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Introduction

Welcome to Basic Math for Game Development with Unity 3D. Because you have picked 

up this book, you are probably interested in finding out more about the mathematics 

involved in game development or, maybe, in the details of fascinating applications like 

Unity. This can be the perfect book to begin with your exploration.

This book uses interactive examples in Unity to present each mathematical concept 

discussed, taking you on a hands-on journey of learning. The coverage of each topic 

always follows a pattern. First, the concept and its relevancy in video game functionality 

are described. Second, the mathematics, with a focus on applicability in game 

development and interactive computer graphics, are derived. Finally, an implementation 

of the concept and derived mathematics are demonstrated as an example in Unity.

Through interacting with these examples, you will have the opportunity to explore 

the implications and limitations of each concept. Additionally, you can examine the 

effects of manipulating the various related parameters. Lastly, and very importantly, 

you can study the accompanied source code and understand the details of the 

implementations.

In Chapter 2, you will begin by reviewing simple number intervals in the Cartesian 

Coordinate System. Chapters 3 and 4 let you examine and learn about vectors and the 

rules of their operations to formally relate positions in 3D space. Chapters 5 and 6  

study the vector dot and cross products to relate vectors and the space that defines 

them. Chapter 7 leads you to work in multiple coordinate spaces simultaneously to 

address compound issues such as describing motions inside a navigating spaceship. 

Chapter 8 introduces quaternions and the rotation operator and Chapter 9 concludes 

with the basic math involved in game development. Throughout this book, you will 

learn the mathematical and implementation details of bounding boxes; bounding 

spheres; motion controls; ray castings; projecting points to lines and planes; computing 

intersections between fast-traveling objects; projecting objects onto 2D planes to create 

shadows; computing reflections; working in multiple coordinate spaces; rotations to 

align vectors; and much more!
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�Who Should Read This Book
This book is targeted toward video game enthusiasts and hobbyists who have some 

background in basic object-oriented programming. For example, if you are a student 

who has taken an introductory programming course, or are a self-taught programming 

enthusiast, you will be able to follow the concepts and code presented in this book with 

little trouble. If you do not have any programming background in general, it is suggested 

that you first become comfortable with the C# programming language before tackling 

the content provided in this book.

Besides a basic understanding of object-oriented programming, you will also need 

to be familiar with the Cartesian Coordinate System, basic algebra, and knowledge in 

trigonometry. Experience and working knowledge with Unity are not required.

�Code Samples
Every chapter in this book includes examples that let you interactively experiment with 

and learn the new materials. You can download the source code for all the projects from 

the following page: www.apress.com/.

Introduction
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CHAPTER 1

Introduction and Learning 
Environment
After completing this chapter, you will be able to

•	 Know the details of what this book is about

•	 Understand the style that this book uses to present concepts

•	 Install Unity and an Integrated Development Environment (IDE) for 

developing programming code

•	 Access the accompanying source code and run the example projects

•	 Understand the Unity terminology used throughout this book

•	 Begin to appreciate the intricate details of math for game 

development

�Introduction
When you think of math in a video game, you may picture health bars, attack stats, 

experience points, and other game mechanics. You may not consider the underlying 

math that enables the in-game physics world, such as calculating gravity, movements, 

or enemy chasing behaviors. Additionally, you may not consider physical interaction in 

a mathematical manner, such as collisions between different objects and the reflections 

of these objects after they collide. These underlying mathematical computations are 

critical to implementing a successful video game. When creating a game, whether you 

intend on using a game engine or you intend on performing the computations yourself, 

understanding the details and knowing how the underlying mathematics work and 

when to use them to create what you want, where you want, is vital.

https://doi.org/10.1007/978-1-4842-9885-5_1
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Traditionally, math is taught without any application contexts. Typically, theories 

are developed based on abstract symbols, formulas are derived to support these 

theories, and then numbers are used to verify the formulas. You are tested on whether 

you can generate the correct solution based on how the formulas are applied. It is 

believed that learning math in this manner has the benefit of granting learners the 

ability to understand the concepts being taught at the pure abstraction level. Then, 

once understood, the application of these concepts to different disciplinary contexts 

becomes straightforward. For many learners, this assumption is certainly true. However, 

for other types of learners, it can be difficult to appreciate the intricate details in the 

abstract without concrete examples or applications to build off. This fact is recognized 

by educators and often story problems are introduced after a basic understanding is 

established to help learners gain insights and appreciate the formulas. This learning 

approach is taken on and exploited in the context of linear algebra and video games.

This book takes you on the journey of learning linear algebra, a branch of 

mathematics that is the foundation of interactive graphical applications, like video 

games. While the underlying theories can be abstract and complicated, the application 

of these theories in graphical object interactions is relatively straightforward. For this 

reason, this book approaches linear algebra topics in a concrete manner, based around 

game-like examples that you can interact with. Through this book, you will learn a flavor 

of linear algebra that is directly applicable to video games and interactive computer 

graphics as a whole.

Every math concept presented in this book is accompanied with concrete examples 

that you can interact with and are relevant to video game development. It is the intent of 

this book that you will learn and know how to apply the concepts in solving the problems 

you are likely to encounter during game development. A direct consequence of this 

focused approach is that readers may find it challenging to apply the knowledge gained 

throughout this book to other disciplines, like machine learning or computer vision. For 

example, the dot product, which will be covered in Chapter 5, can be used to calculate 

intersection positions, and it can also be used in machine learning algorithms as a data 

reduction tool; however, this book will only focus on the video game applications of 

the dot product. If you are looking for general knowledge in linear algebra, you should 

consider a more traditional textbook. Such a book is likely to cover concepts at levels that 

are suitable for applications for multiple problem spaces. If you are interested in solving 

problems specific to interacting graphical objects, especially for game development, 

then this is the perfect book for you.

Chapter 1  Introduction and Learning Environment
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After the introduction to the game engine and terminologies in this chapter, 

Chapter 2 reviews the Cartesian Coordinate System and number intervals leading to 

the exploration of one of the most widely used tools in game development—bounding 

boxes. Chapter 3 continues bounding volume exploration by examining bounding 

spheres while also beginning the investigation of relationships between positions. 

Chapter 4 introduces vectors to formalize the relationships between positions in 3D 

space and applies vector concepts in controlling and manipulating object motions under 

external effects like wind or current flow. Chapter 5 presents the vector dot products 

to relate vectors, represents line segments based on vectors, and demonstrates the 

application of these concepts in computing distances between objects and motion paths 

when approximating potential collisions. Chapter 6 discusses the vector cross product, 

derives the space that defines vectors, defines vector plane equation, and illustrates 

the application of these concepts in computing intersections and reflections of moving 

objects and 2D planes. Chapter 7 examines the axis frame, or the derived space that 

contains vectors, analyzes the representation of vectors in different axis frames, and 

explains how to work with movements in axis frames that are dynamically changing, 

such as object motions in a navigating spaceship. Chapter 8 introduces the quaternion 

as a tool for rotating vectors, analyzes the relevant properties of quaternions, and 

demonstrates the alignments of 3D spaces based on quaternions. Finally, Chapter 9 

summarizes all of the concepts presented in an aggregated example.

�Choice of Unity Engine
Unity is the choice of platform for presenting the mathematical concepts covered in 

this book for three reasons. First, Unity provides elaborate utilities and efficient support 

for its user to implement and visualize solutions based on mathematical formulas. Its 

application programming interface (API) implements the basic and many advanced 

linear algebra functionalities, while the Entity-Component-System (ECS) game object 

architecture allows straightforward user scripting. These qualities give Unity a close 

pairing of math concepts to your programming code, assisting in the visualization of the 

mathematical solution that you are trying to understand. This close pairing cannot be 

understated and is the backbone of this book.

The second reason for choosing Unity is that, being a game engine, the system allows 

for a high degree of intractability with the solution as well as the ability to visualize that 

solution. For example, in addition to being able to examine the results of a ray and 2D 

Chapter 1  Introduction and Learning Environment
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plane intersection computation in real time, you will also be able to manipulate the 

ray and the 2D plane to observe the effects on the intersection. The ability to interact, 

manipulate, and examine the application of mathematical concepts in real time will give 

you a greater understanding and appreciation for that concept. Third and finally, Unity 

is chosen because there is no better way to learn math concepts for video games than 

through a popular game engine!

While this book is meant for readers who may be interested in building a video game 

in Unity, the focus of this book is on the math concepts and their implementations and 

not on how to use Unity. This book teaches the basic mathematical concepts that are 

relevant to video game development using Unity as a teaching instrument. This book 

does not teach how to use the math provided by Unity in building video games. You 

should focus on understanding the math rather than the Unity-specific functionality. 

For example, a position in 3D space in Unity is located at transform.localPosition; 

you should focus on working with that position and not be concerned about the Unity.

Transform class. Ultimately, you should be able to take what you have learned in this 

book and apply to developing games in any game engine.

Note U nity Technologies is the name of the company; the game engine is most 
often referred to as Unity, though it is sometimes called Unity 3D. For simplicity, 
this book refers to the entire game engine system as Unity.

�Setting Up Your Development Environment
There are two main applications that you will work with when using Unity. The first is 

the game engine editor, which will be referred to as Unity or Unity Editor throughout this 

book. The Unity Editor can be thought of as the graphical interface to the Unity game 

engine. The second application you will need is a script editing Integrated Development 

Environment (IDE). Microsoft’s Visual Studio Community 2019 is the IDE of choice for 

developing the C# script examples in this book. This software will be referred to as the 

Script Editor, or the IDE, throughout the rest of this book.

To begin your download and installation of Unity and Visual Studio Community 

2019, go to https://store.unity.com/download?ref=personal, accept the terms, and 

then download Unity Hub.

Chapter 1  Introduction and Learning Environment
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Note  If you ever find yourself stuck at a certain point in this book, whether on 
installing Unity or just using it, there is a plethora of tutorials online, many of which 
were referenced in the development of this book and will be listed at the end of 
this chapter.

�Notes on Installing Unity
This book is based on Unity in its most basic form. Unless you know what to specify 

when installing features or desire extra features, it is suggested you follow the default 

settings. Please begin downloading, installing, and launching the Unity Hub if you 

haven’t already. When Unity Hub is up and running, navigate to the Installs tab on 

the left side, and select the Install Editor button in the top right. From here, you will 

be prompted with a list of different Unity versions. The version that this book uses is 

2021.3.25f1. If you do not see this version in the selected list, you can go to this link 

https://unity3d.com/get-unity/download/archive and find it there to download. 

It should be noted that while this book is based on Unity 2021.3.25f1, any version at or 

newer than this version should suffice but is not guaranteed.

After selecting your Unity version, you will be prompted with options to install 

extra features. As mentioned previously, this textbook only requires the default options. 

These options, if you are running on Windows 10 or 11, should only be the suggested 

IDE, “Microsoft Visual Studio Community 2019.” If you already have Visual Studio 2019 

installed, then you may uncheck that option. Once you have selected all the features 

you want, begin the install process and then move onto the next section to begin 

familiarizing yourself with the source code used throughout this book.

�Unity Editor Environment
It should be noted, again, that in this book Unity is used as a tool for learning math 

concepts for game development and not as a game building editor. This means many 

Unity-specific and game building–related information that do not pertain to the concept 

at hand will simply be skipped. For example, this book does not discuss how to create 

or save Scenes or how to build a final executable game. If these are subjects of interests, 

you should consider research through the many online tutorials or for example refer 

Chapter 1  Introduction and Learning Environment
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to the Learn tab of the Unity Hub. It should also be noted that all examples throughout 

this book will be run and interacted with through the editor and not as games. This will 

become clearer as the first example is discussed.

Now that you have Unity and the IDE installed and ready to go, you can refer to the 

GitHub repository located at https://github.com/Apress/Basic-Math-for-Game-

Development-with-Unity-3D. After downloading the repository, open Unity Hub and 

add the Chapter-1Introduction project. Directions on how to do this can be seen in 

Figure 1-1.

Figure 1-1.  Opening Chapter-1-Introduction (the Intro to Unity Project) from 
Unity Hub

As Figure 1-1 shows, to add a project, navigate to the Projects tab and then select 

the Open button. From here, navigate to where you downloaded the source code to this 

book. You will notice that the file structure is organized according to chapters. The first 

example you should open using the Open button is Chapter-1-Introduction. Note that 

after a project is opened, you need to click the newly opened project to launch it.

Figure 1-1 also establishes where the Learn tab is located. Here you can view and 

select Unity sponsored tutorials. The “Foundational Tutorial” category contains tutorials 

that will be very helpful to those who have never used Unity before as it contains 

tutorials such as “Welcome to Unity Essentials” and “Explore the Unity Editor.” At the 

end of this chapter, there are some additional suggestions as to which tutorials to follow 

if you are new to Unity or just need a refresher.

Chapter 1  Introduction and Learning Environment

https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D
https://github.com/Apress/Basic-Math-for-Game-Development-with-Unity-3D


7

�Opening the Intro to Unity Project
To open a project from Unity Hub, simply click it. The first time you try to open any 

projects from this book, you will encounter the following two steps:

•	 Unity will invite you to select the version to use; you can simply select 

the version you just installed.

•	 Unity will display an information dialog box titled, “Opening Project 

in Non-Matching Editor Installation,” you can simply click the 

Continue button.

The first time opening a project will take a while for Unity to copy the support library 

and perform system configuration. Once you open Chapter1-Introduction, you should 

be confronted with a window similar to the screenshot in Figure 1-2. If you do not see a 

screen similar to that of Figure 1-2, make sure the IntroToUnity scene is open and not 

an Untitled scene. To open the IntroToUnity scene, find it in Asset folder under the 

Project Tab and double-click to open it.

Figure 1-2.  Running the IntroToUnity scene in the Chapter-1Introduction project

Chapter 1  Introduction and Learning Environment
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Figure 1-2 shows a very simple scene. There is the Controller game object and 

three different spheres. Each sphere is named after the design pattern placed upon it: 

CheckerSphere, BrickSphere, and StripeSphere. In this screenshot, the Controller 

object is selected so you can observe the MyScript component on the right. The 

Controller object and the MyScript component are present in every example in this 

book and will be described in detail. The purpose of this example is to familiarize you 

with how examples are organized and to establish terminologies that will be used 

throughout the book.

�Working with the Unity Editor
Figure 1-2 is an example of what the Unity Editor looks like and is one of the two editors 

you will be working in. The other editor, the Script Editor, or IDE, will be discussed later. 

Figure 1-3 illustrates the various functionalities of the Unity Editor.

Figure 1-3.  The Unity Editor Environment

Chapter 1  Introduction and Learning Environment
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Figure 1-3 overlays the editor in Figure 1-2 with labels identifying the different 

windows presented by the Unity Editor and establishes the terminologies that will be 

used from here on:

•	 A: The Play and Pause buttons: In the top-center area, you can see 

the Play and Pause buttons. These buttons control the running 

(or playing) of the game. Feel free to click the Play button, give the 

system a few seconds to load, and then observe the movements of 

the spheres in the scene. If you click the Play button again, the game 

will stop running. You will learn more about and work with these 

buttons later.

•	 B: The Scene View window: The main 3D window in the top-left 

region of the Unity Editor is the main area for performing interactive 

editing. In Figure 1-2, this window is displaying the Scene View of 

the game.

•	 C: The Scene and the Game View tabs: Above the Editor Window 

(B), you can spot the Scene and Game tabs. If you select the Game 

tab, then Unity will switch to the Game View which is what a player 

will see in an actual game. An example of the Scene View next to the 

Game View can be seen in Figure 1-4.
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Figure 1-4.  The Scene View (top) and the Game View (bottom)

Note P lease pay attention to the differences between the Scene and Game 
Views. The Scene View is meant for the game designer to set up a game scene, 
while the Game View is what a player of the game would observe while playing the 
game. While both views can be invaluable tools for examining the intricate details 
of the mathematical concepts, you will be working exclusively with the Scene View.
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Note T o help distinguish between the Scene and the Game Views, as depicted 
in Figure 1-4, in all the examples for this book, the Scene View has a skybox-like 
background, while the Game View window has a constant, light blue backdrop. 
Once again, you will be working exclusively with the Scene View, the view with the 
skybox-like background.

EXERCISE

Working with the Scene View Window

Left-click and drag the Scene View tab to see that you can configure and place the Scene 

View window at different configuration locations throughout the Unity Editor or even outside as 

an independent window. This is the case for most of the Unity tabs, including the Game View 

window. Figure 1-4 shows the Scene View and Game View windows as two separate windows 

that can be examined simultaneously.

Figure 1-5 is a close-up view of the Hierarchy Window, which is labeled as D in 

Figure 1-3.

Figure 1-5.  The Hierarchy Window

Note T he crossed-out finger icon next to the last object, zIgnoreThisObject, 
disables click-select functionality in the editor window. In all examples, objects that 
are not meant to be interacted will have the crossed-out icon next to them.
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•	 D: The Hierarchy window: In the Unity Editor, this window 

(Figure 1-5) is typically anchored to the left of the Scene View and 

above the Project/Console Windows (F). The Hierarchy Window 

displays every object and its parental relationship to other objects 

in the scene. Just like the Scene View and Game View, the Hierarchy 

Window can be moved and placed wherever you desire. You should 

observe the different objects within the Hierarchy Window. There 

is the Controller, which will be discussed later, but for now know 

that it contains the script that supports your interaction with the 

scene; the CheckerSphere, which is the checkered sphere; as well as 

the BrickSphere and StripeSphere, which also correspond to their 

object’s descriptions. Finally, there is the zIgnoreThisObject object; 

this last object supports the setup of the game environment for the 

learning of math concepts specific to each example. You will never 

need to interact with this object, and therefore this book will ignore 

this object as its details can be distracting. You are, of course, more 

than welcome to examine and explore this object, and any others, at 

your leisure.

Note T ry clicking the different objects in the Hierarchy Window and observe how 
the Scene View highlights the object you have selected while the Game View does 
not. This simple feature underscores how the Scene View is meant for scene edits 
while the Game View is not.

EXERCISE

Observe Differences Between the Scene View and Game View

Select different spheres in the Hierarchy Window and switch between the Scene and Game 

Views to observe the differences between these two views. You should notice that the selected 

sphere is highlighted in the Scene View and not in the Game View. It is essential to differentiate 

between these two views when you manipulate the scene in examining concepts. Once again, 

and very importantly, all examples in this book work exclusively with the Scene View.
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Figure 1-6 is a close-up view of the Inspector Window, which is labeled as E in 

Figure 1-3.

Figure 1-6.  Inspector Window with the Controller object selected in the 
Hierarchy Window

•	 E: The Inspector Window: The Inspector Window (Figure 1-6) displays 

the details of the selected object for the user to inspect and manipulate. 

The Inspector Window is typically located on the right of the Scene View. 

Just like all other windows described, it can be placed wherever you want. 

The selected object being displayed in Figure 1-6 is the Controller. 

Notice that there are two components attached to this object: Transform 

and MyScript. Figure 1-6 shows that you can expand and compress 

each of the components to examine or hide their details. In this case, 

the Transform and MyScript components are expanded. The MyScript 

component is the custom script developed for this book. Note that on the 

left side of the MyScript component are the names of the public variables 

defined in the script: Left Sphere, Center Sphere, and Right Sphere. 

Directly across from these variable names, you can see their values or 

the objects that the corresponding variables reference: CheckerSphere, 

BrickSphere, and StripeSphere. These aspects of the MyScript 

component will be explained in more detail in the next section.
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•	 F: The Project and the Console windows and tabs: The Project 

Window displays the file structure of your project. This is where 

scripts, prefabs, materials, and everything else that will be loaded 

into your game are located. The Console Window is where Unity will 

output debug messages, warnings, and errors, all of which can be 

very helpful in debugging your code if something goes wrong. The 

Project Tab and Console Tab allow you to switch between these two 

windows just like the Game View and Scene View tabs do. These 

windows can also be moved around and placed wherever you decide.

Figure 1-3 shows the default layout used by this book. In the rest of this book, the 

corresponding windows will be referenced by their name as depicted in Figure 1-3. If you 

accidentally close one of these windows, they can be reopened by going to the Window 

drop-down menu at the top of the Unity Editor and then selecting the General option. 

There you will see a list of all of the windows that have been discussed.

Note  In later chapters, there will be folders added to the Project Window such as 
Editor, Resources, and so on. These folders will include utilities that the book uses 
to create the examples. You are more than welcome to explore these. However, 
please keep in mind that the content in these folders will not be relevant to 
learning the mathematical concepts presented. For example, the Resources folder 
is a special folder that Unity searches for object blueprints known as prefabs. 
Knowing about these prefabs is irrelevant to learning the math concepts and 
therefore will not be covered.

�Working with MyScript
In general, a Unity script is a component with code that can be attached to any game 

object. This script can then modify the behavior of that object or the entire game. All 

scripts presented in this book are written in C#.

Throughout this book, in each example you will only have to work with one script. 

This script will have MyScript be part of its name, for example, EX_2_1_MyScript, 

and will always be attached to the Controller object. It is important to note that the 

Controller object in all of the examples is empty (it does not contain anything visible) 
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and does not perform any function other than to present the MyScript script for your 

interactions. The MyScript script always implements and demonstrates the concept 

being studied.

Figure 1-7 shows how you can open and edit MyScript.

Figure 1-7.  Invoking the Script Editor

There are two ways to open and edit scripts in Unity. The first method is depicted 

in Figure 1-7. To open and examine the source code of MyScript, select Controller in 

the Hierarchy Window, and then in the Inspector Window with the mouse pointer over 

the MyScript component, left-click the Settings button (the three-dots icon in the top 

right of the MyScript component) or right-click the name of the MyScript component 

(“My Script (Script)”). Both of these actions will trigger the pop-up menu as depicted 

in Figure 1-7. From there, select the “Edit Script” option at the very bottom. The second 

way to open and edit a script is by double-clicking the script icon in the Project Window. 

In all of the examples, MyScript is located in the Assets/ folder. Once you open 

MyScript, you should see a pop-up window showing the progress of Unity invoking 

the IDE.

After your Script Editor has loaded, you should see a screen similar to that of 

Figure 1-8, which shows the MyScript’s code using Visual Studio under the light theme.
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Figure 1-8.  Overview of the code in MyScript

Figure 1-8 is a screenshot of the IDE with MyScript opened. Notice that the name of 

the script, MyScript, is also the name of the C# class and is a subclass of the Unity class 

MonoBehavior. Once again, the name of the script in each example will always contain 

the MyScript substring. In each example, with each script, you will only need to pay 

attention to the following three items:

•	 Variables: Make sure you take note of the variables in each script. A 

public variable will show as a variable that can be edited through the 

Inspector Window, which was seen previously in Figure 1-6. A private 

variable is one that can only be accessed in the code. In Figure 1-8, 

you can see the three public variables, LeftSphere, CenterSphere, 

and RightSphere. Notice how these are the same variables from 

Figure 1-6, demonstrating that public variables are indeed accessible 

from the Inspector Window when the corresponding game object 

(in this case, Controller’s MyScript component) is selected. In this 

example, each of the variables is of the GameObject type. This means 

each variable can hold a reference to one of the game objects in the 

scene. The other variable, kSmallDelta, is the only private variable. 

Notice how this variable does not appear in the Inspector Window 

in Figure 1-6. The k in front of the variable name is a convention that 

indicates the variable is a constant (read-only) variable.

•	 Start() function: This function will be called once the Play button 

from Figure 1-3 (A) is clicked. In this book, the Start() function 

always initializes the scene.
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•	 Update() function: This function is called after the Start() function 

is executed and continues to be called at a real-time rate, or about 

60 times per second while the Play button is active. In this book, the 

Update() function continuously computes the corresponding math 

concepts and supports interaction.

The Start() function of MyScript is listed as follows:

void Start(){

    Debug.Assert(LeftSphere != null);    // Make sure proper

                                            editor setup

    Debug.Assert(CenterSphere != null);  // Assume properly

                                            initialized to

    Debug.Assert(RightSphere != null);   // Checker, Brick,

                                            and, Stripe

}

In this example, the Start() function ensures that all of the public variables 

are properly initialized. Note that the Start() function does not attempt to make 

assignments to these variables; instead, it prints out an error message to the Console 

Window if the variables have not been assigned values by the time the user hits the 

Play button. In Figure 1-8 lines 7 through 9, these three public variables are set to null 

references. However, if you launch the game, you’ll notice that these three spheres in the 

scene are moving. These observations indicate that the public variables must have been 

properly initialized somewhere such that no debug errors are printed by the Start() 

function. As will be explained, in this scenario, the user has assigned proper references 

to these variables through the Inspector Window.
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Figure 1-9.  Accessing public variables of MyScript in the Inspector Window

Unity allows you to drag and drop game objects from the Hierarchy Window 

into the value fields of matching variable types in the Inspector Window to establish 

variable to object references. In this case, as depicted in Figure 1-9, one way to establish 

initial values for the three public variables is by selecting the Controller object in the 

Hierarchy Window and then dragging the CheckerSphere game object and dropping 

it in the value field of LeftSphere variable and the BrickSphere and StripeSphere, 

respectively, in the CenterSphere and RightSphere value fields. With these initial values 

assigned, when the script begins to run, any reference to the LeftSphere, CenterSphere, 

or RightSphere variables will result in accessing the CheckerSphere, BrickSphere, 

or StripeSphere game object in the scene. This functionality of assigning values to 

variables through the Inspector Window is not unique to MyScript and is supported for 

any public variable in any script.

Note  For readability, Unity adopts the strategy of labeling an identifier by dividing 
the name at the capital letter positions. For example, the variable identifier, or 
name, “LeftSphere” is labeled as “Left Sphere” in the Inspector Window. For 
convenience and consistency, as you have already seen, this book will refer to all 
game objects and variables by their identifier, that is, LeftSphere.
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The Update() function of MyScript is listed as follows:

void Update(){

    // This prints the argument string to the Console Window

    Debug.Log("Printing to Console:

               Convenient way to examine state.");

    // Update the sphere positions

    //      Left moves in the positive X-direction

    LeftSphere.transform.localPosition

        += new Vector3(kSmallDelta, 0.0f, 0.0f);

   // Center moves in the positive Y-direction

   CenterSphere.transform.localPosition

        += new Vector3(0.0f, kSmallDelta, 0.0f);

    // Right moves in the positive Z-direction

    RightSphere.transform.localPosition

        += new Vector3(0.0f, 0.0f, kSmallDelta);

}

The very first line of code, Debug.Log(), prints the string argument to the Console 

Window. Debug.Log() statements and other debug statements such as Debug.Assert(), 

Debug.LogWarning(), and Debug.LogError() are excellent ways of verifying the state of 

your application and will be used throughout this book. These debug statements will be 

examined more closely in an exercise at the end of this chapter.

The next three lines of code in the Update() function increment the position of 

each of the left, center, and right spheres by kSmallDelta in the X-, Y-, and Z-axes 

correspondingly. The value for this variable, as shown in Figure 1-8, is 0.01. The “f” after 

0.01 indicates that this number is a floating-point data type and not a double data type.

Recall from Figure 1-9 that the LeftSphere references the CheckerSphere object, 

CenterSphere references the BrickSphere, and the RightSphere references the 

StripeSphere. Now if you click the Play button again, you should observe that the 

LeftSphere moves along the X-axis, the CenterSphere moves along the Y-axis, and 

the RightSphere moves along the Z-axis, just as the script programs. In this way, these 

objects’ positions are controlled by MyScript. Note that the script is in control only when 

the Play button is depressed. Lastly, and very importantly, please ensure that you are 

examining the game in the Scene View and not the Game View.
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Note  transform.localPosition is how Unity accesses an object’s position 
in 3D space. You can also access an object’s position from the Inspector Window 
via the Transform component.

EXERCISES

Investigate the Manipulators

The goal of this exercise is to manipulate a selected object. As the case when working with 

any example in this book, make sure you are in the Scene View for this exercise. Now, click to 

select the CheckerSphere and then click the different object manipulation tools as illustrated 

in Figure 1-10. These object manipulation tools are located in the top left of the Unity Editor. 

You should experiment with each tool, especially the first four. With the first tool selected, the 

Hand Tool, perform the following actions:

•	 Move (or track) the camera: Left-click drag

•	 Rotate (or tumble) the camera: Right-click drag

•	 Zoom (or dolly) the camera: Middle mouse button wheel scroll or Alt-right-

click drag

The second, third, and fourth icons activate the translate, rotate, and scale manipulators for 

the selected object in your scene. Try clicking the CheckerSphere object and then the multi-

direction arrow icon to translate the CheckerSphere's position. You will use these object 

manipulation tools repeatedly when examining relevant math concepts, so make sure you are 

familiar with them now.

Figure 1-10.  Unity Camera and Object Manipulation Tools

Chapter 1  Introduction and Learning Environment



21

Notice that as you translate, rotate, or scale the CheckerSphere, or any object for that 

matter, the corresponding values in the Transform component in that object’s Inspector 

Window also update accordingly.

Use the Implicit Sliders to Adjust an Object’s Transform Values

Look closely at the Transform component for a selected object. Place your mouse pointer in 

between the label and the corresponding value, as shown in Figure 1-11. Notice the mouse 

pointer switching to a small left-right arrow icon. At this point, you can left-click and drag the 

mouse to the left or right to update the corresponding floating-point value as though you were 

adjusting a slider bar. This shortcut is referred to as the Implicit Slider in this book and works 

for any floating-point value in the Inspector Window. You will be using the Implicit Slider to 

control parameters in almost every example.

Figure 1-11.  How to find the Implicit Slider to manipulate float values in the 
Inspector Window

Initialize Public Variable of MyScript in the Inspector Window

With the Controller selected, left-click the CheckerSphere in the Hierarchy Window, and 

drag, without releasing your original left-click, to the value location of CenterSphere under 

the MyScript component. By doing so, you have changed CenterSphere to reference 

CheckerSphere.

Now, click the Play button and observe that the BrickSphere is not traveling anymore, but 

the CheckerSphere is now moving simultaneously in both the X and Y directions. You now 

have the experience to initialize any future game objects via the Inspector Window.

Delete Initial Values of Public Variables and Observe Errors

With the Controller selected, click the CenterSphere value location and then hit the 

delete key to remove the initial reference. You should observe the following message in the 

value location of CenterSphere: None (Game Object).
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Next, click the Play button and observe that none of the spheres are moving. Navigate to the 

Console Window (Figure 1-3 (F)) to observe the error messages. Recall that the Start() 

function in MyScript asserts that all three public variables must be properly initialized. In this 

case, the CenterSphere is a null reference which results in an assertion failure. These errors 

can be observed in Figure 1-12.

Figure 1-12.  Console Window displaying options and message types

As indicated in Figure 1-12, the Console Window supports different display options and 

message types. Try enabling different options and observe that the Collapse option allows you 

to collapse identical messages into one. You can also show or hide log, warning, and error 

messages. We have found it convenient to show all message types and to enable the Collapse 

and Clear on Play options.

Edit Operations During Play Mode Are Ignored After the Play Mode

Now re-initialize CenterSphere to refer to BrickSphere. Remember, this can be done by 

selecting the Controller and then dragging BrickSphere from the Hierarchy Window to 

the value field of CenterSphere in the Inspector Window.

Click the Play button to begin the game. You should notice all three spheres are moving once 

again. Next, remove the CenterSphere reference by clicking the CenterSphere value and 

hitting the delete key. You will notice that the BrickSphere has stopped moving and error 

messages show up in the Console Window.

Next, stop the game by clicking the Play button again and notice that the value field of 

CenterSphere is no longer empty, but restored to its previous value of BrickSphere.
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In general, and with few exceptions, edit operations performed when the game is running are 

undone when the game is stopped. This can be both invaluable and frustrating. Invaluable 

because you are free to perform editing operations while playing to examine the effects and 

verify mathematical concepts. Frustrating because you will likely forget that you are in play 

mode and perform a series of editing operations only to have those edits be undone once play 

mode is terminated.

