Game Development
with Unity 3D

A Beginner’s Guide to Mathematical
Foundations

Second Edition

Kelvin Sung
Gregory Smith

Apress’

Basic Math for
Game Development
with Unity 3D

A Beginner’s Guide to Mathematical
Foundations

Second Edition

Kelvin Sung
Gregory Smith

Figures and illustrations: Clover Wai

Apress®

Basic Math for Game Development with Unity 3D: A Beginner’s Guide to
Mathematical Foundations, Second Edition

Kelvin Sung Gregory Smith
Bothell, WA, USA Caldwell, ID, USA
ISBN-13 (pbk): 978-1-4842-9884-8 ISBN-13 (electronic): 978-1-4842-9885-5

https://doi.org/10.1007/978-1-4842-9885-5

Copyright © 2023 by Kelvin Sung, Gregory Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9885-5

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.
—Kelvin Sung

To my wife and our little one, thank you for making
my life better each and every day.

—Gregory Smith

Table of Contents

About the AUtROIS.........ccceemmssmmmssnsmssnssssnsssssssss s s s s s ssn s ss s s sssansssssnnsnssnnsnnsnnnnnsns xi
Acknowledgments........ccccciuiisssnmmsmnmmmmmssssssssssssnnmsesssssssssssnnnsseesssssssssnnnnnssssssssssnnnnnns Xiii
INtroduction........cccimiimminsmsmnsen s XV
Chapter 1: Introduction and Learning Environmentcccccmmmmmmnmmmmsssssssnnnsenssnnes 1
INEPOAUCTION.....c.vietccc e e e e e e p e e n e nRa e s 1
ChoiCe Of UNItY ENQINEcceerreririerereriesessere e sessesse s sessessessessesssssssessesssssssessessesssssssessessssssnsnsessens 3
Setting Up Your Development ENVIFONMENTcccvevenririererissessesessesessessessessssesessessssessensessens 4
Notes on INSTalliNg UNity......ccceceririececrcre e s r e s 5

Unity Editor ENVIFONMENTc.ooii st s 5
Opening the Intro 1o Unity ProjECtcccceevrcrirrs s 7
Working with the Unity EItor ..o 8
Working With MySCHiptcoviiiirrrr e s 14

To Learn More About Working with Unity.........ccccconininincncr e 23

HOW 10 USE THiS BOOKcoveeerecerreeresenessee e sessese e se s e se s sessssessssessssesssssenns 23
SUMIMAIY....ctitiertseseee s e s e Re e e e e e e e R e e s R e e sen e e e Re e Ra e nrn e e nsnnnns 24
RETBIBNCEScvieeecet et 25
Chapter 2: Intervals and Bounding BOXEeScccesrussssnsnssssssnsnssssssnnssssssssssssssssnnnsssss 27
INEFOTUCTION ...t s 27
Review of Cartesian Coordinate SYSEBMccvvvvrierererrrreriesssersere e ssesse s ssesssesseseesessensesaes 28
Intervals: Min-MaX RANQEcccccvrriniiniininnsirse e s s se s s sre s e s snes 30
Working with Examples in UNity ... ssssessesnes 31

The Interval Bounds in 1D EXaMPpIE.......c.ccoevrcririnnsrsne e 32
Axis-Aligned Bounding Boxes: Intervals in Three DIMenSionscvoveernererenerssesensesessenesennes 42
The Box Bounds Intervals in 3D EXaMPpIe.........ccccoiriininininnnsnene s sessesnes 44

TABLE OF CONTENTS

ColliSion Of INTEIVAIS........ccccvereririiie e 52
The Interval Bound Intersections EXamplec.cccvverinininnninnensen s ssesssessesessens 54
Collision of BOUNMING BOXES.......cccouruereririerereriresersesesesesessesessssesessesessssessssessssesssssssssssssssessssenens 59
The Box Bound Intersections EXample ... sessesnes 60
Final Words on Bounding BOXES..........cccoerererrermrerenerenesessesesesessese s sesessesessssesessesessesessssessssesenns 70
The Unity BOUNAS CIASScccrererereereererenesessese e ese s sessesessssesessesessssessesesessssesssnens 70
B30T 111 T PSSR 72
Chapter 3: Distances and Bounding SPheres........ccuusseemmmssssnsnmsssssnnsssssssnssssssssnnssssss 73
INEFOAUCTION.....c.vicecct e b e e p e nr e 73
Distances Between POSItIONS.........c.conmn s s ssas 74
The Positions and Distances EXAmPIe.........cocvcvverievennseneniesensenesessssessesessssessessessessssessesaes 76
Sphere Colliders or Bounding SPREIESccccvvvervrierererrerseresesessesessessssessessesssssssessessesssssssesseses 82
The Sphere Bounds EXAMPIE......ccccovirrvrierivensinienesssessessesssssssessessessssessessesssssssessesssssssessesses 84
Collision of BoUNMiNg SPREIESccueceririerireriresire st st se e 89
The Sphere Bound Intersections EXamPple..........ccovecvrerrenernsesniesesesesessesesesessesesessesessenens 90
The Unity BoundingSpPhere Classcccocorrerrenerenernseseseseseses s e sesesessesessssesenses 94
B0 111 T PSSR 94
Chapter 4: Vectorsccccuuismmmmmmssssnnmmmsssssnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnessssnnnnsssss 97
INEFOAUCTION.....c.vicecct e b e e p e nr e 97
Vectors: Relating TWO POINEScccveriiirrricre e s et se s saesessessesnessssessesnens 99
0L L0 R =Tt o] 102
FOHOWING @ VECTOK ...t 103
Following a Vector from Different POSItioNnsccccvvvvnninininsnn s 104
The Position Vectors EXAMPIE ..o ssessss s e sses e s s sssssssssesse s 106
Vector Algebra: SCAlINGccccevrerrerire sttt r s st s re e e 121
NOrmalization 0f VECIOFSccovieerercrerereresere e 124

DT =T 10 0 Y= (0] 3T 125
The Vector Scaling and Normalization EXamplecccovvvrienninsnnccvnicnere s sesesesesseens 126
Application of VECtor: VEIOCILYcccvcririinine s sss e sss s e ssesnens 137
The Velocity and Aiming EXAMPIE........ccoreerrerreseree e see e sesseesnenens 139

TABLE OF CONTENTS

Vector Algebra: Addition and Subtraction.........cccveevvrvrninnnensnene e sessens 148
Rules of Vector Addition and Subtraction ..o 149
Addition and Subtraction with the Zero Vector...........ccvivnniinsnsnnnse s 150
Vectors in an EQUALION.........cocvve s e s 151
Geometric Interpretation of Vector Addition and Subtraction............ccccveevievvvnieriennsensenens 151
The Vector Add and Sub EXAMPIE........covvrveriererenienrenessesessesesessssessessessessssessessesssssssessesaes 154
EXaming the SCENE ... 155
Analyze Controller MyScript COMPONENT.........ccccvirveriernrersersere s s e e ssssessessesaes 155
Interact with the EXample........cccvverrininnc s sse s s ses 156
Details Of MYSCHIPEcvvcerevrecerrere s s s ae s a e eae e e aennen 158
Takeaway from This EXaMPIE.........ccccvcrirninininnin s s s ssse s sae s 161

Application of VECtor AIgEIDIa..........ccvveieriirire s se e nne s 162
The Windy Condition EXAMPIEcccoreeererrnicrre s ses e ses e sessssesessesessesessssesessessssenens 163

£ 7 o 169

Chapter 5: Vector Dot Productsccceeeemmsrrnssssssssssssnnsmssssssssssssssnssssssssssssssssnnsnnnss 171

11100 1T 0 o SR 171

Vector Dot Product: Relating TWO VECIOrScuccevenerisernesine s sesss s ssnnes 173
Definition of Vector Dot ProduCt ... sennes 174
Properties of Vector DOt ProdUCt ..o s e 175
The Angle Between TWO VECTOIS.......ccccveieremreresiesese s s s se s sessennes 177
The Angle Between Vectors EXamPIEccoceverrnenrerienesensesse s ssssessessesnes 181

LT (0] gl o €] 1= (4O 189
The Vector Projections EXAMPIEcccvvcrvriernnnsinsenesss s sessese s sesse e ssesessessessessssessessesees 191

Representation of @ Line SEGMENT..........cccrrirririnienssnrere e sessese e ssssessessessssessessessessssessessens 198
Inside-Outside Test of a General 1D INterval ... 200
The Line Interval Bound EXamPpIE.......ccccevirininnnnninense e sses s ssessssssesaesaesns 204

Line t0 POINE DISTANCEcccoereeeeereec e 210
The Line to Point Distance EXamplecccocevenninnnnnsinsne s sss e e snes 212

Ling t0 LiNe DISTANCE........ccccrereerereereserereresese e se s se s 218
The Line to Line Distance EXample..........cccccriiiinininnnnsne s sessese e seseenes 222

£ 10T o 230

TABLE OF CONTENTS

Vector Dot Product Definition and Implications.........cccccvveririnvnnnninnnsnne e 231
Interpreting the Dot Product RESUISccccerririin e 232
Insights into the SUDTENAEd ANGIE.......ccevereriere e eae s 232
The Line EQUALIONSccovueririirsiene e sa e s s s s s sn e s s s 233
Chapter 6: Vector Cross Products and 2D Planes........ccccuusssennmnssssnnnsssssssnsssssssnnnss 235
L C (0T 1T 0 o T 235
3D Coordinate System CONVENTION..........ccoeerrecrereserecrsese e 237
Unity Follows the Left-Handed Coordinate SyStem..........ccccovoirerrncnnneneneseres e 238
Vector Cross Product: The Perpendicular DireClioncccoovvvvninnnninnnnnsnsenesneses s 239
Definition of Vector Cross Product...........ccoveeerenernnsnsesesssese s ssssesennes 240
Geometric Interpretation of Vector Cross Productsccccvevverrenreriersenseesessessesseessesensens 242
Properties of Vector Cross ProduCt.........cccovvvviennnnnnie s s s sessessesses 243
The Vector Cross Products EXample.........cccvvininininnsinsnesess s sssssssessesees 244
The Vector Plane EQUALIONcccuecevicernenincsinsse s ss e se s s sessssssesssssssenens 252
The PosSition P, 0N @ PIANE........ccciiiriiree s ss s s e ssess e s saessesssssnesaesassnas 255
Given @ PoSition 0N @ PIANE ... s nsanes 256
POSItionS 0N 2D PIANEScoveeirriireserisessse e s se s s sen s 256
The Vector Plane Equations EXamPIEcccovvernenmnnnesnsennesese s sesessssssessssesessessssenens 257
AXis Frames and 2D REJIONSc.covvrrererriiersereressssessessessessssessessesssssssessessesssssssessessessssessessens 265
Bounds 0N @ 2D PIANE ... s 267
The Axis Frames and 2D Regions EXAMPIEccccvverirvnnrnienens s sessessessessssessessesees 268
Projections onto 2D PIANESccvciieriiiininne s se s s s 274
The Point to Plane Projections EXample ... ssessesssessessesns 277
Line t0 PIane INTErSECHONccveeereeecreeree e e 283
The Line Plane Intersections EXample.........cccovivninnnnnsnnnesssssese s sessesseenes 285
Mirrored Reflection ACroSS @ PIANe...........ccoveiereecrnscrrcrere e 292
The Reflection DIF€CHIONcoecceerecrerereree e 293
The Line Reflections EXAmPIE ... enes 294

£ 11T 1117 301

viil

TABLE OF CONTENTS

Chapter 7: Axis Frames and Vector Componentsccccuusseemnmssssssnssssssssssssssssnnnss 303
L C (0T 11T 0 o 303
Positions in the Cartesian AXiS FIaME........c.ccccorerrrrrnnererese s 306

Components of @ PoSItion VECTONcccvvvrvninsrsne e 307
The Components of Cartesian Axis Frame EXample...........c.cccvvvninnnnnnnnsnsennessssnsenennns 308
Positions in General AXiS FTAMES..........ccooverrrererenmrnsssesesese s s ssssssssssssssssesessssenns 312
Review of Axis Frame Derivationc.ccccvvrerrenernnsnsesessssess s sesssssssssessnss 313
Position Vectors in General AXiS FIaAMESccccoerermrnsesesssnmsssesessesesssesssessssesesssssssssessnnes 314
Components of POSition VECIOIS........cccveviininenn s 315
The Components of Any Frame EXample........cccovvvvninnnnnninnn s sessesesees 318
VECTOrs iN AXiS FraAMES.......cceceriierinesinese s s sr s sn s s sr s sna s 325
VECtor COMPONENLSccvveriiiririire e s b e s b nn 326
The Vectors in Any Frame EXamPpIeccooccvvcennennncnnessessss s sessessssenens 330
Motion Control in AXiS Frames ... s ssssas 338
The Motion in AXiS Frame EXAMPIEccccvvrierennnnrenens s sesese s sessesse e sessessessessssessessesees 340
AXIS Frames iN UNITYcocoviiiircnsis s ss e s s s s s 346
£ 1T 1117 OO 347

Chapter 8: Quaternions and Rotations.........ccccusmrmssmsmssmsmssssssssssssssssssssssssssssnssnas 349
1L ((0T 1T 0 o 349
Rotation TErmin0IOGIesc.cueererermrrenerensesesesesene s sesse e s sesssnenns 351
QUALErnNion: TUPIE OF FOUTcoveerrertre st se s e sa e e se e a e e s e p e e e 352

Encoding of ANgle @nd AXIScueeerrenerrnsemsssesesesesssse s ese s ssssesssssssssssessssesssssssssssessanes 354
Rotation OPeration.........cccvecrinieninnn s e e 354
Quaternion Rotation Limitation..........c.ccurrerennnnnisscs s 355
Rotating Positions and VECIOrS..........cccuvcinininnsennse s sennes 356
The Rotation with Quaternion EXample ... sessese s sessessesees 356
Quaternion CoNCAENALIONccoiiicreriren s 366
The Quaternion Concatenation EXampleccoovvvrveriennnnsnienness s sessessessessssessesseses 368
Aligning Vector DIr@CHIONSccvcvii e a e s s 375
The Align Vector Directions EXampIe..........cocvvrvenininninnnn e sessessss e e ssessesssessessesns 376

ix

TABLE OF CONTENTS

Interpolation and Chasing BENAVIOFccccvevrererrerieressnsenenessssesessessssessesessssessessessessssessessens 384
Interpolation: Gradual ChANQESccveeveveererrerere s s sss e ssessessssessesaees 385

The Chasing or HOME-IN BERAVIOTcccvvrereniriereresssessesesessssessessessessssessessesssssssessesaes 387

The Chasing Behavior EXAMPIEcccceevvrerrerierenersereressssessesessessssessessesssssssessessesssssssessesses 388
AligNIiNg AXIS FrAMES.......cciiirieririesissenese s s st b e s r et s benr e naenne s 393
The Unity QUALErnion ClaSSccoouvevrererererneriresese e ses e ses e ses e ssssesessesessesessssesessessssenens 396

The Align Frames EXaMPIE ..o s se s enes 397

£ 111 T 405
Chapter 9: CONCIUSION.......icuiimmmmmmsssannmmsssssnnsmsssssnnnsssssnnnnsssssnnnnessssnnnnsssssnnnnesssnnnnnss 407
The Final Comprehensive EXAmPIE........cccvirinnennsni s sssse s s ses e s s 408
EXAMINE the SCENE......cccoeercrc e s 409
Analyze Controller MyScript COMPONENT..........ccoverrinernserssesese s sessesessenens 411
Interact with the EXample.........covivinncsrrnr e 413
Details Of MYSCIIPLcvovreerrerrsese s nne e 424
Takeaway from ThiS EXAMPIEcccevereresernsesenesese s s e ssssesesse s ssssesesssssssenens 436
WRALE'S NEBXL......eieeeecerire e s s e e R e e e e s 438
1T - a1

About the Authors

Kelvin Sung is Professor with the Computing and Software Systems Division at the
University of Washington Bothell (UWB). He received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign. Kelvin’s background is in computer
graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront
(now part of Autodesk), where he played a key role in designing and implementing the
Maya Renderer, an Academy Award-winning image generation system. At UWB, funded
by Microsoft Research and the National Science Foundation, Kelvin’s work focuses on
the intersection of video game mechanics, solutions to real-world problems, and mobile
technologies. Together with his students and colleagues, Kelvin has co-authored six
books: one in computer graphics and the others in 2D game engines with Apress.

Gregory Smith is a software engineer at Virtual Heroes, a company that focuses

on creating training and simulation software in Unreal Engine. He received his
undergraduate degree in Computer Science from Northwest Nazarene University in 2018
and earned a Master of Computer Science and Software Engineering degree from the
University of Washington Bothell in 2020. Gregory also owns his own game company,
Plus 2 Studios, which he works on in his spare time.

xi

Acknowledgments

This book and the projects it relates to stem from the results of the authors’ attempts

to understand how to engage learners in exploring knowledge related to interactive
computer graphics, introductory programming, and video games. Past funding for
related projects includes support from the National Science Foundation for the projects
“Essential Concepts for Building Interactive Computer Graphics Applications” (Award
Number, CCLI-EMD, NSE DUE-0442420) and “Game-Themed CS1/2: Empowering the
Faculty” (Award Number DUE-1140410). Projects supported by Microsoft Research and
Microsoft Research Connections include “XNA Based Game-Themed Programming
Assignments for CS1/2” (Award Number 15871) and “A Traditional Game-Themed CS1
Class” (Award Number 16531). All of these past projects have laid the foundation for
our perspectives and presentation of the materials in this book. We would also like to
thank NSF officers Suzanne Westbrook, Jane Prey, Valerie Bar, and Paul Tymann for
their invaluable discussions and encouragements, as well as Donald Brinkman and Kent
Foster as they continue to be our best advocate and supporters at Microsoft. Lastly, we
remember and continue to miss Steve Cunningham, John Nordlinger, and Lee Dirks for
their early recognition of our vision and ideas.

A thank you must also go out to our students, whose honest, even when brutal,
feedbacks and suggestions from CSS385: Introduction to Game Development, CSS451:
3D Computer Graphics, CSS452: Game Engine Development, and CSS551: Advanced
3D Computer Graphics at the University of Washington Bothell inspired us to explore
the approach to present these materials based on an accessible game engine. They have
tested, retested, contributed to, and assisted in the formation and organization of the
contents of this book. The second author of this book is an alumnus of CSS551.

It must also be mentioned that the teaching brown bag hosted by Yusuf Pisan offered
the opportunity for the discussions with Yusuf, Johnny Lin, Lesley Kalmin, and Mike
Stiber on the topics of linear algebra applications which sparked the initial idea for this
book. A sincere thank you goes to Yusuf for his enthusiasm and energy in organizing us
and, of course, for the delicious-looking Tim Tam; one day, I will try them.

xiii

ACKNOWLEDGMENTS

We also want to thank Spandana Chatterjee for believing in our ideas, her patience,
and continual efficient and effective support. Nirmal Selvaraj organized everything and
ensured proper progress was ongoing.

Lastly, a thank you must go to Peter Shirley, our technical reviewer, whose frank and
precise comments made this a much easier to understand book.

The vehicle models used are free assets, UAA - City Props - Vehicles, downloaded
from the Unity Asset Store under the Unity-EULA. The cone shape that represents the
arrow heads for the axis frames and vectors in all examples is created based on the
utilities developed and shared by Wolfram Kresse available at https://wiki.unity3d.
com/index.php/CreateCone. The cosine function plot from Figure 5-5 is based on a
screenshot taken from www.desmos.com/calculator/ngfu5lxaij.

Xiv

https://wiki.unity3d.com/index.php/CreateCone
https://wiki.unity3d.com/index.php/CreateCone
http://www.desmos.com/calculator/nqfu5lxaij

Introduction

Welcome to Basic Math for Game Development with Unity 3D. Because you have picked
up this book, you are probably interested in finding out more about the mathematics
involved in game development or, maybe, in the details of fascinating applications like
Unity. This can be the perfect book to begin with your exploration.

This book uses interactive examples in Unity to present each mathematical concept
discussed, taking you on a hands-on journey of learning. The coverage of each topic
always follows a pattern. First, the concept and its relevancy in video game functionality
are described. Second, the mathematics, with a focus on applicability in game
development and interactive computer graphics, are derived. Finally, an implementation
of the concept and derived mathematics are demonstrated as an example in Unity.

Through interacting with these examples, you will have the opportunity to explore
the implications and limitations of each concept. Additionally, you can examine the
effects of manipulating the various related parameters. Lastly, and very importantly,
you can study the accompanied source code and understand the details of the
implementations.

In Chapter 2, you will begin by reviewing simple number intervals in the Cartesian
Coordinate System. Chapters 3 and 4 let you examine and learn about vectors and the
rules of their operations to formally relate positions in 3D space. Chapters 5 and 6
study the vector dot and cross products to relate vectors and the space that defines
them. Chapter 7 leads you to work in multiple coordinate spaces simultaneously to
address compound issues such as describing motions inside a navigating spaceship.
Chapter 8 introduces quaternions and the rotation operator and Chapter 9 concludes
with the basic math involved in game development. Throughout this book, you will
learn the mathematical and implementation details of bounding boxes; bounding
spheres; motion controls; ray castings; projecting points to lines and planes; computing
intersections between fast-traveling objects; projecting objects onto 2D planes to create
shadows; computing reflections; working in multiple coordinate spaces; rotations to
align vectors; and much more!

INTRODUCTION

Who Should Read This Book

This book is targeted toward video game enthusiasts and hobbyists who have some
background in basic object-oriented programming. For example, if you are a student
who has taken an introductory programming course, or are a self-taught programming
enthusiast, you will be able to follow the concepts and code presented in this book with
little trouble. If you do not have any programming background in general, it is suggested
that you first become comfortable with the C# programming language before tackling
the content provided in this book.

Besides a basic understanding of object-oriented programming, you will also need
to be familiar with the Cartesian Coordinate System, basic algebra, and knowledge in
trigonometry. Experience and working knowledge with Unity are not required.

Code Samples

Every chapter in this book includes examples that let you interactively experiment with
and learn the new materials. You can download the source code for all the projects from
the following page: www.apress.com/.

http://www.apress.com/

CHAPTER 1

Introduction and Learning
Environment

After completing this chapter, you will be able to
o Know the details of what this book is about
e Understand the style that this book uses to present concepts

o Install Unity and an Integrated Development Environment (IDE) for
developing programming code

e Access the accompanying source code and run the example projects
e Understand the Unity terminology used throughout this book

e Begin to appreciate the intricate details of math for game
development

Introduction

When you think of math in a video game, you may picture health bars, attack stats,
experience points, and other game mechanics. You may not consider the underlying
math that enables the in-game physics world, such as calculating gravity, movements,
or enemy chasing behaviors. Additionally, you may not consider physical interaction in
a mathematical manner, such as collisions between different objects and the reflections
of these objects after they collide. These underlying mathematical computations are
critical to implementing a successful video game. When creating a game, whether you
intend on using a game engine or you intend on performing the computations yourself,
understanding the details and knowing how the underlying mathematics work and
when to use them to create what you want, where you want, is vital.

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_1

https://doi.org/10.1007/978-1-4842-9885-5_1

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Traditionally, math is taught without any application contexts. Typically, theories
are developed based on abstract symbols, formulas are derived to support these
theories, and then numbers are used to verify the formulas. You are tested on whether
you can generate the correct solution based on how the formulas are applied. It is
believed that learning math in this manner has the benefit of granting learners the
ability to understand the concepts being taught at the pure abstraction level. Then,
once understood, the application of these concepts to different disciplinary contexts
becomes straightforward. For many learners, this assumption is certainly true. However,
for other types of learners, it can be difficult to appreciate the intricate details in the
abstract without concrete examples or applications to build off. This fact is recognized
by educators and often story problems are introduced after a basic understanding is
established to help learners gain insights and appreciate the formulas. This learning
approach is taken on and exploited in the context of linear algebra and video games.

This book takes you on the journey of learning linear algebra, a branch of
mathematics that is the foundation of interactive graphical applications, like video
games. While the underlying theories can be abstract and complicated, the application
of these theories in graphical object interactions is relatively straightforward. For this
reason, this book approaches linear algebra topics in a concrete manner, based around
game-like examples that you can interact with. Through this book, you will learn a flavor
of linear algebra that is directly applicable to video games and interactive computer
graphics as a whole.

Every math concept presented in this book is accompanied with concrete examples
that you can interact with and are relevant to video game development. It is the intent of
this book that you will learn and know how to apply the concepts in solving the problems
you are likely to encounter during game development. A direct consequence of this
focused approach is that readers may find it challenging to apply the knowledge gained
throughout this book to other disciplines, like machine learning or computer vision. For
example, the dot product, which will be covered in Chapter 5, can be used to calculate
intersection positions, and it can also be used in machine learning algorithms as a data
reduction tool; however, this book will only focus on the video game applications of
the dot product. If you are looking for general knowledge in linear algebra, you should
consider a more traditional textbook. Such a book is likely to cover concepts at levels that
are suitable for applications for multiple problem spaces. If you are interested in solving
problems specific to interacting graphical objects, especially for game development,
then this is the perfect book for you.

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

After the introduction to the game engine and terminologies in this chapter,
Chapter 2 reviews the Cartesian Coordinate System and number intervals leading to
the exploration of one of the most widely used tools in game development—bounding
boxes. Chapter 3 continues bounding volume exploration by examining bounding
spheres while also beginning the investigation of relationships between positions.
Chapter 4 introduces vectors to formalize the relationships between positions in 3D
space and applies vector concepts in controlling and manipulating object motions under
external effects like wind or current flow. Chapter 5 presents the vector dot products
to relate vectors, represents line segments based on vectors, and demonstrates the
application of these concepts in computing distances between objects and motion paths
when approximating potential collisions. Chapter 6 discusses the vector cross product,
derives the space that defines vectors, defines vector plane equation, and illustrates
the application of these concepts in computing intersections and reflections of moving
objects and 2D planes. Chapter 7 examines the axis frame, or the derived space that
contains vectors, analyzes the representation of vectors in different axis frames, and
explains how to work with movements in axis frames that are dynamically changing,
such as object motions in a navigating spaceship. Chapter 8 introduces the quaternion
as a tool for rotating vectors, analyzes the relevant properties of quaternions, and
demonstrates the alignments of 3D spaces based on quaternions. Finally, Chapter 9
summarizes all of the concepts presented in an aggregated example.

Choice of Unity Engine

Unity is the choice of platform for presenting the mathematical concepts covered in
this book for three reasons. First, Unity provides elaborate utilities and efficient support
for its user to implement and visualize solutions based on mathematical formulas. Its
application programming interface (API) implements the basic and many advanced
linear algebra functionalities, while the Entity-Component-System (ECS) game object
architecture allows straightforward user scripting. These qualities give Unity a close
pairing of math concepts to your programming code, assisting in the visualization of the
mathematical solution that you are trying to understand. This close pairing cannot be
understated and is the backbone of this book.

The second reason for choosing Unity is that, being a game engine, the system allows
for a high degree of intractability with the solution as well as the ability to visualize that
solution. For example, in addition to being able to examine the results of a ray and 2D

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

plane intersection computation in real time, you will also be able to manipulate the

ray and the 2D plane to observe the effects on the intersection. The ability to interact,
manipulate, and examine the application of mathematical concepts in real time will give
you a greater understanding and appreciation for that concept. Third and finally, Unity
is chosen because there is no better way to learn math concepts for video games than
through a popular game engine!

While this book is meant for readers who may be interested in building a video game
in Unity, the focus of this book is on the math concepts and their implementations and
not on how to use Unity. This book teaches the basic mathematical concepts that are
relevant to video game development using Unity as a teaching instrument. This book
does not teach how to use the math provided by Unity in building video games. You
should focus on understanding the math rather than the Unity-specific functionality.
For example, a position in 3D space in Unity is located at transform.localPosition;
you should focus on working with that position and not be concerned about the Unity.
Transform class. Ultimately, you should be able to take what you have learned in this
book and apply to developing games in any game engine.

Note Unity Technologies is the name of the company; the game engine is most
often referred to as Unity, though it is sometimes called Unity 3D. For simplicity,
this book refers to the entire game engine system as Unity.

Setting Up Your Development Environment

There are two main applications that you will work with when using Unity. The first is
the game engine editor, which will be referred to as Unity or Unity Editor throughout this
book. The Unity Editor can be thought of as the graphical interface to the Unity game
engine. The second application you will need is a script editing Integrated Development
Environment (IDE). Microsoft’s Visual Studio Community 2019 is the IDE of choice for
developing the C# script examples in this book. This software will be referred to as the
Script Editor, or the IDE, throughout the rest of this book.

To begin your download and installation of Unity and Visual Studio Community
2019, go to https://store.unity.com/download?ref=personal, accept the terms, and
then download Unity Hub.

https://store.unity.com/download?ref=personal

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Note If you ever find yourself stuck at a certain point in this book, whether on
installing Unity or just using it, there is a plethora of tutorials online, many of which
were referenced in the development of this book and will be listed at the end of
this chapter.

Notes on Installing Unity

This book is based on Unity in its most basic form. Unless you know what to specify
when installing features or desire extra features, it is suggested you follow the default
settings. Please begin downloading, installing, and launching the Unity Hub if you
haven'’t already. When Unity Hub is up and running, navigate to the Installs tab on
the left side, and select the Install Editor button in the top right. From here, you will
be prompted with a list of different Unity versions. The version that this book uses is
2021.3.25f1. If you do not see this version in the selected list, you can go to this link
https://unity3d.com/get-unity/download/archive and find it there to download.
It should be noted that while this book is based on Unity 2021.3.25f1, any version at or
newer than this version should suffice but is not guaranteed.

After selecting your Unity version, you will be prompted with options to install
extra features. As mentioned previously, this textbook only requires the default options.
These options, if you are running on Windows 10 or 11, should only be the suggested
IDE, “Microsoft Visual Studio Community 2019.” If you already have Visual Studio 2019
installed, then you may uncheck that option. Once you have selected all the features
you want, begin the install process and then move onto the next section to begin
familiarizing yourself with the source code used throughout this book.

Unity Editor Environment

It should be noted, again, that in this book Unity is used as a tool for learning math
concepts for game development and not as a game building editor. This means many
Unity-specific and game building-related information that do not pertain to the concept
at hand will simply be skipped. For example, this book does not discuss how to create

or save Scenes or how to build a final executable game. If these are subjects of interests,
you should consider research through the many online tutorials or for example refer

https://unity3d.com/get-unity/download/archive

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

to the Learn tab of the Unity Hub. It should also be noted that all examples throughout
this book will be run and interacted with through the editor and not as games. This will
become clearer as the first example is discussed.

Now that you have Unity and the IDE installed and ready to go, you can refer to the
GitHub repository located at https://github.com/Apress/Basic-Math-for-Game-
Development-with-Unity-3D. After downloading the repository, open Unity Hub and
add the Chapter-1Introduction project. Directions on how to do this can be seen in
Figure 1-1.

The Projects and Learn tabs The Open button

Projects ISR New project

* NAME MODIFIED -~ EDITOR VERSION

Figure 1-1. Opening Chapter-1-Introduction (the Intro to Unity Project) from
Unity Hub

As Figure 1-1 shows, to add a project, navigate to the Projects tab and then select
the Open button. From here, navigate to where you downloaded the source code to this
book. You will notice that the file structure is organized according to chapters. The first
example you should open using the Open button is Chapter-1-Introduction. Note that
after a project is opened, you need to click the newly opened project to launch it.

Figure 1-1 also establishes where the Learn tab is located. Here you can view and
select Unity sponsored tutorials. The “Foundational Tutorial” category contains tutorials
that will be very helpful to those who have never used Unity before as it contains
tutorials such as “Welcome to Unity Essentials” and “Explore the Unity Editor” At the
end of this chapter, there are some additional suggestions as to which tutorials to follow
if you are new to Unity or just need a refresher.

https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D
https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Opening the Intro to Unity Project

To open a project from Unity Hub, simply click it. The first time you try to open any
projects from this book, you will encounter the following two steps:

» Unity will invite you to select the version to use; you can simply select
the version you just installed.

o Unity will display an information dialog box titled, “Opening Project
in Non-Matching Editor Installation,” you can simply click the
Continue button.

The first time opening a project will take a while for Unity to copy the support library
and perform system configuration. Once you open Chapteri-Introduction, you should
be confronted with a window similar to the screenshot in Figure 1-2. If you do not see a
screen similar to that of Figure 1-2, make sure the IntroToUnity scene is open and not
an Untitled scene. To open the IntroToUnity scene, find it in Asset folder under the
Project Tab and double-click to open it.

Controller Checker, Brick, and Stripe Spheres

ar, e -y LT Bl 4 ()

My Script Component

| eessssssssssssssssdMasssnsasnnsnanan, |

Aad Component

Figure 1-2. Running the IntroToUnity scene in the Chapter-1Introduction project

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-2 shows a very simple scene. There is the Controller game object and
three different spheres. Each sphere is named after the design pattern placed upon it:
CheckerSphere, BrickSphere, and StripeSphere. In this screenshot, the Controller
object is selected so you can observe the MyScript component on the right. The
Controller object and the MyScript component are present in every example in this
book and will be described in detail. The purpose of this example is to familiarize you
with how examples are organized and to establish terminologies that will be used
throughout the book.

Working with the Unity Editor

Figure 1-2 is an example of what the Unity Editor looks like and is one of the two editors
you will be working in. The other editor, the Script Editor, or IDE, will be discussed later.
Figure 1-3 illustrates the various functionalities of the Unity Editor.

C: The Scene and the Game Tabs A: The Play and Pause Buttons

ity ™G
File fde Aviets Gomelbject Componest

-
Static v
i Tag Untagged ~ Layer Default -l

B: The Scene View window Tamtem @ @ i)
when = < My Script (Seript) L
b the Scene Tab is selected [ms‘ S -1
F: The Project | D:The ~ OR SRl E:The NN
and the Hierarchy Game View Window when v Inspector
Consoles Tabs Window the Game Tab is selected : Window

| # Favortes ass F: The ProLect Wmdow

k E: n::.:n.q, ’ the Project Tab is selected
r ac 0%

1 Console Window when
the Console Tab is selected

1
1
H
1
1
1
1
1
1
1
1
|
1
1

Figure 1-3. The Unity Editor Environment

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-3 overlays the editor in Figure 1-2 with labels identifying the different

windows presented by the Unity Editor and establishes the terminologies that will be

used from here on:

A: The Play and Pause buttons: In the top-center area, you can see
the Play and Pause buttons. These buttons control the running

(or playing) of the game. Feel free to click the Play button, give the
system a few seconds to load, and then observe the movements of
the spheres in the scene. If you click the Play button again, the game
will stop running. You will learn more about and work with these
buttons later.

B: The Scene View window: The main 3D window in the top-left
region of the Unity Editor is the main area for performing interactive
editing. In Figure 1-2, this window is displaying the Scene View of
the game.

C: The Scene and the Game View tabs: Above the Editor Window
(B), you can spot the Scene and Game tabs. If you select the Game
tab, then Unity will switch to the Game View which is what a player
will see in an actual game. An example of the Scene View next to the
Game View can be seen in Figure 1-4.

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

~ | Display1 ¥ Free Aspect Play Focused ~ | E8 Stats | Gizmos | ¥

@ 5 g

Figure 1-4. The Scene View (top) and the Game View (bottom)

Note Please pay attention to the differences between the Scene and Game
Views. The Scene View is meant for the game designer to set up a game scene,
while the Game View is what a player of the game would observe while playing the
game. While both views can be invaluable tools for examining the intricate details
of the mathematical concepts, you will be working exclusively with the Scene View.

10

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Note To help distinguish between the Scene and the Game Views, as depicted

in Figure 1-4, in all the examples for this book, the Scene View has a skybox-like
background, while the Game View window has a constant, light blue backdrop.
Once again, you will be working exclusively with the Scene View, the view with the
skybox-like background.

EXERCISE

Working with the Scene View Window

Left-click and drag the Scene View tab to see that you can configure and place the Scene
View window at different configuration locations throughout the Unity Editor or even outside as
an independent window. This is the case for most of the Unity tabs, including the Game View
window. Figure 1-4 shows the Scene View and Game View windows as two separate windows
that can be examined simultaneously.

Figure 1-5 is a close-up view of the Hierarchy Window, which is labeled as D in

Figure 1-3.

= Hierarchy a8 i 0Xx

+ v o A @

‘. v i IntroToUnity :
9 Controller

' D CheckerSphere

(D) BrickSphere
0 StripeSphere
Y% » (P zlgnoreThisObject

Figure 1-5. The Hierarchy Window

Note The crossed-out finger icon next to the last object, zZIgnoreThisObject,
disables click-select functionality in the editor window. In all examples, objects that
are not meant to be interacted will have the crossed-out icon next to them.

11

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

e D:The Hierarchy window: In the Unity Editor, this window
(Figure 1-5) is typically anchored to the left of the Scene View and
above the Project/Console Windows (F). The Hierarchy Window
displays every object and its parental relationship to other objects
in the scene. Just like the Scene View and Game View, the Hierarchy
Window can be moved and placed wherever you desire. You should
observe the different objects within the Hierarchy Window. There
is the Controller, which will be discussed later, but for now know
that it contains the script that supports your interaction with the
scene; the CheckerSphere, which is the checkered sphere; as well as
the BrickSphere and StripeSphere, which also correspond to their
object’s descriptions. Finally, there is the zZIgnoreThisObject object;
this last object supports the setup of the game environment for the
learning of math concepts specific to each example. You will never
need to interact with this object, and therefore this book will ignore
this object as its details can be distracting. You are, of course, more
than welcome to examine and explore this object, and any others, at
your leisure.

Note Try clicking the different objects in the Hierarchy Window and observe how
the Scene View highlights the object you have selected while the Game View does
not. This simple feature underscores how the Scene View is meant for scene edits
while the Game View is not.

EXERCISE

Select different spheres in the Hierarchy Window and switch between the Scene and Game
Views to observe the differences between these two views. You should notice that the selected
sphere is highlighted in the Scene View and not in the Game View. It is essential to differentiate
between these two views when you manipulate the scene in examining concepts. Once again,
and very importantly, all examples in this book work exclusively with the Scene View.

12

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Figure 1-6 is a close-up view of the Inspector Window, which is labeled as E in

Figure 1-3.
Controller game object
© Inspector a i
@ v Controller Static ~
- Tag Untagged v | Layer Default v
v). Transform 9 3 :
MySeript Position X 0 il O Z8 0
Component Rotation X 0 S O Z 0
Scale ® X 1 B 1 201
:v # v My Script (Script) @ i
Script MyScript :
i _» Left Sphere @ CheckerSphere © i
ariables H = i values or
varia 05<Centef Sphere 0 BrickSphere ® >l'cfcrenccs
%, *Right Sphere) StripeSphere Ol

Add Component

Figure 1-6. Inspector Window with the Controller object selected in the
Hierarchy Window

e E: The Inspector Window: The Inspector Window (Figure 1-6) displays
the details of the selected object for the user to inspect and manipulate.
The Inspector Window is typically located on the right of the Scene View.
Just like all other windows described, it can be placed wherever you want.
The selected object being displayed in Figure 1-6 is the Controller.
Notice that there are two components attached to this object: Transform
and MyScript. Figure 1-6 shows that you can expand and compress
each of the components to examine or hide their details. In this case,
the Transform and MyScript components are expanded. The MyScript
component is the custom script developed for this book. Note that on the
left side of the MyScript component are the names of the public variables
defined in the script: Left Sphere, Center Sphere, and Right Sphere.
Directly across from these variable names, you can see their values or
the objects that the corresponding variables reference: CheckerSphere,
BrickSphere, and StripeSphere. These aspects of the MyScript
component will be explained in more detail in the next section.

13

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

o F:The Project and the Console windows and tabs: The Project
Window displays the file structure of your project. This is where
scripts, prefabs, materials, and everything else that will be loaded
into your game are located. The Console Window is where Unity will
output debug messages, warnings, and errors, all of which can be
very helpful in debugging your code if something goes wrong. The
Project Tab and Console Tab allow you to switch between these two
windows just like the Game View and Scene View tabs do. These
windows can also be moved around and placed wherever you decide.

Figure 1-3 shows the default layout used by this book. In the rest of this book, the
corresponding windows will be referenced by their name as depicted in Figure 1-3. If you
accidentally close one of these windows, they can be reopened by going to the Window
drop-down menu at the top of the Unity Editor and then selecting the General option.
There you will see a list of all of the windows that have been discussed.

Note In later chapters, there will be folders added to the Project Window such as
Editor, Resources, and so on. These folders will include utilities that the book uses
to create the examples. You are more than welcome to explore these. However,
please keep in mind that the content in these folders will not be relevant to
learning the mathematical concepts presented. For example, the Resources folder
is a special folder that Unity searches for object blueprints known as prefabs.
Knowing about these prefabs is irrelevant to learning the math concepts and
therefore will not be covered.

Working with MyScript

In general, a Unity script is a component with code that can be attached to any game
object. This script can then modify the behavior of that object or the entire game. All
scripts presented in this book are written in C#.

Throughout this book, in each example you will only have to work with one script.
This script will have MyScript be part of its name, for example, EX 2 1 MyScript,
and will always be attached to the Controller object. It is important to note that the
Controller object in all of the examples is empty (it does not contain anything visible)

14

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

and does not perform any function other than to present the MyScript script for your
interactions. The MyScript script always implements and demonstrates the concept
being studied.

Figure 1-7 shows how you can open and edit MyScript.

© Inspector o i

Ea v Controller Static ~
- Tag Untagged v Layer Default ~

Vi Transform o i+
Position X 0 Y 0 28 0
Rotation X 0 Y 0 280
Scale™ &8 X 1 Y 1 72

" # + My Script (Script) @ 3t

Reset

Script

Left Sphe Remove Component

Center Sg

| Copy Component

ent Values
Find References In Scene

Properties...
Edit Script

Figure 1-7. Invoking the Script Editor

There are two ways to open and edit scripts in Unity. The first method is depicted
in Figure 1-7. To open and examine the source code of MyScript, select Controller in
the Hierarchy Window, and then in the Inspector Window with the mouse pointer over
the MyScript component, left-click the Settings button (the three-dots icon in the top
right of the MyScript component) or right-click the name of the MyScript component
(“My Script (Script)”).Both of these actions will trigger the pop-up menu as depicted
in Figure 1-7. From there, select the “Edit Script” option at the very bottom. The second
way to open and edit a script is by double-clicking the script icon in the Project Window.
In all of the examples, MyScript is located in the Assets/ folder. Once you open
MyScript, you should see a pop-up window showing the progress of Unity invoking
the IDE.

After your Script Editor has loaded, you should see a screen similar to that of
Figure 1-8, which shows the MyScript’s code using Visual Studio under the light theme.

15

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

5 Slpublic class MyScript : MonoBehaviour

6 {

7 public GameObject LeftSphere = null; // Sphere to the left in the init Editor View
] public GameObject CenterSphere = null; // Sphere in the center in the init Editer View
9 public GameObject RightSphere = null; // sphere to the right in the init Editor View
10

11 private readonly float kSmallDelta = 0.01f; // amount to translate

12

13 f// Start is called before the first frame update

14 + void Start()[, .

20

// Update is called once per frame
¥ void Update()[]
} L]

NN
[I

u

Figure 1-8. Overview of the code in MyScript

Figure 1-8 is a screenshot of the IDE with MyScript opened. Notice that the name of
the script, MyScript, is also the name of the C# class and is a subclass of the Unity class
MonoBehavior. Once again, the name of the script in each example will always contain
the MyScript substring. In each example, with each script, you will only need to pay
attention to the following three items:

e Variables: Make sure you take note of the variables in each script. A
public variable will show as a variable that can be edited through the
Inspector Window, which was seen previously in Figure 1-6. A private
variable is one that can only be accessed in the code. In Figure 1-8,
you can see the three public variables, LeftSphere, CenterSphere,
and RightSphere. Notice how these are the same variables from
Figure 1-6, demonstrating that public variables are indeed accessible
from the Inspector Window when the corresponding game object
(in this case, Controller’s MyScript component) is selected. In this
example, each of the variables is of the GameObject type. This means
each variable can hold a reference to one of the game objects in the
scene. The other variable, kSmallDelta, is the only private variable.
Notice how this variable does not appear in the Inspector Window
in Figure 1-6. The k in front of the variable name is a convention that
indicates the variable is a constant (read-only) variable.

o Start() function: This function will be called once the Play button
from Figure 1-3 (A) is clicked. In this book, the Start() function
always initializes the scene.

16

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

o Update() function: This function is called after the Start() function
is executed and continues to be called at a real-time rate, or about
60 times per second while the Play button is active. In this book, the
Update() function continuously computes the corresponding math
concepts and supports interaction.

The Start() function of MyScript is listed as follows:

void Start(){
Debug.Assert(LeftSphere != null); // Make sure proper
editor setup
Debug.Assert(CenterSphere != null); // Assume properly
initialized to
Debug.Assert(RightSphere != null); // Checker, Brick,
and, Stripe

In this example, the Start () function ensures that all of the public variables
are properly initialized. Note that the Start () function does not attempt to make
assignments to these variables; instead, it prints out an error message to the Console
Window if the variables have not been assigned values by the time the user hits the
Play button. In Figure 1-8 lines 7 through 9, these three public variables are set to null
references. However, if you launch the game, you’ll notice that these three spheres in the
scene are moving. These observations indicate that the public variables must have been
properly initialized somewhere such that no debug errors are printed by the Start()
function. As will be explained, in this scenario, the user has assigned proper references
to these variables through the Inspector Window.

17

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

" @ Inspector | a i
@ v | Controller Static ~
" Tag Untagged ~ Layer Default ~
v M Transform o +
Position X O Y& 0 280
Rotation X 0 Y 0 280
Scale & X 1 Ryl 1 2 1 Value fields for
My Seript - Left, Center,
wmponcm;:" ¥ # + My Script (Script) e 3+ : and Right Spheres
\ Script MyScript : :
Left Sphere 0 CheckerSphere ©
: Center Sphere 7 BrickSphere © o
Right Sphere 0 StripeSphere ®

Add Component

Figure 1-9. Accessing public variables of MyScript in the Inspector Window

Unity allows you to drag and drop game objects from the Hierarchy Window
into the value fields of matching variable types in the Inspector Window to establish
variable to object references. In this case, as depicted in Figure 1-9, one way to establish
initial values for the three public variables is by selecting the Controller object in the
Hierarchy Window and then dragging the CheckerSphere game object and dropping
itin the value field of LeftSphere variable and the BrickSphere and StripeSphere,
respectively, in the CenterSphere and RightSphere value fields. With these initial values
assigned, when the script begins to run, any reference to the LeftSphere, CenterSphere,
or RightSphere variables will result in accessing the CheckerSphere, BrickSphere,
or StripeSphere game object in the scene. This functionality of assigning values to
variables through the Inspector Window is not unique to MyScript and is supported for
any public variable in any script.

Note For readability, Unity adopts the strategy of labeling an identifier by dividing
the name at the capital letter positions. For example, the variable identifier, or
name, “LeftSphere” is labeled as “Left Sphere” in the Inspector Window. For
convenience and consistency, as you have already seen, this book will refer to all
game objects and variables by their identifier, that is, LeftSphere.

18

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

The Update() function of MyScript is listed as follows:

void Update(){
// This prints the argument string to the Console Window
Debug.Log("Printing to Console:
Convenient way to examine state.");
// Update the sphere positions
// Left moves in the positive X-direction
LeftSphere.transform.localPosition
+= new Vector3(kSmallDelta, 0.0f, 0.0f);

// Center moves in the positive Y-direction
CenterSphere.transform.localPosition
+= new Vector3(0.0f, kSmallDelta, 0.0f);

// Right moves in the positive Z-direction
RightSphere.transform.localPosition
+= new Vector3(0.0f, 0.0f, kSmallDelta);

The very first line of code, Debug. Log(), prints the string argument to the Console
Window. Debug. Log() statements and other debug statements such as Debug.Assert(),
Debug. LoghWarning(), and Debug. LogError() are excellent ways of verifying the state of
your application and will be used throughout this book. These debug statements will be
examined more closely in an exercise at the end of this chapter.

The next three lines of code in the Update() function increment the position of
each of the left, center, and right spheres by kSmallDelta in the X-, Y-, and Z-axes
correspondingly. The value for this variable, as shown in Figure 1-8, is 0.01. The “f” after
0.01 indicates that this number is a floating-point data type and not a double data type.

Recall from Figure 1-9 that the LeftSphere references the CheckerSphere object,
CenterSphere references the BrickSphere, and the RightSphere references the
StripeSphere. Now if you click the Play button again, you should observe that the
LeftSphere moves along the X-axis, the CenterSphere moves along the Y-axis, and
the RightSphere moves along the Z-axis, just as the script programs. In this way, these
objects’ positions are controlled by MyScript. Note that the script is in control only when
the Play button is depressed. Lastly, and very importantly, please ensure that you are
examining the game in the Scene View and not the Game View.

19

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Note transform.localPosition is how Unity accesses an object’s position
in 3D space. You can also access an object’s position from the Inspector Window
via the Transfoxrm component.

EXERCISES

The goal of this exercise is to manipulate a selected object. As the case when working with
any example in this book, make sure you are in the Scene View for this exercise. Now, click to
select the CheckerSphere and then click the different object manipulation tools as illustrated
in Figure 1-10. These object manipulation tools are located in the top left of the Unity Editor.
You should experiment with each tool, especially the first four. With the first tool selected, the
Hand Tool, perform the following actions:

e Move (or track) the camera: Left-click drag
e Rotate (or tumble) the camera: Right-click drag

e Zoom (or dolly) the camera: Middle mouse button wheel scroll or Alt-right-
click drag

The second, third, and fourth icons activate the translate, rotate, and scale manipulators for
the selected object in your scene. Try clicking the CheckerSphere object and then the multi-
direction arrow icon to translate the CheckerSphere' s position. You will use these object
manipulation tools repeatedly when examining relevant math concepts, so make sure you are
familiar with them now.

Object Manipulation Tools

(_I_, ; /
O |

Figure 1-10. Unity Camera and Object Manipulation Tools

20

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Notice that as you translate, rotate, or scale the CheckerSphere, or any object for that
matter, the corresponding values in the Transform component in that object’s Inspector
Window also update accordingly.

Use the Implicit Sliders to Adjust an Object’s Transform Values

Look closely at the Transform component for a selected object. Place your mouse pointer in
between the label and the corresponding value, as shown in Figure 1-11. Notice the mouse
pointer switching to a small left-right arrow icon. At this point, you can left-click and drag the
mouse to the left or right to update the corresponding floating-point value as though you were
adjusting a slider bar. This shortcut is referred to as the Implicit Slider in this book and works
for any floating-point value in the Inspector Window. You will be using the Implicit Slider to
control parameters in almost every example.

v Transform o
Positon X 0 Y O Z 0
Rotation X 0 i O Z 0
Scale ®)(,1\ /Y,1 291

V&

Regions between the labels and the corresponding values

Figure 1-11. How to find the Implicit Slider to manipulate float values in the
Inspector Window

Initialize Public Variable of MyScript in the Inspector Window

With the Controller selected, left-click the CheckexrSphere in the Hierarchy Window, and
drag, without releasing your original left-click, to the value location of CenterSphere under
the MyScript component. By doing so, you have changed CenterSphere to reference
CheckerSphere.

Now, click the Play button and observe that the BrickSphere is not traveling anymore, but
the CheckerSphere is now moving simultaneously in both the X and Y directions. You now
have the experience to initialize any future game objects via the Inspector Window.

Delete Initial Values of Public Variables and Observe Errors

With the Controller selected, click the CenterSphere value location and then hit the
delete key to remove the initial reference. You should observe the following message in the
value location of CenterSphere: None (Game Object).

21

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

Next, click the Play button and observe that none of the spheres are moving. Navigate to the
Console Window (Figure 1-3 (F)) to observe the error messages. Recall that the Start ()
function in MyScript asserts that all three public variables must be properly initialized. In this
case, the CenterSphere is a null reference which results in an assertion failure. These errors
can be observed in Figure 1-12.

Display Option: Collapse and Display Type: Log and
Clear On Play Error

i Proje onsole | :
Clear | ¥ | Collapse | Error Pause Editor v a 11(Ao0[@2

[20:37:27] Assertion failed g
UnityEngine.Debug:Assert (bool) @B

[20:37:28] Printing to Console: Convenient way of examine state.
* | UnityEngine.Debug:Log (object) 661

[20:37:28] UnassignedReferenceException: The variable CenterSphere of MyScript has not been assigned.
You probably need to assign the CenterSphere variable of the MyScript script in the inspector. 661

Figure 1-12. Console Window displaying options and message types

As indicated in Figure 1-12, the Console Window supports different display options and
message types. Try enabling different options and observe that the Collapse option allows you
to collapse identical messages into one. You can also show or hide log, warning, and error
messages. We have found it convenient to show all message types and to enable the Collapse
and Clear on Play options.

Now re-initialize CenterSphere to refer to BrickSphere. Remember, this can be done by
selecting the Controller and then dragging BrickSphere from the Hierarchy Window to
the value field of CenterSphere in the Inspector Window.

Click the Play button to begin the game. You should notice all three spheres are moving once
again. Next, remove the CenterSphere reference by clicking the CenterSphere value and
hitting the delete key. You will notice that the BrickSphere has stopped moving and error
messages show up in the Console Window.

Next, stop the game by clicking the Play button again and notice that the value field of
CenterSphere is no longer empty, but restored to its previous value of BrickSphere.

22

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

In general, and with few exceptions, edit operations performed when the game is running are
undone when the game is stopped. This can be both invaluable and frustrating. Invaluable
because you are free to perform editing operations while playing to examine the effects and
verify mathematical concepts. Frustrating because you will likely forget that you are in play
mode and perform a series of editing operations only to have those edits be undone once play
mode is terminated.

Note Always be aware of the current game play mode when performing edit
operations.

To Learn More About Working with Unity

We have covered only operations in Unity that are relevant to learning the math concepts
for this book. It is very important to note that what you have learned about Unity in this
chapter is focused on preparing you to work with and learn from examples in this book.
This knowledge may or may not be relevant in being a competent game designer. If you
are interested in learning more about Unity, you can find useful resources under the
Learn tab in the Unity Hub as mentioned previously. Here are some additional tutorials
that can be helpful:

o All of the Foundational Tutorials
o The Create with Code tutorial under Beginner Course

If you are new to C#, we suggest that you follow this link https://learn.unity.
com/learn/search?k=%5B%22q%3AScripting%22%5D and examine the Beginner and
Intermediate Scripting tutorials.

How to Use This Book

This book begins with the most fundamental mathematical concept that is relevant to
game development, working with a single position, and then covers number intervals,
introduces vectors, and advances to the powerful and regularly applied concepts in
vectors: the dot and cross products, vector spaces, and rotation of vectors. For each

23

https://learn.unity.com/learn/search?k=["q:Scripting"]
https://learn.unity.com/learn/search?k=["q:Scripting"]

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

topic, an introduction is followed by a simple example that demonstrates the associated
applications that are relevant to interactive graphical or video game development. The
examples are simple, always a single scripting file, featuring the details of solutions
implemented based on the topics being discussed. The scripting file and the associated
C# class will always be with the same name containing the substring MyScript,

for example, EX2_1 MyScript. This script, as mentioned previously, will always be
attached to the Controller object in each example. It is important to note that the
implementation of the scripts, setup of the game objects, and structure of the examples
are designed to feature the math concepts being discussed. This organization allows
you to analyze the concepts, examine the implementation, and experiment and interact
with the game objects such that you can gain understanding and insights into the topics
discussed. The contents of this book do not attempt to address any specific issues in
game design or development as no such issues were considered.

The best way to read this book is by downloading the Unity projects, reading the
book section that describes the concepts, running the corresponding examples while
paying attention to the highlighted topics, examining the source code, and, finally,
tinkering and experimenting with the implementation accordingly.

As a final reminder, this book does not explain and will not explain how the game
objects were created, how to customize their behaviors, or how the examples and scenes
were built. Those features deal with how to work with Unity in general and are outside
the scope of this book.

Summary

Through this chapter, you have learned how to install Unity and an IDE for script editing,
as well as how to open, run, and tinker with the examples that accompanied this book.
You have also learned about the Unity Editor and the terminologies that will be used
throughout the book to work with the examples. You were given some extra resources

to investigate if you want to learn more about how to work with Unity and C#, as well as
what this book will be covering along with a friendly reminder of the goals and scope of
this book. In the next chapter, you will begin with the math concept of intervals and learn
about bounding boxes.

24

CHAPTER 1 INTRODUCTION AND LEARNING ENVIRONMENT

References

To learn more about linear algebra based on a traditional approach, free from specific
application context, there are a number of textbooks. For example:

o Gilbert Strang, Introduction to Linear Algebra, Fifth Edition,
Wellesley-Cambridge Press, 2016. ISBN: 978-0980232776

e Online, Linear Algebra section of the Khan Academy: www.
khanacademy.org/math/linear-algebra

To learn more about how mathematics is relevant to video games without explicit
implementation examples:

e Fletcher Dunn and Ian Parberry, 3D Math Primer for Graphics and
Game Development, 2nd Ed, CRC Press, 2011. ISBN: 978-1482250923

e James M. Van Verth and Lars M. Bishop, Essential Mathematics for
Games and Interactive Applications, 3rd Ed, CRC Press, 2016. ISBN:
978-1568817231

25

http://www.khanacademy.org/math/linear-algebra
http://www.khanacademy.org/math/linear-algebra

CHAPTER 2

Intervals and
Bounding Boxes

After completing this chapter, you will be able to

e Use Unity to work with positions in the 3D Cartesian
Coordinate System

e Program with intervals along the three major axes

¢ Define axis-aligned bounding areas in 2D and axis-aligned bounding
boxes (AABB) in 3D

o Determine if a position is inside of an axis-aligned bounding
area or box

o Approximate inter-object collision using AABBs
o Compute the intersection of two AABBs

e Appreciate the strengths and weaknesses of AABBs

Introduction

This chapter begins by reviewing the Cartesian Coordinate System, continues with the
exploration of 3D positions and number intervals, and wraps up with how you can apply
these simple comparisons to approximate object boundaries and collisions between
objects. While comparing numbers is rather trivial, the generalization and application
of these simple concepts lead directly to one of the most powerful and widely used

tools in video games: the axis-aligned bounding box, or AABB. AABB is an important
topic in video games because it allows for simple and efficient approximation of object

27
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_2

https://doi.org/10.1007/978-1-4842-9885-5_2

CHAPTER 2 INTERVALS AND BOUNDING BOXES

proximity. In other words, AABB is intuitive to comprehend and can quickly compute
how close two objects are to each other, including if the objects are currently colliding.
Generally speaking, it is difficult and time-consuming to determine if geometrically
complex objects are physically close to each other or if they are currently colliding. AABBs
can be used to address this issue. Imagine, with your eyes closed, someone put a pizza in
front of you with several slices removed. In this situation, without opening your eyes, how
would you determine if your extended hand is about to touch the pizza? Now, if the pizza
was placed in a pizza box, or a bounding box, then the solution can be approximated
by answering the question of whether your hand has come into contact with the pizza
box. Notice that with slices removed, touching the box can only warn you that you are
about to touch the pizza. It does not tell you if you are going to actually touch the pizza.
AABB, or bounding box, related computations involve simple number comparisons,
trading accuracy for simplicity, and are thus efficient. Unless your AABB exactly matches
your object’s shape (i.e., your shape is a box), your proximity calculations will only be
approximated; however, in many cases this is sufficient to deliver satisfactory game play.
Mathematically, this chapter should be a relatively straightforward review as it will
cover concepts that are generally taught in the late middle school to early high school
years in the United States. In addition to refamiliarization with these concepts, this
review process can also serve as an excellent opportunity to learn more about and to
become more comfortable with the Unity environment, the involved utilities, custom
tools, and the approach that this book takes in discussing topics. In this book, after each
concept is described, you will be introduced to a new Unity scene which presents that
concept, led through interactions with the scene to explore and experience aspects of
that concept, and then instructed to examine the implementation associated with that
concept. At the end of this process, the book summarizes a list of key points for you to
verify your learning.

Review of Cartesian Coordinate System

Recall that the 3D Cartesian Coordinate System defines an origin position (0, 0, 0)

and three perpendicular axes, X, Y, and Z, known as the major axes. Each axis begins
from the origin and extends in both its positive and negative directions. This can be
seen in Figure 2-1 where the checkered sphere in the middle is intersected by all three
arrows and is the origin. Each arrow represents a major axis; the direction of the arrow
represents the positive direction along that axis.

28

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Y-axis

Origin ‘
)(—axiR“Lﬁ> Z-axis

Position: (X, y, z)

Figure 2-1. The 3D Cartesian Coordinate System

In the Cartesian Coordinate System, the position of a point is defined by a three-
variable tuple (X, y, z), the point’s distance as measured along the three major axes. For
example, in Figure 2-1, the sphere’s center position is x-value along the X-axis, y-value
along the Y-axis, and z-value along the Z-axis. In this case, since the sphere is below the
origin and the Y-axis has upward as its positive direction, the y-value will be negative. If
the x-, y-, or z-values are altered, you can expect the corresponding object to be relocated
in the coordinate system accordingly.

It is important to remember that the major axes are always perpendicular to each
other and with a unit that is convenient for the specific application. For example, when
applying the Cartesian Coordinate System in describing positions in a room, you may
define the origin to be at one corner of the room, the X- and Z-axis to be along the floor
edges, and the Y-axis to be along the wall pointing upward toward the ceiling. In this
case, a convenient unit may be in meters. With such a coordinate system definition,
all positions in the room will be of values (X, y, z) measured in meters from the corner
that was identified as the origin. Note that there can be infinite number of Cartesian
Coordinate Systems defined for the room, for example, choosing a different corner to be
the origin or identifying the center of the room to be the origin with inches as the unit.

What is important to remember is that a Cartesian Coordinate System always has
perpendicular major axes with an arbitrary unit that is convenient for the specific
application. The coordinate values are measurements from the origin along the major
axes in the defined units.

29

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Intervals: Min-Max Range

The Cartesian Coordinate System allows for straightforward comparison between
positions along its major axes. For example, Figure 2-2 shows a transparent region along
the Y-axis where this region is defined by two values, a min (minimum) value and a
max (maximum) value. The Y-axis direction, noted by the arrow, indicates the direction
of increasing coordinate value. In this case, the minimum value is always below the
maximum value, both literally and pictorially. A region defined by min and max values
along a major axis is referred to as an interval.

Ball above Ball below Ball inside
Interval Interval Interval

Ball
| lg 4 max L}

(a) (b) (c)

Figure 2-2. A simple min-max interval along the Y-axis

An interval is convenient for determining if a given position is within a specific
range. For example, the Ball in Figure 2-2(a) is above the interval, and thus you know
the y-value of the center of the Ball is greater than the maximum value of the interval.
Figure 2-2(b) shows that the reverse is true as well: if the Ball is below the interval,
then the y-value of the center of the Ball is less than the minimum value of the interval.
Figure 2-2(c) on the other hand, shows that the Ball is inside the interval when the
y-value of its center is in between the given max and min values. The determination of
these conditions can be simplified as follows and is referred to as the inside-outside test:

if ((Ball.y »>= Interval.Min) && (Ball.y <= Interval.Max))
// Ball is inside the Interval

else
// Ball is outside the Interval

30

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Note that the comparison symbol is greater or less than and equal to. This means if
the Ball is right on the boundary, it will be considered as being inside the interval. Now
that you have reviewed the Cartesian Coordinate System and how to program intervals,
you are ready to explore the different examples and concepts presented in this chapter.
However, before you do that, you'll need to understand how to work with the Unity

examples given in this book.

Working with Examples in Unity

Before you dive into any examples, you'll first have to know how the examples are
organized within each chapter. Figure 2-3 shows you the different scenes and their
corresponding MyScript for this chapter and how future chapters will be laid out.

MyScript for Example_2_1
Example_2_1 File Example_2_2 Files

Scene for Example_2_1
B Project | [Console ai
+ € k| B4
» % Favorites Assets

v (@ Assets

I Editor
» Im Materials

» B Rescurces

I SceneHelper Materials Resources SceneHelp... 5 EX 2100 EXZ1 M; 1 EX2.28B0. EX22M. g
» B Packages ae?
Ex.z.a.mt EX 2.3M... Ex.z.-um Ex.:.-t.u.

/ \ o
Example_2_3 Files Example_2_4 Files

Figure 2-3. The Project Window of Chapter-2-Intervals+AABB project

One Unity project is defined for each chapter, and each example for the associated
concepts in that chapter is organized as a separate Unity Scene in that project. As
mentioned in Chapter 1, each example or Scene has only one script with a name that
includes the string, MyScript. For example, all examples in Chapter 2 are defined in the
Unity project that is in the Chapter-2-Intervals+AABB/ folder. Figure 2-3 illustrates that
after you open the project and navigate to the Assets/ folder of the Project Window, you

31

CHAPTER 2 INTERVALS AND BOUNDING BOXES

will observe two files for each example. The first is the Scene file named EX 2 x title,
and the second is a corresponding MyScript file named EX_2 x MyScript. EX stands for
example, the 2 stands for this chapter’s number, the x is the sequence of the example in
its chapter (e.g., EX_4 3 would translate to Chapter 4’s third example), and finally, title
refers to the title of that example. For simplicity, the term MyScript will be used to refer
to the EX_MyScript associated with the current example.

When you are ready to examine an example, simply double-click the corresponding
scene file. This will load the scene into the Unity Editor. The Controller of that scene
will already have the corresponding MyScript component attached to it, and therefore
no further setup is required. Remember, to open a script in the IDE, you can simply
double-click its icon in the Assets/ folder of the Project Window.

Now open the Chapter-2-Interval+AABB project and double-click the EX_2_1_
IntervalBoundsIniD scene file in the Assets/ folder of the Project Window to load
it into the Unity Editor. You can tell what scene is currently open in your project by
looking at the Hierarchy Window; the very first item is always the name of the scene you
have open.

The Interval Bounds in 1D Example

This example reviews the Cartesian Coordinate System, introduces you to working with
a customized script (MyScript), and demonstrates how to work with the Unity Vector3
data type. In a nutshell, this example defines a 1D bound along the Y-axis, allows you

to interactively adjust the max and min values of the interval, as well as examines an
implementation of the interval inside-outside test as depicted in Figure 2-2. Figure 2-4
shows a screenshot of running the Interval Bounds in 1D scene from the Chapter-2-
Intervals+AABB project. As discussed in the previous section, this scene can be opened
by double-clicking the EX 2 1 IntervalBoundsIniD scene file in the Assets/ folder of
the Project Window.

32

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Figure 2-4. Running the Interval Bounds in 1D example

Note Please take note of the separated Scene and Game Views. Make sure to
differentiate between these two views. All object manipulations must be carried out
through the Scene View and not the Game View.

The goals of this example are for you to

Review the Cartesian Coordinate System

Experience adjusting positions of game objects in Unity
Begin familiarizing yourself with the Vector3 class
Understand and interact with intervals along an axis

Examine the implementation of an interval inside-outside test

33

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Examine the Scene

Take a look at the Example 2 1 IntervalBoundsIniD scene and observe the predefined
game objects in the Hierarchy Window. This is a very simple scene where, besides
Controller, there is only one other defined object, the CheckerSphere. In this example,
you will manipulate the position of the CheckerSphere object to examine the results of
the interval inside-outside test along the Y-axis.

Note Please continue to ignore the zIgnoreThisObject in the Hierarchy
Window. Once again, this game object hides miscellaneous and distracting
scene supporting objects that do not pertain to the math you are learning.

Analyze Controller MyScript Component

Select Controller in the Hierarchy Window. Please refer to Figure 2-5 and make sure
your Inspector Window looks the same by locating the EX_2_1 MyScript component
and ensuring it is expanded so you can examine its variables and the corresponding
values and references. There are three variables that you can access from the Inspector
Window with this script:

e IntervalMax: The maximum value of the interval
e IntervalMin: The minimum value of the interval

o TestPosition: Holds a reference to the CheckerSphere such that
MyScript can access the position of the CheckerSphere game object
in the scene

34

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Controller game object

MyScript
Component

values or

.
variables V references

Figure 2-5. The MyScript Component of Controller

Note Once again, make sure to differentiate between the Scene View and the
Game View windows. Remember, the Scene View has a skybox-like background,
and the Game View has a constant light blue background. The Scene View is the
window where you can select and manipulate game objects. If you try to click an
object in the Game View, nothing will happen.

The name of the script you will work with is actually EX_2_1_MyScript; once
again, for simplicity and brevity, MyScript is used in the text. This will be the case
for all examples in the rest of this book.

Interact with the Example

Click the Play button to run the example. While running, select the CheckerSphere

either through the Hierarchy Window or by clicking the CheckerSphere in the Scene
View window. Once selected, change the position of the CheckerSphere by invoking the
Implicit Slider (refer to Figure 1-11 if you forgot how to do this). You can also change the
position of the CheckerSphere by simply typing into the value fields of the corresponding

35

CHAPTER 2 INTERVALS AND BOUNDING BOXES

variables in its Transform component. Try increasing and decreasing the x-, y-, and
z-values of the CheckerSphere and observe the corresponding movement. Notice that
the CheckerSphere does indeed move along the major axes of the Cartesian Coordinate
System, obeying the positive and negative directions as expected.

Note You can also manipulate the Transform component of a game object by
selecting the corresponding object in the Hierarchy Window and using the different
Object Manipulation Tools as shown in Figure 1-10.

Now observe the transparent cylinder along the Y-axis. This is the interval defined by
the IntervalMax and IntervalMin values. Notice how the color of the cylinder changes
as you change the y-value of the CheckerSphere position to be either above or below the
interval. Also, note that changing the x- or z-position of the CheckerSphere has no effect
on the color of the interval.

You can adjust the IntervalMax and IntervalMin values by selecting the Controller
object in the Hierarchy Window and modifying the values of the corresponding variables
in the MyScript component. Notice how the transparent cylinder or interval object
responds to your adjustments while maintaining its proper behavior of adjusting its color
depending on if the CheckerSphere is inside or outside of it.

Details of MyScript

Open the MyScript for this example (EX_2_1 MyScript) and examine the
implementation source code in your IDE. Once again, to open a script, you can either
right-click over the MyScript component’s name (“EX_2_1 My Script (Script)”)in
the Inspector Window when Controller is selected (refer back to Figure 1-7 if you need
arefresher) or double-click the MyScript (“EX_2_1 MyScript” for this example) icon

in the Assets/ folder of the Project Window. In the future, you will not be given these
reminders and will simply be told to open MyScript. The following variable definitions
can be observed:

private MyIntervalBoundInY AnInterval = null;
public float IntervalMax = 1.0f;

public float IntervalMin = 1.0f;

// Use sphere to represent a position

public GameObject TestPosition = null;

36

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Notice the one-to-one correspondence between the public variables and
those accessible via the Inspector Window, as illustrated in Figure 2-5. Recall that
TestPosition is set up to reference the CheckerSphere game object, and thus your
changes to the CheckerSphere game object can be accessed via the TestPosition
variable. The private variable of data type MyIntervalBoundInY is defined and used to
visualize the interval defined by the IntervalMax and IntervalMin values.

Note The code in MyScript is only executed when the Play button is active.

Figure 2-6 shows that, besides the drawing support (e.g., DrawInterval and
IntervalColor), the MyIntervalBound class only defines and uses the MinValue and
MaxValue variables, which is the definition of an interval. The MyIntervalBoundInY
class is a simple subclass that overrides the PositionToDraw() function. The
PositionToDraw() function is used to visualize intervals along a major axis. The
MyIntervalBound class and its subclasses and functions can be found in the Assets/
SceneHelper/ folder in the Project Window. Please do feel free to explore its
implementation. To avoid distraction from learning the mathematics, the details of the
MyIntervalBound class and all other classes for supporting visualization (other scripts in
the Assets/SceneHelper/ folder) will not be discussed in this book.

37

CHAPTER 2 INTERVALS AND BOUNDING BOXES

public abstract class MyIntervalBound : MyDrawObject
{
// Censtructor
public MyIntervalBound() : base("SemiTransparentCylinder")
{
MinValue
MaxValue

i n
@
@
-

}
i?l'i\.r-:ltc Utility Funct ic:n:i

public float MinValue L;' // Min value of the interval
public float MaxValuef, // Max value of the interval

// Drawing Support

public bool DrawIntervall J // Draw or Hide the interval

public Coeler IntervalColor // Color to draw

abstract public Vector3 PositionToDraw { get; set; } // Where to draw the interval

[/// <summary> Return the status of if the input v-value is in the interval
public bool ValueInInterval(float v)
{
return ({v >= MinValue) && (v <= MaxValuel);
}

/77 <summary> Returns if there is an intersection with otherInterval
public bool IntervalsInteraect(HyIntc1"aLBDund otherInterval)

Figure 2-6. The MylntervalBound class for visualizing an interval along a
major axis

When the game first begins to run, the Start() function instantiates the
visualization object, AnInterval, for displaying the semi-transparent interval. Details of
the Start() function are as follows:

void Start() {
Debug.Assert(TestPosition != null); // Ensure proper setup
AnInterval = new MyIntervalBoundInY();

Next, you will examine the Update() function. Recall that the Update() function
is invoked at a real-time rate of about 60 times per second to update the state of the
application, hence the name of the function. The details of the Update() function are as
follows:

void Update() {
// Updates AnInterval with values entered by the user
AnInterval.MinValue = IntervalMin;
AnInterval.MaxValue = IntervalMax;

38

CHAPTER 2 INTERVALS AND BOUNDING BOXES

// Assume point is outside
AnInterval.IntervalColor = MyDrawObject.NoCollisionColor;
// computes inside-outside of the current TestPosition.y value
Vector3 pos = TestPosition.transform.localPosition;
bool isInside = (pos.y >= IntervalMin)
88 (pos.y <= IntervalMax);
if (isInside) {
Debug.Log("Position In Interval! ("
+ IntervalMin + ", " + IntervalMax + ")");
AnInterval.IntervalColor = MyDrawObject.CollisionColor;
// MyYInterval supports the inside functionality
Debug.Assert(AnInterval.ValueInInterval(pos.y));

The first three code lines of Update() ensure that AnInterval is updated with the
latest values entered by the user. Next, the inside interval test is performed based on
comparing the y-value of the TestPosition object, which, as you may recall, was set to
reference the CheckerSphere through the Inspector Window (see Figure 2-5 or look at
your own project for confirmation).

