(Figure 1-5) is typically anchored to the left of the Scene View and

above the Project/Console Windows (F). The Hierarchy Window

displays every object and its parental relationship to other objects

in the scene. Just like the Scene View and Game View, the Hierarchy

Window can be moved and placed wherever you desire. You should

observe the different objects within the Hierarchy Window. There

is the Controller, which will be discussed later, but for now know

that it contains the script that supports your interaction with the

scene; the CheckerSphere, which is the checkered sphere; as well as

the BrickSphere and StripeSphere, which also correspond to their

object’s descriptions. Finally, there is the zIgnoreThisObject object;

this last object supports the setup of the game environment for the

learning of math concepts specific to each example. You will never

need to interact with this object, and therefore this book will ignore

this object as its details can be distracting. You are, of course, more

than welcome to examine and explore this object, and any others, at

your leisure.

Note T ry clicking the different objects in the Hierarchy Window and observe how
the Scene View highlights the object you have selected while the Game View does
not. This simple feature underscores how the Scene View is meant for scene edits
while the Game View is not.

EXERCISE

Observe Differences Between the Scene View and Game View

Select different spheres in the Hierarchy Window and switch between the Scene and Game

Views to observe the differences between these two views. You should notice that the selected

sphere is highlighted in the Scene View and not in the Game View. It is essential to differentiate

between these two views when you manipulate the scene in examining concepts. Once again,

and very importantly, all examples in this book work exclusively with the Scene View.

Chapter 1 Introduction and Learning Environment

13

Figure 1-6 is a close-up view of the Inspector Window, which is labeled as E in

Figure 1-3.

Figure 1-6.  Inspector Window with the Controller object selected in the
Hierarchy Window

•	 E: The Inspector Window: The Inspector Window (Figure 1-6) displays

the details of the selected object for the user to inspect and manipulate.

The Inspector Window is typically located on the right of the Scene View.

Just like all other windows described, it can be placed wherever you want.

The selected object being displayed in Figure 1-6 is the Controller.

Notice that there are two components attached to this object: Transform

and MyScript. Figure 1-6 shows that you can expand and compress

each of the components to examine or hide their details. In this case,

the Transform and MyScript components are expanded. The MyScript

component is the custom script developed for this book. Note that on the

left side of the MyScript component are the names of the public variables

defined in the script: Left Sphere, Center Sphere, and Right Sphere.

Directly across from these variable names, you can see their values or

the objects that the corresponding variables reference: CheckerSphere,

BrickSphere, and StripeSphere. These aspects of the MyScript

component will be explained in more detail in the next section.

Chapter 1 Introduction and Learning Environment

14

•	 F: The Project and the Console windows and tabs: The Project

Window displays the file structure of your project. This is where

scripts, prefabs, materials, and everything else that will be loaded

into your game are located. The Console Window is where Unity will

output debug messages, warnings, and errors, all of which can be

very helpful in debugging your code if something goes wrong. The

Project Tab and Console Tab allow you to switch between these two

windows just like the Game View and Scene View tabs do. These

windows can also be moved around and placed wherever you decide.

Figure 1-3 shows the default layout used by this book. In the rest of this book, the

corresponding windows will be referenced by their name as depicted in Figure 1-3. If you

accidentally close one of these windows, they can be reopened by going to the Window

drop-down menu at the top of the Unity Editor and then selecting the General option.

There you will see a list of all of the windows that have been discussed.

Note  In later chapters, there will be folders added to the Project Window such as
Editor, Resources, and so on. These folders will include utilities that the book uses
to create the examples. You are more than welcome to explore these. However,
please keep in mind that the content in these folders will not be relevant to
learning the mathematical concepts presented. For example, the Resources folder
is a special folder that Unity searches for object blueprints known as prefabs.
Knowing about these prefabs is irrelevant to learning the math concepts and
therefore will not be covered.

�Working with MyScript
In general, a Unity script is a component with code that can be attached to any game

object. This script can then modify the behavior of that object or the entire game. All

scripts presented in this book are written in C#.

Throughout this book, in each example you will only have to work with one script.

This script will have MyScript be part of its name, for example, EX_2_1_MyScript,

and will always be attached to the Controller object. It is important to note that the

Controller object in all of the examples is empty (it does not contain anything visible)

Chapter 1 Introduction and Learning Environment

15

and does not perform any function other than to present the MyScript script for your

interactions. The MyScript script always implements and demonstrates the concept

being studied.

Figure 1-7 shows how you can open and edit MyScript.

Figure 1-7.  Invoking the Script Editor

There are two ways to open and edit scripts in Unity. The first method is depicted

in Figure 1-7. To open and examine the source code of MyScript, select Controller in

the Hierarchy Window, and then in the Inspector Window with the mouse pointer over

the MyScript component, left-click the Settings button (the three-dots icon in the top

right of the MyScript component) or right-click the name of the MyScript component

(“My Script (Script)”). Both of these actions will trigger the pop-up menu as depicted

in Figure 1-7. From there, select the “Edit Script” option at the very bottom. The second

way to open and edit a script is by double-clicking the script icon in the Project Window.

In all of the examples, MyScript is located in the Assets/ folder. Once you open

MyScript, you should see a pop-up window showing the progress of Unity invoking

the IDE.

After your Script Editor has loaded, you should see a screen similar to that of

Figure 1-8, which shows the MyScript’s code using Visual Studio under the light theme.

Chapter 1 Introduction and Learning Environment

16

Figure 1-8.  Overview of the code in MyScript

Figure 1-8 is a screenshot of the IDE with MyScript opened. Notice that the name of

the script, MyScript, is also the name of the C# class and is a subclass of the Unity class

MonoBehavior. Once again, the name of the script in each example will always contain

the MyScript substring. In each example, with each script, you will only need to pay

attention to the following three items:

•	 Variables: Make sure you take note of the variables in each script. A

public variable will show as a variable that can be edited through the

Inspector Window, which was seen previously in Figure 1-6. A private

variable is one that can only be accessed in the code. In Figure 1-8,

you can see the three public variables, LeftSphere, CenterSphere,

and RightSphere. Notice how these are the same variables from

Figure 1-6, demonstrating that public variables are indeed accessible

from the Inspector Window when the corresponding game object

(in this case, Controller’s MyScript component) is selected. In this

example, each of the variables is of the GameObject type. This means

each variable can hold a reference to one of the game objects in the

scene. The other variable, kSmallDelta, is the only private variable.

Notice how this variable does not appear in the Inspector Window

in Figure 1-6. The k in front of the variable name is a convention that

indicates the variable is a constant (read-only) variable.

•	 Start() function: This function will be called once the Play button

from Figure 1-3 (A) is clicked. In this book, the Start() function

always initializes the scene.

Chapter 1 Introduction and Learning Environment

17

•	 Update() function: This function is called after the Start() function

is executed and continues to be called at a real-time rate, or about

60 times per second while the Play button is active. In this book, the

Update() function continuously computes the corresponding math

concepts and supports interaction.

The Start() function of MyScript is listed as follows:

void Start(){

 Debug.Assert(LeftSphere != null); // Make sure proper

 editor setup

 Debug.Assert(CenterSphere != null); // Assume properly

 initialized to

 Debug.Assert(RightSphere != null); // Checker, Brick,

 and, Stripe

}

In this example, the Start() function ensures that all of the public variables

are properly initialized. Note that the Start() function does not attempt to make

assignments to these variables; instead, it prints out an error message to the Console

Window if the variables have not been assigned values by the time the user hits the

Play button. In Figure 1-8 lines 7 through 9, these three public variables are set to null

references. However, if you launch the game, you’ll notice that these three spheres in the

scene are moving. These observations indicate that the public variables must have been

properly initialized somewhere such that no debug errors are printed by the Start()

function. As will be explained, in this scenario, the user has assigned proper references

to these variables through the Inspector Window.

Chapter 1 Introduction and Learning Environment

18

Figure 1-9.  Accessing public variables of MyScript in the Inspector Window

Unity allows you to drag and drop game objects from the Hierarchy Window

into the value fields of matching variable types in the Inspector Window to establish

variable to object references. In this case, as depicted in Figure 1-9, one way to establish

initial values for the three public variables is by selecting the Controller object in the

Hierarchy Window and then dragging the CheckerSphere game object and dropping

it in the value field of LeftSphere variable and the BrickSphere and StripeSphere,

respectively, in the CenterSphere and RightSphere value fields. With these initial values

assigned, when the script begins to run, any reference to the LeftSphere, CenterSphere,

or RightSphere variables will result in accessing the CheckerSphere, BrickSphere,

or StripeSphere game object in the scene. This functionality of assigning values to

variables through the Inspector Window is not unique to MyScript and is supported for

any public variable in any script.

Note  For readability, Unity adopts the strategy of labeling an identifier by dividing
the name at the capital letter positions. For example, the variable identifier, or
name, “LeftSphere” is labeled as “Left Sphere” in the Inspector Window. For
convenience and consistency, as you have already seen, this book will refer to all
game objects and variables by their identifier, that is, LeftSphere.

Chapter 1 Introduction and Learning Environment

19

The Update() function of MyScript is listed as follows:

void Update(){

 // This prints the argument string to the Console Window

 Debug.Log("Printing to Console:

 Convenient way to examine state.");

 // Update the sphere positions

 // Left moves in the positive X-direction

 LeftSphere.transform.localPosition

 += new Vector3(kSmallDelta, 0.0f, 0.0f);

 // Center moves in the positive Y-direction

 CenterSphere.transform.localPosition

 += new Vector3(0.0f, kSmallDelta, 0.0f);

 // Right moves in the positive Z-direction

 RightSphere.transform.localPosition

 += new Vector3(0.0f, 0.0f, kSmallDelta);

}

The very first line of code, Debug.Log(), prints the string argument to the Console

Window. Debug.Log() statements and other debug statements such as Debug.Assert(),

Debug.LogWarning(), and Debug.LogError() are excellent ways of verifying the state of

your application and will be used throughout this book. These debug statements will be

examined more closely in an exercise at the end of this chapter.

The next three lines of code in the Update() function increment the position of

each of the left, center, and right spheres by kSmallDelta in the X-, Y-, and Z-axes

correspondingly. The value for this variable, as shown in Figure 1-8, is 0.01. The “f” after

0.01 indicates that this number is a floating-point data type and not a double data type.

Recall from Figure 1-9 that the LeftSphere references the CheckerSphere object,

CenterSphere references the BrickSphere, and the RightSphere references the

StripeSphere. Now if you click the Play button again, you should observe that the

LeftSphere moves along the X-axis, the CenterSphere moves along the Y-axis, and

the RightSphere moves along the Z-axis, just as the script programs. In this way, these

objects’ positions are controlled by MyScript. Note that the script is in control only when

the Play button is depressed. Lastly, and very importantly, please ensure that you are

examining the game in the Scene View and not the Game View.

Chapter 1 Introduction and Learning Environment

20

Note  transform.localPosition is how Unity accesses an object’s position
in 3D space. You can also access an object’s position from the Inspector Window
via the Transform component.

EXERCISES

Investigate the Manipulators

The goal of this exercise is to manipulate a selected object. As the case when working with

any example in this book, make sure you are in the Scene View for this exercise. Now, click to

select the CheckerSphere and then click the different object manipulation tools as illustrated

in Figure 1-10. These object manipulation tools are located in the top left of the Unity Editor.

You should experiment with each tool, especially the first four. With the first tool selected, the

Hand Tool, perform the following actions:

•	 Move (or track) the camera: Left-click drag

•	 Rotate (or tumble) the camera: Right-click drag

•	 Zoom (or dolly) the camera: Middle mouse button wheel scroll or Alt-right-

click drag

The second, third, and fourth icons activate the translate, rotate, and scale manipulators for

the selected object in your scene. Try clicking the CheckerSphere object and then the multi-

direction arrow icon to translate the CheckerSphere's position. You will use these object

manipulation tools repeatedly when examining relevant math concepts, so make sure you are

familiar with them now.

Figure 1-10.  Unity Camera and Object Manipulation Tools

Chapter 1 Introduction and Learning Environment

21

Notice that as you translate, rotate, or scale the CheckerSphere, or any object for that

matter, the corresponding values in the Transform component in that object’s Inspector

Window also update accordingly.

Use the Implicit Sliders to Adjust an Object’s Transform Values

Look closely at the Transform component for a selected object. Place your mouse pointer in

between the label and the corresponding value, as shown in Figure 1-11. Notice the mouse

pointer switching to a small left-right arrow icon. At this point, you can left-click and drag the

mouse to the left or right to update the corresponding floating-point value as though you were

adjusting a slider bar. This shortcut is referred to as the Implicit Slider in this book and works

for any floating-point value in the Inspector Window. You will be using the Implicit Slider to

control parameters in almost every example.

Figure 1-11.  How to find the Implicit Slider to manipulate float values in the
Inspector Window

Initialize Public Variable of MyScript in the Inspector Window

With the Controller selected, left-click the CheckerSphere in the Hierarchy Window, and

drag, without releasing your original left-click, to the value location of CenterSphere under

the MyScript component. By doing so, you have changed CenterSphere to reference

CheckerSphere.

Now, click the Play button and observe that the BrickSphere is not traveling anymore, but

the CheckerSphere is now moving simultaneously in both the X and Y directions. You now

have the experience to initialize any future game objects via the Inspector Window.

Delete Initial Values of Public Variables and Observe Errors

With the Controller selected, click the CenterSphere value location and then hit the

delete key to remove the initial reference. You should observe the following message in the

value location of CenterSphere: None (Game Object).

Chapter 1 Introduction and Learning Environment

22

Next, click the Play button and observe that none of the spheres are moving. Navigate to the

Console Window (Figure 1-3 (F)) to observe the error messages. Recall that the Start()

function in MyScript asserts that all three public variables must be properly initialized. In this

case, the CenterSphere is a null reference which results in an assertion failure. These errors

can be observed in Figure 1-12.

Figure 1-12.  Console Window displaying options and message types

As indicated in Figure 1-12, the Console Window supports different display options and

message types. Try enabling different options and observe that the Collapse option allows you

to collapse identical messages into one. You can also show or hide log, warning, and error

messages. We have found it convenient to show all message types and to enable the Collapse

and Clear on Play options.

Edit Operations During Play Mode Are Ignored After the Play Mode

Now re-initialize CenterSphere to refer to BrickSphere. Remember, this can be done by

selecting the Controller and then dragging BrickSphere from the Hierarchy Window to

the value field of CenterSphere in the Inspector Window.

Click the Play button to begin the game. You should notice all three spheres are moving once

again. Next, remove the CenterSphere reference by clicking the CenterSphere value and

hitting the delete key. You will notice that the BrickSphere has stopped moving and error

messages show up in the Console Window.

Next, stop the game by clicking the Play button again and notice that the value field of

CenterSphere is no longer empty, but restored to its previous value of BrickSphere.

Chapter 1 Introduction and Learning Environment

23

In general, and with few exceptions, edit operations performed when the game is running are

undone when the game is stopped. This can be both invaluable and frustrating. Invaluable

because you are free to perform editing operations while playing to examine the effects and

verify mathematical concepts. Frustrating because you will likely forget that you are in play

mode and perform a series of editing operations only to have those edits be undone once play

mode is terminated.

Note A lways be aware of the current game play mode when performing edit
operations.

�To Learn More About Working with Unity
We have covered only operations in Unity that are relevant to learning the math concepts

for this book. It is very important to note that what you have learned about Unity in this

chapter is focused on preparing you to work with and learn from examples in this book.

This knowledge may or may not be relevant in being a competent game designer. If you

are interested in learning more about Unity, you can find useful resources under the

Learn tab in the Unity Hub as mentioned previously. Here are some additional tutorials

that can be helpful:

•	 All of the Foundational Tutorials

•	 The Create with Code tutorial under Beginner Course

If you are new to C#, we suggest that you follow this link https://learn.unity.

com/learn/search?k=%5B%22q%3AScripting%22%5D and examine the Beginner and

Intermediate Scripting tutorials.

�How to Use This Book
This book begins with the most fundamental mathematical concept that is relevant to

game development, working with a single position, and then covers number intervals,

introduces vectors, and advances to the powerful and regularly applied concepts in

vectors: the dot and cross products, vector spaces, and rotation of vectors. For each

Chapter 1 Introduction and Learning Environment

https://learn.unity.com/learn/search?k=["q:Scripting"]
https://learn.unity.com/learn/search?k=["q:Scripting"]

24

topic, an introduction is followed by a simple example that demonstrates the associated

applications that are relevant to interactive graphical or video game development. The

examples are simple, always a single scripting file, featuring the details of solutions

implemented based on the topics being discussed. The scripting file and the associated

C# class will always be with the same name containing the substring MyScript,

for example, EX2_1_MyScript. This script, as mentioned previously, will always be

attached to the Controller object in each example. It is important to note that the

implementation of the scripts, setup of the game objects, and structure of the examples

are designed to feature the math concepts being discussed. This organization allows

you to analyze the concepts, examine the implementation, and experiment and interact

with the game objects such that you can gain understanding and insights into the topics

discussed. The contents of this book do not attempt to address any specific issues in

game design or development as no such issues were considered.

The best way to read this book is by downloading the Unity projects, reading the

book section that describes the concepts, running the corresponding examples while

paying attention to the highlighted topics, examining the source code, and, finally,

tinkering and experimenting with the implementation accordingly.

As a final reminder, this book does not explain and will not explain how the game

objects were created, how to customize their behaviors, or how the examples and scenes

were built. Those features deal with how to work with Unity in general and are outside

the scope of this book.

�Summary
Through this chapter, you have learned how to install Unity and an IDE for script editing,

as well as how to open, run, and tinker with the examples that accompanied this book.

You have also learned about the Unity Editor and the terminologies that will be used

throughout the book to work with the examples. You were given some extra resources

to investigate if you want to learn more about how to work with Unity and C#, as well as

what this book will be covering along with a friendly reminder of the goals and scope of

this book. In the next chapter, you will begin with the math concept of intervals and learn

about bounding boxes.

Chapter 1 Introduction and Learning Environment

25

�References
To learn more about linear algebra based on a traditional approach, free from specific

application context, there are a number of textbooks. For example:

•	 Gilbert Strang, Introduction to Linear Algebra, Fifth Edition,

Wellesley-Cambridge Press, 2016. ISBN: 978-0980232776

•	 Online, Linear Algebra section of the Khan Academy: www.

khanacademy.org/math/linear-algebra

To learn more about how mathematics is relevant to video games without explicit

implementation examples:

•	 Fletcher Dunn and Ian Parberry, 3D Math Primer for Graphics and

Game Development, 2nd Ed, CRC Press, 2011. ISBN: 978-1482250923

•	 James M. Van Verth and Lars M. Bishop, Essential Mathematics for

Games and Interactive Applications, 3rd Ed, CRC Press, 2016. ISBN:

978-1568817231

Chapter 1 Introduction and Learning Environment

http://www.khanacademy.org/math/linear-algebra
http://www.khanacademy.org/math/linear-algebra

27
© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_2

CHAPTER 2

Intervals and
Bounding Boxes
After completing this chapter, you will be able to

•	 Use Unity to work with positions in the 3D Cartesian

Coordinate System

•	 Program with intervals along the three major axes

•	 Define axis-aligned bounding areas in 2D and axis-aligned bounding

boxes (AABB) in 3D

•	 Determine if a position is inside of an axis-aligned bounding

area or box

•	 Approximate inter-object collision using AABBs

•	 Compute the intersection of two AABBs

•	 Appreciate the strengths and weaknesses of AABBs

�Introduction
This chapter begins by reviewing the Cartesian Coordinate System, continues with the

exploration of 3D positions and number intervals, and wraps up with how you can apply

these simple comparisons to approximate object boundaries and collisions between

objects. While comparing numbers is rather trivial, the generalization and application

of these simple concepts lead directly to one of the most powerful and widely used

tools in video games: the axis-aligned bounding box, or AABB. AABB is an important

topic in video games because it allows for simple and efficient approximation of object

https://doi.org/10.1007/978-1-4842-9885-5_2

28

proximity. In other words, AABB is intuitive to comprehend and can quickly compute

how close two objects are to each other, including if the objects are currently colliding.

Generally speaking, it is difficult and time-consuming to determine if geometrically

complex objects are physically close to each other or if they are currently colliding. AABBs

can be used to address this issue. Imagine, with your eyes closed, someone put a pizza in

front of you with several slices removed. In this situation, without opening your eyes, how

would you determine if your extended hand is about to touch the pizza? Now, if the pizza

was placed in a pizza box, or a bounding box, then the solution can be approximated

by answering the question of whether your hand has come into contact with the pizza

box. Notice that with slices removed, touching the box can only warn you that you are

about to touch the pizza. It does not tell you if you are going to actually touch the pizza.

AABB, or bounding box, related computations involve simple number comparisons,

trading accuracy for simplicity, and are thus efficient. Unless your AABB exactly matches

your object’s shape (i.e., your shape is a box), your proximity calculations will only be

approximated; however, in many cases this is sufficient to deliver satisfactory game play.

Mathematically, this chapter should be a relatively straightforward review as it will

cover concepts that are generally taught in the late middle school to early high school

years in the United States. In addition to refamiliarization with these concepts, this

review process can also serve as an excellent opportunity to learn more about and to

become more comfortable with the Unity environment, the involved utilities, custom

tools, and the approach that this book takes in discussing topics. In this book, after each

concept is described, you will be introduced to a new Unity scene which presents that

concept, led through interactions with the scene to explore and experience aspects of

that concept, and then instructed to examine the implementation associated with that

concept. At the end of this process, the book summarizes a list of key points for you to

verify your learning.

�Review of Cartesian Coordinate System
Recall that the 3D Cartesian Coordinate System defines an origin position (0, 0, 0)

and three perpendicular axes, X, Y, and Z, known as the major axes. Each axis begins

from the origin and extends in both its positive and negative directions. This can be

seen in Figure 2-1 where the checkered sphere in the middle is intersected by all three

arrows and is the origin. Each arrow represents a major axis; the direction of the arrow

represents the positive direction along that axis.

Chapter 2 Intervals and Bounding Boxes

29

Figure 2-1.  The 3D Cartesian Coordinate System

In the Cartesian Coordinate System, the position of a point is defined by a three-

variable tuple (x, y, z), the point’s distance as measured along the three major axes. For

example, in Figure 2-1, the sphere’s center position is x-value along the X-axis, y-value

along the Y-axis, and z-value along the Z-axis. In this case, since the sphere is below the

origin and the Y-axis has upward as its positive direction, the y-value will be negative. If

the x-, y-, or z-values are altered, you can expect the corresponding object to be relocated

in the coordinate system accordingly.

It is important to remember that the major axes are always perpendicular to each

other and with a unit that is convenient for the specific application. For example, when

applying the Cartesian Coordinate System in describing positions in a room, you may

define the origin to be at one corner of the room, the X- and Z-axis to be along the floor

edges, and the Y-axis to be along the wall pointing upward toward the ceiling. In this

case, a convenient unit may be in meters. With such a coordinate system definition,

all positions in the room will be of values (x, y, z) measured in meters from the corner

that was identified as the origin. Note that there can be infinite number of Cartesian

Coordinate Systems defined for the room, for example, choosing a different corner to be

the origin or identifying the center of the room to be the origin with inches as the unit.

What is important to remember is that a Cartesian Coordinate System always has

perpendicular major axes with an arbitrary unit that is convenient for the specific

application. The coordinate values are measurements from the origin along the major

axes in the defined units.

Chapter 2 Intervals and Bounding Boxes

30

�Intervals: Min-Max Range
The Cartesian Coordinate System allows for straightforward comparison between

positions along its major axes. For example, Figure 2-2 shows a transparent region along

the Y-axis where this region is defined by two values, a min (minimum) value and a

max (maximum) value. The Y-axis direction, noted by the arrow, indicates the direction

of increasing coordinate value. In this case, the minimum value is always below the

maximum value, both literally and pictorially. A region defined by min and max values

along a major axis is referred to as an interval.

Figure 2-2.  A simple min-max interval along the Y-axis

An interval is convenient for determining if a given position is within a specific

range. For example, the Ball in Figure 2-2(a) is above the interval, and thus you know

the y-value of the center of the Ball is greater than the maximum value of the interval.

Figure 2-2(b) shows that the reverse is true as well: if the Ball is below the interval,

then the y-value of the center of the Ball is less than the minimum value of the interval.

Figure 2-2(c) on the other hand, shows that the Ball is inside the interval when the

y-value of its center is in between the given max and min values. The determination of

these conditions can be simplified as follows and is referred to as the inside-outside test:

if ((Ball.y >= Interval.Min) && (Ball.y <= Interval.Max))

 // Ball is inside the Interval

else

 // Ball is outside the Interval

Chapter 2 Intervals and Bounding Boxes

31

Note that the comparison symbol is greater or less than and equal to. This means if

the Ball is right on the boundary, it will be considered as being inside the interval. Now

that you have reviewed the Cartesian Coordinate System and how to program intervals,

you are ready to explore the different examples and concepts presented in this chapter.

However, before you do that, you’ll need to understand how to work with the Unity

examples given in this book.

�Working with Examples in Unity
Before you dive into any examples, you’ll first have to know how the examples are

organized within each chapter. Figure 2-3 shows you the different scenes and their

corresponding MyScript for this chapter and how future chapters will be laid out.

Figure 2-3.  The Project Window of Chapter-2-Intervals+AABB project

One Unity project is defined for each chapter, and each example for the associated

concepts in that chapter is organized as a separate Unity Scene in that project. As

mentioned in Chapter 1, each example or Scene has only one script with a name that

includes the string, MyScript. For example, all examples in Chapter 2 are defined in the

Unity project that is in the Chapter-2-Intervals+AABB/ folder. Figure 2-3 illustrates that

after you open the project and navigate to the Assets/ folder of the Project Window, you

Chapter 2 Intervals and Bounding Boxes

32

will observe two files for each example. The first is the Scene file named EX_2_x_title,

and the second is a corresponding MyScript file named EX_2_x_MyScript. EX stands for

example, the 2 stands for this chapter’s number, the x is the sequence of the example in

its chapter (e.g., EX_4_3 would translate to Chapter 4’s third example), and finally, title

refers to the title of that example. For simplicity, the term MyScript will be used to refer

to the EX_MyScript associated with the current example.

When you are ready to examine an example, simply double-click the corresponding

scene file. This will load the scene into the Unity Editor. The Controller of that scene

will already have the corresponding MyScript component attached to it, and therefore

no further setup is required. Remember, to open a script in the IDE, you can simply

double-click its icon in the Assets/ folder of the Project Window.

Now open the Chapter-2-Interval+AABB project and double-click the EX_2_1_

IntervalBoundsIn1D scene file in the Assets/ folder of the Project Window to load

it into the Unity Editor. You can tell what scene is currently open in your project by

looking at the Hierarchy Window; the very first item is always the name of the scene you

have open.

�The Interval Bounds in 1D Example
This example reviews the Cartesian Coordinate System, introduces you to working with

a customized script (MyScript), and demonstrates how to work with the Unity Vector3

data type. In a nutshell, this example defines a 1D bound along the Y-axis, allows you

to interactively adjust the max and min values of the interval, as well as examines an

implementation of the interval inside-outside test as depicted in Figure 2-2. Figure 2-4

shows a screenshot of running the Interval Bounds in 1D scene from the Chapter-2

Intervals+AABB project. As discussed in the previous section, this scene can be opened

by double-clicking the EX_2_1_IntervalBoundsIn1D scene file in the Assets/ folder of

the Project Window.

Chapter 2 Intervals and Bounding Boxes

33

Figure 2-4.  Running the Interval Bounds in 1D example

Note P lease take note of the separated Scene and Game Views. Make sure to
differentiate between these two views. All object manipulations must be carried out
through the Scene View and not the Game View.

The goals of this example are for you to

•	 Review the Cartesian Coordinate System

•	 Experience adjusting positions of game objects in Unity

•	 Begin familiarizing yourself with the Vector3 class

•	 Understand and interact with intervals along an axis

•	 Examine the implementation of an interval inside-outside test

Chapter 2 Intervals and Bounding Boxes

34

�Examine the Scene

Take a look at the Example_2_1_IntervalBoundsIn1D scene and observe the predefined

game objects in the Hierarchy Window. This is a very simple scene where, besides

Controller, there is only one other defined object, the CheckerSphere. In this example,

you will manipulate the position of the CheckerSphere object to examine the results of

the interval inside-outside test along the Y-axis.

Note P lease continue to ignore the zIgnoreThisObject in the Hierarchy
Window. Once again, this game object hides miscellaneous and distracting
scene supporting objects that do not pertain to the math you are learning.

�Analyze Controller MyScript Component

Select Controller in the Hierarchy Window. Please refer to Figure 2-5 and make sure

your Inspector Window looks the same by locating the EX_2_1_MyScript component

and ensuring it is expanded so you can examine its variables and the corresponding

values and references. There are three variables that you can access from the Inspector

Window with this script:

•	 IntervalMax: The maximum value of the interval

•	 IntervalMin: The minimum value of the interval

•	 TestPosition: Holds a reference to the CheckerSphere such that

MyScript can access the position of the CheckerSphere game object

in the scene

Chapter 2 Intervals and Bounding Boxes

35

Figure 2-5.  The MyScript Component of Controller

Note O nce again, make sure to differentiate between the Scene View and the
Game View windows. Remember, the Scene View has a skybox-like background,
and the Game View has a constant light blue background. The Scene View is the
window where you can select and manipulate game objects. If you try to click an
object in the Game View, nothing will happen.

The name of the script you will work with is actually EX_2_1_MyScript; once
again, for simplicity and brevity, MyScript is used in the text. This will be the case
for all examples in the rest of this book.

�Interact with the Example

Click the Play button to run the example. While running, select the CheckerSphere

either through the Hierarchy Window or by clicking the CheckerSphere in the Scene

View window. Once selected, change the position of the CheckerSphere by invoking the

Implicit Slider (refer to Figure 1-11 if you forgot how to do this). You can also change the

position of the CheckerSphere by simply typing into the value fields of the corresponding

Chapter 2 Intervals and Bounding Boxes

36

variables in its Transform component. Try increasing and decreasing the x-, y-, and

z-values of the CheckerSphere and observe the corresponding movement. Notice that

the CheckerSphere does indeed move along the major axes of the Cartesian Coordinate

System, obeying the positive and negative directions as expected.

Note  You can also manipulate the Transform component of a game object by
selecting the corresponding object in the Hierarchy Window and using the different
Object Manipulation Tools as shown in Figure 1-10.

Now observe the transparent cylinder along the Y-axis. This is the interval defined by

the IntervalMax and IntervalMin values. Notice how the color of the cylinder changes

as you change the y-value of the CheckerSphere position to be either above or below the

interval. Also, note that changing the x- or z-position of the CheckerSphere has no effect

on the color of the interval.

You can adjust the IntervalMax and IntervalMin values by selecting the Controller

object in the Hierarchy Window and modifying the values of the corresponding variables

in the MyScript component. Notice how the transparent cylinder or interval object

responds to your adjustments while maintaining its proper behavior of adjusting its color

depending on if the CheckerSphere is inside or outside of it.

�Details of MyScript

Open the MyScript for this example (EX_2_1_MyScript) and examine the

implementation source code in your IDE. Once again, to open a script, you can either

right-click over the MyScript component’s name (“EX_2_1_My Script (Script)”) in

the Inspector Window when Controller is selected (refer back to Figure 1-7 if you need

a refresher) or double-click the MyScript (“EX_2_1_MyScript” for this example) icon

in the Assets/ folder of the Project Window. In the future, you will not be given these

reminders and will simply be told to open MyScript. The following variable definitions

can be observed:

private MyIntervalBoundInY AnInterval = null;

public float IntervalMax = 1.0f;

public float IntervalMin = 1.0f;

// Use sphere to represent a position

public GameObject TestPosition = null;

Chapter 2 Intervals and Bounding Boxes

37

Notice the one-to-one correspondence between the public variables and

those accessible via the Inspector Window, as illustrated in Figure 2-5. Recall that

TestPosition is set up to reference the CheckerSphere game object, and thus your

changes to the CheckerSphere game object can be accessed via the TestPosition

variable. The private variable of data type MyIntervalBoundInY is defined and used to

visualize the interval defined by the IntervalMax and IntervalMin values.

Note T he code in MyScript is only executed when the Play button is active.

Figure 2-6 shows that, besides the drawing support (e.g., DrawInterval and

IntervalColor), the MyIntervalBound class only defines and uses the MinValue and

MaxValue variables, which is the definition of an interval. The MyIntervalBoundInY

class is a simple subclass that overrides the PositionToDraw() function. The

PositionToDraw() function is used to visualize intervals along a major axis. The

MyIntervalBound class and its subclasses and functions can be found in the Assets/

SceneHelper/ folder in the Project Window. Please do feel free to explore its

implementation. To avoid distraction from learning the mathematics, the details of the

MyIntervalBound class and all other classes for supporting visualization (other scripts in

the Assets/SceneHelper/ folder) will not be discussed in this book.

Chapter 2 Intervals and Bounding Boxes

38

Figure 2-6.  The MyIntervalBound class for visualizing an interval along a
major axis

When the game first begins to run, the Start() function instantiates the

visualization object, AnInterval, for displaying the semi-transparent interval. Details of

the Start() function are as follows:

void Start() {

 Debug.Assert(TestPosition != null); // Ensure proper setup

 AnInterval = new MyIntervalBoundInY();

}

Next, you will examine the Update() function. Recall that the Update() function

is invoked at a real-time rate of about 60 times per second to update the state of the

application, hence the name of the function. The details of the Update() function are as

follows:

void Update() {

 // Updates AnInterval with values entered by the user

 AnInterval.MinValue = IntervalMin;

 AnInterval.MaxValue = IntervalMax;

Chapter 2 Intervals and Bounding Boxes

39

 // Assume point is outside

 AnInterval.IntervalColor = MyDrawObject.NoCollisionColor;

 // computes inside-outside of the current TestPosition.y value

 Vector3 pos = TestPosition.transform.localPosition;

 bool isInside = (pos.y >= IntervalMin)

 && (pos.y <= IntervalMax);

 if (isInside) {

 Debug.Log("Position In Interval! ("

 + IntervalMin + ", " + IntervalMax + ")");

 AnInterval.IntervalColor = MyDrawObject.CollisionColor;

 // MyYInterval supports the inside functionality

 Debug.Assert(AnInterval.ValueInInterval(pos.y));

 }

}

The first three code lines of Update() ensure that AnInterval is updated with the

latest values entered by the user. Next, the inside interval test is performed based on

comparing the y-value of the TestPosition object, which, as you may recall, was set to

reference the CheckerSphere through the Inspector Window (see Figure 2-5 or look at

your own project for confirmation).

Sixty times every second, AnInterval is updated with user input, and the y-value

of the CheckerSphere position is compared against the user-specified IntervalMin

and IntervalMax, changing the color of the interval as necessary. This fast update

rate conveys a sense of instantaneous modifications to the user. An important detail is

that the variable pos or the data type for TestPosition.transform.localPosition is

Vector3. A Vector3 with x-, y-, and z-values is designed to represent a position and, as

detailed in the later chapters, a vector. Click to view the Console Window (please refer to

Figure 1-3, label F) and observe the text output generated by the Debug.Log() function.

This is an excellent way to examine and debug the state of your game.

The very last line of the Update() function demonstrates that the

MyIntervalBoundInY class has also implemented the inside-outside test and the

Debug.Assert() verifies the consistency of the test results. The MyIntervalBound.

ValueInInterval() is a convenient function that will be used in later examples.

Notice that the variable AnInterval only supports drawing and does not participate

in any way in the logic and computation of the inside-outside test. For example,

you can remove all occurrences of the AnInterval variable and the example will

Chapter 2 Intervals and Bounding Boxes

40

execute perfectly, only, without visual feedback. For this reason, the details of the

MyIntervaBoundInY class are irrelevant to the understanding of the interval computation

and can be distracting.

�Takeaway from This Example

In this very simple example, you have experienced interacting with and moving objects

in the 3D Cartesian Coordinate System while observing the results of mathematical

computations. You have also learned how to establish a reference of a GameObject to a

variable in MyScript in order to gain access to and manipulate the position of that game

object. Additionally, you have begun to work with the Unity Vector3 class and reviewed

floating-point number comparisons. Lastly, you have learned how to determine if

a position is within the bounds of an interval along a major axis of the Cartesian

Coordinate System.

Relevant mathematical concepts covered include

•	 Cartesian Coordinate System

•	 Position of an object in the 3D Cartesian Coordinate System

•	 Intervals along a major axis defined by minimum and

maximum values

•	 Testing for being inside or outside of an interval along a major axis

Unity tools

•	 A GameObject’s position is defined by its transform.localPosition

•	 Vector3 can be used to represent an object’s position

•	 Debug.Assert() can be used for assertion of conditions

•	 Debug.Log() can be used for printing text messages to the

Console Window

•	 MyIntervalBoundInY is a custom-defined class to support the

visualization of intervals along the Y-axis

Interaction technique

•	 Use a sphere GameObject to represent and manipulate a position.

Chapter 2 Intervals and Bounding Boxes

41

Limitation

•	 The idea of an interval is straightforward. However, the inside-

outside test implementation is straightforward only for cases where

the interval is defined along one of the three major axes. In later

chapters, you will learn about vectors and vector dot products. Those

concepts can help generalize interval testing and support the inside-

outside tests along a non-major axis. Intervals and inside-outside test

will be revisited later.

EXERCISES

Checking for Error

Note that it is possible to set the IntervalMin to be a value greater than that of

IntervalMax. Please modify the Update() function to prevent this situation.

Drawing Location of MyIntervalBoundInY

Run the game. Open the zIgnoreThisObject (by clicking the small triangle beside this

object in the Hierarchy Window to expand the object structure and observe its children

objects) and select SemiTransparentCylinder(Clone). Notice that the interval along

the Y-axis in the Scene View is highlighted when this object is selected. This is the instance of

MyIntervalBoundInY that was instantiated in MyScript for visualizing the interval. Now

try to adjust the position of this object, for example, change the x-position value and observe

the object shift in the x-direction. Notice that you can adjust both the x- and z-positions but not

the y-position. This is because the y-position of the object is constantly being set and updated

by the user-specified IntervalMax and IntervalMin values in the MyScript component

on Controller. From this exercise, you have learned that it is possible to draw the y-interval

at any x- and z-position.

Extending the Inside-Outside Test to Other Axes

Notice that the inside-outside test in the Update() function is specific to the Y-axis. Please

define four additional variables. These variables will represent the minimum and maximum

interval values for the other two axes, X and Z. With these new values, you can now detect if

the TestPosition is within the specific interval bounds of the X-, Y-, and Z-axes. Although

Chapter 2 Intervals and Bounding Boxes

42

you may not be able to visualize all three intervals, you can still compute and echo the

inside conditions using the Debug.Log() utility. The next example will examine the topic of

interval inside-outside testing more closely to define the simple and yet powerful axis-aligned

bounding box utility.

�Axis-Aligned Bounding Boxes: Intervals
in Three Dimensions
An interval along a major axis is simply a line segment where positions inside the

interval are points of that line segment. When working with two intervals along two

different major axes, for example, an interval along the X-axis and a second interval

along the Z-axis, the combined result is a 2D rectangular region or an axis-aligned

rectangular plane.

As illustrated in Figure 2-7, the rectangular region on the X-Z plane is defined by

the horizontal interval along the X-axis with xMin and xMax values and by the vertical

interval along the Z-axis with zMin and zMax values. Figure 2-7 (a) shows that to

determine if the given ball position is inside the rectangular region, the position must

satisfy the inside-outside tests of both intervals. Figures 2-7 (b) and (c) depict the

conditions when a position is only inside one of the intervals but not both. In (b) the

ball’s position is within the horizontal interval but outside of the vertical. In (c) the ball’s

position is inside the vertical, but not within the horizontal interval.

Figure 2-7.  Inside-outside test of two intervals along the X- and Z-axis

Chapter 2 Intervals and Bounding Boxes

43

When working with three intervals along all three major axes, the rectangular region

changes into a 3D axis-aligned rectangular box, known as an axis-aligned bounding
box (AABB). In this case, a position is inside a given AABB only when it satisfies the

inside-outside tests for all three intervals. This condition testing can be implemented as

follows:

// if in all intervals

if (

 (Ball.x >= xInterval.Min) && (Ball.x <= xInterval.Max)

 && // x-axis

 (Ball.y >= yInterval.Min) && (Ball.y <= yInterval.Max)

 && // y-axis

 (Ball.z >= zInterval.Min) && (Ball.z <= zInterval.Max)

 // z-axis

)

 // Ball is inside the bounding box

else

 // Ball is outside the bounding box

As you can observe, the logic and computation involved in the AABB inside-outside

test are straightforward and efficient. For this reason, AABBs are a widely used utility for

approximating object proximity and collisions. AABBs are so important and useful that

Unity defines its own class, Bounds, that implements the AABB functionality (https://

docs.unity3d.com/ScriptReference/Bounds.html). At the end of this chapter, you

will see what is in this class compared to what you will have implemented on your own

throughout the examples in this chapter.

Note  For brevity, the rest of this book refers to axis-aligned bounding boxes, or
AABB, simply as bounding boxes. A bounding box that is not aligned with the major
axes is referred to as a general bounding box.

Chapter 2 Intervals and Bounding Boxes

https://docs.unity3d.com/ScriptReference/Bounds.html
https://docs.unity3d.com/ScriptReference/Bounds.html

44

�The Box Bounds Intervals in 3D Example
This example demonstrates the functionality of bounding boxes, implements the point

inside-outside test, and allows you to interact with and examine its implementation.

Figure 2-8 shows a screenshot of running the EX_2_2_BoxBounds_IntervalsIn3D

scene of the Chapter-2-Intervals+AABB project. This scene can be opened by double-

clicking the EX_2_2_BoxBounds_IntervalsIn3D scene file in the Assets/ folder of the

Project Window.

Figure 2-8.  Running the Box Bounds Intervals in 3D example

The goals of this example are for you to

•	 Understand and interact with a bounding box

•	 Examine the implementation of a bounding box inside-outside test

Chapter 2 Intervals and Bounding Boxes

45

�Examine the Scene

The Hierarchy Window shows that in addition to the Controller, there are four other

game objects: CenterPosition, MinPosition, MaxPosition, and TestPosition. The

center, min, and max position objects are three separate checkered spheres representing

the corresponding positions of a bounding box. The TestPosition is the white sphere.

Just like the IntervalBoundsIn1D example, you can manipulate the position of the white

sphere to trigger the inside-outside test and examine results.

�Analyze Controller MyScript Component

The MyScript component on the Controller object shows eight public variables

supporting three general functionalities:

•	 Drawing support

•	 DrawBox: Used to determine whether to draw or hide the

bounding box

•	 DrawInterval: Used to determine whether to draw the three axis-

aligned intervals that implement the bounding box

•	 Box control support

•	 ControlWithMinMax: Gives the user two options for manipulating

the bounding box

•	 Option 1: Manipulate the box by specifying the MinPos and

MaxPos positions.

•	 Option 2: Manipulate the box by specifying the CenterPos

position and interval size (BoundSize) along each axis.

•	 Testing position support

•	 TestPosition: References the white sphere and is used for testing

the inside-outside implementation

Chapter 2 Intervals and Bounding Boxes

46

�Interact with the Example

Run the game and notice the transparent box that bounds the three intervals along

the X-, Y-, and Z-axes. On the minimum and maximum corners of the transparent box

are two checkered spheres. These two spheres are the MinPosition and MaxPosition

game objects, which are referenced in MyScript by the MinPos and MaxPos variables,

respectively.

Now select Controller and look at the MyScript component. Experiment with

hiding and showing the box and intervals. The important observation to make here is

that the box and the three intervals both define the same 3D volume. These two are

complementary ways of perceiving and visualizing the volume defined by the intervals.

With the intervals hidden, notice that there is a checkered sphere located at the center of

the box. This is the CenterPosition game object; when the interval visualization objects

are displayed, it is hidden inside the cylinders representing the intervals.

Next, manipulate the box with the min and max position game objects. Select

the MinPosition or MaxPosition game object from the Hierarchy Window and

translate their position to a new location. Notice how the bounding box continuously

tracks and maintains these two positions as its min and max corners. Now, select the

CenterPosition in the Hierarchy Window and try to manipulate it; you’ll notice that

its position is not changeable. When you adjust the min and max positions, the center

position is computed based on your input values from these positions. This is the same

case for the BoundSize variable in the MyScript component: the min and max positions

determine the BoundSize.

In order to manipulate the bounding box by manipulating the CenterPosition and

the BoundSize, you must disable the ControlWithMinMax check box on the Controller's

MyScript component. Now, you can experience changing the entire box position

by dragging the CenterPosition object and changing the box size by adjusting the

BoundSize variable in the MyScript component. However, notice that the MinPosition

and MaxPosition are no longer adjustable. These two positions are now defined by the

user-specified CenterPosition and the BoundSize.

Lastly, select and drag the TestPosition game object to manipulate its position

within the scene. Notice that the box changes colors when the TestPosition object

moves from outside to inside its bounds. Before you look at the script, try entering and

leaving the region from different sides of the box, for example, the left, right, top, bottom,

and so on. Note that for each case, you will get the same inside-outside test results.

Chapter 2 Intervals and Bounding Boxes

47

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

private MyBoxBound MyBound = null; // For visualizing AABB

public bool DrawBox = true; // Show/hide the 3D box

public bool DrawIntervals = true; // Show/hide intervals

public bool ControlWithMinMax = true; // min/max vs. center

public GameObject MinPos = null;   // Min position of the box

public GameObject MaxPos = null; // Max position of the box

public GameObject CenterPos = null; // Center of the box

public Vector3 BoundSize = Vector3.one; // Interval size

public GameObject TestPosition = null; // Position for testing

All the public variables have been discussed when analyzing the MyScript

component. The private variable of the MyBoxBound data type is there to support

the visualization of the bounding box. Figure 2-9 shows the public interface of the

MyBoxBound class.

Chapter 2 Intervals and Bounding Boxes

48

Figure 2-9.  The MyBoxBound class

Figure 2-9 shows the definition and public properties and functions of

the MyBoxBound class. Note that this class is indeed built with three interval

objects: XInterval, YInterval, and ZInterval, which are instances of the same

MyIntervalBound class from the IntervalBoundsIn1D example. As in all previous

classes defined for visualization, this file can be found in the Assets/SceneHelper/

folder. As usual, to avoid distracting from the mathematical concepts discussion, the

implementation details of this class are left for you to explore independently. The

Start() function for MyScript is listed as follows:

void Start() {

 // Ensure proper setup in the Hierarchy Window

 Debug.Assert(CenterPos != null);

 Debug.Assert(MinPos != null);

Chapter 2 Intervals and Bounding Boxes

49

 Debug.Assert(MaxPos!= null);

 Debug.Assert(TestPosition != null);

 MyBound = new MyBoxBound(); // For visualization

}

The Debug.Assert() calls ensure proper setup of referencing the appropriate game

objects via the Inspector Window, while the MyBound variable is instantiated in order to

visualize the bounding box. The Update() function is listed as follows:

void Update() {

 // Step 1: update drawing options

 MyBound.DrawBoundingBox = DrawBox;

 MyBound.DrawIntervals = DrawIntervals;

 // Step 2: control the box

 if (ControlWithMinMax) {

 // User controls Min/Max Position

 MyBound.MinPosition = MinPos.transform.localPosition;

 MyBound.MaxPosition = MaxPos.transform.localPosition;

 // Show bound center and size

 BoundSize = MaxPos.transform.localPosition -

 MinPos.transform.localPosition;

 CenterPos.transform.localPosition = 0.5f *
 (MaxPos.transform.localPosition +

 MinPos.transform.localPosition);

 } else {

 // User control center position and the size

 MyBound.Center = CenterPos.transform.localPosition;

 MyBound.Size = BoundSize;

 // Show Min/Max Position in the MyScript component

 MinPos.transform.localPosition =

 CenterPos.transform.localPosition -

 (0.5f * BoundSize);

 MaxPos.transform.localPosition =

 CenterPos.transform.localPosition +

 (0.5f * BoundSize);

 }

Chapter 2 Intervals and Bounding Boxes

50

 // Step 3: perform inside/outside test

 Vector3 pos = TestPosition.transform.localPosition;

 Vector3 min = MinPos.transform.localPosition;

 Vector3 max = MaxPos.transform.localPosition;

 if ((pos.x > min.x) && (pos.x < max.x) &&

 // point in x-interval AND

 (pos.y > min.y) && (pos.y < max.y) &&

 // point in y-interval AND

 (pos.z > min.z) && (pos.z < max.z))

 // point in z-interval

 {

 Debug.Log("TestPosition Inside!");

 MyBound.SetBoxColor(MyDrawObject.CollisionColor);

 } else {

 MyBound.ResetBoxColor();

 }

}

The Update() function implements the interaction with the user in three main steps:

•	 Step 1: Drawing control: The first two lines of code set the box and

interval drawing options according to the user input.

•	 Step 2: Bounding box manipulation: The bounding box is

manipulated either via receiving the min and max position from the

user and then computing and setting the center and size values or

through receiving the center and size values from the user and then

computing and setting the min and max positions. Note that the size

of an interval is always max-min and is true for 3D bounding boxes as

well. Additionally, the center position is always 0.5 * (max + min).

•	 Step 3: Inside-outside test: Compute the TestPosition’s position

against the inside-outside condition and update the box color

accordingly.

Chapter 2 Intervals and Bounding Boxes

51

Take note that the MyBound variable does indeed only serve as a visualization tool.

For example, you can delete all occurrences of the variable and still be able to run

the example. Only, in that case, there will be no visual feedback of the bounding box

or the results of the inside-outside tests. Lastly, an important observation to make is

that the Vector3 “-” and “+” operators subtract and add the corresponding x-, y-, and

z-component values of their operands.

�Takeaway from This Example

This example expands on the very simple concept of an interval along a major axis to

create three intervals along each major axis, resulting in a 3D bounding box.

Through interacting with this example, you have learned that there are two

fundamental approaches in defining a bounding box, either with the min and max

corner positions or with the center position and the size. This knowledge informs you

that the internal representation of a bounding box class can either be min/max or

center/size.

You have also learned that the inside-outside test for a bounding box is simply

the inside-outside test for one interval, three times. Finally, you have observed that

bounding boxes are simple to program with efficient runtime performance.

Relevant mathematical concepts covered include

•	 3D bounding boxes

•	 Testing for being inside or outside of a bounding box

•	 The two alternative approaches to manipulate a bounding box: min/

max or center/size

Unity tools

•	 MyBoundBox: A custom-defined class to support the visualization of a

bounding box

•	 MyIntervalBoundInX, MyIntervalBoundInY, and

MyIntervalBoundInZ: Custom-defined classes to support the

visualization of intervals along the X-, Y-, and Z-axes, respectively

Chapter 2 Intervals and Bounding Boxes

52

EXERCISE

Testing and Printing Position Status for Each of the Intervals Separately

Modify the Update() function to print out (with Debug.Log()) the status of the

TestPosition’s position with respect to each of the X-, Y-, and Z-intervals of the bounding

box. Through this exercise, you can practice implementing interval testing yourself, and you

can verify that a given position can be inside one or two of the intervals of the bounding box

and still be outside of the box.

�Collision of Intervals
Now that it is possible to efficiently detect if the position of an object is inside a 3D

bounding box, the next question to answer is how do you detect when two bounding

boxes intersect? Answering this question is key for detecting a collision between two

objects, for example, two vehicles in a video game. One approach to study this problem

is by first examining how two axis-aligned intervals intersect. In the same manner as

understanding and extending a 1D interval to a 3D bounding box, a 1D interval collision

can be generalized to a 3D bounding box collision.

Figure 2-10 shows two intervals defined along the Y-axis, the Green (G) and the Blue

(B) intervals. To ensure clear visualization of overlapping intervals, the two are drawn on

different sides of the Y-axis, with the third interval representing the intersection drawn

centered around the Y-axis (where the colors overlap each other). Figure 2-10 shows all

the different combinations that the two intervals can intersect or overlap. These include

(a) No intersection.

(b) �G.min is inside the B interval, while G.max is outside, which

is equivalent to B.max being inside the G interval, but B.min

being outside.

(c) The entire G interval is inside the B interval.

(d) The entire B interval is inside the G interval.

Chapter 2 Intervals and Bounding Boxes

53

(e) �G.max is inside the B interval, while G.min is outside, which

is equivalent to B.min being inside the G interval, but B.max

being outside.

Figure 2-10.  The different possible ways that two intervals can intersect

Notice that when two intervals overlap (or intersect or collide), the result is always a

new interval that is equal to or smaller than the original intervals. In fact, the overlapping

interval is always the smaller of the two original max values and the larger of the two

original min values. This fact is illustrated in Figure 2-11.

Figure 2-11.  The condition and results of a two-interval intersection

Figure 2-11 shows how the smaller of the two max values and the larger of the two

min values define a valid interval. This condition is summarized as follows. Feel free

to analyze this code against all conditions depicted in Figure 2-10 to verify that the

resultInterval is indeed correct for all possible ways that the intervals can intersect:

Chapter 2 Intervals and Bounding Boxes

54

if ((G.max >= B.min) && (G.min <= B.max)) {

 // Intervals G and B intersect

 resultInterval.max = min(G.max, B.max)

 resultInterval.min = max(G.min, B.min)

} else

 // No intersection

�The Interval Bound Intersections Example
This example computes and visualizes the intersection of two intervals. It allows you

to adjust and examine the different ways that two intervals can intersect. Figure 2-12

shows a screenshot of running the EX_2_3_IntervalBoundIntersections scene from

the Chapter-2-Intervals+AABB project. This scene can be opened by double-clicking

the EX_2_3_IntervalBoundIntersections scene file in the Assets/ folder of the

Project Window.

Figure 2-12.  Running the Interval Bound Intersections example

Chapter 2 Intervals and Bounding Boxes

55

The goals of this example are for you to

•	 Examine and verify the different ways two intervals can intersect

•	 Understand the implementation of intersecting two intervals

�Examine the Scene

The Hierarchy Window shows that the initial scene setup is extremely simple where the

only predefined object is Controller. When this example runs, it will display a Green

and a Blue interval along the Y-axis and will allow you to adjust these two intervals while

examining the intersection results.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables. These variables

are three sets of min and max values, one set for each interval: GreenInterval,

BlueInterval, and OverlapInterval. You can adjust the minimum and maximum

values of the GreenInterval and the BlueInterval to create the OverlapInterval

and thus its min and max values. The values of OverlapInterval are the computed

intersection results and cannot be adjusted.

�Interact with the Example

Run the game and observe the Green and Blue intervals along the Y-axis. Try adjusting

the minimum and maximum values for each of the intervals by adjusting their

corresponding min/max values on the MyScript component of Controller. Note that

when the two intervals do not overlap, there is no overlap interval and the min/max

values of OverlapInterval are both displayed as NaN (Not a Number).

Next, adjust the minimum and maximum values of the Green and Blue intervals

to reproduce the different scenarios in Figure 2-10. Notice that when the two intervals

intersect, the overlap region can be described by a new interval which is a cylinder

centered on the Y-axis. This is the OverlapInterval with minimum and maximum

values displayed in the OverlapInterval min and max variables. For each scenario,

verify that the OverlapIntervalMax is indeed the smaller of the two maximum values

from the Blue and Green intervals and that OverlapIntervalMin is the larger of the two

minimum values.

Chapter 2 Intervals and Bounding Boxes

56

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// For visualizing the Green Interval

private MyIntervalBoundInY GreenInterval = null;

// Max/Min values for Green interval

public float GreenIntervalMax = 1.0f;

public float GreenIntervalMin = 0.0f;

// For visualizing the Blue Interval

private MyIntervalBoundInY BlueInterval = null;

// Max/Min values of the Blue Interval

public float BlueIntervalMax = 1.0f;

public float BlueIntervalMin = 0.0f;

// For visualizing the overlap interval

private MyIntervalBoundInY OverlapInterval = null;

// Max/Min values of the overlap interval

public float OverlapIntervalMax = float.NaN;

public float OverlapIntervalMin = float.NaN;

Notice the three sets of intervals and their corresponding minimum and maximum

values. The public variables, the min and max variables for each interval, were discussed

earlier. The private variables are of the MyIntervalBoundInY data type which, as pointed

out in the first example of this chapter, are designed for visualizing the Y-axis intervals.

The Start() function is listed as follows:

void Start() {

 // Define the Green Interval

 GreenInterval = new MyIntervalBoundInY();

 GreenInterval.IntervalColor = GreenColor;

 // Draw slightly offset from the axis

 GreenInterval.PositionToDraw = new Vector3(0.6f, 0, 0);

 // Define the Blue Interval

 BlueInterval = new MyIntervalBoundInY();

 BlueInterval.IntervalColor = BlueColor;

Chapter 2 Intervals and Bounding Boxes

57

 // Draw slightly offset from the axis

 BlueInterval.PositionToDraw = new Vector3(-0.6f, 0, 0);

 // The overlap interval

 OverlapInterval = new MyIntervalBoundInY();

 OverlapInterval.DrawInterval = false; // Initially hide

 // Draw on the axis

 OverlapInterval.PositionToDraw = new Vector3(0.0f, 0, 0);

 OverlapInterval.IntervalColor = OverlapColor;

}

Once again, you can observe a pattern of three sets of similar functions: instantiating

the variables, setting the corresponding color, and setting the interval’s position. For the

case of the OverlapInterval, it is initially set to be hidden because it is only displayed

when an intersection between the Green and Blue intervals occurs. The Update()

function is listed as follows:

void Update() {

 // Update Green Interval with user input

 GreenInterval.MinValue = GreenIntervalMin;

 GreenInterval.MaxValue = GreenIntervalMax;

 // Update Blue Interval with user input

 BlueInterval.MinValue = BlueIntervalMin;

 BlueInterval.MaxValue = BlueIntervalMax;

 // Intersect Green and Blue Intervals

 if (GreenIntervalMin <= BlueIntervalMax&&

 GreenIntervalMax >= BlueIntervalMin) {

 // overlap condition

 OverlapInterval.DrawInterval = true;

 // show the overlap interval

 // set the max/min values

 OverlapIntervalMax = Mathf.Min(GreenIntervalMax,

 BlueIntervalMax);

 OverlapIntervalMin = Mathf.Max(GreenIntervalMin,

 BlueIntervalMin);

 // display these values for the user

 OverlapInterval.MaxValue = OverlapIntervalMax;

 OverlapInterval.MinValue = OverlapIntervalMin;

Chapter 2 Intervals and Bounding Boxes

58

 // Implemented in theMyIntervalBound class

 Debug.Assert(GreenInterval.IntervalsIntersect

 (BlueInterval));

 } else {

 OverlapInterval.DrawInterval = false;

 OverlapIntervalMax = float.NaN;

 OverlapIntervalMin = float.NaN;

 }

}

The first four lines set the user entered min and max values into the Green and Blue

interval min and max values, respectively, for visualization. The if condition tests for

the intersection of two intervals and, when an overlap is detected, sets the min and

max values of the OverlapInterval. The logic for setting the OverlapInterval follows

exactly as depicted in Figure 2-11; the smaller of the two max values and the larger of

the two min values define the intersecting intervals. Notice that MyIntervalBound.

IntervalsIntersect() is defined and the Debug.Assert() function verifies that the

function does indeed return the condition if two intervals have collided. This is a

convenient utility function that will be used in later examples.

�Takeaway from This Example

You have examined how two simple intervals can overlap, analyzed the conditions of this

overlap, and verified the implementation that checks for an overlap between these two

intervals. Although two intervals can intersect in many ways, the intersection detection

logic is relatively straightforward.

Similar to the case of extending the inside-outside test for one interval to support 3D

bounding boxes, the interval intersection knowledge can also be generalized to support

3D bounding box collisions and intersections as you will see in the next section.

Relevant mathematical concepts covered include

•	 All interval intersection conditions

•	 Testing for an intersection between two intervals

•	 Computing the minimum and maximum values of the intersecting or

overlapping interval

Chapter 2 Intervals and Bounding Boxes

59

Unity tools

•	 MyIntervalBound: Custom-defined abstract class to support the

visualization of intervals along the X-, Y-, and Z-axes

Interaction technique

•	 The use of NaN to communicate invalid float values

EXERCISE

Point in Multiple Intervals

In this exercise, you will program the logic to perform the inside-outside test for a point that

can be in any combination of the three intervals from this example. For example, inside the

Green interval but outside of the Blue and Overlap intervals. Please derive the appropriate logic

such that for any test position, you can print out the inside-outside test results for all three

intervals. Note that the OverlapInterval is only defined when the user overlaps the Green

and Blue Intervals and thus will not always be available for the inside-outside test.

�Collision of Bounding Boxes
Recall that the volume in a bounding box is defined by the three corresponding intervals

along the three major axes. This fact is reflected in the inside-outside test, where a

given position is inside the bounding box if and only if it is inside all three major axes’

intervals.

In exactly the same manner, based on exactly the same reasoning, two bounding

boxes are colliding, if and only if each of the three intervals that define the two boxes

collided with each other along their corresponding axis. Additionally, since a new

interval is the result of each interval collision, bounding boxes’ intersections always

result in a new bounding box. The new bounding box’s maximum and minimum points

can be computed in exactly the same fashion that a new interval is calculated from the

results of an interval collision. The maximum position of the colliding bounding box is

the minimum of all the intervals’ maximum values, and the minimum position is the

maximum of all the intervals’ minimum values. This condition is listed as follows:

Chapter 2 Intervals and Bounding Boxes

60

if ((box1.XInterval.IntervalIntersects(box2.Xinterval) &&

 // intersects in X

 (box1.YInterval.IntervalIntersects(box2.Yinterval) &&

 // intersects in Y

 (box1.ZInterval.IntervalIntersects(box2.Zinterval)

 // intersects in Z

) {

 // The two boxes are colliding

 // result of the xInterval intersection

 overlapBox.Xinterval.min = max(box1.Xinterval.min,

 box2.XInterval.min)

 overlapBox.XInterval.max = min(box1.Xinterval.max,

 box2.XInterval.max)

 // result of the yInterval intersection

 overlapBox.Yinterval.min = max(box1.Yinterval.min,

 box2.YInterval.min)

 overlapBox.YInterval.max = min(box1.Yinterval.max,

 box2.YInterval.max)

 // result of the zInterval intersection

 overlapBox.Zinterval.min = max(box1.Zinterval.min,

 box2.ZInterval.min)

 overlapBox.ZInterval.max = min(box1.Zinterval.max,

 box2.ZInterval.max)

}

Note that when intersection occurs, the resulting overlapBox is a properly defined

3D bounding box with three intervals defined along the three major axes: overlapBox.

XInterval, overlapBox.YInterval, and overlapBox.ZInterval.

�The Box Bound Intersections Example
This example demonstrates the intersection of two bounding boxes. It allows you

to interact with and examine the geometries creating the bounding boxes as well as

manipulate the boxes to approximate where the geometries intersect with each other.

Figure 2-13 shows a screenshot of running EX_2_4_BoundingBoxIntersections scene

Chapter 2 Intervals and Bounding Boxes

61

from the Chapter-2-Intervals+AABB project. This scene can be opened by double-

clicking the EX_2_4_BoundingBoxIntersections scene file in the Assets/ folder of the

Project Window.

Figure 2-13.  Running the Box Bound Intersections example

The goals of this example are for you to

•	 Examine complex geometric objects bounded by their own

bounding boxes

•	 Interact and adjust bounding boxes of objects

•	 Experiment with manipulating bounding boxes for collisions

•	 Understand and verify the bounding box intersection

implementation

Chapter 2 Intervals and Bounding Boxes

62

�Examine the Scene

Besides Controller, there are only two other objects in the Hierarchy Window, Car and

Taxi. These objects represent their corresponding vehicles in the scene. Running this

example will build a bounding box around each of these two vehicles and allow you to

manipulate these bounding boxes. You will also examine the details of bounding box

intersection.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows nine variables that can be classified

into approximately three different categories:

•	 Bounding box drawing support: Used to show and hide the

drawing of the bounding boxes and the intervals that define the

bounding boxes

•	 DrawBox: Shows or hides the bounding boxes around both

vehicles

•	 DrawInterval: Shows or hides the three intervals that make up

the bounding boxes around both vehicles

•	 Placement of bounding box

•	 CarCenterOffset: Ensures the proper centering of the bounding

box over the vehicles. More details will be provided when

discussing the interaction with this example.

•	 Bounding box information

•	 TheTaxi: Reference to the Taxi object

•	 TheCar: Reference to the Car object

•	 TaxiBoundSize: The size of the bounding box around the Taxi

•	 CarBoundSize: The size of the bounding box around the Car

•	 OverlapBoxMin: The minimum corner position of the overlapped

box created when the taxi’s and the car’s bounding boxes collide

•	 OverlapBoxMax: The maximum corner position of the overlapped

box created when the taxi’s and the car’s bounding boxes collide

Chapter 2 Intervals and Bounding Boxes

63

Note T he information presented for the overlapped bounding box is its min and
max values. This is contrasted to how you can control the other two bounding
boxes—via center and size information. Using min and max values for the
overlapped box allows you to verify the correctness of its computation.

�Interact with the Example

Run the game and observe the two transparent boxes around each of the vehicles.

These transparent boxes represent the corresponding bounding boxes of each vehicle.

Try toggling the DrawBox and DrawInterval options under the MyScript component

on Controller. Notice how toggling these options gives you control over displaying or

hiding these boxes and their corresponding intervals. Additionally, take note that you

can adjust the size of the two bounding boxes by changing the bound size variable for

each vehicle (CarBoundSize and TaxiBoundSize).

Note T he Car and Taxi game objects consist of corresponding children game
objects. You can verify this by clicking the small triangle beside these objects in
the Hierarchy Window to expand the object structure and observe their children
objects. Take care that you are only manipulating these objects at the parent level,
ensuring you don’t change or manipulate any of their children.

Placement of the Bounding Box over the Vehicles

Try adjusting the values of CarCenterOffset and observe the relative position changes

between the boxes and their corresponding vehicle. Recall that you have learned two

ways to define a bounding box, either by specifying the maximum and minimum

corner positions or by specifying its center and size. As you will see when examining the

source code in MyScript, in this example the bounding boxes are defined according to

their center and size information. The center position is defined by the position of the

corresponding game object, that is, the values of that object’s transform.localPosition

variable. The size of the bounding box is specified by the user via the MyScript

component on Controller. By changing CarCenterOffset, you are changing how much

the bounding box’s center differs from its corresponding vehicle’s center.

Chapter 2 Intervals and Bounding Boxes

64

CarCenterOffset has an initial offset in the Y-axis of about 0.75. This is because

the center position of the vehicle model is not located in the middle of the vehicle, but

at the height where the tires would meet the road. Thus, to ensure that the bounding

box covers the entire car, its center position is raised to the approximate location of

the vehicle’s true center. You can verify this by setting CarCenterOffset’s y-value to

0 and observing that the resulting bounding box does not cover the upper half of its

corresponding vehicle.

Bounding Box Collisions

With CarCenterOffset set to (0, 0.75, 0), adjust the position of the Taxi object such

that the vehicle overlaps with the Car object. Notice a new bounding box appearing in

the overlapping region of the bounds. Examine the OverlapBoxMax and OverlapBoxMin

values in the Inspector Window and verify that these are the smallest of the maximum

corresponding interval values and the largest of the minimum corresponding

interval values.

Void Space of a Bounding Box

When the CarCenterOffset is set to zero, the bottom half of the bounding box is outside

of the vehicle and thus does not bound any useful information. This emptied bound

volume is referred to as void space: the space where the bounding box can cause false

collision detection. The potential of significant void space is the major drawback of the

bounding box collision approximation. In general, all bounding boxes should be defined

to minimize void space.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// For visualizing the three bounding boxes

private MyBoxBound CarBound = null;

private MyBoxBound TaxiBound = null;

private MyBoxBound OverlapBox = null;

public bool DrawBox = true; // Controls what to show/hide

public bool DrawIntervals = false;

Chapter 2 Intervals and Bounding Boxes

65

// Offset between the geometry and box centers

public Vector3 CarCenterOffset = Vector3.zero;

// Note: The y-center of the car is at ground level

// Reference to the Taxi game object

public GameObject TheTaxi = null;

// User sets desirable taxi bounding box size

public Vector3 TaxiBoundSize = Vector3.one;

// Reference to the Car game object

public GameObject TheCar = null;

// User sets the desirable car bounding box size

public Vector3 CarBoundSize = Vector3.one;

// Min position of the overlapping bounding box

public Vector3 OverlapBoxMin = Vector3.zero;

// Max position of the overlapping bounding box

public Vector3 OverlapBoxMax = Vector3.zero;

As in all previous examples, the public variables listed have been analyzed. The

private variables are once again for visualizing the bounding boxes. The Start()

function for MyScript is listed as follows:

void Start() {

 // Ensure that proper reference setup in Inspector Window

 Debug.Assert(TheTaxi != null);

 Debug.Assert(TheCar != null);

 // Instantiate the visualization variables

 TaxiBound = new MyBoxBound();

 CarBound = new MyBoxBound();

 OverlapBox = new MyBoxBound();

 OverlapBox.SetBoxColor(new Color(0.4f, 0.9f, 0.9f, 0.6f));

 // hide the overlap box initially

 OverlapBox.DrawBoundingBox = false;

 // not showing this in this example

 OverlapBox.DrawIntervals = false;

}

Chapter 2 Intervals and Bounding Boxes

66

As in all cases, the Start() function ensures proper game object reference setup in

the Inspector Window and instantiates the private variables. Additionally, the Start()

function also assumes no initial collision and hides the overlapped bounding box. The

Update() function is listed as follows:

void Update() {

 // Step 1: Set the user specify drawing state

 TaxiBound.DrawBoundingBox = DrawBox;

 TaxiBound.DrawIntervals = DrawIntervals;

 CarBound.DrawBoundingBox = DrawBox;

 CarBound.DrawIntervals = DrawIntervals;

 // Step 2: Update the bounds (Taxi first, then Car)

 TaxiBound.Center = TheTaxi.transform.localPosition +

 CarCenterOffset;

 TaxiBound.Size = TaxiBoundSize;

 CarBound.Center = TheCar.transform.localPosition +

 CarCenterOffset;

 CarBound.Size = CarBoundSize;

 // Step 3: test for intersection ...