Note A lways be aware of the current game play mode when performing edit 
operations.

�To Learn More About Working with Unity
We have covered only operations in Unity that are relevant to learning the math concepts 

for this book. It is very important to note that what you have learned about Unity in this 

chapter is focused on preparing you to work with and learn from examples in this book. 

This knowledge may or may not be relevant in being a competent game designer. If you 

are interested in learning more about Unity, you can find useful resources under the 

Learn tab in the Unity Hub as mentioned previously. Here are some additional tutorials 

that can be helpful:

•	 All of the Foundational Tutorials

•	 The Create with Code tutorial under Beginner Course

If you are new to C#, we suggest that you follow this link https://learn.unity.

com/learn/search?k=%5B%22q%3AScripting%22%5D and examine the Beginner and 

Intermediate Scripting tutorials.

�How to Use This Book
This book begins with the most fundamental mathematical concept that is relevant to 

game development, working with a single position, and then covers number intervals, 

introduces vectors, and advances to the powerful and regularly applied concepts in 

vectors: the dot and cross products, vector spaces, and rotation of vectors. For each 
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topic, an introduction is followed by a simple example that demonstrates the associated 

applications that are relevant to interactive graphical or video game development. The 

examples are simple, always a single scripting file, featuring the details of solutions 

implemented based on the topics being discussed. The scripting file and the associated 

C# class will always be with the same name containing the substring MyScript, 

for example, EX2_1_MyScript. This script, as mentioned previously, will always be 

attached to the Controller object in each example. It is important to note that the 

implementation of the scripts, setup of the game objects, and structure of the examples 

are designed to feature the math concepts being discussed. This organization allows 

you to analyze the concepts, examine the implementation, and experiment and interact 

with the game objects such that you can gain understanding and insights into the topics 

discussed. The contents of this book do not attempt to address any specific issues in 

game design or development as no such issues were considered.

The best way to read this book is by downloading the Unity projects, reading the 

book section that describes the concepts, running the corresponding examples while 

paying attention to the highlighted topics, examining the source code, and, finally, 

tinkering and experimenting with the implementation accordingly.

As a final reminder, this book does not explain and will not explain how the game 

objects were created, how to customize their behaviors, or how the examples and scenes 

were built. Those features deal with how to work with Unity in general and are outside 

the scope of this book.

�Summary
Through this chapter, you have learned how to install Unity and an IDE for script editing, 

as well as how to open, run, and tinker with the examples that accompanied this book. 

You have also learned about the Unity Editor and the terminologies that will be used 

throughout the book to work with the examples. You were given some extra resources 

to investigate if you want to learn more about how to work with Unity and C#, as well as 

what this book will be covering along with a friendly reminder of the goals and scope of 

this book. In the next chapter, you will begin with the math concept of intervals and learn 

about bounding boxes.
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CHAPTER 2

Intervals and 
Bounding Boxes
After completing this chapter, you will be able to

•	 Use Unity to work with positions in the 3D Cartesian 

Coordinate System

•	 Program with intervals along the three major axes

•	 Define axis-aligned bounding areas in 2D and axis-aligned bounding 

boxes (AABB) in 3D

•	 Determine if a position is inside of an axis-aligned bounding 

area or box

•	 Approximate inter-object collision using AABBs

•	 Compute the intersection of two AABBs

•	 Appreciate the strengths and weaknesses of AABBs

�Introduction
This chapter begins by reviewing the Cartesian Coordinate System, continues with the 

exploration of 3D positions and number intervals, and wraps up with how you can apply 

these simple comparisons to approximate object boundaries and collisions between 

objects. While comparing numbers is rather trivial, the generalization and application 

of these simple concepts lead directly to one of the most powerful and widely used 

tools in video games: the axis-aligned bounding box, or AABB. AABB is an important 

topic in video games because it allows for simple and efficient approximation of object 
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proximity. In other words, AABB is intuitive to comprehend and can quickly compute 

how close two objects are to each other, including if the objects are currently colliding.

Generally speaking, it is difficult and time-consuming to determine if geometrically 

complex objects are physically close to each other or if they are currently colliding. AABBs 

can be used to address this issue. Imagine, with your eyes closed, someone put a pizza in 

front of you with several slices removed. In this situation, without opening your eyes, how 

would you determine if your extended hand is about to touch the pizza? Now, if the pizza 

was placed in a pizza box, or a bounding box, then the solution can be approximated 

by answering the question of whether your hand has come into contact with the pizza 

box. Notice that with slices removed, touching the box can only warn you that you are 

about to touch the pizza. It does not tell you if you are going to actually touch the pizza. 

AABB, or bounding box, related computations involve simple number comparisons, 

trading accuracy for simplicity, and are thus efficient. Unless your AABB exactly matches 

your object’s shape (i.e., your shape is a box), your proximity calculations will only be 

approximated; however, in many cases this is sufficient to deliver satisfactory game play.

Mathematically, this chapter should be a relatively straightforward review as it will 

cover concepts that are generally taught in the late middle school to early high school 

years in the United States. In addition to refamiliarization with these concepts, this 

review process can also serve as an excellent opportunity to learn more about and to 

become more comfortable with the Unity environment, the involved utilities, custom 

tools, and the approach that this book takes in discussing topics. In this book, after each 

concept is described, you will be introduced to a new Unity scene which presents that 

concept, led through interactions with the scene to explore and experience aspects of 

that concept, and then instructed to examine the implementation associated with that 

concept. At the end of this process, the book summarizes a list of key points for you to 

verify your learning.

�Review of Cartesian Coordinate System
Recall that the 3D Cartesian Coordinate System defines an origin position (0, 0, 0) 

and three perpendicular axes, X, Y, and Z, known as the major axes. Each axis begins 

from the origin and extends in both its positive and negative directions. This can be 

seen in Figure 2-1 where the checkered sphere in the middle is intersected by all three 

arrows and is the origin. Each arrow represents a major axis; the direction of the arrow 

represents the positive direction along that axis.
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Figure 2-1.  The 3D Cartesian Coordinate System

In the Cartesian Coordinate System, the position of a point is defined by a three-

variable tuple (x, y, z), the point’s distance as measured along the three major axes. For 

example, in Figure 2-1, the sphere’s center position is x-value along the X-axis, y-value 

along the Y-axis, and z-value along the Z-axis. In this case, since the sphere is below the 

origin and the Y-axis has upward as its positive direction, the y-value will be negative. If 

the x-, y-, or z-values are altered, you can expect the corresponding object to be relocated 

in the coordinate system accordingly.

It is important to remember that the major axes are always perpendicular to each 

other and with a unit that is convenient for the specific application. For example, when 

applying the Cartesian Coordinate System in describing positions in a room, you may 

define the origin to be at one corner of the room, the X- and Z-axis to be along the floor 

edges, and the Y-axis to be along the wall pointing upward toward the ceiling. In this 

case, a convenient unit may be in meters. With such a coordinate system definition, 

all positions in the room will be of values (x, y, z) measured in meters from the corner 

that was identified as the origin. Note that there can be infinite number of Cartesian 

Coordinate Systems defined for the room, for example, choosing a different corner to be 

the origin or identifying the center of the room to be the origin with inches as the unit.

What is important to remember is that a Cartesian Coordinate System always has 

perpendicular major axes with an arbitrary unit that is convenient for the specific 

application. The coordinate values are measurements from the origin along the major 

axes in the defined units.
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�Intervals: Min-Max Range
The Cartesian Coordinate System allows for straightforward comparison between 

positions along its major axes. For example, Figure 2-2 shows a transparent region along 

the Y-axis where this region is defined by two values, a min (minimum) value and a 

max (maximum) value. The Y-axis direction, noted by the arrow, indicates the direction 

of increasing coordinate value. In this case, the minimum value is always below the 

maximum value, both literally and pictorially. A region defined by min and max values 

along a major axis is referred to as an interval.

Figure 2-2.  A simple min-max interval along the Y-axis

An interval is convenient for determining if a given position is within a specific 

range. For example, the Ball in Figure 2-2(a) is above the interval, and thus you know 

the y-value of the center of the Ball is greater than the maximum value of the interval. 

Figure 2-2(b) shows that the reverse is true as well: if the Ball is below the interval, 

then the y-value of the center of the Ball is less than the minimum value of the interval. 

Figure 2-2(c) on the other hand, shows that the Ball is inside the interval when the 

y-value of its center is in between the given max and min values. The determination of 

these conditions can be simplified as follows and is referred to as the inside-outside test:

if ((Ball.y >= Interval.Min) && (Ball.y <= Interval.Max))

    // Ball is inside the Interval

else

    // Ball is outside the Interval
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Note that the comparison symbol is greater or less than and equal to. This means if 

the Ball is right on the boundary, it will be considered as being inside the interval. Now 

that you have reviewed the Cartesian Coordinate System and how to program intervals, 

you are ready to explore the different examples and concepts presented in this chapter. 

However, before you do that, you’ll need to understand how to work with the Unity 

examples given in this book.

�Working with Examples in Unity
Before you dive into any examples, you’ll first have to know how the examples are 

organized within each chapter. Figure 2-3 shows you the different scenes and their 

corresponding MyScript for this chapter and how future chapters will be laid out.

Figure 2-3.  The Project Window of Chapter-2-Intervals+AABB project

One Unity project is defined for each chapter, and each example for the associated 

concepts in that chapter is organized as a separate Unity Scene in that project. As 

mentioned in Chapter 1, each example or Scene has only one script with a name that 

includes the string, MyScript. For example, all examples in Chapter 2 are defined in the 

Unity project that is in the Chapter-2-Intervals+AABB/ folder. Figure 2-3 illustrates that 

after you open the project and navigate to the Assets/ folder of the Project Window, you 
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will observe two files for each example. The first is the Scene file named EX_2_x_title, 

and the second is a corresponding MyScript file named EX_2_x_MyScript. EX stands for 

example, the 2 stands for this chapter’s number, the x is the sequence of the example in 

its chapter (e.g., EX_4_3 would translate to Chapter 4’s third example), and finally, title 

refers to the title of that example. For simplicity, the term MyScript will be used to refer 

to the EX_MyScript associated with the current example.

When you are ready to examine an example, simply double-click the corresponding 

scene file. This will load the scene into the Unity Editor. The Controller of that scene 

will already have the corresponding MyScript component attached to it, and therefore 

no further setup is required. Remember, to open a script in the IDE, you can simply 

double-click its icon in the Assets/ folder of the Project Window.

Now open the Chapter-2-Interval+AABB project and double-click the EX_2_1_

IntervalBoundsIn1D scene file in the Assets/ folder of the Project Window to load 

it into the Unity Editor. You can tell what scene is currently open in your project by 

looking at the Hierarchy Window; the very first item is always the name of the scene you 

have open.

�The Interval Bounds in 1D Example
This example reviews the Cartesian Coordinate System, introduces you to working with 

a customized script (MyScript), and demonstrates how to work with the Unity Vector3 

data type. In a nutshell, this example defines a 1D bound along the Y-axis, allows you 

to interactively adjust the max and min values of the interval, as well as examines an 

implementation of the interval inside-outside test as depicted in Figure 2-2. Figure 2-4 

shows a screenshot of running the Interval Bounds in 1D scene from the Chapter-2

Intervals+AABB project. As discussed in the previous section, this scene can be opened 

by double-clicking the EX_2_1_IntervalBoundsIn1D scene file in the Assets/ folder of 

the Project Window.
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Figure 2-4.  Running the Interval Bounds in 1D example

Note P lease take note of the separated Scene and Game Views. Make sure to 
differentiate between these two views. All object manipulations must be carried out 
through the Scene View and not the Game View.

The goals of this example are for you to

•	 Review the Cartesian Coordinate System

•	 Experience adjusting positions of game objects in Unity

•	 Begin familiarizing yourself with the Vector3 class

•	 Understand and interact with intervals along an axis

•	 Examine the implementation of an interval inside-outside test
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�Examine the Scene

Take a look at the Example_2_1_IntervalBoundsIn1D scene and observe the predefined 

game objects in the Hierarchy Window. This is a very simple scene where, besides 

Controller, there is only one other defined object, the CheckerSphere. In this example, 

you will manipulate the position of the CheckerSphere object to examine the results of 

the interval inside-outside test along the Y-axis.

Note P lease continue to ignore the zIgnoreThisObject in the Hierarchy 
Window. Once again, this game object hides miscellaneous and distracting 
scene supporting objects that do not pertain to the math you are learning.

�Analyze Controller MyScript Component

Select Controller in the Hierarchy Window. Please refer to Figure 2-5 and make sure 

your Inspector Window looks the same by locating the EX_2_1_MyScript component 

and ensuring it is expanded so you can examine its variables and the corresponding 

values and references. There are three variables that you can access from the Inspector 

Window with this script:

•	 IntervalMax: The maximum value of the interval

•	 IntervalMin: The minimum value of the interval

•	 TestPosition: Holds a reference to the CheckerSphere such that 

MyScript can access the position of the CheckerSphere game object 

in the scene
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Figure 2-5.  The MyScript Component of Controller

Note O nce again, make sure to differentiate between the Scene View and the 
Game View windows. Remember, the Scene View has a skybox-like background, 
and the Game View has a constant light blue background. The Scene View is the 
window where you can select and manipulate game objects. If you try to click an 
object in the Game View, nothing will happen.

The name of the script you will work with is actually EX_2_1_MyScript; once 
again, for simplicity and brevity, MyScript is used in the text. This will be the case 
for all examples in the rest of this book.

�Interact with the Example

Click the Play button to run the example. While running, select the CheckerSphere 

either through the Hierarchy Window or by clicking the CheckerSphere in the Scene 

View window. Once selected, change the position of the CheckerSphere by invoking the 

Implicit Slider (refer to Figure 1-11 if you forgot how to do this). You can also change the 

position of the CheckerSphere by simply typing into the value fields of the corresponding 
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variables in its Transform component. Try increasing and decreasing the x-, y-, and 

z-values of the CheckerSphere and observe the corresponding movement. Notice that 

the CheckerSphere does indeed move along the major axes of the Cartesian Coordinate 

System, obeying the positive and negative directions as expected.

Note  You can also manipulate the Transform component of a game object by 
selecting the corresponding object in the Hierarchy Window and using the different 
Object Manipulation Tools as shown in Figure 1-10.

Now observe the transparent cylinder along the Y-axis. This is the interval defined by 

the IntervalMax and IntervalMin values. Notice how the color of the cylinder changes 

as you change the y-value of the CheckerSphere position to be either above or below the 

interval. Also, note that changing the x- or z-position of the CheckerSphere has no effect 

on the color of the interval.

You can adjust the IntervalMax and IntervalMin values by selecting the Controller 

object in the Hierarchy Window and modifying the values of the corresponding variables 

in the MyScript component. Notice how the transparent cylinder or interval object 

responds to your adjustments while maintaining its proper behavior of adjusting its color 

depending on if the CheckerSphere is inside or outside of it.

�Details of MyScript

Open the MyScript for this example (EX_2_1_MyScript) and examine the 

implementation source code in your IDE. Once again, to open a script, you can either 

right-click over the MyScript component’s name (“EX_2_1_My Script (Script)”) in 

the Inspector Window when Controller is selected (refer back to Figure 1-7 if you need 

a refresher) or double-click the MyScript (“EX_2_1_MyScript” for this example) icon 

in the Assets/ folder of the Project Window. In the future, you will not be given these 

reminders and will simply be told to open MyScript. The following variable definitions 

can be observed:

private MyIntervalBoundInY AnInterval = null;

public float IntervalMax = 1.0f;

public float IntervalMin = 1.0f;

// Use sphere to represent a position

public GameObject TestPosition = null;
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Notice the one-to-one correspondence between the public variables and 

those accessible via the Inspector Window, as illustrated in Figure 2-5. Recall that 

TestPosition is set up to reference the CheckerSphere game object, and thus your 

changes to the CheckerSphere game object can be accessed via the TestPosition 

variable. The private variable of data type MyIntervalBoundInY is defined and used to 

visualize the interval defined by the IntervalMax and IntervalMin values.

Note T he code in MyScript is only executed when the Play button is active.

Figure 2-6 shows that, besides the drawing support (e.g., DrawInterval and 

IntervalColor), the MyIntervalBound class only defines and uses the MinValue and 

MaxValue variables, which is the definition of an interval. The MyIntervalBoundInY 

class is a simple subclass that overrides the PositionToDraw() function. The 

PositionToDraw() function is used to visualize intervals along a major axis. The 

MyIntervalBound class and its subclasses and functions can be found in the Assets/

SceneHelper/ folder in the Project Window. Please do feel free to explore its 

implementation. To avoid distraction from learning the mathematics, the details of the 

MyIntervalBound class and all other classes for supporting visualization (other scripts in 

the Assets/SceneHelper/ folder) will not be discussed in this book.
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Figure 2-6.  The MyIntervalBound class for visualizing an interval along a 
major axis

When the game first begins to run, the Start() function instantiates the 

visualization object, AnInterval, for displaying the semi-transparent interval. Details of 

the Start() function are as follows:

void Start() {

    Debug.Assert(TestPosition != null);  // Ensure proper setup

    AnInterval = new MyIntervalBoundInY();

}

Next, you will examine the Update() function. Recall that the Update() function 

is invoked at a real-time rate of about 60 times per second to update the state of the 

application, hence the name of the function. The details of the Update() function are as 

follows:

void Update() {

    // Updates AnInterval with values entered by the user

    AnInterval.MinValue = IntervalMin;

    AnInterval.MaxValue = IntervalMax;
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    // Assume point is outside

    AnInterval.IntervalColor = MyDrawObject.NoCollisionColor;

    // computes inside-outside of the current TestPosition.y value

    Vector3 pos = TestPosition.transform.localPosition;

    bool isInside = (pos.y >= IntervalMin)

                 && (pos.y <= IntervalMax);

    if (isInside)  {

         Debug.Log("Position In Interval! ("

                   + IntervalMin + ", " + IntervalMax + ")" );

         AnInterval.IntervalColor = MyDrawObject.CollisionColor;

         // MyYInterval supports the inside functionality

         Debug.Assert(AnInterval.ValueInInterval(pos.y));

    }

}

The first three code lines of Update() ensure that AnInterval is updated with the 

latest values entered by the user. Next, the inside interval test is performed based on 

comparing the y-value of the TestPosition object, which, as you may recall, was set to 

reference the CheckerSphere through the Inspector Window (see Figure 2-5 or look at 

your own project for confirmation).

Sixty times every second, AnInterval is updated with user input, and the y-value 

of the CheckerSphere position is compared against the user-specified IntervalMin 

and IntervalMax, changing the color of the interval as necessary. This fast update 

rate conveys a sense of instantaneous modifications to the user. An important detail is 

that the variable pos or the data type for TestPosition.transform.localPosition is 

Vector3. A Vector3 with x-, y-, and z-values is designed to represent a position and, as 

detailed in the later chapters, a vector. Click to view the Console Window (please refer to 

Figure 1-3, label F) and observe the text output generated by the Debug.Log() function. 

This is an excellent way to examine and debug the state of your game.

The very last line of the Update() function demonstrates that the 

MyIntervalBoundInY class has also implemented the inside-outside test and the 

Debug.Assert() verifies the consistency of the test results. The MyIntervalBound.

ValueInInterval() is a convenient function that will be used in later examples.

Notice that the variable AnInterval only supports drawing and does not participate 

in any way in the logic and computation of the inside-outside test. For example, 

you can remove all occurrences of the AnInterval variable and the example will 
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execute perfectly, only, without visual feedback. For this reason, the details of the 

MyIntervaBoundInY class are irrelevant to the understanding of the interval computation 

and can be distracting.

�Takeaway from This Example

In this very simple example, you have experienced interacting with and moving objects 

in the 3D Cartesian Coordinate System while observing the results of mathematical 

computations. You have also learned how to establish a reference of a GameObject to a 

variable in MyScript in order to gain access to and manipulate the position of that game 

object. Additionally, you have begun to work with the Unity Vector3 class and reviewed 

floating-point number comparisons. Lastly, you have learned how to determine if 

a position is within the bounds of an interval along a major axis of the Cartesian 

Coordinate System.

Relevant mathematical concepts covered include

•	 Cartesian Coordinate System

•	 Position of an object in the 3D Cartesian Coordinate System

•	 Intervals along a major axis defined by minimum and 

maximum values

•	 Testing for being inside or outside of an interval along a major axis

Unity tools

•	 A GameObject’s position is defined by its transform.localPosition

•	 Vector3 can be used to represent an object’s position

•	 Debug.Assert() can be used for assertion of conditions

•	 Debug.Log() can be used for printing text messages to the 

Console Window

•	 MyIntervalBoundInY is a custom-defined class to support the 

visualization of intervals along the Y-axis

Interaction technique

•	 Use a sphere GameObject to represent and manipulate a position.
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Limitation

•	 The idea of an interval is straightforward. However, the inside-

outside test implementation is straightforward only for cases where 

the interval is defined along one of the three major axes. In later 

chapters, you will learn about vectors and vector dot products. Those 

concepts can help generalize interval testing and support the inside-

outside tests along a non-major axis. Intervals and inside-outside test 

will be revisited later.

EXERCISES

Checking for Error

Note that it is possible to set the IntervalMin to be a value greater than that of 

IntervalMax. Please modify the Update() function to prevent this situation.

Drawing Location of MyIntervalBoundInY

Run the game. Open the zIgnoreThisObject (by clicking the small triangle beside this 

object in the Hierarchy Window to expand the object structure and observe its children 

objects) and select SemiTransparentCylinder(Clone). Notice that the interval along 

the Y-axis in the Scene View is highlighted when this object is selected. This is the instance of 

MyIntervalBoundInY that was instantiated in MyScript for visualizing the interval. Now 

try to adjust the position of this object, for example, change the x-position value and observe 

the object shift in the x-direction. Notice that you can adjust both the x- and z-positions but not 

the y-position. This is because the y-position of the object is constantly being set and updated 

by the user-specified IntervalMax and IntervalMin values in the MyScript component 

on Controller. From this exercise, you have learned that it is possible to draw the y-interval 

at any x- and z-position.

Extending the Inside-Outside Test to Other Axes

Notice that the inside-outside test in the Update() function is specific to the Y-axis. Please 

define four additional variables. These variables will represent the minimum and maximum 

interval values for the other two axes, X and Z. With these new values, you can now detect if 

the TestPosition is within the specific interval bounds of the X-, Y-, and Z-axes. Although 
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you may not be able to visualize all three intervals, you can still compute and echo the 

inside conditions using the Debug.Log() utility. The next example will examine the topic of 

interval inside-outside testing more closely to define the simple and yet powerful axis-aligned 

bounding box utility.

�Axis-Aligned Bounding Boxes: Intervals 
in Three Dimensions
An interval along a major axis is simply a line segment where positions inside the 

interval are points of that line segment. When working with two intervals along two 

different major axes, for example, an interval along the X-axis and a second interval 

along the Z-axis, the combined result is a 2D rectangular region or an axis-aligned 

rectangular plane.

As illustrated in Figure 2-7, the rectangular region on the X-Z plane is defined by 

the horizontal interval along the X-axis with xMin and xMax values and by the vertical 

interval along the Z-axis with zMin and zMax values. Figure 2-7 (a) shows that to 

determine if the given ball position is inside the rectangular region, the position must 

satisfy the inside-outside tests of both intervals. Figures 2-7 (b) and (c) depict the 

conditions when a position is only inside one of the intervals but not both. In (b) the 

ball’s position is within the horizontal interval but outside of the vertical. In (c) the ball’s 

position is inside the vertical, but not within the horizontal interval.

Figure 2-7.  Inside-outside test of two intervals along the X- and Z-axis
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When working with three intervals along all three major axes, the rectangular region 

changes into a 3D axis-aligned rectangular box, known as an axis-aligned bounding 
box (AABB). In this case, a position is inside a given AABB only when it satisfies the 

inside-outside tests for all three intervals. This condition testing can be implemented as 

follows:

// if in all intervals

if (

    (Ball.x >= xInterval.Min) && (Ball.x <= xInterval.Max)

    &&  // x-axis

    (Ball.y >= yInterval.Min) && (Ball.y <= yInterval.Max)

    &&  // y-axis

    (Ball.z >= zInterval.Min) && (Ball.z <= zInterval.Max)

    // z-axis

   )

      // Ball is inside the bounding box

else

      // Ball is outside the bounding box

As you can observe, the logic and computation involved in the AABB inside-outside 

test are straightforward and efficient. For this reason, AABBs are a widely used utility for 

approximating object proximity and collisions. AABBs are so important and useful that 

Unity defines its own class, Bounds, that implements the AABB functionality (https://

docs.unity3d.com/ScriptReference/Bounds.html). At the end of this chapter, you 

will see what is in this class compared to what you will have implemented on your own 

throughout the examples in this chapter.

Note  For brevity, the rest of this book refers to axis-aligned bounding boxes, or 
AABB, simply as bounding boxes. A bounding box that is not aligned with the major 
axes is referred to as a general bounding box.
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�The Box Bounds Intervals in 3D Example
This example demonstrates the functionality of bounding boxes, implements the point 

inside-outside test, and allows you to interact with and examine its implementation. 

Figure 2-8 shows a screenshot of running the EX_2_2_BoxBounds_IntervalsIn3D 

scene of the Chapter-2-Intervals+AABB project. This scene can be opened by double-

clicking the EX_2_2_BoxBounds_IntervalsIn3D scene file in the Assets/ folder of the 

Project Window.

Figure 2-8.  Running the Box Bounds Intervals in 3D example

The goals of this example are for you to

•	 Understand and interact with a bounding box

•	 Examine the implementation of a bounding box inside-outside test
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�Examine the Scene

The Hierarchy Window shows that in addition to the Controller, there are four other 

game objects: CenterPosition, MinPosition, MaxPosition, and TestPosition. The 

center, min, and max position objects are three separate checkered spheres representing 

the corresponding positions of a bounding box. The TestPosition is the white sphere. 

Just like the IntervalBoundsIn1D example, you can manipulate the position of the white 

sphere to trigger the inside-outside test and examine results.

�Analyze Controller MyScript Component

The MyScript component on the Controller object shows eight public variables 

supporting three general functionalities:

•	 Drawing support

•	 DrawBox: Used to determine whether to draw or hide the 

bounding box

•	 DrawInterval: Used to determine whether to draw the three axis-

aligned intervals that implement the bounding box

•	 Box control support

•	 ControlWithMinMax: Gives the user two options for manipulating 

the bounding box

•	 Option 1: Manipulate the box by specifying the MinPos and 

MaxPos positions.

•	 Option 2: Manipulate the box by specifying the CenterPos 

position and interval size (BoundSize) along each axis.

•	 Testing position support

•	 TestPosition: References the white sphere and is used for testing 

the inside-outside implementation
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�Interact with the Example

Run the game and notice the transparent box that bounds the three intervals along 

the X-, Y-, and Z-axes. On the minimum and maximum corners of the transparent box 

are two checkered spheres. These two spheres are the MinPosition and MaxPosition 

game objects, which are referenced in MyScript by the MinPos and MaxPos variables, 

respectively.

Now select Controller and look at the MyScript component. Experiment with 

hiding and showing the box and intervals. The important observation to make here is 

that the box and the three intervals both define the same 3D volume. These two are 

complementary ways of perceiving and visualizing the volume defined by the intervals. 

With the intervals hidden, notice that there is a checkered sphere located at the center of 

the box. This is the CenterPosition game object; when the interval visualization objects 

are displayed, it is hidden inside the cylinders representing the intervals.

Next, manipulate the box with the min and max position game objects. Select 

the MinPosition or MaxPosition game object from the Hierarchy Window and 

translate their position to a new location. Notice how the bounding box continuously 

tracks and maintains these two positions as its min and max corners. Now, select the 

CenterPosition in the Hierarchy Window and try to manipulate it; you’ll notice that 

its position is not changeable. When you adjust the min and max positions, the center 

position is computed based on your input values from these positions. This is the same 

case for the BoundSize variable in the MyScript component: the min and max positions 

determine the BoundSize.

In order to manipulate the bounding box by manipulating the CenterPosition and 

the BoundSize, you must disable the ControlWithMinMax check box on the Controller's 

MyScript component. Now, you can experience changing the entire box position 

by dragging the CenterPosition object and changing the box size by adjusting the 

BoundSize variable in the MyScript component. However, notice that the MinPosition 

and MaxPosition are no longer adjustable. These two positions are now defined by the 

user-specified CenterPosition and the BoundSize.

Lastly, select and drag the TestPosition game object to manipulate its position 

within the scene. Notice that the box changes colors when the TestPosition object 

moves from outside to inside its bounds. Before you look at the script, try entering and 

leaving the region from different sides of the box, for example, the left, right, top, bottom, 

and so on. Note that for each case, you will get the same inside-outside test results.
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

private MyBoxBound MyBound = null;       // For visualizing AABB

public bool DrawBox = true;              // Show/hide the 3D box

public bool DrawIntervals = true;        // Show/hide intervals

public bool ControlWithMinMax = true;    // min/max vs. center

public GameObject MinPos = null;          // Min position of the box

public GameObject MaxPos = null;         // Max position of the box

public GameObject CenterPos = null;      // Center of the box

public Vector3 BoundSize = Vector3.one;  // Interval size

public GameObject TestPosition = null;   // Position for testing

All the public variables have been discussed when analyzing the MyScript 

component. The private variable of the MyBoxBound data type is there to support 

the visualization of the bounding box. Figure 2-9 shows the public interface of the 

MyBoxBound class.
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Figure 2-9.  The MyBoxBound class

Figure 2-9 shows the definition and public properties and functions of 

the MyBoxBound class. Note that this class is indeed built with three interval 

objects: XInterval, YInterval, and ZInterval, which are instances of the same 

MyIntervalBound class from the IntervalBoundsIn1D example. As in all previous 

classes defined for visualization, this file can be found in the Assets/SceneHelper/ 

folder. As usual, to avoid distracting from the mathematical concepts discussion, the 

implementation details of this class are left for you to explore independently. The 

Start() function for MyScript is listed as follows:

void Start() {

     // Ensure proper setup in the Hierarchy Window

     Debug.Assert(CenterPos != null);

     Debug.Assert(MinPos != null);
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     Debug.Assert(MaxPos!= null);

     Debug.Assert(TestPosition != null);

     MyBound = new MyBoxBound();         // For visualization

}

The Debug.Assert() calls ensure proper setup of referencing the appropriate game 

objects via the Inspector Window, while the MyBound variable is instantiated in order to 

visualize the bounding box. The Update() function is listed as follows:

void Update() {

     // Step 1: update drawing options

     MyBound.DrawBoundingBox = DrawBox;

     MyBound.DrawIntervals = DrawIntervals;

     // Step 2: control the box

     if (ControlWithMinMax) {

         // User controls Min/Max Position

         MyBound.MinPosition = MinPos.transform.localPosition;

         MyBound.MaxPosition = MaxPos.transform.localPosition;

         // Show bound center and size

         BoundSize = MaxPos.transform.localPosition -

             MinPos.transform.localPosition;

         CenterPos.transform.localPosition = 0.5f *
             (MaxPos.transform.localPosition +

              MinPos.transform.localPosition);

     } else {

         // User control center position and the size

         MyBound.Center = CenterPos.transform.localPosition;

         MyBound.Size = BoundSize;

         // Show Min/Max Position in the MyScript component

         MinPos.transform.localPosition =

             CenterPos.transform.localPosition -

             (0.5f * BoundSize);

         MaxPos.transform.localPosition =

             CenterPos.transform.localPosition +

             (0.5f * BoundSize);

     }
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     // Step 3: perform inside/outside test

     Vector3 pos = TestPosition.transform.localPosition;

     Vector3 min = MinPos.transform.localPosition;

     Vector3 max = MaxPos.transform.localPosition;

     if ((pos.x > min.x) && (pos.x < max.x) &&

               // point in x-interval   AND

         (pos.y > min.y) && (pos.y < max.y) &&

               // point in y-interval   AND

         (pos.z > min.z) && (pos.z < max.z) )

              // point in z-interval

     {

         Debug.Log("TestPosition Inside!");

         MyBound.SetBoxColor(MyDrawObject.CollisionColor);

     } else {

         MyBound.ResetBoxColor();

     }

}

The Update() function implements the interaction with the user in three main steps:

•	 Step 1: Drawing control: The first two lines of code set the box and 

interval drawing options according to the user input.