Sixty times every second, AnInterval is updated with user input, and the y-value
of the CheckerSphere position is compared against the user-specified IntervalMin
and IntervalMax, changing the color of the interval as necessary. This fast update
rate conveys a sense of instantaneous modifications to the user. An important detail is
that the variable pos or the data type for TestPosition.transform.localPosition is
Vector3. A Vector3 with x-, y-, and z-values is designed to represent a position and, as
detailed in the later chapters, a vector. Click to view the Console Window (please refer to
Figure 1-3, label F) and observe the text output generated by the Debug.Log() function.
This is an excellent way to examine and debug the state of your game.

The very last line of the Update() function demonstrates that the
MyIntervalBoundInY class has also implemented the inside-outside test and the
Debug.Assert() verifies the consistency of the test results. The MyIntervalBound.
ValueInInterval() is a convenient function that will be used in later examples.

Notice that the variable AnInterval only supports drawing and does not participate
in any way in the logic and computation of the inside-outside test. For example,
you can remove all occurrences of the AnInterval variable and the example will

39

CHAPTER 2 INTERVALS AND BOUNDING BOXES

execute perfectly, only, without visual feedback. For this reason, the details of the
MyIntervaBoundInY class are irrelevant to the understanding of the interval computation
and can be distracting.

Takeaway from This Example

In this very simple example, you have experienced interacting with and moving objects
in the 3D Cartesian Coordinate System while observing the results of mathematical
computations. You have also learned how to establish a reference of a GameObject to a
variable in MyScript in order to gain access to and manipulate the position of that game
object. Additionally, you have begun to work with the Unity Vector3 class and reviewed
floating-point number comparisons. Lastly, you have learned how to determine if
a position is within the bounds of an interval along a major axis of the Cartesian
Coordinate System.

Relevant mathematical concepts covered include

o Cartesian Coordinate System
o Position of an object in the 3D Cartesian Coordinate System

o Intervals along a major axis defined by minimum and

maximum values
o Testing for being inside or outside of an interval along a major axis
Unity tools
o AGameObject’s position is defined by its transform.localPosition
e Vector3 can be used to represent an object’s position
o Debug.Assert() can be used for assertion of conditions

o Debug.Log() can be used for printing text messages to the
Console Window

e MyIntervalBoundInY is a custom-defined class to support the
visualization of intervals along the Y-axis

Interaction technique

o Use asphere GameObject to represent and manipulate a position.

40

CHAPTER 2 INTERVALS AND BOUNDING BOXES
Limitation

o Theidea of an interval is straightforward. However, the inside-
outside test implementation is straightforward only for cases where
the interval is defined along one of the three major axes. In later
chapters, you will learn about vectors and vector dot products. Those
concepts can help generalize interval testing and support the inside-
outside tests along a non-major axis. Intervals and inside-outside test
will be revisited later.

EXERCISES

Note that it is possible to set the IntervalMin to be a value greater than that of
IntervalMax. Please modify the Update () function to prevent this situation.

Run the game. Open the zIgnoreThisObject (by clicking the small triangle beside this
object in the Hierarchy Window to expand the object structure and observe its children
objects) and select SemiTransparentCylinder(Clone). Notice that the interval along

the Y-axis in the Scene View is highlighted when this object is selected. This is the instance of
MyIntervalBoundInY that was instantiated in MyScript for visualizing the interval. Now
try to adjust the position of this object, for example, change the x-position value and observe
the object shift in the x-direction. Notice that you can adjust both the x- and z-positions but not
the y-position. This is because the y-position of the object is constantly being set and updated
by the user-specified IntervalMax and IntervalMin values in the MyScript component
on Controller. From this exercise, you have learned that it is possible to draw the y-interval
at any x- and z-position.

Notice that the inside-outside test in the Update() function is specific to the Y-axis. Please
define four additional variables. These variables will represent the minimum and maximum

interval values for the other two axes, X and Z. With these new values, you can now detect if
the TestPosition is within the specific interval bounds of the X-, Y-, and Z-axes. Although

41

CHAPTER 2 INTERVALS AND BOUNDING BOXES

you may not be able to visualize all three intervals, you can still compute and echo the

inside conditions using the Debug. Log () utility. The next example will examine the topic of
interval inside-outside testing more closely to define the simple and yet powerful axis-aligned
bounding box utility.

Axis-Aligned Bounding Boxes: Intervals
in Three Dimensions

An interval along a major axis is simply a line segment where positions inside the
interval are points of that line segment. When working with two intervals along two
different major axes, for example, an interval along the X-axis and a second interval
along the Z-axis, the combined result is a 2D rectangular region or an axis-aligned
rectangular plane.

As illustrated in Figure 2-7, the rectangular region on the X-Z plane is defined by
the horizontal interval along the X-axis with xMin and xMax values and by the vertical
interval along the Z-axis with zMin and zMax values. Figure 2-7 (a) shows that to
determine if the given ball position is inside the rectangular region, the position must
satisfy the inside-outside tests of both intervals. Figures 2-7 (b) and (c) depict the
conditions when a position is only inside one of the intervals but not both. In (b) the
ball’s position is within the horizontal interval but outside of the vertical. In (c) the ball’s
position is inside the vertical, but not within the horizontal interval.

(xMax, y, zMax)

f zMa {, %
xl\Lin rL:x "th\EXX A]_L_' e ' IL_"
N | :
Ij ZMin n : i t
\ / é/- (xMin, y, zMin)

Ball (position to test)

(a) Inside horizontal (b) Inside horizontal ~ (c) Outside horizontal
Inside vertical Outside vertical Inside vertical

Figure 2-7. Inside-outside test of two intervals along the X- and Z-axis

42

CHAPTER 2 INTERVALS AND BOUNDING BOXES

When working with three intervals along all three major axes, the rectangular region
changes into a 3D axis-aligned rectangular box, known as an axis-aligned bounding
box (AABB). In this case, a position is inside a given AABB only when it satisfies the
inside-outside tests for all three intervals. This condition testing can be implemented as
follows:

// if in all intervals

if (
(Ball.x »>= xInterval.Min) 8& (Ball.x <= xInterval.Max)
&& // x-axis
(Ball.y >= yInterval.Min) && (Ball.y <= yInterval.Max)
&& // y-axis
(Ball.z »>= zInterval.Min) 8& (Ball.z <= zInterval.Max)
// z-axis

// Ball is inside the bounding box
else
// Ball 1is outside the bounding box

As you can observe, the logic and computation involved in the AABB inside-outside
test are straightforward and efficient. For this reason, AABBs are a widely used utility for
approximating object proximity and collisions. AABBs are so important and useful that
Unity defines its own class, Bounds, that implements the AABB functionality (https://
docs.unity3d.com/ScriptReference/Bounds.html). At the end of this chapter, you
will see what is in this class compared to what you will have implemented on your own
throughout the examples in this chapter.

Note For brevity, the rest of this book refers to axis-aligned bounding boxes, or
AABB, simply as bounding boxes. A bounding box that is not aligned with the major
axes is referred to as a general bounding box.

43

https://docs.unity3d.com/ScriptReference/Bounds.html
https://docs.unity3d.com/ScriptReference/Bounds.html

CHAPTER 2 INTERVALS AND BOUNDING BOXES

The Box Bounds Intervals in 3D Example

This example demonstrates the functionality of bounding boxes, implements the point
inside-outside test, and allows you to interact with and examine its implementation.
Figure 2-8 shows a screenshot of running the EX_2_2 BoxBounds_IntervalsIn3D
scene of the Chapter-2-Intervals+AABB project. This scene can be opened by double-
clicking the EX_2_2 BoxBounds_IntervalsIn3D scene file in the Assets/ folder of the
Project Window.

Figure 2-8. Running the Box Bounds Intervals in 3D example

The goals of this example are for you to
e Understand and interact with a bounding box

o Examine the implementation of a bounding box inside-outside test

44

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Examine the Scene

The Hierarchy Window shows that in addition to the Controller, there are four other
game objects: CenterPosition, MinPosition, MaxPosition, and TestPosition. The
center, min, and max position objects are three separate checkered spheres representing
the corresponding positions of a bounding box. The TestPosition is the white sphere.
Just like the IntervalBoundsIniD example, you can manipulate the position of the white
sphere to trigger the inside-outside test and examine results.

Analyze Controller MyScript Component

The MyScript component on the Controller object shows eight public variables
supporting three general functionalities:

e Drawing support

o DrawBox: Used to determine whether to draw or hide the
bounding box

o DrawInterval: Used to determine whether to draw the three axis-
aligned intervals that implement the bounding box

e Box control support

e ControlWithMinMax: Gives the user two options for manipulating
the bounding box

e Option 1: Manipulate the box by specifying the MinPos and
MaxPos positions.

e Option 2: Manipulate the box by specifying the CenterPos
position and interval size (BoundSize) along each axis.

o Testing position support

o TestPosition: References the white sphere and is used for testing
the inside-outside implementation

45

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Interact with the Example

Run the game and notice the transparent box that bounds the three intervals along
the X-, Y-, and Z-axes. On the minimum and maximum corners of the transparent box
are two checkered spheres. These two spheres are the MinPosition and MaxPosition
game objects, which are referenced in MyScript by the MinPos and MaxPos variables,
respectively.

Now select Controller and look at the MyScript component. Experiment with
hiding and showing the box and intervals. The important observation to make here is
that the box and the three intervals both define the same 3D volume. These two are
complementary ways of perceiving and visualizing the volume defined by the intervals.
With the intervals hidden, notice that there is a checkered sphere located at the center of
the box. This is the CenterPosition game object; when the interval visualization objects
are displayed, it is hidden inside the cylinders representing the intervals.

Next, manipulate the box with the min and max position game objects. Select
the MinPosition or MaxPosition game object from the Hierarchy Window and
translate their position to a new location. Notice how the bounding box continuously
tracks and maintains these two positions as its min and max corners. Now, select the
CenterPosition in the Hierarchy Window and try to manipulate it; you'll notice that
its position is not changeable. When you adjust the min and max positions, the center
position is computed based on your input values from these positions. This is the same
case for the BoundSize variable in the MyScript component: the min and max positions
determine the BoundSize.

In order to manipulate the bounding box by manipulating the CenterPosition and
the BoundSize, you must disable the ControlWithMinMax check box on the Controller's
MyScript component. Now, you can experience changing the entire box position
by dragging the CenterPosition object and changing the box size by adjusting the
BoundSize variable in the MyScript component. However, notice that the MinPosition
and MaxPosition are no longer adjustable. These two positions are now defined by the
user-specified CenterPosition and the BoundSize.

Lastly, select and drag the TestPosition game object to manipulate its position
within the scene. Notice that the box changes colors when the TestPosition object
moves from outside to inside its bounds. Before you look at the script, try entering and
leaving the region from different sides of the box, for example, the left, right, top, bottom,
and so on. Note that for each case, you will get the same inside-outside test results.

46

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

private MyBoxBound MyBound = null; // For visualizing AABB

public bool DrawBox = true; // Show/hide the 3D box

public bool DrawIntervals = true; // Show/hide intervals

public bool ControlWithMinMax = true; // min/max vs. center

public GameObject MinPos = null; // Min position of the box
public GameObject MaxPos = null; // Max position of the box
public GameObject CenterPos = null; // Center of the box

public Vector3 BoundSize = Vector3.one; // Interval size
public GameObject TestPosition = null; // Position for testing

All the public variables have been discussed when analyzing the MyScript
component. The private variable of the MyBoxBound data type is there to support
the visualization of the bounding box. Figure 2-9 shows the public interface of the
MyBoxBound class

47

CHAPTER 2 INTERVALS AND BOUNDING BOXES

public class MyBoxBound : MyBoxDrawObject
{
public MyIntervalBoundInX XInterval = new MyIntervalBoundInX();
public MyIntervalBoundInY YInterval = new MyIntervalBoundInY();
public MyIntervalBoundInZ ZInterval = new MyIntervalBoundInZ();
lprivate utility
[/// <summary> Position: (XInterval.MinValue, YInterval.MinValue, ZInterval.MinVa ..|
public new Vector3 MinPosition| .
[/// <summary> Position: (XInterval.MaxValue, YInterval.MaxValue, ZInterval.MaxVa ...|
public new Vector3 MaxPosition|, ..
Pf} <summary> Center position = 0.5 = (MinPosition + ”arpusitionj
public new Vector3 Center|, ..
[//7 <summary> Size = MaxPosition - MinPosition
public new Vector3 Size|...
// Drawing and Color Support
public bool DrawIntervals [// Draw or Hide the intervals
public bool DrawBoundingBox |. .. // Draw or Hide the box
public new void ResetBoxColor()|, .. // Reset box color to default (transparent white)
public void SetBoxColor(Coler c // Sets the color for the box ..
|/// <summary> Return the status of if point is inside the box
public bool PointInBox(Vector3 point)
{
return
XInterval.ValueInInterval(point.x) // in x interval
& // and
YInterval.ValueInInterval(point.y) // in y interval
&& // and
ZInterval.ValueInInterval(point.z); // in z interval
}
[/// <summary> Return the status of two boxes intersect]
public bool BoxesIntersect(MyBoxBound otherBound)[..
}

Figure 2-9. The MyBoxBound class

Figure 2-9 shows the definition and public properties and functions of
the MyBoxBound class. Note that this class is indeed built with three interval
objects: XInterval, YInterval, and ZInterval, which are instances of the same
MyIntervalBound class from the IntervalBoundsIniD example. As in all previous
classes defined for visualization, this file can be found in the Assets/SceneHelper/
folder. As usual, to avoid distracting from the mathematical concepts discussion, the
implementation details of this class are left for you to explore independently. The
Start() function for MyScript is listed as follows:

void Start() {
// Ensure proper setup in the Hierarchy Window
Debug.Assert(CenterPos != null);
Debug.Assert(MinPos != null);

48

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Debug.Assert(MaxPos!= null);
Debug.Assert(TestPosition != null);
MyBound = new MyBoxBound(); // For visualization

The Debug.Assert() calls ensure proper setup of referencing the appropriate game
objects via the Inspector Window, while the MyBound variable is instantiated in order to

visualize the bounding box. The Update() function is listed as follows:

void Update() {
// Step 1: update drawing options
MyBound.DrawBoundingBox = DrawBox;
MyBound.DrawIntervals = DrawIntervals;
// Step 2: control the box
if (ControlWithMinMax) {
// User controls Min/Max Position
MyBound.MinPosition = MinPos.transform.localPosition;
MyBound.MaxPosition = MaxPos.transform.localPosition;
// Show bound center and size
BoundSize = MaxPos.transform.localPosition -
MinPos.transform.localPosition;
CenterPos.transform.localPosition = 0.5f «
(MaxPos.transform.localPosition +
MinPos.transform.localPosition);
} else {
// User control center position and the size
MyBound.Center = CenterPos.transform.localPosition;
MyBound.Size = BoundSize;
// Show Min/Max Position in the MyScript component
MinPos.transform.localPosition =
CenterPos.transform.localPosition -
(0.5f « BoundSize);
MaxPos.transform.localPosition =
CenterPos.transform.localPosition +
(0.5f « BoundSize);

CHAPTER 2 INTERVALS AND BOUNDING BOXES

50

// Step 3: perform inside/outside test

Vector3 pos
Vector3 min = MinPos.transform.localPosition;

TestPosition.transform.localPosition;

Vector3 max = MaxPos.transform.localPosition;

if ((pos.x > min.x) && (pos.x < max.x) &&
// point in x-interval AND
(pos.y > min.y) && (pos.y < max.y) &&
// point in y-interval AND
(pos.z > min.z) && (pos.z < max.z))
// point in z-interval

Debug.Log("TestPosition Inside!");

MyBound. SetBoxColor (MyDrawObject.CollisionColor);
} else {

MyBound.ResetBoxColor();

The Update() function implements the interaction with the user in three main steps:

o Step 1: Drawing control: The first two lines of code set the box and
interval drawing options according to the user input.

e Step 2: Bounding box manipulation: The bounding box is
manipulated either via receiving the min and max position from the
user and then computing and setting the center and size values or
through receiving the center and size values from the user and then
computing and setting the min and max positions. Note that the size
of an interval is always max-min and is true for 3D bounding boxes as

well. Additionally, the center position is always 0.5 * (max + min).

o Step 3: Inside-outside test: Compute the TestPosition’s position
against the inside-outside condition and update the box color
accordingly.

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Take note that the MyBound variable does indeed only serve as a visualization tool.
For example, you can delete all occurrences of the variable and still be able to run
the example. Only, in that case, there will be no visual feedback of the bounding box
or the results of the inside-outside tests. Lastly, an important observation to make is
that the Vector3 “-” and “+” operators subtract and add the corresponding x-, y-, and
z-component values of their operands.

Takeaway from This Example

This example expands on the very simple concept of an interval along a major axis to
create three intervals along each major axis, resulting in a 3D bounding box.

Through interacting with this example, you have learned that there are two
fundamental approaches in defining a bounding box, either with the min and max
corner positions or with the center position and the size. This knowledge informs you
that the internal representation of a bounding box class can either be min/max or
center/size.

You have also learned that the inside-outside test for a bounding box is simply
the inside-outside test for one interval, three times. Finally, you have observed that
bounding boxes are simple to program with efficient runtime performance.

Relevant mathematical concepts covered include

e 3D bounding boxes
o Testing for being inside or outside of a bounding box

o The two alternative approaches to manipulate a bounding box: min/
max or center/size

Unity tools

o MyBoundBox: A custom-defined class to support the visualization of a
bounding box

e MyIntervalBoundInX, MyIntervalBoundInY, and
MyIntervalBoundInZ: Custom-defined classes to support the
visualization of intervals along the X-, Y-, and Z-axes, respectively

51

CHAPTER 2 INTERVALS AND BOUNDING BOXES

EXERCISE

Modify the Update () function to print out (with Debug . Log()) the status of the
TestPosition’s position with respect to each of the X-, Y-, and Z-intervals of the bounding
box. Through this exercise, you can practice implementing interval testing yourself, and you
can verify that a given position can be inside one or two of the intervals of the bounding box
and still be outside of the box.

Collision of Intervals

Now that it is possible to efficiently detect if the position of an object is inside a 3D
bounding box, the next question to answer is how do you detect when two bounding
boxes intersect? Answering this question is key for detecting a collision between two
objects, for example, two vehicles in a video game. One approach to study this problem
is by first examining how two axis-aligned intervals intersect. In the same manner as
understanding and extending a 1D interval to a 3D bounding box, a 1D interval collision
can be generalized to a 3D bounding box collision.

Figure 2-10 shows two intervals defined along the Y-axis, the Green (G) and the Blue
(B) intervals. To ensure clear visualization of overlapping intervals, the two are drawn on
different sides of the Y-axis, with the third interval representing the intersection drawn
centered around the Y-axis (where the colors overlap each other). Figure 2-10 shows all
the different combinations that the two intervals can intersect or overlap. These include

(a) No intersection.

(b) G.min is inside the B interval, while G.max is outside, which
is equivalent to B.max being inside the G interval, but B.min
being outside.

(c) The entire G interval is inside the B interval.

(d) The entire B interval is inside the G interval.

52

CHAPTER 2 INTERVALS AND BOUNDING BOXES

(e) G.max is inside the B interval, while G.min is outside, which
is equivalent to B.min being inside the G interval, but B.max
being outside.

Green G.min inside G inside B inside G.max inside
Interval interval_B interval_B interval_G interval_B
Blue Interval G. :*m G.max B.max
(a) (b) (c) (d) (e)

Figure 2-10. The different possible ways that two intervals can intersect

Notice that when two intervals overlap (or intersect or collide), the result is always a
new interval that is equal to or smaller than the original intervals. In fact, the overlapping
interval is always the smaller of the two original max values and the larger of the two
original min values. This fact is illustrated in Figure 2-11.

G.max = B.miri~ ‘G.min < B.max <z-" " T 2 Overlap.max = min(G.max, B.max)
******** S o B._.
e - Q Overlap.min = max(G.min, B.min)

Figure 2-11. The condition and results of a two-interval intersection

Figure 2-11 shows how the smaller of the two max values and the larger of the two
min values define a valid interval. This condition is summarized as follows. Feel free
to analyze this code against all conditions depicted in Figure 2-10 to verify that the
resultInterval is indeed correct for all possible ways that the intervals can intersect:

53

CHAPTER 2 INTERVALS AND BOUNDING BOXES

if ((G.max >= B.min) && (G.min <= B.max)) {
// Intervals G and B intersect
resultInterval.max = min(G.max, B.max)
resultInterval.min = max(G.min, B.min)

} else
// No intersection

The Interval Bound Intersections Example

This example computes and visualizes the intersection of two intervals. It allows you
to adjust and examine the different ways that two intervals can intersect. Figure 2-12
shows a screenshot of running the EX 2 3 IntervalBoundIntersections scene from
the Chapter-2-Intervals+AABB project. This scene can be opened by double-clicking
the EX_2_3 IntervalBoundIntersections scene file in the Assets/ folder of the
Project Window.

Figure 2-12. Running the Interval Bound Intersections example

54

CHAPTER 2 INTERVALS AND BOUNDING BOXES

The goals of this example are for you to
« Examine and verify the different ways two intervals can intersect

¢ Understand the implementation of intersecting two intervals

Examine the Scene

The Hierarchy Window shows that the initial scene setup is extremely simple where the
only predefined object is Controller. When this example runs, it will display a Green
and a Blue interval along the Y-axis and will allow you to adjust these two intervals while
examining the intersection results.

Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables. These variables
are three sets of min and max values, one set for each interval: GreenInterval,
BlueInterval, and OverlapInterval. You can adjust the minimum and maximum
values of the GreenInterval and the BlueInterval to create the OverlapInterval
and thus its min and max values. The values of OverlapInterval are the computed
intersection results and cannot be adjusted.

Interact with the Example

Run the game and observe the Green and Blue intervals along the Y-axis. Try adjusting
the minimum and maximum values for each of the intervals by adjusting their
corresponding min/max values on the MyScript component of Controller. Note that
when the two intervals do not overlap, there is no overlap interval and the min/max
values of OverlapInterval are both displayed as NaN (Not a Number).

Next, adjust the minimum and maximum values of the Green and Blue intervals
to reproduce the different scenarios in Figure 2-10. Notice that when the two intervals
intersect, the overlap region can be described by a new interval which is a cylinder
centered on the Y-axis. This is the OverlapInterval with minimum and maximum
values displayed in the OverlapInterval min and max variables. For each scenario,
verify that the OverlapIntervalMax is indeed the smaller of the two maximum values
from the Blue and Green intervals and that OverlapIntervalMin is the larger of the two
minimum values.

55

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

// For visualizing the Green Interval

private MyIntervalBoundInY GreenInterval = null;
// Max/Min values for Green interval

public float GreenIntervalMax = 1.0f;

public float GreenIntervalMin = 0.0f;

// For visualizing the Blue Interval

private MyIntervalBoundInY BlueInterval = null;
// Max/Min values of the Blue Interval

public float BlueIntervalMax = 1.0f;

public float BlueIntervalMin = 0.0f;

// For visualizing the overlap interval

private MyIntervalBoundInY OverlapInterval = null;
// Max/Min values of the overlap interval
public float OverlapIntervalMax = float.NaN;
public float OverlapIntervalMin = float.NaN;

Notice the three sets of intervals and their corresponding minimum and maximum
values. The public variables, the min and max variables for each interval, were discussed
earlier. The private variables are of the MyIntervalBoundInY data type which, as pointed
out in the first example of this chapter, are designed for visualizing the Y-axis intervals.
The Start() function is listed as follows:

void Start() {
// Define the Green Interval
GreenInterval = new MyIntervalBoundInY();
GreenInterval.IntervalColor = GreenColor;
// Draw slightly offset from the axis
GreenInterval.PositionToDraw = new Vector3(0.6f, 0, 0);
// Define the Blue Interval
BlueInterval = new MyIntervalBoundInY();
BlueInterval.IntervalColor = BlueColor;

56

CHAPTER 2 INTERVALS AND BOUNDING BOXES

// Draw slightly offset from the axis
BlueInterval.PositionToDraw = new Vector3(-0.6f, 0, 0);
// The overlap interval

OverlapInterval = new MyIntervalBoundInY();
OverlapInterval.DrawInterval = false; // Initially hide
// Draw on the axis

OverlapInterval.PositionToDraw = new Vector3(o.of, 0, 0);
OverlapInterval.IntervalColor = OverlapColor;

Once again, you can observe a pattern of three sets of similar functions: instantiating
the variables, setting the corresponding color, and setting the interval’s position. For the
case of the OverlapInterval, it is initially set to be hidden because it is only displayed
when an intersection between the Green and Blue intervals occurs. The Update()
function is listed as follows:

void Update() {
// Update Green Interval with user input
GreenInterval.MinValue = GreenIntervalMin;
GreenInterval.MaxValue = GreenIntervalMax;
// Update Blue Interval with user input

BlueInterval.MinValue = BlueIntervalMin;

BlueInterval.MaxValue = BlueIntervalMax;
// Intersect Green and Blue Intervals
if (GreenIntervalMin <= BlueIntervalMax&&
GreenIntervalMax >= BlueIntervalMin) {
// overlap condition
OverlapInterval.DrawInterval = true;
// show the overlap interval

// set the max/min values

OverlapIntervalMax = Mathf.Min(GreenIntervalMax,
BlueIntervalMax);
OverlapIntervalMin = Mathf.Max(GreenIntervalMin,
BlueIntervalMin);

// display these values for the user
OverlapInterval.MaxValue = OverlapIntervalMax;
OverlapIntervalMin;

OverlapInterval.MinValue

57

CHAPTER 2 INTERVALS AND BOUNDING BOXES

// Implemented in theMyIntervalBound class
Debug.Assert(GreenInterval.IntervalsIntersect
(Bluelnterval));
} else {
OverlapInterval.DrawInterval = false;
OverlapIntervalMax = float.NaN;
OverlapIntervalMin = float.NaN;

The first four lines set the user entered min and max values into the Green and Blue
interval min and max values, respectively, for visualization. The if condition tests for
the intersection of two intervals and, when an overlap is detected, sets the min and
max values of the OverlapInterval. The logic for setting the OverlapInterval follows
exactly as depicted in Figure 2-11; the smaller of the two max values and the larger of
the two min values define the intersecting intervals. Notice that MyIntervalBound.
IntervalsIntersect() is defined and the Debug.Assert () function verifies that the
function does indeed return the condition if two intervals have collided. This is a
convenient utility function that will be used in later examples.

Takeaway from This Example

You have examined how two simple intervals can overlap, analyzed the conditions of this
overlap, and verified the implementation that checks for an overlap between these two
intervals. Although two intervals can intersect in many ways, the intersection detection
logic is relatively straightforward.

Similar to the case of extending the inside-outside test for one interval to support 3D
bounding boxes, the interval intersection knowledge can also be generalized to support
3D bounding box collisions and intersections as you will see in the next section.

Relevant mathematical concepts covered include

o Allinterval intersection conditions
o Testing for an intersection between two intervals

e Computing the minimum and maximum values of the intersecting or

overlapping interval

58

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Unity tools

o MyIntervalBound: Custom-defined abstract class to support the
visualization of intervals along the X-, Y-, and Z-axes

Interaction technique

¢ The use of NaN to communicate invalid float values

EXERCISE

In this exercise, you will program the logic to perform the inside-outside test for a point that
can be in any combination of the three intervals from this example. For example, inside the
Green interval but outside of the Blue and Overlap intervals. Please derive the appropriate logic
such that for any test position, you can print out the inside-outside test results for all three
intervals. Note that the OverlapInterval is only defined when the user overlaps the Green
and Blue Intervals and thus will not always be available for the inside-outside test.

Collision of Bounding Boxes

Recall that the volume in a bounding box is defined by the three corresponding intervals
along the three major axes. This fact is reflected in the inside-outside test, where a
given position is inside the bounding box if and only if it is inside all three major axes’
intervals.

In exactly the same manner, based on exactly the same reasoning, two bounding
boxes are colliding, if and only if each of the three intervals that define the two boxes
collided with each other along their corresponding axis. Additionally, since a new
interval is the result of each interval collision, bounding boxes’ intersections always
result in a new bounding box. The new bounding box’s maximum and minimum points
can be computed in exactly the same fashion that a new interval is calculated from the
results of an interval collision. The maximum position of the colliding bounding box is
the minimum of all the intervals’ maximum values, and the minimum position is the

maximum of all the intervals’ minimum values. This condition is listed as follows:

59

CHAPTER 2 INTERVALS AND BOUNDING BOXES

if ((box1.XInterval.Intervallntersects(box2.Xinterval) &&

// intersects in X

(box1.YInterval.IntervalIntersects(box2.Yinterval) &&

// intersects in Y

(box1.ZInterval.IntervalIntersects(box2.Zinterval)

// intersects in Z

) A

// The two boxes are colliding

// result of the xInterval
overlapBox.Xinterval.min =

overlapBox.XInterval.max =

// result of the yInterval
overlapBox.Yinterval.min =

overlapBox.YInterval.max =

// result of the zInterval
overlapBox.Zinterval.min =

overlapBox.ZInterval.max =

Note that when intersection occurs, the resulting overlapBox is a properly defined
3D bounding box with three intervals defined along the three major axes: overlapBox.

intersection

max(box1.Xinterval.

box2.XInterval

intersection

max(box1.Yinterval.

box2.YInterval

min(box1.Yinterval.
box2.YInterval.

intersection

max(box1.Zinterval.
box2.ZInterval.
min(box1.Zinterval.

box2.ZInterval

min,

.min)
min(box1.Xinterval.
box2.XInterval.

max,
max)

min,

.min)

max,
max)

min,
min)
max,

.max)

XInterval, overlapBox.YInterval, and overlapBox.ZInterval.

The Box Bound Intersections Example

This example demonstrates the intersection of two bounding boxes. It allows you

to interact with and examine the geometries creating the bounding boxes as well as
manipulate the boxes to approximate where the geometries intersect with each other.
Figure 2-13 shows a screenshot of running EX 2 4 BoundingBoxIntersections scene

60

CHAPTER 2 INTERVALS AND BOUNDING BOXES

from the Chapter-2-Intervals+AABB project. This scene can be opened by double-
clicking the EX_2_4 BoundingBoxIntersections scene file in the Assets/ folder of the
Project Window.

Figure 2-13. Running the Box Bound Intersections example

The goals of this example are for you to

o Examine complex geometric objects bounded by their own
bounding boxes

o Interact and adjust bounding boxes of objects
o Experiment with manipulating bounding boxes for collisions

o Understand and verify the bounding box intersection
implementation

61

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Examine the Scene

Besides Controller, there are only two other objects in the Hierarchy Window, Car and
Taxi. These objects represent their corresponding vehicles in the scene. Running this
example will build a bounding box around each of these two vehicles and allow you to
manipulate these bounding boxes. You will also examine the details of bounding box

intersection.

Analyze Controller MyScript Component

The MyScript component on the Controller shows nine variables that can be classified
into approximately three different categories:

e Bounding box drawing support: Used to show and hide the
drawing of the bounding boxes and the intervals that define the
bounding boxes

o DrawBox: Shows or hides the bounding boxes around both
vehicles

e DrawInterval: Shows or hides the three intervals that make up
the bounding boxes around both vehicles

e Placement of bounding box

o CarCenterOffset: Ensures the proper centering of the bounding
box over the vehicles. More details will be provided when
discussing the interaction with this example.

e Bounding box information
e TheTaxi: Reference to the Taxi object
e TheCar: Reference to the Car object
o TaxiBoundSize: The size of the bounding box around the Taxi
o CarBoundSize: The size of the bounding box around the Car

e OverlapBoxMin: The minimum corner position of the overlapped
box created when the taxi’s and the car’s bounding boxes collide

e OverlapBoxMax: The maximum corner position of the overlapped
box created when the taxi’s and the car’s bounding boxes collide

62

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Note The information presented for the overlapped bounding box is its min and
max values. This is contrasted to how you can control the other two bounding
boxes—via center and size information. Using min and max values for the
overlapped box allows you to verify the correctness of its computation.

Interact with the Example

Run the game and observe the two transparent boxes around each of the vehicles.
These transparent boxes represent the corresponding bounding boxes of each vehicle.
Try toggling the DrawBox and DrawInterval options under the MyScript component
on Controller. Notice how toggling these options gives you control over displaying or
hiding these boxes and their corresponding intervals. Additionally, take note that you
can adjust the size of the two bounding boxes by changing the bound size variable for
each vehicle (CarBoundSize and TaxiBoundSize).

Note The Car and Taxi game objects consist of corresponding children game
objects. You can verify this by clicking the small triangle beside these objects in
the Hierarchy Window to expand the object structure and observe their children
objects. Take care that you are only manipulating these objects at the parent level,
ensuring you don’t change or manipulate any of their children.

Placement of the Bounding Box over the Vehicles

Try adjusting the values of CarCenterOffset and observe the relative position changes
between the boxes and their corresponding vehicle. Recall that you have learned two
ways to define a bounding box, either by specifying the maximum and minimum

corner positions or by specifying its center and size. As you will see when examining the
source code in MyScript, in this example the bounding boxes are defined according to
their center and size information. The center position is defined by the position of the
corresponding game object, that is, the values of that object’s transform.localPosition
variable. The size of the bounding box is specified by the user via the MyScript
component on Controller. By changing CarCenterOffset, you are changing how much
the bounding box’s center differs from its corresponding vehicle’s center.

63

CHAPTER 2 INTERVALS AND BOUNDING BOXES

CarCenterOffset has an initial offset in the Y-axis of about 0.75. This is because
the center position of the vehicle model is not located in the middle of the vehicle, but
at the height where the tires would meet the road. Thus, to ensure that the bounding
box covers the entire car, its center position is raised to the approximate location of
the vehicle’s true center. You can verify this by setting CarCenterOffset’s y-value to
0 and observing that the resulting bounding box does not cover the upper half of its
corresponding vehicle.

Bounding Box Collisions

With CarCenterOffset set to (0, 0.75, 0), adjust the position of the Taxi object such
that the vehicle overlaps with the Car object. Notice a new bounding box appearing in
the overlapping region of the bounds. Examine the OverlapBoxMax and OverlapBoxMin
values in the Inspector Window and verify that these are the smallest of the maximum
corresponding interval values and the largest of the minimum corresponding

interval values.

Void Space of a Bounding Box

When the CarCenterOffset is set to zero, the bottom half of the bounding box is outside
of the vehicle and thus does not bound any useful information. This emptied bound
volume is referred to as void space: the space where the bounding box can cause false
collision detection. The potential of significant void space is the major drawback of the
bounding box collision approximation. In general, all bounding boxes should be defined

to minimize void space.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

// For visualizing the three bounding boxes

private MyBoxBound CarBound = null;

private MyBoxBound TaxiBound = null;

private MyBoxBound OverlapBox = null;

public bool DrawBox = true; // Controls what to show/hide
public bool DrawIntervals = false;

64

CHAPTER 2 INTERVALS AND BOUNDING BOXES

// Offset between the geometry and box centers
public Vector3 CarCenterOffset = Vector3.zero;
// Note: The y-center of the car is at ground level
// Reference to the Taxi game object

public GameObject TheTaxi = null;

// User sets desirable taxi bounding box size
public Vector3 TaxiBoundSize = Vector3.one;

// Reference to the Car game object

public GameObject TheCar = null;

// User sets the desirable car bounding box size
public Vector3 CarBoundSize = Vector3.one;

// Min position of the overlapping bounding box
public Vector3 OverlapBoxMin = Vector3.zero;

// Max position of the overlapping bounding box
public Vector3 OverlapBoxMax = Vector3.zero;

As in all previous examples, the public variables listed have been analyzed. The
private variables are once again for visualizing the bounding boxes. The Start()
function for MyScript is listed as follows:

void Start() {
// Ensure that proper reference setup in Inspector Window
Debug.Assert(TheTaxi != null);
Debug.Assert(TheCar != null);

// Instantiate the visualization variables

TaxiBound = new MyBoxBound();

CarBound = new MyBoxBound();

OverlapBox = new MyBoxBound();

OverlapBox.SetBoxColor(new Color(0.4f, 0.9f, 0.9f, 0.6f));

// hide the overlap box initially
OverlapBox.DrawBoundingBox = false;
// not showing this in this example
OverlapBox.DrawIntervals = false;

65

CHAPTER 2 INTERVALS AND BOUNDING BOXES

As in all cases, the Start () function ensures proper game object reference setup in
the Inspector Window and instantiates the private variables. Additionally, the Start()
function also assumes no initial collision and hides the overlapped bounding box. The
Update() function is listed as follows:

void Update() {

// Step 1: Set the user specify drawing state

TaxiBound.DrawBoundingBox = DrawBox;

TaxiBound.DrawIntervals = DrawIntervals;

CarBound.DrawBoundingBox = DrawBox;

CarBound.DrawIntervals = DrawIntervals;

// Step 2: Update the bounds (Taxi first, then Car)

TaxiBound.Center = TheTaxi.transform.localPosition +
CarCenterOffset;

TaxiBound.Size = TaxiBoundSize;

CarBound.Center = TheCar.transform.localPosition +
CarCenterOffset;

CarBound.Size = CarBoundSize;

// Step 3: test for intersection ...
// Two box bounds overlap when all three intervals overlap ...
if (((TaxiBound.MinPosition.x <= CarBound.MaxPosition.x)
&& // X overlap
(TaxiBound.MaxPosition.x >= CarBound.MinPosition.x))
3& // AND
((TaxiBound.MinPosition.y <= CawrBound.MaxPosition.y)
&& // Y overlap
(TaxiBound.MaxPosition.y >= CarBound.MinPosition.y))
&& // AND
((TaxiBound.MinPosition.z <= CarBound.MaxPosition.z)
&& // Z overlap
(TaxiBound.MaxPosition.z >= CarBound.MinPosition.z))) {
// Min/Max of the overlap box bound
Vector3 min = new Vector3(
// set with max of x, y, and z min values

66

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Mathf.Max(TaxiBound.MinPosition.x,
CarBound.MinPosition.x),
Mathf.Max(TaxiBound.MinPosition.y,
CarBound.MinPosition.y),
Mathf.Max(TaxiBound.MinPosition.z,
CarBound.MinPosition.z));

Vector3 max = new Vector3(
// set with min of x, y, and z max values
Mathf.Min(TaxiBound.MaxPosition.x,
CarBound.MaxPosition.x),
Mathf.Min(TaxiBound.MaxPosition.y,
CarBound.MaxPosition.y),
Mathf.Min(TaxiBound.MaxPosition.z,
CarBound.MaxPosition.z));
OverlapBox.DrawBox = TaxiBound.DrawBox;
OverlapBox.DrawIntervals = TaxiBound.DrawIntervals;
OverlapBox.MinPosition = min;
OverlapBox.MaxPosition = max;

// Update to show the overlap bound's min and max
OverlapBoxMax = max;

OverlapBoxMin = min;

// functionality is implemented in the BoxBound
Debug.Assert(TaxiBound.BoxesIntersect(CarBound));
} else {
OverlapBox.DrawBox = false;
OverlapBox.DrawIntervals = false;
OverlapBox.MinPosition = Vector3.zero;
OverlapBox.MaxPosition = Vector3.zero;

67

CHAPTER 2 INTERVALS AND BOUNDING BOXES

The Update() function sets the state of the application in three simple steps:

o Step 1: Set drawing state: Assign the user-specified drawing states of
DrawBox and DrawInterval to TaxiBound and CarBound.

e Step 2: Update bound information: Update the Taxi bounding box
(TaxiBound) and the Car bounding box (CarBound) with the user-
specified values. Notice the use of CarCenterOffset to correct
transform.localPosition, ensuring the bound is centered at the
desired location.

o Step 3: Test for collision and create the overlapped bounding box:
Test the bounds for an intersection, and when the condition is
favorable, the min and max positions of the overlapped bounding
box are computed and the new box is displayed for the user.

Note the very last line in the collision computation, the Debug.Assert () statement
shows that the bounding box intersection functionality is also implemented in the
MyBoxBound class. This line of code verifies the correctness of the bounding box
collision test.

Takeaway from This Example

You have experienced bounding geometric objects with bounding boxes and learned
that there might exist an offset between the center of the object and its bounding box.
From working with TheTaxi and TheCar bounds, you have observed that when defining a
bound, it is convenient to work with center and size information. This is in contrast with
the case of the OverlapBound, where it is important to verify the computation results in
the min and max positions.

For bounding boxes, just as in the case of the interval inside-outside test, the
condition for intersection and the new bounding box resulting from that intersection
are both straightforward and efficient to compute. Bounding boxes are one of the most
widely used tools in interactive graphical applications because of their simplicity. The
main shortcoming of bounding boxes is the potential for significant void space. However,
the void space problem can be mitigated by defining multiple bounding boxes for one
object, or a hierarchy of bounding boxes. You will work with hierarchy bounding boxes
slightly in the exercises.

68

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Relevant mathematical concepts covered include
o Testing for collisions between two bounding boxes

o Computing the minimum and maximum values of the intersecting
(overlapping) bounding box

Unity tools

e Vector3 addition operation that adds the corresponding operand x-,

y-, and z-component values

EXERCISES

Implement the functionality to replace the CarBoundSize with CarBoundMin and
CarBoundMax variables. Notice that in this case, the min/max user interaction involves more
complicated computations. In general, it is easier to define bounds of objects based on their
center and size information than it is to use minimum and maximum corner positions.

Select and rotate TheTaxi by 45 degrees around the X-axis. Observe that a larger bounding
box is now required to completely enclose the rotated vehicle. As a result, the void space has
increased. This example illustrates a major limitation of bounding boxes: because of the axis-
aligned requirement, they are ill-suited for bounding non-axis-aligned objects, for example,

a rotated car or a human limb in motion. In the next chapter, you will learn about bounding
spheres, another bounding volume with its own challenges, which can sometimes remedy the
shortcomings of bounding boxes. If you were to rotate the bounding box with the taxi, then the
bounding box would no longer be axis-aligned and the mathematics and algorithms developed
in this chapter would not apply.

One approach to remedy the potentially excessive void space for a bounding box is by defining
a hierarchy of bounds. For example, define two children bounding boxes inside the given
CarBound (or TaxiBound) and place them at the centers of the front and back wheels. Now,
when a position is inside the parent bound (e.g., CarBound), you can perform the inside-outside
tests with the two children bounds to better approximate if a collision has really occurred.

69

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Final Words on Bounding Boxes

In general, there are other geometric volumes that can be used to bound complex
geometries for proximity or collision determination. These approximation geometries
are referred to as bounding volumes or colliders. As mentioned previously, Unity has
defined its own bounding box class, Bounds. You will learn about bounding spheres and
Unity’s BoundingSphere class in the next chapter. These are both examples of bounding
volumes for collision approximation. The general requirements for bounding volumes
are as follows:

1. Representation: Their representation must be compact.

2. Efficiency: They must be algorithmically simple and
computationally efficient.

3. Bound tightness: The void space must be tolerable for the target
geometric shape.

In this chapter, you have learned that bounding boxes are easy to represent, either
being two positions or a position and three floats, and are straightforward and efficient to
compute collisions. Additionally, you have observed bounding boxes to be effective with
relatively minimal void spaces when it comes to bounding rectangular shape geometries,
for example, cars, still humans, or still animals. However, it is also true that when these
objects rotate off-axis, for example, rotating a car about the X-axis by 45 degrees or a
human leaning forward, the bounding box void space can increase significantly and thus
greatly affect the accuracy of the collision approximation.

Unfortunately, this variability of approximation accuracy is true in general. All
bounding volumes have variable efficiencies depending on the profile and orientation of
the geometric shape that they bound. It is up to the game designer to determine the best
types of bounding volumes to use for their purpose.

The Unity Bounds Class

Unity Application Programming Interface (API) describes the Bounds class as

An axis-aligned bounding box, or AABB for short, is a box aligned
with coordinate axes and fully enclosing some object. Because the
box is never rotated with respect to the axes, it can be defined by just
its center and extents, or alternatively by min and max points.

70

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Unity Bounds defines the following properties and public functions (https://docs.
unity3d.com/ScriptReference/Bounds.html):

o Properties
o center: The center of the bounding box.

o extents: The extents of the Bounding Box. This is always half of
the size of the Bounds.

o max: The maximal point of the box. This is always equal to
center+extents.

o min: The minimal point of the box. This is always equal to center-
extents.

o size: The total size of the box. This is always twice as large as the

extents.
o Public methods
e (losestPoint: The closest point on the bounding box.
o Contains: Is point contained in the bounding box?
o Encapsulate: Grows the Bounds to include the point.

o Expand: Expands the bounds by increasing its size by amount
along each side.

o IntersectRay: Does ray intersect this bounding box?

¢ Intersects: Does another bounding box intersect with this
bounding box?

o SetMinMax: Sets the bounds to the min and max value of the box.

o SqgrDistance: The smallest squared distance between the point
and this bounding box.

Through this chapter, you have learned the implementation details of all the
functionality with bolded names, for example, the size property, or the Contains
method. The mathematics behind the other functionality will be covered in different
chapters in the rest of this book.

71

https://docs.unity3d.com/ScriptReference/Bounds.html
https://docs.unity3d.com/ScriptReference/Bounds.html

CHAPTER 2 INTERVALS AND BOUNDING BOXES

Summary

This chapter begins with covering the 3D Cartesian Coordinate System and follows by
reviewing intervals along a major axis. These topics were used to build into the concept
of an axis-aligned bounding box in 3D space that can be applied in determining the
proximity of objects and approximating collisions. The chapter then reviews how

to compute the intersection of intervals along a 1D axis before generalizing into the
intersection of 3D bounding boxes. Besides learning the details of bounding boxes,

it is important to recognize the merits of the foundational concepts that make up the
bounding box. This chapter went from simple number comparisons to efficient collision
approximation between complex geometries.

Through this chapter, you have also become familiar with this book’s approach to
presenting concepts. For each concept, the book always begins with explanations and
presentations of pseudocode that is independent of Unity. This is then typically followed
with a Unity project where you are guided to interact with and appreciate the effects
and results of applying that concept. You are then led to analyze the parameters that
control or implement the concepts being demonstrated via studying the variables on
the MyScript component of the Controller game object. Lastly, you are walked through
the examination of the actual source code. You can expect this rhythm to continue
throughout the rest of this book.

72

CHAPTER 3

Distances and Bounding
Spheres

After completing this chapter, you will be able to
o Compute the distance between any two positions
e Define bounding spheres for objects
e Perform inside-outside tests for bounding spheres
e Detect collisions between bounding spheres

o Appreciate the strengths and weaknesses of bounding spheres

Introduction

Now that you have more familiarity with the Unity environment and the learning
tools that this book utilizes, it is time to review some slightly more advanced, yet still
fundamental math concepts for video game creation. Similar to how Chapter 2 took
simple number comparisons and used them to create bounding boxes, this chapter
will develop the simple concepts of distances and the applications of the Pythagorean
Theorem to create another powerful and widely used tool in video games: bounding
spheres, which are also called sphere colliders.

From the previous chapter, you have learned that bounding boxes are created with
and executed from simple logic statements and have an efficient runtime. However,
you also learned that they are ill-suited for bounding objects that are not axis-aligned.
Spheres can be represented simply by a point (the center) and a radius and are perfectly
symmetrical with respect to its center. Their simple and compact representation and,
as you will discover in this chapter, the efficient computations involved mean that

73
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_3

https://doi.org/10.1007/978-1-4842-9885-5_3

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

spheres are prime candidates for serving as the geometry of bounding volumes. The
elegant symmetrical property implies that the efficiency and effectiveness of bounding
spheres are independent of object axis alignment or the rotations of objects. For these
reasons, bounding spheres or sphere colliders are one of the most widely used tools in
video games.

This chapter begins by reviewing distance computation, then follows by applying
the results of this computation to sphere inside-outside tests, and finally wraps up with
developing the bounding sphere functionality. Take note of the use of the Vector3 data
type in these discussions. Although this data type encapsulates three separate entities,
the x-, y-, and z-values of a position, Vector3 objects will be increasingly referenced and
utilized as one unified entity with its own operators including addition, subtraction,
magnitude, dot product, and so on. These observations will lead to the topic of vectors in
the next chapter.

Distances Between Positions

Recall that, as depicted in Figure 2-1, the position of an object (x, y, z) is simply the
distance measured from the origin along each corresponding major axis, for example,
x-distance along the X-axis. Very conveniently and by design, the major axes of the
Cartesian Coordinate System are perpendicular to each other. For this reason, the
relationship between any position and the origin can be characterized by two right-angle
triangles. This characterization is illustrated in Figure 3-1. Notice how the given position,
D, is connected to the origin via two triangles, ABC and ACD, where both are right-angle
triangles.

A ‘ d; = {x4% +y4?

\/\ d = ’dlz'i'Zdz

- erfz +y{!2 =+ Zriz

D(xq. Ya: Za)

Figure 3-1. The distance between the origin and a position, D (X, V4, Z4)

74

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Triangle ABC is defined by vertices A (the origin), B, and C. The lengths of the edges
of this triangle are as follows:

o Edge AB: The length along the X-axis, x,
o Edge BC: The length along the Y-axis, y,

o Edge AC: The length along the hypotenuse, computed via the
Pythagorean Theorem,

d, :dez +Yd2

Triangle ACD is defined by vertices A, C, and D (the position of interest). The lengths
of the edges for this triangle are as follows:

o Edge AC: The length along the hypotenuse of the triangle ABC, d,
o Edge CD: The length along the Z-axis, z,

o Edge AD: The length along the hypotenuse, computed via the
Pythagorean Theorem,

dz\/dl2 +z, =\/x,,,2 +y2+z}

Notice that the length of the edge AD, d, is simply the distance between the position
(in this case, D) and the origin. The distance formula states that the distance between
a position and the origin is the square root of the sum of the distances between that
position and the origin measured along each major axis. In this case, those distances
are x,, y,;, and z,. As illustrated in Figure 3-2, this concept can be generalized to compute
distances between any two positions in the Cartesian Coordinate System.

75

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Y-axis

Py(xy,¥1,7,) S
* ?‘a*-‘;s‘
-%1 -

/ \S\,Pz(h Y2, 22)
S

Figure 3-2. Calculating the distance between any two positions: P, and P,

Please refer to Figure 3-2 and consider the situation where the vertex A from
Figure 3-1 has moved away from the origin to position P,(x,, 1, z,). In this case, the
distance between P, and any position P,(x,, », z,) can still be determined by computing
the distances along each of the major axes:

o Distance along the X-axis: d, = x, - x;
« Distance along the Y-axis: d, =y, - y,
e Distance along the Z-axis: d, =z, - z,

¢ Distance between P; and P.,:

d=d’+d]+d? =\(x,-) +(z -2,)

Note that since this equation squares the distances (the subtraction results) along

each axis, the order of subtraction does not matter. This can be explained intuitively as
the distance between P; and P, is the same as the distance between P, and P;.

The Positions and Distances Example

The focus of this example is to demonstrate, allow you to interact with, and verify

the distance computation between two positions. Figure 3-3 shows a screenshot

of running the EX 3 1 PositionsAndDistances example from the Chapter-3-
Distances+BoundingSpheres project. Recall that this scene can be opened by double-
clicking the corresponding scene file in the Project Window.

76

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

RN » B306 » L

—

Figure 3-3. Running the Positions And Distances example

The goals of this example are for you to
e Apply the Pythagorean Theorem for distance computation
e Manipulate positions and verify the results of distance computation

o Work with relevant, predefined functions of Unity’s Vector3 class

Examine the Scene

Examine the Hierarchy Window to observe that besides Controller, the two objects
that you will interact with in this example are CheckerSphere and StripeSphere.

This example allows you to manipulate the position of the CheckerSphere and the
StripeSphere while it continuously computes and updates the distance between these
spheres in two different ways, first by explicitly applying the Pythagorean Theorem and
second by invoking a predefined Vector3 function.

Note The three arrows, representing the major axes of the Cartesian Coordinate
System, are defined in the zIgnoreThisObject. The axis frame is displayed as a
reference for supporting your object manipulation exercise.

77

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Analyze Controller MyScript Component

There are six defined variables in the MyScript component of Controller:
o Checker: A reference to the CheckerSphere game object
o Stripe: Areference to the StripeSphere game object
o CheckerPosition: The position of the CheckerSphere
o StripePosition: The position of the StripeSphere

o DistanceBetween: The distance between CheckerSphere and
StripeSphere

o MagnitudeOfVector: The magnitude or length of a Vector3 data type

The last two variables, DistanceBetween and MagnitudeOfVector, are the focus of
this example.

Interact with the Example

Run the game and notice that as soon as the game begins, the values in Controller’s
MyScript component have changed. While CheckerSphere and StripeSphere are

still at their starting positions, the distance variables no longer have a value of 0. The
DistanceBetween and MagnitudeOfVector variables are now both showing a value of

5. This value is the distance between the center of CheckerSphere and the center of
StripeSphere. This can be easily verified by observing that the CheckerSphere is located
at the origin and that the StripeSphere is located at (5, 0, 0), proving that the distance is
indeed 5.

Set the position of the CheckerSphere to be (6.4, 0, 0) by manipulating the
CheckerPosition variable. Verify that the CheckerSphere did move in the scene and
is now located just beyond the tip of the red arrow representing the X-axis. More
importantly, note that the DistanceBetween and MagnitudeOfVector variables are both
showing the new correct distance value of 1.4. Try moving the CheckerSphere along the
X-axis and verify that the computed distance for both variables is always correct.

After verifying the computed distances are correct along the X-axis, move the two
spheres randomly off the X-axis. Observe the thin red, green, and blue lines that run
parallel to the three major axes and connect the CheckerSphere to the StripeSphere.
These three lines are used to help visualize the d,, d,, and d, values between the center

78

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

positions of the two spheres. If you do not see these lines, make sure you are looking at
the Scene View window and that the example is running as the lines are not shown in the
Game View window because they are meant for debugging in the Unity Editor.

With the two spheres located at random positions, examine the distances computed.
Though it can be challenging to eyeball and verify that the computed distance is correct,
rest assured, they are.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

public GameObject Checker = null; // The spheres to work with
public GameObject Stripe = null;

public Vector3 CheckerPosition = Vector3.zero;

public Vector3 StripePosition = Vector3.zero;

public float DistanceBetween = 0.0f;

public float MagnitudeOfVector = 0.0f;

All of these variables have been discussed when analyzing the MyScript component.
Next, you will examine the Start() function. It is similar to the Start() functions in
other examples where assertion statements are used to verify game object references. In
this case, it checks that the Checker and Stripe variables are indeed properly initialized
in the Inspector Window.

void Start() {
Debug.Assert(Checker!= null); // Ensure proper init
Debug.Assert(Stripe != null);

The Update() function is the essence of this example and is listed as follows:

void Update() {
// Update the sphere positions
Checker.transform.localPosition = CheckerPosition;
Stripe.transform.localPosition = StripePosition;
// Apply Pythagorean Theorem to compute distance
float dx = StripePosition.x - CheckerPosition.x;

79

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

float dy = StripePosition.y - CheckerPosition.y;
float dz = StripePosition.z - CheckerPosition.z;
DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);
// Compute the magnitude of a Vector3

Vector3 diff = StripePosition - CheckerPosition;
MagnitudeOfVector = diff.magnitude;

#region Display the dx, dy, and dz

The Update() function sets the state of this example in four simple steps:

o Step 1: Sets the GameObject positions with their corresponding
position variables. This step allows you to change the location of the
StripeSphere and the CheckerSphere via the CheckerPosition and
StripePosition variables.

o Step 2: Applies the Pythagorean Theorem to compute distance. Based
on the center of the two spheres, this step computes the distances
along the X-, Y-, and Z-axes and then takes the square root of the sum
of the squared axis distances.

o Step 3: Calculates the distance by working with the Vector3 class.
This step demonstrates that the distance between two positions is
also calculated by the magnitude property of the Vector3 class. You
may recall from previous examples that the subtract operator, “-’, of
Vector3 computes the differences of the corresponding x-, y-, and
z-components. For this reason, the results in the variable, diff, are
identical to the computed results, dx, dy, and dz. Interestingly, the
magnitude property of Vector3 class computes the square root of the
sum of squares of the components, in this case, the distance between
the two spheres. The next chapter will examine vectors and the
Vector3 class in detail. For now, simply take note of the convenience
of working with the Vector3 class.

80

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

o Step 4: Visualizes the distance along each axis with lines. The last step
is hidden in the collapsed “Display thed,, d,, and d,” region. This
region hides the logic that visualizes the d,, d,, and d, displacements
along their corresponding axis. This code will be straightforward to
follow after the coverage of vectors in the next chapter. For now, note
that Debug.DrawLine() is a handy function for drawing debug lines in
the Scene View window.

The Vector3 subtraction operator and the magnitude property are convenient
shortcuts for avoiding the tedious per-coordinate x-, y-, and z-component access
required when computing the distance between positions. As you will see in the next
chapter, Unity’s Vector3 class and its operators are not designed specifically to support
distance computation. Instead, they are a part of a powerful set of operators that belong
to an important topic, vectors, that will be the focus of study for most of the rest of
this book.

Note With the Microsoft Visual Studio IDE, a #region can be hidden or
expanded by clicking the “+” or “=” symbols to the left of the corresponding line
of code.

Takeaway from This Example

You have verified the application of the Pythagorean Theorem in computing distances
between positions, and you have begun to work with the magnitude property of the
Vector3 class.

Relevant mathematical concepts covered include

o Pythagorean Theorem for computing the distance between two

positions
Unity tools
e Vector3

e Subtraction operator for computing distances measured along
the major axes between two positions

o Themagnitude property that computes the Pythagorean Theorem

81

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

o Debug.DrawLine() function for drawing debugging lines in the Scene

View window
Interaction technique

o Use asphere game object to represent and manipulate a position.

EXERCISES

Recall that because the Pythagorean Theorem computation involves the sum of squared
distances, the following two statements compute the same results:

float distance1 = (pointA - pointB).magnitude;
float distance2 = (pointB - pointA).magnitude;

Verify this statement by switching the subtraction order on the CheckerSphere and
StripeSphere when computing the distance and confirm that the results are still correct.

You have learned that the distance computation is applicable to compute the distance between
any two positions. Modify the Update () function to include a third position, for example,
ThirdPosition. Now compute and display the distance between the ThirdPosition and
the CheckerSphere and the distance between the ThirdPosition and the StripeSphere.
Now manipulate the CheckerSphere and the StripeSphere to observe the two computed
distances to the ThirdPosition. Notice that these distances converge to the same value
when you move the two spheres to be close to each other. This exercise demonstrates that the
computation learned does indeed compute the distance between any two positions.

Sphere Colliders or Bounding Spheres

Recall that in 2D space, a compass sketches a circle by fixing one point and then tracing
out all points that are at a fixed distance from that one point. The fixed position is the
center and the fixed distance is the radius of the circle. A point is inside the circle when

82

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

its distance to the center is smaller than the radius of the circle; otherwise, the position
is outside of the circle. This simple observation can be generalized from 2D to 3D space.
A point is inside a sphere when its distance to the center is less than the radius of the
sphere; otherwise, it is outside of the sphere.

Based on this simple observation, it is possible to use the Pythagorean Theorem
to determine if a point is within the bounds of a sphere. In this way, it becomes
straightforward to determine if an object bounded by a sphere is colliding or within a
certain proximity of a given position. This concept is illustrated in Figure 3-4, where a car
is bounded by a sphere.

rl rl

(a) Inside: d<rl (b) outside: d>rl

Figure 3-4. Determining if a position is inside or outside a sphere

With the spherical bound shown in Figure 3-4, it becomes possible to determine if
a position is inside (close enough to the car) or outside (not close enough to the car) of
the sphere. These conditions can be determined by comparing the distance between
the position (the checkered sphere) and the center of the sphere, d, to the radius of the
sphere, r1. This is the inside-outside test of the bounding sphere; the logic for this test is
listed as follows:

float d = (Position - Sphere.Center).magnitude;
if (d <= Sphere.Radius)

// Position is inside the sphere: Figure 3-4(a)
else

// Position is outside the sphere: Figure 3-4(b)

83

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

The less-than-or-equal test for the inside condition says that when positions are
located on the circumference of the sphere, they are considered as inside the sphere. The
spherical bound is referred to as a SphereBound or SphereCollider or BoundingSphere.
Similar to the case of bounding boxes, this type of bound is widely used and important
enough that Unity has defined its own BoundingSphere class, https://docs.unity3d.
com/ScriptReference/BoundingSphere.html, that implements the associated
functionality. At the end of this chapter, after you have learned some of the involved
algorithms and implementations, you will examine this Unity class in more detail.

The Sphere Bounds Example

This example implements and demonstrates the strengths and weaknesses of the
bounding sphere functionality. Figure 3-5 shows a screenshot of running the EX 3 2
SphereBounds example.

Figure 3-5. Running the Sphere Bounds example

The goals of this project are for you to
o Review the application of the Pythagorean Theorem

o Examine the details of the bounding sphere inside-outside test
implementation

84

https://docs.unity3d.com/ScriptReference/BoundingSphere.html
https://docs.unity3d.com/ScriptReference/BoundingSphere.html

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Examine the Scene

Look at the Hierarchy Window in the EX_3 2 SphereBounds scene and observe that
besides Controller, the two objects that you will interact with in this example are
CheckeredSphere and Car. This example defines a sphere bound around the Car and
demonstrates the approximation of collision between the Car and the CheckeredSphere.

Analyze Controller MyScript Component

Select Controller and examine the MyScript component in the Inspector Window. You
will see five variables:

o APoint: The reference to the CheckerSphere game object
o TheCar: The reference to the Car game object

e CarBoundRadius: The radius of the sphere bound around the
Car object

o DrawCarBound: A toggle determining if the car bound should
be drawn

e DistanceBetween: The computed distance between the center of
TheCar and APoint

Interact with the Example

Run the game to observe a transparent white sphere covering the Car object. This
transparent sphere represents the SphereBound of the Car. Select and manipulate the
position of the CheckerSphere. Notice the color of the car bound changes when the
center of the CheckerSphere is within its bounds. This same behavior can be observed by
manipulating the position of the Car.

By design, the car bound sphere does not completely cover the Car. For example, the
front and rear bumpers are outside of the bounding sphere. This means that the system
is not able to detect when the CheckerSphere is colliding with the front or the rear of the
car. You can change the size of the car sphere bound by adjusting the CarBoundRadius
variable. Finally, notice the large amount of void space in between the Car and its
spherical bound. In general, spherical bounds are not suitable for bounding rectangular
objects.

85

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Details of MyScript

Open MyScript in your IDE and observe the instance variables. Once again, you can

observe and verify the one-to-one correspondence between the public variables

defined in the script source code and the user manipulatable variables of the MyScript

component in the Inspector Window. These variables are as follows:

public GameObject APoint = null;

// CheckerSphere position

private MySphereBound SphereBound = null; // The car sphere bound

public
public
public

GameObject TheCar = null;

// Reference to the car

float CarBoundRadius = 2.0f; // Sphere bound radius

bool DrawCarBound = true;

// To draw/hide bound

public float DistanceBetween = 0.0f; // Car to APoint distance

The SphereBound variable is the only private variable and is defined for visualizing

the car bounding sphere. In Figure 3-6, you can see the public fields and functions of the

MySphereBound class. This class is used to help visualize and create the bounding sphere.

Notice that besides the two fields for supporting drawing, DrawBound and BoundColor,

the class only defines a Center and a Radius—the definition of a sphere.

(=
@M EMEWOON-10 W0

J W R R e e

£
[=RT]

51
52
53
54
55
57

¥

// Visualizes sphere bound using the Sphere GameObject
public class MySphereBound {

Mariables: for drawing in Unity]

/// Constructor
public MySphereBound()[, ..

public Vector3 CenterLT] // Center of Sphere Bound
public float Radius] // Radius of the bound

Drawing Support

// Returns if the give aPoint is inside the sphere
public bool PointInSphere(Vector3 aPoint)
{

Vector3 diff = this.Center - aPoint;

return diff.magnitude <= this.Radius;

}

Figure 3-6. The MySphereBound class for creating and visualizing a
spherical bound

86

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Next, examine the initialization of the variables in the Start () function:

void Start() {
Debug.Assert(APoint != null); // Ensure initialization
Debug.Assert(TheCar != null);
SphereBound = new MySphereBound(); // Visualize the bound

Besides verifying that APoint and TheCar variables are properly set up in the
editor, the SphereBound variable is also instantiated. Lastly, take a look at the Update()
function:

void Update() {
// Step 1: Assume no collision
SphereBound.BoundColor = MySphereBound.NoCollisionColor;
// Step 2: Update the sphere bound
SphereBound.Center = TheCar.transform.localPosition;
SphereBound.Radius = CarBoundRadius; // Set the radius
SphereBound.DrawBound = DrawCarBound; // Show/Hide bound
// Step 3: Compute distance between APoint and SphereBound
Vector3 diff = TheCar.transform.localPosition
- APoint.transform.localPosition;

DistanceBetween = diff.magnitude;
// Step 4: Testing and showing collision status
bool isInside = (DistanceBetween <= CarBoundRadius);
// TheCar.SetActive(!isInside); // what does this do?
if (isInside) {

Debug.Log("Inside!! Distance:" + DistanceBetween);

SphereBound.BoundColor = MySphereBound.CollisionColor;

// The test is supported by MySphereCollider
Debug.Assert(SphereBound.PointInSphere(
APoint.transform.localPosition));

87

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

The Update() function performs the following four steps:

o Step 1: Set car sphere bound color to white, signifying that no
collision has occurred.

e Step 2: Update the SphereBound parameters with the current user-
specified values from the MyScript component on the Controller.

e Step 3: Calculate the distance between APoint and the center of the
SphereBound.

o Step 4: Perform the sphere inside-outside test by comparing the
computed distance to the radius of the SphereBound and update the
color of the bound accordingly. Notice that as listed in Figure 36,
the PointInSphere() function defined by the MySphereBound class
implements the functionality of steps 3 and 4.

Takeaway from This Example

It is important to emphasize that the functionality of a sphere collider is implemented
entirely in the Update() function and is independent of the MySphereBound class, for
example, by defining the center and radius as the following:

Vector3 BoundCenter; // Center of Sphere bound
float BoundRadius; // Radius of Sphere bound

The exact same functionality, except the visualization of the sphere bound, can be
implemented in the MyScript class without MySphereBound. Once again, make sure you
focus on and understand the mathematical concepts and their implementation and not
on how visualization is implemented.

Relevant mathematical concepts covered include

e Distance computation
e Sphere inside-outside test
Unity tools

o MySphereBound: A custom-defined class to support the visualization
of a bounding sphere

88

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

EXERCISE

Select the Controller object and toggle off the DrawCarBound flag. Run the game now and
observe that the car sphere bound is now hidden. Manipulate CheckerSphere such that it

is touching the car. Now, open the Console Window (label F of Figure 1-3) and look at the log
messages generated and notice that the inside condition is still computed and detected even
though the sphere bound is not being drawn. Next, stop the game, uncomment the following
line in the Update () function, and then restart the game:

TheCar.SetActive(!isInside); // what does this do?

Now, with the DrawCaxrBound flag being switched off, notice how the Car game object
appears and disappears depending on how far away the CheckerSphere is. Imagine the
CheckerSphere represents a projectile, then it would look as if the Car was being “hit” and
destroyed when the projectile is in close proximity. Having another object collide with or being
detected inside of a bounding sphere is a common reason for hiding (or destroying) objects

in a game.

Collision of Bounding Spheres

The sphere inside-outside test can be generalized to determine if two spheres are

colliding. Figures 3-7(a) and (b) show that the condition for collision between two

spheres can be determined by comparing the distance between their centers to the sum

of their radii. When the centers are further away than their radii summed, as illustrated

in Figure 3-7(a), there is no intersection. Otherwise, as shown in Figure 3-7(b), the two

spheres are colliding. Once again, this simple and straightforward computation results

in bounding spheres being one of the most commonly used bounding geometries in 3D

interactive graphical applications, including video games.

89

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

(a) No collision (d>r1+r2) (b) Collision (d<rl+r2)

Figure 3-7. Calculating the collision between two spheres

The Sphere Bound Intersections Example

This example demonstrates the generalization of the inside-outside test presented in the
previous example to detect intersections or collisions of two spheres. Figure 3-8 shows a
screenshot of running the EX_3_3_SphereBoundIntersections example.

Figure 3-8. Running the Sphere Bound Intersections example

90

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

The goals of this project are for you to
e Understand how to intersect bounding spheres

e Examine and understand the implementation of bounding sphere

intersection

Examine the Scene

Upon examining the scene, you will see that besides Controller, there are only two
objects in the scene to pay attention to: Car and Taxi. This example builds a bounding
sphere around each of these two vehicles and allows you to examine the details of
bounding sphere intersection implementation.

Analyze Controller MyScript Component

The MyScript component on the Controller presents seven variables, two sets of three
variables for each vehicle and then one for the both of them:

o Taxi
e TheTaxi: The reference to the Taxi game object

e TaxiBoundRadius: The radius of the sphere bounding the
Taxi object

o DrawTaxiBound: A toggle determining if the taxi bound should
be drawn

o Car
e TheCar: The reference to the Car game object

e (CarBoundRadius: The radius of the sphere bounding the
Car object

o DrawCarBound: A toggle determining if the car bound should
be drawn

e DistanceBetween: The computed distance between the center of
TheCar and the center of TheTaxi

91

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

Interact with the Example

Run the game and observe that each vehicle is almost completely bounded by its own
transparent sphere. These are the bounding spheres for the corresponding vehicles.
Manipulate the position of the vehicle, for example, move the Taxi in the positive
x-direction, and observe the bounding sphere color change when the vehicles are
sufficiently close to each other that the bounding spheres intersect or collide.

You can observe the effects of void space when the spheres trigger a collision event
(when the spheres change color) without the two vehicles coming into contact. Change
the bound radius of both the Taxi and the Car through their corresponding BoundRadius
variable and observe the trade-off between the size of your void space and the likelihood
of missing collisions.

Details of MyScript

Open MyScript in the IDE and observe the similarities of the code to those from the
MyScript of the EX 3 2 SphereBounds example. The only significant difference is in the
Update() function’s sphere intersection computation in Step 5.

void Update() {
// Step 1: Assume no intersection

// Step 2: Update the Taxi sphere bound
// Step 3: Update the Car sphere bound

// Step 4: Compute distance as magnitude of a Vector3
Vector3 diff = TaxiBound.Center - CarBound.Center;
DistanceBetween = diff.magnitude;
// Step 5: Testing and showing intersection status
bool hasIntersection =
DistanceBetween <= (TaxiBound.Radius + CarBound.Radius);
if (hasIntersection) {
Debug.Log("Intersect!! Distance:" + DistanceBetween);
TaxiBound.BoundColor = MySphereBound.CollisionColor;

CarBound.BoundColor = MySphereBound.CollisionColor;

92

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

// functionality is also supported by MySphereCollider
Debug.Assert(TaxiBound.SpheresIntersects(CarBound));

In this example, as illustrated in Figure 3-7, Step 5 is accomplished by comparing the
distance between two points to the sum of the two bounding sphere’s radii to determine
if a collision has occurred, instead of being compared to just one sphere’s radius as it was

in the Sphere Bounds example.

Takeaway from This Example

This example has been a straightforward generalization of the previous example in
detecting whether a given position is inside or outside a sphere. In the previous example,
you were able to detect if a position with a radius of zero entered a bounding sphere; in
this example, you generalized that position to now have a radius of any value.

Relevant mathematical concepts covered include

o Testing for collision or intersection between two spheres

EXERCISE

One way to remedy the potentially large void space shortcomings of bounding spheres is

by defining a hierarchy of bounds. For example, define two more SphereBounds inside the
given bound. These two SphereBounds should be located at the center of the front and back
wheels, each with a radius about one-third of the outer bound. Now, when a position is inside
the outer bound, you can perform the inside-outside test with the two inner bounds to decide if
a collision has occurred. Try implementing this functionality. In general, a game object can be
bounded by a hierarchy of bounding geometries, where the inner bounds will only be explored
if the outer bound test returns a favorable result. Such a hierarchy can significantly increase
the accuracy of collision approximation at a cost of increased computation and algorithmic
complexities.

93

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

The Unity BoundingSphere Class

Unity API documents the BoundingSphere class as
Describes a single bounding sphere for use by a CullingGroup.

You can think of a CullingGroup as a hierarchy of bounds. As it does not pertain
to the math in this book, exactly how to implement a CullingGroup or use Unity’s
BoundingSphere class will not be discussed. Instead, they are mentioned here merely
to verify that the bounding sphere is a widely used method for bounding objects.
Unity BoundingSphere defines the following properties (https://docs.unity3d.com/
ScriptReference/BoundingSphere.html):

o position: The center position of the BoundingSphere
o radius: The radius of the BoundingSphere

Notice how Unity’s BoundingSphere class doesn’t have any public methods.
The MySphereBound class that you used throughout this chapter has additional
functionality defined in the PointInSphere() and SpheresIntersects() functions.
Due to the simplicity of these functions, it appears that Unity assumes the users of the
BoundingSphere class will implement these tests themselves.

Summary

This chapter begins with reviewing how to apply the Pythagorean Theorem to compute
distances between positions in a 3D Cartesian Coordinate System and then generalizes
this knowledge to defining bounding spheres. Through working with the examples in
this chapter, you have learned how to apply distance computation and use spheres as
bounds in approximating collisions between geometrically complicated game objects.
Your understanding of these concepts was gained based on your interaction with actual
bounding spheres and improved upon by analyzing their implementation source code.