 // Two box bounds overlap when all three intervals overlap ...

 if (((TaxiBound.MinPosition.x <= CarBound.MaxPosition.x)

 && // X overlap

 (TaxiBound.MaxPosition.x >= CarBound.MinPosition.x))

 && // AND

 ((TaxiBound.MinPosition.y <= CawrBound.MaxPosition.y)

 && // Y overlap

 (TaxiBound.MaxPosition.y >= CarBound.MinPosition.y))

 && // AND

 ((TaxiBound.MinPosition.z <= CarBound.MaxPosition.z)

 && // Z overlap

 (TaxiBound.MaxPosition.z >= CarBound.MinPosition.z))) {

 // Min/Max of the overlap box bound

 Vector3 min = new Vector3(

 // set with max of x, y, and z min values

Chapter 2 Intervals and Bounding Boxes

67

 Mathf.Max(TaxiBound.MinPosition.x,

 CarBound.MinPosition.x),

 Mathf.Max(TaxiBound.MinPosition.y,

 CarBound.MinPosition.y),

 Mathf.Max(TaxiBound.MinPosition.z,

 CarBound.MinPosition.z));

 Vector3 max = new Vector3(

 // set with min of x, y, and z max values

 Mathf.Min(TaxiBound.MaxPosition.x,

 CarBound.MaxPosition.x),

 Mathf.Min(TaxiBound.MaxPosition.y,

 CarBound.MaxPosition.y),

 Mathf.Min(TaxiBound.MaxPosition.z,

 CarBound.MaxPosition.z));

 OverlapBox.DrawBox = TaxiBound.DrawBox;

 OverlapBox.DrawIntervals = TaxiBound.DrawIntervals;

 OverlapBox.MinPosition = min;

 OverlapBox.MaxPosition = max;

 // Update to show the overlap bound's min and max

 OverlapBoxMax = max;

 OverlapBoxMin = min;

 // functionality is implemented in the BoxBound

 Debug.Assert(TaxiBound.BoxesIntersect(CarBound));

 } else {

 OverlapBox.DrawBox = false;

 OverlapBox.DrawIntervals = false;

 OverlapBox.MinPosition = Vector3.zero;

 OverlapBox.MaxPosition = Vector3.zero;

 }

}

Chapter 2 Intervals and Bounding Boxes

68

The Update() function sets the state of the application in three simple steps:

•	 Step 1: Set drawing state: Assign the user-specified drawing states of

DrawBox and DrawInterval to TaxiBound and CarBound.

•	 Step 2: Update bound information: Update the Taxi bounding box

(TaxiBound) and the Car bounding box (CarBound) with the user-

specified values. Notice the use of CarCenterOffset to correct

transform.localPosition, ensuring the bound is centered at the

desired location.

•	 Step 3: Test for collision and create the overlapped bounding box:

Test the bounds for an intersection, and when the condition is

favorable, the min and max positions of the overlapped bounding

box are computed and the new box is displayed for the user.

Note the very last line in the collision computation, the Debug.Assert() statement

shows that the bounding box intersection functionality is also implemented in the

MyBoxBound class. This line of code verifies the correctness of the bounding box

collision test.

�Takeaway from This Example

You have experienced bounding geometric objects with bounding boxes and learned

that there might exist an offset between the center of the object and its bounding box.

From working with TheTaxi and TheCar bounds, you have observed that when defining a

bound, it is convenient to work with center and size information. This is in contrast with

the case of the OverlapBound, where it is important to verify the computation results in

the min and max positions.

For bounding boxes, just as in the case of the interval inside-outside test, the

condition for intersection and the new bounding box resulting from that intersection

are both straightforward and efficient to compute. Bounding boxes are one of the most

widely used tools in interactive graphical applications because of their simplicity. The

main shortcoming of bounding boxes is the potential for significant void space. However,

the void space problem can be mitigated by defining multiple bounding boxes for one

object, or a hierarchy of bounding boxes. You will work with hierarchy bounding boxes

slightly in the exercises.

Chapter 2 Intervals and Bounding Boxes

69

Relevant mathematical concepts covered include

•	 Testing for collisions between two bounding boxes

•	 Computing the minimum and maximum values of the intersecting

(overlapping) bounding box

Unity tools

•	 Vector3 addition operation that adds the corresponding operand x-,

y-, and z-component values

EXERCISES

Manipulate CarBound with the Min/Max Values Implementation

Implement the functionality to replace the CarBoundSize with CarBoundMin and

CarBoundMax variables. Notice that in this case, the min/max user interaction involves more

complicated computations. In general, it is easier to define bounds of objects based on their

center and size information than it is to use minimum and maximum corner positions.

Experiment with Void Space

Select and rotate TheTaxi by 45 degrees around the X-axis. Observe that a larger bounding

box is now required to completely enclose the rotated vehicle. As a result, the void space has

increased. This example illustrates a major limitation of bounding boxes: because of the axis-

aligned requirement, they are ill-suited for bounding non-axis-aligned objects, for example,

a rotated car or a human limb in motion. In the next chapter, you will learn about bounding

spheres, another bounding volume with its own challenges, which can sometimes remedy the

shortcomings of bounding boxes. If you were to rotate the bounding box with the taxi, then the

bounding box would no longer be axis-aligned and the mathematics and algorithms developed

in this chapter would not apply.

Experience with Hierarchical Bounding Boxes

One approach to remedy the potentially excessive void space for a bounding box is by defining

a hierarchy of bounds. For example, define two children bounding boxes inside the given

CarBound (or TaxiBound) and place them at the centers of the front and back wheels. Now,

when a position is inside the parent bound (e.g., CarBound), you can perform the inside-outside

tests with the two children bounds to better approximate if a collision has really occurred.

Chapter 2 Intervals and Bounding Boxes

70

�Final Words on Bounding Boxes
In general, there are other geometric volumes that can be used to bound complex

geometries for proximity or collision determination. These approximation geometries

are referred to as bounding volumes or colliders. As mentioned previously, Unity has

defined its own bounding box class, Bounds. You will learn about bounding spheres and

Unity’s BoundingSphere class in the next chapter. These are both examples of bounding

volumes for collision approximation. The general requirements for bounding volumes

are as follows:

	 1.	 Representation: Their representation must be compact.

	 2.	 Efficiency: They must be algorithmically simple and

computationally efficient.

	 3.	 Bound tightness: The void space must be tolerable for the target

geometric shape.

In this chapter, you have learned that bounding boxes are easy to represent, either

being two positions or a position and three floats, and are straightforward and efficient to

compute collisions. Additionally, you have observed bounding boxes to be effective with

relatively minimal void spaces when it comes to bounding rectangular shape geometries,

for example, cars, still humans, or still animals. However, it is also true that when these

objects rotate off-axis, for example, rotating a car about the X-axis by 45 degrees or a

human leaning forward, the bounding box void space can increase significantly and thus

greatly affect the accuracy of the collision approximation.

Unfortunately, this variability of approximation accuracy is true in general. All

bounding volumes have variable efficiencies depending on the profile and orientation of

the geometric shape that they bound. It is up to the game designer to determine the best

types of bounding volumes to use for their purpose.

�The Unity Bounds Class
Unity Application Programming Interface (API) describes the Bounds class as

An axis-aligned bounding box, or AABB for short, is a box aligned

with coordinate axes and fully enclosing some object. Because the

box is never rotated with respect to the axes, it can be defined by just

its center and extents, or alternatively by min and max points.

Chapter 2 Intervals and Bounding Boxes

71

Unity Bounds defines the following properties and public functions (https://docs.

unity3d.com/ScriptReference/Bounds.html):

•	 Properties

•	 center: The center of the bounding box.

•	 extents: The extents of the Bounding Box. This is always half of

the size of the Bounds.

•	 max: The maximal point of the box. This is always equal to

center+extents.

•	 min: The minimal point of the box. This is always equal to center–

extents.

•	 size: The total size of the box. This is always twice as large as the

extents.

•	 Public methods

•	 ClosestPoint: The closest point on the bounding box.

•	 Contains: Is point contained in the bounding box?

•	 Encapsulate: Grows the Bounds to include the point.

•	 Expand: Expands the bounds by increasing its size by amount

along each side.

•	 IntersectRay: Does ray intersect this bounding box?

•	 Intersects: Does another bounding box intersect with this

bounding box?

•	 SetMinMax: Sets the bounds to the min and max value of the box.

•	 SqrDistance: The smallest squared distance between the point

and this bounding box.

Through this chapter, you have learned the implementation details of all the

functionality with bolded names, for example, the size property, or the Contains

method. The mathematics behind the other functionality will be covered in different

chapters in the rest of this book.

Chapter 2 Intervals and Bounding Boxes

https://docs.unity3d.com/ScriptReference/Bounds.html
https://docs.unity3d.com/ScriptReference/Bounds.html

72

�Summary
This chapter begins with covering the 3D Cartesian Coordinate System and follows by

reviewing intervals along a major axis. These topics were used to build into the concept

of an axis-aligned bounding box in 3D space that can be applied in determining the

proximity of objects and approximating collisions. The chapter then reviews how

to compute the intersection of intervals along a 1D axis before generalizing into the

intersection of 3D bounding boxes. Besides learning the details of bounding boxes,

it is important to recognize the merits of the foundational concepts that make up the

bounding box. This chapter went from simple number comparisons to efficient collision

approximation between complex geometries.

Through this chapter, you have also become familiar with this book’s approach to

presenting concepts. For each concept, the book always begins with explanations and

presentations of pseudocode that is independent of Unity. This is then typically followed

with a Unity project where you are guided to interact with and appreciate the effects

and results of applying that concept. You are then led to analyze the parameters that

control or implement the concepts being demonstrated via studying the variables on

the MyScript component of the Controller game object. Lastly, you are walked through

the examination of the actual source code. You can expect this rhythm to continue

throughout the rest of this book.

Chapter 2 Intervals and Bounding Boxes

73
© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_3

CHAPTER 3

Distances and Bounding
Spheres
After completing this chapter, you will be able to

•	 Compute the distance between any two positions

•	 Define bounding spheres for objects

•	 Perform inside-outside tests for bounding spheres

•	 Detect collisions between bounding spheres

•	 Appreciate the strengths and weaknesses of bounding spheres

�Introduction
Now that you have more familiarity with the Unity environment and the learning

tools that this book utilizes, it is time to review some slightly more advanced, yet still

fundamental math concepts for video game creation. Similar to how Chapter 2 took

simple number comparisons and used them to create bounding boxes, this chapter

will develop the simple concepts of distances and the applications of the Pythagorean

Theorem to create another powerful and widely used tool in video games: bounding

spheres, which are also called sphere colliders.

From the previous chapter, you have learned that bounding boxes are created with

and executed from simple logic statements and have an efficient runtime. However,

you also learned that they are ill-suited for bounding objects that are not axis-aligned.

Spheres can be represented simply by a point (the center) and a radius and are perfectly

symmetrical with respect to its center. Their simple and compact representation and,

as you will discover in this chapter, the efficient computations involved mean that

https://doi.org/10.1007/978-1-4842-9885-5_3

74

spheres are prime candidates for serving as the geometry of bounding volumes. The

elegant symmetrical property implies that the efficiency and effectiveness of bounding

spheres are independent of object axis alignment or the rotations of objects. For these

reasons, bounding spheres or sphere colliders are one of the most widely used tools in

video games.

This chapter begins by reviewing distance computation, then follows by applying

the results of this computation to sphere inside-outside tests, and finally wraps up with

developing the bounding sphere functionality. Take note of the use of the Vector3 data

type in these discussions. Although this data type encapsulates three separate entities,

the x-, y-, and z-values of a position, Vector3 objects will be increasingly referenced and

utilized as one unified entity with its own operators including addition, subtraction,

magnitude, dot product, and so on. These observations will lead to the topic of vectors in

the next chapter.

�Distances Between Positions
Recall that, as depicted in Figure 2-1, the position of an object (x, y, z) is simply the

distance measured from the origin along each corresponding major axis, for example,

x-distance along the X-axis. Very conveniently and by design, the major axes of the

Cartesian Coordinate System are perpendicular to each other. For this reason, the

relationship between any position and the origin can be characterized by two right-angle

triangles. This characterization is illustrated in Figure 3-1. Notice how the given position,

D, is connected to the origin via two triangles, ABC and ACD, where both are right-angle

triangles.

Figure 3-1.  The distance between the origin and a position, D (xd, yd, zd)

Chapter 3 Distances and Bounding Spheres

75

Triangle ABC is defined by vertices A (the origin), B, and C. The lengths of the edges

of this triangle are as follows:

•	 Edge AB: The length along the X-axis, xd

•	 Edge BC: The length along the Y-axis, yd

•	 Edge AC: The length along the hypotenuse, computed via the

Pythagorean Theorem,

	 d x yd d1
2 2= + 	

Triangle ACD is defined by vertices A, C, and D (the position of interest). The lengths

of the edges for this triangle are as follows:

•	 Edge AC: The length along the hypotenuse of the triangle ABC, d1

•	 Edge CD: The length along the Z-axis, zd

•	 Edge AD: The length along the hypotenuse, computed via the

Pythagorean Theorem,

	 d d z x y zd d d d= + = + +1
2 2 2 2 2 	

Notice that the length of the edge AD, d, is simply the distance between the position

(in this case, D) and the origin. The distance formula states that the distance between

a position and the origin is the square root of the sum of the distances between that

position and the origin measured along each major axis. In this case, those distances

are xd, yd, and zd. As illustrated in Figure 3-2, this concept can be generalized to compute

distances between any two positions in the Cartesian Coordinate System.

Chapter 3 Distances and Bounding Spheres

76

Figure 3-2.  Calculating the distance between any two positions: P1 and P2

Please refer to Figure 3-2 and consider the situation where the vertex A from

Figure 3-1 has moved away from the origin to position P1(x1, y1, z1). In this case, the

distance between P1 and any position P2(x2, y2, z2) can still be determined by computing

the distances along each of the major axes:

•	 Distance along the X-axis: dx = x2 - x1

•	 Distance along the Y-axis: dy = y2 - y1

•	 Distance along the Z-axis: dz = z2 - z1

•	 Distance between P1 and P2:

	
d d d d x x y y z zx y z= + + = −() + −() + −()2 2 2

2 1

2

2 1

2

2 1

2

	

Note that since this equation squares the distances (the subtraction results) along

each axis, the order of subtraction does not matter. This can be explained intuitively as

the distance between P1 and P2 is the same as the distance between P2 and P1.

�The Positions and Distances Example
The focus of this example is to demonstrate, allow you to interact with, and verify

the distance computation between two positions. Figure 3-3 shows a screenshot

of running the EX_3_1_PositionsAndDistances example from the Chapter-3-

Distances+BoundingSpheres project. Recall that this scene can be opened by double-

clicking the corresponding scene file in the Project Window.

Chapter 3 Distances and Bounding Spheres

77

Figure 3-3.  Running the Positions And Distances example

The goals of this example are for you to

•	 Apply the Pythagorean Theorem for distance computation

•	 Manipulate positions and verify the results of distance computation

•	 Work with relevant, predefined functions of Unity’s Vector3 class

�Examine the Scene

Examine the Hierarchy Window to observe that besides Controller, the two objects

that you will interact with in this example are CheckerSphere and StripeSphere.

This example allows you to manipulate the position of the CheckerSphere and the

StripeSphere while it continuously computes and updates the distance between these

spheres in two different ways, first by explicitly applying the Pythagorean Theorem and

second by invoking a predefined Vector3 function.

Note T he three arrows, representing the major axes of the Cartesian Coordinate
System, are defined in the zIgnoreThisObject. The axis frame is displayed as a
reference for supporting your object manipulation exercise.

Chapter 3 Distances and Bounding Spheres

78

�Analyze Controller MyScript Component

There are six defined variables in the MyScript component of Controller:

•	 Checker: A reference to the CheckerSphere game object

•	 Stripe: A reference to the StripeSphere game object

•	 CheckerPosition: The position of the CheckerSphere

•	 StripePosition: The position of the StripeSphere

•	 DistanceBetween: The distance between CheckerSphere and

StripeSphere

•	 MagnitudeOfVector: The magnitude or length of a Vector3 data type

The last two variables, DistanceBetween and MagnitudeOfVector, are the focus of

this example.

�Interact with the Example

Run the game and notice that as soon as the game begins, the values in Controller’s

MyScript component have changed. While CheckerSphere and StripeSphere are

still at their starting positions, the distance variables no longer have a value of 0. The

DistanceBetween and MagnitudeOfVector variables are now both showing a value of

5. This value is the distance between the center of CheckerSphere and the center of

StripeSphere. This can be easily verified by observing that the CheckerSphere is located

at the origin and that the StripeSphere is located at (5, 0, 0), proving that the distance is

indeed 5.

Set the position of the CheckerSphere to be (6.4, 0, 0) by manipulating the

CheckerPosition variable. Verify that the CheckerSphere did move in the scene and

is now located just beyond the tip of the red arrow representing the X-axis. More

importantly, note that the DistanceBetween and MagnitudeOfVector variables are both

showing the new correct distance value of 1.4. Try moving the CheckerSphere along the

X-axis and verify that the computed distance for both variables is always correct.

After verifying the computed distances are correct along the X-axis, move the two

spheres randomly off the X-axis. Observe the thin red, green, and blue lines that run

parallel to the three major axes and connect the CheckerSphere to the StripeSphere.

These three lines are used to help visualize the dx, dy, and dz values between the center

Chapter 3 Distances and Bounding Spheres

79

positions of the two spheres. If you do not see these lines, make sure you are looking at

the Scene View window and that the example is running as the lines are not shown in the

Game View window because they are meant for debugging in the Unity Editor.

With the two spheres located at random positions, examine the distances computed.

Though it can be challenging to eyeball and verify that the computed distance is correct,

rest assured, they are.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

public GameObject Checker = null; // The spheres to work with

public GameObject Stripe = null;

public Vector3 CheckerPosition = Vector3.zero;

public Vector3 StripePosition = Vector3.zero;

public float DistanceBetween = 0.0f;

public float MagnitudeOfVector = 0.0f;

All of these variables have been discussed when analyzing the MyScript component.

Next, you will examine the Start() function. It is similar to the Start() functions in

other examples where assertion statements are used to verify game object references. In

this case, it checks that the Checker and Stripe variables are indeed properly initialized

in the Inspector Window.

void Start() {

 Debug.Assert(Checker!= null); // Ensure proper init

 Debug.Assert(Stripe != null);

}

The Update() function is the essence of this example and is listed as follows:

void Update() {

 // Update the sphere positions

 Checker.transform.localPosition = CheckerPosition;

 Stripe.transform.localPosition = StripePosition;

 // Apply Pythagorean Theorem to compute distance

 float dx = StripePosition.x - CheckerPosition.x;

Chapter 3 Distances and Bounding Spheres

80

 float dy = StripePosition.y - CheckerPosition.y;

 float dz = StripePosition.z - CheckerPosition.z;

 DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);

 // Compute the magnitude of a Vector3

 Vector3 diff = StripePosition - CheckerPosition;

 MagnitudeOfVector = diff.magnitude;

 #region Display the dx, dy, and dz

}

The Update() function sets the state of this example in four simple steps:

•	 Step 1: Sets the GameObject positions with their corresponding

position variables. This step allows you to change the location of the

StripeSphere and the CheckerSphere via the CheckerPosition and

StripePosition variables.

•	 Step 2: Applies the Pythagorean Theorem to compute distance. Based

on the center of the two spheres, this step computes the distances

along the X-, Y-, and Z-axes and then takes the square root of the sum

of the squared axis distances.

•	 Step 3: Calculates the distance by working with the Vector3 class.

This step demonstrates that the distance between two positions is

also calculated by the magnitude property of the Vector3 class. You

may recall from previous examples that the subtract operator, “-”, of

Vector3 computes the differences of the corresponding x-, y-, and

z-components. For this reason, the results in the variable, diff, are

identical to the computed results, dx, dy, and dz. Interestingly, the

magnitude property of Vector3 class computes the square root of the

sum of squares of the components, in this case, the distance between

the two spheres. The next chapter will examine vectors and the

Vector3 class in detail. For now, simply take note of the convenience

of working with the Vector3 class.

Chapter 3 Distances and Bounding Spheres

81

•	 Step 4: Visualizes the distance along each axis with lines. The last step

is hidden in the collapsed “Display the dx, dy, and dz” region. This

region hides the logic that visualizes the dx, dy, and dz displacements

along their corresponding axis. This code will be straightforward to

follow after the coverage of vectors in the next chapter. For now, note

that Debug.DrawLine() is a handy function for drawing debug lines in

the Scene View window.

The Vector3 subtraction operator and the magnitude property are convenient

shortcuts for avoiding the tedious per-coordinate x-, y-, and z-component access

required when computing the distance between positions. As you will see in the next

chapter, Unity’s Vector3 class and its operators are not designed specifically to support

distance computation. Instead, they are a part of a powerful set of operators that belong

to an important topic, vectors, that will be the focus of study for most of the rest of

this book.

Note  With the Microsoft Visual Studio IDE, a #region can be hidden or
expanded by clicking the “+” or “–” symbols to the left of the corresponding line
of code.

�Takeaway from This Example

You have verified the application of the Pythagorean Theorem in computing distances

between positions, and you have begun to work with the magnitude property of the

Vector3 class.

Relevant mathematical concepts covered include

•	 Pythagorean Theorem for computing the distance between two

positions

Unity tools

•	 Vector3

•	 Subtraction operator for computing distances measured along

the major axes between two positions

•	 The magnitude property that computes the Pythagorean Theorem

Chapter 3 Distances and Bounding Spheres

82

•	 Debug.DrawLine() function for drawing debugging lines in the Scene

View window

Interaction technique

•	 Use a sphere game object to represent and manipulate a position.

EXERCISES

Order of Subtraction

Recall that because the Pythagorean Theorem computation involves the sum of squared

distances, the following two statements compute the same results:

float distance1 = (pointA - pointB).magnitude;

float distance2 = (pointB - pointA).magnitude;

Verify this statement by switching the subtraction order on the CheckerSphere and

StripeSphere when computing the distance and confirm that the results are still correct.

Any Position

You have learned that the distance computation is applicable to compute the distance between

any two positions. Modify the Update() function to include a third position, for example,

ThirdPosition. Now compute and display the distance between the ThirdPosition and

the CheckerSphere and the distance between the ThirdPosition and the StripeSphere.

Now manipulate the CheckerSphere and the StripeSphere to observe the two computed

distances to the ThirdPosition. Notice that these distances converge to the same value

when you move the two spheres to be close to each other. This exercise demonstrates that the

computation learned does indeed compute the distance between any two positions.

�Sphere Colliders or Bounding Spheres
Recall that in 2D space, a compass sketches a circle by fixing one point and then tracing

out all points that are at a fixed distance from that one point. The fixed position is the

center and the fixed distance is the radius of the circle. A point is inside the circle when

Chapter 3 Distances and Bounding Spheres

83

its distance to the center is smaller than the radius of the circle; otherwise, the position

is outside of the circle. This simple observation can be generalized from 2D to 3D space.

A point is inside a sphere when its distance to the center is less than the radius of the

sphere; otherwise, it is outside of the sphere.

Based on this simple observation, it is possible to use the Pythagorean Theorem

to determine if a point is within the bounds of a sphere. In this way, it becomes

straightforward to determine if an object bounded by a sphere is colliding or within a

certain proximity of a given position. This concept is illustrated in Figure 3-4, where a car

is bounded by a sphere.

Figure 3-4.  Determining if a position is inside or outside a sphere

With the spherical bound shown in Figure 3-4, it becomes possible to determine if

a position is inside (close enough to the car) or outside (not close enough to the car) of

the sphere. These conditions can be determined by comparing the distance between

the position (the checkered sphere) and the center of the sphere, d, to the radius of the

sphere, r1. This is the inside-outside test of the bounding sphere; the logic for this test is

listed as follows:

float d = (Position - Sphere.Center).magnitude;

if (d <= Sphere.Radius)

 // Position is inside the sphere: Figure 3-4(a)

else

 // Position is outside the sphere: Figure 3-4(b)

Chapter 3 Distances and Bounding Spheres

84

The less-than-or-equal test for the inside condition says that when positions are

located on the circumference of the sphere, they are considered as inside the sphere. The

spherical bound is referred to as a SphereBound or SphereCollider or BoundingSphere.

Similar to the case of bounding boxes, this type of bound is widely used and important

enough that Unity has defined its own BoundingSphere class, https://docs.unity3d.

com/ScriptReference/BoundingSphere.html, that implements the associated

functionality. At the end of this chapter, after you have learned some of the involved

algorithms and implementations, you will examine this Unity class in more detail.

�The Sphere Bounds Example
This example implements and demonstrates the strengths and weaknesses of the

bounding sphere functionality. Figure 3-5 shows a screenshot of running the EX_3_2_

SphereBounds example.

Figure 3-5.  Running the Sphere Bounds example

The goals of this project are for you to

•	 Review the application of the Pythagorean Theorem

•	 Examine the details of the bounding sphere inside-outside test

implementation

Chapter 3 Distances and Bounding Spheres

https://docs.unity3d.com/ScriptReference/BoundingSphere.html
https://docs.unity3d.com/ScriptReference/BoundingSphere.html

85

�Examine the Scene

Look at the Hierarchy Window in the EX_3_2_SphereBounds scene and observe that

besides Controller, the two objects that you will interact with in this example are

CheckeredSphere and Car. This example defines a sphere bound around the Car and

demonstrates the approximation of collision between the Car and the CheckeredSphere.

�Analyze Controller MyScript Component

Select Controller and examine the MyScript component in the Inspector Window. You

will see five variables:

•	 APoint: The reference to the CheckerSphere game object

•	 TheCar: The reference to the Car game object

•	 CarBoundRadius: The radius of the sphere bound around the

Car object

•	 DrawCarBound: A toggle determining if the car bound should

be drawn

•	 DistanceBetween: The computed distance between the center of

TheCar and APoint

�Interact with the Example

Run the game to observe a transparent white sphere covering the Car object. This

transparent sphere represents the SphereBound of the Car. Select and manipulate the

position of the CheckerSphere. Notice the color of the car bound changes when the

center of the CheckerSphere is within its bounds. This same behavior can be observed by

manipulating the position of the Car.

By design, the car bound sphere does not completely cover the Car. For example, the

front and rear bumpers are outside of the bounding sphere. This means that the system

is not able to detect when the CheckerSphere is colliding with the front or the rear of the

car. You can change the size of the car sphere bound by adjusting the CarBoundRadius

variable. Finally, notice the large amount of void space in between the Car and its

spherical bound. In general, spherical bounds are not suitable for bounding rectangular

objects.

Chapter 3 Distances and Bounding Spheres

86

�Details of MyScript

Open MyScript in your IDE and observe the instance variables. Once again, you can

observe and verify the one-to-one correspondence between the public variables

defined in the script source code and the user manipulatable variables of the MyScript

component in the Inspector Window. These variables are as follows:

public GameObject APoint = null; // CheckerSphere position

private MySphereBound SphereBound = null; // The car sphere bound

public GameObject TheCar = null; // Reference to the car

public float CarBoundRadius = 2.0f; // Sphere bound radius

public bool DrawCarBound = true; // To draw/hide bound

public float DistanceBetween = 0.0f; // Car to APoint distance

The SphereBound variable is the only private variable and is defined for visualizing

the car bounding sphere. In Figure 3-6, you can see the public fields and functions of the

MySphereBound class. This class is used to help visualize and create the bounding sphere.

Notice that besides the two fields for supporting drawing, DrawBound and BoundColor,

the class only defines a Center and a Radius—the definition of a sphere.

Figure 3-6.  The MySphereBound class for creating and visualizing a
spherical bound

Chapter 3 Distances and Bounding Spheres

87

Next, examine the initialization of the variables in the Start() function:

void Start() {

 Debug.Assert(APoint != null); // Ensure initialization

 Debug.Assert(TheCar != null);

 SphereBound = new MySphereBound(); // Visualize the bound

}

Besides verifying that APoint and TheCar variables are properly set up in the

editor, the SphereBound variable is also instantiated. Lastly, take a look at the Update()

function:

void Update() {

 // Step 1: Assume no collision

 SphereBound.BoundColor = MySphereBound.NoCollisionColor;

 // Step 2: Update the sphere bound

 SphereBound.Center = TheCar.transform.localPosition;

 SphereBound.Radius = CarBoundRadius; // Set the radius

 SphereBound.DrawBound = DrawCarBound; // Show/Hide bound

 // Step 3: Compute distance between APoint and SphereBound

 Vector3 diff = TheCar.transform.localPosition

 - APoint.transform.localPosition;

 DistanceBetween = diff.magnitude;

 // Step 4: Testing and showing collision status

 bool isInside = (DistanceBetween <= CarBoundRadius);

 // TheCar.SetActive(!isInside); // what does this do?

 if (isInside) {

 Debug.Log("Inside!! Distance:" + DistanceBetween);

 SphereBound.BoundColor = MySphereBound.CollisionColor;

 // The test is supported by MySphereCollider

 Debug.Assert(SphereBound.PointInSphere(

 APoint.transform.localPosition));

 }

}

Chapter 3 Distances and Bounding Spheres

88

The Update() function performs the following four steps:

•	 Step 1: Set car sphere bound color to white, signifying that no

collision has occurred.

•	 Step 2: Update the SphereBound parameters with the current user-

specified values from the MyScript component on the Controller.

•	 Step 3: Calculate the distance between APoint and the center of the

SphereBound.

•	 Step 4: Perform the sphere inside-outside test by comparing the

computed distance to the radius of the SphereBound and update the

color of the bound accordingly. Notice that as listed in Figure 36,

the PointInSphere() function defined by the MySphereBound class

implements the functionality of steps 3 and 4.

�Takeaway from This Example

It is important to emphasize that the functionality of a sphere collider is implemented

entirely in the Update() function and is independent of the MySphereBound class, for

example, by defining the center and radius as the following:

Vector3 BoundCenter; // Center of Sphere bound

float BoundRadius; // Radius of Sphere bound

The exact same functionality, except the visualization of the sphere bound, can be

implemented in the MyScript class without MySphereBound. Once again, make sure you

focus on and understand the mathematical concepts and their implementation and not

on how visualization is implemented.

Relevant mathematical concepts covered include

•	 Distance computation

•	 Sphere inside-outside test

Unity tools

•	 MySphereBound: A custom-defined class to support the visualization

of a bounding sphere

Chapter 3 Distances and Bounding Spheres

89

EXERCISE

Modifying Game Behavior

Select the Controller object and toggle off the DrawCarBound flag. Run the game now and

observe that the car sphere bound is now hidden. Manipulate CheckerSphere such that it

is touching the car. Now, open the Console Window (label F of Figure 1-3) and look at the log

messages generated and notice that the inside condition is still computed and detected even

though the sphere bound is not being drawn. Next, stop the game, uncomment the following

line in the Update() function, and then restart the game:

 TheCar.SetActive(!isInside); // what does this do?

Now, with the DrawCarBound flag being switched off, notice how the Car game object

appears and disappears depending on how far away the CheckerSphere is. Imagine the

CheckerSphere represents a projectile, then it would look as if the Car was being “hit” and

destroyed when the projectile is in close proximity. Having another object collide with or being

detected inside of a bounding sphere is a common reason for hiding (or destroying) objects

in a game.

�Collision of Bounding Spheres
The sphere inside-outside test can be generalized to determine if two spheres are

colliding. Figures 3-7(a) and (b) show that the condition for collision between two

spheres can be determined by comparing the distance between their centers to the sum

of their radii. When the centers are further away than their radii summed, as illustrated

in Figure 3-7(a), there is no intersection. Otherwise, as shown in Figure 3-7(b), the two

spheres are colliding. Once again, this simple and straightforward computation results

in bounding spheres being one of the most commonly used bounding geometries in 3D

interactive graphical applications, including video games.

Chapter 3 Distances and Bounding Spheres

90

Figure 3-7.  Calculating the collision between two spheres

�The Sphere Bound Intersections Example
This example demonstrates the generalization of the inside-outside test presented in the

previous example to detect intersections or collisions of two spheres. Figure 3-8 shows a

screenshot of running the EX_3_3_SphereBoundIntersections example.

Figure 3-8.  Running the Sphere Bound Intersections example

Chapter 3 Distances and Bounding Spheres

91

The goals of this project are for you to

•	 Understand how to intersect bounding spheres

•	 Examine and understand the implementation of bounding sphere

intersection

�Examine the Scene

Upon examining the scene, you will see that besides Controller, there are only two

objects in the scene to pay attention to: Car and Taxi. This example builds a bounding

sphere around each of these two vehicles and allows you to examine the details of

bounding sphere intersection implementation.

�Analyze Controller MyScript Component

The MyScript component on the Controller presents seven variables, two sets of three

variables for each vehicle and then one for the both of them:

•	 Taxi

•	 TheTaxi: The reference to the Taxi game object

•	 TaxiBoundRadius: The radius of the sphere bounding the

Taxi object

•	 DrawTaxiBound: A toggle determining if the taxi bound should

be drawn

•	 Car

•	 TheCar: The reference to the Car game object

•	 CarBoundRadius: The radius of the sphere bounding the

Car object

•	 DrawCarBound: A toggle determining if the car bound should

be drawn

•	 DistanceBetween: The computed distance between the center of

TheCar and the center of TheTaxi

Chapter 3 Distances and Bounding Spheres

92

�Interact with the Example

Run the game and observe that each vehicle is almost completely bounded by its own

transparent sphere. These are the bounding spheres for the corresponding vehicles.

Manipulate the position of the vehicle, for example, move the Taxi in the positive

x-direction, and observe the bounding sphere color change when the vehicles are

sufficiently close to each other that the bounding spheres intersect or collide.

You can observe the effects of void space when the spheres trigger a collision event

(when the spheres change color) without the two vehicles coming into contact. Change

the bound radius of both the Taxi and the Car through their corresponding BoundRadius

variable and observe the trade-off between the size of your void space and the likelihood

of missing collisions.

�Details of MyScript

Open MyScript in the IDE and observe the similarities of the code to those from the

MyScript of the EX_3_2_SphereBounds example. The only significant difference is in the

Update() function’s sphere intersection computation in Step 5.

void Update() {

 // Step 1: Assume no intersection

 ...

 // Step 2: Update the Taxi sphere bound

 ...

 // Step 3: Update the Car sphere bound

 ...

 // Step 4: Compute distance as magnitude of a Vector3

 Vector3 diff = TaxiBound.Center - CarBound.Center;

 DistanceBetween = diff.magnitude;

 // Step 5: Testing and showing intersection status

 bool hasIntersection =

 DistanceBetween <= (TaxiBound.Radius + CarBound.Radius);

 if (hasIntersection) {

 Debug.Log("Intersect!! Distance:" + DistanceBetween);

 TaxiBound.BoundColor = MySphereBound.CollisionColor;

 CarBound.BoundColor = MySphereBound.CollisionColor;

Chapter 3 Distances and Bounding Spheres

93

 // functionality is also supported by MySphereCollider

 Debug.Assert(TaxiBound.SpheresIntersects(CarBound));

 }

}

In this example, as illustrated in Figure 3-7, Step 5 is accomplished by comparing the

distance between two points to the sum of the two bounding sphere’s radii to determine

if a collision has occurred, instead of being compared to just one sphere’s radius as it was

in the Sphere Bounds example.

�Takeaway from This Example

This example has been a straightforward generalization of the previous example in

detecting whether a given position is inside or outside a sphere. In the previous example,

you were able to detect if a position with a radius of zero entered a bounding sphere; in

this example, you generalized that position to now have a radius of any value.

Relevant mathematical concepts covered include

•	 Testing for collision or intersection between two spheres

EXERCISE

Hierarchical Bounding Spheres

One way to remedy the potentially large void space shortcomings of bounding spheres is

by defining a hierarchy of bounds. For example, define two more SphereBounds inside the

given bound. These two SphereBounds should be located at the center of the front and back

wheels, each with a radius about one-third of the outer bound. Now, when a position is inside

the outer bound, you can perform the inside-outside test with the two inner bounds to decide if

a collision has occurred. Try implementing this functionality. In general, a game object can be

bounded by a hierarchy of bounding geometries, where the inner bounds will only be explored

if the outer bound test returns a favorable result. Such a hierarchy can significantly increase

the accuracy of collision approximation at a cost of increased computation and algorithmic

complexities.

Chapter 3 Distances and Bounding Spheres

94

�The Unity BoundingSphere Class
Unity API documents the BoundingSphere class as

Describes a single bounding sphere for use by a CullingGroup.

You can think of a CullingGroup as a hierarchy of bounds. As it does not pertain

to the math in this book, exactly how to implement a CullingGroup or use Unity’s

BoundingSphere class will not be discussed. Instead, they are mentioned here merely

to verify that the bounding sphere is a widely used method for bounding objects.

Unity BoundingSphere defines the following properties (https://docs.unity3d.com/

ScriptReference/BoundingSphere.html):

•	 position: The center position of the BoundingSphere

•	 radius: The radius of the BoundingSphere

Notice how Unity’s BoundingSphere class doesn’t have any public methods.

The MySphereBound class that you used throughout this chapter has additional

functionality defined in the PointInSphere() and SpheresIntersects() functions.

Due to the simplicity of these functions, it appears that Unity assumes the users of the

BoundingSphere class will implement these tests themselves.

�Summary
This chapter begins with reviewing how to apply the Pythagorean Theorem to compute

distances between positions in a 3D Cartesian Coordinate System and then generalizes

this knowledge to defining bounding spheres. Through working with the examples in

this chapter, you have learned how to apply distance computation and use spheres as

bounds in approximating collisions between geometrically complicated game objects.

Your understanding of these concepts was gained based on your interaction with actual

bounding spheres and improved upon by analyzing their implementation source code.

While straightforward to implement and widely used as a bounding geometry or

collider, the major drawback of bounding spheres is the potentially significant void space

within the bound. As you have observed in the case of cars, this issue of large void space

can be especially profound for rectangular or elongated objects, like books, cars, or

Chapter 3 Distances and Bounding Spheres

https://docs.unity3d.com/ScriptReference/BoundingSphere.html
https://docs.unity3d.com/ScriptReference/BoundingSphere.html

95

animals. Unfortunately, as discussed in the previous chapter, all bounding volumes have

similar challenges in different degrees under different circumstances. The best ways to

overcome the void space problem are to match your object to the best fitted bound or to

use a hierarchy of bounds when one bound involves too much void space.

You have also learned more about the Unity Vector3 class. The next chapter will

cover vectors, the concept that the Vector3 class is designed to support, in much more

detail. The next chapter will build off what you have already seen and give you a greater

understanding and appreciation of the usefulness and power of vectors in video games

and computer graphics.

Chapter 3 Distances and Bounding Spheres

97

CHAPTER 4

Vectors
After completing this chapter, you will be able to

•	 Understand that a vector relates two positions to each other

•	 Recognize that all points in space are position vectors

•	 Comprehend that a vector encapsulates both a distance and a

direction

•	 Perform basic vector algebra to scale, normalize, add, and

subtract vectors

•	 Apply vectors to control the motions of game objects

•	 Implement simple game object behaviors like aiming and following

•	 Design and simulate simple external factors like wind conditions to

affect object motion

�Introduction
So far, you have reviewed some of the most elementary and ground laying mathematical

concepts used in video game creation. These simple concepts that you have observed

and interacted with can be developed further into a powerful and widely used tool set.

This approach of introducing a simple concept and expanding it to solve real problems

when designing a video game will be continued in this chapter with vectors and the

fundamental algebra that accompanies them.

Vectors are entities that encapsulate point-to-point distance and direction. Vector

algebra is the mechanism, or rules, for manipulating these two entities. It allows the user

to, for example, increase the distance, change the direction, and combine, or detract,

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_4

https://doi.org/10.1007/978-1-4842-9885-5_4

98

both the distance and direction at the same time. Vectors and their associated math

concepts allow precise control and accurate prediction of basic game object movements

as well as the support for many simple behaviors.

In many video games, object behaviors are often governed by their physical

proximity to other objects, such as non-player characters changing from their predefined

wandering pattern, for example, patrol path, and moving toward the approaching player.

To support this simple scenario, you must be able to program the behavior of following

a predefined route as well as the ability to detect and move toward the approaching

player or character. Vectors, with their encapsulation of both distances and directions,

are perfect for representing the motion of objects. Vector algebra complements this

encapsulation with the ability to determine the relationships between the in-motion

objects. Therefore, with just vectors and their accompanying mathematical operations,

you as a game developer, at any moment in your game, can determine exactly what game

behavior to invoke. Vectors and their associated algebra are one of the most fundamental

tools in developing video games.

This chapter introduces vectors as a tool for controlling motion and computing

spatial relationships between objects. In general, vectors are important for many, just

as significant, applications that are unrelated to object motions. This is especially true

for applications of vectors to fields outside of interactive graphical applications or video

games, for example, applying vectors in machine learning for data cluster analysis. Even

within the field of video games, vectors are important for other applications. Some of

these other applications include predicting the exact intersection position between a

motion path and a wall and computing the reflection direction after a collision, both of

which will be discussed in future chapters.

This chapter begins by reviewing what you have learned from Chapter 3, but now

with a focus on how vectors were used to perform the distance calculations you have

experimented with and observed. The chapter then analyzes the details of the vector

definition and the algebraic rules that govern the operations on vectors. Through these

discussions, you will learn that the vector definition is independent of positions and that

vectors can be scaled, normalized, and applied to represent velocities that define the

motions of objects. The formal definition of vector algebra, the addition and subtraction

operations, is presented toward the end of the chapter to conclude and verify the

knowledge gained throughout the chapter.

Chapter 4 Vectors

99

�Vectors: Relating Two Points
Vectors have been hinted at thus far in the book and even worked with in the previous

chapter when you needed to compute the distance between positions, but now you will

finally learn what they are and some of their applications. Please refer to Figure 4-1,

which is identical to Figure 3-2 and copied here for convenience.

Figure 4-1.  Calculating the distance between any two positions: P1 and P2 (same
as Figure 3-2)

Recall that in order to compute the distance between two positions, P1 and P2, the

distances measured along the major axes must be computed.

•	 Distance along X-Axis: dx = x2 − x1

•	 Distance along Y-axis: dy = y2 − y1

•	 Distance along Z-axis: dz = z2 − z1

You learned that the distance, d, between these positions can be derived by applying

the Pythagorean Theorem twice to the two connecting right-angle triangles (see

Figure 3-1 if you need a refresher). The derived formula is simply the square root of the

summed squared distances measured along the major axes, which is listed as follows:

d x x y y z z= -() + -() + -()2 1

2

2 1

2

2 1

2

d d d dx y z= + +2 2 2

Chapter 4 Vectors

100

This formula can be interpreted as the distance that is necessary to move an object

from position P1 to P2. This displacement is defined by the shortest traveling distant, d,

along the direction encoded by (dx, dy, dz). This interpretation is reflected closely in the

implementation of the Update() function in EX_3_1_MyScript, as copied and re-listed as

follows for reference:

void Update() {

 // Update the sphere positions

 Checker.transform.localPosition = CheckerPosition;

 Stripe.transform.localPosition = StripePosition;

 // Apply Pythagorean Theorem to compute distance

 float dx = StripePosition.x - CheckerPosition.x;

 float dy = StripePosition.y - CheckerPosition.y;

 float dz = StripePosition.z - CheckerPosition.z;

 DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);

 // Compute the magnitude of a Vector3

 Vector3 diff = StripePosition - CheckerPosition;

 MagnitudeOfVector = diff.magnitude;

 #region Display the dx, dy, and dz

}

Pay attention to the last two lines of code once more, specifically, the diff variable

which is the result of subtracting CheckerPosition (P1) from StripePosition (P2).

As you learned from this example in the last chapter, the magnitude operator returns

the distance, d, between the two positions. The same diff variable also defines the

direction from P1 to P2. This entity, diff, that encodes those two pieces of information,

distance and direction, is a vector. The line of code that computes diff can be expressed

mathematically as follows:



V P Pd = -2 1

+ - - -()x x y y z z2 1 2 1 2 1, ,

= ()d d dx y z, ,

Chapter 4 Vectors

101

Or simply, vector


V d d dd x y z= (), , . There are a few interesting observations that can

be made thus far:

•	 Symbol: The symbol for a vector, V, is shown as


V , with an arrow

above the character V representing that it's a vector.

•	 Definition: A vector,


V P P= -2 1 , describes the distance and direction

to travel from P1 to P2.

•	 Notation: In 3D space, a vector is represented by a tuple of three

floating-point values, signifying the displacements along each of

the corresponding major axes. This notation is identical to that of a

position in the Cartesian Coordinate System. In fact, given a tuple

with three values, (x, y, z), without any context, it is impossible to

differentiate between a position and a vector. This issue will be

examined in the next section of this chapter.

•	 Representation: As illustrated in Figure 4-2, graphically, a vector


V d d dx y z= (), , is drawn as a line that begins from a position, the

tail, with an arrow pointing at the end position, the head, with the

displacements of dx, dy, and dz along the major axes. Note that in this

case, dy is a negative number because the y-displacement is in the

negative direction of the Y-axis.

•	 Operations: You have already experienced working with the vector

subtraction operator. This operator and others will be explored later

in this chapter.

Chapter 4 Vectors

102

Figure 4-2.  A vector with its head and tail

�Position Vectors
For new learners of vectors, a common point of confusion is the position that defines a

vector. For example, since the vector

	


V P Pd = -2 1 	

defines the distance and direction from position P1 to P2, one may arrive at the wrong

assumption that the vector


Vd , is “defined at position P1.” You will begin the exploration

of vectors by analyzing this potentially confusing issue head-on and learn that vectors

are defined independent of any specific position and, in fact, can be applied to any

position.

Notice that the positions that define the vector


Vd , P1 and P2, are variables, indicating

that this formula is true for any point located at any position. In the special case where

P1
′ is located at the origin of the Cartesian Coordinate System,(0, 0, 0), then,



V P Pd
' '= -2 1

= - - -() = - - -()' ' 'x x y y z z x y z2 1 2 1 2 1 2 2 20 0 0, , , ,

= () = ()d d d x y zx y z, , , ,2 2 2

Chapter 4 Vectors

103

which shows that P2 can be interpreted as a vector (x2, y2, z2) from the origin. In fact,

any position in the Cartesian Coordinate System at (x, y, z) can be interpreted as x-, y-,

and z-displacements measured along the three major axes from the origin position and

thus all positions in the Cartesian Coordinate System can be interpreted as vectors from

the origin. In this way, the position of a point is also referred to as a position vector. In

general, in the absence of a specific context, it is convenient to consider given tuples of

three floats, for example, (x, y, z), as a position vector.

Note T he origin position (0, 0, 0) is a special position vector and is referred to as
the zero vector.

�Following a Vector
Refer to Figure 4-1 again, recall that the detailed definition of vector



Vd is as follows;



V P Pd = -2 1

+ - - -()x x y y z z2 1 2 1 2 1, ,

= ()d d dx y z, ,

Remember that


Vd defines the distance and direction from position P1 to P2. A

subtle, but logical interpretation of this definition is that position P2 can be arrived at if

an object begins at position P1 and travels along the X-axis by dx, the Y-axis by dy, and the

Z-axis by dz. This interpretation can be described as “following a vector” from P1 to P2

and can be verified mathematically as follows:

•	 P2 x-position =x1 + dx = x1 + (x2 − x1) = x2

•	 P2 y-position =y1 + dy = y1 + (y2 − y1) = y2

•	 P2 z-position =z1 + dz = z1 + (z2 − z1) = z2

Chapter 4 Vectors

104

Not surprisingly, “following a vector” is expressed as

P P Vd2 1= +


= + + +()x d y d z dx y z1 1 1, ,

= + - + - + -()x x x y y y z z z1 2 1 1 2 1 1 2 1, ,

= ()x y z2 2 2, ,

Graphically, you can imagine placing the tail of


Vd at location P1 and “follow the

vector” to the head of the vector, to position P2. This is how you can get from one position

to another when you don’t know the location of your next position, but you do have the

distant and direction (


Vd) to get there.

Note  You have seen the vector subtraction operator where the corresponding
coordinate values are subtracted. Here you see vector addition operator, where the
corresponding coordinate values are added. The details of vector subtraction and
addition will be visited again later in this chapter.

�Following a Vector from Different Positions
Following a vector,



Vd , from a given position, P1, is also referred to as “applying the

vector


Vd at P1.” Since both


Vd and P1 are variables, the equation

	 P P Vd2 1= +


	

is true and applicable for any vector and any position. This concept is analyzed in

detail in this section.

Figure 4-3 illustrates the alternative interpretations of the Cartesian Coordinate

position, Pd, and the associated tuple of three floating-point values, (xd, yd, zd).

Chapter 4 Vectors

105

Figure 4-3.  Positions, position vectors, and applying vectors at different positions

The top-right corner of Figure 4-3 illustrates that Pd is a position in 3D space located

at distances xd, yd, and zd from the origin. In this way, (xd, yd, zd) is the position vector that

identifies the location of the point Pd. The set of two spheres and the associated arrows

on the left side of Figure 4-3 illustrate interpreting the three-float tuple, (xd, yd, zd), as

the vector


Vd . If you apply


Vd to position P1, you will arrive at position P2. If you apply


Vd to position Pa, then you will arrive at Pb. In this case, you know that the Cartesian

Coordinate positions for P1 and Pa are as follows:

P x y z1 1 1 1= (), ,

P x y za a a a= (), ,

Then, the Cartesian Coordinate positions for P2 and Pb must be as follows:

P P V x xd d2 1 1= + = +


(, y1 + yd, z1 + zd) = (x2, y2, z2)

P P V x xb a d a d= + = +


(, ya + yd, za + zd) = (xb, yb, zb)

These equations are true for any x-, y-, or z-values. This is to say that P1 (and Pa) can

be located at any position in the 3D Cartesian Coordinate System. In this way, a vector

can indeed be applied to any position. In all cases, “following a vector” is simply placing

the tail of the vector at the starting position, with the head of the vector always being

located at the destination position.

Chapter 4 Vectors

106

Recall that when P1 is located at the origin, or when

P x1 1
' '= (, y1

′ , z1 0 0 0' = ()) , ,

then

P P V xd d2 1 0= + = +' 

(, 0 + yd, 0 + zd) = (xd, yd, zd) = Pd

Observe that when P1
′ is located at the origin, then Pd is a coordinate position.

This means that the associated tuple of three floating-point numbers, (xd, yd, zd), can

be interpreted as the vector


Vd being applied to the origin, (0, 0, 0). This is true for any

coordinate position. For example, the tuple of three floats, (x1, y1, z1), that defines the

position P1 also describes the vector


V1 being applied to the origin. The reverse is also

true that a given vector,


V , can be interpreted as the Cartesian Coordinate position, P,

or a position vector. Without sufficient contextual information, such as the tail position,

vectors are always depicted and visualized as a line segment with their tail located at

the origin.

If you are given a three valued tuple, (x, y, z), without context, you can assume it

is a position vector. If you are given a vector,


V , without context, you can assume it is

a coordinate position (that it starts from the origin). The next example will cover the

details of position vectors and help you understand working with a coordinate position

and interpreting that position as a position vector.

�The Position Vectors Example
The focus of this example is to allow you to visualize a position vector and then to apply

that vector at different locations. This example allows you to adjust, examine, and

verify that vectors are defined independent of any given position. Figure 4-4 shows a

screenshot of running the EX_4_1_PositionVectors scene from the Chapter-4-Vectors

project.

Chapter 4 Vectors

107

Figure 4-4.  Running the Position Vectors example

The goals of this example are for you to

•	 Understand the relationship between positions, position vectors, and

applying vectors at positions

•	 Manipulate a position and observe the position vector being applied

at a different location

•	 Manipulate two positions to define a vector and observe the vector as

a position vector

•	 Examine the implementation and application of vectors

•	 Increase familiarity with the Vector3 class

�Examine the Scene

Take a look at the EX_4_1_PositionVectors scene and observe the predefined game

objects in the Hierarchy Window. There you will find the Controller and six other game

objects that will assist in interpreting vectors from two alternative perspectives. These

game objects are P1, P2, Pd, Pi, Pj, and Pe. This example will allow you to manipulate the

head position of a position vector and to observe how the defined vector can be applied

Chapter 4 Vectors

108

to any position. This example will also allow you to manipulate the positions of two

points, observe how those two positions can define a vector, and how the defined vector

can be shown as a position vector at the origin.

�Analyze Controller MyScript Component

The MyScript component on the Controller presents nine variables that you can

interact with. Three of these variables are toggle switches to control what you want to

show and hide in the scene and the other six variables can be categorized into two sets of

three variables each.

•	 Position vector:

•	 P1: The reference to the P1 game object

•	 P2: The reference to the P2 game object

•	 Pd: The reference to the Pd game object

•	 Vector defined by two points:

•	 Pi: The reference to the Pi game object

•	 Pj: The reference to the Pj game object

•	 Pe: The reference to the Pe game object

•	 Toggles:

•	 DrawAxisFrame: A toggle determining if the axis frame should

be drawn

•	 DrawPositionAsVector: A toggle determining if a position should

be drawn as a vector

•	 DrawVectorAsPosition: A toggle determining if a vector should

be drawn as a position

Note  For convenience, whenever appropriate, the rest of the examples in
this book will assign identical names to the game objects in the scene and the
corresponding reference variables in MyScript.

Chapter 4 Vectors

109

�Interact with the Example

Click the Play Button to run the example. Notice that by default, the

DrawVectorAsPosition toggle is set to off and the corresponding game objects, Pi, Pj,

and Pe, are not displayed. This is so you can focus on the position vector defined by Pd

and apply it at position P1. Select Controller and ensure that the DrawAxisFrame is on

to observe the axis frame in the scene. You only need to show this axis frame when you

want to verify the location of the origin and the directions of the major axes. Feel free to

hide the axis frame and to show it again whenever you need a reference.

Position Vector

First, verify that Pi, Pj, and Pe are not displayed by selecting these objects in the

Hierarchy Window and confirming that they are inactive (the check box next to their

name in the Inspector Window should be unchecked). Then, select P2 and try to

manipulate its position. You will notice that whenever you change a value in P2’s

transform component in the Inspector Window, it reverts back to its old value. This is

because P2’s position is under the control of MyScript. Now select and manipulate the

position of Pd and verify the following:

•	 Notice the thin red, green, and blue lines connecting from the origin

to position Pd. Switch the DrawAxisFrame on and off to verify that

these three lines are parallel to the corresponding X-, Y-, and Z-axes.

The lengths of these three lines are xd, yd, and zd, which are the

corresponding values of the coordinate position of Pd.

•	 The position vector is the black vector with its tail at the origin and

its head at the current Pd location. This vector represents interpreting

the coordinate values of Pd, (xd, yd, zd), as the x-, y-, and z-components

of vector


Vd .

•	 Move Pd to a position close to the origin, for example, (0.1, 0.1, 0.1), and

notice that the black vector is now very small and difficult to observe.

When Pd is moved to exactly the origin, the black vector becomes

the zero vector and vanishes. The zero vector is a special case that

describes a zero displacement. As you will learn, the definition of many

vector operations specifically excludes the zero vector. These will be

pointed out as you learn about them in future sections and chapters.

Chapter 4 Vectors

110

You have observed displaying a position as a position vector (a vector from the

origin to the position) which demonstrates that all positions in the Cartesian Coordinate

System can be interpreted as position vectors. Now, select and manipulate the position

of P1 and notice the following:

•	 Independent of the location of P1, the white vector is always identical

to the black position vector where they are parallel and have the

same length. The only difference between these vectors is that the

white vector has its tail at P1 and not the origin. You can verify this

by observing that the thin red, green, and blues lines that connect P1

to P2 are the same length as the thin red, green, and blues lines that

connect the origin to Pd.

•	 Position P2 is always at the head of the white vector. In this case, P2 is

computed as follows:

	 P P Vd2 1= +


	

Through the application of a position vector at an arbitrary position (P1), you have

observed that the position vector and the applied vector are indeed identical and

that the only difference between them is that they are located, or applied, at different

positions. This illustrates that vectors are independent of positions, meaning that once

a vector is defined it can be applied to any position. It also demonstrates that a vector

absent of any position information should be, and are, interpreted as position vectors—

vectors originating from the origin. This part of the example has shown that a position in

3D space is simply a vector from the origin to that position.

Vector Defined by Two Points

Now, select the Controller, toggle off DrawPositionAsVector, and switch on

DrawVectorAsPosition. Verify that P1, P2, and Pd are hidden by selecting them in the

Hierarchy Window. Next, select and try to change the position of Pe. Note that just like

with P2, Pe’s position is being set by MyScript and thus cannot be changed from the

Inspection Window. Now, select and change the positions of Pi and Pj and notice the

following:

•	 The pink vector,


V x y ze e e e= (), , , is defined by the positions Pi (xi, yi, zi)

and Pj (xj, yj, zj), where


V P Pe j i= - , or

Chapter 4 Vectors

111

•	 xe = xj − xi, which is the displacement along the X-axis (the length

of the thin red line).

•	 ye = yj − yi, which is the displacement along the Y-axis (the length

of the thin green line).

•	 ze = zj − zi, which is the displacement along the Z-axis (the length

of the thin blue line).

•	 Independent of the locations of Pi and Pj, the pink and purple

vectors are identical, having the same length, and are parallel to each

other (they have same direction). The only difference between them

is the location of their tail positions. The pink vector has a tail located

at position Pi and the purple vector’s tail is located at the origin.

•	 The purple vector’s head position is always at Pe (xe, ye, ze). Note how

the coordinate component values are the same values as that of


Ve ,

indicating that Pe position is the position vector


Ve .

You have observed that any vector,


V x y ze e e e= (), , , is equivalent to the coordinate

position Pe (xe, ye, ze) and can be displayed as a position vector with tail at the origin.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// For visualizing the two vectors

public bool DrawAxisFrame = true; // Draw or Hide the AxisFrame

public bool DrawPositionAsVector = true;

public bool DrawVectorAsPosition = true;

private MyVector ShowVd; // From Origin to Pd

private MyVector ShowVdAtP1; // Show Vd at P1

private MyVector ShowVe; // From Origin to Pe

private MyVector ShowVeAtPi; // Ve from Pi to Pj

// Support position Pd as a vector from P1 to P2

public GameObject P1; // Position P1

public GameObject P2; // Position P2

public GameObject Pd; // Position vector: Pd

Chapter 4 Vectors

112

// Support vector defined by Pi to Pj, and show as Pe

public GameObject Pi; // Position Pi

public GameObject Pj; // Position Pj

public GameObject Pe; // Position vector: Pe

All of the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The four private variables of MyVector data type are

defined to support the visualization of the vectors as you have observed previously:

•	 ShowVd: Used for visualizing the position vector of Pd (the

black vector)

•	 ShowVdAtP1: Used for visualizing the vector at position P1 (the

white vector)

•	 ShowVe: Used for visualizing the position vector of Pe (the

purple vector)

•	 ShowVeAtPi: Used for visualizing the vector at position Pi (the

pink vector)

As in the case of the previous custom classes such as MyBoxBound and

MySphereBound, MyVector is defined specifically for visualizing a vector and is irrelevant

for understanding the math being discussed in this book. For example, you can always

run the examples with all code concerning the MyVector data type removed, but the

visualization of these vectors (black, white, pink, etc.) will no longer exist. You can see

a screenshot of the MyVector class in Figure 4-5, which shows that MyVector is indeed

defined for the drawing of a vector.

Chapter 4 Vectors

113

Figure 4-5.  The MyVector class

The Start() function for MyScript is listed as follows:

Void Start() {

 Debug.Assert(P1 != null); // Ensure proper init

 Debug.Assert(P2 != null);

 Debug.Assert(Pd != null);

 Debug.Assert(Pi != null);

 Debug.Assert(Pj != null);

 Debug.Assert(Pe != null);

 // To support show position and vector at P1

 ShowVd = new MyVector {

 VectorColor = Color.black,

 VectorAt = Vector3.zero // Vd from origin

 };

 ShowVdAtP1 = new MyVector {

 VectorColor = new Color(0.9f, 0.9f, 0.9f)

 };

Chapter 4 Vectors

114

 // To support show vector from Pi to Pj as position vector

 ShowVe = new MyVector {

 VectorColor = new Color(0.2f, 0.0f, 0.2f),

 VectorAt = Vector3.zero // Ve from origin

 };

 ShowVeAtPi = new MyVector() {

 VectorColor = new Color(0.9f, 0.2f, 0.9f)

 };

}

The Start() function verifies proper public variable setup in the Hierarchy Window

and instantiates and initializes the private MyVector variables to their respective colors.

Note that ShowVd and ShowVe are defined to display position vectors and are therefore

initialized to show the vectors starting from the origin (Vector3.zero). The Update()

function is listed as follows:

Void Update()

{

 Visualization on/off: show or hide to avoid cluttering

 Position Vector: Show Pd as a vector at P1

 Vector from two points: Show Ve as the position Pe

}

The Update() function is divided into three separate #region areas according to the

logic they perform and for readability. The details of these regions are explained in the

next three sections.

Region: Visualization on/off

The code in this region, listed as follows, simply sets the active flag on the relevant

game objects for displaying or hiding whichever game objects the user toggles via the

MyScript component on the Controller:

#region Visualization on/off: show or hide to avoid cluttering

AxisFrame.ShowAxisFrame = DrawAxisFrame; // Draw/Hide Axis Frame

P1.SetActive(DrawPositionAsVector); // Position as vector

P2.SetActive(DrawPositionAsVector);

Chapter 4 Vectors

115

Pd.SetActive(DrawPositionAsVector);

Pi.SetActive(DrawVectorAsPosition); // Vector as position

Pj.SetActive(DrawVectorAsPosition);

Pe.SetActive(DrawVectorAsPosition);

ShowVdAtP1.DrawVector = DrawPositionAsVector; // Draw or hide

ShowVd.DrawVector = DrawPositionAsVector;

ShowVeAtPi.DrawVector = DrawVectorAsPosition;

ShowVe.DrawVector = DrawVectorAsPosition;

#endregion

Region: Position Vector

The code in this region, listed as follows, is only active when the DrawPositionAsVector

toggle is set to true:

#region Position Vector: Show Pd as a vector at P1

if (DrawPositionAsVector) {

 // Use position of Pd as position vector

 Vector3 vectorVd = Pd.transform.localPosition;

 // Step 1: take care of visualization for Vd

 ShowVd.Direction = vectorVd;

 ShowVd.Magnitude = vectorVd.magnitude;

 // apply Vd at P1

 ShowVdAtP1.VectorAt = P1.transform.localPosition;

 ShowVdAtP1.Magnitude = vectorVd.magnitude;

 ShowVdAtP1.Direction = vectorVd;

 // Step 2: demonstrate P2 is indeed Vd away from P1

 P2.transform.localPosition =

 P1.transform.localPosition + vectorVd;

}

#endregion

In this case, as illustrated by the bolded font in the code listing, the position of Pd,

Pd.transform.localPosition, is interpreted as a vector, vectorVd, or


Vd . In Step 1,

vectorVd is drawn via the ShowVd variable. Recall that ShowVd is initialized to be drawn at

Chapter 4 Vectors

116

the origin. For this reason, ShowVd is simply drawing vectorVd, or the coordinate values

of Vd, as a position vector. In order to show the same vector at position P1, the magnitude

(length) and direction of ShowVdAtP1 are assigned the corresponding values from

vectorVd and are then displayed at the location of P1, P1.transform.localPosition,

instead of the origin like that of vectorVd. In Step 2, once again shown in bolded font,

P2’s position is set as P P Vd2 1= +


 which will always place P2 at the head of


Vd . This

repeated updating of P2’s position is the reason why when you interacted with this

example, you were not able to move the P2 game object.

In the Cartesian Coordinate System, positions are defined by three-float tuples. So

far, this example shows that the same three-float tuple can be interpreted as a vector.

This alternative interpretation allows vectors to be used as a tool for describing physical

behaviors, like object movements. This topic will be covered in detail in a later section of

this chapter.

Region: Vector from Two Points

The code in this region, listed as follows, is only active when the DrawVectorAsPosition

toggle is set to true:

#region Vector from two points: Show Ve as the position Pe

if (DrawVectorAsPosition) {

 // Use from Pi to Pj as vector for Ve

 Vector3 vectorVe = Pj.transform.localPosition -

 Pi.transform.localPosition;

 // Step 1: Take care of visualization

 // for Ve: from Pi to Pj

 ShowVeAtPi.VectorFromTo(Pi.transform.localPosition,

 Pj.transform.localPosition);

 // Show as Ve at the origin

 ShowVe.Direction = vectorVe;

 ShowVe.Magnitude = vectorVe.magnitude;

 // Step 2: demonstrate Pe is indeed Ve away from the origin

 Pe.transform.localPosition = vectorVe;

}

#endregion

Chapter 4 Vectors

117

As illustrated by the bolded font in the code listing, the vector vectorVe, or


Ve , is

computed based on the positions of Pi and Pj according to the formula

	



V P Pe j i= -
	

In Step 1, ShowVeAtPi is set to be drawn as a vector between Pi and Pj’s positions.

ShowVe’s direction and magnitude are assigned by the corresponding values of vectorVe.

Recall that the draw position of ShowVe was initialized to the origin, and thus ShowVe

is showing vectorVe as a position vector. In Step 2, again shown in bolded font, the

position of Pe is set to the corresponding x-, y-, and z-component values of vectorVe,

literary showing vectorVe as a coordinate position. Similar to the case of P2’s position, in

this case, Pe is continuously updated by the script and thus the user has no control over

the position of Pe while the scene is running.

In general, the ability to interpret a given vector as a position allows all vectors to

be plotted as position vectors from the origin, supporting straightforward visualization

and comparisons across multiple vectors. You have completed the cycle of interpreting

positions as vectors and now vectors as positions. This entire discussion is designed to

demonstrate that once defined, a vector is an entity that can be analyzed and applied at

any position because its definition is independent of any specific position.

Note T he vector from Pi to Pj is computed by subtracting Pi from Pj:

	



V P Pe j i= -
	

The order of subtraction is important. Reversing the subtraction order, Pi − Pj,
computes a vector from Pj to Pi. Vector subtraction will be discussed in detail
later in this chapter.

�Takeaway from This Example

This example presents you with two ways to define, manipulate, and interpret a vector.

The first method is based on initializing a starting point (e.g., the origin) and then

selecting the ending position. The second method is based on defining a vector between

Chapter 4 Vectors

118

two explicitly controlled positions. In all interactions, all four vectors describe how to

move from one position to another: from origin to Pd (black), from P1 to P2 (white), from

Pi to Pj (pink), and from origin to Pe (purple).

You have seen that it does not matter where a vector is applied (or drawn), if the

encoded distances and direction information are the same, the underlying vectors

are the same. You have also witnessed that a vector can be treated as a position, and a

position can be treated as a vector.

Relevant mathematical concepts covered include

•	 A vector describes the movement from one position to another.

•	 The vector between two given positions is defined by the differences

between the corresponding coordinate values in the x-, y-, and

z-components.

•	 The Cartesian Coordinate values for any position P (x, y, z) describes

the displacements from the origin to the position P. For this reason,

the (x, y, z) values of any position can be interpreted as a vector

between the origin and the position. This interpretation of the

coordinate position is referred to as position vector.

•	 All positions in the Cartesian Coordinate system can be interpreted

as position vectors.

•	 The zero vector is the position vector of the origin. This vector

describes a displacement with zero distance, or a position moving

back onto itself. This is a special vector where many vector operations

cannot operate or do not work on the zero vector.

•	 Vectors are independent of positions; thus, once defined, a vector can

be applied to any position.

•	 In the absence of position information, vectors are often drawn as

a position vector, a line segment from the origin to the coordinate

position defined by the x-, y-, and z-component values of that vector.

Unity tools

•	 MyVector: A custom-defined class to support the visualization of vectors

•	 AxisFrame.ShowAxisFrame: A Boolean flag to control the showing of

the Cartesian Coordinate origin and axes’ directions

Chapter 4 Vectors

119

Note T he Unity Vector3 data type closely encapsulates the concept of a vector.
From the code listing in the Update() function, you can observe the power and
convenience of working with proper data abstraction. With the Unity Vector3
abstraction, you can avoid the nuisance of retyping similar code for individual
values of each major axis when computing distances between positions, or when
following a vector. For the rest of this book, with very few exceptions, such as
when analyzing the detailed definitions of vector operations, you will work with the
Vector3 class and will not work with the values of the individual coordinate axes.

EXERCISES

Contrast the Creation of


Vd and


Ve

Note that


Vd is created via a single position being interpreted as a position vector, while


Ve is

created by subtracting two positions explicitly. Nevertheless, both methods can accomplish the

creation of the same vector. For example, move the position of Pi to overlap P1. This can be

accomplished by running the game, selecting P1 in the Hierarchy Window, taking note of the

position values of the Transform component of P1, and copying these values to be the position

values of Pi’s Transform component. You can now adjust Pj, or Pd, to try to align


Ve with


Vd .

Switch Vector Creation Methods

You can take advantage of the observation that both position vector and the difference

between two points can create the same vector. Edit MyScript and remove Pe, Pi, and Pj

variables. Instead, include a new Boolean flag CreateWithPositionVector which will

allow P1, P2, and Pd to behave as Pe, Pi, and Pj did.

•	 When CreateWithPositionVector is true, let the user manipulate Pd to

create the vector and show the vector at P1. In this case, P2 is computed based

on the vector defined and the user will not be able to adjust P2.

•	 When CreateWithPositionVector is false, let the user manipulate both

P1 and P2 and use the difference between these two points to compute the

position vector to Pd. In this case, Pd is computed based on the vector defined

and the user will not be able to adjust Pd.

Chapter 4 Vectors

120

Note the “two ways to define a vector” logic is similar to that of the “two ways to define

a bounding box.” You can refer to the Update() function of the EX_2_2_BoxBounds_

IntervalsIn3D scene of Chapter-2-Examples project for a template of the control logic

required for this exercise.

Verify Vector Size, or Length, or Magnitude

A vector describes the movement from one position to another; it encapsulates both

the distance and the direction to travel. You have seen the distance being referred to as

“magnitude”; it is also commonly referred to as the “size” or “length” of the vector. Edit

MyScript to print the size of each of the vectors, either via public float variables or via

Debug.Log() function calls. Verify that both ShowVd and ShowVdAtP1 and ShowVe and

ShowVeAtPi are indeed two sets of vectors with identical lengths.

Manipulate Vector Lengths

Manipulate the two vectors in this example such that


Vd = ()2 0 0, , and


Ve = ()0 2 0, , . Notice

that in this case,


Vd and


Ve have the same lengths of 2.0. However, the two vectors are

pointing toward drastically different directions: toward positive X-axis and Y-axis. Notice that it

is possible to define two vectors with identical length but with very different directions.

Verify Vector Directions

You can verify two vectors are the same by printing out the values of the x-, y-, and

z-components. Edit MyScript to print the coordinate values of ShowVe and ShowVeAtPi

to verify that these two vectors are indeed exactly the same. With previous exercises on

vector size, the obvious question is, “is it possible to manipulate the two vectors such that

they are pointing in the same direction but with different lengths?” The short answer is yes.

For example, consider vectors, (1, 0, 0) and (2, 0, 0). Both are pointing toward the positive

x-direction, but the lengths are 1 and 2. The general consideration for this question is slightly

more involved and is the topic for the next section.

Chapter 4 Vectors

121

�Vector Algebra: Scaling
A vector encodes both a distance and a direction, describing how an object can move

from position P1 (x1, y1, z1), in a straight line, and arrive at P2 (x2, y2, z2). You know that a

vector,


Va , that describes this movement can be defined as follows:



V P Pa = -2 1

+ - - -()x x y y z z2 1 2 1 2 1, ,

= ()x y za a a, ,

The distance, d, between the two points is referred to as the size (or magnitude, or

length) of the vector and is labeled with the symbol


Va . The size of a vector is defined as

follows:

d V x y za a a a= = + +


2 2 2

The size of a vector can be scaled. For example, if there is a

vector


V x y z x y zb b b b a a a= () = (), , , ,5 5 5 , then



V x y zb b b b= + +2 2 2

= () + () + ()5 5 5
2 2 2

x y za a a

= + +()25 2 2 2x y za a a

= + +5 2 2 2x y za a a

= 5


Va

Note that in general, the observed relationship is true for any floating-point number,

s. That is, if



V x y za a a a= (), ,

Chapter 4 Vectors

122

and



V sx sy szb a a a= (), ,

then

 

V s Vb a=

The length or magnitude of


Vb is s times that of


Va . In this case,


Vb is described as

“scaling


Va by a factor s,” or simply, “scaling


Va by s,” and is expressed as

 

V sVb a=

Note  While it is always true that if
 

V sVb a= , then
 

V s Vb a= . The reverse is not
always true. For example, if



Va = ()1 0 0, , and


Vb = ()0 0,s, , then in this case, it is true
that

 

V s Vb a= , but
 

V sVb a= is certainly not true.