•	 Step 2: Bounding box manipulation: The bounding box is 

manipulated either via receiving the min and max position from the 

user and then computing and setting the center and size values or 

through receiving the center and size values from the user and then 

computing and setting the min and max positions. Note that the size 

of an interval is always max-min and is true for 3D bounding boxes as 

well. Additionally, the center position is always 0.5 * (max + min).

•	 Step 3: Inside-outside test: Compute the TestPosition’s position 

against the inside-outside condition and update the box color 

accordingly.
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Take note that the MyBound variable does indeed only serve as a visualization tool. 

For example, you can delete all occurrences of the variable and still be able to run 

the example. Only, in that case, there will be no visual feedback of the bounding box 

or the results of the inside-outside tests. Lastly, an important observation to make is 

that the Vector3 “-” and “+” operators subtract and add the corresponding x-, y-, and 

z-component values of their operands.

�Takeaway from This Example

This example expands on the very simple concept of an interval along a major axis to 

create three intervals along each major axis, resulting in a 3D bounding box.

Through interacting with this example, you have learned that there are two 

fundamental approaches in defining a bounding box, either with the min and max 

corner positions or with the center position and the size. This knowledge informs you 

that the internal representation of a bounding box class can either be min/max or 

center/size.

You have also learned that the inside-outside test for a bounding box is simply 

the inside-outside test for one interval, three times. Finally, you have observed that 

bounding boxes are simple to program with efficient runtime performance.

Relevant mathematical concepts covered include

•	 3D bounding boxes

•	 Testing for being inside or outside of a bounding box

•	 The two alternative approaches to manipulate a bounding box: min/

max or center/size

Unity tools

•	 MyBoundBox: A custom-defined class to support the visualization of a 

bounding box

•	 MyIntervalBoundInX, MyIntervalBoundInY, and 

MyIntervalBoundInZ: Custom-defined classes to support the 

visualization of intervals along the X-, Y-, and Z-axes, respectively
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EXERCISE

Testing and Printing Position Status for Each of the Intervals Separately

Modify the Update() function to print out (with Debug.Log()) the status of the 

TestPosition’s position with respect to each of the X-, Y-, and Z-intervals of the bounding 

box. Through this exercise, you can practice implementing interval testing yourself, and you 

can verify that a given position can be inside one or two of the intervals of the bounding box 

and still be outside of the box.

�Collision of Intervals
Now that it is possible to efficiently detect if the position of an object is inside a 3D 

bounding box, the next question to answer is how do you detect when two bounding 

boxes intersect? Answering this question is key for detecting a collision between two 

objects, for example, two vehicles in a video game. One approach to study this problem 

is by first examining how two axis-aligned intervals intersect. In the same manner as 

understanding and extending a 1D interval to a 3D bounding box, a 1D interval collision 

can be generalized to a 3D bounding box collision.

Figure 2-10 shows two intervals defined along the Y-axis, the Green (G) and the Blue 

(B) intervals. To ensure clear visualization of overlapping intervals, the two are drawn on 

different sides of the Y-axis, with the third interval representing the intersection drawn 

centered around the Y-axis (where the colors overlap each other). Figure 2-10 shows all 

the different combinations that the two intervals can intersect or overlap. These include

(a) No intersection.

(b) �G.min is inside the B interval, while G.max is outside, which 

is equivalent to B.max being inside the G interval, but B.min 

being outside.

(c) The entire G interval is inside the B interval.

(d) The entire B interval is inside the G interval.
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(e) �G.max is inside the B interval, while G.min is outside, which 

is equivalent to B.min being inside the G interval, but B.max 

being outside.

Figure 2-10.  The different possible ways that two intervals can intersect

Notice that when two intervals overlap (or intersect or collide), the result is always a 

new interval that is equal to or smaller than the original intervals. In fact, the overlapping 

interval is always the smaller of the two original max values and the larger of the two 

original min values. This fact is illustrated in Figure 2-11.

Figure 2-11.  The condition and results of a two-interval intersection

Figure 2-11 shows how the smaller of the two max values and the larger of the two 

min values define a valid interval. This condition is summarized as follows. Feel free 

to analyze this code against all conditions depicted in Figure 2-10 to verify that the 

resultInterval is indeed correct for all possible ways that the intervals can intersect:
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if ( (G.max >= B.min) && (G.min <= B.max) ) {

        // Intervals G and B intersect

        resultInterval.max = min(G.max, B.max)

        resultInterval.min = max(G.min, B.min)

} else

        // No intersection

�The Interval Bound Intersections Example
This example computes and visualizes the intersection of two intervals. It allows you 

to adjust and examine the different ways that two intervals can intersect. Figure 2-12 

shows a screenshot of running the EX_2_3_IntervalBoundIntersections scene from 

the Chapter-2-Intervals+AABB project. This scene can be opened by double-clicking 

the EX_2_3_IntervalBoundIntersections scene file in the Assets/ folder of the 

Project Window.

Figure 2-12.  Running the Interval Bound Intersections example
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The goals of this example are for you to

•	 Examine and verify the different ways two intervals can intersect

•	 Understand the implementation of intersecting two intervals

�Examine the Scene

The Hierarchy Window shows that the initial scene setup is extremely simple where the 

only predefined object is Controller. When this example runs, it will display a Green 

and a Blue interval along the Y-axis and will allow you to adjust these two intervals while 

examining the intersection results.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables. These variables 

are three sets of min and max values, one set for each interval: GreenInterval, 

BlueInterval, and OverlapInterval. You can adjust the minimum and maximum 

values of the GreenInterval and the BlueInterval to create the OverlapInterval 

and thus its min and max values. The values of OverlapInterval are the computed 

intersection results and cannot be adjusted.

�Interact with the Example

Run the game and observe the Green and Blue intervals along the Y-axis. Try adjusting 

the minimum and maximum values for each of the intervals by adjusting their 

corresponding min/max values on the MyScript component of Controller. Note that 

when the two intervals do not overlap, there is no overlap interval and the min/max 

values of OverlapInterval are both displayed as NaN (Not a Number).

Next, adjust the minimum and maximum values of the Green and Blue intervals 

to reproduce the different scenarios in Figure 2-10. Notice that when the two intervals 

intersect, the overlap region can be described by a new interval which is a cylinder 

centered on the Y-axis. This is the OverlapInterval with minimum and maximum 

values displayed in the OverlapInterval min and max variables. For each scenario, 

verify that the OverlapIntervalMax is indeed the smaller of the two maximum values 

from the Blue and Green intervals and that OverlapIntervalMin is the larger of the two 

minimum values.
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// For visualizing the Green Interval

private MyIntervalBoundInY GreenInterval = null;

// Max/Min values for Green interval

public float GreenIntervalMax = 1.0f;

public float GreenIntervalMin = 0.0f;

// For visualizing the Blue Interval

private MyIntervalBoundInY BlueInterval = null;

// Max/Min values of the Blue Interval

public float BlueIntervalMax = 1.0f;

public float BlueIntervalMin = 0.0f;

// For visualizing the overlap interval

private MyIntervalBoundInY OverlapInterval = null;

// Max/Min values of the overlap interval

public float OverlapIntervalMax = float.NaN;

public float OverlapIntervalMin = float.NaN;

Notice the three sets of intervals and their corresponding minimum and maximum 

values. The public variables, the min and max variables for each interval, were discussed 

earlier. The private variables are of the MyIntervalBoundInY data type which, as pointed 

out in the first example of this chapter, are designed for visualizing the Y-axis intervals. 

The Start() function is listed as follows:

void Start() {

     // Define the Green Interval

     GreenInterval = new MyIntervalBoundInY();

     GreenInterval.IntervalColor = GreenColor;

     // Draw slightly offset from the axis

     GreenInterval.PositionToDraw = new Vector3(0.6f, 0, 0);

     // Define the Blue Interval

     BlueInterval = new MyIntervalBoundInY();

     BlueInterval.IntervalColor = BlueColor;
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     // Draw slightly offset from the axis

     BlueInterval.PositionToDraw = new Vector3(-0.6f, 0, 0);

     // The overlap interval

     OverlapInterval = new MyIntervalBoundInY();

     OverlapInterval.DrawInterval = false; // Initially hide

     // Draw on the axis

     OverlapInterval.PositionToDraw = new Vector3(0.0f, 0, 0);

     OverlapInterval.IntervalColor =  OverlapColor;

}

Once again, you can observe a pattern of three sets of similar functions: instantiating 

the variables, setting the corresponding color, and setting the interval’s position. For the 

case of the OverlapInterval, it is initially set to be hidden because it is only displayed 

when an intersection between the Green and Blue intervals occurs. The Update() 

function is listed as follows:

void Update() {

     // Update Green Interval with user input

     GreenInterval.MinValue = GreenIntervalMin;

     GreenInterval.MaxValue = GreenIntervalMax;

     // Update Blue Interval with user input

     BlueInterval.MinValue = BlueIntervalMin;

     BlueInterval.MaxValue = BlueIntervalMax;

     // Intersect Green and Blue Intervals

     if (GreenIntervalMin <= BlueIntervalMax&&

         GreenIntervalMax >= BlueIntervalMin) {

        // overlap condition

        OverlapInterval.DrawInterval = true;

            // show the overlap interval

        // set the max/min values

        OverlapIntervalMax = Mathf.Min(GreenIntervalMax,

                                       BlueIntervalMax);

        OverlapIntervalMin = Mathf.Max(GreenIntervalMin,

                                       BlueIntervalMin);

         // display these values for the user

         OverlapInterval.MaxValue = OverlapIntervalMax;

         OverlapInterval.MinValue = OverlapIntervalMin;
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         // Implemented in theMyIntervalBound class

         Debug.Assert(GreenInterval.IntervalsIntersect

                      (BlueInterval));

     } else {

         OverlapInterval.DrawInterval = false;

         OverlapIntervalMax = float.NaN;

         OverlapIntervalMin = float.NaN;

     }

}

The first four lines set the user entered min and max values into the Green and Blue 

interval min and max values, respectively, for visualization. The if condition tests for 

the intersection of two intervals and, when an overlap is detected, sets the min and 

max values of the OverlapInterval. The logic for setting the OverlapInterval follows 

exactly as depicted in Figure 2-11; the smaller of the two max values and the larger of 

the two min values define the intersecting intervals. Notice that MyIntervalBound.

IntervalsIntersect() is defined and the Debug.Assert() function verifies that the 

function does indeed return the condition if two intervals have collided. This is a 

convenient utility function that will be used in later examples.

�Takeaway from This Example

You have examined how two simple intervals can overlap, analyzed the conditions of this 

overlap, and verified the implementation that checks for an overlap between these two 

intervals. Although two intervals can intersect in many ways, the intersection detection 

logic is relatively straightforward.

Similar to the case of extending the inside-outside test for one interval to support 3D 

bounding boxes, the interval intersection knowledge can also be generalized to support 

3D bounding box collisions and intersections as you will see in the next section.

Relevant mathematical concepts covered include

•	 All interval intersection conditions

•	 Testing for an intersection between two intervals

•	 Computing the minimum and maximum values of the intersecting or 

overlapping interval
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Unity tools

•	 MyIntervalBound: Custom-defined abstract class to support the 

visualization of intervals along the X-, Y-, and Z-axes

Interaction technique

•	 The use of NaN to communicate invalid float values

EXERCISE

Point in Multiple Intervals

In this exercise, you will program the logic to perform the inside-outside test for a point that 

can be in any combination of the three intervals from this example. For example, inside the 

Green interval but outside of the Blue and Overlap intervals. Please derive the appropriate logic 

such that for any test position, you can print out the inside-outside test results for all three 

intervals. Note that the OverlapInterval is only defined when the user overlaps the Green 

and Blue Intervals and thus will not always be available for the inside-outside test.

�Collision of Bounding Boxes
Recall that the volume in a bounding box is defined by the three corresponding intervals 

along the three major axes. This fact is reflected in the inside-outside test, where a 

given position is inside the bounding box if and only if it is inside all three major axes’ 

intervals.

In exactly the same manner, based on exactly the same reasoning, two bounding 

boxes are colliding, if and only if each of the three intervals that define the two boxes 

collided with each other along their corresponding axis. Additionally, since a new 

interval is the result of each interval collision, bounding boxes’ intersections always 

result in a new bounding box. The new bounding box’s maximum and minimum points 

can be computed in exactly the same fashion that a new interval is calculated from the 

results of an interval collision. The maximum position of the colliding bounding box is 

the minimum of all the intervals’ maximum values, and the minimum position is the 

maximum of all the intervals’ minimum values. This condition is listed as follows:
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if ((box1.XInterval.IntervalIntersects(box2.Xinterval) &&

     // intersects in X

    (box1.YInterval.IntervalIntersects(box2.Yinterval) &&

     // intersects in Y

    (box1.ZInterval.IntervalIntersects(box2.Zinterval)

     // intersects in Z

   ) {

     // The two boxes are colliding

     // result of the xInterval intersection

     overlapBox.Xinterval.min = max(box1.Xinterval.min,

                                    box2.XInterval.min)

     overlapBox.XInterval.max = min(box1.Xinterval.max,

                                    box2.XInterval.max)

     // result of the yInterval intersection

     overlapBox.Yinterval.min = max(box1.Yinterval.min,

                                    box2.YInterval.min)

     overlapBox.YInterval.max = min(box1.Yinterval.max,

                                    box2.YInterval.max)

     // result of the zInterval intersection

     overlapBox.Zinterval.min = max(box1.Zinterval.min,

                                    box2.ZInterval.min)

     overlapBox.ZInterval.max = min(box1.Zinterval.max,

                                    box2.ZInterval.max)

}

Note that when intersection occurs, the resulting overlapBox is a properly defined 

3D bounding box with three intervals defined along the three major axes: overlapBox.

XInterval, overlapBox.YInterval, and overlapBox.ZInterval.

�The Box Bound Intersections Example
This example demonstrates the intersection of two bounding boxes. It allows you 

to interact with and examine the geometries creating the bounding boxes as well as 

manipulate the boxes to approximate where the geometries intersect with each other. 

Figure 2-13 shows a screenshot of running EX_2_4_BoundingBoxIntersections scene 
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from the Chapter-2-Intervals+AABB project. This scene can be opened by double-

clicking the EX_2_4_BoundingBoxIntersections scene file in the Assets/ folder of the 

Project Window.

Figure 2-13.  Running the Box Bound Intersections example

The goals of this example are for you to

•	 Examine complex geometric objects bounded by their own 

bounding boxes

•	 Interact and adjust bounding boxes of objects

•	 Experiment with manipulating bounding boxes for collisions

•	 Understand and verify the bounding box intersection 

implementation
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�Examine the Scene

Besides Controller, there are only two other objects in the Hierarchy Window, Car and 

Taxi. These objects represent their corresponding vehicles in the scene. Running this 

example will build a bounding box around each of these two vehicles and allow you to 

manipulate these bounding boxes. You will also examine the details of bounding box 

intersection.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows nine variables that can be classified 

into approximately three different categories:

•	 Bounding box drawing support: Used to show and hide the 

drawing of the bounding boxes and the intervals that define the 

bounding boxes

•	 DrawBox: Shows or hides the bounding boxes around both 

vehicles

•	 DrawInterval: Shows or hides the three intervals that make up 

the bounding boxes around both vehicles

•	 Placement of bounding box

•	 CarCenterOffset: Ensures the proper centering of the bounding 

box over the vehicles. More details will be provided when 

discussing the interaction with this example.

•	 Bounding box information

•	 TheTaxi: Reference to the Taxi object

•	 TheCar: Reference to the Car object

•	 TaxiBoundSize: The size of the bounding box around the Taxi

•	 CarBoundSize: The size of the bounding box around the Car

•	 OverlapBoxMin: The minimum corner position of the overlapped 

box created when the taxi’s and the car’s bounding boxes collide

•	 OverlapBoxMax: The maximum corner position of the overlapped 

box created when the taxi’s and the car’s bounding boxes collide
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Note T he information presented for the overlapped bounding box is its min and 
max values. This is contrasted to how you can control the other two bounding 
boxes—via center and size information. Using min and max values for the 
overlapped box allows you to verify the correctness of its computation.

�Interact with the Example

Run the game and observe the two transparent boxes around each of the vehicles. 

These transparent boxes represent the corresponding bounding boxes of each vehicle. 

Try toggling the DrawBox and DrawInterval options under the MyScript component 

on Controller. Notice how toggling these options gives you control over displaying or 

hiding these boxes and their corresponding intervals. Additionally, take note that you 

can adjust the size of the two bounding boxes by changing the bound size variable for 

each vehicle (CarBoundSize and TaxiBoundSize).

Note T he Car and Taxi game objects consist of corresponding children game 
objects. You can verify this by clicking the small triangle beside these objects in 
the Hierarchy Window to expand the object structure and observe their children 
objects. Take care that you are only manipulating these objects at the parent level, 
ensuring you don’t change or manipulate any of their children.

Placement of the Bounding Box over the Vehicles

Try adjusting the values of CarCenterOffset and observe the relative position changes 

between the boxes and their corresponding vehicle. Recall that you have learned two 

ways to define a bounding box, either by specifying the maximum and minimum 

corner positions or by specifying its center and size. As you will see when examining the 

source code in MyScript, in this example the bounding boxes are defined according to 

their center and size information. The center position is defined by the position of the 

corresponding game object, that is, the values of that object’s transform.localPosition 

variable. The size of the bounding box is specified by the user via the MyScript 

component on Controller. By changing CarCenterOffset, you are changing how much 

the bounding box’s center differs from its corresponding vehicle’s center.
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CarCenterOffset has an initial offset in the Y-axis of about 0.75. This is because 

the center position of the vehicle model is not located in the middle of the vehicle, but 

at the height where the tires would meet the road. Thus, to ensure that the bounding 

box covers the entire car, its center position is raised to the approximate location of 

the vehicle’s true center. You can verify this by setting CarCenterOffset’s y-value to 

0 and observing that the resulting bounding box does not cover the upper half of its 

corresponding vehicle.

Bounding Box Collisions

With CarCenterOffset set to (0, 0.75, 0), adjust the position of the Taxi object such 

that the vehicle overlaps with the Car object. Notice a new bounding box appearing in 

the overlapping region of the bounds. Examine the OverlapBoxMax and OverlapBoxMin 

values in the Inspector Window and verify that these are the smallest of the maximum 

corresponding interval values and the largest of the minimum corresponding 

interval values.

Void Space of a Bounding Box

When the CarCenterOffset is set to zero, the bottom half of the bounding box is outside 

of the vehicle and thus does not bound any useful information. This emptied bound 

volume is referred to as void space: the space where the bounding box can cause false 

collision detection. The potential of significant void space is the major drawback of the 

bounding box collision approximation. In general, all bounding boxes should be defined 

to minimize void space.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// For visualizing the three bounding boxes

private MyBoxBound CarBound = null;

private MyBoxBound TaxiBound = null;

private MyBoxBound OverlapBox = null;

public bool DrawBox = true;         // Controls what to show/hide

public bool DrawIntervals = false;
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// Offset between the geometry and box centers

public Vector3 CarCenterOffset = Vector3.zero;

// Note: The y-center of the car is at ground level

// Reference to the Taxi game object

public GameObject TheTaxi = null;

// User sets desirable taxi bounding box size

public Vector3 TaxiBoundSize = Vector3.one;

// Reference to the Car game object

public GameObject TheCar = null;

// User sets the desirable car bounding box size

public Vector3 CarBoundSize = Vector3.one;

// Min position of the overlapping bounding box

public Vector3 OverlapBoxMin = Vector3.zero;

// Max position of the overlapping bounding box

public Vector3 OverlapBoxMax = Vector3.zero;

As in all previous examples, the public variables listed have been analyzed. The 

private variables are once again for visualizing the bounding boxes. The Start() 

function for MyScript is listed as follows:

void Start() {

     // Ensure that proper reference setup in Inspector Window

     Debug.Assert(TheTaxi != null);

     Debug.Assert(TheCar != null);

     // Instantiate the visualization variables

     TaxiBound = new MyBoxBound();

     CarBound = new MyBoxBound();

     OverlapBox = new MyBoxBound();

     OverlapBox.SetBoxColor(new Color(0.4f, 0.9f, 0.9f, 0.6f));

     // hide the overlap box initially

     OverlapBox.DrawBoundingBox = false;

     // not showing this in this example

     OverlapBox.DrawIntervals = false;

}
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As in all cases, the Start() function ensures proper game object reference setup in 

the Inspector Window and instantiates the private variables. Additionally, the Start() 

function also assumes no initial collision and hides the overlapped bounding box. The 

Update() function is listed as follows:

void Update() {

     // Step 1: Set the user specify drawing state

     TaxiBound.DrawBoundingBox = DrawBox;

     TaxiBound.DrawIntervals = DrawIntervals;

     CarBound.DrawBoundingBox = DrawBox;

     CarBound.DrawIntervals = DrawIntervals;

     // Step 2: Update the bounds (Taxi first, then Car)

     TaxiBound.Center = TheTaxi.transform.localPosition +

                        CarCenterOffset;

     TaxiBound.Size = TaxiBoundSize;

     CarBound.Center = TheCar.transform.localPosition +

                       CarCenterOffset;

     CarBound.Size = CarBoundSize;

     // Step 3: test for intersection ...

     // Two box bounds overlap when all three intervals overlap ...

     if (((TaxiBound.MinPosition.x <= CarBound.MaxPosition.x)

           && // X overlap

          (TaxiBound.MaxPosition.x >= CarBound.MinPosition.x))

         &&                      // AND

         ((TaxiBound.MinPosition.y <= CawrBound.MaxPosition.y)

           && // Y overlap

          (TaxiBound.MaxPosition.y >= CarBound.MinPosition.y))

         &&                     // AND

         ((TaxiBound.MinPosition.z <= CarBound.MaxPosition.z)

           && // Z overlap

          (TaxiBound.MaxPosition.z >= CarBound.MinPosition.z))) {

            // Min/Max of the overlap box bound

            Vector3 min = new Vector3(

                    // set with max of x, y, and z min values
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                   Mathf.Max(TaxiBound.MinPosition.x,

                              CarBound.MinPosition.x),

                   Mathf.Max(TaxiBound.MinPosition.y,

                             CarBound.MinPosition.y),

                   Mathf.Max(TaxiBound.MinPosition.z,

                             CarBound.MinPosition.z));

            Vector3 max = new Vector3(

                   // set with min of x, y, and z max values

                   Mathf.Min(TaxiBound.MaxPosition.x,

                             CarBound.MaxPosition.x),

                   Mathf.Min(TaxiBound.MaxPosition.y,

                             CarBound.MaxPosition.y),

                   Mathf.Min(TaxiBound.MaxPosition.z,

                             CarBound.MaxPosition.z));

            OverlapBox.DrawBox = TaxiBound.DrawBox;

            OverlapBox.DrawIntervals = TaxiBound.DrawIntervals;

            OverlapBox.MinPosition = min;

            OverlapBox.MaxPosition = max;

            // Update to show the overlap bound's min and max

            OverlapBoxMax = max;

            OverlapBoxMin = min;

             // functionality is implemented in the BoxBound

            Debug.Assert(TaxiBound.BoxesIntersect(CarBound));

     } else {

            OverlapBox.DrawBox = false;

            OverlapBox.DrawIntervals = false;

            OverlapBox.MinPosition = Vector3.zero;

            OverlapBox.MaxPosition = Vector3.zero;

     }

}
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The Update() function sets the state of the application in three simple steps:

•	 Step 1: Set drawing state: Assign the user-specified drawing states of 

DrawBox and DrawInterval to TaxiBound and CarBound.

•	 Step 2: Update bound information: Update the Taxi bounding box 

(TaxiBound) and the Car bounding box (CarBound) with the user-

specified values. Notice the use of CarCenterOffset to correct 

transform.localPosition, ensuring the bound is centered at the 

desired location.

•	 Step 3: Test for collision and create the overlapped bounding box: 

Test the bounds for an intersection, and when the condition is 

favorable, the min and max positions of the overlapped bounding 

box are computed and the new box is displayed for the user.

Note the very last line in the collision computation, the Debug.Assert() statement 

shows that the bounding box intersection functionality is also implemented in the 

MyBoxBound class. This line of code verifies the correctness of the bounding box 

collision test.

�Takeaway from This Example

You have experienced bounding geometric objects with bounding boxes and learned 

that there might exist an offset between the center of the object and its bounding box. 

From working with TheTaxi and TheCar bounds, you have observed that when defining a 

bound, it is convenient to work with center and size information. This is in contrast with 

the case of the OverlapBound, where it is important to verify the computation results in 

the min and max positions.

For bounding boxes, just as in the case of the interval inside-outside test, the 

condition for intersection and the new bounding box resulting from that intersection 

are both straightforward and efficient to compute. Bounding boxes are one of the most 

widely used tools in interactive graphical applications because of their simplicity. The 

main shortcoming of bounding boxes is the potential for significant void space. However, 

the void space problem can be mitigated by defining multiple bounding boxes for one 

object, or a hierarchy of bounding boxes. You will work with hierarchy bounding boxes 

slightly in the exercises.
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Relevant mathematical concepts covered include

•	 Testing for collisions between two bounding boxes

•	 Computing the minimum and maximum values of the intersecting 

(overlapping) bounding box

Unity tools

•	 Vector3 addition operation that adds the corresponding operand x-, 

y-, and z-component values

EXERCISES

Manipulate CarBound with the Min/Max Values Implementation

Implement the functionality to replace the CarBoundSize with CarBoundMin and 

CarBoundMax variables. Notice that in this case, the min/max user interaction involves more 

complicated computations. In general, it is easier to define bounds of objects based on their 

center and size information than it is to use minimum and maximum corner positions.

Experiment with Void Space

Select and rotate TheTaxi by 45 degrees around the X-axis. Observe that a larger bounding 

box is now required to completely enclose the rotated vehicle. As a result, the void space has 

increased. This example illustrates a major limitation of bounding boxes: because of the axis-

aligned requirement, they are ill-suited for bounding non-axis-aligned objects, for example, 

a rotated car or a human limb in motion. In the next chapter, you will learn about bounding 

spheres, another bounding volume with its own challenges, which can sometimes remedy the 

shortcomings of bounding boxes. If you were to rotate the bounding box with the taxi, then the 

bounding box would no longer be axis-aligned and the mathematics and algorithms developed 

in this chapter would not apply.

Experience with Hierarchical Bounding Boxes

One approach to remedy the potentially excessive void space for a bounding box is by defining 

a hierarchy of bounds. For example, define two children bounding boxes inside the given 

CarBound (or TaxiBound) and place them at the centers of the front and back wheels. Now, 

when a position is inside the parent bound (e.g., CarBound), you can perform the inside-outside 

tests with the two children bounds to better approximate if a collision has really occurred.
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�Final Words on Bounding Boxes
In general, there are other geometric volumes that can be used to bound complex 

geometries for proximity or collision determination. These approximation geometries 

are referred to as bounding volumes or colliders. As mentioned previously, Unity has 

defined its own bounding box class, Bounds. You will learn about bounding spheres and 

Unity’s BoundingSphere class in the next chapter. These are both examples of bounding 

volumes for collision approximation. The general requirements for bounding volumes 

are as follows:

	 1.	 Representation: Their representation must be compact.

	 2.	 Efficiency: They must be algorithmically simple and 

computationally efficient.

	 3.	 Bound tightness: The void space must be tolerable for the target 

geometric shape.

In this chapter, you have learned that bounding boxes are easy to represent, either 

being two positions or a position and three floats, and are straightforward and efficient to 

compute collisions. Additionally, you have observed bounding boxes to be effective with 

relatively minimal void spaces when it comes to bounding rectangular shape geometries, 

for example, cars, still humans, or still animals. However, it is also true that when these 

objects rotate off-axis, for example, rotating a car about the X-axis by 45 degrees or a 

human leaning forward, the bounding box void space can increase significantly and thus 

greatly affect the accuracy of the collision approximation.

Unfortunately, this variability of approximation accuracy is true in general. All 

bounding volumes have variable efficiencies depending on the profile and orientation of 

the geometric shape that they bound. It is up to the game designer to determine the best 

types of bounding volumes to use for their purpose.

�The Unity Bounds Class
Unity Application Programming Interface (API) describes the Bounds class as

An axis-aligned bounding box, or AABB for short, is a box aligned 

with coordinate axes and fully enclosing some object. Because the 

box is never rotated with respect to the axes, it can be defined by just 

its center and extents, or alternatively by min and max points.
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Unity Bounds defines the following properties and public functions (https://docs.

unity3d.com/ScriptReference/Bounds.html):

•	 Properties

•	 center: The center of the bounding box.

•	 extents: The extents of the Bounding Box. This is always half of 

the size of the Bounds.

•	 max: The maximal point of the box. This is always equal to 

center+extents.

•	 min: The minimal point of the box. This is always equal to center–

extents.

•	 size: The total size of the box. This is always twice as large as the 

extents.

•	 Public methods

•	 ClosestPoint: The closest point on the bounding box.

•	 Contains: Is point contained in the bounding box?

•	 Encapsulate: Grows the Bounds to include the point.

•	 Expand: Expands the bounds by increasing its size by amount 

along each side.

•	 IntersectRay: Does ray intersect this bounding box?

•	 Intersects: Does another bounding box intersect with this 

bounding box?

•	 SetMinMax: Sets the bounds to the min and max value of the box.

•	 SqrDistance: The smallest squared distance between the point 

and this bounding box.

Through this chapter, you have learned the implementation details of all the 

functionality with bolded names, for example, the size property, or the Contains 

method. The mathematics behind the other functionality will be covered in different 

chapters in the rest of this book.
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�Summary
This chapter begins with covering the 3D Cartesian Coordinate System and follows by 

reviewing intervals along a major axis. These topics were used to build into the concept 

of an axis-aligned bounding box in 3D space that can be applied in determining the 

proximity of objects and approximating collisions. The chapter then reviews how 

to compute the intersection of intervals along a 1D axis before generalizing into the 

intersection of 3D bounding boxes. Besides learning the details of bounding boxes, 

it is important to recognize the merits of the foundational concepts that make up the 

bounding box. This chapter went from simple number comparisons to efficient collision 

approximation between complex geometries.

Through this chapter, you have also become familiar with this book’s approach to 

presenting concepts. For each concept, the book always begins with explanations and 

presentations of pseudocode that is independent of Unity. This is then typically followed 

with a Unity project where you are guided to interact with and appreciate the effects 

and results of applying that concept. You are then led to analyze the parameters that 

control or implement the concepts being demonstrated via studying the variables on 

the MyScript component of the Controller game object. Lastly, you are walked through 

the examination of the actual source code. You can expect this rhythm to continue 

throughout the rest of this book.