While straightforward to implement and widely used as a bounding geometry or
collider, the major drawback of bounding spheres is the potentially significant void space
within the bound. As you have observed in the case of cars, this issue of large void space
can be especially profound for rectangular or elongated objects, like books, cars, or

94

https://docs.unity3d.com/ScriptReference/BoundingSphere.html
https://docs.unity3d.com/ScriptReference/BoundingSphere.html

CHAPTER 3 DISTANCES AND BOUNDING SPHERES

animals. Unfortunately, as discussed in the previous chapter, all bounding volumes have
similar challenges in different degrees under different circumstances. The best ways to
overcome the void space problem are to match your object to the best fitted bound or to
use a hierarchy of bounds when one bound involves too much void space.

You have also learned more about the Unity Vector3 class. The next chapter will
cover vectors, the concept that the Vector3 class is designed to support, in much more
detail. The next chapter will build off what you have already seen and give you a greater
understanding and appreciation of the usefulness and power of vectors in video games
and computer graphics.

95

CHAPTER 4

Vectors

After completing this chapter, you will be able to
o Understand that a vector relates two positions to each other
o Recognize that all points in space are position vectors

o Comprehend that a vector encapsulates both a distance and a

direction

e Perform basic vector algebra to scale, normalize, add, and
subtract vectors

e Apply vectors to control the motions of game objects
¢ Implement simple game object behaviors like aiming and following

e Design and simulate simple external factors like wind conditions to
affect object motion

Introduction

So far, you have reviewed some of the most elementary and ground laying mathematical
concepts used in video game creation. These simple concepts that you have observed
and interacted with can be developed further into a powerful and widely used tool set.
This approach of introducing a simple concept and expanding it to solve real problems
when designing a video game will be continued in this chapter with vectors and the
fundamental algebra that accompanies them.

Vectors are entities that encapsulate point-to-point distance and direction. Vector
algebra is the mechanism, or rules, for manipulating these two entities. It allows the user
to, for example, increase the distance, change the direction, and combine, or detract,

97
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_4

https://doi.org/10.1007/978-1-4842-9885-5_4

CHAPTER 4 VECTORS

both the distance and direction at the same time. Vectors and their associated math
concepts allow precise control and accurate prediction of basic game object movements
as well as the support for many simple behaviors.

In many video games, object behaviors are often governed by their physical
proximity to other objects, such as non-player characters changing from their predefined
wandering pattern, for example, patrol path, and moving toward the approaching player.
To support this simple scenario, you must be able to program the behavior of following
a predefined route as well as the ability to detect and move toward the approaching
player or character. Vectors, with their encapsulation of both distances and directions,
are perfect for representing the motion of objects. Vector algebra complements this
encapsulation with the ability to determine the relationships between the in-motion
objects. Therefore, with just vectors and their accompanying mathematical operations,
you as a game developer, at any moment in your game, can determine exactly what game
behavior to invoke. Vectors and their associated algebra are one of the most fundamental
tools in developing video games.

This chapter introduces vectors as a tool for controlling motion and computing
spatial relationships between objects. In general, vectors are important for many, just
as significant, applications that are unrelated to object motions. This is especially true
for applications of vectors to fields outside of interactive graphical applications or video
games, for example, applying vectors in machine learning for data cluster analysis. Even
within the field of video games, vectors are important for other applications. Some of
these other applications include predicting the exact intersection position between a
motion path and a wall and computing the reflection direction after a collision, both of
which will be discussed in future chapters.

This chapter begins by reviewing what you have learned from Chapter 3, but now
with a focus on how vectors were used to perform the distance calculations you have
experimented with and observed. The chapter then analyzes the details of the vector
definition and the algebraic rules that govern the operations on vectors. Through these
discussions, you will learn that the vector definition is independent of positions and that
vectors can be scaled, normalized, and applied to represent velocities that define the
motions of objects. The formal definition of vector algebra, the addition and subtraction
operations, is presented toward the end of the chapter to conclude and verify the
knowledge gained throughout the chapter.

98

CHAPTER 4 VECTORS

Vectors: Relating Two Points

Vectors have been hinted at thus far in the book and even worked with in the previous
chapter when you needed to compute the distance between positions, but now you will
finally learn what they are and some of their applications. Please refer to Figure 4-1,
which is identical to Figure 3-2 and copied here for convenience.

Y-axis

Pl(*l))’la zl
)(_aw.s
&,hs

_,‘Xx =

dy =Yz =y

/ \ Py (g, y2,22)
. . g\/

Figure 4-1. Calculating the distance between any two positions: P, and P, (same
as Figure 3-2)

Recall that in order to compute the distance between two positions, P, and P,, the
distances measured along the major axes must be computed.

o Distance along X-Axis: d, = x, — x;
« Distance along Y-axis: d, =y, —
o Distance along Z-axis: d, =z, — z;

You learned that the distance, d, between these positions can be derived by applying
the Pythagorean Theorem twice to the two connecting right-angle triangles (see
Figure 3-1 if you need a refresher). The derived formula is simply the square root of the
summed squared distances measured along the major axes, which is listed as follows:

d=\(x,-) +H(z-z)
d=\d?+d}?+d’

99

CHAPTER 4 VECTORS

This formula can be interpreted as the distance that is necessary to move an object
from position P, to P,. This displacement is defined by the shortest traveling distant, d,
along the direction encoded by (d,, d,, d.). This interpretation is reflected closely in the
implementation of the Update() function in EX 3 1 MyScript, as copied and re-listed as
follows for reference:

void Update() {
// Update the sphere positions
Checker.transform.localPosition = CheckerPosition;
Stripe.transform.localPosition = StripePosition;

// Apply Pythagorean Theorem to compute distance
float dx = StripePosition.x - CheckerPosition.x;
float dy = StripePosition.y - CheckerPosition.y;
float dz = StripePosition.z - CheckerPosition.z;
DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);

// Compute the magnitude of a Vector3
Vector3 diff = StripePosition - CheckerPosition;
MagnitudeOfVector = diff.magnitude;

#region Display the dx, dy, and dz

Pay attention to the last two lines of code once more, specifically, the diff variable
which is the result of subtracting CheckerPosition (P,) from StripePosition (Py).
As you learned from this example in the last chapter, the magnitude operator returns
the distance, d, between the two positions. The same diff variable also defines the
direction from P, to P,. This entity, diff, that encodes those two pieces of information,
distance and direction, is a vector. The line of code that computes diff can be expressed
mathematically as follows:

Vi

b,-B

(xz —X1Y2 V12, _Zl)

=(d.d,.d.)

100

CHAPTER 4 VECTORS

Or simply, vector V, = (dx d, ,dz) . There are a few interesting observations that can
be made thus far:

e Symbol: The symbol for a vector, V, is shown as V , with an arrow
above the character V representing that it's a vector.

o Definition: A vector, V =P, - P, describes the distance and direction
to travel from P; to P,.

o Notation: In 3D space, a vector is represented by a tuple of three
floating-point values, signifying the displacements along each of
the corresponding major axes. This notation is identical to that of a
position in the Cartesian Coordinate System. In fact, given a tuple
with three values, (x, y, z), without any context, it is impossible to
differentiate between a position and a vector. This issue will be
examined in the next section of this chapter.

e Representation: As illustrated in Figure 4-2, graphically, a vector
V= (dx,dy,dz) is drawn as a line that begins from a position, the
tail, with an arrow pointing at the end position, the head, with the
displacements of d,, d,, and d, along the major axes. Note that in this
case, d, is a negative number because the y-displacement is in the
negative direction of the Y-axis.

e Operations: You have already experienced working with the vector
subtraction operator. This operator and others will be explored later
in this chapter.

101

CHAPTER 4 VECTORS

Y-axis

Z‘%:g

Figure 4-2. A vector with its head and tail

Position Vectors

For new learners of vectors, a common point of confusion is the position that defines a

vector. For example, since the vector

defines the distance and direction from position P, to P,, one may arrive at the wrong
assumption that the vector V,, is “defined at position P, You will begin the exploration
of vectors by analyzing this potentially confusing issue head-on and learn that vectors
are defined independent of any specific position and, in fact, can be applied to any
position.

Notice that the positions that define the vector Vd , P, and P,, are variables, indicating
that this formula is true for any point located at any position. In the special case where
P, islocated at the origin of the Cartesian Coordinate System,(0, 0, 0), then,

VPP

(1'y2 .VUZ)=(x2—0,y2—0,z2—0)

(d.d,d,)=(x,y,72,)

102

CHAPTER 4 VECTORS

which shows that P, can be interpreted as a vector (x,, y», z,) from the origin. In fact,
any position in the Cartesian Coordinate System at (x, y, z) can be interpreted as x-, y-,
and z-displacements measured along the three major axes from the origin position and
thus all positions in the Cartesian Coordinate System can be interpreted as vectors from
the origin. In this way, the position of a point is also referred to as a position vector. In
general, in the absence of a specific context, it is convenient to consider given tuples of
three floats, for example, (x, y, z), as a position vector.

Note The origin position (0, 0, 0) is a special position vector and is referred to as
the zero vector.

Following a Vector

Refer to Figure 4-1 again, recall that the detailed definition of vector V, is as follows;

Va

P,-B

(xz —XY2 = V1%, _Zl)

(d..d,.d.)

Remember that Vd defines the distance and direction from position P, to P,. A
subtle, but logical interpretation of this definition is that position P, can be arrived at if
an object begins at position P; and travels along the X-axis by d,, the Y-axis by d,, and the
Z-axis by d.. This interpretation can be described as “following a vector” from P, to P,
and can be verified mathematically as follows:

e P,x-position =x; + d, = x; + (X, — x;) = X,
o DPyy-position=y,+d,=y,+ (), — 1) = -

o P,z-position=z,+d,=z,+(z,— 2,) =2,

103

CHAPTER 4 VECTORS
Not surprisingly, “following a vector” is expressed as
P, =h+ Vd
:(xl +d,, y,+d,, z, +dz)
=(X, 4%, —X, B +Y,— Vi, Z+2,—2,)

= (xz Yo 'Zz)

Graphically, you can imagine placing the tail of V, atlocation P, and “follow the
vector” to the head of the vector, to position P,. This is how you can get from one position
to another when you don’t know the location of your next position, but you do have the
distant and direction (V,) to get there.

Note You have seen the vector subtraction operator where the corresponding
coordinate values are subtracted. Here you see vector addition operator, where the
corresponding coordinate values are added. The details of vector subtraction and
addition will be visited again later in this chapter.

Following a Vector from Different Positions

Following a vector, V,, from a given position, Pj, is also referred to as “applying the
vector V, at P,” Since both V, and P, are variables, the equation

is true and applicable for any vector and any position. This concept is analyzed in
detail in this section.

Figure 4-3 illustrates the alternative interpretations of the Cartesian Coordinate
position, P, and the associated tuple of three floating-point values, (x4 Y4 z4).

104

CHAPTER 4 VECTORS

Y-axis

Py(xg, Ya, 2a)

Figure 4-3. Positions, position vectors, and applying vectors at different positions

The top-right corner of Figure 4-3 illustrates that P, is a position in 3D space located
at distances x,, y,;, and z, from the origin. In this way, (x, y, z4) is the position vector that
identifies the location of the point P,. The set of two spheres and the associated arrows
on the left side of Figure 4-3 illustrate interpreting the three-float tuple, (x,, y, z4), as
the vector V, . If you apply V, to position P, you will arrive at position P,. If you apply
Vd to position P,, then you will arrive at P,. In this case, you know that the Cartesian
Coordinate positions for P, and P, are as follows:

Plz(xlrylrzl)

Pu =(xa’yafza)

Then, the Cartesian Coordinate positions for P, and P, must be as follows:

P=P+V,=(x,+X,,)1+ Yo 21+ 24) = (X2, V2 22)

Pb =Pa +Vd =(xu+xdr)’a+J’d, Za"'zd):(xblybrzb)

These equations are true for any x-, y-, or z-values. This is to say that P, (and P,) can
be located at any position in the 3D Cartesian Coordinate System. In this way, a vector
can indeed be applied to any position. In all cases, “following a vector” is simply placing
the tail of the vector at the starting position, with the head of the vector always being
located at the destination position.

105

CHAPTER 4 VECTORS

Recall that when P, is located at the origin, or when

P =(x,, y,2)=(0,0,0)
then

1)2 :1)1’_'—‘7[1 :(O+xd1 0+ydr 0+Zd):(xd1ydrzd):Pd

Observe that when P, islocated at the origin, then P, is a coordinate position.
This means that the associated tuple of three floating-point numbers, (x,, y,, z,), can
be interpreted as the vector V, being applied to the origin, (0,0, 0). This is true for any
coordinate position. For example, the tuple of three floats, (x;, ,, z;), that defines the
position P, also describes the vector V, being applied to the origin. The reverse is also
true that a given vector, V, can be interpreted as the Cartesian Coordinate position, P,
or a position vector. Without sufficient contextual information, such as the tail position,
vectors are always depicted and visualized as a line segment with their tail located at
the origin.

If you are given a three valued tuple, (x, y, z), without context, you can assume it
is a position vector. If you are given a vector, V, without context, you can assume it is
a coordinate position (that it starts from the origin). The next example will cover the
details of position vectors and help you understand working with a coordinate position
and interpreting that position as a position vector.

The Position Vectors Example

The focus of this example is to allow you to visualize a position vector and then to apply
that vector at different locations. This example allows you to adjust, examine, and

verify that vectors are defined independent of any given position. Figure 4-4 shows a
screenshot of running the EX_4 1 PositionVectors scene from the Chapter-4-Vectors
project.

106

CHAPTER 4 VECTORS

Figure 4-4. Running the Position Vectors example

The goals of this example are for you to

Understand the relationship between positions, position vectors, and
applying vectors at positions

Manipulate a position and observe the position vector being applied
at a different location

Manipulate two positions to define a vector and observe the vector as
a position vector

Examine the implementation and application of vectors

Increase familiarity with the Vector3 class

Examine the Scene

Take alook at the EX_4_1 PositionVectors scene and observe the predefined game

objects in the Hierarchy Window. There you will find the Controller and six other game

objects that will assist in interpreting vectors from two alternative perspectives. These

game objects are P1, P2, Pd, Pi, Pj, and Pe. This example will allow you to manipulate the

head position of a position vector and to observe how the defined vector can be applied

107

CHAPTER 4 VECTORS

to any position. This example will also allow you to manipulate the positions of two
points, observe how those two positions can define a vector, and how the defined vector

can be shown as a position vector at the origin.

Analyze Controller MyScript Component

The MyScript component on the Controller presents nine variables that you can
interact with. Three of these variables are toggle switches to control what you want to
show and hide in the scene and the other six variables can be categorized into two sets of

three variables each.

Position vector:

o P1: The reference to the P1 game object
o P2: The reference to the P2 game object
e Pd: The reference to the Pd game object
Vector defined by two points:

e Pi:The reference to the Pi game object
e Pj: The reference to the Pj game object
o Pe: The reference to the Pe game object

Toggles:

o DrawAxisFrame: A toggle determining if the axis frame should

be drawn

o DrawPositionAsVector: A toggle determining if a position should

be drawn as a vector

e DrawVectorAsPosition: A toggle determining if a vector should

be drawn as a position

Note For convenience, whenever appropriate, the rest of the examples in
this book will assign identical names to the game objects in the scene and the

corresponding reference variables in MyScript.

108

CHAPTER 4 VECTORS

Interact with the Example

Click the Play Button to run the example. Notice that by default, the
DrawVectorAsPosition toggle is set to off and the corresponding game objects, Pi, Pj,
and Pe, are not displayed. This is so you can focus on the position vector defined by Pd
and apply it at position P1. Select Controller and ensure that the DrawAxisFrame is on
to observe the axis frame in the scene. You only need to show this axis frame when you
want to verify the location of the origin and the directions of the major axes. Feel free to
hide the axis frame and to show it again whenever you need a reference.

Position Vector

First, verify that Pi, Pj, and Pe are not displayed by selecting these objects in the
Hierarchy Window and confirming that they are inactive (the check box next to their
name in the Inspector Window should be unchecked). Then, select P2 and try to
manipulate its position. You will notice that whenever you change a value in P2’s
transform component in the Inspector Window, it reverts back to its old value. This is
because P2’s position is under the control of MyScript. Now select and manipulate the
position of Pd and verify the following:

o Notice the thin red, green, and blue lines connecting from the origin
to position Pd. Switch the DrawAxisFrame on and off to verify that
these three lines are parallel to the corresponding X-, Y-, and Z-axes.
The lengths of these three lines are x,, y,, and z,, which are the
corresponding values of the coordinate position of Pd.

o The position vector is the black vector with its tail at the origin and
its head at the current Pd location. This vector represents interpreting
the coordinate values of Pd, (x, y, z.), as the x-, y-, and z-components
of vector V.

e Move Pd to a position close to the origin, for example, (0.1,0.1,0.1), and
notice that the black vector is now very small and difficult to observe.
When Pd is moved to exactly the origin, the black vector becomes
the zero vector and vanishes. The zero vector is a special case that
describes a zero displacement. As you will learn, the definition of many
vector operations specifically excludes the zero vector. These will be
pointed out as you learn about them in future sections and chapters.

109

CHAPTER 4 VECTORS

You have observed displaying a position as a position vector (a vector from the
origin to the position) which demonstrates that all positions in the Cartesian Coordinate
System can be interpreted as position vectors. Now, select and manipulate the position
of P1 and notice the following:

o Independent of the location of P1, the white vector is always identical
to the black position vector where they are parallel and have the
same length. The only difference between these vectors is that the
white vector has its tail at P1 and not the origin. You can verify this
by observing that the thin red, green, and blues lines that connect P1
to P2 are the same length as the thin red, green, and blues lines that
connect the origin to Pd.

o Position P2 is always at the head of the white vector. In this case, P2 is
computed as follows:

Through the application of a position vector at an arbitrary position (P1), you have
observed that the position vector and the applied vector are indeed identical and
that the only difference between them is that they are located, or applied, at different
positions. This illustrates that vectors are independent of positions, meaning that once
avector is defined it can be applied to any position. It also demonstrates that a vector
absent of any position information should be, and are, interpreted as position vectors—
vectors originating from the origin. This part of the example has shown that a position in
3D space is simply a vector from the origin to that position.

Vector Defined by Two Points

Now, select the Controller, toggle off DrawPositionAsVector, and switch on
DrawVectorAsPosition. Verify that P1, P2, and Pd are hidden by selecting them in the
Hierarchy Window. Next, select and try to change the position of Pe. Note that just like
with P2, Pe’s position is being set by MyScript and thus cannot be changed from the
Inspection Window. Now, select and change the positions of Pi and Pj and notice the
following:

o The pinkvector, V, =(x,,y,,2,), is defined by the positions Pi (x; y; z;)
and Pj (x;,y, z;), where Ve =P P, or

110

CHAPTER 4 VECTORS

e X,=X;— x; which is the displacement along the X-axis (the length
of the thin red line).

e Y.=Y;— ¥, which is the displacement along the Y-axis (the length
of the thin green line).

e z,=z;—z;, which is the displacement along the Z-axis (the length
of the thin blue line).

o Independent of the locations of Pi and Pj, the pink and purple
vectors are identical, having the same length, and are parallel to each
other (they have same direction). The only difference between them
is the location of their tail positions. The pink vector has a tail located
at position Pi and the purple vector’s tail is located at the origin.

e The purple vector’s head position is always at Pe (x,, y,, z.). Note how
the coordinate component values are the same values as that of V,,
indicating that Pe position is the position vector V.

You have observed that any vector, V= (xe VerZ,) , is equivalent to the coordinate

e

position P, (x,, ., z.) and can be displayed as a position vector with tail at the origin.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

// For visualizing the two vectors

public bool DrawAxisFrame = true; // Draw or Hide the AxisFrame
public bool DrawPositionAsVector = true;

public bool DrawVectorAsPosition = true;

private MyVector ShowVd; // From Origin to Pd
private MyVector ShowVdAtP1; // Show Vd at P1
private MyVector ShowVe; // From Origin to Pe

private MyVector ShowVeAtPi; // Ve from Pi to Pj

// Support position Pd as a vector from P1 to P2
public GameObject P1; // Position P1

public GameObject P2; // Position P2

public GameObject Pd; // Position vector: Pd

111

CHAPTER 4 VECTORS

// Support vector defined by Pi to Pj, and show as Pe
public GameObject Pi; // Position Pi

public GameObject Pj; // Position Pj

public GameObject Pe; // Position vector: Pe

All of the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component. The four private variables of MyVector data type are
defined to support the visualization of the vectors as you have observed previously:

e ShowVd: Used for visualizing the position vector of Pd (the
black vector)

o ShowVdAtP1: Used for visualizing the vector at position P1 (the
white vector)

o ShowVe: Used for visualizing the position vector of Pe (the
purple vector)

o ShowVeAtPi: Used for visualizing the vector at position Pi (the
pink vector)

As in the case of the previous custom classes such as MyBoxBound and
MySphereBound, MyVector is defined specifically for visualizing a vector and is irrelevant
for understanding the math being discussed in this book. For example, you can always
run the examples with all code concerning the MyVector data type removed, but the
visualization of these vectors (black, white, pink, etc.) will no longer exist. You can see
a screenshot of the MyVector class in Figure 4-5, which shows that MyVector is indeed
defined for the drawing of a vector.

112

CHAPTER 4 VECTORS

public class MyVector

{

E ~ivate functionality for drawing "-..;:[:;‘:r‘t'i

E public MyVector(). .| // Constructor

i\ public fleat Magnitude . . | // Size of the vector

: public Vector3 Direction[;f // Direction of the vector

1 public Vector3 UectorAtL___ // The location to draw the vector
: // Drawing Support

! public beol DrawVector;___ // Draw or Hide the interval

E public bool DrawVectorComponents |.. |

i public Color VectorColorL_.Z // Color to draw

: // A vector from src to dst

: public veid VectorFromTo(Vector3 src, Vector3 dst)L._

E // A vector at src, with direction: dir and magnitude: len

i\ public void VectorAtDirlength(Vector3 pos, Vector3 dir, fleat 1en)l.:
}

Figure 4-5. The MyVector class

The Start() function for MyScript is listed as follows:

Void Start() {
Debug.Assert(P1 != null); // Ensure proper init
Debug.Assert(P2 != null);
Debug.Assert(Pd != null);
Debug.Assert(Pi != null);
Debug.Assert(Pj != null);
Debug.Assert(Pe != null);

// To support show position and vector at P1
ShowVd = new MyVector {

VectorColor = Color.black,

VectorAt = Vector3.zero // Vd from origin
};
ShowVdAtP1 = new MyVector {

VectorColor = new Color(0.9f, 0.9f, 0.9f)

113

CHAPTER 4 VECTORS

// To support show vector from Pi to Pj as position vector
ShowVe = new MyVector {
VectorColor = new Color(0.2f, 0.0f, 0.2f),
VectorAt = Vector3.zero // Ve from origin
};
ShowVeAtPi = new MyVector() {
VectorColor = new Color(0.9f, 0.2f, 0.9f)

};

The Start() function verifies proper public variable setup in the Hierarchy Window
and instantiates and initializes the private MyVector variables to their respective colors.
Note that ShowVd and ShowVe are defined to display position vectors and are therefore
initialized to show the vectors starting from the origin (Vector3.zero). The Update()
function is listed as follows:

Void Update()

{
Visualization on/off: show or hide to avoid cluttering
Position Vector: Show Pd as a vector at P1
Vector from two points: Show Ve as the position Pe

}

The Update() function is divided into three separate #region areas according to the
logic they perform and for readability. The details of these regions are explained in the
next three sections.

Region: Visualization on/off

The code in this region, listed as follows, simply sets the active flag on the relevant
game objects for displaying or hiding whichever game objects the user toggles via the
MyScript component on the Controller:

#region Visualization on/off: show or hide to avoid cluttering
AxisFrame.ShowAxisFrame = DrawAxisFrame; // Draw/Hide Axis Frame
P1.SetActive(DrawPositionAsVector); // Position as vector
P2.SetActive(DrawPositionAsVector);

114

CHAPTER 4 VECTORS

Pd.SetActive(DrawPositionAsVector);
Pi.SetActive(DrawVectorAsPosition); // Vector as position
Pj.SetActive(DrawVectorAsPosition);
Pe.SetActive(DrawVectorAsPosition);

ShowVdAtP1.DrawVector = DrawPositionAsVector; // Draw or hide
ShowVd.DrawVector = DrawPositionAsVector;
ShowVeAtPi.DrawVector = DrawVectorAsPosition;
ShowVe.DrawVector = DrawVectorAsPosition;

#endregion

Region: Position Vector

The code in this region, listed as follows, is only active when the DrawPositionAsVector
toggle is set to true:

#iregion Position Vector: Show Pd as a vector at P1
if (DrawPositionAsVector) {
// Use position of Pd as position vector
Vector3 vectorVd = Pd.transform.localPosition;

// Step 1: take care of visualization for Vd

ShowVd.Direction = vectorVd;
ShowVd.Magnitude = vectorVd.magnitude;
// apply vd at P1

ShowVdAtP1.VectorAt = P1.transform.localPosition;
ShowVdAtP1.Magnitude = vectorVd.magnitude;
ShowVdAtP1.Direction = vectorVd;

// Step 2: demonstrate P2 is indeed Vd away from P1
P2.transform.localPosition =
P1.transform.localPosition + vectorVd;

}

#endregion

In this case, as illustrated by the bolded font in the code listing, the position of Pd,
Pd.transform.localPosition, is interpreted as a vector, vectorVd, or V,.In Step 1,
vectorVd is drawn via the ShowVd variable. Recall that ShowVd is initialized to be drawn at

115

CHAPTER 4 VECTORS

the origin. For this reason, ShowVd is simply drawing vectorVd, or the coordinate values
of Vd, as a position vector. In order to show the same vector at position P1, the magnitude
(length) and direction of ShowVdAtP1 are assigned the corresponding values from
vectorVd and are then displayed at the location of P1, P1.transform.localPosition,
instead of the origin like that of vectorVd. In Step 2, once again shown in bolded font,
P2’s position is set as P, = P, +V, which will always place P2 at the head of V,. This
repeated updating of P2’s position is the reason why when you interacted with this
example, you were not able to move the P2 game object.

In the Cartesian Coordinate System, positions are defined by three-float tuples. So
far, this example shows that the same three-float tuple can be interpreted as a vector.
This alternative interpretation allows vectors to be used as a tool for describing physical
behaviors, like object movements. This topic will be covered in detail in a later section of
this chapter.

Region: Vector from Two Points

The code in this region, listed as follows, is only active when the DrawVectorAsPosition
toggle is set to true:

#region Vector from two points: Show Ve as the position Pe
if (DrawVectorAsPosition) {
// Use from Pi to Pj as vector for Ve
Vector3 vectorVe = Pj.transform.localPosition -
Pi.transform.localPosition;

// Step 1: Take care of visualization

// for Ve: from Pi to Pj

ShowVeAtPi.VectorFromTo(Pi.transform.localPosition,
Pj.transform.localPosition);

// Show as Ve at the origin

ShowVe.Direction = vectorVe;

ShowVe.Magnitude = vectorVe.magnitude;

// Step 2: demonstrate Pe is indeed Ve away from the origin
Pe.transform.localPosition = vectorVe;

}

#endregion

116

CHAPTER 4 VECTORS

As illustrated by the bolded font in the code listing, the vector vectorVe, or V, , is
computed based on the positions of Pi and Pj according to the formula

In Step 1, ShowVeAtP1i is set to be drawn as a vector between Pi and Pj’s positions.
ShowVe’s direction and magnitude are assigned by the corresponding values of vectorVe.
Recall that the draw position of ShowVe was initialized to the origin, and thus ShowVe
is showing vectorVe as a position vector. In Step 2, again shown in bolded font, the
position of Pe is set to the corresponding x-, y-, and z-component values of vectorVe,
literary showing vectorVe as a coordinate position. Similar to the case of P2’s position, in
this case, Pe is continuously updated by the script and thus the user has no control over
the position of Pe while the scene is running.

In general, the ability to interpret a given vector as a position allows all vectors to
be plotted as position vectors from the origin, supporting straightforward visualization
and comparisons across multiple vectors. You have completed the cycle of interpreting
positions as vectors and now vectors as positions. This entire discussion is designed to
demonstrate that once defined, a vector is an entity that can be analyzed and applied at
any position because its definition is independent of any specific position.

Note The vector from P1i to Pj is computed by subtracting Pi from Pj:

V,=P P,

e J

The order of subtraction is important. Reversing the subtraction order, P, — P,
computes a vector from Pj to P1i. Vector subtraction will be discussed in detail
later in this chapter.

Takeaway from This Example

This example presents you with two ways to define, manipulate, and interpret a vector.
The first method is based on initializing a starting point (e.g., the origin) and then
selecting the ending position. The second method is based on defining a vector between

117

CHAPTER 4 VECTORS

two explicitly controlled positions. In all interactions, all four vectors describe how to
move from one position to another: from origin to Pd (black), from P1 to P2 (white), from
Pi to Pj (pink), and from origin to Pe (purple).

You have seen that it does not matter where a vector is applied (or drawn), if the
encoded distances and direction information are the same, the underlying vectors
are the same. You have also witnessed that a vector can be treated as a position, and a
position can be treated as a vector.

Relevant mathematical concepts covered include

e Avector describes the movement from one position to another.

o The vector between two given positions is defined by the differences
between the corresponding coordinate values in the x-, y-, and
Z-components.

e The Cartesian Coordinate values for any position P (x, y, z) describes
the displacements from the origin to the position P. For this reason,
the (x, y, z) values of any position can be interpreted as a vector
between the origin and the position. This interpretation of the
coordinate position is referred to as position vector.

o All positions in the Cartesian Coordinate system can be interpreted

as position vectors.

o The zero vector is the position vector of the origin. This vector
describes a displacement with zero distance, or a position moving
back onto itself. This is a special vector where many vector operations
cannot operate or do not work on the zero vector.

e Vectors are independent of positions; thus, once defined, a vector can
be applied to any position.

o Inthe absence of position information, vectors are often drawn as
a position vector, a line segment from the origin to the coordinate
position defined by the x-, y-, and z-component values of that vector.

Unity tools
e MyVector: A custom-defined class to support the visualization of vectors

e AxisFrame.ShowAxisFrame: A Boolean flag to control the showing of
the Cartesian Coordinate origin and axes’ directions

118

CHAPTER 4 VECTORS

Note The Unity Vector3 data type closely encapsulates the concept of a vector.
From the code listing in the Update() function, you can observe the power and
convenience of working with proper data abstraction. With the Unity Vector3
abstraction, you can avoid the nuisance of retyping similar code for individual
values of each major axis when computing distances between positions, or when
following a vector. For the rest of this book, with very few exceptions, such as
when analyzing the detailed definitions of vector operations, you will work with the
Vector3 class and will not work with the values of the individual coordinate axes.

EXERCISES

V, and V,
Note that V, is created via a single position being interpreted as a position vector, while V, is
created by subtracting two positions explicitly. Nevertheless, both methods can accomplish the
creation of the same vector. For example, move the position of Pi to overlap P1. This can be
accomplished by running the game, selecting P1 in the Hierarchy Window, taking note of the
position values of the Transform component of P1, and copying these values to be the position
values of Pi’s Transform component. You can now adjust P, or Pd, to try to align V, with V.

You can take advantage of the observation that both position vector and the difference
between two points can create the same vector. Edit MyScript and remove Pe, Pi, and Pj
variables. Instead, include a new Boolean flag CreateWithPositionVector which will
allow P1, P2, and Pd to behave as Pe, Pi, and Pj did.

e When CreateWithPositionVector is true, let the user manipulate Pd to
create the vector and show the vector at P1. In this case, P2 is computed based
on the vector defined and the user will not be able to adjust P2.

e When CreateWithPositionVector is false, let the user manipulate both
P1 and P2 and use the difference between these two points to compute the
position vector to Pd. In this case, Pd is computed based on the vector defined
and the user will not be able to adjust Pd.

119

CHAPTER 4 VECTORS

Note the “two ways to define a vector” logic is similar to that of the “two ways to define

a bounding box.” You can refer to the Update() function of the EX 2 2 BoxBounds _
IntervalsIn3D scene of Chapter-2-Examples project for a template of the control logic
required for this exercise.

A vector describes the movement from one position to another; it encapsulates both

the distance and the direction to travel. You have seen the distance being referred to as
“magnitude”; it is also commonly referred to as the “size” or “length” of the vector. Edit
MyScript to print the size of each of the vectors, either via public float variables or via
Debug. Log() function calls. Verify that both ShowVd and ShowVdAtP1 and ShowVe and
ShowVeAtP1i are indeed two sets of vectors with identical lengths.

Manipulate the two vectors in this example such that V, =(2,0,0) and V, =(0,2,0) . Notice
that in this case, V, and V, have the same lengths of 2.0. However, the two vectors are
pointing toward drastically different directions: toward positive X-axis and Y-axis. Notice that it
is possible to define two vectors with identical length but with very different directions.

You can verify two vectors are the same by printing out the values of the x-, y-, and
z-components. Edit MyScript to print the coordinate values of ShowVe and ShowVeAtPi
to verify that these two vectors are indeed exactly the same. With previous exercises on
vector size, the obvious question is, “is it possible to manipulate the two vectors such that
they are pointing in the same direction but with different lengths?” The short answer is yes.
For example, consider vectors, (1,0,0) and (2,0, 0). Both are pointing toward the positive
x-direction, but the lengths are 1 and 2. The general consideration for this question is slightly
more involved and is the topic for the next section.

120

CHAPTER 4 VECTORS

Vector Algebra: Scaling

A vector encodes both a distance and a direction, describing how an object can move
from position P, (xy,y,,z,), in a straight line, and arrive at P, (x,, y», 2,). You know that a
vector, Va , that describes this movement can be defined as follows:

(xz — XY, V12, _Zl)

(xu ’ya ’Za)
The distance, d, between the two points is referred to as the size (or magnitude, or

length) of the vector and is labeled with the symbol V,. The size of a vector is defined as
follows:

_ [, 2 2 2
- xa +ya +Za

The size of a vector can be scaled. For example, if there is a

V.,

d:

vector V, =(x,,y,,2,)=(5x%,,5y,,52,), then
AR
= (5, +(53,) +(52,)
= \/25(va +y,0+ zaz)

1%

a

=5

Note that in general, the observed relationship is true for any floating-point number,
s. That s, if

Va :(xa'ya’za)

121

CHAPTER 4 VECTORS

and

Vb = (qu ’syu ’Sza)
then

[V]=s[v.

The length or magnitude of V, is s times that of V, . In this case, V, is described as
“scaling V, by a factor s,” or simply, “scaling V, by s,” and is expressed as

V,=sV,

Note While it is always true that if v, =sv, , then [V,]|=s[V.|. The reverse is not
always true. For example, if V, =(1,0,0) and V, =(0,s,0), then in this case, it is true
that [V, =s|V.|, but v, =sv, is certainly not true.

_ _ _ I
Figure 4-6 illustrates an example where V, =(x,,0,0), V, =1.5V,,and V, =—V, .
X

a
a

, P;z i (x4,0,0) N
Vp T (1.5x,,0,0)
&z s
T
V. =(1,0,0)

Figure 4-6. Scaling of a vector that is in the x-direction

Referring to Figure 4-6, you now know that

¢ V,=15V,=(15x,,0,0)

° _c :i‘_/:a :(ixa'o’OJ:(l’O’o)
X, X

a

122

CHAPTER 4 VECTORS

Additionally, you know when x, is a positive number, the lengths of the three vectors
in Figure 4-6 are as follows:

v,

a

2 2 2
=yx,” +0°+0" =x,

V,|=157,| =15x,

[v

1~
.

Lastly, and very importantly, based on your knowledge of the Cartesian Coordinate
System and so far in this chapter, you know that although the vectors in Figure 4-6 have
different lengths, the three vectors overlap perfectly and are all pointing in the positive
X-axis direction. This overlap shows that scaling a vector only changes the distance that

it encodes and does not affect the direction. It turns out, as illustrated in Figure 4-7, this
statement is true for any direction.

7

IVsll=15]7.|

o7

15

= =
/ﬁv{.” =1

Figure 4-7. Scaling of an arbitrary vector

Figure 4-7 shows three vectors with the same lengths as of those in Figure 4-6:

Ve

¢ Vector V, with magnitude

Ve

e Vector V, =1.5V, with magnitude 1.5

_ 1
e Vector V., = 7‘/“ with magnitude of 1.0

a

123

CHAPTER 4 VECTORS

Notice that in exactly the same manner as the vectors in the X-axis direction
(Figure 4-6), these three vectors all point in the same direction as each other. In all
cases, scaling a vector only affects its size and not the direction. In general, scaling a
vector by any positive number will result in a vector that is in the same direction, while
scaling by a negative number will flip the direction of that vector. This means when a
positive x-direction vector is scaled by a negative value, the resulting vector will point
in the negative x-direction. Scaling by a negative number is left as an exercise for you to
complete in the next example.

Similar to how multiplying scaling factors to the number zero will produce a result of

zero, scaling a zero vector has no effect and will result in the same zero vector.

Normalization of Vectors

Vector V, in Figure 4-7 is the result of scaling an existing vector by the inverse of the
length of that vector. This is interesting because with such a specific scaling factor,

the magnitude of V, is guaranteed to be 1. As you will see frequently in the rest of this
book, and is true in general, vectors with a magnitude of 1 are important as they enable
convenient computations in many situations.

A vector with a magnitude of 1 is so important that it has its own symbol, V , which
is the same as the original symbol for a vector, but replaces the arrow above the “V” with
a cap. This vector has a special name, normalized vector or unit vector. The process of
computing a normalized vector is referred to as vector normalization. In general, it is

always the case that for any nonzero vector, V = (x,y,z) :

e Magnitude of vector V
||V||=\/x2 +y* +2°

e Normalization of vector V

X y z

=))
\/xz +y° +2° \/x2+y2+z2 \/x2+y2+zz

124

CHAPTER 4 VECTORS

Notice that normalization is a division by length. Recall that a zero vector has a
length of zero, and from basic algebra, that division by zero is an undefined operation.
This means that the zero vector cannot be normalized. This is the first case you
encounter, but certainly not the last, that a vector operation is not applicable to the
Zero vector.

Note The vector normalization process involves a division by a square root.
Though with modern hardware this computation cost is becoming less of a
concern, it is still a good practice to pay attention to the need for normalization

in general. For example, the Unity Vector3 class defines the sqrMagnitude
property to return the squared of a vector length, ||‘72|| , Which can be used when
information on vector length is needed, but not normalization. For example, when
performing size comparisons, for example, determining which vector is longer.

Direction of Vectors

The magnitude of a vector can be simply and effectively conveyed by a number. In
contrast, the direction of a vector must be expressed in relation to a “frame of reference.”
For example, “in the x-direction” uses the X-axis as the frame of reference. In the 3D
Cartesian Coordinate System, a direction can be described by using the X-, Y-, and
Z-axes as references. Such a description involves a reference direction and a rotation.
For example, a direction that is defined by a rotation of the Y-axis about the Z-axis in the
X-axis direction by 15 degrees. If you find that description difficult to follow, you are not
alone. Fortunately, there are alternatives to describing the direction of a vector.

Recall that as illustrated in Figure 4-7, the direction of a vector does not change when
the vector is scaled. This means that a unit vector uniquely identifies the direction of all
vectors with different lengths in that direction. For simplicity, both representationally
and computationally, this book chooses to identify the direction of a vector by referring
to its unit vector. For example, for a given vector, V , this book refers to its magnitude as
||17|| and its direction as V . In the rest of this book, you will encounter phrases like “the
direction of V ” or “the direction of V ”; both refer to the direction of the vector V .

Since the normalized zero vector is undefined, a zero vector has no direction.

125

CHAPTER 4 VECTORS

The Vector Scaling and Normalization Example

This example demonstrates the results of scaling a vector and defining a vector with
separate input for magnitude and direction. It allows you to adjust and examine the
effects of changing the vector scaling factor, as well as control the creation of a vector
via specifying its magnitude and direction. Figure 4-8 shows a screenshot of running the

EX_4_2 VectorScaling scene from the Chapter-4-Vectors project.

Figure 4-8. Running the Vector Scaling example

The goals of this example are for you to
e Interact with and examine the effects of scaling vectors

o Experience defining vectors based on specifying their magnitude and
direction

e Understand the effects of separately changing the magnitude and
direction of a vector

o Examine the implementation of working with vectors

126

CHAPTER 4 VECTORS

Examine the Scene

Take a look at the Example_4_ 2 VectorScaling scene and observe, besides
Controller, the three predefined game objects in the Hierarchy Window: P1, P2, and
SphereAtOrigin. As in the previous example, P1 and P2 together will allow you to define
avector, V, . The SphereAtOrigin is a transparent sphere located at the origin, where
you will create a position vector in the same direction as ‘}a , with a magnitude that just
touches the surface of this transparent sphere.

Analyze Controller MyScript Component

The MyScript component on the Controller shows ten variables that can be categorized
into three groups:

e Drawing control: Allows you to show or hide different information

relevant to a vector

o DrawAxisFrame: Shows or hides the Cartesian Coordinate origin
and reference axis frame.

o DrawScaledVector: Shows or hides the scaled version of V.
o DrawUnitVector: Shows or hides the unit vector Va.

e DrawPositionVector: Shows or hides the position vector that
touches the SphereAtOrigin surface.

o DrawVectorComponents: Shows or hides the x-, y-, and
z-displacements of each vector. Notice that for clarity,
when displayed, the position vector always draws its vector
components.

« Definition of V, : Defines and allows manipulation of the vector V,
e P1: The reference to the P1 game object
o P2: The reference to the P2 game object

« ScalingFactor: The factor to scale the vector V, by

127

CHAPTER 4 VECTORS
o Definition of a position vector: Defines and allows manipulation of
the position vector

e SphereAtOrigin: The reference to the SphereAtOrigin
game object

o SphereRadius: The radius of the SphereAtOrigin sphere and the
length of the position vector that will be parallel to ‘}a

Interact with the Example

Click the Play Button to run the example. Notice that by default, except DrawAxisFrame,
all vector drawing toggles are off so you should only be observing the axis frame

and vector V,, the vector being drawn between positions P1 and P2. Now select the
Controller and get ready to toggle drawing options and observe the following.

Scaled Vector

Toggle on the drawing option for DrawScaledVector to observe a slightly shorter pink
vector in the same direction as V, . Now adjust the ScalingFactor variable and watch as
the pink vector changes size. This pink vector is displaying the vector V,

V. = ScalingFactor <V,

Notice three interesting intervals:

o 0< ScalingFactor < 1: V, has a length shorter than V, and is thus
displayed as a vector embedded in V.

e ScalingFactor > 1: V, has a magnitude larger than V, and is thus a
vector that extends beyond V, .

o ScalingFactor <0: V, points in the reversed direction of V, . Note that
the two vectors are drawn at the same position, P1, and that the two
vectors do indeed extend in the exact opposite directions.

128

CHAPTER 4 VECTORS

Normalized or Unit Vector

Toggle on the drawing option for DrawUnitVector to observe a short white vector
embedded in V,. Thisis V, normalized, or Vu . Recall that Va is computed by scaling
V, by the inverse of its magnitude, ﬁ .Initially, V, has a magnitude of 5, so if you

\%4

adjust ScalingFactor to the value of éz 0.2, you will observe that the pink (V,) and

white vectors overlap exactly. This overlap will stop once you adjust the ScalingFactor.
Remember, V, has a length that is ScalingFactor times the current ||V, ||, yet the size of
‘}a is always 1.

Manipulate and set the positions of P1 and P2 to be identical, for example, by
copying values of P1’s Transform component to that of P2. Now, notice error messages
in the Console Window about NaN and that the normalized white vector now points
in an arbitrary direction. When positions of P1 and P2 are identical, V, becomes the
zero vector and Va is undefined. Later, when you examine the implementation, you
will notice that the zero vector condition is not checked. Here, you are observing the
results of a common coding error: performing a vector operation without verifying if the
operation is defined for the given vector. A responsible developer should always invoke

precondition checking before performing the corresponding vector operations.

Position Vector from Direction and Magnitude

Toggle on the drawing option for DrawPositionVector to observe a navy-blue position
vector, Vp , that is parallel to Va and has a magnitude that is defined by the SphereRadius
variable:

V, = SphereRadius x vV,

You can verify this by adjusting SphereRadius and noting that the SphereAtOrigin
game object (the transparent sphere) changes size, and Vp , while maintaining the
direction of V, adjusts its magnitude such that its tip touches the sphere surface. You
can toggle off and hide the axis frame via DrawAxisFrame to observe the thin red, green,
and blue vector components of Vp , verifying that this vector does indeed just touch the
sphere surface, indicating that the length of the vector is indeed the radius of the sphere.

129

CHAPTER 4 VECTORS

This interaction shows that you can create a direction and a magnitude separately
and combine them to create a desired vector. Note that since Vu is a unit vector, the
size of Vp , Or ”Vp”, is simply SphereRadius. An important observation is that if a vector
is defined by a size and a unit vector, then this size is the magnitude property of that
vector. In the next section, you will see how this simple observation can be applied to
implement the behavior of an object following a target.

Summary of Interaction

Four vectors are created and examined in this example:
o Va : Vector between two user control positions, P1 and P2.

o V. =ScalingFactorxV, : A vector in the same or opposite
direction as V,.

A 1 — -
o« V,= Tl xV, : The normalized vector of V, ; since this vector is always

a

scaled by the inverse of its magnitude, it has a constant size of 1.

. Vp = SphereRadius x Vu : A constructed vector based on a size and a
direction.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// Toggle of what to draw

public bool DrawAxisFrame = false;

public bool DrawScaledVector = false;
public bool DrawUnitVector = false;
public bool DrawPositionVector = false;
public bool DrawVectorComponents = false;

// For defining Va and Vs (ScaledVector)
public GameObject P1 = null; // Position P1
public GameObject P2 = null; // Position P2
public float ScalingFactor = 0.8f;

130

CHAPTER 4

// For defining Vp (PositionVector)
public GameObject SphereAtOrigin = null; // sphere at origin
public float SphereRadius = 3.0f;

// For visualizing all vectors

private MyVector ShowVa; // Vector Va
private MyVector ShowVaScaled; // Scaled Va
private MyVector ShowNorm; // Normalized Va

private MyVector ShowPositionVector; // Position vector

All the public variables for MyScript have been discussed when analyzing the

VECTORS

Controller’s MyScript component. The four private variables of the MyVector data

type are for visualizing the four vectors: V,, V, V,, and V,, respectively. The Start()

function for MyScript is listed as follows:

void Start(){

Debug.Assert(P1 != null); // Check for proper setup in the editor

Debug.Assert(P2 != null);
Debug.Assert(SphereAtOrigin != null);

// To support visualizing the vectors
ShowVa = new MyVector {
VectorColor = Color.black };
ShowNorm = new MyVector {
VectorColor = new Color(0.9f, 0.9f, 0.9f)};
ShowVaScaled = new MyVector {
VectorColor = new Color(0.9f, 0.4f, 0.9f) };
ShowPositionVector = new MyVector {
VectorColor = new Color(0.4f, 0.9f, 0.9f),
VectorAt = Vector3.zero // Position Vector at origin

};

The Debug.Assert () calls ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window, while the MyVector variables are instantiated

and initialized with the proper colors. The Update() function is listed as follows:

131

CHAPTER 4 VECTORS

void Update()

{ Visualization on/off: show or hide to avoid cluttering
Vector Va: Compute Va and setup the drawing for Va
if (DrawScaledVector) ...
if (DrawUnitVector) ...
if (DrawPositionVector) ...
}

The Update() function is logically structured into five steps: handling the drawing
toggles and then computing and showing V,, V,, ‘}a ,and Vp , respectively. The details
in each step are presented next in separate subsections. While reading the code, note
the exact one-to-one match between the derived formula to compute each vector and
the corresponding listed code. This is an important and elegant characteristic of vector-
based game object behavior; the implementation often closely resembles the underlying
mathematical derivation.

Visualization on/off

The code in this region sets the game object’s active state for displaying or hiding
according to user’s toggle settings. This code is listed as follows:

#region Visualization on/off: show or hide to avoid cluttering
AxisFrame.ShowAxisFrame = DrawAxisFrame; // Draw or Hide Axis Frame

ShowVaScaled.DrawVector = DrawScaledVector; // Display or hide the vectors

ShowNorm.DrawVector = DrawUnitVector;
ShowVa.DrawVectorComponents = DrawVectorComponents;
ShowVaScaled.DrawVectorComponents = DrawVectorComponents;
ShowNorm.DrawVectorComponents = DrawVectorComponents;
ShowPositionVector.DrawVector = DrawPositionVector;
SphereAtOrigin.SetActive(DrawPositionVector);

#endregion

132

CHAPTER 4 VECTORS

Vector Va

The code in this region computes V, based on the current P1 and P2 positions and sets
up the ShowVa variable for visualizing the vector. This code is listed as follows:

#iregion Vector Va: Compute Va and setup the drawing for Va

Vector3 vectorVa = P2.transform.localPosition -
P1.transform.localPosition;

// Show the Va vector at P1

ShowVa.Direction = vectorVa;

ShowVa.Magnitude = vectorVa.magnitude;

ShowVa.VectorAt = P1.transform.localPosition;

#fendregion

The variable vectorVais V, = P, — P,. The ShowVa variable receives the corresponding
direction and size values from vectorVa and is set to display the vector at position P1.
DrawScaledVector

When this toggle is set to true, V, is computed and shown. The code to accomplish this
is listed as follows:

if (DrawScaledVector) {
Vector3 vectorVs = ScalingFactor * vectorVa;
ShowVaScaled.Direction = vectorVs;
ShowVaScaled.Magnitude = vectorVs.magnitude;
ShowVaScaled.VectorAt = Pi.transform.localPosition;

The variable vectorVs is V, = ScalingFactor xV, . The ShowVaScaled is properly set
up to display vectorVs at P1.

DrawUnitVector

Manhmuggemsmuunw,@isamnmuﬂandﬂmwnTheaﬂemaanmmmhmm
is listed as follows:

133

CHAPTER 4 VECTORS

if (DrawUnitVector) {
// scale Va by its inversed size
Vector3 unitVa = (1.0f / vectorVa.magnitude) * vectorVa;
// Vector3 dirVa = vectorVa.normalized;
// Alternate way to normalized Va

ShowNorm.Direction = unitVa;

ShowNorm.Magnitude = unitVa.magnitude;
ShowNorm.VectorAt = P1.transform.localPosition;

A 1 -
The variable unitvais V, = Tl xV, . Notice the alternative way commented out

a

below this line of code, Vector3.normalized, to compute a unit vector.

Here you can observe a coding error, where vectorVa.magnitude is used as the
denominator in the normalization computation without first being verified that its value
is not zero. Once again, a zero vector will have a length of zero and therefore cannot be
normalized. In this case, the logic should check if vectorVa is equal to the zero
vector, and if so, simply skip the drawing of ShowNoxrm.

Note In general, it is not advisable to compare computation results to floating-
point constants. For example, it is unwise to attempt to detect the zero vector
condition by performing

if (vectorVa.magnitude == 0.0f)

The chance of the results of a floating-point computation being exactly zero is
almost nonexistent. In this case, you should check for the condition of smaller
than a “very small” number. The C# programming language defines the float.
Epsilon for this purpose. In this case, the condition to check for zero vector
should be

if (vectorVa.magnitude < float.Epsilon)
// vectorVa is, for all practical purposes, a zero vector

134

CHAPTER 4 VECTORS

DrawPositionVector

When this toggle is set to true, Vp is computed and shown. The code to accomplish this
is listed as follows:

if (DrawPositionVector) {
Vector3 vectorVp = SphereRadius * vectorVa.normalized;
ShowPositionVector.Direction = vectorVp;
ShowPositionVector.Magnitude = vectorVp.magnitude;
ShowPositionVector.VectorAt =
SphereAtOrigin.transform.localPosition;

// Set the radius of the sphere at the origin
SphereAtOrigin.transform.localScale

new Vector3(2.0f * SphereRadius,
2.0f * SphereRadius,
2.0f * SphereRadius);

The variable vectorVp is Vp = SphereRadius x Va . Note that in this case, Va is
computed based on the Unity Vector3.normalized utility. The last line of code scales
the sphere by setting the Unity Transform.localScale. Notice that the scaling factor for
the sphere is its diameter, or 2 times the radius. This is because localScale adjusts the
scale of a sphere based on its diameter, not its radius.

Takeaway from This Example

Note that the entire implementation for this example, the code in the Update() function
that performs useful computation, is actually just four lines: one line for each of the
v,

vectors, V. Va , and Vp , respectively. The rest of the code is there to support user

a’
interaction and to set up the four toggle variables for visualizing the vectors. This

example shows that when working with vector-based logic, the code can be rather
compact with the implementation closely resembling the actual math involved to

compute such results.

135

CHAPTER 4 VECTORS

Relevant mathematical concepts covered include

All scaled vectors are along exactly the same direction as their
reference vector.

The unit vector, or normalized vector, is a special case of the
scaled vector; it is a vector scaled by the inverse of the size of its
reference vector.

The normalized vector, or unit vector, always has a length of one and
does indeed uniquely and consistently represent the direction of
vectors with different scaling factors.

The zero vector cannot be normalized. Proper coding should include
specific conditional checks before invoking the normalization
computation.

A vector can be defined based on a magnitude and a direction.
An interesting implication of this fact is that any vector can be
decomposed into a unit vector with a scale.

Unity tools

Transform.localScale: To change the size of game objects

Sphere primitive: The scale value is the diameter of the sphere

EXERCISES

Make sure that V,, V., and V, are in the exact same direction by setting ScalingFactor
to a positive value. Next, verify the Vp vector is also in the same direction by moving P1 to
the origin. Interestingly, you can also move the position of the SphereAtOrigin to P1 by
changing the value of SphereAtOrigin.Transform.localPosition.

Implement the detection and handling of the zero vector condition to avoid the normalization
process when necessary.

136

CHAPTER 4 VECTORS

A unit vector always has a size of 1 and can be a convenient reference for defining vectors of
different lengths. For example, edit MyScript to display 5 different vectors with lengths of 1,
2,3,4,and 5 in the 17a direction. Display these vectors at the X-axis locations that correspond
to their length, length 1 at (1,0, 0), length 2 at (2,0, 0), etc. The easiest solution to this problem
would be to compute K?a and loop from 1 to 5, scaling each vector accordingly and working

with MyVector to display the vectors at their proper positions.

Application of Vector: Velocity

When riding in a traveling car, you move at the speed and direction of that car. On a

per-unit time basis, you will cover the “speed” amount of distance in the direction of

the car. For example, during rush hours, a taxi traveling at 1.4 miles per hour toward the

northeast will cover 1.4 miles in the northeast direction each hour. In this way, a velocity

is speed in a specific direction, or simply, a vector. Figure 4-9 illustrates the example of

that taxi ride.

\F 1

P East

Figure 4-9. Driving at 1.4 miles per hour toward the northeast

As illustrated in Figure 4-9, the 1.4 miles per hour speed of the taxi describes the

total distance covered per hour and is actually the magnitude of the vector. In this case, a

velocity of

V, =(1, 1) miles / hour

137

CHAPTER 4 VECTORS

will, in an hour, cover a distance of

[V], =v1* +1° =/2 ~1.4 miles

and the traveling direction is indeed toward the northeast (assuming north is the
positive y-direction and east is the positive x-direction). Notice in this description the
distance covered is separated from the movement direction of the taxi ride. When
discussing velocities, it is important to identify the speed and the direction of travel. In

terms of implementation, this means that it is convenient to express a velocity, V,, as
V. =SpeedxV,

In the case of Figure 4-9,
e Speed=1.4
” 1 1
o V =| —7/—=,—F—
Recall that you have worked with vectors in this format in the DrawPositionVector
portion of the previous example, EX_4 2 VectorScaling. Representing vectors in this
way supports independent adjustments to the magnitude and the direction. In the

context of velocity, this representation supports the independent adjustments to the
speed (Figure 4-10) and the traveling direction (Figure 4-11).

Position after frame 5
Increased speed

Constant sp(‘a?\ %\/”
V v

BallA @
L"

¥
BallB @~

v, Decreased speed

gallc =~

|Initial position

Figure 4-10. Adjusting the speed while maintaining the direction of travel

Figure 4-10 shows three balls, A, B, and C, traveling in the same direction, V, at
constant, increasing, and decreasing speeds, respectively. Notice how the balls continue
to travel parallel to each other but end up at very different locations along their parallel
paths after a few updates.

138

CHAPTER 4 VECTORS

Next frame position

Ball initial position

Figure 4-11. Adjusting the direction of travel while maintaining a constant speed

In contrast to Figure 4-10, Figure 4-11 shows how the traveling direction of an object
can be adjusted without altering its speed. In this case, after subsequent updates, the
objects would travel a constant distance from the original position but will end up at very
different locations. In all cases, mathematically, the position of an object will change or
“travel” by “following the velocity vector, V,. If

P,,;: Initial Position

then at the end of the time unit, the object would travel “following the vector \7, " and

arrive at

p

final =

P

A (\7t x elapsed Time)

This further illustrates the fact that velocity can be perfectly represented as a vector
where the vector’s magnitude is speed and direction is the direction of travel. This
representation of velocity as a vector is convenient for game development and will be
showcased in the next example.

The Velocity and Aiming Example

This example demonstrates the manipulation of object velocity and simple aiming
functionality based on the vector concepts you have learned in the previous sections.
The example allows you to separately adjust the speed, direction, and the traveling

139

CHAPTER 4 VECTORS

distance of an object. This example also allows you to examine the implementation of
these factors. Figure 4-12 shows a screenshot of running the EX_4 3 VelocityAndAiming

scene from the Chapter-4-Vectors project.

Figure 4-12. Running the Velocity and Aiming example

The goals of this example are for you to
e Understand the distinction between speed and direction of a velocity

o Experience controlling a velocity by manipulating its speed and
direction separately

o Examine a simple aiming behavior

o Examine the implementation of vector-based motion control

Examine the Scene

Take a look at the Example_4_3 VelocityAndAiming scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are three
objects in this scene: CheckeredExplorer, GreenAgent, and RedTarget. Select these
objects in the Hierarchy Window to note that the CheckeredExplorer is the checkered
sphere, the GreenAgent is the small green sphere, and the RedTarget is the red sphere.

140

CHAPTER 4 VECTORS

As in all previous examples, these game objects represent positions where only their
transform.localPosition are referenced. When the game begins to run and the
BeginExplore toggle is true, the CheckeredExplorer position will move slowly toward
the position of the RedTarget while continuously sending out the GreenAgent toward the
RedTarget as well, but at a faster speed.

Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

o Control toggles: Toggles drawing on or off, or allows object

movement

o DrawVelocity: Shows or hides the velocity of the
CheckeredExplorer

e BeginExplore: Enables the movement of the CheckeredExplorer
and the GreenAgent

o Support for the CheckeredExplorer:

e CheckeredExplorer: The reference to the CheckeredExplorer
game object

o ExplorerSpeed: The traveling speed of the CheckeredExplorer
o Support for the GreenAgent:

o GreenAgent: The reference to the GreenAgent game object

o AgentSpeed: The traveling speed of the GreenAgent

o AgentDistance: The distance that the GreenAgent should travel
before returning to base and restarting the exploration

o Support for the RedTarget:
o RedTarget: The reference to the RedTarget game object

The velocity direction for both the CheckeredExplorer and the GreenAgent is
implicitly defined by their relative position to the RedTarget because that is the target
position that both the CheckeredExplorer and GreenAgent are moving toward.

141

CHAPTER 4 VECTORS

Interact with the Example

Click the Play Button to run the example. Initially the BeginExplore toggle is set

to false and there will thus be no movement in the scene. The green vector you

observe extending from the CheckeredExplorer represents the velocity of the
CheckeredExplorer object if it were allowed to move. Since you know the vector from
the CheckeredExplorer to the RedTarget is, V,,, then assuming the CheckeredExplorer
object is located at Pp,,., and the RedTarget object is located at Py, then

v,

ET

=P

Target -

p

Explorer

Both the CheckeredExplorer and the GreenAgent will be traveling, with their
respective speeds of ExplorerSpeed and AgentSpeed, toward the RedTarget. The

% and V

agent» Ar€ defined as

velocities of these two objects, V,

Explorer

VExplorer = Explorerspeed X‘}ET
VAgem = AgentSpeed xVET

Note that the two velocities are in the same direction, unit vector I}ET , but with
different magnitudes, or speeds. Additionally, in both cases, the speeds are under user
control and yet the velocity direction is implicitly defined by the RedTarget position.

. Now, adjust ExplorerSpeed in
the MyScript component of the Controller object and notice the green vector’s length

The green vector you observed represents VExplorer
changes accordingly. Since this vector’s length is determined by ExplorerSpeed, you can
expect the CheckeredExplorer object to move quicker when the green vector is long and
slower when it is short. Now, enable the BeginExplore toggle and observe the following:

o The CheckeredExplorer follows slowly behind the repeating
and faster traveling GreenAgent. You can adjust the speed of the
CheckeredExplorer via the ExplorerSpeed variable and observe, as
mentioned previously, that the speed is proportional to the length of
the green vector.

o The GreenAgent continuously repeats the quick motion of traveling
from the CheckeredExplorer toward the RedTarget. Try adjusting
the AgentSpeed variable and observe how the GreenAgent’s speed
changes accordingly.

142

CHAPTER 4 VECTORS

o TheAgentDistance variable dictates how far the GreenAgent can
travel from the CheckeredExplorer before its position is reset
and it starts over. If V,, is the vector from GreenAgent to the
CheckeredExplorer, then

VEA =P Agent P Explorer

The current distance between the two is simply the magnitude of this
vector, |V, ||. Now, try altering the value of AgentDistance to observe the
green sphere traveling that corresponding distance from the checkered
sphere before restarting.

o TheRedTarget is stationary, but you can manipulate its position via
its transform components, and since

p

Explorer

VET = PTarget -
when the RedTarget position, Py, is changed, the vector VET

is updated accordingly. The velocity direction, Vir , of both the
CheckeredExplorer and GreenAgent is also updated. In this way, both of
these objects are always aiming at and moving toward the RedTarget.

Notice that when the CheckeredExplorer arrives at a location that is very close to the
RedTarget, the green vector that represents its velocity will rapidly flip back and forth.
As you will find out when analyzing the implementation, there is no logic involved for
checking the stop condition of the CheckeredExplorer. Therefore, you are observing
the CheckeredExplorer continuously moving pass the RedTarget, flipping its velocity,
and then moving pass the RedTarget again. The logic to stop the CheckeredExplorer’s
motion is left as an exercise at the end of this example.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

// Drawing control
public bool DrawVelocity

true;

public bool BeginExplore = false;

143

CHAPTER 4 VECTORS

public GameObject CheckeredExplorer = null;// CheckeredExplorer

public float ExplorerSpeed = 0.05f; // units per second
public GameObject GreenAgent = null; // GreenAgent
public float AgentSpeed = 1.0f; // units per second
public float AgentDistance = 3.0f; // explore distance
public GameObject RedTarget = null; // RedTarget

private MyVector ShowVelocity = null; // Show Explorer velocity
private const float kSpeedScaleForDrawing = 15f;

All public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component. The private variable ShowVelocity is to support the
visualization of the CheckeredExplorer velocity where the kSpeedScaleForDrawing is a
constant value meant to scale this vector such that it is visible. The Start() function for
MyScript is listed as follows:

void Start() {
Debug.Assert(CheckeredExplorer != null);
Debug.Assert(RedTarget != null);
Debug.Assert(GreenAgent != null);

ShowVelocity = new MyVector() {
VectorColor = Color.green;

}

// initially Agent is resting inside the Explorer
GreenAgent.transform.localPosition =
CheckeredExplorer.transform.localPosition;

As in all previous examples, the Debug.Assert () calls ensure proper setup
regarding referencing the appropriate game objects via the Inspector Window, while the
ShowVelocity variable is properly instantiated. Lastly, the initial position of GreenAgent
is set to that of the CheckeredExplorer. The Update() function is listed as follows:

144

CHAPTER 4 VECTORS

void Update() {
Vector3 vET = RedTarget.transform.localPosition -
CheckeredExplorer.transform.localPosition;

ShowVelocity.VectorAt =
CheckeredExplorer.transform.localPosition;
ShowVelocity.Magnitude =
ExplorerSpeed * kSpeedScaleForDrawing;
ShowVelocity.Direction = VET;
ShowVelocity.DrawVector = DrawVelocity;

if (BeginExplore) {
float dToTarget = vET.magnitude; // Distance to target
if (dToTarget < float.Epsilon)
return; // Avoid normalizing a zero vector
Vector3 vETn = vET.normalized;

Process the Explorer (checkered sphere)

Process the Agent (small green sphere)

The first line of the Update() function computes V. =P, — Py,
four lines set up the ShowVelocity variable for visualizing the CheckeredExplorer’s
velocity as a vector with its tail located at the position of CheckeredExplorer. Note
that because of CheckeredExplorer’s slow speed (ExplorerSpeed’s value), the

ShowVelocity.Magnitude is scaled by kSpeedScaleForDrawing in order to properly

orer » and the next

display the vector for visual inspection.
When BeginExplore is enabled, the magnitude of V,,., or ||VET

, is checked to avoid
the normalization of a zero vector. Next, V,, is computed and stored in the variable vETn.
The two regions that process the CheckeredExplorer and the GreenAgent are explained
in the following subsections.

145

CHAPTER 4 VECTORS

Process the Explorer

The code in this region, listed as follows, computes the velocity of the explorer,

Vv = ExplorerSpeed xV,,

Explorer
and updates CheckeredExplorer.transform.localPosition accordingly.

#region Process the Explorer (checkered sphere)
Vector3 explorerVelocity = ExplorerSpeed * vETn;
CheckeredExplorer.transform.localPosition +=

explorerVelocity * Time.deltaTime; // update position
#endregion

Remember that displacement, or distance, is velocity traveled over time, or
Velocity x elapsedTime. In Unity, the per-update elapsed time is recorded in the Time.
deltaTime property. The very last line in this region computes the total displacement
over time and updates CheckeredExplorer’s position with the computed displacement,
ensuring smooth movement.

Process the Agent

As illustrated in the following code, similar to processing the movement of
CheckeredExplorer, the first two lines of code in this region compute the velocity of
the agent,

Vv

et = AgentSpeed x VET
and update GreenAgent.transform.localPosition accordingly. Note that, as
and V

sgent @r€ both computed based on scaling

mentioned previously, because V.,

the same unit vector, the CheckeredExplorer and GreenAgent are traveling in the exact
same direction, I?ET , with different speeds, ExplorerSpeed and AgentSpeed.

#region Process the Agent (small green sphere)
Vector3 agentVelocity = AgentSpeed * vETn; // define velocity
GreenAgent.transform.localPosition +=

agentVelocity * Time.deltaTime; // update position

146

CHAPTER 4 VECTORS

Vector3 vEA = GreenAgent.transform.localPosition -
CheckeredExplorer.transform.localPosition;
if (vEA.magnitude > AgentDistance)
GreenAgent.transform.localPosition =
CheckeredExplorer.transform.localPosition;
#endregion

The last three lines of code compute the vector between the explorer and the agent,

V=P

Agent P, Explorer

VEA
and then reset the agent’s position when it is too far away from the explorer,

compare the magnitude of this vector, , to the user-specified AgentDistance,

or when ||VE " || > AgentDistance.

Takeaway from This Example

This example demonstrates the application of vector concepts learned in modeling the
simple object behaviors of aiming at and moving toward a target position. You have
observed that the velocity of objects can be described by scaling a unit vector with speed
and that velocities computed based on the same unit vector will move objects in exactly
the same direction. Lastly, you have experienced once again that the distance between
two objects can be easily computed as the magnitude of the vector defined between
these two objects.

Relevant mathematical concepts covered include

o The velocity of an object can be represented by a vector.

e Avelocity can be composed by scaling a direction, or unit vector,
with speed.

o The distance between two objects is the magnitude of the vector that
is defined by the positions of those two objects.

147

CHAPTER 4 VECTORS

EXERCISES

Recall that the motion of CheckeredExplorer never terminates and that it tends to
overshoot the RedTarget followed by turning around and overshooting it again. This

cycle continues, causing the CheckeredExplorer to swing back and forth around the
RedTarget. Modify MyScript to define a bounding box around the RedTarget and stop
the CheckeredExplorer when it is inside the bounding box. Notice that in this case, it is
actually easier and more accurate to treat the RedTarget as a bounding sphere and to stop
the motion of the CheckeredExplorer when it is inside the bounds of the sphere.

Run the game and increase the AgentDistance to some large value, for example, 15.
Now set BeginExplore to true and observe how the GreenAgent passes through the
RedTarget and continues to move forward until its position is more than 15 units from the
CheckeredExplorer, in which case it finally resets. With the bound you defined in the
previous exercise, modify MyScript to reset the GreenAgent’s position as soon as it is
inside the RedTarget’s bounds.

Modify MyScript such that when the GreenAgent is too far away from the
CheckeredExplorer, instead of resetting the position, the GreenAgent would simply move
toward the CheckeredExplorer as though it is now the target. In this way, the GreenAgent
would move continuously between the CheckeredExplorer and the RedTarget. This
example allows you to gain experience with reversing the direction of a given vector.

Vector Algebra: Addition and Subtraction

Although it has not yet been formally defined, based on observing the relative positions
in the Cartesian Coordinate System, you have worked with vector addition and
subtraction for quite a while now. For example, you have learned that the statement

148

CHAPTER 4 VECTORS

“position P, can be reached by following a vector V, at position P,’ is expressed
mathematically as

w .o

In this case, by interpreting P, and P, as position vectors, the “+” operator has two
vector operands and produces a position vector as the result of the operation. You have
also learned that the statement “the vector V, is a vector with its tail at position P, and
head at position P,” is expressed mathematically as

‘71:P1_P0

«“ ”

Once again, with P; and P, interpreted as position vectors, the operation also has

two vector operands and produces a vector as the result of the operation.

Rules of Vector Addition and Subtraction

You have learned and experienced that in both vector addition and subtraction, the
resulting vectors are simply the addition and subtraction of the corresponding x-, y-, and
z-component values. These observations are summarized in Table 4-1.

Table 4-1. Vector addition and subtraction

Operation Operand 1 Operand 2 Result
+:Addition Vlz(xl'ylrzl) 172:(x2,y2,zz) ‘71+V2=(x1+x27.)’1+y2'z1+z2)
—: Subtraction Vi=(x,y2) Vo=(x,12) V,-V,=(x,-%,,),-V,,2,-2,)

Note that the given definition in Table 4-1 states that the following is always true:
V+V =2V

V —V =ZeroVector

149

CHAPTER 4 VECTORS

Because the operators add and subtract the corresponding coordinate component
values, the familiar floating-point arithmetic addition and subtraction properties are
obeyed. The properties of commutative, associative, and distributive with a floating-
point scaling factor, s, are summarized in Table 4-2.

Table 4-2. Properties of vector addition and subtraction

Properties Vector Addition Vector Subtraction

Commutative Vi+V,=V,+V, V. -V, #V, -V, [not a property]
Associative (V,+V,)+V, =V, +(V, +V,) (V,-V,)-V,=V,-(V,-V,)
Distributive s(V, +V,)=sV, +sV, s(V,-V,)=sV, -5V,

As illustrated in the first-row, right column of Table 4-2, just as with floating-point
subtraction, vector subtraction is not commutative. In fact, similar to floating-point

subtraction, vector subtraction is anti-commutative, or

Addition and Subtraction with the Zero Vector

As in the case of floating-point arithmetic, vector addition and subtraction with the zero
vector behave as expected.

V, + ZeroVector = ZeroVector +V, =V,

V, — ZeroVector = V,

ZeroVector -V, ==V,

150

Vectors in an Equation

CHAPTER 4

Vectors behave just like floating-point values in an equation. For example, if

£

)

+V,,

then adding a -V, to both sides of the equation:

VECTORS

This little example helps demonstrate that vector algebra obeys the basic algebraic

equation rule that a term can be moved across the equality by flipping its sign.

Geometric Interpretation of Vector Addition

and Subtraction

Fortunately, there are intuitive diagrammatic interpretations for the essential rules of
vector addition and subtraction. Please refer to Figure 4-13, where vectors V, and V, are
defined by the three given positions, P, P, and P,. These two vectors are defined as

P, €

Figure 4-13. Two vectors defined by three positions

151

CHAPTER 4 VECTORS

Vector Addition

Figure 4-14 shows the result of vector addition geometrically. Notice that the result of
adding the two vectors

)

‘7sum =" + ‘72
is a vector with its tail located at the tail of 171 , Py, and its head located at the head
of V,, P,. This can be interpreted geometrically as V,,is the combined results of

“following V, then V,” Except that in case this, instead of following the two vectors

sequentially, the summed vector, V,,, , will take you directly from the beginning to the

end along the shortest path. This observation is true in general; the result of summing
vectors is always a vector that combines the results of following all of the operand
vectors sequentially and is then the shortest path from the beginning location to the final

destination location.

Py

Pn!h. — PZ

|4

sum

Figure 4-14. Vector addition

Commutative Property of Vector Addition

Figure 4-15 illustrates the commutative property of vector addition:

)
)
)

=Vit 2=V2+ 1

—

sum

Note the difference in the order of operations; the top half of Figure 4-14 applies V,
at P, followed by applying V, at the head of V;, while the latter applies V, at P, followed
by applying V, at the head of V,. Observe that in both cases, the result is identical; V,,,
has its tail located at P, and its head at P,.