Figure 4-6 illustrates an example where


V xa a= (), ,0 0 ,
 

V Vb a=1 5. , and
 

V
x

Vc
a

a=
1

.

Figure 4-6.  Scaling of a vector that is in the x-direction

Referring to Figure 4-6, you now know that

•	
 

V V xb a a= = ()1 5 1 5 0 0. . , ,

•	
 

V
x

V
x

xc
a

a
a

a= =
(

(
|

)

)
| = ()1 1

0 0 1 0 0, , , ,

Chapter 4 Vectors

123

Additionally, you know when xa is a positive number, the lengths of the three vectors

in Figure 4-6 are as follows:



V x xa a a= + + =2 2 20 0

 

V V xb a a= =1 5 1 5. .

 

V
x

V
c

a
a= =

1
1

Lastly, and very importantly, based on your knowledge of the Cartesian Coordinate

System and so far in this chapter, you know that although the vectors in Figure 4-6 have

different lengths, the three vectors overlap perfectly and are all pointing in the positive

X-axis direction. This overlap shows that scaling a vector only changes the distance that

it encodes and does not affect the direction. It turns out, as illustrated in Figure 4-7, this

statement is true for any direction.

Figure 4-7.  Scaling of an arbitrary vector

Figure 4-7 shows three vectors with the same lengths as of those in Figure 4-6:

•	 Vector


Va with magnitude


Va

•	 Vector
 

V Vb a=1 5. with magnitude 1.5


Va

•	 Vector






V
V

Vc

a

a=
1

 with magnitude of 1.0

Chapter 4 Vectors

124

Notice that in exactly the same manner as the vectors in the X-axis direction

(Figure 4-6), these three vectors all point in the same direction as each other. In all

cases, scaling a vector only affects its size and not the direction. In general, scaling a

vector by any positive number will result in a vector that is in the same direction, while

scaling by a negative number will flip the direction of that vector. This means when a

positive x-direction vector is scaled by a negative value, the resulting vector will point

in the negative x-direction. Scaling by a negative number is left as an exercise for you to

complete in the next example.

Similar to how multiplying scaling factors to the number zero will produce a result of

zero, scaling a zero vector has no effect and will result in the same zero vector.

�Normalization of Vectors
Vector



Vc in Figure 4-7 is the result of scaling an existing vector by the inverse of the

length of that vector. This is interesting because with such a specific scaling factor,

the magnitude of


Vc is guaranteed to be 1. As you will see frequently in the rest of this

book, and is true in general, vectors with a magnitude of 1 are important as they enable

convenient computations in many situations.

A vector with a magnitude of 1 is so important that it has its own symbol, V̂ , which

is the same as the original symbol for a vector, but replaces the arrow above the “V” with

a cap. This vector has a special name, normalized vector or unit vector. The process of

computing a normalized vector is referred to as vector normalization. In general, it is

always the case that for any nonzero vector,


V x y z= (), , :

•	 Magnitude of vector


V


V x y z= + +2 2 2

•	 Normalization of vector


V

V̂
V

V=
1




=
+ +

1
2 2 2x y z

V


+
+ + + + + +

(

(
|
|

)

)
|
|

x

x y z

y

x y z

z

x y z2 2 2 2 2 2 2 2 2
, ,

Chapter 4 Vectors

125

Notice that normalization is a division by length. Recall that a zero vector has a

length of zero, and from basic algebra, that division by zero is an undefined operation.

This means that the zero vector cannot be normalized. This is the first case you

encounter, but certainly not the last, that a vector operation is not applicable to the

zero vector.

Note T he vector normalization process involves a division by a square root.
Though with modern hardware this computation cost is becoming less of a
concern, it is still a good practice to pay attention to the need for normalization
in general. For example, the Unity Vector3 class defines the sqrMagnitude
property to return the squared of a vector length,



V 2
, which can be used when

information on vector length is needed, but not normalization. For example, when
performing size comparisons, for example, determining which vector is longer.

�Direction of Vectors
The magnitude of a vector can be simply and effectively conveyed by a number. In

contrast, the direction of a vector must be expressed in relation to a “frame of reference.”

For example, “in the x-direction” uses the X-axis as the frame of reference. In the 3D

Cartesian Coordinate System, a direction can be described by using the X-, Y-, and

Z-axes as references. Such a description involves a reference direction and a rotation.

For example, a direction that is defined by a rotation of the Y-axis about the Z-axis in the

X-axis direction by 15 degrees. If you find that description difficult to follow, you are not

alone. Fortunately, there are alternatives to describing the direction of a vector.

Recall that as illustrated in Figure 4-7, the direction of a vector does not change when

the vector is scaled. This means that a unit vector uniquely identifies the direction of all

vectors with different lengths in that direction. For simplicity, both representationally

and computationally, this book chooses to identify the direction of a vector by referring

to its unit vector. For example, for a given vector,


V , this book refers to its magnitude as


V and its direction as V̂ . In the rest of this book, you will encounter phrases like “the

direction of


V ” or “the direction of V̂ ”; both refer to the direction of the vector V̂ .

Since the normalized zero vector is undefined, a zero vector has no direction.

Chapter 4 Vectors

126

�The Vector Scaling and Normalization Example
This example demonstrates the results of scaling a vector and defining a vector with

separate input for magnitude and direction. It allows you to adjust and examine the

effects of changing the vector scaling factor, as well as control the creation of a vector

via specifying its magnitude and direction. Figure 4-8 shows a screenshot of running the

EX_4_2_VectorScaling scene from the Chapter-4-Vectors project.

Figure 4-8.  Running the Vector Scaling example

The goals of this example are for you to

•	 Interact with and examine the effects of scaling vectors

•	 Experience defining vectors based on specifying their magnitude and

direction

•	 Understand the effects of separately changing the magnitude and

direction of a vector

•	 Examine the implementation of working with vectors

Chapter 4 Vectors

127

�Examine the Scene

Take a look at the Example_4_2_VectorScaling scene and observe, besides

Controller, the three predefined game objects in the Hierarchy Window: P1, P2, and

SphereAtOrigin. As in the previous example, P1 and P2 together will allow you to define

a vector,


Va . The SphereAtOrigin is a transparent sphere located at the origin, where

you will create a position vector in the same direction as V̂a , with a magnitude that just

touches the surface of this transparent sphere.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows ten variables that can be categorized

into three groups:

•	 Drawing control: Allows you to show or hide different information

relevant to a vector

•	 DrawAxisFrame: Shows or hides the Cartesian Coordinate origin

and reference axis frame.

•	 DrawScaledVector: Shows or hides the scaled version of


Va .

•	 DrawUnitVector: Shows or hides the unit vector ˆ .Va

•	 DrawPositionVector: Shows or hides the position vector that

touches the SphereAtOrigin surface.

•	 DrawVectorComponents: Shows or hides the x-, y-, and

z-displacements of each vector. Notice that for clarity,

when displayed, the position vector always draws its vector

components.

•	 Definition of


Va : Defines and allows manipulation of the vector


Va

•	 P1: The reference to the P1 game object

•	 P2: The reference to the P2 game object

•	 ScalingFactor: The factor to scale the vector


Va by

Chapter 4 Vectors

128

•	 Definition of a position vector: Defines and allows manipulation of

the position vector

•	 SphereAtOrigin: The reference to the SphereAtOrigin

game object

•	 SphereRadius: The radius of the SphereAtOrigin sphere and the

length of the position vector that will be parallel to V̂a

�Interact with the Example

Click the Play Button to run the example. Notice that by default, except DrawAxisFrame,

all vector drawing toggles are off so you should only be observing the axis frame

and vector


Va , the vector being drawn between positions P1 and P2. Now select the

Controller and get ready to toggle drawing options and observe the following.

Scaled Vector

Toggle on the drawing option for DrawScaledVector to observe a slightly shorter pink

vector in the same direction as


Va . Now adjust the ScalingFactor variable and watch as

the pink vector changes size. This pink vector is displaying the vector


Vs

	
 

V ScalingFactor Vs a= x 	

Notice three interesting intervals:

•	 0 < ScalingFactor < 1:


Vs has a length shorter than


Va and is thus

displayed as a vector embedded in


Va .

•	 ScalingFactor > 1:


Vs has a magnitude larger than


Va and is thus a

vector that extends beyond


Va .

•	 ScalingFactor < 0:


Vs points in the reversed direction of


Va . Note that

the two vectors are drawn at the same position, P1, and that the two

vectors do indeed extend in the exact opposite directions.

Chapter 4 Vectors

129

Normalized or Unit Vector

Toggle on the drawing option for DrawUnitVector to observe a short white vector

embedded in


Va . This is


Va normalized, or V̂a . Recall that V̂a is computed by scaling


Va by the inverse of its magnitude,
1


V
a

. Initially,


Va has a magnitude of 5, so if you

adjust ScalingFactor to the value of
1

5
0 2= . , you will observe that the pink (



Vs) and

white vectors overlap exactly. This overlap will stop once you adjust the ScalingFactor.

Remember,


Vs has a length that is ScalingFactor times the current


V
a , yet the size of

V̂a is always 1.

Manipulate and set the positions of P1 and P2 to be identical, for example, by

copying values of P1’s Transform component to that of P2. Now, notice error messages

in the Console Window about NaN and that the normalized white vector now points

in an arbitrary direction. When positions of P1 and P2 are identical,


Va becomes the

zero vector and V̂a is undefined. Later, when you examine the implementation, you

will notice that the zero vector condition is not checked. Here, you are observing the

results of a common coding error: performing a vector operation without verifying if the

operation is defined for the given vector. A responsible developer should always invoke

precondition checking before performing the corresponding vector operations.

Position Vector from Direction and Magnitude

Toggle on the drawing option for DrawPositionVector to observe a navy-blue position

vector,


Vp , that is parallel to V̂a and has a magnitude that is defined by the SphereRadius

variable:

	



V SphereRadius Vp a= x ˆ
	

You can verify this by adjusting SphereRadius and noting that the SphereAtOrigin

game object (the transparent sphere) changes size, and


Vp , while maintaining the

direction of V̂a , adjusts its magnitude such that its tip touches the sphere surface. You

can toggle off and hide the axis frame via DrawAxisFrame to observe the thin red, green,

and blue vector components of


Vp , verifying that this vector does indeed just touch the

sphere surface, indicating that the length of the vector is indeed the radius of the sphere.

Chapter 4 Vectors

130

This interaction shows that you can create a direction and a magnitude separately

and combine them to create a desired vector. Note that since V̂a is a unit vector, the

size of


Vp , or


Vp , is simply SphereRadius. An important observation is that if a vector

is defined by a size and a unit vector, then this size is the magnitude property of that

vector. In the next section, you will see how this simple observation can be applied to

implement the behavior of an object following a target.

Summary of Interaction

Four vectors are created and examined in this example:

•	


Va : Vector between two user control positions, P1 and P2.

•	
 

V ScalingFactor Vs a= x : A vector in the same or opposite

direction as


Va .

•	 V̂
V

Va

a

a= x
1




: The normalized vector of


Va ; since this vector is always

scaled by the inverse of its magnitude, it has a constant size of 1.

•	


V SphereRadius Vp a= x ˆ : A constructed vector based on a size and a

direction.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// Toggle of what to draw

public bool DrawAxisFrame = false;

public bool DrawScaledVector = false;

public bool DrawUnitVector = false;

public bool DrawPositionVector = false;

public bool DrawVectorComponents = false;

// For defining Va and Vs (ScaledVector)

public GameObject P1 = null; // Position P1

public GameObject P2 = null; // Position P2

public float ScalingFactor = 0.8f;

Chapter 4 Vectors

131

// For defining Vp (PositionVector)

public GameObject SphereAtOrigin = null; // sphere at origin

public float SphereRadius = 3.0f;

// For visualizing all vectors

private MyVector ShowVa; // Vector Va

private MyVector ShowVaScaled; // Scaled Va

private MyVector ShowNorm; // Normalized Va

private MyVector ShowPositionVector; // Position vector

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The four private variables of the MyVector data

type are for visualizing the four vectors:


Va ,


Vs , V̂a , and


Vp , respectively. The Start()

function for MyScript is listed as follows:

void Start(){

 Debug.Assert(P1 != null); // Check for proper setup in the editor

 Debug.Assert(P2 != null);

 Debug.Assert(SphereAtOrigin != null);

 // To support visualizing the vectors

 ShowVa = new MyVector {

 VectorColor = Color.black };

 ShowNorm = new MyVector {

 VectorColor = new Color(0.9f, 0.9f, 0.9f)};

 ShowVaScaled = new MyVector {

 VectorColor = new Color(0.9f, 0.4f, 0.9f) };

 ShowPositionVector = new MyVector {

 VectorColor = new Color(0.4f, 0.9f, 0.9f),

 VectorAt = Vector3.zero // Position Vector at origin

 };

}

The Debug.Assert() calls ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window, while the MyVector variables are instantiated

and initialized with the proper colors. The Update() function is listed as follows:

Chapter 4 Vectors

132

void Update()

{

 Visualization on/off: show or hide to avoid cluttering

 Vector Va: Compute Va and setup the drawing for Va

 if (DrawScaledVector) ...

 if (DrawUnitVector) ...

 if (DrawPositionVector) ...

}

The Update() function is logically structured into five steps: handling the drawing

toggles and then computing and showing


Va ,


Vs , V̂a , and


Vp , respectively. The details

in each step are presented next in separate subsections. While reading the code, note

the exact one-to-one match between the derived formula to compute each vector and

the corresponding listed code. This is an important and elegant characteristic of vector-

based game object behavior; the implementation often closely resembles the underlying

mathematical derivation.

Visualization on/off

The code in this region sets the game object’s active state for displaying or hiding

according to user’s toggle settings. This code is listed as follows:

#region Visualization on/off: show or hide to avoid cluttering

AxisFrame.ShowAxisFrame = DrawAxisFrame; // Draw or Hide Axis Frame

ShowVaScaled.DrawVector = DrawScaledVector; // Display or hide the vectors

ShowNorm.DrawVector = DrawUnitVector;

ShowVa.DrawVectorComponents = DrawVectorComponents;

ShowVaScaled.DrawVectorComponents = DrawVectorComponents;

ShowNorm.DrawVectorComponents = DrawVectorComponents;

ShowPositionVector.DrawVector = DrawPositionVector;

SphereAtOrigin.SetActive(DrawPositionVector);

#endregion

Chapter 4 Vectors

133

Vector Va

The code in this region computes


Va based on the current P1 and P2 positions and sets

up the ShowVa variable for visualizing the vector. This code is listed as follows:

#region Vector Va: Compute Va and setup the drawing for Va

Vector3 vectorVa = P2.transform.localPosition -

 P1.transform.localPosition;

// Show the Va vector at P1

ShowVa.Direction = vectorVa;

ShowVa.Magnitude = vectorVa.magnitude;

ShowVa.VectorAt = P1.transform.localPosition;

#endregion

The variable vectorVa is


V P Pa = -2 1 . The ShowVa variable receives the corresponding

direction and size values from vectorVa and is set to display the vector at position P1.

DrawScaledVector

When this toggle is set to true,


Vs is computed and shown. The code to accomplish this

is listed as follows:

if (DrawScaledVector) {

 Vector3 vectorVs = ScalingFactor * vectorVa;

 ShowVaScaled.Direction = vectorVs;

 ShowVaScaled.Magnitude = vectorVs.magnitude;

 ShowVaScaled.VectorAt = P1.transform.localPosition;

}

The variable vectorVs is
 

V ScalingFactor Vs a= x . The ShowVaScaled is properly set

up to display vectorVs at P1.

DrawUnitVector

When this toggle is set to true, V̂a is computed and shown. The code to accomplish this

is listed as follows:

Chapter 4 Vectors

134

if (DrawUnitVector) {

 // scale Va by its inversed size

 Vector3 unitVa = (1.0f / vectorVa.magnitude) * vectorVa;

 // Vector3 dirVa = vectorVa.normalized;

 // Alternate way to normalized Va

 ShowNorm.Direction = unitVa;

 ShowNorm.Magnitude = unitVa.magnitude;

 ShowNorm.VectorAt = P1.transform.localPosition;

}

The variable unitVa is V̂
V

Va

a

a= x
1




. Notice the alternative way commented out

below this line of code, Vector3.normalized, to compute a unit vector.

Here you can observe a coding error, where vectorVa.magnitude is used as the

denominator in the normalization computation without first being verified that its value

is not zero. Once again, a zero vector will have a length of zero and therefore cannot be

normalized. In this case, the logic should check if vectorVa is equal to the zero

vector, and if so, simply skip the drawing of ShowNorm.

Note  In general, it is not advisable to compare computation results to floating-
point constants. For example, it is unwise to attempt to detect the zero vector
condition by performing

 if (vectorVa.magnitude == 0.0f)

The chance of the results of a floating-point computation being exactly zero is
almost nonexistent. In this case, you should check for the condition of smaller
than a “very small” number. The C# programming language defines the float.
Epsilon for this purpose. In this case, the condition to check for zero vector
should be

 if (vectorVa.magnitude < float.Epsilon)

 // vectorVa is, for all practical purposes, a zero vector

Chapter 4 Vectors

135

DrawPositionVector

When this toggle is set to true,


Vp is computed and shown. The code to accomplish this

is listed as follows:

if (DrawPositionVector) {

 Vector3 vectorVp = SphereRadius * vectorVa.normalized;

 ShowPositionVector.Direction = vectorVp;

 ShowPositionVector.Magnitude = vectorVp.magnitude;

 ShowPositionVector.VectorAt =

 SphereAtOrigin.transform.localPosition;

 // Set the radius of the sphere at the origin

 SphereAtOrigin.transform.localScale =

 new Vector3(2.0f * SphereRadius,

 2.0f * SphereRadius,

 2.0f * SphereRadius);

}

The variable vectorVp is


V SphereRadius Vp a= x ˆ . Note that in this case, V̂a is

computed based on the Unity Vector3.normalized utility. The last line of code scales

the sphere by setting the Unity Transform.localScale. Notice that the scaling factor for

the sphere is its diameter, or 2 times the radius. This is because localScale adjusts the

scale of a sphere based on its diameter, not its radius.

�Takeaway from This Example

Note that the entire implementation for this example, the code in the Update() function

that performs useful computation, is actually just four lines: one line for each of the

vectors,


Va ,


Vs , V̂a , and


Vp , respectively. The rest of the code is there to support user

interaction and to set up the four toggle variables for visualizing the vectors. This

example shows that when working with vector-based logic, the code can be rather

compact with the implementation closely resembling the actual math involved to

compute such results.

Chapter 4 Vectors

136

Relevant mathematical concepts covered include

•	 All scaled vectors are along exactly the same direction as their

reference vector.

•	 The unit vector, or normalized vector, is a special case of the

scaled vector; it is a vector scaled by the inverse of the size of its

reference vector.

•	 The normalized vector, or unit vector, always has a length of one and

does indeed uniquely and consistently represent the direction of

vectors with different scaling factors.

•	 The zero vector cannot be normalized. Proper coding should include

specific conditional checks before invoking the normalization

computation.

•	 A vector can be defined based on a magnitude and a direction.

An interesting implication of this fact is that any vector can be

decomposed into a unit vector with a scale.

Unity tools

•	 Transform.localScale: To change the size of game objects

•	 Sphere primitive: The scale value is the diameter of the sphere

EXERCISES

Verify the Directions of vectorVa and vectorVp

Make sure that


Va ,


Vs , and V̂a are in the exact same direction by setting ScalingFactor

to a positive value. Next, verify the


Vp vector is also in the same direction by moving P1 to

the origin. Interestingly, you can also move the position of the SphereAtOrigin to P1 by

changing the value of SphereAtOrigin.Transform.localPosition.

Properly Handle the Zero Vector

Implement the detection and handling of the zero vector condition to avoid the normalization

process when necessary.

Chapter 4 Vectors

137

Work with Unit Vector and MyVector

A unit vector always has a size of 1 and can be a convenient reference for defining vectors of

different lengths. For example, edit MyScript to display 5 different vectors with lengths of 1,

2, 3, 4, and 5 in the V̂a direction. Display these vectors at the X-axis locations that correspond

to their length, length 1 at (1, 0, 0), length 2 at (2, 0, 0), etc. The easiest solution to this problem

would be to compute V̂a and loop from 1 to 5, scaling each vector accordingly and working

with MyVector to display the vectors at their proper positions.

�Application of Vector: Velocity
When riding in a traveling car, you move at the speed and direction of that car. On a

per-unit time basis, you will cover the “speed” amount of distance in the direction of

the car. For example, during rush hours, a taxi traveling at 1.4 miles per hour toward the

northeast will cover 1.4 miles in the northeast direction each hour. In this way, a velocity

is speed in a specific direction, or simply, a vector. Figure 4-9 illustrates the example of

that taxi ride.

Figure 4-9.  Driving at 1.4 miles per hour toward the northeast

As illustrated in Figure 4-9, the 1.4 miles per hour speed of the taxi describes the

total distance covered per hour and is actually the magnitude of the vector. In this case, a

velocity of

	


V miles hourt = ()1 1, / 	

Chapter 4 Vectors

138

will, in an hour, cover a distance of



V
t
= + = =1 1 2 1 42 2 . miles

and the traveling direction is indeed toward the northeast (assuming north is the

positive y-direction and east is the positive x-direction). Notice in this description the

distance covered is separated from the movement direction of the taxi ride. When

discussing velocities, it is important to identify the speed and the direction of travel. In

terms of implementation, this means that it is convenient to express a velocity,


Vt , as



V Speed Vt t= x ˆ

In the case of Figure 4-9,

•	 Speed = 1.4

•	 V̂t =
(
(
|

)
)
|

1

2

1

2
,

Recall that you have worked with vectors in this format in the DrawPositionVector

portion of the previous example, EX_4_2_VectorScaling. Representing vectors in this

way supports independent adjustments to the magnitude and the direction. In the

context of velocity, this representation supports the independent adjustments to the

speed (Figure 4-10) and the traveling direction (Figure 4-11).

Figure 4-10.  Adjusting the speed while maintaining the direction of travel

Figure 4-10 shows three balls, A, B, and C, traveling in the same direction, ˆ ,V at

constant, increasing, and decreasing speeds, respectively. Notice how the balls continue

to travel parallel to each other but end up at very different locations along their parallel

paths after a few updates.

Chapter 4 Vectors

139

Figure 4-11.  Adjusting the direction of travel while maintaining a constant speed

In contrast to Figure 4-10, Figure 4-11 shows how the traveling direction of an object

can be adjusted without altering its speed. In this case, after subsequent updates, the

objects would travel a constant distance from the original position but will end up at very

different locations. In all cases, mathematically, the position of an object will change or

“travel” by “following the velocity vector,”


Vt . If

Pinit: Initial Position

then at the end of the time unit, the object would travel “following the vector


Vt ” and

arrive at

	
P P V elapsedTimefinal init t= + x()

	

This further illustrates the fact that velocity can be perfectly represented as a vector

where the vector’s magnitude is speed and direction is the direction of travel. This

representation of velocity as a vector is convenient for game development and will be

showcased in the next example.

�The Velocity and Aiming Example
This example demonstrates the manipulation of object velocity and simple aiming

functionality based on the vector concepts you have learned in the previous sections.

The example allows you to separately adjust the speed, direction, and the traveling

Chapter 4 Vectors

140

distance of an object. This example also allows you to examine the implementation of

these factors. Figure 4-12 shows a screenshot of running the EX_4_3_VelocityAndAiming

scene from the Chapter-4-Vectors project.

Figure 4-12.  Running the Velocity and Aiming example

The goals of this example are for you to

•	 Understand the distinction between speed and direction of a velocity

•	 Experience controlling a velocity by manipulating its speed and

direction separately

•	 Examine a simple aiming behavior

•	 Examine the implementation of vector-based motion control

�Examine the Scene

Take a look at the Example_4_3_VelocityAndAiming scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are three

objects in this scene: CheckeredExplorer, GreenAgent, and RedTarget. Select these

objects in the Hierarchy Window to note that the CheckeredExplorer is the checkered

sphere, the GreenAgent is the small green sphere, and the RedTarget is the red sphere.

Chapter 4 Vectors

141

As in all previous examples, these game objects represent positions where only their

transform.localPosition are referenced. When the game begins to run and the

BeginExplore toggle is true, the CheckeredExplorer position will move slowly toward

the position of the RedTarget while continuously sending out the GreenAgent toward the

RedTarget as well, but at a faster speed.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

•	 Control toggles: Toggles drawing on or off, or allows object

movement

•	 DrawVelocity: Shows or hides the velocity of the

CheckeredExplorer

•	 BeginExplore: Enables the movement of the CheckeredExplorer

and the GreenAgent

•	 Support for the CheckeredExplorer:

•	 CheckeredExplorer: The reference to the CheckeredExplorer

game object

•	 ExplorerSpeed: The traveling speed of the CheckeredExplorer

•	 Support for the GreenAgent:

•	 GreenAgent: The reference to the GreenAgent game object

•	 AgentSpeed: The traveling speed of the GreenAgent

•	 AgentDistance: The distance that the GreenAgent should travel

before returning to base and restarting the exploration

•	 Support for the RedTarget:

•	 RedTarget: The reference to the RedTarget game object

The velocity direction for both the CheckeredExplorer and the GreenAgent is

implicitly defined by their relative position to the RedTarget because that is the target

position that both the CheckeredExplorer and GreenAgent are moving toward.

Chapter 4 Vectors

142

�Interact with the Example

Click the Play Button to run the example. Initially the BeginExplore toggle is set

to false and there will thus be no movement in the scene. The green vector you

observe extending from the CheckeredExplorer represents the velocity of the

CheckeredExplorer object if it were allowed to move. Since you know the vector from

the CheckeredExplorer to the RedTarget is,


VET , then assuming the CheckeredExplorer

object is located at PExplorer and the RedTarget object is located at PTarget, then



V P PET Target Explorer= -

Both the CheckeredExplorer and the GreenAgent will be traveling, with their

respective speeds of ExplorerSpeed and AgentSpeed, toward the RedTarget. The

velocities of these two objects,


VExplorer and


VAgent , are defined as



V ExplorerSpeedExplorer = ×V̂ET



V AgentSpeedAgent = ×V̂ET

Note that the two velocities are in the same direction, unit vector V̂ET , but with

different magnitudes, or speeds. Additionally, in both cases, the speeds are under user

control and yet the velocity direction is implicitly defined by the RedTarget position.

The green vector you observed represents


VExplorer . Now, adjust ExplorerSpeed in

the MyScript component of the Controller object and notice the green vector’s length

changes accordingly. Since this vector’s length is determined by ExplorerSpeed, you can

expect the CheckeredExplorer object to move quicker when the green vector is long and

slower when it is short. Now, enable the BeginExplore toggle and observe the following:

•	 The CheckeredExplorer follows slowly behind the repeating

and faster traveling GreenAgent. You can adjust the speed of the

CheckeredExplorer via the ExplorerSpeed variable and observe, as

mentioned previously, that the speed is proportional to the length of

the green vector.

•	 The GreenAgent continuously repeats the quick motion of traveling

from the CheckeredExplorer toward the RedTarget. Try adjusting

the AgentSpeed variable and observe how the GreenAgent’s speed

changes accordingly.

Chapter 4 Vectors

143

•	 The AgentDistance variable dictates how far the GreenAgent can

travel from the CheckeredExplorer before its position is reset

and it starts over. If


VEA is the vector from GreenAgent to the

CheckeredExplorer, then

	



V P PEA Agent Explorer= -
	

The current distance between the two is simply the magnitude of this

vector,


V
EA

. Now, try altering the value of AgentDistance to observe the

green sphere traveling that corresponding distance from the checkered

sphere before restarting.

•	 The RedTarget is stationary, but you can manipulate its position via

its transform components, and since

	



V P PET Target Explorer= -
	

when the RedTarget position, PTarget, is changed, the vector


VET

is updated accordingly. The velocity direction, V̂ET , of both the

CheckeredExplorer and GreenAgent is also updated. In this way, both of

these objects are always aiming at and moving toward the RedTarget.

Notice that when the CheckeredExplorer arrives at a location that is very close to the

RedTarget, the green vector that represents its velocity will rapidly flip back and forth.

As you will find out when analyzing the implementation, there is no logic involved for

checking the stop condition of the CheckeredExplorer. Therefore, you are observing

the CheckeredExplorer continuously moving pass the RedTarget, flipping its velocity,

and then moving pass the RedTarget again. The logic to stop the CheckeredExplorer’s

motion is left as an exercise at the end of this example.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// Drawing control

public bool DrawVelocity = true;

public bool BeginExplore = false;

Chapter 4 Vectors

144

public GameObject CheckeredExplorer = null;// CheckeredExplorer

public float ExplorerSpeed = 0.05f; // units per second

public GameObject GreenAgent = null; // GreenAgent

public float AgentSpeed = 1.0f; // units per second

public float AgentDistance = 3.0f; // explore distance

public GameObject RedTarget = null; // RedTarget

private MyVector ShowVelocity = null; // Show Explorer velocity

private const float kSpeedScaleForDrawing = 15f;

All public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The private variable ShowVelocity is to support the

visualization of the CheckeredExplorer velocity where the kSpeedScaleForDrawing is a

constant value meant to scale this vector such that it is visible. The Start() function for

MyScript is listed as follows:

void Start() {

 Debug.Assert(CheckeredExplorer != null);

 Debug.Assert(RedTarget != null);

 Debug.Assert(GreenAgent != null);

 ShowVelocity = new MyVector() {

 VectorColor = Color.green;

 }

 // initially Agent is resting inside the Explorer

 GreenAgent.transform.localPosition =

 CheckeredExplorer.transform.localPosition;

}

As in all previous examples, the Debug.Assert() calls ensure proper setup

regarding referencing the appropriate game objects via the Inspector Window, while the

ShowVelocity variable is properly instantiated. Lastly, the initial position of GreenAgent

is set to that of the CheckeredExplorer. The Update() function is listed as follows:

Chapter 4 Vectors

145

void Update() {

 Vector3 vET = RedTarget.transform.localPosition -

 CheckeredExplorer.transform.localPosition;

 ShowVelocity.VectorAt =

 CheckeredExplorer.transform.localPosition;

 ShowVelocity.Magnitude =

 ExplorerSpeed * kSpeedScaleForDrawing;

 ShowVelocity.Direction = vET;

 ShowVelocity.DrawVector = DrawVelocity;

 if (BeginExplore) {

 float dToTarget = vET.magnitude; // Distance to target

 if (dToTarget < float.Epsilon)

 return; // Avoid normalizing a zero vector

 Vector3 vETn = vET.normalized;

 Process the Explorer (checkered sphere)

 Process the Agent (small green sphere)

 }

}

The first line of the Update() function computes


V P PET Target Explorer= - , and the next

four lines set up the ShowVelocity variable for visualizing the CheckeredExplorer’s

velocity as a vector with its tail located at the position of CheckeredExplorer. Note

that because of CheckeredExplorer’s slow speed (ExplorerSpeed’s value), the

ShowVelocity.Magnitude is scaled by kSpeedScaleForDrawing in order to properly

display the vector for visual inspection.

When BeginExplore is enabled, the magnitude of


VET , or


VET , is checked to avoid

the normalization of a zero vector. Next, V̂ET is computed and stored in the variable vETn.

The two regions that process the CheckeredExplorer and the GreenAgent are explained

in the following subsections.

Chapter 4 Vectors

146

Process the Explorer

The code in this region, listed as follows, computes the velocity of the explorer,



V ExplorerSpeedExplorer = ×V̂ET

and updates CheckeredExplorer.transform.localPosition accordingly.

#region Process the Explorer (checkered sphere)

Vector3 explorerVelocity = ExplorerSpeed * vETn;

CheckeredExplorer.transform.localPosition +=

 explorerVelocity * Time.deltaTime; // update position

#endregion

Remember that displacement, or distance, is velocity traveled over time, or

Velocity × elapsedTime. In Unity, the per-update elapsed time is recorded in the Time.

deltaTime property. The very last line in this region computes the total displacement

over time and updates CheckeredExplorer’s position with the computed displacement,

ensuring smooth movement.

Process the Agent

As illustrated in the following code, similar to processing the movement of

CheckeredExplorer, the first two lines of code in this region compute the velocity of

the agent,

	



V AgentSpeed VAgent ET= x ˆ
	

and update GreenAgent.transform.localPosition accordingly. Note that, as

mentioned previously, because


VExplorer and


VAgent are both computed based on scaling

the same unit vector, the CheckeredExplorer and GreenAgent are traveling in the exact

same direction, V̂ET , with different speeds, ExplorerSpeed and AgentSpeed.

#region Process the Agent (small green sphere)

Vector3 agentVelocity = AgentSpeed * vETn; // define velocity

GreenAgent.transform.localPosition +=

 agentVelocity * Time.deltaTime; // update position

Chapter 4 Vectors

147

Vector3 vEA = GreenAgent.transform.localPosition -

 CheckeredExplorer.transform.localPosition;

if (vEA.magnitude > AgentDistance)

 GreenAgent.transform.localPosition =

 CheckeredExplorer.transform.localPosition;

#endregion

The last three lines of code compute the vector between the explorer and the agent,

	



V P PEA Agent Explorer= -
	

compare the magnitude of this vector,


VEA , to the user-specified AgentDistance,

and then reset the agent’s position when it is too far away from the explorer,

or when


V AgentDistanceEA > .

�Takeaway from This Example

This example demonstrates the application of vector concepts learned in modeling the

simple object behaviors of aiming at and moving toward a target position. You have

observed that the velocity of objects can be described by scaling a unit vector with speed

and that velocities computed based on the same unit vector will move objects in exactly

the same direction. Lastly, you have experienced once again that the distance between

two objects can be easily computed as the magnitude of the vector defined between

these two objects.

Relevant mathematical concepts covered include

•	 The velocity of an object can be represented by a vector.

•	 A velocity can be composed by scaling a direction, or unit vector,

with speed.

•	 The distance between two objects is the magnitude of the vector that

is defined by the positions of those two objects.

Chapter 4 Vectors

148

EXERCISES

Stop the CheckeredExplorer When It Reaches the RedTarget

Recall that the motion of CheckeredExplorer never terminates and that it tends to

overshoot the RedTarget followed by turning around and overshooting it again. This

cycle continues, causing the CheckeredExplorer to swing back and forth around the

RedTarget. Modify MyScript to define a bounding box around the RedTarget and stop

the CheckeredExplorer when it is inside the bounding box. Notice that in this case, it is

actually easier and more accurate to treat the RedTarget as a bounding sphere and to stop

the motion of the CheckeredExplorer when it is inside the bounds of the sphere.

Reset the GreenAgent When It Reaches the RedTarget

Run the game and increase the AgentDistance to some large value, for example, 15.

Now set BeginExplore to true and observe how the GreenAgent passes through the

RedTarget and continues to move forward until its position is more than 15 units from the

CheckeredExplorer, in which case it finally resets. With the bound you defined in the

previous exercise, modify MyScript to reset the GreenAgent’s position as soon as it is

inside the RedTarget’s bounds.

Invert the GreenAgent’s Velocity Direction

Modify MyScript such that when the GreenAgent is too far away from the

CheckeredExplorer, instead of resetting the position, the GreenAgent would simply move

toward the CheckeredExplorer as though it is now the target. In this way, the GreenAgent

would move continuously between the CheckeredExplorer and the RedTarget. This

example allows you to gain experience with reversing the direction of a given vector.

�Vector Algebra: Addition and Subtraction
Although it has not yet been formally defined, based on observing the relative positions

in the Cartesian Coordinate System, you have worked with vector addition and

subtraction for quite a while now. For example, you have learned that the statement

Chapter 4 Vectors

149

“position P1 can be reached by following a vector


V1 at position P0
” is expressed

mathematically as

	 P P V1 0 1= +


	

In this case, by interpreting P0 and P1 as position vectors, the “+” operator has two

vector operands and produces a position vector as the result of the operation. You have

also learned that the statement “the vector


V1 is a vector with its tail at position P0 and

head at position P1” is expressed mathematically as

	


V P P1 1 0= - 	

Once again, with P0 and P1 interpreted as position vectors, the “−” operation also has

two vector operands and produces a vector as the result of the operation.

�Rules of Vector Addition and Subtraction
You have learned and experienced that in both vector addition and subtraction, the

resulting vectors are simply the addition and subtraction of the corresponding x-, y-, and

z-component values. These observations are summarized in Table 4-1.

Table 4-1.  Vector addition and subtraction

Operation Operand 1 Operand 2 Result

+:Addition


V x y z1 1 1 1= , ,()


V x y z2 2 2 2= , ,()
 

V V x x y y z z1 2 1 2 1 2 1 2+ = + , + , +()
−: Subtraction



V x y z1 1 1 1= , ,()


V x y z2 2 2 2= , ,()
 

V V x x y y z z1 2 1 2 1 2 1 2- = - , - , -()

Note that the given definition in Table 4-1 states that the following is always true:

  

V V V+ = 2

	
 

V V ero ector- =Z V 	

Chapter 4 Vectors

150

Because the operators add and subtract the corresponding coordinate component

values, the familiar floating-point arithmetic addition and subtraction properties are

obeyed. The properties of commutative, associative, and distributive with a floating-

point scaling factor, s, are summarized in Table 4-2.

Table 4-2.  Properties of vector addition and subtraction

Properties Vector Addition Vector Subtraction

Commutative
   

V V V V1 2 2 1+ = +
   

V V V V1 2 2 1- -≠ [not a property]

Associative
     

V V V V V V1 2 3 1 2 3+ + = + +() ()      

V V V V V V1 2 3 1 2 3- - = - -() ()
Distributive s V V V V

   

1 2 1 2+ = s + s() s V V V V
   

1 2 1 2- = s - s()

As illustrated in the first-row, right column of Table 4-2, just as with floating-point

subtraction, vector subtraction is not commutative. In fact, similar to floating-point

subtraction, vector subtraction is anti-commutative, or

   

V V V V1 2 2 11- = - x -() = - +
 

V V2 1

= -
 

V V1 2

�Addition and Subtraction with the Zero Vector
As in the case of floating-point arithmetic, vector addition and subtraction with the zero

vector behave as expected.



V ZeroVector1 + = ZeroVector V V+ =
 

1 1



V ZeroVector1 - =


V1

ZeroVector V V- = -
 

1 1

Chapter 4 Vectors

151

�Vectors in an Equation
Vectors behave just like floating-point values in an equation. For example, if

  

V V V3 1 2= + , 	

then adding a −


V2 to both sides of the equation:

    

V V V V V3 2 1 2 2+ -() = + + -()

  

V V V3 2 1- =
  

V V V1 3 2= - .

This little example helps demonstrate that vector algebra obeys the basic algebraic

equation rule that a term can be moved across the equality by flipping its sign.

�Geometric Interpretation of Vector Addition
and Subtraction
Fortunately, there are intuitive diagrammatic interpretations for the essential rules of

vector addition and subtraction. Please refer to Figure 4-13, where vectors


V1 and


V2 are

defined by the three given positions, P0, P1, and P2. These two vectors are defined as

	


V P P1 1 0= - 	

	


V P P2 2 1= - 	

Figure 4-13 shows vector


V1 with its tail at P0 and vector


V2 with its tail at P1.

Figure 4-13.  Two vectors defined by three positions

Chapter 4 Vectors

152

�Vector Addition

Figure 4-14 shows the result of vector addition geometrically. Notice that the result of

adding the two vectors

	
  

V V Vsum = +1 2 	

is a vector with its tail located at the tail of


V1 , P0, and its head located at the head

of


V2 , P2. This can be interpreted geometrically as


Vsum is the combined results of

“following


V1 then


V2 .” Except that in case this, instead of following the two vectors

sequentially, the summed vector,


Vsum , will take you directly from the beginning to the

end along the shortest path. This observation is true in general; the result of summing

vectors is always a vector that combines the results of following all of the operand

vectors sequentially and is then the shortest path from the beginning location to the final

destination location.

�Commutative Property of Vector Addition

Figure 4-15 illustrates the commutative property of vector addition:

	
    

V V V V Vsum = + = +1 2 2 1 	

Note the difference in the order of operations; the top half of Figure 4-14 applies


V1

at P0 followed by applying


V2 at the head of


V1 , while the latter applies


V2 at P0 followed

by applying


V1 at the head of


V2 . Observe that in both cases, the result is identical;


Vsum

has its tail located at P0 and its head at P2.

Figure 4-14.  Vector addition

Chapter 4 Vectors

153

Figure 4-15.  The commutative property of vector addition

Figure 4-14 shows that, geometrically, vector addition depicts a triangle where the

first two edges are the operands and the third is the resulting sum. In Figure 4-15, the

two


V1 are of the same length and are parallel and so are the two


V2 vectors. For this

reason, the depiction in Figure 4-15 is a parallelogram. These observations are true in

general—that vector addition and the commutative property always depict a triangle

and parallelogram, respectively. Though these observations do not result in direct

applications in video games, they provide insights into relationships between different

fields of mathematics, in this case, linear algebra and geometry.

�Vector Subtraction

Figure 4-16 shows the result of vector subtraction geometrically. The two vectors with

tails at position P1 are


V2 and a scaling of


V2 by a factor of −1 resulting in −


V2 , or


Vn2 ,

a vector with same length in the opposite direction to


V2 . This figure shows that

subtracting a vector is essentially the same as using the opposite direction of that vector

in a vector addition. In this case,
 

V V1 2− can be understood as travel along


V1 , followed

by traveling along the opposite direction of


V2 . This interpretation can be verified

mathematically as follows. Notice that just as floating-point algebra, the subtraction of

the two vectors

	
  

V V Vsub = -1 2 	

can be written as an addition

	
  

V V Vsub n= +1 2 	

where

	
 

V Vn2 2= - 	

Chapter 4 Vectors

154

or simply

	

    

V V V V Vsub = - = + -()1 2 1 2 	

Notice the perfect correspondence between the expression,
 

V V1 2+ -() , and the

description, “travel along


V1 , followed by traveling along the opposite direction of


V2 .”

�The Vector Add and Sub Example
This example demonstrates the results of and allows you to interact with the vector

addition and subtraction operations. This example also serves as a review and

reaffirmation that vectors can be located at any position as their definition does not link

them to a specific position. Figure 4-17 shows a screenshot of running the EX_4_4_

VectorAddandSub example from the Chapter-4-Vectors project.

Figure 4-17.  Running the Vector Add and Sub example

Figure 4-16.  Vector subtraction

Chapter 4 Vectors

155

The goals of this example are for you to

•	 Examine and gain understanding of vector addition and subtraction

•	 Understand that vector subtraction is simply vector addition with a

negative vector as the second operand

•	 Review that all vectors are defined independent of any position

�Examine the Scene
Look at the Example_4_4_VectorAddandSub scene and observe the predefined game

objects in the Hierarchy Window. In addition to the Controller, there are three objects

in this scene: P0, P1, and P2. Each of these objects references one of the spheres in the

scene which in turn represent a position in the Cartesian Coordinate System. In this

example you can manipulate these three positions to define two vectors, where the

results of adding and subtracting these two vectors are shown at those positions and at

the origin as position vectors.

�Analyze Controller MyScript Component
The MyScript component on the Controller shows two sets of variables:

•	 The three positions:

•	 P0: The reference to the P0 game object.

•	 P1: The reference to the P1 game object.

•	 P2: The reference to the P2 game object.

The transform.localPosition of these objects will provide the

positions defining the two vectors:

	


V P P1 1 0= - 	

	


V P P2 2 1= - 	

Chapter 4 Vectors

156

•	 Draw control: There are seven toggles for showing or hiding the

following.

•	 DrawAxisFrame: Shows or hides the axis frame; the axis frame

serves as a reference for showing position vectors.

•	 DrawV12: Shows or hides vector


V1 at position P0 and


V2 at the

head of


V1 . This is convenient for examining
 

V V1 2+ .

•	 DrawV21: Shows or hides vector


V2 at position P0 and


V1 at the

head of


V2 . This is convenient for examining
 

V V2 1+ .

•	 DrawSum: Shows or hides the vectors
  

V V Vsum = +1 2 and
  

V V Vsum = +2 1 .

•	 DrawSub: Shows or hides the vector
  

V V Vsub = -1 2 .

•	 DrawNegV2: Shows or hides the vector −


V2 .

•	 DrawPosVec: Shows or hides currently visible vector(s) as position

vector(s).

The purpose of this example is for you to manipulate the P0, P1, and P2 positions

and toggle each of the preceding drawing options to closely examine each of the

corresponding vectors.

�Interact with the Example
Click the Play Button to run the example. Initially, both DrawAxisFrame and DrawV12 are

enabled so you should observe the axis frame and the two vectors


V1 (in red) and


V2

(in blue) connecting the checkered spheres P0, P1, and P2. Now, enable DrawPosVec to

observe vectors


V1 and


V2 drawn at the origin as position vectors. At any point in the

following interaction, feel free to toggle on DrawAxisFrame for referencing. For now,

please toggle it off to avoid cluttering the scene.

�Vector Addition and the Commutative Property

With DrawPosVec on, switch on both DrawV12 and DrawV21 toggles to show these two

sets of vectors. Select and manipulate position P1 to observe how the two sets of vectors

change. Now toggle DrawSum on and continue with the manipulation of position P1.

Observe that since
    

V V V V Vsum = + = +1 2 2 1 is a vector from P0 to P2, changing P1 has

Chapter 4 Vectors

157

absolutely no effect on


Vsum . Next, select and manipulate P0 to observe how the red


V1

and green


Vsum vectors change together while the blue


V2 remains constant. Repeat the

manipulation for P2 and observe


V2 and


Vsum altering while


V1 remains constant.

Through these interactions, you have verified that vector addition is indeed

accumulating the results of individual operands and that the operation does indeed obey

the commutative property. You were also reminded, through turning on the DrawPosVec

toggle, that vectors are independent of positions as all three vectors were identical to

their corresponding color partner except for their tail location.

Vector Subtraction

Reset all toggles to off and switch on DrawPosVec, DrawV12, and DrawNegV2. You should

observe three sets of vectors:


V1 (in red),


V2 (in blue), and −


V2 (in yellow). Manipulate

the Scene View camera to observe that the yellow vectors are indeed the same length

and in opposite directions as the blue vectors. Select and manipulate P1 to observe the

two sets of three vectors changing in sync. If you manipulate P2, it will only affect


V2 (in

blue) and −


V2 (in yellow) vectors. Now switch on the DrawSub toggle to observe the gray


Vsub vector as the sum of the red and yellow vector,
  

V V Vsub = + -()1 2 .

Through these interactions, you have verified that vector subtraction is indeed the

same as vector addition with the second operand being negated. In fact, every operand

after the first operand, if originally being subtracted, can instead be added after it’s been

negated, just like with floating-point arithmetic.

Position Vector

With DrawPosVec toggle on, every computed vector is displayed at the origin as a position

vector. For example, while


Vsum was computed by
 

V V1 2+ and the geometric depiction

suggests that


Vsum must always have its tail at P0, this is not the case. Once again, a

vector is a length and a direction; this definition holds true independent of any specific

position, even when a position is used initially to define that vector.

Chapter 4 Vectors

158

�Details of MyScript
Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

public GameObject P0, P1, P2; // V1=P1-P0 and V2=P2-p1

// For visualizing the vectors

private MyVector

 ShowV1atP0, ShowV2atV1, // Show V1 at P0 and V2 at head of V1

 ShowV2atP0, ShowV1atV2, // Show V2 at P0 and V1 at head of V2

 ShowSumV12, ShowSumV21, // V1+V2, and V2+V1

 ShowSubV12, // V1-V2

 ShowNegV2; // -V2

// Show as position vectors

private MyVector PosV1, PosV2, PosSum, PosSub, PosNegV2;

// Toggles for drawing/hiding corresponding vectors

public bool DrawAxisFrame = true;

public bool DrawV12 = false, DrawV21 = false;

public bool DrawSum = false;

public bool DrawSub = false, DrawNegV2 = false;

public bool DrawPosVec = false;

All public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The large number of private MyVector variables is

for visualizing the corresponding vectors. The Start() function for MyScript is listed as

follows:

void Start() {

 Debug.Assert(P0 != null);

 Debug.Assert(P1 != null);

 Debug.Assert(P2 != null);

 ShowV1atP0 = new MyVector() { // Show V1 vectors

 VectorColor = Color.red };

 ShowV1atV2 = new MyVector() {

 VectorColor = Color.red };

Chapter 4 Vectors

159

 PosV1 = new MyVector() { // Show V1 as position vector

 VectorAt = Vector3.zero, // always show at the origin

 VectorColor = Color.red };

 ShowV2atP0 = new MyVector() { // Show V2 vectors

 VectorColor = Color.blue };

 ShowV2atV1 = new MyVector() {

 VectorColor = Color.blue };

 PosV2 = new MyVector() { // Show V2 as position vector

 VectorAt = Vector3.zero,

 VectorColor = Color.blue };

 ShowSumV12 = new MyVector() { // Show V1 + V2

 VectorColor = Color.green };

 ShowSumV21 = new MyVector() { // Show V2 + V1

 VectorColor = Color.green };

 PosSum = new MyVector() { // Show sum as position vector

 VectorAt = Vector3.zero,

 VectorColor = Color.green };

 ShowSubV12 = new MyVector() { // Show V1 - V2

 VectorColor = Color.gray };

 PosSub = new MyVector() { // Show as position vector

 VectorAt = Vector3.zero,

 VectorColor = Color.gray };

 ShowNegV2 = new MyVector() { // Show -V2

 VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };

 PosNegV2 = new MyVector() {

 VectorAt = Vector3.zero,

 VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding

referencing the appropriate game objects via the Inspector Window. The rest of the

Start() function instantiates the many MyVector variables for visualization, setting their

colors and display positions. The Update() function is listed as follows:

Chapter 4 Vectors

160

void Update() {

 Vector3 V1 = P1.transform.localPosition -

 P0.transform.localPosition;

 Vector3 V2 = P2.transform.localPosition -

 P1.transform.localPosition;

 Vector3 sumV12 = V1 + V2;

 Vector3 sumV21 = V2 + V1;

 Vector3 negV2 = -V2;

 Vector3 subV12 = V1 + negV2;

 Draw control: switch on/off what to show

 V1: show V1 at P0 and head of V2

 V2: show V2 at P0 and head of V1

 Sum: show V1+V2 and V2+V1

 Sub: show V1-V2

 Negative vector: show -V2

}

The Update() function first computes all the relevant vectors:

•	


V P P1 1 0= -

•	


V P P2 2 1= -

•	
  

V V Vsum12 1 2= +

•	
  

V V Vsum21 2 1= +

•	
 

V Vn2 2= -

•	
  

V V Vsub12 1 2= -

Then it sets up the corresponding MyVector variables for display based upon their

values and if their toggle switches are true. The details of this visualization code are

independent of the vector operations being studied and are therefore not discussed here.

You can explore the code in these regions at your own leisure.

Chapter 4 Vectors

161

�Takeaway from This Example
This example demonstrates the details of vector addition and subtraction where the

commutative property of vector addition is verified and vector subtraction is presented

as vector addition with a negated vector. Equally important is the review of a vector’s

independence of positions.

Relevant mathematical concepts covered include

•	 Vector addition results in a vector that accumulates the operand

vectors.

•	 Vector addition is indeed commutative.

•	 Vector subtraction is simply an addition with the second operand

being negated.

•	 Reviewed that vectors are independent of any particular position.

EXERCISES

Verify Vector Addition Accumulates in General

Modify the scene and MyScript to include a fourth position, P3, and a vector,


V3 .



V P P3 3 2= -

Now, define


Vsum

   

V V V Vsum = + +1 2 3

Verify that it is always true that if the tail of


Vsum is located at P0, then its head will be

located at P3.

Verify the Associative Property of Addition and Subtraction

With the fourth position, P3, and vector


V3 , verify

	

     

V V V V V V1 2 3 1 2 3+()+ = + +() 	

Chapter 4 Vectors

162

and

	

     

V V V V V V1 2 3 1 2 3-()- = - -() 	

by computing and displaying each as a different MyVector object.

�Application of Vector Algebra
Although seldom applied directly, the indirect applications of vector algebra in video

games are ubiquitous and vital. For example, you have already experienced working with

vector subtraction in defining a vector between two positions for distance computation

and vector addition in computing movements when applying a velocity to an object.

A straightforward application of vector addition is in simulating velocity under a

constant external factor, for example, an airplane flying or a ship sailing under a constant

wind condition. Please refer to Figure 4-18 where a traveling ball is progressing toward

a target with a velocity of


VT . Under the wind condition,


Vwind , the effective velocity

experienced by the ball then becomes


VA :

	
  

V V VA T wind= + 	

Figure 4-18.  Traveling under constant wind condition

With your knowledge of vectors and vector addition, this wind condition is

straightforward to simulate and is examined in the next example.

Chapter 4 Vectors

163

�The Windy Condition Example
This example uses vector addition to simulate an object traveling under a constant

wind condition. The example allows you to adjust all the parameters of this simulation,

including the speed of the traveling object and the wind, the direction of the wind, and if

the wind condition should affect the traveling object. Figure 4-19 shows a screenshot of

running the EX_4_5_WindyCondition example from the Chapter-4-Vectors project.

Figure 4-19.  Running the Windy Condition example

The goals of this example are for you to

•	 Experience a straightforward example of applying vector addition to

affect object behavior

•	 Examine and understand the simple implementation of how velocity

can be affected under a constant wind condition

�Examine the Scene

Take a look at the Example_4_5_WindyCondition scene and observe the predefined game

objects in the Hierarchy Window. In addition to the Controller, there are two objects in

this scene: TravelingBall and RedTarget. This example simulates the TravelingBall

progressing toward the RedTarget under a constant wind condition that affects its velocity.

Chapter 4 Vectors

164

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

•	 Simulation control: Variables that control the simulation

•	 PauseMovement: The toggle that stops the simulation and the

movements of the objects in the scene, allowing for careful

examination of the scene.

•	 The objects: The objects in the scene that you can interact with

•	 TravelingBall: The reference to the TravelingBall game object

•	 RedTarget: The reference to the RedTarget game object

•	 Traveling ball speed: Variables that affect the speed of the

traveling ball

•	 BallSpeed: The speed at which the ball is traveling without any

wind. Note that the direction of ball’s velocity is along the vector

defined by the ball and the target positions. Assuming PB and PT

are the positions of the ball and the target, respectively, then



V BallSpeed P P NormalizedT T B� � �� �.

•	 DrawVelocity: A toggle to hide or show the ball’s velocity

vector,


VT .

•	 Wind condition: The variables that control the wind condition in the

simulation

•	 WindDirection: Determines the direction of the wind

velocity,


Vwind

•	 WindSpeed: Determines the speed of the wind velocity,


Vwind

•	 ApplyWind: Toggles the effect of the wind on or off

•	 DrawWind: A toggle to hide or show the wind’s velocity vector

Chapter 4 Vectors

165

�Interact with the Example

Click the Play Button to run the example. Note that initially PauseMovement is enabled

and the traveling ball does not move. The three vectors you observe are explained as

follows. The green vector pointing from the TravelingBall toward the RedTarget is the

ball’s current velocity,


VT . The red vector is the wind’s velocity,


Vwind . Lastly, the blue

vector is the path that the ball will take, the resulting vector,


VA , where

	
  

V V VA T wind= + 	

Increase the BallSpeed and WindSpeed to observe the corresponding green and red

vectors increase in length. Select and move the RedTarget to verify that the direction of

the green vector,


VT , always points toward the RedTarget. Next, select and change the

components of the WindDirection variable to verify that the direction of the red vector

changes accordingly.

Now, switch off PauseMovement toggle to allow the simulation to proceed. Try

increasing WindSpeed, for example, to 0.05, and observe


VT being affected while the

TravelingBall proceeds and drifts toward the RedTarget. Note that when WindSpeed

and WindDirection are unfavorable, for example, a speed of 0.15 in the direction of

(1, 0, 0), the TravelingBall will drift away from and never reach the RedTarget.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

public bool PauseMovement = true;

public GameObject TravelingBall = null;

public GameObject RedTarget = null;

public float BallSpeed = 0.01f; // units per second

public bool DrawVelocity = false;

private float VelocityDrawFactor = 20f; // To see the vector

public Vector3 WindDirection = Vector3.zero;

public float WindSpeed = 0.01f;

public bool ApplyWind = false;

public bool DrawWind = false;

Chapter 4 Vectors

166

private MyVector ShowVelocity = null;

private MyVector ShowWindVector = null;

private MyVector ShowActualVelocity = null;

All public variables for MyScript have been discussed when analyzing Controller’s

MyScript component. The private variable VelocityDrawFactor is for scaling the small

magnitude velocity vectors such that they can be visible. The MyVector data type private

variables are to visualize the three vectors,


VT ,


Vwind , and


VA . The Start() function for

MyScript is listed as follows:

void Start() {

 Debug.Assert(TravelingBall != null);

 Debug.Assert(RedTarget != null);

 ShowVelocity = new MyVector() {

 VectorColor = Color.green,

 DrawVectorComponents = false };

 ShowWindVector = new MyVector() {

 VectorColor = new Color(0.8f, 0.3f, 0.3f, 1.0f),

 DrawVectorComponents = false };

 ShowActualVelocity = new MyVector() {

 VectorColor = new Color(0.3f, 0.3f, 0.8f, 1.0f),

 DrawVectorComponents = false };

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding

referencing the appropriate game objects via the Inspector Window, while the rest of the

function instantiates the MyVector variables for proper visualization of the vectors. The

Update() function is listed as follows:

void Update() {

 Vector3 vDir = RedTarget.transform.localPosition -

 TravelingBall.transform.localPosition;

 float distance = vDir.magnitude;

 if (distance > float.Epsilon) { // if not at the target

 vDir.Normalize();

 WindDirection.Normalize();

Chapter 4 Vectors

167

 Vector3 vT = BallSpeed * vDir;

 Vector3 vWind = WindSpeed * WindDirection;

 Vector3 vA = vT + vWind;

 // Display the vectors

 if (PauseMovement)

 return;

 if (ApplyWind)

 TravelingBall.transform.localPosition +=

 vA * Time.deltaTime;

 else

 TravelingBall.transform.localPosition +=

 vT * Time.deltaTime;

 } // if (distance < float.Epsilon)

}

The Update() function first computes the vector from TravelingBall toward the

RedTarget,


Vdir . Next, the magnitude of


Vdir , distance, is computed and checked to

ensure that this is not a very small number. This checking accomplishes two important

objectives. First, a small distance value means that the TravelingBall object is closed

to or has reached the RedTarget object and further simulation is no longer required.

Second, when distance is approximately zero,


Vdir is approximately a zero vector and

thus cannot be normalized. When distance is larger than approximately zero, the

following velocity vectors are computed:



V BallSpeed VT dir= x ˆ

- -V WindSpeed WindDirectionwind = x
  

V V VA T wind= +

When the simulation condition is true, depending on if the user wants

to observe the effects of the wind, the TravelingBall position is updated by

either


V elapsedTimeT × or


V elapsedTimeA × .

Chapter 4 Vectors

168

�Takeaway from This Example

This example demonstrates the straightforward application of vector addition by

simulating traveling under a constant, external effect, like a wind condition. You have

observed that such a condition can be simulated as a velocity vector being added to the

traveling velocity.

Relevant mathematical concepts covered include

•	 Model constant wind breeze as a velocity

•	 Changing an object’s velocity by the addition of an object’s own

velocity with that of external velocities

EXERCISES

Compensate for the Wind Conditions

Note that if the wind velocity,


Vwind , is available during the computation of an object’s velocity,


VT , then it is possible to compensate for the wind condition. Instead of moving toward the

target, V̂dir , the traveling velocity should point toward the target only after V̂dir is affected by

the wind condition, or

	 BallSpeed V V Vdir T wind� � �ˆ  

	

So

	
 

V BallSpeed V VT dir wind� � �ˆ
	

Implement this compensation and observe a smoother TravelingBall movement. You have

observed that it is possible to compensate and largely remove the external wind factor by not

traveling directly toward the final destination.

Travel Under Multiple External Factors

Support a strong wind gust which occurs probabilistically (or pseudo-randomly). In addition to

speed and direction, allow your user to adjust the occurrence frequency and duration of this

wind gust. Now, as the TravelingBall moves toward its target, it may get blown off course

some of the times. You now know how to add simple environmental factors into a game.

Chapter 4 Vectors

169

�Summary
This chapter introduces vectors by relating to your understanding of measurement

and distance computations in the Cartesian Coordinate System. You have learned the

following:

•	 A vector is a size and a direction that can relate two positions.

•	 The vector definition is independent of any particular position.

•	 All positions in the Cartesian Coordinate System can be considered

as position vectors.

•	 Scaling a vector by a floating-point number changes its size but not

its direction.

•	 A normalized or unit vector has a size of 1 and is convenient for

representing the direction of a vector.

•	 Vectors are ideal for representing the velocities of objects.

•	 It is convenient to represent a velocity by separately storing its speed

and direction of movement.

•	 Vector addition and subtraction rules follow closely to those of

floating-point algebra.

The examples presented in this chapter allowed you to interact with and examine the

details of vectors and their operations. Based on vector concepts, you have examined the

simple object behaviors of following, or aiming, at a target and the environmental affects

you can create by disturbing an object’s motion with an external velocity.

Through this chapter, you have gained the basic knowledge of what a vector is, its

basic rules, and how it can be used to model simple object behaviors and environmental

effects. You are now ready to examine the more advanced operations of vectors, like the

dot product, which determines the relationship of two given vectors.

Before you continue, it is important to remember that the applications of vector

related concepts go far beyond interactive graphical applications like video games.

In fact, in many cases it is impossible to depict or visualize the vectors being used

in different applications. For example, a vector in n-dimensional space where n is

significantly large than 100! It is important to remember that you are learning one flavor

of vector usage: applications in interactive graphics. In general, vectors can be applied to

solve problems in a wide variety of disciplines.

Chapter 4 Vectors

171

CHAPTER 5

Vector Dot Products
After completing this chapter, you will be able to

•	 Understand the vector dot product definition, its properties, and its

geometric interpretation

•	 Recognize how the vector dot product relates two vectors by their

subtended angle and relative projection sizes

•	 Comprehend how a vector represents a line segment

•	 Apply the dot product to allow the interpretation of a line segment as

an interval

•	 Perform the simple inside-outside test for a point and an arbitrary

interval

•	 Apply the vector dot product to determine the shortest distance

between a point and a line

•	 Apply the vector dot product to compute the closest distance

between two lines

�Introduction
In Chapter 4 you learned that a vector is defined by the relationships between two

positions in the Cartesian Coordinate System: the direction from one position to another

and the distance between them. Though simple, the vector, or the concept and the

associated rules of relating two positions, is demonstrated to be a powerful tool that is

capable of representing object velocity and simple environmental effects for video game

development. This chapter continues with this theme and introduces the vector dot

product to relate two vectors.

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_5

https://doi.org/10.1007/978-1-4842-9885-5_5

172

Vectors are defined by their direction and magnitude, and thus when relating two

vectors, it is essential to include descriptions of how these two quantities are measured

with respect to each other. The vector dot product relates vector directions by calculating

the cosine of the subtended angle, or the angle between two vectors where their tails

are connected, and the vectors’ magnitudes by computing the respective projected

sizes, or one vector’s magnitude when measured along the direction of the other vector.

These ways of relating vectors are some of the most fundamental tools in analyzing the

proximity and connections between positions and directions in 3D space. The results of

applying the vector dot product provide the basis for predicting and controlling object

behaviors in almost all video games.

In video games it is often necessary to analyze the spatial relationships, such as

distances and intersections, of traveling objects and then predicting what events will

occur. For example, detecting and hinting to the player the situation where the pathway

of their explorer will pass within a hidden treasure’s proximity. To model this situation

mathematically, as you have learned from the previous chapters, the pathway of the

explorer is a function of their traveling velocity and can be represented as a vector. Then,

the hidden treasure can be wrapped by a bounding volume, that is, bounding sphere.

In this way, the problem to solve is to compute the closest distance between the vector

and bounding sphere center and determine if that distance is closer than the bounding

sphere radius. As you will learn from this chapter, the vector dot product can provide a

solution for this situation that is elegant and straightforward to implement. In fact, the

vector dot product is the best tool for determining distances between positions and line

segments.

This chapter begins by introducing the vector dot product, what it is, how it is

computed, and the rules for working with the operation. The chapter then moves on

to explain how to geometrically interpret the dot product results as the angle between

vectors and as projected lengths along these vectors. The inside-outside test of a 1D

interval along a major axis discussion from Chapter 2 is then cast and generalized as

an inside-outside problem based on vector line segments and projections. The two

application areas of the vector dot product that are examined specifically are the line

to point and the line to line distances. These types of applications play many roles in

video game development as well as other interactive graphical applications. Finally, this

chapter concludes by reviewing what you have learned about the vector dot product and

its many applications.

Chapter 5 Vector Dot Products

173

�Vector Dot Product: Relating Two Vectors
Recall that the vector definition is independent of any position. In other words, a vector

can have its tail located at any position. This knowledge is important because when you

analyze the relationship between two vectors, it is convenient to depict the tails of the

vectors at the same location. Figure 5-1 shows a drawing of two arbitrary vectors,


V1 and


V2 , with the same tail position, P0. As you can see, the shared tail position allows the two

vectors to be in close proximity and facilitates convenient visual comparison. By placing

two vectors at the same location, it becomes easier to analyze, understand, and quantify

the relationship between them.

Figure 5-1.  Relationship between two given vectors

Notice in Figure 5-1 that although the two vectors could be in any direction with any

magnitude in 3D Cartesian Coordinate Space, the two vectors together can always be

properly depicted on a 2D plane. In fact, the 2D plane that these vectors are depicted

on may or may not be parallel to any major axes. In general, it is true that given any two

arbitrary vectors in 3D space, as long as the two vectors are not parallel, there is always a

2D plane where both of the vectors in 3D space can be drawn. This observation is what

allows two vectors in 3D space to be drawn and analyzed on a 2D plane, as depicted in

Figure 5-1.

The second observation from Figure 5-1 is that, recalling that a vector is comprised

of a direction and a magnitude, that the relationship between two vectors can be

characterized by the angle between the vectors, θ, and by the relative sizes of the two

vectors. The vector dot product is the operation that can provide definitive answers to

both of these characteristics.

Chapter 5 Vector Dot Products

174

�Definition of Vector Dot Product
Given two vectors in 3D space



V x y z1 1 1 1= (), ,



V x y z2 2 2 2= (), ,

the dot product, or vector dot product, between the two vectors is defined as the

sum of the product of the corresponding coordinate components, or
 

V V x x y y z z1 2 1 2 1 2 1 2. = + +

Notice that

•	 Symbol: The symbol for the dot product operation, “·”, is literally

a “dot”.

•	 Operands: The operation expects two vector operands.

•	 Result: The result of the operation is a floating-point number.

It is especially important to pay attention to the last point. Similar to vector addition

and subtraction, the dot product operates on two vector operands. However, unlike the

other two operations, the result of the dot product is not a vector but a simple floating-

point number. It is this floating-point number that encodes the angle between the two

operand vectors and the relative sizes of the two operand vectors. How these values are

encoded in this single floating-point number and what you can do with it are the topics

that will be explored in the following subsections. However, before you begin that journey,

you will first need to explore and understand the rules and properties of the dot product.

Note T he dot product is also referred to as the inner product or the scalar
product in different disciplines of mathematics. This book will refer to the
operation as dot product exclusively.

Do not confuse the dot product symbol, “·”, for a multiplication sign. When
multiplications are involved in vector expressions, there will be no symbol between
the operands, such as sV



2 . Since one cannot multiply two vectors, you will never
see

 

VV1 2 , and therefore you can safely assume that if you see a “·” between two
vectors, the dot product is the operation to perform and not multiplication.

Chapter 5 Vector Dot Products

175

�Properties of Vector Dot Product
The vector dot product properties of commutative, associative, and distributive over a

floating-point scaling factor s and other vector operations are summarized in Table 5-1.

Table 5-1.  Properties of vector dot product

Properties Vector Dot Product

Commutative
   

V V V V1 2 2 1=⋅ ⋅

Associative
  

V V V1 2 3.() . [Undefined!]

Distributive over vector operation
         

V V V V V V V V V V1 2 A B 1 2 A 1 2 B+ = +.() () .() .()
Distributive over scale factor, s s V V sV V V sV

     

1 2 1 2 1 2= =.() () . .()

Take note of the undefined associative property. In this situation, it can be helpful to

remember that the result of the dot product operation is a floating-point number, so it is

possible to let

 

V V f1 2.() =

then it becomes obvious that

   

V V V f V1 2 3 3.() . = .

is an undefined operation since the first operand is not a vector but a floating-point

number. In general, please pay attention to the subtle differences in the notation. While

   

V V V fVA A1 2.() =

is scaling vector


VA by the result of the dot product,

   

V V V f VA A1 2.() . = .

Chapter 5 Vector Dot Products

176

is attempting to perform a dot product between a floating-point number, f, and the

vector,


VA , and is therefore an undefined operation. The only difference is in the single

“⋅” symbol! If you continue to use f to represent the result of


V1 dot


V2 , then you can

rewrite the distributive property over vector addition as

	

       

V V V V f V V fV fVA B A B A B1 2�� � �� � � �� � � �
	

which is the distributive property of vector addition over a scaling factor, f. This

means that the distributive property also applies over vector subtraction

	

         

V V V V V V V V V VA B A B1 2 1 2 1 2�� � �� � � �� � � �� � 	

or

	

       

V V V V f V V fV fVA B A B A B1 2�� � �� � � �� � � �
	

The vector dot product distributive property over a scale factor, s, is worth some

special attention. Notice that the scale factor s is only applied to one of the operands

and not both. At first glance, this may seem counterintuitive; however, it makes perfect

sense if you consider distributive property over a scale factor, s, of a floating-point

multiplication between a and b

s a b s a b a s b� �� � � �� �� � � �� �

Now, recall that the magnitude of a vector,


V x y z= (), , , is



V x y z� � �2 2 2

For this reason, a vector dotted with itself is its magnitude squared

  

V V x x y y z z x y z V1 1 1 1 1 1 1 1 1
2

1
2

1
2

1

2
� � � � � � � �

Lastly, the dot product between any vector with the zero vector always results in a

zero vector

 

V ZeroVector ZeroVector V ZeroVector1 1� � � �

Chapter 5 Vector Dot Products

177

�The Angle Between Two Vectors
This section derives a formula that computes the angle θ between the vectors



V1 and


V2

in Figure 5-1. As illustrated in Figure 5-2, this formula derivation begins by subtracting

the two given vectors

	
  

V V V3 1 2� � 	

Figure 5-2.  Subtracting the given two vectors

In Figure 5-2, similar to Figure 5-1, both


V1 and


V2 have their tails located in the

lower-left corner at position P0. Notice the −


V2 vector with its tail at position P1 and that

the vector


V3 with its tail at P0 is the result of adding


V1 with −


V2 , or

    

V V V V V3 1 2 1 2� � �� � � �

Figure 5-2 also depicts vector


V3 with its tail at P2 to create triangle P0P1P2. Recall that

the Laws of Cosine from trigonometry states that

    

V V V V V3

2

1

2

2

2

1 22� � � cos�

In this case, you know that


V x y z1 1 1 1= (), ,



V x y z2 2 2 2= (), ,



V x x y y z z3 1 2 1 2 1 2� � � �� �, ,

Chapter 5 Vector Dot Products

178

With algebraic simplification left as an exercise, you can show that

cos� �
� �

� � � �

x x y y z z

x y z x y z
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

this equation says that

x1x2 + y1y2 + z1z2= x y z x y z V V1
2

1
2

1
2

2
2

2
2

2
2

1 2� � � � �cos cos� �
 

or simply

   

V V x x y y z z V V1 2 1 2 1 2 1 2 1 2� � � � � cos�

You have just shown that the dot product definition, the sum of the products of the

corresponding coordinate components, actually computes a floating-point number

that is equal to the product of the magnitude of the two vectors and the cosine of the

angle between these two vectors. By normalizing


V1 and


V2 ,


V1 and


V2 both become

1.0, so that

ˆ ˆ ˆ ˆV V V V1 2 1 2= cos = cos� � �

This formula says that the dot product of two normalized vectors is the cosine of the

angle between the vectors.