Chapter 2  Intervals and Bounding Boxes



73
© Kelvin Sung, Gregory Smith 2023 
K. Sung and G. Smith, Basic Math for Game Development with Unity 3D,  
https://doi.org/10.1007/978-1-4842-9885-5_3

CHAPTER 3

Distances and Bounding 
Spheres
After completing this chapter, you will be able to

•	 Compute the distance between any two positions

•	 Define bounding spheres for objects

•	 Perform inside-outside tests for bounding spheres

•	 Detect collisions between bounding spheres

•	 Appreciate the strengths and weaknesses of bounding spheres

�Introduction
Now that you have more familiarity with the Unity environment and the learning 

tools that this book utilizes, it is time to review some slightly more advanced, yet still 

fundamental math concepts for video game creation. Similar to how Chapter 2 took 

simple number comparisons and used them to create bounding boxes, this chapter 

will develop the simple concepts of distances and the applications of the Pythagorean 

Theorem to create another powerful and widely used tool in video games: bounding 

spheres, which are also called sphere colliders.

From the previous chapter, you have learned that bounding boxes are created with 

and executed from simple logic statements and have an efficient runtime. However, 

you also learned that they are ill-suited for bounding objects that are not axis-aligned. 

Spheres can be represented simply by a point (the center) and a radius and are perfectly 

symmetrical with respect to its center. Their simple and compact representation and, 

as you will discover in this chapter, the efficient computations involved mean that 
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spheres are prime candidates for serving as the geometry of bounding volumes. The 

elegant symmetrical property implies that the efficiency and effectiveness of bounding 

spheres are independent of object axis alignment or the rotations of objects. For these 

reasons, bounding spheres or sphere colliders are one of the most widely used tools in 

video games.

This chapter begins by reviewing distance computation, then follows by applying 

the results of this computation to sphere inside-outside tests, and finally wraps up with 

developing the bounding sphere functionality. Take note of the use of the Vector3 data 

type in these discussions. Although this data type encapsulates three separate entities, 

the x-, y-, and z-values of a position, Vector3 objects will be increasingly referenced and 

utilized as one unified entity with its own operators including addition, subtraction, 

magnitude, dot product, and so on. These observations will lead to the topic of vectors in 

the next chapter.

�Distances Between Positions
Recall that, as depicted in Figure 2-1, the position of an object (x, y, z) is simply the 

distance measured from the origin along each corresponding major axis, for example, 

x-distance along the X-axis. Very conveniently and by design, the major axes of the 

Cartesian Coordinate System are perpendicular to each other. For this reason, the 

relationship between any position and the origin can be characterized by two right-angle 

triangles. This characterization is illustrated in Figure 3-1. Notice how the given position, 

D, is connected to the origin via two triangles, ABC and ACD, where both are right-angle 

triangles.

Figure 3-1.  The distance between the origin and a position, D (xd, yd, zd)
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Triangle ABC is defined by vertices A (the origin), B, and C. The lengths of the edges 

of this triangle are as follows:

•	 Edge AB: The length along the X-axis, xd

•	 Edge BC: The length along the Y-axis, yd

•	 Edge AC: The length along the hypotenuse, computed via the 

Pythagorean Theorem,

	 d x yd d1
2 2= + 	

Triangle ACD is defined by vertices A, C, and D (the position of interest). The lengths 

of the edges for this triangle are as follows:

•	 Edge AC: The length along the hypotenuse of the triangle ABC, d1

•	 Edge CD: The length along the Z-axis, zd

•	 Edge AD: The length along the hypotenuse, computed via the 

Pythagorean Theorem,

	 d d z x y zd d d d= + = + +1
2 2 2 2 2 	

Notice that the length of the edge AD, d, is simply the distance between the position 

(in this case, D) and the origin. The distance formula states that the distance between 

a position and the origin is the square root of the sum of the distances between that 

position and the origin measured along each major axis. In this case, those distances 

are xd, yd, and zd. As illustrated in Figure 3-2, this concept can be generalized to compute 

distances between any two positions in the Cartesian Coordinate System.
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Figure 3-2.  Calculating the distance between any two positions: P1 and P2

Please refer to Figure 3-2 and consider the situation where the vertex A from 

Figure 3-1 has moved away from the origin to position P1(x1, y1, z1). In this case, the 

distance between P1 and any position P2(x2, y2, z2) can still be determined by computing 

the distances along each of the major axes:

•	 Distance along the X-axis: dx = x2 - x1

•	 Distance along the Y-axis: dy = y2 - y1

•	 Distance along the Z-axis: dz = z2 - z1

•	 Distance between P1 and P2:

	
d d d d x x y y z zx y z= + + = −( ) + −( ) + −( )2 2 2

2 1

2

2 1

2

2 1

2

	

Note that since this equation squares the distances (the subtraction results) along 

each axis, the order of subtraction does not matter. This can be explained intuitively as 

the distance between P1 and P2 is the same as the distance between P2 and P1.

�The Positions and Distances Example
The focus of this example is to demonstrate, allow you to interact with, and verify 

the distance computation between two positions. Figure 3-3 shows a screenshot 

of running the EX_3_1_PositionsAndDistances example from the Chapter-3-

Distances+BoundingSpheres project. Recall that this scene can be opened by double-

clicking the corresponding scene file in the Project Window.
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Figure 3-3.  Running the Positions And Distances example

The goals of this example are for you to

•	 Apply the Pythagorean Theorem for distance computation

•	 Manipulate positions and verify the results of distance computation

•	 Work with relevant, predefined functions of Unity’s Vector3 class

�Examine the Scene

Examine the Hierarchy Window to observe that besides Controller, the two objects 

that you will interact with in this example are CheckerSphere and StripeSphere. 

This example allows you to manipulate the position of the CheckerSphere and the 

StripeSphere while it continuously computes and updates the distance between these 

spheres in two different ways, first by explicitly applying the Pythagorean Theorem and 

second by invoking a predefined Vector3 function.

Note T he three arrows, representing the major axes of the Cartesian Coordinate 
System, are defined in the zIgnoreThisObject. The axis frame is displayed as a 
reference for supporting your object manipulation exercise.
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�Analyze Controller MyScript Component

There are six defined variables in the MyScript component of Controller:

•	 Checker: A reference to the CheckerSphere game object

•	 Stripe: A reference to the StripeSphere game object

•	 CheckerPosition: The position of the CheckerSphere

•	 StripePosition: The position of the StripeSphere

•	 DistanceBetween: The distance between CheckerSphere and 

StripeSphere

•	 MagnitudeOfVector: The magnitude or length of a Vector3 data type

The last two variables, DistanceBetween and MagnitudeOfVector, are the focus of 

this example.

�Interact with the Example

Run the game and notice that as soon as the game begins, the values in Controller’s 

MyScript component have changed. While CheckerSphere and StripeSphere are 

still at their starting positions, the distance variables no longer have a value of 0. The 

DistanceBetween and MagnitudeOfVector variables are now both showing a value of 

5. This value is the distance between the center of CheckerSphere and the center of 

StripeSphere. This can be easily verified by observing that the CheckerSphere is located 

at the origin and that the StripeSphere is located at (5, 0, 0), proving that the distance is 

indeed 5.

Set the position of the CheckerSphere to be (6.4, 0, 0) by manipulating the 

CheckerPosition variable. Verify that the CheckerSphere did move in the scene and 

is now located just beyond the tip of the red arrow representing the X-axis. More 

importantly, note that the DistanceBetween and MagnitudeOfVector variables are both 

showing the new correct distance value of 1.4. Try moving the CheckerSphere along the 

X-axis and verify that the computed distance for both variables is always correct.

After verifying the computed distances are correct along the X-axis, move the two 

spheres randomly off the X-axis. Observe the thin red, green, and blue lines that run 

parallel to the three major axes and connect the CheckerSphere to the StripeSphere. 

These three lines are used to help visualize the dx, dy, and dz values between the center 
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positions of the two spheres. If you do not see these lines, make sure you are looking at 

the Scene View window and that the example is running as the lines are not shown in the 

Game View window because they are meant for debugging in the Unity Editor.

With the two spheres located at random positions, examine the distances computed. 

Though it can be challenging to eyeball and verify that the computed distance is correct, 

rest assured, they are.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

public GameObject Checker = null;   // The spheres to work with

public GameObject Stripe = null;

public Vector3 CheckerPosition = Vector3.zero;

public Vector3 StripePosition = Vector3.zero;

public float DistanceBetween = 0.0f;

public float MagnitudeOfVector = 0.0f;

All of these variables have been discussed when analyzing the MyScript component. 

Next, you will examine the Start() function. It is similar to the Start() functions in 

other examples where assertion statements are used to verify game object references. In 

this case, it checks that the Checker and Stripe variables are indeed properly initialized 

in the Inspector Window.

void Start() {

     Debug.Assert(Checker!= null);  // Ensure proper init

     Debug.Assert(Stripe != null);

}

The Update() function is the essence of this example and is listed as follows:

void Update() {

     // Update the sphere positions

     Checker.transform.localPosition = CheckerPosition;

     Stripe.transform.localPosition = StripePosition;

     // Apply Pythagorean Theorem to compute distance

     float dx = StripePosition.x - CheckerPosition.x;
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     float dy = StripePosition.y - CheckerPosition.y;

     float dz = StripePosition.z - CheckerPosition.z;

     DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);

     // Compute the magnitude of a Vector3

     Vector3 diff = StripePosition - CheckerPosition;

     MagnitudeOfVector = diff.magnitude;

     #region Display the dx, dy, and dz

}

The Update() function sets the state of this example in four simple steps:

•	 Step 1: Sets the GameObject positions with their corresponding 

position variables. This step allows you to change the location of the 

StripeSphere and the CheckerSphere via the CheckerPosition and 

StripePosition variables.

•	 Step 2: Applies the Pythagorean Theorem to compute distance. Based 

on the center of the two spheres, this step computes the distances 

along the X-, Y-, and Z-axes and then takes the square root of the sum 

of the squared axis distances.

•	 Step 3: Calculates the distance by working with the Vector3 class. 

This step demonstrates that the distance between two positions is 

also calculated by the magnitude property of the Vector3 class. You 

may recall from previous examples that the subtract operator, “-”, of 

Vector3 computes the differences of the corresponding x-, y-, and 

z-components. For this reason, the results in the variable, diff, are 

identical to the computed results, dx, dy, and dz. Interestingly, the 

magnitude property of Vector3 class computes the square root of the 

sum of squares of the components, in this case, the distance between 

the two spheres. The next chapter will examine vectors and the 

Vector3 class in detail. For now, simply take note of the convenience 

of working with the Vector3 class.
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•	 Step 4: Visualizes the distance along each axis with lines. The last step 

is hidden in the collapsed “Display the dx, dy, and dz” region. This 

region hides the logic that visualizes the dx, dy, and dz displacements 

along their corresponding axis. This code will be straightforward to 

follow after the coverage of vectors in the next chapter. For now, note 

that Debug.DrawLine() is a handy function for drawing debug lines in 

the Scene View window.

The Vector3 subtraction operator and the magnitude property are convenient 

shortcuts for avoiding the tedious per-coordinate x-, y-, and z-component access 

required when computing the distance between positions. As you will see in the next 

chapter, Unity’s Vector3 class and its operators are not designed specifically to support 

distance computation. Instead, they are a part of a powerful set of operators that belong 

to an important topic, vectors, that will be the focus of study for most of the rest of 

this book.

Note  With the Microsoft Visual Studio IDE, a #region can be hidden or 
expanded by clicking the “+” or “–” symbols to the left of the corresponding line 
of code.

�Takeaway from This Example

You have verified the application of the Pythagorean Theorem in computing distances 

between positions, and you have begun to work with the magnitude property of the 

Vector3 class.

Relevant mathematical concepts covered include

•	 Pythagorean Theorem for computing the distance between two 

positions

Unity tools

•	 Vector3

•	 Subtraction operator for computing distances measured along 

the major axes between two positions

•	 The magnitude property that computes the Pythagorean Theorem
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•	 Debug.DrawLine() function for drawing debugging lines in the Scene 

View window

Interaction technique

•	 Use a sphere game object to represent and manipulate a position.

EXERCISES

Order of Subtraction

Recall that because the Pythagorean Theorem computation involves the sum of squared 

distances, the following two statements compute the same results:

float distance1 = (pointA - pointB).magnitude;

float distance2 = (pointB - pointA).magnitude;

Verify this statement by switching the subtraction order on the CheckerSphere and 

StripeSphere when computing the distance and confirm that the results are still correct.

Any Position

You have learned that the distance computation is applicable to compute the distance between 

any two positions. Modify the Update() function to include a third position, for example, 

ThirdPosition. Now compute and display the distance between the ThirdPosition and 

the CheckerSphere and the distance between the ThirdPosition and the StripeSphere. 

Now manipulate the CheckerSphere and the StripeSphere to observe the two computed 

distances to the ThirdPosition. Notice that these distances converge to the same value 

when you move the two spheres to be close to each other. This exercise demonstrates that the 

computation learned does indeed compute the distance between any two positions.

�Sphere Colliders or Bounding Spheres
Recall that in 2D space, a compass sketches a circle by fixing one point and then tracing 

out all points that are at a fixed distance from that one point. The fixed position is the 

center and the fixed distance is the radius of the circle. A point is inside the circle when 
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its distance to the center is smaller than the radius of the circle; otherwise, the position 

is outside of the circle. This simple observation can be generalized from 2D to 3D space. 

A point is inside a sphere when its distance to the center is less than the radius of the 

sphere; otherwise, it is outside of the sphere.

Based on this simple observation, it is possible to use the Pythagorean Theorem 

to determine if a point is within the bounds of a sphere. In this way, it becomes 

straightforward to determine if an object bounded by a sphere is colliding or within a 

certain proximity of a given position. This concept is illustrated in Figure 3-4, where a car 

is bounded by a sphere.

Figure 3-4.  Determining if a position is inside or outside a sphere

With the spherical bound shown in Figure 3-4, it becomes possible to determine if 

a position is inside (close enough to the car) or outside (not close enough to the car) of 

the sphere. These conditions can be determined by comparing the distance between 

the position (the checkered sphere) and the center of the sphere, d, to the radius of the 

sphere, r1. This is the inside-outside test of the bounding sphere; the logic for this test is 

listed as follows:

float d = (Position - Sphere.Center).magnitude;

if (d <= Sphere.Radius)

     // Position is inside the sphere: Figure 3-4(a)

else

     // Position is outside the sphere: Figure 3-4(b)
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The less-than-or-equal test for the inside condition says that when positions are 

located on the circumference of the sphere, they are considered as inside the sphere. The 

spherical bound is referred to as a SphereBound or SphereCollider or BoundingSphere. 

Similar to the case of bounding boxes, this type of bound is widely used and important 

enough that Unity has defined its own BoundingSphere class, https://docs.unity3d.

com/ScriptReference/BoundingSphere.html, that implements the associated 

functionality. At the end of this chapter, after you have learned some of the involved 

algorithms and implementations, you will examine this Unity class in more detail.

�The Sphere Bounds Example
This example implements and demonstrates the strengths and weaknesses of the 

bounding sphere functionality. Figure 3-5 shows a screenshot of running the EX_3_2_

SphereBounds example.

Figure 3-5.  Running the Sphere Bounds example

The goals of this project are for you to

•	 Review the application of the Pythagorean Theorem

•	 Examine the details of the bounding sphere inside-outside test 

implementation
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�Examine the Scene

Look at the Hierarchy Window in the EX_3_2_SphereBounds scene and observe that 

besides Controller, the two objects that you will interact with in this example are 

CheckeredSphere and Car. This example defines a sphere bound around the Car and 

demonstrates the approximation of collision between the Car and the CheckeredSphere.

�Analyze Controller MyScript Component

Select Controller and examine the MyScript component in the Inspector Window. You 

will see five variables:

•	 APoint: The reference to the CheckerSphere game object

•	 TheCar: The reference to the Car game object

•	 CarBoundRadius: The radius of the sphere bound around the 

Car object

•	 DrawCarBound: A toggle determining if the car bound should 

be drawn

•	 DistanceBetween: The computed distance between the center of 

TheCar and APoint

�Interact with the Example

Run the game to observe a transparent white sphere covering the Car object. This 

transparent sphere represents the SphereBound of the Car. Select and manipulate the 

position of the CheckerSphere. Notice the color of the car bound changes when the 

center of the CheckerSphere is within its bounds. This same behavior can be observed by 

manipulating the position of the Car.

By design, the car bound sphere does not completely cover the Car. For example, the 

front and rear bumpers are outside of the bounding sphere. This means that the system 

is not able to detect when the CheckerSphere is colliding with the front or the rear of the 

car. You can change the size of the car sphere bound by adjusting the CarBoundRadius 

variable. Finally, notice the large amount of void space in between the Car and its 

spherical bound. In general, spherical bounds are not suitable for bounding rectangular 

objects.
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�Details of MyScript

Open MyScript in your IDE and observe the instance variables. Once again, you can 

observe and verify the one-to-one correspondence between the public variables 

defined in the script source code and the user manipulatable variables of the MyScript 

component in the Inspector Window. These variables are as follows:

public  GameObject APoint = null;         // CheckerSphere position

private MySphereBound SphereBound = null; // The car sphere bound

public  GameObject TheCar = null;         // Reference to the car

public  float CarBoundRadius = 2.0f;      // Sphere bound radius

public  bool DrawCarBound = true;         // To draw/hide bound

public float DistanceBetween = 0.0f;      // Car to APoint distance

The SphereBound variable is the only private variable and is defined for visualizing 

the car bounding sphere. In Figure 3-6, you can see the public fields and functions of the 

MySphereBound class. This class is used to help visualize and create the bounding sphere. 

Notice that besides the two fields for supporting drawing, DrawBound and BoundColor, 

the class only defines a Center and a Radius—the definition of a sphere.

Figure 3-6.  The MySphereBound class for creating and visualizing a 
spherical bound
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Next, examine the initialization of the variables in the Start() function:

void Start() {

     Debug.Assert(APoint != null);     // Ensure initialization

     Debug.Assert(TheCar != null);

     SphereBound = new MySphereBound();  // Visualize the bound

}

Besides verifying that APoint and TheCar variables are properly set up in the 

editor, the SphereBound variable is also instantiated. Lastly, take a look at the Update() 

function:

void Update() {

     // Step 1: Assume no collision

     SphereBound.BoundColor = MySphereBound.NoCollisionColor;

     // Step 2: Update the sphere bound

     SphereBound.Center = TheCar.transform.localPosition;

     SphereBound.Radius = CarBoundRadius;    // Set the radius

     SphereBound.DrawBound = DrawCarBound;   // Show/Hide bound

     // Step 3: Compute distance between APoint and SphereBound

     Vector3 diff = TheCar.transform.localPosition

                  - APoint.transform.localPosition;

     DistanceBetween = diff.magnitude;

     // Step 4: Testing and showing collision status

     bool isInside = (DistanceBetween <= CarBoundRadius);

     // TheCar.SetActive(!isInside);  // what does this do?

     if (isInside) {

         Debug.Log("Inside!! Distance:" + DistanceBetween);

         SphereBound.BoundColor = MySphereBound.CollisionColor;

         // The test is supported by MySphereCollider

         Debug.Assert(SphereBound.PointInSphere(

                      APoint.transform.localPosition));

     }

}
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The Update() function performs the following four steps:

•	 Step 1: Set car sphere bound color to white, signifying that no 

collision has occurred.

•	 Step 2: Update the SphereBound parameters with the current user-

specified values from the MyScript component on the Controller.

•	 Step 3: Calculate the distance between APoint and the center of the 

SphereBound.

•	 Step 4: Perform the sphere inside-outside test by comparing the 

computed distance to the radius of the SphereBound and update the 

color of the bound accordingly. Notice that as listed in Figure 36, 

the PointInSphere() function defined by the MySphereBound class 

implements the functionality of steps 3 and 4.

�Takeaway from This Example

It is important to emphasize that the functionality of a sphere collider is implemented 

entirely in the Update() function and is independent of the MySphereBound class, for 

example, by defining the center and radius as the following:

Vector3 BoundCenter;  // Center of Sphere bound

float BoundRadius;    // Radius of Sphere bound

The exact same functionality, except the visualization of the sphere bound, can be 

implemented in the MyScript class without MySphereBound. Once again, make sure you 

focus on and understand the mathematical concepts and their implementation and not 

on how visualization is implemented.

Relevant mathematical concepts covered include

•	 Distance computation

•	 Sphere inside-outside test

Unity tools

•	 MySphereBound: A custom-defined class to support the visualization 

of a bounding sphere
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EXERCISE

Modifying Game Behavior

Select the Controller object and toggle off the DrawCarBound flag. Run the game now and 

observe that the car sphere bound is now hidden. Manipulate CheckerSphere such that it 

is touching the car. Now, open the Console Window (label F of Figure 1-3) and look at the log 

messages generated and notice that the inside condition is still computed and detected even 

though the sphere bound is not being drawn. Next, stop the game, uncomment the following 

line in the Update() function, and then restart the game:

    TheCar.SetActive(!isInside);  // what does this do?

Now, with the DrawCarBound flag being switched off, notice how the Car game object 

appears and disappears depending on how far away the CheckerSphere is. Imagine the 

CheckerSphere represents a projectile, then it would look as if the Car was being “hit” and 

destroyed when the projectile is in close proximity. Having another object collide with or being 

detected inside of a bounding sphere is a common reason for hiding (or destroying) objects 

in a game.

�Collision of Bounding Spheres
The sphere inside-outside test can be generalized to determine if two spheres are 

colliding. Figures 3-7(a) and (b) show that the condition for collision between two 

spheres can be determined by comparing the distance between their centers to the sum 

of their radii. When the centers are further away than their radii summed, as illustrated 

in Figure 3-7(a), there is no intersection. Otherwise, as shown in Figure 3-7(b), the two 

spheres are colliding. Once again, this simple and straightforward computation results 

in bounding spheres being one of the most commonly used bounding geometries in 3D 

interactive graphical applications, including video games.
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Figure 3-7.  Calculating the collision between two spheres

�The Sphere Bound Intersections Example
This example demonstrates the generalization of the inside-outside test presented in the 

previous example to detect intersections or collisions of two spheres. Figure 3-8 shows a 

screenshot of running the EX_3_3_SphereBoundIntersections example.

Figure 3-8.  Running the Sphere Bound Intersections example
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The goals of this project are for you to

•	 Understand how to intersect bounding spheres

•	 Examine and understand the implementation of bounding sphere 

intersection

�Examine the Scene

Upon examining the scene, you will see that besides Controller, there are only two 

objects in the scene to pay attention to: Car and Taxi. This example builds a bounding 

sphere around each of these two vehicles and allows you to examine the details of 

bounding sphere intersection implementation.

�Analyze Controller MyScript Component

The MyScript component on the Controller presents seven variables, two sets of three 

variables for each vehicle and then one for the both of them:

•	 Taxi

•	 TheTaxi: The reference to the Taxi game object

•	 TaxiBoundRadius: The radius of the sphere bounding the 

Taxi object

•	 DrawTaxiBound: A toggle determining if the taxi bound should 

be drawn

•	 Car

•	 TheCar: The reference to the Car game object

•	 CarBoundRadius: The radius of the sphere bounding the 

Car object

•	 DrawCarBound: A toggle determining if the car bound should 

be drawn

•	 DistanceBetween: The computed distance between the center of 

TheCar and the center of TheTaxi
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�Interact with the Example

Run the game and observe that each vehicle is almost completely bounded by its own 

transparent sphere. These are the bounding spheres for the corresponding vehicles. 

Manipulate the position of the vehicle, for example, move the Taxi in the positive 

x-direction, and observe the bounding sphere color change when the vehicles are 

sufficiently close to each other that the bounding spheres intersect or collide.

You can observe the effects of void space when the spheres trigger a collision event 

(when the spheres change color) without the two vehicles coming into contact. Change 

the bound radius of both the Taxi and the Car through their corresponding BoundRadius 

variable and observe the trade-off between the size of your void space and the likelihood 

of missing collisions.

�Details of MyScript

Open MyScript in the IDE and observe the similarities of the code to those from the 

MyScript of the EX_3_2_SphereBounds example. The only significant difference is in the 

Update() function’s sphere intersection computation in Step 5.

void Update() {

     // Step 1: Assume no intersection

          ...

     // Step 2: Update the Taxi sphere bound

          ...

     // Step 3: Update the Car sphere bound

          ...

     // Step 4: Compute distance as magnitude of a Vector3

     Vector3 diff = TaxiBound.Center - CarBound.Center;

     DistanceBetween = diff.magnitude;

     // Step 5: Testing and showing intersection status

     bool hasIntersection =

         DistanceBetween <= (TaxiBound.Radius + CarBound.Radius);

     if (hasIntersection) {

          Debug.Log("Intersect!! Distance:" + DistanceBetween);

          TaxiBound.BoundColor = MySphereBound.CollisionColor;

          CarBound.BoundColor = MySphereBound.CollisionColor;
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          // functionality is also supported by MySphereCollider

          Debug.Assert(TaxiBound.SpheresIntersects(CarBound));

      }

}

In this example, as illustrated in Figure 3-7, Step 5 is accomplished by comparing the 

distance between two points to the sum of the two bounding sphere’s radii to determine 

if a collision has occurred, instead of being compared to just one sphere’s radius as it was 

in the Sphere Bounds example.

�Takeaway from This Example

This example has been a straightforward generalization of the previous example in 

detecting whether a given position is inside or outside a sphere. In the previous example, 

you were able to detect if a position with a radius of zero entered a bounding sphere; in 

this example, you generalized that position to now have a radius of any value.

Relevant mathematical concepts covered include

•	 Testing for collision or intersection between two spheres

EXERCISE

Hierarchical Bounding Spheres

One way to remedy the potentially large void space shortcomings of bounding spheres is 

by defining a hierarchy of bounds. For example, define two more SphereBounds inside the 

given bound. These two SphereBounds should be located at the center of the front and back 

wheels, each with a radius about one-third of the outer bound. Now, when a position is inside 

the outer bound, you can perform the inside-outside test with the two inner bounds to decide if 

a collision has occurred. Try implementing this functionality. In general, a game object can be 

bounded by a hierarchy of bounding geometries, where the inner bounds will only be explored 

if the outer bound test returns a favorable result. Such a hierarchy can significantly increase 

the accuracy of collision approximation at a cost of increased computation and algorithmic 

complexities.
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�The Unity BoundingSphere Class
Unity API documents the BoundingSphere class as

Describes a single bounding sphere for use by a CullingGroup.

You can think of a CullingGroup as a hierarchy of bounds. As it does not pertain 

to the math in this book, exactly how to implement a CullingGroup or use Unity’s 

BoundingSphere class will not be discussed. Instead, they are mentioned here merely 

to verify that the bounding sphere is a widely used method for bounding objects. 

Unity BoundingSphere defines the following properties (https://docs.unity3d.com/

ScriptReference/BoundingSphere.html):

•	 position: The center position of the BoundingSphere

•	 radius: The radius of the BoundingSphere

Notice how Unity’s BoundingSphere class doesn’t have any public methods. 

The MySphereBound class that you used throughout this chapter has additional 

functionality defined in the PointInSphere() and SpheresIntersects() functions. 

Due to the simplicity of these functions, it appears that Unity assumes the users of the 

BoundingSphere class will implement these tests themselves.

�Summary
This chapter begins with reviewing how to apply the Pythagorean Theorem to compute 

distances between positions in a 3D Cartesian Coordinate System and then generalizes 

this knowledge to defining bounding spheres. Through working with the examples in 

this chapter, you have learned how to apply distance computation and use spheres as 

bounds in approximating collisions between geometrically complicated game objects. 

Your understanding of these concepts was gained based on your interaction with actual 

bounding spheres and improved upon by analyzing their implementation source code.

While straightforward to implement and widely used as a bounding geometry or 

collider, the major drawback of bounding spheres is the potentially significant void space 

within the bound. As you have observed in the case of cars, this issue of large void space 

can be especially profound for rectangular or elongated objects, like books, cars, or 
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animals. Unfortunately, as discussed in the previous chapter, all bounding volumes have 

similar challenges in different degrees under different circumstances. The best ways to 

overcome the void space problem are to match your object to the best fitted bound or to 

use a hierarchy of bounds when one bound involves too much void space.

You have also learned more about the Unity Vector3 class. The next chapter will 

cover vectors, the concept that the Vector3 class is designed to support, in much more 

detail. The next chapter will build off what you have already seen and give you a greater 

understanding and appreciation of the usefulness and power of vectors in video games 

and computer graphics.
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CHAPTER 4

Vectors
After completing this chapter, you will be able to

•	 Understand that a vector relates two positions to each other

•	 Recognize that all points in space are position vectors

•	 Comprehend that a vector encapsulates both a distance and a 

direction

•	 Perform basic vector algebra to scale, normalize, add, and 

subtract vectors

•	 Apply vectors to control the motions of game objects

•	 Implement simple game object behaviors like aiming and following

•	 Design and simulate simple external factors like wind conditions to 

affect object motion

�Introduction
So far, you have reviewed some of the most elementary and ground laying mathematical 

concepts used in video game creation. These simple concepts that you have observed 

and interacted with can be developed further into a powerful and widely used tool set. 

This approach of introducing a simple concept and expanding it to solve real problems 

when designing a video game will be continued in this chapter with vectors and the 

fundamental algebra that accompanies them.

Vectors are entities that encapsulate point-to-point distance and direction. Vector 

algebra is the mechanism, or rules, for manipulating these two entities. It allows the user 

to, for example, increase the distance, change the direction, and combine, or detract, 

© Kelvin Sung, Gregory Smith 2023 
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both the distance and direction at the same time. Vectors and their associated math 

concepts allow precise control and accurate prediction of basic game object movements 

as well as the support for many simple behaviors.

In many video games, object behaviors are often governed by their physical 

proximity to other objects, such as non-player characters changing from their predefined 

wandering pattern, for example, patrol path, and moving toward the approaching player. 

To support this simple scenario, you must be able to program the behavior of following 

a predefined route as well as the ability to detect and move toward the approaching 

player or character. Vectors, with their encapsulation of both distances and directions, 

are perfect for representing the motion of objects. Vector algebra complements this 

encapsulation with the ability to determine the relationships between the in-motion 

objects. Therefore, with just vectors and their accompanying mathematical operations, 

you as a game developer, at any moment in your game, can determine exactly what game 

behavior to invoke. Vectors and their associated algebra are one of the most fundamental 

tools in developing video games.

This chapter introduces vectors as a tool for controlling motion and computing 

spatial relationships between objects. In general, vectors are important for many, just 

as significant, applications that are unrelated to object motions. This is especially true 

for applications of vectors to fields outside of interactive graphical applications or video 

games, for example, applying vectors in machine learning for data cluster analysis. Even 

within the field of video games, vectors are important for other applications. Some of 

these other applications include predicting the exact intersection position between a 

motion path and a wall and computing the reflection direction after a collision, both of 

which will be discussed in future chapters.

This chapter begins by reviewing what you have learned from Chapter 3, but now 

with a focus on how vectors were used to perform the distance calculations you have 

experimented with and observed. The chapter then analyzes the details of the vector 

definition and the algebraic rules that govern the operations on vectors. Through these 

discussions, you will learn that the vector definition is independent of positions and that 

vectors can be scaled, normalized, and applied to represent velocities that define the 

motions of objects. The formal definition of vector algebra, the addition and subtraction 

operations, is presented toward the end of the chapter to conclude and verify the 

knowledge gained throughout the chapter.
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�Vectors: Relating Two Points
Vectors have been hinted at thus far in the book and even worked with in the previous 

chapter when you needed to compute the distance between positions, but now you will 

finally learn what they are and some of their applications. Please refer to Figure 4-1, 

which is identical to Figure 3-2 and copied here for convenience.