152

CHAPTER 4 VECTORS

Figure 4-15. The commutative property of vector addition

Figure 4-14 shows that, geometrically, vector addition depicts a triangle where the
first two edges are the operands and the third is the resulting sum. In Figure 4-15, the
two V, are of the same length and are parallel and so are the two V, vectors. For this
reason, the depiction in Figure 4-15 is a parallelogram. These observations are true in
general—that vector addition and the commutative property always depict a triangle
and parallelogram, respectively. Though these observations do not result in direct
applications in video games, they provide insights into relationships between different
fields of mathematics, in this case, linear algebra and geometry.

Vector Subtraction

Figure 4-16 shows the result of vector subtraction geometrically. The two vectors with
tails at position P, are V, and a scaling of V, by a factor of —1 resulting in -V, ,or V,,,

a vector with same length in the opposite direction to V,. This figure shows that
subtracting a vector is essentially the same as using the opposite direction of that vector
in a vector addition. In this case, V, -V, can be understood as travel along V,, followed
by traveling along the opposite direction of V, . This interpretation can be verified
mathematically as follows. Notice that just as floating-point algebra, the subtraction of
the two vectors

)

Vo =Ti

ub

N

can be written as an addition

)
)

‘/sub: 1+ n2

where

153

CHAPTER 4 VECTORS

or simply

Notice the perfect correspondence between the expression, V, + (—‘72) , and the
description, “travel along V;, followed by traveling along the opposite direction of V,”

Figure 4-16. Vector subtraction

The Vector Add and Sub Example

This example demonstrates the results of and allows you to interact with the vector
addition and subtraction operations. This example also serves as a review and
reaffirmation that vectors can be located at any position as their definition does not link
them to a specific position. Figure 4-17 shows a screenshot of running the EX 4 4
VectorAddandSub example from the Chapter-4-Vectors project.

Figure 4-17. Running the Vector Add and Sub example

154

CHAPTER 4 VECTORS

The goals of this example are for you to
« Examine and gain understanding of vector addition and subtraction

e Understand that vector subtraction is simply vector addition with a

negative vector as the second operand

e Review that all vectors are defined independent of any position

Examine the Scene

Look at the Example 4 4 VectorAddandSub scene and observe the predefined game
objects in the Hierarchy Window. In addition to the Controller, there are three objects
in this scene: PO, P1, and P2. Each of these objects references one of the spheres in the
scene which in turn represent a position in the Cartesian Coordinate System. In this
example you can manipulate these three positions to define two vectors, where the
results of adding and subtracting these two vectors are shown at those positions and at
the origin as position vectors.

Analyze Controller MyScript Component

The MyScript component on the Controller shows two sets of variables:
e The three positions:
e PO: The reference to the PO game object.
e P1: The reference to the P1 game object.
e P2: The reference to the P2 game object.

The transform.localPosition of these objects will provide the
positions defining the two vectors:

)

=B -F,
‘72:P2_P1

155

CHAPTER 4 VECTORS

o Draw control: There are seven toggles for showing or hiding the
following.

o DrawAxisFrame: Shows or hides the axis frame; the axis frame

serves as a reference for showing position vectors.

o DrawV1i2: Shows or hides vector V, at position P, and V, at the
head of V. This is convenient for examining V, +V,.

« DrawV21: Shows or hides vector V, at position P, and V, at the
head of V, . This is convenient for examining V, +V,.

o DrawSum: Shows or hides the vectors

Vo =Vi+V,and V,, =V, +V,.

sum sum

« DrawSub: Shows or hides the vector V,, =V, -V, .
« DrawNegV2: Shows or hides the vector —V, .

e DrawPosVec: Shows or hides currently visible vector(s) as position
vector(s).

The purpose of this example is for you to manipulate the PO, P1, and P2 positions
and toggle each of the preceding drawing options to closely examine each of the
corresponding vectors.

Interact with the Example

Click the Play Button to run the example. Initially, both DrawAxisFrame and DrawV12 are
enabled so you should observe the axis frame and the two vectors V, (inred) and V,

(in blue) connecting the checkered spheres P0, P1, and P2. Now, enable DrawPosVec to
observe vectors V, and V, drawn at the origin as position vectors. At any point in the
following interaction, feel free to toggle on DrawAxisFrame for referencing. For now,
please toggle it off to avoid cluttering the scene.

Vector Addition and the Commutative Property

With DrawPosVec on, switch on both DrawV12 and DrawV21 toggles to show these two
sets of vectors. Select and manipulate position P1 to observe how the two sets of vectors
change. Now toggle DrawSum on and continue with the manipulation of position P1.
Observe that since Vo =V +V, =V, +V, is a vector from PO to P2, changing P1 has

156

CHAPTER 4 VECTORS

absolutely no effect on V,,, . Next, select and manipulate PO to observe how the red V,

and green V,,, vectors change together while the blue V, remains constant. Repeat the

manipulation for P2 and observe V, and V, altering while V, remains constant.

Through these interactions, you have verified that vector addition is indeed
accumulating the results of individual operands and that the operation does indeed obey
the commutative property. You were also reminded, through turning on the DrawPosVec
toggle, that vectors are independent of positions as all three vectors were identical to

their corresponding color partner except for their tail location.

Vector Subtraction

Reset all toggles to off and switch on DrawPosVec, DrawV12, and DrawNegV2. You should
observe three sets of vectors: V, (inred), V, (in blue), and —V, (inyellow). Manipulate
the Scene View camera to observe that the yellow vectors are indeed the same length
and in opposite directions as the blue vectors. Select and manipulate P1 to observe the
two sets of three vectors changing in sync. If you manipulate P2, it will only affect V, (in
blue) and -V, (in yellow) vectors. Now switch on the DrawSub toggle to observe the gray
v 7, +(-,).

", Vector as the sum of the red and yellow vector, V,
Through these interactions, you have verified that vector subtraction is indeed the

sub
same as vector addition with the second operand being negated. In fact, every operand
after the first operand, if originally being subtracted, can instead be added after it’s been
negated, just like with floating-point arithmetic.

Position Vector

With DrawPosVec toggle on, every computed vector is displayed at the origin as a position

vector. For example, while V,,, was computed by V, +V, and the geometric depiction

um

suggests that V, must always have its tail at PO, this is not the case. Once again, a

um

vector is a length and a direction; this definition holds true independent of any specific
position, even when a position is used initially to define that vector.

157

CHAPTER 4 VECTORS

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

public GameObject PO, P1, P2; // V1=P1-PO and V2=P2-p1

// For visualizing the vectors

private MyVector
ShowV1atP0o, ShowV2atVi, // Show V1 at PO and V2 at head of Vi
ShowV2atP0, ShowViatV2, // Show V2 at PO and V1 at head of V2
ShowSumV12, ShowSumV21, // V1+V2, and V2+V1
ShowSubV12, // V1-V2
ShowNegV2; // -\2

// Show as position vectors

private MyVector PosVi, PosV2, PosSum, PosSub, PosNegV2;

// Toggles for drawing/hiding corresponding vectors
public bool DrawAxisFrame = true;

public bool DrawVi2 = false, DrawV2i = false;
public bool DrawSum = false;

false, DrawNegV2 = false;

public bool DrawSub
public bool DrawPosVec = false;

All public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component. The large number of private MyVector variables is
for visualizing the corresponding vectors. The Start () function for MyScript is listed as
follows:

void Start() {
Debug.Assert(Po != null);
Debug.Assert(P1 != null);
Debug.Assert(P2 != null);

ShowV1atPo = new MyVector() { // Show V1 vectors

VectorColor = Color.red };
ShowV1atV2 = new MyVector() {
VectorColor = Color.red };

158

CHAPTER 4

PosV1 = new MyVector() { // Show V1 as position vector
VectorAt = Vector3.zero, // always show at the origin
VectorColor = Color.red };

ShowV2atPo = new MyVector() { // Show V2 vectors
VectorColor = Color.blue };
ShowV2atVi = new MyVector() {
VectorColor = Color.blue };
PosV2 = new MyVector() { 7/ Show V2 as position vector
VectorAt = Vector3.zero,
VectorColor = Color.blue };

ShowSumV12 = new MyVector() { // Show Vi + V2
VectorColor = Color.green };

ShowSumV21 = new MyVector() { // Show V2 + V1
VectorColor = Color.green }s

PosSum = new MyVector() { 7/ Show sum as position vector

VectorAt = Vector3.zero,
VectorColor = Color.green }s

ShowSubV12 = new MyVector() { // Show V1 - V2
VectorColor = Color.gray }s

PosSub = new MyVector() { 7/ Show as position vector
VectorAt = Vector3.zero,
VectorColor = Color.gray }s

ShowNegV2 = new MyVector() { // Show -V2
VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };
PosNegV2 = new MyVector() {
VectorAt = Vector3.zero,
VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };

VECTORS

As in all previous examples, the Debug.Assert () calls ensure proper setup regarding

referencing the appropriate game objects via the Inspector Window. The rest of the

Start() function instantiates the many MyVector variables for visualization, setting their

colors and display positions. The Update() function is listed as follows:

159

CHAPTER 4 VECTORS

void Update() {

Vector3 V1 = Pi.transform.localPosition -
Po.transform.localPosition;

Vector3 V2 = P2.transform.localPosition -
P1.transform.localPosition;

Vector3 sumVi2 = V1 + V2;

Vector3 sumV21 = V2 + Vi;

Vector3 negV2 = -V2;

Vector3 subVi2 = V1 + negV2;

Draw control: switch on/off what to show
Vi: show V1 at PO and head of V2

V2: show V2 at PO and head of Vi

Sum: show V1+V2 and V2+V1

Sub: show Vi1-V2

Negative vector: show -V2

}
The Update() function first computes all the relevant vectors:
¢ V=R-R,
A
° —sum12 = il + AZ
. V=,
¢ V=V,

Then it sets up the corresponding MyVector variables for display based upon their

values and if their toggle switches are true. The details of this visualization code are

independent of the vector operations being studied and are therefore not discussed here.

You can explore the code in these regions at your own leisure.

160

CHAPTER 4 VECTORS

Takeaway from This Example

This example demonstrates the details of vector addition and subtraction where the
commutative property of vector addition is verified and vector subtraction is presented
as vector addition with a negated vector. Equally important is the review of a vector’s
independence of positions.

Relevant mathematical concepts covered include

e Vector addition results in a vector that accumulates the operand
vectors.

e Vector addition is indeed commutative.

e Vector subtraction is simply an addition with the second operand
being negated.

o Reviewed that vectors are independent of any particular position.

EXERCISES

Modify the scene and MyScript to include a fourth position, P3, and a vector, 173 .

Now, define V.,
Voun =V +V, +V,

Verify that it is always true that if the tail of V.

. 1S located at Po, then its head will be
located at P3.

With the fourth position, P3, and vector V, , verify

)

(Vi +V,)+V, =V, +(

)

+

)

[N
w

161

CHAPTER 4 VECTORS

and
(V,-V,)-V,=V,-(V,-V})

by computing and displaying each as a different MyVector object.

Application of Vector Algebra

Although seldom applied directly, the indirect applications of vector algebra in video
games are ubiquitous and vital. For example, you have already experienced working with
vector subtraction in defining a vector between two positions for distance computation
and vector addition in computing movements when applying a velocity to an object.

A straightforward application of vector addition is in simulating velocity under a
constant external factor, for example, an airplane flying or a ship sailing under a constant
wind condition. Please refer to Figure 4-18 where a traveling ball is progressing toward

a target with a velocity of V, . Under the wind condition, V,

na » the effective velocity
experienced by the ball then becomes V, :

V=V, +V

wind

Travelling

I"{‘J" - t Vwmd

.

-
-
g

Figure 4-18. Traveling under constant wind condition

With your knowledge of vectors and vector addition, this wind condition is
straightforward to simulate and is examined in the next example.

162

CHAPTER 4 VECTORS

The Windy Condition Example

This example uses vector addition to simulate an object traveling under a constant
wind condition. The example allows you to adjust all the parameters of this simulation,
including the speed of the traveling object and the wind, the direction of the wind, and if

the wind condition should affect the traveling object. Figure 4-19 shows a screenshot of
running the EX_4 5 WindyCondition example from the Chapter-4-Vectors project.

Figure 4-19. Running the Windy Condition example

The goals of this example are for you to

o Experience a straightforward example of applying vector addition to
affect object behavior

o Examine and understand the simple implementation of how velocity
can be affected under a constant wind condition

Examine the Scene

Take alook at the Example_4 5 WindyCondition scene and observe the predefined game
objects in the Hierarchy Window. In addition to the Controller, there are two objects in
this scene: TravelingBall and RedTarget. This example simulates the TravelingBall
progressing toward the RedTarget under a constant wind condition that affects its velocity.

163

CHAPTER 4 VECTORS

Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

164

Simulation control: Variables that control the simulation

o PauseMovement: The toggle that stops the simulation and the
movements of the objects in the scene, allowing for careful

examination of the scene.
The objects: The objects in the scene that you can interact with
e TravelingBall: The reference to the TravelingBall game object
o RedTarget: The reference to the RedTarget game object

Traveling ball speed: Variables that affect the speed of the
traveling ball

o BallSpeed: The speed at which the ball is traveling without any
wind. Note that the direction of ball’s velocity is along the vector
defined by the ball and the target positions. Assuming Pz and P;
are the positions of the ball and the target, respectively, then

V, = BallSpeed x(P, — P,).Normalized

o DrawVelocity: A toggle to hide or show the ball’s velocity

vector, V..

Wind condition: The variables that control the wind condition in the
simulation

e WindDirection: Determines the direction of the wind
velocity, V.,

¢ WindSpeed: Determines the speed of the wind velocity, V,, ,
o ApplyWind: Toggles the effect of the wind on or off

o DrawWind: A toggle to hide or show the wind’s velocity vector

CHAPTER 4 VECTORS

Interact with the Example

Click the Play Button to run the example. Note that initially PauseMovement is enabled
and the traveling ball does not move. The three vectors you observe are explained as
follows. The green vector pointing from the TravelingBall toward the RedTarget is the
ball’s current velocity, V,.. The red vector is the wind’s velocity, V,, , . Lastly, the blue
vector is the path that the ball will take, the resulting vector, VA , Where

vV, =V

A T

+ wind

Increase the BallSpeed and WindSpeed to observe the corresponding green and red
vectors increase in length. Select and move the RedTarget to verify that the direction of
the green vector, V., always points toward the RedTarget. Next, select and change the
components of the WindDirection variable to verify that the direction of the red vector
changes accordingly.

Now, switch off PauseMovement toggle to allow the simulation to proceed. Try
increasing WindSpeed, for example, to 0.05, and observe V, being affected while the
TravelingBall proceeds and drifts toward the RedTarget. Note that when WindSpeed
and WindDirection are unfavorable, for example, a speed of 0.15 in the direction of
(1,0,0), the TravelingBall will drift away from and never reach the RedTarget.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

public bool PauseMovement = true;

public GameObject TravelingBall = null;
public GameObject RedTarget = null;

public float BallSpeed = 0.01f; // units per second
public bool DrawVelocity = false;
private float VelocityDrawFactor = 20f; // To see the vector

public Vector3 WindDirection = Vector3.zero;
public float WindSpeed = 0.01f;

public bool ApplyWind = false;

public bool DrawWind = false;

165

CHAPTER 4 VECTORS

private MyVector ShowVelocity = null;
private MyVector ShowWindVector = null;
private MyVector ShowActualVelocity = null;

All public variables for MyScript have been discussed when analyzing Controller’s
MyScript component. The private variable VelocityDrawFactor is for scaling the small
magnitude velocity vectors such that they can be visible. The MyVector data type private

variables are to visualize the three vectors, VT LV . and VA . The Start() function for

win.

MyScript is listed as follows:

void Start() {
Debug.Assert(TravelingBall != null);
Debug.Assert(RedTarget != null);

ShowVelocity = new MyVector() {
VectorColor = Color.green,
DrawVectorComponents = false };
ShowWindVector = new MyVector() {
VectorColor = new Color(0.8f, 0.3f, 0.3f, 1.0f),
DrawVectorComponents = false };
ShowActualVelocity = new MyVector() {
VectorColor = new Color(0.3f, 0.3f, 0.8f, 1.0f),
DrawVectorComponents = false };

As in all previous examples, the Debug.Assert () calls ensure proper setup regarding
referencing the appropriate game objects via the Inspector Window, while the rest of the
function instantiates the MyVector variables for proper visualization of the vectors. The
Update() function is listed as follows:

void Update() {
Vector3 vDir = RedTarget.transform.localPosition -
TravelingBall.transform.localPosition;
float distance = vDir.magnitude;

if (distance > float.Epsilon) { // if not at the target
vDir.Normalize();
WindDirection.Normalize();

166

CHAPTER 4 VECTORS

Vector3 vT = BallSpeed * vDir;
Vector3 viWind = WindSpeed * WindDirection;
Vector3 vA = vT + vlWind;

// Display the vectors

if (PauseMovement)
return;

if (ApplyWind)
TravelingBall.transform.localPosition +=
VA * Time.deltaTime;
else
TravelingBall.transform.localPosition +=
vT * Time.deltaTime;

} // if (distance < float.Epsilon)

The Update() function first computes the vector from TravelingBall toward the
RedTarget, V,, . Next, the magnitude of V,,, distance, is computed and checked to
ensure that this is not a very small number. This checking accomplishes two important
objectives. First, a small distance value means that the TravelingBall object is closed
to or has reached the RedTarget object and further simulation is no longer required.
Second, when distance is approximately zero, V,, is approximately a zero vector and
thus cannot be normalized. When distance is larger than approximately zero, the

following velocity vectors are computed:

V, = BallSpeed x Vdir

V... =WindSpeed x WindDirection
VA = VT + _.wind

When the simulation condition is true, depending on if the user wants
to observe the effects of the wind, the TravelingBall position is updated by
either V, xelapsedTime or V, xelapsedTime.

167

CHAPTER 4 VECTORS

Takeaway from This Example

This example demonstrates the straightforward application of vector addition by
simulating traveling under a constant, external effect, like a wind condition. You have
observed that such a condition can be simulated as a velocity vector being added to the
traveling velocity.

Relevant mathematical concepts covered include

e Model constant wind breeze as a velocity

o Changing an object’s velocity by the addition of an object’s own
velocity with that of external velocities

EXERCISES

Note that if the wind velocity, V., , is available during the computation of an object’s velocity,
V,., then it is possible to compensate for the wind condition. Instead of moving toward the
target, 17,11., , the traveling velocity should point toward the target only after le., is affected by

the wind condition, or

A

BallSpeed xV,, =V, +V,
So

V, =BallSpeed xV,, —V

wind

Implement this compensation and observe a smoother TravelingBall movement. You have
observed that it is possible to compensate and largely remove the external wind factor by not
traveling directly toward the final destination.

Support a strong wind gust which occurs probabilistically (or pseudo-randomly). In addition to
speed and direction, allow your user to adjust the occurrence frequency and duration of this
wind gust. Now, as the TravelingBall moves toward its target, it may get blown off course
some of the times. You now know how to add simple environmental factors into a game.

168

CHAPTER 4 VECTORS

Summary

This chapter introduces vectors by relating to your understanding of measurement
and distance computations in the Cartesian Coordinate System. You have learned the
following:

e Avector is a size and a direction that can relate two positions.
e The vector definition is independent of any particular position.

» All positions in the Cartesian Coordinate System can be considered
as position vectors.

e Scaling a vector by a floating-point number changes its size but not
its direction.

e« A normalized or unit vector has a size of 1 and is convenient for
representing the direction of a vector.

e Vectors are ideal for representing the velocities of objects.

o Itis convenient to represent a velocity by separately storing its speed
and direction of movement.

e Vector addition and subtraction rules follow closely to those of
floating-point algebra.

The examples presented in this chapter allowed you to interact with and examine the
details of vectors and their operations. Based on vector concepts, you have examined the
simple object behaviors of following, or aiming, at a target and the environmental affects
you can create by disturbing an object’s motion with an external velocity.

Through this chapter, you have gained the basic knowledge of what a vector is, its
basic rules, and how it can be used to model simple object behaviors and environmental
effects. You are now ready to examine the more advanced operations of vectors, like the
dot product, which determines the relationship of two given vectors.

Before you continue, it is important to remember that the applications of vector
related concepts go far beyond interactive graphical applications like video games.

In fact, in many cases it is impossible to depict or visualize the vectors being used
in different applications. For example, a vector in n-dimensional space where 7 is
significantly large than 100! It is important to remember that you are learning one flavor
of vector usage: applications in interactive graphics. In general, vectors can be applied to
solve problems in a wide variety of disciplines.

169

CHAPTER 5

Vector Dot Products

After completing this chapter, you will be able to

¢ Understand the vector dot product definition, its properties, and its
geometric interpretation

e Recognize how the vector dot product relates two vectors by their
subtended angle and relative projection sizes

o Comprehend how a vector represents a line segment

e Apply the dot product to allow the interpretation of a line segment as

an interval

o Perform the simple inside-outside test for a point and an arbitrary
interval

e Apply the vector dot product to determine the shortest distance
between a point and a line

e Apply the vector dot product to compute the closest distance
between two lines

Introduction

In Chapter 4 you learned that a vector is defined by the relationships between two
positions in the Cartesian Coordinate System: the direction from one position to another
and the distance between them. Though simple, the vector, or the concept and the
associated rules of relating two positions, is demonstrated to be a powerful tool that is
capable of representing object velocity and simple environmental effects for video game
development. This chapter continues with this theme and introduces the vector dot
product to relate two vectors.

171
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_5

https://doi.org/10.1007/978-1-4842-9885-5_5

CHAPTER 5 VECTOR DOT PRODUCTS

Vectors are defined by their direction and magnitude, and thus when relating two
vectors, it is essential to include descriptions of how these two quantities are measured
with respect to each other. The vector dot product relates vector directions by calculating
the cosine of the subtended angle, or the angle between two vectors where their tails
are connected, and the vectors’ magnitudes by computing the respective projected
sizes, or one vector’s magnitude when measured along the direction of the other vector.
These ways of relating vectors are some of the most fundamental tools in analyzing the
proximity and connections between positions and directions in 3D space. The results of
applying the vector dot product provide the basis for predicting and controlling object
behaviors in almost all video games.

In video games it is often necessary to analyze the spatial relationships, such as
distances and intersections, of traveling objects and then predicting what events will
occur. For example, detecting and hinting to the player the situation where the pathway
of their explorer will pass within a hidden treasure’s proximity. To model this situation
mathematically, as you have learned from the previous chapters, the pathway of the
explorer is a function of their traveling velocity and can be represented as a vector. Then,
the hidden treasure can be wrapped by a bounding volume, that is, bounding sphere.

In this way, the problem to solve is to compute the closest distance between the vector
and bounding sphere center and determine if that distance is closer than the bounding
sphere radius. As you will learn from this chapter, the vector dot product can provide a
solution for this situation that is elegant and straightforward to implement. In fact, the
vector dot product is the best tool for determining distances between positions and line
segments.

This chapter begins by introducing the vector dot product, what it is, how it is
computed, and the rules for working with the operation. The chapter then moves on
to explain how to geometrically interpret the dot product results as the angle between
vectors and as projected lengths along these vectors. The inside-outside test of a 1D
interval along a major axis discussion from Chapter 2 is then cast and generalized as
an inside-outside problem based on vector line segments and projections. The two
application areas of the vector dot product that are examined specifically are the line
to point and the line to line distances. These types of applications play many roles in
video game development as well as other interactive graphical applications. Finally, this
chapter concludes by reviewing what you have learned about the vector dot product and
its many applications.

172

CHAPTER 5 VECTOR DOT PRODUCTS

Vector Dot Product: Relating Two Vectors

Recall that the vector definition is independent of any position. In other words, a vector
can have its tail located at any position. This knowledge is important because when you
analyze the relationship between two vectors, it is convenient to depict the tails of the
vectors at the same location. Figure 5-1 shows a drawing of two arbitrary vectors, V, and
‘72 , with the same tail position, P,. As you can see, the shared tail position allows the two
vectors to be in close proximity and facilitates convenient visual comparison. By placing
two vectors at the same location, it becomes easier to analyze, understand, and quantify
the relationship between them.

Figure 5-1. Relationship between two given vectors

Notice in Figure 5-1 that although the two vectors could be in any direction with any
magnitude in 3D Cartesian Coordinate Space, the two vectors together can always be
properly depicted on a 2D plane. In fact, the 2D plane that these vectors are depicted
on may or may not be parallel to any major axes. In general, it is true that given any two
arbitrary vectors in 3D space, as long as the two vectors are not parallel, there is always a
2D plane where both of the vectors in 3D space can be drawn. This observation is what
allows two vectors in 3D space to be drawn and analyzed on a 2D plane, as depicted in
Figure 5-1.

The second observation from Figure 5-1 is that, recalling that a vector is comprised
of a direction and a magnitude, that the relationship between two vectors can be
characterized by the angle between the vectors, 6, and by the relative sizes of the two
vectors. The vector dot product is the operation that can provide definitive answers to
both of these characteristics.

173

CHAPTER 5 VECTOR DOT PRODUCTS

Definition of Vector Dot Product

Given two vectors in 3D space

Vl:(xl’yl’zl)
Vz =(x2 Ya 'Zz)

the dot product, or vector dot product, between the two vectors is defined as the
sum of the product of the corresponding coordinate components, or

Vi-V,=x%,+ Y, +2,2,

Notice that

wn

e Symbol: The symbol for the dot product operation, “’} is literally
a “dot”.

e Operands: The operation expects two vector operands.
e Result: The result of the operation is a floating-point number.

It is especially important to pay attention to the last point. Similar to vector addition
and subtraction, the dot product operates on two vector operands. However, unlike the
other two operations, the result of the dot product is not a vector but a simple floating-
point number. It is this floating-point number that encodes the angle between the two
operand vectors and the relative sizes of the two operand vectors. How these values are
encoded in this single floating-point number and what you can do with it are the topics
that will be explored in the following subsections. However, before you begin that journey,
you will first need to explore and understand the rules and properties of the dot product.

Note The dot product is also referred to as the inner product or the scalar
product in different disciplines of mathematics. This book will refer to the
operation as dot product exclusively.

Do not confuse the dot product symbol, ", for a multiplication sign. When
multiplications are involved in vector expressions, there will be no symbol between
the operands, such as sV, . Since one cannot multiply two vectors, you will never
see V,V,, and therefore you can safely assume that if you see a " between two
vectors, the dot product is the operation to perform and not multiplication.

174

CHAPTER 5 VECTOR DOT PRODUCTS

Properties of Vector Dot Product

The vector dot product properties of commutative, associative, and distributive over a
floating-point scaling factor s and other vector operations are summarized in Table 5-1.

Table 5-1. Properties of vector dot product

Properties Vector Dot Product

Commutative V-V, =V, V,

Associative (V,-V,) V, [Undefined!]

Distributive over vector operation (V.- 7,) (Vo + V) = (V.- V) Vy +(V, -V,)V
Distributive over scale factor, s s(V,-V,)=(sV,)-V, =V, +(sV,)

Take note of the undefined associative property. In this situation, it can be helpful to
remember that the result of the dot product operation is a floating-point number, so it is
possible to let

—
N
o

SN—

Il
~

then it becomes obvious that

(Vlvz)Vs:f 3

is an undefined operation since the first operand is not a vector but a floating-point
number. In general, please pay attention to the subtle differences in the notation. While

(‘71"72)‘7A:ﬂ7A

is scaling vector V, by the result of the dot product,

(Vl'vz)'vA:f'VA

175

CHAPTER 5 VECTOR DOT PRODUCTS

is attempting to perform a dot product between a floating-point number, f, and the
vector, V, , and is therefore an undefined operation. The only difference is in the single

u n

symbol! If you continue to use fto represent the result of V, dot V,, then you can
rewrite the distributive property over vector addition as

(VI.VZ)(VA+VB):f(VA+VB):jVA+jVB

which is the distributive property of vector addition over a scaling factor, f. This
means that the distributive property also applies over vector subtraction

(Vo Vo)(Va =V) =(Vi - Vo)V, = (Vi V2)V,

or

)

=

(V-

The vector dot product distributive property over a scale factor, s, is worth some

)Va=Vi)=f(Va=Vi)= Vs = IV,

special attention. Notice that the scale factor s is only applied to one of the operands
and not both. At first glance, this may seem counterintuitive; however, it makes perfect
sense if you consider distributive property over a scale factor, s, of a floating-point
multiplication between a and b

sx(axb)=(sxa)xb=ax(sxb)
Now, recall that the magnitude of a vector, V =(x, y, z), is
||V||:w/x2 +y*+2°

For this reason, a vector dotted with itself is its magnitude squared

_ 12
— _ 2 2 2 _
ViVi=xx, +yn+zz =% +)y +z _”Vl”

Lastly, the dot product between any vector with the zero vector always results in a

Zero vector

V,-ZeroVector = ZeroVector-V, = ZeroVector

176

CHAPTER 5 VECTOR DOT PRODUCTS

The Angle Between Two Vectors

This section derives a formula that computes the angle 6 between the vectors V, and V,
in Figure 5-1. As illustrated in Figure 5-2, this formula derivation begins by subtracting

the two given vectors

Figure 5-2. Subtracting the given two vectors

In Figure 5-2, similar to Figure 5-1, both V, and V, have their tails located in the
lower-left corner at position P,. Notice the —V, vector with its tail at position P, and that
the vector V, with its tail at P, is the result of adding V, with -V, , or

Figure 5-2 also depicts vector V3 with its tail at P, to create triangle P,P,P,. Recall that

the Laws of Cosine from trigonometry states that

WVl =V 471, 2]V eose

In this case, you know that

1 :(xl’yl’zl)

)

)

2 :(xzryz'zz)

Vs :(xl — X)) 7 V0% _Zz)

177

CHAPTER 5 VECTOR DOT PRODUCTS
With algebraic simplification left as an exercise, you can show that

x1x2 + ylyZ + ZIZZ

\/xlz +y+z° \/xzz +y,0+z,

cosf =

this equation says that

2 2 2 2 2 2 Va Va
X1 Xy + V1Yo + 2120= \/xl +y t+z \/xz tY, +z, 0059:"‘/1””‘/2”0059

or simply

Vi ‘72 =X X, Y, T 2,2, =||‘71||||‘72||C030

You have just shown that the dot product definition, the sum of the products of the
corresponding coordinate components, actually computes a floating-point number
that is equal to the product of the magnitude of the two vectors and the cosine of the
‘71” and ||‘72 || both become

angle between these two vectors. By normalizing V, and V,,
1.0, so that

Vl-‘}2= Vl 1}2 cosO =cos0

This formula says that the dot product of two normalized vectors is the cosine of the
angle between the vectors.

It is important to note that the angle between two vectors is the one subtended by
the two vectors (the smaller angle). As illustrated in Figure 5-3, if 6 in Figure 5-1 was 45°,
then the angle between the two vectors is 45° and not 315°. The key to remember is that
the angle subtended by two vectors, or two lines, is always between 0° and 180°.

@

Figure 5-3. The angle subtended by vectors V, and V,

178

CHAPTER 5 VECTOR DOT PRODUCTS

Figure 5-4 depicts the angle measurements 6, to f; between vector V, and vectors
V, to V,, respectively. In this case, V, is perpendicular to V, and V; is in the opposite
direction to Vl; thus ;= 90°, while 05 = 180°. Notice the measurement of the angle 6,
the angle between vectors V, and V,, is the angle subtended by these two vectors and
is not an accumulation from the angle #;. Once again and very importantly, the angle
subtended by two vectors is always an angle between 0° and 180°.

=@ 7,

Ve

Figure 5-4. The angles between vectors

Figure 5-5 is a simple plot and a reminder of the cosine function. Recall that the
results of cos@ are positive between 0° and 90° and become negative between 90° and
180°. With the dot product of two normalized vectors being the cosine of the subtended
angle, you can now determine the relative directions of vectors with a simple dot
product calculation. In particular, when the subtended angle is less than 90°, the cosine
is positive, and thus you can conclude that the vectors are pointing along a similar
direction. Conversely, when the subtended angle is more than 90°, the cosine is negative,
and thus you can conclude that the vectors are pointing away from each other.

179

CHAPTER 5 VECTOR DOT PRODUCTS

cos
[

Figure 5-5. Simple plot of they = cos 0 function

In the cases of Figure 5-4, you know

>
>

-V, =cos6, =a positive number because 0, <90°

—

-V, =cos0, =0 because 0, =90°
Al -V4 =cosf, =anegative number because 6, >90°

=cosf, =-1 because 6, =180°

>
>

V, -V, = cosf, =anegative number because 6, >90°

These observations can be summarized in Table 5-2 for any given vectors, V;, and V.

180

CHAPTER 5 VECTOR DOT PRODUCTS

Table 5-2. Dot product results and subtended angles

Dot Product Results Subtended Angle 0 Conclusions

V,-V,=cosf =1 0=0° The vectors are in the exact same direction,
‘71 = Vz

V.-V, =cosf =0 0 = 90° The vector directions are perpendicular to
each other

V, -V, =cosf >0 6 < 90° The vectors are pointing along similar
directions

V, -V, =cosf <0 6> 90° The vectors are pointing along similar, but
opposite directions

V.-V, =cosf =-1 0 =180° The vectors are in the exact opposite direction,

V.=V

1 2

The Angle Between Vectors Example

This example allows you to manipulate three positions that define two vectors. The

example computes and displays the angle between the two vectors and enables you to

verify the conclusions gathered from Table 5-2. Additionally, this example demonstrates

that as long as the two given vectors are not parallel, a 2D plane can always be found

for drawing the two vectors. Figure 5-6 shows a screenshot of running the EX 5 1
AngleBetweenVectors example from the Chapter-5-DotProducts project.

181

CHAPTER 5 VECTOR DOT PRODUCTS

Figure 5-6. Running the Angle Between Vectors example

The goals of this example are for you to

o Experience manipulating the angle subtended by two vectors and
observe the results of the dot product

e Verify that a 2D plane can always be found for drawing two non-
parallel vectors

o Examine the implementation of and appreciate the subtleties of
vector normalization when computing dot products

Examine the Scene

Take a look at the Example_5 1 AngleBetweenVectors scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are three
objects in this scene: the checkered sphere (P0) and the stripped spheres (P1 and P2).
These three game objects, with their corresponding transform.localPosition, will be
referenced to define the two vectors for performing dot product calculations.

182

CHAPTER 5 VECTOR DOT PRODUCTS

Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables: PO, P1, P2, and
DrawThePlane toggle. The toggle is for showing or hiding the 2D plane where the two
vectors are drawn, while the other three variables are defined for accessing the game
objects with their corresponding names. In this example, you will manipulate the
positions of the three game objects and examine the dot product resulting from the
vectors, V, and V,, defined accordingly

Interact with the Example

Click the Play Button to run the example. In the Scene View window, you will observe
two vectors with tail positions located at the checkered sphere, PO, and a greenish plane
where the two vectors are drawn. The two vectors are the V, and V, and are defined by
the positions of PO, P1, and P2 game objects. Also visible in the Scene View window is the
2D axis frame with the red X-axis and green Y-axis vectors. On the axis frame, extending
from the origin is a black line segment. The angle subtended by this black line segment
and the red X-axis is the same angle subtended by vectors V, and V,, and the length of
this black line is proportional to the cosine of that angle, scaled by 1.5 times for easier
visual analysis. Lastly, take a look at the Console Window to observe the text output
reporting the computed angle between vectors V, and V.

Now that you have looked over the scene, you will manipulate and observe the
cosine of the angle subtended by the two vectors and notice how the angle itself changes.
Please switch off the DrawThePlane toggle as the 2D plane can be distracting. Next, select
P1 and change its x- and y-component values to vary the angle between the two vectors.
In the Console Window, you can verify the values of the subtended angle and the cosine
of this angle. Observe how the black line segment, with its length changing, rotates
toward or away from the red X-axis direction, corresponding to the angle changes you
are making.

183

CHAPTER 5 VECTOR DOT PRODUCTS

Since the length of the black line segment is proportional to the cosine of the
subtended angle, from the plot in Figure 5-5 and Table 5-2, you can verify that when
the subtended angle increases, up to 90°, the cosine of the angle decreases and thus
the length of the line also decreases. The opposite is also true, as the angle decreases
(between 90° and 0°), the cosine of the angle, and thus the length of the black line,
increases. In fact, you should notice that the length of the black line is maximized when
the subtended angle approaches zero and that the length of the line approaches zero
when the two vectors are approximately perpendicular. You can observe this behavior
by decreasing the P1 x-component value such that the subtended angle approaches
90°. When doing so, notice how the length of black line segment also approaches zero,
corresponding to cos90° = 0.

When you increase the subtended angle beyond 90°, you will notice the color of the
black line segment changes to red, indicating that the sign of the dot product result has
turned into a negative number. Now, decrease the y-component value of P1 to continue
to increase the subtended angle and notice that the red line segment continues to grow
in length once more as it rotates away from the positive X-axis direction. When V,
and V, are approximately in the opposite direction, the red line segment will achieve
maximum length and should be on top of the negative red X-axis line, indicating the
angle between the two vectors is about 180° and that cos180° = — 1. Now, notice that any
attempt to increase the subtended angle beyond 180° will cause the red line segment to
rotate back toward the positive X-axis direction. This is similar to cases of vectors that are
between V, and V, in Figure 5-4. This exercise is to reaffirm that subtended angles are
always between 0° and 180° and to visually demonstrate what Table 5-2 showcases.

Next, you will verify that a 2D plane can always be defined to draw two vectors
that are not parallel. Please switch on the DrawThePlane toggle and rotate the camera
to see that the two vectors are indeed drawn on the greenish plane by examining that
the plane slices through the two arrows representing V, and V,, respectively. You can
manipulate any of the PO, P1, or P2 positions to observe the vectors change accordingly
and more importantly observe that the green plane also changes accordingly: it always
cuts through both vectors. Now, adjust P1 to the exact location of P2. One way you can do
this is by copying the values from P2’s transform components in the Inspector Window
and pasting them onto that of P1’s corresponding transform components. Once done,
notice that the 2D plane disappears. In this case, since the two vectors are pointing in the
exact same direction, there are an infinite number of 2D planes that can cut through the
vectors and thus none are shown.

184

CHAPTER 5 VECTOR DOT PRODUCTS

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as

follows:

// Three positions to define two vectors: P0O->P1 and PO->P2
public GameObject PO = null; // Position PO
public GameObject P1 = null; // Position P1
public GameObject P2 = null; // Position P2

public bool DrawThePlane = true;

#iregion For visualizing the vectors
#fendregion

All the public variables for MyScript have been discussed when analyzing the
Controller’sMyScript component. The code in the “For visualizing the vectors”
region is specific to drawing the vectors and as usual does not pertain to the math being
discussed in this section.

Note By now, you have observed and may even have worked with some of
the visualization code. From here on, the visualization portion of MyScript will
become increasingly complex and involved. To avoid unnecessary distractions,
beginning from this example, the code for visualization will be separated into
collapsed hidden regions. The details of these regions will not be explained or
brought up as they can be tedious and in all cases are irrelevant to the concepts
being discussed. You are very welcome to explore these at your leisure.

The Start() function for MyScript is listed as follows:

void Start() {
Debug.Assert(Po != null); // Ensure proper init
Debug.Assert(P1 != null);
Debug.Assert(P2 != null);

#iregion For visualizing the vectors
#endregion

185

CHAPTER 5 VECTOR DOT PRODUCTS

As in all previous examples, the Debug.Assert () calls ensure proper setup
regarding referencing the appropriate game objects via the Inspector Window. The
region “For visualizing the vectors,” which contains the details of initializing the
visualization variables for the vectors in the scene, is once again irrelevant to the math
being discussed and can be distracting. Therefore, this region will not be discussed. The

Update() function is listed as follows:

void Update() {
float cosTheta = float.NaN;
float theta = float.NaN;

Vector3 vi1 = Pi1.transform.localPosition -
Po.transform.localPosition;
Vector3 v2 = P2.transform.localPosition -

Po.transform.localPosition;
float dot = Vector3.Dot(vi, v2);
if ((vi.magnitude > float.Epsilon) &&
(v2.magnitude > float.Epsilon)) {
cosTheta = dot / (vi.magnitude * v2.magnitude);
// Alternatively,
// costTheta = Vector3.Dot(vi.normalize, v2.normalize)
theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;
}
Debug.Log("Dot result=" + dot +
" cosTheta=" + cosTheta +

angle=" + theta);
#region For visualizing the vectors
#endregion

The first three lines of the Update() function compute

186

CHAPTER 5 VECTOR DOT PRODUCTS

The if condition ensures that neither of the vectors are the zero vector, which as you
have learned does not have a length, cannot be normalized, and thus, cannot subtend
angles. When both of the vectors are properly defined, the cosine of the angle between
them can be computed by recognizing that

ot =7, 7, =7 |7 eos?

which means that the cosine of the subtended angle is simply

dot
[V

Finally, theta, the subtended angle value, can be derived by the arccosine function.

cosO =

)

Note that alternatively, cosé can be computed by performing the dot operation with
the normalized version of the two vectors. The dot products between vectors that are

normalized will be examined in more detail in the following sections.

Takeaway from This Example

This example verifies that when given two non-parallel vectors, a 2D plane can always
be derived to draw the two vectors. This fact allows the examination of the two arbitrary
vectors, which may not be aligned with any major axes, to be drawn, examined, and
analyzed. You have interacted with and closely examined the angle subtended by two
vectors and that this angle is always between 0° and 180°. Finally, you have observed that
the cosine of a subtended angle can be computed by dividing the dot product of the two
vectors with their magnitudes or, alternatively, from the dot product of the two vectors
after they have been normalized.

cos@zﬂz\}l}
wllv.)

Relevant mathematical concepts covered include

e The dot product of normalized vectors is the cosine of their
subtended angle.

e The value of the dot product provides insights into the relative
directions of the operand vectors (see Table 5-2).

e Aunique 2D plane can be derived from two non-parallel vectors such

that both vectors can be drawn on the plane.
187

CHAPTER 5 VECTOR DOT PRODUCTS

Unity tools

o TheMathf library can be used for mathematical functions.

o Rad2Deg: The scale factor for radian to degree conversion.

e Acos can be used to compute arccosine.

o TheMathf.Acos function returns the angle in units of radian and

not degree.
EXERCISES
Given that
7.1 =171 V. ~2|7 V. cose
and that
‘71 z(xerUZl)
‘72 = (xz 1Y rzz)
‘73 :(xl — X)) V2% _Zz)
show that

x1x2 +yly2 +Z1Z2

2 2 2 2 2 2
\/x1 +y, tZ; \/x2 +Y, +2,

cosf =

When computing theta in MyScript,

cosTheta = dot / (vi.magnitude * v2.magnitude);
theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;

188

CHAPTER 5 VECTOR DOT PRODUCTS

replace these two lines of code with the non-normalized vectors’ version
theta = Mathf.Acos(Vector3.Dot(vi, v2)) * Mathf.Rad2Deg;
Try running your game and observe the error messages. Now, include proper normalization

theta = Mathf.Acos(Vector3.Dot(vi.normalize, v2.normalize)) *
Mathf.Rad2Deg;

Try running this latest version and observe the same results as the original. This simple
exercise shows that it is vital to normalize your vectors when computing the angle
between them.

When computing theta in MyScript,
cosTheta = dot / (vi.magnitude * v2.magnitude);
replace this line of code with the explicit dot product computation

cosTheta = (vi.x*v2.x + vi.y*v2.y + vi.z*v2.z) /
(vi.magnitude * v2.magnitude);

Verify that runtime results are identical.

Vector Projections

You have learned that the dot product between two vectors, \71 and V2 , computes

the product of the vector magnitudes and the cosine of the angle subtended by the

two vectors

0, =[] feoso

In the previous example, you have verified that by normalizing both of the vectors

beforehand, ensuring that

V||=[v,|=1.0

189

CHAPTER 5 VECTOR DOT PRODUCTS

the dot product now simply computes the cosine of the angle between the
given vectors

A A

V,-V, =cosf

Now, you can examine the two remaining ways of computing the dot product
between two given vectors—with only one of the vectors being normalized or

V.-V, =||V2||0059
50, | eoso

Figure 5-7 depicts the geometric interpretation of these two dot product
computations.

||17_,|| cos

Figure 5-7. Computing dot products between two vectors with one being
normalized

It is important to note that the left and right images of Figure 5-7 are both based on

exactly the same two vectors, V; and V,. The left image of Figure 5-7 shows that with
vector ‘}1 normalized, the dot product computed

V,-V, =||V2||c059

is the length of V, when measured along direction of the V, vector. This is also

referred to as the projected length of V, on the V, vector. Notice that with the tails of the

two vectors located at the same position, the head of V, is projected perpendicular to
and onto the V, vector, as evident by the dotted line with the right-angle indicator. This
projected length can also be interpreted through trigonometry. You can treat V, as the

190

CHAPTER 5 VECTOR DOT PRODUCTS

hypotenuse that subtends the angle, 6, with the base direction being ‘}1 and the last side
being the dotted line, thus forming a right-angle triangle. In this case, the length of the
base of the right-angle triangle is ||‘72 "0089 .

The right image of Figure 5-7 shows the same two vectors, V; and V,, where the dot
product is computed with vector 172 being normalized instead of I}l

7, <[eost

In this case, the dot product computes the exact complement of the previous case—
the length of V, when measured along the direction of V,, or the projected length of
V, on the V, vector, or the length of the base of the right-angle triangle that is in the V,
direction and subtends an angle, 8, with the hypotenuse Vl, and the dotted line as its
final side. The right image of Figure 5-7 also illustrates a case where the length of the
base of the right-angle triangle extends beyond the head of the vector V, . This example
shows that the projected size can be larger than the magnitude of the vector that it is
being projected onto or

[7coso> [

Finally, remember that cosé is negative for 8 > 90°, and therefore, ||V||c059 , or the
projected size of a vector can actually be a negative value. In such cases, you know that
the vector being projected onto is more than 90° away from the vector being projected.
This turns out to be important information with many applications, some of which will
be elaborated in later subsections.

This discussion shows that with the appropriate vector normalized, the dot product can
compute the projection of the length of one vector onto the direction of the other vector and
can provide a way to relate the lengths of these two vectors. In other words, the dot product
allows you the capability to project one vector onto another. Observe that the normalized
operand is the vector being projected onto. These projections are examined in the next example.
The actual applications of the vector dot product will be discussed after the next section.

The Vector Projections Example

This example allows you to interact with and examine the results of vector projections.
You will manipulate the definition of two vectors and examine the results of projecting
these two vectors onto each other. Figure 5-8 shows a screenshot of running the EX 5 2
VectorProjections scene from the Chapter-5-DotProducts project.

191

CHAPTER 5 VECTOR DOT PRODUCTS

Figure 5-8. Running the Vector Projections example

The goals of this example are for you to

o Appreciate the results of normalizing one of the vectors in the dot
product operation

o Experience and understand the results of projecting vectors onto
each other

o Observe and interact with negative projected distances

o Examine the code that performs vector projection

Examine the Scene

Take a look at the Example_5 2 VectorProjections scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are three
objects in this scene: PO, P1, and P2. As with the previous example in this chapter, you
will manipulate the positions of the three game objects to define two vectors, Vl and V2 R

and examine the results of projecting these two vectors onto each other.
192

CHAPTER 5 VECTOR DOT PRODUCTS

Analyze Controller MyScript Component

The MyScript component on the Controller shows the references to the three game
objects: the checkered sphere PO; two stripped spheres, P1 and P2; and a drop-down
menu, ProjectionChoice. The drop-down menu allows the following options:

« VI onto V2: Project V, vector onto V,
« V2onto V1: Project V, vector onto V,

e Projection off: Do not perform any projection

Interact with the Example

Click the Play Button to run the example. Take note that by default, the
ProjectionChoice is set to V10ntoV2, and therefore, MyScript is computing and
displaying the results of projecting V, onto V.

Observe the two vectors, V, and V,, that are defined by three positions. V, is cyan
and initially is above V,, which is magenta. Notice a light, semi-transparent cylinder
along the V, vector that is connected with a thin black line to the head of V,. The thin
black line depicts the projection from the head of V, perpendicularly onto V,, where the
line intersects V,. The semi-transparent cylinder on V, shows the projected length of
V, on V,. To emphasize the fact that the result of a dot product, or the projected length
in this case, is just a floating-point number, this value is used to scale the height of the
black bar to the side of the checkered sphere (P0). The length of the black bar is always
the same as the semi-transparent cylinder. This length is the result of the calculated dot
product, and in this scenario is

v1LengthOnV2=V,.V, = ||171 ||cos6

Now, select P1 and manipulate its x-component to change the length of V,. Notice
that as V, increases in length, the projected length on V,, the semi-transparent cylinder,
also increases in length resulting in the black bar growing taller. This observation can be
explained by the fact that the length of V, is ||171 || , and as ”‘71” increases, so does ||Vl ||cos@ ,
or vilLengthOnv2.

Now, select P2 and decrease the y-component value to increase the subtended angle.
Observe that as the angle increases, the projected length of V, decreases, and when V,
and V, become almost perpendicular, the length approaches zero. This observation

193

CHAPTER 5 VECTOR DOT PRODUCTS

can be explained by the fact that as the angle 6 increases, cosf decreases, and thus
vilengthOnV2 also decreases. When the two are perpendicular, cosf returns a value of 0,
forcing "‘71”0039 to be 0 as well, which is why no projection is visible when V, and V, are
perpendicular. Beyond 90° and to 180°, cosé is negative and thus the dot product result

is negative. When this occurs, you will observe the black bar turning red and growing

in the negative y-direction. Notice how the semi-transparent projection cylinder is no
longer on V,, but extending in the opposite direction of V,. There are three important
observations to make about the value of viLengthOnV2:

o [Itis asimple floating-point number; this number is a measurement
of the length of the projecting vector, V,, along the vector being
projected onto, VZ.

« Itisthe sign of the number that indicates whether V, and V, are
within 90° of each other.

» Its magnitude is directly proportional to the length of the projecting
vector, 171 , and the cosine of the subtended angle with ‘}2 .

Itis important to remember the characteristics of the cosine function that its result
decreases when the angle increases from 0° to 90°. This means, as you have experienced
and observed, that the magnitude of viLengthOnV2 is actually inversely proportional to
the angle 6 for 0° < 6 < 90°.

Feel free to choose the V20ntoV1 option for the ProjectionChoice variable and to
examine and verify the complementary observations for

v2LengthOnV1=V,.V, = ||172 ||c030

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as
follows:

public enum ProjectionChoice {
V10ntoV2,
V20ntoV1i,
ProjectionOff

}s

194

CHAPTER 5 VECTOR DOT PRODUCTS

// Three positions to define two vectors: PO->P1 and PO->P2
public GameObject PO = null; // Position PO
public GameObject P1 = null; // Position P1
public GameObject P2 = null; // Position P2

public ProjectionChoice ProjChoice = ProjectionChoice.V10ntoV2;

#iregion For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component. Take note that variables with the enumerated data
type show up in the Hierarchy Window as options for a drop-down menu. The Start()
function for MyScript is listed as follows:

void Start() {
Debug.Assert(Po != null); // Ensure proper init
Debug.Assert(P1 != null);
Debug.Assert(P2 != null);

#region For visualizing the vectors
#endregion

As in all previous examples, the Debug.Assert () calls ensure proper setup regarding
referencing the appropriate game objects via the Inspector Window. The Update()
function is listed as follows:

void Update() {
Vector3 vi1 = Pi.transform.localPosition -
Po.transform.localPosition;
Vector3 v2 = P2.transform.localPosition -
Po.transform.localPosition;
if ((vi.magnitude > float.Epsilon) &&
(v2.magnitude > float.Epsilon)) {
// make sure vi and v2 are not zero vectors

195

CHAPTER 5 VECTOR DOT PRODUCTS

switch (ProjChoice) {
case ProjectionChoice.V10ntoV2:
float vilengthOnV2 =
Vector3.Dot(vi, v2.normalized);
Debug.Log("Projection Result:
Length of V1 along V2 = " + vilengthOnV2);
break;
case ProjectionChoice.V20ntoV1:
float v2LengthOnV1 =
Vector3.Dot(vi.normalized, v2);
Debug.Log("Projection Result:
Length of V2 along V1 = " + v2LengthOnV1);
break;
default:
Debug.Log("Projection Result: no projection,
dot=" + Vector3.Dot(vi, v2));
break;

}

#region For visualizing the vectors
#endregion

The first two lines of the Update() function compute

)

H| |
L

-5

]

=B~

The if condition checks and ensures that the normalization operation will not be
performed on zero vectors. When conditions are favorable, the switch statement checks
the user’s projection choice and simply computes and prints the results of one of the

following:

vlLengthOnV2=V, -V,

v2LengthOnV1=V,-V,

196

CHAPTER 5 VECTOR DOT PRODUCTS

Takeaway from This Example

This example demonstrates the results of projecting vectors onto each other. Vector
projection is computed when one of the two operands of a dot product operation is
normalized. Remember, the normalized vector is the one being projected onto. It is
important to remember that projection is a simple dot product operation and the result
is a signed floating-point number.

Relevant mathematical concepts covered include

e (Calculating the dot product with a normalized vector can be
interpreted as projecting the length of a vector onto another vector.

o The sign of the projection result indicates if the subtended angle is
less than, when positive, or more than, when negative, 90°.

e The projection result is directly proportional to the length of the
projecting vector and inversely proportional to the subtended angle
when the angle is between 0° and 90°.

Unity tools

e Enumdata type appears as drop-down menu options in the
Hierarchy Window.

EXERCISE

When computing viLengthOnV2 in MyScript
float vilLengthOnV2 = Vector3.Dot(vi, v2.normalized);

verify the projection formula
V,-V, =||\71||c030

and replace that line with

float cosTheta = Vector3.Dot(vi.normalize, v2.normalized);
float vilengthOnV2 = vi.magnitude * cosTheta;

Verify that the runtime results are identical.

197

CHAPTER 5 VECTOR DOT PRODUCTS

Representation of a Line Segment

Figure 5-9 shows two checkered sphere positions, P, and P,, defining a vector, V,,
Vi=B-F

Notice that the region bounded by P, to P, is a segment of a straight line. In this
case, the position P, when measured along the \71 direction, is located before the line
segment and position P, is located after the line segment. In Figure 5-9, positions in
between both P, and P, are described as inside the line segment and thus both P, and P,
are both outside of the line segment.

l(s) =Py + 5'}1
1(t) = Py + tV,

)
s Au
[L

Figure 5-9. Representing a line segment with a vector

As you will see in later examples, in many applications it is critical to determine if a
position is within the bounds of a line segment defined by two positions. By referencing
the vector defined by the two positions, that is, the V, in Figure 5-9, there are two
convenient ways to identify a line segment region. The first way is to represent a line
segment based on parameterizing the vector V,

L(s)=P,+sV,
As illustrated in Figure 5-9, the value of s identifies a position along the P, and P, line
segments. For example,
1,(0)=F, +0V, =P,
1,(0.5)=P, +0.5V, =midpoint of the line segment
L(1)=R,+1V, =B +(R ~B)=P

198

CHAPTER 5 VECTOR DOT PRODUCTS

In this way, the value of s is the portion, or percentage, of the line segment covered
as measured from P, toward P, or the portion of the line segment covered along the
V, direction starting from P,. When there is no coverage, or when s = 0, the position
identified is the beginning position of the line segment, P,. A complete coverage, or
when s = 1, is the position identified as the end position of the line segment, P,. In
general, as illustrated in Figure 5-9, a position is within the line segment boundaries
when 0 < s < 1. When s < 0, for example, P,, the position is before the beginning position,
Py, and when s > 1, for example, P,, the position is after the end position of the line
segment, P;.

The second way to represent the line segment region bounded by the positions P,
and P, is by parameterizing the normalized Vl, or V1 ,

[(t)=P,+1V,

In this case, because the vector is normalized, ¢is the measurement of the actual
distance traveled from the beginning position, P,, toward the end position of the line
segment, P,, or the distance traveled along the 171 direction starting at P,. For this reason,
when ¢ =0, or /(0), it signifies that no distance was traveled, and thus the identified
position is the beginning of the line segment, P,. The end position of the line segment is
reached when # = ||V1 || or the length of the vector V,

(vl)=p+VlV,= B+V.=R

As illustrated in Figure 5-9, the range 0<¢< ||\71 || identifies a position within the line
segment boundaries. £< 0 and ¢ > ||V1 || identify positions that are before the beg}nning
position and after the end position of the line segment as measured along the V,
direction.

The only difference between the two line segments’ representations is the
normalization of the V, vector

L(s)=PB,+sV,

1(t)=P,+tV,

199

CHAPTER 5 VECTOR DOT PRODUCTS

When comparing these two representations, the 0 to 1 range of the s parameter in
1,(s) is convenient for determining if a position is within the line segment bounds and the
distance measurement of the ¢ parameter in [(#) is advantageous when an actual distance
traveled is required in the computation. Note that the s and ¢ parameters are related by a

simple scaling factor, ”‘71

’

=)

In practice, when serving as part of more elaborate algorithmic computations,
line segments are seldom explicitly represented. In these situations, the [,(s) or I(t)
parameterizations are often used interchangeably depending on the needs of the
computations.

When represented explicitly, a line segment is often referred to as a ray. Rays are
always parameterized as [(f) with a normalized direction vector. For this reason, () is
often referred to the vector line equation, or the ray equation, and is used often in video
game development. For example, the Unity Ray class, https://docs.unity3d.com/
ScriptReference/Ray.html, is a straightforward implementation of the line equation.

Inside-Outside Test of a General 1D Interval

Recall from Chapter 2 that a 1D interval is a region that is bounded by a minimum and
maximum position along one of the major axes of the Cartesian Coordinate System. With
the knowledge of vectors, the definition of an interval can now be relaxed. In general, a
1D interval, or a line segment, is defined as the region bounded by two positions along a
direction (instead of just a major axis). In this way, the line segment in Figure 5-9 can be
described as a 1D interval with its minimum position at P, and its maximum position at
P, along the V, direction.

Figure 5-10 shows that the inside-outside test for an interval can be based on the
comparison of coordinate values or the comparison of distances. Recall that given an
interval defined along the Y-axis with min and max positions, a given y-value, v, is inside
the interval when

min <v<max

200

https://docs.unity3d.com/ScriptReference/Ray.html
https://docs.unity3d.com/ScriptReference/Ray.html

CHAPTER 5 VECTOR DOT PRODUCTS
If the value min is subtracted from all sides of the equation,
min—min <v-min <max—min
then

0<(v—min)<(max—min)

y = max H—_k

>

yv=v - \ - max —min
—

(length of interval)

. v —min
y=min
T \LE
Coordinate value comparison Distances comparison
Inside when: Inside when:
min < v < max 0 < v —min < max — min

Figure 5-10. Inside-outside test based on coordinate values and distances

This inequality equation says that the inside-outside test can also be determined
by examining the distance from the minimum and maximum positions of the interval.
For example, a given y-value, v, is inside the Y-axis interval when the distance between
v to the minimum position is greater than zero and less than that of the maximum to
minimum distance. With this understanding, Figure 5-11 illustrates the case for a general
interval, with a direction that may not be aligned with a major axis of the Cartesian
Coordinate System, like the Y-axis of Figure 5-10.

201

CHAPTER 5 VECTOR DOT PRODUCTS

P, @
Pl” & P1 & Pl & P‘]. @ Pon =P(] -+ d‘z
~ “d > ||V
17114 .
=]?: : I71
P\ g/
(a)

Figure 5-11. An interval bounded by P, and P,, or a line segment along the V,
direction

With the knowledge of vectors, you can now define a vector, V,, with tail position at
P, to represent the interval in Figure 5-11, where

Vi=R-h
In this way, the interval is simply the line segment
I(t)=F,+1V,

With the interval being described as a line segment, it should not be surprising that
Figures 5-11 (a), (b), and (c) are similar to that of Figure 5-10. Figures 5-11 (a) and (b)
illustrate the situation when the position to be tested, P, is outside of the line segment
interval. Figure 5-11 (a) shows that, d, the symbol representing the distance between P,
and P, along the V, direction, is larger than the line segment’s magnitude, d >|V,||, and
is thus beyond P,. Figure 5-11 (b) shows the case when d < 0, or when P, is before P,. It is
obvious that in both Figures 5-11 (a) and (b), P, is outside of the interval. Figure 5-11 (c)
shows that P, is within the bounds of the interval when 0<d <||V}||. Note the similarities
between these three cases with those of Figure 2-2, except instead of the coordinate
value comparisons, the inside-outside conditions are restated in Figure 5-11 based on
distance measurements.

202

CHAPTER 5 VECTOR DOT PRODUCTS

Figure 5-11 (d) is a more interesting case; here the position of interest, P, does
not lie on the same line as the interval. You have addressed this type of situation in
Chapter 2. You may recall that when working with intervals along the Y-axis, the x- and
z-component values are irrelevant when it comes to determining if a position is within
a given y-interval. For example, a given position (-3, 2, 5) is inside of the Y-axis interval
with a bound of min = — 1 and max = 4 because the y-component value of the position,
2, is bounded by the values of min, —1, and max, 4. In this case, the position (-3, 2, 5)
does not lie on the same line as the interval, the Y-axis, and only the coordinate value
along the axis direction of interest, the Y-axis value of 2, is considered.

Figure 5-11 (d) translates the interval test knowledge from Chapter 2 using the
vector projections you have learned. In this case, V, is the vector from P, to P, and is the
direction that corresponds to the Y-axis where the interval is defined. Given a position of
interest, P, you can define the vector V, as

then the distance, d in all cases of Figure 5-11, is simply the projected distance of
vector V,, in the \71 direction, or

d=v,-v,
Note that since V, is projected onto the ‘71 direction, the vector V, must be
normalized. Finally, you know that the position, P,,, the projection of the P, position
onto V,, is = d along the I(f) line or d distance away from P, in the V, direction

P, =1(d)=P,+dV,

on

Note You can refer back to the initial discussion of vector projection in

Figure 5-7. In this case, V, is simply v, and the projected length, d, is ||V,]|cos6 .
When d>|v,||, the projected length is greater than the size of the vector being
projected onto, and when d < 0, the subtended angle, 0, is more than 90°.

203

CHAPTER 5 VECTOR DOT PRODUCTS

The Line Interval Bound Example

This example demonstrates the results of the inside-outside test for a general 1D interval
(non-axis-aligned interval). This example allows you to interactively define a general 1D
interval and manipulate a test position to examine the results of performing the inside-
outside test. Figure 5-12 shows a screenshot of running the EX 5 3 LineIntervalBound
scene from the Chapter-5-DotProducts project.

Figure 5-12. Running the Line Interval Bound example

The goals of this example are for you to
o Experience defining and interacting with a general interval
o Examine the projection of a position onto a general interval

e Understand the implementation of an inside-outside test for the
general interval

204

CHAPTER 5 VECTOR DOT PRODUCTS

Examine the Scene

Take a look at the Example 5 3 LineIntervalBound scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are four
objects in this scene: PO, P1, Pt, and Pon. Here, PO and P1 are the bounds of the interval,
Pt is the position to manipulate for the inside-outside test, and Pon represents the
position when Pt is projected onto the interval.

Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that
correspond to the game objects in the scene. For all these variables, the transform.
localPosition will be used for the manipulation of the corresponding positions.

Interact with the Example

Click the Play Button to run the example. Observe that by default and design, this
example is rather similar to the Interval Bounds in 1D example in Chapter 2. Select Pt
and adjust its y-component value to move the position along the green line that defines
the interval. Since Pt is on the green line, the projected position, Pon, is exactly the same
as Pt. This is why you do not observe a separate projected position. Notice how the

color of the interval changes if Pt is inside or outside of the interval. You can compare
the interval color change to the debug messages printed in the Console Window and
verify that proper inside-outside conditions are being computed. So far, this example has
worked in exactly the same manner as the one from Chapter 2.

Now, adjust the x- and z-component values of Pt to move the test position away from
the green line. Notice that as soon as Pt departs from the green line, you begin to observe
the position Pon. You will also notice that Pon is connected to Pt by a thin black line that
is perpendicular to the green line. Move the camera around to verify that the thin line
connecting Pon to Pt is indeed perpendicular to the green line. You are observing the
exact situation illustrated in Figure 5-11 (d).

Now, you can adjust PO and P1 to manipulate the direction and length of the 1D
interval. Observe that the perpendicular projection of Pon and the inside-outside test
results are both consistently updated and correct for any interval you define.

205

CHAPTER 5 VECTOR DOT PRODUCTS

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

// Positions: to define the interval, the test, and projected
public GameObject PO = null; // Position PO of interval
public GameObject P1 = null; // Position P1 of interval
public GameObject Pt = null; // Pt: test position

public GameObject Pon = null; // Pon: Pt projected on interval

f#firegion For visualizing the vectors
#endregion

void Start() {
Debug.Assert(P0 != null); // Ensure proper init
Debug.Assert(P1 != null);
Debug.Assert(Pt != null);
Debug.Assert(Pon != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing
Controller’s MyScript component, and as in all previous examples, the Debug.Assert()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {
Vector3 v1 = Pi.transform.localPosition -
Po.transform.localPosition;

if (vi.magnitude > float.Epsilon) {

Vector3 vt = Pt.transform.localPosition -
Po.transform.localPosition;
Vector3 vin = vi.normalized;
float d = Vector3.Dot(vt, vin);
Pon.transform.localPosition = PO.transform.localPositio
+ d * vi.normalized;
206

CHAPTER 5 VECTOR DOT PRODUCTS

if ((d >= 0) & (d <= vi.magnitude))
Debug.Log("V1.mag=" + vl.magnitude +

"Projected Length=" + d + " ==> Inside!");
else
Debug.Log("V1.mag=" + vl.magnitude +
"Projected Length=" + d + " ==> Outside!");

}

#region For visualizing the vectors

#endregion

The first line of the Update() function computes

The if condition ensures that 171 is not a zero vector, which cannot be normalized or
projected onto. If V, is not a zero vector, then the four statements within the if condition

perform the following four computations:

=

=P-R,

‘}1 = Normalize(V1)

P, =P +av,

The Debug. Log () function prints the inside-outside status of Pt according to
0<d<|V,|. Note that although the interval is represented by the line equation
I(t)=P+1V,
this representation is implicit. There is no explicit data structure definition for a

specific variable referencing the line equation. This implicit evaluation without explicit

representation is rather typical in the application of the line equation.

207

CHAPTER 5 VECTOR DOT PRODUCTS

Takeaway from This Example

This example links the interval discussions in Chapter 2 to the concepts of vectors. At
this point, you know how to compute the inside-outside test of a position for a general
interval that is not aligned with a major axis. Recall the discussion in Chapter 2, where

in Figure 2-7, the point in a bounding area test was derived by applying the one-
dimensional interval test twice, once each to two intervals that are defined along two
perpendicular directions. The same idea of applying the 1D interval test twice can be
used for a general bounding area, and following the same concept once more, you can
use the 1D interval test three times for a general bounding box. Now you can perform the
inside-outside test of a position for a bounding box with three perpendicular intervals
that do not need to be aligned with the major axes!

Though exciting, the non-axis-aligned bounding box has a severe limitation; the
collision computation between these boxes is straightforward only when the three
corresponding intervals that define the boxes are parallel. In general, given two
bounding boxes, each with different interval directions, the collision detection between
two such boxes is complex and non-trivial. For this reason, only axis-aligned bounding
boxes are typically used in video game development.

Relevant mathematical concepts covered include

e Aninterval along a direction is a line segment and can be represented
by the vector line equation.

e Vector projection can be applied to compute the projected distance
of a point along a direction.

o The projected position along a direction can be determined for any

given position.

EXERCISES

Recall that the Y-axis interval is defined by its min and max values. These are actually P, with
(0, min,0) and P, with (0, max,0). Now, by computing

208

CHAPTER 5 VECTOR DOT PRODUCTS

V,=P-F

t

>

d=Vv-

1
P, =P +av,

verify that given a general test position, P; with (x,, ¥, z), the projected position, P,,, is

(0,y; — min,0), showing that in this case, the x- and z-component values of P, are indeed
irrelevant. You can set up the values of PO and P1 in this example to visualize the described
results.

Define V., to be

and observe that

Modify MyScript to print out P,, values based on these equations and then compare them to
the Pon values currently computed in the script to verify they are identical. Notice that V_ is
also, P,, — P.

Refer to the previous definition of V, ,

Since P,, is the projection of P, onto V1 it follows that V. is perpendicular to V. Recall
from the discussion of the dot product that when vectors have a subtended angle of 90°,

and because c0s90° = 0, the dot product of two such vectors is zero. Modify MyScript to
compute and print out the values of V, -V, and |7 V1 and verify that both results are zero.

209

CHAPTER 5 VECTOR DOT PRODUCTS

Line to Point Distance

Imagine an adventure game where hidden treasures are exposed when exploration
agents are within their proximity. By now, you know how to define bounding volumes,
for example, bounding spheres, for both the treasure and the agent objects, as well as
support the detection of collisions between these corresponding bounding volumes.
Figure 5-13 illustrates that for a fast-moving agent, the simple bounding sphere collision
test may result in missed treasures.

Hidden Treasure

d . Next Frame
/Pt :
- Py
Current Frame Bounding spheres

would have collided

Agenl:_r’t__ P.
0

Figure 5-13. A case where the bounding sphere misses with fast-traveling objects

In Figure 5-13, both the police car agent and the city bus treasure are bounded by
their corresponding bounding spheres. In this case, the police car is traveling at a high
speed along the velocity defined by the black line. Here, in one update the car traveled
from position P, on the left to position P, on the right. Notice that the bounding spheres
of the car and the bus would have collided around P,, if the police car was traveling
at a much slower speed. However, at the described high speed, the bounding sphere
collisions at both the current frame and the next frame would be false, thereby missing
the police car (agent) and the city bus (treasure) collision.

A straightforward approach to address this problem is by modeling this situation as
a line to point distance computation. In the case of Figure 5-13, the problem is to find
the closest distance between the line segment defined by P, and P, and the point located
at P,. This distance would be used to compare against the radii of the bounding spheres
of the agent and the treasure to determine if a collision should occur during the agent’s
motion. If this distance is less than the combined radii, then a collision should occur.

From basic geometry, you know that the closest distance between a line segment
and a position should be measured along a direction that is perpendicular from the line
to the position. Now, you also know that a vector projection projects the head of a vector

210

CHAPTER 5 VECTOR DOT PRODUCTS

perpendicularly onto another given vector. In the case of Figure 5-13, these observations
can be translated into, defining two vectors,

V,=P-P,

Then you can project V[onto V, to compute P,,, the projection of P, on the vector V.
In this case, you know the vector, 1%

on’

v

on

must be perpendicular to Vl , and thus the distance between P, and P,,, or ,is
the closest distance between the line segment defined by P,, P, and the position P,. This
distance would be compared with the combined radii of the bounding spheres of the
agent and treasure for collision determination.

It is encouraging that this problem and its solution are familiar to those of the line
segment and the general interval inside-outside test. Based on the previous discussions,

you know that

d=v,-v,

P, =P +dV,

You can observe that when the position P, is within the bounds of the line segment
end points, or when 0<d <|V,|, the closest distance between the line segment and the

V

onl||*

point is from P, to P,,, or the magnitude of VM or
Figures 5-14 (a) and (b) show that P, can also be outside of the line interval. In these

cases, the closest distance measurements are actually between P, and the end points

of the line segment. Figure 5-14 (a) illustrates that when d < 0, P, is located at a position

before the line segment and thus the closest distance is actually the distance between P,

and P,, or simply the magnitude V, or V,. Figure 5-14 (b) illustrates that when & > ”‘71)
P,islocated at a position after the line segment and thus the closest distance is the
distance between P, and P,, or the magnitude of (R - Pl) or ||R -P H . Figure 5-14 (c) is

the same case as Figure 5-13, when 0<d <|V,|, and the closest distance is the magnitude

of V. or [V |.

211

CHAPTER 5 VECTOR DOT PRODUCTS

17

P,
(©) Vﬁ/‘ gay”
-
~ e

Figure 5-14. The three conditions of line to point distance calculation

The Line to Point Distance Example

This example demonstrates the results of the line to point distance computation. This
example allows you to interactively define the line segment, manipulate the position of,
and examine the results from the line to point distance computation. Figure 5-15 shows
a screenshot of running the EX 5 4 LineToPointDistance scene from the Chapter-5-
DotProducts project.

212

CHAPTER 5 VECTOR DOT PRODUCTS

Figure 5-15. Running the Line to Point Distance example

The goals of this example are for you to

» Experience working with a straightforward application of the vector
dot product concepts

e Interact with and understand the results of line to point distance
computation

o Examine the implementation of line to point distance computation

Examine the Scene

Take a look at the Example_5 4 LineToPointDistance scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are exact
same four objects in this scene as in the previous example: PO, P1, Pt, and Pon. Here, PO
and P1 are the checkered spheres that identify the line segment. Pt is the white sphere
and is the position (the point) used for the line to point distance computation. Finally,
Pon, the red sphere, is the position where Pt is projected onto the line.

213

CHAPTER 5 VECTOR DOT PRODUCTS

Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that
correspond to the game objects in the scene. For all these variables, the transform.
localPosition will be used for the manipulation of the corresponding positions.

Interact with the Example

Click the Play Button to run the example. Observe that PO and P1 define the green vector
direction and a line segment. There is a thin black line connecting Pt, the white sphere,
to the projected position, Pon, the red sphere, on the line segment. Select Pt and adjust
its y-component value. Try to move Pt away from the line, for example, by increasing
the y-component value, and observe the red sphere increase in size. If you move Pt
closer instead, you will observe the red sphere shrink. The size of the red sphere, Pon, is
directly proportional to the distance between Pt and the line segment. The results of this
computation can also be observed in the Console Window.

Now, change the x-component value of Pt to observe the corresponding movement
of the projection position, Pon. Notice that when Pt is within the bounds of the line
segment, the thin black line connecting Pt to Pon is always perpendicular to the line
segment, indicating the projection of Pt onto the line segment. When Pt is moved to
outside of the line segment, the thin black line becomes connected to the closest end
point of the line segment, either PO or P1. This signifies that the closest distance in these
situations is actually the measurement to one of the end points of the line segment.