It is important to note that the angle between two vectors is the one subtended by

the two vectors (the smaller angle). As illustrated in Figure 5-3, if θ in Figure 5-1 was 45°,

then the angle between the two vectors is 45° and not 315°. The key to remember is that

the angle subtended by two vectors, or two lines, is always between 0° and 180°.

Figure 5-3.  The angle subtended by vectors


V1 and


V2

Chapter 5 Vector Dot Products

179

Figure 5-4 depicts the angle measurements θ2 to θ6 between vector


V1 and vectors


V2 to


V6 , respectively. In this case,


V3 is perpendicular to


V1 and


V5 is in the opposite

direction to


V1 ; thus θ3= 90°, while θ5 = 180°. Notice the measurement of the angle θ6,

the angle between vectors


V1 and


V6 , is the angle subtended by these two vectors and

is not an accumulation from the angle θ5. Once again and very importantly, the angle

subtended by two vectors is always an angle between 0° and 180°.

Figure 5-4.  The angles between vectors

Figure 5-5 is a simple plot and a reminder of the cosine function. Recall that the

results of cosθ are positive between 0° and 90° and become negative between 90° and

180°. With the dot product of two normalized vectors being the cosine of the subtended

angle, you can now determine the relative directions of vectors with a simple dot

product calculation. In particular, when the subtended angle is less than 90°, the cosine

is positive, and thus you can conclude that the vectors are pointing along a similar

direction. Conversely, when the subtended angle is more than 90°, the cosine is negative,

and thus you can conclude that the vectors are pointing away from each other.

Chapter 5 Vector Dot Products

180

Figure 5-5.  Simple plot of the y = cos θ function

In the cases of Figure 5-4, you know

ˆ ˆ cosV V1 2 2 2 90� � � � �� �a positive number because

ˆ ˆ cosV V1 3 3 30 90� � � � �� �because

ˆ ˆ cosV V1 4 4 4 90� � � � �� �a negative number because

ˆ ˆ cosV V1 5 5 51 180� � � � � �� �because

ˆ ˆ cosV V1 6 6 6 90� � � � �� �a negative number because

These observations can be summarized in Table 5-2 for any given vectors,


V1 and


V2 .

Chapter 5 Vector Dot Products

181

Table 5-2.  Dot product results and subtended angles

Dot Product Results Subtended Angle θ Conclusions

ˆ ˆV V1 2 = cos = 1� � θ = 0° The vectors are in the exact same direction,
ˆ ˆV V1 2=

ˆ ˆV V1 2 = cos = 0� � θ = 90° The vector directions are perpendicular to

each other

ˆ ˆV V1 2 = cos > 0� � θ < 90° The vectors are pointing along similar

directions

ˆ ˆV V1 2 = cos < 0� � θ > 90° The vectors are pointing along similar, but

opposite directions

ˆ ˆV V1 2 = cos = -1� � θ = 180° The vectors are in the exact opposite direction,
ˆ ˆV V1 2= -

�The Angle Between Vectors Example
This example allows you to manipulate three positions that define two vectors. The

example computes and displays the angle between the two vectors and enables you to

verify the conclusions gathered from Table 5-2. Additionally, this example demonstrates

that as long as the two given vectors are not parallel, a 2D plane can always be found

for drawing the two vectors. Figure 5-6 shows a screenshot of running the EX_5_1_

AngleBetweenVectors example from the Chapter-5-DotProducts project.

Chapter 5 Vector Dot Products

182

Figure 5-6.  Running the Angle Between Vectors example

The goals of this example are for you to

•	 Experience manipulating the angle subtended by two vectors and

observe the results of the dot product

•	 Verify that a 2D plane can always be found for drawing two non-

parallel vectors

•	 Examine the implementation of and appreciate the subtleties of

vector normalization when computing dot products

�Examine the Scene

Take a look at the Example_5_1_AngleBetweenVectors scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are three

objects in this scene: the checkered sphere (P0) and the stripped spheres (P1 and P2).

These three game objects, with their corresponding transform.localPosition, will be

referenced to define the two vectors for performing dot product calculations.

Chapter 5 Vector Dot Products

183

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables: P0, P1, P2, and

DrawThePlane toggle. The toggle is for showing or hiding the 2D plane where the two

vectors are drawn, while the other three variables are defined for accessing the game

objects with their corresponding names. In this example, you will manipulate the

positions of the three game objects and examine the dot product resulting from the

vectors,


V1 and


V2 , defined accordingly

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

�Interact with the Example

Click the Play Button to run the example. In the Scene View window, you will observe

two vectors with tail positions located at the checkered sphere, P0, and a greenish plane

where the two vectors are drawn. The two vectors are the


V1 and


V2 and are defined by

the positions of P0, P1, and P2 game objects. Also visible in the Scene View window is the

2D axis frame with the red X-axis and green Y-axis vectors. On the axis frame, extending

from the origin is a black line segment. The angle subtended by this black line segment

and the red X-axis is the same angle subtended by vectors


V1 and


V2 , and the length of

this black line is proportional to the cosine of that angle, scaled by 1.5 times for easier

visual analysis. Lastly, take a look at the Console Window to observe the text output

reporting the computed angle between vectors


V1 and


V2 .

Now that you have looked over the scene, you will manipulate and observe the

cosine of the angle subtended by the two vectors and notice how the angle itself changes.

Please switch off the DrawThePlane toggle as the 2D plane can be distracting. Next, select

P1 and change its x- and y-component values to vary the angle between the two vectors.

In the Console Window, you can verify the values of the subtended angle and the cosine

of this angle. Observe how the black line segment, with its length changing, rotates

toward or away from the red X-axis direction, corresponding to the angle changes you

are making.

Chapter 5 Vector Dot Products

184

Since the length of the black line segment is proportional to the cosine of the

subtended angle, from the plot in Figure 5-5 and Table 5-2, you can verify that when

the subtended angle increases, up to 90°, the cosine of the angle decreases and thus

the length of the line also decreases. The opposite is also true, as the angle decreases

(between 90° and 0°), the cosine of the angle, and thus the length of the black line,

increases. In fact, you should notice that the length of the black line is maximized when

the subtended angle approaches zero and that the length of the line approaches zero

when the two vectors are approximately perpendicular. You can observe this behavior

by decreasing the P1 x-component value such that the subtended angle approaches

90°. When doing so, notice how the length of black line segment also approaches zero,

corresponding to cos90° = 0.

When you increase the subtended angle beyond 90°, you will notice the color of the

black line segment changes to red, indicating that the sign of the dot product result has

turned into a negative number. Now, decrease the y-component value of P1 to continue

to increase the subtended angle and notice that the red line segment continues to grow

in length once more as it rotates away from the positive X-axis direction. When


V1

and


V2 are approximately in the opposite direction, the red line segment will achieve

maximum length and should be on top of the negative red X-axis line, indicating the

angle between the two vectors is about 180° and that cos180° = − 1. Now, notice that any

attempt to increase the subtended angle beyond 180° will cause the red line segment to

rotate back toward the positive X-axis direction. This is similar to cases of vectors that are

between


V5 and


V6 in Figure 5-4. This exercise is to reaffirm that subtended angles are

always between 0° and 180° and to visually demonstrate what Table 5-2 showcases.

Next, you will verify that a 2D plane can always be defined to draw two vectors

that are not parallel. Please switch on the DrawThePlane toggle and rotate the camera

to see that the two vectors are indeed drawn on the greenish plane by examining that

the plane slices through the two arrows representing


V1 and


V2 , respectively. You can

manipulate any of the P0, P1, or P2 positions to observe the vectors change accordingly

and more importantly observe that the green plane also changes accordingly: it always

cuts through both vectors. Now, adjust P1 to the exact location of P2. One way you can do

this is by copying the values from P2’s transform components in the Inspector Window

and pasting them onto that of P1’s corresponding transform components. Once done,

notice that the 2D plane disappears. In this case, since the two vectors are pointing in the

exact same direction, there are an infinite number of 2D planes that can cut through the

vectors and thus none are shown.

Chapter 5 Vector Dot Products

185

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null; // Position P0

public GameObject P1 = null; // Position P1

public GameObject P2 = null; // Position P2

public bool DrawThePlane = true;

#region For visualizing the vectors

#endregion

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The code in the “For visualizing the vectors”

region is specific to drawing the vectors and as usual does not pertain to the math being

discussed in this section.

Note  By now, you have observed and may even have worked with some of
the visualization code. From here on, the visualization portion of MyScript will
become increasingly complex and involved. To avoid unnecessary distractions,
beginning from this example, the code for visualization will be separated into
collapsed hidden regions. The details of these regions will not be explained or
brought up as they can be tedious and in all cases are irrelevant to the concepts
being discussed. You are very welcome to explore these at your leisure.

The Start() function for MyScript is listed as follows:

void Start() {

 Debug.Assert(P0 != null); // Ensure proper init

 Debug.Assert(P1 != null);

 Debug.Assert(P2 != null);

 #region For visualizing the vectors

 #endregion

}

Chapter 5 Vector Dot Products

186

As in all previous examples, the Debug.Assert() calls ensure proper setup

regarding referencing the appropriate game objects via the Inspector Window. The

region “For visualizing the vectors,” which contains the details of initializing the

visualization variables for the vectors in the scene, is once again irrelevant to the math

being discussed and can be distracting. Therefore, this region will not be discussed. The

Update() function is listed as follows:

void Update() {

 float cosTheta = float.NaN;

 float theta = float.NaN;

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v2 = P2.transform.localPosition -

 P0.transform.localPosition;

 float dot = Vector3.Dot(v1, v2);

 if ((v1.magnitude > float.Epsilon) &&

 (v2.magnitude > float.Epsilon)) {

 cosTheta = dot / (v1.magnitude * v2.magnitude);

 // Alternatively,

 // costTheta = Vector3.Dot(v1.normalize, v2.normalize)

 theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;

 }

 Debug.Log("Dot result=" + dot +

 " cosTheta=" + cosTheta + " angle=" + theta);

 #region For visualizing the vectors

 #endregion

The first three lines of the Update() function compute

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

	 dot V V� �
 

1 2 	

Chapter 5 Vector Dot Products

187

The if condition ensures that neither of the vectors are the zero vector, which as you

have learned does not have a length, cannot be normalized, and thus, cannot subtend

angles. When both of the vectors are properly defined, the cosine of the angle between

them can be computed by recognizing that

dot V V V V� � �
   

1 2 1 2 cos�

which means that the cosine of the subtended angle is simply

cos� �
dot

V V
 

1 2

Finally, theta, the subtended angle value, can be derived by the arccosine function.

Note that alternatively, cosθ can be computed by performing the dot operation with

the normalized version of the two vectors. The dot products between vectors that are

normalized will be examined in more detail in the following sections.

�Takeaway from This Example

This example verifies that when given two non-parallel vectors, a 2D plane can always

be derived to draw the two vectors. This fact allows the examination of the two arbitrary

vectors, which may not be aligned with any major axes, to be drawn, examined, and

analyzed. You have interacted with and closely examined the angle subtended by two

vectors and that this angle is always between 0° and 180°. Finally, you have observed that

the cosine of a subtended angle can be computed by dividing the dot product of the two

vectors with their magnitudes or, alternatively, from the dot product of the two vectors

after they have been normalized.

cos� � �
dot

V V
 

1 2

ˆ ˆV V1 2⋅

Relevant mathematical concepts covered include

•	 The dot product of normalized vectors is the cosine of their

subtended angle.

•	 The value of the dot product provides insights into the relative

directions of the operand vectors (see Table 5-2).

•	 A unique 2D plane can be derived from two non-parallel vectors such

that both vectors can be drawn on the plane.

Chapter 5 Vector Dot Products

188

Unity tools

•	 The Mathf library can be used for mathematical functions.

•	 Rad2Deg: The scale factor for radian to degree conversion.

•	 Acos can be used to compute arccosine.

•	 The Mathf.Acos function returns the angle in units of radian and

not degree.

EXERCISES

Derive the Dot Product Formula

Given that

    

V V V V V3

2

1

2

2

2

1 22� � � cos�

and that


V x y z1 1 1 1= (), ,



V x y z2 2 2 2= (), ,



V x x y y z z3 1 2 1 2 1 2� � � �� �, ,

show that

cos� �
� �

� � � �

x x y y z z

x y z x y z
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

Verify the Need for Normalization

When computing theta in MyScript,

 cosTheta = dot / (v1.magnitude * v2.magnitude);

 theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;

Chapter 5 Vector Dot Products

189

replace these two lines of code with the non-normalized vectors’ version

 theta = Mathf.Acos(Vector3.Dot(v1, v2)) * Mathf.Rad2Deg;

Try running your game and observe the error messages. Now, include proper normalization

 theta = �Mathf.Acos(Vector3.Dot(v1.normalize, v2.normalize)) *

Mathf.Rad2Deg;

Try running this latest version and observe the same results as the original. This simple

exercise shows that it is vital to normalize your vectors when computing the angle

between them.

Verify the Dot Product Formula

When computing theta in MyScript,

 cosTheta = dot / (v1.magnitude * v2.magnitude);

replace this line of code with the explicit dot product computation

 cosTheta = �(v1.x*v2.x + v1.y*v2.y + v1.z*v2.z) /

(v1.magnitude * v2.magnitude);

Verify that runtime results are identical.

�Vector Projections
You have learned that the dot product between two vectors,



V1 and


V2 , computes

the product of the vector magnitudes and the cosine of the angle subtended by the

two vectors

   

V V V V1 2 1 2� � cos�

In the previous example, you have verified that by normalizing both of the vectors

beforehand, ensuring that

ˆ ˆ .V V1 2 1 0= =

Chapter 5 Vector Dot Products

190

the dot product now simply computes the cosine of the angle between the

given vectors

ˆ ˆ cosV V1 2� � �

Now, you can examine the two remaining ways of computing the dot product

between two given vectors—with only one of the vectors being normalized or

	
ˆ cosV V V1 2 2� �
 

�
	

	

 

V V V1 2 1� �ˆ cos�
	

Figure 5-7 depicts the geometric interpretation of these two dot product

computations.

Figure 5-7.  Computing dot products between two vectors with one being
normalized

It is important to note that the left and right images of Figure 5-7 are both based on

exactly the same two vectors,


V1 and


V2 . The left image of Figure 5-7 shows that with

vector V̂1 normalized, the dot product computed

	
ˆ cosV V V1 2 2� �
 

�
	

is the length of


V2 when measured along direction of the


V1 vector. This is also

referred to as the projected length of


V2 on the


V1 vector. Notice that with the tails of the

two vectors located at the same position, the head of


V2 is projected perpendicular to

and onto the


V1 vector, as evident by the dotted line with the right-angle indicator. This

projected length can also be interpreted through trigonometry. You can treat


V2 as the

Chapter 5 Vector Dot Products

191

hypotenuse that subtends the angle, θ, with the base direction being V̂1 and the last side

being the dotted line, thus forming a right-angle triangle. In this case, the length of the

base of the right-angle triangle is


V2 cosθ .

The right image of Figure 5-7 shows the same two vectors,


V1 and


V2 , where the dot

product is computed with vector V̂2 being normalized instead of V̂1

	

 

V V V1 2 1� �ˆ cos�
	

In this case, the dot product computes the exact complement of the previous case—

the length of


V1 when measured along the direction of


V2 , or the projected length of


V1 on the


V2 vector, or the length of the base of the right-angle triangle that is in the


V2

direction and subtends an angle, θ, with the hypotenuse


V1 , and the dotted line as its

final side. The right image of Figure 5-7 also illustrates a case where the length of the

base of the right-angle triangle extends beyond the head of the vector


V2 . This example

shows that the projected size can be larger than the magnitude of the vector that it is

being projected onto or


V1 cos� �


V2

Finally, remember that cosθ is negative for θ > 90°, and therefore,


V cosθ , or the

projected size of a vector can actually be a negative value. In such cases, you know that

the vector being projected onto is more than 90° away from the vector being projected.

This turns out to be important information with many applications, some of which will

be elaborated in later subsections.

This discussion shows that with the appropriate vector normalized, the dot product can

compute the projection of the length of one vector onto the direction of the other vector and

can provide a way to relate the lengths of these two vectors. In other words, the dot product

allows you the capability to project one vector onto another. Observe that the normalized

operand is the vector being projected onto. These projections are examined in the next example.

The actual applications of the vector dot product will be discussed after the next section.

�The Vector Projections Example
This example allows you to interact with and examine the results of vector projections.

You will manipulate the definition of two vectors and examine the results of projecting

these two vectors onto each other. Figure 5-8 shows a screenshot of running the EX_5_2_

VectorProjections scene from the Chapter-5-DotProducts project.

Chapter 5 Vector Dot Products

192

Figure 5-8.  Running the Vector Projections example

The goals of this example are for you to

•	 Appreciate the results of normalizing one of the vectors in the dot

product operation

•	 Experience and understand the results of projecting vectors onto

each other

•	 Observe and interact with negative projected distances

•	 Examine the code that performs vector projection

�Examine the Scene

Take a look at the Example_5_2_VectorProjections scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are three

objects in this scene: P0, P1, and P2. As with the previous example in this chapter, you

will manipulate the positions of the three game objects to define two vectors,


V1 and


V2 ,

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

and examine the results of projecting these two vectors onto each other.

Chapter 5 Vector Dot Products

193

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the references to the three game

objects: the checkered sphere P0; two stripped spheres, P1 and P2; and a drop-down

menu, ProjectionChoice. The drop-down menu allows the following options:

•	 V1 onto V2: Project


V1 vector onto


V2

•	 V2 onto V1: Project


V2 vector onto


V1

•	 Projection off: Do not perform any projection

�Interact with the Example

Click the Play Button to run the example. Take note that by default, the

ProjectionChoice is set to V1OntoV2, and therefore, MyScript is computing and

displaying the results of projecting


V1 onto


V2 .

Observe the two vectors,


V1 and


V2 , that are defined by three positions.


V1 is cyan

and initially is above


V2 , which is magenta. Notice a light, semi-transparent cylinder

along the


V2 vector that is connected with a thin black line to the head of


V1 . The thin

black line depicts the projection from the head of


V1 perpendicularly onto


V2 , where the

line intersects


V2 . The semi-transparent cylinder on


V2 shows the projected length of


V1 on


V2 . To emphasize the fact that the result of a dot product, or the projected length

in this case, is just a floating-point number, this value is used to scale the height of the

black bar to the side of the checkered sphere (P0). The length of the black bar is always

the same as the semi-transparent cylinder. This length is the result of the calculated dot

product, and in this scenario is

	
v LengthOnV V V V1 2 1 2 1� � �

 ˆ cos�
	

Now, select P1 and manipulate its x-component to change the length of


V1 . Notice

that as


V1 increases in length, the projected length on


V2 , the semi-transparent cylinder,

also increases in length resulting in the black bar growing taller. This observation can be

explained by the fact that the length of


V1 is


V1
, and as



V1 increases, so does


V1 cosθ ,

or v1LengthOnV2.

Now, select P2 and decrease the y-component value to increase the subtended angle.

Observe that as the angle increases, the projected length of


V1 decreases, and when


V1

and


V2 become almost perpendicular, the length approaches zero. This observation

Chapter 5 Vector Dot Products

194

can be explained by the fact that as the angle θ increases, cosθ decreases, and thus

v1LengthOnV2 also decreases. When the two are perpendicular, cosθ returns a value of 0,

forcing


V1 cosθ to be 0 as well, which is why no projection is visible when


V1 and


V2 are

perpendicular. Beyond 90° and to 180°, cosθ is negative and thus the dot product result

is negative. When this occurs, you will observe the black bar turning red and growing

in the negative y-direction. Notice how the semi-transparent projection cylinder is no

longer on


V2 , but extending in the opposite direction of


V2 . There are three important

observations to make about the value of v1LengthOnV2:

•	 It is a simple floating-point number; this number is a measurement

of the length of the projecting vector,


V1 , along the vector being

projected onto, V̂2 .

•	 It is the sign of the number that indicates whether


V1 and


V2 are

within 90° of each other.

•	 Its magnitude is directly proportional to the length of the projecting

vector,


V1 , and the cosine of the subtended angle with V̂2 .

It is important to remember the characteristics of the cosine function that its result

decreases when the angle increases from 0° to 90°. This means, as you have experienced

and observed, that the magnitude of v1LengthOnV2 is actually inversely proportional to

the angle θ for 0° < θ < 90°.

Feel free to choose the V2OntoV1 option for the ProjectionChoice variable and to

examine and verify the complementary observations for

	
v LengthOnV V V V2 1 1 2 2� � �ˆ cos

 

�
	

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

public enum ProjectionChoice {

 V1OntoV2,

 V2OntoV1,

 ProjectionOff

};

Chapter 5 Vector Dot Products

195

// Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null; // Position P0

public GameObject P1 = null; // Position P1

public GameObject P2 = null; // Position P2

public ProjectionChoice ProjChoice = ProjectionChoice.V1OntoV2;

#region For visualizing the vectors

#endregion

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. Take note that variables with the enumerated data

type show up in the Hierarchy Window as options for a drop-down menu. The Start()

function for MyScript is listed as follows:

void Start() {

 Debug.Assert(P0 != null); // Ensure proper init

 Debug.Assert(P1 != null);

 Debug.Assert(P2 != null);

 #region For visualizing the vectors

 #endregion

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding

referencing the appropriate game objects via the Inspector Window. The Update()

function is listed as follows:

void Update() {

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v2 = P2.transform.localPosition -

 P0.transform.localPosition;

 if ((v1.magnitude > float.Epsilon) &&

 (v2.magnitude > float.Epsilon)) {

 // make sure v1 and v2 are not zero vectors

Chapter 5 Vector Dot Products

196

 switch (ProjChoice) {

 case ProjectionChoice.V1OntoV2:

 float v1LengthOnV2 =

 Vector3.Dot(v1, v2.normalized);

 Debug.Log("Projection Result:

 Length of V1 along V2 = " + v1LengthOnV2);

 break;

 case ProjectionChoice.V2OntoV1:

 float v2LengthOnV1 =

 Vector3.Dot(v1.normalized, v2);

 Debug.Log("Projection Result:

 Length of V2 along V1 = " + v2LengthOnV1);

 break;

 default:

 Debug.Log("Projection Result: no projection,

 dot=" + Vector3.Dot(v1, v2));

 break;

 }

 }

 #region For visualizing the vectors

 #endregion

}

The first two lines of the Update() function compute



V P P1 1 0� � 	


V P P2 2 0� � 	

The if condition checks and ensures that the normalization operation will not be

performed on zero vectors. When conditions are favorable, the switch statement checks

the user’s projection choice and simply computes and prints the results of one of the

following:

	 v LengthOnV V V1 2 1 2� �
 ˆ

	

	 v LengthOnV V V2 1 1 2� �ˆ 

	

Chapter 5 Vector Dot Products

197

�Takeaway from This Example

This example demonstrates the results of projecting vectors onto each other. Vector

projection is computed when one of the two operands of a dot product operation is

normalized. Remember, the normalized vector is the one being projected onto. It is

important to remember that projection is a simple dot product operation and the result

is a signed floating-point number.

Relevant mathematical concepts covered include

•	 Calculating the dot product with a normalized vector can be

interpreted as projecting the length of a vector onto another vector.

•	 The sign of the projection result indicates if the subtended angle is

less than, when positive, or more than, when negative, 90°.

•	 The projection result is directly proportional to the length of the

projecting vector and inversely proportional to the subtended angle

when the angle is between 0° and 90°.

Unity tools

•	 Enum data type appears as drop-down menu options in the

Hierarchy Window.

EXERCISE

Verify the Vector Projection Formula

When computing v1LengthOnV2 in MyScript

 float v1LengthOnV2 = Vector3.Dot(v1, v2.normalized);

verify the projection formula

	

 

V V V1 2 1� �ˆ cos�
	

and replace that line with

 float cosTheta = Vector3.Dot(v1.normalize, v2.normalized);

 float v1LengthOnV2 = v1.magnitude * cosTheta;

Verify that the runtime results are identical.

Chapter 5 Vector Dot Products

198

�Representation of a Line Segment
Figure 5-9 shows two checkered sphere positions, P0 and P1, defining a vector,



V1 ,

	


V P P1 1 0� � 	

Notice that the region bounded by P0 to P1 is a segment of a straight line. In this

case, the position Pa, when measured along the


V1 direction, is located before the line

segment and position Pb is located after the line segment. In Figure 5-9, positions in

between both P0 and P1 are described as inside the line segment and thus both Pa and Pb

are both outside of the line segment.

As you will see in later examples, in many applications it is critical to determine if a

position is within the bounds of a line segment defined by two positions. By referencing

the vector defined by the two positions, that is, the


V1 in Figure 5-9, there are two

convenient ways to identify a line segment region. The first way is to represent a line

segment based on parameterizing the vector


V1

l s P sVv � � � �0 1



As illustrated in Figure 5-9, the value of s identifies a position along the P0 and P1 line

segments. For example,

l P V Pv 0 00 1 0� � � � �


l P Vv 0 5 0 50 1. .� � � � �


midpoint of the line segment

l P V P P P Pv 1 10 1 0 1 0 1� � � � � � �� � �


Figure 5-9.  Representing a line segment with a vector

Chapter 5 Vector Dot Products

199

In this way, the value of s is the portion, or percentage, of the line segment covered

as measured from P0 toward P1 or the portion of the line segment covered along the


V1 direction starting from P0. When there is no coverage, or when s = 0, the position

identified is the beginning position of the line segment, P0. A complete coverage, or

when s = 1, is the position identified as the end position of the line segment, P1. In

general, as illustrated in Figure 5-9, a position is within the line segment boundaries

when 0 ≤ s ≤ 1. When s < 0, for example, Pa, the position is before the beginning position,

P0, and when s > 1, for example, Pb, the position is after the end position of the line

segment, P1.

The second way to represent the line segment region bounded by the positions P0

and P1 is by parameterizing the normalized


V1 , or V̂1 ,

l t P tV� � � �0 1̂

In this case, because the vector is normalized, t is the measurement of the actual

distance traveled from the beginning position, P0, toward the end position of the line

segment, P1, or the distance traveled along the V̂1 direction starting at P0. For this reason,

when t = 0, or l(0), it signifies that no distance was traveled, and thus the identified

position is the beginning of the line segment, P0. The end position of the line segment is

reached when t V=


1 or the length of the vector


V1

l V P V V
 

1 0 1 1� � � � �ˆ P V P0 1 1� �


As illustrated in Figure 5-9, the range 0 1≤ ≤t V


 identifies a position within the line

segment boundaries. t < 0 and t V>


1 identify positions that are before the beginning

position and after the end position of the line segment as measured along the V̂1

direction.

The only difference between the two line segments’ representations is the

normalization of the


V1 vector

l s P sVv � � � �0 1



l t P tV� � � �0 1̂

Chapter 5 Vector Dot Products

200

When comparing these two representations, the 0 to 1 range of the s parameter in

lv(s) is convenient for determining if a position is within the line segment bounds and the

distance measurement of the t parameter in l(t) is advantageous when an actual distance

traveled is required in the computation. Note that the s and t parameters are related by a

simple scaling factor,


V1 ,

	
t s V� �



1 	

In practice, when serving as part of more elaborate algorithmic computations,

line segments are seldom explicitly represented. In these situations, the lv(s) or l(t)

parameterizations are often used interchangeably depending on the needs of the

computations.

When represented explicitly, a line segment is often referred to as a ray. Rays are

always parameterized as l(t) with a normalized direction vector. For this reason, l(t) is

often referred to the vector line equation, or the ray equation, and is used often in video

game development. For example, the Unity Ray class, https://docs.unity3d.com/

ScriptReference/Ray.html, is a straightforward implementation of the line equation.

�Inside-Outside Test of a General 1D Interval
Recall from Chapter 2 that a 1D interval is a region that is bounded by a minimum and

maximum position along one of the major axes of the Cartesian Coordinate System. With

the knowledge of vectors, the definition of an interval can now be relaxed. In general, a

1D interval, or a line segment, is defined as the region bounded by two positions along a

direction (instead of just a major axis). In this way, the line segment in Figure 5-9 can be

described as a 1D interval with its minimum position at P0 and its maximum position at

P1 along the


V1 direction.

Figure 5-10 shows that the inside-outside test for an interval can be based on the

comparison of coordinate values or the comparison of distances. Recall that given an

interval defined along the Y-axis with min and max positions, a given y-value, v, is inside

the interval when

	 min max≤ ≤v 	

Chapter 5 Vector Dot Products

https://docs.unity3d.com/ScriptReference/Ray.html
https://docs.unity3d.com/ScriptReference/Ray.html

201

If the value min is subtracted from all sides of the equation,

min min min max min� � � � �v

then

0 � �� � � �� �v min max min

This inequality equation says that the inside-outside test can also be determined

by examining the distance from the minimum and maximum positions of the interval.

For example, a given y-value, v, is inside the Y-axis interval when the distance between

v to the minimum position is greater than zero and less than that of the maximum to

minimum distance. With this understanding, Figure 5-11 illustrates the case for a general

interval, with a direction that may not be aligned with a major axis of the Cartesian

Coordinate System, like the Y-axis of Figure 5-10.

Figure 5-10.  Inside-outside test based on coordinate values and distances

Chapter 5 Vector Dot Products

202

Figure 5-11.  An interval bounded by P0 and P1, or a line segment along the


V1
direction

With the knowledge of vectors, you can now define a vector,


V1 , with tail position at

P0, to represent the interval in Figure 5-11, where



V P P1 1 0� � 	

In this way, the interval is simply the line segment

l t P tV� � � �0 1̂ 	

With the interval being described as a line segment, it should not be surprising that

Figures 5-11 (a), (b), and (c) are similar to that of Figure 5-10. Figures 5-11 (a) and (b)

illustrate the situation when the position to be tested, Pt, is outside of the line segment

interval. Figure 5-11 (a) shows that, d, the symbol representing the distance between Pt

and P0 along the


V1 direction, is larger than the line segment’s magnitude, d V>


1 , and

is thus beyond P1. Figure 5-11 (b) shows the case when d < 0, or when Pt is before P0. It is

obvious that in both Figures 5-11 (a) and (b), Pt is outside of the interval. Figure 5-11 (c)

shows that Pt is within the bounds of the interval when 0 1≤ ≤d V


. Note the similarities

between these three cases with those of Figure 2-2, except instead of the coordinate

value comparisons, the inside-outside conditions are restated in Figure 5-11 based on

distance measurements.

Chapter 5 Vector Dot Products

203

Figure 5-11 (d) is a more interesting case; here the position of interest, Pt, does

not lie on the same line as the interval. You have addressed this type of situation in

Chapter 2. You may recall that when working with intervals along the Y-axis, the x- and

z-component values are irrelevant when it comes to determining if a position is within

a given y-interval. For example, a given position (−3, 2, 5) is inside of the Y-axis interval

with a bound of min = − 1 and max = 4 because the y-component value of the position,

2, is bounded by the values of min, −1, and max, 4. In this case, the position (−3, 2, 5)

does not lie on the same line as the interval, the Y-axis, and only the coordinate value

along the axis direction of interest, the Y-axis value of 2, is considered.

Figure 5-11 (d) translates the interval test knowledge from Chapter 2 using the

vector projections you have learned. In this case,


V1 is the vector from P0 to P1 and is the

direction that corresponds to the Y-axis where the interval is defined. Given a position of

interest, Pt, you can define the vector


Vt as



V P Pt t� � 0

then the distance, d in all cases of Figure 5-11, is simply the projected distance of

vector


Vt , in the


V1 direction, or

d V Vt� �


1̂

Note that since


Vt is projected onto the V̂1 direction, the vector


V1 must be

normalized. Finally, you know that the position, Pon, the projection of the Pt position

onto


V1 , is t = d along the l(t) line or d distance away from P0 in the


V1 direction

P l d P dVon � � � � �0 1̂

Note  You can refer back to the initial discussion of vector projection in
Figure 5-7. In this case,



Vt is simply


V2 and the projected length, d, is


V2 cosθ .
When d V>



1 , the projected length is greater than the size of the vector being
projected onto, and when d < 0, the subtended angle, θ, is more than 90°.

Chapter 5 Vector Dot Products

204

�The Line Interval Bound Example
This example demonstrates the results of the inside-outside test for a general 1D interval

(non-axis-aligned interval). This example allows you to interactively define a general 1D

interval and manipulate a test position to examine the results of performing the inside-

outside test. Figure 5-12 shows a screenshot of running the EX_5_3_LineIntervalBound

scene from the Chapter-5-DotProducts project.

Figure 5-12.  Running the Line Interval Bound example

The goals of this example are for you to

•	 Experience defining and interacting with a general interval

•	 Examine the projection of a position onto a general interval

•	 Understand the implementation of an inside-outside test for the

general interval

Chapter 5 Vector Dot Products

205

�Examine the Scene

Take a look at the Example_5_3_LineIntervalBound scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are four

objects in this scene: P0, P1, Pt, and Pon. Here, P0 and P1 are the bounds of the interval,

Pt is the position to manipulate for the inside-outside test, and Pon represents the

position when Pt is projected onto the interval.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that

correspond to the game objects in the scene. For all these variables, the transform.

localPosition will be used for the manipulation of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. Observe that by default and design, this

example is rather similar to the Interval Bounds in 1D example in Chapter 2. Select Pt

and adjust its y-component value to move the position along the green line that defines

the interval. Since Pt is on the green line, the projected position, Pon, is exactly the same

as Pt. This is why you do not observe a separate projected position. Notice how the

color of the interval changes if Pt is inside or outside of the interval. You can compare

the interval color change to the debug messages printed in the Console Window and

verify that proper inside-outside conditions are being computed. So far, this example has

worked in exactly the same manner as the one from Chapter 2.

Now, adjust the x- and z-component values of Pt to move the test position away from

the green line. Notice that as soon as Pt departs from the green line, you begin to observe

the position Pon. You will also notice that Pon is connected to Pt by a thin black line that

is perpendicular to the green line. Move the camera around to verify that the thin line

connecting Pon to Pt is indeed perpendicular to the green line. You are observing the

exact situation illustrated in Figure 5-11 (d).

Now, you can adjust P0 and P1 to manipulate the direction and length of the 1D

interval. Observe that the perpendicular projection of Pon and the inside-outside test

results are both consistently updated and correct for any interval you define.

Chapter 5 Vector Dot Products

206

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

// Positions: to define the interval, the test, and projected

public GameObject P0 = null; // Position P0 of interval

public GameObject P1 = null; // Position P1 of interval

public GameObject Pt = null; // Pt: test position

public GameObject Pon = null; // Pon: Pt projected on interval

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(P0 != null); // Ensure proper init

 Debug.Assert(P1 != null);

 Debug.Assert(Pt != null);

 Debug.Assert(Pon != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 if (v1.magnitude > float.Epsilon) {

 Vector3 vt = Pt.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v1n = v1.normalized;

 float d = Vector3.Dot(vt, v1n);

 Pon.transform.localPosition = P0.transform.localPositio

 + d * v1.normalized;

Chapter 5 Vector Dot Products

207

 if ((d >= 0) && (d <= v1.magnitude))

 Debug.Log("V1.mag=" + v1.magnitude +

 "Projected Length=" + d + " ==> Inside!");

 else

 Debug.Log("V1.mag=" + v1.magnitude +

 "Projected Length=" + d + " ==> Outside!");

 }

 #region For visualizing the vectors

 #endregion

}

The first line of the Update() function computes



V P P1 1 0� �

The if condition ensures that


V1 is not a zero vector, which cannot be normalized or

projected onto. If


V1 is not a zero vector, then the four statements within the if condition

perform the following four computations:



V P Pt t� � 0

V̂ Normalize V1 1� � �

d V Vt� �


1̂

P P dVon � �0 1̂

The Debug.Log() function prints the inside-outside status of Pt according to
0 1≤ ≤d V



. Note that although the interval is represented by the line equation

l t P tV� � � �0 1̂

this representation is implicit. There is no explicit data structure definition for a

specific variable referencing the line equation. This implicit evaluation without explicit

representation is rather typical in the application of the line equation.

Chapter 5 Vector Dot Products

208

�Takeaway from This Example

This example links the interval discussions in Chapter 2 to the concepts of vectors. At

this point, you know how to compute the inside-outside test of a position for a general

interval that is not aligned with a major axis. Recall the discussion in Chapter 2, where

in Figure 2-7, the point in a bounding area test was derived by applying the one-

dimensional interval test twice, once each to two intervals that are defined along two

perpendicular directions. The same idea of applying the 1D interval test twice can be

used for a general bounding area, and following the same concept once more, you can

use the 1D interval test three times for a general bounding box. Now you can perform the

inside-outside test of a position for a bounding box with three perpendicular intervals

that do not need to be aligned with the major axes!

Though exciting, the non-axis-aligned bounding box has a severe limitation; the

collision computation between these boxes is straightforward only when the three

corresponding intervals that define the boxes are parallel. In general, given two

bounding boxes, each with different interval directions, the collision detection between

two such boxes is complex and non-trivial. For this reason, only axis-aligned bounding

boxes are typically used in video game development.

Relevant mathematical concepts covered include

•	 An interval along a direction is a line segment and can be represented

by the vector line equation.

•	 Vector projection can be applied to compute the projected distance

of a point along a direction.

•	 The projected position along a direction can be determined for any

given position.

EXERCISES

Verify the Axis-Aligned Interval Discussion with Vectors

Recall that the Y-axis interval is defined by its min and max values. These are actually P0 with

(0,  min , 0) and P1 with (0,  max , 0). Now, by computing

Chapter 5 Vector Dot Products

209



V P Pt t� � 0

d V V� �
 ˆ

1

P P dVon � �0 1̂

verify that given a general test position, Pt with (xt, yt, zt), the projected position, Pon, is

(0, yt − min, 0), showing that in this case, the x- and z-component values of Pt are indeed

irrelevant. You can set up the values of P0 and P1 in this example to visualize the described

results.

Verify the Pon Position

Define


Von to be

 

V dV Von t� �1̂

and observe that

P P Von t on� �


Modify MyScript to print out Pon values based on these equations and then compare them to

the Pon values currently computed in the script to verify they are identical. Notice that


Von is

also, Pon − Pt.

Verify that Vector Projection Is Perpendicular

Refer to the previous definition of


Von ,



V P Pon on t� �

Since Pon is the projection of Pt onto V̂1 , it follows that


Von is perpendicular to


V1 . Recall

from the discussion of the dot product that when vectors have a subtended angle of 90°,

and because cos90° = 0, the dot product of two such vectors is zero. Modify MyScript to

compute and print out the values of
 

V Von ⋅ 1 and


V Von ⋅ 1̂ and verify that both results are zero.

Chapter 5 Vector Dot Products

210

�Line to Point Distance
Imagine an adventure game where hidden treasures are exposed when exploration

agents are within their proximity. By now, you know how to define bounding volumes,

for example, bounding spheres, for both the treasure and the agent objects, as well as

support the detection of collisions between these corresponding bounding volumes.

Figure 5-13 illustrates that for a fast-moving agent, the simple bounding sphere collision

test may result in missed treasures.

Figure 5-13.  A case where the bounding sphere misses with fast-traveling objects

In Figure 5-13, both the police car agent and the city bus treasure are bounded by

their corresponding bounding spheres. In this case, the police car is traveling at a high

speed along the velocity defined by the black line. Here, in one update the car traveled

from position P0 on the left to position P1 on the right. Notice that the bounding spheres

of the car and the bus would have collided around Pon if the police car was traveling

at a much slower speed. However, at the described high speed, the bounding sphere

collisions at both the current frame and the next frame would be false, thereby missing

the police car (agent) and the city bus (treasure) collision.

A straightforward approach to address this problem is by modeling this situation as

a line to point distance computation. In the case of Figure 5-13, the problem is to find

the closest distance between the line segment defined by P0 and P1 and the point located

at Pt. This distance would be used to compare against the radii of the bounding spheres

of the agent and the treasure to determine if a collision should occur during the agent’s

motion. If this distance is less than the combined radii, then a collision should occur.

From basic geometry, you know that the closest distance between a line segment

and a position should be measured along a direction that is perpendicular from the line

to the position. Now, you also know that a vector projection projects the head of a vector

Chapter 5 Vector Dot Products

211

perpendicularly onto another given vector. In the case of Figure 5-13, these observations

can be translated into, defining two vectors,



V P P1 1 0� �



V P Pt t� � 0

Then you can project


Vt onto


V1 to compute Pon, the projection of Pt on the vector


V1 .

In this case, you know the vector,


Von ,



V P Pon on t� �

must be perpendicular to


V1 , and thus the distance between Pt and Pon, or


Von , is

the closest distance between the line segment defined by P0, P1 and the position Pt. This

distance would be compared with the combined radii of the bounding spheres of the

agent and treasure for collision determination.

It is encouraging that this problem and its solution are familiar to those of the line

segment and the general interval inside-outside test. Based on the previous discussions,

you know that

d V Vt� �


1̂

P P dVon � �0 1̂

You can observe that when the position Pt is within the bounds of the line segment

end points, or when 0 1≤ ≤d V


, the closest distance between the line segment and the

point is from Pt to Pon, or the magnitude of


Von or


Von .

Figures 5-14 (a) and (b) show that Pt can also be outside of the line interval. In these

cases, the closest distance measurements are actually between Pt and the end points

of the line segment. Figure 5-14 (a) illustrates that when d < 0, Pt is located at a position

before the line segment and thus the closest distance is actually the distance between Pt

and P0, or simply the magnitude


Vt or


Vt . Figure 5-14 (b) illustrates that when d V>


1 ,

Pt is located at a position after the line segment and thus the closest distance is the

distance between Pt and P1, or the magnitude of P Pt �� �1
� ������

 or P Pt − 1

� ������
. Figure 5-14 (c) is

the same case as Figure 5-13, when 0 1≤ ≤d V


, and the closest distance is the magnitude

of


Von or


Von .

Chapter 5 Vector Dot Products

212

Figure 5-14.  The three conditions of line to point distance calculation

�The Line to Point Distance Example
This example demonstrates the results of the line to point distance computation. This

example allows you to interactively define the line segment, manipulate the position of,

and examine the results from the line to point distance computation. Figure 5-15 shows

a screenshot of running the EX_5_4_LineToPointDistance scene from the Chapter-5-

DotProducts project.

Chapter 5 Vector Dot Products

213

Figure 5-15.  Running the Line to Point Distance example

The goals of this example are for you to

•	 Experience working with a straightforward application of the vector

dot product concepts

•	 Interact with and understand the results of line to point distance

computation

•	 Examine the implementation of line to point distance computation

�Examine the Scene

Take a look at the Example_5_4_LineToPointDistance scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are exact

same four objects in this scene as in the previous example: P0, P1, Pt, and Pon. Here, P0

and P1 are the checkered spheres that identify the line segment. Pt is the white sphere

and is the position (the point) used for the line to point distance computation. Finally,

Pon, the red sphere, is the position where Pt is projected onto the line.

Chapter 5 Vector Dot Products

214

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that

correspond to the game objects in the scene. For all these variables, the transform.

localPosition will be used for the manipulation of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. Observe that P0 and P1 define the green vector

direction and a line segment. There is a thin black line connecting Pt, the white sphere,

to the projected position, Pon, the red sphere, on the line segment. Select Pt and adjust

its y-component value. Try to move Pt away from the line, for example, by increasing

the y-component value, and observe the red sphere increase in size. If you move Pt

closer instead, you will observe the red sphere shrink. The size of the red sphere, Pon, is

directly proportional to the distance between Pt and the line segment. The results of this

computation can also be observed in the Console Window.

Now, change the x-component value of Pt to observe the corresponding movement

of the projection position, Pon. Notice that when Pt is within the bounds of the line

segment, the thin black line connecting Pt to Pon is always perpendicular to the line

segment, indicating the projection of Pt onto the line segment. When Pt is moved to

outside of the line segment, the thin black line becomes connected to the closest end

point of the line segment, either P0 or P1. This signifies that the closest distance in these

situations is actually the measurement to one of the end points of the line segment.

You can now select and manipulate P0 and P1 to verify that the distance computation

is indeed correct for any line segment, including a line segment defined by the zero

vector, which occurs when P0 and P1 are located at the same position.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

// Positions: to define the interval, the test, and projected

public GameObject P0 = null; // Position P0

public GameObject P1 = null; // Position P1

public GameObject Pt = null; // For distance computation

public GameObject Pon = null; // closest point on line

Chapter 5 Vector Dot Products

215

#region For visualizing the line

#endregion

void Start() {

 Debug.Assert(P0 != null); // Ensure proper init

 Debug.Assert(P1 != null);

 Debug.Assert(Pt != null);

 #region For visualizing the lines

 #endregion

}

All the public variables for MyScript have been discussed when analyzing

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 float distance = 0; // closest distance

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 float v1Len = v1.magnitude;

 if (v1Len > float.Epsilon) {

 Vector3 vt = Pt.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v1n = (1f / v1Len) * v1; // <<-- what is this?

 float d = Vector3.Dot(vt, v1n);

 if (d < 0) {

 Pon.transform.localPosition =

 P0.transform.localPosition;

 distance = vt.magnitude;

 } else if (d > v1Len) {

 Pon.transform.localPosition =

 P1.transform.localPosition;

 distance = (Pt.transform.localPosition -

 P1.transform.localPosition).magnitude;

 } else {

Chapter 5 Vector Dot Products

216

 Pon.transform.localPosition =

 P0.transform.localPosition + d * v1n;

 Vector3 von = Pon.transform.localPosition -

 Pt.transform.localPosition;

 distance = von.magnitude;

 }

 float s = distance * kScaleFactor;

 Pon.transform.localScale = new Vector3(s, s, s);

 Debug.Log("v1Len=" + v1Len + " d=" + d +

 " Distance=" + distance);

 }

 #region For visualizing the lines

 #endregion

}

The first two lines of the Update() function compute

	


V P P1 1 0� � 	

v Len V1 1=


The if condition checks for and avoids performing the normalization operation on a

zero vector. When the condition is favorable, the following are computed:

	


V P Pt t� � 0 	

V̂
v Len

V1 1

1

1
=



 		 Note: normalize


V1

	 d V Vt� �


1̂ 	

With Pon being the closet point on the line segment and the position being distance

away from Pt, notice how the computation is governed by the values of the projected

length, d:

Chapter 5 Vector Dot Products

217

•	 When d < 0, the condition is as illustrated in Figure 5-14 (a), and

P Pon = 0

distance Vt=


•	 When d > v1Len, or d V>


1 , the condition is as illustrated in

Figure 5-14 (b), and

P Pon = 1

distance P Pt� � 1

� ��������

•	 The final condition, when 0 1≤ ≤d V


, is as illustrated in Figure 5-14

(c), and

P P dVon � �0 1̂



V P Pon on t� �

distance Von=


The last three lines of code scale the red sphere that represents Pon in proportion to

the value of distance and outputs the computation results to the Console Window.

�Takeaway from This Example

This example demonstrates a solution to a fundamental problem in video games and

interactive computer graphics. In video games, the closest distance and intersection

computations are some of the most straightforward solutions to the problem of missed

collisions from fast-moving objects. In graphical interactions, many basic operations

depend on the results of line to point distance computation. For example, in a drawing

editor, clicking the mouse button to select a line object is typically implemented as

determining if the clicked position is sufficiently close to the line object, as clicking

perfectly on a one-pixel wide line can be challenging and frustrating!

The solution presented in this example to these types of problems is based on the

concepts of vector projection and builds directly on the knowledge gained from the line

equation and the general interval inside-outside test discussions. These concepts are

Chapter 5 Vector Dot Products

218

some of the most important topics in interactive graphical applications and are widely

applied in video game development.

Relevant mathematical concepts covered include

•	 The distance between a line segment and a point, Pt, can be solved by

finding the position, Pon, along the line segment that is closest to Pt,

and computing the distance between Pon and Pt.

•	 When Pt is outside of the line segment, Pon is located at one of the line

segment end points.

•	 When Pt is inside the line segment, Pon is the projection of Pt onto the

line segment.

EXERCISE

Experience Solving the Missing Collision Problem

Modify MyScript to continuously send a fast-moving agent from P0 to P1, for

example, traveling at a speed of 20 units per second. You can refer to the EX_4_3_

VelocityAndAiming scene of Chapter-4-Vectors for a sample approach of how to

implement this functionality. In your Update() function, compute the collision between the

agent and the Pt sphere. Notice even when the P0 to P1 line segment passes right through

the Pt sphere, you can fail to detect the collision between the agent and the Pt sphere. This

is because the agent is simply moving too fast for the spheres to overlap. Verify that you can

resolve this problem with the line to point distance computation.

�Line to Line Distance
Imagine in another adventure game, you want to know if the path of the explorer will

come too close to a monster pathway. This is a simple case of determining the distance

between two line segments. This problem has a simple and elegant solution that allows

you to practice the vector algebra learned. Figure 5-16 illustrates the general case of two

line segments, where the problem is how to compute the perpendicular, or the shortest,

distance between the lines.

Chapter 5 Vector Dot Products

219

Figure 5-16.  Distance between two line segments

The problem of finding the closest, or the perpendicular, distance between two

given lines is similar to the line to point distance problem. The solution boils down to

locating a point on each line where when connected are perpendicular to both of the two

given lines. This description is depicted in Figure 5-16, where the two lines are defined

by positions P1 and P2 and Pa and Pb, respectively. In this figure, the position Pd1 is d1

distance away from P1 and Pda is da distance away from Pa where the line segment from

Pd1 to Pda is perpendicular to both of the other two lines. In this way, the shortest distance

between the lines is the length of the vector, Pd1 − Pda. In order to find Pd1 and Pda, the

task is to find the distances d1 and da. You can begin deriving the solution by defining



V P P1 2 1� �


V P Pa b a� �


V P Pp d da� �1

The descriptions of Pd1 and Pda can be formulated as two separate line segments

P P d Vd1 1 1 1� � ˆ

P P d Vda a a a� � ˆ

Since


Vp is perpendicular to both


V1 and


Va , it must be true that both of the

following are true:

	
V̂ Vp1 0� �



	

	
V̂ Va p� �



0
	

Chapter 5 Vector Dot Products

220

Now, if you substitute Pd1 and Pda into


Vp , these two equations become

ˆ ˆ ˆ ˆ ˆV V V P P V P d V P d Vp d da a a a1 1 1 1 1 1 1 0� � � �� � � � � � �� � �

	

ˆ ˆ ˆ ˆ ˆV V V P P V P d V P d Va p a d da a a a a� � � �� � � � � � �� � �

1 1 1 1 0
	

Note that these are two simultaneous equations with two unknowns, d1 and da.

Now, examine the first of the two equations, by following the distributive property of dot

product over vector operations, collecting the terms with V̂1 , and recognizing ˆ ˆV V1 1⋅ is 1.0

ˆ ˆV V V P Pp d da1 1 1� � � �� �


Substitute the definitions of Pd1 and Pda

� � � � �� �ˆ ˆ ˆV P d V P d Va a a1 1 1 1

Apply the distributive property of dot product for vector

� � � � � � � �ˆ ˆ ˆ ˆ ˆ ˆV P V d V V P V d Va a a1 1 1 1 1 1 1

Collect the P1 and Pa terms

� � �� � � � � �ˆ ˆ ˆ ˆ ˆV P P V d V V d Va a a1 1 1 1 1 1

Apply distributive property over factors d1 and da

� � �� � � �� � � �� �ˆ ˆ ˆ ˆ ˆV P P d V V d V Va a a1 1 1 1 1 1

Recognize the fact that V̂1 dot V̂1 is equal to 1

� � �� � � � �� �ˆ ˆ ˆV P P d d V Va a a1 1 1 1

Chapter 5 Vector Dot Products

221

Now, let

d V Va� �ˆ ˆ
1



V P Pa a1 1� �

Then

ˆ ˆ ˆV V V V d d dp a a1 1 1 1 0� � � � � �


Following similar simplification steps, left as an exercise, you can show that

ˆ ˆ ˆV V V V d d da p a a a� � � � � � �


1 1 0

In this way, the simultaneous equations become

ˆ ˆV V d d da a1 1 1 0� � � �

� � � � �ˆ ˆV V d d da a a1 1 0

Recall that dot product results are floating-point numbers; therefore, ˆ ˆV Va1 1⋅

and ˆ ˆV Va a⋅ 1 return simple floating-point numbers. These equations are thus simple

algebraic equations that are independent from vector operations, and once again, their

simplification and solution derivation are left as an exercise. You can show that the

solution to the simultaneous equations is

d
V V d V V

d

a a a

1

1 1 1

21
�
� �� � � �� �

�

ˆ ˆ 

	

d
V V d V V

da

a a a
�

�� � � �� �
�

ˆ ˆ 

1 1 1

21 	

Chapter 5 Vector Dot Products

222

In this case, to allow easier interpretation of text output, instead of distances you can

compute the portion of line segment covered or

d
d

V
1

1

1

� �


d
d

V
a

a

a

� �


and

P P d Vd1 1 1 1� � � 

P P d Vda a a a� � � 

where you know Pd1 and Pda are within the bounds of their respective line segments

only when d1
′ and da

′ are both within the range of 0 to 1. Now, the closest distance

between the two lines is the distance between Pd1 and Pda, or P Pd da1 −
� ���������

. Note that this is

also the length of the vector


Vp , or


Vp .

�The Line to Line Distance Example
This example demonstrates the results of line to line distance computation. This

example allows you to interactively define the two line segments and examine the results

from the line to line distance computation. Figure 5-17 shows a screenshot of running

the EX_5_5_LineToLineDistance scene from the Chapter-5-DotProducts project.

Chapter 5 Vector Dot Products

223

Figure 5-17.  Running the Line to Line Distance example

The goals of this example are for you to

•	 Experience deriving and simplifying non-trivial vector expressions

•	 Verify solutions to vector equations with a straightforward

implementation

•	 Examine the implementation of line to line distance computation

�Examine the Scene

Take a look at the Example_5_5_LineToLineDistance scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are three

sets of objects defined for the visualization of the two line segments: the two checkered

spheres P1 and P2, the two stripped spheres Pa and Pb, and the two solid color spheres

Pd_1 and Pd_a. The transform.localPosition of P1, P2 and Pa, Pb defines the bounding

positions of the two line segments. The transform.localPosition of Pd_1 is a position

along the line defined by P1 to P2 and Pd_a a position along the Pa to Pb line where the

distance from Pd_1 to Pd_a is the closest distance between the two lines.

Chapter 5 Vector Dot Products

224

�Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables with names that

correspond to the game objects in the scene. These variables are set up to reference the

game objects with the corresponding names in the scene.

�Interact with the Example

Click the Play Button to run the example. Once running, you will observe two line

segments. The first is red and is defined by a pair of checkered spheres, P1 and P2. The

second line segment is blue and is defined by a pair of stripped spheres, Pa and Pb. Along

each line segment is a semi-transparent sphere, Pd_1 on the red line segment and Pd_a

on the blue line segment. Notice that the two spheres are connected by a thin black line

that is perpendicular to both the red and the blue line segments. You are observing the

solution to the line to line distance computation.

Now, rotate the Scene View camera to verify that the thin black line is indeed

perpendicular to both the red and blue line segments. Feel free to manipulate any of the

line segment end points to verify the computation results. Note that when the locations

of Pd_1 or Pd_a are outside of their respective line segments, the semi-transparent

spheres will turn opaque. You can also observe the text output in the Console Window.

There, the values for d1 and da are in the range between 0 and 1, assisting your

verification of the corresponding position’s inside-outside status on their respective line

segment.

Lastly, set both of the line segments to be along the same direction, for example, set

P1 and P2 to the values (0, 0, 0) and (5, 0, 0) and Pa and Pb to (0, 2, 0) and (5, 2, 0). Once

done, notice that the results of both Pd_1 and Pd_a are no longer visualized. You can

verify in the Console Window that the line segments are in the exact same direction. This

is a special case not handled in the derived solution. One of the exercises at the end of

this example will tell you what this special case is and allow you to practice handling this

special case.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

Chapter 5 Vector Dot Products

225

public GameObject P1, P2; // define the line V1

public GameObject Pa, Pb; // define the line Va

public GameObject Pd_1; // point on V1 closest to Va

public GameObject Pd_a; // point on va closest to V1

#region For visualizing the line

#endregion

void Start() {

 Debug.Assert(P1 != null); // Ensure proper init

 Debug.Assert(P2 != null);

 Debug.Assert(Pd_1 != null);

 Debug.Assert(Pa != null);

 Debug.Assert(Pb != null);

 Debug.Assert(Pd_a != null);

 #region For visualizing the line

 #endregion

}

All the public variables for MyScript have been discussed when analyzing

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 Vector3 v1 = P2.transform.localPosition -

 P1.transform.localPosition;

 Vector3 va = Pb.transform.localPosition -

 Pa.transform.localPosition;

 if ((v1.magnitude < float.Epsilon) ||

 (va.magnitude < float.Epsilon))

 return; // only works with well defined line segments

 Vector3 va1 = P1.transform.localPosition -

 Pa.transform.localPosition;

 Vector3 v1n = v1.normalized;

 Vector3 van = va.normalized;

Chapter 5 Vector Dot Products

226

 float d = Vector3.Dot(v1n, van);

 bool almostParallel = (1f - Mathf.Abs(d) < float.Epsilon);

 float d1 = 0f, da = 0f;

 if (!almostParallel) { // two lines are not parallel

 float dot1A1 = Vector3.Dot(v1n, va1);

 float dotAA1 = Vector3.Dot(van, va1);

 d1 = (-dot1A1 + d * dotAA1) / (1 - (d * d));

 da = (dotAA1 - d * dot1A1) / (1 - (d * d));

 d1 /= v1.magnitude;

 da /= va.magnitude;

 Pd_1.transform.localPosition =

 P1.transform.localPosition + d1 * v1;

 Pd_a.transform.localPosition =

 Pa.transform.localPosition + da * va;

 float dist = (Pd_1.transform.localPosition -

 Pd_a.transform.localPosition).magnitude;

 Debug.Log("d1=" +d1+ " da=" +da+ " Distance=" + dist);

 } else {

 Debug.Log("Lines are parallel, not handled");

 }

 #region For visualizing the line

 #endregion

}

The first two lines of the Update() function compute

	


V P P1 2 1� � 	

	


V P Pa b a� � 	

The code then ensures that both are not zero vectors and continues to compute

	


V P Pa a1 1� � 	

Chapter 5 Vector Dot Products

227

V̂1 and V̂a

d V Va� �ˆ ˆ
1

Recall that the dot product of two normalized vectors is the cosine of the subtended

angle and that the cosine of 0° or 180° is equal to 1 and −1, respectively. For this

reason, the almostParallel variable is true when V̂1 and V̂a are almost parallel. In the

implementation, the computation only proceeds when the two directions are not almost

parallel. This check is necessary because the solutions for both d1 and da involve a

division by 1 − d2 and when the two directions are almost parallel, d ≈ 1.0, which means

d1 and da will be divided by 0, thus causing neither d1 nor da to be defined. When the two

lines are not parallel, the code computes

dot A V Va1 1 1 1� �ˆ 

	

dotAA V Va a1 1� �ˆ 

	

and

d
dot A d dotAA

d1 2

1 1 1

1
�
� � �

�

	
d

dotAA d dot A

da �
� �
�

1 1 1

1 2
	

where notice that both d1 and da are scaled to values between 0 and 1 for positions

that are inside the respective line segments, and closest positions are computed

accordingly,

P P d Vd1 1 1 1� �


	

P P d Vda a a a� �


	

And lastly, the closest distance between the two lines is simply the distance between

the closest positions

dist P Pd da� �1

� ����������
	

Chapter 5 Vector Dot Products

228

�Takeaway from This Example

Though the presented solution of the line to line distance is interesting, it is incomplete.

First of all, the solution does not address the situation when the line segments are

parallel. Secondly, the solution does not address the situations when the closest points

are outside of the given line segments, that is, when either Pd1 or Pda or both are outside

of their corresponding line segments. As in the case of line to point distance, when the

closest position is outside of the line segment, the closest distance should be measured

to the corresponding end position of the line segment. Although not a complete solution,

this example does demonstrate and allow you to practice simplifying vector equations

based on the learned vector algebra and serves as a way to illustrate an implementation

of a typical solution to vector equations.

Through working with this example, you have observed that the actual vector

equations and their solution process may be complex and involved. However, thankfully,

as you have also witnessed, the derived solutions are typically elegant and can be

implemented in a straightforward fashion with a relatively small number of steps. To

ensure proper implementation, it is essential to maintain precise drawings and notes

with symbols that correspond to variable names. Lastly, and very importantly, attention

must be maintained when working with normalized vs. non-normalized vectors.

Relevant mathematical concepts covered include

•	 Vector algebra, or the rules governing vector operations, are

invaluable in simplifying non-trivial vector equations.

Relevant observations on implementation include

•	 It is vital to understand and check for situations when mathematical

expressions are undefined, for example, normalization of zero

vectors, or divisions by 0.

•	 It is often possible to relate mathematical expressions to real-world

geometric orientations. For example, you know that the dot product,
ˆ ˆV Va1 ⋅ , computes the cosine of the angle subtended by two vectors;

therefore, a value of 1 or −1 means that the vectors are parallel. It

is the responsibility of the software developer to understand these

implications and ensure all appropriate conditions are considered

and supported.

Chapter 5 Vector Dot Products

229

EXERCISES

Verify the Solutions for d1 and da

The derived simultaneous equations for line to line distance are

	
ˆ ˆ ˆV P d V P d Va a a1 1 1 1 0� � � �� � �

	

	
ˆ ˆ ˆV P d V P d Va a a a� � � �� � �1 1 1 0

	

You know



V P P1 2 1� �


V P Pa b a� �


V P Pa a1 1� �

d V Va� �ˆ ˆ
1

Now, show that

d
V V d V V

d

a a a

1

1 1 1

21
�
� �� � � �� �

�

ˆ ˆ 

	

d
V V d V V

da

a a a
�

�� � � �� �
�

ˆ ˆ 

1 1 1

21 	

In your solution derivation process, make sure to pay special attention to normalized and un-

normalized vectors.

Handling Parallel Lines

Recall that the solutions for d1 and da are derived based on the observation and simplification

of the simultaneous equations

V̂ Vp1 0� �


	

V̂ Va p� �


0
	

Chapter 5 Vector Dot Products

230

Now, if the two line segments are parallel, then, ˆ ˆV Va1 = and thus there is only one equation

with two unknowns. For this reason, the derived solution is valid only when ˆ ˆV Va1 ≠ or when

the two lines are not parallel.

In general, the shortest distance between two parallel lines can be determined by computing

the shortest distance between one of the lines to the end point on the other line. Now, modify

MyScript to support distance computation between parallel lines.

Notice your solution assumes both line segments are infinitely long where the closest

positions on each line can be outside of their respective line segments. Once again,

this is not a complete solution to closest distance between the two finite length line

segments. Imagine the explorer and the monster pathways when the closest positions

are outside of the line segments, the distance computed would be based on positions

that the explorer or the monsters will not move to. The general solution is similar to that

of the line to point distance when the closest position is outside, it should be clamp to

the corresponding end point.

�Summary
This chapter continues with the exploration of vectors by introducing the vector dot

product, a tool for analyzing relationships between two vectors. Since a vector is defined

by a size and a direction, the tool for analyzing the relationships between two vectors

reports on the relative directions and sizes of these vectors.

The definition of the vector dot product is straightforward, the sum of the products

of the corresponding components of the two vectors, and the result is a simple signed

floating-point number. There are four ways to compute the dot product between

two vectors and each offers a unique geometric insight into the resulting floating-

point number.

The first way of computing a dot product is by operating on two non-normalized

vectors. The resulting floating-point number is the product of the sizes of the two vectors

and the cosine of their subtended angle. While the least useful, this floating-point

number does provide slight insight into the subtended angle between the two vectors. If

the number is positive, then the subtended angle is less than 90°; otherwise, the angle is

between 90° and 180°.

Chapter 5 Vector Dot Products

231

The second way of computing a dot product is by operating on two normalized

vectors. In this case, the resulting floating-point number is simply the cosine of the

subtended angle. This result is invaluable when you need to determine how much two

directions differ. In fact, checking the dot product results of two normalized vectors

against approximately 0 or 1 for when the two vectors are almost perpendicular or

parallel is one of the most frequently encounter test cases in video game development.

The third and fourth way of computing a dot product is to ensure only one of the

operands is normalized. In this scenario, you are computing the projected length of

the non-normalized vector along the direction of the normalized vector. These forms

of computing the dot product have the broadest application. This is because projected

sizes, as you have experience with line to point and line to line distance computation,

are the basis for computing distances and, as you will learn in the next chapter, for

computing intersections.

You have learned about vectors, gained knowledge on how to analyze the

relationships between vectors, and applied these concepts in solving some interesting

and non-trivial geometric problems. In the next chapter, you will learn about the vector

cross product, a tool to relate two vectors to the space that contains those vectors. But

before you continue, here are the summaries of the vector dot product definition, rules,

and straightforward applications.

�Vector Dot Product Definition and Implications

Dot Product Definition Remark

 

V V x x y y z z1 2 1 2 1 2 1 2� � � � Definition of the dot product, also referred to as the inner

product

   

V V V V1 2 1 2� � cos� Geometric interpretation of the dot product definition, θ is

the angle subtended by the two vectors

  

V V V1 1 1

2� � Dot product of a vector with itself is the squared of its

magnitude


V ZeroVector ZeroVector1 � � Dot product with the zero vector is the zero vector

Chapter 5 Vector Dot Products

232

�Interpreting the Dot Product Results

Dot Product Geometric Interpretations

Direction: ˆ ˆ cosV V1 2� � � When both operands are normalized, the result of dot

product is the cosine of the subtended angle

Projected size: ˆ cosV V V1 2 2� �
 

� Projected size of


V2 (the un-normalized vector) along the

V̂1 (the normalized vector) direction

Projected size:
 

V V V1 2 1� �ˆ cos� Projected size of


V1 along the V̂2 direction

�Insights into the Subtended Angle

Dot Product Results The Angle θ Conclusions

ˆ ˆ cosV V1 2 1� � �� θ = 0° The vectors are in the exact same direction,
ˆ ˆV V1 2==

ˆ ˆ cosV V1 2 0� � �� θ = 90° The vector directions are perpendicular to each other

ˆ ˆ cosV V1 2 0� � �� θ < 90° The vectors are pointing along similar directions

ˆ ˆ cosV V1 2 0� � �� θ > 90° The vectors are pointing along similar, but opposite

directions

ˆ ˆ cosV V1 2 1� � � �� θ = 180° The vectors are pointing in the exact opposite

direction ˆ ˆV V1 2� �

Chapter 5 Vector Dot Products

233

�The Line Equations
The line segment bounded by the given two positions, P0 and P1, can be expressed as

either of the following:

lv s P sV� � � �0 1



l t P tV� � � �0 1̂

where

	


V P P1 1 0� � 	

and the values of the parameters s and t provide the following insights into a position

on the line segment.

Values of s Values of t Position Identified

s < 0 t < 0 Measured along the


V1 direction, a position before the

beginning position, P0

0 ≤ s ≤ 1 0 1≤ ≤t V
 A position within the line segment

s > 1 t V>


1 Measured along the


V1 direction, a position after the end

position, P1

Chapter 5 Vector Dot Products

235
© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_6

CHAPTER 6

Vector Cross Products
and 2D Planes
After completing this chapter, you will be able to

•	 Differentiate between the Left-Handed and Right-Handed 3D

Coordinate System

•	 Discuss the vector cross product definition and the resulting vector

direction and magnitude

•	 Describe the geometric interpretation of the vector cross product

•	 Relate the 2D plane equation to the vector plane equation and its

parameters

•	 Interpret the geometric implications of the vector plane equation

•	 Relate the cross product result to 2D plane equations

•	 Derive an axis frame when given two non-parallel vectors

•	 Apply the vector concepts learned to solve point to plane distance,

point to plane projection, line to plane intersection, and reflecting a

vector across a plane

�Introduction
In Chapter 4, you learned about vectors—that the relationship between two positions

can be defined by a direction and a distance. Vectors and their rules of operation

enabled you to precisely describe and analyze object motions. In Chapter 5, you

learned about vector dot products—that the relationship between two vectors can be

https://doi.org/10.1007/978-1-4842-9885-5_6

236

characterized by their subtended angle and projected sizes. The vector dot product

and its rules of operation allowed you to accurately represent and analyze arbitrary line

segments, including distances between these line segments and other objects. In this

chapter, you will learn about how the vector cross product can be used to relate two

vectors to the space that defines these vectors and some applications of these concepts.

The result of the vector cross product is a new direction. Interestingly, and as you

will learn, this new direction characterizes the space that defines the two vectors as a

2D plane, that is, this new direction defines a plane that both vectors exist on. This new

knowledge enables a convenient representation of and the ability to analyze arbitrary 2D

planes, including computing distances to, projections onto, and line intersections with

any 2D plane. Although these are not direct applications, they are topics that become

more comprehensible because of insights gained from the understanding of the vector

cross product.

In video games, it is often necessary to process and analyze the relationships

between planes and objects or the motion of objects. For example, in a city building

game with a top-down view perspective, when a meteoroid is fast approaching the

player’s city, you may want to project the shadow of the meteoroid as it travels across the

city as well as highlight its impact zone to warn players of the impending destruction.

Additionally, immediately after the impact, you may want the meteoroid to bounce or

slide across the ground. The shadow indicator can be accomplished by projecting the

meteoroid onto the city plane, the reflection direction for the bounce is the velocity

line reflecting off the ground plane, and the sliding direction would be the reflection

direction projected onto the ground plane. As you can see from this brief example,

the ability to represent and work with 2D planes is indeed fundamental to video game

development.

The chapter begins by introducing conventions for representing a 3D coordinate

system so that you can analyze three perpendicular vectors with consistency. The details

of the cross products are then described. The application of the cross product results is

then showcased in the solution to the inside-outside test of a general 2D region. At this

point the chapter takes a slight change in perspective; instead of analyzing problems and

solutions based on the results of the cross product, the chapter focuses on applying the

insights gained from the vector cross product in the interpretation of the vector plane

equation. The remaining of this chapter examines some of the important problems in

video game development when working with 2D planes.