Figure 4-1.  Calculating the distance between any two positions: P1 and P2 (same 
as Figure 3-2)

Recall that in order to compute the distance between two positions, P1 and P2, the 

distances measured along the major axes must be computed.

•	 Distance along X-Axis: dx = x2 − x1

•	 Distance along Y-axis: dy = y2 − y1

•	 Distance along Z-axis: dz = z2 − z1

You learned that the distance, d, between these positions can be derived by applying 

the Pythagorean Theorem twice to the two connecting right-angle triangles (see 

Figure 3-1 if you need a refresher). The derived formula is simply the square root of the 

summed squared distances measured along the major axes, which is listed as follows:

d x x y y z z= -( ) + -( ) + -( )2 1

2

2 1

2

2 1

2

d d d dx y z= + +2 2 2
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This formula can be interpreted as the distance that is necessary to move an object 

from position P1 to P2. This displacement is defined by the shortest traveling distant, d, 

along the direction encoded by (dx, dy, dz). This interpretation is reflected closely in the 

implementation of the Update() function in EX_3_1_MyScript, as copied and re-listed as 

follows for reference:

void Update() {

     // Update the sphere positions

     Checker.transform.localPosition = CheckerPosition;

     Stripe.transform.localPosition = StripePosition;

     // Apply Pythagorean Theorem to compute distance

     float dx = StripePosition.x - CheckerPosition.x;

     float dy = StripePosition.y - CheckerPosition.y;

     float dz = StripePosition.z - CheckerPosition.z;

     DistanceBetween = Mathf.Sqrt(dx*dx + dy*dy + dz*dz);

     // Compute the magnitude of a Vector3

     Vector3 diff = StripePosition - CheckerPosition;

     MagnitudeOfVector = diff.magnitude;

     #region Display the dx, dy, and dz

}

Pay attention to the last two lines of code once more, specifically, the diff variable 

which is the result of subtracting CheckerPosition (P1) from StripePosition (P2). 

As you learned from this example in the last chapter, the magnitude operator returns 

the distance, d, between the two positions. The same diff variable also defines the 

direction from P1 to P2. This entity, diff, that encodes those two pieces of information, 

distance and direction, is a vector. The line of code that computes diff can be expressed 

mathematically as follows:



V P Pd = -2 1

+ - - -( )x x y y z z2 1 2 1 2 1, ,

= ( )d d dx y z, ,
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Or simply, vector 


V d d dd x y z= ( ), , . There are a few interesting observations that can 

be made thus far:

•	 Symbol: The symbol for a vector, V, is shown as 


V , with an arrow 

above the character V representing that it's a vector.

•	 Definition: A vector, 


V P P= -2 1 , describes the distance and direction 

to travel from P1 to P2.

•	 Notation: In 3D space, a vector is represented by a tuple of three 

floating-point values, signifying the displacements along each of 

the corresponding major axes. This notation is identical to that of a 

position in the Cartesian Coordinate System. In fact, given a tuple 

with three values, (x, y, z), without any context, it is impossible to 

differentiate between a position and a vector. This issue will be 

examined in the next section of this chapter.

•	 Representation: As illustrated in Figure 4-2, graphically, a vector 


V d d dx y z= ( ), ,  is drawn as a line that begins from a position, the 

tail, with an arrow pointing at the end position, the head, with the 

displacements of dx, dy, and dz along the major axes. Note that in this 

case, dy is a negative number because the y-displacement is in the 

negative direction of the Y-axis.

•	 Operations: You have already experienced working with the vector 

subtraction operator. This operator and others will be explored later 

in this chapter.

Chapter 4  Vectors



102

Figure 4-2.  A vector with its head and tail

�Position Vectors
For new learners of vectors, a common point of confusion is the position that defines a 

vector. For example, since the vector

	


V P Pd = -2 1 	

defines the distance and direction from position P1 to P2, one may arrive at the wrong 

assumption that the vector 


Vd , is “defined at position P1.” You will begin the exploration 

of vectors by analyzing this potentially confusing issue head-on and learn that vectors 

are defined independent of any specific position and, in fact, can be applied to any 

position.

Notice that the positions that define the vector 


Vd , P1 and P2, are variables, indicating 

that this formula is true for any point located at any position. In the special case where 

P1
′  is located at the origin of the Cartesian Coordinate System,(0, 0, 0), then,



V P Pd
' '= -2 1

= - - -( ) = - - -( )' ' 'x x y y z z x y z2 1 2 1 2 1 2 2 20 0 0, , , ,

= ( ) = ( )d d d x y zx y z, , , ,2 2 2
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which shows that P2 can be interpreted as a vector (x2, y2, z2) from the origin. In fact, 

any position in the Cartesian Coordinate System at (x, y, z) can be interpreted as x-, y-, 

and z-displacements measured along the three major axes from the origin position and 

thus all positions in the Cartesian Coordinate System can be interpreted as vectors from 

the origin. In this way, the position of a point is also referred to as a position vector. In 

general, in the absence of a specific context, it is convenient to consider given tuples of 

three floats, for example, (x, y, z), as a position vector.

Note T he origin position (0, 0, 0) is a special position vector and is referred to as 
the zero vector.

�Following a Vector
Refer to Figure 4-1 again, recall that the detailed definition of vector 



Vd  is as follows;



V P Pd = -2 1

+ - - -( )x x y y z z2 1 2 1 2 1, ,

= ( )d d dx y z, ,

Remember that 


Vd  defines the distance and direction from position P1 to P2. A 

subtle, but logical interpretation of this definition is that position P2 can be arrived at if 

an object begins at position P1 and travels along the X-axis by dx, the Y-axis by dy, and the 

Z-axis by dz. This interpretation can be described as “following a vector” from P1 to P2 

and can be verified mathematically as follows:

•	 P2 x-position =x1 + dx = x1 + (x2 − x1) = x2

•	 P2 y-position =y1 + dy = y1 + (y2 − y1) = y2

•	 P2 z-position =z1 + dz = z1 + (z2 − z1) = z2
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Not surprisingly, “following a vector” is expressed as

P P Vd2 1= +


= + + +( )x d y d z dx y z1 1 1, ,

= + - + - + -( )x x x y y y z z z1 2 1 1 2 1 1 2 1, ,

= ( )x y z2 2 2, ,

Graphically, you can imagine placing the tail of 


Vd  at location P1 and “follow the 

vector” to the head of the vector, to position P2. This is how you can get from one position 

to another when you don’t know the location of your next position, but you do have the 

distant and direction (


Vd ) to get there.

Note  You have seen the vector subtraction operator where the corresponding 
coordinate values are subtracted. Here you see vector addition operator, where the 
corresponding coordinate values are added. The details of vector subtraction and 
addition will be visited again later in this chapter.

�Following a Vector from Different Positions
Following a vector, 



Vd , from a given position, P1, is also referred to as “applying the 

vector 


Vd  at P1.” Since both 


Vd  and P1 are variables, the equation

	 P P Vd2 1= +


	

is true and applicable for any vector and any position. This concept is analyzed in 

detail in this section.

Figure 4-3 illustrates the alternative interpretations of the Cartesian Coordinate 

position, Pd, and the associated tuple of three floating-point values, (xd, yd, zd).
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Figure 4-3.  Positions, position vectors, and applying vectors at different positions

The top-right corner of Figure 4-3 illustrates that Pd is a position in 3D space located 

at distances xd, yd, and zd from the origin. In this way, (xd, yd, zd) is the position vector that 

identifies the location of the point Pd. The set of two spheres and the associated arrows 

on the left side of Figure 4-3 illustrate interpreting the three-float tuple, (xd, yd, zd), as 

the vector 


Vd . If you apply 


Vd  to position P1, you will arrive at position P2. If you apply 


Vd  to position Pa, then you will arrive at Pb. In this case, you know that the Cartesian 

Coordinate positions for P1 and Pa are as follows:

P x y z1 1 1 1= ( ), ,

P x y za a a a= ( ), ,

Then, the Cartesian Coordinate positions for P2 and Pb must be as follows:

P P V x xd d2 1 1= + = +


( ,  y1 + yd, z1 + zd) = (x2, y2, z2)

P P V x xb a d a d= + = +


( ,  ya + yd, za + zd) = (xb, yb, zb)

These equations are true for any x-, y-, or z-values. This is to say that P1 (and Pa) can 

be located at any position in the 3D Cartesian Coordinate System. In this way, a vector 

can indeed be applied to any position. In all cases, “following a vector” is simply placing 

the tail of the vector at the starting position, with the head of the vector always being 

located at the destination position.
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Recall that when P1 is located at the origin, or when

P x1 1
' '= ( ,  y1

′ , z1 0 0 0' = ( )) , ,

then

P P V xd d2 1 0= + = +' 

( ,  0 + yd, 0 + zd) = (xd, yd, zd) = Pd

Observe that when P1
′ is located at the origin, then Pd is a coordinate position. 

This means that the associated tuple of three floating-point numbers, (xd, yd, zd), can 

be interpreted as the vector 


Vd  being applied to the origin, (0, 0, 0). This is true for any 

coordinate position. For example, the tuple of three floats, (x1, y1, z1), that defines the 

position P1 also describes the vector 


V1 being applied to the origin. The reverse is also 

true that a given vector, 


V , can be interpreted as the Cartesian Coordinate position, P, 

or a position vector. Without sufficient contextual information, such as the tail position, 

vectors are always depicted and visualized as a line segment with their tail located at 

the origin.

If you are given a three valued tuple, (x, y, z), without context, you can assume it 

is a position vector. If you are given a vector, 


V , without context, you can assume it is 

a coordinate position (that it starts from the origin). The next example will cover the 

details of position vectors and help you understand working with a coordinate position 

and interpreting that position as a position vector.

�The Position Vectors Example
The focus of this example is to allow you to visualize a position vector and then to apply 

that vector at different locations. This example allows you to adjust, examine, and 

verify that vectors are defined independent of any given position. Figure 4-4 shows a 

screenshot of running the EX_4_1_PositionVectors scene from the Chapter-4-Vectors 

project.
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Figure 4-4.  Running the Position Vectors example

The goals of this example are for you to

•	 Understand the relationship between positions, position vectors, and 

applying vectors at positions

•	 Manipulate a position and observe the position vector being applied 

at a different location

•	 Manipulate two positions to define a vector and observe the vector as 

a position vector

•	 Examine the implementation and application of vectors

•	 Increase familiarity with the Vector3 class

�Examine the Scene

Take a look at the EX_4_1_PositionVectors scene and observe the predefined game 

objects in the Hierarchy Window. There you will find the Controller and six other game 

objects that will assist in interpreting vectors from two alternative perspectives. These 

game objects are P1, P2, Pd, Pi, Pj, and Pe. This example will allow you to manipulate the 

head position of a position vector and to observe how the defined vector can be applied 
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to any position. This example will also allow you to manipulate the positions of two 

points, observe how those two positions can define a vector, and how the defined vector 

can be shown as a position vector at the origin.

�Analyze Controller MyScript Component

The MyScript component on the Controller presents nine variables that you can 

interact with. Three of these variables are toggle switches to control what you want to 

show and hide in the scene and the other six variables can be categorized into two sets of 

three variables each.

•	 Position vector:

•	 P1: The reference to the P1 game object

•	 P2: The reference to the P2 game object

•	 Pd: The reference to the Pd game object

•	 Vector defined by two points:

•	 Pi: The reference to the Pi game object

•	 Pj: The reference to the Pj game object

•	 Pe: The reference to the Pe game object

•	 Toggles:

•	 DrawAxisFrame: A toggle determining if the axis frame should 

be drawn

•	 DrawPositionAsVector: A toggle determining if a position should 

be drawn as a vector

•	 DrawVectorAsPosition: A toggle determining if a vector should 

be drawn as a position

Note  For convenience, whenever appropriate, the rest of the examples in 
this book will assign identical names to the game objects in the scene and the 
corresponding reference variables in MyScript.
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�Interact with the Example

Click the Play Button to run the example. Notice that by default, the 

DrawVectorAsPosition toggle is set to off and the corresponding game objects, Pi, Pj, 

and Pe, are not displayed. This is so you can focus on the position vector defined by Pd 

and apply it at position P1. Select Controller and ensure that the DrawAxisFrame is on 

to observe the axis frame in the scene. You only need to show this axis frame when you 

want to verify the location of the origin and the directions of the major axes. Feel free to 

hide the axis frame and to show it again whenever you need a reference.

Position Vector

First, verify that Pi, Pj, and Pe are not displayed by selecting these objects in the 

Hierarchy Window and confirming that they are inactive (the check box next to their 

name in the Inspector Window should be unchecked). Then, select P2 and try to 

manipulate its position. You will notice that whenever you change a value in P2’s 

transform component in the Inspector Window, it reverts back to its old value. This is 

because P2’s position is under the control of MyScript. Now select and manipulate the 

position of Pd and verify the following:

•	 Notice the thin red, green, and blue lines connecting from the origin 

to position Pd. Switch the DrawAxisFrame on and off to verify that 

these three lines are parallel to the corresponding X-, Y-, and Z-axes. 

The lengths of these three lines are xd, yd, and zd, which are the 

corresponding values of the coordinate position of Pd.

•	 The position vector is the black vector with its tail at the origin and 

its head at the current Pd location. This vector represents interpreting 

the coordinate values of Pd, (xd, yd, zd), as the x-, y-, and z-components 

of vector 


Vd .

•	 Move Pd to a position close to the origin, for example, (0.1, 0.1, 0.1), and 

notice that the black vector is now very small and difficult to observe. 

When Pd is moved to exactly the origin, the black vector becomes 

the zero vector and vanishes. The zero vector is a special case that 

describes a zero displacement. As you will learn, the definition of many 

vector operations specifically excludes the zero vector. These will be 

pointed out as you learn about them in future sections and chapters.
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You have observed displaying a position as a position vector (a vector from the 

origin to the position) which demonstrates that all positions in the Cartesian Coordinate 

System can be interpreted as position vectors. Now, select and manipulate the position 

of P1 and notice the following:

•	 Independent of the location of P1, the white vector is always identical 

to the black position vector where they are parallel and have the 

same length. The only difference between these vectors is that the 

white vector has its tail at P1 and not the origin. You can verify this 

by observing that the thin red, green, and blues lines that connect P1 

to P2 are the same length as the thin red, green, and blues lines that 

connect the origin to Pd.

•	 Position P2 is always at the head of the white vector. In this case, P2 is 

computed as follows:

	 P P Vd2 1= +


	

Through the application of a position vector at an arbitrary position (P1), you have 

observed that the position vector and the applied vector are indeed identical and 

that the only difference between them is that they are located, or applied, at different 

positions. This illustrates that vectors are independent of positions, meaning that once 

a vector is defined it can be applied to any position. It also demonstrates that a vector 

absent of any position information should be, and are, interpreted as position vectors—

vectors originating from the origin. This part of the example has shown that a position in 

3D space is simply a vector from the origin to that position.

Vector Defined by Two Points

Now, select the Controller, toggle off DrawPositionAsVector, and switch on 

DrawVectorAsPosition. Verify that P1, P2, and Pd are hidden by selecting them in the 

Hierarchy Window. Next, select and try to change the position of Pe. Note that just like 

with P2, Pe’s position is being set by MyScript and thus cannot be changed from the 

Inspection Window. Now, select and change the positions of Pi and Pj and notice the 

following:

•	 The pink vector, 


V x y ze e e e= ( ), , , is defined by the positions Pi (xi, yi, zi) 

and Pj (xj, yj, zj), where 


V P Pe j i= - , or
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•	 xe = xj − xi, which is the displacement along the X-axis (the length 

of the thin red line).

•	 ye = yj − yi, which is the displacement along the Y-axis (the length 

of the thin green line).

•	 ze = zj − zi, which is the displacement along the Z-axis (the length 

of the thin blue line).

•	 Independent of the locations of Pi and Pj, the pink and purple 

vectors are identical, having the same length, and are parallel to each 

other (they have same direction). The only difference between them 

is the location of their tail positions. The pink vector has a tail located 

at position Pi and the purple vector’s tail is located at the origin.

•	 The purple vector’s head position is always at Pe (xe, ye, ze). Note how 

the coordinate component values are the same values as that of 


Ve , 

indicating that Pe position is the position vector 


Ve .

You have observed that any vector, 


V x y ze e e e= ( ), , , is equivalent to the coordinate 

position Pe (xe, ye, ze) and can be displayed as a position vector with tail at the origin.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// For visualizing the two vectors

public bool DrawAxisFrame = true; // Draw or Hide the AxisFrame

public bool DrawPositionAsVector = true;

public bool DrawVectorAsPosition = true;

private MyVector ShowVd;      // From Origin to Pd

private MyVector ShowVdAtP1;  // Show Vd at P1

private MyVector ShowVe;      // From Origin to Pe

private MyVector ShowVeAtPi;  // Ve from Pi to Pj

// Support position Pd as a vector from P1 to P2

public GameObject P1;   // Position P1

public GameObject P2;   // Position P2

public GameObject Pd;   // Position vector: Pd
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// Support vector defined by Pi to Pj, and show as Pe

public GameObject Pi;   // Position Pi

public GameObject Pj;   // Position Pj

public GameObject Pe;   // Position vector: Pe

All of the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The four private variables of MyVector data type are 

defined to support the visualization of the vectors as you have observed previously:

•	 ShowVd: Used for visualizing the position vector of Pd (the 

black vector)

•	 ShowVdAtP1: Used for visualizing the vector at position P1 (the 

white vector)

•	 ShowVe: Used for visualizing the position vector of Pe (the 

purple vector)

•	 ShowVeAtPi: Used for visualizing the vector at position Pi (the 

pink vector)

As in the case of the previous custom classes such as MyBoxBound and 

MySphereBound, MyVector is defined specifically for visualizing a vector and is irrelevant 

for understanding the math being discussed in this book. For example, you can always 

run the examples with all code concerning the MyVector data type removed, but the 

visualization of these vectors (black, white, pink, etc.) will no longer exist. You can see 

a screenshot of the MyVector class in Figure 4-5, which shows that MyVector is indeed 

defined for the drawing of a vector.
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Figure 4-5.  The MyVector class

The Start() function for MyScript is listed as follows:

Void Start() {

    Debug.Assert(P1 != null);   // Ensure proper init

    Debug.Assert(P2 != null);

    Debug.Assert(Pd != null);

    Debug.Assert(Pi != null);

    Debug.Assert(Pj != null);

    Debug.Assert(Pe != null);

    // To support show position and vector at P1

    ShowVd = new MyVector {

        VectorColor = Color.black,

        VectorAt = Vector3.zero     // Vd from origin

    };

    ShowVdAtP1 = new MyVector {

        VectorColor = new Color(0.9f, 0.9f, 0.9f)

    };
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    // To support show vector from Pi to Pj as position vector

    ShowVe = new MyVector {

        VectorColor = new Color(0.2f, 0.0f, 0.2f),

        VectorAt = Vector3.zero    // Ve from origin

    };

    ShowVeAtPi = new MyVector() {

        VectorColor = new Color(0.9f, 0.2f, 0.9f)

    };

}

The Start() function verifies proper public variable setup in the Hierarchy Window 

and instantiates and initializes the private MyVector variables to their respective colors. 

Note that ShowVd and ShowVe are defined to display position vectors and are therefore 

initialized to show the vectors starting from the origin (Vector3.zero). The Update() 

function is listed as follows:

Void Update()

{

    Visualization on/off: show or hide to avoid cluttering

    Position Vector: Show Pd as a vector at P1

    Vector from two points: Show Ve as the position Pe

}

The Update() function is divided into three separate #region areas according to the 

logic they perform and for readability. The details of these regions are explained in the 

next three sections.

Region: Visualization on/off

The code in this region, listed as follows, simply sets the active flag on the relevant 

game objects for displaying or hiding whichever game objects the user toggles via the 

MyScript component on the Controller:

#region  Visualization on/off: show or hide to avoid cluttering

AxisFrame.ShowAxisFrame = DrawAxisFrame; // Draw/Hide Axis Frame

P1.SetActive(DrawPositionAsVector);      // Position as vector

P2.SetActive(DrawPositionAsVector);
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Pd.SetActive(DrawPositionAsVector);

Pi.SetActive(DrawVectorAsPosition);      // Vector as position

Pj.SetActive(DrawVectorAsPosition);

Pe.SetActive(DrawVectorAsPosition);

ShowVdAtP1.DrawVector = DrawPositionAsVector; // Draw or hide

ShowVd.DrawVector = DrawPositionAsVector;

ShowVeAtPi.DrawVector = DrawVectorAsPosition;

ShowVe.DrawVector = DrawVectorAsPosition;

#endregion

Region: Position Vector

The code in this region, listed as follows, is only active when the DrawPositionAsVector 

toggle is set to true:

#region Position Vector: Show Pd as a vector at P1

if (DrawPositionAsVector) {

    // Use position of Pd as position vector

    Vector3 vectorVd = Pd.transform.localPosition;

    // Step 1: take care of visualization for Vd

    ShowVd.Direction = vectorVd;

    ShowVd.Magnitude = vectorVd.magnitude;

    //         apply Vd at P1

    ShowVdAtP1.VectorAt = P1.transform.localPosition;

    ShowVdAtP1.Magnitude = vectorVd.magnitude;

    ShowVdAtP1.Direction = vectorVd;

    // Step 2: demonstrate P2 is indeed Vd away from P1

    P2.transform.localPosition =

                 P1.transform.localPosition + vectorVd;

}

#endregion

In this case, as illustrated by the bolded font in the code listing, the position of Pd, 

Pd.transform.localPosition, is interpreted as a vector, vectorVd, or 


Vd . In Step 1, 

vectorVd is drawn via the ShowVd variable. Recall that ShowVd is initialized to be drawn at 
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the origin. For this reason, ShowVd is simply drawing vectorVd, or the coordinate values 

of Vd, as a position vector. In order to show the same vector at position P1, the magnitude 

(length) and direction of ShowVdAtP1 are assigned the corresponding values from 

vectorVd and are then displayed at the location of P1, P1.transform.localPosition, 

instead of the origin like that of vectorVd. In Step 2, once again shown in bolded font, 

P2’s position is set as P P Vd2 1= +


 which will always place P2 at the head of 


Vd . This 

repeated updating of P2’s position is the reason why when you interacted with this 

example, you were not able to move the P2 game object.

In the Cartesian Coordinate System, positions are defined by three-float tuples. So 

far, this example shows that the same three-float tuple can be interpreted as a vector. 

This alternative interpretation allows vectors to be used as a tool for describing physical 

behaviors, like object movements. This topic will be covered in detail in a later section of 

this chapter.

Region: Vector from Two Points

The code in this region, listed as follows, is only active when the DrawVectorAsPosition 

toggle is set to true:

#region Vector from two points: Show Ve as the position Pe

if (DrawVectorAsPosition) {

    // Use from Pi to Pj as vector for Ve

    Vector3 vectorVe = Pj.transform.localPosition -

                       Pi.transform.localPosition;

    // Step 1: Take care of visualization

    //         for Ve: from Pi to Pj

    ShowVeAtPi.VectorFromTo(Pi.transform.localPosition,

                            Pj.transform.localPosition);

    //         Show as Ve at the origin

    ShowVe.Direction = vectorVe;

    ShowVe.Magnitude = vectorVe.magnitude;

    // Step 2: demonstrate Pe is indeed Ve away from the origin

    Pe.transform.localPosition = vectorVe;

}

#endregion
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As illustrated by the bolded font in the code listing, the vector vectorVe, or 


Ve , is 

computed based on the positions of Pi and Pj according to the formula

	



V P Pe j i= -
	

In Step 1, ShowVeAtPi is set to be drawn as a vector between Pi and Pj’s positions. 

ShowVe’s direction and magnitude are assigned by the corresponding values of vectorVe. 

Recall that the draw position of ShowVe was initialized to the origin, and thus ShowVe 

is showing vectorVe as a position vector. In Step 2, again shown in bolded font, the 

position of Pe is set to the corresponding x-, y-, and z-component values of vectorVe, 

literary showing vectorVe as a coordinate position. Similar to the case of P2’s position, in 

this case, Pe is continuously updated by the script and thus the user has no control over 

the position of Pe while the scene is running.

In general, the ability to interpret a given vector as a position allows all vectors to 

be plotted as position vectors from the origin, supporting straightforward visualization 

and comparisons across multiple vectors. You have completed the cycle of interpreting 

positions as vectors and now vectors as positions. This entire discussion is designed to 

demonstrate that once defined, a vector is an entity that can be analyzed and applied at 

any position because its definition is independent of any specific position.

Note T he vector from Pi to Pj is computed by subtracting Pi from Pj:

	



V P Pe j i= -
	

The order of subtraction is important. Reversing the subtraction order, Pi − Pj, 
computes a vector from Pj to Pi. Vector subtraction will be discussed in detail 
later in this chapter.

�Takeaway from This Example

This example presents you with two ways to define, manipulate, and interpret a vector. 

The first method is based on initializing a starting point (e.g., the origin) and then 

selecting the ending position. The second method is based on defining a vector between 
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two explicitly controlled positions. In all interactions, all four vectors describe how to 

move from one position to another: from origin to Pd (black), from P1 to P2 (white), from 

Pi to Pj (pink), and from origin to Pe (purple).

You have seen that it does not matter where a vector is applied (or drawn), if the 

encoded distances and direction information are the same, the underlying vectors 

are the same. You have also witnessed that a vector can be treated as a position, and a 

position can be treated as a vector.

Relevant mathematical concepts covered include

•	 A vector describes the movement from one position to another.

•	 The vector between two given positions is defined by the differences 

between the corresponding coordinate values in the x-, y-, and 

z-components.

•	 The Cartesian Coordinate values for any position P (x, y, z) describes 

the displacements from the origin to the position P. For this reason, 

the (x, y, z) values of any position can be interpreted as a vector 

between the origin and the position. This interpretation of the 

coordinate position is referred to as position vector.

•	 All positions in the Cartesian Coordinate system can be interpreted 

as position vectors.

•	 The zero vector is the position vector of the origin. This vector 

describes a displacement with zero distance, or a position moving 

back onto itself. This is a special vector where many vector operations 

cannot operate or do not work on the zero vector.

•	 Vectors are independent of positions; thus, once defined, a vector can 

be applied to any position.

•	 In the absence of position information, vectors are often drawn as 

a position vector, a line segment from the origin to the coordinate 

position defined by the x-, y-, and z-component values of that vector.

Unity tools

•	 MyVector: A custom-defined class to support the visualization of vectors

•	 AxisFrame.ShowAxisFrame: A Boolean flag to control the showing of 

the Cartesian Coordinate origin and axes’ directions
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Note T he Unity Vector3 data type closely encapsulates the concept of a vector. 
From the code listing in the Update() function, you can observe the power and 
convenience of working with proper data abstraction. With the Unity Vector3 
abstraction, you can avoid the nuisance of retyping similar code for individual 
values of each major axis when computing distances between positions, or when 
following a vector. For the rest of this book, with very few exceptions, such as 
when analyzing the detailed definitions of vector operations, you will work with the 
Vector3 class and will not work with the values of the individual coordinate axes.

EXERCISES

Contrast the Creation of 


Vd  and 


Ve

Note that 


Vd  is created via a single position being interpreted as a position vector, while 


Ve  is 

created by subtracting two positions explicitly. Nevertheless, both methods can accomplish the 

creation of the same vector. For example, move the position of Pi to overlap P1. This can be 

accomplished by running the game, selecting P1 in the Hierarchy Window, taking note of the 

position values of the Transform component of P1, and copying these values to be the position 

values of Pi’s Transform component. You can now adjust Pj, or Pd, to try to align 


Ve  with 


Vd .

Switch Vector Creation Methods

You can take advantage of the observation that both position vector and the difference 

between two points can create the same vector. Edit MyScript and remove Pe, Pi, and Pj 

variables. Instead, include a new Boolean flag CreateWithPositionVector which will 

allow P1, P2, and Pd to behave as Pe, Pi, and Pj did.

•	 When CreateWithPositionVector is true, let the user manipulate Pd to 

create the vector and show the vector at P1. In this case, P2 is computed based 

on the vector defined and the user will not be able to adjust P2.

•	 When CreateWithPositionVector is false, let the user manipulate both 

P1 and P2 and use the difference between these two points to compute the 

position vector to Pd. In this case, Pd is computed based on the vector defined 

and the user will not be able to adjust Pd.
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Note the “two ways to define a vector” logic is similar to that of the “two ways to define 

a bounding box.” You can refer to the Update() function of the EX_2_2_BoxBounds_

IntervalsIn3D scene of Chapter-2-Examples project for a template of the control logic 

required for this exercise.

Verify Vector Size, or Length, or Magnitude

A vector describes the movement from one position to another; it encapsulates both 

the distance and the direction to travel. You have seen the distance being referred to as 

“magnitude”; it is also commonly referred to as the “size” or “length” of the vector. Edit 

MyScript to print the size of each of the vectors, either via public float variables or via 

Debug.Log() function calls. Verify that both ShowVd and ShowVdAtP1 and ShowVe and 

ShowVeAtPi are indeed two sets of vectors with identical lengths.

Manipulate Vector Lengths

Manipulate the two vectors in this example such that 


Vd = ( )2 0 0, ,  and 


Ve = ( )0 2 0, , . Notice 

that in this case, 


Vd  and 


Ve  have the same lengths of 2.0. However, the two vectors are 

pointing toward drastically different directions: toward positive X-axis and Y-axis. Notice that it 

is possible to define two vectors with identical length but with very different directions.

Verify Vector Directions

You can verify two vectors are the same by printing out the values of the x-, y-, and 

z-components. Edit MyScript to print the coordinate values of ShowVe and ShowVeAtPi 

to verify that these two vectors are indeed exactly the same. With previous exercises on 

vector size, the obvious question is, “is it possible to manipulate the two vectors such that 

they are pointing in the same direction but with different lengths?” The short answer is yes. 

For example, consider vectors, (1, 0, 0) and (2, 0, 0). Both are pointing toward the positive 

x-direction, but the lengths are 1 and 2. The general consideration for this question is slightly 

more involved and is the topic for the next section.
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�Vector Algebra: Scaling
A vector encodes both a distance and a direction, describing how an object can move 

from position P1 (x1, y1, z1), in a straight line, and arrive at P2 (x2, y2, z2). You know that a 

vector, 


Va , that describes this movement can be defined as follows:



V P Pa = -2 1

+ - - -( )x x y y z z2 1 2 1 2 1, ,

= ( )x y za a a, ,

The distance, d, between the two points is referred to as the size (or magnitude, or 

length) of the vector and is labeled with the symbol 


Va .  The size of a vector is defined as 

follows:

d V x y za a a a= = + +


2 2 2

The size of a vector can be scaled. For example, if there is a 

vector 


V x y z x y zb b b b a a a= ( ) = ( ), , , ,5 5 5 , then



V x y zb b b b= + +2 2 2

= ( ) + ( ) + ( )5 5 5
2 2 2

x y za a a

= + +( )25 2 2 2x y za a a

= + +5 2 2 2x y za a a

= 5


Va

Note that in general, the observed relationship is true for any floating-point number, 

s. That is, if



V x y za a a a= ( ), ,
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and



V sx sy szb a a a= ( ), ,

then

 

V s Vb a=

The length or magnitude of 


Vb  is s times that of 


Va . In this case, 


Vb  is described as 

“scaling 


Va  by a factor s,” or simply, “scaling 


Va  by s,” and is expressed as

 

V sVb a=

Note  While it is always true that if 
 

V sVb a= , then 
 

V s Vb a= . The reverse is not 
always true. For example, if 



Va = ( )1 0 0, ,  and 


Vb = ( )0 0,s, , then in this case, it is true 
that 

 

V s Vb a= , but 
 

V sVb a=  is certainly not true.