You can now select and manipulate PO and P1 to verify that the distance computation
is indeed correct for any line segment, including a line segment defined by the zero
vector, which occurs when PO and P1 are located at the same position.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

// Positions: to define the interval, the test, and projected
public GameObject PO = null; // Position PO

public GameObject P1 = null; // Position P1

public GameObject Pt = null; // For distance computation
public GameObject Pon = null; // closest point on line

214

CHAPTER 5 VECTOR DOT PRODUCTS

#iregion For visualizing the line
#endregion

void Start() {
Debug.Assert(Po != null); // Ensure proper init
Debug.Assert(P1 != null);
Debug.Assert(Pt != null);

#iregion For visualizing the lines
#endregion

All the public variables for MyScript have been discussed when analyzing

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start () function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update () function is listed as follows:

void Update() {
float distance = 0; // closest distance
Vector3 vi1 = Pil.transform.localPosition -
Po.transform.localPosition;
float vilen = vi.magnitude;

if (vilen > float.Epsilon) {
Vector3 vt = Pt.transform.localPosition -
PO.transform.localPosition;
Vector3 vin = (1f / vilen) * vi; // <<-- what is this?
float d = Vector3.Dot(vt, vin);
if (d < 0) {
Pon.transform.localPosition =
Po.transform.localPosition;
distance = vt.magnitude;
} else if (d > vilen) {
Pon.transform.localPosition =
P1.transform.localPosition;
distance = (Pt.transform.localPosition -
P1.transform.localPosition).magnitude;
} else {

215

CHAPTER 5 VECTOR DOT PRODUCTS

Pon.transform.localPosition =
Po.transform.localPosition + d * vin;
Vector3 von = Pon.transform.localPosition -
Pt.transform.localPosition;
distance = von.magnitude;
}
float s = distance * kScaleFactor;
Pon.transform.localScale = new Vector3(s, s, s);
Debug.Log("viLen=" + vilen + " d=" + d +
" Distance=" + distance);

}

#region For visualizing the lines
#endregion

The first two lines of the Update() function compute

viLen= ||Vl||

The if condition checks for and avoids performing the normalization operation on a
zero vector. When the condition is favorable, the following are computed:

V,=P,-P,
A]_ _) R
1= Note: normalize V,

vllen

d=v,V,

With P,, being the closet point on the line segment and the position being distance
away from P, notice how the computation is governed by the values of the projected
length, d:

216

CHAPTER 5 VECTOR DOT PRODUCTS
e Whend < 0, the condition is as illustrated in Figure 5-14 (a), and
P =P,

on

distance =V

e Whend>uvlLen,or d>|V,
Figure 5-14 (b), and

, the condition is as illustrated in

P =P

on

distance =||P, - P||

t

o The final condition, when 0<d < ||I71
(c), and

, is as illustrated in Figure 5-14

P, =P +av,

V =P —-P

on on t

distance = ||Van ||

The last three lines of code scale the red sphere that represents P,, in proportion to
the value of distance and outputs the computation results to the Console Window.

Takeaway from This Example

This example demonstrates a solution to a fundamental problem in video games and
interactive computer graphics. In video games, the closest distance and intersection
computations are some of the most straightforward solutions to the problem of missed
collisions from fast-moving objects. In graphical interactions, many basic operations
depend on the results of line to point distance computation. For example, in a drawing
editor, clicking the mouse button to select a line object is typically implemented as
determining if the clicked position is sufficiently close to the line object, as clicking
perfectly on a one-pixel wide line can be challenging and frustrating!

The solution presented in this example to these types of problems is based on the
concepts of vector projection and builds directly on the knowledge gained from the line
equation and the general interval inside-outside test discussions. These concepts are

217

CHAPTER 5 VECTOR DOT PRODUCTS

some of the most important topics in interactive graphical applications and are widely
applied in video game development.
Relevant mathematical concepts covered include

o The distance between a line segment and a point, P, can be solved by
finding the position, P,,, along the line segment that is closest to P,
and computing the distance between P,, and P..

e When P, is outside of the line segment, P, is located at one of the line
segment end points.

e When P, is inside the line segment, P,, is the projection of P; onto the

line segment.

EXERCISE

Modify MyScript to continuously send a fast-moving agent from PO to P1, for

example, traveling at a speed of 20 units per second. You can refer to the EX 4 3
VelocityAndAiming scene of Chapter-4-Vectors for a sample approach of how to
implement this functionality. In your Update () function, compute the collision between the
agent and the Pt sphere. Notice even when the P0 to P1 line segment passes right through
the Pt sphere, you can fail to detect the collision between the agent and the Pt sphere. This
is because the agent is simply moving too fast for the spheres to overlap. Verify that you can
resolve this problem with the line to point distance computation.

Line to Line Distance

Imagine in another adventure game, you want to know if the path of the explorer will
come too close to a monster pathway. This is a simple case of determining the distance
between two line segments. This problem has a simple and elegant solution that allows
you to practice the vector algebra learned. Figure 5-16 illustrates the general case of two
line segments, where the problem is how to compute the perpendicular, or the shortest,
distance between the lines.

218

CHAPTER 5 VECTOR DOT PRODUCTS

Py

Figure 5-16. Distance between two line segments

The problem of finding the closest, or the perpendicular, distance between two
given lines is similar to the line to point distance problem. The solution boils down to
locating a point on each line where when connected are perpendicular to both of the two
given lines. This description is depicted in Figure 5-16, where the two lines are defined
by positions P, and P, and P, and P,, respectively. In this figure, the position P, is d,
distance away from P, and P, is d, distance away from P, where the line segment from
P, to P, is perpendicular to both of the other two lines. In this way, the shortest distance
between the lines is the length of the vector, P, — P,,. In order to find P, and P,, the
task is to find the distances d, and d,. You can begin deriving the solution by defining

)

-P

1

Il
Ny

—

)

-P

a

Il
<O

B

<~
I
N

I_Pda

The descriptions of P, and P,, can be formulated as two separate line segments
P,=P+ dl‘}l

Pd =Pa +da‘}a

a

Since V, is perpendicular to both V; and V,, it must be true that both of the

following are true:

V,-V,=0
V,-V,=0

219

CHAPTER 5 VECTOR DOT PRODUCTS

Now, if you substitute P, and P, into V), these two equations become

V¥, =V, (B~ B,) =V, (B +d ¥, - B,~d,V,)=0

p

. A

‘}a.v =V .(pdl_Pda):\}a .(Pl +d11}1—Pa—da\7a)=0

p a

Note that these are two simultaneous equations with two unknowns, d, and d,,.
Now, examine the first of the two equations, by following the distributive property of dot
product over vector operations, collecting the terms with \}1 , and recognizing \71 ‘}1 is 1.0

|27 :‘Z'(Pdl_Pda)

p

Substitute the definitions of P, and P,,

=0,(R+dV,-P,~d,7,)

Apply the distributive property of dot product for vector

A A A A

=V-P+ 1'd1 1_V1'Pa_vl'dava

Collect the P, and P, terms

A

=V,-(R-PB,)+V,-dV,-V,-d

a a

Apply distributive property over factors d, and d,,

A

0, (B-B)i (0, 9,) -, (1,0,

a

Recognize the fact that I}l dot I}l isequal to 1

=V,-(R-R,)+d,~d,(V;-V,)

220

Now, let

Then

CHAPTER 5

A

V,-V,=V.V, +d, —d,d=0

p

VECTOR DOT PRODUCTS

Following similar simplification steps, left as an exercise, you can show that

V,-V, =V, -V, ~d, +d,d=0

In this way, the simultaneous equations become

Recall that dot product results are floating-point numbers; therefore, V, -V,

V.-V, +d —d,d=0

V.-V, -d,+d,d=0

A A

al

and Vu -Vul return simple floating-point numbers. These equations are thus simple

algebraic equations that are independent from vector operations, and once again, their

simplification and solution derivation are left as an exercise. You can show that the

solution to the simultaneous equations is

A

Vl 'Val)"'d(‘}a'val)
1-d?

L

221

CHAPTER 5 VECTOR DOT PRODUCTS

In this case, to allow easier interpretation of text output, instead of distances you can
compute the portion of line segment covered or

. d
d =

v,
d =

)

a

Q

and

Pdl :pl +di‘71
P, =P +dV,

where you know P, and P,, are within the bounds of their respective line segments
only when d, and d, are both within the range of 0 to 1. Now, the closest distance
between the two lines is the distance between P, and P,,, or ‘ m” . Note that this is
also the length of the vector Vp , Or ||Vp|| .

The Line to Line Distance Example

This example demonstrates the results of line to line distance computation. This
example allows you to interactively define the two line segments and examine the results
from the line to line distance computation. Figure 5-17 shows a screenshot of running
the EX 5 5 LineTolLineDistance scene from the Chapter-5-DotProducts project.

222

CHAPTER 5 VECTOR DOT PRODUCTS

= v &) EX5_5_LineTolin

Figure 5-17. Running the Line to Line Distance example

The goals of this example are for you to
» Experience deriving and simplifying non-trivial vector expressions

o Verify solutions to vector equations with a straightforward
implementation

» Examine the implementation of line to line distance computation

Examine the Scene

Take a look at the Example 5 5 LineTolineDistance scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are three
sets of objects defined for the visualization of the two line segments: the two checkered
spheres P1 and P2, the two stripped spheres Pa and Pb, and the two solid color spheres
Pd_1andPd_a. The transform.localPosition of P1, P2 and Pa, Pb defines the bounding
positions of the two line segments. The transform.localPosition of Pd_1 is a position
along the line defined by P1 to P2 and Pd_a a position along the Pa to Pb line where the
distance from Pd_1 to Pd_a is the closest distance between the two lines.

223

CHAPTER 5 VECTOR DOT PRODUCTS

Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables with names that
correspond to the game objects in the scene. These variables are set up to reference the
game objects with the corresponding names in the scene.

Interact with the Example

Click the Play Button to run the example. Once running, you will observe two line
segments. The first is red and is defined by a pair of checkered spheres, P1 and P2. The
second line segment is blue and is defined by a pair of stripped spheres, Pa and Pb. Along
each line segment is a semi-transparent sphere, Pd_1 on the red line segment and Pd_a
on the blue line segment. Notice that the two spheres are connected by a thin black line
that is perpendicular to both the red and the blue line segments. You are observing the
solution to the line to line distance computation.

Now, rotate the Scene View camera to verify that the thin black line is indeed
perpendicular to both the red and blue line segments. Feel free to manipulate any of the
line segment end points to verify the computation results. Note that when the locations
of Pd_1 or Pd_a are outside of their respective line segments, the semi-transparent
spheres will turn opaque. You can also observe the text output in the Console Window.
There, the values for d1 and da are in the range between 0 and 1, assisting your
verification of the corresponding position’s inside-outside status on their respective line
segment.

Lastly, set both of the line segments to be along the same direction, for example, set
P1 and P2 to the values (0, 0,0) and (5,0,0) and Pa and Pb to (0, 2,0) and (5, 2,0). Once
done, notice that the results of both Pd_1 and Pd_a are no longer visualized. You can
verify in the Console Window that the line segments are in the exact same direction. This
is a special case not handled in the derived solution. One of the exercises at the end of
this example will tell you what this special case is and allow you to practice handling this
special case.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

224

CHAPTER 5 VECTOR DOT PRODUCTS

public GameObject P1, P2; // define the line Vi1
public GameObject Pa, Pb; // define the line Va
public GameObject Pd 1; // point on V1 closest to Va
public GameObject Pd_a; // point on va closest to Vi

#iregion For visualizing the line
#endregion

void Start() {
Debug.Assert(P1 != null); // Ensure proper init
Debug.Assert(P2 != null);
Debug.Assert(Pd_1 != null);
Debug.Assert(Pa != null);
Debug.Assert(Pb != null);
Debug.Assert(Pd_a != null);

#region For visualizing the line
#endregion

All the public variables for MyScript have been discussed when analyzing
Controller’s MyScript component, and as in all previous examples, the Debug.Assert()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The Update () function is listed as follows:

void Update() {
Vector3 vi1 = P2.transform.localPosition -
P1.transform.localPosition;
Vector3 va = Pb.transform.localPosition -
Pa.transform.localPosition;

if ((vi.magnitude < float.Epsilon) ||
(va.magnitude < float.Epsilon))
return; // only works with well defined line segments

Vector3 val = Pi.transform.localPosition -

Pa.transform.localPosition;

Vector3 vin = vi.normalized;

Vector3 van = va.normalized;

225

CHAPTER 5 VECTOR DOT PRODUCTS

226

float d = Vector3.Dot(vin, van);
bool almostParallel = (1f - Mathf.Abs(d) < float.Epsilon);
float d1 = of, da = of;

if ('almostParallel) { // two lines are not parallel
float dot1A1 = Vector3.Dot(vin, val);
float dotAA1 = Vector3.Dot(van, val);

d1i
da

(-dot1A1 + d * dotAA1) / (1 - (d * d));
(dotAA1 - d * dot1A1) / (1 - (d * d));

d1 /= vi.magnitude;
da /= va.magnitude;

Pd 1.transform.localPosition =
P1.transform.localPosition + di1 * vi;

Pd_a.transform.localPosition =
Pa.transform.localPosition + da * va;

float dist = (Pd_1.transform.localPosition -
Pd_a.transform.localPosition).magnitude;

Debug.Log("d1=" +d1+ " da=" +da+ " Distance=" + dist);

} else {
Debug.Log("Lines are parallel, not handled");

}
#region For visualizing the line
#endregion

The first two lines of the Update() function compute

CHAPTER 5 VECTOR DOT PRODUCTS

Recall that the dot product of two normalized vectors is the cosine of the subtended
angle and that the cosine of 0° or 180° is equal to 1 and —1, respectively. For this
reason, the almostParallel variable is true when V, and V, are almost parallel. In the
implementation, the computation only proceeds when the two directions are not almost
parallel. This check is necessary because the solutions for both d, and d, involve a
division by 1 — d* and when the two directions are almost parallel, d ~ 1.0, which means
d, and d, will be divided by 0, thus causing neither d, nor d, to be defined. When the two
lines are not parallel, the code computes

dot1A1=V, .V,

dotAA1=V, .V

and
—dot1Al +d *dotAAl
d = 5
1-d
d - dotAAl —d *dot1 Al
“ 1-d*

where notice that both d, and d, are scaled to values between 0 and 1 for positions
that are inside the respective line segments, and closest positions are computed

accordingly,

Pdl :Pl +d1‘71
P, =P +dV,

And lastly, the closest distance between the two lines is simply the distance between
the closest positions

dist =P, — P, |

227

CHAPTER 5 VECTOR DOT PRODUCTS

Takeaway from This Example

Though the presented solution of the line to line distance is interesting, it is incomplete.
First of all, the solution does not address the situation when the line segments are
parallel. Secondly, the solution does not address the situations when the closest points
are outside of the given line segments, that is, when either P,, or P,, or both are outside
of their corresponding line segments. As in the case of line to point distance, when the
closest position is outside of the line segment, the closest distance should be measured
to the corresponding end position of the line segment. Although not a complete solution,
this example does demonstrate and allow you to practice simplifying vector equations
based on the learned vector algebra and serves as a way to illustrate an implementation
of a typical solution to vector equations.

Through working with this example, you have observed that the actual vector
equations and their solution process may be complex and involved. However, thankfully,
as you have also witnessed, the derived solutions are typically elegant and can be
implemented in a straightforward fashion with a relatively small number of steps. To
ensure proper implementation, it is essential to maintain precise drawings and notes
with symbols that correspond to variable names. Lastly, and very importantly, attention
must be maintained when working with normalized vs. non-normalized vectors.

Relevant mathematical concepts covered include

e Vector algebra, or the rules governing vector operations, are
invaluable in simplifying non-trivial vector equations.

Relevant observations on implementation include

o Itisvital to understand and check for situations when mathematical
expressions are undefined, for example, normalization of zero

vectors, or divisions by 0.

o Itis often possible to relate mathematical expressions to real-world
geometric orientations. For example, you know that the dot product,
1}1 -Vu , computes the cosine of the angle subtended by two vectors;
therefore, a value of 1 or —1 means that the vectors are parallel. It
is the responsibility of the software developer to understand these
implications and ensure all appropriate conditions are considered

and supported.

228

CHAPTER 5

VECTOR DOT PRODUCTS

EXERCISES

The derived simultaneous equations for line to line distance are
‘}1 (Pl +dl‘}l _1)11 _da‘}a)zo

V,(R+dV,~P,~d,V,)=0

You know
dlzpz_Pl
‘a:Pb_Pa
VuIZPI_Pa
d=Vv,-V,
Now, show that
dlz_(‘}l'val)+(’i(‘}a Val)
1-d
Aa Vul -d ‘}1 Val
(Ve Vu)-a(vi V.,
“ 1-d

In your solution derivation process, make sure to pay special attention to normalized and un-

normalized vectors.

Recall that the solutions for d, and d, are derived based on the observation and simplification

of the simultaneous equations

V.-V, =0
V,V,=0

229

CHAPTER 5 VECTOR DOT PRODUCTS

Now, if the two line segments are parallel, then, Vl = 17a and thus there is only one equation
with two unknowns. For this reason, the derived solution is valid only when V1 # Va or when
the two lines are not parallel.

In general, the shortest distance between two parallel lines can be determined by computing
the shortest distance between one of the lines to the end point on the other line. Now, modify
MyScript to support distance computation between parallel lines.

Notice your solution assumes both line segments are infinitely long where the closest
positions on each line can be outside of their respective line segments. Once again,
this is not a complete solution to closest distance between the two finite length line
segments. Imagine the explorer and the monster pathways when the closest positions
are outside of the line segments, the distance computed would be based on positions
that the explorer or the monsters will not move to. The general solution is similar to that
of the line to point distance when the closest position is outside, it should be clamp to
the corresponding end point.

Summary

This chapter continues with the exploration of vectors by introducing the vector dot
product, a tool for analyzing relationships between two vectors. Since a vector is defined
by a size and a direction, the tool for analyzing the relationships between two vectors
reports on the relative directions and sizes of these vectors.

The definition of the vector dot product is straightforward, the sum of the products
of the corresponding components of the two vectors, and the result is a simple signed
floating-point number. There are four ways to compute the dot product between
two vectors and each offers a unique geometric insight into the resulting floating-
point number.

The first way of computing a dot product is by operating on two non-normalized
vectors. The resulting floating-point number is the product of the sizes of the two vectors
and the cosine of their subtended angle. While the least useful, this floating-point
number does provide slight insight into the subtended angle between the two vectors. If
the number is positive, then the subtended angle is less than 90°; otherwise, the angle is
between 90° and 180°.

230

CHAPTER 5 VECTOR DOT PRODUCTS

The second way of computing a dot product is by operating on two normalized
vectors. In this case, the resulting floating-point number is simply the cosine of the
subtended angle. This result is invaluable when you need to determine how much two
directions differ. In fact, checking the dot product results of two normalized vectors
against approximately 0 or 1 for when the two vectors are almost perpendicular or
parallel is one of the most frequently encounter test cases in video game development.

The third and fourth way of computing a dot product is to ensure only one of the
operands is normalized. In this scenario, you are computing the projected length of
the non-normalized vector along the direction of the normalized vector. These forms
of computing the dot product have the broadest application. This is because projected
sizes, as you have experience with line to point and line to line distance computation,
are the basis for computing distances and, as you will learn in the next chapter, for
computing intersections.

You have learned about vectors, gained knowledge on how to analyze the
relationships between vectors, and applied these concepts in solving some interesting
and non-trivial geometric problems. In the next chapter, you will learn about the vector
cross product, a tool to relate two vectors to the space that contains those vectors. But
before you continue, here are the summaries of the vector dot product definition, rules,
and straightforward applications.

Vector Dot Product Definition and Implications

Dot Product Definition Remark

V-V, =x,%, + 1.y, + 2,2, Definition of the dot product, also referred to as the inner

product

V.V :”‘7 ||||17 ”Cw9 Geometric interpretation of the dot product definition, @ is
the angle subtended by the two vectors

‘72

1

Dot product of a vector with itself is the squared of its

v,V =|
magnitude

1 1

V, - ZeroVector = ZeroVector Dot product with the zero vector is the zero vector

231

CHAPTER 5 VECTOR DOT PRODUCTS

Interpreting the Dot Product Results

Dot Product Geometric Interpretations
Direction: V, -V, = cos0 When both operands are normalized, the result of dot

product is the cosine of the subtended angle

Projected size: V, -V, =|V,|cos® Projected size of ¥, (the un-normalized vector) along the

Projected size: V, -V, =V, |cos®

1?1 (the normalized vector) direction

Projected size of V, along the ‘72 direction

Insights into the Subtended Angle

Dot Product Results The Angle 6

CGonclusions

V,-V,=cosf =1 0=0°
‘Z-‘}Z:cowzo 0=90°
‘71-‘72=0080>0 0 <90°
‘}1-‘}220080<0 0> 90°
ﬁ-@:cos@:—l 0 =180°

The vectors are in the exact same direction,
v, =V,

The vector directions are perpendicular to each other
The vectors are pointing along similar directions

The vectors are pointing along similar, but opposite
directions

The vectors are pointing in the exact opposite
direction V, =V,

232

CHAPTER 5 VECTOR DOT PRODUCTS

The Line Equations

The line segment bounded by the given two positions, P, and P;, can be expressed as
either of the following:

(s)=P,+sV,

I(t)=P, +1V,

where

Vi=P -k

and the values of the parameters s and ¢ provide the following insights into a position
on the line segment.

Values of s Values of Position Identified

§<0 t<0 Measured along the V, direction, a position before the

beginning position, £,

0<s<1 0<t< ”‘71” A position within the line segment
§>1 t>]7] Measured along the V, direction, a position after the end
position, P,

233

CHAPTER 6

Vector Cross Products
and 2D Planes

After completing this chapter, you will be able to

o Differentiate between the Left-Handed and Right-Handed 3D
Coordinate System

o Discuss the vector cross product definition and the resulting vector
direction and magnitude

e Describe the geometric interpretation of the vector cross product

¢ Relate the 2D plane equation to the vector plane equation and its
parameters

o Interpret the geometric implications of the vector plane equation
o Relate the cross product result to 2D plane equations
e Derive an axis frame when given two non-parallel vectors

o Apply the vector concepts learned to solve point to plane distance,
point to plane projection, line to plane intersection, and reflecting a
vector across a plane

Introduction

In Chapter 4, you learned about vectors—that the relationship between two positions
can be defined by a direction and a distance. Vectors and their rules of operation
enabled you to precisely describe and analyze object motions. In Chapter 5, you
learned about vector dot products—that the relationship between two vectors can be

235
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_6

https://doi.org/10.1007/978-1-4842-9885-5_6

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

characterized by their subtended angle and projected sizes. The vector dot product
and its rules of operation allowed you to accurately represent and analyze arbitrary line
segments, including distances between these line segments and other objects. In this
chapter, you will learn about how the vector cross product can be used to relate two
vectors to the space that defines these vectors and some applications of these concepts.

The result of the vector cross product is a new direction. Interestingly, and as you
will learn, this new direction characterizes the space that defines the two vectors as a
2D plane, that is, this new direction defines a plane that both vectors exist on. This new
knowledge enables a convenient representation of and the ability to analyze arbitrary 2D
planes, including computing distances to, projections onto, and line intersections with
any 2D plane. Although these are not direct applications, they are topics that become
more comprehensible because of insights gained from the understanding of the vector
cross product.

In video games, it is often necessary to process and analyze the relationships
between planes and objects or the motion of objects. For example, in a city building
game with a top-down view perspective, when a meteoroid is fast approaching the
player’s city, you may want to project the shadow of the meteoroid as it travels across the
city as well as highlight its impact zone to warn players of the impending destruction.
Additionally, immediately after the impact, you may want the meteoroid to bounce or
slide across the ground. The shadow indicator can be accomplished by projecting the
meteoroid onto the city plane, the reflection direction for the bounce is the velocity
line reflecting off the ground plane, and the sliding direction would be the reflection
direction projected onto the ground plane. As you can see from this brief example,
the ability to represent and work with 2D planes is indeed fundamental to video game
development.

The chapter begins by introducing conventions for representing a 3D coordinate
system so that you can analyze three perpendicular vectors with consistency. The details
of the cross products are then described. The application of the cross product results is
then showcased in the solution to the inside-outside test of a general 2D region. At this
point the chapter takes a slight change in perspective; instead of analyzing problems and
solutions based on the results of the cross product, the chapter focuses on applying the
insights gained from the vector cross product in the interpretation of the vector plane
equation. The remaining of this chapter examines some of the important problems in
video game development when working with 2D planes.

236

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

3D Coordinate System Convention

Since the analysis of the vector cross product involves understanding the direction

of vectors in 3D space, you need to understand the conventions of representing a 3D
coordinate system. In 2D space, when referencing the Cartesian Coordinate System, it is
a generally agreed upon convention that the origin is on the lower left, the X-axis points
toward the right, and the Y-axis points upward. Note that this is a convention and not

a mathematical rule or any kind of property. People simply agree to follow these sets

of rules.

Unfortunately, there are two sets of generally accepted conventions for 3D space.
Although you have been working with 3D vectors, until now, there has not been the
need to focus on the specific directions of the major axes. As you will see, unlike the
dot product, the vector cross product result is not a simple floating-point number, but
a vector that is perpendicular to both of the operand vectors. In this case, it is critical
and essential to understand, differentiate, and follow one of the 3D coordinate system
conventions. Figure 6-1 illustrates the two different conventions in describing a 3D
coordinate system, either according to the left or the right hand. These are referred to as
the Left- or Right-Handed Coordinate System.

Yarls Y-Axis

Index finger in Y-Axisr A

direction !

Middle finger in
Z-Axis direction Middle finger in
- Z-Axis direction

Z-Axis X-Axis

“ . \))
Thumb in X-Axis *\L_, Thumb in X-Axis
direction l'l'idlrectlon

Index finger in Y-Axis
’ direction

Figure 6-1. The directions of the major axes in the Left- and Right-Handed
Coordinate System

In both the Left- and Right-Handed Coordinate Systems, the first three fingers
are used to represent and point in the directions of the X-, Y-, and Z-axes. The thumb
represents and points in the direction of the X-axis, the index finger the Y-axis, and the

237

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

middle finger the Z-axis. The left and right images of Figure 6-1 show that under this
convention, while the X- and Y-axes still follow the right- and upward directions, the
Z-axis directions are opposite. Note that the fingers of the left- and right-hand point
toward the directions of the major axes and do not define the location of the axes.

Both the Left- and Right-Handed conventions are accepted in general by the video
game and interactive graphics community. These are conventions for analyzing and
discussing directions. It is critical to know the reference, the Left- or Right-Handed
system, being used and essential to be consistent in following the selected convention.
Fortunately, once selected and followed consistently, there are no other consequences
or special cases in any of the discussions concerning the fundamentals of vector math.
It is simply important to know which convention is used and to be sure to follow that
convention consistently throughout.

Unity Follows the Left-Handed Coordinate System

Figure 6-2 shows a screenshot of the Unity Editor Scene View where the top-right
coordinate icon is zoomed in upon and shown on the right of the figure. You can verify
with your left hand that with your thumb stretching out along the red X-axis, your index
finger following the green Y-axis, and your middle finger in the direction of the blue
Z-axis, Unity follows the Left-Handed Coordinate System convention. Therefore, this

is the convention that will be followed in this book. Once again, all the concepts being
discussed are applicable to either 3D coordinate system conventions, as long as you
follow the selected convention and maintained consistency.

Figure 6-2. The Unity Editor Scene View Window coordinate icon

238

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Vector Cross Product: The Perpendicular Direction

Recall in the previous chapter where you verified that a 2D plane can always be derived
to draw two non-parallel vectors. This 2D plane is the plane that represents the space
or area that defines or contains these two vectors. Through this chapter, you will learn
that 2D planes are characterized by a vector that is perpendicular to it and that this
perpendicular vector is the result of the cross product between two non-parallel vectors.
Figure 6-3 shows that, in general, there are two directions that are perpendicular
to any two non-parallel vectors V, and V,. Once again, as discussed previously, these
two vectors are depicted at the same tail location for convenient visual analysis. It is
important to reiterate that the vector definition is independent of positions and the
following discussions are valid even when the two vectors do not share the same tail
position.

Figure 6-3. Vectors that are perpendicular to the two non-parallel
vectors, V, and V,

Figure 6-3 shows a left-hand thumb pointing in a direction where the index to little
fingers are aligned with the direction of the first vector, V,, and then curl toward the
second vector, V,. The left thumb direction is the one that is perpendicular to the plane
that defines V, and V,, . Of course, the direction opposite to the left thumb is the second
direction that is perpendicular to the plane that defines these two vectors.

239

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Note The left hand is used for direction resolution because this book follows
Unity’s choice of Left-Handed Coordinate System. A Right-Handed Coordinate
System would follow the same finger curling process as Figure 6-3 with the right
hand and identify a set of directions that seem opposite to that of Figure 6-3.
Please do not be concerned. Remember that the left- and right-handed
conventions also affect the directions of the major axes. Once again, in the end,
both conventions, as long as followed consistently throughout, will produce
identical results.

The vector cross product computes the two new directions, along or opposite to
the thumb direction in Figure 6-3. These are the two directions that are perpendicular
to both of the vectors, V, and V,. This chapter will lead you on a journey to examine,
understand, and relate these results to 2D planes in 3D space. After which, the problems
and solutions associated with 2D planes that are relevant to video game development
will be analyzed.

Definition of Vector Cross Product

Given two vectors in 3D space

Vl z(xl’yl’zl)

Vz = (xz Y212,)
the cross product, or vector cross product, between the two vectors is defined as

Vl ><Vz :(.)/122 —Z1Yar T X = X125, XY, — Vi X,)
Notice that
e Symbol: The symbol for the cross product operation, “x’, is literally a
“cross”.

e Operands: The operation expects two vector operands.

e Result: The result of the operation is a vector with x-, y-, and
z-component values.

240

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

When compared to the other vector operations you have learned, the cross
product also expects two vector operands. Additionally, similar to vector addition and
subtraction, and in contrast to the vector dot product, the result of the vector cross
product is a vector.

Unlike vector addition and subtraction, the vector cross product result, the x-, y-, and
z-component values are not straightforward functions of its operands’ corresponding
components. Examine these values carefully and you will notice a pattern. For example,
the x-component result, y,z, — z,¥,, is the subtraction of the multiplication of operand
component values other than their x-components. This pattern is consistent for each of
the y- and z-components. Though interesting and important in general, in the context of
video game development, these observations do not lead to direct applications.

The left, center, and right tables in Figure 6-4 illustrate an approach that may help
you remember the cross product formula. Each of the tables has an x-, y-, and z-heading
with two rows consisting of the corresponding component values for the two operand
vectors. The left table shows that the x-component cross product result is computed by
ignoring the grayed-out x-component values, following the two arrows, and calculating
and subtracting the products of the y- and z-components y,z, and z,y,. The center table
shows a similar computation for the y-component cross product results and the right
table for the z-component cross product results. Note that the subtraction order for the
y-component is reversed that of the x- and z-components.

®r : *®: x O
X1 W X Zq Xq >yl< Zq X1 Xyl 4
X2 2 Z X2 & Y2 Zy X227 Y2 Z2

V12 — Z1)2 — (X125 — z1x3) X1Y2 — Y1X2

Figure 6-4. Components of the cross product

241

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Geometric Interpretation of Vector Cross Products

Figure 6-5 shows the geometric interpretation of the vector cross product. Since Unity
follows the Left-Handed Coordinate System, the result of V, xV, is a vector in the
direction of the thumb on your left hand when following the finger curling process
described previously. It follows that for V, xV,, with the index to little fingers aligned
with the first operand, in this case the \72 vector, and then curl toward the second
operand, or the V, vector, the resulting vector is in the opposite direction (turn your
hand so you're giving a thumbs down instead of a thumbs up). The cross product results,
V,xV, and V, xV,, are perpendicular to their operand vectors, V, and V,, and, as a
result, are perpendicular to the plane that defines V, and V.

Figure 6-5. The directions of vector cross product results

The magnitude of the vector resulting from the cross product or the magnitude of the
perpendicular vector, with details left as an exercise, can be shown to be

”‘71 XVHZ = \/()/122 —-2,),)2 +(le2 — X2,)2 +(x1y2 —)X,)2 = "‘7”1 ||V2||Sin0

where @ is the subtended angle between V, and V, . Notice that when both V, and V,
are normalized, thus both with magnitude of 1.0, then

V<V,

= sind

242

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Note Although the cross product result encodes the sine of the subtended angle,
it is seldom, if ever, used specifically for analyzing subtended angles between
vectors. Instead, the dot product is always used. This is because when comparing
the two, the cross product operation involves more floating-point operations,

and more importantly, the cross product result is a vector and thus a magnitude
operation must be performed to convert the vector into a floating-point number

for deriving the angle information. In contrast, the dot product is more efficient to
compute and the result itself encodes the angle information and thus does not need
further processing. For these reasons, the dot product is always used for analyzing
angles subtended by vectors, for example, testing for parallel or perpendicular.

In Figure 6-5, notice that P,P, P, is a triangle. Assuming the edge, P,P,, is the
base, then you know the area of the triangle is the half the length of the base, or |[V,|,
multiplied by the height. In this case, the height is the perpendicular distance between
P, and the edge, P,P,, or ||‘71 ||sin0 . In this way, the area of the triangle P,P,P, is

Area of Triangle P,PP, =é||171||||\72||s1n9

And the magnitude of the cross product result is twice the area of the triangle

|V, xV,||=2x Area of Triangle P,P.P, =|V,|||V,||sin6

Though the magnitude of the resulting vector and the sine relationship of the
subtended angle are important information to take note of when learning the vector
cross product, the analysis presented in the rest of this book only takes advantage of
the fact that the resulting vector is perpendicular to the operands and the 2D plane that
defines the operand vectors.

Properties of Vector Cross Product

The vector cross product properties of commutative, associative, and distributive over a
floating-point scaling factor s are summarized in Table 6-1.

243

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Table 6-1. Properties of vector cross product

Properties Vector Dot Product

Anti-commutative V,xV,=-V,xV,

Not Associative (V, <V,)xV, 2V, x(V, xV,)
Distributive over scale factor, s s(V,xV,)=(sV,)x V, =V, x(sV,)

Table 6-1 shows a set of rather unfamiliar properties. Fortunately, the applications
of vector cross products in video game development are often limited to simple
operations in the determination of directions. It is seldom for cross product operations
to be embedded in complex vector equations. Finally, the definition of the vector cross

product states that

V, xV, = ZeroVector

and that any vector crossed with the zero vector will results in a zero vector

V. x ZeroVector = ZeroVector xV, = ZeroVector

The Vector Cross Products Example

This example demonstrates the results of performing the vector cross product between
two given vectors. This example allows you to interactively manipulate and define two
vectors and then examine the results of performing the cross product between these
vectors. Figure 6-6 shows a screenshot of running the EX 6 1 VectorCrossProducts
scene from the Chapter-6-CrossProducts project.

244

CHAPTER 6 VECTOR CROSS PRODUCTS AND 2D PLANES

Figure 6-6. Running the Vector Cross Products example

The goals of this example are for you to

o Examine the results of the cross product between two arbitrarily
defined vectors

o Verify that the vector resulting from a cross product is perpendicular
to both of the operands with a magnitude that is directly proportional
to the sine of their subtended angle

o Examine the source code that computes and uses the results of the
vector cross product

Examine the Scene

Take a look at the Example 6 1 VectorCrossProducts scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are three
objects in this scene: a checkered sphere (P0) and two striped spheres (P1 and P2). These
three game objects will have their corresponding transform.localPosition properties
referenced to define the two vectors for performing the cross product operations.

245

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Analyze Controller MyScript Component

The MyScript component on the Controller shows two sets of variables. One set is

for defining the two vectors and the other set is for examining the visualization of the
cross product between these two vectors and the plane that they define. The first set of
variables are PO, P1, and P2 and are defined for accessing the game objects with their
corresponding names. In this example, you will manipulate the positions of these three
game objects to define two vectors, V; and V,

)

=R -F
Vz =P, -F,

and then examine the result of the cross product between these vectors.

The variables in the second set, DrawThePlane, DrawVixV2, and DrawV2xV1, are
toggles for hiding and showing the plane that defines V, and V, and the corresponding
results of the cross products, while the last variable, Factor, is the scaling factor applied
to the length of the vector from the cross product result, allowing for easier visualization.

Interact with the Example

Click the Play Button to run the example. In the Scene View Window, you will observe
two vectors with tail positions located at the checkered sphere, PO, and a greenish plane
where the two vectors are drawn. The two vectors are V, and V, and are defined by the
positions of PO, P1, and P2 game objects as previously explained. You will also observe
two other vectors in this scene. Both of these vectors are located at the checkered sphere
location (P0), a black vector that is the result of V, xV,, and a red vector, the result of
V, xV,. You can confirm that both of these results follow the Left-Handed Coordinate
System by extending the index to little fingers of your left hand along the V, direction
(the cyan vector) and then curling these fingers toward the V, direction (the magenta
vector). In a similar fashion to that of Figure 6-5, your thumb should be pointing
along the direction of the black vector which is the result of V, xV, . You can repeat the
left-hand finger curling process to verify that the red vector is indeed pointing in the
direction of V, xV,.

In the Console Window, you can examine the text output where the subtended angle
between V, and V, as well as various dot product results are printed for verification
purposes. First, you can verify that the printed subtended angles between V, and V,

246

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

reflect your observations in the Scene View. Next, examine the results of the dot product
between the normalized black and red vectors. Since these two vectors are always
parallel and pointing in the opposite directions, the angle between them is always 180°
and thus the result of the dot product, or the cosine of this angle, is always —1:

(RACRARRURATURARS

Additionally, the results of the dot product between the cross product result (V1 X Vz)
and the operands, 1}1 and 1}2 , are also printed out. You can verify that the cross product
result is always perpendicular with its operands by observing that the dot product results
between these vectors are always zero, or very close to being zero:

A

(‘%X‘}z)‘}l :(‘%X‘}z)'vz =0

Note that since the initial values of PO, P1, and P2 define the three positions to be
on the X-Z plane, the initial 171 and V2 vectors are also in the X-Z plane. Therefore, the
cross product results are vectors pointing in the positive and negative y-directions,
perpendicular to both V, and V,, and the plane that defines these two vectors is the
X-Z plane.

In the following interactions, feel free to toggle and hide any of the components if
you find them distracting. You can also adjust the Factor value to scale the lengths of the
black and red vectors for easier visual examination.

Select P1 and adjust its z-component value to change the size of V, without changing
the subtended angle. Notice that although both are changing, the lengths of the black
and red vectors are always the same. This is because both of the vectors vary in direct
proportion to the length of V,. Now try moving P1 toward P2 such that the V, vector
approaches V,, or move P1 toward PO such that the V, vector approaches the zero vector.
Notice that in both cases, the cross product result, the black and the red vectors, both
approach a length of zero. You can repeat and verify all these observations by adjusting
P2 or by changing V, in a similar fashion. These manipulations and observations verify
that the magnitude of the cross product result is in direct proportion to the magnitude of
the operand vectors

[V, <V [= [V [l[V. |sino

247

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

and that all cross products computed with the zero vector will result in the
Zero vector.

Now restart the game and adjust the x-component of P1 to change the subtended
angle. Notice that when this angle is between 0° and 90°, the lengths of the black and
red vectors vary in direct proportion and then change to vary in the inverse proportion
when the angle is beyond 90°. Continue to adjust both the x- and z-component values
to increase the subtended angle to beyond 180° and notice the direction swap between
the black and red vectors. Recall that a subtended angle is always between 0° and 180°;
you can verify with your left hand that after the direction swap, the black vector is still
pointing in the direction of \71 X \72 .

Notice that until this point, your manipulation has been restricted to the X-Z plane
and that the cross product results, the black and red vectors, are always in the positive
and negative y-directions. Now, select any of the positions and change the y-component
values. As you have observed when investigating the dot product in the previous chapter,
the green plane is updated and continues to cut through both V, and V, . The interesting
observation is that the cross product results, the black and red vectors, are always
perpendicular to the green plane. This observation suggests that the green plane is
defined by the cross product result. This concept will be explored in the next subsection.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

//Three positions to define two vectors: PO->P1 and PO->P2
public GameObject PO = null; // Position PO
public GameObject P1 = null; // Position P1
public GameObject P2 = null; // Position P2

public bool DrawThePlane = true;
public bool DrawVixV2
public bool DrawV2xVi = true;
public float Factor = 0.4f;

true;

#iregion For visualizing the vectors
#endregion

248

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

// Start is called before the first frame update

void Start() {
Debug.Assert(Po != null); // Verify proper editor init
Debug.Assert(P1 != null);
Debug.Assert(P2 != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the

Controller’s MyScript component, and as in all previous examples, the Debug.Assert()

calls in the Start () function ensure proper setup regarding referencing the appropriate

game objects via the Inspector Window. The Update () function is listed as follows:

void Update() {
Vector3 vi = Pil.transform.localPosition -
Po.transform.localPosition;
Vector3 v2 = P2.transform.localPosition -
Po.transform.localPosition;

Vector3 vixv2 = Vector3.Cross(vi, v2);

Vector3 v2xvi = Vector3.Cross(v2, vi);

float d = Vector3.Dot(vi.normalized, v2.normalized);
bool notParallel = (Mathf.Abs(d) < (1.0f - float.Epsilon));
if (notParallel) {
float theta = Mathf.Acos(d) * Mathf.Rad2Deg;
float cd = Vector3.Dot(vixv2.normalized, v2xvi.normalized);
float dvi = Vector3.Dot(vixv2, vi);
float dv2 = Vector3.Dot(vixv2, v2);
Debug.Log(" theta=" + theta + " vixv2=" + vixv2 +

vixv2-dot-v2xvi=" + cd +
" Dot with vi/v2=" + dvi + " " + dv2);
} else {
Debug.Log("Two vectors are parallel,

V2Xvl=" + v2xvl +

cross product is a zero vector");

249

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

#region For visualizing the vectors

#endregion
}
The first four lines of the Update() function compute
‘1 =P -F,
V,=P,-P

vixv2 =V, xV,

v2xvl=V,xV,

Next, the cosine of the angle between V, and V, is computed as the dot product of
the normalized vectors. This value is examined to ensure that the cross product results
will not be zero vectors. The various dot product results are then computed and printed

to the Console window.

Note Collinear and collinear test. In general, given three positions, P,, P;, and P,,
that define two vectors, V,=p - P, and V,=p,-P,. If V,.V, is approximately 1

or —1, then you can conclude that the three points are approximately along the
same line. In this case, P, P, and P; are referred to as being collinear. The dot
product check against approximately 1 or —1 is a convenient collinear test.

Takeaway from This Example

This example demonstrates that the result of the cross product is indeed a vector with a
direction that can be derived by curling your left-hand fingers and that the magnitude
of the resulting vector is indeed directly proportional to the sizes of the operands and
the sine of the subtended angle. You have also confirmed that the cross product of

any vector with itself or with the zero vector results in the zero vector. Additionally,

you have verified that the cross product is anti-commutative as reversing the operand
order results in a vector pointing in the perfectly opposite direction. However, the most
interesting observation is that the cross product result is always perpendicular to the
operand vectors and thus the 2D plane that contains the two operand vectors.

250

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Relevant mathematical concepts covered include

e The cross product result is a vector that is perpendicular to both of its
operands and the 2D plane that contains the operands.

o The magnitude of the vector resulting from a cross product is directly
proportional to the magnitude of the operands and the sine of the
subtended angle.

o The cross product is not defined when the two operand vectors are
derived from three positions that are collinear. This is because three
collinear positions can only define one direction and thus one vector,
and the cross product of a vector with itself is the zero vector.

EXERCISES

Given
‘71 z(xl’yl’zl)
‘72 =(x2,y2,zz)
You know that the cross product is defined as
‘71 XVz :(ylzz =21)yr 21Xy = X124, XY, _ylxz)

where the magnitude of the resulting vector is
[V x V.| =[[V. IV, |sino

Recall the trigonometry identity and the dot product definition that

sin®6 +cos®*6 =1

So

251

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES
[V, <V, =V]lIV. sine

AN
I vv Y
717 (j

2
Vv,

Now, simplify the algebra expression and show that

”‘71 ><‘7||2 = \/(yIZZ —-z,),)2 +(Z1x2 - Xz,)2 +(x1y2 —)X,)2

When computing the cross products in MyScript

Vector3 vixv2 = Vector3.Cross(vi, v2);

Vector3 v2xvi = Vector3.Cross(v2, vi);

replace these two lines of code with the explicit cross product definition by creating vixv2
and v2xv1 as new Vector3 objects with appropriate component values and verify that the
runtime results are identical.

The Vector Plane Equation

Throughout the last couple of chapters, you have been working with two vectors defined
by three positions and observed that a 2D plane can always be defined when the two
vectors are not parallel. Note that both of these observations are identical, and two non-
parallel vectors are the same as saying that the three positions that define the two vectors
are non-collinear. Intuitively, this should not be surprising because from basic geometry
you have learned that three points, as long as they are not all along the same line, define
a triangle, and a triangle is the simplest shape in 2D space. For this reason, if a triangle
can be formed, as you have observed, then it is always possible to form two non-parallel
vectors, and thus a 2D plane can always be defined as well.

Now, you can derive the equation of this 2D plane based on the result of the cross
product. Recall from basic geometry that the equation of a 2D plane in 3D space is

Ax+By+Cz=E

252

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

where A, B, C, and E are floating-point constants and x, y, and z are unknowns in
3D space. This equation states that if you gather all the positions (x, y, z) that satisfy the
condition where the sum of multiplying x by A, y by B, and z by Cis equal to E, then
you will find that all these positions are points on the given 2D plane. Interestingly this
equation can also be written in vector dot product form, where you can define the vector
V and a position vector, p, where

V=(A, B, C)
p=(xy z)
Then, the 2D plane equation can be written as

V-p=E

Note Recall that a position, p, can be interpreted as a position vector, v, from
the origin position, P,, where

V=p-P=p

Since in this case, P, is the origin (0,0, 0). To avoid the confusion and nuance of
introducing additional symbols, it is a common practice to reuse the symbol of the
position (p) to represent the corresponding position vector. In the rest of this book,
please do not be confused when you encounter language and a symbol such as
“following along the position vector p.” Such statements are always referring to
the vector from the origin toward the position, p.

Ifyou divide both side of the equation by a nonzero floating-point number, in this
case, |V, the equation becomes

‘}’p=T
V]

253

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

E

Now, let ”V” , then a 2D plane equation can be written as the vector plane

equation or
V-p=D
This equation may look familiar because it is basically the vector projection equation

as illustrated in Figure 5-7. Figure 6-7 shows the geometric interpretation of the vector
plane equation.

=

Figure 6-7. Geometric interpretation of the vector plane equation

In Figure 6-7, P, is the origin and the vector V is the direction from the origin that
is perpendicular and passes through a plane at position P,. The plane is at a distance D
from the origin when measured along the direction V . The vector plane equation states
that for any position p on this plane, it is true that the projection of this position vector
onto the direction V will be of length D. In this way, the vector plane equation identifies
all positions that satisfy the projected distance relationship with the V vector. As it turns
out, these positions define the 2D plane. Notice that you must compute the V and D to
derive the vector plane equation, V. p=D:

« Normalvector: V is the vector thatis perpendicular to the plane;
this vector is generally normalized such that the constant D in the
equation indicates distance from the origin. As demonstrated in
the derivation process, when this vector is not normalized, the
magnitude of the vector can be divided through on both sides of the
equation to compute the proper value for D.

254

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

o Distance to the plane: D, when the normal vector is normalized, this
is the plane distance from the origin when measured along the 1%
direction.

It is important to recognize that the vector plane equation identifies a 2D plane
that is of infinite size. Any position in the Cartesian Coordinate System that satisfies the
projected distance relationship is part of the solution set of the 2D plane and there are
infinitely many positions in the solution set. As will be explored later, a 2D region is a
bounded area on a 2D plane. This is analogous to 1D region, or a 1D interval, being a
bounded line segment within an infinitely long line that is identified by a line equation.

Note A normal vector is a vector that is perpendicular to a plane. This should
not be confused with a normalized vector, which is any vector of size 1. You can
compute a normal vector which may not be normalized. You can then decide to
normalize the normal vector such that you can work with a normalized normal
vector. In the rest of this book, the vector symbol, v, , will be used to represent
the normal vector of a 2D plane. Once again, a normal vector may or may not be
normalized. In this case, V,, is a normal vector that is not normalized, and the
vector, v, is the normalized plane normal vector.

The Position P, on a Plane

Notice the position P, in Figure 6-7; this is the point on the plane that is D distance away
from the origin when measured along the Vn direction. For this reason,

P =P, +DV, =DV,
In this case, P, is the origin (0, 0, 0). In the rest of this chapter, the P, position is

computed and displayed on the 2D planes in all examples to provide orientation for and

facilitate visualization.

255

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Given a Position on a Plane

If you are given a plane normal vector, V ,anda position, P,,, thatis on the plane, then

n’
you know that for any position, p, on the plane, p—P,, is a vector on the plane and that
this vector must be perpendicular to Vn . This means

V,-(p-P,)=0 two are perpendicular

This equation can be simplified as follows:

Vn ‘P Vn P, =0 distributive property
Vn p= ‘7n P, move term across equality
Vn -p=D P,,is on the plane

which is simply the vector plane equation. This derivation shows that D, the distance
from the origin to a plane, can be derived if you know the plane normal and one position

on the plane.

Positions on 2D Planes

As a way of verifying the vector plane equation and to provide additional insights,
Figure 6-8 shows that it is always possible to compute the point where a position vector

intersects a plane.

Figure 6-8. Positions on a given plane

256

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

In Figure 6-8, the given plane is defined by the normalized normal vector, 17n ,and
the distance, D, measured along the 17" direction from the origin or

V,-p=D
For any arbitrary position, P, it is always possible to compute P,,, the point where

the position vector P, intersects the given plane. As illustrated in Figure 6-8, P,, is along
the position vector P, and is ¢ distance away from the origin

P, =origin+tP, =tP,

Since P,, is on the plane, then it must be true that

V,B, =D
or
Vn ‘tP.=D since P,, = tP,
I(Vn -P,) =D distributive property
t= AL divide by ‘7" -P,
V. -B

With the distance, ¢, defined, it is now possible to compute the value of P,,! In the
next example, the plane equation will be examined, especially in relation to the cross
product result.

The Vector Plane Equations Example

This example demonstrates the vector plane equation. The example allows you to
interactively define a 2D plane, manipulate an arbitrary point, and examine the
intersection of this position vector with the 2D plane. Figure 6-9 shows a screenshot of
running the EX 6 2 VectorPlaneEquations scene from the Chapter-6-CrossProducts
project.

257

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Figure 6-9. Running the Vector Plane Equations example

The goals of this example are for you to

e Understand that the result of the cross product defines a plane
normal vector

o Experience working with and gain an understanding of the
parameters of the vector plane equation

o Verify the solution to the intersection between a position vector and a

2D plane
o Examine the implementation of working with the vector plane
equation
Examine the Scene

Take a look at the Example_6 2 VectorPlaneEquations scene and observe the
predefined game objects in the Hierarchy Window. In addition to the Controller, there
are three sets of variables as follows:

e PO, P1, and P2: Game objects for defining two vectors to perform the
cross product. The result from the cross product will be used as the
plane normal vector.

258

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

o DsandPn:Ds is a transparent sphere located at the origin for showing
the plane distance, D, from the origin, and Pn is the position where
the plane normal vector with tail at the origin intersects the plane.
Note, this is the same as saying, Pn is the point on the plane with
position vector in the plane normal direction.

e Ptand Pon: Ptis a position you can manipulate and Pon is the point
that the position vector Pt intersects with the plane.

Analyze Controller MyScript Component

The MyScript component on the Controller contains variables with the same name
as their referenced game objects in the scene; these variables are used for position
manipulations. The only exception is Ds, which does not have its position manipulated,
instead its radius is set according to the distance, D, in the vector plane equation. The
variable that doesn’t represent any game object, ShowPointOnPlane, is a toggle used to
control the showing or hiding of Pt and Pon computation results.

Interact with the Example

Click on Play Button to run the example. Notice that initially the ShowPointOnPlane
toggle is switched off. You will first focus on examining and understanding the cross
product result and its relationship with the plane normal before examining the
intersection between a position vector and a plane.

In the initial scene you can observe, similar to the previous example, PO, P1, and P2
positions defining the V, (in cyan) and V, (in magenta) vectors. You can also observe
the black vector being computed as the result of V, xV, . As with the previous example,
the V, and V, vectors are defined on a 2D plane. In this scene, the 2D plane tangents, or
touches at a single point, a transparent sphere centered at the origin. Here you will also
find a white vector with its tail position at the origin, extending and cutting through the
2D plane perpendicularly at the red position, Pn. The white vector is the cross product
result and is thus the plane normal vector, ‘}n . The transparent sphere mentioned
earlier has a radius, D, which is defined by projecting position PO in the plane normal
direction or

D=V, .P

0

259

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

In this way, the 2D plane has a vector plane equation
\7" -p=D

The red sphere on the plane, P, is the position vector that is D distance along the 17,,

direction from the origin or
P, =DV,

It is worth repeating that this vector plane equation is defined completely by the
positions PO, P1, and P2. The plane normal, 17,, , is the cross product of the two vectors defined
by those positions, and the plane distance from the origin is the projection of the position
vector P,, in the X}H direction. Since the position PO is referenced in defining both of the
parameters of the vector plane equation, adjusting this position causes a profound change
in the resulting 2D plane. To verify this, select PO and adjust its y-component value. Notice
the drastic changes to the plane as a result and how the transparent sphere size changes
accordingly such that the plane always tangents the sphere. Feel free to adjust any of the PO,
P1, and P2 positions to verify that the derived vector plane equation is always correct.

Now that you have verified how the cross product result relates to the plane
normal vector and that the plane equation is always correct, you can enable the
ShowPointOnPlane toggle. The blue sphere, Pt, is a position that you can manipulate and
observe where it would intersect the plane if it followed its direction path to or from the
origin or its position vector. The thin black line, extending from the origin to this blue
sphere, represents the position vector, P,. The white sphere, Pon, is the intersection of
the position vector P, with the 2D plane or where the blue sphere would intersect the
plane if it followed the black line back to the origin. Feel free to adjust both the 2D plane
and the position vector by manipulating the PO, P1, and P2 positions and Pt to verify that
the intersection result is always correct. Note that when P, is perpendicular to \}n , the
position vector will be parallel to the plane and there can be no intersection.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

// Defines two vectors: Vi = P1 - PO, V2 = P2 - PO
public GameObject PO = null; // The three positions

260

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

public GameObject P1
public GameObject P2

null; //
null; //

// Plane equation: P dot vn =D

public GameObject Ds; // To show the D-value

public GameObject Pn; // Where Vn crosses the plane
public bool ShowPointOnPlane = true; // Show or Hide Pt
public GameObject Pt; // Point to adjust

public GameObject Pon; // Where Pt intersects the Plane

#region For visualizing the vectors
#endregion

// Start is called before the first frame update
void Start() {
Debug.Assert(Po != null); // Verify proper editor init
Debug.Assert(P1 != null);
Debug.Assert(P2 != null);
Debug.Assert(Ds != null);
Debug.Assert(Pn != null);
Debug.Assert(Pt != null);
Debug.Assert(Pon != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component, and as in all previous examples, the Debug.Assert()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {
// Computes V1 and V2

Vector3 vi1 = Pi1.transform.localPosition -
Po.transform.localPosition;
Vector3 v2 = P2.transform.localPosition -

POo.transform.localPosition;

261

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

if ((vi.magnitude < float.Epsilon) ||
(v2.magnitude < float.Epsilon))
return;

// Plane equation parameters

Vector3 vn = Vector3.Cross(vi, v2);

vn.Normalize(); // keep this vector normalized

float D = Vector3.Dot(vn, PO.transform.localPosition);

// Showing the plane equation is consistent
Pn.transform.localPosition = D * vn;
Ds.transform.localScale =

new Vector3(D * 2f, D * 2f, D * 2f); // diameter

// Set up for displaying Pt and Pon
Pt.SetActive(ShowPointOnPlane);
Pon.SetActive(ShowPointOnPlane);
float t = 0;
bool almostParallel = false;
if (ShowPointOnPlane) {
float d = Vector3.Dot(vn,
Pt.transform.localPosition); // distance
almostParallel = (Mathf.Abs(d) < float.Epsilon);
Pon.SetActive(!almostParallel);
if (lalmostParallel) {
t=D/d;
Pon.transform.localPosition =
t * Pt.transform.localPosition;

}

#region For visualizing the vectors
#endregion

262

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

The first four lines of the Update() function compute the two vectors

and verify that both are nonzero vectors before continuing. The next three lines

compute the vector plane equation parameters

)
)

Vn =VixXV,
V, =V, .Normalized()
D=V,-P,

The two lines that follow set the P, position and the diameter of the transparent
sphere, Ds, such that you can examine these parameters of the vector plane equation

P =DV

n n

The if condition that follows ensures that Pt and Pon are computed and displayed
only under the command of the user. The two lines in the if statement compute

d=V, P

t

and verify that d is not close to zero. This check verifies that the plane normal, 17,1 ,
is not almost perpendicular to the position vector, P,, or that the position vector is not
almost parallel to the plane. Recall that in such a case, there can be no intersection and
thus Pon cannot be computed. When verified that the P, position vector is not parallel to

the plane, the position of Pon is computed within the last if statement

D D
d

V.P

n t

P, =tP

on

263

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Takeaway from This Example

This example demonstrates how three non-collinear positions can define two non-
parallel vectors which can define a 2D plane. You have examined and analyzed the
parameters of the vector plane equation to develop an understanding for their geometric
interpretations. The plane equation

\7n-p=D

describes the plane that is at a distance, D, measured from the origin along the
plane normal vector, Vn . Geometrically, this equation can be interpreted as all positions
on this plane have a projected distance, D, when measured from the origin along I}n .
The equation and this interpretation were verified when you manipulated an arbitrary
position vector, P,, and observed the computed intersection position, P,,, between the
position vector and the plane equation.

By now you have observed quite a few examples of vector value checking, but its
importance cannot be overstated. Please do note that the almostParallel condition is
effectively ensuring that when computing ¢

V,-P,

the denominator is not a zero value. Once again, it is the responsibility of a video
game developer to ensure all mathematical operations performed are well defined and
edge cases are checked and handled. Ill-defined conditions for mathematical operations
often present themselves as intuitive geometric situations. In this case, when the
denominator is close to zero, geometrically, it represents when the position vector, P, is
almost parallel to the plane and thus an intersection does not exist.

Relevant mathematical concepts covered include

e Three non-collinear positions define two non-parallel vectors which
define a 2D plane.

e A2D plane can be described as being perpendicular to a normal
direction and at a fixed distance away from the origin when measured
along the normal direction.

264

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

e Analternative description of a 2D plane is that it is the collection
of all positions with position vectors that have the same projected
distance along the plane normal.

EXERCISES

The vector plane equation says that all positions on the plane have the same projected
distance. Replace PO with P1 and then P2 in MyScript when computing the distance, D, and
verify that the results are identical.

Examine the vector plane equation
V,-p=D

and take note that the distance, D, is a projected result and is thus a signed floating-point
number. This observation says that there is always a complementary plane that is D away in
the negative Vn direction. Now, modify MyScript to compute

P,=-DV

n

You can visualize this point and begin to imagine the associated plane by defining and using
a new sphere game object to represent the position of P,. This exercise brings home the point
that you must be careful with the signs; a simple careless mistake can result in an entirely
plausible solution on a completely wrong geometry.

Axis Frames and 2D Regions

Recall that the vector plane equation identifies a 2D plane of infinite size. A 2D region
can be defined on this 2D plane for determining if a given position is within the bounds
of the region. This functionality is the generalization of the study of interval bounds from
Chapter 2. For example, Figure 2-7 illustrated a 2D region on the X-Z plane. Here, the
description is a 2D region on any arbitrary plane.

Defining 2D regions on 2D planes is interesting and has some important applications
in video game development. However, what is much more important is the implication

265

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

that given three positions that define two non-parallel vectors, you can actually define
a general axis frame. Recall that the default axis frame of the Cartesian Coordinate
System is the three perpendicular X-, Y-, and Z-axis directions centered at the origin. A
general axis frame is three perpendicular directions which need not be aligned with the
major axes and can be centered at any position. Figure 6-10 shows such an axis frame
centered at the position P,.

Figure 6-10. Defining an axis frame

In Figure 6-10, the three positions, P, P,, and P,, define two vectors

V,=B-P,
V2=P2—P0

When these two vectors are not parallel, a new vector, Vn , that is perpendicular to
both V,and V, can be computed

V =V x

n

)
)

—
[N

An important observation is that the cross product of V, with V,, as indicated by the
curling left hand in Figure 6-10, defines, V,,

)

V=V, x

1

a vector perpendicular to both V, with V,. Notice that V,, V_, and V, are three
vectors that are mutually perpendicular and is an axis frame that can be located at
any position. In the next chapter you will learn about how this axis frame can serve as

266

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

the basis for a new coordinate system, for example, serving to define the motion on
a navigating spaceship. Here, the focus will be on defining a 2D region and a general
bounding box as an exercise.

Bounds on a 2D Plane

Recall from Figure 5-9 that a general 1D interval, or a line segment, is a direction with
two positions along that direction defining the beginning and the ending point of

that line segment. Also recall from Figure 2-7 that a 2D interval, or a 2D rectangular
region, is two 1D intervals along two perpendicular directions. Figure 6-11 shows two
perpendicular general 1D intervals. The first interval is along Vl, with P, and P;, and the
second interval is along V,, with P,and P, as their beginning and ending positions. The
two intervals have respective lengths of L, and L,.

Figure 6-11. Inside condition of a general 2D region

You can follow the exact same logic as in Chapter 2 when generalizing results from
a 1D interval to a 2D bounding area and apply the logic to a general axis frame. In this
case, instead of 1D intervals along the X- and Z-axes, you are working with general 1D
intervals along the V, and V, directions. The inside-outside status of the 2D region can
be determined by applying the general 1D test, as illustrated in Figure 5-11 (d), on each
of the two perpendicular general 1D intervals. For example, look at the given position P,,
in Figure 6-11; this position defines the vector V,

267

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

The vector, V(m , can be used to determine if the position P,, is within the 2D region.
In this case, the position P, is within the bounds of the region if the projected size of V,,
along both V; and V, is positive and smaller than the corresponding interval lengths or

d=v, -V vV, sizeon V,
d,=V, -V, V, sizeonV,
With these two projected sizes, the condition for P,, being inside the 2D region can
be stated by two inequalities: d, and d, must both be positive and smaller than the length
of the corresponding intervals or

0<d,<L, and 0<d, <L,

Generalization of the Vector Line Equation
Recall the vector line equation that describes all positions located on the line
segment which begins from position P, and extends in the direction of 171 is

[(t)=P, +1V,

In this example, you have observed the corresponding vector plane equation, where
all positions that are located in the 2D rectangular region begin at position P, and extend
in the perpendicular directions of \71 and V2 as

p(dlfdz):Po +d1‘}1 +d2‘}2'

Similar to the vector line equation where the range of the value, ¢, determines the
inside-outside status, in 2D region the ranges of the values, d, and d,, determine the
inside-outside status of a position. Note the straightforward generalization to the third
dimension for a bounding box

b(d, d,d,)=P, +d\V,+d,V, +d,V,

The Axis Frames and 2D Regions Example

This example builds on the previous example by supporting two additional features. It
demonstrates the derivation of axis frames and the determination of the position inside-
outside status for a given 2D region. The example allows you to interactively define an axis
frame by manipulating three positions while it continuously computes the inside-outside

268

CHAPTER 6 VECTOR CROSS PRODUCTS AND 2D PLANES

status of the intersection of a position vector with the 2D plane. Figure 6-12 shows a
screenshot of running the EX_6_3 AxisFramesAnd2DRegions scene from the Chapter-6-

CrossProducts project.

Figure 6-12. Running the Axis Frames and 2D Regions example

The goals of this example are for you to
o Observe the creation of axis frames based on three non-collinear
positions
o Appreciate the fact that a 2D region on a plane is indeed defined by

two perpendicular 1D regions

o Examine the implementation of the axis frame definition and the
inside-outside test for the 2D region

Examine the Scene

Take a look at Example_6_3 AxisFramesAnd2DRegions scene, observe the predefined
game objects in the Hierarchy Window, and note that the only difference between this
scene and that of Example 6 2 VectorPlaneEquations is a single additional game
object, P2p. The transform.localPosition of this game object will represent the
position of P, in Figure 6-10, the head position of the V, vector that is perpendicular

269

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

to both V, and V, . All other game objects serve the same purpose as they did in the
previous example.

Analyze Controller MyScript Component

The MyScript component on the Controller also shows that P2p is the only additional
variable when compared to the previous example. This new variable is meant to
reference the game object with the same name for position manipulation in the script.

Interact with the Example

Click the Play Button to run the example. Notice the almost identical results of this
example to that of the previous example. As a quick reminder, pay attention to the
checkered sphere, PO, and the two striped spheres, P1 and P2. These three positions
define the two vectors, V, (in cyan) and V, (in magenta), according to Figure 6-10. The
black vector at P, is V, =V, xV,. The blue sphere, P, defines the position vector that
intersects the plane at P,,, the red sphere. The only addition to this scene is the green
sphere, P2p, identifying the head position of the V, vector, where this vector has the size
of V, and the direction of V, xV,

V, =||V,|(V, xV,).normalized

Now, select P2 and manipulate its position. Notice how the green vector, V,, has the
exact same length as V, and is always perpendicular to V, and V, and that the three
vectors, V,, V,,and V,, do indeed define a valid axis frame with three perpendicular
directions centered at PO, independent of where PO is located, and as long as PO, P1, and
P2 are not collinear.

Now restart the scene and select Pt and manipulate its position to move Pon, the
red sphere, into the region bounded by V, and V, by increasing its x-component value.
Notice as soon as Pon crosses into the region, its color changes from red to white. As long
as Pon is located within the 2D region, it will remain white. Feel free to adjust PO, P1, or P2
to change the bounds of the region to verify that the inside-outside test is consistent and
always correct.

270

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

#iregion Identical to EX 6 2
#fendregion
public GameObject P2p; // The perpendicular version of P2

#iregion For visualizing the vectors
#endregion

// Start is called before the first frame update
void Start() {

#iregion Identical to EX 6 2

#endregion

Debug.Assert(P2p != null);

#region For visualizing the vectors
#endregion

As explained, P2p is the only additional variable from an otherwise identical example
to the previous subsection. The Update() function is listed as follows:

void Update() {
#iregion Identical to EX 6 2

#endregion
float 11 = vi.magnitude;
float 12 = v2.magnitude;

Vector3 v2p = 12 * Vector3.Cross(vn, vi).normalized;
P2p.transform.localPosition =
Po.transform.localPosition + v2p;

bool inside = false;
if ('almostParallel) {
Vector3 von = Pon.transform.localPosition -
Po.transform.localPosition;

271

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Vector3.Dot(von, vi.normalized);
Vector3.Dot(von, v2p.normalized);

float da
float d2

inside = ((d1 »>= 0) && (d1 <= 11)) &&
((d2 >= 0) && (d2 <= 12));
if (inside)
Debug.Log("Inside: Pon is inside of
the region defined by V1 and V2");
else
Debug.Log("Outside: Pon is outside of
the region defined by V1 and V2");
}
#region For visualizing the vectors
#endregion

The first part of the Update () function in the collapsed region contains code that is
identical to previous example. Recall that the collapsed code computes V,, V, , V,, and
P,,. The first four lines of new code derive the vector, ‘72 , of the axis frame and its head

position, P,,

)

v, :LZ(V xV,).normalized

When the Pt position vector is not parallel with the plane, Pon is defined, and the
inside-outside status is computed by the code in the if statement

‘7()" = Pon - PO
d=V .V, V, sizeonV,

272

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES
And finally, the inside condition is computed as

inside=(0<d, <L)and(0<d,<L,)

Takeaway from This Example

This example demonstrates that an axis frame can be defined based on three non-
collinear positions. As will be discussed and demonstrated in the next chapter, the ability
to derive axis frames is of key importance in supporting many advanced operations in
video game development including the support for motion control aboard a navigating
spaceship.

The generalization of intervals and bounds is now complete. In Chapter 2, you
learned about intervals and bounds that are aligned with the major axes. In Chapter 5,
you learned to work with general 1D intervals where the interval does not need to be
aligned with any major axis. There, you have also learned that if you were given two
general 1D intervals that are perpendicular, then a general 2D region can be defined
for inside-outside tests. The challenge was that you did not know how to derive the two
perpendicular general 1D intervals. Now, with the knowledge of axis frame derivation,
when given three non-collinear positions, you can compute the two perpendicular
general 1D intervals and proceed to define a general 2D region.

Following the 2D to 3D generalization logic from Chapter 2, together with the
fact that the derived axis frame provides the third perpendicular vector, you can now
define and compute the inside-outside status of any position for bounding boxes at any
orientation. However, remember that determining the collisions of two bounding boxes
based on different axis frames is tedious and non-trivial.

Relevant mathematical concepts covered include

o Three non-collinear positions not only define two non-parallel
vectors, they also define an axis frame.

e Ageneral 2D rectangular bound can be defined by two general 1D
intervals along perpendicular directions.

e A position can be projected onto any general 1D interval to
determine its inside-outside status.

273

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

EXERCISES

Modify MyScript to include a public floating-point variable, vnSize. Initialize it to a
reasonable value, for example, 3.0. Use this variable as the size of the third general 1D interval
along the V_ direction. Notice a general bounding box is now defined with the two intervals
identified in Figure 6-11. Now, implement the bounding box inside-outside test for Pt. You can
print out the status and verify the correctness of your implementation.

Notice that in Figure 6-10, V, is defined to be V, xV, and not V, xV, . This is because a
Left-Handed Coordinate System axis frame is followed and thus is required. You can verify
with your left hand thumb, index, and middle finger, that the proper third vector to the existing
V, and V, must be computed by V, <V, . For example, if you align your index finger with
V., then the middle finger is along the V, direction, and your thumb will point in the V, <V,
direction. Alternatively, if your index finger is aligned with V,, then, your thumb is in the V,
direction, and once again, the middle finger will be in the V, xV, direction. Now, try reversing
the cross product order when computing V, (the v2p variable) and run the game again. Can
you explain what you observe?

Projections onto 2D Planes

In video games and many interactive graphical applications, it is a common practice to
drop shadows of objects in space to convey hints of relative spatial location. For example,
dropping the shadow of an in-flight meteoroid on the grounds of the approaching city or
casting the shadow of an amulet tossed by the explorer on the walls of secret chamber to
help better track its movement. In these cases, the shadows will convey a clear sense of
the actual location of the in-flight objects and will allow the player to strategize their next
move and react. Figure 6-13 shows that the shadow casting functionality can be modeled

as a point to plane projection problem.

274

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

j
Vel

Figure 6-13. Projection of a point onto a plane or casting shadow onto the plane

Figure 6-13 shows a plane defined by the plane normal vector, Vn , located ata
distance, D, away from the origin. You know that the vector plane equation for this

plane is
V,-p=D
where
P =DV

In Figure 6-13, P, is the position of the object in flight and P,, is the projection of P,
on the given plane. Note that this projection is along the line connecting P; to P,,, where
the projection direction is parallel to the plane normal, Vn . Figure 6-14 includes the
following additional explanation for the derivation of point to plane solution:

d=P -Vn position vector P, size on Vn
P = an projected position of P, on 17"

275

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Figure 6-14. Solving for point to plane projection

The solution of point to plane projection can be explained by referring to Figure 6-14
and observing the following:

o First, a decision is made that a projection will only occur if position
P,is in front of the plane. This condition is true when the projected
length of the P, position vector in the I7n direction is greater than the
plane distance, D, or ifd > D.

e Second, because the projection is along the Vn direction, the
distance between P, and P, is the same as the distance between P,
and P,,, and this distance is simply d — D.

e Finally, P,,is d — D distance away from P, in the negative Vn
direction or

P,=P—(d-D)V,

on t n

276

CHAPTER 6 VECTOR CROSS PRODUCTS AND 2D PLANES

Note The derived solution for the point projection is valid for Pt located on either
side of the plane. In this case, projection is restricted to one of the sides of the
plane to showcase the “in front of” test. Modifying the solution to support proper
projections for all locations of Pt is left as an exercise for you to complete.

The Point to Plane Projections Example

This example demonstrates the results of point to plane projection computation. The
example allows you to interactively define a 2D plane, manipulate the point to be

projected, and examine the results of projecting the point onto the plane. Figure 6-15
shows a screenshot of running the EX_6_4 PointToPlaneProjections scene from the
Chapter-6-CrossProducts project.

Figure 6-15. Running the Point to Plane Projections example

The goals of this example are for you to
e Gain experience with the “in front of a plane” test

e Verify the solution of point to plane projection

277

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

o Examine the implementation of the in front of a plane test and point
to plane projection

o Observe the elegance and simplicity of typical implementation of

vector solutions

Examine the Scene

Take a look at the Example 6 4 PointToPlaneProjections scene and observe the
predefined game objects in the Hierarchy Window. In addition to the Controller,

there are four objects in this scene: Pn, Pt, P1, and Pon. Following the illustration in
Figure 6-14, Pn is the position vector along the plane normal that intersects the 2D plane,
Pt is the position to be projected, P1 is the projection of Pt on the plane normal vector,
and Pon is the projection of Pt on the plane.

Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

» Display toggles: ShowAxisFrame and ShowProjections will show or
hide the axis frame and the projections accordingly. These toggle
switches are meant to assist your visualization, allowing you to hide
the illustration vectors to avoid screen cluttering.

e Vector plane equation parameters: Vn and D are the plane normal
vector and the distance of the plane from the origin along the normal
vector direction and will be used to create and modify the plane.

e Variables for the positions: Pn, Pt, P1, and Pon are variables with
names that correspond to the game objects in the scene. For all these
game objects, the transform.localPosition will be used for the
manipulation of their corresponding positions.

Interact with the Example

Click the Play Button to run the example. The white sphere is Pn, the white vector is Vn ,
the red sphere is Pt, and the red vector is the position vector P,. The semi-transparent
black sphere on the white vector or the projected position on the plane normal vector
is P1, while the semi-transparent blob on the 2D plane or the projected position on the

278

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

plane is Pon. Notice the thin green line connecting Pt to P1; since P1 is the projection
of Pt onto the plane normal vector, this line is always perpendicular to the plane
normal and parallel to the plane. The thin black line connecting Pt to Pon represents
the projection of Pt onto the plane and thus is always perpendicular to the plane and
parallel to IZL . In the following interactions, feel free to toggle off either or both of the
display toggles to declutter the Scene View.

With the scene running, first verify the “in front of plane” test by selecting Pt and
decreasing its y-component value. Notice that as soon as Pt is below the 2D plane, the
projected positions disappear, verifying that the projection computation is only performed
when the point, Pt, is in front of the plane. You can also verify this test by manipulating the
D or Vn variables to move the plane or rotate the plane normal vector. Notice once again, as
soon as Pt drops below the plane, the projected positions will both disappear.

Feel free to manipulate Pt or the plane parameters D or Vn in any way you like.

Pay attention to the in front of plane test result and the consistent perpendicular
relationships between the green line and the white Vn vector and the black line and the
2D plane.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public bool ShowAxisFrame = true;

public bool ShowProjections = true;

// Plane Equation: P dot Vn =D
public Vector3 Vn = Vector3.up;
public float D = 2f;

public GameObject Pn
public GameObject Pt = null; // Point projected onto the plane
public GameObject P1 = null; // Projection of Pt on Vn

public GameObject Pon = null; // Projection of Pt on the plane

null;

#iregion For visualizing the vectors
#endregion

// Start is called before the first frame update
void Start() {

279

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Debug.Assert(Pn != null); // Verify proper editor init
Debug.Assert(Pt != null);
Debug.Assert(Pl != null);
Debug.Assert(Pon != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component, and as in all previous examples, the Debug.Assert()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The Update () function is listed as follows:

void Update() {

Vn.Normalize();

Pn.transform.localPosition = D * this.Vn;

bool inFront = (Vector3.Dot(Pt.transform.localPosition, Vn) > D);
// Pt in front of the plane

Pon.SetActive(inFront);

P1.SetActive(inFront);

float d = of;

if (inFront) {
d = Vector3.Dot(Pt.transform.localPosition, Vn);
Pl.transform.localPosition = d * Vn;
Pon.transform.localPosition =

Pt.transform.localPosition - (d - D) * Vn;

}

#iregion For visualizing the vectors

#endregion

}
The first three lines of the Update() function compute

V, =V, .Normalize() normalize V,
P, :D‘}n D distance along Vn
infront = (B ‘7n) >D P, is further along 17,,

280

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

The if condition checks for when P, is indeed in front of the plane. When the
condition is favorable,

d=P, -I}n P, size on X}n
P, =d-‘7n project P,on Vn
p,=P—(d-D)V, from P,in -V,

Notice the exact one-to-one implementation code when compared with the solution
derivation. Once again, the implementation of vector solutions is typically simple and
elegant and closely matches the mathematical derivation.

Takeaway from This Example

This example demonstrates an efficient and graceful way to drop shadows which is a
commonly encountered situation in video games. The example also demonstrates that
the vector solution to projecting along a 2D plane normal is straightforward and stable
and involves a small number of lines of code. Additionally, the example shows how dot
product results can be used to determine the in front of or behind relationship between
an object position and a given 2D plane.

Relevant mathematical concepts covered include

e Anobjectis in front of a given plane when the dot product of the
object’s position vector with the plane normal is greater than the
plane distance from the origin.

o The projection of a position to a given plane is a subtraction of the
position vector by a perpendicular distance to the plane, along the
plane normal.

EXERCISES

Notice that the derivation and the vector solution for projection are valid independent of
whether Pt is in front of or behind the plane. The analysis of MyScript actually demonstrated
extra computation to purposefully hide the projection results when Pt is not in front of the
plane. Modify MyScript to disable the in front of check and verify that the projection solution
is indeed valid for all positions of Pt.

281

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

The result of the “in front of test” is binary—an object is either in front of the plane or not. In
this example, an object can either cast shadow or the object cannot cast shadow. Notice that
the result from the dot product performed (R -Vn) encodes more information than just in
front of or not. The result also tells you the projected distance or, if P;is normalized, the cosine
of the subtended angle. This information can be used to refine the criteria of when shadow
casting should occur. For example, casting a shadow should only happen when the subtended
angle is within a certain range. Now, modify MyScript to compute the subtended angle and
allow shadows to be casted only when the subtended angle is less than a degree that is under
the user’s control.

The shadow casted on the 2D plane contains attributes of its object that can also be refined
according to the additional information from the projection computation. For example, the
projected size on the plane normal (R -\7,,) carries the height information of the object.
This value can be used to scale the size and the transparency of the shadow object. Modify
MyScript to compute and use the length of the projected size to scale the size of the Pon
game object.

The very simple relationship between Pn, D, and Vn
P =DV,

states that a user can also define the plane by manipulating Pn instead of D and Vn. In
such a case,

D=|P,
v, b
D

Notice that with this approach, instead of the four floating-point numbers, D, and the x-, y-,
and z-components of Vn, the user only has the three floating-point components of Pn to
manipulate the 2D plane. While this is easier for the user, it also means that the user cannot
define planes with D of zero. With this caveat in mind, please modify MyScript to allow the
user the option of defining the 2D plane with either approach.

282

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Notice that as you move Pt in the X- and Z-axis directions, the size of the plane adapts and
continuously shows the projected position on the plane. In an actual application, a 2D bound
would be defined on this plane, and an inside-outside test could be performed and projected
positions outside of the 2D bound would simply be ignored. Refer to the previous example
where instead of allowing the users to adjust Vn and D to define the plane, three positions, PO,
P1, and P2, are used to define both the plane and an axis frame and then a 2D bound. Adapt
the solution and support bound testing for the projected position.

Note The last exercise challenges you to replace the Vn and D parameters with
three positions to define the 2D plane and an axis frame. In practice, such extra
efforts are not necessary. This is because an axis frame is actually conveniently
defined by the initial orientation of the 2D plane and the plane normal vector,

Vn. This information is available in the rotation matrix of the plane’s transform
component. However, more advanced knowledge in vector transformations and
matrix algebra are required to decode this information. Unfortunately, these are
topics beyond the scope of this book. For now, if you want to define an axis frame
on a 2D plane, the plane must be defined by three positions that are not collinear.
In the rest of the examples in this chapter, 2D plane sizes are always adapting to
include the projected or intersected positions as these planes are created using the
plane equation which relates better to the math at hand.

Line to Plane Intersection

You may recall that at the end of Chapter 2’s discussion of bounds, when comparing
what you have learned with the Unity Bounds class, one of the methods whose details
were not discussed was

o IntersectRay: Does ray intersect this bounding box?

You are now in a position to closely examine this function. By now, you know that
aray is simply a line segment. The IntersectRay() function computes and returns the
closest intersection position between a line segment and the six sides of the bounding

283

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

box. Note that each side of a bounding box is simply a 2D region as you have previously
examined in the Axis Frames and 2D Regions example. The IntersectRay() function
answers the question of how to intersect a line segment with a 2D plane. This solution is
illustrated in Figure 6-16.

P

o

Y 7 \I1I
N
|

Figure 6-16. Solving the line to plane intersection

Figure 6-16 depicts two positions, P, and P,, that define a vector Vl

where the positions, p, along the line segment with parameter s can be written as
p=P,+sV,
Notice that in this formulation, since the \71 vector is not normalized, s values

between 0 and 1, or when 0 < s < 1, identify positions that are inside the line segment. In
Figure 6-16, the position P,, is at a distance, s = d, along the Vl vector or

P, =P +dv,

Remember that the vector plane equation states that given a plane defined by
normal vector, Vn , and a distance, D, from the origin, all positions, p, on the plane satisfy
the plane equation

284

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

In Figure 6-16, the position P,, lies on the 2D plane, so

P,-V,=D

on

(P, +dV,)-V, =D substitute P,, =P, +dV,

Note that the only unknown in this equation is d, the distance to travel along the line
segment. By simplifying this equation, left as an exercise, you can show that

b-(n.1)
d=———~—
(V-0.)

With the d value computed, you can now find the exact P,, position. Note that this
solution is not defined when the denominator or (Vl Vn) is close to zero. Once again,
this can be explained by your knowledge of the dot product. A dot product result of zero
means that the cosine of the subtended angle is zero, which says the subtended angle
is 90° or that the two vectors are perpendicular. These observations indicate that when
(171 I}n) is close to zero, vectors V, and I}n are almost perpendicular, the line segment is
almost parallel to the plane, and therefore there can be no intersection between the two.

Note Ray casting is the process of intersecting a line segment or a ray with
geometries. For example, if you were told to “cast a ray into a scene,” then you
would simply intersect geometries in the scene with a given line segment. In this
case, you are learning about ray casting with a 2D plane.

The Line Plane Intersections Example

This example demonstrates the results of the line plane intersection solution. The
example allows you to interactively define a 2D plane and a line segment and then
examine the results of the line plane intersection computation. Figure 6-17 shows a
screenshot of running the EX 6 5 LinePlaneIntersections scene from the Chapter-6-
CrossProducts project.

285

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Figure 6-17. Running the Line Plane Intersections example

The goals of this example are for you to
o Verify the line plane intersection solution
¢ Gain experience with the perpendicular vectors test

o Reaffirm that it is important to check for all conditions when a
solution is not defined, in this case, when the line segment is parallel
to the plane

o Examine the implementation of the line plane intersection solution

Examine the Scene

Take a look at the Example_6 5 LinePlaneIntersections scene and observe the
predefined game objects in the Hierarchy Window. In addition to the Controller,

there are four objects in this scene: Pn, PO, P1, and Pon. Pn, the checkered sphere, is

the position on the plane that is at the defined distance, D, along the plane normal. This
position is displayed to assist in visualizing the 2D plane. The positions PO and P1 define
the black line segment, and Pon is the intersection position between this line segment
and the defined plane.

286

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

o Display toggles: ShowAxisFrame will show or hide the axis frame to
assist your visualization, allowing you to hide the axis frame to avoid
screen cluttering.

e Vector plane equation parameters: Vn and D are the plane normal
vector and the distance of the plane from the origin along the
normal vector direction. These parameters will be used to create and
manipulate the plane.

e Variables for the positions: Pn, PO, P1, and Pon are variables with
names that correspond to the game objects in the scene. For all these
game objects, the transform.localPosition will be used for the
manipulation of their corresponding positions.

Interact with the Example

Click the Play Button to run the example. You can observe a 2D plane with a white
normal vector extending from the origin and passing through the plane at Pn. You
can also observe a thin black line between the positions PO and P1 that define the line
segment. At the intersection of the plane and the line segment is position Pon. You
should be familiar with the 2D plane and its parameters, Vn and D.

Select the end points of the line segment, PO or P1, and adjust its x- and z-component
values. Observe that Pon changes in response to your manipulation, always locating
itself at the line plane intersection. This verifies the solution you have derived for Pon.
You can verify the intersection computation results by referring to the text output in the
Console Window. Remember, the values for the d parameterization (see Figure 6-16 for
areminder of what this variable is) are based on a non-normalized vector; therefore, d
values between 0 and 1 indicate that Pon is inside the line segment.

Now, select PO and increase its y-component value. When P0’s position is above
the plane, the Pon position is still along the line, but is outside of the line segment,
occurring before position P0. This fact is reflected by the red line segment between Pon
and PO. Notice that as you continue to increase the PO y-component value, as the line
segment comes close to being parallel to the plane, the intersection position is located
at positions further and further away from Pn. Eventually, when PO and P1 y-component

287

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

values are exactly the same, the line segment and the plane are exactly parallel and
therefore there is no intersection between the two. You can verify this condition by
referring to the printout in the Console Window. If you continue to increase the PO
y-component value, you will notice the red line segment switching between PO to Pon to
between P1 and Pon. In the case when PO is above P1, the intersection position is along
the line segment and after position P1. When this occurs, the value of d will be greater
than 1 which you can verify has happened via the Console Window.

Feel free to manipulate all of the parameters, Vn, D, PO, and P1, and verify that the line
plane intersection solution does indeed compute a proper Pon result except when the
line is almost parallel to the plane or when the length of the line is very small (when PO
an P1 are located at almost the same position).

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public bool ShowAxisFrame = true;

// Plane Equation: P dot Vn =D
public Vector3 Vn = Vector3.up;
public float D = 2f;
public GameObject Pn

null; // Point on plane along normal

public GameObject PO = null, P1 = null; // The line segment
public GameObject Pon = null; // The intersection position

#iregion For visualizing the vectors
#endregion

void Start() {
Debug.Assert(Pn != null); // Verify proper editor init
Debug.Assert(Po != null);
Debug.Assert(P1 != null);
Debug.Assert(Pon != null);

#region For visualizing the vectors
#endregion

288

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component, and as in all previous examples, the Debug.Assert()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The Update () function is listed as follows:

void Update() {
Vn.Normalize();
Pn.transform.localPosition = D * Vn;

// Compute the line segment direction
Vector3 vi1 = Pi.transform.localPosition -
Po.transform.localPosition;
if (vi.magnitude < float.Epsilon) {
Debug.Log("I11l defined line (magnitude of zero).
Not processed");
return;

}

float denom = Vector3.Dot(Vn, vi);

bool lineNotParallelPlane = (Mathf.Abs(denom) > float.Epsilon);
// Vn 1is not perpendicular to Vi

float d = 0;

Pon.SetActive(1lineNotParallelPlane);
if (lineNotParallelPlane) {
d = (D - (Vector3.Dot(Vn, Po.transform.localPosition)))
/ denom;
Pon.transform.localPosition =
Po.transform.localPosition + d * vi;
Debug.Log("Intersection pt at:" + Pon +
"Distant from PO d=" + d);
} else {
Debug.Log("Line is almost parallel to the plane,
no intersection!");

289

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

The first two lines of the Update () function normalize the user-specified plane
normal vector and compute Pn’s position to help the user better visualize the 2D plane.
The code that follows computes

Vi=R-h

and checks to ensure that this line segment is well defined and has a nonzero length.
When the line is well defined, the denominator for the solution to d, V, Vn , is computed
and the condition for the line being parallel to the plane is checked. Note the use of the
absolute value function when checking for the perpendicular condition. This is because
the subtended angles of 89.99° and 90.01° are both almost perpendicular and the cosine
or the dot product results are both close to zero but with different signs. Finally, d is
computed and printed out to the Console Window when the line is not almost parallel to
the plane.

Takeaway from This Example

This example demonstrates the solution to the line to plane intersection, an important
problem that is straightforward to solve based on vector concepts you have learned.
The concepts applied include working with the vector plane equation, the sign of the
vector dot product, vector projections, and fundamental vector algebra. The line to
plane intersection is a core functionality that can be found in typical game engine utility
libraries. In the case of Unity, this functionality is presented via the IntersectRay()
function of the Bounds class.

Relevant mathematical concepts covered include

e Two vectors are almost perpendicular when the result of their dot
product is close to zero.

e When aline is almost perpendicular to the normal of a plane, it is
almost parallel to the plane.

o The intersection point of a line and a plane can be derived based on
vector algebra.

290

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Relevant observations on implementation include

o Testing for perpendicular vectors, or when dot product result is close
to zero, must be performed via the absolute value function, as very
small positive and negative numbers are both close to zero

EXERCISES

Recall that in Figure 6-16, the position P,, is at a distant, s = d, along the V, vector or
P, =P, +dV,

You have observed that since this position is also on the 2D plane
(B, +dV,)-V,=D

Now, apply the distributive property of the vector dot product over the vector addition operation,
and remembering that the result of a dot product is a floating-point number, show that

(i)
A

One approach to interpret Figure 6-16 is to ignore P, and interpret P,, as the projection of P,
on the 2D plane along the V, direction. Given this interpretation, you can now cast shadows of
objects onto a 2D plane along any direction specified by the user. Modify MyScript to replace
P1 by a 3D projection direction, V,, and implement the functionality of casting a shadow of P,
on the plane along the player-specified V, projection direction.

Refer to your solution from the “Implement a General Bounding Box” exercise from the “Axis
Frames and 2D Regions” section. With the results from line plane intersection, you can now
implement the IntersectRay() function. Modify your solution to this previous exercise

291

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

by allowing your user to define a line segment and then compute the intersection of the line
segment with all six sides of the bounding box. The intersection position between the ray or
line segment and the bounding box is simply the closest of all the valid intersection positions.

Mirrored Reflection Across a Plane

The intersection computation from the previous subsection allows you to collide an
incoming object with flat planes or walls. In many video games, a typical response to
the results of collisions is to reflect the colliding object. For example, when an amulet is
tossed by an explorer, it should bounce and reflect off walls or the floor when it collides
with them to convey some sense of realism. This reflection is depicted in Figure 6-18
and can be described as reflecting the velocity of an incoming object in the mirrored
reflection direction.

Figure 6-18. Mirrored reflection across a plane

In Figure 6-18, P,, on the left, is the incoming object approaching the plane with
normal vector Vn and is about to collide with the plane at position P,,. P, is the mirrored
reflection of P, across the plane normal l}n and is the unknown that must be computed.

Since this is a mirrored reflection, the right-angle triangle formed by the incoming
object, P,P,,P), is identical to the one formed by the reflected position, P,P,,P;, where P;is
the position that both P, and P, would project onto in the 17,, direction. Additionally, the
vector, m , from P, to P, is identical to the vector from P, to P,. Given these observations,
as illustrated in Figure 6-18, you can define the vector V,, from P,,to P,

V,=P—-P vector from P,, to P,

on on

292

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Project vector V, onto the plane normal direction, ‘7,, , to compute the length of V_
when measured along the Vn direction

h=V, -V, length of V, along V,

on

Compute P, the projected position of P, on the plane normal, I}n . This position is
traveling from P,, along the ‘7n direction by the projected distance, h,
P =P, + h‘?n P,, along Vn by h
With the P, position, you can compute, 772, the vector from P, to P,,
m=P,— P, vector from P, to P,

And finally, the mirrored reflection position of P, across the normal vector Vn is
simply traveling along the negative m vector from P,

P=P-m traveling by the negative m

In these steps, you have derived the reflected position, P,, of the incoming position P,
with plane normal \7n and collision position P,,.

The Reflection Direction

The derived solution for P, can be organized to assist the interpretation of mirrored

reflection geometrically:
P,=P,— (P, - P)
= 2Pl - P()

=2(B, +hV,)P,

=2P +2hV —P,

substitute m = P, — P,
collecting the two P,

substitute P =P, + h‘}n
distributive property
group P,, with P,
substitute V,, =P, — P,

substitute h=V, -V,

293

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Note that this last equation may seem complex; however, it is actually in a simple
form. If you define the vector V, to be

Then
P=P, +V from P,, along V.
Refer to Figure 6-18; this is the exact complement to the incoming position, P,

P=P +V, from P,, along V,,

on on

In this way, given an incoming direction of V, and the normal vector Vn , the
reflected direction, V, , is

v :2(‘ Vn) ;

This is the reflection direction equation. Note that this equation says the reflected
direction, V,, is a function of only two parameters—the incoming direction, V, , and the
normal direction, Vn , that defines the reflection.

Lastly, it is important to note that in this derivation, the incoming direction, V,,, is

0

defined as a vector pointing away from the intersection position (see the arrow above
V., in Figure 6-18 for clarification). This convention of defining all vectors to be pointing
away from the position of interest is a common practice in many video games and

computer graphics-related vector solutions.

The Line Reflections Example

This example demonstrates the results of line reflection across a 2D plane. This example
allows you to interactively define the line segment and the 2D plane, as well as examine
the results of reflecting the line segment across the normal direction of the 2D plane.
Figure 6-19 shows a screenshot of running the EX 6 6 LineReflections scene from the
Chapter-6-CrossProducts project.

294

CHAPTER 6 VECTOR CROSS PRODUCTS AND 2D PLANES

Figure 6-19. Running the Line Reflections example

The goals of this example are for you to
o Verify the reflection direction equation
o Examine the reflection of a position across the normal of a plane

o Examine the implementation of the reflection computation

Examine the Scene

Take alook atthe EX_6_6_LineReflections scene and observe the predefined game
objects in the Hierarchy Window. Take note that this example builds directly on the
results from the EX_6_5_LinePlaneIntersects scene. Similar to the previous example,
the parameters, Vn and D, define the 2D plane where Pn is the position on the plane to
assist visualization. The parameters PO and P1 define the line segment, and Pon is the
intersection between the line and the 2D plane.

The two new game objects in this scene are the projection of PO on the plane normal
vector, P1, and Pr the mirrored reflection of PO across the plane normal.

295

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Analyze Controller MyScript Component

The MyScript component on the Controller shows that there are two additional public
variables with names that correspond to the P1 and Pr game objects. As in previous
cases, the transform.localPosition of these variables will be used for the manipulation
of the corresponding positions.

Interact with the Example

Click the Play Button to run the example. When compared with the Scene View of

EX 6 5 LinePlaneIntersects, you will observe the similar 2D plane defined by Vn and
D, the thin black line segment defined by PO and P1, and their intersection at Pon. Note
that the plane normal vector is copied and displayed at Pon to assist in the visualization
of reflection. Also note that the green sphere, P1, is the projection of PO onto the plane
normal, and the green vector is the m vector as depicted in Figure 6-18

ﬁ’l=P0—pl

The striped sphere, Pr, connected with a thin red line to Pon, is the mirrored
reflection of PO across the plane normal vector.

Tumble the Scene View camera to examine the running scene from different viewing
positions to verify that the red line segment and the black line segment above the plane
are indeed mirrored reflections. Notice P1 is the projection of PO onto the normal vector,
and thus, the green m vector is always perpendicular to the plane normal vector. You
can manipulate the plane, by adjusting Vn and D, and the line segment, by adjusting
PO and P1, to verify that the reflection solution is correct for all cases. Recall from the
previous example to be careful when the line segment is almost parallel to the plane as
the plane size will increase drastically to accommodate the intersection position that will
now be located at a very far distance.

You can set PO and P1 such that the line segment is in the same direction as the plane
normal. Observe that in this case, the reflection direction would be parallel to the normal
vector direction and that the projected position, P1, and the reflected position, Px, will be
located at the same point. In other words, the reflection vector would be exactly the same
as in the incoming vector!

296

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

#iregion identical to EX 6 5
#fendregion

public GameObject Pl
public GameObject Pr

null; // Projection of PO on Vn
null; // reflected position of PO

#iregion For visualizing the vectors
#fendregion

// Start is called before the first frame update
void Start() {

#iregion identical to EX 6 5

#endregion

Debug.Assert(Pl != null);

Debug.Assert(Pr != null);

#region For visualizing the vectors
#endregion

As explained, P1 and Pr are the only additional variables from an otherwise identical
example to the previous subsection, and as in all previous examples, the Debug.
Assert() calls in the Start() function ensure proper setup regarding referencing these
game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {
#iregion identical to EX 6 5
#endregion

float h = 0;
Vector3 von, m;
Pr.SetActive(lineNotParallelPlane);
if (lineNotParallelPlane) {
von = PO.transform.localPosition -
Pon.transform.localPosition;

297

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

h = Vector3.Dot(von, Vn);
Pl.transform.localPosition =
Pon.transform.localPosition + h * Vn;
m = PO.transform.localPosition -
Pl.transform.localPosition;
Pr.transform.localPosition =
Pl.transform.localPosition - m; ;
Debug.Log("Incoming object position Po:" +
Po.transform.localPosition +
" Reflected Position Pr:" +
Pr.transform.localPosition);
} else {
Debug.Log("Line is almost parallel to the plane,
no reflection!");

}

#region For visualizing the vectors
#endregion

Recall that the previous example computes the intersection position, Pon, when the
line segment is not almost parallel to the 2D plane. Similar to line plane intersection,
aline can only reflect off a plane that it is not parallel with. The if condition checks
for the parallel condition and outputs a warning message to the Console Window.
Otherwise, the five lines inside the if condition follow the P, position derivation exactly

and compute

V =P -P, vector from P,, to P,
h=V_ -V V. sizealong V,
B:Rﬂhﬁ1 Pmdmgﬁﬂwh
m= P,— P, vector from P, to P,
P=P-m negative m direction

298

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Takeaway from This Example

This example, once again, illustrates a straightforward but important application of
vector algebra. Note that the reflection direction equation

‘_/;‘ = 2(‘7071 : vﬂ)‘}Vl _VOYI
is independent of plane to origin distance, D, or the actual incoming object position,
Py, or intersection position P,,. As depicted in Figure 6-20, this makes intuitive sense.

Pﬂ v;l
Von il V.
Pﬂ!l
L~ New locations for eye and mirror

Flat mirror on the X/Z plane

Figure 6-20. The mirrored reflection direction

On the left of Figure 6-20, it depicts your eye at an initial position, P,, looking at
a point, P,,, on a flat mirror on your desk. The right of Figure 6-20 shows that you
have moved your eye and the mirror such that your eye is now located at P,, and you
are looking at a new position, P,,, on the mirror. You know that in both of the mirror
locations, for the same incoming viewing direction, Von , as long as the mirror normal,
X}H , is not changed, the reflection direction will always be the same, Vr . Notice that
the reflection direction, \7, , is only dependent on the incoming direction, Van , and the
mirror normal vector, I7n . Neither the location of the mirror, which corresponds to the
D-value of the plane equation, nor the location of your eye, P, and P,, nor the location of
where you are looking at, P,, or P,,, affects the reflection direction, V, . Only your viewing
angle and the orientation of the mirror will affect the reflection direction, just as the
reflection direction equation states.

299

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Relevant mathematical concepts covered include

o The mirrored reflection direction is a function of the normal vector
and incoming direction.

e The mirrored reflection of a position can be found by applying the
reflection direction to the impact position.

Relevant observations on implementation include

e In the mirrored reflection implementation, the normal vector must
be normalized. Additionally, the vector representing the reflection
direction is the same length as the vector representing the incoming

direction

EXERCISES

Edit MyScript to replace the implemented solution by first computing the reflection
direction, V.,

v, =2(V,,-V,)V, -V,

on

And then compute

Verify your results are identical to the existing implementation. How would you modify your
solution if V, is a normalized vector?

Please refer to https://docs.unity3d.com/ScriptReference/Vector3.Reflect.
html; the Unity Vector3 class also supports the reflection function. Edit MyScript to
replace the implementation with the Vector3.Reflect() function and verify the results are
identical.

300

https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html;
https://docs.unity3d.com/ScriptReference/Vector3.Reflect.html;

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

Modify MyScript to reflect the line only when PO is in front of the 2D plane and P1 is behind
the 2D plane.

Modify MyScript to remove Vn and D and include three user control positions for defining the
plane and a 2D bound where reflection only occurs for intersections that are within the bound.

Summary

This chapter summarizes the discussions on vectors and vector algebra by introducing
the vector cross product. You have seen that while the results of the vector dot product
relate two vectors via a simple floating-point number, the results of the vector cross
product provide information on the space that contains the operand vectors in the form
of a new vector in a new direction. This new vector is perpendicular to both operand
vectors and has a magnitude that is the product of the sizes of the two vectors and

the sine of their subtended angle. You have also learned that the cross product of a
vector with itself or with a zero vector is the zero vector. In typical video game-related
problems, it is rare to encounter solutions that depend on the result of the cross product
of a vector with itself.

You have also learned that an axis frame, or three perpendicular vectors, can be
derived from the result of the cross product. This is accomplished by performing one
more cross product between the initial cross product result vector and one of the original
operand vectors. This newly derived axis frame can serve as a convenient reference for
more advanced applications that will be discussed in the next chapter. In this chapter,
you experienced working with derived axis frames in 2D space to compute position
inside-outside tests for 2D bounds. Remember that it is important to follow the chosen
coordinate space convention, left- or right-handed, when computing an axis frame.

You have built on the results of the cross product to gain insights into 2D planes and
to relate the algebraic plane equation, Ax + By + Cz = D, to the vector plane equation,

P. l}n =D . You have also examined the geometric implications of the vector plane
equation where the vector, ‘7n , is the plane normal and is perpendicular to the 2D plane
and D is the distance between the origin of the Cartesian Coordinate System and the 2D
plane measured along the plane normal, ‘}n , direction.

301

CHAPTER6 VECTOR CROSS PRODUCTS AND 2D PLANES

These insights into 2D planes allowed the derivation of three important solutions
with wide applications in video games and computer graphics applications: projection of
a position, intersection with a line segment, and reflection direction. You have interacted
with and examined the implementation of these solutions as well as verified that these
solutions are general and can work with any input conditions. Lastly, you have observed
that the typical implementation of vector solutions match closely with the vector
algebraic solution, are elegant, and typically involve a small number of lines of code.

302

CHAPTER 7

Axis Frames and Vector
Components

After completing this chapter, you will be able to

e Understand that the Cartesian Coordinate System is an example of

axis frame

e Appreciate that the x-, y-, and z-values of the Cartesian Coordinate
System are examples of vector components

¢ Describe the definition of, and create from three non-collinear
positions, an axis frame

o Discuss the components of a vector with respect to any axis frame
o Decompose a vector into the components of any given axis frame
e Define and work with vectors in any axis frame

e Analyze, design, and implement movements of objects in the context

of any axis frame

Introduction

You have learned from Chapter 4 that a vector is defined by two nonoverlapping
positions. From Chapter 5, you learned that two unique vectors are defined by any three
positions that are not collinear and that these two vectors always define a 2D plane.
Lastly, from Chapter 6, you have learned that the perpendicular direction to a plane can
be derived via a vector cross product, and very importantly, you have also learned that
an axis frame can be derived based on this perpendicular direction and the two given

303
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_7

https://doi.org/10.1007/978-1-4842-9885-5_7

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

vectors. A derived axis frame is a unique 3D coordinate system, just like the Cartesian
Coordinate System, that is capable of describing and representing positions and
vectors. In this chapter, you will continue to learn about deriving different axis frames
and representing and working with positions and vectors in these derived coordinate
systems.

Note Recall that a vector points from its tail to its head.

The Cartesian Coordinate System, with its perpendicular x-, y-, and z-axes, is the
most straightforward example of an axis frame. The three axes intersect, with their tails
at the position that is referred to as the origin and the axes are directions or unit vectors.
In Chapter 6, when you examined the axis frame in Figure 6-10, you saw that in general,
the shared tail position of the unit vectors can be located at any arbitrary position, P,
Thus, an axis frame can be defined simply as three unit vectors that are perpendicular
to each other with tails located at the same position, P,. These three perpendicular unit
vectors are referred to as the major axes and the common position that the major axes
intersect, Py, is the origin of the axis frame.

In Chapter 2, you learned that the coordinate values of a position (x,y,z) represent
distances measured from the origin along their corresponding axes’ directions or unit
vectors. These coordinate values can be considered the magnitude of vectors in the x-,
y-, and z-directions or components of the major axes. In a 3D world, there are exactly
three perpendicular unit vectors with exactly three components for each position.

In general, given a position (X, Yy, z) or any vector defined in the Cartesian
Coordinate System, it is always possible to compute the corresponding component
values for any other axis frame. The converse is also true—that given the component
values of any axis frame, it is always possible to compute the corresponding coordinate
values in the Cartesian Coordinate System. In other words, it is always possible to
represent a vector in the context of any axis frame and to convert the representation
to any other axis frames. Among many applications, this ability to represent vectors
with respect to any axis frame allows the analysis and manipulation of movements in
dynamic environments such as resting and running down a hallway toward the medical
bay of a spaceship while that spaceship is actively dodging asteroids.

In video games, there are many applications of representing vectors in different axis
frames and working with the resulting components. For example, to continue with the
player in a spaceship example, even though resting in the spaceship, the player’s position

304

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

and orientation should be updated as the spaceship navigates in the asteroid field. In
this situation, an elegant solution would be to represent the position and orientation of
the player in the context of the spaceship’s axis frame. In this way, the spaceship’s axis
frame can be updated as it navigates the asteroid field, while a stationary player in the
spaceship can have its particulars remain constant. With these representations, a player
resting and facing the front of the spaceship will remain stationary and continue to face
the front while the spaceship navigates.

Here are some other examples of working with multiple axis frames in video games:

¢ Running and swinging a sword in virtual reality where the sword’s
position is determined by the player’s hand position, which is
determine by their moving body

e An asteroid mining game where each asteroid spins and has its own
gravity system that effects the player

« Ridingin a vehicle that has a rotatable mounted turret

e Hopping between a train and horse in a wild west high stakes
heist game

In practice, representation and conversion between axis frames are usually
integrated as part of and hidden by the scene hierarchy interface. As will be detailed
at the end of this chapter, in Unity the functionality of and the transitions between
axis frames are delivered via the parent-child relationship that can be created and
manipulated in the Hierarchy Window.

This chapter begins by examining the default Cartesian Coordinate System as an axis
frame and relates coordinate values to components. The section that follows reviews
the definition of general axis frames and derives how to compute the components of
positions in these general axis frames. With proper understanding of components,
the subsequent section analyzes vectors in general axis frames and discusses the
details of representing the same vector in different axis frames. The last section of this
chapter simplifies the player in a spaceship example and demonstrates how to achieve
independent motion controls for the player moving toward the medical bay while the
spaceship navigates.

Note The rest of the book will refer to the axis frame defined by the default
Cartesian Coordinate System as the Cartesian axis frame.

305

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Figure 7-1. A General axis frame with labels

Positions in the Cartesian Axis Frame

This section reviews how the Cartesian axis frame, or the Cartesian Coordinate System,
represents positions in 3D space. As discussed, in general, an axis frame is defined by
three unit vectors, or the major axes, that are perpendicular to each other and intersect
at a common position, the origin. Figure 7-1 depicts an example axis frame with labels:
P, being the origin or the common intersection position and X, y, and z as the three
perpendicular unit vectors.

In the case of the default Cartesian axis frame, the origin, Py, is simply (0, 0, 0).
By convention, the constant x-, y-, and z-directional unit vectors of the Cartesian
Coordinate System are referred to as i , }', and k , where

i =(1,0,0)

7=(0,1,0)

k=(0,0,1)

306

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Pix, v) T

Figure 7-2. Components of a vector in the default Cartesian axis frame

Components of a Position Vector

In Chapter 4, when discussing positions, or position vectors, you have learned that

position in the Cartesian Coordinate System at P = (x,y,z) can be inter-
preted as x-, y-, and z-displacements measured along the three major axes
from the origin.

At this point, you have learned enough about vectors to turn this statement into a
mathematical expressmn As 111ustrated in Figure 7-2, remembermg that x-direction is
represented by i y-direction is] and z-direction is k then x-, y-, and z-displacements
along the three major axes are simply a vector, D, that is the sum of the scaled vectors in
the i, } ,and k directions or

D=xi+yj+zk

The phrase, “measured ... from the origin position,” simply means that the
displacement of vector D begins from the origin at P, or

V=P +D=P +xi+yj+zk

=(0,0,0)+x(1,0,0)+y(0,1,0)+2(0,0,1)

=(x,0,0)+(0,y,0)+(0,0,2z)=(x,y,2)

307

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Notice that in this derivation the coordinate values (x, y, z) are used to scale the
corresponding unit vectors of the axis frame, that is, x is used to scale i y scaling } , and
zscaled k . Because the coordinate values scale the corresponding unit vectors of the
Cartesian axis frame, these values are referred to as the components of vector V inthe
Cartesian Coordinate System.

Note Vector components are defined with respect to a given axis frame.
Coordinate values are components of the Cartesian axis frame. In general, for
an axis frame other than the Cartesian axis frame, components of a position are
different from the coordinate values of the position.

The Components of Cartesian Axis Frame Example

This example demonstrates that scaling the unit vectors of a Cartesian axis frame

with the corresponding coordinate values does indeed compute proper positions.

This example allows you to interactively manipulate a position and then examine the
corresponding components of the position vector and magnitudes of the unit vectors.
Figure 7-3 shows a screenshot of running the EX 7 1 ComponentsOfCartesianAxisFrame
scene from the Chapter-7-VectorComponents project.

Figure 7-3. Running the Components of Cartesian Axis Frame example
308

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

The goals of this example are for you to
o Review the significance of coordinate values

¢ Examine coordinate values as components of a position vector in

scaling the corresponding unit vectors of an axis frame

e Verify that the sum of component-scaled unit vectors of an axis frame
does indeed compute the proper position

Examine the Scene

Take a look at the Example_7 1 ComponentsOfCartesianAxisFrame scene and observe
the predefined black sphere, P, and red cube, Pt, in the Hierarchy Window. In this
example, the coordinate values of P are used to scale the unit vectors of Cartesian axis
frame to compute the position for Pt.

Analyze Controller MyScript Component

The MyScript component on the Controller shows variables with the same name as
their corresponding reference game objects in the scene. The toggles draw/hide the
position vector of P, the default Cartesian axis frame, and the scaled component vectors.

Interact with the Example

Click the Play button to run the example. You can see the game object Pt (red cube),
overlapping the game object P (black sphere). Now, select P and manipulate its position.
Observe that Pt (red cube) always follows and encompasses P (black sphere). In this
case, the position of Pt is computed based on component value-scaled unit vectors of
the Cartesian axis frame. This observation verifies that the position P = (x,y, z) is indeed
derived by the equation

R)+xf+y}+zle

Examine the scene more closely by selecting the Controller and toggling on/off
the display of the position vector for the game object P, DrawPositionVector, and the
default Cartesian axis frame, DrawAxisFrame. The DrawComponents toggle allows you to
examine the component-scaled unit vectors: xi, y] and zk .

309

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject P = null; // For manipulation

public GameObject Pt = null; // For computed position

public bool DrawPositionVector = true; // Visualization toggles
public bool DrawAxisFrame = true;

public bool DrawComponents = false;

private Vector3 iV
private Vector3 jV
private Vector3 kV

new Vector3(1f, of, of); // unit vectors
new Vector3(of, 1f, of); // i, j, and k
new Vector3(of, of, 1f); //

#iregion For visualizing the vectors
#fendregion

void Start() {
Debug.Assert(P != null); // Verify proper setting
Debug.Assert(Pt != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component, and as in all previous examples, the Debug.Assert ()
calls in the Start () function ensure proper setup regarding referencing the appropriate
game objects via the Inspector Window. The private 1V, jV, and kV variables are the
corresponding i }', and k unit vectors of the Cartesian axis frame. The details of the
Update() function are as follows:

void Update() {
// 1. position and the position vector
Vector3 Po = Vector3.zero;
Vector3 v = P.transform.localPosition - Po;

310

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

// 2. Verify component-scaled unit vector computes position
Pt.transform.localPosition = Po + v.x*iV + v.y*jV + v.z*kV;

#region For visualizing the vectors
#endregion

The first two lines of code convert the position of P to a position vector in the
Cartesian axis frame by computing the vector from the origin Po to P or

V=P-P

0

Although unnecessary for the Cartesian axis frame because the origin is always
(0,0,0), this step is taken explicitly to differentiate and remind you that position
vectors are vectors from the origin to the given positions. This seemingly insignificant
observation will become important in next sections.

In Step 2, the position of game object Pt is computed by summing the component-
scaled unit vectors from the origin following the given equation

Pt=P +xf+y]A'+zle

The two steps in the Update() function follow precisely the given equations and the
result is indeed the same position as expected.

Takeaway from This Example

This is a relatively straightforward example demonstrating and verifying the intuitive

equations

V=P-P
P=Q+ﬁ+ﬁ+%

The next section will generalize these equations to support derivation of position
vector components for different axis frames.

311

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Relevant mathematical concepts covered include

o For the default Cartesian axis frame, the sum of components-scaled
unit vectors does indeed compute the proper position.

EXERCISES

Try the following. Replace the first line of code in the Update() function with

Vector3 Po = new Vector3(if, if, 1f);
// instead of (0,0,0)

and notice that Pt will continue to follow the position of P correctly. In fact, the position of Pt
will follow that of P for any Po.

What happened is that a new axis frame is created when Po is set to anything other than
(0,0,0). The next section will explore this in depth by deriving and working with components of
general axis frames.

Positions in General Axis Frames

In the previous section you interpreted the default Cartesian Coordinate System as an
axis frame with the three perpendicular unit vectors, i } , and k , being the major axes
intersecting at the origin (0, 0, 0). You have also learned to consider the coordinate values
of a Cartesian Coordinate position (x, y, z) as the components of its position vector. You
will now map these concepts to a general axis frame where the three perpendicular unit
vectors may not be aligned with the x-, y-, or z-directions and these vectors may not
intersect at (0, 0, 0).

This section begins with a review of the definition and derivation of a general axis
frame. The section then proceeds to analyze positions as position vectors defined in
these general axis frames and demonstrates that all positions can be decomposed into
components of any given axis frame. You will learn that positions can be expressed and
derived based on components from any axis frame.

312

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

y= (‘.-_g,).nurmalize

Py

=1
Il

b
®

=l

41555;;;:*’//

2% =

=l
]
St
. 5
qu
h

= (l};).normalizc

Figure 7-4. A general axis frame derived from three non-collinear points

Review of Axis Frame Derivation

As discussed in Chapter 6, an axis frame can be defined by three points that are not
collinear. This is reviewed in Figure 7-4. The given three positions labeled on the right of
the figure, P,, P,, P, define two unique vectors, V, and V,, with tails located at P,

V.=P-P,

V,-R-R,
Now, let

vV, =V.xV,

then Vy is perpendicular to both V, and V,. At this point, V, may not be
perpendicular to V,. This can be rectified by computing

V=V, xV,

i Vy ,and V, are three perpendicular vectors which may not be normalized.
Let x, y, and z, be the normalized versions of the three vectors and an axis frame is

successfully derived, with the three unit vectors intersecting at the origin, P.

Now, V.

313

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

The default Cartesian Coordinate System is a special example of an axis frame
because its X, f/, and 2 vectors are i , }', and k with corresponding values of (1, 0,0),
(0,1,0), and (0,0, 1) and that the vectors intersect at the origin with P, = (0,0, 0).

Note An axis frame (in 3D) is defined by three major axes: perpendicular unit
vectors, x, y,and z, intersecting at F, the origin of the axis frame. It is important
to note that P, may not be located at (0,0, 0).

Position Vectors in General Axis Frames

You have been working with positions specified in the default Cartesian axis frame
where the origin is conveniently located at (0, 0, 0). For this reason, in the Cartesian
axis frame the position, P = (x, y, z), and its position vector, Vp , always have identical
components, where
V,=P—-(0,0,0)=(x,y,2)—(0,0,0)=(x,y,2z)=P

This property of having identical components for a position and the corresponding
position vector is a special case for the Cartesian axis frame and is not true for any axis
frame with origin located at a position other than (0, 0, 0).

In general, the origin of an axis frame, labeled as P, in Figure 7-4, can be located
at any position in the 3D space. This definition for the origin implies that the general
definition of a position vector, vV, for position, P, is

V=P-P
Note that since P, of an axis frame can be located anywhere, in general, position
vectors for the same position may be different across axis frames. Very importantly, given

a position, P, its position vector, V,inan arbitrary axis frame is usually different from
the position vector, Vp ,in the Cartesian axis frame.

314

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

General axis frame
R Cartesian axis frame

V= (x.3.2)
.\P = (x,5.2)

Figure 7-5. Position vector in general and the Cartesian axis frame

Figure 7-5 depicts the two position vectors, V and V,,, for the given position,
P=(x,y,2), in two axis frames: the X, f/ ,and z with origin at P, in the top left and the
default Cartesian axis frame toward the top right of the figure.

Note Each position vector is defined with respect to the origin of the
corresponding axis frame.

Components of Position Vectors

It is now possible to derive the components of a position vector by refining the
description of a position in the context of a general axis frame:

Position P in an axis frame can be interpreted as the displacements mea-
sured along the major axes from the origin, P,.

315

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

In this case, instead of the i , } ,and k of the Cartesian axis frame, a general axis
frame has x, f/ ,and z as the major axes, and the origin, P,, can be located anywhere.
The phrase

from the origin position, P,
refers to the position vector

where

displacements measured along the major axes
are the size of the position vectors measured along the major axes or

V-

=>

v

X

<
Il Il
=
<>

<
Il

<<

N>

Thus, the given description of the position, P, can be formulated as the following
equation:

or
P:PO+(\7-3%)J%+(I7-37)j/+(17-2)2

=R +vx+v,y+v,2

Here, v, v, and v, are the components of the position vector of P in the axis frame
with major axes x, y, and z and origin P,. Note the similarity between this equation
and the one from the previous section where, in the Cartesian axis frame, with the i })
and k as major axes and origin located at (0, 0, 0),

316

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS
P=(0,00)+(V,i)i+(V,7)i+(V, k)k
=(0,0,0)+ xi +y}'+zl€
Recall that in this case x, y, and z are components of the position vector in the

Cartesian axis frame. Once again, you can observe that in the Cartesian axis frame, and
only in the Cartesian axis frame, components are identical to coordinate values.

Note It is important to distinguish between the components (v, v,) and

the coordinate values (x, y, 2) of a position. Coordinate values are the results of
evaluating components in the context of an axis frame. That is, coordinate values
are the results of evaluating P, +v x+v,y+v,z.

Figure 7-5 illustrates the preceding derivations where the same position, P, is
represented by and can be derived based on two different position vectors. On the left
shows the accumulation of component-scaled x, y, and z vectors that resulted in the
position vector, V , while the right side of the figure illustrates the summation of scaled
i , } , and k that resulted in Vp . Clearly, V= Vp , and yet with the two vectors describing
offset from the origins along the major axes’ directions of their corresponding axis
frames, the head of both vectors is located at the same position, P. Thus, you can observe
that the same position can be expressed and represented as components of different

axis frames.

Note Components of a vector are defined with respect to specific axis frames.
The process of computing the values for the components, for example, v, =V -x , is
referred to as vector decomposition, or decomposing a vector into its components.

In mathematical terms, axis frames are examples of vector spaces, where the set
of three perpendicular unit vectors is an example of a set of basis vectors, and
deriving components of a vector to be represented in another axis frame is referred
to as changing of basis.

317

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

The Components of Any Frame Example

This example demonstrates that for a given position, in addition to the default position

vector and components of the Cartesian axis frame, a distinct position vector with a

corresponding set of component values can be derived for any axis frame. Figure 7-6

shows a screenshot of running the EX_7 2 ComponentsOfAnyFrame scene from the
Chapter-7-VectorComponents project.

Figure 7-6. Running the Components of Any Frame example

The goals of this example are for you to

318

Refamiliarize the steps of deriving an axis frame from three non-
collinear positions

Experience computing and working with vector components
Examine vector components in any given axis frame

Appreciate that for the same position, there is a distinct position
vector for each different axis frame

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Examine the Scene

Take a look at the Example_7_2_ComponentsOfAnyFrame scene and observe the
predefined game objects in the Hierarchy Window. In addition to the Controller, there
are five objects in this scene: Po (the white sphere), Pt (the red sphere), Pz (the blue
sphere), P (the black sphere), and Pr (the green cube). In this case, P is the position of
interest; Po, Pt, and Pz are the three non-collinear positions that you can manipulate

to define an arbitrary axis frame; and the Pr position is computed based on the
components of the corresponding position vector.

Analyze Controller MyScript Component

The MyScript component on the Controller shows that the game objects in the scene
are referenced by variables with the same names and that you have the option to show or
hide the Cartesian and the derived axis frames.

Note In all examples of this chapter, when attempting to manipulate an

axis frame by adjusting the positions of Pt or Pz, you will experience strange
constraints and awkwardness. It will appear that the system is fighting against
you and often undo or modify your actions. As will be discussed at the end of this
chapter, the orientation of an axis frame should be specified and manipulated
based on rotation and not independent adjustments of positions. Rotation is a
topic that will be discussed in the next chapter. Fortunately, in the context of this
chapter, you are focusing on the relative relation of vectors and components to a
changing axis frame. Your goal is to manipulate an axis frame, not define or specify
a particular axis frame. In all examples of this chapter, simply adjust Pt and Pz
to cause changes to the axis frame. Direct your attention on the vectors and
components instead of the details of the actual axis frame.

Interact with the Example

Click the Play button to run the example. With the default setting of hiding the details
of the derived axis frame, you should observe a scene that is similar to that from the
previous example: a position (black sphere) and the corresponding position vector
(white vector) with x-, y-, and z-components in the Cartesian axis frame.

319

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Now, select the Controller object and flip the axis frame being drawn: disable the
showing of Cartesian and enable the derived frame. You should observe a scene that
appears to be very similar to the previous. Instead of white, you will observe a position
vector in black with components along the x (inred), y (in green), and z (in blue)
directions. Notice that the x, y, and z directions are perpendicular and that the objects
P (the black sphere) and Pr (the green cube) overlap and are located at exactly the same
position. The position of Pr is computed based on the position vector V of position P
according to

and

P =P +(V-%)x+(V-3)y+(V-2)z

You can select and manipulate Po (white sphere), Pt (red sphere), or Pz (blue sphere)
to define arbitrary axis frames and observe the changes in major axes’ directions and
resulting components size, while the position, P, always remains stationary. You are
observing new sets of component values of the same position for each distinct axis frame
defined.

The position of Pr cannot be manipulated because this position is computed based
on the derived components of position P. Take note that P and Pr always overlap at
exactly the same location. This observation verifies that it is always possible to compute
coordinate values from components for any given axis frame.

Now select the Controller object to re-enable and show the Cartesian axis frame
and components. Observe that the position, P, is defined by two sets of components: the
white position vector of Cartesian axis frame (the Vp vector in Figure 7-5) and the black
position vector of the defined axis frame (the V vector in Figure 7-5). This observation
reinforces that any position can be represented and derived by the components of any
axis frame. Feel free to manipulate the derived axis frame or P to further observe this
concept.

Note that the white position vector is Vp in Figure 7-5 and it is simply

P=V, =(xyz)

320

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

where the sizes of the components are x (in red), y (in green), and z (in blue). The red
vector originating from (0, 0, 0) is the i vector scaled by x, or xi , accumulating with yj’
(in green) and then zk (in blue). This faithfully implements the equation

P:(Q0£)+xﬁhﬁ+zﬁ
On the other hand, the black position vector from P, (the white sphere) is V in

Figure 7-5, where

V=P-P

0

In this case, the red vector originating from P, is the x vector scaled by v,, or v, X,
accumulating with v,y (in green) and v,2 (in blue), implementing the equation

P=P+v,X+v,J+0,2
You have now verified that for all positions, in addition to the default position vector

of the Cartesian axis frame, a separate position vector can be derived based on the origin
and components from any axis frame!

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Po
public GameObject Pt
public GameObject Pz

null; // Origin of the reference frame

null; // Position for defining x-dir
null; // Position on z-axis

public GameObject P = null; // Position to show components
public GameObject Pr = null; // Derived from components

public bool DrawCartesianFrame = true; // show/hide frames
public bool DrawDerivedFrame = true;

f#firegion For visualizing the vectors

void Start() {
Debug.Assert(P != null); // Verify proper editor init
Debug.Assert(Pr != null);

321

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Debug.Assert(Po != null);
Debug.Assert(Pt != null);
Debug.Assert(Pz != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller’s MyScript component. The details of the Update() function are as follows:

void Update() {
// Step 1: Derive the axis frame
Vector3 origin = Po.transform.localPosition;
Vector3 Vt = Pt.transform.localPosition - origin;

Vector3 zDir = (Pz.transform.localPosition -

origin).normalized;
Vector3.Cross(zDir, Vt).normalized;

Vector3 yDir

Vector3 xDir = Vector3.Cross(yDir, zDir).normalized;

// Step 2: Position vector and the components
Vector3 V = P.transform.localPosition - origin;

float vx = Vector3.Dot(V, xDir);
float vy = Vector3.Dot(V, yDir);
float vz = Vector3.Dot(V, zDir);

// Step 3: Compute Pr position from the components
Pr.transform.localPosition = origin +
vx*xDir + vy*yDir + vz*zDir;

#region For visualizing the vectors
#endregion

Step 1 closely follows the equations for axis frame derivation, where

e Vt: V=P -P,

o zDir: z= (VZ).normalize =(P, — B,).normalize

322

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

o yDir: y= (Vy).normalize = (VZ xV,).normalize
o xDir: x= (Vx).normalize = (Vy xV,).normalize

Step 2 computes the position vector, V , for P and the components of the derived
axis frame:

e V:V=P-P
o« VX, Vy,vZ:v =V-X, vy:V-j/, v,=V-z

Lastly, Step 3 shows that the coordinate values for the position can be derived based
on the axis frame and the components, where

Pr: P=F +v,X+v,y+V,2

Note that the same location, P, is derived based on a very different computation
when compared to that for the Cartesian axis frame.

Takeaway from This Example

Through this example you have verified that the Cartesian Coordinate System is indeed
just a special example of axis frame. In general, for any given axis frame, locations of
positions can be described by offsets from the origin with three perpendicular vectors
scaled by their corresponding components. You have also analyzed and examined the
details of deriving the components of a vector for any arbitrary axis frame.

Relevant mathematical concepts covered include

e A general axis frame is defined by three major axes: perpendicular
vectors, X, ¥, and z, with tails intersecting at the origin, P,.

o For any general axis frame, the position vector, V,of Pis

V=P-P,

0

where the components of vector V' can be determined by
projecting the vector onto each of the three major axis

‘X

X ?

Il
<

v

<

Il

<i
<>

,and

<
Il
<i

N>

323

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

o Coordinate values of positions in an axis frame can be derived based
on the computed components

P=F +vx+v,y+v,2
Note the coordinate values are computed based on two separate sets of parameters:

those that define the axis frame P,, x, ¥, and z, and the values of the components v,,

vy, and v,.

EXERCISES

In the given example, the verification position, Px, is computed according to

P =R +vx+vy+v,2z

Try changing this expression to

P =P +vx+v,y+(v,+2)Z

Recall that Px is the green cube, now ensure that the derived axis frame is displayed,
manipulate the positions, P, Po, Pt, and Pz, and you will observe that the green cube is
always a constant offset of 2 units in the z -axis direction from P. If you consider the z -axis
as the front direction, then in this case, Pr is always “in front of” P. Do you know how to
modify the equation for Pr such that it is always “on top of” P?

Given that a position P has components a;, 4., and & in an axis frame with major axes, é’, e,
f‘ , and origin at P,. How can you compute the corresponding components for P in a different
axis frame with major axes, ., #,and origin at P,?

324

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS
The solution process is actually rather straightforward; you would first compute the coordinate
values for position P, followed by the position vector and then the new components in the new
axis frame. The first step would be to compute the coordinate values of P
P=P +ad+aé+a,f
Next, the position vector in the new axis frame

V=P-p

Lastly, projecting the position vector to derive the proper components

b=V-I
b =V
b,=V-n

n

Vectors in Axis Frames

With the systematic analysis and thorough understanding of positions as position
vectors and components in general axis frames, you are now ready to analyze
relationships between these positions or vectors in general axis frames. Recall from
Chapter 4, a vector is defined by the difference of the corresponding coordinate values
between two positions and it encodes the displacements between these two positions.
As you will learn in this section, similar to positions, vectors, with all of their elegant
properties you learned about in Chapter 4, can also be represented and defined by
components in any axis frame. Additionally, just as in the case for positions, there is a
distinct set of components describing a vector for each given axis frame and it is always
possible to convert between the components of different axis frames.

325

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Figure 7-7. A vector between two positions in an axis frame

Vector Components

The top portion of Figure 7-7 shows an arbitrary axis frame with x, y, z as major axes
and origin at P,. A vector, V , defined by two positions, P, and P,, is illustrated in the
lower-center region of the figure.

You have learned that, given the axis frame, the position vector of P, is

Vi=h -k

and that the components of P, for the given axis frame are v, v,;, and v,;, where

<

I
=
<>

<
)

I
~

N>

326

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

and that P, is located at

P =P +v, X+v,¥y+v, 2

In a similar fashion, the location of P, can be expressed as follows:

P,=P+v, X4V, Y+0,2

Note The details of P, and v, are similar to the correspondence of P, and v;; to
avoid excessive cluttering, these are not annotated in Figure 7-7.

The components of a position are derived from the position vector of the position
and not the coordinate values of the position.

From Chapter 4, you have learned that the vector, V , from P, to P, is defined as

V=P,-PR
:(PO TV, XV, Y+U, z)—
(PO TV, X+, Y+U, z)

With P, subtracted and collecting terms for each of the major axis,

V=(v, —vxl)chr(vy2 —vyl)f/+(vz2 -v,)z

Let
UV, =V =Un
v, =V, -V,
UV, =V, =V,

327

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

then

There are two important observations in this derivation. First, in axis frames, vectors
are defined by subtracting the corresponding components of the positions. Second,
vectors are always defined by the summation of the major axis directions (the unit
vectors) scaled by the difference of the corresponding components from the head and
tail positions.

PZ(fo erZZ)

V=vX +v,J+v,2
Ve = Vy2 = Vpq
Uy = Uyz = Uyl

V, =V, —V
- z z2 zl
Py(x1,¥1,71)

V=ddi+d,j+d,k
dy=2x—x;
dy =y2— %

\ dz:22_zl

Figure 7-8. Analyze the vector in Cartesian axis frame

Analysis in Cartesian Axis Frame

Figure 7-8 shows the details of analyzing the same vector, V , in the Cartesian axis frame.
Assuming the coordinate values of positions P, and P, to be

P, = (xl!ylr Zl) and

Pz =(x2,y2,zz)

328

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Recall that with origin at (0, 0, 0), the component and coordinate values are identical

in the Cartesian axis frame, such that
P,=(0,0,0)+x, k+y, j+z, k=xk+y, j+z k
P,=(0,0,0)+x, k+y, j+z,k=x,k+y, j+z, k

In this way, the vector, V , is defined as

V:l)Z_1)1:(xz_xl)£+(y2_yl).}'+(z2_Zl)le

Let
d.=x,—-x,
d, =y, =y,
d,=z,-z,
then

V=d i+d, j+d, k

You have verified that the vector with components, v,, v, and v,, in the axis frame
with X, y,and z as the major axes and origin at P, is the same vector with components,
d,, d, and d, in the axis frame with i , } , and 12 as the major axes and origin at (0, 0, 0).
The key observation is that the same vector is represented by components with distinct
values in different axis frames. Lastly, note that since i , } , and k are constants with
values (1,0,0), (0,1,0), and (0,0, 1):

V=d,(100)+d,(0,10)+d,(0,0,1)
=(d,,0,0)+(0,d,,0)+(0,0,d,)=(d, d,,d.)

This derivation, once again, verifies that for Cartesian axis frame, the values of

component and coordinate are identical.

329

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

The Vectors in Any Frame Example

This example demonstrates the definition of vectors based on specifying component
values and computing the difference in corresponding components from existing
positions. Figure 7-9 shows a screenshot of running the EX_7_3 VectorsInAnyFrame
scene from the Chapter-7-VectorComponents project.

Figure 7-9. Running the Vectors in Any Frame example

The goals of this example are for you to

o Verify that displacements or vectors can be defined explicitly based
on component values specified in any axis frame

e Derive vectors based on computing the difference in the
corresponding components of two positions

o Examine the defined vectors in the context of and with respect to a
changing axis frame

Examine the Scene

Take a look at the Example 7 3 VectorsInAnyFrame scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are six
objects. Similar to the previous example, Po (white sphere), Pt (red sphere), and Pz (blue
330

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

sphere) allow the definition and manipulation of an axis frame. The components of P1
and P2 (both black spheres) positions define the vector for examination and the position
of Pr (green cube) is derived based on the computed vector.

Analyze Controller MyScript Component

The MyScript component on the Controller shows the six references to the
corresponding game objects discussed. Additionally, there are three floating-point
controls, vx, vy, and vz. Through these controls, you can specify the values for the
components of the X, f/ ,and z directions to define a vector, V , for computing the
position of Pr

The four toggles control the showing or hiding of the derived axis frame, the
components of the vector, the Cartesian axis frame, and if the vector should be
computed based on the positions P1 and P2 (instead of from the specified component
values).

Interact with the Example

Click the Play button to run the example. You will observe a white vector from P1
(black sphere) to Pr (green cube). Also visible are the axis frame (with the red plane),
the position vectors for P1 and Pr (in black), and the components of the white vector.
Pay attention to the components of the white vector: the three perpendicular segments
in red, green, and blue showing the displacements along the x (inred), y (in green),
and z (in blue) directions. Take note to verify visually that these three components are
perpendicular and parallel to their respective axis in the axis frame.

In following this example, your interaction will consist of three categories: examine
vectors defined by explicitly specified components, examine vectors in the derived and
the Cartesian axis frames simultaneously, and examine vectors computed based on
subtracting corresponding components of positions.

331

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Defined by Specified Components

Select the Controller and verify the initial values of vx, vy, and vz to be three, two, and one.
Notice that these values correspond to the lengths of the displayed components—that the
red segment is about three times the length of and the green segment is about two times the
length of the blue segment. You can adjust these values to observe the intuitive changes in
the corresponding component size that control the white vector and the position of Px. For
example, decreasing the value of vx will shorten the red component resulting in the position
Pr moving closer to P1 along the red component or x direction. You have just experienced
defining vectors based on specifying component values explicitly.

Now, manipulate the positions of Po, Pt, and Pz to redefine the general axis frame.
Observe that when you change the positions of Pt and Pz, the orientation of the axis
frame changes. Since the vector component values are specified explicitly, the lengths of
the red, green, and blue component segments do not change when only the directions of
X, y,and z are updated. For this reason, the white vector maintains a constant relative
relationship to and follows the axis frame changes. When you change the position of the
origin, Po, since the vector is defined as a displacement from P1 and independent from
any other positions, the white vector remains constant as expected.

You have interacted with a vector defined by explicitly specified components in a
changing axis frame. You have observed that as the orientation of the axis frame changes,
such a vector also re-orientates and maintains a constant relative relationship with the
axis frame. This can be further understood mathematically. The vector, V , is defined as

With the values of vx, vy, and vz specified and constant, changing the axis frame
corresponds to changing x, y, and z. Thus, the constant relative relationship with
the underlying axis frame reflects constant displacements with respect to the changing

major axes.

Analyze in Derived and Cartesian Axis Frames

Select the Controller and toggle DrawCartesian to enable the displaying of Cartesian
axis frame, position vectors, and components. You will observe an additional and
thicker set of red, green, and blue components showing the corresponding i } , and

k component sizes in the Cartesian axis frame. Try toggling DrawCartesian on and off
repeatedly to verify and differentiate between the two sets of components.

332

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Now, when you manipulate vx, vy, and vz values, you will continue to observe
intuitive changes in the first thinner set of components: only the size of the
corresponding component will change! Verify that this may not be the case for the
thicker set of components of the Cartesian axis frame. For example, you can adjust the
value for vx to observe changes in all three components of the Cartesian axis frame. In
this case, you are observing the changes in size along the x direction and that the x
direction is described by the combination of i , } , and k directions of the Cartesian axis
frame. You have just observed the same vector having drastically different component

values in two axis frames.

Defined by Positions

Select the Controller and toggle off DrawCurrentFrame, DrawComponents, and
DrawCartesian for a clean display. Toggle on VectorFromP1P2 to define the vector V by
subtracting corresponding components of positions P1: v, vy, v and P2: vy, vy, U,

V=P -P,

2 2
= (sz _le)J%‘F(l}yz _Uyl)j} +(U22 _Uzl)2

Adjust the positions of P1 and P2 to update the components of the vector. You can
verify the component values are updated by examining either the corresponding fields in
the Controller or the printouts in the Console Window. Recall that the position for Pr is
still computed according to

P=P+V

In your interactions you will observe that Pr position always follows and matches
exactly to that of P2. You have now verified that vectors can indeed be defined by
subtracting the corresponding components of the head and tail positions.

Lastly, and very importantly, select the Controller and toggle DrawCurrentFrame
and DrawComponents to re-enable the displaying of the general axis frame and the
components. Now, once again manipulate Pt and Pz to redefine the general axis frame.
Since the vector is now defined by two positions that are stationary with respect to the
axis frame, as the axis frame changes, the white vector stays constant. However, notice
that the components of the vector are defined with respect to the current axis frame

333

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

and thus are constantly changing when the axis frame is updated. You can observe the
printout of the component values in the Console Window. Mathematically, given the
vector V

When the axis frame is updated, x, y, and z are changed, and vx, vy, and vz values

are updated to maintain a constant vector.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Po = null; // Origin of axis frame
public GameObject Pt = null; // x-direction of frame
public GameObject Pz = null; // z-direction of frame

public GameObject P1 = null; // Position for manipulation
public GameObject P2 = null; // P1P2 defines V
public GameObject Pz = null; // Position derived from V

public float vx = 3.0f; // Component values
public float vy = 2.0f;
public float vz = 1.0f;

public bool DrawCurrentFrame = true; // Visualization toggles
public bool DrawComponents = true;
public bool DrawCartesian = false;
public bool VectorFromP1P2 = true;

#iregion For visualizing the vectors
void Start() {
Debug.Assert(P1 != null); // Ensure proper setup
Debug.Assert(P2 != null);
Debug.Assert(Pr != null);
Debug.Assert(Po != null);

334

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Debug.Assert(Pt != null);
Debug.Assert(Pz != null);

#region For visualizing the vectors

All the public variables for MyScript have been discussed, and as in all previous
examples, the Debug.Assert() calls in the Start() function ensure proper setup
regarding referencing the appropriate game objects via the Inspector Window. The
details of the Update() function are as follows:

void Update() {

// Step 1: Drive the axis frame

Vector3 origin = Po.transform.localPosition;

Vector3 Vt = (Pt.transform.localPosition - origin);

Vector3 zDir = (Pz.transform. localPosition -

origin).normalized;

Vector3.Cross(zDir, Vt).normalized;
Vector3.Cross(yDir, zDir).normalized;

Vector3 yDir
Vector3 xDir

// Step 2: Compute vector components if necessary
if (VectorFromP1P2) {
Vector3 Vi = Pi.transform.localPosition - origin;
float vx1 = Vector3.Dot(V1, xDir);
float vyl = Vector3.Dot(V1i, yDir);
float vz1 = Vector3.Dot(V1i, zDir);

Vector3 V2 = P2.transform.localPosition - origin;

float vx2 = Vector3.Dot(V2, xDir);
float vy2 = Vector3.Dot(V2, yDir);
float vz2 = Vector3.Dot(V2, zDir);

// Difference of the P1 and P2 components
VX = VX2 - vXi;

vy
vz = vz2 - Vvz1;

vy2 - vyil;

335

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Debug.Log("Component values: vx="

+vx + " vy=" + vy + " vz=" + vz);

// Step 3: compute the vector and position for P2

Vector3 V = vx * xDir + vy * yDir + vz * zDir;

// Derive Pr position from computed vector
Pr.transform.localPosition = Pi.transform.localPosition + V;

// Pi.transform.localPosition += 0.001f * V.normalized;
// What does the above do?

#region For visualizing the vectors

Step 1 is identical to the previous example in deriving the parameters of the axis
frame. In Step 2, if user specifies to derive the values of vx, vy, and vz from the P1 and P2
components, then the position vector, V1, for P1 is computed

Vi=P -k

And the components of P1 for the given axis frame, vx1, vy1, and vz1, are derived

Vg=V-Xx
Uyl :‘/ly
V,=V,"2

The same operations are repeated for P2, and the values for vx, vy, and vz are
computed as

Ux = vx2 _vxl
Uy = Uy2 —I}y1
vz = Uz2 _vzl

336

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Step 3 defines vector, V, and position of P1 to be

Takeaway from This Example

You have verified that in a general axis frame, vectors can be defined by either specifying
component values explicitly or subtracting the corresponding component values of the
head and tail positions. You have also verified that given a vector

When the component values, v,, v,, and, v,, are specified in a changing axis frame,
the vector will update along with the axis frame maintaining a constant relative
relationship. On the other hand, to maintain a constant vector in a varying axis frame,
the component values must be recomputed.

Relevant mathematical concepts covered include

e Vectors are defined by component-scaled major axes’ directions
(perpendicular unit vectors) of axis frames.

o Itispossible to define a vector to follow and maintain constant
relative relationship to a varying axis frame by explicitly specifying
the component values.

o [Itisalso possible to define a vector to remain constant in a varying
axis frame by continuously updating the component values.

EXERCISE

Instead of computing the position for Px, try using the derived vector, V, to update the position
of P1 in the Update() function. That is, uncomment the very last line in Step 3 and enable
the following:

P1.transform.localPosition += 0.001f * V.normalized;

337

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

The vector is scaled by a small number to avoid drastic position changes. As expected, when
running the modified example, you will observe P1 traveling at a constant speed. The constant
speed behavior persists even if you manipulate the axis frame. As you have learned, speed is
the magnitude of a velocity or the vector; in this case, with the normalized vector, the small
number is the actual size of the displacement per update, or the speed.

Now, enable the VectorFromP1P2 toggle on the Controller and try modifying the axis
frame. Notice the movement of P1 is completely independent from the axis frame. This is not
surprising as you have observed that the velocity (vector) is derived based on the positions of
P1 and P2 which are both independent from the axis frame.

A more interesting case is to disable the VectorFromP1P2 toggle. In this case, notice that
the movement is constant with respect to the varying axis frame. Since the velocity (vector) is
defined by specified components, as the axis frame changes, velocity follows. This observation
suggests a solution for the player in a navigating spaceship example discussed earlier. This
will be covered in the next section.

Motion Control in Axis Frames

Recall the example from earlier in the chapter of a player resting but wanting to move
toward the medical bay on a navigating spaceship. You know that the position of
the player is changing with the navigating spaceship. However, in the context of the
spaceship, the player is currently resting with no movement. Additionally, when the
player is ready, the movement toward the medical bay is independent of the asteroid
dodging maneuvers of the spaceship. That is, the spaceship’s turning should not affect
the player’s pathway of moving toward the medical bay. You are now ready to design a
solution to support this scenario.

You have learned that for a general axis frame with origin at P, and major axes x, J,
and z, a position, P, with components v,, v,, and v, is located at

P=PF +v x+v,y+v,2

Notice that the location is described by two separate and independent sets of
parameters: the axis frame and the components. This observation points to an elegant
solution where the spaceship and the player can be described by the two sets of
parameters. The first is to describe the location and orientation of the spaceship by the

338

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

origin and major axes of an axis frame. And the second is to keep track of the player
location based on its components with respect to the spaceship axis frame. With this
design, as the spaceship navigates, the corresponding axis frame is updated while the
components of the position of a resting player stay constant. Then, when the player
wants to move, the movement can be represented by updating the components of the
player’s position independent from the spaceship’s axis frame.

For clarity and simplicity of notations, in the following, the superscript c is
introduced to represent vectors of components. For example, position P, with
components v, vy, and v, and P, with components v,,, v,,, and v, are expressed as

c _
1)1 _(vxl’vyl’vzl)’ and

c _
P2 _(UxZ’UyZ’UZZ)

The components of the vector, V , between positions P, and P, are

[7C _ DC c _
4 _‘p2 _‘pl _(UxZ_le’vyz_vyl'v22_vzl)

=(vx,vy,vz)

It is important to note that, in general, P, # P|; instead,

B=P+(P x) X+(Py) y+(B z)2

Now, assuming P’ is the components of the player’s position and P; is that of the
medical bay, then the normalized V° or V¢ is the direction that will lead the player to
the medical bay.

Given a speed, s, when traveling toward the medical bay, the total traveling of the
player at time tis T°

T = tsV*

Now, the components of the player position, P, at time tare T displacements from
the initial P’

PC :PICJ’_TC

339

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

where the actual coordinate values of the player are located at

P=P,+(P° x)%+(Py) j+ (P 2)2

Take note that the preceding derivation is carried out with respect to the components
based on the vector notations. Though working on components instead of coordinate
values, you are still able to apply all of the vector concepts learned.

This solution defines positions and traveling velocity inside the spaceship by
components with respect to the axis frame of the spaceship. In this way, the navigation of
the spaceship updates its axis frame while the player location and movements within the
spaceship are based on the specifics of the current axis frame at any given instance. The
key observation is that while intimately related, the controls of the spaceship and player
movements are completely independent. For example, while the spaceship is navigating
(axis frame being updated), it is trivial to change the traveling direction of the player
to move toward any other position, Ps, in the spaceship, for example, the command
deck, and at any other speed, s". The following example demonstrates the detailed
implementation of this design.

The Motion in Axis Frame Example

This example demonstrates the advantage of defining positions and velocities based on
components with respect to a changing axis frame. Figure 7-10 shows a screenshot of
running the EX 7 4 MotionInAxisFrame scene from the Chapter-7-VectorComponents
project.

340

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Figure 7-10. Running the Motion in Axis Frame example

The goals of this example are for you to
o Explore the application of axis frame concepts covered in this chapter

o Understand the advantage of defining positions and vectors as
components with respect to a varying axis frame

e Observe that Cartesian Coordinate axis frame, with origin at (0, 0, 0)
and major axes i , } ,and k, is indeed a simple example of axis frame
and conforms to all of the concepts discussed

Examine the Scene

Take a look at the Example 7 4 MotionInAxisFrame scene and observe the predefined
game objects in the Hierarchy Window. In addition to the Controller, there are four
objects. Similar to the previous examples, Po (white sphere), Pt (red sphere), and Pz
(blue sphere) allow the definition and manipulation of an axis frame. P (green sphere) is
the current position of the player within the “spaceship.”