Chapter 6 Vector Cross Products and 2D Planes

237

�3D Coordinate System Convention
Since the analysis of the vector cross product involves understanding the direction

of vectors in 3D space, you need to understand the conventions of representing a 3D

coordinate system. In 2D space, when referencing the Cartesian Coordinate System, it is

a generally agreed upon convention that the origin is on the lower left, the X-axis points

toward the right, and the Y-axis points upward. Note that this is a convention and not

a mathematical rule or any kind of property. People simply agree to follow these sets

of rules.

Unfortunately, there are two sets of generally accepted conventions for 3D space.

Although you have been working with 3D vectors, until now, there has not been the

need to focus on the specific directions of the major axes. As you will see, unlike the

dot product, the vector cross product result is not a simple floating-point number, but

a vector that is perpendicular to both of the operand vectors. In this case, it is critical

and essential to understand, differentiate, and follow one of the 3D coordinate system

conventions. Figure 6-1 illustrates the two different conventions in describing a 3D

coordinate system, either according to the left or the right hand. These are referred to as

the Left- or Right-Handed Coordinate System.

Figure 6-1.  The directions of the major axes in the Left- and Right-Handed
Coordinate System

In both the Left- and Right-Handed Coordinate Systems, the first three fingers

are used to represent and point in the directions of the X-, Y-, and Z-axes. The thumb

represents and points in the direction of the X-axis, the index finger the Y-axis, and the

Chapter 6 Vector Cross Products and 2D Planes

238

middle finger the Z-axis. The left and right images of Figure 6-1 show that under this

convention, while the X- and Y-axes still follow the right- and upward directions, the

Z-axis directions are opposite. Note that the fingers of the left- and right-hand point

toward the directions of the major axes and do not define the location of the axes.

Both the Left- and Right-Handed conventions are accepted in general by the video

game and interactive graphics community. These are conventions for analyzing and

discussing directions. It is critical to know the reference, the Left- or Right-Handed

system, being used and essential to be consistent in following the selected convention.

Fortunately, once selected and followed consistently, there are no other consequences

or special cases in any of the discussions concerning the fundamentals of vector math.

It is simply important to know which convention is used and to be sure to follow that

convention consistently throughout.

�Unity Follows the Left-Handed Coordinate System
Figure 6-2 shows a screenshot of the Unity Editor Scene View where the top-right

coordinate icon is zoomed in upon and shown on the right of the figure. You can verify

with your left hand that with your thumb stretching out along the red X-axis, your index

finger following the green Y-axis, and your middle finger in the direction of the blue

Z-axis, Unity follows the Left-Handed Coordinate System convention. Therefore, this

is the convention that will be followed in this book. Once again, all the concepts being

discussed are applicable to either 3D coordinate system conventions, as long as you

follow the selected convention and maintained consistency.

Figure 6-2.  The Unity Editor Scene View Window coordinate icon

Chapter 6 Vector Cross Products and 2D Planes

239

�Vector Cross Product: The Perpendicular Direction
Recall in the previous chapter where you verified that a 2D plane can always be derived

to draw two non-parallel vectors. This 2D plane is the plane that represents the space

or area that defines or contains these two vectors. Through this chapter, you will learn

that 2D planes are characterized by a vector that is perpendicular to it and that this

perpendicular vector is the result of the cross product between two non-parallel vectors.

Figure 6-3 shows that, in general, there are two directions that are perpendicular

to any two non-parallel vectors


V1 and


V2 . Once again, as discussed previously, these

two vectors are depicted at the same tail location for convenient visual analysis. It is

important to reiterate that the vector definition is independent of positions and the

following discussions are valid even when the two vectors do not share the same tail

position.

Figure 6-3.  Vectors that are perpendicular to the two non-parallel
vectors,



V1 and


V2

Figure 6-3 shows a left-hand thumb pointing in a direction where the index to little

fingers are aligned with the direction of the first vector,


V1 , and then curl toward the

second vector,


V2 . The left thumb direction is the one that is perpendicular to the plane

that defines


V1 and


V2 . Of course, the direction opposite to the left thumb is the second

direction that is perpendicular to the plane that defines these two vectors.

Chapter 6 Vector Cross Products and 2D Planes

240

Note T he left hand is used for direction resolution because this book follows
Unity’s choice of Left-Handed Coordinate System. A Right-Handed Coordinate
System would follow the same finger curling process as Figure 6-3 with the right
hand and identify a set of directions that seem opposite to that of Figure 6-3.
Please do not be concerned. Remember that the left- and right-handed
conventions also affect the directions of the major axes. Once again, in the end,
both conventions, as long as followed consistently throughout, will produce
identical results.

The vector cross product computes the two new directions, along or opposite to

the thumb direction in Figure 6-3. These are the two directions that are perpendicular

to both of the vectors,


V1 and


V2 . This chapter will lead you on a journey to examine,

understand, and relate these results to 2D planes in 3D space. After which, the problems

and solutions associated with 2D planes that are relevant to video game development

will be analyzed.

�Definition of Vector Cross Product
Given two vectors in 3D space



V x y z1 1 1 1= (), , 	



V x y z2 2 2 2= (), , 	

the cross product, or vector cross product, between the two vectors is defined as

 

V V y z z y z x x z x y y x1 2 1 2 1 2 1 2 1 2 1 2 1 2× = − − −(, ,)

Notice that

•	 Symbol: The symbol for the cross product operation, “×”, is literally a

“cross”.

•	 Operands: The operation expects two vector operands.

•	 Result: The result of the operation is a vector with x-, y-, and

z-component values.

Chapter 6 Vector Cross Products and 2D Planes

241

When compared to the other vector operations you have learned, the cross

product also expects two vector operands. Additionally, similar to vector addition and

subtraction, and in contrast to the vector dot product, the result of the vector cross

product is a vector.

Unlike vector addition and subtraction, the vector cross product result, the x-, y-, and

z-component values are not straightforward functions of its operands’ corresponding

components. Examine these values carefully and you will notice a pattern. For example,

the x-component result, y1z2 − z1y2, is the subtraction of the multiplication of operand

component values other than their x-components. This pattern is consistent for each of

the y- and z-components. Though interesting and important in general, in the context of

video game development, these observations do not lead to direct applications.

The left, center, and right tables in Figure 6-4 illustrate an approach that may help

you remember the cross product formula. Each of the tables has an x-, y-, and z-heading

with two rows consisting of the corresponding component values for the two operand

vectors. The left table shows that the x-component cross product result is computed by

ignoring the grayed-out x-component values, following the two arrows, and calculating

and subtracting the products of the y- and z-components y1z2 and z1y2. The center table

shows a similar computation for the y-component cross product results and the right

table for the z-component cross product results. Note that the subtraction order for the

y-component is reversed that of the x- and z-components.

Figure 6-4.  Components of the cross product

Chapter 6 Vector Cross Products and 2D Planes

242

�Geometric Interpretation of Vector Cross Products
Figure 6-5 shows the geometric interpretation of the vector cross product. Since Unity

follows the Left-Handed Coordinate System, the result of
 

V V1 2× is a vector in the

direction of the thumb on your left hand when following the finger curling process

described previously. It follows that for
 

V V2 1× , with the index to little fingers aligned

with the first operand, in this case the


V2 vector, and then curl toward the second

operand, or the


V1 vector, the resulting vector is in the opposite direction (turn your

hand so you’re giving a thumbs down instead of a thumbs up). The cross product results,
 

V V1 2× and
 

V V2 1× , are perpendicular to their operand vectors,


V1 and


V2 , and, as a

result, are perpendicular to the plane that defines


V1 and


V2 .

Figure 6-5.  The directions of vector cross product results

The magnitude of the vector resulting from the cross product or the magnitude of the

perpendicular vector, with details left as an exercise, can be shown to be

	
   

V V y z z y z x x z x y y x V V1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2

2

1 2× = − + − + − =() () () sinθ 	

where θ is the subtended angle between


V1 and


V2 . Notice that when both


V1 and


V2

are normalized, thus both with magnitude of 1.0, then

ˆ ˆV V1 2× = sinθ

Chapter 6 Vector Cross Products and 2D Planes

243

Note A lthough the cross product result encodes the sine of the subtended angle,
it is seldom, if ever, used specifically for analyzing subtended angles between
vectors. Instead, the dot product is always used. This is because when comparing
the two, the cross product operation involves more floating-point operations,
and more importantly, the cross product result is a vector and thus a magnitude
operation must be performed to convert the vector into a floating-point number
for deriving the angle information. In contrast, the dot product is more efficient to
compute and the result itself encodes the angle information and thus does not need
further processing. For these reasons, the dot product is always used for analyzing
angles subtended by vectors, for example, testing for parallel or perpendicular.

In Figure 6-5, notice that P0P1P2 is a triangle. Assuming the edge, P0P2, is the

base, then you know the area of the triangle is the half the length of the base, or


V2 ,

multiplied by the height. In this case, the height is the perpendicular distance between

P1 and the edge, P0P2, or


V1 sinθ . In this way, the area of the triangle P0P1P2 is

Area of Triangle P P P V V 0 1 2 1 2

1

2
=

 

sinθ 	

And the magnitude of the cross product result is twice the area of the triangle

	
   

V V Area of Triangle P P P V V1 2 0 1 2 1 22× = × = sinθ 	

Though the magnitude of the resulting vector and the sine relationship of the

subtended angle are important information to take note of when learning the vector

cross product, the analysis presented in the rest of this book only takes advantage of

the fact that the resulting vector is perpendicular to the operands and the 2D plane that

defines the operand vectors.

�Properties of Vector Cross Product
The vector cross product properties of commutative, associative, and distributive over a

floating-point scaling factor s are summarized in Table 6-1.

Chapter 6 Vector Cross Products and 2D Planes

244

Table 6-1.  Properties of vector cross product

Properties Vector Dot Product

Anti-commutative
   

V V V V1 2 2 1× = ×-

Not Associative
     

V V V V V V1 2 3 1 2 3×() × × ×()≠

Distributive over scale factor, s s V V sV V V sV
     

1 ×() = () × = × ()2 1 2 1 2

Table 6-1 shows a set of rather unfamiliar properties. Fortunately, the applications

of vector cross products in video game development are often limited to simple

operations in the determination of directions. It is seldom for cross product operations

to be embedded in complex vector equations. Finally, the definition of the vector cross

product states that

 

V V ZeroVector1 1× = 	

and that any vector crossed with the zero vector will results in a zero vector

	
 

V ZeroVector ZeroVector V ZeroVector1 1× = × = 	

�The Vector Cross Products Example
This example demonstrates the results of performing the vector cross product between

two given vectors. This example allows you to interactively manipulate and define two

vectors and then examine the results of performing the cross product between these

vectors. Figure 6-6 shows a screenshot of running the EX_6_1_VectorCrossProducts

scene from the Chapter-6-CrossProducts project.

Chapter 6 Vector Cross Products and 2D Planes

245

Figure 6-6.  Running the Vector Cross Products example

The goals of this example are for you to

•	 Examine the results of the cross product between two arbitrarily

defined vectors

•	 Verify that the vector resulting from a cross product is perpendicular

to both of the operands with a magnitude that is directly proportional

to the sine of their subtended angle

•	 Examine the source code that computes and uses the results of the

vector cross product

�Examine the Scene

Take a look at the Example_6_1_VectorCrossProducts scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are three

objects in this scene: a checkered sphere (P0) and two striped spheres (P1 and P2). These

three game objects will have their corresponding transform.localPosition properties

referenced to define the two vectors for performing the cross product operations.

Chapter 6 Vector Cross Products and 2D Planes

246

�Analyze Controller MyScript Component

The MyScript component on the Controller shows two sets of variables. One set is

for defining the two vectors and the other set is for examining the visualization of the

cross product between these two vectors and the plane that they define. The first set of

variables are P0, P1, and P2 and are defined for accessing the game objects with their

corresponding names. In this example, you will manipulate the positions of these three

game objects to define two vectors,


V1 and


V2

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

and then examine the result of the cross product between these vectors.

The variables in the second set, DrawThePlane, DrawV1xV2, and DrawV2xV1, are

toggles for hiding and showing the plane that defines


V1 and


V2 and the corresponding

results of the cross products, while the last variable, Factor, is the scaling factor applied

to the length of the vector from the cross product result, allowing for easier visualization.

�Interact with the Example

Click the Play Button to run the example. In the Scene View Window, you will observe

two vectors with tail positions located at the checkered sphere, P0, and a greenish plane

where the two vectors are drawn. The two vectors are


V1 and


V2 and are defined by the

positions of P0, P1, and P2 game objects as previously explained. You will also observe

two other vectors in this scene. Both of these vectors are located at the checkered sphere

location (P0), a black vector that is the result of
 

V V1 2× , and a red vector, the result of
 

V V2 1× . You can confirm that both of these results follow the Left-Handed Coordinate

System by extending the index to little fingers of your left hand along the


V1 direction

(the cyan vector) and then curling these fingers toward the


V2 direction (the magenta

vector). In a similar fashion to that of Figure 6-5, your thumb should be pointing

along the direction of the black vector which is the result of
 

V V1 2× . You can repeat the

left-hand finger curling process to verify that the red vector is indeed pointing in the

direction of
 

V V2 1× .

In the Console Window, you can examine the text output where the subtended angle

between


V1 and


V2 as well as various dot product results are printed for verification

purposes. First, you can verify that the printed subtended angles between


V1 and


V2

Chapter 6 Vector Cross Products and 2D Planes

247

reflect your observations in the Scene View. Next, examine the results of the dot product

between the normalized black and red vectors. Since these two vectors are always

parallel and pointing in the opposite directions, the angle between them is always 180°

and thus the result of the dot product, or the cosine of this angle, is always −1:

	
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV V V V V V V V1 2 2 1 1 2 1 2 1×()⋅ ×() = − ×()⋅ ×() = − 	

Additionally, the results of the dot product between the cross product result ˆ ˆV V1 2×()

and the operands, V̂1 and V̂2 , are also printed out. You can verify that the cross product

result is always perpendicular with its operands by observing that the dot product results

between these vectors are always zero, or very close to being zero:

ˆ ˆ ˆ ˆ ˆ ˆV V V V V V1 2 1 1 2 2 0×()⋅ = ×()⋅ = 	

Note that since the initial values of P0, P1, and P2 define the three positions to be

on the X-Z plane, the initial


V1 and


V2 vectors are also in the X-Z plane. Therefore, the

cross product results are vectors pointing in the positive and negative y-directions,

perpendicular to both


V1 and


V2 , and the plane that defines these two vectors is the

X-Z plane.

In the following interactions, feel free to toggle and hide any of the components if

you find them distracting. You can also adjust the Factor value to scale the lengths of the

black and red vectors for easier visual examination.

Select P1 and adjust its z-component value to change the size of


V1 without changing

the subtended angle. Notice that although both are changing, the lengths of the black

and red vectors are always the same. This is because both of the vectors vary in direct

proportion to the length of


V1 . Now try moving P1 toward P2 such that the


V1 vector

approaches


V2 , or move P1 toward P0 such that the


V1 vector approaches the zero vector.

Notice that in both cases, the cross product result, the black and the red vectors, both

approach a length of zero. You can repeat and verify all these observations by adjusting

P2 or by changing


V2 in a similar fashion. These manipulations and observations verify

that the magnitude of the cross product result is in direct proportion to the magnitude of

the operand vectors

   

V V V V1 2 1 2× = sinθ 	

Chapter 6 Vector Cross Products and 2D Planes

248

and that all cross products computed with the zero vector will result in the

zero vector.

Now restart the game and adjust the x-component of P1 to change the subtended

angle. Notice that when this angle is between 0° and 90°, the lengths of the black and

red vectors vary in direct proportion and then change to vary in the inverse proportion

when the angle is beyond 90°. Continue to adjust both the x- and z-component values

to increase the subtended angle to beyond 180° and notice the direction swap between

the black and red vectors. Recall that a subtended angle is always between 0° and 180°;

you can verify with your left hand that after the direction swap, the black vector is still

pointing in the direction of ˆ ˆV V1 2× .

Notice that until this point, your manipulation has been restricted to the X-Z plane

and that the cross product results, the black and red vectors, are always in the positive

and negative y-directions. Now, select any of the positions and change the y-component

values. As you have observed when investigating the dot product in the previous chapter,

the green plane is updated and continues to cut through both


V1 and


V2 . The interesting

observation is that the cross product results, the black and red vectors, are always

perpendicular to the green plane. This observation suggests that the green plane is

defined by the cross product result. This concept will be explored in the next subsection.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

//Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null; // Position P0

public GameObject P1 = null; // Position P1

public GameObject P2 = null; // Position P2

public bool DrawThePlane = true;

public bool DrawV1xV2 = true;

public bool DrawV2xV1 = true;

public float Factor = 0.4f;

#region For visualizing the vectors

#endregion

Chapter 6 Vector Cross Products and 2D Planes

249

// Start is called before the first frame update

void Start() {

 Debug.Assert(P0 != null); // Verify proper editor init

 Debug.Assert(P1 != null);

 Debug.Assert(P2 != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v2 = P2.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v1xv2 = Vector3.Cross(v1, v2);

 Vector3 v2xv1 = Vector3.Cross(v2, v1);

 float d = Vector3.Dot(v1.normalized, v2.normalized);

 bool notParallel = (Mathf.Abs(d) < (1.0f - float.Epsilon));

 if (notParallel) {

 float theta = Mathf.Acos(d) * Mathf.Rad2Deg;

 float cd = Vector3.Dot(v1xv2.normalized, v2xv1.normalized);

 float dv1 = Vector3.Dot(v1xv2, v1);

 float dv2 = Vector3.Dot(v1xv2, v2);

 Debug.Log(" theta=" + theta + " v1xv2=" + v1xv2 +

 " v2xv1=" + v2xv1 + " v1xv2-dot-v2xv1=" + cd +

 " Dot with v1/v2=" + dv1 + " " + dv2);

 } else {

 Debug.Log("Two vectors are parallel,

 cross product is a zero vector");

 }

Chapter 6 Vector Cross Products and 2D Planes

250

 #region For visualizing the vectors

 #endregion

}

The first four lines of the Update() function compute



V P P1 1 0= −


V P P2 2 0= −

v v V V1 2 1 2x = ×
 

v v V V2 1 2 1x = ×
 

Next, the cosine of the angle between


V1 and


V2 is computed as the dot product of

the normalized vectors. This value is examined to ensure that the cross product results

will not be zero vectors. The various dot product results are then computed and printed

to the Console window.

Note  Collinear and collinear test. In general, given three positions, P0, P1, and P2,
that define two vectors,



V P P1 1 0= − and


V P P2 2 0= − . If ˆ ˆV V1 2⋅ is approximately 1
or −1, then you can conclude that the three points are approximately along the
same line. In this case, P0, P1, and P2 are referred to as being collinear. The dot
product check against approximately 1 or −1 is a convenient collinear test.

�Takeaway from This Example

This example demonstrates that the result of the cross product is indeed a vector with a

direction that can be derived by curling your left-hand fingers and that the magnitude

of the resulting vector is indeed directly proportional to the sizes of the operands and

the sine of the subtended angle. You have also confirmed that the cross product of

any vector with itself or with the zero vector results in the zero vector. Additionally,

you have verified that the cross product is anti-commutative as reversing the operand

order results in a vector pointing in the perfectly opposite direction. However, the most

interesting observation is that the cross product result is always perpendicular to the

operand vectors and thus the 2D plane that contains the two operand vectors.

Chapter 6 Vector Cross Products and 2D Planes

251

Relevant mathematical concepts covered include

•	 The cross product result is a vector that is perpendicular to both of its

operands and the 2D plane that contains the operands.

•	 The magnitude of the vector resulting from a cross product is directly

proportional to the magnitude of the operands and the sine of the

subtended angle.

•	 The cross product is not defined when the two operand vectors are

derived from three positions that are collinear. This is because three

collinear positions can only define one direction and thus one vector,

and the cross product of a vector with itself is the zero vector.

EXERCISES

Derive the Magnitude of the Vector Resulting from a Cross Product

Given


V x y z1 1 1 1= (), ,


V x y z2 2 2 2= (), ,

You know that the cross product is defined as

 

V V y z z y z x x z x y y x1 2 1 2 1 2 1 2 1 2 1 2 1 2× = − − −(, ,)

where the magnitude of the resulting vector is
   

V V V V1 2 1 2× = sinθ

Recall the trigonometry identity and the dot product definition that

sin cos2 2 1θ θ+ =

ˆ ˆ cosV V
V V

V V
1 2

1 2

1 2

⋅ =
⋅

=
 

 
θ

So

Chapter 6 Vector Cross Products and 2D Planes

252

   

V V V V1 2 1 2× = sinθ

= −
 

V V1 2

21 cos θ

=
 

V V1 2

1 1 2

1 2

2

−
⋅









 

 

V V

V V

Now, simplify the algebra expression and show that

 

V V y z z y z x x z x y y x1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2

2× = − + − + −() () ()

Verify the Cross Product Formula

When computing the cross products in MyScript

 Vector3 v1xv2 = Vector3.Cross(v1, v2);

 Vector3 v2xv1 = Vector3.Cross(v2, v1);

replace these two lines of code with the explicit cross product definition by creating v1xv2

and v2xv1 as new Vector3 objects with appropriate component values and verify that the

runtime results are identical.

�The Vector Plane Equation
Throughout the last couple of chapters, you have been working with two vectors defined

by three positions and observed that a 2D plane can always be defined when the two

vectors are not parallel. Note that both of these observations are identical, and two non-

parallel vectors are the same as saying that the three positions that define the two vectors

are non-collinear. Intuitively, this should not be surprising because from basic geometry

you have learned that three points, as long as they are not all along the same line, define

a triangle, and a triangle is the simplest shape in 2D space. For this reason, if a triangle

can be formed, as you have observed, then it is always possible to form two non-parallel

vectors, and thus a 2D plane can always be defined as well.

Now, you can derive the equation of this 2D plane based on the result of the cross

product. Recall from basic geometry that the equation of a 2D plane in 3D space is

	 Ax By Cz E+ + = 	

Chapter 6 Vector Cross Products and 2D Planes

253

where A, B, C, and E are floating-point constants and x, y, and z are unknowns in

3D space. This equation states that if you gather all the positions (x, y, z) that satisfy the

condition where the sum of multiplying x by A, y by B, and z by C is equal to E, then

you will find that all these positions are points on the given 2D plane. Interestingly this

equation can also be written in vector dot product form, where you can define the vector


V and a position vector, p, where

	


V A B C= (), , 	

p x y z= (), , 	

Then, the 2D plane equation can be written as



V p E⋅ = 	

Note R ecall that a position, p, can be interpreted as a position vector,


V , from
the origin position, P0, where

	


V p P p= − =0 	

Since in this case, P0 is the origin (0, 0, 0). To avoid the confusion and nuance of
introducing additional symbols, it is a common practice to reuse the symbol of the
position (p) to represent the corresponding position vector. In the rest of this book,
please do not be confused when you encounter language and a symbol such as
“following along the position vector p.” Such statements are always referring to
the vector from the origin toward the position, p.

If you divide both side of the equation by a nonzero floating-point number, in this

case,


V , the equation becomes

V̂ p
E

V
⋅ =



	

Chapter 6 Vector Cross Products and 2D Planes

254

Now, let D
E

V
=
 , then a 2D plane equation can be written as the vector plane

equation or

	 V̂ p D⋅ = 	

This equation may look familiar because it is basically the vector projection equation

as illustrated in Figure 5-7. Figure 6-7 shows the geometric interpretation of the vector

plane equation.

Figure 6-7.  Geometric interpretation of the vector plane equation

In Figure 6-7, P0 is the origin and the vector V̂ is the direction from the origin that

is perpendicular and passes through a plane at position Pn. The plane is at a distance D

from the origin when measured along the direction V̂ . The vector plane equation states

that for any position p on this plane, it is true that the projection of this position vector

onto the direction V̂ will be of length D. In this way, the vector plane equation identifies

all positions that satisfy the projected distance relationship with the V̂ vector. As it turns

out, these positions define the 2D plane. Notice that you must compute the V̂ and D to

derive the vector plane equation, V̂ p D⋅ = :

•	 Normal vector: V̂ is the vector that is perpendicular to the plane;

this vector is generally normalized such that the constant D in the

equation indicates distance from the origin. As demonstrated in

the derivation process, when this vector is not normalized, the

magnitude of the vector can be divided through on both sides of the

equation to compute the proper value for D.

Chapter 6 Vector Cross Products and 2D Planes

255

•	 Distance to the plane: D, when the normal vector is normalized, this

is the plane distance from the origin when measured along the V̂

direction.

It is important to recognize that the vector plane equation identifies a 2D plane

that is of infinite size. Any position in the Cartesian Coordinate System that satisfies the

projected distance relationship is part of the solution set of the 2D plane and there are

infinitely many positions in the solution set. As will be explored later, a 2D region is a

bounded area on a 2D plane. This is analogous to 1D region, or a 1D interval, being a

bounded line segment within an infinitely long line that is identified by a line equation.

Note A normal vector is a vector that is perpendicular to a plane. This should
not be confused with a normalized vector, which is any vector of size 1. You can
compute a normal vector which may not be normalized. You can then decide to
normalize the normal vector such that you can work with a normalized normal
vector. In the rest of this book, the vector symbol,



Vn , will be used to represent
the normal vector of a 2D plane. Once again, a normal vector may or may not be
normalized. In this case,



Vn , is a normal vector that is not normalized, and the
vector, V̂n , is the normalized plane normal vector.

�The Position Pn on a Plane
Notice the position Pn in Figure 6-7; this is the point on the plane that is D distance away

from the origin when measured along the V̂n direction. For this reason,

	 P P DV DVn n n= + =0
ˆ ˆ 	

In this case, P0 is the origin (0, 0, 0). In the rest of this chapter, the Pn position is

computed and displayed on the 2D planes in all examples to provide orientation for and

facilitate visualization.

Chapter 6 Vector Cross Products and 2D Planes

256

�Given a Position on a Plane
If you are given a plane normal vector, V̂n , and a position, Pon, that is on the plane, then

you know that for any position, p, on the plane, p Pon−
� �������

 is a vector on the plane and that

this vector must be perpendicular to V̂n . This means

V̂ p Pn on⋅ −() = 0 		 two are perpendicular

This equation can be simplified as follows:

ˆ ˆV p V Pn n on⋅ − ⋅ = 0 		 distributive property

ˆ ˆV p V Pn n on⋅ = ⋅ 		 move term across equality

V̂ p Dn ⋅ = 			 Pon is on the plane

which is simply the vector plane equation. This derivation shows that D, the distance

from the origin to a plane, can be derived if you know the plane normal and one position

on the plane.

�Positions on 2D Planes
As a way of verifying the vector plane equation and to provide additional insights,

Figure 6-8 shows that it is always possible to compute the point where a position vector

intersects a plane.

Figure 6-8.  Positions on a given plane

Chapter 6 Vector Cross Products and 2D Planes

257

In Figure 6-8, the given plane is defined by the normalized normal vector, V̂n , and

the distance, D, measured along the V̂n direction from the origin or

V̂ p Dn ⋅ =

For any arbitrary position, Pt, it is always possible to compute Pon, the point where

the position vector Pt intersects the given plane. As illustrated in Figure 6-8, Pon is along

the position vector Pt and is t distance away from the origin

P origin tP tPon t t= + =

Since Pon is on the plane, then it must be true that

V̂ P Dn on⋅ =

or

V̂ tP Dn t⋅ = 		 since Pon = tPt

t V P Dn t
ˆ ⋅() = 		 distributive property

t
D

V Pn t

=
⋅ˆ

 		 divide by V̂ Pn t⋅

With the distance, t, defined, it is now possible to compute the value of Pon! In the

next example, the plane equation will be examined, especially in relation to the cross

product result.

�The Vector Plane Equations Example
This example demonstrates the vector plane equation. The example allows you to

interactively define a 2D plane, manipulate an arbitrary point, and examine the

intersection of this position vector with the 2D plane. Figure 6-9 shows a screenshot of

running the EX_6_2_VectorPlaneEquations scene from the Chapter-6-CrossProducts

project.

Chapter 6 Vector Cross Products and 2D Planes

258

Figure 6-9.  Running the Vector Plane Equations example

The goals of this example are for you to

•	 Understand that the result of the cross product defines a plane

normal vector

•	 Experience working with and gain an understanding of the

parameters of the vector plane equation

•	 Verify the solution to the intersection between a position vector and a

2D plane

•	 Examine the implementation of working with the vector plane

equation

�Examine the Scene

Take a look at the Example_6_2_VectorPlaneEquations scene and observe the

predefined game objects in the Hierarchy Window. In addition to the Controller, there

are three sets of variables as follows:

•	 P0, P1, and P2: Game objects for defining two vectors to perform the

cross product. The result from the cross product will be used as the

plane normal vector.

Chapter 6 Vector Cross Products and 2D Planes

259

•	 Ds and Pn: Ds is a transparent sphere located at the origin for showing

the plane distance, D, from the origin, and Pn is the position where

the plane normal vector with tail at the origin intersects the plane.

Note, this is the same as saying, Pn is the point on the plane with

position vector in the plane normal direction.

•	 Pt and Pon: Pt is a position you can manipulate and Pon is the point

that the position vector Pt intersects with the plane.

�Analyze Controller MyScript Component

The MyScript component on the Controller contains variables with the same name

as their referenced game objects in the scene; these variables are used for position

manipulations. The only exception is Ds, which does not have its position manipulated,

instead its radius is set according to the distance, D, in the vector plane equation. The

variable that doesn’t represent any game object, ShowPointOnPlane, is a toggle used to

control the showing or hiding of Pt and Pon computation results.

�Interact with the Example

Click on Play Button to run the example. Notice that initially the ShowPointOnPlane

toggle is switched off. You will first focus on examining and understanding the cross

product result and its relationship with the plane normal before examining the

intersection between a position vector and a plane.

In the initial scene you can observe, similar to the previous example, P0, P1, and P2

positions defining the


V1 (in cyan) and


V2 (in magenta) vectors. You can also observe

the black vector being computed as the result of
 

V V1 2× . As with the previous example,

the


V1 and


V2 vectors are defined on a 2D plane. In this scene, the 2D plane tangents, or

touches at a single point, a transparent sphere centered at the origin. Here you will also

find a white vector with its tail position at the origin, extending and cutting through the

2D plane perpendicularly at the red position, Pn. The white vector is the cross product

result and is thus the plane normal vector, V̂n . The transparent sphere mentioned

earlier has a radius, D, which is defined by projecting position P0 in the plane normal

direction or

	 D V Pn= ⋅ˆ
0 	

Chapter 6 Vector Cross Products and 2D Planes

260

In this way, the 2D plane has a vector plane equation

	 V̂ p Dn ⋅ = 	

The red sphere on the plane, Pn, is the position vector that is D distance along the V̂n

direction from the origin or

	 P DVn n= ˆ 	

It is worth repeating that this vector plane equation is defined completely by the

positions P0, P1, and P2. The plane normal, V̂n , is the cross product of the two vectors defined

by those positions, and the plane distance from the origin is the projection of the position

vector P0, in the V̂n direction. Since the position P0 is referenced in defining both of the

parameters of the vector plane equation, adjusting this position causes a profound change

in the resulting 2D plane. To verify this, select P0 and adjust its y-component value. Notice

the drastic changes to the plane as a result and how the transparent sphere size changes

accordingly such that the plane always tangents the sphere. Feel free to adjust any of the P0,

P1, and P2 positions to verify that the derived vector plane equation is always correct.

Now that you have verified how the cross product result relates to the plane

normal vector and that the plane equation is always correct, you can enable the

ShowPointOnPlane toggle. The blue sphere, Pt, is a position that you can manipulate and

observe where it would intersect the plane if it followed its direction path to or from the

origin or its position vector. The thin black line, extending from the origin to this blue

sphere, represents the position vector, Pt. The white sphere, Pon, is the intersection of

the position vector Pt with the 2D plane or where the blue sphere would intersect the

plane if it followed the black line back to the origin. Feel free to adjust both the 2D plane

and the position vector by manipulating the P0, P1, and P2 positions and Pt to verify that

the intersection result is always correct. Note that when Pt is perpendicular to V̂n , the

position vector will be parallel to the plane and there can be no intersection.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

// Defines two vectors: V1 = P1 - P0, V2 = P2 - P0

public GameObject P0 = null; // The three positions

Chapter 6 Vector Cross Products and 2D Planes

261

public GameObject P1 = null; //

public GameObject P2 = null; //

// Plane equation: P dot vn = D

public GameObject Ds; // To show the D-value

public GameObject Pn; // Where Vn crosses the plane

public bool ShowPointOnPlane = true; // Show or Hide Pt

public GameObject Pt; // Point to adjust

public GameObject Pon; // Where Pt intersects the Plane

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

 Debug.Assert(P0 != null); // Verify proper editor init

 Debug.Assert(P1 != null);

 Debug.Assert(P2 != null);

 Debug.Assert(Ds != null);

 Debug.Assert(Pn != null);

 Debug.Assert(Pt != null);

 Debug.Assert(Pon != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 // Computes V1 and V2

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 Vector3 v2 = P2.transform.localPosition -

 P0.transform.localPosition;

Chapter 6 Vector Cross Products and 2D Planes

262

 if ((v1.magnitude < float.Epsilon) ||

 (v2.magnitude < float.Epsilon))

 return;

 // Plane equation parameters

 Vector3 vn = Vector3.Cross(v1, v2);

 vn.Normalize(); // keep this vector normalized

 float D = Vector3.Dot(vn, P0.transform.localPosition);

 // Showing the plane equation is consistent

 Pn.transform.localPosition = D * vn;

 Ds.transform.localScale =

 new Vector3(D * 2f, D * 2f, D * 2f); // diameter

 // Set up for displaying Pt and Pon

 Pt.SetActive(ShowPointOnPlane);

 Pon.SetActive(ShowPointOnPlane);

 float t = 0;

 bool almostParallel = false;

 if (ShowPointOnPlane) {

 float d = Vector3.Dot(vn,

 Pt.transform.localPosition); // distance

 almostParallel = (Mathf.Abs(d) < float.Epsilon);

 Pon.SetActive(!almostParallel);

 if (!almostParallel) {

 t = D / d;

 Pon.transform.localPosition =

 t * Pt.transform.localPosition;

 }

 }

 #region For visualizing the vectors

 #endregion

}

Chapter 6 Vector Cross Products and 2D Planes

263

The first four lines of the Update() function compute the two vectors

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

and verify that both are nonzero vectors before continuing. The next three lines

compute the vector plane equation parameters

	
  

V V Vn = ×1 2 	

V̂ Vn n=


.Normalized()

	 D V Pn= ⋅ˆ
0 	

The two lines that follow set the Pn position and the diameter of the transparent

sphere, Ds, such that you can examine these parameters of the vector plane equation

	 P DVn n= ˆ 	

The if condition that follows ensures that Pt and Pon are computed and displayed

only under the command of the user. The two lines in the if statement compute

	 d V Pn t= ⋅ˆ 	

and verify that d is not close to zero. This check verifies that the plane normal, V̂n ,

is not almost perpendicular to the position vector, Pt, or that the position vector is not

almost parallel to the plane. Recall that in such a case, there can be no intersection and

thus Pon cannot be computed. When verified that the Pt position vector is not parallel to

the plane, the position of Pon is computed within the last if statement

	
t

D

V P

D

d
n t

=
⋅

=
ˆ 	

P tPon t= 	

Chapter 6 Vector Cross Products and 2D Planes

264

�Takeaway from This Example

This example demonstrates how three non-collinear positions can define two non-

parallel vectors which can define a 2D plane. You have examined and analyzed the

parameters of the vector plane equation to develop an understanding for their geometric

interpretations. The plane equation

	 V̂ p Dn ⋅ = 	

describes the plane that is at a distance, D, measured from the origin along the

plane normal vector, V̂n . Geometrically, this equation can be interpreted as all positions

on this plane have a projected distance, D, when measured from the origin along V̂n .

The equation and this interpretation were verified when you manipulated an arbitrary

position vector, Pt, and observed the computed intersection position, Pon, between the

position vector and the plane equation.

By now you have observed quite a few examples of vector value checking, but its

importance cannot be overstated. Please do note that the almostParallel condition is

effectively ensuring that when computing t

	
t

D

V Pn t

=
⋅ˆ 	

the denominator is not a zero value. Once again, it is the responsibility of a video

game developer to ensure all mathematical operations performed are well defined and

edge cases are checked and handled. Ill-defined conditions for mathematical operations

often present themselves as intuitive geometric situations. In this case, when the

denominator is close to zero, geometrically, it represents when the position vector, Pt, is

almost parallel to the plane and thus an intersection does not exist.

Relevant mathematical concepts covered include

•	 Three non-collinear positions define two non-parallel vectors which

define a 2D plane.

•	 A 2D plane can be described as being perpendicular to a normal

direction and at a fixed distance away from the origin when measured

along the normal direction.

Chapter 6 Vector Cross Products and 2D Planes

265

•	 An alternative description of a 2D plane is that it is the collection

of all positions with position vectors that have the same projected

distance along the plane normal.

EXERCISES

Verify the Vector Plane Equation

The vector plane equation says that all positions on the plane have the same projected

distance. Replace P0 with P1 and then P2 in MyScript when computing the distance, D, and

verify that the results are identical.

The Plane at the Negative Distance

Examine the vector plane equation

					 V̂ p Dn ⋅ = 	

and take note that the distance, D, is a projected result and is thus a signed floating-point

number. This observation says that there is always a complementary plane that is D away in

the negative V̂n direction. Now, modify MyScript to compute

					 P DVd n= − ˆ
	

You can visualize this point and begin to imagine the associated plane by defining and using

a new sphere game object to represent the position of Pd. This exercise brings home the point

that you must be careful with the signs; a simple careless mistake can result in an entirely

plausible solution on a completely wrong geometry.

�Axis Frames and 2D Regions
Recall that the vector plane equation identifies a 2D plane of infinite size. A 2D region

can be defined on this 2D plane for determining if a given position is within the bounds

of the region. This functionality is the generalization of the study of interval bounds from

Chapter 2. For example, Figure 2-7 illustrated a 2D region on the X-Z plane. Here, the

description is a 2D region on any arbitrary plane.

Defining 2D regions on 2D planes is interesting and has some important applications

in video game development. However, what is much more important is the implication

Chapter 6 Vector Cross Products and 2D Planes

266

that given three positions that define two non-parallel vectors, you can actually define

a general axis frame. Recall that the default axis frame of the Cartesian Coordinate

System is the three perpendicular X-, Y-, and Z-axis directions centered at the origin. A

general axis frame is three perpendicular directions which need not be aligned with the

major axes and can be centered at any position. Figure 6-10 shows such an axis frame

centered at the position P0.

Figure 6-10.  Defining an axis frame

In Figure 6-10, the three positions, P0, P1, and P2, define two vectors

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

When these two vectors are not parallel, a new vector,


Vn , that is perpendicular to

both


V1 and


V2 can be computed

	
  

V V Vn = ×1 2 	

An important observation is that the cross product of


Vn with


V1 , as indicated by the

curling left hand in Figure 6-10, defines,


V2
′ ,

	
  

V V Vn2 1
′ = × 	

a vector perpendicular to both


Vn with


V1 . Notice that


V1 ,


Vn , and


V2
′ are three

vectors that are mutually perpendicular and is an axis frame that can be located at

any position. In the next chapter you will learn about how this axis frame can serve as

Chapter 6 Vector Cross Products and 2D Planes

267

the basis for a new coordinate system, for example, serving to define the motion on

a navigating spaceship. Here, the focus will be on defining a 2D region and a general

bounding box as an exercise.

�Bounds on a 2D Plane
Recall from Figure 5-9 that a general 1D interval, or a line segment, is a direction with

two positions along that direction defining the beginning and the ending point of

that line segment. Also recall from Figure 2-7 that a 2D interval, or a 2D rectangular

region, is two 1D intervals along two perpendicular directions. Figure 6-11 shows two

perpendicular general 1D intervals. The first interval is along


V1 , with P0 and P1, and the

second interval is along


V2
′ , with P0 and P2

′ as their beginning and ending positions. The

two intervals have respective lengths of L1 and L2.

Figure 6-11.  Inside condition of a general 2D region

You can follow the exact same logic as in Chapter 2 when generalizing results from

a 1D interval to a 2D bounding area and apply the logic to a general axis frame. In this

case, instead of 1D intervals along the X- and Z-axes, you are working with general 1D

intervals along the


V1 and


V2
′ directions. The inside-outside status of the 2D region can

be determined by applying the general 1D test, as illustrated in Figure 5-11 (d), on each

of the two perpendicular general 1D intervals. For example, look at the given position Pon

in Figure 6-11; this position defines the vector


Von

	


V P Pon on= − 0 	

Chapter 6 Vector Cross Products and 2D Planes

268

The vector,


Von , can be used to determine if the position Pon is within the 2D region.

In this case, the position Pon is within the bounds of the region if the projected size of


Von

along both


V1 and


V2
′ is positive and smaller than the corresponding interval lengths or

d V Von1 1= ⋅
 ˆ 	



Von size on V̂1

d V Von2 2= ⋅ ′ ˆ 	


Von size on V̂2
′

With these two projected sizes, the condition for Pon being inside the 2D region can

be stated by two inequalities: d1 and d2 must both be positive and smaller than the length

of the corresponding intervals or

0 ≤ d1 ≤ L1 and 0 ≤ d2 ≤ L2

Generalization of the Vector Line Equation
Recall the vector line equation that describes all positions located on the line

segment which begins from position P0 and extends in the direction of V̂1 is

l t P tV() = +0 1̂ 	

In this example, you have observed the corresponding vector plane equation, where

all positions that are located in the 2D rectangular region begin at position P0 and extend

in the perpendicular directions of V̂1 and V̂2
′ as

p d d P d V d V1 2 0 1 1 2 2,() = + + ′ˆ ˆ 	

Similar to the vector line equation where the range of the value, t, determines the

inside-outside status, in 2D region the ranges of the values, d1 and d2, determine the

inside-outside status of a position. Note the straightforward generalization to the third

dimension for a bounding box

b d d d P d V d V d V1 2 3 0 1 1 2 2 3, , n() = + + +′ˆ ˆ ˆ 	

�The Axis Frames and 2D Regions Example
This example builds on the previous example by supporting two additional features. It

demonstrates the derivation of axis frames and the determination of the position inside-

outside status for a given 2D region. The example allows you to interactively define an axis

frame by manipulating three positions while it continuously computes the inside-outside

Chapter 6 Vector Cross Products and 2D Planes

269

status of the intersection of a position vector with the 2D plane. Figure 6-12 shows a

screenshot of running the EX_6_3_AxisFramesAnd2DRegions scene from the Chapter-6-

CrossProducts project.

Figure 6-12.  Running the Axis Frames and 2D Regions example

The goals of this example are for you to

•	 Observe the creation of axis frames based on three non-collinear

positions

•	 Appreciate the fact that a 2D region on a plane is indeed defined by

two perpendicular 1D regions

•	 Examine the implementation of the axis frame definition and the

inside-outside test for the 2D region

�Examine the Scene

Take a look at Example_6_3_AxisFramesAnd2DRegions scene, observe the predefined

game objects in the Hierarchy Window, and note that the only difference between this

scene and that of Example_6_2_VectorPlaneEquations is a single additional game

object, P2p. The transform.localPosition of this game object will represent the

position of P2
′ in Figure 6-10, the head position of the



V2
′ vector that is perpendicular

Chapter 6 Vector Cross Products and 2D Planes

270

to both


V1 and


Vn . All other game objects serve the same purpose as they did in the

previous example.

�Analyze Controller MyScript Component

The MyScript component on the Controller also shows that P2p is the only additional

variable when compared to the previous example. This new variable is meant to

reference the game object with the same name for position manipulation in the script.

�Interact with the Example

Click the Play Button to run the example. Notice the almost identical results of this

example to that of the previous example. As a quick reminder, pay attention to the

checkered sphere, P0, and the two striped spheres, P1 and P2. These three positions

define the two vectors,


V1 (in cyan) and


V2 (in magenta), according to Figure 6-10. The

black vector at P0 is
  

V V Vn = ×1 2 . The blue sphere, Pt, defines the position vector that

intersects the plane at Pon, the red sphere. The only addition to this scene is the green

sphere, P2p, identifying the head position of the


V2
′ vector, where this vector has the size

of


V2 and the direction of
 

V Vn × 1

	
   

V V V V normalizedn2 2 1

′ = ×(). 	

Now, select P2 and manipulate its position. Notice how the green vector,


V2
′ , has the

exact same length as


V2 and is always perpendicular to


V1 and


Vn and that the three

vectors,


V1 ,


V2
′ , and



Vn , do indeed define a valid axis frame with three perpendicular

directions centered at P0, independent of where P0 is located, and as long as P0, P1, and

P2 are not collinear.

Now restart the scene and select Pt and manipulate its position to move Pon, the

red sphere, into the region bounded by


V1 and


V2
′ by increasing its x-component value.

Notice as soon as Pon crosses into the region, its color changes from red to white. As long

as Pon is located within the 2D region, it will remain white. Feel free to adjust P0, P1, or P2

to change the bounds of the region to verify that the inside-outside test is consistent and

always correct.

Chapter 6 Vector Cross Products and 2D Planes

271

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

#region Identical to EX_6_2

#endregion

public GameObject P2p; // The perpendicular version of P2

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

 #region Identical to EX_6_2

 #endregion

 Debug.Assert(P2p != null);

 #region For visualizing the vectors

 #endregion

}

As explained, P2p is the only additional variable from an otherwise identical example

to the previous subsection. The Update() function is listed as follows:

void Update() {

 #region Identical to EX_6_2

 #endregion

 float l1 = v1.magnitude;

 float l2 = v2.magnitude;

 Vector3 v2p = l2 * Vector3.Cross(vn, v1).normalized;

 P2p.transform.localPosition =

 P0.transform.localPosition + v2p;

 bool inside = false;

 if (!almostParallel) {

 Vector3 von = Pon.transform.localPosition -

 P0.transform.localPosition;

Chapter 6 Vector Cross Products and 2D Planes

272

 float d1 = Vector3.Dot(von, v1.normalized);

 float d2 = Vector3.Dot(von, v2p.normalized);

 inside = ((d1 >= 0) && (d1 <= l1)) &&

 ((d2 >= 0) && (d2 <= l2));

 if (inside)

 Debug.Log("Inside: Pon is inside of

 the region defined by V1 and V2");

 else

 Debug.Log("Outside: Pon is outside of

 the region defined by V1 and V2");

 }

 #region For visualizing the vectors

 #endregion

}

The first part of the Update() function in the collapsed region contains code that is

identical to previous example. Recall that the collapsed code computes


V1 ,


V2 ,


Vn , and

Pon. The first four lines of new code derive the vector,


V2
′ , of the axis frame and its head

position, P2
′ ,

	 L V1 1=


	

	 L V2 2=


	

  

V L V V normalizedn2 2 1
′ = ×().

P P V2 0 2
′ ′= +



When the Pt position vector is not parallel with the plane, Pon is defined, and the

inside-outside status is computed by the code in the if statement



V P Pon on= − 0 	

d V Von1 1= ⋅
 ˆ 	



Von size on V̂1

d V Von2 2= ⋅ ′ ˆ 	


Von size on V̂2
′

Chapter 6 Vector Cross Products and 2D Planes

273

And finally, the inside condition is computed as

	 inside d L and d L= ≤ ≤() ≤ ≤()0 01 1 2 2 	

�Takeaway from This Example

This example demonstrates that an axis frame can be defined based on three non-

collinear positions. As will be discussed and demonstrated in the next chapter, the ability

to derive axis frames is of key importance in supporting many advanced operations in

video game development including the support for motion control aboard a navigating

spaceship.

The generalization of intervals and bounds is now complete. In Chapter 2, you

learned about intervals and bounds that are aligned with the major axes. In Chapter 5,

you learned to work with general 1D intervals where the interval does not need to be

aligned with any major axis. There, you have also learned that if you were given two

general 1D intervals that are perpendicular, then a general 2D region can be defined

for inside-outside tests. The challenge was that you did not know how to derive the two

perpendicular general 1D intervals. Now, with the knowledge of axis frame derivation,

when given three non-collinear positions, you can compute the two perpendicular

general 1D intervals and proceed to define a general 2D region.

Following the 2D to 3D generalization logic from Chapter 2, together with the

fact that the derived axis frame provides the third perpendicular vector, you can now

define and compute the inside-outside status of any position for bounding boxes at any

orientation. However, remember that determining the collisions of two bounding boxes

based on different axis frames is tedious and non-trivial.

Relevant mathematical concepts covered include

•	 Three non-collinear positions not only define two non-parallel

vectors, they also define an axis frame.

•	 A general 2D rectangular bound can be defined by two general 1D

intervals along perpendicular directions.

•	 A position can be projected onto any general 1D interval to

determine its inside-outside status.

Chapter 6 Vector Cross Products and 2D Planes

274

EXERCISES

Implement a General Bounding Box

Modify MyScript to include a public floating-point variable, vnSize. Initialize it to a

reasonable value, for example, 3.0. Use this variable as the size of the third general 1D interval

along the


Vn direction. Notice a general bounding box is now defined with the two intervals

identified in Figure 6-11. Now, implement the bounding box inside-outside test for Pt. You can

print out the status and verify the correctness of your implementation.

Verify the Importance of Cross Product Ordering

Notice that in Figure 6-10,


V2
′ is defined to be

 

V Vn × 1 and not
 

V Vn1 × . This is because a

Left-Handed Coordinate System axis frame is followed and thus is required. You can verify

with your left hand thumb, index, and middle finger, that the proper third vector to the existing


Vn and


V1 must be computed by
 

V Vn × 1 . For example, if you align your index finger with


Vn , then the middle finger is along the


V1 direction, and your thumb will point in the
 

V Vn × 1

direction. Alternatively, if your index finger is aligned with


V1 , then, your thumb is in the


Vn

direction, and once again, the middle finger will be in the
 

V Vn × 1 direction. Now, try reversing

the cross product order when computing


V2
′ (the v2p variable) and run the game again. Can

you explain what you observe?

�Projections onto 2D Planes
In video games and many interactive graphical applications, it is a common practice to

drop shadows of objects in space to convey hints of relative spatial location. For example,

dropping the shadow of an in-flight meteoroid on the grounds of the approaching city or

casting the shadow of an amulet tossed by the explorer on the walls of secret chamber to

help better track its movement. In these cases, the shadows will convey a clear sense of

the actual location of the in-flight objects and will allow the player to strategize their next

move and react. Figure 6-13 shows that the shadow casting functionality can be modeled

as a point to plane projection problem.

Chapter 6 Vector Cross Products and 2D Planes

275

Figure 6-13.  Projection of a point onto a plane or casting shadow onto the plane

Figure 6-13 shows a plane defined by the plane normal vector, V̂n , located at a

distance, D, away from the origin. You know that the vector plane equation for this

plane is

V̂ p Dn ⋅ = 	

where

P DVn n= ˆ 	

In Figure 6-13, Pt is the position of the object in flight and Pon is the projection of Pt

on the given plane. Note that this projection is along the line connecting Pt to Pon, where

the projection direction is parallel to the plane normal, V̂n . Figure 6-14 includes the

following additional explanation for the derivation of point to plane solution:

d P Vt n= ⋅ ˆ 		 position vector Pt size on V̂n

P dVl n= ˆ 			 projected position of Pt on V̂n

Chapter 6 Vector Cross Products and 2D Planes

276

Figure 6-14.  Solving for point to plane projection

The solution of point to plane projection can be explained by referring to Figure 6-14

and observing the following:

•	 First, a decision is made that a projection will only occur if position

Pt is in front of the plane. This condition is true when the projected

length of the Pt position vector in the V̂n direction is greater than the

plane distance, D, or if d > D.

•	 Second, because the projection is along the V̂n direction, the

distance between Pl and Pn is the same as the distance between Pt

and Pon, and this distance is simply d − D.

•	 Finally, Pon is d − D distance away from Pt in the negative V̂n

direction or

	 P P d D Von t n= − −() ˆ 	

Chapter 6 Vector Cross Products and 2D Planes

277

Note T he derived solution for the point projection is valid for Pt located on either
side of the plane. In this case, projection is restricted to one of the sides of the
plane to showcase the “in front of” test. Modifying the solution to support proper
projections for all locations of Pt is left as an exercise for you to complete.

�The Point to Plane Projections Example
This example demonstrates the results of point to plane projection computation. The

example allows you to interactively define a 2D plane, manipulate the point to be

projected, and examine the results of projecting the point onto the plane. Figure 6-15

shows a screenshot of running the EX_6_4_PointToPlaneProjections scene from the

Chapter-6-CrossProducts project.

Figure 6-15.  Running the Point to Plane Projections example

The goals of this example are for you to

•	 Gain experience with the “in front of a plane” test

•	 Verify the solution of point to plane projection

Chapter 6 Vector Cross Products and 2D Planes

278

•	 Examine the implementation of the in front of a plane test and point

to plane projection

•	 Observe the elegance and simplicity of typical implementation of

vector solutions

�Examine the Scene

Take a look at the Example_6_4_PointToPlaneProjections scene and observe the

predefined game objects in the Hierarchy Window. In addition to the Controller,

there are four objects in this scene: Pn, Pt, Pl, and Pon. Following the illustration in

Figure 6-14, Pn is the position vector along the plane normal that intersects the 2D plane,

Pt is the position to be projected, Pl is the projection of Pt on the plane normal vector,

and Pon is the projection of Pt on the plane.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

•	 Display toggles: ShowAxisFrame and ShowProjections will show or

hide the axis frame and the projections accordingly. These toggle

switches are meant to assist your visualization, allowing you to hide

the illustration vectors to avoid screen cluttering.

•	 Vector plane equation parameters: Vn and D are the plane normal

vector and the distance of the plane from the origin along the normal

vector direction and will be used to create and modify the plane.

•	 Variables for the positions: Pn, Pt, Pl, and Pon are variables with

names that correspond to the game objects in the scene. For all these

game objects, the transform.localPosition will be used for the

manipulation of their corresponding positions.

�Interact with the Example

Click the Play Button to run the example. The white sphere is Pn, the white vector is V̂n ,

the red sphere is Pt, and the red vector is the position vector Pt. The semi-transparent

black sphere on the white vector or the projected position on the plane normal vector

is Pl, while the semi-transparent blob on the 2D plane or the projected position on the

Chapter 6 Vector Cross Products and 2D Planes

279

plane is Pon. Notice the thin green line connecting Pt to Pl; since Pl is the projection

of Pt onto the plane normal vector, this line is always perpendicular to the plane

normal and parallel to the plane. The thin black line connecting Pt to Pon represents

the projection of Pt onto the plane and thus is always perpendicular to the plane and

parallel to V̂n . In the following interactions, feel free to toggle off either or both of the

display toggles to declutter the Scene View.

With the scene running, first verify the “in front of plane” test by selecting Pt and

decreasing its y-component value. Notice that as soon as Pt is below the 2D plane, the

projected positions disappear, verifying that the projection computation is only performed

when the point, Pt, is in front of the plane. You can also verify this test by manipulating the

D or Vn variables to move the plane or rotate the plane normal vector. Notice once again, as

soon as Pt drops below the plane, the projected positions will both disappear.

Feel free to manipulate Pt or the plane parameters D or Vn in any way you like.

Pay attention to the in front of plane test result and the consistent perpendicular

relationships between the green line and the white V̂n vector and the black line and the

2D plane.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public bool ShowAxisFrame = true;

public bool ShowProjections = true;

// Plane Equation: P dot Vn = D

public Vector3 Vn = Vector3.up;

public float D = 2f;

public GameObject Pn = null;

public GameObject Pt = null; // Point projected onto the plane

public GameObject Pl = null; // Projection of Pt on Vn

public GameObject Pon = null; // Projection of Pt on the plane

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

Chapter 6 Vector Cross Products and 2D Planes

280

 Debug.Assert(Pn != null); // Verify proper editor init

 Debug.Assert(Pt != null);

 Debug.Assert(Pl != null);

 Debug.Assert(Pon != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 Vn.Normalize();

 Pn.transform.localPosition = D * this.Vn;

 bool inFront = (Vector3.Dot(Pt.transform.localPosition, Vn) > D);

 // Pt in front of the plane

 Pon.SetActive(inFront);

 Pl.SetActive(inFront);

 float d = 0f;

 if (inFront) {

 d = Vector3.Dot(Pt.transform.localPosition, Vn);

 Pl.transform.localPosition = d * Vn;

 Pon.transform.localPosition =

 Pt.transform.localPosition - (d - D) * Vn;

 }

 #region For visualizing the vectors

 #endregion

}

The first three lines of the Update() function compute

ˆ .V V Normalizen n= ()


		 normalize


Vn

P DVn n= ˆ 				 D distance along V̂n

infront P V Dt n= ⋅() >ˆ 		 Pt is further along V̂n

Chapter 6 Vector Cross Products and 2D Planes

281

The if condition checks for when Pt is indeed in front of the plane. When the

condition is favorable,

d P Vt n= ⋅ ˆ 				 Pt size on V̂n

P d Vl n= ⋅ ˆ 				 project Pt on V̂n

P P d D Von t n= − −() ˆ 		 from Pt in −V̂n

Notice the exact one-to-one implementation code when compared with the solution

derivation. Once again, the implementation of vector solutions is typically simple and

elegant and closely matches the mathematical derivation.

�Takeaway from This Example

This example demonstrates an efficient and graceful way to drop shadows which is a

commonly encountered situation in video games. The example also demonstrates that

the vector solution to projecting along a 2D plane normal is straightforward and stable

and involves a small number of lines of code. Additionally, the example shows how dot

product results can be used to determine the in front of or behind relationship between

an object position and a given 2D plane.

Relevant mathematical concepts covered include

•	 An object is in front of a given plane when the dot product of the

object’s position vector with the plane normal is greater than the

plane distance from the origin.

•	 The projection of a position to a given plane is a subtraction of the

position vector by a perpendicular distance to the plane, along the

plane normal.

EXERCISES

Projection Support for Both Sides of the Plane

Notice that the derivation and the vector solution for projection are valid independent of

whether Pt is in front of or behind the plane. The analysis of MyScript actually demonstrated

extra computation to purposefully hide the projection results when Pt is not in front of the

plane. Modify MyScript to disable the in front of check and verify that the projection solution

is indeed valid for all positions of Pt.

Chapter 6 Vector Cross Products and 2D Planes

282

Criteria for Shadow Casting

The result of the “in front of test” is binary—an object is either in front of the plane or not. In

this example, an object can either cast shadow or the object cannot cast shadow. Notice that

the result from the dot product performed P Vt n⋅()ˆ encodes more information than just in

front of or not. The result also tells you the projected distance or, if Pt is normalized, the cosine

of the subtended angle. This information can be used to refine the criteria of when shadow

casting should occur. For example, casting a shadow should only happen when the subtended

angle is within a certain range. Now, modify MyScript to compute the subtended angle and

allow shadows to be casted only when the subtended angle is less than a degree that is under

the user’s control.

Characteristics of the Shadow Casted

The shadow casted on the 2D plane contains attributes of its object that can also be refined

according to the additional information from the projection computation. For example, the

projected size on the plane normal P Vt n⋅()ˆ carries the height information of the object.

This value can be used to scale the size and the transparency of the shadow object. Modify

MyScript to compute and use the length of the projected size to scale the size of the Pon

game object.

Let User Manipulate Pn

The very simple relationship between Pn, D, and Vn

					 P DVn n= ˆ
	

states that a user can also define the plane by manipulating Pn instead of D and Vn. In

such a case,

					 D Pn= 	

					
V̂

P

Dn
n=

	

Notice that with this approach, instead of the four floating-point numbers, D, and the x-, y-,

and z-components of Vn, the user only has the three floating-point components of Pn to

manipulate the 2D plane. While this is easier for the user, it also means that the user cannot

define planes with D of zero. With this caveat in mind, please modify MyScript to allow the

user the option of defining the 2D plane with either approach.

Chapter 6 Vector Cross Products and 2D Planes

283

Projection with 2D Bound Inside-Outside Test

Notice that as you move Pt in the X- and Z-axis directions, the size of the plane adapts and

continuously shows the projected position on the plane. In an actual application, a 2D bound

would be defined on this plane, and an inside-outside test could be performed and projected

positions outside of the 2D bound would simply be ignored. Refer to the previous example

where instead of allowing the users to adjust Vn and D to define the plane, three positions, P0,

P1, and P2, are used to define both the plane and an axis frame and then a 2D bound. Adapt

the solution and support bound testing for the projected position.

Note T he last exercise challenges you to replace the Vn and D parameters with
three positions to define the 2D plane and an axis frame. In practice, such extra
efforts are not necessary. This is because an axis frame is actually conveniently
defined by the initial orientation of the 2D plane and the plane normal vector,
Vn. This information is available in the rotation matrix of the plane’s transform
component. However, more advanced knowledge in vector transformations and
matrix algebra are required to decode this information. Unfortunately, these are
topics beyond the scope of this book. For now, if you want to define an axis frame
on a 2D plane, the plane must be defined by three positions that are not collinear.
In the rest of the examples in this chapter, 2D plane sizes are always adapting to
include the projected or intersected positions as these planes are created using the
plane equation which relates better to the math at hand.

�Line to Plane Intersection
You may recall that at the end of Chapter 2’s discussion of bounds, when comparing

what you have learned with the Unity Bounds class, one of the methods whose details

were not discussed was

•	 IntersectRay: Does ray intersect this bounding box?

You are now in a position to closely examine this function. By now, you know that

a ray is simply a line segment. The IntersectRay() function computes and returns the

closest intersection position between a line segment and the six sides of the bounding

Chapter 6 Vector Cross Products and 2D Planes

284

box. Note that each side of a bounding box is simply a 2D region as you have previously

examined in the Axis Frames and 2D Regions example. The IntersectRay() function

answers the question of how to intersect a line segment with a 2D plane. This solution is

illustrated in Figure 6-16.

Figure 6-16.  Solving the line to plane intersection

Figure 6-16 depicts two positions, P0 and P1, that define a vector


V1

	


V P P1 1 0= − 	

where the positions, p, along the line segment with parameter s can be written as

	 p P sV= +0 1



	

Notice that in this formulation, since the


V1 vector is not normalized, s values

between 0 and 1, or when 0 ≤ s ≤ 1, identify positions that are inside the line segment. In

Figure 6-16, the position Pon is at a distance, s = d, along the


V1 vector or

	 P P dVon = +0 1



	

Remember that the vector plane equation states that given a plane defined by

normal vector, V̂n , and a distance, D, from the origin, all positions, p, on the plane satisfy

the plane equation

	 p V Dn⋅ =ˆ 	

Chapter 6 Vector Cross Products and 2D Planes

285

In Figure 6-16, the position Pon lies on the 2D plane, so

P V Don n⋅ =ˆ 	

P dV V Dn0 1+()⋅ =
 ˆ substitute P P dVon = +0 1



Note that the only unknown in this equation is d, the distance to travel along the line

segment. By simplifying this equation, left as an exercise, you can show that

d
D P V

V V

n

n

=
− ⋅()

⋅()
0

1

ˆ

ˆ

	

With the d value computed, you can now find the exact Pon position. Note that this

solution is not defined when the denominator or


V Vn1 ⋅()ˆ is close to zero. Once again,

this can be explained by your knowledge of the dot product. A dot product result of zero

means that the cosine of the subtended angle is zero, which says the subtended angle

is 90° or that the two vectors are perpendicular. These observations indicate that when


V Vn1 ⋅()ˆ is close to zero, vectors


V1 and V̂n are almost perpendicular, the line segment is

almost parallel to the plane, and therefore there can be no intersection between the two.

Note R ay casting is the process of intersecting a line segment or a ray with
geometries. For example, if you were told to “cast a ray into a scene,” then you
would simply intersect geometries in the scene with a given line segment. In this
case, you are learning about ray casting with a 2D plane.

�The Line Plane Intersections Example
This example demonstrates the results of the line plane intersection solution. The

example allows you to interactively define a 2D plane and a line segment and then

examine the results of the line plane intersection computation. Figure 6-17 shows a

screenshot of running the EX_6_5_LinePlaneIntersections scene from the Chapter-6-

CrossProducts project.

Chapter 6 Vector Cross Products and 2D Planes

286

Figure 6-17.  Running the Line Plane Intersections example

The goals of this example are for you to

•	 Verify the line plane intersection solution

•	 Gain experience with the perpendicular vectors test

•	 Reaffirm that it is important to check for all conditions when a

solution is not defined, in this case, when the line segment is parallel

to the plane

•	 Examine the implementation of the line plane intersection solution

�Examine the Scene

Take a look at the Example_6_5_LinePlaneIntersections scene and observe the

predefined game objects in the Hierarchy Window. In addition to the Controller,

there are four objects in this scene: Pn, P0, P1, and Pon. Pn, the checkered sphere, is

the position on the plane that is at the defined distance, D, along the plane normal. This

position is displayed to assist in visualizing the 2D plane. The positions P0 and P1 define

the black line segment, and Pon is the intersection position between this line segment

and the defined plane.

Chapter 6 Vector Cross Products and 2D Planes

287

�Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

•	 Display toggles: ShowAxisFrame will show or hide the axis frame to

assist your visualization, allowing you to hide the axis frame to avoid

screen cluttering.

•	 Vector plane equation parameters: Vn and D are the plane normal

vector and the distance of the plane from the origin along the

normal vector direction. These parameters will be used to create and

manipulate the plane.

•	 Variables for the positions: Pn, P0, P1, and Pon are variables with

names that correspond to the game objects in the scene. For all these

game objects, the transform.localPosition will be used for the

manipulation of their corresponding positions.

�Interact with the Example

Click the Play Button to run the example. You can observe a 2D plane with a white

normal vector extending from the origin and passing through the plane at Pn. You

can also observe a thin black line between the positions P0 and P1 that define the line

segment. At the intersection of the plane and the line segment is position Pon. You

should be familiar with the 2D plane and its parameters, Vn and D.

Select the end points of the line segment, P0 or P1, and adjust its x- and z-component

values. Observe that Pon changes in response to your manipulation, always locating

itself at the line plane intersection. This verifies the solution you have derived for Pon.

You can verify the intersection computation results by referring to the text output in the

Console Window. Remember, the values for the d parameterization (see Figure 6-16 for

a reminder of what this variable is) are based on a non-normalized vector; therefore, d

values between 0 and 1 indicate that Pon is inside the line segment.

Now, select P0 and increase its y-component value. When P0’s position is above

the plane, the Pon position is still along the line, but is outside of the line segment,

occurring before position P0. This fact is reflected by the red line segment between Pon

and P0. Notice that as you continue to increase the P0 y-component value, as the line

segment comes close to being parallel to the plane, the intersection position is located

at positions further and further away from Pn. Eventually, when P0 and P1 y-component

Chapter 6 Vector Cross Products and 2D Planes

288

values are exactly the same, the line segment and the plane are exactly parallel and

therefore there is no intersection between the two. You can verify this condition by

referring to the printout in the Console Window. If you continue to increase the P0

y-component value, you will notice the red line segment switching between P0 to Pon to

between P1 and Pon. In the case when P0 is above P1, the intersection position is along

the line segment and after position P1. When this occurs, the value of d will be greater

than 1 which you can verify has happened via the Console Window.

Feel free to manipulate all of the parameters, Vn, D, P0, and P1, and verify that the line

plane intersection solution does indeed compute a proper Pon result except when the

line is almost parallel to the plane or when the length of the line is very small (when P0

an P1 are located at almost the same position).

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public bool ShowAxisFrame = true;

// Plane Equation: P dot Vn = D

public Vector3 Vn = Vector3.up;

public float D = 2f;

public GameObject Pn = null; // Point on plane along normal

public GameObject P0 = null, P1 = null; // The line segment

public GameObject Pon = null; // The intersection position

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(Pn != null); // Verify proper editor init

 Debug.Assert(P0 != null);

 Debug.Assert(P1 != null);

 Debug.Assert(Pon != null);

 #region For visualizing the vectors

 #endregion

}

Chapter 6 Vector Cross Products and 2D Planes

289

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 Vn.Normalize();

 Pn.transform.localPosition = D * Vn;

 // Compute the line segment direction

 Vector3 v1 = P1.transform.localPosition -

 P0.transform.localPosition;

 if (v1.magnitude < float.Epsilon) {

 Debug.Log("Ill defined line (magnitude of zero).

 Not processed");

 return;

 }

 float denom = Vector3.Dot(Vn, v1);

 bool lineNotParallelPlane = (Mathf.Abs(denom) > float.Epsilon);

 // Vn is not perpendicular to V1

 float d = 0;

 Pon.SetActive(lineNotParallelPlane);

 if (lineNotParallelPlane) {

 d = (D - (Vector3.Dot(Vn, P0.transform.localPosition)))

 / denom;

 Pon.transform.localPosition =

 P0.transform.localPosition + d * v1;

 Debug.Log("Intersection pt at:" + Pon +

 "Distant from P0 d=" + d);

 } else {

 Debug.Log("Line is almost parallel to the plane,

 no intersection!");

 }

}

Chapter 6 Vector Cross Products and 2D Planes

290

The first two lines of the Update() function normalize the user-specified plane

normal vector and compute Pn’s position to help the user better visualize the 2D plane.

The code that follows computes

	


V P P1 1 0= − 	

and checks to ensure that this line segment is well defined and has a nonzero length.

When the line is well defined, the denominator for the solution to d,


V Vn1 ⋅ ˆ , is computed

and the condition for the line being parallel to the plane is checked. Note the use of the

absolute value function when checking for the perpendicular condition. This is because

the subtended angles of 89.99° and 90.01° are both almost perpendicular and the cosine

or the dot product results are both close to zero but with different signs. Finally, d is

computed and printed out to the Console Window when the line is not almost parallel to

the plane.

�Takeaway from This Example

This example demonstrates the solution to the line to plane intersection, an important

problem that is straightforward to solve based on vector concepts you have learned.

The concepts applied include working with the vector plane equation, the sign of the

vector dot product, vector projections, and fundamental vector algebra. The line to

plane intersection is a core functionality that can be found in typical game engine utility

libraries. In the case of Unity, this functionality is presented via the IntersectRay()

function of the Bounds class.

Relevant mathematical concepts covered include

•	 Two vectors are almost perpendicular when the result of their dot

product is close to zero.

•	 When a line is almost perpendicular to the normal of a plane, it is

almost parallel to the plane.

•	 The intersection point of a line and a plane can be derived based on

vector algebra.

Chapter 6 Vector Cross Products and 2D Planes

291

Relevant observations on implementation include

•	 Testing for perpendicular vectors, or when dot product result is close

to zero, must be performed via the absolute value function, as very

small positive and negative numbers are both close to zero

EXERCISES

Verify the Line Plane Intersection Equation

Recall that in Figure 6-16, the position Pon is at a distant, s = d, along the


V1 vector or

P P dVon = +0 1



You have observed that since this position is also on the 2D plane

P dV V Dn0 1+()⋅ =
 ˆ

Now, apply the distributive property of the vector dot product over the vector addition operation,

and remembering that the result of a dot product is a floating-point number, show that

d
D P V

V V

n

n

=
− ⋅()

⋅()
0

1

ˆ

ˆ

A More General Shadow Casting Solution

One approach to interpret Figure 6-16 is to ignore P1 and interpret Pon as the projection of P0

on the 2D plane along the


V1 direction. Given this interpretation, you can now cast shadows of

objects onto a 2D plane along any direction specified by the user. Modify MyScript to replace

P1 by a 3D projection direction,


V1 , and implement the functionality of casting a shadow of P0

on the plane along the player-specified


V1 projection direction.