Figure 4-6 illustrates an example where 


V xa a= ( ), ,0 0 , 
 

V Vb a=1 5. , and 
 

V
x

Vc
a

a=
1

.

Figure 4-6.  Scaling of a vector that is in the x-direction

Referring to Figure 4-6, you now know that

•	
 

V V xb a a= = ( )1 5 1 5 0 0. . , ,

•	
 

V
x

V
x

xc
a

a
a

a= =
(

(
|

)

)
| = ( )1 1

0 0 1 0 0, , , ,
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Additionally, you know when xa is a positive number, the lengths of the three vectors 

in Figure 4-6 are as follows:



V x xa a a= + + =2 2 20 0

 

V V xb a a= =1 5 1 5. .

 

V
x

V
c

a
a= =

1
1

Lastly, and very importantly, based on your knowledge of the Cartesian Coordinate 

System and so far in this chapter, you know that although the vectors in Figure 4-6 have 

different lengths, the three vectors overlap perfectly and are all pointing in the positive 

X-axis direction. This overlap shows that scaling a vector only changes the distance that 

it encodes and does not affect the direction. It turns out, as illustrated in Figure 4-7, this 

statement is true for any direction.

Figure 4-7.  Scaling of an arbitrary vector

Figure 4-7 shows three vectors with the same lengths as of those in Figure 4-6:

•	 Vector 


Va  with magnitude 


Va

•	 Vector 
 

V Vb a=1 5.  with magnitude 1.5


Va

•	 Vector 






V
V

Vc

a

a=
1

 with magnitude of 1.0
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Notice that in exactly the same manner as the vectors in the X-axis direction 

(Figure 4-6), these three vectors all point in the same direction as each other. In all 

cases, scaling a vector only affects its size and not the direction. In general, scaling a 

vector by any positive number will result in a vector that is in the same direction, while 

scaling by a negative number will flip the direction of that vector. This means when a 

positive x-direction vector is scaled by a negative value, the resulting vector will point 

in the negative x-direction. Scaling by a negative number is left as an exercise for you to 

complete in the next example.

Similar to how multiplying scaling factors to the number zero will produce a result of 

zero, scaling a zero vector has no effect and will result in the same zero vector.

�Normalization of Vectors
Vector 



Vc  in Figure 4-7 is the result of scaling an existing vector by the inverse of the 

length of that vector. This is interesting because with such a specific scaling factor, 

the magnitude of 


Vc  is guaranteed to be 1. As you will see frequently in the rest of this 

book, and is true in general, vectors with a magnitude of 1 are important as they enable 

convenient computations in many situations.

A vector with a magnitude of 1 is so important that it has its own symbol, V̂ , which 

is the same as the original symbol for a vector, but replaces the arrow above the “V” with 

a cap. This vector has a special name, normalized vector or unit vector. The process of 

computing a normalized vector is referred to as vector normalization. In general, it is 

always the case that for any nonzero vector, 


V x y z= ( ), , :

•	 Magnitude of vector 


V


V x y z= + +2 2 2

•	 Normalization of vector 


V

V̂
V

V=
1




=
+ +

1
2 2 2x y z

V


+
+ + + + + +

(

(
|
|

)

)
|
|

x

x y z

y

x y z

z

x y z2 2 2 2 2 2 2 2 2
, ,
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Notice that normalization is a division by length. Recall that a zero vector has a 

length of zero, and from basic algebra, that division by zero is an undefined operation. 

This means that the zero vector cannot be normalized. This is the first case you 

encounter, but certainly not the last, that a vector operation is not applicable to the 

zero vector.

Note T he vector normalization process involves a division by a square root. 
Though with modern hardware this computation cost is becoming less of a 
concern, it is still a good practice to pay attention to the need for normalization 
in general. For example, the Unity Vector3 class defines the sqrMagnitude 
property to return the squared of a vector length, 



V 2
, which can be used when 

information on vector length is needed, but not normalization. For example, when 
performing size comparisons, for example, determining which vector is longer.

�Direction of Vectors
The magnitude of a vector can be simply and effectively conveyed by a number. In 

contrast, the direction of a vector must be expressed in relation to a “frame of reference.” 

For example, “in the x-direction” uses the X-axis as the frame of reference. In the 3D 

Cartesian Coordinate System, a direction can be described by using the X-, Y-, and 

Z-axes as references. Such a description involves a reference direction and a rotation. 

For example, a direction that is defined by a rotation of the Y-axis about the Z-axis in the 

X-axis direction by 15 degrees. If you find that description difficult to follow, you are not 

alone. Fortunately, there are alternatives to describing the direction of a vector.

Recall that as illustrated in Figure 4-7, the direction of a vector does not change when 

the vector is scaled. This means that a unit vector uniquely identifies the direction of all 

vectors with different lengths in that direction. For simplicity, both representationally 

and computationally, this book chooses to identify the direction of a vector by referring 

to its unit vector. For example, for a given vector, 


V , this book refers to its magnitude as 


V  and its direction as V̂ . In the rest of this book, you will encounter phrases like “the 

direction of 


V ” or “the direction of V̂ ”; both refer to the direction of the vector V̂ .

Since the normalized zero vector is undefined, a zero vector has no direction.
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�The Vector Scaling and Normalization Example
This example demonstrates the results of scaling a vector and defining a vector with 

separate input for magnitude and direction. It allows you to adjust and examine the 

effects of changing the vector scaling factor, as well as control the creation of a vector 

via specifying its magnitude and direction. Figure 4-8 shows a screenshot of running the 

EX_4_2_VectorScaling scene from the Chapter-4-Vectors project.

Figure 4-8.  Running the Vector Scaling example

The goals of this example are for you to

•	 Interact with and examine the effects of scaling vectors

•	 Experience defining vectors based on specifying their magnitude and 

direction

•	 Understand the effects of separately changing the magnitude and 

direction of a vector

•	 Examine the implementation of working with vectors
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�Examine the Scene

Take a look at the Example_4_2_VectorScaling scene and observe, besides 

Controller, the three predefined game objects in the Hierarchy Window: P1, P2, and 

SphereAtOrigin. As in the previous example, P1 and P2 together will allow you to define 

a vector, 


Va . The SphereAtOrigin is a transparent sphere located at the origin, where 

you will create a position vector in the same direction as V̂a , with a magnitude that just 

touches the surface of this transparent sphere.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows ten variables that can be categorized 

into three groups:

•	 Drawing control: Allows you to show or hide different information 

relevant to a vector

•	 DrawAxisFrame: Shows or hides the Cartesian Coordinate origin 

and reference axis frame.

•	 DrawScaledVector: Shows or hides the scaled version of


Va .

•	 DrawUnitVector: Shows or hides the unit vector ˆ .Va

•	 DrawPositionVector: Shows or hides the position vector that 

touches the SphereAtOrigin surface.

•	 DrawVectorComponents: Shows or hides the x-, y-, and 

z-displacements of each vector. Notice that for clarity, 

when displayed, the position vector always draws its vector 

components.

•	 Definition of 


Va : Defines and allows manipulation of the vector 


Va

•	 P1: The reference to the P1 game object

•	 P2: The reference to the P2 game object

•	 ScalingFactor: The factor to scale the vector 


Va  by
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•	 Definition of a position vector: Defines and allows manipulation of 

the position vector

•	 SphereAtOrigin: The reference to the SphereAtOrigin 

game object

•	 SphereRadius: The radius of the SphereAtOrigin sphere and the 

length of the position vector that will be parallel to V̂a

�Interact with the Example

Click the Play Button to run the example. Notice that by default, except DrawAxisFrame, 

all vector drawing toggles are off so you should only be observing the axis frame 

and vector 


Va , the vector being drawn between positions P1 and P2. Now select the 

Controller and get ready to toggle drawing options and observe the following.

Scaled Vector

Toggle on the drawing option for DrawScaledVector to observe a slightly shorter pink 

vector in the same direction as 


Va . Now adjust the ScalingFactor variable and watch as 

the pink vector changes size. This pink vector is displaying the vector 


Vs

	
 

V ScalingFactor Vs a= x 	

Notice three interesting intervals:

•	 0 < ScalingFactor < 1: 


Vs  has a length shorter than 


Va  and is thus 

displayed as a vector embedded in 


Va .

•	 ScalingFactor > 1: 


Vs  has a magnitude larger than 


Va  and is thus a 

vector that extends beyond 


Va .

•	 ScalingFactor < 0: 


Vs  points in the reversed direction of 


Va . Note that 

the two vectors are drawn at the same position, P1, and that the two 

vectors do indeed extend in the exact opposite directions.
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Normalized or Unit Vector

Toggle on the drawing option for DrawUnitVector to observe a short white vector 

embedded in 


Va . This is 


Va  normalized, or V̂a . Recall that V̂a  is computed by scaling 


Va  by the inverse of its magnitude, 
1


V
a

. Initially, 


Va  has a magnitude of 5, so if you 

adjust ScalingFactor to the value of 
1

5
0 2= . , you will observe that the pink (



Vs ) and 

white vectors overlap exactly. This overlap will stop once you adjust the ScalingFactor. 

Remember, 


Vs  has a length that is ScalingFactor times the current 


V
a , yet the size of 

V̂a  is always 1.

Manipulate and set the positions of P1 and P2 to be identical, for example, by 

copying values of P1’s Transform component to that of P2. Now, notice error messages 

in the Console Window about NaN and that the normalized white vector now points 

in an arbitrary direction. When positions of P1 and P2 are identical, 


Va  becomes the 

zero vector and V̂a  is undefined. Later, when you examine the implementation, you 

will notice that the zero vector condition is not checked. Here, you are observing the 

results of a common coding error: performing a vector operation without verifying if the 

operation is defined for the given vector. A responsible developer should always invoke 

precondition checking before performing the corresponding vector operations.

Position Vector from Direction and Magnitude

Toggle on the drawing option for DrawPositionVector to observe a navy-blue position 

vector, 


Vp , that is parallel to V̂a  and has a magnitude that is defined by the SphereRadius 

variable:

	



V SphereRadius Vp a= x ˆ
	

You can verify this by adjusting SphereRadius and noting that the SphereAtOrigin 

game object (the transparent sphere) changes size, and 


Vp , while maintaining the 

direction of V̂a , adjusts its magnitude such that its tip touches the sphere surface. You 

can toggle off and hide the axis frame via DrawAxisFrame to observe the thin red, green, 

and blue vector components of 


Vp , verifying that this vector does indeed just touch the 

sphere surface, indicating that the length of the vector is indeed the radius of the sphere.
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This interaction shows that you can create a direction and a magnitude separately 

and combine them to create a desired vector. Note that since V̂a  is a unit vector, the 

size of 


Vp , or 


Vp , is simply SphereRadius. An important observation is that if a vector 

is defined by a size and a unit vector, then this size is the magnitude property of that 

vector. In the next section, you will see how this simple observation can be applied to 

implement the behavior of an object following a target.

Summary of Interaction

Four vectors are created and examined in this example:

•	


Va : Vector between two user control positions, P1 and P2.

•	
 

V ScalingFactor Vs a= x : A vector in the same or opposite 

direction as 


Va .

•	 V̂
V

Va

a

a= x
1




: The normalized vector of 


Va ; since this vector is always 

scaled by the inverse of its magnitude, it has a constant size of 1.

•	


V SphereRadius Vp a= x ˆ : A constructed vector based on a size and a 

direction.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// Toggle of what to draw

public bool DrawAxisFrame = false;

public bool DrawScaledVector = false;

public bool DrawUnitVector = false;

public bool DrawPositionVector = false;

public bool DrawVectorComponents = false;

// For defining Va and Vs (ScaledVector)

public GameObject P1 = null;   // Position P1

public GameObject P2 = null;   // Position P2

public float ScalingFactor = 0.8f;
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// For defining Vp (PositionVector)

public GameObject SphereAtOrigin = null;   // sphere at origin

public float SphereRadius = 3.0f;

// For visualizing all vectors

private MyVector ShowVa;              // Vector Va

private MyVector ShowVaScaled;        // Scaled Va

private MyVector ShowNorm;            // Normalized Va

private MyVector ShowPositionVector;  // Position vector

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The four private variables of the MyVector data 

type are for visualizing the four vectors: 


Va , 


Vs , V̂a , and 


Vp , respectively. The Start() 

function for MyScript is listed as follows:

void Start(){

   Debug.Assert(P1 != null);   // Check for proper setup in the editor

   Debug.Assert(P2 != null);

   Debug.Assert(SphereAtOrigin != null);

   // To support visualizing the vectors

   ShowVa = new MyVector {

       VectorColor = Color.black };

   ShowNorm = new MyVector {

       VectorColor = new Color(0.9f, 0.9f, 0.9f)};

   ShowVaScaled = new MyVector {

       VectorColor = new Color(0.9f, 0.4f, 0.9f) };

   ShowPositionVector = new MyVector {

       VectorColor = new Color(0.4f, 0.9f, 0.9f),

       VectorAt = Vector3.zero     // Position Vector at origin

    };

}

The Debug.Assert() calls ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window, while the MyVector variables are instantiated 

and initialized with the proper colors. The Update() function is listed as follows:
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void Update()

{

    Visualization on/off: show or hide to avoid cluttering

    Vector Va: Compute Va and setup the drawing for Va

    if (DrawScaledVector) ...

    if (DrawUnitVector) ...

    if (DrawPositionVector) ...

}

The Update() function is logically structured into five steps: handling the drawing 

toggles and then computing and showing 


Va , 


Vs , V̂a , and 


Vp , respectively. The details 

in each step are presented next in separate subsections. While reading the code, note 

the exact one-to-one match between the derived formula to compute each vector and 

the corresponding listed code. This is an important and elegant characteristic of vector-

based game object behavior; the implementation often closely resembles the underlying 

mathematical derivation.

Visualization on/off

The code in this region sets the game object’s active state for displaying or hiding 

according to user’s toggle settings. This code is listed as follows:

#region  Visualization on/off: show or hide to avoid cluttering

AxisFrame.ShowAxisFrame = DrawAxisFrame;    // Draw or Hide Axis Frame

ShowVaScaled.DrawVector = DrawScaledVector; // Display or hide the vectors

ShowNorm.DrawVector = DrawUnitVector;

ShowVa.DrawVectorComponents = DrawVectorComponents;

ShowVaScaled.DrawVectorComponents = DrawVectorComponents;

ShowNorm.DrawVectorComponents = DrawVectorComponents;

ShowPositionVector.DrawVector = DrawPositionVector;

SphereAtOrigin.SetActive(DrawPositionVector);

#endregion
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Vector Va

The code in this region computes 


Va  based on the current P1 and P2 positions and sets 

up the ShowVa variable for visualizing the vector. This code is listed as follows:

#region Vector Va: Compute Va and setup the drawing for Va

Vector3 vectorVa = P2.transform.localPosition -

                   P1.transform.localPosition;

// Show the Va vector at P1

ShowVa.Direction = vectorVa;

ShowVa.Magnitude = vectorVa.magnitude;

ShowVa.VectorAt = P1.transform.localPosition;

#endregion

The variable vectorVa is 


V P Pa = -2 1 . The ShowVa variable receives the corresponding 

direction and size values from vectorVa and is set to display the vector at position P1.

DrawScaledVector

When this toggle is set to true, 


Vs  is computed and shown. The code to accomplish this 

is listed as follows:

if (DrawScaledVector) {

    Vector3 vectorVs = ScalingFactor * vectorVa;

    ShowVaScaled.Direction = vectorVs;

    ShowVaScaled.Magnitude = vectorVs.magnitude;

    ShowVaScaled.VectorAt = P1.transform.localPosition;

}

The variable vectorVs is 
 

V ScalingFactor Vs a= x . The ShowVaScaled is properly set 

up to display vectorVs at P1.

DrawUnitVector

When this toggle is set to true, V̂a is computed and shown. The code to accomplish this 

is listed as follows:
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if (DrawUnitVector) {

    // scale Va by its inversed size

    Vector3 unitVa = (1.0f / vectorVa.magnitude) * vectorVa;

    // Vector3 dirVa = vectorVa.normalized;

                           // Alternate way to normalized Va

    ShowNorm.Direction = unitVa;

    ShowNorm.Magnitude = unitVa.magnitude;

    ShowNorm.VectorAt = P1.transform.localPosition;

}

The variable unitVa is V̂
V

Va

a

a= x
1




. Notice the alternative way commented out 

below this line of code, Vector3.normalized, to compute a unit vector.

Here you can observe a coding error, where vectorVa.magnitude is used as the 

denominator in the normalization computation without first being verified that its value 

is not zero. Once again, a zero vector will have a length of zero and therefore cannot be 

normalized. In this case, the logic should check if vectorVa is equal to the zero 

vector, and if so, simply skip the drawing of ShowNorm.

Note  In general, it is not advisable to compare computation results to floating-
point constants. For example, it is unwise to attempt to detect the zero vector 
condition by performing

        if (vectorVa.magnitude == 0.0f)

The chance of the results of a floating-point computation being exactly zero is 
almost nonexistent. In this case, you should check for the condition of smaller 
than a “very small” number. The C# programming language defines the float.
Epsilon for this purpose. In this case, the condition to check for zero vector 
should be

     if (vectorVa.magnitude < float.Epsilon)

          // vectorVa is, for all practical purposes, a zero vector
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DrawPositionVector

When this toggle is set to true, 


Vp  is computed and shown. The code to accomplish this 

is listed as follows:

if (DrawPositionVector)  {

    Vector3 vectorVp = SphereRadius * vectorVa.normalized;

    ShowPositionVector.Direction = vectorVp;

    ShowPositionVector.Magnitude = vectorVp.magnitude;

    ShowPositionVector.VectorAt =

                       SphereAtOrigin.transform.localPosition;

    // Set the radius of the sphere at the origin

    SphereAtOrigin.transform.localScale =

                       new Vector3(2.0f * SphereRadius,

                                   2.0f * SphereRadius,

                                   2.0f * SphereRadius);

}

The variable vectorVp is 


V SphereRadius Vp a= x ˆ . Note that in this case, V̂a  is 

computed based on the Unity Vector3.normalized utility. The last line of code scales 

the sphere by setting the Unity Transform.localScale. Notice that the scaling factor for 

the sphere is its diameter, or 2 times the radius. This is because localScale adjusts the 

scale of a sphere based on its diameter, not its radius.

�Takeaway from This Example

Note that the entire implementation for this example, the code in the Update() function 

that performs useful computation, is actually just four lines: one line for each of the 

vectors, 


Va , 


Vs , V̂a , and 


Vp , respectively. The rest of the code is there to support user 

interaction and to set up the four toggle variables for visualizing the vectors. This 

example shows that when working with vector-based logic, the code can be rather 

compact with the implementation closely resembling the actual math involved to 

compute such results.
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Relevant mathematical concepts covered include

•	 All scaled vectors are along exactly the same direction as their 

reference vector.

•	 The unit vector, or normalized vector, is a special case of the 

scaled vector; it is a vector scaled by the inverse of the size of its 

reference vector.

•	 The normalized vector, or unit vector, always has a length of one and 

does indeed uniquely and consistently represent the direction of 

vectors with different scaling factors.

•	 The zero vector cannot be normalized. Proper coding should include 

specific conditional checks before invoking the normalization 

computation.

•	 A vector can be defined based on a magnitude and a direction. 

An interesting implication of this fact is that any vector can be 

decomposed into a unit vector with a scale.

Unity tools

•	 Transform.localScale: To change the size of game objects

•	 Sphere primitive: The scale value is the diameter of the sphere

EXERCISES

Verify the Directions of vectorVa and vectorVp

Make sure that 


Va , 


Vs , and V̂a  are in the exact same direction by setting ScalingFactor 

to a positive value. Next, verify the 


Vp  vector is also in the same direction by moving P1 to 

the origin. Interestingly, you can also move the position of the SphereAtOrigin to P1 by 

changing the value of SphereAtOrigin.Transform.localPosition.

Properly Handle the Zero Vector

Implement the detection and handling of the zero vector condition to avoid the normalization 

process when necessary.
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Work with Unit Vector and MyVector

A unit vector always has a size of 1 and can be a convenient reference for defining vectors of 

different lengths. For example, edit MyScript to display 5 different vectors with lengths of 1, 

2, 3, 4, and 5 in the V̂a  direction. Display these vectors at the X-axis locations that correspond 

to their length, length 1 at (1, 0, 0), length 2 at (2, 0, 0), etc. The easiest solution to this problem 

would be to compute V̂a  and loop from 1 to 5, scaling each vector accordingly and working 

with MyVector to display the vectors at their proper positions.

�Application of Vector: Velocity
When riding in a traveling car, you move at the speed and direction of that car. On a 

per-unit time basis, you will cover the “speed” amount of distance in the direction of 

the car. For example, during rush hours, a taxi traveling at 1.4 miles per hour toward the 

northeast will cover 1.4 miles in the northeast direction each hour. In this way, a velocity 

is speed in a specific direction, or simply, a vector. Figure 4-9 illustrates the example of 

that taxi ride.

Figure 4-9.  Driving at 1.4 miles per hour toward the northeast

As illustrated in Figure 4-9, the 1.4 miles per hour speed of the taxi describes the 

total distance covered per hour and is actually the magnitude of the vector. In this case, a 

velocity of

	


V miles hourt = ( )1 1, / 	
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will, in an hour, cover a distance of



V
t
= + = =1 1 2 1 42 2 .  miles

and the traveling direction is indeed toward the northeast (assuming north is the 

positive y-direction and east is the positive x-direction). Notice in this description the 

distance covered is separated from the movement direction of the taxi ride. When 

discussing velocities, it is important to identify the speed and the direction of travel. In 

terms of implementation, this means that it is convenient to express a velocity, 


Vt , as



V Speed Vt t= x ˆ

In the case of Figure 4-9,

•	 Speed = 1.4

•	 V̂t =
(
(
|

)
)
|

1

2

1

2
,

Recall that you have worked with vectors in this format in the DrawPositionVector 

portion of the previous example, EX_4_2_VectorScaling. Representing vectors in this 

way supports independent adjustments to the magnitude and the direction. In the 

context of velocity, this representation supports the independent adjustments to the 

speed (Figure 4-10) and the traveling direction (Figure 4-11).

Figure 4-10.  Adjusting the speed while maintaining the direction of travel

Figure 4-10 shows three balls, A, B, and C, traveling in the same direction, ˆ ,V  at 

constant, increasing, and decreasing speeds, respectively. Notice how the balls continue 

to travel parallel to each other but end up at very different locations along their parallel 

paths after a few updates.
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Figure 4-11.  Adjusting the direction of travel while maintaining a constant speed

In contrast to Figure 4-10, Figure 4-11 shows how the traveling direction of an object 

can be adjusted without altering its speed. In this case, after subsequent updates, the 

objects would travel a constant distance from the original position but will end up at very 

different locations. In all cases, mathematically, the position of an object will change or 

“travel” by “following the velocity vector,” 


Vt . If

Pinit: Initial Position

then at the end of the time unit, the object would travel “following the vector 


Vt ” and 

arrive at

	
P P V elapsedTimefinal init t= + x( )

	

This further illustrates the fact that velocity can be perfectly represented as a vector 

where the vector’s magnitude is speed and direction is the direction of travel. This 

representation of velocity as a vector is convenient for game development and will be 

showcased in the next example.

�The Velocity and Aiming Example
This example demonstrates the manipulation of object velocity and simple aiming 

functionality based on the vector concepts you have learned in the previous sections. 

The example allows you to separately adjust the speed, direction, and the traveling 
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distance of an object. This example also allows you to examine the implementation of 

these factors. Figure 4-12 shows a screenshot of running the EX_4_3_VelocityAndAiming 

scene from the Chapter-4-Vectors project.

Figure 4-12.  Running the Velocity and Aiming example

The goals of this example are for you to

•	 Understand the distinction between speed and direction of a velocity

•	 Experience controlling a velocity by manipulating its speed and 

direction separately

•	 Examine a simple aiming behavior

•	 Examine the implementation of vector-based motion control

�Examine the Scene

Take a look at the Example_4_3_VelocityAndAiming scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are three 

objects in this scene: CheckeredExplorer, GreenAgent, and RedTarget. Select these 

objects in the Hierarchy Window to note that the CheckeredExplorer is the checkered 

sphere, the GreenAgent is the small green sphere, and the RedTarget is the red sphere. 
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As in all previous examples, these game objects represent positions where only their 

transform.localPosition are referenced. When the game begins to run and the 

BeginExplore toggle is true, the CheckeredExplorer position will move slowly toward 

the position of the RedTarget while continuously sending out the GreenAgent toward the 

RedTarget as well, but at a faster speed.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

•	 Control toggles: Toggles drawing on or off, or allows object 

movement

•	 DrawVelocity: Shows or hides the velocity of the 

CheckeredExplorer

•	 BeginExplore: Enables the movement of the CheckeredExplorer 

and the GreenAgent

•	 Support for the CheckeredExplorer:

•	 CheckeredExplorer: The reference to the CheckeredExplorer 

game object

•	 ExplorerSpeed: The traveling speed of the CheckeredExplorer

•	 Support for the GreenAgent:

•	 GreenAgent: The reference to the GreenAgent game object

•	 AgentSpeed: The traveling speed of the GreenAgent

•	 AgentDistance: The distance that the GreenAgent should travel 

before returning to base and restarting the exploration

•	 Support for the RedTarget:

•	 RedTarget: The reference to the RedTarget game object

The velocity direction for both the CheckeredExplorer and the GreenAgent is 

implicitly defined by their relative position to the RedTarget because that is the target 

position that both the CheckeredExplorer and GreenAgent are moving toward.
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�Interact with the Example

Click the Play Button to run the example. Initially the BeginExplore toggle is set 

to false and there will thus be no movement in the scene. The green vector you 

observe extending from the CheckeredExplorer represents the velocity of the 

CheckeredExplorer object if it were allowed to move. Since you know the vector from 

the CheckeredExplorer to the RedTarget is, 


VET , then assuming the CheckeredExplorer 

object is located at PExplorer and the RedTarget object is located at PTarget, then



V P PET Target Explorer= -

Both the CheckeredExplorer and the GreenAgent will be traveling, with their 

respective speeds of ExplorerSpeed and AgentSpeed, toward the RedTarget. The 

velocities of these two objects, 


VExplorer  and 


VAgent , are defined as



V ExplorerSpeedExplorer =  ×V̂ET



V AgentSpeedAgent =  ×V̂ET

Note that the two velocities are in the same direction, unit vector V̂ET , but with 

different magnitudes, or speeds. Additionally, in both cases, the speeds are under user 

control and yet the velocity direction is implicitly defined by the RedTarget position.

The green vector you observed represents 


VExplorer . Now, adjust ExplorerSpeed in 

the MyScript component of the Controller object and notice the green vector’s length 

changes accordingly. Since this vector’s length is determined by ExplorerSpeed, you can 

expect the CheckeredExplorer object to move quicker when the green vector is long and 

slower when it is short. Now, enable the BeginExplore toggle and observe the following:

•	 The CheckeredExplorer follows slowly behind the repeating 

and faster traveling GreenAgent. You can adjust the speed of the 

CheckeredExplorer via the ExplorerSpeed variable and observe, as 

mentioned previously, that the speed is proportional to the length of 

the green vector.

•	 The GreenAgent continuously repeats the quick motion of traveling 

from the CheckeredExplorer toward the RedTarget. Try adjusting 

the AgentSpeed variable and observe how the GreenAgent’s speed 

changes accordingly.
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•	 The AgentDistance variable dictates how far the GreenAgent can 

travel from the CheckeredExplorer before its position is reset 

and it starts over. If 


VEA  is the vector from GreenAgent to the 

CheckeredExplorer, then

	



V P PEA Agent Explorer= -
	

The current distance between the two is simply the magnitude of this 

vector, 


V
EA

. Now, try altering the value of AgentDistance to observe the 

green sphere traveling that corresponding distance from the checkered 

sphere before restarting.

•	 The RedTarget is stationary, but you can manipulate its position via 

its transform components, and since

	



V P PET Target Explorer= -
	

when the RedTarget position, PTarget, is changed, the vector 


VET  

is updated accordingly. The velocity direction, V̂ET , of both the 

CheckeredExplorer and GreenAgent is also updated. In this way, both of 

these objects are always aiming at and moving toward the RedTarget.

Notice that when the CheckeredExplorer arrives at a location that is very close to the 

RedTarget, the green vector that represents its velocity will rapidly flip back and forth. 

As you will find out when analyzing the implementation, there is no logic involved for 

checking the stop condition of the CheckeredExplorer. Therefore, you are observing 

the CheckeredExplorer continuously moving pass the RedTarget, flipping its velocity, 

and then moving pass the RedTarget again. The logic to stop the CheckeredExplorer’s 

motion is left as an exercise at the end of this example.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// Drawing control

public bool DrawVelocity = true;

public bool BeginExplore = false;
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public GameObject CheckeredExplorer = null;// CheckeredExplorer

public float ExplorerSpeed = 0.05f;        // units per second

public GameObject GreenAgent = null;       // GreenAgent

public float AgentSpeed = 1.0f;            // units per second

public float AgentDistance = 3.0f;         // explore distance

public GameObject RedTarget = null;        // RedTarget

private MyVector ShowVelocity = null;  // Show Explorer velocity

private const float kSpeedScaleForDrawing = 15f;

All public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The private variable ShowVelocity is to support the 

visualization of the CheckeredExplorer velocity where the kSpeedScaleForDrawing is a 

constant value meant to scale this vector such that it is visible. The Start() function for 

MyScript is listed as follows:

void Start() {

    Debug.Assert(CheckeredExplorer != null);

    Debug.Assert(RedTarget != null);

    Debug.Assert(GreenAgent != null);

    ShowVelocity =  new MyVector() {

        VectorColor = Color.green;

    }

    // initially Agent is resting inside the Explorer

    GreenAgent.transform.localPosition =

               CheckeredExplorer.transform.localPosition;

}

As in all previous examples, the Debug.Assert() calls ensure proper setup 

regarding referencing the appropriate game objects via the Inspector Window, while the 

ShowVelocity variable is properly instantiated. Lastly, the initial position of GreenAgent 

is set to that of the CheckeredExplorer. The Update() function is listed as follows:
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void Update() {

    Vector3 vET = RedTarget.transform.localPosition -

                  CheckeredExplorer.transform.localPosition;

    ShowVelocity.VectorAt =

                   CheckeredExplorer.transform.localPosition;

    ShowVelocity.Magnitude =

                   ExplorerSpeed * kSpeedScaleForDrawing;

    ShowVelocity.Direction = vET;

    ShowVelocity.DrawVector = DrawVelocity;

    if (BeginExplore) {

        float dToTarget = vET.magnitude;  // Distance to target

        if (dToTarget < float.Epsilon)

            return; // Avoid normalizing a zero vector

        Vector3 vETn = vET.normalized;

        Process the Explorer (checkered sphere)

        Process the Agent (small green sphere)

    }

}

The first line of the Update() function computes 


V P PET Target Explorer= - , and the next 

four lines set up the ShowVelocity variable for visualizing the CheckeredExplorer’s 

velocity as a vector with its tail located at the position of CheckeredExplorer. Note 

that because of CheckeredExplorer’s slow speed (ExplorerSpeed’s value), the 

ShowVelocity.Magnitude is scaled by kSpeedScaleForDrawing in order to properly 

display the vector for visual inspection.

When BeginExplore is enabled, the magnitude of 


VET , or 


VET , is checked to avoid 

the normalization of a zero vector. Next, V̂ET  is computed and stored in the variable vETn. 