341

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Analyze Controller MyScript Component

The MyScript component on the Controller shows the four references to the
corresponding game objects discussed. The P1Components and P2Components allow the
specification of components for positions P, and P, representing the initial position of the
player and that of the medical bay. The two check boxes toggle the drawing of the axis frame
and if the computation should be carried out in the defined or the Cartesian axis frame.

Interact with the Example

Click the Play button to run the example. You will observe the object P (green sphere)
continuously travels along a white line from a black sphere to a black cube. Select the
Controller object and adjust the values of P1Components and P2Components to observe
and verify that the black sphere location is controlled by P1Components and the cube by
P2Components. These are the components of P, (player location) and P, (medical bay
location) where the green sphere simulates the continuous motion from P, toward P,.

Now, toggle on DrawAxisFrame to observe the Cartesian axis frame in relation to the
objects. You can verify the computation is performed with respect to the Cartesian axis
frame by setting P1Components to (0,0,0) and P2Components to a location on one of the
major axes, for example, (2,0,0) or (0, 2,0). Through these interactions, you have verified
that the computation is performed with respect to the Cartesian axis frame.

You can now toggle on MotionInAxisFrame to observe that Po (white sphere), Pt
(red sphere), and Pz (blue sphere) are now displayed. At this point, the exact same
computations are performed with respect to the defined axis frame. The system behaves
in exactly the same manner, except that instead of a constant and static Cartesian axis
frame, you can now update the axis frame.

You can simulate the spaceship in motion by selecting and changing the location of
Po or manipulating Pt and Pz to rotate the axis frame and simulate asteroid dodging. In
all cases, notice how P (green sphere), P, (black sphere), and P, (black cube) maintain
their relative positions to the axis frame as the entire axis frame updates. In addition,
note the motion of the green sphere continues as usual and is not affected by the axis
frame manipulation.

In this example, P, and P, are represented by components with respect to a changing
axis frame. The position of the traveling object, P, is computed based on velocity
(vector) derived from the components of the positions. You have experimented with and
observed the independence of axis frame and object motion controls.

342

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Po = null; // Origin of axis frame
public GameObject Pt = null; // x-direction of frame
public GameObject Pz = null; // z-direction of frame

public GameObject P = null; // traveling object
public Vector3 PiComponents = Vector3.zero; // P1 Components
public Vector3 P2Components = Vector3.one; // P2 Components

public bool DrawAxisFrame = true;
public bool MotionInAxisFrame = false;

private const float kSpeed = 0.005f;
private float Traveled = 0f;
#iregion For visualizing the vectors
void Start() {
Debug.Assert(P != null); // Ensure proper setup
Debug.Assert(Po != null);
Debug.Assert(Pt != null);
Debug.Assert(Pz != null);
#iregion For visualizing the vectors

All the public variables for MyScript have been discussed. The first private constant
floating-point variable, kSpeed, defines the speed of the traveling object and the second
variable, Traveled, is to accumulate the total distance traveled. As in all previous
examples, the Debug.Assert() calls in the Start() function ensure proper setup
regarding referencing the appropriate game objects via the Inspector Window. The
details of the Update() function are as follows:

void Update() {
// Parameters of an axis frame
Vector3 origin, xDir, yDir, zDir;

// Step 1: Set up the axis frame
if (MotionInAxisFrame) {

343

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

// Derive the axis frame
origin = Po.transform.localPosition;
Vector3 Vt = (Pt.transform.localPosition - origin);

zDir = (Pz.transform.localPosition -
origin).normalized;
yDir = Vector3.Cross(zDir, Vt).normalized;
xDir = Vector3.Cross(yDir, zDir).normalized;
} else {

// Default Cartesian axis frame
origin = Vector3.zero; // (0, 0, 0)

xDir = Vector3.right; // (1, 0, 0)
yDir = Vector3.up; // (0, 1, 0)
zDir = Vector3.forward; // (0, 0, 1)

}

// Step 2: direction and distance traveled
Vector3 Vc = P2Components - P1Components;
Traveled += kSpeed * Time.deltaTime; //
if (Traveled > Vc.magnitude)

Traveled = of; // restart
Vector3 Tc = Traveled * Vc.normalized;

// Step 3: components and coordinate of P
Vector3 Pc = P1Components + Tc;
P.transform.localPosition = origin +

Pc.x * xDir + Pc.y * yDir + Pc.z * zDir;

#region For visualizing the vectors

The first line of the Update() function defines the parameters of an axis frame,
origin (P,), xDir (x), yDir (y), and zDir (z). The first step is to determine the actual
values for the axis frame parameters: either follow the derivation introduced in previous
section based on the three manipulatable non-collinear positions Po, Pt, Pz or assign the
constant values associated with the Cartesian axis frame. You should take special note
of the fact that independent of the values for the axis frame, the rest of the computations
are exactly the same. This is the most striking example of the fact that Cartesian axis
frame is a specific example of the general axis frame.

344

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Step 2 computes the components of the vector between positions P1 and P2 by
subtracting the corresponding component values

VCZPZC_I)IL‘

The step then accumulates the distance traveled, Traveled, where each update
results in the coverage of kSpeedxTime.deltaTime distance. The implementation checks
to ensure that the traveling is always in between P1 and P2 and then computes the total
traveling

T¢ = tsV°

Step 3 computes the components of the green sphere position, Pc, by traveling from
P1Components

Pc :P10+Tc

Lastly, the actual location for the position P is computed based on the computed
component values, Pc

P:P0+(PC .x) 5c+(Pc .y))7+(P”.Z) z

The key observation is that the implementation indeed follows the derivation exactly
and that independent controls of the motions for the spaceship and the player in the
spaceship are accomplished.

Takeaway from This Example

You have observed that it is advantageous to represent locations and velocities of objects
by their component values in a constantly changing axis frame.
Relevant mathematical concepts covered include

e Actual locations and velocities of objects can be conveniently
represented by components while the reference axis frame varies.

345

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

EXERCISES

In this example, the motion vector, V* , is computed based on subtracting corresponding
component values of the head and tail positions

Vc:PZC_Plc

An alternative approach is to recognize that P, and P, locations can be derived based on the
specified component values, P1Components and P2Components

1)1 =I)0+vx1 x+vy1 y+vz1 Z
P=P+v, X+V,Y+0,2

With the coordinate values computed, the vector, V', can be computed by subtracting the
corresponding coordinate values, just as what you have done in Chapter 4

V=P -P,
Note that, in this case, the position of Pis simply
P=P +tsV

You can modify MyScript to implement the preceding cases. This exercise shows you that the
same results can be derived based on computations performed with coordinate or component
values. When you become familiar with the subject, you are free to choose either to work with.

Axis Frames in Unity

The concepts of axis frame and representing locations as components are crucial and
their applications can be found in all interactive graphics software systems, especially in
video games. These concepts are applied in all situations when there are interactions and
controls involving connected or contained elements of objects, such as player holding on
to objects, riding on vehicles, hoping on/off from horses, or a player in a spaceship.

346

CHAPTER 7 AXIS FRAMES AND VECTOR COMPONENTS

Modern graphical applications typically abstract the detail specifics of axis frame
and present the functionality to the end users via the interface to the scene hierarchy: the
parent-child relationship between game objects that users can create and manipulate.
In the Hierarchy Window of the Unity Editor, when you create a game object as a child of
an existing game object, from the perspective of axis frame concepts discussed, you are
effectively specifying the child location as components based on the axis frame defined
by the parent game object. The actual implementation of the parent-child relationship is
abstracted into a more advanced mathematical topic: matrices.

Matrix algebra based on strategically design data structure can encompass and hide
the details and the transitions of axis frames. These are interesting topics of discussions
for a more advanced book on math for game development.

Summary

This chapter continues with the discussion of positions and vectors by pointing out that
the Cartesian Coordinate System is simply an example of the more general concept of
axis frames. The chapter analyzes the characteristics of axis frames and explains that
coordinate values are component values evaluated in specific axis frames. You have
examined the representation and the conversion of components for the same location
based on different axis frames. You have also learned to express vectors as components
of axis frames and experimented with defining a constant vector with respect to a
varying axis frame.

The chapter concludes the coverage with a simplified example of a position (e.g.,
a player) moving toward a destination (e.g., the medical bay) in a varying axis frame
(e.g., a navigating spaceship). You have witnessed the importance and advantage of
representing locations as components of an axis frame in accomplishing independent
motion controls.

In all of the examples from this chapter, you may have noticed, or felt frustrated
by, the awkwardness in manipulating the orientation of the axis frame by adjusting the
P, and P, objects on the two corresponding major axes. There seem to be strange or
arbitrary constraints limiting the interactions where it can be challenging to manipulate
these objects to achieve your desired axis frame orientation. This is not surprising as the
implicit requirement that P, and P, must be on perpendicular axes dictates that the two
objects should not be manipulated separately. In this case, what is required is to rotate
the entire axis frame as an integral object. This is the topic of study for the next chapter.

347

CHAPTER 8

Quaternions
and Rotations

After completing this chapter, you will be able to

Appreciate that the rotation of a position is a movement of constant

distance around an axis

Characterize the rotation of a position by an angle and an axis of
rotation

Discuss quaternions as operators for representing rotations
Implement basic quaternion algebra in rotating positions

Appreciate that consecutive rotations on objects can be modeled by

ordered concatenation of quaternions
Derive the rotation required to align two arbitrary position vectors
Describe and model homing and chasing behaviors

Configure and work with the rotation operator of the Transform
component on the Unity GameObject

Derive the necessary quaternions to align two axis frames

Introduction

In previous chapters you have analyzed positions, studied intervals, learned to relate two

positions via a vector, examined relationships between two vectors via a dot product,

and studied the space that contains two vectors via the cross product. In the last chapter,

you learned about axis frames and began to understand the convenience of considering

© Kelvin Sung, Gregory Smith 2023
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_8

349

https://doi.org/10.1007/978-1-4842-9885-5_8

CHAPTER 8 QUATERNIONS AND ROTATIONS

multiple coordinate spaces simultaneously in non-trivial situations such as describing
motions in a navigating spaceship. You have also encountered awkwardness when
trying to manipulate an axis frame by individually adjusting the locations of three non-
collinear positions. As discussed, what is desired is a tool for rotating the axis frame as
an integrated object. This chapter introduces the quaternion as an operator to rotate
positions, or position vectors.

Strategically defined quaternions and the associated algebra are efficient and
powerful tools for describing vector rotations. You will learn that rotations can be
characterized as angular motions with respect to an axis, where the angle can be derived
from the result of a dot product while the axis for the rotation is simply the result of
a cross product. Integrated with concepts of interpolation, quaternion rotations are
capable of supporting continuous and smooth transitions from an existing direction to a
new vector direction. More significantly, quaternions are operators that are independent
from any given vector. For this reason, once computed, a quaternion operator can be
applied to many instances of vectors, achieving identical rotation operations.

Imagine once more that you are traveling on a spaceship flying through an asteroid
field. Now that you know how to apply concepts from axis frames to steer the hero to
the medical bay, it is time to learn how to navigate the spaceship to dodge the asteroids.
Recall that movement is defined by the changing of position along a vector. Navigating
a spaceship generalizes this movement by requiring alignment with an axis frame while
moving forward. The spaceship captain would react to the on-coming asteroids by
manipulating, or rotating, an axis frame to orientate the spaceship while the spaceship
changes its position along the axis that represents the front direction. In other words,
the spaceship would continuously move along its forward direction while the captain
determines the orientation and forward direction of the spaceship. The knowledge of
how to strategically rotate a default axis frame to align with one being manipulated by a
user is the key to navigation. Additionally, during navigation, you would want the change
of direction to be gradual and smooth as it would in real life. As you can see from this
simple example, the ability to effectively and efficiently represent and control rotations is
indeed important in video game development.

This chapter begins by introducing quaternions and their rules of operation, or
quaternion algebra, that are relevant to describing rotations. Representing rotations
with quaternions is then described and analyzed including approaches to aggregate
the results from multiple rotations. The second half of this chapter focuses on applying
quaternion rotations to align directions and axis frames. To emulate the organic motions

350

CHAPTER 8 QUATERNIONS AND ROTATIONS

of gradual changing from an initial to a final direction, spherical linear interpolation, or
SLERP, is introduced. With this knowledge, the actual navigation of a spaceship is left as

the last exercise in this chapter.

Note This chapter presents quaternion as an operator, or a tool, from the specific
perspective of characterizing and implementing rotations. There is no attempt to
cover the fundamental mathematical concept behind quaternions. You can learn
more about quaternions in general here: https://en.wikipedia.org/wiki/
Quaternion.

Rotated
5 position
Ty Axis of
Rotated r <.y rotation
(a vector)

position V.
\f\ [Center \\
Radius r

I = h o
\ \ Radius r /) /
\ / \._/;‘\B—\Plane of
e =] rotation
Initial \f\

pasIaen Initial

position

Figure 8-1. Rotation about an axis in 2D and 3D

Rotation Terminologies

You may remember when learning about circles that the shape is defined by moving a
position while maintaining a constant distance from a second stationary position. As
illustrated on the left of Figure 8-1, the stationary position is the center and the constant
distance is the radius of the circle. When the movement is less than the circumference of
the circle, you may describe that scenario as a rotation that sweeps out an arc or rotating

from an initial position to a rotated position.

351

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion

CHAPTER 8 QUATERNIONS AND ROTATIONS

The right side of Figure 8-1 depicts the exact same rotation, only in 3D. Take note of
the following:

o Axis of rotation: A vector that passes through the center of the circle
or is the center of the rotation. Rotations are described as rotating
with respect to, around, or about the axis of rotation. Note that an axis
is simply a direction or a vector.

e Plane of rotation: Both the initial and rotated positions are located
on this plane and this plane is always perpendicular to the axis of
rotation.

o Direction of rotation: The positive direction of a rotation, in the
case of the Left-Handed Coordinate System followed by this book,
is pointed to by the thumb when the other four fingers are curled
around the axis of rotation. In other words, if the thumb is pointing
toward you, the positive direction of a rotation is clockwise.

It is important to note that the preceding terminologies and descriptions are true for
any rotation operation. A rotation is a circular movement around the axis of rotation, the
initial and rotated positions are always located on the plane of rotation, and the plane of
rotation is always perpendicular to the axis of rotation.

Note Rotations in 2D, or the rotation of position (x,y), are always about the Z-axis
with the x/y plane being the plane of rotation.

Quaternion: Tuple of Four

Quaternion is a tuple of four floating-point numbers expressed as
qg=(xy,zw)

Given two quaternions, g, and ¢,,

9 :(xl'yl’zl’wl)

q, :(xwyzrzzrwz)

352

CHAPTER 8 QUATERNIONS AND ROTATIONS

The quaternion multiplication

qr = qlqz = (xr ’yr ’Zr ’wr)

is defined as

X, = W, + Y12, =2y, t WX,
Vi ==X2, T YW, T2, X, +W, Y,
zZ, = XY, — WX, +ZyW, +W,z,

W, ==XX, =1V, =212, TWW,

T

Take note that the quaternion multiplication operator takes two quaternions as
operands and computes a new quaternion as the result. Given the definition, it is
important to recognize that quaternion multiplication is not commutative, that is, in

general,
9.9, * 49,9,
However, as you will demonstrate in the exercise at the end of this section,

quaternion multiplication is associative; it is always the case that

4.9.95 = (qlqz)qa =q, (qzqs)

Lastly, the quaternion identity is

g,=(0,0,0,1)

In the exercise at the end of this section, you will show that given any quaternion, q,,

it is always true that

qa = qlqa = qaql

It will become clear when discussing quaternion concatenation in later sections that
the identity quaternion, ¢g;, plays the important role of serving as the initial value in a

concatenation operation.

353

CHAPTER 8 QUATERNIONS AND ROTATIONS

Encoding of Angle and Axis

A

A quaternion encodes a rotation of 6 degrees along an axis, V, = (xa YarZa) ,as

a

A 0 0 0 0
0,V, |=| x,sin—, y,sin—, z sin—, cos—
a(0.%,) (J asin_, z,sin_ 2}

In this encoding, the axis of rotation, \7a , must be normalized as a unit vector. Notice
that with \7a being normalized, the magnitude of g, or the sum of the components
squared, is one. This magnitude of size one is important to ensure that the size of objects
remains the same after a quaternion rotation operation.

The inverse of the g rotation: a rotation of —0 along the \A/a axis or a rotation of 6
along the negative \73 axis is the quaternion

A\l 0 0 0 0
0,V,| =|-x,sin—, —y,sin—, —z,sin—, cos—
o(0,) ' ~xsing, ~yising, ~z,sin3, cos?)

The derivation for the inversed rotation is left as an exercise at the end of this section.

Rotation Operation

A

In order to rotate a given position, P; = (x;, ;, z;), by 6 degrees with respect to an axis, V,,
with a properly encoded quaternion, g, the position must be expressed as a quaternion
with the last component being zero

P, =(x,,5,2,0)

The rotation operation is then defined by multiplying the rotation quaternion, g, and
its inverse, g*

' -1
I)r quq q :(xr’yr’zr’wr)
In an exercise you will show that the w-component of R , W, is always zero, where
the rotated result, P,, is
P, =(x, Y 2.)

Remember that quaternion multiplication is not commutative and that the order of
applying the g-rotation and its inversed is important. The quaternion representing the
position to be rotated must be the operand in between g-rotation and its inversed with
the g-rotation being on the left-hand side of the position.

354

CHAPTER 8 QUATERNIONS AND ROTATIONS

Origin /

!
P.

Figure 8-2. Axis of rotation, v, that passes through the origin and P,

Quaternion Rotation Limitation

Take note that a quaternion is a four floating-point tuple and that all four floating-point
numbers are used in the representation of a rotation of angle around the V= (x,y,2)
axis of rotation

q(G,V)z(xsing, ysing, Zsing, cosgj

Absent from this encoding is the information on the location of the axis of rotation.
This is the limitation of quaternion rotation representation: it is a compact and efficient
representation of rotations where the axes of rotation are assumed to pass through
the origin.

Figure 8-2 explains this limitation by depicting two rotations with identical axes of
rotation, V. The rotation located near the top has the axis, \% passing through the origin,
while the lower rotation axis passes through the position P, instead of the origin. The
quaternion rotation representation, ¢ (9;\7) , with no way to encode the P, location, is
only capable of describing the rotation with the axis y; passing through the origin. For
this reason, applying 67<9,\A/) to rotate P; will result in P,. In general, quaternion
representation is not capable of describing the rotation from P; to P.

The discussed quaternion rotation assumes that the axis of rotation passes through
the origin. This limitation is not an issue when quaternions are used in concert with
other tools, for example, matrices. In such cases, quaternions can support rotations with

355

CHAPTER 8 QUATERNIONS AND ROTATIONS

axes located at any position. However, general rotation with respect to an axis that does
not pass through the origin is a subject of coordinate transformation, a more advanced
topic not covered in this book. Later in this chapter, you will learn about working with
the Unity Transform component on GameObjects to create rotations with general axes of
rotations.

Rotating Positions and Vectors

Recall that vectors are independent of positions. Given a vector, Vl = (xi Y2,) ,itis
often convenient to depict the vector with tail position located at the origin for visual
inspection. When depicted at the origin, the head of vector V, locates at the position
P; = (x, 1 20).

In this way, rotating position P; = (x; y;, z;) is the same as rotating the head of the
position vector for P; or the vector Vl . The rotated result P, = (x,, y,, z,) can also be
interpreted as the head of the position vector for P, or the vector V, =(x,,y,,z,)-

This discussion points out that it is equivalent to rotate positions, or head of position
vectors, or head of vectors depicted at the origin. When considered in concert with the
limitation that quaternions only support rotations with the axis of rotations passing
through the origin, in the rest of this chapter, you can interpret coordinate values (x, y, z)
as either a position, a position vector, or a vector.

The Rotation with Quaternion Example

This example demonstrates the quaternion rotation operation. It will allow you to
interactively manipulate the angle and axis of a rotation and the position to be rotated so
that you can observe and verify the quaternion definition, multiplication, and rotation
operation. Figure 8-3 shows a screenshot of running the EX 8 1 QuaternionRotation
scene from the Chapter-8-Quaternions project.

356

CHAPTER 8 QUATERNIONS AND ROTATIONS

Figure 8-3. Running the Quaternion Rotation example

The goals of this example are for you to

Define quaternion rotations based on specified angles and axes
Verify the validity of quaternion rotation operation

Experience and observe the results of quaternion rotations
Examine the implementation of a quaternion rotation

Appreciate the limitation of quaternion rotation: the axis of rotation
must pass through the origin

Examine the Scene

Take alook at the Example 8 1 QuaternionRotation scene and observe the predefined
checkered sphere A, the green sphere Pi, and the red sphere Pr. In this example, the

rotation quaternion is derived from a user-specified angle and the axis of rotation

defined by the position vector to A. This quaternion is then used to compute the rotated

position Pr from the P1i position that is under the user control.

357

CHAPTER 8 QUATERNIONS AND ROTATIONS

Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the

same names as their corresponding reference game objects in the scene. The Theta
variable is the angle to rotate and the DrawQuaternion toggle draws/hides the axis and
perpendicular plane that defines the rotation quaternion.

Interact with the Example

Click the Play button to run the example. You can see a red vector that passes through
the origin with head located at the position of the A sphere. This vector is the axis of
rotation, Va . You can also observe the green, Pi, and red, P, spheres resting on a white
plane that perpendicularly intersects the axis of rotation. These are the user controllable
initial (green sphere) and the rotated (red sphere) positions.

The white plane is the plane of rotation where in addition to always intersecting the
axis of rotation perpendicularly, the initial and rotated positions, or the green and red
spheres, are always resting on this plane. Lastly, the red sphere’s location is always a
fixed rotation away from the green sphere on the white plane.

Select the Controller object and adjust Theta to observe that this variable indeed
represents the angle between the green and red spheres. Take note to verify that as you
increase and decrease the angle of rotation, the red sphere always rotates on the white
plane. You can also select and manipulate the green sphere position and observe that
the white plane always follows and maintains its perpendicular intersection with the
axis of rotation, and that the red sphere is always a constant angular distance away from
the green sphere on the white plane. You have observed that a quaternion rotation does
indeed always rotate a position by the specified angle and that the rotation is indeed
defined with respect to the axis of rotation.

Now select and manipulate the checkered sphere, A. As expected, when the
checkered sphere position changes, the axis of rotation or the position vector of A
follows. Take note that as the axis of rotation changes, the green sphere does not move
while the white plane follows to maintain its perpendicular intersection with the axis
of rotation and always cuts through both the green and red spheres. The location of
the rotated red sphere also updates constantly to continue to lie on the white plane
and maintains its angular distance from the green sphere. You have now observed and
verified that a quaternion rotation always rotates a position perpendicular to the axis of

rotation.

358

CHAPTER 8 QUATERNIONS AND ROTATIONS

Finally, notice that the axis of rotation is defined based on a position vector. This
says, the rotation of position P1i is defined with respect to an axis that passes through the
origin. Once again, the discussed quaternion rotation only supports rotations with an
axis of rotation that passes through the origin.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject A = null; // The axis of rotation
public GameObject Pi = null; // initial position
public GameObject Pr = null; // rotated position
public float Theta = 30.0f;

public bool DrawQuaternion = true;

#iregion For visualizing the vectors
#endregion

void Start() {
Debug.Assert(A != null); // Verify proper setting
Debug.Assert(Pi != null);
Debug.Assert(Pr != null);
#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller'sMyScript component, and as in all previous examples, the Debug.
Assert() calls in the Start() function ensure proper setup regarding referencing the
appropriate game objects via the Inspector Window.

In this example, in addition to Update(), three additional utility functions are
defined to support quaternions: definition, QFromAngleAxis (); multiplication,
QMultiplication(); and rotation, QRotation(). The details of QFromAngleAxis() are as
follows:

359

CHAPTER 8 QUATERNIONS AND ROTATIONS

Vector4 QFromAngleAxis(float angle, Vector3 axis) {
float useTheta = angle * Mathf.Deg2Rad * 0.5f;

float sinTheta = Mathf.Sin(useTheta);
float cosTheta = Mathf.Cos(useTheta);
axis.Normalize();

return new Vector4(sinTheta * axis.x,
sinTheta * axis.y,
sinTheta * axis.z, cosTheta);

This function receives as input an angle ¢ and axis \7a =(x,,.,2,) and encodes the
rotation in the returned quaternion
. 0 . 0 . 0 0
q=| x,sin—, y,sin—, z sin—, cos—
2 2 2 2
The details of QMultiplication() are as follows:

Vector4 QMultiplication(Vector4 qi1, Vector4 q2) {

Vector4 r;
r.x = Qgl.x*q2.w + ql.y*q2.z - ql.z*q2.y + ql.w*q2.x;
r.y = -q1.x*q2.z + ql.y*q2.w + ql1.z*q2.x + ql.w*q2.y;
r.z = qgl.x*q2.y - ql.y*q2.x + ql.z*q2.w + ql.w*q2.z;
r.w = -ql.x*q2.x - ql.y*q2.y - ql.z*q2.z + ql.w*q2.w;
return r;

This function receives two quaternions, g, and ¢,, where
q, :(xl 'yl’zl’wl)
q, = (xz Y212, ’wz)

compute the multiplication

qr = qlqz = (xr ’yr ’Zr’wr)

360

CHAPTER 8 QUATERNIONS AND ROTATIONS
and return the resulting quaternion, g,, where
X, = XW,+)2, —2,), +W,X,
Y, =—X,2, + YW, +2,X, +W,Y,
z. = XY, — Y, X, +Z,W, +W,Z,
W, =—X,X, — YV, — 2,2, +W,W,
The details of QRotation() are as follows:

Vector3 QRotation(Vectors qr, Vector3 p) {
Vector4 pq = new Vector4(p.x, p.y, p.z, 0);
Vector4 qr_inv = new Vector4(-qr.x, -qr.y, -qr.z, qr.w);
pq = QMultiplication(qr, pq);
pq = QMultiplication(pq, qr_inv);
return new Vector3(pq.x, pq.y, pq.z);

This function receives a quaternion, g,
qr = (xr ’yr’zr’wr)
and a position, P,

P=(x,y,2)

computes and returns the result of rotating P by ¢g,. The first line in this function
expresses the input position P as a quaternion, P,,

P, =(x,y,2,0)

The function then defines the inverse of q,, g, v
q;l z(_xr’_yr’_zr’wr)
computes the quaternion rotation

Pq’ :qr Pq qr—l :(xl’y!’zl,wl)

361

CHAPTER 8 QUATERNIONS AND ROTATIONS

and returns the resulting position, (x, ¥, z). With the utility functions defined, the
details of Update() are as follows:

void Update() {
Vector3 axis = A.transform.localPosition;
Vector4 q = QFromAngleAxis(Theta, axis);
Pr.transform.localPosition =
QRotation(q, Pi.transform.localPosition);
#region For visualizing the vectors
#endregion

The first two lines of the function interpret the location of A as a position vector
representing the axis of rotation and construct a rotation quaternion, g, based on the
user-specified angle of rotation, Theta. The last line of the function computes the
quaternion rotation using the position of Pi and sets the result as the location of Pr.

Takeaway from This Example

This is a straightforward example for verifying the validity of the discussed quaternion
definition, multiplication, and rotation.
Relevant mathematical concepts covered include

e Quaternion, a tuple of four floating-point numbers, can be used to
represent a rotation.

o Rotating a position by an angle about an axis through the origin can
be implemented by multiplying the position with an appropriately
defined quaternion and the inverse of that quaternion.

e Quaternion rotation, encoded in four floating-point numbers, is only
capable of supporting rotations where the axis of rotation passes
through the origin.

362

CHAPTER 8 QUATERNIONS AND ROTATIONS

EXERCISES

The rotation quaternion, g, for a rotation with an angle @ along the axis Va =(x,,.,2,) is
defined as

—Ex sing sing z sing cosgj
q a 2’ ya 2’ a 2’ 2
Show that the inverse of gis
4 (N, N, N, 9)
q =|—-x,sin—, —y,sin—, —z sin—, cos—
2 2 2 2

There are two ways to consider the inverse of a rotation. First, the inverse of a rotation is a
rotation by the same angle along the negative rotation axis. In this case, the angle of rotation is

still ¢ and along the negative axis —V, =(~x,,~y,,~z,),
- —(—x sing - sing -z sing cosgj
q a 2 ’ ya 2 ’ a 2 ’ 2

Second, an alternative way to consider an inverse of a rotation is a rotation along the
same axis by a negative angle. In this approach, the angle of rotation is —¢ and along the
same axis V,

-1 . . .
=| x,sin—, y,sin—, z,sin—, cos—
9 (2 ST JaSINT 2 2 j

Since
sin—o =—sina
COS— Q. =COS &

The inverse of the rotation is still

4 . 0 . 0 . 0 0
q =|-x,sin—, —y,sin—, —z,sin—, cos—
2 2 2 2

363

CHAPTER 8 QUATERNIONS AND ROTATIONS

You have demonstrated that both of the approaches to defining the inverse of a quaternion
rotation result in the same expression.

By following the definition of quaternion inverse and multiplication, show that given the
quaternion identity, g,

q,=(0,0,01)
It is always true that

a, =4,
And given any quaternion, g,, it is always true that

qa = qlqa = qaql

These observations indicate that the quaternion identity is ideal for serving as the initial value
when accumulating quaternion multiplication results.

It is stated, but without proof, that quaternion multiplication is not commutative and is
associative or in general

9.9, * 9.9,
and it is always the case that
(q1q2)qa =4, (qzqs)

Knowing the definition of quaternion multiplication, you can now substitute and expand the
preceding expressions to demonstrate for yourself that the preceding properties are true in
general.

364

CHAPTER 8 QUATERNIONS AND ROTATIONS

Verify Quaternion Multiplication Is Associative

Notice that in the QRotation(), the expression
P,=q.P 4,
is implemented by the following two lines:

pq = QMultiplication(qr, pq);
pq = QMultiplication(pqg, qr_inv);

This two-line implementation corresponds to
P =(q,P)q,

Since quaternion multiplication is associative, you can switch the order of the two lines of
code to implement

P =q,(P,q')

Now, modify the given code and verify that the example continues to function correctly.

The w-Component of a Quaternion-Rotated Position

Expend the quaternion rotation expression
! -1
Pq = qr Pq qr

and verify that the w-component of Pq' is always zero. You can reconfirm your derivation by
making a Debug. Log() function call in the QRotation() function to print out the value of
the w-component of Pq before the return statement.

Verify the Quaternion Rotation Formula

From trigonometry, you know or you can show that the result of rotating a 2D position (x, J) by
0 around the Z-axis is the position

x'=xcos0—ysin®

y' =xsin6+ ycos6

365

CHAPTER 8 QUATERNIONS AND ROTATIONS

Note that this rotation can be described by the quaternion rotation 6/(9,\7) , Where
V=(0,0,1)
or

q(@,(0,0,l)) = (0,0,sing,cosgj and

q* (9}(0,0,1)) = (0,0, —sing,cosgj

Now, show that the given quaternion rotation formula for the position P, = (x, y,0,0)
P =qP,q" =(xy 2z w,,)

is valid for 2D rotation about the Z-axis, where
x, =x'=xcos0—ysin0

y. =y =xsin0+ycos0

Quaternion Concatenation

You have learned that a quaternion encodes a rotation of @ degrees along an
axis, V, =(x,,¥,,2,), as

q, (G,Va):(xa sin%, Va sing, z, sing, cosgj

To rotate a position, P; = (x; y;, z;), with the quaternion ¢,, you would express the
position as a quaternion with the last component being zero

P, =(x,,,,2:,0)

366

CHAPTER 8 QUATERNIONS AND ROTATIONS
and compute
B =4, P, q," =(x,y,,2.,w,)
With the w-component, w,, being zero, the rotated position is
B =(x,y:2)

Now, following the same process, you can continue to rotate the position P, by
another rotation g,

P =q, P q,’
Ifyou express P. as a function of the origin position, P,,

P =q,(9,P, q')q,’

Since quaternion multiplication is associative, this same expression can be written as

P =(q,4,)P,(a." a,")

In the exercise at the end of this section, you will show that the inverse of ¢, g,, or
(g.q)7% is q;" q," . If you let
q. =494,

then

P =q,P,q

Note The operation g, = ¢,g; combines two rotation quaternions into one and is
often referred to as concatenating quaternions. For example, g, is the concatenated
result of g, and g,.

The preceding derivation shows that applying new rotations, ¢,, on a g, rotated
result, P, is the same as concatenating g, and ¢, and applying the resulting rotation,
qd., on the initial position, P,. The key observation is that quaternion rotations can be
concatenated to capture the combined results of multiple subsequent rotations.

367

CHAPTER 8 QUATERNIONS AND ROTATIONS

Remember that quaternion multiplication is not commutative and that g. = g, g, is in
general different from g, = q,¢,. The order of rotation is important: the order for g, is ¢,
first than ¢,, while the order for g, is g, first than g,. These two rotations are different in
general.

Note The quaternion, g, = @, ¢, encodes a rotation that performs g; first
followed by @. It may be counterintuitive, but although g, is on the right-hand
side of the concatenation further away from the assignment, the g, operation is
performed first.

The Quaternion Concatenation Example

This example demonstrates the results of applying multiple quaternions and a single
concatenated quaternion in rotating a position. This example allows you to interactively
manipulate three individual rotations and examine the results of applying the rotations
independently verses the concatenated result as one single quaternion. Figure 8-4
shows a screenshot of running the EX 8 2 QuaternionConcatenation scene from the
Chapter-8-Quaternions project.

0

e
20!
W0 |
]
Gl
2.0
s

2
Gl
L]

Figure 8-4. Running the Quaternion Concatenation example

368

CHAPTER 8 QUATERNIONS AND ROTATIONS

The goals of this example are for you to

o Examine the results of applying multiple quaternion rotations to a
position

e Gain experience with concatenation of quaternion rotations

o Verify that the concatenated quaternion delivers identical results as
applying the rotations individually

o Appreciate the importance of concatenation ordering: subsequent
rotations are concatenated on the left

Examine the Scene

Take a look at the Example_8 2 QuaternionConcatenation scene and observe three sets
of variables representing the input and results of three subsequent quaternion rotations.
In the following discussion, the three rotations are referred to as g, q1, and qz2.

o Axis of rotations: A, A1, and A2 checkered spheres. The position
vectors to these objects define the axes of rotations for the three
corresponding rotations g, q1, and qg2.

e Input and results of individual rotations: Pi (green), Pr (red), Pr1
(blue), and Pr2 (black). The following equations summarize the
relationships of these variable:

P=qPq’
P,=q,P, q.' ;. P,=0.9Pq 9,

P,=q,P, q; or P,=q,9,9 P, qilq;lqzil

where P1i is the user-controlled input of the g-rotation. Pr is the
result of the g-rotation and is the input to the g1-rotation with
output of Pr1 which in turn is served as the input to the q2-
rotation with final output of Pr2.

e Result of the concatenated rotation: Pc (gray) is the result of
concatenating g, q1, and q2 rotations and applying to user input Pi or

P=q.P q,

369

CHAPTER 8 QUATERNIONS AND ROTATIONS

where

4.=49,. 9. 94

Note that quaternion multiplication is not commutative and that
the preceding concatenation order says that the order of performing
rotations is q first then q1 and lastly g2.

Analyze Controller MyScript Component

The MyScript component on the Controller shows the variables with the same names
as their corresponding reference game objects in the scene. Additionally, there are three
floating-point variables, Theta, Theta1, and Theta2, for defining the degrees of rotations
for the three rotations and corresponding toggles for showing/hiding the details of each
rotation to avoid screen cluttering. The very last Boolean, DrawPc, toggles the drawing/
hiding of Pc.

Interact with the Example

Click the Play button to run the example. You can see a cluttered of three independent
rotations with three axes of rotations showing as vectors in red, blue, and black pointing
to the three checkered spheres, A, A1, and A2. Take note that with DrawPc default to false,
the gray Pc sphere is not visible.

In the following steps, your goal is to display, interact with, and examine each of the
three rotations individually to verify the relationship of their inputs and results. You can
begin with examining the first rotation, g, by selecting the Controller and toggling off
DrawQuaternionl and DrawQuaternion2. You are left with the details of the g-rotation
defined by the axis A and Theta where the input is Pi (green) and result is Pr (red). Feel
free to manipulate the positions of Pi, and A, and the value of Theta to note that as you
modify the g-rotation, the positions of the other three objects (Pr, Pr1, and Pr2) follow in
rigid manners maintaining constant angular displacements. This is as expected because
these three objects are results of subsequent rotations. You can repeat this exercise
for the other two rotations by hiding/showing the corresponding quaternions and
manipulating the respective GameObjects and variables.

Verify that P1 maintains its location when you are examining the q1-rotation and that
the positions of both Pi and Pr do not change when you examine the g2-rotation. These
are inputs, and thus their positions are independent from the corresponding rotations.

370

CHAPTER 8 QUATERNIONS AND ROTATIONS

Now, with all three quaternions showing, toggle on/off the DrawPc variable. Verify
that Pc (gray) is located at exactly the same position as Pr2 (black). You can manipulate
the three rotations, A (Theta), A1 (Theta1), and A2 (Theta2), and the Pi position to verify
that the positions of Pr2 and Pc always overlap perfectly.

Recall that the position of Pr2 is the result of applying the three individual
rotations or

P,=q,4,9Pq" 4, q,
while the position of Pc is the result of applying the concatenated quaternion

4.=49,. 9. 9

P=q.P q,

c 4

You have verified that rotation quaternions can indeed be concatenated to capture
the results of the combined rotations.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Pi = null; // user control input position

public GameObject Pr = null; // g-rotated position
public GameObject A = null; // Axis of g-rotation
public float Theta = 30.0f; // Angle of g-rotation
public bool DrawQuaternion = true;

public GameObject Pri = null; // ql-rotated position
public GameObject A1 = null; // Axis of qi-rotation
public float Thetal = 4of; // Angle of gil-rotation
public bool DrawQuaternionl = true;

public GameObject Pr2 = null; // q2-rotated position
public GameObject A2 = null; // Axis of q2-rotation
public float Theta2 = 50f; // Angle of g2-rotation
public bool DrawQuaternion2 = true;

371

CHAPTER 8 QUATERNIONS AND ROTATIONS

public GameObject Pc = null; // qc-rotated position
public bool DrawPc = false;

#iregion For visualizing the vectors
#endregion

void Start() {

Debug.Assert(Pi != null); // Verify proper setting
Debug.Assert(Pr != null);

Debug.Assert(A != null);

Debug.Assert(Pr1 != null);

Debug.Assert(A1 != null);

Debug.Assert(Pr2 != null);

Debug.Assert(A2 != null);

Debug.Assert(Pc != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller'sMyScript component, and as in all previous examples, the Debug.
Assert() calls in the Start() function ensure proper setup regarding referencing the
appropriate game objects via the Inspector Window.

This example utilize the exact same three quaternion utility functions as the
previous example to define QFromAngleAxis (), multiply QMultiplication(), and rotate
QRotation() quaternions. Please refer to the previous section for the details of these
functions. The details of Update() are as follows:

void Update() {
Vector4 q = QFromAngleAxis(Theta,
A.transform.localPosition);

Vector4 q1 = QFromAngleAxis(Theta1,
Al.transform.localPosition);
Vector4 q2 = QFromAngleAxis(Theta2,

A2.transform.localPosition);

372

CHAPTER 8 QUATERNIONS AND ROTATIONS

Pr.transform.localPosition = QRotation(q,
Pi.transform.localPosition);

Pri.transform.localPosition = QRotation(q1,
Pr.transform.localPosition);
Pr2.transform.localPosition = QRotation(q2,

Pri.transform.localPosition);

Vector4 qc = QMultiplication(qi, q);

qc = QMultiplication(q2, qc);

Pc.transform.localPosition = QRotation(qc,
Pi.transform.localPosition);

#region For visualizing the vectors
#endregion

The first three lines define the three quaternion rotations g, q1, and q2 based on the
user-specified angles Theta, Theta1, and Theta2 and the positions of A, A1, and A2 as
position vectors for axes of rotation. The next three lines compute the three individual
rotations: Pi by q to compute Pz, Pr by q1 to compute Pr1, and Pr1 by q2 to compute Pr2.

The last three lines compute the concatenated qc

q.=49, 9. 9

and rotate Pi by qc to compute Pc.

Note The observed concatenated result being identical to applying individual
quaternions is valid for any number of quaternions in the concatenation.

Takeaway from This Example

Through this example you have examined and verified that applying a sequence of
quaternion rotations to a position is the same as concatenating the rotations and
applying the resulting quaternion.

373

CHAPTER 8 QUATERNIONS AND ROTATIONS

Relevant mathematical concepts covered include

e Multiplying multiple quaternions into a single quaternion is referred
to as concatenating the quaternions.

o The inverse of a concatenated quaternion is the concatenation of the
inverse of individual quaternions in the reversed order, that is, for n
number of quaternions if

qc :qn q2 ql
then

1 -1

q0.'=(4,-0.4) =a'q" .. 4,
o The rotation order of a concatenated quaternion is from the
rightmost toward the left. That is, given
qc :qn qz ql

The rotation g. is the equivalent of applying g, first, followed by g, and so on,
where g, would be the last to be applied.

« Rotating a position by a sequence of quaternion rotations is identical
to concatenating the rotations and rotating the position with the
resulting concatenated quaternion

EXERCISES

-1_-1

Show the inverse of g,q;, or (¢.¢1)7",is g, g, . Note that g,q, is applying rotation g, followed

by g.. Intuitively, to undo these two rotations, you would first undo the second rotation, thus

applying ¢," first, and then undo the first rotation. Thus, intuitively the inverse of g¢,g; would
-1_-1

be g;'q,"' (apply g,' before g;').Algebraically, since you know the definition of quaternion
multiplication, you can simply compute and expand

qqu :(xc’yc’zc’wc)

374

CHAPTER 8 QUATERNIONS AND ROTATIONS
and
q;lqgl = (xr ’.YV ’Zr'wr)

And verify that x,= — x, y.= — ¥, 2= — Z,and w,= w,

Verify the validity of concatenating two and four rotations. For two rotations, ¢;q, you can
modify MyScript to verify

P=qqPq’ q

is identical to P. For four rotations, you can include support for an additional axis and theta
accordingly.

Verify the importance of order of concatenation by modifying MyScript to compute

qczqql qz

and show that the resulting location of P, is in general very different from that of P,.

Aligning Vector Directions

Given two normalized vectors, V, and V,,

A

Vl:(xliyl’zl)

‘}2 = (xz Y212,)

You have learned that the cosine of the angle, 6, between these two vectors is
cos@ =V, -V,

or

0 =cos” (‘71 172)

375

CHAPTER 8 QUATERNIONS AND ROTATIONS

You have also learned that when the two vectors are not parallel, if 4 is not equal to 0°
or 180°, a plane with a normal vector, V,, can always be defined where

V =V x

n

)
)

—
[N

Remember that vectors are independent from locations, and when depicted at the
origin, Y?l and ‘72 can be interpreted as the position vectors of positions, P, = (x,, 1, z,)
and P, = (x,, Y2, 2,)-

This fact, combined with the knowledge of quaternion rotation representation,
can make the following derivation. Given any two vector directions, \71 and ‘72 , you
can compute

~

0 :COS_I(‘/}I . 2) and

V =V x

n

)
)

—

2

and define the rotation, q(@,I}n), with rotation angle of 6 and axis of Vn . This
rotation will rotate position P, to P, and thus is a rotation that aligns vector I}l to point to
the direction of 172 .

The key observations are that the angle of rotation can be derived by the dot product
and that the axis of rotation is the cross product between the vectors. Since \}1 and ‘72
are two arbitrary vectors, you have just derived a rotation that aligns the directions of any
two given vectors.

The Align Vector Directions Example

This example demonstrates the derivation of angle and axis of rotation to define a
quaternion rotation for aligning any two position vectors. Figure 8-5 shows a screenshot
of running the EX_8 3 AlignVectorDirections scene from the Chapter-8-Quaternions
project.

376

CHAPTER 8 QUATERNIONS AND ROTATIONS

Figure 8-5. Running the Align Vectors example

The goals of this example are for you to
e Verify the vector direction aligning quaternion rotation

e Define and manipulate two arbitrary vectors to derive and examine
the required rotation for aligning their directions

o Experience implementing the direction aligning quaternion rotation

e Appreciate that the alignment is specific to directions

Examine the Scene

Take a look at the Example_8 3 AlignVectorDirections scene and observe the green
P1, red P2, and blue Pc spheres. The positions of these objects represent the position
vectors where P1 and P2 are positions under user control while Pc will be in continuous
motion showing the process of rotating from the directions of P1 position vector to

that of P2.

377

CHAPTER 8 QUATERNIONS AND ROTATIONS

Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same
names as their corresponding reference game objects in the scene. As in previous
examples, the DrawQuaternion toggles the showing/hiding of the axis and plane of
rotation. The NextPcFrom option, as will be detailed, specifies one of three different ways
to compute the next Pc position.

Interact with the Example

Click the Play button to run the example. You can see a red rotation axis with P1, P2, and
Pc lying on the corresponding white rotation plane where Pc (blue) is in continuous
motion rotating from the directions of P1 (green) to P2 (red) position vectors. You are
observing the rotation that aligns the directions of V, and V, for position vectors of

P1 and P2.

B

mesz ‘
|.

Next P, position ---_. R
R
R |
R.’

Incrementa

FromP,

Figure 8-6. The three rotations to compute Pc', the next position of Pc

Note that in the following manipulations you will not affect the Pc rotation being
from V, toward V,. In other words, throughout the manipulations you will always
observe Pc traveling from P1 toward P2. Your manipulation will change how Pc', the
next Pc position, is computed. The interesting observation is that the same continuous
rotation can be accomplished in at least three different ways.

Now, select the Controller object and iterate through each of the three options
for NextPcFrom: FromPc, FromP1, and FromP2. Notice that while the color of Pc changes
the rotation motion is completely unaffected. As illustrated in Figure 8-6, the angular
movement of Pc is constantly from P1 toward P2 where the next Pc position, Pc', is

378

CHAPTER 8 QUATERNIONS AND ROTATIONS

always A6 in the direction of P2. However, the actual Pc' position can be derived in three
different ways according to NextPcFrom option:

e FromPc: Computes Pc' by rotating A@ from current Pc and sets the
color to blue

e FromP1: Computes Pc' by rotating 8, + A from P1 and sets the color
to green to match the color of P1

e FromP2: Computes Pc' by rotating 6, — A0 from P2 and sets the color
to red to match the color of P2

Through these options you have verified that there are multiple ways to implement
arotation and that the quaternion rotation can indeed be inversed, or reversed: the next
Pc position, Pc', can be calculated based on rotations from either P1 or P2.

In the next manipulation, you will verify that the quaternion rotation aligns
direction. Now, select and manipulate P1 position to observe the red rotation axis
updating to maintain the perpendicular plane of rotation that contains all three spheres;
P1, P2, and Pc. Note the continuous motion of Pc rotating from the directions of \71 to ‘72
is independent from the length or magnitude of the V, vector. You can further verify this
by selecting and setting the position of P1 to be located along the X-axis, for example,
(4,0,0). Now, increase and decrease the x-component value and note that the change
does not affect the axis of rotation or the Pc motion of continuously rotating from P1 to
P2. In this case, changing the x-component value does not affect the direction of V, and
thus has no effect on the quaternion rotation. Feel free to repeat the manipulation with
P2.In these interactions you have verified that the derived rotation is indeed aligning
directions or unit vectors.

Note When manipulating the x-component value of the P1 position, if you change
the sign of from positive to negative, you are effectively reversing the direction of
the v, vector, and thus, you will observe a change in the rotation motion.

Lastly, you can observe the subtle and important difference of computing the next
result from the current value in the FromPc computation vs. computing the next result
from the actual initial or final value in the FromP1 and FromP2 options. With NextPcFrom
set to FromPc, select and manipulate P1 position away from the current plane of rotation,
for example, by drastically increasing the y-component value of P1 from the previous

379

CHAPTER 8 QUATERNIONS AND ROTATIONS

manipulation. Notice the blue vector to Pc, while rotating toward P2, does not reside
on the plane of rotation anymore. This is not surprising, since in FromPc mode, the next
Pc position is derived from the current Pc position, which in this case does not lie on
the updated plane of rotation. Note that in FromP1 or FromP2 modes, since the next Pc
position is derived from the actual initial or final values, the next Pc position will always
be on the plane of rotation. While the behaviors are different, there is no correct, wrong,
or better solution.

Different approaches to computing a solution have different characteristics. As a
developer, your job is to understand these options and choose the best desired behavior.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public enum PcPositionMode {
FromPc,
FromP1,
FromP2
};
public GameObject P1
public GameObject P2
public GameObject Pc

null; // The first position
null; // The second position
null;

public bool DrawQuaternion = true;
public PcPositionMode NextPcFrom = PcPositionMode.FromPc;

private const float kDeltaTheta
private const float kSmallAngle

30f; // rotation speed
1f; //

#region For visualizing the vectors
#endregion

void Start() {
Debug.Assert(P1 != null); // Verify proper setting
Debug.Assert(P2 != null);
Debug.Assert(Pc != null);
Pc.transform.localPosition = P1.transform.localPosition;

380

CHAPTER 8 QUATERNIONS AND ROTATIONS

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller'sMyScript component. The two private constants define the rate to
rotate Pc and when Pc is sufficiently close to P2 for re-initializing the rotation. As in all
previous examples, the Debug.Assert() calls in the Start() function ensure proper
setup regarding referencing the appropriate game objects via the Inspector Window.
The very last line initializes the position of Pc such that the rotation will begin from the
position of P1.

As in the case of the previous examples in this chapter, this example utilizes the
exact same three quaternion utility functions as the previous examples to define
QFromAngleAxis (), multiply QMultiplication(), and rotate QRotation() quaternions.
Please refer to the previous section for the details of these functions.

The details of Update() function are as follows:

void Update() {
Vector3 Vin
Vector3 V2n
Vector3 Vcn

(P1.transform.localPosition).normalized;

(P2.transform.localPosition).normalized;

(Pc.transform.localPosition).normalized;

float cosTheta = Vector3.Dot(Vin, V2n);
if (Mathf.Abs(cosTheta) »>= (1.0f-float.Epsilon)) {
Debug.Log("V1 and V2 are almost parallel:
cannot rotate to align");
return; // V1 V2: almost parallel

}

float thetal = Mathf.Acos(Vector3.Dot(Vcn, Vin)) *
Mathf.Rad2Deg;

float theta2 = Mathf.Acos(Vector3.Dot(Vcn, V2n)) *
Mathf.Rad2Deg;

float alpha = of;
Vector3 axis = Vector3.zero;
Vector3 Pf = Vector3.zero;

381

CHAPTER 8 QUATERNIONS AND ROTATIONS

if (theta2 > kSmallAngle) {
switch (NextPcFrom) {
case PcPositionMode.FromPc:
alpha = kDeltaTheta * Time.deltaTime;
axis = Vector3.Cross(Vcn, V2n);
Pf = Vcn;
break;
case PcPositionMode.FromP1:
alpha = thetal + (kDeltaTheta * Time.deltaTime);
axis = Vector3.Cross(Vin, V2n);
Pf = Vin;
break;
case PcPositionMode.FromP2:
alpha = theta2 - (kDeltaTheta * Time.deltaTime);
axis = Vector3.Cross(V2n, Vin);
Pf = V2n;
break;
}
Vector4 q = QFromAngleAxis(alpha, axis);
Pc.transform.localPosition = QRotation(q, Pf);
} else {
Pc.transform.localPosition = Pi.transform.localPosition;

}

#iregion For visualizing the vectors
#endregion

The first three lines of the Update() function compute the normalized position
vectors to positions P1 (1}1), P2 (VZ), and Pc (X}C). The dot product and if condition that
follow check for the condition when P1 and P2 are collinear and a rotation cannot be
defined. The following two lines, as illustrated in Figure 8-6, compute the angles between
1}1 and 176 , theta1(0,), and 172 and VC , theta2 (0,).

The if statement that follows ensures that 0, is sufficiently large, where 172 and Y}c
are not already aligned. Otherwise, the else condition re-initializes the rotation to begin

from the direction of position vector to P1.

382

CHAPTER 8 QUATERNIONS AND ROTATIONS

When 6, is sufficiently large or when the directions ‘72 and 178 are not already
aligned, the three cases in the switch statement implement three rotations based on the
value of NextPcFrom. The next P¢ position, or Pc' in Figure 8-6, is computed by rotating a
variable position, P, with the q(a,A) rotation, where depending on NextPcFrom

o FromPc:a:Aﬁ,Aﬂ}cx‘}zrand sz‘}c
. FromPl:a:91+A9,A=‘}1X‘}zrand Pf:‘}l
° FromPZZQZGZ_AelA:‘}zX‘}I’and pf:‘}z

Note that since Af is a constant positive number, although the next position of Pc,
Pc' in Figure 8-6, is derived in different ways, the resulting rotation motion is always
from P1 toward P2 position. The modulation by deltaTime, the wall-clock time, is to
ensure the rotation speed is based on real-world time instead of the frame rate of your
machine.

Takeaway from This Example

This example led you through defining two position vectors, deriving three different
rotations in opposite directions to align these vectors, and examining the results of
applying those rotations. It is important to remember that in this example all positions
represent position vectors and that you have observed the rotation and aligning of
directions.

Relevant mathematical concepts covered include

o The rotation that aligns two directions can be derived based on the
angle between the directions and the axis that is defined by their
cross product.

o The derived alignment rotation is specific to aligning directions.

e There are variations to the implementation of the alignment rotation
where the rotation can be carried out from either of the directions.

383

CHAPTER 8 QUATERNIONS AND ROTATIONS

EXERCISES

When NextPcFromis FromP1, compute, concatenate, and apply the following two
quaternions to P1.: first, g, to rotate P1 to current Pc, and second, g, to rotate Pc toward P2 by
AO. Verify that the angular motion of Pc remains unchanged.

The rotation g, rotates from P4 to Pc, and thus the angle of rotation is 6, and axis of rotation is
‘71 x‘?c . The rotation g, continues the rotation toward P2 and thus the angle of rotation is A
based on the same axis of rotation.

The concatenated result will be applied to rotate P1 and thus the first rotation to be applied
must be g, and followed by g,. For this reason, the concatenated rotation is g, = ¢,¢;. You can
now verify that applying g, to P1 results in identical Pc motion.

Modify the Update () function to compute the rotation that aligns the directions from P2 to
P1. In order words, flip the direction of the angular movement such that Pc always rotates
from the P2 and ends in the P1 direction.

Interpolation and Chasing Behavior

Recall that you were able to launch an agent to travel toward a moving target in the
Velocity and Aiming example, EX_4 3 VelocityAndAiming scene, from the Chapter-4-
Vectors project. While interesting, you may have found the instantaneous and rigid
updates of the agent’s traveling direction to be unrealistic. In practice, when a target
moves, it takes time for you to react and the adjustment you make should be continuous,
changing gradually from your current direction to the target’s new direction. This
gradual change is more profound in the case of mechanical systems. For example,
consider updating the aiming direction of a projectile launching turret, you would expect
the device to rotate steadily from its current aim direction to the new direction.

384

CHAPTER 8 QUATERNIONS AND ROTATIONS

This section first introduces the concept of interpolation as a solution to support
gradual value changes over time. The interpolation of angles of rotation is then discussed
to integrate interpolation into direction aligning quaternions to simulate the chasing or
home-in behavior.

Interpolation: Gradual Changes

In the physical world, it takes time to react and respond. In the case of aiming at or
traveling toward a target in motion, the change of direction should be gradual over time.
In other words, the change of direction should be interpolated.

Figure 8-7 uses the change of an arbitrary parameter as an example to explain
interpolation, where at time #, a parameter with an old value is to be assigned a new one.
In this case, instead of updating the value abruptly, interpolation will change the value
gradually over time. It will compute the intermediate results with decreasing values and
complete the change to the new value at a later time .

Value
A
Intermediate results
from linear interpolation
0ld Value
.
New Value - r// e
} } » Time
t V t,

Intermediate results from interpolation
based on an exponential function

Figure 8-7. Interpolating values based on linear and exponential functions

Figure 8-7 shows that there is more than one way to interpolate values over time.
For example, linear interpolation computes intermediate results according to the slope
of the line connecting the old and new values. In contrast, an exponential function may
compute intermediate results based on percentages from previous values. With linear
interpolation, the change of aiming direction would occur with a constant rotation. In
comparison, interpolation based on a given exponential function would update the aim
direction rapidly at first, then slow down quickly over time giving a sensation of reacting
and re-aiming at the new target position.

385

CHAPTER 8 QUATERNIONS AND ROTATIONS

Human motions and movements typically follow exponential interpolation
functions. For example, try turning your head from facing the front to facing the right
or moving your hand to pick up an object on your desk. Notice that in both cases, you
began with a relatively quick motion and slowed down significantly when the destination
is in close proximity. That is, you probably started by turning your head quickly and
slowed down rapidly as your view approaches your right side, and it is likely your hand
started moving quickly toward the object and slowed down significantly when the hand
is almost reaching the object. In both of these examples, your displacements followed
the exponential interpolation function as depicted in Figure 8-7—quick changes
followed by a rapid slowdown as the destination approaches. This is the function you
will integrate later in this section into quaternion rotations to align vector directions
because it mimics organic movements.

Note Linear interpolation is often referred to as LERP or lerp. The result of lerp
is the linear combination of an initial and a final value. In almost all cases, the
exponential interpolation depicted in Figure 8-7 is approximated by repeatedly
applying the lerp function where in each invocation, the initial value is the result
of the previous lerp invocation—in effect, approximating the exponential function
with a piecewise linear function. For this reason, lerp is also used to refer to the
depicted exponential interpolation.

current target position previous target position
moved

P q Qo

%

¥

> (agent)

a

|
i
I // V.
F

Figure 8-8. Current and new directions of a chasing behavior

386

CHAPTER 8 QUATERNIONS AND ROTATIONS

The Chasing or Home-In Behavior

Figure 8-8 illustrates an agent at location P, moving toward a target at P, where P, is in
motion. The chasing of P, toward the in-motion P, can be simulated by interpolating
the angle of the direction aligning quaternion rotations. In Figure 8-8, P, and \A/a are the
existing agent position and traveling direction. As the target position, P,, changes over
time, the traveling direction of the agent can be gradually adjusted as follows.

A

The new traveling direction of the agent should be from P, toward the current P, V,_,

at

V,. =(P, - P,).Normalized

Since the existing traveling direction of the agent is \A/a , arotation, q(G,Vn) is
required to align \A/a to V, , where

at’?

0 =cos™ (\7a 'IA/at) and

V, =V, xV,

In order to support gradual rotation of \A/a toward Vat , the values of € should be
interpolated over time. Following the exponential function depicted in Figure 8-7, the
direction realignment can be accomplished via a series of rotations, each with a fraction

of the actual angle required

0' = Ratexcos™* (‘7a Ve)

where

0.0< Rate<1.0

When traveling with a constant speed and a direction that is constantly adjusted by
the rotation q(@', I7n) , the agent would result in gradually approaching homing into or
chasing after the target position.

Note Linearly interpolating the angle of a quaternion rotates the head of a vector
following the circumference of a sphere and is referred to as spherical linear
interpolation, or SLERP.

387

CHAPTER 8 QUATERNIONS AND ROTATIONS

The Chasing Behavior Example

This example demonstrates how chasing behavior can be improved by using gradual
instead of instantaneous direction changes. This example allows you to interactively
manipulate a target and an observer position, examine gradual direction changes,

and launch an agent from the observer position to home in to or chase after the target
position. Figure 8-9 shows a screenshot of running the EX 8 4_ChasingBehavior scene
from the Chapter-8-Quaternions project.

Figure 8-9. Running the Chasing Behavior example

The goals of this example are for you to
o Examine the implementation of interpolating directions

o Interact and gain experience with the results of linearly interpolating
the angle for rotation, or SLERP

e Observe the results of direction interpolation

o Verify the home-in or chasing behavior

388

CHAPTER 8 QUATERNIONS AND ROTATIONS

Examine the Scene

Take a look at the Example_8 4 ChasingBehavior scene and examine the three spheres:
checkered observer, Po; red target, Pt; and green agent, Pa. In this example, the user can
interactively manipulate the positions of Po and Pt and activate the agent to chase after

the target position.

Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same
names as their corresponding reference game objects in the scene. The ActivateAgent
toggle launches the green agent to chase after the target position, and the Rate variable
controls the rate of interpolation where values of zero would mean ignoring the target
and a value of around 60 would change agent traveling direction instantaneously.

Note To maintain consistency in performance, as you will observe when
analyzing the source code, the Rate variable is modulated by the wall-clock
elapsed time. The value 60 corresponds to an approximate frame refresh rate of
your machine. Your actual frame refresh rate may be higher or lower than 60, but a
value of 60 will approximately give you an instantaneous update.

Interact with the Example

Click the Play button to run the example. You can see a green vector attached to the
checkered observer, Po. The green vector represents the direction from the checkered
observer to the red target, Pt. On start, the green vector begins by pointing toward the
positive x-direction and rotates gradually to align with the direction from the checkered
observer to the red target sphere.

Select and manipulate the positions of the checkered observer or the red target to
verify that the green vector always follows and gradually matches the actual direction
from the observer to the target. You can compare and contrast this behavior to that of
EX_4 3 VelocityAndAiming, where without interpolation, the aiming at the target is
instantaneous and rigid and lacks the realism of organic reaction time.

389

CHAPTER 8 QUATERNIONS AND ROTATIONS

Select the Controller and set the Rate to 0. You can verify that the green vector will
not update as the positions of the observer and target change. Recall that a rate of zero
means ignoring the final value and to not change the current value. Set the Rate to a
larger value, for example, 10, to observe that the interpolation occurs too quickly for you
to observe any gradual changes. In this implementation, the values of the Rate variable
convey a sense of stiffness, or how quickly and rigidly the green vector follows the actual
direction.

Now, set the Rate value to 0.8 and enable the ActivateAgent toggle. The green
vector on the green agent is the direction of its velocity. Observe that the green agent
initially travels toward the x-direction and then adjusts gradually to the direction toward
the target. Upon reaching the target position, since there is no support for collision,
the agent continuously moves beyond the target and attempts to adjust its traveling
direction resulting in orbiting the target. You can manipulate the red target position to
observe the green agent always chases after and attempts to home in on the target. You
can toggle ActivateAgent to relaunch the agent.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Po
public GameObject Pt

null; // Observer position

null; // Target position

public GameObject Pa

null; // Agent position
public bool ActivateAgent = false;
public float Rate = 0.8f;

private Vector3 Vot
private Vector3 Vat

Vector3.right; // (1,0, 0)
Vector3.right; // (1, 0, 0)

private const float kAgentSpeed = 0.01f;

private const float kSmallAngle = 1f;

#iregion For visualizing the vectors
#endregion

390

CHAPTER 8 QUATERNIONS AND ROTATIONS

void Start() {
Debug.Assert(Po != null); // Verify proper setting
Debug.Assert(Pt != null);
Debug.Assert(Pa != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller'sMyScript component. The private variables, Vot and Vat, are the vectors
representing the directions from the observer to the target, V,,, and from the agent
to the target, V,, . Note that these two vectors are initialized to point in the positive
x-direction. The two constants define the speed of the traveling agent and the condition
when directions are aligned. As in all previous examples, the Debug.Assert () calls in
the Start() function ensure proper setup regarding referencing the appropriate game
objects via the Inspector Window.

In this example, in addition to the three previously defined quaternion utility
functions, QFromAngleAxis(), QMultiplication(), and QRotation(), an additional
function AlignVectors() is introduced to compute and interpolate vectors with details
as follows:

Vector3 AlignVectors(Vector3 from, Vector3 to, float rate) {
from.Normalize();
to.Normalize();
float theta = Mathf.Acos(Vector3.Dot(from, to))
* Mathf.Rad2Deg;
Vector4 q = new Vector4(o, 0, 0, 1); // Quaternion identity
if (theta > kSmallAngle) {
Vector3 axis = Vector3.Cross(from, to);
q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta,
axis);
}

return QRotation(q, from);

391

CHAPTER 8 QUATERNIONS AND ROTATIONS

The first three lines of the function normalize the input from and to vectors and
perform a dot product to compute the angle, 0, between the two input vectors. When 6
is sufficiently large, the vector aligning quaternion is defined to rotate the from vector by
an angle that is ratex6 toward the to vector. The Time.smoothDeltaTime modulation is
to ensure that the rate of rotation is independent from the performance of your machine.
In this way, the value of rate scales the angle for rotation and is spherically linearly
interpolated; thus, the returned vector is a SLERP between the from and to vectors. The
details of Update() are as follows:

void Update() {
Vector3 o2t = Pt.transform.localPosition -
Po.transform.localPosition;
Vot = AlignVectors(Vot, o2t, Rate);

if (ActivateAgent) {

Vector3 a2t = Pt.transform.localPosition -
Pa.transform.localPosition;

Vat = AlignVectors(Vat, a2t, Rate);
Pa.transform.localPosition += kAgentSpeed * Vat;

} else {
Pa.transform.localPosition = Po.transform.localPosition
Vat = Vector3.right;

}

#region For visualizing the vectors
#endregion

The first two lines compute the vector, 02t, from the observer to target and call
AlignVectors() to compute the SLERP result Vot. The Vot vector is the one shown
on the checkered observer. When ActivateAgent is enabled, a similar computation is
performed for the agent position to derive a2t and Vat, where the Vat direction is used
as the velocity direction for updating the position of the agent, Pa. Since the agent’s
velocity direction, Vat, is constantly updated and gradually points toward the target
position, the agent’s motion showcases that it is chasing the target position.

392

CHAPTER 8 QUATERNIONS AND ROTATIONS

Takeaway from This Example

Through this example you have observed the importance of gradual changing based on
interpolation and gained experienced with the chasing behavior, a common application
of the vector aligning quaternion rotation.

Relevant mathematical concepts covered include

o Interpolation computes a result that is in between the inputted initial
and final values.

e Linear interpolation (LERP) computes the results based on a
constant change factor.

o Spherical linear interpolation (SLERP) linearly interpolates the angle
of a rotation.

EXERCISES

Instead of SLERP with a constant rate, you can experience rotating directions based on a
constant angular speed. In the AlignVectoxrs() function, instead of computing the rotation

q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta, axis);
try defining the rotation with a constant angular speed, for example,
q = QFromAngleAxis(1.0f, axis);

Now run the example to observe that a constant angular rotation speed seems mechanical
and lacks the organic realism of SLERP.

Aligning Axis Frames

With the knowledge of quaternion rotation, concatenation, and alignment of vector
directions, you can now derive the solution to align axis frames. The problem is
straightforward: after a user manipulates an object, for example, a spaceship, how can
you align objects with the rotated axis frame, that is, the navigated spaceship. This

393

CHAPTER 8 QUATERNIONS AND ROTATIONS

is an important issue to resolve because you may want to supply the spaceship with
emergency equipment where it is crucial that the container boxes land on the spaceship
appropriately.

Recall that an axis frame is defined by three perpendicular axes or vectors. It is
always the case that the direction of the third vector is defined by the cross product of the
first two. This means, the orientation of an axis frame can be completely specified by the
directions of two of the vectors. For this reason, when aligning axis frames, you only need
to ensure two of the vectors are aligned. In other words, when given two axis frames, if
the directions of two of the vectors are aligned, then it is guaranteed that the directions
of the third vector must also be aligned.

e

(b)

(directions aligned) (c) (d)

Figure 8-10. Rotations to align the default to a rotated axis frame. (a) The two
axis frames, (b) the first rotation to align V, to V!, (c) the resulting axis frames
after the first rotation, (d) the second rotation along V; to align V, to V!

394

CHAPTER 8 QUATERNIONS AND ROTATIONS

For clarity, instead of depicting alignment from a rotated axis frame, Figure 8-10
illustrates the rotations required based on the default axis frame to an arbitrarily rotated
axis frame. It is important to recognize that in the following derivation there are no
assumptions made on the actual directions of any of the vectors. For this reason, the
derived results are applicable to align any two arbitrarily rotated axis frames.

Figure 8-10 (a) shows two sets of axis frame drawn at the origin: the first thinner set
on the right defined by \A/X , \A/y , and \A/Z and the rotated thicker set to the left defined by
V., V;,and V;.The goal is to derive an operator to align any two of the three vectors,
for example, align V, to V; and V, to V.

The actual choice of directions for alignment does not affect the result. In Unity the
Y- and Z-axes are used as the upward and forward directions and thus are the choice
of directions for alignment. In the following derivation, x- and y-directions are used.

In the exercise at the end of this section, you will verify that the alignment results are
independent from the directions of choice.

Figure 8-10 (b) illustrates the rotation, q(@x ,AX) , required to align \A/x to er
direction. Vectors ‘7; and ‘7; are not shown to avoid cluttering the figure and because
they do not contribute in the derived rotation. For the rotation, q(@x ,AX) , you know

X

0 :cos'l(f/x ‘A/;) and

N1
Il

=V

A Figure 8-10 (c) shows the resultsAof applying q(@x ,Ax) to the axis frame, \:/X, \A/y ,Aand
V, . The rotation aligns the thinner V, with the thicker V; thus the rotated V,_, or V_,
is occluded by 17; and not visible in the figure. It is crucial to recognize that the rotation
is applied to all three vectors where the resulting axis frame is now I}x) ‘}y , and I}Z . Take
note that at this point, V, = 17; , and that this vector is the x-direction of both axis frames.
This is to say Vx is perpendicular to all four vectors, Vy , VZ , Vy’ , and I}Z’ . For this reason,
in the following rotation to align Vy' with I}y’ , the axis of rotation is along the positive or
negative V, direction.

) Lastly, Figure 8-10 (d) illustrates the rotation, q(Gy ,Ay) , required to aligAn X}y to

Vyr direction. There are two key points to this rotation. First, as discussed, A, the axis
of rotation will be along the positive or negative V; direction. Second, the rotation is
defined to be applied to the results of the q(@x ,Ax) rotation, or I7y and VZ , and not the

original \A/x, \A/y ,and V, . Once again, to avoid cluttering, V, and \}Z' are not shown in
Figure 8-10 (d). In this case, you know

395

CHAPTER 8 QUATERNIONS AND ROTATIONS

Oy =cos~ (ﬁy 17;) and

h N}

Yy = VJ’ X V;
The final rotation operator that aligns the two given axis frames, ¢, is,
qc = q(ey ’Ay) q(ex ’Ax)

Once again, the importance of concatenation ordering cannot be overstressed. In
this derivation, it is important that the x-alignment rotation, q(@x ,Ax) , is applied before
the y-alignment rotation, q(By ,fly) , and thus q(@x ,flx) must be on the right-hand side of
the concatenation.

The Unity Quaternion Class

In the next example, the results from the derived axis frame alignment formulation will
be compared to the solutions defined by the Unity Quaternion class. This is an excellent
opportunity to relate and contrast relevant concepts learned. Unity API documents the
Quaternion class (https://docs.unity3d.com/ScriptReference/Quaternion.html) as
follows:

Quaternions are used to represent rotations.
If you browse through their utility methods, you will notice the following similarities:
o AngleAxis: This is the QFromAngleAxis () utility function.

o FromToRotation: This is similar to the QAlignVectors() utility
function.

o Slerp: This is covered in the example scene Example 8 4
ChasingBehavior.

Additionally, you have also learned about the Inverse() function and the *-operator
(concatenation operator). Pay attention to the LookRotation() function:

Creates a rotation with the specified forward and upward
directions

Note that this is precisely the subject of coverage in this section and you will work
with this function in the next example.

396

https://docs.unity3d.com/ScriptReference/Quaternion.html

CHAPTER 8 QUATERNIONS AND ROTATIONS

Finally, notice the absence of an actual rotation function. That is, there is no
correspondence of the QRotation() function defined in the Unity Quaternion class.
Recall that a significant limitation of the quaternion representation for rotation is its
inability to describe rotations when the axis of rotation does not pass through the
origin. As pointed out when first introduced, this is not an issue because quaternions
are typically integrated with matrices in representing coordinate transformation.
Together, the tools can address the off-origin rotation limitation. In the case of Unity, the
integration of quaternions with matrices occurs in the Transform class (https://docs.
unity3d.com/ScriptReference/Transform.html), where rotations are represented
by quaternions and the transformation functionality is encoded as matrices. It is the
Transform class that defines the relevant position and vector rotation functions.

The details of the Transform class, the subject of coordinate transformation, are an
advanced topic that is out of the scope of this book. However, you have been working
with the Transform class in all of the examples where you have set the transform.
localPosition to control the location of objects. In the example that follows, you will
compute and set the transform.localRotation to control the orientation of objects to
verify the axis frame alignment formulation.

Note The Unity Transform class explicitly maintains the axis frame of an object.
The x-, y-, and z-directions of a transformed axis frame are accessible via the
transform.right, transform.up, and transform.forward properties on a
Transform object.

The Align Frames Example

This example demonstrates the results of applying the derived rotation to align with
a user-manipulated axis frame. To assist in gaining insights into the alignment, this
example also shows the results of applying only the first axis alignment rotation.
Additionally, to assist in verifying the solution, the results from the Unity quaternion
utility are also displayed. Figure 8-11 shows a screenshot of running the EX_8 5
AlignFrames scene from the Chapter-8-Quaternions project.