Ray Casting or Intersecting the General Bounding Box

Refer to your solution from the “Implement a General Bounding Box” exercise from the “Axis

Frames and 2D Regions” section. With the results from line plane intersection, you can now

implement the IntersectRay() function. Modify your solution to this previous exercise

Chapter 6 Vector Cross Products and 2D Planes

292

by allowing your user to define a line segment and then compute the intersection of the line

segment with all six sides of the bounding box. The intersection position between the ray or

line segment and the bounding box is simply the closest of all the valid intersection positions.

�Mirrored Reflection Across a Plane
The intersection computation from the previous subsection allows you to collide an

incoming object with flat planes or walls. In many video games, a typical response to

the results of collisions is to reflect the colliding object. For example, when an amulet is

tossed by an explorer, it should bounce and reflect off walls or the floor when it collides

with them to convey some sense of realism. This reflection is depicted in Figure 6-18

and can be described as reflecting the velocity of an incoming object in the mirrored

reflection direction.

Figure 6-18.  Mirrored reflection across a plane

In Figure 6-18, P0, on the left, is the incoming object approaching the plane with

normal vector V̂n and is about to collide with the plane at position Pon. Pr is the mirrored

reflection of P0 across the plane normal V̂n and is the unknown that must be computed.

Since this is a mirrored reflection, the right-angle triangle formed by the incoming

object, P0PonPl, is identical to the one formed by the reflected position, PrPonPl, where Pl is

the position that both P0 and Pr would project onto in the V̂n direction. Additionally, the

vector,


m , from Pl to P0 is identical to the vector from Pr to Pl. Given these observations,

as illustrated in Figure 6-18, you can define the vector


Von from Pon to P0



V P Pon on= −0 	 vector from Pon to P0

Chapter 6 Vector Cross Products and 2D Planes

293

Project vector


Von onto the plane normal direction, V̂n , to compute the length of


Von

when measured along the V̂n direction

h V Von n= ⋅
 ˆ 				 length of



Von along V̂n

Compute Pl, the projected position of P0 on the plane normal, V̂n . This position is

traveling from Pon along the V̂n direction by the projected distance, h,

P P hVl on n= + ˆ 			 Pon along V̂n by h

With the Pl position, you can compute,


m , the vector from Pl to P0,



m = P0 − Pl				 vector from Pl to P0

And finally, the mirrored reflection position of P0 across the normal vector V̂n is

simply traveling along the negative


m vector from Pl

P P mr l= −  				 traveling by the negative


m

In these steps, you have derived the reflected position, Pr, of the incoming position P0

with plane normal V̂n and collision position Pon.

�The Reflection Direction
The derived solution for Pr can be organized to assist the interpretation of mirrored

reflection geometrically:

Pr = Pl − (P0 − Pl)			 substitute


m = P0 − Pl

 = 2Pl − P0				 collecting the two Pl

= +()−2 0P hV Pon n̂ 	 		 substitute P P hVl on n= + ˆ

= + −2 2 0P hV Pon n̂ 			 distributive property

= + − −()P hV P Pon n on2 0
ˆ 		 group Pon with P0

= + −P hV Von n on2 ˆ 

			 substitute


V P Pon on= −0

= + ⋅() −P V V V Von on n n on2
 ˆ ˆ 		 substitute h V Von n= ⋅

 ˆ

Chapter 6 Vector Cross Products and 2D Planes

294

Note that this last equation may seem complex; however, it is actually in a simple

form. If you define the vector


Vr to be

  

V V V V Vr on n n on= ⋅() −2 ˆ ˆ
	

Then

P P Vr on r= +


 from Pon along


Vr

Refer to Figure 6-18; this is the exact complement to the incoming position, P0,

P P Von on0 = +


 from Pon along


Von

In this way, given an incoming direction of


Von and the normal vector V̂n , the

reflected direction,


Vr , is

  

V V V V Vr on n n on= ⋅() −2 ˆ ˆ
	

This is the reflection direction equation. Note that this equation says the reflected

direction,


Vr , is a function of only two parameters—the incoming direction,


Von , and the

normal direction, V̂n , that defines the reflection.

Lastly, it is important to note that in this derivation, the incoming direction,


Von , is

defined as a vector pointing away from the intersection position (see the arrow above


Von in Figure 6-18 for clarification). This convention of defining all vectors to be pointing

away from the position of interest is a common practice in many video games and

computer graphics–related vector solutions.

�The Line Reflections Example
This example demonstrates the results of line reflection across a 2D plane. This example

allows you to interactively define the line segment and the 2D plane, as well as examine

the results of reflecting the line segment across the normal direction of the 2D plane.

Figure 6-19 shows a screenshot of running the EX_6_6_LineReflections scene from the

Chapter-6-CrossProducts project.

Chapter 6 Vector Cross Products and 2D Planes

295

Figure 6-19.  Running the Line Reflections example

The goals of this example are for you to

•	 Verify the reflection direction equation

•	 Examine the reflection of a position across the normal of a plane

•	 Examine the implementation of the reflection computation

�Examine the Scene

Take a look at the EX_6_6_LineReflections scene and observe the predefined game

objects in the Hierarchy Window. Take note that this example builds directly on the

results from the EX_6_5_LinePlaneIntersects scene. Similar to the previous example,

the parameters, Vn and D, define the 2D plane where Pn is the position on the plane to

assist visualization. The parameters P0 and P1 define the line segment, and Pon is the

intersection between the line and the 2D plane.

The two new game objects in this scene are the projection of P0 on the plane normal

vector, Pl, and Pr the mirrored reflection of P0 across the plane normal.

Chapter 6 Vector Cross Products and 2D Planes

296

�Analyze Controller MyScript Component

The MyScript component on the Controller shows that there are two additional public

variables with names that correspond to the Pl and Pr game objects. As in previous

cases, the transform.localPosition of these variables will be used for the manipulation

of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. When compared with the Scene View of

EX_6_5_LinePlaneIntersects, you will observe the similar 2D plane defined by Vn and

D, the thin black line segment defined by P0 and P1, and their intersection at Pon. Note

that the plane normal vector is copied and displayed at Pon to assist in the visualization

of reflection. Also note that the green sphere, Pl, is the projection of P0 onto the plane

normal, and the green vector is the


m vector as depicted in Figure 6-18



m = P0 − Pl

The striped sphere, Pr, connected with a thin red line to Pon, is the mirrored

reflection of P0 across the plane normal vector.

Tumble the Scene View camera to examine the running scene from different viewing

positions to verify that the red line segment and the black line segment above the plane

are indeed mirrored reflections. Notice Pl is the projection of P0 onto the normal vector,

and thus, the green


m vector is always perpendicular to the plane normal vector. You

can manipulate the plane, by adjusting Vn and D, and the line segment, by adjusting

P0 and P1, to verify that the reflection solution is correct for all cases. Recall from the

previous example to be careful when the line segment is almost parallel to the plane as

the plane size will increase drastically to accommodate the intersection position that will

now be located at a very far distance.

You can set P0 and P1 such that the line segment is in the same direction as the plane

normal. Observe that in this case, the reflection direction would be parallel to the normal

vector direction and that the projected position, Pl, and the reflected position, Pr, will be

located at the same point. In other words, the reflection vector would be exactly the same

as in the incoming vector!

Chapter 6 Vector Cross Products and 2D Planes

297

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

#region identical to EX_6_5

#endregion

public GameObject Pl = null; // Projection of P0 on Vn

public GameObject Pr = null; // reflected position of P0

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

 #region identical to EX_6_5

 #endregion

 Debug.Assert(Pl != null);

 Debug.Assert(Pr != null);

 #region For visualizing the vectors

 #endregion

}

As explained, Pl and Pr are the only additional variables from an otherwise identical

example to the previous subsection, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing these

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

 #region identical to EX_6_5

 #endregion

 float h = 0;

 Vector3 von, m;

 Pr.SetActive(lineNotParallelPlane);

 if (lineNotParallelPlane) {

 von = P0.transform.localPosition -

 Pon.transform.localPosition;

Chapter 6 Vector Cross Products and 2D Planes

298

 h = Vector3.Dot(von, Vn);

 Pl.transform.localPosition =

 Pon.transform.localPosition + h * Vn;

 m = P0.transform.localPosition -

 Pl.transform.localPosition;

 Pr.transform.localPosition =

 Pl.transform.localPosition - m; ;

 Debug.Log("Incoming object position P0:" +

 P0.transform.localPosition +

 " Reflected Position Pr:" +

 Pr.transform.localPosition);

 } else {

 Debug.Log("Line is almost parallel to the plane,

 no reflection!");

 }

 #region For visualizing the vectors

 #endregion

}

Recall that the previous example computes the intersection position, Pon, when the

line segment is not almost parallel to the 2D plane. Similar to line plane intersection,

a line can only reflect off a plane that it is not parallel with. The if condition checks

for the parallel condition and outputs a warning message to the Console Window.

Otherwise, the five lines inside the if condition follow the Pr position derivation exactly

and compute



V P Pon on= −0 	 vector from Pon to P0

h V Von n= ⋅
 ˆ 	



Von size along V̂n

P P hVl on n= + ˆ 	 Pon along V̂n by h



m = P0 − Pl	 vector from Pl to P0

P P mr l= −  	 negative


m direction

Chapter 6 Vector Cross Products and 2D Planes

299

�Takeaway from This Example

This example, once again, illustrates a straightforward but important application of

vector algebra. Note that the reflection direction equation

	

  

V V V V Vr on n n on= ⋅() −2 ˆ ˆ
	

is independent of plane to origin distance, D, or the actual incoming object position,

P0, or intersection position Pon. As depicted in Figure 6-20, this makes intuitive sense.

Figure 6-20.  The mirrored reflection direction

On the left of Figure 6-20, it depicts your eye at an initial position, P0, looking at

a point, Pon, on a flat mirror on your desk. The right of Figure 6-20 shows that you

have moved your eye and the mirror such that your eye is now located at Pa, and you

are looking at a new position, Pan, on the mirror. You know that in both of the mirror

locations, for the same incoming viewing direction,


Von , as long as the mirror normal,

V̂n , is not changed, the reflection direction will always be the same,


Vr . Notice that

the reflection direction,


Vr , is only dependent on the incoming direction,


Von , and the

mirror normal vector, V̂n . Neither the location of the mirror, which corresponds to the

D-value of the plane equation, nor the location of your eye, P0 and Pa, nor the location of

where you are looking at, Pon or Pan, affects the reflection direction,


Vr . Only your viewing

angle and the orientation of the mirror will affect the reflection direction, just as the

reflection direction equation states.

Chapter 6 Vector Cross Products and 2D Planes

300

Relevant mathematical concepts covered include

•	 The mirrored reflection direction is a function of the normal vector

and incoming direction.

•	 The mirrored reflection of a position can be found by applying the

reflection direction to the impact position.

Relevant observations on implementation include

•	 In the mirrored reflection implementation, the normal vector must

be normalized. Additionally, the vector representing the reflection

direction is the same length as the vector representing the incoming

direction

EXERCISES

Verify the Reflection Direction

Edit MyScript to replace the implemented solution by first computing the reflection

direction,


Vr ,

				

  

V V V V Vr on n n on= ⋅() −2 ˆ ˆ
	

And then compute

				 P P Vr on r= +


	

Verify your results are identical to the existing implementation. How would you modify your

solution if


Von is a normalized vector?

Compare with the Vector3.Reflect() Function

Please refer to https://docs.unity3d.com/ScriptReference/Vector3.Reflect.

html; the Unity Vector3 class also supports the reflection function. Edit MyScript to

replace the implementation with the Vector3.Reflect() function and verify the results are

identical.

Chapter 6 Vector Cross Products and 2D Planes

https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html;
https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html;

301

Working with the “in Front of” Test

Modify MyScript to reflect the line only when P0 is in front of the 2D plane and P1 is behind

the 2D plane.

Support 2D Bound Test

Modify MyScript to remove Vn and D and include three user control positions for defining the

plane and a 2D bound where reflection only occurs for intersections that are within the bound.

�Summary
This chapter summarizes the discussions on vectors and vector algebra by introducing

the vector cross product. You have seen that while the results of the vector dot product

relate two vectors via a simple floating-point number, the results of the vector cross

product provide information on the space that contains the operand vectors in the form

of a new vector in a new direction. This new vector is perpendicular to both operand

vectors and has a magnitude that is the product of the sizes of the two vectors and

the sine of their subtended angle. You have also learned that the cross product of a

vector with itself or with a zero vector is the zero vector. In typical video game–related

problems, it is rare to encounter solutions that depend on the result of the cross product

of a vector with itself.

You have also learned that an axis frame, or three perpendicular vectors, can be

derived from the result of the cross product. This is accomplished by performing one

more cross product between the initial cross product result vector and one of the original

operand vectors. This newly derived axis frame can serve as a convenient reference for

more advanced applications that will be discussed in the next chapter. In this chapter,

you experienced working with derived axis frames in 2D space to compute position

inside-outside tests for 2D bounds. Remember that it is important to follow the chosen

coordinate space convention, left- or right-handed, when computing an axis frame.

You have built on the results of the cross product to gain insights into 2D planes and

to relate the algebraic plane equation, Ax + By + Cz = D, to the vector plane equation,

P V Dn⋅ =ˆ . You have also examined the geometric implications of the vector plane

equation where the vector, V̂n , is the plane normal and is perpendicular to the 2D plane

and D is the distance between the origin of the Cartesian Coordinate System and the 2D

plane measured along the plane normal, V̂n , direction.

Chapter 6 Vector Cross Products and 2D Planes

302

These insights into 2D planes allowed the derivation of three important solutions

with wide applications in video games and computer graphics applications: projection of

a position, intersection with a line segment, and reflection direction. You have interacted

with and examined the implementation of these solutions as well as verified that these

solutions are general and can work with any input conditions. Lastly, you have observed

that the typical implementation of vector solutions match closely with the vector

algebraic solution, are elegant, and typically involve a small number of lines of code.

Chapter 6 Vector Cross Products and 2D Planes

303

CHAPTER 7

Axis Frames and Vector
Components
After completing this chapter, you will be able to

•	 Understand that the Cartesian Coordinate System is an example of

axis frame

•	 Appreciate that the x-, y-, and z-values of the Cartesian Coordinate

System are examples of vector components

•	 Describe the definition of, and create from three non-collinear

positions, an axis frame

•	 Discuss the components of a vector with respect to any axis frame

•	 Decompose a vector into the components of any given axis frame

•	 Define and work with vectors in any axis frame

•	 Analyze, design, and implement movements of objects in the context

of any axis frame

�Introduction
You have learned from Chapter 4 that a vector is defined by two nonoverlapping

positions. From Chapter 5, you learned that two unique vectors are defined by any three

positions that are not collinear and that these two vectors always define a 2D plane.

Lastly, from Chapter 6, you have learned that the perpendicular direction to a plane can

be derived via a vector cross product, and very importantly, you have also learned that

an axis frame can be derived based on this perpendicular direction and the two given

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_7

https://doi.org/10.1007/978-1-4842-9885-5_7

304

vectors. A derived axis frame is a unique 3D coordinate system, just like the Cartesian

Coordinate System, that is capable of describing and representing positions and

vectors. In this chapter, you will continue to learn about deriving different axis frames

and representing and working with positions and vectors in these derived coordinate

systems.

Note  Recall that a vector points from its tail to its head.

The Cartesian Coordinate System, with its perpendicular x-, y-, and z-axes, is the

most straightforward example of an axis frame. The three axes intersect, with their tails

at the position that is referred to as the origin and the axes are directions or unit vectors.

In Chapter 6, when you examined the axis frame in Figure 6-10, you saw that in general,

the shared tail position of the unit vectors can be located at any arbitrary position, P0.

Thus, an axis frame can be defined simply as three unit vectors that are perpendicular

to each other with tails located at the same position, P0. These three perpendicular unit

vectors are referred to as the major axes and the common position that the major axes

intersect, P0, is the origin of the axis frame.

In Chapter 2, you learned that the coordinate values of a position (x,y,z) represent

distances measured from the origin along their corresponding axes’ directions or unit

vectors. These coordinate values can be considered the magnitude of vectors in the x-,

y-, and z-directions or components of the major axes. In a 3D world, there are exactly

three perpendicular unit vectors with exactly three components for each position.

In general, given a position (x,y,z) or any vector defined in the Cartesian

Coordinate System, it is always possible to compute the corresponding component

values for any other axis frame. The converse is also true—that given the component

values of any axis frame, it is always possible to compute the corresponding coordinate

values in the Cartesian Coordinate System. In other words, it is always possible to

represent a vector in the context of any axis frame and to convert the representation

to any other axis frames. Among many applications, this ability to represent vectors

with respect to any axis frame allows the analysis and manipulation of movements in

dynamic environments such as resting and running down a hallway toward the medical

bay of a spaceship while that spaceship is actively dodging asteroids.

In video games, there are many applications of representing vectors in different axis

frames and working with the resulting components. For example, to continue with the

player in a spaceship example, even though resting in the spaceship, the player’s position

Chapter 7 Axis Frames and Vector Components

305

and orientation should be updated as the spaceship navigates in the asteroid field. In

this situation, an elegant solution would be to represent the position and orientation of

the player in the context of the spaceship’s axis frame. In this way, the spaceship’s axis

frame can be updated as it navigates the asteroid field, while a stationary player in the

spaceship can have its particulars remain constant. With these representations, a player

resting and facing the front of the spaceship will remain stationary and continue to face

the front while the spaceship navigates.

Here are some other examples of working with multiple axis frames in video games:

•	 Running and swinging a sword in virtual reality where the sword’s

position is determined by the player’s hand position, which is

determine by their moving body

•	 An asteroid mining game where each asteroid spins and has its own

gravity system that effects the player

•	 Riding in a vehicle that has a rotatable mounted turret

•	 Hopping between a train and horse in a wild west high stakes

heist game

In practice, representation and conversion between axis frames are usually

integrated as part of and hidden by the scene hierarchy interface. As will be detailed

at the end of this chapter, in Unity the functionality of and the transitions between

axis frames are delivered via the parent-child relationship that can be created and

manipulated in the Hierarchy Window.

This chapter begins by examining the default Cartesian Coordinate System as an axis

frame and relates coordinate values to components. The section that follows reviews

the definition of general axis frames and derives how to compute the components of

positions in these general axis frames. With proper understanding of components,

the subsequent section analyzes vectors in general axis frames and discusses the

details of representing the same vector in different axis frames. The last section of this

chapter simplifies the player in a spaceship example and demonstrates how to achieve

independent motion controls for the player moving toward the medical bay while the

spaceship navigates.

Note T he rest of the book will refer to the axis frame defined by the default
Cartesian Coordinate System as the Cartesian axis frame.

Chapter 7 Axis Frames and Vector Components

306

Figure 7-1.  A General axis frame with labels

�Positions in the Cartesian Axis Frame
This section reviews how the Cartesian axis frame, or the Cartesian Coordinate System,

represents positions in 3D space. As discussed, in general, an axis frame is defined by

three unit vectors, or the major axes, that are perpendicular to each other and intersect

at a common position, the origin. Figure 7-1 depicts an example axis frame with labels:

P0 being the origin or the common intersection position and x̂ , ŷ , and ẑ as the three

perpendicular unit vectors.

In the case of the default Cartesian axis frame, the origin, P0, is simply (0, 0, 0).

By convention, the constant x-, y-, and z-directional unit vectors of the Cartesian

Coordinate System are referred to as î , ĵ , and k̂ , where

	 î � � �1 0 0, , 	

	 ĵ � � �0 1 0, , 	

	 k̂ � � �0 0 1, , 	

Chapter 7 Axis Frames and Vector Components

307

Figure 7-2.  Components of a vector in the default Cartesian axis frame

�Components of a Position Vector
In Chapter 4, when discussing positions, or position vectors, you have learned that

position in the Cartesian Coordinate System at P = (x, y, z) can be inter-
preted as x-, y-, and z-displacements measured along the three major axes
from the origin.

At this point, you have learned enough about vectors to turn this statement into a

mathematical expression. As illustrated in Figure 7-2, remembering that x-direction is

represented by î , y-direction is ĵ , and z-direction is k̂ , then x-, y-, and z-displacements

along the three major axes are simply a vector,


D , that is the sum of the scaled vectors in

the î , ĵ , and k̂ directions or



D xi yj zk� � �ˆ ˆ ˆ 	

The phrase, “measured … from the origin position,” simply means that the

displacement of vector


D begins from the origin at P0 or

	
 

V P D P xi yj zk� � � � � �0 0
ˆ ˆ ˆ 	

� � �� � � � � � � � �0 0 0 1 0 0 0 1 0 0 0 1, , , , , , , ,x y z 	

� � �� � � � � � � � �x y z x y z, , , , , , , ,0 0 0 0 0 0 	

Chapter 7 Axis Frames and Vector Components

308

Notice that in this derivation the coordinate values (x, y, z) are used to scale the

corresponding unit vectors of the axis frame, that is, x is used to scale î , y scaling ĵ , and

z scaled k̂ . Because the coordinate values scale the corresponding unit vectors of the

Cartesian axis frame, these values are referred to as the components of vector


V in the

Cartesian Coordinate System.

Note  Vector components are defined with respect to a given axis frame.
Coordinate values are components of the Cartesian axis frame. In general, for
an axis frame other than the Cartesian axis frame, components of a position are
different from the coordinate values of the position.

�The Components of Cartesian Axis Frame Example
This example demonstrates that scaling the unit vectors of a Cartesian axis frame

with the corresponding coordinate values does indeed compute proper positions.

This example allows you to interactively manipulate a position and then examine the

corresponding components of the position vector and magnitudes of the unit vectors.

Figure 7-3 shows a screenshot of running the EX_7_1_ComponentsOfCartesianAxisFrame

scene from the Chapter-7-VectorComponents project.

Figure 7-3.  Running the Components of Cartesian Axis Frame example

Chapter 7 Axis Frames and Vector Components

309

The goals of this example are for you to

•	 Review the significance of coordinate values

•	 Examine coordinate values as components of a position vector in

scaling the corresponding unit vectors of an axis frame

•	 Verify that the sum of component-scaled unit vectors of an axis frame

does indeed compute the proper position

�Examine the Scene

Take a look at the Example_7_1_ComponentsOfCartesianAxisFrame scene and observe

the predefined black sphere, P, and red cube, Pt, in the Hierarchy Window. In this

example, the coordinate values of P are used to scale the unit vectors of Cartesian axis

frame to compute the position for Pt.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows variables with the same name as

their corresponding reference game objects in the scene. The toggles draw/hide the

position vector of P, the default Cartesian axis frame, and the scaled component vectors.

�Interact with the Example

Click the Play button to run the example. You can see the game object Pt (red cube),

overlapping the game object P (black sphere). Now, select P and manipulate its position.

Observe that Pt (red cube) always follows and encompasses P (black sphere). In this

case, the position of Pt is computed based on component value–scaled unit vectors of

the Cartesian axis frame. This observation verifies that the position P = (x, y, z) is indeed

derived by the equation

	 P xi yj zk0 + + +ˆ ˆ ˆ 	

Examine the scene more closely by selecting the Controller and toggling on/off

the display of the position vector for the game object P, DrawPositionVector, and the

default Cartesian axis frame, DrawAxisFrame. The DrawComponents toggle allows you to

examine the component-scaled unit vectors: xî , yĵ , and zk̂ .

Chapter 7 Axis Frames and Vector Components

310

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject P = null; // For manipulation

public GameObject Pt = null; // For computed position

public bool DrawPositionVector = true; // Visualization toggles

public bool DrawAxisFrame = true;

public bool DrawComponents = false;

private Vector3 iV = new Vector3(1f, 0f, 0f); // unit vectors

private Vector3 jV = new Vector3(0f, 1f, 0f); // i, j, and k

private Vector3 kV = new Vector3(0f, 0f, 1f); //

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(P != null); // Verify proper setting

 Debug.Assert(Pt != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start() function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The private iV, jV, and kV variables are the

corresponding î , ĵ , and k̂ unit vectors of the Cartesian axis frame. The details of the

Update() function are as follows:

void Update() {

 // 1. position and the position vector

 Vector3 Po = Vector3.zero;

 Vector3 v = P.transform.localPosition - Po;

Chapter 7 Axis Frames and Vector Components

311

 // 2. Verify component-scaled unit vector computes position

 Pt.transform.localPosition = Po + v.x*iV + v.y*jV + v.z*kV;

 #region For visualizing the vectors

 #endregion

}

The first two lines of code convert the position of P to a position vector in the

Cartesian axis frame by computing the vector from the origin Po to P or



V P P� � 0 	

Although unnecessary for the Cartesian axis frame because the origin is always

(0,0,0), this step is taken explicitly to differentiate and remind you that position

vectors are vectors from the origin to the given positions. This seemingly insignificant

observation will become important in next sections.

In Step 2, the position of game object Pt is computed by summing the component-

scaled unit vectors from the origin following the given equation

	 Pt � � � �P xi yj zk0
ˆ ˆ ˆ 	

The two steps in the Update() function follow precisely the given equations and the

result is indeed the same position as expected.

�Takeaway from This Example

This is a relatively straightforward example demonstrating and verifying the intuitive

equations



V P P� � 0 	

P P xi yj zk� � � �0
ˆ ˆ ˆ 	

The next section will generalize these equations to support derivation of position

vector components for different axis frames.

Chapter 7 Axis Frames and Vector Components

312

Relevant mathematical concepts covered include

•	 For the default Cartesian axis frame, the sum of components-scaled

unit vectors does indeed compute the proper position.

EXERCISES

Moving the Origin of Cartesian Coordinate

Try the following. Replace the first line of code in the Update() function with

Vector3 Po = new Vector3(1f, 1f, 1f);

 // instead of (0,0,0)

and notice that Pt will continue to follow the position of P correctly. In fact, the position of Pt

will follow that of P for any Po.

What happened is that a new axis frame is created when Po is set to anything other than

(0,0,0). The next section will explore this in depth by deriving and working with components of

general axis frames.

�Positions in General Axis Frames
In the previous section you interpreted the default Cartesian Coordinate System as an

axis frame with the three perpendicular unit vectors, î , ĵ , and k̂ , being the major axes

intersecting at the origin (0, 0, 0). You have also learned to consider the coordinate values

of a Cartesian Coordinate position (x, y, z) as the components of its position vector. You

will now map these concepts to a general axis frame where the three perpendicular unit

vectors may not be aligned with the x-, y-, or z-directions and these vectors may not

intersect at (0, 0, 0).

This section begins with a review of the definition and derivation of a general axis

frame. The section then proceeds to analyze positions as position vectors defined in

these general axis frames and demonstrates that all positions can be decomposed into

components of any given axis frame. You will learn that positions can be expressed and

derived based on components from any axis frame.

Chapter 7 Axis Frames and Vector Components

313

Figure 7-4.  A general axis frame derived from three non-collinear points

�Review of Axis Frame Derivation
As discussed in Chapter 6, an axis frame can be defined by three points that are not

collinear. This is reviewed in Figure 7-4. The given three positions labeled on the right of

the figure, P0, Pz, Pt, define two unique vectors,


Vz and


Vt , with tails located at P0

	


V P Pz � �z 0 	

	


V P Pt � �t 0 	

Now, let

	

  

V V Vy z t� � 	

then


Vy is perpendicular to both


Vz and


Vt . At this point,


Vt may not be

perpendicular to


Vz . This can be rectified by computing

	

  

V V Vx y z� � 	

Now,


Vx ,


Vy , and


Vz are three perpendicular vectors which may not be normalized.

Let x̂ , ŷ , and ẑ , be the normalized versions of the three vectors and an axis frame is

successfully derived, with the three unit vectors intersecting at the origin, P0.

Chapter 7 Axis Frames and Vector Components

314

The default Cartesian Coordinate System is a special example of an axis frame

because its x̂ , ŷ , and ẑ vectors are î , ĵ , and k̂ with corresponding values of (1, 0, 0),

(0, 1, 0), and (0, 0, 1) and that the vectors intersect at the origin with P0 = (0, 0, 0).

Note A n axis frame (in 3D) is defined by three major axes: perpendicular unit
vectors, x̂ , ŷ , and ẑ , intersecting at P0, the origin of the axis frame. It is important
to note that P0 may not be located at (0, 0, 0).

�Position Vectors in General Axis Frames
You have been working with positions specified in the default Cartesian axis frame

where the origin is conveniently located at (0, 0, 0). For this reason, in the Cartesian

axis frame the position, P = (x, y, z), and its position vector,


Vp , always have identical

components, where

	



V P x y z x y z Pp � �� � � � � � � � � � � �0 0 0 0 0 0, , , , , , , , 	

This property of having identical components for a position and the corresponding

position vector is a special case for the Cartesian axis frame and is not true for any axis

frame with origin located at a position other than (0, 0, 0).

In general, the origin of an axis frame, labeled as P0 in Figure 7-4, can be located

at any position in the 3D space. This definition for the origin implies that the general

definition of a position vector,


V , for position, P, is



V P P� � 0 	

Note that since P0 of an axis frame can be located anywhere, in general, position

vectors for the same position may be different across axis frames. Very importantly, given

a position, P, its position vector,


V , in an arbitrary axis frame is usually different from

the position vector,


Vp ,in the Cartesian axis frame.

Chapter 7 Axis Frames and Vector Components

315

Figure 7-5.  Position vector in general and the Cartesian axis frame

Figure 7-5 depicts the two position vectors,


V and


Vp , for the given position,

P = (x, y, z), in two axis frames: the x̂ , ŷ , and ẑ with origin at P0 in the top left and the

default Cartesian axis frame toward the top right of the figure.

Note E ach position vector is defined with respect to the origin of the
corresponding axis frame.

�Components of Position Vectors
It is now possible to derive the components of a position vector by refining the

description of a position in the context of a general axis frame:

Position P in an axis frame can be interpreted as the displacements mea-
sured along the major axes from the origin, P0.

Chapter 7 Axis Frames and Vector Components

316

In this case, instead of the î , ĵ , and k̂ of the Cartesian axis frame, a general axis

frame has x̂ , ŷ , and ẑ as the major axes, and the origin, P0, can be located anywhere.

The phrase

from the origin position, P0

refers to the position vector

	


V P P� � 0 	

where

displacements measured along the major axes
are the size of the position vectors measured along the major axes or

	 v V xx � �


ˆ 	

	
v V yy � �



ˆ 	

	 v V zz � �


ˆ 	

Thus, the given description of the position, P, can be formulated as the following

equation:

	 P P V� �0



	

or
P P V x x V y y V z z� � �� � � �� � � �� �0

  

ˆ ˆ ˆ ˆ ˆ ˆ 	

� � � �P v x v y v z0 x y z
ˆ ˆ ˆ 	

Here, vx, vy, and vz are the components of the position vector of P in the axis frame

with major axes x̂ , ŷ , and ẑ and origin P0. Note the similarity between this equation

and the one from the previous section where, in the Cartesian axis frame, with the î , ĵ ,

and k̂ as major axes and origin located at (0, 0, 0),

Chapter 7 Axis Frames and Vector Components

317

P V i i V j j V k kp p p� � �� �� � � �� � � �� �0 0 0, ,

  ˆ ˆ ˆ ˆ ˆ ˆ
	

	 � � �� � �0 0 0, , xi yj zkˆ ˆ ˆ 	

Recall that in this case x, y, and z are components of the position vector in the

Cartesian axis frame. Once again, you can observe that in the Cartesian axis frame, and

only in the Cartesian axis frame, components are identical to coordinate values.

Note I t is important to distinguish between the components (vx, vy, vz) and
the coordinate values (x, y, z) of a position. Coordinate values are the results of
evaluating components in the context of an axis frame. That is, coordinate values
are the results of evaluating P v x v y v z0 + + +x y z

ˆ ˆ ˆ .

Figure 7-5 illustrates the preceding derivations where the same position, P, is

represented by and can be derived based on two different position vectors. On the left

shows the accumulation of component-scaled x̂ , ŷ , and ẑ vectors that resulted in the

position vector,


V , while the right side of the figure illustrates the summation of scaled

î , ĵ , and k̂ that resulted in


Vp . Clearly,
 

V Vp≠ , and yet with the two vectors describing

offset from the origins along the major axes’ directions of their corresponding axis

frames, the head of both vectors is located at the same position, P. Thus, you can observe

that the same position can be expressed and represented as components of different

axis frames.

Note  Components of a vector are defined with respect to specific axis frames.
The process of computing the values for the components, for example, v V xx � �



ˆ , is
referred to as vector decomposition, or decomposing a vector into its components.

In mathematical terms, axis frames are examples of vector spaces, where the set
of three perpendicular unit vectors is an example of a set of basis vectors, and
deriving components of a vector to be represented in another axis frame is referred
to as changing of basis.

Chapter 7 Axis Frames and Vector Components

318

�The Components of Any Frame Example
This example demonstrates that for a given position, in addition to the default position

vector and components of the Cartesian axis frame, a distinct position vector with a

corresponding set of component values can be derived for any axis frame. Figure 7-6

shows a screenshot of running the EX_7_2_ComponentsOfAnyFrame scene from the

Chapter-7-VectorComponents project.

Figure 7-6.  Running the Components of Any Frame example

The goals of this example are for you to

•	 Refamiliarize the steps of deriving an axis frame from three non-

collinear positions

•	 Experience computing and working with vector components

•	 Examine vector components in any given axis frame

•	 Appreciate that for the same position, there is a distinct position

vector for each different axis frame

Chapter 7 Axis Frames and Vector Components

319

�Examine the Scene

Take a look at the Example_7_2_ComponentsOfAnyFrame scene and observe the

predefined game objects in the Hierarchy Window. In addition to the Controller, there

are five objects in this scene: Po (the white sphere), Pt (the red sphere), Pz (the blue

sphere), P (the black sphere), and Pr (the green cube). In this case, P is the position of

interest; Po, Pt, and Pz are the three non-collinear positions that you can manipulate

to define an arbitrary axis frame; and the Pr position is computed based on the

components of the corresponding position vector.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows that the game objects in the scene

are referenced by variables with the same names and that you have the option to show or

hide the Cartesian and the derived axis frames.

Note I n all examples of this chapter, when attempting to manipulate an
axis frame by adjusting the positions of Pt or Pz, you will experience strange
constraints and awkwardness. It will appear that the system is fighting against
you and often undo or modify your actions. As will be discussed at the end of this
chapter, the orientation of an axis frame should be specified and manipulated
based on rotation and not independent adjustments of positions. Rotation is a
topic that will be discussed in the next chapter. Fortunately, in the context of this
chapter, you are focusing on the relative relation of vectors and components to a
changing axis frame. Your goal is to manipulate an axis frame, not define or specify
a particular axis frame. In all examples of this chapter, simply adjust Pt and Pz
to cause changes to the axis frame. Direct your attention on the vectors and
components instead of the details of the actual axis frame.

�Interact with the Example

Click the Play button to run the example. With the default setting of hiding the details

of the derived axis frame, you should observe a scene that is similar to that from the

previous example: a position (black sphere) and the corresponding position vector

(white vector) with x-, y-, and z-components in the Cartesian axis frame.

Chapter 7 Axis Frames and Vector Components

320

Now, select the Controller object and flip the axis frame being drawn: disable the

showing of Cartesian and enable the derived frame. You should observe a scene that

appears to be very similar to the previous. Instead of white, you will observe a position

vector in black with components along the x̂ (in red), ŷ (in green), and ẑ (in blue)

directions. Notice that the x̂ , ŷ , and ẑ directions are perpendicular and that the objects

P (the black sphere) and Pr (the green cube) overlap and are located at exactly the same

position. The position of Pr is computed based on the position vector


V of position P

according to

	


V P P� � 0 	

and

P P V x x V y y V z zr � � �� � � �� � � �� �0

  

ˆ ˆ ˆ ˆ ˆ ˆ 	

You can select and manipulate Po (white sphere), Pt (red sphere), or Pz (blue sphere)

to define arbitrary axis frames and observe the changes in major axes’ directions and

resulting components size, while the position, P, always remains stationary. You are

observing new sets of component values of the same position for each distinct axis frame

defined.

The position of Pr cannot be manipulated because this position is computed based

on the derived components of position P. Take note that P and Pr always overlap at

exactly the same location. This observation verifies that it is always possible to compute

coordinate values from components for any given axis frame.

Now select the Controller object to re-enable and show the Cartesian axis frame

and components. Observe that the position, P, is defined by two sets of components: the

white position vector of Cartesian axis frame (the


Vp vector in Figure 7-5) and the black

position vector of the defined axis frame (the


V vector in Figure 7-5). This observation

reinforces that any position can be represented and derived by the components of any

axis frame. Feel free to manipulate the derived axis frame or P to further observe this

concept.

Note that the white position vector is


Vp in Figure 7-5 and it is simply

	
P V x y zp� � � �



, , 	

Chapter 7 Axis Frames and Vector Components

321

where the sizes of the components are x (in red), y (in green), and z (in blue). The red

vector originating from (0, 0, 0) is the î vector scaled by x, or xî , accumulating with yĵ

(in green) and then zk̂ (in blue). This faithfully implements the equation

P xi yj zk� � �� � �0 0 0, , ˆ ˆ ˆ 	

On the other hand, the black position vector from P0 (the white sphere) is


V in

Figure 7-5, where



V P P� � 0 	

In this case, the red vector originating from P0 is the x̂ vector scaled by vx, or v xx ˆ ,

accumulating with v yy ˆ (in green) and v zz ˆ (in blue), implementing the equation

	
P P v x v y v z� � � �0 x y z

ˆ ˆ ˆ 	

You have now verified that for all positions, in addition to the default position vector

of the Cartesian axis frame, a separate position vector can be derived based on the origin

and components from any axis frame!

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Po = null; // Origin of the reference frame

public GameObject Pt = null; // Position for defining x-dir

public GameObject Pz = null; // Position on z-axis

public GameObject P = null; // Position to show components

public GameObject Pr = null; // Derived from components

public bool DrawCartesianFrame = true; // show/hide frames

public bool DrawDerivedFrame = true;

#region For visualizing the vectors

void Start() {

 Debug.Assert(P != null); // Verify proper editor init

 Debug.Assert(Pr != null);

Chapter 7 Axis Frames and Vector Components

322

 Debug.Assert(Po != null);

 Debug.Assert(Pt != null);

 Debug.Assert(Pz != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component. The details of the Update() function are as follows:

void Update() {

 // Step 1: Derive the axis frame

 Vector3 origin = Po.transform.localPosition;

 Vector3 Vt = Pt.transform.localPosition - origin;

 Vector3 zDir = (Pz.transform.localPosition –

 origin).normalized;

 Vector3 yDir = Vector3.Cross(zDir, Vt).normalized;

 Vector3 xDir = Vector3.Cross(yDir, zDir).normalized;

 // Step 2: Position vector and the components

 Vector3 V = P.transform.localPosition - origin;

 float vx = Vector3.Dot(V, xDir);

 float vy = Vector3.Dot(V, yDir);

 float vz = Vector3.Dot(V, zDir);

 // Step 3: Compute Pr position from the components

 Pr.transform.localPosition = origin +

 vx*xDir + vy*yDir + vz*zDir;

 #region For visualizing the vectors

 #endregion

}

Step 1 closely follows the equations for axis frame derivation, where

•	 Vt:


V P Pt � �x 0

•	 zDir: ˆ . .z V normalize P P normalizez� � � � �� �


x 0

Chapter 7 Axis Frames and Vector Components

323

•	 yDir: ˆ . .y V normalize V V normalizey z t� � � � �� �  

•	 xDir: ˆ . .x V normalize V V normalizex y z� � � � �� �  

Step 2 computes the position vector,


V , for P and the components of the derived

axis frame:

•	 V:


V P P� � 0

•	 vx, vy, vz: v V xx � �


ˆ , v V yy � �


ˆ , v V zz � �


ˆ

Lastly, Step 3 shows that the coordinate values for the position can be derived based

on the axis frame and the components, where

Pr: P P v x v y v z� � � �0 x y z
ˆ ˆ ˆ

Note that the same location, P, is derived based on a very different computation

when compared to that for the Cartesian axis frame.

�Takeaway from This Example

Through this example you have verified that the Cartesian Coordinate System is indeed

just a special example of axis frame. In general, for any given axis frame, locations of

positions can be described by offsets from the origin with three perpendicular vectors

scaled by their corresponding components. You have also analyzed and examined the

details of deriving the components of a vector for any arbitrary axis frame.

Relevant mathematical concepts covered include

•	 A general axis frame is defined by three major axes: perpendicular

vectors, x̂ , ŷ , and ẑ , with tails intersecting at the origin, P0.

•	 For any general axis frame, the position vector,


V , of P is

	


V P P� � 0 	

where the components of vector


V can be determined by

projecting the vector onto each of the three major axis

v V xx � �


ˆ, 	

v V yy � �


ˆ
, and

	 v V zz � �


ˆ 	

Chapter 7 Axis Frames and Vector Components

324

•	 Coordinate values of positions in an axis frame can be derived based

on the computed components

	
P P v x v y v z� � � �0 x y z

ˆ ˆ ˆ 	

Note the coordinate values are computed based on two separate sets of parameters:

those that define the axis frame P0, x̂ , ŷ , and z, and the values of the components vx,

vy, and vz.

EXERCISES

Front and Up in an Axis Frame

In the given example, the verification position, Pr, is computed according to

P P v x v y v zr � � � �0 x y z
ˆ ˆ ˆ

Try changing this expression to

P P v x v y v zr x y z� � � � �� �0 2ˆ ˆ ˆ

Recall that Pr is the green cube, now ensure that the derived axis frame is displayed,

manipulate the positions, P, Po, Pt, and Pz, and you will observe that the green cube is

always a constant offset of 2 units in the ẑ -axis direction from P. If you consider the ẑ -axis

as the front direction, then in this case, Pr is always “in front of” P. Do you know how to

modify the equation for Pr such that it is always “on top of” P?

Convert Components Between Axis Frames

Given that a position P has components ad, ae, and af in an axis frame with major axes, d̂ , ê ,

f̂ , and origin at Pa. How can you compute the corresponding components for P in a different

axis frame with major axes, l̂ , m̂ , n̂ , and origin at Pb?

Chapter 7 Axis Frames and Vector Components

325

The solution process is actually rather straightforward; you would first compute the coordinate

values for position P, followed by the position vector and then the new components in the new

axis frame. The first step would be to compute the coordinate values of P

P P a d a e a f� � � �a d e f
ˆ ˆ ˆ

Next, the position vector in the new axis frame



V P P� � b

Lastly, projecting the position vector to derive the proper components

b V ll � �
 ˆ

b V mm � �


ˆ

b V nn � �


ˆ

�Vectors in Axis Frames
With the systematic analysis and thorough understanding of positions as position

vectors and components in general axis frames, you are now ready to analyze

relationships between these positions or vectors in general axis frames. Recall from

Chapter 4, a vector is defined by the difference of the corresponding coordinate values

between two positions and it encodes the displacements between these two positions.

As you will learn in this section, similar to positions, vectors, with all of their elegant

properties you learned about in Chapter 4, can also be represented and defined by

components in any axis frame. Additionally, just as in the case for positions, there is a

distinct set of components describing a vector for each given axis frame and it is always

possible to convert between the components of different axis frames.

Chapter 7 Axis Frames and Vector Components

326

Figure 7-7.  A vector between two positions in an axis frame

�Vector Components
The top portion of Figure 7-7 shows an arbitrary axis frame with x̂ , ŷ , ẑ as major axes

and origin at Po. A vector,


V , defined by two positions, P1 and P2, is illustrated in the

lower-center region of the figure.

You have learned that, given the axis frame, the position vector of P1 is

	


V P P1 1 0� � 	

and that the components of P1 for the given axis frame are vx1, vy1, and vz1, where

	 v V xx1 1� �


ˆ 	

	
v V yy1 1� �



ˆ 	

	 v V zz1 1� �


ˆ 	

Chapter 7 Axis Frames and Vector Components

327

and that P1 is located at

	
P P v x v y v zx y z1 0 1 1 1� � � �ˆ ˆ ˆ 	

In a similar fashion, the location of P2 can be expressed as follows:

	
P P v x v y v zx y z2 0 2 2 2� � � �ˆ ˆ ˆ 	

Note T he details of P2 and


V2 are similar to the correspondence of P1 and


V1 ; to
avoid excessive cluttering, these are not annotated in Figure 7-7.

The components of a position are derived from the position vector of the position
and not the coordinate values of the position.

From Chapter 4, you have learned that the vector,


V , from P1 to P2 is defined as



V P P� �2 1 	

	
� � � �� ��P v x v y v zx y z0 2 2 2

ˆ ˆ ˆ 	

	
P v x v y v zx y z0 1 1 1� � �� �ˆ ˆ ˆ 	

With P0 subtracted and collecting terms for each of the major axis,

	



V v v x v v y v v zx x y y z z� �� � � �� � � �� �2 1 2 1 2 1
ˆ ˆ ˆ 	

Let

v v vx x x� �2 1 	

v v vy y y� �2 1 	

v v vz z z� �2 1 	

Chapter 7 Axis Frames and Vector Components

328

then

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

There are two important observations in this derivation. First, in axis frames, vectors

are defined by subtracting the corresponding components of the positions. Second,

vectors are always defined by the summation of the major axis directions (the unit

vectors) scaled by the difference of the corresponding components from the head and

tail positions.

�Analysis in Cartesian Axis Frame

Figure 7-8 shows the details of analyzing the same vector,


V , in the Cartesian axis frame.

Assuming the coordinate values of positions P1 and P2 to be

P1 = (x1, y1, z1) and

	 P x y z2 2 2 2� � �, , 	

Figure 7-8.  Analyze the vector in Cartesian axis frame

Chapter 7 Axis Frames and Vector Components

329

Recall that with origin at (0, 0, 0), the component and coordinate values are identical

in the Cartesian axis frame, such that

	 P x k y j z k x k y j z k1 1 1 1 1 1 10 0 0� � �� � � � � �, , ˆ ˆ ˆ ˆ ˆ ˆ 	

	 P x k y j z k x k y j z k2 2 2 2 2 2 20 0 0� � �� � � � � �, , ˆ ˆ ˆ ˆ ˆ ˆ 	

In this way, the vector,


V , is defined as

	


V P P x x i y y j z z k� � � �� � � �� � � �� �2 1 2 1 2 1 2 1
ˆ ˆ ˆ 	

Let

d x xx � �2 1 	

d y yy � �2 1 	

d z zz � �2 1 	

then



V d i d j d kx y z� � �ˆ ˆ ˆ 	

You have verified that the vector with components, vx, vy, and vz, in the axis frame

with x̂ , ŷ , and ẑ as the major axes and origin at Po is the same vector with components,

dx, dy, and dz in the axis frame with î , ĵ , and k̂ as the major axes and origin at (0, 0, 0).

The key observation is that the same vector is represented by components with distinct

values in different axis frames. Lastly, note that since î , ĵ , and k̂ are constants with

values (1, 0, 0), (0, 1, 0), and (0, 0, 1):

	



V d d dx y z� � �� � � � � �1 0 0 0 1 0 0 0 1, , , , , , 	

� � �� � � � � � � � �d d d d d dx y z x y z, , , , , , , ,0 0 0 0 0 0

This derivation, once again, verifies that for Cartesian axis frame, the values of

component and coordinate are identical.

Chapter 7 Axis Frames and Vector Components

330

�The Vectors in Any Frame Example
This example demonstrates the definition of vectors based on specifying component

values and computing the difference in corresponding components from existing

positions. Figure 7-9 shows a screenshot of running the EX_7_3_VectorsInAnyFrame

scene from the Chapter-7-VectorComponents project.

Figure 7-9.  Running the Vectors in Any Frame example

The goals of this example are for you to

•	 Verify that displacements or vectors can be defined explicitly based

on component values specified in any axis frame

•	 Derive vectors based on computing the difference in the

corresponding components of two positions

•	 Examine the defined vectors in the context of and with respect to a

changing axis frame

�Examine the Scene

Take a look at the Example_7_3_VectorsInAnyFrame scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are six

objects. Similar to the previous example, Po (white sphere), Pt (red sphere), and Pz (blue

Chapter 7 Axis Frames and Vector Components

331

sphere) allow the definition and manipulation of an axis frame. The components of P1

and P2 (both black spheres) positions define the vector for examination and the position

of Pr (green cube) is derived based on the computed vector.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the six references to the

corresponding game objects discussed. Additionally, there are three floating-point

controls, vx, vy, and vz. Through these controls, you can specify the values for the

components of the x̂ , ŷ , and ẑ directions to define a vector,


V , for computing the

position of Pr

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

 P P Vr � �1



	

The four toggles control the showing or hiding of the derived axis frame, the

components of the vector, the Cartesian axis frame, and if the vector should be

computed based on the positions P1 and P2 (instead of from the specified component

values).

�Interact with the Example

Click the Play button to run the example. You will observe a white vector from P1

(black sphere) to Pr (green cube). Also visible are the axis frame (with the red plane),

the position vectors for P1 and Pr (in black), and the components of the white vector.

Pay attention to the components of the white vector: the three perpendicular segments

in red, green, and blue showing the displacements along the x̂ (in red), ŷ (in green),

and ẑ (in blue) directions. Take note to verify visually that these three components are

perpendicular and parallel to their respective axis in the axis frame.

In following this example, your interaction will consist of three categories: examine

vectors defined by explicitly specified components, examine vectors in the derived and

the Cartesian axis frames simultaneously, and examine vectors computed based on

subtracting corresponding components of positions.

Chapter 7 Axis Frames and Vector Components

332

Defined by Specified Components

Select the Controller and verify the initial values of vx, vy, and vz to be three, two, and one.

Notice that these values correspond to the lengths of the displayed components—that the

red segment is about three times the length of and the green segment is about two times the

length of the blue segment. You can adjust these values to observe the intuitive changes in

the corresponding component size that control the white vector and the position of Pr. For

example, decreasing the value of vx will shorten the red component resulting in the position

Pr moving closer to P1 along the red component or x̂ direction. You have just experienced

defining vectors based on specifying component values explicitly.

Now, manipulate the positions of Po, Pt, and Pz to redefine the general axis frame.

Observe that when you change the positions of Pt and Pz, the orientation of the axis

frame changes. Since the vector component values are specified explicitly, the lengths of

the red, green, and blue component segments do not change when only the directions of

x̂ , ŷ , and ẑ are updated. For this reason, the white vector maintains a constant relative

relationship to and follows the axis frame changes. When you change the position of the

origin, Po, since the vector is defined as a displacement from P1 and independent from

any other positions, the white vector remains constant as expected.

You have interacted with a vector defined by explicitly specified components in a

changing axis frame. You have observed that as the orientation of the axis frame changes,

such a vector also re-orientates and maintains a constant relative relationship with the

axis frame. This can be further understood mathematically. The vector,


V , is defined as

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

With the values of vx, vy, and vz specified and constant, changing the axis frame

corresponds to changing x̂ , ŷ , and ẑ . Thus, the constant relative relationship with

the underlying axis frame reflects constant displacements with respect to the changing

major axes.

Analyze in Derived and Cartesian Axis Frames

Select the Controller and toggle DrawCartesian to enable the displaying of Cartesian

axis frame, position vectors, and components. You will observe an additional and

thicker set of red, green, and blue components showing the corresponding î , ĵ , and

k̂ component sizes in the Cartesian axis frame. Try toggling DrawCartesian on and off

repeatedly to verify and differentiate between the two sets of components.

Chapter 7 Axis Frames and Vector Components

333

Now, when you manipulate vx, vy, and vz values, you will continue to observe

intuitive changes in the first thinner set of components: only the size of the

corresponding component will change! Verify that this may not be the case for the

thicker set of components of the Cartesian axis frame. For example, you can adjust the

value for vx to observe changes in all three components of the Cartesian axis frame. In

this case, you are observing the changes in size along the x̂ direction and that the x̂

direction is described by the combination of î , ĵ , and k̂ directions of the Cartesian axis

frame. You have just observed the same vector having drastically different component

values in two axis frames.

Defined by Positions

Select the Controller and toggle off DrawCurrentFrame, DrawComponents, and

DrawCartesian for a clean display. Toggle on VectorFromP1P2 to define the vector


V by

subtracting corresponding components of positions P1: vx1, vy1, vz1 and P2: vx2, vy2, vz2,



V P P� �2 2 	

� �� � � �� � � �� �v v x v v y v v zx x y y z z2 1 2 1 2 1
ˆ ˆ ˆ 	

Adjust the positions of P1 and P2 to update the components of the vector. You can

verify the component values are updated by examining either the corresponding fields in

the Controller or the printouts in the Console Window. Recall that the position for Pr is

still computed according to

P P Vr � �1



	

In your interactions you will observe that Pr position always follows and matches

exactly to that of P2. You have now verified that vectors can indeed be defined by

subtracting the corresponding components of the head and tail positions.

Lastly, and very importantly, select the Controller and toggle DrawCurrentFrame

and DrawComponents to re-enable the displaying of the general axis frame and the

components. Now, once again manipulate Pt and Pz to redefine the general axis frame.

Since the vector is now defined by two positions that are stationary with respect to the

axis frame, as the axis frame changes, the white vector stays constant. However, notice

that the components of the vector are defined with respect to the current axis frame

Chapter 7 Axis Frames and Vector Components

334

and thus are constantly changing when the axis frame is updated. You can observe the

printout of the component values in the Console Window. Mathematically, given the

vector


V

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

When the axis frame is updated, x̂ , ŷ , and ẑ are changed, and vx, vy, and vz values

are updated to maintain a constant vector.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Po = null; // Origin of axis frame

public GameObject Pt = null; // x-direction of frame

public GameObject Pz = null; // z-direction of frame

public GameObject P1 = null; // Position for manipulation

public GameObject P2 = null; // P1P2 defines V

public GameObject Pz = null; // Position derived from V

public float vx = 3.0f; // Component values

public float vy = 2.0f;

public float vz = 1.0f;

public bool DrawCurrentFrame = true; // Visualization toggles

public bool DrawComponents = true;

public bool DrawCartesian = false;

public bool VectorFromP1P2 = true;

#region For visualizing the vectors

void Start() {

 Debug.Assert(P1 != null); // Ensure proper setup

 Debug.Assert(P2 != null);

 Debug.Assert(Pr != null);

 Debug.Assert(Po != null);

Chapter 7 Axis Frames and Vector Components

335

 Debug.Assert(Pt != null);

 Debug.Assert(Pz != null);

 #region For visualizing the vectors

}

All the public variables for MyScript have been discussed, and as in all previous

examples, the Debug.Assert() calls in the Start() function ensure proper setup

regarding referencing the appropriate game objects via the Inspector Window. The

details of the Update() function are as follows:

void Update() {

 // Step 1: Drive the axis frame

 Vector3 origin = Po.transform.localPosition;

 Vector3 Vt = (Pt.transform.localPosition - origin);

 Vector3 zDir = (Pz.transform. localPosition –

 origin).normalized;

 Vector3 yDir = Vector3.Cross(zDir, Vt).normalized;

 Vector3 xDir = Vector3.Cross(yDir, zDir).normalized;

 // Step 2: Compute vector components if necessary

 if (VectorFromP1P2) {

 Vector3 V1 = P1.transform.localPosition - origin;

 float vx1 = Vector3.Dot(V1, xDir);

 float vy1 = Vector3.Dot(V1, yDir);

 float vz1 = Vector3.Dot(V1, zDir);

 Vector3 V2 = P2.transform.localPosition - origin;

 float vx2 = Vector3.Dot(V2, xDir);

 float vy2 = Vector3.Dot(V2, yDir);

 float vz2 = Vector3.Dot(V2, zDir);

 // Difference of the P1 and P2 components

 vx = vx2 - vx1;

 vy = vy2 - vy1;

 vz = vz2 - vz1;

 }

Chapter 7 Axis Frames and Vector Components

336

 Debug.Log("Component values: vx="

 + vx + " vy=" + vy + " vz=" + vz);

 // Step 3: compute the vector and position for P2

 Vector3 V = vx * xDir + vy * yDir + vz * zDir;

 // Derive Pr position from computed vector

 Pr.transform.localPosition = P1.transform.localPosition + V;

 // P1.transform.localPosition += 0.001f * V.normalized;

 // What does the above do?

 #region For visualizing the vectors

}

Step 1 is identical to the previous example in deriving the parameters of the axis

frame. In Step 2, if user specifies to derive the values of vx, vy, and vz from the P1 and P2

components, then the position vector, V1, for P1 is computed

	


V P P1 1 0� � 	

And the components of P1 for the given axis frame, vx1, vy1, and vz1, are derived

	 v V xx1 1� �


ˆ 	

	
v V yy1 1� �



ˆ 	

	 v V zz1 1� �


ˆ 	

The same operations are repeated for P2, and the values for vx, vy, and vz are

computed as

	 v v vx x x� �2 1 	

	
v v vy y y� �2 1 	

	 v v vz z z� �2 1 	

Chapter 7 Axis Frames and Vector Components

337

Step 3 defines vector, V, and position of Pr to be

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

 P P Vr � �1



	

�Takeaway from This Example

You have verified that in a general axis frame, vectors can be defined by either specifying

component values explicitly or subtracting the corresponding component values of the

head and tail positions. You have also verified that given a vector

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

When the component values, vx, vy, and, vz, are specified in a changing axis frame,

the vector will update along with the axis frame maintaining a constant relative

relationship. On the other hand, to maintain a constant vector in a varying axis frame,

the component values must be recomputed.

Relevant mathematical concepts covered include

•	 Vectors are defined by component-scaled major axes’ directions

(perpendicular unit vectors) of axis frames.

•	 It is possible to define a vector to follow and maintain constant

relative relationship to a varying axis frame by explicitly specifying

the component values.

•	 It is also possible to define a vector to remain constant in a varying

axis frame by continuously updating the component values.

EXERCISE

Velocity in an Axis Frame

Instead of computing the position for Pr, try using the derived vector, V, to update the position

of P1 in the Update() function. That is, uncomment the very last line in Step 3 and enable

the following:

 P1.transform.localPosition += 0.001f * V.normalized;

Chapter 7 Axis Frames and Vector Components

338

The vector is scaled by a small number to avoid drastic position changes. As expected, when

running the modified example, you will observe P1 traveling at a constant speed. The constant

speed behavior persists even if you manipulate the axis frame. As you have learned, speed is

the magnitude of a velocity or the vector; in this case, with the normalized vector, the small

number is the actual size of the displacement per update, or the speed.

Now, enable the VectorFromP1P2 toggle on the Controller and try modifying the axis

frame. Notice the movement of P1 is completely independent from the axis frame. This is not

surprising as you have observed that the velocity (vector) is derived based on the positions of

P1 and P2 which are both independent from the axis frame.

A more interesting case is to disable the VectorFromP1P2 toggle. In this case, notice that

the movement is constant with respect to the varying axis frame. Since the velocity (vector) is

defined by specified components, as the axis frame changes, velocity follows. This observation

suggests a solution for the player in a navigating spaceship example discussed earlier. This

will be covered in the next section.

�Motion Control in Axis Frames
Recall the example from earlier in the chapter of a player resting but wanting to move

toward the medical bay on a navigating spaceship. You know that the position of

the player is changing with the navigating spaceship. However, in the context of the

spaceship, the player is currently resting with no movement. Additionally, when the

player is ready, the movement toward the medical bay is independent of the asteroid

dodging maneuvers of the spaceship. That is, the spaceship’s turning should not affect

the player’s pathway of moving toward the medical bay. You are now ready to design a

solution to support this scenario.

You have learned that for a general axis frame with origin at P0 and major axes x̂ , ŷ ,

and ẑ , a position, P, with components vx, vy, and vz is located at

	
P P v x v y v zx y z� � � �0

ˆ ˆ ˆ 	

Notice that the location is described by two separate and independent sets of

parameters: the axis frame and the components. This observation points to an elegant

solution where the spaceship and the player can be described by the two sets of

parameters. The first is to describe the location and orientation of the spaceship by the

Chapter 7 Axis Frames and Vector Components

339

origin and major axes of an axis frame. And the second is to keep track of the player

location based on its components with respect to the spaceship axis frame. With this

design, as the spaceship navigates, the corresponding axis frame is updated while the

components of the position of a resting player stay constant. Then, when the player

wants to move, the movement can be represented by updating the components of the

player’s position independent from the spaceship’s axis frame.

For clarity and simplicity of notations, in the following, the superscript c is

introduced to represent vectors of components. For example, position P1 with

components vx1, vy1, and vz1 and P2 with components vx2, vy2, and vz2 are expressed as

P v v vc
x y z1 1 1 1� � �, , , and

P v v vc
x y z2 2 2 2� � �, , 	

The components of the vector,


V , between positions P1 and P2 are

	



V P P v v v v v vc c c
x x y y z z� � � � � �� �2 1 2 1 2 1 2 1, , 	

� � �v v vx y z, , 	

It is important to note that, in general, P Pc
1 1≠ ; instead,

P P P P P zx yc c c
1 0 1 1 1= + .x + .y + .z� � � � � �ˆ ˆ ˆ 	

Now, assuming Pc
1 is the components of the player’s position and Pc

2 is that of the

medical bay, then the normalized


V c or V̂ c is the direction that will lead the player to

the medical bay.

Given a speed, s, when traveling toward the medical bay, the total traveling of the

player at time t is


T c



T c = tsV cˆ

Now, the components of the player position, Pc, at time t are


T displacements from

the initial Pc
1

P P Tc c c� �1



	

Chapter 7 Axis Frames and Vector Components

340

where the actual coordinate values of the player are located at

	
P P P x P y P zc c c= + .x + .y + .z0 � � � � � �ˆ ˆ ˆ 	

Take note that the preceding derivation is carried out with respect to the components

based on the vector notations. Though working on components instead of coordinate

values, you are still able to apply all of the vector concepts learned.

This solution defines positions and traveling velocity inside the spaceship by

components with respect to the axis frame of the spaceship. In this way, the navigation of

the spaceship updates its axis frame while the player location and movements within the

spaceship are based on the specifics of the current axis frame at any given instance. The

key observation is that while intimately related, the controls of the spaceship and player

movements are completely independent. For example, while the spaceship is navigating

(axis frame being updated), it is trivial to change the traveling direction of the player

to move toward any other position, P3, in the spaceship, for example, the command

deck, and at any other speed, s′. The following example demonstrates the detailed

implementation of this design.

�The Motion in Axis Frame Example
This example demonstrates the advantage of defining positions and velocities based on

components with respect to a changing axis frame. Figure 7-10 shows a screenshot of

running the EX_7_4_MotionInAxisFrame scene from the Chapter-7-VectorComponents

project.

Chapter 7 Axis Frames and Vector Components

341

Figure 7-10.  Running the Motion in Axis Frame example

The goals of this example are for you to

•	 Explore the application of axis frame concepts covered in this chapter

•	 Understand the advantage of defining positions and vectors as

components with respect to a varying axis frame

•	 Observe that Cartesian Coordinate axis frame, with origin at (0, 0, 0)

and major axes î , ĵ , and k̂ , is indeed a simple example of axis frame

and conforms to all of the concepts discussed

�Examine the Scene

Take a look at the Example_7_4_MotionInAxisFrame scene and observe the predefined

game objects in the Hierarchy Window. In addition to the Controller, there are four

objects. Similar to the previous examples, Po (white sphere), Pt (red sphere), and Pz

(blue sphere) allow the definition and manipulation of an axis frame. P (green sphere) is

the current position of the player within the “spaceship.”

Chapter 7 Axis Frames and Vector Components

342

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the four references to the

corresponding game objects discussed. The P1Components and P2Components allow the

specification of components for positions P1 and P2 representing the initial position of the

player and that of the medical bay. The two check boxes toggle the drawing of the axis frame

and if the computation should be carried out in the defined or the Cartesian axis frame.

�Interact with the Example

Click the Play button to run the example. You will observe the object P (green sphere)

continuously travels along a white line from a black sphere to a black cube. Select the

Controller object and adjust the values of P1Components and P2Components to observe

and verify that the black sphere location is controlled by P1Components and the cube by

P2Components. These are the components of P1 (player location) and P2 (medical bay

location) where the green sphere simulates the continuous motion from P1 toward P2.

Now, toggle on DrawAxisFrame to observe the Cartesian axis frame in relation to the

objects. You can verify the computation is performed with respect to the Cartesian axis

frame by setting P1Components to (0, 0, 0) and P2Components to a location on one of the

major axes, for example, (2, 0, 0) or (0, 2, 0). Through these interactions, you have verified

that the computation is performed with respect to the Cartesian axis frame.

You can now toggle on MotionInAxisFrame to observe that Po (white sphere), Pt

(red sphere), and Pz (blue sphere) are now displayed. At this point, the exact same

computations are performed with respect to the defined axis frame. The system behaves

in exactly the same manner, except that instead of a constant and static Cartesian axis

frame, you can now update the axis frame.

You can simulate the spaceship in motion by selecting and changing the location of

Po or manipulating Pt and Pz to rotate the axis frame and simulate asteroid dodging. In

all cases, notice how P (green sphere), P1 (black sphere), and P2 (black cube) maintain

their relative positions to the axis frame as the entire axis frame updates. In addition,

note the motion of the green sphere continues as usual and is not affected by the axis

frame manipulation.

In this example, P1 and P2 are represented by components with respect to a changing

axis frame. The position of the traveling object, P, is computed based on velocity

(vector) derived from the components of the positions. You have experimented with and

observed the independence of axis frame and object motion controls.

Chapter 7 Axis Frames and Vector Components

343

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Po = null; // Origin of axis frame

public GameObject Pt = null; // x-direction of frame

public GameObject Pz = null; // z-direction of frame

public GameObject P = null; // traveling object

public Vector3 P1Components = Vector3.zero; // P1 Components

public Vector3 P2Components = Vector3.one; // P2 Components

public bool DrawAxisFrame = true;

public bool MotionInAxisFrame = false;

private const float kSpeed = 0.005f;

private float Traveled = 0f;

#region For visualizing the vectors

void Start() {

 Debug.Assert(P != null); // Ensure proper setup

 Debug.Assert(Po != null);

 Debug.Assert(Pt != null);

 Debug.Assert(Pz != null);

 #region For visualizing the vectors

 }

All the public variables for MyScript have been discussed. The first private constant

floating-point variable, kSpeed, defines the speed of the traveling object and the second

variable, Traveled, is to accumulate the total distance traveled. As in all previous

examples, the Debug.Assert() calls in the Start() function ensure proper setup

regarding referencing the appropriate game objects via the Inspector Window. The

details of the Update() function are as follows:

void Update() {

 // Parameters of an axis frame

 Vector3 origin, xDir, yDir, zDir;

 // Step 1: Set up the axis frame

 if (MotionInAxisFrame) {

Chapter 7 Axis Frames and Vector Components

344

 // Derive the axis frame

 origin = Po.transform.localPosition;

 Vector3 Vt = (Pt.transform.localPosition - origin);

 zDir = (Pz.transform.localPosition –

 origin).normalized;

 yDir = Vector3.Cross(zDir, Vt).normalized;

 xDir = Vector3.Cross(yDir, zDir).normalized;

 } else {

 // Default Cartesian axis frame

 origin = Vector3.zero; // (0, 0, 0)

 xDir = Vector3.right; // (1, 0, 0)

 yDir = Vector3.up; // (0, 1, 0)

 zDir = Vector3.forward; // (0, 0, 1)

 }

 // Step 2: direction and distance traveled

 Vector3 Vc = P2Components - P1Components;

 Traveled += kSpeed * Time.deltaTime; //

 if (Traveled > Vc.magnitude)

 Traveled = 0f; // restart

 Vector3 Tc = Traveled * Vc.normalized;

 // Step 3: components and coordinate of P

 Vector3 Pc = P1Components + Tc;

 P.transform.localPosition = origin +

 Pc.x * xDir + Pc.y * yDir + Pc.z * zDir;

 #region For visualizing the vectors

}

The first line of the Update() function defines the parameters of an axis frame,

origin (P0), xDir (x̂), yDir (ŷ), and zDir (ẑ). The first step is to determine the actual

values for the axis frame parameters: either follow the derivation introduced in previous

section based on the three manipulatable non-collinear positions Po, Pt, Pz or assign the

constant values associated with the Cartesian axis frame. You should take special note

of the fact that independent of the values for the axis frame, the rest of the computations

are exactly the same. This is the most striking example of the fact that Cartesian axis

frame is a specific example of the general axis frame.

Chapter 7 Axis Frames and Vector Components

345

Step 2 computes the components of the vector between positions P1 and P2 by

subtracting the corresponding component values



V P Pc c c� �2 1 	

The step then accumulates the distance traveled, Traveled, where each update

results in the coverage of kSpeed×Time.deltaTime distance. The implementation checks

to ensure that the traveling is always in between P1 and P2 and then computes the total

traveling


T c = tsV cˆ

Step 3 computes the components of the green sphere position, Pc, by traveling from

P1Components

P P Tc c c� �1



	

Lastly, the actual location for the position P is computed based on the computed

component values, Pc

	
P P P x P y P zc c c= + .x + .y + .z0 � � � � � �ˆ ˆ ˆ 	

The key observation is that the implementation indeed follows the derivation exactly

and that independent controls of the motions for the spaceship and the player in the

spaceship are accomplished.

�Takeaway from This Example

You have observed that it is advantageous to represent locations and velocities of objects

by their component values in a constantly changing axis frame.

Relevant mathematical concepts covered include

•	 Actual locations and velocities of objects can be conveniently

represented by components while the reference axis frame varies.

Chapter 7 Axis Frames and Vector Components

346

EXERCISES

Vectors from Coordinate vs. Component Values

In this example, the motion vector,


V c , is computed based on subtracting corresponding

component values of the head and tail positions



V P Pc c c� �2 1 	

An alternative approach is to recognize that P1 and P2 locations can be derived based on the

specified component values, P1Components and P2Components

	
P P v x v y v zx y z1 0 1 1 1� � � �ˆ ˆ ˆ 	

P P v x v y v zx y z2 0 2 2 2� � � �ˆ ˆ ˆ 	

With the coordinate values computed, the vector,


V , can be computed by subtracting the

corresponding coordinate values, just as what you have done in Chapter 4



V P P� �2 1 	

Note that, in this case, the position of P is simply

P P tsV� �1
ˆ 	

You can modify MyScript to implement the preceding cases. This exercise shows you that the

same results can be derived based on computations performed with coordinate or component

values. When you become familiar with the subject, you are free to choose either to work with.

�Axis Frames in Unity
The concepts of axis frame and representing locations as components are crucial and

their applications can be found in all interactive graphics software systems, especially in

video games. These concepts are applied in all situations when there are interactions and

controls involving connected or contained elements of objects, such as player holding on

to objects, riding on vehicles, hoping on/off from horses, or a player in a spaceship.

Chapter 7 Axis Frames and Vector Components

347

Modern graphical applications typically abstract the detail specifics of axis frame

and present the functionality to the end users via the interface to the scene hierarchy: the

parent-child relationship between game objects that users can create and manipulate.

In the Hierarchy Window of the Unity Editor, when you create a game object as a child of

an existing game object, from the perspective of axis frame concepts discussed, you are

effectively specifying the child location as components based on the axis frame defined

by the parent game object. The actual implementation of the parent-child relationship is

abstracted into a more advanced mathematical topic: matrices.

Matrix algebra based on strategically design data structure can encompass and hide

the details and the transitions of axis frames. These are interesting topics of discussions

for a more advanced book on math for game development.