The two regions that process the CheckeredExplorer and the GreenAgent are explained 

in the following subsections.
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Process the Explorer

The code in this region, listed as follows, computes the velocity of the explorer,



V ExplorerSpeedExplorer =  ×V̂ET

and updates CheckeredExplorer.transform.localPosition accordingly.

#region Process the Explorer (checkered sphere)

Vector3 explorerVelocity = ExplorerSpeed * vETn;

CheckeredExplorer.transform.localPosition +=

         explorerVelocity * Time.deltaTime; // update position

#endregion

Remember that displacement, or distance, is velocity traveled over time, or 

Velocity × elapsedTime. In Unity, the per-update elapsed time is recorded in the Time.

deltaTime property. The very last line in this region computes the total displacement 

over time and updates CheckeredExplorer’s position with the computed displacement, 

ensuring smooth movement.

Process the Agent

As illustrated in the following code, similar to processing the movement of 

CheckeredExplorer, the first two lines of code in this region compute the velocity of 

the agent,

	



V AgentSpeed VAgent ET= x ˆ
	

and update GreenAgent.transform.localPosition accordingly. Note that, as 

mentioned previously, because 


VExplorer  and 


VAgent  are both computed based on scaling 

the same unit vector, the CheckeredExplorer and GreenAgent are traveling in the exact 

same direction, V̂ET , with different speeds, ExplorerSpeed and AgentSpeed.

#region Process the Agent (small green sphere)

Vector3 agentVelocity = AgentSpeed * vETn; // define velocity

GreenAgent.transform.localPosition +=

         agentVelocity * Time.deltaTime;   // update position
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Vector3 vEA = GreenAgent.transform.localPosition -

              CheckeredExplorer.transform.localPosition;

if (vEA.magnitude > AgentDistance)

    GreenAgent.transform.localPosition =

              CheckeredExplorer.transform.localPosition;

#endregion

The last three lines of code compute the vector between the explorer and the agent,

	



V P PEA Agent Explorer= -
	

compare the magnitude of this vector, 


VEA , to the user-specified AgentDistance, 

and then reset the agent’s position when it is too far away from the explorer, 

or when 


V AgentDistanceEA > .

�Takeaway from This Example

This example demonstrates the application of vector concepts learned in modeling the 

simple object behaviors of aiming at and moving toward a target position. You have 

observed that the velocity of objects can be described by scaling a unit vector with speed 

and that velocities computed based on the same unit vector will move objects in exactly 

the same direction. Lastly, you have experienced once again that the distance between 

two objects can be easily computed as the magnitude of the vector defined between 

these two objects.

Relevant mathematical concepts covered include

•	 The velocity of an object can be represented by a vector.

•	 A velocity can be composed by scaling a direction, or unit vector, 

with speed.

•	 The distance between two objects is the magnitude of the vector that 

is defined by the positions of those two objects.
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EXERCISES

Stop the CheckeredExplorer When It Reaches the RedTarget

Recall that the motion of CheckeredExplorer never terminates and that it tends to 

overshoot the RedTarget followed by turning around and overshooting it again. This 

cycle continues, causing the CheckeredExplorer to swing back and forth around the 

RedTarget. Modify MyScript to define a bounding box around the RedTarget and stop 

the CheckeredExplorer when it is inside the bounding box. Notice that in this case, it is 

actually easier and more accurate to treat the RedTarget as a bounding sphere and to stop 

the motion of the CheckeredExplorer when it is inside the bounds of the sphere.

Reset the GreenAgent When It Reaches the RedTarget

Run the game and increase the AgentDistance to some large value, for example, 15. 

Now set BeginExplore to true and observe how the GreenAgent passes through the 

RedTarget and continues to move forward until its position is more than 15 units from the 

CheckeredExplorer, in which case it finally resets. With the bound you defined in the 

previous exercise, modify MyScript to reset the GreenAgent’s position as soon as it is 

inside the RedTarget’s bounds.

Invert the GreenAgent’s Velocity Direction

Modify MyScript such that when the GreenAgent is too far away from the 

CheckeredExplorer, instead of resetting the position, the GreenAgent would simply move 

toward the CheckeredExplorer as though it is now the target. In this way, the GreenAgent 

would move continuously between the CheckeredExplorer and the RedTarget. This 

example allows you to gain experience with reversing the direction of a given vector.

�Vector Algebra: Addition and Subtraction
Although it has not yet been formally defined, based on observing the relative positions 

in the Cartesian Coordinate System, you have worked with vector addition and 

subtraction for quite a while now. For example, you have learned that the statement 
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“position P1 can be reached by following a vector 


V1  at position P0
” is expressed 

mathematically as

	 P P V1 0 1= +


	

In this case, by interpreting P0 and P1 as position vectors, the “+” operator has two 

vector operands and produces a position vector as the result of the operation. You have 

also learned that the statement “the vector 


V1  is a vector with its tail at position P0 and 

head at position P1” is expressed mathematically as

	


V P P1 1 0= - 	

Once again, with P0 and P1 interpreted as position vectors, the “−” operation also has 

two vector operands and produces a vector as the result of the operation.

�Rules of Vector Addition and Subtraction
You have learned and experienced that in both vector addition and subtraction, the 

resulting vectors are simply the addition and subtraction of the corresponding x-, y-, and 

z-component values. These observations are summarized in Table 4-1.

Table 4-1.  Vector addition and subtraction

Operation Operand 1 Operand 2 Result

+:Addition


V x y z1 1 1 1= , ,( )


V x y z2 2 2 2= , ,( )
 

V V x x y y z z1 2 1 2 1 2 1 2+ = + , + , +( )
−: Subtraction



V x y z1 1 1 1= , ,( )


V x y z2 2 2 2= , ,( )
 

V V x x y y z z1 2 1 2 1 2 1 2- = - , - , -( )

Note that the given definition in Table 4-1 states that the following is always true:

  

V V V+ = 2

	
 

V V ero ector- =Z V 	
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Because the operators add and subtract the corresponding coordinate component 

values, the familiar floating-point arithmetic addition and subtraction properties are 

obeyed. The properties of commutative, associative, and distributive with a floating-

point scaling factor, s, are summarized in Table 4-2.

Table 4-2.  Properties of vector addition and subtraction

Properties Vector Addition Vector Subtraction

Commutative
   

V V V V1 2 2 1+ = +
   

V V V V1 2 2 1- -≠  [not a property]

Associative
     

V V V V V V1 2 3 1 2 3+ + = + +( ) ( )      

V V V V V V1 2 3 1 2 3- - = - -( ) ( )
Distributive s V V V V

   

1 2 1 2+ = s + s( ) s V V V V
   

1 2 1 2- = s - s( )

As illustrated in the first-row, right column of Table 4-2, just as with floating-point 

subtraction, vector subtraction is not commutative. In fact, similar to floating-point 

subtraction, vector subtraction is anti-commutative, or

   

V V V V1 2 2 11- = - x -( ) =  - +
 

V V2 1

= -
 

V V1 2

�Addition and Subtraction with the Zero Vector
As in the case of floating-point arithmetic, vector addition and subtraction with the zero 

vector behave as expected.



V ZeroVector1 + =  ZeroVector V V+ =
 

1 1



V ZeroVector1 - =  


V1

ZeroVector V V- = -
 

1 1
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�Vectors in an Equation
Vectors behave just like floating-point values in an equation. For example, if

  

V V V3 1 2= + , 	

then adding a −


V2  to both sides of the equation:

    

V V V V V3 2 1 2 2+ -( ) = + + -( )

  

V V V3 2 1- =
  

V V V1 3 2= - .

This little example helps demonstrate that vector algebra obeys the basic algebraic 

equation rule that a term can be moved across the equality by flipping its sign.

�Geometric Interpretation of Vector Addition 
and Subtraction
Fortunately, there are intuitive diagrammatic interpretations for the essential rules of 

vector addition and subtraction. Please refer to Figure 4-13, where vectors 


V1  and 


V2  are 

defined by the three given positions, P0, P1, and P2. These two vectors are defined as

	


V P P1 1 0= - 	

	


V P P2 2 1= - 	

Figure 4-13 shows vector 


V1  with its tail at P0 and vector 


V2  with its tail at P1.

Figure 4-13.  Two vectors defined by three positions
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�Vector Addition

Figure 4-14 shows the result of vector addition geometrically. Notice that the result of 

adding the two vectors

	
  

V V Vsum = +1 2 	

is a vector with its tail located at the tail of 


V1 , P0, and its head located at the head 

of 


V2 , P2. This can be interpreted geometrically as 


Vsum  is the combined results of 

“following 


V1  then 


V2 .” Except that in case this, instead of following the two vectors 

sequentially, the summed vector, 


Vsum , will take you directly from the beginning to the 

end along the shortest path. This observation is true in general; the result of summing 

vectors is always a vector that combines the results of following all of the operand 

vectors sequentially and is then the shortest path from the beginning location to the final 

destination location.

�Commutative Property of Vector Addition

Figure 4-15 illustrates the commutative property of vector addition:

	
    

V V V V Vsum = + = +1 2 2 1 	

Note the difference in the order of operations; the top half of Figure 4-14 applies 


V1  

at P0 followed by applying 


V2  at the head of 


V1 , while the latter applies 


V2  at P0 followed 

by applying 


V1  at the head of 


V2 . Observe that in both cases, the result is identical; 


Vsum  

has its tail located at P0 and its head at P2.

Figure 4-14.  Vector addition
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Figure 4-15.  The commutative property of vector addition

Figure 4-14 shows that, geometrically, vector addition depicts a triangle where the 

first two edges are the operands and the third is the resulting sum. In Figure 4-15, the 

two 


V1  are of the same length and are parallel and so are the two 


V2  vectors. For this 

reason, the depiction in Figure 4-15 is a parallelogram. These observations are true in 

general—that vector addition and the commutative property always depict a triangle 

and parallelogram, respectively. Though these observations do not result in direct 

applications in video games, they provide insights into relationships between different 

fields of mathematics, in this case, linear algebra and geometry.

�Vector Subtraction

Figure 4-16 shows the result of vector subtraction geometrically. The two vectors with 

tails at position P1 are 


V2  and a scaling of 


V2  by a factor of −1 resulting in −


V2 , or 


Vn2 ,  

a vector with same length in the opposite direction to 


V2 . This figure shows that 

subtracting a vector is essentially the same as using the opposite direction of that vector 

in a vector addition. In this case, 
 

V V1 2−  can be understood as travel along 


V1 , followed 

by traveling along the opposite direction of 


V2 . This interpretation can be verified 

mathematically as follows. Notice that just as floating-point algebra, the subtraction of 

the two vectors

	
  

V V Vsub = -1 2 	

can be written as an addition

	
  

V V Vsub n= +1 2 	

where

	
 

V Vn2 2= - 	
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or simply

	

    

V V V V Vsub = - = + -( )1 2 1 2 	

Notice the perfect correspondence between the expression, 
 

V V1 2+ -( ) , and the 

description, “travel along 


V1 , followed by traveling along the opposite direction of 


V2 .”

�The Vector Add and Sub Example
This example demonstrates the results of and allows you to interact with the vector 

addition and subtraction operations. This example also serves as a review and 

reaffirmation that vectors can be located at any position as their definition does not link 

them to a specific position. Figure 4-17 shows a screenshot of running the EX_4_4_

VectorAddandSub example from the Chapter-4-Vectors project.

Figure 4-17.  Running the Vector Add and Sub example

Figure 4-16.  Vector subtraction
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The goals of this example are for you to

•	 Examine and gain understanding of vector addition and subtraction

•	 Understand that vector subtraction is simply vector addition with a 

negative vector as the second operand

•	 Review that all vectors are defined independent of any position

�Examine the Scene
Look at the Example_4_4_VectorAddandSub scene and observe the predefined game 

objects in the Hierarchy Window. In addition to the Controller, there are three objects 

in this scene: P0, P1, and P2. Each of these objects references one of the spheres in the 

scene which in turn represent a position in the Cartesian Coordinate System. In this 

example you can manipulate these three positions to define two vectors, where the 

results of adding and subtracting these two vectors are shown at those positions and at 

the origin as position vectors.

�Analyze Controller MyScript Component
The MyScript component on the Controller shows two sets of variables:

•	 The three positions:

•	 P0: The reference to the P0 game object.

•	 P1: The reference to the P1 game object.

•	 P2: The reference to the P2 game object.

The transform.localPosition of these objects will provide the 

positions defining the two vectors:

	


V P P1 1 0= - 	

	


V P P2 2 1= - 	
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•	 Draw control: There are seven toggles for showing or hiding the 

following.

•	 DrawAxisFrame: Shows or hides the axis frame; the axis frame 

serves as a reference for showing position vectors.

•	 DrawV12: Shows or hides vector 


V1  at position P0 and 


V2  at the 

head of 


V1 . This is convenient for examining 
 

V V1 2+ .

•	 DrawV21: Shows or hides vector 


V2  at position P0 and 


V1  at the 

head of 


V2 . This is convenient for examining 
 

V V2 1+ .

•	 DrawSum: Shows or hides the vectors 
  

V V Vsum = +1 2  and 
  

V V Vsum = +2 1 .

•	 DrawSub: Shows or hides the vector 
  

V V Vsub = -1 2 .

•	 DrawNegV2: Shows or hides the vector −


V2 .

•	 DrawPosVec: Shows or hides currently visible vector(s) as position 

vector(s).

The purpose of this example is for you to manipulate the P0, P1, and P2 positions 

and toggle each of the preceding drawing options to closely examine each of the 

corresponding vectors.

�Interact with the Example
Click the Play Button to run the example. Initially, both DrawAxisFrame and DrawV12 are 

enabled so you should observe the axis frame and the two vectors 


V1  (in red) and 


V2  

(in blue) connecting the checkered spheres P0, P1, and P2. Now, enable DrawPosVec to 

observe vectors 


V1  and 


V2  drawn at the origin as position vectors. At any point in the 

following interaction, feel free to toggle on DrawAxisFrame for referencing. For now, 

please toggle it off to avoid cluttering the scene.

�Vector Addition and the Commutative Property

With DrawPosVec on, switch on both DrawV12 and DrawV21 toggles to show these two 

sets of vectors. Select and manipulate position P1 to observe how the two sets of vectors 

change. Now toggle DrawSum on and continue with the manipulation of position P1. 

Observe that since 
    

V V V V Vsum = + = +1 2 2 1  is a vector from P0 to P2, changing P1 has 
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absolutely no effect on 


Vsum . Next, select and manipulate P0 to observe how the red 


V1  

and green 


Vsum  vectors change together while the blue 


V2  remains constant. Repeat the 

manipulation for P2 and observe 


V2 and 


Vsum  altering while 


V1 remains constant.

Through these interactions, you have verified that vector addition is indeed 

accumulating the results of individual operands and that the operation does indeed obey 

the commutative property. You were also reminded, through turning on the DrawPosVec 

toggle, that vectors are independent of positions as all three vectors were identical to 

their corresponding color partner except for their tail location.

Vector Subtraction

Reset all toggles to off and switch on DrawPosVec, DrawV12, and DrawNegV2. You should 

observe three sets of vectors: 


V1  (in red), 


V2  (in blue), and −


V2  (in yellow). Manipulate 

the Scene View camera to observe that the yellow vectors are indeed the same length 

and in opposite directions as the blue vectors. Select and manipulate P1 to observe the 

two sets of three vectors changing in sync. If you manipulate P2, it will only affect 


V2  (in 

blue) and −


V2  (in yellow) vectors. Now switch on the DrawSub toggle to observe the gray 


Vsub  vector as the sum of the red and yellow vector, 
  

V V Vsub = + -( )1 2 .

Through these interactions, you have verified that vector subtraction is indeed the 

same as vector addition with the second operand being negated. In fact, every operand 

after the first operand, if originally being subtracted, can instead be added after it’s been 

negated, just like with floating-point arithmetic.

Position Vector

With DrawPosVec toggle on, every computed vector is displayed at the origin as a position 

vector. For example, while 


Vsum  was computed by 
 

V V1 2+  and the geometric depiction 

suggests that 


Vsum  must always have its tail at P0, this is not the case. Once again, a 

vector is a length and a direction; this definition holds true independent of any specific 

position, even when a position is used initially to define that vector.
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�Details of MyScript
Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

public GameObject P0, P1, P2;            // V1=P1-P0 and V2=P2-p1

// For visualizing the vectors

private MyVector

    ShowV1atP0, ShowV2atV1, // Show V1 at P0 and V2 at head of V1

    ShowV2atP0, ShowV1atV2, // Show V2 at P0 and V1 at head of V2

    ShowSumV12, ShowSumV21, // V1+V2, and V2+V1

    ShowSubV12,             // V1-V2

    ShowNegV2;              // -V2

// Show as position vectors

private MyVector PosV1, PosV2, PosSum, PosSub, PosNegV2;

// Toggles for drawing/hiding corresponding vectors

public bool DrawAxisFrame = true;

public bool DrawV12 = false, DrawV21 = false;

public bool DrawSum = false;

public bool DrawSub = false, DrawNegV2 = false;

public bool DrawPosVec = false;

All public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The large number of private MyVector variables is 

for visualizing the corresponding vectors. The Start() function for MyScript is listed as 

follows:

void Start() {

    Debug.Assert(P0 != null);

    Debug.Assert(P1 != null);

    Debug.Assert(P2 != null);

    ShowV1atP0 = new MyVector() { // Show V1 vectors

        VectorColor = Color.red     };

    ShowV1atV2 = new MyVector() {

        VectorColor = Color.red     };
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    PosV1 = new MyVector()      { // Show V1 as position vector

        VectorAt = Vector3.zero,  // always show at the origin

        VectorColor = Color.red     };

    ShowV2atP0 = new MyVector() { // Show V2 vectors

       VectorColor = Color.blue     };

    ShowV2atV1 = new MyVector() {

        VectorColor = Color.blue    };

    PosV2 = new MyVector()      { // Show V2 as position vector

        VectorAt = Vector3.zero,

        VectorColor = Color.blue    };

    ShowSumV12 = new MyVector() { // Show V1 + V2

        VectorColor = Color.green    };

    ShowSumV21 = new MyVector() { // Show V2 + V1

        VectorColor = Color.green    };

    PosSum = new MyVector()      { // Show sum as position vector

        VectorAt = Vector3.zero,

        VectorColor = Color.green    };

    ShowSubV12 = new MyVector() { // Show V1 - V2

        VectorColor = Color.gray     };

    PosSub = new MyVector()      { // Show as position vector

        VectorAt = Vector3.zero,

        VectorColor = Color.gray     };

    ShowNegV2 = new MyVector()   { // Show -V2

        VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };

    PosNegV2 = new MyVector()     {

        VectorAt = Vector3.zero,

        VectorColor = new Color(0.9f, 0.9f, 0.2f, 1.0f) };

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding 

referencing the appropriate game objects via the Inspector Window. The rest of the 

Start() function instantiates the many MyVector variables for visualization, setting their 

colors and display positions. The Update() function is listed as follows:
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void Update() {

    Vector3 V1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 V2 = P2.transform.localPosition -

                 P1.transform.localPosition;

    Vector3 sumV12 = V1 + V2;

    Vector3 sumV21 = V2 + V1;

    Vector3 negV2 = -V2;

    Vector3 subV12 = V1 + negV2;

    Draw control: switch on/off what to show

    V1: show V1 at P0 and head of V2

    V2: show V2 at P0 and head of V1

    Sum: show V1+V2 and V2+V1

    Sub: show V1-V2

    Negative vector: show -V2

}

The Update() function first computes all the relevant vectors:

•	


V P P1 1 0= -

•	


V P P2 2 1= -

•	
  

V V Vsum12 1 2= +

•	
  

V V Vsum21 2 1= +

•	
 

V Vn2 2= -

•	
  

V V Vsub12 1 2= -

Then it sets up the corresponding MyVector variables for display based upon their 

values and if their toggle switches are true. The details of this visualization code are 

independent of the vector operations being studied and are therefore not discussed here. 

You can explore the code in these regions at your own leisure.
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�Takeaway from This Example
This example demonstrates the details of vector addition and subtraction where the 

commutative property of vector addition is verified and vector subtraction is presented 

as vector addition with a negated vector. Equally important is the review of a vector’s 

independence of positions.

Relevant mathematical concepts covered include

•	 Vector addition results in a vector that accumulates the operand 

vectors.

•	 Vector addition is indeed commutative.

•	 Vector subtraction is simply an addition with the second operand 

being negated.

•	 Reviewed that vectors are independent of any particular position.

EXERCISES

Verify Vector Addition Accumulates in General

Modify the scene and MyScript to include a fourth position, P3, and a vector, 


V3 .



V P P3 3 2= -

Now, define 


Vsum

   

V V V Vsum = + +1 2 3

Verify that it is always true that if the tail of 


Vsum  is located at P0, then its head will be 

located at P3.

Verify the Associative Property of Addition and Subtraction

With the fourth position, P3, and vector 


V3 , verify

	

     

V V V V V V1 2 3 1 2 3+( )+ = + +( ) 	
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and

	

     

V V V V V V1 2 3 1 2 3-( )- = - -( ) 	

by computing and displaying each as a different MyVector object.

�Application of Vector Algebra
Although seldom applied directly, the indirect applications of vector algebra in video 

games are ubiquitous and vital. For example, you have already experienced working with 

vector subtraction in defining a vector between two positions for distance computation 

and vector addition in computing movements when applying a velocity to an object.

A straightforward application of vector addition is in simulating velocity under a 

constant external factor, for example, an airplane flying or a ship sailing under a constant 

wind condition. Please refer to Figure 4-18 where a traveling ball is progressing toward 

a target with a velocity of 


VT . Under the wind condition, 


Vwind , the effective velocity 

experienced by the ball then becomes 


VA :

	
  

V V VA T wind= + 	

Figure 4-18.  Traveling under constant wind condition

With your knowledge of vectors and vector addition, this wind condition is 

straightforward to simulate and is examined in the next example.
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�The Windy Condition Example
This example uses vector addition to simulate an object traveling under a constant 

wind condition. The example allows you to adjust all the parameters of this simulation, 

including the speed of the traveling object and the wind, the direction of the wind, and if 

the wind condition should affect the traveling object. Figure 4-19 shows a screenshot of 

running the EX_4_5_WindyCondition example from the Chapter-4-Vectors project.

Figure 4-19.  Running the Windy Condition example

The goals of this example are for you to

•	 Experience a straightforward example of applying vector addition to 

affect object behavior

•	 Examine and understand the simple implementation of how velocity 

can be affected under a constant wind condition

�Examine the Scene

Take a look at the Example_4_5_WindyCondition scene and observe the predefined game 

objects in the Hierarchy Window. In addition to the Controller, there are two objects in 

this scene: TravelingBall and RedTarget. This example simulates the TravelingBall 

progressing toward the RedTarget under a constant wind condition that affects its velocity.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows four sets of variables:

•	 Simulation control: Variables that control the simulation

•	 PauseMovement: The toggle that stops the simulation and the 

movements of the objects in the scene, allowing for careful 

examination of the scene.

•	 The objects: The objects in the scene that you can interact with

•	 TravelingBall: The reference to the TravelingBall game object

•	 RedTarget: The reference to the RedTarget game object

•	 Traveling ball speed: Variables that affect the speed of the 

traveling ball

•	 BallSpeed: The speed at which the ball is traveling without any 

wind. Note that the direction of ball’s velocity is along the vector 

defined by the ball and the target positions. Assuming PB and PT 

are the positions of the ball and the target, respectively, then



V BallSpeed P P NormalizedT T B� � �� �.

•	 DrawVelocity: A toggle to hide or show the ball’s velocity 

vector, 


VT .

•	 Wind condition: The variables that control the wind condition in the 

simulation

•	 WindDirection: Determines the direction of the wind 

velocity, 


Vwind

•	 WindSpeed: Determines the speed of the wind velocity, 


Vwind

•	 ApplyWind: Toggles the effect of the wind on or off

•	 DrawWind: A toggle to hide or show the wind’s velocity vector
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�Interact with the Example

Click the Play Button to run the example. Note that initially PauseMovement is enabled 

and the traveling ball does not move. The three vectors you observe are explained as 

follows. The green vector pointing from the TravelingBall toward the RedTarget is the 

ball’s current velocity, 


VT . The red vector is the wind’s velocity, 


Vwind . Lastly, the blue 

vector is the path that the ball will take, the resulting vector, 


VA , where

	
  

V V VA T wind= + 	

Increase the BallSpeed and WindSpeed to observe the corresponding green and red 

vectors increase in length. Select and move the RedTarget to verify that the direction of 

the green vector, 


VT , always points toward the RedTarget. Next, select and change the 

components of the WindDirection variable to verify that the direction of the red vector 

changes accordingly.

Now, switch off PauseMovement toggle to allow the simulation to proceed. Try 

increasing WindSpeed, for example, to 0.05, and observe 


VT  being affected while the 

TravelingBall proceeds and drifts toward the RedTarget. Note that when WindSpeed 

and WindDirection are unfavorable, for example, a speed of 0.15 in the direction of 

(1, 0, 0), the TravelingBall will drift away from and never reach the RedTarget.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

public bool PauseMovement = true;

public GameObject TravelingBall = null;

public GameObject RedTarget = null;

public float BallSpeed = 0.01f;         // units per second

public bool DrawVelocity = false;

private float VelocityDrawFactor = 20f; // To see the vector

public Vector3 WindDirection = Vector3.zero;

public float WindSpeed = 0.01f;

public bool ApplyWind = false;

public bool DrawWind = false;
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private MyVector ShowVelocity = null;

private MyVector ShowWindVector = null;

private MyVector ShowActualVelocity = null;

All public variables for MyScript have been discussed when analyzing Controller’s 

MyScript component. The private variable VelocityDrawFactor is for scaling the small 

magnitude velocity vectors such that they can be visible. The MyVector data type private 

variables are to visualize the three vectors,


VT , 


Vwind , and 


VA . The Start() function for 

MyScript is listed as follows:

void Start() {

    Debug.Assert(TravelingBall != null);

    Debug.Assert(RedTarget != null);

    ShowVelocity = new MyVector() {

        VectorColor = Color.green,

        DrawVectorComponents = false };

    ShowWindVector = new MyVector() {

        VectorColor = new Color(0.8f, 0.3f, 0.3f, 1.0f),

        DrawVectorComponents = false  };

    ShowActualVelocity = new MyVector() {

        VectorColor = new Color(0.3f, 0.3f, 0.8f, 1.0f),

        DrawVectorComponents = false    };

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding 

referencing the appropriate game objects via the Inspector Window, while the rest of the 

function instantiates the MyVector variables for proper visualization of the vectors. The 

Update() function is listed as follows:

void Update() {

    Vector3 vDir = RedTarget.transform.localPosition -

                   TravelingBall.transform.localPosition;

    float distance = vDir.magnitude;

    if (distance > float.Epsilon) { // if not at the target

        vDir.Normalize();

        WindDirection.Normalize();
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        Vector3 vT = BallSpeed * vDir;

        Vector3 vWind = WindSpeed * WindDirection;

        Vector3 vA = vT + vWind;

        // Display the vectors

        if (PauseMovement)

            return;

        if (ApplyWind)

            TravelingBall.transform.localPosition +=

                                    vA * Time.deltaTime;

        else

            TravelingBall.transform.localPosition +=

                                    vT * Time.deltaTime;

    } // if (distance < float.Epsilon)

}

The Update() function first computes the vector from TravelingBall toward the 

RedTarget, 


Vdir . Next, the magnitude of 


Vdir , distance, is computed and checked to 

ensure that this is not a very small number. This checking accomplishes two important 

objectives. First, a small distance value means that the TravelingBall object is closed 

to or has reached the RedTarget object and further simulation is no longer required. 

Second, when distance is approximately zero, 


Vdir  is approximately a zero vector and 

thus cannot be normalized. When distance is larger than approximately zero, the 

following velocity vectors are computed:



V BallSpeed VT dir= x ˆ

- -V WindSpeed WindDirectionwind = x
  

V V VA T wind= +

When the simulation condition is true, depending on if the user wants 

to observe the effects of the wind, the TravelingBall position is updated by 

either 


V elapsedTimeT ×  or 


V elapsedTimeA × .
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�Takeaway from This Example

This example demonstrates the straightforward application of vector addition by 

simulating traveling under a constant, external effect, like a wind condition. You have 

observed that such a condition can be simulated as a velocity vector being added to the 

traveling velocity.

Relevant mathematical concepts covered include

•	 Model constant wind breeze as a velocity

•	 Changing an object’s velocity by the addition of an object’s own 

velocity with that of external velocities

EXERCISES

Compensate for the Wind Conditions

Note that if the wind velocity, 


Vwind , is available during the computation of an object’s velocity, 


VT , then it is possible to compensate for the wind condition. Instead of moving toward the 

target, V̂dir , the traveling velocity should point toward the target only after V̂dir  is affected by 

the wind condition, or

	 BallSpeed V V Vdir T wind� � �ˆ  

	

So

	
 

V BallSpeed V VT dir wind� � �ˆ
	

Implement this compensation and observe a smoother TravelingBall movement. You have 

observed that it is possible to compensate and largely remove the external wind factor by not 

traveling directly toward the final destination.

Travel Under Multiple External Factors

Support a strong wind gust which occurs probabilistically (or pseudo-randomly). In addition to 

speed and direction, allow your user to adjust the occurrence frequency and duration of this 

wind gust. Now, as the TravelingBall moves toward its target, it may get blown off course 

some of the times. You now know how to add simple environmental factors into a game.
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�Summary
This chapter introduces vectors by relating to your understanding of measurement 

and distance computations in the Cartesian Coordinate System. You have learned the 

following:

•	 A vector is a size and a direction that can relate two positions.

•	 The vector definition is independent of any particular position.

•	 All positions in the Cartesian Coordinate System can be considered 

as position vectors.

•	 Scaling a vector by a floating-point number changes its size but not 

its direction.

•	 A normalized or unit vector has a size of 1 and is convenient for 

representing the direction of a vector.

•	 Vectors are ideal for representing the velocities of objects.

•	 It is convenient to represent a velocity by separately storing its speed 

and direction of movement.

•	 Vector addition and subtraction rules follow closely to those of 

floating-point algebra.

The examples presented in this chapter allowed you to interact with and examine the 

details of vectors and their operations. Based on vector concepts, you have examined the 

simple object behaviors of following, or aiming, at a target and the environmental affects 

you can create by disturbing an object’s motion with an external velocity.

Through this chapter, you have gained the basic knowledge of what a vector is, its 

basic rules, and how it can be used to model simple object behaviors and environmental 

effects. You are now ready to examine the more advanced operations of vectors, like the 

dot product, which determines the relationship of two given vectors.

Before you continue, it is important to remember that the applications of vector 

related concepts go far beyond interactive graphical applications like video games. 

In fact, in many cases it is impossible to depict or visualize the vectors being used 

in different applications. For example, a vector in n-dimensional space where n is 

significantly large than 100! It is important to remember that you are learning one flavor 

of vector usage: applications in interactive graphics. In general, vectors can be applied to 

solve problems in a wide variety of disciplines.
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CHAPTER 5

Vector Dot Products
After completing this chapter, you will be able to

•	 Understand the vector dot product definition, its properties, and its 

geometric interpretation

•	 Recognize how the vector dot product relates two vectors by their 

subtended angle and relative projection sizes

•	 Comprehend how a vector represents a line segment

•	 Apply the dot product to allow the interpretation of a line segment as 

an interval

•	 Perform the simple inside-outside test for a point and an arbitrary 

interval

•	 Apply the vector dot product to determine the shortest distance 

between a point and a line

•	 Apply the vector dot product to compute the closest distance 

between two lines

�Introduction
In Chapter 4 you learned that a vector is defined by the relationships between two 

positions in the Cartesian Coordinate System: the direction from one position to another 

and the distance between them. Though simple, the vector, or the concept and the 

associated rules of relating two positions, is demonstrated to be a powerful tool that is 

capable of representing object velocity and simple environmental effects for video game 

development. This chapter continues with this theme and introduces the vector dot 

product to relate two vectors.
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Vectors are defined by their direction and magnitude, and thus when relating two 

vectors, it is essential to include descriptions of how these two quantities are measured 

with respect to each other. The vector dot product relates vector directions by calculating 

the cosine of the subtended angle, or the angle between two vectors where their tails 

are connected, and the vectors’ magnitudes by computing the respective projected 

sizes, or one vector’s magnitude when measured along the direction of the other vector. 