397

https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html

CHAPTER 8 QUATERNIONS AND ROTATIONS

Figure 8-11. Running the Align Frames example

The goals of this example are for you to

Interact with the smooth manipulation of positions that define an
axis frame

Verify the results of aligning the first of the directions in axis frames

Observe that the concatenation of the two axis aligning rotations can
indeed define an axis frame alignment rotation operator

Examine the implementation of the axis frame alignment
formulation

Validate the alignment results by comparing with the results from the
Unity quaternion utility

Examine the Scene

Take a look at the Example 8 5 AlignFrames scene and observe the three spheres and

three flattened rectangular cubes. Similar to examples from the previous chapter, the

spheres Po, Px, and Pz are the three non-collinear positions that you can manipulate

to define an arbitrary axis frame. The orientations of the three flattened rectangular

cubes represent the results of aligning with the user-defined axis frame: the red,

398

CHAPTER 8 QUATERNIONS AND ROTATIONS

AlignX, with only the first X-axis alignment rotation applied; the green, A1ignXY, with
the concatenated xy-axis rotations applied; and the blue, AlignUnity, with alignment
performed based on the quaternion utility from Unity.

Analyze Controller MyScript Component

The MyScript component on the Controller shows the six variables with the same

names as their corresponding reference game objects in the scene.

Interact with the Example

Click the Play button to run the example. You can see four sets of three vectors
representing axis frames wrapping around each of the four axis frames: the three
flattened rectangular cubes and the spheres. In all cases, the red vector is the x-direction,
green is the y-direction, and blue is the z-direction. In this context, alignment refers to
the matching of the vector directions with the same colors. For example, the X-axis is
aligned when the red vectors are pointing in the same direction. Two axis frames are
aligned when all three colored vectors are pointing in the same directions.

Select and adjust the y-component of the blue sphere, Pz. This manipulation results
in rotating the axis frame around the x-direction where the red vector, or the X-axis
direction, does not changed. Observe that the green, AlignXY, and blue, AlignUnity,
cubes always align exactly with the manipulated frame. This is in contrast to the red
cube, AlignX, where it is only rotated by the x-direction alignment rotation, and in the
absence of x-direction changes, the red cube stays stationary.

Select and manipulate either Px or Pz freely to observe that the green and blue cubes
continue to always align exactly with the user-defined axis frame while the orientation
of the red cube only guarantees that the red X-axis is aligned. Now compare the red and
the green cubes and observe that the orientations of these two cubes are always different
by one rotation about their red vector. In other words, the alignment can be achieved
by rotating either the red or the green cube about the red vector. A straightforward way
to establish this observation is by analyzing the green vectors on these two cubes when
viewing the red vector straight down. You will see that the green vectors are a simple
rotation apart.

In these manipulations, you have observed and interacted with the two-step axis
frame alignment rotation. You have also verified that the derived alignment formulation
matches the results from the Unity quaternion utility.

399

CHAPTER 8 QUATERNIONS AND ROTATIONS

Lastly and very importantly, take note that in this example all three cubes are located
at positions other than the origin where they can be moved to any position and yet you
were able to flawlessly manipulate their rotations. In other words, you have worked
with but did not encounter the quaternion limitation that the axis of rotation must
pass through the origin. As pointed out earlier, the Unity Transform class strategically
integrates quaternions with matrices and avoids that limitation completely.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

public GameObject Po

null; // Origin of the reference frame
public GameObject Px = null; // X-position defining the x-axis
public GameObject Pz = null; // Z-position defining the z-axis
public GameObject AlignX = null; // X-axis aligned

public GameObject AlignXY = null; // X,Y-both aligned

public GameObject AlignUnity = null; // Unity aligned

private const float kSmallAngle = 1f;

#iregion For visualizing the vectors
#endregion

void Start() {
Debug.Assert(Po != null); // Verify proper setting
Debug.Assert(Px != null);
Debug.Assert(Pz != null);
Debug.Assert(AlignX != null);
Debug.Assert(AlignXY != null);
Debug.Assert(AlignUnity != null);

#region For visualizing the vectors
#endregion

All the public variables for MyScript have been discussed when analyzing the
Controller'sMyScript component. The private kSmallAngle defines when two vectors
are in the same direction and that the alignment rotation is not necessary.

400

CHAPTER 8 QUATERNIONS AND ROTATIONS

This example defines the same quaternion utility functions: QFromAngleAxis (),
QMultiplication(), and QRotation(). The previous AlignVectors() function is
replaced by a similar QAlignVectors () function with details as follows:

Vector4 QAlignVectors(Vector3 from, Vector3 to) {
from.Normalize();
to.Normalize();
float theta = Mathf.Acos(Vector3.Dot(from, to))
* Mathf.Rad2Deg;
Vector4 q = new Vector4(o, 0, 0, 1); // Quaternion identity
if (theta > kSmallAngle) {
Vector3 axis = Vector3.Cross(from, to);
q = QFromAngleAxis(theta, axis);
}

return q;

This new function removed the SLERP functionality and returned a quaternion
rotation instead of a rotated vector. The last additional utility function, V4ToQ(), is
defined for type conversion to be compatible with the Unity Quaternion class. The
details are as follow:

Quaternion V4ToQ(Vector4d q) {
return new Quaternion(q.x, q.y, 9.z, q.w);

With these utilities, the details of Update() are as follows:

void Update() {
Vector3 vxr

(Px.transform.position -
Po.transform.position).normalized;

Vector3 vzr = (Pz.transform.position -

Po.transform.position).normalized;

Vector3 vyr = Vector3.Cross(vzr, vxr);

Quaternion qUnity = Quaternion.LookRotation(vzr, vyr);
AlignUnity.transform.localRotation = qUnity;

401

CHAPTER 8 QUATERNIONS AND ROTATIONS

Vector4d qx = QAlignVectors(Vector3.right, vxr);
AlignX.transform.localRotation = V4ToQ(qgx);

Vector4 qy = QAlignVectors(AlignX.transform.up, vyr);
Vector4 qc = QMultiplication(qy, gx);
AlignXY.transform.localRotation = V4ToQ(qc);

#region For visualizing the vectors
#endregion

The first three lines compute the user-defined axis frame, the \7; , ‘7; , and 172’ in
Figure 8-10. The next two lines call the Unity Quaternion.LookRotation() utility with
X}Zr as the forward and X}YT as the upward directions to compute and set the rotation to
the transform.localRotation of the AlignUnity object. Recall that AlignUnityis a
reference to the blue cube. The matching alignment of the blue cube axis frame verifies
that Quaternion.LookRotation() indeed computes an axis frame alignment rotation.

In the line that follows, the variable gx represents q(@x ,AX) , Totating Vector3.right,
or (1,0,0) or V, in Figure 8-10, to V. This rotation is set to AlignX, or the red cube.
Note that when the x-direction is not changed, X}xr would remain (1, 0,0) and gx would
be a quaternion identity. This is why in the previous interaction the red cube would stay
stationary when the axis frame is rotated about the x-direction.

The variable qy represents q(Oy ,Ay) , rotating AlignX.transform.up to 17; .In
this case, AlignX.transform.up is the result of Vy rotated by q(@x ,Ax) , or Vy in
Figure 8-10(c). The last two lines concatenate qx with qy to compute the actual axis
frame aligning operator qc and set the rotation to A1ignXY, or the green cube. The fact
that the blue and green cubes, or AlignUnity and AlignXY, align identically verifies
that the computed qc is indeed the same as the results from the Unity Quaternion.
LookRotation() function.

Note The Unity GameObjects, AlignX, AlignXY, and AlignUnity, are
located at positions other than the origin and with axes of rotations that do

not pass through the origin. The Unity Transform class, where the computed
quaternion rotations are set via transform.localRotation, integrates matrix
transformation functionality and seamlessly overcomes the quaternion rotation
limitation.

402

CHAPTER 8 QUATERNIONS AND ROTATIONS

Takeaway from This Example

Through this example you have examined and interacted with each of the two rotations

involved in aligning axis frames. You have also verified that strategically concatenating

two rotations can indeed result in an axis frame aligning operator.

Relevant mathematical concepts covered include

To align two axis frames, you only need to ensure two of the three
axes are aligned.

You can choose to align any of the two axes to accomplish axis frame

alignment.

The second rotation of axis frame alignment aligns the results from
the first rotation and not the original axis directions.

The limitation of quaternion rotation that the axis of rotation must
pass through the origin can be avoided with strategic integration with
matrices.

Unity tools

Quaternion.LookRotation(): Aligns the default to a given axis frame
based on forward, z-directions, and up, y-directions

Transform.localRotation: Encodes rotation with a quaternion

Transform.right/up/forward: The major axes’ directions of a
rotated GameObject

EXERCISES

Replace QAlignVectors(), QFromAngleAxis(),and QMultiplication() with the
corresponding Unity Quaternion class utility functions and verify that the exact same results
can be observed.

403

CHAPTER 8 QUATERNIONS AND ROTATIONS

Replace the X- and Y-axes with z- and y-directions to verify that the choice of axes for
alignment indeed does not affect the results. You can repeat this exercise with any other two
axes, for example, X and Z, if desired.

Derive and display the rotations required to align the user-defined axis frame to the default
axis frame.

In this case, the first rotation required is to align vxr to the default x-direction, ‘7x = (1,0,0) .
In other words, q(@x ,Ax) has

0, =cos™ (‘A/: Ve) and

N}
Il

L =VIxXV,
Not surprisingly, the direction of the axis of rotation is reversed from that in this example. The
rotation q(Bx Ax) would be applied to the user-defined axis frame: V;, V', or V; . The
second rotation should align the rotated y-direction, V. , the q(@x ,AX) rotated V; , to align
with the default Y-axis, V, =(0,1,0), where q(ey ,Ay) has

6, :cos’l(f/y 17y) and
A,=VxV,

You can now edit MyScript to implement the preceding formulation. With this exercise, you
have verified that not only can you rotate the default to a user-defined axis frame, you can
indeed reverse the alignment from a user-defined axis frame to the default axis frame. Since
you can align an axis frame, A, with the default and then align the default with another axis
frame, B, you can indeed align any two given axis frames A and B.

An alternative and much more straightforward approach is to recognize that quaternion
rotations are reversible. The inverse of the computed qc in the existing code will accomplish
the specified axis frame alignment.

404

CHAPTER 8 QUATERNIONS AND ROTATIONS

Integrate the SLERP functionality of AlignVectors() from the previous example to the
QAlignVectors() function and experience with gradual and smooth axis frame alignment
that more resembles the steering of a spaceship.

As discussed, navigating a spaceship is simply aligning the ship with an axis frame and
moving along the front direction. If the A1ignXY object represents a spaceship with
transform.forward as the front direction, then you can navigate the A1ignXY object by
including the following line at the end of the Update () function:

AlignXY.transform.localPosition =
0.5f * Time.deltaTime * AlignXY.transform.forward

Now, if you run the game, you will observe the green cube moving toward the positive
z-direction. Try manipulating the positions of Po and Pz to verify that you can indeed steer the
traveling of the ALignXY object.

Summary

This chapter introduces the four-tuple quaternion to represent a rotation. You have
learned that three of the numbers describe the axis of rotation where the forth number
encodes the angle to be rotated. The mathematical rules for working with quaternion,
or quaternion algebra, are well established for supporting rotation operations. You
have learned the inverse of a quaternion reverses a rotation and the concatenation of
quaternions aggregates and captures the results of multiple rotations. The limitation of
the compact four-number representation of a rotation is that there is no way to encode
the location of the axis of rotation: quaternion representation and the involved algebra
implicitly assume that the axis of rotation passes through the origin of the Cartesian
coordinate.

You have examined quaternion rotation as a tool for aligning directions. Chapter 5
has taught you that the angle between two normalized vectors is the arccosine of the
dot product. From Chapter 6, you know that the axis of rotation for aligning two vectors
is simply the cross product of the vectors. Based on this knowledge, you have derived

405

CHAPTER 8 QUATERNIONS AND ROTATIONS

the formulation for aligning the directions of any two vectors. By analyzing how you
would turn your head when changing viewing directions, you recognized that real-world
organic and mechanical movements are gradual and continuous. You have learned

to emulate such movements by continuously applying quaternion rotations based on
repeatedly linear interpolated angle of rotation, or SLERP. Lastly, you learned that by
strategically computing and concatenating two rotations, you can align any two given
axis frames. Through working with the Unity Transform class, you have witnessed that
the quaternion rotation limitation of requiring the axis of rotation to pass through the
origin can be avoided completely. The steering and navigation of a spaceship will be
further explored in the next chapter via the motion of a traveling agent.

It is important to recognize that this chapter has led you to investigate quaternions
as being used as a tool for rotation. Thus, the focus of this chapter has been on the
characteristics of quaternions in effectively rotating vectors. This is very different from
learning quaternions as a field of mathematical study. You may have noticed some of
the missing details, such as the derivation or justification of quaternion multiplication
definition. Though important, such details are outside of the scope of using quaternions
as a tool for rotations. The limited coverage of quaternion fundamentals means that
while you are able to use quaternion as a tool to align vectors and axis frames, it may be
challenging for you to use it as a general mathematical tool for solving other problems.

Lastly, you may have noticed a slight deviation of topic coverage in this chapter.
While the other chapters in the book analyzed and studied the application of points
and vectors, this chapter examined how to manipulate and change them. For example,
instead of applying vectors in representing axis frames, this chapter examined how
to manipulate a defined axis frame. This subtle shift serves as the introduction to the
next topic area in mathematics for supporting video game development: matrices and

transformation. A more involved topic for a more advanced book.

406

CHAPTER 9

Conclusion

With your background in basic algebra and trigonometry, this book took you on the
journey from the review of the Cartesian Coordinate System to the application of vector
algebra to solve frequently encountered problems in video game development. In
Chapter 1, you reviewed and familiarized yourself with the Unity system as a learning
tool. Then, in Chapter 2, you learned about bounding boxes, one of the most used tools
in game engines, by revising and generalizing number intervals. Along the way, you also
examined issues related to bounding volumes.

In Chapters 3 and 4, you studied the relationships between positions. You began
studying these relationships in Chapter 3 through exploring bounding volumes by
examining another important tool: bounding spheres. From here, you were led into
Chapter 4 where you were introduced to the concept of vectors. That chapter provided
you with a comprehensive and formal foundation for discussing relationships between
positions in the form of directions and distances. It was also in that chapter that you
gained experience in applying vector concepts to model and implement object velocity
manipulation and how to calculate object motions under external factors such as wind
or current flow conditions.

In Chapters 5 and 6, you learned to relate vectors to each other and to the space
that defines them. The vector dot product introduced in Chapter 5 demonstrated that
two vectors are related by the angle they subtend and their mutual projected sizes. You
applied this knowledge to describe and analyze line segments and then connected
these vector line segments back to the simple number intervals reviewed in Chapter 2.
You then applied these concepts to solve the problem of high-speed objects’ missing
collisions. Then, in Chapter 6, you learned about the vector cross product and used
it to analyze 2D planes. This analysis included exploring 2D planes from additional
perspectives including the ability to define general axis frames and to create your own
line intervals to define 2D regions on 2D planes.

407
© Kelvin Sung, Gregory Smith 2023

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,
https://doi.org/10.1007/978-1-4842-9885-5_9

https://doi.org/10.1007/978-1-4842-9885-5_9

CHAPTER9 CONCLUSION

In Chapter 7, you analyzed axis frames and began to appreciate complex situations
with independent movements of elements that are geometrically related or connected.
You generalized axis frames and learned that they can be located at any position with
any orientation. You then applied that knowledge to define multiple overlapping
coordinate systems and learned about the conversion between these systems so that
you can describe and control character motion in a navigating spaceship. The attempt
to navigate the spaceship brought up the next topic: an operator for manipulating
orientation, specifically, the quaternion. In Chapter 8, you learned and represented
rotations with quaternions. Building on your knowledge of dot and cross products,
you derive solutions for aligning vectors and axis frames. You have also observed
and emulated organic movements with gradual changes through repeated linear
interpolation, LERP and SLERP.

The insights gained from learning these basic math concepts have enabled you to
analyze and solve some of the most encountered problems in video game development.
This chapter summarizes the book, continuing with the philosophy that interactive
exploration is an important and integral part of learning, by presenting the concepts
learned throughout this book in a straightforward and comprehensive example. Though
not a video game, this example highlights solutions that are implemented in many

modern video games.

The Final Comprehensive Example

This example integrates and demonstrates the concepts learned in this book in a
comprehensive and coherent application. This example allows you to interactively
manipulate the speed and direction of a traveling agent. On the agent and within its
bounds, you can control the movement of a hero. You will also be able to manipulate

a 2D plane that represents a wall that the traveling agent can reflect off of and cast

a shadow upon. Finally, you will also be able to manipulate the radius of a treasure
bounding sphere that the agent can collide against. During the interaction, you can
suspend all movements and examine the computed projection and collision results, the
paths of the agent and the hero on it, and the results of the treasure collision. Figure 9-1
shows a screenshot of running the EX 9 1 FinalComprehensiveExample scene from the
Chapter-9-Conclusion project.

408

CHAPTER9 CONCLUSION

=1
o
3 |
[|
s |
@
fi=
[|
| |
B
-6.]
1
B

Figure 9-1. Running the Final Comprehensive Example

The goals of this example are for you to

o Experience an interaction session based on a coherent collection of
vector-based solutions

o Examine solutions studied in the context of a simple yet
comprehensive application

o Examine the implementation source code of a non-trivial system

Examine the Scene

Take a look at the Example 9 1 FinalComprehensiveExample scene and observe the
predefined game objects in the Hierarchy Window. Due to the slight complexity of this
scene, the game objects are categorized into seven groups according to their roles. Each
group is an empty game object that serves as the parent or, in this case, a holder, for all
the relevant objects that you will actually manipulate. Please pay attention to and only
manipulate the relevant game objects when interacting with this example. Additionally,
make sure to avoid changing the transforms of the empty grouping game objects during
your interactions as it will also change the transforms of the game objects within them.
Figure 9-2 depicts the grouping and object names in this scene.

409

CHAPTER9 CONCLUSION

5. Shadow 6. Reflection
] P
T B
Foap FBoe P 2 F
‘"‘MH_S"'N-..

~ 7. Treasure

4. Plane M P, - s 3.Hero

2. Agent

Figure 9-2. The groups and game objects in the Final Comprehensive Example

The six groups of objects are as follows. You can click the small triangle icon beside
each object's name in the Hierarchy Window to expand the group.

e 1. Aiming System: The two spheres in this group are the base, Pb in
blue, and the control, Pc in green. The positions of these two spheres
and the distance between them serve to define the direction and
speed of the traveling agent.

o 2. Agent: The only object in this group is the red flattened rectangle,
the agent Pa. This rectangular object represents the position and
orientation of the traveling agent.

e 3. Hero: The only object in this group is a white capsule, Ph,
representing the hero in motion referencing the axis frame of the
agent object.

e 4. Plane: The only object in this group is the position on the
reflecting wall or the checkered sphere Pn. This object exists to assist
with visualization. As with all 2D plane examples in Chapter 6, Pn is
the intersection of the plane normal position vector with the plane. In
other words, if the vector plane equation of the wall is

p-V.=D

n

410

CHAPTER9 CONCLUSION

Then,

P =DV

n n

where P, is the position on the plane along the 17,, direction from the origin.

e 5. Shadow: The only object in this group is a semi-transparent
black sphere, Ps, indicating the shadow of the agent object or the
projection of the position Pa on the plane that represents the wall.

e 6. Reflection: The two objects in this group are Pon, the striped
sphere, and Pr, the white sphere. Pon is the predicted intersection
position of the agent with the wall, and Pr is the agent position, Pa,
reflected across the wall.

e 7. Treasure: The only object in this group is the semi-transparent
red sphere, Pt, representing the bounding sphere of a treasure
located at this position.

In all cases, the objects' transform.localPosition will be referenced as the
positions for performing the necessary vector computations and the orientation of the
agent will be updated via transform.localRotation. Additionally, since Pt represents a
bounding sphere, its transform.localScale property represents the radius and is also
referenced.

Analyze Controller MyScript Component

The MyScript component on the Controller shows variables that can be categorized
into the same groups as those of the scene hierarchy. These groups and their
accompanying MyScript variables are listed as follows:

o Aiming System
e Pb: A reference to the Pb game object
o Pc: Areference to the Pc game object

e Aspeed: The speed of the traveling agent and also the distance
between Pb and Pc

411

CHAPTER9 CONCLUSION

412

Agent

MoveAgent: A toggle controlling the agent's motion

AgentSentInterval: The time period before a traveling agent will
have its position reset to the control position, Pc, and repeat the
entire traveling path

Pa: A reference to the Pa game object

Hero

Ph: A reference to the Ph game object

HeroXMotion: A toggle controlling the x-direction motion of
the hero

HeroYMotion: A toggle controlling the y-direction motion of
the hero

Plane

ShowAxisFrame: A toggle to show or hide the Cartesian
Coordinate axis frame for verifying the vector plane equation

D: The plane distance from the origin of the vector plane
equation, p-Vn =D

Vn: The plane normal vector of the vector plane
equation, P“}n =D

Pn: A reference to the Pn game object

Shadow

CastShadow: A toggle to show or hide the shadow
computation results

Ps: A reference to the Ps game object

Reflection

DoReflection: A toggle to show or hide the reflection
computation

Pon: A reference to the Pon game object

Pr: A reference to the Pr game object

CHAPTER9 CONCLUSION

e Treasure

o CollideTreasure: A toggle to show or hide the collision
computation

o Pt: Areference to the Pt game object

e Tr: The radius of the treasure bounding sphere
The very last variable in the MyScript component of Controller is the
ShowDebugLines toggle which is used for showing or hiding all the debug lines in
the scene.

Interact with the Example

Click the Play Button to run the example. Notice that initially the red rectangle, or the
agent, Pa, is stationary. This is by design. You will analyze and understand the scene
before setting the agent in motion.

The aiming system, the blue and green spheres, Pb and Pc, is connected by a red
vector representing the direction and speed of the velocity of the agent. The red agent
is in front of the aiming system with the white capsule hero pacing back and forth on
the agent. A thin black line extending from the center of the agent toward the plane
visualizes the location of the projected shadow on the plane, Ps. The two thin red lines
connecting the agent to Pon on the plane and Pr in the mirrored reflection direction
show, when in motion, the intersection position with the 2D plane and the reflection
of the agent across the plane. The transparent bounding sphere at Pt is red because it
intersects the reflection ray.

During your interaction, be careful to avoid adjusting the transforms of the empty
container parent or holder objects. Additionally, pay attention to the Console Window
printout. If you accidentally set the application to an ill-defined state, for example,
by overlapping Pb and Pc positions, warning messages will be printed to the Console
Window and the script will reset its state to ensure that the application does not crash.

Now toggle off CastShadow, DoReflection, and CollideTreasure such that you can
focus on and examine each of the seven functionalities separately.

413

CHAPTER9 CONCLUSION

Interact with the Aiming System

Figure 9-3 focuses on the aiming system and the orientation of the agent. Details of the
hero object, the white capsule, will be discussed later. The objects are annotated with
their corresponding variable names in the implementation such that you can observe
their behaviors to examine the mathematics of the vector solution.

Figure 9-3. The aiming system and the agent orientation

As illustrated in Figure 9-3, the vector from P, to P, defines the direction of the agent
velocity, Adl.,, and the distance between these two positions is A,..., which is under
the user control via the variable Aspeed. The agent, Pa, always aligns its forward and
up directions with that of Adir and the vertical direction X}Y = (0,1,0) of the Cartesian
Coordinate System. In this way, as illustrated in Figure 9-3, the agent defines a separate
and independent axis frame with its center, Pa, being the origin of this axis frame.

In the Hierarchy Window, expand the 1.AimingSystem game object by clicking
the triangle icon beside it. Select Pb and manipulate its position. You will observe that
changes to Pb always result in corresponding changes in Pc and the agent, Pa, ensuring
that the agent is always located in front of and aligned with the velocity direction, Adl.,

. The center of the agent is located at a constant distance of 2xAspeed away from Pb.
You can change the Aspeed magnitude to observe the in-between space adjusting
accordingly.

Select Pc and adjust its position to observe that by maintaining a constant distance
from Pb, Pc can only orbit Pb. That is, the position Pc can only change along the
circumference of the circle centered at Pb with radius Aspeed. Note that as the velocity
direction, Adi, , changes, so does the position and orientation of Pa. This is because the

414

CHAPTER9 CONCLUSION

distance and direction between Pb and Pc is same as the distance between Pc and the
center of Pa, and the agent's front or z-direction is always aligned with that of Adl., .
As described, the velocity direction, fld

behaviors you just walked through identify Pb as the base, or tail, of the aiming system,

»» 1s simply the vector between Pb and Pc. The
controlling both the Pc and the agent, Pa, positions. The aiming direction and Pc position
can be computed as follows:

A, =(P.-P,).Normalize direction from P, to P,

l)c = Pb + Aspeed Adir Aspeed from Pb

where the agent's position and orientation can be determined by

P =P +2A Adi, 2x the distance

speed

P .localRotation = Quaternion.LookRotation (Adir ,X}Y)

Interact with the Agent

Enable the agent motion by switching on the MoveAgent toggle. For now, continue
to ignore the pacing hero on the agent. Notice that Pa orientates along and moves in
the Adl.y direction, and at about every six-second interval, the position of Pa is reset to
that of Pc and the motion repeats. This interval period is the time period controlled by
AgentSentInterval, which uses seconds as its unit of time. You can adjust this variable
to observe its effect. Notice that when AgentSentInterval is a negative number or zero,
Pa's position is being reset at every update, and as a result, it becomes stationary at
position Pc. You can verify the direction of the agent velocity by adjusting Pc's position
and the speed of the agent by manipulating the Aspeed value. The agent's orientation
and traveling direction only update at the beginning of each interval period. These
observations suggest that when MoveAgent is true and AgentSentInterval time limit
isreached, the position of Pa is reset to that of Pc with orientation updated to align
with Adi, or

P =P

a c

P, .rotation = Quaternion.LookRotation (Adir ,X}y)

415

CHAPTER9 CONCLUSION

And during motion, Pa position is updated according to

A
Adir

P,=P + (Elapsed Time x Aspeed)

n.n

where the new position is the old position plus time x speed. Note that the "x" symbol
in this case is a floating-point multiplication and not a vector cross product. You know
this because the cross product between floating-point numbers is undefined; therefore,
it must be multiplication.

Lastly, tumble the Scene View camera to observe that while traveling in space, it
is actually rather challenging to resolve the relative distance and position between
the agent and the plane. To assist with distance determination, the ShowDebuglLines is
switched on by default where you can observe a thin red line in the direction of Adir in
front of Pa indicating the pathway of Pa. This thin red line is informative because it assists
in resolving relative positions. However, it is also distracting because in real life such
indicating lines do not exist. As you will verify soon, dropping a shadow can also be an
effective way of addressing the challenge of resolving relative distance.

Interact with the Hero Motion

Please restart the game to ensure a proper initial setting. In the following, before
enabling the agent to travel, you will first focus on analyzing and understanding the
pacing motion of the hero, Ph, the white elongated capsule on the agent.

Now, observe the back and forth pacing of the hero along the direction defined by
the aiming system, Pb to Pc, or Adl., . Select and adjust the position of Pc to manipulate
Adlr and verify that the pacing direction indeed followed. Now, enable the HeroYMotion
toggle and observe the hero hopping vertically on the agent with respect to and along the
Adl, direction. You can adjust the y-value of Pc to aim Ad" up- or downward and verify
that the hero's hopping direction is indeed aligned perpendicular to the flat surface of
the agent. Now, disable the HeroYMotion and enable the HeroXMotion toggle. Notice
that in this case the hero is sweeping along a sinusoidal pathway on the surface of the
agent. Once again, manipulate Pc position to alter the agent's orientation and verify that
the hero movement pathway remains. Feel free to enable both motions of the hero and
manipulate Pc position to examine and admire the hero's constant sinusoidal hopping
that follows the changing orientation of the agent.

416

CHAPTER9 CONCLUSION

You have interacted with and observed the movement of the hero being defined
with respect to the axis frame of the agent. Recall that the axis frame of the agent has its
origin located the agent's center position, P,, and is defined by Adir being the forward
or z-direction and Vy = (0,1,0) being the y-direction. This means that the back and forth
pacing of the hero is z-direction, the hopping is y-direction, and sinusoidal sweeping is
x-direction movements. In this way, the hero position, Ph, is a vector, Vh = (Ax,Ay,Az) ,
offset from the origin, P, of the agent axis frame or

P,=P,+AxXx+Ayy+Azz

where X, y,and z are the directions of the major axes of the agent axis frame.
In this case, let the constant pacing speed be HeroSpeed, the y-direction hopping is

implemented as an absolute cosine, and x-direction sweeping is a simple sine function:

Az = ElapsedTime x HeroSpeed
Ay = abs(cos (zAz))

Ax =sin(7Az)

Interact with the Plane

With the agent in motion (ensure MoveAgent is toggled on), please switch on the
ShowAxisFrame toggle, and begin to investigate the plane and its spatial relationship with
the agent. First, note the white line extending from position Pn to the origin overlapping
with the plane normal vector. This shows that Pn is indeed a position vector in the
direction of the plane normal vector.

Adjust the parameter D to change the distance between the plane and the axis frame
as well as components of Vn to see the plane rotating about the axis frame. Because of
the large size of the plane, you may have to zoom out the camera to observe the effects
of adjusting Vn. Notice that Pn is always located at the intersection of the plane normal
vector extending from the origin. You have verified that this plane is indeed defined by
the vector plane equation

417

CHAPTER9 CONCLUSION

and that

A

P,=DV,

is a position on the plane along the \7n direction from the origin. When examining

the relative position of the agent, its motion, and the normal direction of the plane,
along with the anticipation for later shadow and reflection computations, there are few
concerns. Please refer to Figure 9-4 for the details.

Py

5::1

Figure 9-4. The plane and its relationship to the position and motion of the agent

This example specifies that shadow casting and reflection can only occur when P, is
on the side pointed toward by the plane normal vector or along the direction of Vn .
Additionally, you have already verified that reflection computation should not occur if
the agent's velocity, Adir , is parallel to the plane or perpendicular to the normal vector,
Vn . Lastly, note that a reflection cannot occur if P, is moving away from the plane. These
discussions identify three geometric conditions of interests:

o In front of condition: This is when the position of the agent is on the
side of the 2D plane that is pointed to by the plane normal vector, Vn .
To determine if this is true, you can simply verify that the projected

A

size of position vector P, in the plane normal direction, V,, is greater

n

than the plane distance, D, or
In front : (Pa "7n)>D

e Perpendicular or not parallel condition: When a velocity vector is
perpendicular to a plane normal vector, the velocity is parallel to and
will never intersect with the plane. This condition can be determined
by one of the following tests:

418

CHAPTER9 CONCLUSION

e Perpendicualr to normal vector : (Adir v,) =0

n

subtended anglex~90°

A

e Not parallel to plane : (Adir -V,) #0

subtended angle#90°

e Approaching condition: When an object is in front of and moving
toward a plane, its velocity will be pointing in the direction opposite
to the plane normal vector or

n

is approaching from front : (Adir v)< 0

90° < subtended angle<180°

Interact with the Shadow

Please restart the game to ensure a proper initial setting and then toggle off
DoReflection and CollideTreasure, switch on MoveAgent, and increase Aspeed to 8.
Now, you can toggle the ShowDebuglLines on and off to experience the full effect of the
shadow object, Ps, in conveying the relative spatial relationship.

Notice that, as defined by the application, shadow casting does not occur once the
agent moves past the plane. You can verify this as follows. First, set the plane normal, Vn,
to (0,1, 0) to observe the shadow when the agent velocity is parallel and in front of the
plane. Then, if you flip the plane around, by setting Vn to (0, —1, 0) and D to positive 6, you
can now notice that the agent is not on the side pointing to by the plane normal and thus
shadow casting does not occur. Figure 9-5 illustrates the solution for computing Ps when
Paisin front of the plane.

419

CHAPTER9 CONCLUSION

Figure 9-5. The shadow Ps computation

A quick review of “Projections onto 2D Planes” discussion from Chapter 6 says that
the projected length of the position vector P, onto the plane normal, 17,, , is

h=P, \}n P,length along 17,,
Position P is simply h — D distance from the position P, in the negative Vn direction

P,=P,~(h-D)V,

Interact with the Reflection

Once again, please restart the game to ensure a proper initial setting, toggle off
CollideTreasure, switch on MoveAgent, and set the Aspeed to 5. Feel free to switch
CastShadow toggle off if you find the shadow distracting.

Observe how the red agent and the white Pr sphere approach the Pon intersection
position in perfect synchronization. When the distance between Pa and Pon is very small,
the bounding spheres around these two objects will collide. After the collision, since the
agent is moving away from the plane and its velocity does not reflect with the 2D plane
anymore, the white sphere representing the agent's reflection, Pr, disappears leaving
the red agent to continue with its motion in the mirrored reflection direction. You can
adjust the plane by manipulating the Vn and D parameters and observe that the reflected
motion adjusts correctly.

If you flip the 2D plane from its initial orientation by setting Vn to (0,0, —1) and D
to 6 you, will notice that the reflection computation does not occur. This example only
computes reflection when the agent travels into the plane from the front. Note that this is
not a limitation of the solution; rather, this is a design choice for showcasing the in front

420

CHAPTER9 CONCLUSION

of test with a 2D plane. Now, if you set Vn to (0, 1, 0), the plane will be parallel to the agent
velocity direction, Adi, . When this occurs, notice that both Pr and Pon disappear. In this
case, the reflection is not defined and therefore the computation for these positions is
not invoked.

Restart the game again, switch on MoveAgent, and this time, set the Aspeed to a large
number, for example, 15. Notice now that the agent sometimes fails to collide with the
plane and instead simply crosses the plane. What you are observing is the exact same
problem as the one described in Figure 5-13 of the “Line to Point Distance” section in
Chapter 5 or the problem of failed collision for fast-moving objects. You will resolve this
issue in an exercise. It is interesting that the collision detection only fails some of the
time depending on the actual rate that the Update() function is called. Unfortunately,
these types of uncertainty are rather common in typical video game development and
must be predicted and resolved.

Figure 9-6 depicts the reflection computation that supports the behaviors you just
observed.

Figure 9-6. Reflecting Pa across the wall

As seen in Figure 9-6, reflection computation will only proceed when the agent is in
front of the plane and has a velocity direction, Adir , that is not parallel to and is headed
toward the plane. In this case, the reflection direction can be derived by first computing
the position, P,,, where the line segment that begins at P, with a direction of Adir
intersects the plane, p-‘}n =D,

P =P + dAd d along Adir from P,

ir

421

CHAPTER9 CONCLUSION

in this case, d, which as shown in the discussion of “Line to Plane Intersection” in
Chapter 6 as illustrated in Figure 6-16, can be derived as

D—(P)

d=—
(Adir'vn)

from P, to plane along Adir

and

Von =P,—-P, fromP,toP,

The “Mirrored Reflection Across a Plane” discussion, as illustrated in Figure 6-18,
showed that

m :(V v)I}n ~V,, perpendicularto v atP,

on n

and the reflection direction is

V.=V +2m reflection of V across V,

r

where

P =P, +V, mirrored reflection of P,

Interact with the Colliding Treasure

For the last time, please restart the game to ensure a proper initial setting. For now,
please do not enable MoveAgent. Feel free to switch the CastShadow toggle off if you find
the shadow distracting.

Notice that the Pt sphere is highlighted in red because the reflection vector, V.
, passes through this sphere. Now, select position Pc in 1.AimingSystem and adjust
its x-component value. This will change the velocity direction of the agent, Adir ,and
thus affect the reflection vector, V, . Notice the Pt sphere changing to white when the
reflection vector is outside of the sphere. This application is designed to detect the
condition when the reflection vector is sufficiently close to the Pt sphere.

You can adjust the Pt position and the sphere's radius via Tr to modify the reflection
vector and the bounding sphere respectively to verify the correctness of the vector inside
sphere results. Now if you enable the MoveAgent toggle and increase the agent speed

422

CHAPTER9 CONCLUSION

or its interval time so that collision can occur before the agent motion is reset, you can
verify the correctness of the results for a changing reflection vector. Notice that after the
collision at Pon, the V, vector is not defined anymore and thus the Pt sphere becomes
white in color.

As illustrated in Figure 5-13 and discussed in the “Line to Point Distance” section
of Chapter 5, the vector cutting through a bounding sphere functionality can be
implemented as a point to line distance computation. The details of this computation

are illustrated in Figure 9-7.

Figure 9-7. Point to line distance for bounding sphere collision detection

Refer to Figure 9-7 and note that \7t is defined to be the vector from P,, to the center

of the treasure bounding sphere, P,
V,=P-P,, fromP,,toP,
Then note that the projected distance of V, along V, is d,,

d,=V,-V. V lengthin V. direction

And that when d, is larger than zero and less than the magnitude of V,, then the
closest point, P, between P, and the line segment is

P,=P + dt‘}, d,along X}r from P,,

And finally, the line segment intersects the given bounding sphere when

|P,, — P| < Bounding Sphere Radius

423

CHAPTER9 CONCLUSION

Summary of Interaction

Now that you have a comprehensive understanding of this example and insights into the
solutions, please feel free to adjust any and all parameters to examine the consistency of
the results.

Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the
Start() function are as follows:

// Aim System

public GameObject Pb = null;

public GameObject Pc = null;

public float Aspeed = 2.0f; // Agent Speed

// Agent Support

public bool MoveAgent = false;
public float AgentSentInterval
public GameObject Pa = null;
private Vector3 Adir = Vector3.zero;

private float AgentSinceTime = 100f; // Since resent

4f; // Re-send Interval

// Hero

public GameObject Ph = null;

public bool HeroXMotion = true;

public bool HeroYMotion = true;

private Vector3 Vh = Vector3.zero;

private float HeroSpeed = 0.5f;

private const float kHeroZMotionRange = 1f;

// Plane

public bool ShowAxisFrame = false;

public float D = -6.7f; // The distance to the plane

public Vector3 Vn; // Normal vector of reflection plane
public GameObject Pn; // Location where the plane center is

// Shadow

424

CHAPTER 9

public bool CastShadow = true;
public GameObject Ps; // Location of Shadow of Agent

// Reflection

public bool DoReflection = true;

public GameObject Pon; // Collision point of Agent

public GameObject Pr; // Reflection of current Agent position

// Treasure Collision

public bool CollideTreasure = true;

public GameObject Pt; // Treasure position
public float Tr = 2f; // Treasure radius
public bool ShowDebuglLines = true;

#iregion For visualizing
#endregion

void Start() {
Debug.Assert(Pa != null); // Verify proper setting
Debug.Assert(Pb != null);
Debug.Assert(Pc != null);
Debug.Assert(Pn != null);
Debug.Assert(Ps != null);
Debug.Assert(Pon != null);
Debug.Assert(Pr != null);
Debug.Assert(Pt != null);
Debug.Assert(Ph != null);
#region For visualization
#endregion

All public variables for MyScript have been discussed when analyzing the

CONCLUSION

Controller's MyScript component. The only internal states or private variables

maintained are for supporting the hero movement, reflection of the agent's velocity, Adir

(Adi,), and for keeping track of the elapsed time since the previous agent position and

velocity were reset, AgentSinceTime.

425

CHAPTER9 CONCLUSION

As in all previous examples, the Debug.Assert () calls in the Start() function ensure
proper setup regarding referencing the appropriate game objects via the Inspector
Window. The Update() function is organized into the following regions where the details
will be examined accordingly:

void Update() {
Step 0: Initial Error Checking

Step 1: The Aiming System

Step 2: The Agent

Step 3: The Hero motion

Step 4: The Plane and infront/parallel checks
Step 5: The Shadow

Step 6: The Reflection

Step 7: The collision with treasure
#region For visualization
#endregion

}
Step 0: Initial Error Checking

Expand this region and examine the following:

#region Step 0: Initial error checking
Debug.Assert((Pc.transform.localPosition -
Pb.transform.localPosition).magnitude > float.Epsilon);
Debug.Assert(Vn.magnitude > float.Epsilon);
Debug.Assert(Aspeed > float.Epsilon);
Debug.Assert(Tr > float.Epsilon);
// recoveries from the errors
if ((Pc.transform.localPosition -
Pb.transform.localPosition).magnitude < float.Epsilon)
Pc.transform.localPosition
= Pb.transform.localPosition - Vector3.forward;

426

CHAPTER9 CONCLUSION

if (Vn.magnitude < float.Epsilon)
Vn = Vector3.forward;

if (Aspeed < float.Epsilon)
Aspeed = 0.01f;

if (Tr < float.Epsilon)
Tr = 0.01f;

#endregion

These lines of code are simple edge case error checking before any computation
begins. The first three nonzero assertions are to avoid working with zero vectors and the
last assertion ensures that the treasure bounding sphere has a valid radius. The four if
statements are attempts to recover from ill-defined states. Notice the error recoveries
are rather ad hoc, where the application state is simply set to a defined situation. In a
real application, it is the responsibility of the game designers to ensure that inputs from
the users are not capable of setting or creating such ill-defined states. For example,
in this scenario, the game designer is responsible for defining limitations such that
during the aiming process, the user will not accidentally set the agent speed to zero or a
negative value.

Step 1: The Aiming System
Expand this region and examine the following:

#iregion Step 1: The Aiming System
Vector3 aDir = Pc.transform.localPosition -
Pb.transform.localPosition;
aDir.Normalize(); // assuming not located at the same point
Pc.transform.localPosition =
Pb.transform.localPosition + Aspeed * aDir;
if (!MoveAgent) { // controls only when agent is not moving
Pa.transform.localPosition =
Pb.transform.localPosition + 2 * Aspeed * aDir;
Pa.transform.localRotation =
Quaternion.LookRotation(aDir, Vector3.up);
Adir = aDir;
}

#endregion

427

CHAPTER9 CONCLUSION

This code computes

A, =(P.—P,).Normalize

A

P =P+ Agir

speed
and when the agent is not in motion, the code also computes

P =P, +2A_ A,

speed

Step 2: The Agent

Expand this region and examine the following:

#iregion Step 2: The Agent
if (MoveAgent) {
Pa.transform.localPosition += Aspeed * Time.deltaTime * Adir
AgentSinceTime += Time.deltaTime;
if (AgentSinceTime > AgentSentInterval) { // Should re-send
Pa.transform.localPosition = Pc.transform.localPosition
Adir = aDir;
Pa.transform.localRotation =
Quaternion.LookRotation(aDir, Vector3.up);
AgentSinceTime = of;

}
if (ShowVelocity && ShowDebuglines)

Debug.DrawLine(Pa.transform.localPosition,
Pa.transform.localPosition + 20f * Adir, Color.red);

#endregion

This code shows that actual computations are required for the agent object only
when MoveAgent toggle is enabled. When this toggle is enabled, the agent's new position
is updated via its current velocity

P, =P + (ElapsedTime X Apoca)Adir

428

CHAPTER9 CONCLUSION

Then, when the wall-clock elapsed time is more than the user-specified

AgentSentInterval, the agent position is reset to P, and its velocity is set to the current

(P.— P,). Normalize. The last line of code in this region draws a red line with length of 20

units from the agent position in its velocity direction when the user settings are favorable.

Step 3: The Hero Motion

Expand this region and examine the following:

#iregion Step 3: The Hero motion
// Hero's follows Agent (Pa) axis frame

Vector3 po = Pa.transform.localPosition;
Vector3 vx = Pa.transform.right;

Vector3 vy = Pa.transform.up;

Vector3 vz = Pa.transform.forward;

Vh.z += HeroSpeed * Time.deltaTime; // moved
if (Mathf.Abs(Vh.z) > kHeroZMotionRange) {
Vh.z = (Vh.z>0f) ? 1f : -1f;

HeroSpeed = -HeroSpeed;

}
if (HeroYMotion)

Vh.y= Mathf.Abs(Mathf.Cos(Mathf.PI * Vh.z));

if (HeroXMotion)

Vh.x= Mathf.Sin(Mathf.PI

Vector3 vhc = Vh.x * vx + Vh.

Ph.transform.localPosition
Ph.transform.localRotation
#endregion

* Vh.z);

y ¥ vy + Vh.z * vz;
po + vhc;
Pa.transform.localRotation;

The first four lines extract the agent axis frame: po being the origin and vx, vy, and vz

are the directions of the major axes. The last two lines set the position and orientation of

the hero

P,=P,+Vh.x x+Vhy y+Vh.z Z

P, .locationRotation = P, locationRotation

429

CHAPTER9 CONCLUSION

The lines in between compute and set the hero movement vector, Vh,

Vh.z = HeroSpeed x ElapsedTime
Vh. y = abs(cos (z Vh. z))

Vh.x =sin(z Vh.z)

Step 4: The Plane

Expand this region and examine the following:

#iregion Step 4: The Plane and infront/parallel checks
Vn.Normalize();
Pn.transform.localPosition = D * Vn;

// agent position checks
float paDotVn = Vector3.Dot(Pa.transform.localPosition, Vn);
bool infrontOfPlane = (paDotVn > D);

// Agent motion direction checks

float aDirDotVn = Vector3.Dot(Adir, Vn);

bool isApproaching = (aDirDotVn < 0f);

bool notParallel = (Mathf.Abs(aDirDotVn) > float.Epsilon);
#endregion

This region ensures a proper vector plane equation and computes object and
velocity to plane relationships. The first two lines compute

oV o . .
vV, =—- normalization after user manipulations
IV,
P,=DV,

Next, the in front of, approaching, and not parallel conditions are computed as
follows:

430

CHAPTER9 CONCLUSION

In frontOfPlane = (Pa Vn) >D

isApproaching = (Ad,., v) <0

n

notParallel = ”Am V || >0

These conditions will assist in determining if shadow casting, reflection, and
collision with the treasure bounding sphere should occur.

Step 5: The Shadow

Expand this region and examine the following:

#iregion Step 5: The Shadow
Ps.SetActive(CastShadow 88 infrontOfPlane);
if (CastShadow &&% infrontOfPlane) {
float h = Vector3.Dot(Pa.transform.localPosition, Vn);
Ps.transform.localPosition =
Pa.transform.localPosition - (h-D) * Vn;
if (ShowDebuglines)
Debug.DrawLine(Pa.transform.localPosition,
Ps.transform.localPosition, Color.black);

}

#endregion

The first line shows or hides the Ps game object depending on user command.
The next conditional statement determines if shadow computation should occur. This
computation will occur only if the user wants to examine shadow casting and if the agent
is in front of the plane. Shadow is computed by

h=P, -V,

a

p=p,—(h-D)V,

N

Lastly, when users specify, a black line is drawn from Pa to Ps to assist in visualizing
the projection.

431

CHAPTER9 CONCLUSION

Step 6: The Reflection

Expand this region and examine the following:

#iregion Step 6: The Reflection
Pon.SetActive(DoReflection 83 notParallel
88 infrontOfPlane && isApproaching);
Pr.SetActive(DoReflection 8& notParallel
8& infrontOfPlane && isApproaching);
Vector3 vr = Vector3.up; // Reflection vector
bool vrIsValid = false;
if (DoReflection && notParallel 8& isApproaching) {
if (infrontOfPlane) {
float d = (D -
Vector3.Dot(Pa.transform.localPosition, Vn))
/ aDirDotVn;
Pon.transform.localPosition =
Pa.transform.localPosition + d * Adir;
Vector3 von = Pa.transform.localPosition -
Pon.transform.localPosition;
Vector3 m = (Vector3.Dot(von, Vn) * Vn) - von;
vr = 2 * m + von;
Pr.transform.localPosition =
Pon.transform.localPosition + vr;
vrIsValid = true;
if (ShowDebuglines) {
Debug.DrawLine(Pa.transform.localPosition,
Pon.transform.localPosition, Color.red);
Debug.DrawLine(Pon.transform.localPosition,
Pr.transform.localPosition, Color.red);
}
// What will happen if you do this?
// if (von.magnitude < float.Epsilon)
if (von.magnitude < 0.1f) {
// collision with "virtual" bounding sphere
Adir = vr.normalized;

432

CHAPTER9 CONCLUSION

Pa.transform.localRotation =
Quaternion.LookRotation(Adir, Vector3.up);
}
} else {
Debug.Log("Potential problem!: high speed Agent,
missing the plane collision?");
// What can you do?

}

#endregion

The first two lines show or hide the Pon and Pr game objects based on user
command and the relationship between the agent and the plane. Reflection
computation will occur only if the user wants to examine the reflection, when the agent
is in front of the plane, has a velocity that is not parallel to the plane, and the velocity
is moving toward the plane. The in front of condition is a design choice; the parallel
condition is required to avoid undefined solutions; and the last condition is required
because when an object is in front of and moving away from the plane, no collision will
occur and thus no reflection computation is necessary.

Note that the outer if condition checks for user command, "not parallel”, and "is
approaching” conditions, whereas the "in front of" condition is checked in an inner if
statement. When all conditions are satisfied, the reflection position, Pr, is computed as

d=— : " . agent to plane distance
Adir ’ Vn)
P =P + d;ldl., agent intersects plane at P,,
V., =P,— P, plane to agent (—dAd,-,)
m= (Van -V)X}n -V, perpendicular to plane
V =V +2m reflection direction
P=P +V mirrored reflection of agent

433

CHAPTER9 CONCLUSION

The two red lines from Pa to Pon and from Pon to Pr are then drawn according to

VOl’l
essentially checking for the intersection of the bounding spheres around the agent and
v,

user's command. The last if statement compares to a small number, 0.1f. This is

n

the Pon position. When these two positions are close to each other or when is very
small, a collision is detected and Ad,., becomes the reflected direction, fldl., = V, . The
vrIsValid flag informs the next step, collision with the treasure bounding sphere, when
there is a valid reflection vector. Recall from Chapter 3 that bounding spheres are less
than ideal for detecting collisions for the rectangular agent, and yet, as in this case, when
rectangular objects are not aligned with the major axes, it is often the default solution.
You can now analyze the reason for checking the "in front of" condition in the
inner if statement. Recall that in the initial setup, the AimingSystem sends the agent
toward the plane. If a condition should occur where the agent's velocity indicates that
itis approaching the plane and yet its current position is not in front of the plane, then
there are two possible cases. First, the agent's initial position is behind the plane, and it
continues to move away from the plane. In this situation, there is no cause for concern as
everything is functioning as it should. However, if it is the second case, then something
should be done. Recall that the agent's position was already updated in Step 2; it
therefore may be the case that, in one update, the agent has moved from a position that
is in front of the plane to a position that is behind the plane. As you have observed, this
situation can occur for an agent traveling at high speeds. In this implementation, such
a situation is detected, and a warning message is printed to the Console Window. In an
exercise, you will be led to develop a solution for this missing collision problem.

Step 7: The Collision with Treasure

Expand this region and examine the following:

#iregion Step 7: The collision with treasure
Pt.SetActive(DoReflection && CollideTreasure);
Pt.transform.localScale = new Vector3(2 * Tr, 2 * Tr, 2 * Tr);
// this is the diameter
Pt.GetComponent<Renderer>().material.color =
MyDrawObject.NoCollisionColor;

if (DoReflection && CollideTreasure && vrIsValid) {

Vector3 vt = Pt.transform.localPosition -

Pon.transform.localPosition;

434

CHAPTER9 CONCLUSION

float dt = Vector3.Dot(vt, vr.normalized);
if ((dt >= 0) & (dt <= vr.magnitude)) {
Vector3 pdt = Pon.transform.localPosition +
dt * vr.normalized;
if ((pdt - Pt.transform.localPosition).magnitude <= Tr)
Pt.GetComponent<Renderer>().material.color =
MyDrawObject.CollisionColor;

}

#endregion

The first two lines of code show or hide the Pt sphere and set its radius according to
the user commands. The third line initializes the sphere to the no-collision color, white.
The treasure bounding sphere collision computation is performed only when the user
demands it and when reflection was successful in the previous step. The two lines of
code in the if condition compute

V,=P.-P, from P,, on the plane to P,
d=v.v project V, along V.

The inner if condition checks for 0<d, <|V |, or the condition when the projected
length is within the bounds of the reflected vector, and computes the V, projection
onV,, Py,

P, =P + dtVr treasure position ‘Z

Since the position, P, on the reflection vector is closest to the treasure position,
P, the reflection vector will intersect the treasure bounding sphere when the distance
between these two positions is less than the radius of the sphere; in other words, a
collision occurs when this condition is true:

B, -P| <T

closest distance is less than the treasure bounding sphere radius.

435

CHAPTER9 CONCLUSION

Takeaway from This Example

This has been the most complex example in this book. This example demonstrates
many of the concepts discussed throughout this book in a straightforward and
coherent application. Though the exact form and details involved can vary, all of the
interactions you have gone through in this example can be found in popular video
games. Notice how you approached the analysis and examination of both the scene
and the implementation. You first understood the entire narration: the aiming system,
agent traveling, hero movement, casting shadow, reflecting, and colliding. After that,
you categorized the scene and the implementation into distinct steps. This is a top-
down, divide, and conquer approach to problem analysis and solution derivation. The
lesson here is to understand the problem space, subdivide into smaller tasks, solve each
individually, and then combine the results as the final solution to the original problem.
Video games and the vast majority of software applications, graphical or otherwise, can
be intimidating when you first examine their requirements. The key is to avoid being
overwhelmed by the complicated problem narrative and to break the narrative down
into pieces that you can understand and accomplish, just like you did for this example.

Relevant mathematical concepts covered include most of the concepts learned in
this book. The important lesson here is that when combining concepts in solving a series
of related problems, it is critical to subdivide the problems into individual tasks and then
to apply the concepts to accomplish each task independently.

Relevant observations on implementation include what to avoid when building
software solutions. It is important to recognize that all example implementations in this
book were designed to serve a narrow purpose—to best showcase the math concepts.
This single goal overrides all other vital software development guidelines, including the
very important concepts of information hiding and abstraction. A significant strategic
effort was made to ensure that all solutions can be presented in a single execution
unit, MyScript, with most of variables being publicly accessible. Though the code in
the MyScript files is straightforward to comprehend and interact with, they can be
challenging to expand, generalize, and build upon. In the case of the last example, you
may have noticed the important and yet messy relationships between the individual
steps in the implementation. For example, the agent velocity is computed and updated
conditionally in Steps 1, 2, and 5. While the implementation of this last example served
well as a demonstration of vector operations, it does not serve to demonstrate how to
structure a video game. Properly designed software should hide essential information
and define abstract interfaces.

436

CHAPTER9 CONCLUSION

EXERCISES

You have witnessed the agent traveling right through the wall at high speed. This condition
is even detected in Step 5 of MyScript. In general, a straightforward solution for an object
traveling toward the wall is to define a line segment representing the current motion of the
object, in this case, the line segment

I(d)=P, +dA,,

and to compute the intersection of this line segment with the 2D plane that represent the wall
p-V,=D

If the computed d value is less than zero, then the intersection position is behind the object
and the object has overshot. Please refer to Figure 9-6 and observe that this computation is
already performed. Now, modify MyScript to avoid the overshooting situation by reflecting
the agent accordingly.

Replace the Unity Quaternion.LookRotation() function with your own quaternion
rotation functions.

Unity capsules are defined with respect to their center. This is why only half of the pacing hero
is above the agent. In this example, the height of the agent is exactly 1.0; you can place the
hero above the agent by offsetting its position by 0.5 when computing the offset vector, vhc,
in the Update() function

Vector3 vhc = Vh.x * vx + (Vh.y + 0.5f) * vy + Vh.z * vz;
With this fix, you can see the hero pacing on top of instead of "in" the agent.

437

CHAPTER9 CONCLUSION

Examine the line to plane intersection solution to the missed collision problem and observe
that the computation result is the actual amount of overshooting. This is invaluable information
if precision is important. For example, you can always backtrack the object by the overshot
amount and then perform the reflection. In other cases, such as in this example, where the
precise position of the agent is of less consequence, there is a simpler solution. You can
compute the in front of status for both the current and the next agent positions. If the status of
these two positions is different, you know during this update, the agent will overshoot the wall.
Notice that this solution only provides a binary answer, yes or no, and does not provide the
information on the amount overshot. Now, modify MyScript to support this solution.

It is somewhat annoying that the treasure bounding sphere interacts with the reflection vector
and not the actual agent. For example, after the reflection, the treasure bounding sphere does
not detect when the agent actually passes through it! Please modify MyScript to support the
highlight of the treasure bounding sphere after the reflected agent collides with it instead of
just its reflection vector.

What’s Next

This book approached introductory mathematical concepts from the perspective of
video game development. The relevant concepts in vectors are introduced, examined,
and applied in solving problems related to this one application area. Through this book
you have learned one of a large variety of flavors of vector applications. Though you
haven't learned everything about vectors and their applications, what you have learned
is a powerful tool set for solving some very important problems, both in and out of video
games and other interactive graphical applications.

You have learned that quaternion rotations only work when the rotation axis
passes through the origin. However, you have also witnessed and experienced that the
integration with matrix math can resolve this limitation but no details were provided.
It is hoped that the awareness of available, yet inaccessible information can serve as a
motivation to continue this fun and rewarding journey of learning.

438

CHAPTER9 CONCLUSION

In the meantime, you can begin practicing and experimenting with your newly

acquired powerful knowledge in vector applications. As a first step, you can tweak and

enhance the example from this chapter in the following ways:

Project shadows onto either side of the wall.

Compute shadow size as a function of object distance or
projection angle.

Reflect the agent when it approaches from either side of the wall.

Replace the wall definition to be based on three positions and
support the definition of a 2D region for shadow casting and

reflection.

Include an external wind factor to affect the agent's motion.

Next, you can consider supporting "gaming features" in the form of challenges,

accomplishments, and rewards. For example, include hazardous barriers that must be

avoided, treasures that can be collected when passed in close proximity, and power

ups in the form of speed increments when sufficient treasures are acquired. During

this process, you should constantly apply object-oriented design principles and design

separate classes to support and hide the behaviors of each element in the interaction.

As you can see, you are on your way to building your first agent exploration game!

The key is to describe what you want, depict the solution with careful drawings and

consistent symbol labels, and then implement and verify your solution, just as you have

followed in this book. It is fun, and practice really does make perfect.

439

Index

A

ActivateAgent toggle, 389, 390, 392
AgentSentlnterval, 412, 415, 429
Velocityaiming example:MyScript, 145
AlignVectors() function, 393, 401

Application programming interface (API), 3

Axis-aligned bounding box (AABB)
analyze controller MyScript
component, 45

horizontal interval, 42

rectangular plane, 42

3D example, 51
examine scene, 45
interact with example, 46
MyScript, 47-50
running, 44

two intervals, 43

Axis-aligned bounding boxes (AABB), 27, 28

Axis frames

components, 325, 345

components example
arbitrary axis, 320, 323, 324
examine scene, 319
goals, 318
MyScript, 321, 323
MyScript component, 319
project, 318

derivation, 313

labels, 306

motion control
examine scene, 341
interactions, 342

© Kelvin Sung, Gregory Smith 2023

MyScript, 342-345

running, 341

spaceship, 339, 340
non-collinear points, 313
perpendicular axes, 347
perpendicular unit vectors, 312
positions, 326, 408
position vector, 314, 315

position vector components, 315-317

spaceship, 408

unit vectors, 304

unity, 346

vector components
Cartesian analysis, 328, 329
position, 326, 328

vectors example
component values, 337, 338
examine scene, 330
interaction, 331-334
MyScript, 334-336
MyScript component, 331
project, 330

video games, 304, 305

Axis frames and 2D regions

bounds, 267, 268

2D planes, 265

example
bounding boxes, 273
examine scene, 269
MyScript, 271, 272
MyScript component, 270
running, 269

K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,

https://doi.org/10.1007/978-1-4842-9885-5

441

https://doi.org/10.1007/978-1-4842-9885-5

INDEX

Axis frames, quaternions
example
examine scene, 398
interaction, 399, 400
MyScript, 400-402
project, 397
perpendicular axes, 394
rotations, 394, 395, 403
Unity Quaternion class, 396

B

Bounding box
condition, 59
definition, 59
intersection example, 68
analyze controller MyScript
component, 62
bounding box over vehicle, 63, 64
examine scene, 62
goals, 61
MyScript, 64-68
requirements, 70, 71
Bounding spheres, 407
BrickSphere, 22

C

Cartesian axis frame
components, 307
components example, 311
examine scene, 309
MyScript, 310
MyScript component, 309
running, 308
value-scaled unit vectors, 309
position vector components, 307, 308

442

Cartesian Coordinate System, 3, 27, 30, 40,

74,102, 148, 169, 171, 303, 304,
306, 347, 407, 414
CenterSphere, 22
CheckerSphere, 12
Comprehensive and coherent
application
computed projection, 408
examine the scene, 409-411
example, 409
interaction, 413, 417
agent, 415, 416
aiming system, 414
colliding treasure, 422, 423
HeroYMotion, 416, 417
plane, 417-419
reflection, 420, 421
shadow, 419, 420
MyScript, 424-436
MyScript component, 411, 412
Computer graphics applications, 302
Computer vision, 2

D

Debug.Assert() function, 58, 166
Debug.DrawLine() function, 82
Debug.Log() function, 39, 365
Distance computation
positions/distance example
examine scene, 77
example, 78
MyScript component, 78
MyScript details, 79, 81
Project Window, 76, 77
Vector3 class, 81, 82
right-angle triangles, 74-76

E,F

Entity-Component-System (ECS), 3

G

General axis frame, 266
GitHub repository, 6

H

HeroSpeed, 417
HeroYMotion, 412, 416

,J, K
Integrated Development Environment
(IDE), 1, 4
Interpolation/chasing behavior,
quaternions
examine scene, 389
example, 388
gradual changes, 385
home-in behavior, 387
interaction, 389
MyScript, 390-392
MyScript component, 389
value changes, 385
IntersectRay() function, 283, 290, 291
Intervals
bound intersections example, 58
examine the scene, 55
interact with example, 55
MyScript, 56, 58
MyScript component, 55
Project Window, 54
running interval, 54
condition and results, 53

intersect or overlap, 52
min-max range
1D bounds, 32-36, 38-41
unity example, 31, 32
Y-axis, 30

L

Linear algebra, 2
Linear interpolation (LERP), 386, 393
Line segment
axis-aligned bounding
boxes, 208
definitions/implications, 231
1D example, 205
1D interval, inside-outside
test, 200-203
equation, 233
interval bound example, 204
examine scene, 205
MyScript component, 205
running, 204
test position, 204
MyScript, 206, 207
positions, 198, 199
subtended angle, 232
vector projection, 208
Line to line distance
example
examine scene, 223
line segment, 224
MyScript, 224-227, 230
MyScript component, 224

normalized vs. non-normalized

vectors, 228
running, 223
floating-point number, 221, 230

INDEX

443

INDEX

Line to line distance (cont.)
line segments, 219, 220
normalized vectors, 231
Line to plane intersection
example
bounds, 290
examine scene, 286
MyScript, 288-290
MyScript component, 287
running, 286

solving, 284, 285

Line to point distance
bounding sphere, 210
bounding volumes, 210
calculation, 212
example

computation, 212

examine scene, 213

interactive graphical
applications, 218

MyScript, 214-217

MyScript component, 214

running, 213

position, 210

M,N, O
Machine learning, 2
Mirrored reflection
across plane, 292
direction, 293
example
direction, 299
2D plane, 294
examine scene, 295
MyScript, 297, 298
MyScript component, 296
intersection computation, 292

444

P

PointInSphere(), 88, 94
Position vectors
Cartesian Coordinate System, 103
different positions, 104-106
example
examine, 107
interaction, 109-111
MyScipt, 111-117
MyScript component, 108
running vector, 107
following a vector, 103, 104
mathematical concepts, 118
unity tools, 118
Pythagorean Theorem, 73, 77, 81, 83, 94

Q,R

QAlignVectors() function, 405
QFromAngleAxis() utility function, 396
QRotation() function, 365, 397
Quaternion
concatenation
encodes rotation, 366, 367
examine scene, 369
interaction example, 370
MyScript, 370-372
project, 368
rotations, 373
running, 369
four-number representation, 405
multiplication, 406
rotations, 350, 351
rotation terminologies, 351, 352
tuple of four
angle/axis, encoding, 354
exercise, 363-366
floating-point numbers, 352, 353, 362

rotation example, 357-361
rotation limitation, 355
rotation operator, 354, 355
rotation positions.vectors, 356

S

Sphere colliders/bounding spheres
example
examine scene, 85
MyScript component, 85
MyScript details, 86-88
running sphere, 84
visualization, 88, 89
intersections example, 90
examine scene, 91
generalization, 93
MyScript component, 91
MyScript details, 92, 93
less-than-or-equal test, 84
3D interactive graphical
applications, 89
2D to 3D space, 83
Spheresintersects() function, 94
Spherical linear interpolation
(SLERP), 393
Start() function, 22, 38, 48, 56, 66, 79, 87,
114, 144, 158, 159, 166, 206, 214,
260, 279, 280, 288, 289, 297, 310,
321, 334, 335, 343, 359, 371, 372,
380, 390, 400, 424

T

3D Cartesian Coordinate System, 28, 29,
40, 72, 94, 105
2D planes projections
point to plane example, 281, 282

INDEX

examine scene, 278
MyScript, 279, 280
MyScript component, 278
running, 277

solving point, 276

video games, 274

Unity

engine, 3, 4

linear algebra, 2
mathematical computations, 1
scripting file, 24

setting up environment, 4, 5

Unity BoundingSphere, 94
Unity editor environment, 4

game building editor, 5
MyScript, 14-22

open project, 7, 8
operations, 23
terminologies, 24
unity hub, 6

working, 8,9, 11-14

Unity system, 407
Update() function, 19, 38, 41, 49, 50, 57,

68, 82, 87, 88, 114, 132, 144, 145,
159, 166, 167, 225, 272, 289, 311,
421, 426

V,W, X, Y, Z

Vector addition and subtraction

equation, 151

example, 154
examine scene, 155
interaction, 156-160
interaction, 159

445

INDEX

Vector addition and subtraction (cont.)

MyScript component, 155, 156
negated vector, 161
running vector, 154
geometric interpretation, 151-154
rules, 149, 150
zero vector, 150

Vector algebra, 97

application
wind condition, 162
wind condition example
interaction, 165
rules, 169
scaling (see Vector scaling)
wind condition example
examine scene, 163
external effect, 168
MyScript component,
164-167
project, 163
running, 163

Vector cross product

definition, 241
example, 244
Console Window, 246
2D plane, 250
examine scene, 245
MyScript, 248, 249
MyScript component, 246
running, 245
zero vector, 248
floating-point number, 301
geometric interpretation, 242, 243
perpendicular direction, 239
perpendicular vectors, 301
properties, 243, 244
subtended angle and projected
sizes, 236

446

3D coordinate system convention,
237,238
2D plane, 236, 239

Vector directions, align

example
examine scene, 377
interaction, 378-380
MyScript, 380, 381, 383
MyScript component, 378
project, 376, 377
rotation, 383

normalized vectors, 375

rotation representation, 376

Vector dot product, 407

angle between two vectors, 177-181
angle between vectors
2D plane, 181
examine scene, 182
magnitudes, 187, 189
MyScript, 185-187
MyScript component, 183
running, 182
Scene View window, 183, 184
definition, 174
direction and magnitude, 172
projections
example, 191-194
floating-point number, 197
magnitudes, 189
MyScript, 194-196
normalized vector, 190, 191
properties, 175, 176

relationship between two vectors, 173

spatial relationships, 172
Vector normalization, 124
Vector plane equation

2D plane, 252-254

2D plane position, 256, 257

example
examine scene, 258
MyScript, 260, 262, 263
MyScript component, 259
position vector, 264
running, 258
ShowPointOnPlane toggle,

259, 260
position, 255, 256
Vectors

algebra, 98

cross product, 349, 350

game object movements, 98

position, 102

relating two points, 99, 100, 102

velocity, 137

video games, 98

Vector scaling

arbitrary vector, 123

direction, 125

distance and a direction, 121

example, 121, 122

INDEX

normalization example

examine scene, 127
interaction, 128-130
MyScript component, 127
MyScript details, 130-135
project, 126

running, 126

vector-based logic, 135, 136

unity tools, 136

vector normalization, 124
Velocity

aiming example, 139

examine scene, 140
goals, 140

interaction, 142
MyScript, 143-146
MyScript component, 141
running, 140

unit vector, 147

DrawPositionVector portion, 138
speed, 137
Video game development, 438

447

	Table of Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Introduction and Learning Environment
	Introduction
	Choice of Unity Engine
	Setting Up Your Development Environment
	Notes on Installing Unity

	Unity Editor Environment
	Opening the Intro to Unity Project
	Working with the Unity Editor
	Working with MyScript
	To Learn More About Working with Unity

	How to Use This Book
	Summary
	References

	Chapter 2: Intervals and Bounding Boxes
	Introduction
	Review of Cartesian Coordinate System
	Intervals: Min-Max Range
	Working with Examples in Unity
	The Interval Bounds in 1D Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis-Aligned Bounding Boxes: Intervals in Three Dimensions
	The Box Bounds Intervals in 3D Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Intervals
	The Interval Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Bounding Boxes
	The Box Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Placement of the Bounding Box over the Vehicles
	Bounding Box Collisions
	Void Space of a Bounding Box

	Details of MyScript
	Takeaway from This Example

	Final Words on Bounding Boxes
	The Unity Bounds Class

	Summary

	Chapter 3: Distances and Bounding Spheres
	Introduction
	Distances Between Positions
	The Positions and Distances Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Sphere Colliders or Bounding Spheres
	The Sphere Bounds Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Collision of Bounding Spheres
	The Sphere Bound Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	The Unity BoundingSphere Class
	Summary

	Chapter 4: Vectors
	Introduction
	Vectors: Relating Two Points
	Position Vectors
	Following a Vector
	Following a Vector from Different Positions
	The Position Vectors Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Position Vector
	Vector Defined by Two Points

	Details of MyScript
	Region: Visualization on/off
	Region: Position Vector
	Region: Vector from Two Points

	Takeaway from This Example

	Vector Algebra: Scaling
	Normalization of Vectors
	Direction of Vectors
	The Vector Scaling and Normalization Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Scaled Vector
	Normalized or Unit Vector
	Position Vector from Direction and Magnitude
	Summary of Interaction

	Details of MyScript
	Visualization on/off
	Vector Va
	DrawScaledVector
	DrawUnitVector
	DrawPositionVector

	Takeaway from This Example

	Application of Vector: Velocity
	The Velocity and Aiming Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Process the Explorer
	Process the Agent

	Takeaway from This Example

	Vector Algebra: Addition and Subtraction
	Rules of Vector Addition and Subtraction
	Addition and Subtraction with the Zero Vector
	Vectors in an Equation
	Geometric Interpretation of Vector Addition and Subtraction
	Vector Addition
	Commutative Property of Vector Addition
	Vector Subtraction

	The Vector Add and Sub Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Vector Addition and the Commutative Property
	Vector Subtraction
	Position Vector

	Details of MyScript
	Takeaway from This Example

	Application of Vector Algebra
	The Windy Condition Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 5: Vector Dot Products
	Introduction
	Vector Dot Product: Relating Two Vectors
	Definition of Vector Dot Product
	Properties of Vector Dot Product
	The Angle Between Two Vectors
	The Angle Between Vectors Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Vector Projections
	The Vector Projections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Representation of a Line Segment
	Inside-Outside Test of a General 1D Interval
	The Line Interval Bound Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Point Distance
	The Line to Point Distance Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Line Distance
	The Line to Line Distance Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary
	Vector Dot Product Definition and Implications
	Interpreting the Dot Product Results
	Insights into the Subtended Angle
	The Line Equations

	Chapter 6: Vector Cross Products and 2D Planes
	Introduction
	3D Coordinate System Convention
	Unity Follows the Left-Handed Coordinate System

	Vector Cross Product: The Perpendicular Direction
	Definition of Vector Cross Product
	Geometric Interpretation of Vector Cross Products
	Properties of Vector Cross Product
	The Vector Cross Products Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	The Vector Plane Equation
	The Position Pn on a Plane
	Given a Position on a Plane
	Positions on 2D Planes
	The Vector Plane Equations Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis Frames and 2D Regions
	Bounds on a 2D Plane
	The Axis Frames and 2D Regions Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Projections onto 2D Planes
	The Point to Plane Projections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Line to Plane Intersection
	The Line Plane Intersections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Mirrored Reflection Across a Plane
	The Reflection Direction
	The Line Reflections Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 7: Axis Frames and Vector Components
	Introduction
	Positions in the Cartesian Axis Frame
	Components of a Position Vector
	The Components of Cartesian Axis Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Positions in General Axis Frames
	Review of Axis Frame Derivation
	Position Vectors in General Axis Frames
	Components of Position Vectors
	The Components of Any Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Vectors in Axis Frames
	Vector Components
	Analysis in Cartesian Axis Frame

	The Vectors in Any Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Defined by Specified Components
	Analyze in Derived and Cartesian Axis Frames
	Defined by Positions

	Details of MyScript
	Takeaway from This Example

	Motion Control in Axis Frames
	The Motion in Axis Frame Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Axis Frames in Unity
	Summary

	Chapter 8: Quaternions and Rotations
	Introduction
	Rotation Terminologies
	Quaternion: Tuple of Four
	Encoding of Angle and Axis
	Rotation Operation
	Quaternion Rotation Limitation
	Rotating Positions and Vectors
	The Rotation with Quaternion Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Quaternion Concatenation
	The Quaternion Concatenation Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Aligning Vector Directions
	The Align Vector Directions Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Interpolation and Chasing Behavior
	Interpolation: Gradual Changes
	The Chasing or Home-In Behavior
	The Chasing Behavior Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Aligning Axis Frames
	The Unity Quaternion Class
	The Align Frames Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Details of MyScript
	Takeaway from This Example

	Summary

	Chapter 9: Conclusion
	The Final Comprehensive Example
	Examine the Scene
	Analyze Controller MyScript Component
	Interact with the Example
	Interact with the Aiming System
	Interact with the Agent
	Interact with the Hero Motion
	Interact with the Plane
	Interact with the Shadow
	Interact with the Reflection
	Interact with the Colliding Treasure
	Summary of Interaction

	Details of MyScript
	Step 0: Initial Error Checking
	Step 1: The Aiming System
	Step 2: The Agent
	Step 3: The Hero Motion
	Step 4: The Plane
	Step 5: The Shadow
	Step 6: The Reflection
	Step 7: The Collision with Treasure

	Takeaway from This Example

	What’s Next

	Index