�Summary
This chapter continues with the discussion of positions and vectors by pointing out that

the Cartesian Coordinate System is simply an example of the more general concept of

axis frames. The chapter analyzes the characteristics of axis frames and explains that

coordinate values are component values evaluated in specific axis frames. You have

examined the representation and the conversion of components for the same location

based on different axis frames. You have also learned to express vectors as components

of axis frames and experimented with defining a constant vector with respect to a

varying axis frame.

The chapter concludes the coverage with a simplified example of a position (e.g.,

a player) moving toward a destination (e.g., the medical bay) in a varying axis frame

(e.g., a navigating spaceship). You have witnessed the importance and advantage of

representing locations as components of an axis frame in accomplishing independent

motion controls.

In all of the examples from this chapter, you may have noticed, or felt frustrated

by, the awkwardness in manipulating the orientation of the axis frame by adjusting the

Pz and Pt objects on the two corresponding major axes. There seem to be strange or

arbitrary constraints limiting the interactions where it can be challenging to manipulate

these objects to achieve your desired axis frame orientation. This is not surprising as the

implicit requirement that Pz and Pt must be on perpendicular axes dictates that the two

objects should not be manipulated separately. In this case, what is required is to rotate

the entire axis frame as an integral object. This is the topic of study for the next chapter.

Chapter 7 Axis Frames and Vector Components

349

CHAPTER 8

Quaternions
and Rotations
After completing this chapter, you will be able to

•	 Appreciate that the rotation of a position is a movement of constant

distance around an axis

•	 Characterize the rotation of a position by an angle and an axis of

rotation

•	 Discuss quaternions as operators for representing rotations

•	 Implement basic quaternion algebra in rotating positions

•	 Appreciate that consecutive rotations on objects can be modeled by

ordered concatenation of quaternions

•	 Derive the rotation required to align two arbitrary position vectors

•	 Describe and model homing and chasing behaviors

•	 Configure and work with the rotation operator of the Transform

component on the Unity GameObject

•	 Derive the necessary quaternions to align two axis frames

�Introduction
In previous chapters you have analyzed positions, studied intervals, learned to relate two

positions via a vector, examined relationships between two vectors via a dot product,

and studied the space that contains two vectors via the cross product. In the last chapter,

you learned about axis frames and began to understand the convenience of considering

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_8

https://doi.org/10.1007/978-1-4842-9885-5_8

350

multiple coordinate spaces simultaneously in non-trivial situations such as describing

motions in a navigating spaceship. You have also encountered awkwardness when

trying to manipulate an axis frame by individually adjusting the locations of three non-

collinear positions. As discussed, what is desired is a tool for rotating the axis frame as

an integrated object. This chapter introduces the quaternion as an operator to rotate

positions, or position vectors.

Strategically defined quaternions and the associated algebra are efficient and

powerful tools for describing vector rotations. You will learn that rotations can be

characterized as angular motions with respect to an axis, where the angle can be derived

from the result of a dot product while the axis for the rotation is simply the result of

a cross product. Integrated with concepts of interpolation, quaternion rotations are

capable of supporting continuous and smooth transitions from an existing direction to a

new vector direction. More significantly, quaternions are operators that are independent

from any given vector. For this reason, once computed, a quaternion operator can be

applied to many instances of vectors, achieving identical rotation operations.

Imagine once more that you are traveling on a spaceship flying through an asteroid

field. Now that you know how to apply concepts from axis frames to steer the hero to

the medical bay, it is time to learn how to navigate the spaceship to dodge the asteroids.

Recall that movement is defined by the changing of position along a vector. Navigating

a spaceship generalizes this movement by requiring alignment with an axis frame while

moving forward. The spaceship captain would react to the on-coming asteroids by

manipulating, or rotating, an axis frame to orientate the spaceship while the spaceship

changes its position along the axis that represents the front direction. In other words,

the spaceship would continuously move along its forward direction while the captain

determines the orientation and forward direction of the spaceship. The knowledge of

how to strategically rotate a default axis frame to align with one being manipulated by a

user is the key to navigation. Additionally, during navigation, you would want the change

of direction to be gradual and smooth as it would in real life. As you can see from this

simple example, the ability to effectively and efficiently represent and control rotations is

indeed important in video game development.

This chapter begins by introducing quaternions and their rules of operation, or

quaternion algebra, that are relevant to describing rotations. Representing rotations

with quaternions is then described and analyzed including approaches to aggregate

the results from multiple rotations. The second half of this chapter focuses on applying

quaternion rotations to align directions and axis frames. To emulate the organic motions

Chapter 8 Quaternions and Rotations

351

of gradual changing from an initial to a final direction, spherical linear interpolation, or

SLERP, is introduced. With this knowledge, the actual navigation of a spaceship is left as

the last exercise in this chapter.

Note T his chapter presents quaternion as an operator, or a tool, from the specific
perspective of characterizing and implementing rotations. There is no attempt to
cover the fundamental mathematical concept behind quaternions. You can learn
more about quaternions in general here: https://en.wikipedia.org/wiki/
Quaternion.

�Rotation Terminologies
You may remember when learning about circles that the shape is defined by moving a

position while maintaining a constant distance from a second stationary position. As

illustrated on the left of Figure 8-1, the stationary position is the center and the constant

distance is the radius of the circle. When the movement is less than the circumference of

the circle, you may describe that scenario as a rotation that sweeps out an arc or rotating

from an initial position to a rotated position.

Figure 8-1.  Rotation about an axis in 2D and 3D

Chapter 8 Quaternions and Rotations

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion

352

The right side of Figure 8-1 depicts the exact same rotation, only in 3D. Take note of

the following:

•	 Axis of rotation: A vector that passes through the center of the circle

or is the center of the rotation. Rotations are described as rotating

with respect to, around, or about the axis of rotation. Note that an axis

is simply a direction or a vector.

•	 Plane of rotation: Both the initial and rotated positions are located

on this plane and this plane is always perpendicular to the axis of

rotation.

•	 Direction of rotation: The positive direction of a rotation, in the

case of the Left-Handed Coordinate System followed by this book,

is pointed to by the thumb when the other four fingers are curled

around the axis of rotation. In other words, if the thumb is pointing

toward you, the positive direction of a rotation is clockwise.

It is important to note that the preceding terminologies and descriptions are true for

any rotation operation. A rotation is a circular movement around the axis of rotation, the

initial and rotated positions are always located on the plane of rotation, and the plane of

rotation is always perpendicular to the axis of rotation.

Note R otations in 2D, or the rotation of position (x,y), are always about the Z-axis
with the x/y plane being the plane of rotation.

�Quaternion: Tuple of Four
Quaternion is a tuple of four floating-point numbers expressed as

q � � �x,y,z,w 	

Given two quaternions, q1 and q2,

	 q x y z w1 1 1 1 1� � �, , , 	

	 q x y z w2 2 2 2 2� � �, , , 	

Chapter 8 Quaternions and Rotations

353

The quaternion multiplication

q q q x y z wr � � � �1 2 r r r r, , ,

is defined as

x x w y z z y w xr � � � �1 2 1 2 1 2 1 2

y x z y w z x w yr � � � � �1 2 1 2 1 2 1 2 	

z x y y x z w w zr � � � �1 2 1 2 1 2 1 2 	

w x x y y z z w wr � � � � �1 2 1 2 1 2 1 2 	

Take note that the quaternion multiplication operator takes two quaternions as

operands and computes a new quaternion as the result. Given the definition, it is

important to recognize that quaternion multiplication is not commutative, that is, in

general,

q q q q1 2 2 1≠ 	

However, as you will demonstrate in the exercise at the end of this section,

quaternion multiplication is associative; it is always the case that

q q q q q q q q q1 2 3 1 2 3 1 2 3� � � � � � 	

Lastly, the quaternion identity is

qI , , ,� � �0 0 0 1 	

In the exercise at the end of this section, you will show that given any quaternion, qa,

it is always true that

q q q q qa I a a I= = 	

It will become clear when discussing quaternion concatenation in later sections that

the identity quaternion, qi, plays the important role of serving as the initial value in a

concatenation operation.

Chapter 8 Quaternions and Rotations

354

�Encoding of Angle and Axis
A quaternion encodes a rotation of θ degrees along an axis, V̂ , ,a a a a� � �x y z , as

q x y z�
� � � �

,V , , ,a a a a
ˆ sin sin sin cos� � � �

�
�

�
�
�2 2 2 2 	

In this encoding, the axis of rotation, V̂a , must be normalized as a unit vector. Notice

that with V̂a being normalized, the magnitude of q, or the sum of the components

squared, is one. This magnitude of size one is important to ensure that the size of objects

remains the same after a quaternion rotation operation.

The inverse of the q rotation: a rotation of −θ along the V̂a axis or a rotation of θ

along the negative V̂a axis is the quaternion

	
q x y z�

� � � �
,V , , ,a a a a
ˆ sin sin sin cos� � � � � ��

�
�

�
�
�

�1

2 2 2 2 	

The derivation for the inversed rotation is left as an exercise at the end of this section.

�Rotation Operation
In order to rotate a given position, Pi = (xi, yi, zi), by θ degrees with respect to an axis, V̂a ,

with a properly encoded quaternion, q, the position must be expressed as a quaternion

with the last component being zero

P x y zq � � �i i i, , ,0
	

The rotation operation is then defined by multiplying the rotation quaternion, q, and

its inverse, q−1

P q P q x y z wr q
� �� � � �1

r r r r, , ,
	

In an exercise you will show that the w-component of Pr
′ , wr, is always zero, where

the rotated result, Pr, is

Pr = (xr, yr, zr)

Remember that quaternion multiplication is not commutative and that the order of

applying the q-rotation and its inversed is important. The quaternion representing the

position to be rotated must be the operand in between q-rotation and its inversed with

the q-rotation being on the left-hand side of the position.

Chapter 8 Quaternions and Rotations

355

Figure 8-2.  Axis of rotation, ˆ ,V that passes through the origin and P1

�Quaternion Rotation Limitation
Take note that a quaternion is a four floating-point tuple and that all four floating-point

numbers are used in the representation of a rotation of θ angle around the V̂ , ,� � �x y z

axis of rotation

	
q x�

� � � �
,V , y sin , z sin ,ˆ sin cos� � � �

�
�

�
�
�2 2 2 2 	

Absent from this encoding is the information on the location of the axis of rotation.

This is the limitation of quaternion rotation representation: it is a compact and efficient

representation of rotations where the axes of rotation are assumed to pass through

the origin.

Figure 8-2 explains this limitation by depicting two rotations with identical axes of

rotation, V̂. The rotation located near the top has the axis, V̂, passing through the origin,

while the lower rotation axis passes through the position P1 instead of the origin. The

quaternion rotation representation, q � ,V̂� � , with no way to encode the P1 location, is

only capable of describing the rotation with the axis V̂ passing through the origin. For

this reason, applying q � ,V̂� � to rotate Pi will result in Pr. In general, quaternion

representation is not capable of describing the rotation from Pi to Pr
′.

The discussed quaternion rotation assumes that the axis of rotation passes through

the origin. This limitation is not an issue when quaternions are used in concert with

other tools, for example, matrices. In such cases, quaternions can support rotations with

Chapter 8 Quaternions and Rotations

356

axes located at any position. However, general rotation with respect to an axis that does

not pass through the origin is a subject of coordinate transformation, a more advanced

topic not covered in this book. Later in this chapter, you will learn about working with

the Unity Transform component on GameObjects to create rotations with general axes of

rotations.

�Rotating Positions and Vectors
Recall that vectors are independent of positions. Given a vector,



V x y zi i i i, ,� � � , it is

often convenient to depict the vector with tail position located at the origin for visual

inspection. When depicted at the origin, the head of vector


Vi locates at the position

Pi = (xi, yi, zi).

In this way, rotating position Pi = (xi, yi, zi) is the same as rotating the head of the

position vector for Pi or the vector


Vi . The rotated result Pr = (xr, yr, zr) can also be

interpreted as the head of the position vector for Pr or the vector


V x y zr r r r= (, ,).

This discussion points out that it is equivalent to rotate positions, or head of position

vectors, or head of vectors depicted at the origin. When considered in concert with the

limitation that quaternions only support rotations with the axis of rotations passing

through the origin, in the rest of this chapter, you can interpret coordinate values (x, y, z)

as either a position, a position vector, or a vector.

�The Rotation with Quaternion Example
This example demonstrates the quaternion rotation operation. It will allow you to

interactively manipulate the angle and axis of a rotation and the position to be rotated so

that you can observe and verify the quaternion definition, multiplication, and rotation

operation. Figure 8-3 shows a screenshot of running the EX_8_1_QuaternionRotation

scene from the Chapter-8-Quaternions project.

Chapter 8 Quaternions and Rotations

357

Figure 8-3.  Running the Quaternion Rotation example

The goals of this example are for you to

•	 Define quaternion rotations based on specified angles and axes

•	 Verify the validity of quaternion rotation operation

•	 Experience and observe the results of quaternion rotations

•	 Examine the implementation of a quaternion rotation

•	 Appreciate the limitation of quaternion rotation: the axis of rotation

must pass through the origin

�Examine the Scene

Take a look at the Example_8_1_QuaternionRotation scene and observe the predefined

checkered sphere A, the green sphere Pi, and the red sphere Pr. In this example, the

rotation quaternion is derived from a user-specified angle and the axis of rotation

defined by the position vector to A. This quaternion is then used to compute the rotated

position Pr from the Pi position that is under the user control.

Chapter 8 Quaternions and Rotations

358

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the

same names as their corresponding reference game objects in the scene. The Theta

variable is the angle to rotate and the DrawQuaternion toggle draws/hides the axis and

perpendicular plane that defines the rotation quaternion.

�Interact with the Example

Click the Play button to run the example. You can see a red vector that passes through

the origin with head located at the position of the A sphere. This vector is the axis of

rotation, V̂a . You can also observe the green, Pi, and red, Pr, spheres resting on a white

plane that perpendicularly intersects the axis of rotation. These are the user controllable

initial (green sphere) and the rotated (red sphere) positions.

The white plane is the plane of rotation where in addition to always intersecting the

axis of rotation perpendicularly, the initial and rotated positions, or the green and red

spheres, are always resting on this plane. Lastly, the red sphere’s location is always a

fixed rotation away from the green sphere on the white plane.

Select the Controller object and adjust Theta to observe that this variable indeed

represents the angle between the green and red spheres. Take note to verify that as you

increase and decrease the angle of rotation, the red sphere always rotates on the white

plane. You can also select and manipulate the green sphere position and observe that

the white plane always follows and maintains its perpendicular intersection with the

axis of rotation, and that the red sphere is always a constant angular distance away from

the green sphere on the white plane. You have observed that a quaternion rotation does

indeed always rotate a position by the specified angle and that the rotation is indeed

defined with respect to the axis of rotation.

Now select and manipulate the checkered sphere, A. As expected, when the

checkered sphere position changes, the axis of rotation or the position vector of A

follows. Take note that as the axis of rotation changes, the green sphere does not move

while the white plane follows to maintain its perpendicular intersection with the axis

of rotation and always cuts through both the green and red spheres. The location of

the rotated red sphere also updates constantly to continue to lie on the white plane

and maintains its angular distance from the green sphere. You have now observed and

verified that a quaternion rotation always rotates a position perpendicular to the axis of

rotation.

Chapter 8 Quaternions and Rotations

359

Finally, notice that the axis of rotation is defined based on a position vector. This

says, the rotation of position Pi is defined with respect to an axis that passes through the

origin. Once again, the discussed quaternion rotation only supports rotations with an

axis of rotation that passes through the origin.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject A = null; // The axis of rotation

public GameObject Pi = null; // initial position

public GameObject Pr = null; // rotated position

public float Theta = 30.0f;

public bool DrawQuaternion = true;

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(A != null); // Verify proper setting

 Debug.Assert(Pi != null);

 Debug.Assert(Pr != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller's MyScript component, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing the

appropriate game objects via the Inspector Window.

In this example, in addition to Update(), three additional utility functions are

defined to support quaternions: definition, QFromAngleAxis(); multiplication,

QMultiplication(); and rotation, QRotation(). The details of QFromAngleAxis() are as

follows:

Chapter 8 Quaternions and Rotations

360

Vector4 QFromAngleAxis(float angle, Vector3 axis) {

 float useTheta = angle * Mathf.Deg2Rad * 0.5f;

 float sinTheta = Mathf.Sin(useTheta);

 float cosTheta = Mathf.Cos(useTheta);

 axis.Normalize();

 return new Vector4(sinTheta * axis.x,

 sinTheta * axis.y,

 sinTheta * axis.z, cosTheta);

}

This function receives as input an angle θ and axis V̂ x y za � � �a a a, , and encodes the

rotation in the returned quaternion

	
q x y z� �

�
�

�
�
�a a a, , ,sin sin sin cos

� � � �
2 2 2 2 	

The details of QMultiplication() are as follows:

Vector4 QMultiplication(Vector4 q1, Vector4 q2) {

 Vector4 r;

 r.x = q1.x*q2.w + q1.y*q2.z - q1.z*q2.y + q1.w*q2.x;

 r.y = -q1.x*q2.z + q1.y*q2.w + q1.z*q2.x + q1.w*q2.y;

 r.z = q1.x*q2.y - q1.y*q2.x + q1.z*q2.w + q1.w*q2.z;

 r.w = -q1.x*q2.x - q1.y*q2.y - q1.z*q2.z + q1.w*q2.w;

 return r;

}

This function receives two quaternions, q1 and q2, where

q x y z w1 1 1 1 1� � �, , , 	

q x y z w2 2 2 2 2� � �, , , 	

compute the multiplication

q q q x y z wr r r r r, , ,� � � �1 2 	

Chapter 8 Quaternions and Rotations

361

and return the resulting quaternion, qr, where

x x w y z z y w xr � � � �1 2 1 2 1 2 1 2 	

y x z y w z x w yr � � � � �1 2 1 2 1 2 1 2 	

z x y y x z w w zr � � � �1 2 1 2 1 2 1 2 	

w x x y y z z w wr � � � � �1 2 1 2 1 2 1 2 	

The details of QRotation() are as follows:

Vector3 QRotation(Vector4 qr, Vector3 p) {

 Vector4 pq = new Vector4(p.x, p.y, p.z, 0);

 Vector4 qr_inv = new Vector4(-qr.x, -qr.y, -qr.z, qr.w);

 pq = QMultiplication(qr, pq);

 pq = QMultiplication(pq, qr_inv);

 return new Vector3(pq.x, pq.y, pq.z);

}

This function receives a quaternion, qr,

q x y z wr r r r r, , ,� � � 	

and a position, P,

P x y z� � �, , 	

computes and returns the result of rotating P by qr. The first line in this function

expresses the input position P as a quaternion, Pq,

P x y zq � � �, , ,0
	

The function then defines the inverse of qr, qr
−1 ,

q x y z wr
� � � � �� �1

r r r r, , , 	

computes the quaternion rotation

	
P q P q x y z wq r

� �� � � �� � � �r q , , ,1

	

Chapter 8 Quaternions and Rotations

362

and returns the resulting position, (x′, y′, z′). With the utility functions defined, the

details of Update() are as follows:

void Update() {

 Vector3 axis = A.transform.localPosition;

 Vector4 q = QFromAngleAxis(Theta, axis);

 Pr.transform.localPosition =

 QRotation(q, Pi.transform.localPosition);

 #region For visualizing the vectors

 #endregion

}

The first two lines of the function interpret the location of A as a position vector

representing the axis of rotation and construct a rotation quaternion, q, based on the

user-specified angle of rotation, Theta. The last line of the function computes the

quaternion rotation using the position of Pi and sets the result as the location of Pr.

�Takeaway from This Example

This is a straightforward example for verifying the validity of the discussed quaternion

definition, multiplication, and rotation.

Relevant mathematical concepts covered include

•	 Quaternion, a tuple of four floating-point numbers, can be used to

represent a rotation.

•	 Rotating a position by an angle about an axis through the origin can

be implemented by multiplying the position with an appropriately

defined quaternion and the inverse of that quaternion.

•	 Quaternion rotation, encoded in four floating-point numbers, is only

capable of supporting rotations where the axis of rotation passes

through the origin.

Chapter 8 Quaternions and Rotations

363

EXERCISES

Inverse of a Rotation Quaternion

The rotation quaternion, q, for a rotation with an angle θ along the axis V̂ x y za � � �a a a, , is

defined as

q x y z� �
�
�

�
�
�a a a, , ,sin sin sin cos

� � � �
2 2 2 2 	

Show that the inverse of q is

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

There are two ways to consider the inverse of a rotation. First, the inverse of a rotation is a

rotation by the same angle along the negative rotation axis. In this case, the angle of rotation is

still θ and along the negative axis � � � � �� �V̂ x y za a a a, , ,

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

Second, an alternative way to consider an inverse of a rotation is a rotation along the

same axis by a negative angle. In this approach, the angle of rotation is −θ and along the

same axis V̂a

	
q x y z� �

� � � ��
�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

Since

sin sin� � �� � 	

cos cos� �� � 	

The inverse of the rotation is still

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

Chapter 8 Quaternions and Rotations

364

You have demonstrated that both of the approaches to defining the inverse of a quaternion

rotation result in the same expression.

The qI Identity Quaternion

By following the definition of quaternion inverse and multiplication, show that given the

quaternion identity, qI,

qI , , ,� � �0 0 0 1 	

It is always true that

q qI
� �1

I 	

And given any quaternion, qa, it is always true that

q q q q qa I a a I= = 	

These observations indicate that the quaternion identity is ideal for serving as the initial value

when accumulating quaternion multiplication results.

Quaternion Multiplication: Commutative and Associative

It is stated, but without proof, that quaternion multiplication is not commutative and is

associative or in general

q q q q1 2 2 1≠ 	

and it is always the case that

	 q q q q q q1 2 3 1 2 3� � � � � 	

Knowing the definition of quaternion multiplication, you can now substitute and expand the

preceding expressions to demonstrate for yourself that the preceding properties are true in

general.

Chapter 8 Quaternions and Rotations

365

Verify Quaternion Multiplication Is Associative

Notice that in the QRotation(), the expression

	
P q P qq r

� �� r q
1

	

is implemented by the following two lines:

 pq = QMultiplication(qr, pq);

 pq = QMultiplication(pq, qr_inv);

This two-line implementation corresponds to

	
P q P qq r

� �� � �r q
1

	

Since quaternion multiplication is associative, you can switch the order of the two lines of

code to implement

	
P q P qq r

� �� � �r q
1

	

Now, modify the given code and verify that the example continues to function correctly.

The w-Component of a Quaternion-Rotated Position

Expend the quaternion rotation expression

	
P q P qq r

� �� r q
1

	

and verify that the w-component of Pq
′ is always zero. You can reconfirm your derivation by

making a Debug.Log() function call in the QRotation() function to print out the value of

the w-component of Pq before the return statement.

Verify the Quaternion Rotation Formula

From trigonometry, you know or you can show that the result of rotating a 2D position (x, y) by

θ around the Z-axis is the position

	 � � �x x ycos sin� � 	

	 � � �y x ysin cos� � 	

Chapter 8 Quaternions and Rotations

366

Note that this rotation can be described by the quaternion rotation q � ,V̂� � , where

V̂ , ,� � �0 0 1 	

or

q �
� �

, , , , , ,0 0 1 0 0
2 2

� �� � � �
�
�

�
�
�sin cos and

	
q� � �� � � ��

�
�

�
�
�

1 0 0 1 0 0
2 2

�
� �

, , , , , ,sin cos
	

Now, show that the given quaternion rotation formula for the position Pq = (x, y, 0, 0)

P q P q x y z wr q r r r r
� �� � � � � �� �1 , , , ,

	

is valid for 2D rotation about the Z-axis, where

x x x yr
� � � �� cos sin� � 	

y y x yr
� � � �� sin cos� � 	

zr
� � 0 	

wr
� � 0 	

�Quaternion Concatenation
You have learned that a quaternion encodes a rotation of θ degrees along an

axis, V̂ , ,a a a a� � �x y z , as

q x y z1 2 2 2 2
�

� � � �
,V , , ,a a a a
ˆ sin sin sin cos� � � �

�
�

�
�
�

	

To rotate a position, Pi = (xi, yi, zi), with the quaternion q1, you would express the

position as a quaternion with the last component being zero

P x y zq � � �i i i, , ,0
	

Chapter 8 Quaternions and Rotations

367

and compute

	
P q P q x y z wr q

� �� � � �1 1
1

r r r r, , ,
	

With the w-component, wr, being zero, the rotated position is

P x y zr � � �r r r, , 	

Now, following the same process, you can continue to rotate the position Pr by

another rotation q2

P q P qr r
" � � �

2 2
1

	

If you express Pr
′ as a function of the origin position, Pq,

P q q P q qr q
" � � �� �

2 1 1
1

2
1

	

Since quaternion multiplication is associative, this same expression can be written as

P q q P q qr q
" � � � � �� �

2 1 1
1

2
1

	

In the exercise at the end of this section, you will show that the inverse of q2 q1, or

(q2 q1)−1, is q q1
1

2
1− − . If you let

q q qc = 2 1 	

then

P qr c
" = Pq qc

−1

Note T he operation qc = q2q1 combines two rotation quaternions into one and is
often referred to as concatenating quaternions. For example, qc is the concatenated
result of q2 and q1.

The preceding derivation shows that applying new rotations, q2, on a q1 rotated

result, Pr
′ , is the same as concatenating q2 and q1 and applying the resulting rotation,

qc, on the initial position, Pq. The key observation is that quaternion rotations can be

concatenated to capture the combined results of multiple subsequent rotations.

Chapter 8 Quaternions and Rotations

368

Remember that quaternion multiplication is not commutative and that qc = q2 q1 is in

general different from qd = q1q2. The order of rotation is important: the order for qc is q1

first than q2, while the order for qd is q2 first than q1. These two rotations are different in

general.

Note T he quaternion, qc = q2 q1, encodes a rotation that performs q1 first
followed by q2. It may be counterintuitive, but although q1 is on the right-hand
side of the concatenation further away from the assignment, the q1 operation is
performed first.

�The Quaternion Concatenation Example
This example demonstrates the results of applying multiple quaternions and a single

concatenated quaternion in rotating a position. This example allows you to interactively

manipulate three individual rotations and examine the results of applying the rotations

independently verses the concatenated result as one single quaternion. Figure 8-4

shows a screenshot of running the EX_8_2_QuaternionConcatenation scene from the

Chapter-8-Quaternions project.

Figure 8-4.  Running the Quaternion Concatenation example

Chapter 8 Quaternions and Rotations

369

The goals of this example are for you to

•	 Examine the results of applying multiple quaternion rotations to a

position

•	 Gain experience with concatenation of quaternion rotations

•	 Verify that the concatenated quaternion delivers identical results as

applying the rotations individually

•	 Appreciate the importance of concatenation ordering: subsequent

rotations are concatenated on the left

�Examine the Scene

Take a look at the Example_8_2_QuaternionConcatenation scene and observe three sets

of variables representing the input and results of three subsequent quaternion rotations.

In the following discussion, the three rotations are referred to as q, q1, and q2.

•	 Axis of rotations: A, A1, and A2 checkered spheres. The position

vectors to these objects define the axes of rotations for the three

corresponding rotations q, q1, and q2.

•	 Input and results of individual rotations: Pi (green), Pr (red), Pr1

(blue), and Pr2 (black). The following equations summarize the

relationships of these variable:

P q P qr i� �1

	

P q P qr r1 1 1
1� �

 or P q q P q qr i1 1
1

1
1� � �

P q P qr r2 2 1 2
1� � or P q q q P q q qr i2 2 1

1
1
1

2
1� � � �

where Pi is the user-controlled input of the q-rotation. Pr is the

result of the q-rotation and is the input to the q1-rotation with

output of Pr1 which in turn is served as the input to the q2-

rotation with final output of Pr2.

•	 Result of the concatenated rotation: Pc (gray) is the result of

concatenating q, q1, and q2 rotations and applying to user input Pi or

P q P qc c i c� �1

	

Chapter 8 Quaternions and Rotations

370

where

	 q q q qc = 2 1 	

Note that quaternion multiplication is not commutative and that

the preceding concatenation order says that the order of performing

rotations is q first then q1 and lastly q2.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the variables with the same names

as their corresponding reference game objects in the scene. Additionally, there are three

floating-point variables, Theta, Theta1, and Theta2, for defining the degrees of rotations

for the three rotations and corresponding toggles for showing/hiding the details of each

rotation to avoid screen cluttering. The very last Boolean, DrawPc, toggles the drawing/

hiding of Pc.

�Interact with the Example

Click the Play button to run the example. You can see a cluttered of three independent

rotations with three axes of rotations showing as vectors in red, blue, and black pointing

to the three checkered spheres, A, A1, and A2. Take note that with DrawPc default to false,

the gray Pc sphere is not visible.

In the following steps, your goal is to display, interact with, and examine each of the

three rotations individually to verify the relationship of their inputs and results. You can

begin with examining the first rotation, q, by selecting the Controller and toggling off

DrawQuaternion1 and DrawQuaternion2. You are left with the details of the q-rotation

defined by the axis A and Theta where the input is Pi (green) and result is Pr (red). Feel

free to manipulate the positions of Pi, and A, and the value of Theta to note that as you

modify the q-rotation, the positions of the other three objects (Pr, Pr1, and Pr2) follow in

rigid manners maintaining constant angular displacements. This is as expected because

these three objects are results of subsequent rotations. You can repeat this exercise

for the other two rotations by hiding/showing the corresponding quaternions and

manipulating the respective GameObjects and variables.

Verify that Pi maintains its location when you are examining the q1-rotation and that

the positions of both Pi and Pr do not change when you examine the q2-rotation. These

are inputs, and thus their positions are independent from the corresponding rotations.

Chapter 8 Quaternions and Rotations

371

Now, with all three quaternions showing, toggle on/off the DrawPc variable. Verify

that Pc (gray) is located at exactly the same position as Pr2 (black). You can manipulate

the three rotations, A (Theta), A1 (Theta1), and A2 (Theta2), and the Pi position to verify

that the positions of Pr2 and Pc always overlap perfectly.

Recall that the position of Pr2 is the result of applying the three individual

rotations or

	 P q q q P q q qr i2 2 1
1

1
1

2
1� � � �

	

while the position of Pc is the result of applying the concatenated quaternion

q q q qc = 2 1 	

P q P qc c i c� �1

	

You have verified that rotation quaternions can indeed be concatenated to capture

the results of the combined rotations.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Pi = null; // user control input position

public GameObject Pr = null; // q-rotated position

public GameObject A = null; // Axis of q-rotation

public float Theta = 30.0f; // Angle of q-rotation

public bool DrawQuaternion = true;

public GameObject Pr1 = null; // q1-rotated position

public GameObject A1 = null; // Axis of q1-rotation

public float Theta1 = 40f; // Angle of q1-rotation

public bool DrawQuaternion1 = true;

public GameObject Pr2 = null; // q2-rotated position

public GameObject A2 = null; // Axis of q2-rotation

public float Theta2 = 50f; // Angle of q2-rotation

public bool DrawQuaternion2 = true;

Chapter 8 Quaternions and Rotations

372

public GameObject Pc = null; // qc-rotated position

public bool DrawPc = false;

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(Pi != null); // Verify proper setting

 Debug.Assert(Pr != null);

 Debug.Assert(A != null);

 Debug.Assert(Pr1 != null);

 Debug.Assert(A1 != null);

 Debug.Assert(Pr2 != null);

 Debug.Assert(A2 != null);

 Debug.Assert(Pc != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller's MyScript component, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing the

appropriate game objects via the Inspector Window.

This example utilize the exact same three quaternion utility functions as the

previous example to define QFromAngleAxis(), multiply QMultiplication(), and rotate

QRotation() quaternions. Please refer to the previous section for the details of these

functions. The details of Update() are as follows:

void Update() {

 Vector4 q = QFromAngleAxis(Theta,

 A.transform.localPosition);

 Vector4 q1 = QFromAngleAxis(Theta1,

 A1.transform.localPosition);

 Vector4 q2 = QFromAngleAxis(Theta2,

 A2.transform.localPosition);

Chapter 8 Quaternions and Rotations

373

 Pr.transform.localPosition = QRotation(q,

 Pi.transform.localPosition);

 Pr1.transform.localPosition = QRotation(q1,

 Pr.transform.localPosition);

 Pr2.transform.localPosition = QRotation(q2,

 Pr1.transform.localPosition);

 Vector4 qc = QMultiplication(q1, q);

 qc = QMultiplication(q2, qc);

 Pc.transform.localPosition = QRotation(qc,

 Pi.transform.localPosition);

 #region For visualizing the vectors

 #endregion

}

The first three lines define the three quaternion rotations q, q1, and q2 based on the

user-specified angles Theta, Theta1, and Theta2 and the positions of A, A1, and A2 as

position vectors for axes of rotation. The next three lines compute the three individual

rotations: Pi by q to compute Pr, Pr by q1 to compute Pr1, and Pr1 by q2 to compute Pr2.

The last three lines compute the concatenated qc

	 q q q qc = 2 1 	

and rotate Pi by qc to compute Pc.

Note T he observed concatenated result being identical to applying individual
quaternions is valid for any number of quaternions in the concatenation.

�Takeaway from This Example

Through this example you have examined and verified that applying a sequence of

quaternion rotations to a position is the same as concatenating the rotations and

applying the resulting quaternion.

Chapter 8 Quaternions and Rotations

374

Relevant mathematical concepts covered include

•	 Multiplying multiple quaternions into a single quaternion is referred

to as concatenating the quaternions.

•	 The inverse of a concatenated quaternion is the concatenation of the

inverse of individual quaternions in the reversed order, that is, for n

number of quaternions if

q q q qc n� � 2 1 	

then

q q q q q qc n
� � � �� �� � � �1

2 1

1

1
1

2
1 qn

−1

•	 The rotation order of a concatenated quaternion is from the

rightmost toward the left. That is, given

q q q qc n� � 2 1 	

The rotation qc is the equivalent of applying q1 first, followed by q2 and so on,

where qn would be the last to be applied.

•	 Rotating a position by a sequence of quaternion rotations is identical

to concatenating the rotations and rotating the position with the

resulting concatenated quaternion

EXERCISES

Inverse of Concatenated Rotation Quaternion

Show the inverse of q2q1, or (q2q1)−1, is q q1
1

2
1− − . Note that q2q1 is applying rotation q1 followed

by q2. Intuitively, to undo these two rotations, you would first undo the second rotation, thus

applying q2
1− first, and then undo the first rotation. Thus, intuitively the inverse of q2q1 would

be q q1
1

2
1− − (apply q2

1− before q1
1−). Algebraically, since you know the definition of quaternion

multiplication, you can simply compute and expand

q q x y z wc c c c2 1 � � �, , , 	

Chapter 8 Quaternions and Rotations

375

and

	 q q x y z wr r r r1
1

2
1� � � � �, , , 	

And verify that xc = − xr, yc = − yr, zc = − zr, and wc = wr.

The Number of Quaternions Concatenated

Verify the validity of concatenating two and four rotations. For two rotations, q1q, you can

modify MyScript to verify

	 P q q P q qc i� � �
1

1
1
1

	

is identical to Pr. For four rotations, you can include support for an additional axis and theta

accordingly.

The Importance of Order of Concatenation

Verify the importance of order of concatenation by modifying MyScript to compute

	 q q q qc = 1 2 	

and show that the resulting location of Pc is in general very different from that of Pr2.

�Aligning Vector Directions
Given two normalized vectors, V̂1 and V̂2 ,

	 V̂ x y z1 1 1 1� � �, , 	

	 V̂ x y z2 2 2 2� � �, , 	

You have learned that the cosine of the angle, θ, between these two vectors is

	 cos� � �V V 

1 2 	

or

� =cos 1 2
-1 V V �� �

	

Chapter 8 Quaternions and Rotations

376

You have also learned that when the two vectors are not parallel, if θ is not equal to 00

or 1800, a plane with a normal vector,


Vn , can always be defined where

	
  

V V Vn � �1 2 	

Remember that vectors are independent from locations, and when depicted at the

origin, V̂1 and V̂2 can be interpreted as the position vectors of positions, P1 = (x1, y1, z1)

and P2 = (x2, y2, z2).

This fact, combined with the knowledge of quaternion rotation representation,

can make the following derivation. Given any two vector directions, V̂1 and V̂2 , you

can compute

� � �� ��cos 1
1 2V V  and

	
  

V V Vn � �1 2 	

and define the rotation, q Vn� , ˆ� � , with rotation angle of θ and axis of V̂n . This

rotation will rotate position P1 to P2 and thus is a rotation that aligns vector V̂1 to point to

the direction of V̂2 .

The key observations are that the angle of rotation can be derived by the dot product

and that the axis of rotation is the cross product between the vectors. Since V̂1 and V̂2

are two arbitrary vectors, you have just derived a rotation that aligns the directions of any

two given vectors.

�The Align Vector Directions Example
This example demonstrates the derivation of angle and axis of rotation to define a

quaternion rotation for aligning any two position vectors. Figure 8-5 shows a screenshot

of running the EX_8_3_AlignVectorDirections scene from the Chapter-8-Quaternions

project.

Chapter 8 Quaternions and Rotations

377

Figure 8-5.  Running the Align Vectors example

The goals of this example are for you to

•	 Verify the vector direction aligning quaternion rotation

•	 Define and manipulate two arbitrary vectors to derive and examine

the required rotation for aligning their directions

•	 Experience implementing the direction aligning quaternion rotation

•	 Appreciate that the alignment is specific to directions

�Examine the Scene

Take a look at the Example_8_3_AlignVectorDirections scene and observe the green

P1, red P2, and blue Pc spheres. The positions of these objects represent the position

vectors where P1 and P2 are positions under user control while Pc will be in continuous

motion showing the process of rotating from the directions of P1 position vector to

that of P2.

Chapter 8 Quaternions and Rotations

378

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same

names as their corresponding reference game objects in the scene. As in previous

examples, the DrawQuaternion toggles the showing/hiding of the axis and plane of

rotation. The NextPcFrom option, as will be detailed, specifies one of three different ways

to compute the next Pc position.

�Interact with the Example

Click the Play button to run the example. You can see a red rotation axis with P1, P2, and

Pc lying on the corresponding white rotation plane where Pc (blue) is in continuous

motion rotating from the directions of P1 (green) to P2 (red) position vectors. You are

observing the rotation that aligns the directions of


V1 and


V2 for position vectors of

P1 and P2.

Note that in the following manipulations you will not affect the Pc rotation being

from


V1 toward


V2 . In other words, throughout the manipulations you will always

observe Pc traveling from P1 toward P2. Your manipulation will change how Pc', the

next Pc position, is computed. The interesting observation is that the same continuous

rotation can be accomplished in at least three different ways.

Now, select the Controller object and iterate through each of the three options

for NextPcFrom: FromPc, FromP1, and FromP2. Notice that while the color of Pc changes

the rotation motion is completely unaffected. As illustrated in Figure 8-6, the angular

movement of Pc is constantly from P1 toward P2 where the next Pc position, Pc', is

Figure 8-6.  The three rotations to compute Pc', the next position of Pc

Chapter 8 Quaternions and Rotations

379

always ∆θ in the direction of P2. However, the actual Pc' position can be derived in three

different ways according to NextPcFrom option:

•	 FromPc: Computes Pc' by rotating ∆θ from current Pc and sets the

color to blue

•	 FromP1: Computes Pc' by rotating θ1 + ∆θ from P1 and sets the color

to green to match the color of P1

•	 FromP2: Computes Pc' by rotating θ2 − ∆θ from P2 and sets the color

to red to match the color of P2

Through these options you have verified that there are multiple ways to implement

a rotation and that the quaternion rotation can indeed be inversed, or reversed: the next

Pc position, Pc', can be calculated based on rotations from either P1 or P2.

In the next manipulation, you will verify that the quaternion rotation aligns

direction. Now, select and manipulate P1 position to observe the red rotation axis

updating to maintain the perpendicular plane of rotation that contains all three spheres;

P1, P2, and Pc. Note the continuous motion of Pc rotating from the directions of


V1 to


V2

is independent from the length or magnitude of the


V1 vector. You can further verify this

by selecting and setting the position of P1 to be located along the X-axis, for example,

(4, 0, 0). Now, increase and decrease the x-component value and note that the change

does not affect the axis of rotation or the Pc motion of continuously rotating from P1 to

P2. In this case, changing the x-component value does not affect the direction of


V1 and

thus has no effect on the quaternion rotation. Feel free to repeat the manipulation with

P2. In these interactions you have verified that the derived rotation is indeed aligning

directions or unit vectors.

Note  When manipulating the x-component value of the P1 position, if you change
the sign of from positive to negative, you are effectively reversing the direction of
the



V1 vector, and thus, you will observe a change in the rotation motion.

Lastly, you can observe the subtle and important difference of computing the next

result from the current value in the FromPc computation vs. computing the next result

from the actual initial or final value in the FromP1 and FromP2 options. With NextPcFrom

set to FromPc, select and manipulate P1 position away from the current plane of rotation,

for example, by drastically increasing the y-component value of P1 from the previous

Chapter 8 Quaternions and Rotations

380

manipulation. Notice the blue vector to Pc, while rotating toward P2, does not reside

on the plane of rotation anymore. This is not surprising, since in FromPc mode, the next

Pc position is derived from the current Pc position, which in this case does not lie on

the updated plane of rotation. Note that in FromP1 or FromP2 modes, since the next Pc

position is derived from the actual initial or final values, the next Pc position will always

be on the plane of rotation. While the behaviors are different, there is no correct, wrong,

or better solution.

Different approaches to computing a solution have different characteristics. As a

developer, your job is to understand these options and choose the best desired behavior.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public enum PcPositionMode {

 FromPc,

 FromP1,

 FromP2

};

public GameObject P1 = null; // The first position

public GameObject P2 = null; // The second position

public GameObject Pc = null;

public bool DrawQuaternion = true;

public PcPositionMode NextPcFrom = PcPositionMode.FromPc;

private const float kDeltaTheta = 30f; // rotation speed

private const float kSmallAngle = 1f; //

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(P1 != null); // Verify proper setting

 Debug.Assert(P2 != null);

 Debug.Assert(Pc != null);

 Pc.transform.localPosition = P1.transform.localPosition;

Chapter 8 Quaternions and Rotations

381

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller's MyScript component. The two private constants define the rate to

rotate Pc and when Pc is sufficiently close to P2 for re-initializing the rotation. As in all

previous examples, the Debug.Assert() calls in the Start() function ensure proper

setup regarding referencing the appropriate game objects via the Inspector Window.

The very last line initializes the position of Pc such that the rotation will begin from the

position of P1.

As in the case of the previous examples in this chapter, this example utilizes the

exact same three quaternion utility functions as the previous examples to define

QFromAngleAxis(), multiply QMultiplication(), and rotate QRotation() quaternions.

Please refer to the previous section for the details of these functions.

The details of Update() function are as follows:

void Update() {

 Vector3 V1n = (P1.transform.localPosition).normalized;

 Vector3 V2n = (P2.transform.localPosition).normalized;

 Vector3 Vcn = (Pc.transform.localPosition).normalized;

 float cosTheta = Vector3.Dot(V1n, V2n);

 if (Mathf.Abs(cosTheta) >= (1.0f-float.Epsilon)) {

 Debug.Log("V1 and V2 are almost parallel:

 cannot rotate to align");

 return; // V1 V2: almost parallel

 }

 float theta1 = Mathf.Acos(Vector3.Dot(Vcn, V1n)) *

 Mathf.Rad2Deg;

 float theta2 = Mathf.Acos(Vector3.Dot(Vcn, V2n)) *

 Mathf.Rad2Deg;

 float alpha = 0f;

 Vector3 axis = Vector3.zero;

 Vector3 Pf = Vector3.zero;

Chapter 8 Quaternions and Rotations

382

 if (theta2 > kSmallAngle) {

 switch (NextPcFrom) {

 case PcPositionMode.FromPc:

 alpha = kDeltaTheta * Time.deltaTime;

 axis = Vector3.Cross(Vcn, V2n);

 Pf = Vcn;

 break;

 case PcPositionMode.FromP1:

 alpha = theta1 + (kDeltaTheta * Time.deltaTime);

 axis = Vector3.Cross(V1n, V2n);

 Pf = V1n;

 break;

 case PcPositionMode.FromP2:

 alpha = theta2 - (kDeltaTheta * Time.deltaTime);

 axis = Vector3.Cross(V2n, V1n);

 Pf = V2n;

 break;

 }

 Vector4 q = QFromAngleAxis(alpha, axis);

 Pc.transform.localPosition = QRotation(q, Pf);

 } else {

 Pc.transform.localPosition = P1.transform.localPosition;

 }

 #region For visualizing the vectors

 #endregion

}

The first three lines of the Update() function compute the normalized position

vectors to positions P1 (V̂1), P2 (V̂2), and Pc (V̂c). The dot product and if condition that

follow check for the condition when P1 and P2 are collinear and a rotation cannot be

defined. The following two lines, as illustrated in Figure 8-6, compute the angles between

V̂1 and V̂c , theta1 (θ1), and V̂2 and V̂c , theta2 (θ2).

The if statement that follows ensures that θ2 is sufficiently large, where V̂2 and V̂c

are not already aligned. Otherwise, the else condition re-initializes the rotation to begin

from the direction of position vector to P1.

Chapter 8 Quaternions and Rotations

383

When θ2 is sufficiently large or when the directions V̂2 and V̂c are not already

aligned, the three cases in the switch statement implement three rotations based on the

value of NextPcFrom. The next Pc position, or Pc' in Figure 8-6, is computed by rotating a

variable position, Pf, with the q � ,Â� � rotation, where depending on NextPcFrom

•	 FromPc: α = ∆θ,


A V Vc� �ˆ
2̂ , and P Vf c= ˆ

•	 FromP1: α = θ1 + ∆θ,


A V V� �ˆ ˆ
1 2 , and P Vf = 1̂

•	 FromP2: α = θ2 − ∆θ,


A V V� �ˆ ˆ
2 1 , and P Vf = 2̂

Note that since ∆θ is a constant positive number, although the next position of Pc,

Pc' in Figure 8-6, is derived in different ways, the resulting rotation motion is always

from P1 toward P2 position. The modulation by deltaTime, the wall-clock time, is to

ensure the rotation speed is based on real-world time instead of the frame rate of your

machine.

�Takeaway from This Example

This example led you through defining two position vectors, deriving three different

rotations in opposite directions to align these vectors, and examining the results of

applying those rotations. It is important to remember that in this example all positions

represent position vectors and that you have observed the rotation and aligning of

directions.

Relevant mathematical concepts covered include

•	 The rotation that aligns two directions can be derived based on the

angle between the directions and the axis that is defined by their

cross product.

•	 The derived alignment rotation is specific to aligning directions.

•	 There are variations to the implementation of the alignment rotation

where the rotation can be carried out from either of the directions.

Chapter 8 Quaternions and Rotations

384

EXERCISES

Concatenation of Quaternions

When NextPcFrom is FromP1, compute, concatenate, and apply the following two

quaternions to P1: first, q1 to rotate P1 to current Pc, and second, q2 to rotate Pc toward P2 by

∆θ. Verify that the angular motion of Pc remains unchanged.

The rotation q1 rotates from P1 to Pc, and thus the angle of rotation is θ1 and axis of rotation is
ˆ ˆV Vc1 × . The rotation q2 continues the rotation toward P2 and thus the angle of rotation is ∆θ

based on the same axis of rotation.

The concatenated result will be applied to rotate P1 and thus the first rotation to be applied

must be q1 and followed by q2. For this reason, the concatenated rotation is qc = q2q1. You can

now verify that applying qc to P1 results in identical Pc motion.

Aligning P2 to P1

Modify the Update() function to compute the rotation that aligns the directions from P2 to

P1. In order words, flip the direction of the angular movement such that Pc always rotates

from the P2 and ends in the P1 direction.

�Interpolation and Chasing Behavior
Recall that you were able to launch an agent to travel toward a moving target in the

Velocity and Aiming example, EX_4_3_VelocityAndAiming scene, from the Chapter-4-

Vectors project. While interesting, you may have found the instantaneous and rigid

updates of the agent’s traveling direction to be unrealistic. In practice, when a target

moves, it takes time for you to react and the adjustment you make should be continuous,

changing gradually from your current direction to the target’s new direction. This

gradual change is more profound in the case of mechanical systems. For example,

consider updating the aiming direction of a projectile launching turret, you would expect

the device to rotate steadily from its current aim direction to the new direction.

Chapter 8 Quaternions and Rotations

385

This section first introduces the concept of interpolation as a solution to support

gradual value changes over time. The interpolation of angles of rotation is then discussed

to integrate interpolation into direction aligning quaternions to simulate the chasing or

home-in behavior.

�Interpolation: Gradual Changes
In the physical world, it takes time to react and respond. In the case of aiming at or

traveling toward a target in motion, the change of direction should be gradual over time.

In other words, the change of direction should be interpolated.

Figure 8-7 uses the change of an arbitrary parameter as an example to explain

interpolation, where at time t1 a parameter with an old value is to be assigned a new one.

In this case, instead of updating the value abruptly, interpolation will change the value

gradually over time. It will compute the intermediate results with decreasing values and

complete the change to the new value at a later time t2.

Figure 8-7.  Interpolating values based on linear and exponential functions

Figure 8-7 shows that there is more than one way to interpolate values over time.

For example, linear interpolation computes intermediate results according to the slope

of the line connecting the old and new values. In contrast, an exponential function may

compute intermediate results based on percentages from previous values. With linear

interpolation, the change of aiming direction would occur with a constant rotation. In

comparison, interpolation based on a given exponential function would update the aim

direction rapidly at first, then slow down quickly over time giving a sensation of reacting

and re-aiming at the new target position.

Chapter 8 Quaternions and Rotations

386

Human motions and movements typically follow exponential interpolation

functions. For example, try turning your head from facing the front to facing the right

or moving your hand to pick up an object on your desk. Notice that in both cases, you

began with a relatively quick motion and slowed down significantly when the destination

is in close proximity. That is, you probably started by turning your head quickly and

slowed down rapidly as your view approaches your right side, and it is likely your hand

started moving quickly toward the object and slowed down significantly when the hand

is almost reaching the object. In both of these examples, your displacements followed

the exponential interpolation function as depicted in Figure 8-7—quick changes

followed by a rapid slowdown as the destination approaches. This is the function you

will integrate later in this section into quaternion rotations to align vector directions

because it mimics organic movements.

Note  Linear interpolation is often referred to as LERP or lerp. The result of lerp
is the linear combination of an initial and a final value. In almost all cases, the
exponential interpolation depicted in Figure 8-7 is approximated by repeatedly
applying the lerp function where in each invocation, the initial value is the result
of the previous lerp invocation—in effect, approximating the exponential function
with a piecewise linear function. For this reason, lerp is also used to refer to the
depicted exponential interpolation.

Figure 8-8.  Current and new directions of a chasing behavior

Chapter 8 Quaternions and Rotations

387

�The Chasing or Home-In Behavior
Figure 8-8 illustrates an agent at location Pa moving toward a target at Pt, where Pt is in

motion. The chasing of Pa toward the in-motion Pt can be simulated by interpolating

the angle of the direction aligning quaternion rotations. In Figure 8-8, Pa and V̂a are the

existing agent position and traveling direction. As the target position, Pt, changes over

time, the traveling direction of the agent can be gradually adjusted as follows.

The new traveling direction of the agent should be from Pa toward the current Pt, V̂at ,

ˆ .Vat t a� �� �P P Normalized 	

Since the existing traveling direction of the agent is V̂a , a rotation, q Vn� , ˆ� � is

required to align V̂a to V̂at , where

� � �� ��cos 1 V V 

a at and

  

V V Vn a at� � 	

In order to support gradual rotation of V̂a toward V̂at , the values of θ should be

interpolated over time. Following the exponential function depicted in Figure 8-7, the

direction realignment can be accomplished via a series of rotations, each with a fraction

of the actual angle required

	
� � � �� ��� Rate V Vcos 1

 

a at
	

where

0 0 1 0. .< <Rate 	

When traveling with a constant speed and a direction that is constantly adjusted by

the rotation q Vn�� �� , ˆ , the agent would result in gradually approaching homing into or

chasing after the target position.

Note  Linearly interpolating the angle of a quaternion rotates the head of a vector
following the circumference of a sphere and is referred to as spherical linear
interpolation, or SLERP.

Chapter 8 Quaternions and Rotations

388

�The Chasing Behavior Example
This example demonstrates how chasing behavior can be improved by using gradual

instead of instantaneous direction changes. This example allows you to interactively

manipulate a target and an observer position, examine gradual direction changes,

and launch an agent from the observer position to home in to or chase after the target

position. Figure 8-9 shows a screenshot of running the EX_8_4_ChasingBehavior scene

from the Chapter-8-Quaternions project.

Figure 8-9.  Running the Chasing Behavior example

The goals of this example are for you to

•	 Examine the implementation of interpolating directions

•	 Interact and gain experience with the results of linearly interpolating

the angle for rotation, or SLERP

•	 Observe the results of direction interpolation

•	 Verify the home-in or chasing behavior

Chapter 8 Quaternions and Rotations

389

�Examine the Scene

Take a look at the Example_8_4_ChasingBehavior scene and examine the three spheres:

checkered observer, Po; red target, Pt; and green agent, Pa. In this example, the user can

interactively manipulate the positions of Po and Pt and activate the agent to chase after

the target position.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same

names as their corresponding reference game objects in the scene. The ActivateAgent

toggle launches the green agent to chase after the target position, and the Rate variable

controls the rate of interpolation where values of zero would mean ignoring the target

and a value of around 60 would change agent traveling direction instantaneously.

Note T o maintain consistency in performance, as you will observe when
analyzing the source code, the Rate variable is modulated by the wall-clock
elapsed time. The value 60 corresponds to an approximate frame refresh rate of
your machine. Your actual frame refresh rate may be higher or lower than 60, but a
value of 60 will approximately give you an instantaneous update.

�Interact with the Example

Click the Play button to run the example. You can see a green vector attached to the

checkered observer, Po. The green vector represents the direction from the checkered

observer to the red target, Pt. On start, the green vector begins by pointing toward the

positive x-direction and rotates gradually to align with the direction from the checkered

observer to the red target sphere.

Select and manipulate the positions of the checkered observer or the red target to

verify that the green vector always follows and gradually matches the actual direction

from the observer to the target. You can compare and contrast this behavior to that of

EX_4_3_VelocityAndAiming, where without interpolation, the aiming at the target is

instantaneous and rigid and lacks the realism of organic reaction time.

Chapter 8 Quaternions and Rotations

390

Select the Controller and set the Rate to 0. You can verify that the green vector will

not update as the positions of the observer and target change. Recall that a rate of zero

means ignoring the final value and to not change the current value. Set the Rate to a

larger value, for example, 10, to observe that the interpolation occurs too quickly for you

to observe any gradual changes. In this implementation, the values of the Rate variable

convey a sense of stiffness, or how quickly and rigidly the green vector follows the actual

direction.

Now, set the Rate value to 0.8 and enable the ActivateAgent toggle. The green

vector on the green agent is the direction of its velocity. Observe that the green agent

initially travels toward the x-direction and then adjusts gradually to the direction toward

the target. Upon reaching the target position, since there is no support for collision,

the agent continuously moves beyond the target and attempts to adjust its traveling

direction resulting in orbiting the target. You can manipulate the red target position to

observe the green agent always chases after and attempts to home in on the target. You

can toggle ActivateAgent to relaunch the agent.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Po = null; // Observer position

public GameObject Pt = null; // Target position

public GameObject Pa = null; // Agent position

public bool ActivateAgent = false;

public float Rate = 0.8f;

private Vector3 Vot = Vector3.right; // (1,0, 0)

private Vector3 Vat = Vector3.right; // (1, 0, 0)

private const float kAgentSpeed = 0.01f;

private const float kSmallAngle = 1f;

#region For visualizing the vectors

#endregion

Chapter 8 Quaternions and Rotations

391

void Start() {

 Debug.Assert(Po != null); // Verify proper setting

 Debug.Assert(Pt != null);

 Debug.Assert(Pa != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller's MyScript component. The private variables, Vot and Vat, are the vectors

representing the directions from the observer to the target,


Vot , and from the agent

to the target,


Vat . Note that these two vectors are initialized to point in the positive

x-direction. The two constants define the speed of the traveling agent and the condition

when directions are aligned. As in all previous examples, the Debug.Assert() calls in

the Start() function ensure proper setup regarding referencing the appropriate game

objects via the Inspector Window.

In this example, in addition to the three previously defined quaternion utility

functions, QFromAngleAxis(), QMultiplication(), and QRotation(), an additional

function AlignVectors() is introduced to compute and interpolate vectors with details

as follows:

Vector3 AlignVectors(Vector3 from, Vector3 to, float rate) {

 from.Normalize();

 to.Normalize();

 float theta = Mathf.Acos(Vector3.Dot(from, to))

 * Mathf.Rad2Deg;

 Vector4 q = new Vector4(0, 0, 0, 1); // Quaternion identity

 if (theta > kSmallAngle) {

 Vector3 axis = Vector3.Cross(from, to);

 q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta,

 axis);

 }

 return QRotation(q, from);

}

Chapter 8 Quaternions and Rotations

392

The first three lines of the function normalize the input from and to vectors and

perform a dot product to compute the angle, θ, between the two input vectors. When θ

is sufficiently large, the vector aligning quaternion is defined to rotate the from vector by

an angle that is rate×θ toward the to vector. The Time.smoothDeltaTime modulation is

to ensure that the rate of rotation is independent from the performance of your machine.

In this way, the value of rate scales the angle for rotation and is spherically linearly

interpolated; thus, the returned vector is a SLERP between the from and to vectors. The

details of Update() are as follows:

void Update() {

 Vector3 o2t = Pt.transform.localPosition -

 Po.transform.localPosition;

 Vot = AlignVectors(Vot, o2t, Rate);

 if (ActivateAgent) {

 Vector3 a2t = Pt.transform.localPosition –

 Pa.transform.localPosition;

 Vat = AlignVectors(Vat, a2t, Rate);

 Pa.transform.localPosition += kAgentSpeed * Vat;

 } else {

 Pa.transform.localPosition = Po.transform.localPosition

 Vat = Vector3.right;

 }

 #region For visualizing the vectors

 #endregion

}

The first two lines compute the vector, o2t, from the observer to target and call

AlignVectors() to compute the SLERP result Vot. The Vot vector is the one shown

on the checkered observer. When ActivateAgent is enabled, a similar computation is

performed for the agent position to derive a2t and Vat, where the Vat direction is used

as the velocity direction for updating the position of the agent, Pa. Since the agent’s

velocity direction, Vat, is constantly updated and gradually points toward the target

position, the agent’s motion showcases that it is chasing the target position.

Chapter 8 Quaternions and Rotations

393

�Takeaway from This Example

Through this example you have observed the importance of gradual changing based on

interpolation and gained experienced with the chasing behavior, a common application

of the vector aligning quaternion rotation.

Relevant mathematical concepts covered include

•	 Interpolation computes a result that is in between the inputted initial

and final values.

•	 Linear interpolation (LERP) computes the results based on a

constant change factor.

•	 Spherical linear interpolation (SLERP) linearly interpolates the angle

of a rotation.

EXERCISES

Chasing with Constant Rotation

Instead of SLERP with a constant rate, you can experience rotating directions based on a

constant angular speed. In the AlignVectors() function, instead of computing the rotation

q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta, axis);

try defining the rotation with a constant angular speed, for example,

q = QFromAngleAxis(1.0f, axis);

Now run the example to observe that a constant angular rotation speed seems mechanical

and lacks the organic realism of SLERP.

�Aligning Axis Frames
With the knowledge of quaternion rotation, concatenation, and alignment of vector

directions, you can now derive the solution to align axis frames. The problem is

straightforward: after a user manipulates an object, for example, a spaceship, how can

you align objects with the rotated axis frame, that is, the navigated spaceship. This

Chapter 8 Quaternions and Rotations

394

is an important issue to resolve because you may want to supply the spaceship with

emergency equipment where it is crucial that the container boxes land on the spaceship

appropriately.

Recall that an axis frame is defined by three perpendicular axes or vectors. It is

always the case that the direction of the third vector is defined by the cross product of the

first two. This means, the orientation of an axis frame can be completely specified by the

directions of two of the vectors. For this reason, when aligning axis frames, you only need

to ensure two of the vectors are aligned. In other words, when given two axis frames, if

the directions of two of the vectors are aligned, then it is guaranteed that the directions

of the third vector must also be aligned.

Figure 8-10.  Rotations to align the default to a rotated axis frame. (a) The two
axis frames, (b) the first rotation to align V̂x to V̂x

r , (c) the resulting axis frames
after the first rotation, (d) the second rotation along V̂x

r to align V̂y
′ to V̂y

r

Chapter 8 Quaternions and Rotations

395

For clarity, instead of depicting alignment from a rotated axis frame, Figure 8-10

illustrates the rotations required based on the default axis frame to an arbitrarily rotated

axis frame. It is important to recognize that in the following derivation there are no

assumptions made on the actual directions of any of the vectors. For this reason, the

derived results are applicable to align any two arbitrarily rotated axis frames.

Figure 8-10 (a) shows two sets of axis frame drawn at the origin: the first thinner set

on the right defined by V̂x , V̂y , and V̂z and the rotated thicker set to the left defined by

V̂x
r , V̂ r

y , and V̂ r
z . The goal is to derive an operator to align any two of the three vectors,

for example, align V̂x to V̂x
r and V̂y to V̂ r

y .

The actual choice of directions for alignment does not affect the result. In Unity the

Y- and Z-axes are used as the upward and forward directions and thus are the choice

of directions for alignment. In the following derivation, x- and y-directions are used.

In the exercise at the end of this section, you will verify that the alignment results are

independent from the directions of choice.

Figure 8-10 (b) illustrates the rotation, q Ax� , x
ˆ� � , required to align V̂x to V̂x

r

direction. Vectors V̂y
r and V̂z

r are not shown to avoid cluttering the figure and because

they do not contribute in the derived rotation. For the rotation, q Ax� , x
ˆ� � , you know

�x x

r
V V� �� ��cos 1
 

x and

	
  

A V Vx x x
r� � 	

Figure 8-10 (c) shows the results of applying q Ax� , x
ˆ� � to the axis frame, V̂x , V̂y , and

V̂z . The rotation aligns the thinner V̂x with the thicker V̂x
r ; thus the rotated V̂x , or V̂x

′ ,

is occluded by V̂x
r and not visible in the figure. It is crucial to recognize that the rotation

is applied to all three vectors where the resulting axis frame is now V̂x
′ , V̂y

′ , and V̂z
′ . Take

note that at this point, ˆ ˆV Vx x
r� � , and that this vector is the x-direction of both axis frames.

This is to say V̂x
′ is perpendicular to all four vectors, V̂y

′ , V̂z
′ , V̂y

r , and V̂z
r . For this reason,

in the following rotation to align V̂y
′ with V̂y

r , the axis of rotation is along the positive or

negative V̂x
′ direction.

Lastly, Figure 8-10 (d) illustrates the rotation, q y� ,Ây� � , required to align V̂y
′ to

V̂y
r direction. There are two key points to this rotation. First, as discussed, Ây , the axis

of rotation will be along the positive or negative V̂x
r direction. Second, the rotation is

defined to be applied to the results of the q x� , xÂ� � rotation, or V̂y
′ and V̂z

′ , and not the

original V̂x , V̂y , and V̂z . Once again, to avoid cluttering, V̂z
′ and V̂z

r are not shown in

Figure 8-10 (d). In this case, you know

Chapter 8 Quaternions and Rotations

396

�y y y

r
V V� �� �� �

cos 1
  and



A V Vy y y
r� ��ˆ ˆ

	

The final rotation operator that aligns the two given axis frames, qc, is,

	
q q A q Ac y x� � � � �� �, ,y x

ˆ ˆ
	

Once again, the importance of concatenation ordering cannot be overstressed. In

this derivation, it is important that the x-alignment rotation, q Ax� , x
ˆ� � , is applied before

the y-alignment rotation, q Ay� , y
ˆ� � , and thus q Ax� , x

ˆ� � must be on the right-hand side of

the concatenation.

�The Unity Quaternion Class
In the next example, the results from the derived axis frame alignment formulation will

be compared to the solutions defined by the Unity Quaternion class. This is an excellent

opportunity to relate and contrast relevant concepts learned. Unity API documents the

Quaternion class (https://docs.unity3d.com/ScriptReference/Quaternion.html) as

follows:

Quaternions are used to represent rotations.

If you browse through their utility methods, you will notice the following similarities:

•	 AngleAxis: This is the QFromAngleAxis() utility function.

•	 FromToRotation: This is similar to the QAlignVectors() utility

function.

•	 Slerp: This is covered in the example scene Example_8_4_

ChasingBehavior.

Additionally, you have also learned about the Inverse() function and the *-operator

(concatenation operator). Pay attention to the LookRotation() function:

Creates a rotation with the specified forward and upward

directions

Note that this is precisely the subject of coverage in this section and you will work

with this function in the next example.

Chapter 8 Quaternions and Rotations

https://docs.unity3d.com/ScriptReference/Quaternion.html

397

Finally, notice the absence of an actual rotation function. That is, there is no

correspondence of the QRotation() function defined in the Unity Quaternion class.

Recall that a significant limitation of the quaternion representation for rotation is its

inability to describe rotations when the axis of rotation does not pass through the

origin. As pointed out when first introduced, this is not an issue because quaternions

are typically integrated with matrices in representing coordinate transformation.

Together, the tools can address the off-origin rotation limitation. In the case of Unity, the

integration of quaternions with matrices occurs in the Transform class (https://docs.

unity3d.com/ScriptReference/Transform.html), where rotations are represented

by quaternions and the transformation functionality is encoded as matrices. It is the

Transform class that defines the relevant position and vector rotation functions.

The details of the Transform class, the subject of coordinate transformation, are an

advanced topic that is out of the scope of this book. However, you have been working

with the Transform class in all of the examples where you have set the transform.

localPosition to control the location of objects. In the example that follows, you will

compute and set the transform.localRotation to control the orientation of objects to

verify the axis frame alignment formulation.

Note T he Unity Transform class explicitly maintains the axis frame of an object.
The x-, y-, and z-directions of a transformed axis frame are accessible via the
transform.right, transform.up, and transform.forward properties on a
Transform object.

�The Align Frames Example
This example demonstrates the results of applying the derived rotation to align with

a user-manipulated axis frame. To assist in gaining insights into the alignment, this

example also shows the results of applying only the first axis alignment rotation.

Additionally, to assist in verifying the solution, the results from the Unity quaternion

utility are also displayed. Figure 8-11 shows a screenshot of running the EX_8_5_

AlignFrames scene from the Chapter-8-Quaternions project.

Chapter 8 Quaternions and Rotations

https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html

398

Figure 8-11.  Running the Align Frames example

The goals of this example are for you to

•	 Interact with the smooth manipulation of positions that define an

axis frame

•	 Verify the results of aligning the first of the directions in axis frames

•	 Observe that the concatenation of the two axis aligning rotations can

indeed define an axis frame alignment rotation operator

•	 Examine the implementation of the axis frame alignment

formulation

•	 Validate the alignment results by comparing with the results from the

Unity quaternion utility

�Examine the Scene

Take a look at the Example_8_5_AlignFrames scene and observe the three spheres and

three flattened rectangular cubes. Similar to examples from the previous chapter, the

spheres Po, Px, and Pz are the three non-collinear positions that you can manipulate

to define an arbitrary axis frame. The orientations of the three flattened rectangular

cubes represent the results of aligning with the user-defined axis frame: the red,

Chapter 8 Quaternions and Rotations

399

AlignX, with only the first X-axis alignment rotation applied; the green, AlignXY, with

the concatenated xy-axis rotations applied; and the blue, AlignUnity, with alignment

performed based on the quaternion utility from Unity.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the six variables with the same

names as their corresponding reference game objects in the scene.

�Interact with the Example

Click the Play button to run the example. You can see four sets of three vectors

representing axis frames wrapping around each of the four axis frames: the three

flattened rectangular cubes and the spheres. In all cases, the red vector is the x-direction,

green is the y-direction, and blue is the z-direction. In this context, alignment refers to

the matching of the vector directions with the same colors. For example, the X-axis is

aligned when the red vectors are pointing in the same direction. Two axis frames are

aligned when all three colored vectors are pointing in the same directions.

Select and adjust the y-component of the blue sphere, Pz. This manipulation results

in rotating the axis frame around the x-direction where the red vector, or the X-axis

direction, does not changed. Observe that the green, AlignXY, and blue, AlignUnity,

cubes always align exactly with the manipulated frame. This is in contrast to the red

cube, AlignX, where it is only rotated by the x-direction alignment rotation, and in the

absence of x-direction changes, the red cube stays stationary.

Select and manipulate either Px or Pz freely to observe that the green and blue cubes

continue to always align exactly with the user-defined axis frame while the orientation

of the red cube only guarantees that the red X-axis is aligned. Now compare the red and

the green cubes and observe that the orientations of these two cubes are always different

by one rotation about their red vector. In other words, the alignment can be achieved

by rotating either the red or the green cube about the red vector. A straightforward way

to establish this observation is by analyzing the green vectors on these two cubes when

viewing the red vector straight down. You will see that the green vectors are a simple

rotation apart.

In these manipulations, you have observed and interacted with the two-step axis

frame alignment rotation. You have also verified that the derived alignment formulation

matches the results from the Unity quaternion utility.

Chapter 8 Quaternions and Rotations

400

Lastly and very importantly, take note that in this example all three cubes are located

at positions other than the origin where they can be moved to any position and yet you

were able to flawlessly manipulate their rotations. In other words, you have worked

with but did not encounter the quaternion limitation that the axis of rotation must

pass through the origin. As pointed out earlier, the Unity Transform class strategically

integrates quaternions with matrices and avoids that limitation completely.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

public GameObject Po = null; // Origin of the reference frame

public GameObject Px = null; // X-position defining the x-axis

public GameObject Pz = null; // Z-position defining the z-axis

public GameObject AlignX = null; // X-axis aligned

public GameObject AlignXY = null; // X,Y-both aligned

public GameObject AlignUnity = null; // Unity aligned

private const float kSmallAngle = 1f;

#region For visualizing the vectors

#endregion

void Start() {

 Debug.Assert(Po != null); // Verify proper setting

 Debug.Assert(Px != null);

 Debug.Assert(Pz != null);

 Debug.Assert(AlignX != null);

 Debug.Assert(AlignXY != null);

 Debug.Assert(AlignUnity != null);

 #region For visualizing the vectors

 #endregion

}

All the public variables for MyScript have been discussed when analyzing the

Controller's MyScript component. The private kSmallAngle defines when two vectors

are in the same direction and that the alignment rotation is not necessary.

Chapter 8 Quaternions and Rotations

401

This example defines the same quaternion utility functions: QFromAngleAxis(),

QMultiplication(), and QRotation(). The previous AlignVectors() function is

replaced by a similar QAlignVectors() function with details as follows:

Vector4 QAlignVectors(Vector3 from, Vector3 to) {

 from.Normalize();

 to.Normalize();

 float theta = Mathf.Acos(Vector3.Dot(from, to))

 * Mathf.Rad2Deg;

 Vector4 q = new Vector4(0, 0, 0, 1); // Quaternion identity

 if (theta > kSmallAngle) {

 Vector3 axis = Vector3.Cross(from, to);

 q = QFromAngleAxis(theta, axis);

 }

 return q;

}

This new function removed the SLERP functionality and returned a quaternion

rotation instead of a rotated vector. The last additional utility function, V4ToQ(), is

defined for type conversion to be compatible with the Unity Quaternion class. The

details are as follow:

Quaternion V4ToQ(Vector4 q) {

 return new Quaternion(q.x, q.y, q.z, q.w);

}

With these utilities, the details of Update() are as follows:

void Update() {

 Vector3 vxr = (Px.transform.position –

 Po.transform.position).normalized;

 Vector3 vzr = (Pz.transform.position –

 Po.transform.position).normalized;

 Vector3 vyr = Vector3.Cross(vzr, vxr);

 Quaternion qUnity = Quaternion.LookRotation(vzr, vyr);

 AlignUnity.transform.localRotation = qUnity;

Chapter 8 Quaternions and Rotations

402

 Vector4 qx = QAlignVectors(Vector3.right, vxr);

 AlignX.transform.localRotation = V4ToQ(qx);

 Vector4 qy = QAlignVectors(AlignX.transform.up, vyr);

 Vector4 qc = QMultiplication(qy, qx);

 AlignXY.transform.localRotation = V4ToQ(qc);

 #region For visualizing the vectors

 #endregion

}

The first three lines compute the user-defined axis frame, the V̂x
r , V̂ r

y , and V̂ r
z in

Figure 8-10. The next two lines call the Unity Quaternion.LookRotation() utility with

V̂ r
z as the forward and V̂ r

y as the upward directions to compute and set the rotation to

the transform.localRotation of the AlignUnity object. Recall that AlignUnity is a

reference to the blue cube. The matching alignment of the blue cube axis frame verifies

that Quaternion.LookRotation() indeed computes an axis frame alignment rotation.

In the line that follows, the variable qx represents q Ax� , x
ˆ� � , rotating Vector3.right,

or (1, 0, 0) or V̂x in Figure 8-10, to V̂x
r . This rotation is set to AlignX, or the red cube.

Note that when the x-direction is not changed, V̂x
r would remain (1, 0, 0) and qx would

be a quaternion identity. This is why in the previous interaction the red cube would stay

stationary when the axis frame is rotated about the x-direction.

The variable qy represents q Ay y� , ˆ� � , rotating AlignX.transform.up to V̂y
r . In

this case, AlignX.transform.up is the result of V̂y rotated by q Ax� , x
ˆ� � , or V̂y

′ in

Figure 8-10(c). The last two lines concatenate qx with qy to compute the actual axis

frame aligning operator qc and set the rotation to AlignXY, or the green cube. The fact

that the blue and green cubes, or AlignUnity and AlignXY, align identically verifies

that the computed qc is indeed the same as the results from the Unity Quaternion.

LookRotation() function.

Note T he Unity GameObjects, AlignX, AlignXY, and AlignUnity, are
located at positions other than the origin and with axes of rotations that do
not pass through the origin. The Unity Transform class, where the computed
quaternion rotations are set via transform.localRotation, integrates matrix
transformation functionality and seamlessly overcomes the quaternion rotation
limitation.

Chapter 8 Quaternions and Rotations

403

�Takeaway from This Example

Through this example you have examined and interacted with each of the two rotations

involved in aligning axis frames. You have also verified that strategically concatenating

two rotations can indeed result in an axis frame aligning operator.

Relevant mathematical concepts covered include

•	 To align two axis frames, you only need to ensure two of the three

axes are aligned.

•	 You can choose to align any of the two axes to accomplish axis frame

alignment.

•	 The second rotation of axis frame alignment aligns the results from

the first rotation and not the original axis directions.

•	 The limitation of quaternion rotation that the axis of rotation must

pass through the origin can be avoided with strategic integration with

matrices.

Unity tools

•	 Quaternion.LookRotation(): Aligns the default to a given axis frame

based on forward, z-directions, and up, y-directions

•	 Transform.localRotation: Encodes rotation with a quaternion

•	 Transform.right/up/forward: The major axes’ directions of a

rotated GameObject

EXERCISES

Replace Our Functions with Unity Quaternion

Replace QAlignVectors(), QFromAngleAxis(), and QMultiplication() with the

corresponding Unity Quaternion class utility functions and verify that the exact same results

can be observed.

Chapter 8 Quaternions and Rotations

404

Align Based on Two Other Axes

Replace the X- and Y-axes with z- and y-directions to verify that the choice of axes for

alignment indeed does not affect the results. You can repeat this exercise with any other two

axes, for example, X and Z, if desired.

Align a Rotated Axis Frame to the Default Axis Frame

Derive and display the rotations required to align the user-defined axis frame to the default

axis frame.

In this case, the first rotation required is to align vxr to the default x-direction, V̂x , ,� � �1 0 0 .

In other words, q Ax� , x
ˆ� � has

�x x

r
V V� �� ��cos 1
 

x and

	
  

A V Vx x
r

x� � 	

Not surprisingly, the direction of the axis of rotation is reversed from that in this example. The

rotation q Ax� , x
ˆ� � would be applied to the user-defined axis frame: V̂x

r , V̂ r
y , or V̂ r

z . The

second rotation should align the rotated y-direction, V̂y
′ , the q Ax� , x

ˆ� � rotated V̂ r
y , to align

with the default Y-axis,


Vy � � �0 1 0, , , where q Ay� , y
ˆ� � has

�y y yV V� �� �� �
cos 1

  and

	

  

A V Vy y y� ��
	

You can now edit MyScript to implement the preceding formulation. With this exercise, you

have verified that not only can you rotate the default to a user-defined axis frame, you can

indeed reverse the alignment from a user-defined axis frame to the default axis frame. Since

you can align an axis frame, A, with the default and then align the default with another axis

frame, B, you can indeed align any two given axis frames A and B.

An alternative and much more straightforward approach is to recognize that quaternion

rotations are reversible. The inverse of the computed qc in the existing code will accomplish

the specified axis frame alignment.

Chapter 8 Quaternions and Rotations

405

Integrate SLERP to Axis Frame Alignment

Integrate the SLERP functionality of AlignVectors() from the previous example to the

QAlignVectors() function and experience with gradual and smooth axis frame alignment

that more resembles the steering of a spaceship.

Navigation with Axis Frame

As discussed, navigating a spaceship is simply aligning the ship with an axis frame and

moving along the front direction. If the AlignXY object represents a spaceship with

transform.forward as the front direction, then you can navigate the AlignXY object by

including the following line at the end of the Update() function:

AlignXY.transform.localPosition =

 0.5f * Time.deltaTime * AlignXY.transform.forward

Now, if you run the game, you will observe the green cube moving toward the positive

z-direction. Try manipulating the positions of Po and Pz to verify that you can indeed steer the

traveling of the AlignXY object.

�Summary
This chapter introduces the four-tuple quaternion to represent a rotation. You have

learned that three of the numbers describe the axis of rotation where the forth number

encodes the angle to be rotated. The mathematical rules for working with quaternion,

or quaternion algebra, are well established for supporting rotation operations. You

have learned the inverse of a quaternion reverses a rotation and the concatenation of

quaternions aggregates and captures the results of multiple rotations. The limitation of

the compact four-number representation of a rotation is that there is no way to encode

the location of the axis of rotation: quaternion representation and the involved algebra

implicitly assume that the axis of rotation passes through the origin of the Cartesian

coordinate.

You have examined quaternion rotation as a tool for aligning directions. Chapter 5

has taught you that the angle between two normalized vectors is the arccosine of the

dot product. From Chapter 6, you know that the axis of rotation for aligning two vectors

is simply the cross product of the vectors. Based on this knowledge, you have derived

Chapter 8 Quaternions and Rotations

406

the formulation for aligning the directions of any two vectors. By analyzing how you

would turn your head when changing viewing directions, you recognized that real-world

organic and mechanical movements are gradual and continuous. You have learned

to emulate such movements by continuously applying quaternion rotations based on

repeatedly linear interpolated angle of rotation, or SLERP. Lastly, you learned that by

strategically computing and concatenating two rotations, you can align any two given

axis frames. Through working with the Unity Transform class, you have witnessed that

the quaternion rotation limitation of requiring the axis of rotation to pass through the

origin can be avoided completely. The steering and navigation of a spaceship will be

further explored in the next chapter via the motion of a traveling agent.

It is important to recognize that this chapter has led you to investigate quaternions

as being used as a tool for rotation. Thus, the focus of this chapter has been on the

characteristics of quaternions in effectively rotating vectors. This is very different from

learning quaternions as a field of mathematical study. You may have noticed some of

the missing details, such as the derivation or justification of quaternion multiplication

definition. Though important, such details are outside of the scope of using quaternions

as a tool for rotations. The limited coverage of quaternion fundamentals means that

while you are able to use quaternion as a tool to align vectors and axis frames, it may be

challenging for you to use it as a general mathematical tool for solving other problems.

Lastly, you may have noticed a slight deviation of topic coverage in this chapter.

While the other chapters in the book analyzed and studied the application of points

and vectors, this chapter examined how to manipulate and change them. For example,

instead of applying vectors in representing axis frames, this chapter examined how

to manipulate a defined axis frame. This subtle shift serves as the introduction to the

next topic area in mathematics for supporting video game development: matrices and

transformation. A more involved topic for a more advanced book.

Chapter 8 Quaternions and Rotations

407

CHAPTER 9

Conclusion
With your background in basic algebra and trigonometry, this book took you on the

journey from the review of the Cartesian Coordinate System to the application of vector

algebra to solve frequently encountered problems in video game development. In

Chapter 1, you reviewed and familiarized yourself with the Unity system as a learning

tool. Then, in Chapter 2, you learned about bounding boxes, one of the most used tools

in game engines, by revising and generalizing number intervals. Along the way, you also

examined issues related to bounding volumes.

In Chapters 3 and 4, you studied the relationships between positions. You began

studying these relationships in Chapter 3 through exploring bounding volumes by

examining another important tool: bounding spheres. From here, you were led into

Chapter 4 where you were introduced to the concept of vectors. That chapter provided

you with a comprehensive and formal foundation for discussing relationships between

positions in the form of directions and distances. It was also in that chapter that you

gained experience in applying vector concepts to model and implement object velocity

manipulation and how to calculate object motions under external factors such as wind

or current flow conditions.

In Chapters 5 and 6, you learned to relate vectors to each other and to the space

that defines them. The vector dot product introduced in Chapter 5 demonstrated that

two vectors are related by the angle they subtend and their mutual projected sizes. You

applied this knowledge to describe and analyze line segments and then connected

these vector line segments back to the simple number intervals reviewed in Chapter 2.

You then applied these concepts to solve the problem of high-speed objects’ missing

collisions. Then, in Chapter 6, you learned about the vector cross product and used

it to analyze 2D planes. This analysis included exploring 2D planes from additional

perspectives including the ability to define general axis frames and to create your own

line intervals to define 2D regions on 2D planes.

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_9

https://doi.org/10.1007/978-1-4842-9885-5_9

408

In Chapter 7, you analyzed axis frames and began to appreciate complex situations

with independent movements of elements that are geometrically related or connected.

You generalized axis frames and learned that they can be located at any position with

any orientation. You then applied that knowledge to define multiple overlapping

coordinate systems and learned about the conversion between these systems so that

you can describe and control character motion in a navigating spaceship. The attempt

to navigate the spaceship brought up the next topic: an operator for manipulating

orientation, specifically, the quaternion. In Chapter 8, you learned and represented

rotations with quaternions. Building on your knowledge of dot and cross products,

you derive solutions for aligning vectors and axis frames. You have also observed

and emulated organic movements with gradual changes through repeated linear

interpolation, LERP and SLERP.

The insights gained from learning these basic math concepts have enabled you to

analyze and solve some of the most encountered problems in video game development.

This chapter summarizes the book, continuing with the philosophy that interactive

exploration is an important and integral part of learning, by presenting the concepts

learned throughout this book in a straightforward and comprehensive example. Though

not a video game, this example highlights solutions that are implemented in many

modern video games.

�The Final Comprehensive Example
This example integrates and demonstrates the concepts learned in this book in a

comprehensive and coherent application. This example allows you to interactively

manipulate the speed and direction of a traveling agent. On the agent and within its

bounds, you can control the movement of a hero. You will also be able to manipulate

a 2D plane that represents a wall that the traveling agent can reflect off of and cast

a shadow upon. Finally, you will also be able to manipulate the radius of a treasure

bounding sphere that the agent can collide against. During the interaction, you can

suspend all movements and examine the computed projection and collision results, the

paths of the agent and the hero on it, and the results of the treasure collision. Figure 9-1

shows a screenshot of running the EX_9_1_FinalComprehensiveExample scene from the

Chapter-9-Conclusion project.

Chapter 9 Conclusion

409

Figure 9-1.  Running the Final Comprehensive Example

The goals of this example are for you to

•	 Experience an interaction session based on a coherent collection of

vector-based solutions

•	 Examine solutions studied in the context of a simple yet

comprehensive application

•	 Examine the implementation source code of a non-trivial system

�Examine the Scene
Take a look at the Example_9_1_FinalComprehensiveExample scene and observe the

predefined game objects in the Hierarchy Window. Due to the slight complexity of this

scene, the game objects are categorized into seven groups according to their roles. Each

group is an empty game object that serves as the parent or, in this case, a holder, for all

the relevant objects that you will actually manipulate. Please pay attention to and only

manipulate the relevant game objects when interacting with this example. Additionally,

make sure to avoid changing the transforms of the empty grouping game objects during

your interactions as it will also change the transforms of the game objects within them.

Figure 9-2 depicts the grouping and object names in this scene.

Chapter 9 Conclusion

410

Figure 9-2.  The groups and game objects in the Final Comprehensive Example

The six groups of objects are as follows. You can click the small triangle icon beside

each object's name in the Hierarchy Window to expand the group.

•	 1. Aiming System: The two spheres in this group are the base, Pb in

blue, and the control, Pc in green. The positions of these two spheres

and the distance between them serve to define the direction and

speed of the traveling agent.

•	 2. Agent: The only object in this group is the red flattened rectangle,

the agent Pa. This rectangular object represents the position and

orientation of the traveling agent.

•	 3. Hero: The only object in this group is a white capsule, Ph,

representing the hero in motion referencing the axis frame of the

agent object.

•	 4. Plane: The only object in this group is the position on the

reflecting wall or the checkered sphere Pn. This object exists to assist

with visualization. As with all 2D plane examples in Chapter 6, Pn is

the intersection of the plane normal position vector with the plane. In

other words, if the vector plane equation of the wall is

	 p V Dn� �ˆ
	

Chapter 9 Conclusion

411

Then,

	 P DVn n= ˆ
	

where Pn is the position on the plane along the V̂n direction from the origin.

•	 5. Shadow: The only object in this group is a semi-transparent

black sphere, Ps, indicating the shadow of the agent object or the

projection of the position Pa on the plane that represents the wall.

•	 6. Reflection: The two objects in this group are Pon, the striped

sphere, and Pr, the white sphere. Pon is the predicted intersection

position of the agent with the wall, and Pr is the agent position, Pa,

reflected across the wall.

•	 7. Treasure: The only object in this group is the semi-transparent

red sphere, Pt, representing the bounding sphere of a treasure

located at this position.

In all cases, the objects' transform.localPosition will be referenced as the

positions for performing the necessary vector computations and the orientation of the

agent will be updated via transform.localRotation. Additionally, since Pt represents a

bounding sphere, its transform.localScale property represents the radius and is also

referenced.

�Analyze Controller MyScript Component
The MyScript component on the Controller shows variables that can be categorized

into the same groups as those of the scene hierarchy. These groups and their

accompanying MyScript variables are listed as follows:

•	 Aiming System

•	 Pb: A reference to the Pb game object

•	 Pc: A reference to the Pc game object

•	 Aspeed: The speed of the traveling agent and also the distance

between Pb and Pc

Chapter 9 Conclusion

412

•	 Agent

•	 MoveAgent: A toggle controlling the agent's motion

•	 AgentSentInterval: The time period before a traveling agent will

have its position reset to the control position, Pc, and repeat the

entire traveling path

•	 Pa: A reference to the Pa game object

•	 Hero

•	 Ph: A reference to the Ph game object

•	 HeroXMotion: A toggle controlling the x-direction motion of

the hero

•	 HeroYMotion: A toggle controlling the y-direction motion of

the hero

•	 Plane

•	 ShowAxisFrame: A toggle to show or hide the Cartesian

Coordinate axis frame for verifying the vector plane equation

•	 D: The plane distance from the origin of the vector plane

equation, p V Dn� �ˆ

•	 Vn: The plane normal vector of the vector plane

equation, p V Dn� �ˆ

•	 Pn: A reference to the Pn game object

•	 Shadow

•	 CastShadow: A toggle to show or hide the shadow

computation results

•	 Ps: A reference to the Ps game object

•	 Reflection

•	 DoReflection: A toggle to show or hide the reflection

computation

•	 Pon: A reference to the Pon game object

•	 Pr: A reference to the Pr game object

Chapter 9 Conclusion

413

•	 Treasure

•	 CollideTreasure: A toggle to show or hide the collision

computation

•	 Pt: A reference to the Pt game object

•	 Tr: The radius of the treasure bounding sphere

The very last variable in the MyScript component of Controller is the

ShowDebugLines toggle which is used for showing or hiding all the debug lines in

the scene.

�Interact with the Example
Click the Play Button to run the example. Notice that initially the red rectangle, or the

agent, Pa, is stationary. This is by design. You will analyze and understand the scene

before setting the agent in motion.

The aiming system, the blue and green spheres, Pb and Pc, is connected by a red

vector representing the direction and speed of the velocity of the agent. The red agent

is in front of the aiming system with the white capsule hero pacing back and forth on

the agent. A thin black line extending from the center of the agent toward the plane

visualizes the location of the projected shadow on the plane, Ps. The two thin red lines

connecting the agent to Pon on the plane and Pr in the mirrored reflection direction

show, when in motion, the intersection position with the 2D plane and the reflection

of the agent across the plane. The transparent bounding sphere at Pt is red because it

intersects the reflection ray.

During your interaction, be careful to avoid adjusting the transforms of the empty

container parent or holder objects. Additionally, pay attention to the Console Window

printout. If you accidentally set the application to an ill-defined state, for example,

by overlapping Pb and Pc positions, warning messages will be printed to the Console

Window and the script will reset its state to ensure that the application does not crash.

Now toggle off CastShadow, DoReflection, and CollideTreasure such that you can

focus on and examine each of the seven functionalities separately.

Chapter 9 Conclusion

414

�Interact with the Aiming System

Figure 9-3 focuses on the aiming system and the orientation of the agent. Details of the

hero object, the white capsule, will be discussed later. The objects are annotated with

their corresponding variable names in the implementation such that you can observe

their behaviors to examine the mathematics of the vector solution.

Figure 9-3.  The aiming system and the agent orientation

As illustrated in Figure 9-3, the vector from Pb to Pc defines the direction of the agent

velocity, Âdir , and the distance between these two positions is Aspeed, which is under

the user control via the variable Aspeed. The agent, Pa, always aligns its forward and

up directions with that of Âdir and the vertical direction V̂y � � �0 1 0, , of the Cartesian

Coordinate System. In this way, as illustrated in Figure 9-3, the agent defines a separate

and independent axis frame with its center, Pa, being the origin of this axis frame.

In the Hierarchy Window, expand the 1.AimingSystem game object by clicking

the triangle icon beside it. Select Pb and manipulate its position. You will observe that

changes to Pb always result in corresponding changes in Pc and the agent, Pa, ensuring

that the agent is always located in front of and aligned with the velocity direction, Âdir

. The center of the agent is located at a constant distance of 2xAspeed away from Pb.

You can change the Aspeed magnitude to observe the in-between space adjusting

accordingly.

Select Pc and adjust its position to observe that by maintaining a constant distance

from Pb, Pc can only orbit Pb. That is, the position Pc can only change along the

circumference of the circle centered at Pb with radius Aspeed. Note that as the velocity

direction, Âdir , changes, so does the position and orientation of Pa. This is because the

Chapter 9 Conclusion

415

distance and direction between Pb and Pc is same as the distance between Pc and the

center of Pa, and the agent's front or z-direction is always aligned with that of Âdir .

As described, the velocity direction, Âdir , is simply the vector between Pb and Pc. The

behaviors you just walked through identify Pb as the base, or tail, of the aiming system,

controlling both the Pc and the agent, Pa, positions. The aiming direction and Pc position

can be computed as follows:

ˆ .A P P Normalizedir c b� �� � direction from Pb to Pc

P P A Ac b speed dir� � ˆ Aspeed from Pb

where the agent's position and orientation can be determined by

P P A Aa b speed dir� � 2 ˆ 2× the distance

	
P localRotation Quaternion.LookRotation A Va dir y. = ,ˆ ˆ� �

	

�Interact with the Agent

Enable the agent motion by switching on the MoveAgent toggle. For now, continue

to ignore the pacing hero on the agent. Notice that Pa orientates along and moves in

the Âdir direction, and at about every six-second interval, the position of Pa is reset to

that of Pc and the motion repeats. This interval period is the time period controlled by

AgentSentInterval, which uses seconds as its unit of time. You can adjust this variable

to observe its effect. Notice that when AgentSentInterval is a negative number or zero,

Pa's position is being reset at every update, and as a result, it becomes stationary at

position Pc. You can verify the direction of the agent velocity by adjusting Pc's position

and the speed of the agent by manipulating the Aspeed value. The agent's orientation

and traveling direction only update at the beginning of each interval period. These

observations suggest that when MoveAgent is true and AgentSentInterval time limit

is reached, the position of Pa is reset to that of Pc with orientation updated to align

with Âdir or

P Pa c= 	

	
P rotation Quaternion.LookRotation A Va dir y. = ,ˆ ˆ� �

	

Chapter 9 Conclusion

416

And during motion, Pa position is updated according to

	
P P ElapsedTime A Aa a speed dir� � �� � ˆ

	

where the new position is the old position plus time × speed. Note that the "×" symbol

in this case is a floating-point multiplication and not a vector cross product. You know

this because the cross product between floating-point numbers is undefined; therefore,

it must be multiplication.

Lastly, tumble the Scene View camera to observe that while traveling in space, it

is actually rather challenging to resolve the relative distance and position between

the agent and the plane. To assist with distance determination, the ShowDebugLines is

switched on by default where you can observe a thin red line in the direction of Âdir in

front of Pa indicating the pathway of Pa. This thin red line is informative because it assists

in resolving relative positions. However, it is also distracting because in real life such

indicating lines do not exist. As you will verify soon, dropping a shadow can also be an

effective way of addressing the challenge of resolving relative distance.

�Interact with the Hero Motion

Please restart the game to ensure a proper initial setting. In the following, before

enabling the agent to travel, you will first focus on analyzing and understanding the

pacing motion of the hero, Ph, the white elongated capsule on the agent.

Now, observe the back and forth pacing of the hero along the direction defined by

the aiming system, Pb to Pc, or Âdir . Select and adjust the position of Pc to manipulate

Âdir and verify that the pacing direction indeed followed. Now, enable the HeroYMotion

toggle and observe the hero hopping vertically on the agent with respect to and along the

Âdir direction. You can adjust the y-value of Pc to aim Âdir up- or downward and verify

that the hero's hopping direction is indeed aligned perpendicular to the flat surface of

the agent. Now, disable the HeroYMotion and enable the HeroXMotion toggle. Notice

that in this case the hero is sweeping along a sinusoidal pathway on the surface of the

agent. Once again, manipulate Pc position to alter the agent's orientation and verify that

the hero movement pathway remains. Feel free to enable both motions of the hero and

manipulate Pc position to examine and admire the hero's constant sinusoidal hopping

that follows the changing orientation of the agent.

Chapter 9 Conclusion

417

You have interacted with and observed the movement of the hero being defined

with respect to the axis frame of the agent. Recall that the axis frame of the agent has its

origin located the agent's center position, Pa, and is defined by Âdir being the forward

or z-direction and V̂y � � �0 1 0, , being the y-direction. This means that the back and forth

pacing of the hero is z-direction, the hopping is y-direction, and sinusoidal sweeping is

x-direction movements. In this way, the hero position, Ph, is a vector,


V x y zh � � � �� �, , ,

offset from the origin, Pa, of the agent axis frame or

	 P P x x y y z zh a� �� �� ��ˆ ˆ ˆ 	

where x̂ , ŷ , and ẑ are the directions of the major axes of the agent axis frame.

In this case, let the constant pacing speed be HeroSpeed, the y-direction hopping is

implemented as an absolute cosine, and x-direction sweeping is a simple sine function:

� � �z ElapsedTime HeroSpeed 	

∆y = abs(cos (π∆z))

� � �� �x zsin � 	

�Interact with the Plane

With the agent in motion (ensure MoveAgent is toggled on), please switch on the

ShowAxisFrame toggle, and begin to investigate the plane and its spatial relationship with

the agent. First, note the white line extending from position Pn to the origin overlapping

with the plane normal vector. This shows that Pn is indeed a position vector in the

direction of the plane normal vector.

Adjust the parameter D to change the distance between the plane and the axis frame

as well as components of Vn to see the plane rotating about the axis frame. Because of

the large size of the plane, you may have to zoom out the camera to observe the effects

of adjusting Vn. Notice that Pn is always located at the intersection of the plane normal

vector extending from the origin. You have verified that this plane is indeed defined by

the vector plane equation

p V Dn� �ˆ
	

Chapter 9 Conclusion

418

and that

	 P DVn n= ˆ
	

is a position on the plane along the V̂n direction from the origin. When examining

the relative position of the agent, its motion, and the normal direction of the plane,

along with the anticipation for later shadow and reflection computations, there are few

concerns. Please refer to Figure 9-4 for the details.

Figure 9-4.  The plane and its relationship to the position and motion of the agent

This example specifies that shadow casting and reflection can only occur when Pa is

on the side pointed toward by the plane normal vector or along the direction of V̂n .

Additionally, you have already verified that reflection computation should not occur if

the agent's velocity, Âdir , is parallel to the plane or perpendicular to the normal vector,

V̂n . Lastly, note that a reflection cannot occur if Pa is moving away from the plane. These

discussions identify three geometric conditions of interests:

•	 In front of condition: This is when the position of the agent is on the

side of the 2D plane that is pointed to by the plane normal vector, V̂n .

To determine if this is true, you can simply verify that the projected

size of position vector Pa in the plane normal direction, V̂n , is greater

than the plane distance, D, or

	
In front P V Da n : �� � �

	

•	 Perpendicular or not parallel condition: When a velocity vector is

perpendicular to a plane normal vector, the velocity is parallel to and

will never intersect with the plane. This condition can be determined

by one of the following tests:

Chapter 9 Conclusion

419

•	 Perpendicualr to normal vector : A Vdir n
ˆ ˆ�� � � 0

subtended angle≈90°

•	 Not to plane : A Vdir nparallel ˆ ˆ�� � � 0

subtended angle≠90°

•	 Approaching condition: When an object is in front of and moving

toward a plane, its velocity will be pointing in the direction opposite

to the plane normal vector or

	
is approaching from front : A Vdir n

ˆ ˆ�� � � 0
	

90° ≤ subtended angle≤180°

�Interact with the Shadow

Please restart the game to ensure a proper initial setting and then toggle off

DoReflection and CollideTreasure, switch on MoveAgent, and increase Aspeed to 8.

Now, you can toggle the ShowDebugLines on and off to experience the full effect of the

shadow object, Ps, in conveying the relative spatial relationship.

Notice that, as defined by the application, shadow casting does not occur once the

agent moves past the plane. You can verify this as follows. First, set the plane normal, Vn,

to (0, 1, 0) to observe the shadow when the agent velocity is parallel and in front of the

plane. Then, if you flip the plane around, by setting Vn to (0, −1, 0) and D to positive 6, you

can now notice that the agent is not on the side pointing to by the plane normal and thus

shadow casting does not occur. Figure 9-5 illustrates the solution for computing Ps when

Pa is in front of the plane.

Chapter 9 Conclusion

420

Figure 9-5.  The shadow Ps computation

A quick review of “Projections onto 2D Planes” discussion from Chapter 6 says that

the projected length of the position vector Pa onto the plane normal, V̂n , is

	 h P Va n� � ˆ   Pa length along V̂n

Position Ps is simply h − D distance from the position Pa in the negative V̂n direction

P P h D Vs a n� � �� � ˆ 	

�Interact with the Reflection

Once again, please restart the game to ensure a proper initial setting, toggle off

CollideTreasure, switch on MoveAgent, and set the Aspeed to 5. Feel free to switch

CastShadow toggle off if you find the shadow distracting.

Observe how the red agent and the white Pr sphere approach the Pon intersection

position in perfect synchronization. When the distance between Pa and Pon is very small,

the bounding spheres around these two objects will collide. After the collision, since the

agent is moving away from the plane and its velocity does not reflect with the 2D plane

anymore, the white sphere representing the agent's reflection, Pr, disappears leaving

the red agent to continue with its motion in the mirrored reflection direction. You can

adjust the plane by manipulating the Vn and D parameters and observe that the reflected

motion adjusts correctly.

If you flip the 2D plane from its initial orientation by setting Vn to (0, 0, −1) and D

to 6 you, will notice that the reflection computation does not occur. This example only

computes reflection when the agent travels into the plane from the front. Note that this is

not a limitation of the solution; rather, this is a design choice for showcasing the in front

Chapter 9 Conclusion

421

of test with a 2D plane. Now, if you set Vn to (0, 1, 0), the plane will be parallel to the agent

velocity direction, Âdir . When this occurs, notice that both Pr and Pon disappear. In this

case, the reflection is not defined and therefore the computation for these positions is

not invoked.

Restart the game again, switch on MoveAgent, and this time, set the Aspeed to a large

number, for example, 15. Notice now that the agent sometimes fails to collide with the

plane and instead simply crosses the plane. What you are observing is the exact same

problem as the one described in Figure 5-13 of the “Line to Point Distance” section in

Chapter 5 or the problem of failed collision for fast-moving objects. You will resolve this

issue in an exercise. It is interesting that the collision detection only fails some of the

time depending on the actual rate that the Update() function is called. Unfortunately,

these types of uncertainty are rather common in typical video game development and

must be predicted and resolved.

Figure 9-6 depicts the reflection computation that supports the behaviors you just

observed.

Figure 9-6.  Reflecting Pa across the wall

As seen in Figure 9-6, reflection computation will only proceed when the agent is in

front of the plane and has a velocity direction, Âdir , that is not parallel to and is headed

toward the plane. In this case, the reflection direction can be derived by first computing

the position, Pon, where the line segment that begins at Pa with a direction of Âdir

intersects the plane, p V Dn� �ˆ ,

P P dAon a dir� � ˆ   d along Âdir from Pa

Chapter 9 Conclusion

422

in this case, d, which as shown in the discussion of “Line to Plane Intersection” in

Chapter 6 as illustrated in Figure 6-16, can be derived as

d
D P V

A V

a n

dir n

�
� �� �

�� �
ˆ

ˆ ˆ
   from Pa to plane along Âdir

and



Von = Pa − Pon  from Pon to Pa

The “Mirrored Reflection Across a Plane” discussion, as illustrated in Figure 6-18,

showed that



 

m V V V Von n n on� �� � �ˆ ˆ   perpendicular to V̂n
 at Pa

and the reflection direction is

 



V V mr on� � 2   reflection of


Von across V̂n

where

P P Vr on r� �


   mirrored reflection of Pa

�Interact with the Colliding Treasure

For the last time, please restart the game to ensure a proper initial setting. For now,

please do not enable MoveAgent. Feel free to switch the CastShadow toggle off if you find

the shadow distracting.

Notice that the Pt sphere is highlighted in red because the reflection vector,


Vr

, passes through this sphere. Now, select position Pc in 1.AimingSystem and adjust

its x-component value. This will change the velocity direction of the agent, Âdir , and

thus affect the reflection vector,


Vr . Notice the Pt sphere changing to white when the

reflection vector is outside of the sphere. This application is designed to detect the

condition when the reflection vector is sufficiently close to the Pt sphere.

You can adjust the Pt position and the sphere's radius via Tr to modify the reflection

vector and the bounding sphere respectively to verify the correctness of the vector inside

sphere results. Now if you enable the MoveAgent toggle and increase the agent speed

Chapter 9 Conclusion

423

or its interval time so that collision can occur before the agent motion is reset, you can

verify the correctness of the results for a changing reflection vector. Notice that after the

collision at Pon, the


Vr vector is not defined anymore and thus the Pt sphere becomes

white in color.

As illustrated in Figure 5-13 and discussed in the “Line to Point Distance” section

of Chapter 5, the vector cutting through a bounding sphere functionality can be

implemented as a point to line distance computation. The details of this computation

are illustrated in Figure 9-7.

Figure 9-7.  Point to line distance for bounding sphere collision detection

Refer to Figure 9-7 and note that


Vt is defined to be the vector from Pon to the center

of the treasure bounding sphere, Pt,



V P Pt t on� �   from Pon to Pt

Then note that the projected distance of


Vt along


Vr is dt,

d V Vt t r� �
 ˆ  



Vt length in V̂r
 direction

And that when dt is larger than zero and less than the magnitude of


Vr , then the

closest point, Pdt, between Pt and the line segment is

P P d Vdt on t r� � ˆ   dt along V̂r
 from Pon

And finally, the line segment intersects the given bounding sphere when

	 P P Bounding Sphere Radiusdt t� � 	

Chapter 9 Conclusion

424

�Summary of Interaction

Now that you have a comprehensive understanding of this example and insights into the

solutions, please feel free to adjust any and all parameters to examine the consistency of

the results.

�Details of MyScript
Open MyScript and examine the source code in the IDE. The instance variables and the

Start() function are as follows:

// Aim System

public GameObject Pb = null;

public GameObject Pc = null;

public float Aspeed = 2.0f; // Agent Speed

// Agent Support

public bool MoveAgent = false;

public float AgentSentInterval = 4f; // Re-send Interval

public GameObject Pa = null;

private Vector3 Adir = Vector3.zero;

private float AgentSinceTime = 100f; // Since resent

// Hero

public GameObject Ph = null;

public bool HeroXMotion = true;

public bool HeroYMotion = true;

private Vector3 Vh = Vector3.zero;

private float HeroSpeed = 0.5f;

private const float kHeroZMotionRange = 1f;

// Plane

public bool ShowAxisFrame = false;

public float D = -6.7f; // The distance to the plane

public Vector3 Vn; // Normal vector of reflection plane

public GameObject Pn; // Location where the plane center is

// Shadow

Chapter 9 Conclusion

425

public bool CastShadow = true;

public GameObject Ps; // Location of Shadow of Agent

// Reflection

public bool DoReflection = true;

public GameObject Pon; // Collision point of Agent

public GameObject Pr; // Reflection of current Agent position

// Treasure Collision

public bool CollideTreasure = true;

public GameObject Pt; // Treasure position

public float Tr = 2f; // Treasure radius

public bool ShowDebugLines = true;

#region For visualizing

#endregion

void Start() {

 Debug.Assert(Pa != null); // Verify proper setting

 Debug.Assert(Pb != null);

 Debug.Assert(Pc != null);

 Debug.Assert(Pn != null);

 Debug.Assert(Ps != null);

 Debug.Assert(Pon != null);

 Debug.Assert(Pr != null);

 Debug.Assert(Pt != null);

 Debug.Assert(Ph != null);

 #region For visualization

 #endregion

}

All public variables for MyScript have been discussed when analyzing the

Controller's MyScript component. The only internal states or private variables

maintained are for supporting the hero movement, reflection of the agent's velocity, Adir

(Âdir), and for keeping track of the elapsed time since the previous agent position and

velocity were reset, AgentSinceTime.

Chapter 9 Conclusion

426

As in all previous examples, the Debug.Assert() calls in the Start() function ensure

proper setup regarding referencing the appropriate game objects via the Inspector

Window. The Update() function is organized into the following regions where the details

will be examined accordingly:

void Update() {

 Step 0: Initial Error Checking

 Step 1: The Aiming System

 Step 2: The Agent

 Step 3: The Hero motion

 Step 4: The Plane and infront/parallel checks

 Step 5: The Shadow

 Step 6: The Reflection

 Step 7: The collision with treasure

 #region For visualization

 #endregion

}

�Step 0: Initial Error Checking

Expand this region and examine the following:

#region Step 0: Initial error checking

Debug.Assert((Pc.transform.localPosition -

 Pb.transform.localPosition).magnitude > float.Epsilon);

Debug.Assert(Vn.magnitude > float.Epsilon);

Debug.Assert(Aspeed > float.Epsilon);

Debug.Assert(Tr > float.Epsilon);

// recoveries from the errors

if ((Pc.transform.localPosition -

 Pb.transform.localPosition).magnitude < float.Epsilon)

 Pc.transform.localPosition

 = Pb.transform.localPosition - Vector3.forward;

Chapter 9 Conclusion

427

if (Vn.magnitude < float.Epsilon)

 Vn = Vector3.forward;

if (Aspeed < float.Epsilon)

 Aspeed = 0.01f;

if (Tr < float.Epsilon)

 Tr = 0.01f;

#endregion

These lines of code are simple edge case error checking before any computation

begins. The first three nonzero assertions are to avoid working with zero vectors and the

last assertion ensures that the treasure bounding sphere has a valid radius. The four if

statements are attempts to recover from ill-defined states. Notice the error recoveries

are rather ad hoc, where the application state is simply set to a defined situation. In a

real application, it is the responsibility of the game designers to ensure that inputs from

the users are not capable of setting or creating such ill-defined states. For example,

in this scenario, the game designer is responsible for defining limitations such that

during the aiming process, the user will not accidentally set the agent speed to zero or a

negative value.

�Step 1: The Aiming System

Expand this region and examine the following:

#region Step 1: The Aiming System

Vector3 aDir = Pc.transform.localPosition -

 Pb.transform.localPosition;

aDir.Normalize(); // assuming not located at the same point

Pc.transform.localPosition =

 Pb.transform.localPosition + Aspeed * aDir;

if (!MoveAgent) { // controls only when agent is not moving

 Pa.transform.localPosition =

 Pb.transform.localPosition + 2 * Aspeed * aDir;

 Pa.transform.localRotation =

 Quaternion.LookRotation(aDir, Vector3.up);

 Adir = aDir;

}

#endregion

Chapter 9 Conclusion

428

This code computes

ˆ .A P P Normalizedir c d� �� �

P P A Ac b speed dir� � ˆ

and when the agent is not in motion, the code also computes

P P A Aa b speed dir� � 2 ˆ

�Step 2: The Agent

Expand this region and examine the following:

#region Step 2: The Agent

if (MoveAgent) {

 Pa.transform.localPosition += Aspeed * Time.deltaTime * Adir

 AgentSinceTime += Time.deltaTime;

 if (AgentSinceTime > AgentSentInterval) { // Should re-send

 Pa.transform.localPosition = Pc.transform.localPosition

 Adir = aDir;

 Pa.transform.localRotation =

 Quaternion.LookRotation(aDir, Vector3.up);

 AgentSinceTime = 0f;

 }

}

if (ShowVelocity && ShowDebugLines)

 Debug.DrawLine(Pa.transform.localPosition,

 Pa.transform.localPosition + 20f * Adir, Color.red);

#endregion

This code shows that actual computations are required for the agent object only

when MoveAgent toggle is enabled. When this toggle is enabled, the agent's new position

is updated via its current velocity

	
P P ElapsedTime A Aa a speed dir� � �� � ˆ

	

Chapter 9 Conclusion

429

Then, when the wall-clock elapsed time is more than the user-specified

AgentSentInterval, the agent position is reset to Pc and its velocity is set to the current

(Pc − Pd). Normalize. The last line of code in this region draws a red line with length of 20

units from the agent position in its velocity direction when the user settings are favorable.

�Step 3: The Hero Motion

Expand this region and examine the following:

#region Step 3: The Hero motion

// Hero's follows Agent (Pa) axis frame

Vector3 po = Pa.transform.localPosition;

Vector3 vx = Pa.transform.right;

Vector3 vy = Pa.transform.up;

Vector3 vz = Pa.transform.forward;

Vh.z += HeroSpeed * Time.deltaTime; // moved

if (Mathf.Abs(Vh.z) > kHeroZMotionRange) {

 Vh.z = (Vh.z>0f) ? 1f : -1f;

 HeroSpeed = -HeroSpeed;

}

if (HeroYMotion)

 Vh.y= Mathf.Abs(Mathf.Cos(Mathf.PI * Vh.z));

if (HeroXMotion)

 Vh.x= Mathf.Sin(Mathf.PI * Vh.z);

Vector3 vhc = Vh.x * vx + Vh.y * vy + Vh.z * vz;

Ph.transform.localPosition = po + vhc;

Ph.transform.localRotation = Pa.transform.localRotation;

#endregion

The first four lines extract the agent axis frame: po being the origin and vx, vy, and vz

are the directions of the major axes. The last two lines set the position and orientation of

the hero

P P Vh.x x Vh.y y Vh.z zh a� � � �ˆ ˆ ˆ 	

	 P locationRotation P locationRotationh a. .= 	

Chapter 9 Conclusion

430

The lines in between compute and set the hero movement vector, Vh,

 Vh z HeroSpeed ElapsedTime. � � 	

Vh. y = abs(cos (π Vh. z))

 Vh. sin .x Vh z� � �� 	

�Step 4: The Plane

Expand this region and examine the following:

#region Step 4: The Plane and infront/parallel checks

Vn.Normalize();

Pn.transform.localPosition = D * Vn;

// agent position checks

float paDotVn = Vector3.Dot(Pa.transform.localPosition, Vn);

bool infrontOfPlane = (paDotVn > D);

// Agent motion direction checks

float aDirDotVn = Vector3.Dot(Adir, Vn);

bool isApproaching = (aDirDotVn < 0f);

bool notParallel = (Mathf.Abs(aDirDotVn) > float.Epsilon);

#endregion

This region ensures a proper vector plane equation and computes object and

velocity to plane relationships. The first two lines compute

V̂
V

V
n

n

n

=





  normalization after user manipulations

 P DVn n= ˆ
	

Next, the in front of, approaching, and not parallel conditions are computed as

follows:

Chapter 9 Conclusion

431

	
In frontOfPlane P V Da n � �� � �ˆ

	

isApproaching A Vdir n� �� � �ˆ ˆ 0

	

 notParallel A V
dir n

� � �ˆ ˆ 0 	

These conditions will assist in determining if shadow casting, reflection, and

collision with the treasure bounding sphere should occur.

�Step 5: The Shadow

Expand this region and examine the following:

#region Step 5: The Shadow

Ps.SetActive(CastShadow && infrontOfPlane);

if (CastShadow && infrontOfPlane) {

 float h = Vector3.Dot(Pa.transform.localPosition, Vn);

 Ps.transform.localPosition =

 Pa.transform.localPosition - (h-D) * Vn;

 if (ShowDebugLines)

 Debug.DrawLine(Pa.transform.localPosition,

 Ps.transform.localPosition, Color.black);

}

#endregion

The first line shows or hides the Ps game object depending on user command.

The next conditional statement determines if shadow computation should occur. This

computation will occur only if the user wants to examine shadow casting and if the agent

is in front of the plane. Shadow is computed by

 h P Va n� � ˆ 	

P P h D Vs a n� � �� � ˆ 	

Lastly, when users specify, a black line is drawn from Pa to Ps to assist in visualizing

the projection.

Chapter 9 Conclusion

432

�Step 6: The Reflection

Expand this region and examine the following:

#region Step 6: The Reflection

Pon.SetActive(DoReflection && notParallel

 && infrontOfPlane && isApproaching);

Pr.SetActive(DoReflection && notParallel

 && infrontOfPlane && isApproaching);

Vector3 vr = Vector3.up; // Reflection vector

bool vrIsValid = false;

if (DoReflection && notParallel && isApproaching) {

 if (infrontOfPlane) {

 float d = (D -

 Vector3.Dot(Pa.transform.localPosition, Vn))

 / aDirDotVn;

 Pon.transform.localPosition =

 Pa.transform.localPosition + d * Adir;

 Vector3 von = Pa.transform.localPosition -

 Pon.transform.localPosition;

 Vector3 m = (Vector3.Dot(von, Vn) * Vn) - von;

 vr = 2 * m + von;

 Pr.transform.localPosition =

 Pon.transform.localPosition + vr;

 vrIsValid = true;

 if (ShowDebugLines) {

 Debug.DrawLine(Pa.transform.localPosition,

 Pon.transform.localPosition, Color.red);

 Debug.DrawLine(Pon.transform.localPosition,

 Pr.transform.localPosition, Color.red);

 }

 // What will happen if you do this?

 // if (von.magnitude < float.Epsilon)

 if (von.magnitude < 0.1f) {

 // collision with "virtual" bounding sphere

 Adir = vr.normalized;

Chapter 9 Conclusion

433

 Pa.transform.localRotation =

 Quaternion.LookRotation(Adir, Vector3.up);

 }

 } else {

 Debug.Log("Potential problem!: high speed Agent,

 missing the plane collision?");

 // What can you do?

 }

}

#endregion

The first two lines show or hide the Pon and Pr game objects based on user

command and the relationship between the agent and the plane. Reflection

computation will occur only if the user wants to examine the reflection, when the agent

is in front of the plane, has a velocity that is not parallel to the plane, and the velocity

is moving toward the plane. The in front of condition is a design choice; the parallel

condition is required to avoid undefined solutions; and the last condition is required

because when an object is in front of and moving away from the plane, no collision will

occur and thus no reflection computation is necessary.

Note that the outer if condition checks for user command, "not parallel", and "is

approaching" conditions, whereas the "in front of" condition is checked in an inner if

statement. When all conditions are satisfied, the reflection position, Pr, is computed as

d
D P V

A V

a n

dir n

�
� �� �

�� �
ˆ

ˆ ˆ
 			 agent to plane distance

P P dAon a dir� � ˆ 			 agent intersects plane at Pon



Von = Pa − Pon 			 plane to agent �� �dAdir
ˆ



 

m V V V Von n n on� �� � �ˆ ˆ 	 perpendicular to plane

 



V V mr on� � 2 			 reflection direction

P P Vr on r� �


 			 mirrored reflection of agent

Chapter 9 Conclusion

434

The two red lines from Pa to Pon and from Pon to Pr are then drawn according to

user's command. The last if statement compares


Von to a small number, 0.1f. This is

essentially checking for the intersection of the bounding spheres around the agent and

the Pon position. When these two positions are close to each other or when


Von is very

small, a collision is detected and Âdir becomes the reflected direction, ˆ ˆA Vdir r= . The

vrIsValid flag informs the next step, collision with the treasure bounding sphere, when

there is a valid reflection vector. Recall from Chapter 3 that bounding spheres are less

than ideal for detecting collisions for the rectangular agent, and yet, as in this case, when

rectangular objects are not aligned with the major axes, it is often the default solution.

You can now analyze the reason for checking the "in front of" condition in the

inner if statement. Recall that in the initial setup, the AimingSystem sends the agent

toward the plane. If a condition should occur where the agent's velocity indicates that

it is approaching the plane and yet its current position is not in front of the plane, then

there are two possible cases. First, the agent's initial position is behind the plane, and it

continues to move away from the plane. In this situation, there is no cause for concern as

everything is functioning as it should. However, if it is the second case, then something

should be done. Recall that the agent's position was already updated in Step 2; it

therefore may be the case that, in one update, the agent has moved from a position that

is in front of the plane to a position that is behind the plane. As you have observed, this

situation can occur for an agent traveling at high speeds. In this implementation, such

a situation is detected, and a warning message is printed to the Console Window. In an

exercise, you will be led to develop a solution for this missing collision problem.

�Step 7: The Collision with Treasure

Expand this region and examine the following:

#region Step 7: The collision with treasure

Pt.SetActive(DoReflection && CollideTreasure);

Pt.transform.localScale = new Vector3(2 * Tr, 2 * Tr, 2 * Tr);

 // this is the diameter

Pt.GetComponent<Renderer>().material.color =

 MyDrawObject.NoCollisionColor;

if (DoReflection && CollideTreasure && vrIsValid) {

 Vector3 vt = Pt.transform.localPosition -

 Pon.transform.localPosition;

Chapter 9 Conclusion

435

 float dt = Vector3.Dot(vt, vr.normalized);

 if ((dt >= 0) && (dt <= vr.magnitude)) {

 Vector3 pdt = Pon.transform.localPosition +

 dt * vr.normalized;

 if ((pdt - Pt.transform.localPosition).magnitude <= Tr)

 Pt.GetComponent<Renderer>().material.color =

 MyDrawObject.CollisionColor;

 }

}

#endregion

The first two lines of code show or hide the Pt sphere and set its radius according to

the user commands. The third line initializes the sphere to the no-collision color, white.

The treasure bounding sphere collision computation is performed only when the user

demands it and when reflection was successful in the previous step. The two lines of

code in the if condition compute



V P Pt t on� � 		 from Pon on the plane to Pt

d V Vt t r� �
 ˆ 		 project



Vt along V̂r

The inner if condition checks for 0 ≤ ≤d V
t r



, or the condition when the projected

length is within the bounds of the reflected vector, and computes the


Vt projection

on


Vr , Pdt,

P P d Vdt on t� � r̂ 		 treasure position V̂r

Since the position, Pdt, on the reflection vector is closest to the treasure position,

Pt, the reflection vector will intersect the treasure bounding sphere when the distance

between these two positions is less than the radius of the sphere; in other words, a

collision occurs when this condition is true:

P P T
dt t r
� � 	

closest distance is less than the treasure bounding sphere radius.

Chapter 9 Conclusion

436

�Takeaway from This Example
This has been the most complex example in this book. This example demonstrates

many of the concepts discussed throughout this book in a straightforward and

coherent application. Though the exact form and details involved can vary, all of the

interactions you have gone through in this example can be found in popular video

games. Notice how you approached the analysis and examination of both the scene

and the implementation. You first understood the entire narration: the aiming system,

agent traveling, hero movement, casting shadow, reflecting, and colliding. After that,

you categorized the scene and the implementation into distinct steps. This is a top-

down, divide, and conquer approach to problem analysis and solution derivation. The

lesson here is to understand the problem space, subdivide into smaller tasks, solve each

individually, and then combine the results as the final solution to the original problem.

Video games and the vast majority of software applications, graphical or otherwise, can

be intimidating when you first examine their requirements. The key is to avoid being

overwhelmed by the complicated problem narrative and to break the narrative down

into pieces that you can understand and accomplish, just like you did for this example.

Relevant mathematical concepts covered include most of the concepts learned in

this book. The important lesson here is that when combining concepts in solving a series

of related problems, it is critical to subdivide the problems into individual tasks and then

to apply the concepts to accomplish each task independently.

Relevant observations on implementation include what to avoid when building

software solutions. It is important to recognize that all example implementations in this

book were designed to serve a narrow purpose—to best showcase the math concepts.

This single goal overrides all other vital software development guidelines, including the

very important concepts of information hiding and abstraction. A significant strategic

effort was made to ensure that all solutions can be presented in a single execution

unit, MyScript, with most of variables being publicly accessible. Though the code in

the MyScript files is straightforward to comprehend and interact with, they can be

challenging to expand, generalize, and build upon. In the case of the last example, you

may have noticed the important and yet messy relationships between the individual

steps in the implementation. For example, the agent velocity is computed and updated

conditionally in Steps 1, 2, and 5. While the implementation of this last example served

well as a demonstration of vector operations, it does not serve to demonstrate how to

structure a video game. Properly designed software should hide essential information

and define abstract interfaces.

Chapter 9 Conclusion

437

EXERCISES

Line to Plane Intersection Solution to the Missed Collision Problem

You have witnessed the agent traveling right through the wall at high speed. This condition

is even detected in Step 5 of MyScript. In general, a straightforward solution for an object

traveling toward the wall is to define a line segment representing the current motion of the

object, in this case, the line segment

l d P dAa dir� � � � ˆ

and to compute the intersection of this line segment with the 2D plane that represent the wall

p V Dn� �ˆ

If the computed d value is less than zero, then the intersection position is behind the object

and the object has overshot. Please refer to Figure 9-6 and observe that this computation is

already performed. Now, modify MyScript to avoid the overshooting situation by reflecting

the agent accordingly.

Your Own Quaternion Rotations

Replace the Unity Quaternion.LookRotation() function with your own quaternion

rotation functions.

Location of Hero on the Agent

Unity capsules are defined with respect to their center. This is why only half of the pacing hero

is above the agent. In this example, the height of the agent is exactly 1.0; you can place the

hero above the agent by offsetting its position by 0.5 when computing the offset vector, vhc,

in the Update() function

Vector3 vhc = Vh.x * vx + (Vh.y + 0.5f) * vy + Vh.z * vz;

With this fix, you can see the hero pacing on top of instead of "in" the agent.

Chapter 9 Conclusion

438

Before-After Position Solution to the Missed Collision Problem

Examine the line to plane intersection solution to the missed collision problem and observe

that the computation result is the actual amount of overshooting. This is invaluable information

if precision is important. For example, you can always backtrack the object by the overshot

amount and then perform the reflection. In other cases, such as in this example, where the

precise position of the agent is of less consequence, there is a simpler solution. You can

compute the in front of status for both the current and the next agent positions. If the status of

these two positions is different, you know during this update, the agent will overshoot the wall.

Notice that this solution only provides a binary answer, yes or no, and does not provide the

information on the amount overshot. Now, modify MyScript to support this solution.

Proper Treasure Collision Support

It is somewhat annoying that the treasure bounding sphere interacts with the reflection vector

and not the actual agent. For example, after the reflection, the treasure bounding sphere does

not detect when the agent actually passes through it! Please modify MyScript to support the

highlight of the treasure bounding sphere after the reflected agent collides with it instead of

just its reflection vector.

�What’s Next
This book approached introductory mathematical concepts from the perspective of

video game development. The relevant concepts in vectors are introduced, examined,

and applied in solving problems related to this one application area. Through this book

you have learned one of a large variety of flavors of vector applications. Though you

haven't learned everything about vectors and their applications, what you have learned

is a powerful tool set for solving some very important problems, both in and out of video

games and other interactive graphical applications.

You have learned that quaternion rotations only work when the rotation axis

passes through the origin. However, you have also witnessed and experienced that the

integration with matrix math can resolve this limitation but no details were provided.

It is hoped that the awareness of available, yet inaccessible information can serve as a

motivation to continue this fun and rewarding journey of learning.

Chapter 9 Conclusion

439

In the meantime, you can begin practicing and experimenting with your newly

acquired powerful knowledge in vector applications. As a first step, you can tweak and

enhance the example from this chapter in the following ways:

•	 Project shadows onto either side of the wall.

•	 Compute shadow size as a function of object distance or

projection angle.

•	 Reflect the agent when it approaches from either side of the wall.

•	 Replace the wall definition to be based on three positions and

support the definition of a 2D region for shadow casting and

reflection.

•	 Include an external wind factor to affect the agent's motion.

Next, you can consider supporting "gaming features" in the form of challenges,

accomplishments, and rewards. For example, include hazardous barriers that must be

avoided, treasures that can be collected when passed in close proximity, and power

ups in the form of speed increments when sufficient treasures are acquired. During

this process, you should constantly apply object-oriented design principles and design

separate classes to support and hide the behaviors of each element in the interaction.

As you can see, you are on your way to building your first agent exploration game!

The key is to describe what you want, depict the solution with careful drawings and

consistent symbol labels, and then implement and verify your solution, just as you have

followed in this book. It is fun, and practice really does make perfect.

Chapter 9 Conclusion

441

Index

A
ActivateAgent toggle, 389, 390, 392
AgentSentInterval, 412, 415, 429
Velocityaiming example:MyScript, 145
AlignVectors() function, 393, 401
Application programming interface (API), 3
Axis-aligned bounding box (AABB)

analyze controller MyScript
component, 45

horizontal interval, 42
rectangular plane, 42
3D example, 51

examine scene, 45
interact with example, 46
MyScript, 47–50
running, 44

two intervals, 43
Axis-aligned bounding boxes (AABB), 27, 28
Axis frames

components, 325, 345
components example

arbitrary axis, 320, 323, 324
examine scene, 319
goals, 318
MyScript, 321, 323
MyScript component, 319
project, 318

derivation, 313
labels, 306
motion control

examine scene, 341
interactions, 342

MyScript, 342–345
running, 341
spaceship, 339, 340

non-collinear points, 313
perpendicular axes, 347
perpendicular unit vectors, 312
positions, 326, 408
position vector, 314, 315
position vector components, 315–317
spaceship, 408
unit vectors, 304
unity, 346
vector components

Cartesian analysis, 328, 329
position, 326, 328

vectors example
component values, 337, 338
examine scene, 330
interaction, 331–334
MyScript, 334–336
MyScript component, 331
project, 330

video games, 304, 305
Axis frames and 2D regions

bounds, 267, 268
2D planes, 265
example

bounding boxes, 273
examine scene, 269
MyScript, 271, 272
MyScript component, 270
running, 269

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5

https://doi.org/10.1007/978-1-4842-9885-5

442

Axis frames, quaternions
example

examine scene, 398
interaction, 399, 400
MyScript, 400–402
project, 397

perpendicular axes, 394
rotations, 394, 395, 403
Unity Quaternion class, 396

B
Bounding box

condition, 59
definition, 59
intersection example, 68

analyze controller MyScript
component, 62

bounding box over vehicle, 63, 64
examine scene, 62
goals, 61
MyScript, 64–68

requirements, 70, 71
Bounding spheres, 407
BrickSphere, 22

C
Cartesian axis frame

components, 307
components example, 311

examine scene, 309
MyScript, 310
MyScript component, 309
running, 308
value–scaled unit vectors, 309

position vector components, 307, 308

Cartesian Coordinate System, 3, 27, 30, 40,
74, 102, 148, 169, 171, 303, 304,
306, 347, 407, 414

CenterSphere, 22
CheckerSphere, 12
Comprehensive and coherent

application
computed projection, 408
examine the scene, 409–411
example, 409
interaction, 413, 417

agent, 415, 416
aiming system, 414
colliding treasure, 422, 423
HeroYMotion, 416, 417
plane, 417–419
reflection, 420, 421
shadow, 419, 420

MyScript, 424–436
MyScript component, 411, 412

Computer graphics applications, 302
Computer vision, 2

D
Debug.Assert() function, 58, 166
Debug.DrawLine() function, 82
Debug.Log() function, 39, 365
Distance computation

positions/distance example
examine scene, 77
example, 78
MyScript component, 78
MyScript details, 79, 81
Project Window, 76, 77
Vector3 class, 81, 82

right-angle triangles, 74–76

INDEX

443

E, F
Entity-Component-System (ECS), 3

G
General axis frame, 266
GitHub repository, 6

H
HeroSpeed, 417
HeroYMotion, 412, 416

I, J, K
Integrated Development Environment

(IDE), 1, 4
Interpolation/chasing behavior,

quaternions
examine scene, 389
example, 388
gradual changes, 385
home-in behavior, 387
interaction, 389
MyScript, 390–392
MyScript component, 389
value changes, 385

IntersectRay() function, 283, 290, 291
Intervals

bound intersections example, 58
examine the scene, 55
interact with example, 55
MyScript, 56, 58
MyScript component, 55
Project Window, 54
running interval, 54

condition and results, 53

intersect or overlap, 52
min-max range

1D bounds, 32–36, 38–41
unity example, 31, 32
Y-axis, 30

L
Linear algebra, 2
Linear interpolation (LERP), 386, 393
Line segment

axis-aligned bounding
boxes, 208

definitions/implications, 231
1D example, 205
1D interval, inside-outside

test, 200–203
equation, 233
interval bound example, 204

examine scene, 205
MyScript component, 205
running, 204
test position, 204

MyScript, 206, 207
positions, 198, 199
subtended angle, 232
vector projection, 208

Line to line distance
example

examine scene, 223
line segment, 224
MyScript, 224–227, 230
MyScript component, 224
normalized vs. non-normalized

vectors, 228
running, 223

floating-point number, 221, 230

INDEX

444

line segments, 219, 220
normalized vectors, 231

Line to plane intersection
example

bounds, 290
examine scene, 286
MyScript, 288–290
MyScript component, 287
running, 286

solving, 284, 285
Line to point distance

bounding sphere, 210
bounding volumes, 210
calculation, 212
example

computation, 212
examine scene, 213
interactive graphical

applications, 218
MyScript, 214–217
MyScript component, 214
running, 213

position, 210

M, N, O
Machine learning, 2
Mirrored reflection

across plane, 292
direction, 293
example

direction, 299
2D plane, 294
examine scene, 295
MyScript, 297, 298
MyScript component, 296

intersection computation, 292

P
PointInSphere(), 88, 94
Position vectors

Cartesian Coordinate System, 103
different positions, 104–106
example

examine, 107
interaction, 109–111
MyScipt, 111–117
MyScript component, 108
running vector, 107

following a vector, 103, 104
mathematical concepts, 118
unity tools, 118

Pythagorean Theorem, 73, 77, 81, 83, 94

Q, R
QAlignVectors() function, 405
QFromAngleAxis() utility function, 396
QRotation() function, 365, 397
Quaternion

concatenation
encodes rotation, 366, 367
examine scene, 369
interaction example, 370
MyScript, 370–372
project, 368
rotations, 373
running, 369

four-number representation, 405
multiplication, 406
rotations, 350, 351
rotation terminologies, 351, 352
tuple of four

angle/axis, encoding, 354
exercise, 363–366
floating-point numbers, 352, 353, 362

Line to line distance (cont.)

INDEX

445

rotation example, 357–361
rotation limitation, 355
rotation operator, 354, 355
rotation positions.vectors, 356

S
Sphere colliders/bounding spheres

example
examine scene, 85
MyScript component, 85
MyScript details, 86–88
running sphere, 84
visualization, 88, 89

intersections example, 90
examine scene, 91
generalization, 93
MyScript component, 91
MyScript details, 92, 93

less-than-or-equal test, 84
3D interactive graphical

applications, 89
2D to 3D space, 83

SpheresIntersects() function, 94
Spherical linear interpolation

(SLERP), 393
Start() function, 22, 38, 48, 56, 66, 79, 87,

114, 144, 158, 159, 166, 206, 214,
260, 279, 280, 288, 289, 297, 310,
321, 334, 335, 343, 359, 371, 372,
380, 390, 400, 424

T
3D Cartesian Coordinate System, 28, 29,

40, 72, 94, 105
2D planes projections

point to plane example, 281, 282

examine scene, 278
MyScript, 279, 280
MyScript component, 278
running, 277

solving point, 276
video games, 274

U
Unity

engine, 3, 4
linear algebra, 2
mathematical computations, 1
scripting file, 24
setting up environment, 4, 5

Unity BoundingSphere, 94
Unity editor environment, 4

game building editor, 5
MyScript, 14–22
open project, 7, 8
operations, 23
terminologies, 24
unity hub, 6
working, 8, 9, 11–14

Unity system, 407
Update() function, 19, 38, 41, 49, 50, 57,

68, 82, 87, 88, 114, 132, 144, 145,
159, 166, 167, 225, 272, 289, 311,
421, 426

V, W, X, Y, Z
Vector addition and subtraction

equation, 151
example, 154

examine scene, 155
interaction, 156–160
interaction, 159

INDEX

446

MyScript component, 155, 156
negated vector, 161
running vector, 154

geometric interpretation, 151–154
rules, 149, 150
zero vector, 150

Vector algebra, 97
application

wind condition, 162
wind condition example

interaction, 165
rules, 169
scaling (see Vector scaling)
wind condition example

examine scene, 163
external effect, 168
MyScript component,

164–167
project, 163
running, 163

Vector cross product
definition, 241
example, 244

Console Window, 246
2D plane, 250
examine scene, 245
MyScript, 248, 249
MyScript component, 246
running, 245
zero vector, 248

floating-point number, 301
geometric interpretation, 242, 243
perpendicular direction, 239
perpendicular vectors, 301
properties, 243, 244
subtended angle and projected

sizes, 236

3D coordinate system convention,
237, 238

2D plane, 236, 239
Vector directions, align

example
examine scene, 377
interaction, 378–380
MyScript, 380, 381, 383
MyScript component, 378
project, 376, 377
rotation, 383

normalized vectors, 375
rotation representation, 376

Vector dot product, 407
angle between two vectors, 177–181
angle between vectors

2D plane, 181
examine scene, 182
magnitudes, 187, 189
MyScript, 185–187
MyScript component, 183
running, 182
Scene View window, 183, 184

definition, 174
direction and magnitude, 172
projections

example, 191–194
floating-point number, 197
magnitudes, 189
MyScript, 194–196
normalized vector, 190, 191

properties, 175, 176
relationship between two vectors, 173
spatial relationships, 172

Vector normalization, 124
Vector plane equation

2D plane, 252–254
2D plane position, 256, 257

Vector addition and subtraction (cont.)

INDEX

447

example
examine scene, 258
MyScript, 260, 262, 263
MyScript component, 259
position vector, 264
running, 258
ShowPointOnPlane toggle,

259, 260
position, 255, 256

Vectors
algebra, 98
cross product, 349, 350
game object movements, 98
position, 102
relating two points, 99, 100, 102
velocity, 137
video games, 98

Vector scaling
arbitrary vector, 123
direction, 125
distance and a direction, 121
example, 121, 122

normalization example
examine scene, 127
interaction, 128–130
MyScript component, 127
MyScript details, 130–135
project, 126
running, 126
vector-based logic, 135, 136

unity tools, 136
vector normalization, 124

Velocity
aiming example, 139

examine scene, 140
goals, 140
interaction, 142
MyScript, 143–146
MyScript component, 141
running, 140
unit vector, 147

DrawPositionVector portion, 138
speed, 137

Video game development, 438

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Introduction and Learning Environment
	Introduction
	Choice of Unity Engine
	Setting Up Your Development Environment
	Notes on Installing Unity

	Unity Editor Environment
	Opening the Intro to Unity Project
	Working with the Unity Editor
	Working with MyScript
	To Learn More About Working with Unity

	How to Use This Book
	Summary
	References

	Chapter 2: Intervals and Bounding Boxes
	Introduction
	Review of Cartesian Coordinate System
	Intervals: Min-Max Range
	Working with Examples in Unity
	The Interval Bounds in 1D Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis-Aligned Bounding Boxes: Intervals in Three Dimensions
	The Box Bounds Intervals in 3D Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Intervals
	The Interval Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Bounding Boxes
	The Box Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Placement of the Bounding Box over the Vehicles
	Bounding Box Collisions
	Void Space of a Bounding Box

	Details of MyScript
	Takeaway from This Example

	Final Words on Bounding Boxes
	The Unity Bounds Class

	Summary

	Chapter 3: Distances and Bounding Spheres
	Introduction
	Distances Between Positions
	The Positions and Distances Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Sphere Colliders or Bounding Spheres
	The Sphere Bounds Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Bounding Spheres
	The Sphere Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	The Unity BoundingSphere Class
	Summary

	Chapter 4: Vectors
	Introduction
	Vectors: Relating Two Points
	Position Vectors
	Following a Vector
	Following a Vector from Different Positions
	The Position Vectors Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Position Vector
	Vector Defined by Two Points

	Details of MyScript
	Region: Visualization on/off
	Region: Position Vector
	Region: Vector from Two Points

	Takeaway from This Example

	Vector Algebra: Scaling
	Normalization of Vectors
	Direction of Vectors
	The Vector Scaling and Normalization Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Scaled Vector
	Normalized or Unit Vector
	Position Vector from Direction and Magnitude
	Summary of Interaction

	Details of MyScript
	Visualization on/off
	Vector Va
	DrawScaledVector
	DrawUnitVector
	DrawPositionVector

	Takeaway from This Example

	Application of Vector: Velocity
	The Velocity and Aiming Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Process the Explorer
	Process the Agent

	Takeaway from This Example

	Vector Algebra: Addition and Subtraction
	Rules of Vector Addition and Subtraction
	Addition and Subtraction with the Zero Vector
	Vectors in an Equation
	Geometric Interpretation of Vector Addition and Subtraction
	Vector Addition
	Commutative Property of Vector Addition
	Vector Subtraction

	The Vector Add and Sub Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Vector Addition and the Commutative Property
	Vector Subtraction
	Position Vector

	Details of MyScript
	Takeaway from This Example

	Application of Vector Algebra
	The Windy Condition Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 5: Vector Dot Products
	Introduction
	Vector Dot Product: Relating Two Vectors
	Definition of Vector Dot Product
	Properties of Vector Dot Product
	The Angle Between Two Vectors
	The Angle Between Vectors Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Vector Projections
	The Vector Projections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Representation of a Line Segment
	Inside-Outside Test of a General 1D Interval
	The Line Interval Bound Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Point Distance
	The Line to Point Distance Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Line Distance
	The Line to Line Distance Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary
	Vector Dot Product Definition and Implications
	Interpreting the Dot Product Results
	Insights into the Subtended Angle
	The Line Equations

	Chapter 6: Vector Cross Products and 2D Planes
	Introduction
	3D Coordinate System Convention
	Unity Follows the Left-Handed Coordinate System

	Vector Cross Product: The Perpendicular Direction
	Definition of Vector Cross Product
	Geometric Interpretation of Vector Cross Products
	Properties of Vector Cross Product
	The Vector Cross Products Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	The Vector Plane Equation
	The Position Pn on a Plane
	Given a Position on a Plane
	Positions on 2D Planes
	The Vector Plane Equations Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis Frames and 2D Regions
	Bounds on a 2D Plane
	The Axis Frames and 2D Regions Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Projections onto 2D Planes
	The Point to Plane Projections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Plane Intersection
	The Line Plane Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Mirrored Reflection Across a Plane
	The Reflection Direction
	The Line Reflections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 7: Axis Frames and Vector Components
	Introduction
	Positions in the Cartesian Axis Frame
	Components of a Position Vector
	The Components of Cartesian Axis Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Positions in General Axis Frames
	Review of Axis Frame Derivation
	Position Vectors in General Axis Frames
	Components of Position Vectors
	The Components of Any Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Vectors in Axis Frames
	Vector Components
	Analysis in Cartesian Axis Frame

	The Vectors in Any Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Defined by Specified Components
	Analyze in Derived and Cartesian Axis Frames
	Defined by Positions

	Details of MyScript
	Takeaway from This Example

	Motion Control in Axis Frames
	The Motion in Axis Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis Frames in Unity
	Summary

	Chapter 8: Quaternions and Rotations
	Introduction
	Rotation Terminologies
	Quaternion: Tuple of Four
	Encoding of Angle and Axis
	Rotation Operation
	Quaternion Rotation Limitation
	Rotating Positions and Vectors
	The Rotation with Quaternion Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Quaternion Concatenation
	The Quaternion Concatenation Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Aligning Vector Directions
	The Align Vector Directions Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Interpolation and Chasing Behavior
	Interpolation: Gradual Changes
	The Chasing or Home-In Behavior
	The Chasing Behavior Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Aligning Axis Frames
	The Unity Quaternion Class
	The Align Frames Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 9: Conclusion
	The Final Comprehensive Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Interact with the Aiming System
	Interact with the Agent
	Interact with the Hero Motion
	Interact with the Plane
	Interact with the Shadow
	Interact with the Reflection
	Interact with the Colliding Treasure
	Summary of Interaction

	Details of MyScript
	Step 0: Initial Error Checking
	Step 1: The Aiming System
	Step 2: The Agent
	Step 3: The Hero Motion
	Step 4: The Plane
	Step 5: The Shadow
	Step 6: The Reflection
	Step 7: The Collision with Treasure

	Takeaway from This Example

	What’s Next

	Index