These ways of relating vectors are some of the most fundamental tools in analyzing the 

proximity and connections between positions and directions in 3D space. The results of 

applying the vector dot product provide the basis for predicting and controlling object 

behaviors in almost all video games.

In video games it is often necessary to analyze the spatial relationships, such as 

distances and intersections, of traveling objects and then predicting what events will 

occur. For example, detecting and hinting to the player the situation where the pathway 

of their explorer will pass within a hidden treasure’s proximity. To model this situation 

mathematically, as you have learned from the previous chapters, the pathway of the 

explorer is a function of their traveling velocity and can be represented as a vector. Then, 

the hidden treasure can be wrapped by a bounding volume, that is, bounding sphere. 

In this way, the problem to solve is to compute the closest distance between the vector 

and bounding sphere center and determine if that distance is closer than the bounding 

sphere radius. As you will learn from this chapter, the vector dot product can provide a 

solution for this situation that is elegant and straightforward to implement. In fact, the 

vector dot product is the best tool for determining distances between positions and line 

segments.

This chapter begins by introducing the vector dot product, what it is, how it is 

computed, and the rules for working with the operation. The chapter then moves on 

to explain how to geometrically interpret the dot product results as the angle between 

vectors and as projected lengths along these vectors. The inside-outside test of a 1D 

interval along a major axis discussion from Chapter 2 is then cast and generalized as 

an inside-outside problem based on vector line segments and projections. The two 

application areas of the vector dot product that are examined specifically are the line 

to point and the line to line distances. These types of applications play many roles in 

video game development as well as other interactive graphical applications. Finally, this 

chapter concludes by reviewing what you have learned about the vector dot product and 

its many applications.
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�Vector Dot Product: Relating Two Vectors
Recall that the vector definition is independent of any position. In other words, a vector 

can have its tail located at any position. This knowledge is important because when you 

analyze the relationship between two vectors, it is convenient to depict the tails of the 

vectors at the same location. Figure 5-1 shows a drawing of two arbitrary vectors, 


V1  and 


V2 , with the same tail position, P0. As you can see, the shared tail position allows the two 

vectors to be in close proximity and facilitates convenient visual comparison. By placing 

two vectors at the same location, it becomes easier to analyze, understand, and quantify 

the relationship between them.

Figure 5-1.  Relationship between two given vectors

Notice in Figure 5-1 that although the two vectors could be in any direction with any 

magnitude in 3D Cartesian Coordinate Space, the two vectors together can always be 

properly depicted on a 2D plane. In fact, the 2D plane that these vectors are depicted 

on may or may not be parallel to any major axes. In general, it is true that given any two 

arbitrary vectors in 3D space, as long as the two vectors are not parallel, there is always a 

2D plane where both of the vectors in 3D space can be drawn. This observation is what 

allows two vectors in 3D space to be drawn and analyzed on a 2D plane, as depicted in 

Figure 5-1.

The second observation from Figure 5-1 is that, recalling that a vector is comprised 

of a direction and a magnitude, that the relationship between two vectors can be 

characterized by the angle between the vectors, θ, and by the relative sizes of the two 

vectors. The vector dot product is the operation that can provide definitive answers to 

both of these characteristics.
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�Definition of Vector Dot Product
Given two vectors in 3D space



V x y z1 1 1 1= ( ), ,



V x y z2 2 2 2= ( ), ,

the dot product, or vector dot product, between the two vectors is defined as the 

sum of the product of the corresponding coordinate components, or
 

V V x x y y z z1 2 1 2 1 2 1 2. = + +

Notice that

•	 Symbol: The symbol for the dot product operation, “·”, is literally 

a “dot”.

•	 Operands: The operation expects two vector operands.

•	 Result: The result of the operation is a floating-point number.

It is especially important to pay attention to the last point. Similar to vector addition 

and subtraction, the dot product operates on two vector operands. However, unlike the 

other two operations, the result of the dot product is not a vector but a simple floating-

point number. It is this floating-point number that encodes the angle between the two 

operand vectors and the relative sizes of the two operand vectors. How these values are 

encoded in this single floating-point number and what you can do with it are the topics 

that will be explored in the following subsections. However, before you begin that journey, 

you will first need to explore and understand the rules and properties of the dot product.

Note T he dot product is also referred to as the inner product or the scalar 
product in different disciplines of mathematics. This book will refer to the 
operation as dot product exclusively.

Do not confuse the dot product symbol, “·”, for a multiplication sign. When 
multiplications are involved in vector expressions, there will be no symbol between 
the operands, such as sV



2 . Since one cannot multiply two vectors, you will never 
see 

 

VV1 2 , and therefore you can safely assume that if you see a “·” between two 
vectors, the dot product is the operation to perform and not multiplication.

Chapter 5  Vector Dot Products



175

�Properties of Vector Dot Product
The vector dot product properties of commutative, associative, and distributive over a 

floating-point scaling factor s and other vector operations are summarized in Table 5-1.

Table 5-1.  Properties of vector dot product

Properties Vector Dot Product

Commutative
   

V V V V1 2 2 1=⋅ ⋅

Associative
  

V V V1 2 3.( ) .     [Undefined!]

Distributive over vector operation
         

V V V V V V V V V V1 2 A B 1 2 A 1 2 B+ = +.( ) ( ) .( ) .( )
Distributive over scale factor, s s V V sV V V sV

     

1 2 1 2 1 2= =.( ) ( ) . .( )

Take note of the undefined associative property. In this situation, it can be helpful to 

remember that the result of the dot product operation is a floating-point number, so it is 

possible to let

 

V V f1 2.( ) =

then it becomes obvious that

   

V V V f V1 2 3 3.( ) . = .

is an undefined operation since the first operand is not a vector but a floating-point 

number. In general, please pay attention to the subtle differences in the notation. While

   

V V V fVA A1 2.( ) =

is scaling vector 


VA  by the result of the dot product,

   

V V V f VA A1 2.( ) . = .
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is attempting to perform a dot product between a floating-point number, f, and the 

vector, 


VA , and is therefore an undefined operation. The only difference is in the single 

“⋅” symbol! If you continue to use f to represent the result of 


V1  dot 


V2 , then you can 

rewrite the distributive property over vector addition as

	

       

V V V V f V V fV fVA B A B A B1 2�� � �� � � �� � � �
	

which is the distributive property of vector addition over a scaling factor, f. This 

means that the distributive property also applies over vector subtraction

	

         

V V V V V V V V V VA B A B1 2 1 2 1 2�� � �� � � �� � � �� � 	

or

	

       

V V V V f V V fV fVA B A B A B1 2�� � �� � � �� � � �
	

The vector dot product distributive property over a scale factor, s, is worth some 

special attention. Notice that the scale factor s is only applied to one of the operands 

and not both. At first glance, this may seem counterintuitive; however, it makes perfect 

sense if you consider distributive property over a scale factor, s, of a floating-point 

multiplication between a and b

s a b s a b a s b� �� � � �� �� � � �� �

Now, recall that the magnitude of a vector, 


V x y z= ( ), , , is



V x y z� � �2 2 2

For this reason, a vector dotted with itself is its magnitude squared

  

V V x x y y z z x y z V1 1 1 1 1 1 1 1 1
2

1
2

1
2

1

2
� � � � � � � �

Lastly, the dot product between any vector with the zero vector always results in a 

zero vector

 

V ZeroVector ZeroVector V ZeroVector1 1� � � �
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�The Angle Between Two Vectors
This section derives a formula that computes the angle θ between the vectors 



V1  and 


V2  

in Figure 5-1. As illustrated in Figure 5-2, this formula derivation begins by subtracting 

the two given vectors

	
  

V V V3 1 2� � 	

Figure 5-2.  Subtracting the given two vectors

In Figure 5-2, similar to Figure 5-1, both 


V1  and 


V2  have their tails located in the 

lower-left corner at position P0. Notice the −


V2  vector with its tail at position P1 and that 

the vector 


V3  with its tail at P0 is the result of adding 


V1  with −


V2 , or

    

V V V V V3 1 2 1 2� � �� � � �

Figure 5-2 also depicts vector 


V3  with its tail at P2 to create triangle P0P1P2. Recall that 

the Laws of Cosine from trigonometry states that

    

V V V V V3

2

1

2

2

2

1 22� � � cos�

In this case, you know that


V x y z1 1 1 1= ( ), ,



V x y z2 2 2 2= ( ), ,



V x x y y z z3 1 2 1 2 1 2� � � �� �, ,
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With algebraic simplification left as an exercise, you can show that

cos� �
� �

� � � �

x x y y z z

x y z x y z
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

this equation says that

x1x2 + y1y2 + z1z2= x y z x y z V V1
2

1
2

1
2

2
2

2
2

2
2

1 2� � � � �cos cos� �
 

or simply

   

V V x x y y z z V V1 2 1 2 1 2 1 2 1 2� � � � � cos�

You have just shown that the dot product definition, the sum of the products of the 

corresponding coordinate components, actually computes a floating-point number 

that is equal to the product of the magnitude of the two vectors and the cosine of the 

angle between these two vectors. By normalizing 


V1  and 


V2 , 


V1 and 


V2  both become 

1.0, so that

ˆ ˆ ˆ ˆV V V V1 2 1 2= cos = cos� � �

This formula says that the dot product of two normalized vectors is the cosine of the 

angle between the vectors.

It is important to note that the angle between two vectors is the one subtended by 

the two vectors (the smaller angle). As illustrated in Figure 5-3, if θ in Figure 5-1 was 45°, 

then the angle between the two vectors is 45° and not 315°. The key to remember is that 

the angle subtended by two vectors, or two lines, is always between 0° and 180°.

Figure 5-3.  The angle subtended by vectors 


V1  and 


V2
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Figure 5-4 depicts the angle measurements θ2 to θ6 between vector 


V1  and vectors 


V2  to 


V6 , respectively. In this case, 


V3  is perpendicular to 


V1  and 


V5  is in the opposite 

direction to 


V1 ; thus θ3= 90°, while θ5 = 180°. Notice the measurement of the angle θ6, 

the angle between vectors 


V1 and 


V6 , is the angle subtended by these two vectors and 

is not an accumulation from the angle θ5. Once again and very importantly, the angle 

subtended by two vectors is always an angle between 0° and 180°.

Figure 5-4.  The angles between vectors

Figure 5-5 is a simple plot and a reminder of the cosine function. Recall that the 

results of cosθ are positive between 0° and 90° and become negative between 90° and 

180°. With the dot product of two normalized vectors being the cosine of the subtended 

angle, you can now determine the relative directions of vectors with a simple dot 

product calculation. In particular, when the subtended angle is less than 90°, the cosine 

is positive, and thus you can conclude that the vectors are pointing along a similar 

direction. Conversely, when the subtended angle is more than 90°, the cosine is negative, 

and thus you can conclude that the vectors are pointing away from each other.
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Figure 5-5.  Simple plot of the y =  cos θ function

In the cases of Figure 5-4, you know

ˆ ˆ cosV V1 2 2 2 90� � � � �� �a positive number because

ˆ ˆ cosV V1 3 3 30 90� � � � �� �because

ˆ ˆ cosV V1 4 4 4 90� � � � �� �a negative number because

ˆ ˆ cosV V1 5 5 51 180� � � � � �� �because

ˆ ˆ cosV V1 6 6 6 90� � � � �� �a negative number because

These observations can be summarized in Table 5-2 for any given vectors, 


V1  and 


V2 .
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Table 5-2.  Dot product results and subtended angles

Dot Product Results Subtended Angle θ Conclusions

ˆ ˆV V1 2 = cos = 1� � θ = 0° The vectors are in the exact same direction, 
ˆ ˆV V1 2=

ˆ ˆV V1 2 = cos = 0� � θ = 90° The vector directions are perpendicular to 

each other

ˆ ˆV V1 2 = cos > 0� � θ < 90° The vectors are pointing along similar 

directions

ˆ ˆV V1 2 = cos < 0� � θ > 90° The vectors are pointing along similar, but 

opposite directions

ˆ ˆV V1 2 = cos = -1� � θ = 180° The vectors are in the exact opposite direction, 
ˆ ˆV V1 2= -

�The Angle Between Vectors Example
This example allows you to manipulate three positions that define two vectors. The 

example computes and displays the angle between the two vectors and enables you to 

verify the conclusions gathered from Table 5-2. Additionally, this example demonstrates 

that as long as the two given vectors are not parallel, a 2D plane can always be found 

for drawing the two vectors. Figure 5-6 shows a screenshot of running the EX_5_1_

AngleBetweenVectors example from the Chapter-5-DotProducts project.
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Figure 5-6.  Running the Angle Between Vectors example

The goals of this example are for you to

•	 Experience manipulating the angle subtended by two vectors and 

observe the results of the dot product

•	 Verify that a 2D plane can always be found for drawing two non-

parallel vectors

•	 Examine the implementation of and appreciate the subtleties of 

vector normalization when computing dot products

�Examine the Scene

Take a look at the Example_5_1_AngleBetweenVectors scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are three 

objects in this scene: the checkered sphere (P0) and the stripped spheres (P1 and P2). 

These three game objects, with their corresponding transform.localPosition, will be 

referenced to define the two vectors for performing dot product calculations.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables: P0, P1, P2, and 

DrawThePlane toggle. The toggle is for showing or hiding the 2D plane where the two 

vectors are drawn, while the other three variables are defined for accessing the game 

objects with their corresponding names. In this example, you will manipulate the 

positions of the three game objects and examine the dot product resulting from the 

vectors, 


V1  and 


V2 , defined accordingly

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

�Interact with the Example

Click the Play Button to run the example. In the Scene View window, you will observe 

two vectors with tail positions located at the checkered sphere, P0, and a greenish plane 

where the two vectors are drawn. The two vectors are the 


V1  and 


V2  and are defined by 

the positions of P0, P1, and P2 game objects. Also visible in the Scene View window is the 

2D axis frame with the red X-axis and green Y-axis vectors. On the axis frame, extending 

from the origin is a black line segment. The angle subtended by this black line segment 

and the red X-axis is the same angle subtended by vectors 


V1  and 


V2 , and the length of 

this black line is proportional to the cosine of that angle, scaled by 1.5 times for easier 

visual analysis. Lastly, take a look at the Console Window to observe the text output 

reporting the computed angle between vectors 


V1  and 


V2 .

Now that you have looked over the scene, you will manipulate and observe the 

cosine of the angle subtended by the two vectors and notice how the angle itself changes. 

Please switch off the DrawThePlane toggle as the 2D plane can be distracting. Next, select 

P1 and change its x- and y-component values to vary the angle between the two vectors. 

In the Console Window, you can verify the values of the subtended angle and the cosine 

of this angle. Observe how the black line segment, with its length changing, rotates 

toward or away from the red X-axis direction, corresponding to the angle changes you 

are making.
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Since the length of the black line segment is proportional to the cosine of the 

subtended angle, from the plot in Figure 5-5 and Table 5-2, you can verify that when 

the subtended angle increases, up to 90°, the cosine of the angle decreases and thus 

the length of the line also decreases. The opposite is also true, as the angle decreases 

(between 90° and 0°), the cosine of the angle, and thus the length of the black line, 

increases. In fact, you should notice that the length of the black line is maximized when 

the subtended angle approaches zero and that the length of the line approaches zero 

when the two vectors are approximately perpendicular. You can observe this behavior 

by decreasing the P1 x-component value such that the subtended angle approaches 

90°. When doing so, notice how the length of black line segment also approaches zero, 

corresponding to cos90°  = 0.

When you increase the subtended angle beyond 90°, you will notice the color of the 

black line segment changes to red, indicating that the sign of the dot product result has 

turned into a negative number. Now, decrease the y-component value of P1 to continue 

to increase the subtended angle and notice that the red line segment continues to grow 

in length once more as it rotates away from the positive X-axis direction. When 


V1  

and 


V2  are approximately in the opposite direction, the red line segment will achieve 

maximum length and should be on top of the negative red X-axis line, indicating the 

angle between the two vectors is about 180° and that cos180°  =  − 1. Now, notice that any 

attempt to increase the subtended angle beyond 180° will cause the red line segment to 

rotate back toward the positive X-axis direction. This is similar to cases of vectors that are 

between 


V5  and 


V6  in Figure 5-4. This exercise is to reaffirm that subtended angles are 

always between 0° and 180° and to visually demonstrate what Table 5-2 showcases.

Next, you will verify that a 2D plane can always be defined to draw two vectors 

that are not parallel. Please switch on the DrawThePlane toggle and rotate the camera 

to see that the two vectors are indeed drawn on the greenish plane by examining that 

the plane slices through the two arrows representing 


V1  and 


V2 , respectively. You can 

manipulate any of the P0, P1, or P2 positions to observe the vectors change accordingly 

and more importantly observe that the green plane also changes accordingly: it always 

cuts through both vectors. Now, adjust P1 to the exact location of P2. One way you can do 

this is by copying the values from P2’s transform components in the Inspector Window 

and pasting them onto that of P1’s corresponding transform components. Once done, 

notice that the 2D plane disappears. In this case, since the two vectors are pointing in the 

exact same direction, there are an infinite number of 2D planes that can cut through the 

vectors and thus none are shown.

Chapter 5  Vector Dot Products



185

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

// Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null;   // Position P0

public GameObject P1 = null;   // Position P1

public GameObject P2 = null;   // Position P2

public bool DrawThePlane = true;

#region For visualizing the vectors

#endregion

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The code in the “For visualizing the vectors” 

region is specific to drawing the vectors and as usual does not pertain to the math being 

discussed in this section.

Note  By now, you have observed and may even have worked with some of 
the visualization code. From here on, the visualization portion of MyScript will 
become increasingly complex and involved. To avoid unnecessary distractions, 
beginning from this example, the code for visualization will be separated into 
collapsed hidden regions. The details of these regions will not be explained or 
brought up as they can be tedious and in all cases are irrelevant to the concepts 
being discussed. You are very welcome to explore these at your leisure.

The Start() function for MyScript is listed as follows:

void Start() {

    Debug.Assert(P0 != null);   // Ensure proper init

    Debug.Assert(P1 != null);

    Debug.Assert(P2 != null);

    #region For visualizing the vectors

    #endregion

}
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As in all previous examples, the Debug.Assert() calls ensure proper setup 

regarding referencing the appropriate game objects via the Inspector Window. The 

region “For visualizing the vectors,” which contains the details of initializing the 

visualization variables for the vectors in the scene, is once again irrelevant to the math 

being discussed and can be distracting. Therefore, this region will not be discussed. The 

Update() function is listed as follows:

void Update() {

    float cosTheta = float.NaN;

    float theta = float.NaN;

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 v2 = P2.transform.localPosition -

                 P0.transform.localPosition;

    float dot = Vector3.Dot(v1, v2);

    if ((v1.magnitude > float.Epsilon) &&

        (v2.magnitude > float.Epsilon)) {

        cosTheta = dot / (v1.magnitude * v2.magnitude);

        // Alternatively,

        // costTheta = Vector3.Dot(v1.normalize, v2.normalize)

        theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;

    }

    Debug.Log("Dot result=" + dot +

              " cosTheta=" + cosTheta + " angle=" + theta);

    #region  For visualizing the vectors

    #endregion

The first three lines of the Update() function compute

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

	 dot V V� �
 

1 2 	
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The if condition ensures that neither of the vectors are the zero vector, which as you 

have learned does not have a length, cannot be normalized, and thus, cannot subtend 

angles. When both of the vectors are properly defined, the cosine of the angle between 

them can be computed by recognizing that

dot V V V V� � �
   

1 2 1 2 cos�

which means that the cosine of the subtended angle is simply

cos� �
dot

V V
 

1 2

Finally, theta, the subtended angle value, can be derived by the arccosine function. 

Note that alternatively, cosθ can be computed by performing the dot operation with 

the normalized version of the two vectors. The dot products between vectors that are 

normalized will be examined in more detail in the following sections.

�Takeaway from This Example

This example verifies that when given two non-parallel vectors, a 2D plane can always 

be derived to draw the two vectors. This fact allows the examination of the two arbitrary 

vectors, which may not be aligned with any major axes, to be drawn, examined, and 

analyzed. You have interacted with and closely examined the angle subtended by two 

vectors and that this angle is always between 0° and 180°. Finally, you have observed that 

the cosine of a subtended angle can be computed by dividing the dot product of the two 

vectors with their magnitudes or, alternatively, from the dot product of the two vectors 

after they have been normalized.

cos� � �
dot

V V
 

1 2

ˆ ˆV V1 2⋅

Relevant mathematical concepts covered include

•	 The dot product of normalized vectors is the cosine of their 

subtended angle.

•	 The value of the dot product provides insights into the relative 

directions of the operand vectors (see Table 5-2).

•	 A unique 2D plane can be derived from two non-parallel vectors such 

that both vectors can be drawn on the plane.
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Unity tools

•	 The Mathf library can be used for mathematical functions.

•	 Rad2Deg: The scale factor for radian to degree conversion.

•	 Acos can be used to compute arccosine.

•	 The Mathf.Acos function returns the angle in units of radian and 

not degree.

EXERCISES

Derive the Dot Product Formula

Given that

    

V V V V V3

2

1

2

2

2

1 22� � � cos�

and that


V x y z1 1 1 1= ( ), ,



V x y z2 2 2 2= ( ), ,



V x x y y z z3 1 2 1 2 1 2� � � �� �, ,

show that

cos� �
� �

� � � �

x x y y z z

x y z x y z
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

Verify the Need for Normalization

When computing theta in MyScript,

    cosTheta = dot / (v1.magnitude * v2.magnitude);

    theta = Mathf.Acos(cosTheta) * Mathf.Rad2Deg;
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replace these two lines of code with the non-normalized vectors’ version

    theta = Mathf.Acos(Vector3.Dot(v1, v2)) * Mathf.Rad2Deg;

Try running your game and observe the error messages. Now, include proper normalization

    theta = �Mathf.Acos(Vector3.Dot(v1.normalize, v2.normalize)) *  

Mathf.Rad2Deg;

Try running this latest version and observe the same results as the original. This simple 

exercise shows that it is vital to normalize your vectors when computing the angle 

between them.

Verify the Dot Product Formula

When computing theta in MyScript,

    cosTheta = dot / (v1.magnitude * v2.magnitude);

replace this line of code with the explicit dot product computation

    cosTheta = �(v1.x*v2.x + v1.y*v2.y + v1.z*v2.z) /  

(v1.magnitude * v2.magnitude);

Verify that runtime results are identical.

�Vector Projections
You have learned that the dot product between two vectors, 



V1  and 


V2 , computes 

the product of the vector magnitudes and the cosine of the angle subtended by the 

two vectors

   

V V V V1 2 1 2� � cos�

In the previous example, you have verified that by normalizing both of the vectors 

beforehand, ensuring that

ˆ ˆ .V V1 2 1 0= =
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the dot product now simply computes the cosine of the angle between the 

given vectors

ˆ ˆ cosV V1 2� � �

Now, you can examine the two remaining ways of computing the dot product 

between two given vectors—with only one of the vectors being normalized or

	
ˆ cosV V V1 2 2� �
 

�
	

	

 

V V V1 2 1� �ˆ cos�
	

Figure 5-7 depicts the geometric interpretation of these two dot product 

computations.

Figure 5-7.  Computing dot products between two vectors with one being 
normalized

It is important to note that the left and right images of Figure 5-7 are both based on 

exactly the same two vectors, 


V1  and 


V2 . The left image of Figure 5-7 shows that with 

vector V̂1  normalized, the dot product computed

	
ˆ cosV V V1 2 2� �
 

�
	

is the length of 


V2  when measured along direction of the 


V1  vector. This is also 

referred to as the projected length of 


V2  on the 


V1  vector. Notice that with the tails of the 

two vectors located at the same position, the head of 


V2  is projected perpendicular to 

and onto the 


V1  vector, as evident by the dotted line with the right-angle indicator. This 

projected length can also be interpreted through trigonometry. You can treat 


V2  as the 
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hypotenuse that subtends the angle, θ, with the base direction being V̂1  and the last side 

being the dotted line, thus forming a right-angle triangle. In this case, the length of the 

base of the right-angle triangle is 


V2 cosθ .

The right image of Figure 5-7 shows the same two vectors, 


V1  and 


V2 , where the dot 

product is computed with vector V̂2  being normalized instead of V̂1

	

 

V V V1 2 1� �ˆ cos�
	

In this case, the dot product computes the exact complement of the previous case—

the length of 


V1  when measured along the direction of 


V2 , or the projected length of 


V1  on the 


V2  vector, or the length of the base of the right-angle triangle that is in the 


V2  

direction and subtends an angle, θ, with the hypotenuse 


V1 , and the dotted line as its 

final side. The right image of Figure 5-7 also illustrates a case where the length of the 

base of the right-angle triangle extends beyond the head of the vector 


V2 . This example 

shows that the projected size can be larger than the magnitude of the vector that it is 

being projected onto or


V1 cos� �


V2

Finally, remember that cosθ is negative for θ > 90°, and therefore, 


V cosθ , or the 

projected size of a vector can actually be a negative value. In such cases, you know that 

the vector being projected onto is more than 90° away from the vector being projected. 

This turns out to be important information with many applications, some of which will 

be elaborated in later subsections.

This discussion shows that with the appropriate vector normalized, the dot product can 

compute the projection of the length of one vector onto the direction of the other vector and 

can provide a way to relate the lengths of these two vectors. In other words, the dot product 

allows you the capability to project one vector onto another. Observe that the normalized 

operand is the vector being projected onto. These projections are examined in the next example. 

The actual applications of the vector dot product will be discussed after the next section.

�The Vector Projections Example
This example allows you to interact with and examine the results of vector projections. 

You will manipulate the definition of two vectors and examine the results of projecting 

these two vectors onto each other. Figure 5-8 shows a screenshot of running the EX_5_2_

VectorProjections scene from the Chapter-5-DotProducts project.
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Figure 5-8.  Running the Vector Projections example

The goals of this example are for you to

•	 Appreciate the results of normalizing one of the vectors in the dot 

product operation

•	 Experience and understand the results of projecting vectors onto 

each other

•	 Observe and interact with negative projected distances

•	 Examine the code that performs vector projection

�Examine the Scene

Take a look at the Example_5_2_VectorProjections scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are three 

objects in this scene: P0, P1, and P2. As with the previous example in this chapter, you 

will manipulate the positions of the three game objects to define two vectors, 


V1  and 


V2 ,

	


V P P1 1 0� � 	

	


V P P2 2 0� � 	

and examine the results of projecting these two vectors onto each other.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows the references to the three game 

objects: the checkered sphere P0; two stripped spheres, P1 and P2; and a drop-down 

menu, ProjectionChoice. The drop-down menu allows the following options:

•	 V1 onto V2: Project 


V1  vector onto 


V2

•	 V2 onto V1: Project 


V2  vector onto 


V1

•	 Projection off: Do not perform any projection

�Interact with the Example

Click the Play Button to run the example. Take note that by default, the 

ProjectionChoice is set to V1OntoV2, and therefore, MyScript is computing and 

displaying the results of projecting 


V1  onto 


V2 .

Observe the two vectors, 


V1  and 


V2 , that are defined by three positions. 


V1  is cyan 

and initially is above 


V2 , which is magenta. Notice a light, semi-transparent cylinder 

along the 


V2  vector that is connected with a thin black line to the head of 


V1 . The thin 

black line depicts the projection from the head of 


V1  perpendicularly onto 


V2 , where the 

line intersects 


V2 . The semi-transparent cylinder on 


V2  shows the projected length of 


V1  on 


V2 . To emphasize the fact that the result of a dot product, or the projected length 

in this case, is just a floating-point number, this value is used to scale the height of the 

black bar to the side of the checkered sphere (P0). The length of the black bar is always 

the same as the semi-transparent cylinder. This length is the result of the calculated dot 

product, and in this scenario is

	
v LengthOnV V V V1 2 1 2 1� � �

 ˆ cos�
	

Now, select P1 and manipulate its x-component to change the length of 


V1 . Notice 

that as 


V1  increases in length, the projected length on 


V2 , the semi-transparent cylinder, 

also increases in length resulting in the black bar growing taller. This observation can be 

explained by the fact that the length of 


V1  is 


V1
, and as 



V1  increases, so does 


V1 cosθ ,  

or v1LengthOnV2.

Now, select P2 and decrease the y-component value to increase the subtended angle. 

Observe that as the angle increases, the projected length of 


V1  decreases, and when 


V1  

and 


V2  become almost perpendicular, the length approaches zero. This observation 
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can be explained by the fact that as the angle θ increases, cosθ decreases, and thus 

v1LengthOnV2 also decreases. When the two are perpendicular, cosθ returns a value of 0, 

forcing 


V1 cosθ  to be 0 as well, which is why no projection is visible when 


V1  and 


V2  are 

perpendicular. Beyond 90° and to 180°, cosθ is negative and thus the dot product result 

is negative. When this occurs, you will observe the black bar turning red and growing 

in the negative y-direction. Notice how the semi-transparent projection cylinder is no 

longer on 


V2 , but extending in the opposite direction of 


V2 . There are three important 

observations to make about the value of v1LengthOnV2:

•	 It is a simple floating-point number; this number is a measurement 

of the length of the projecting vector, 


V1 , along the vector being 

projected onto, V̂2 .

•	 It is the sign of the number that indicates whether 


V1  and 


V2  are 

within 90° of each other.

•	 Its magnitude is directly proportional to the length of the projecting 

vector, 


V1 , and the cosine of the subtended angle with V̂2 .

It is important to remember the characteristics of the cosine function that its result 

decreases when the angle increases from 0° to 90°. This means, as you have experienced 

and observed, that the magnitude of v1LengthOnV2 is actually inversely proportional to 

the angle θ for 0° < θ < 90°.

Feel free to choose the V2OntoV1 option for the ProjectionChoice variable and to 

examine and verify the complementary observations for

	
v LengthOnV V V V2 1 1 2 2� � �ˆ cos

 

�
	

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables are as 

follows:

public enum ProjectionChoice {

    V1OntoV2,

    V2OntoV1,

    ProjectionOff

};
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// Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null;   // Position P0

public GameObject P1 = null;   // Position P1

public GameObject P2 = null;   // Position P2

public ProjectionChoice ProjChoice = ProjectionChoice.V1OntoV2;

#region For visualizing the vectors

#endregion

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. Take note that variables with the enumerated data 

type show up in the Hierarchy Window as options for a drop-down menu. The Start() 

function for MyScript is listed as follows:

void Start() {

    Debug.Assert(P0 != null);   // Ensure proper init

    Debug.Assert(P1 != null);

    Debug.Assert(P2 != null);

    #region For visualizing the vectors

    #endregion

}

As in all previous examples, the Debug.Assert() calls ensure proper setup regarding 

referencing the appropriate game objects via the Inspector Window. The Update() 

function is listed as follows:

void Update() {

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 v2 = P2.transform.localPosition -

                 P0.transform.localPosition;

    if ((v1.magnitude > float.Epsilon)  &&

        (v2.magnitude > float.Epsilon))   {

        // make sure v1 and v2 are not zero vectors
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        switch (ProjChoice) {

            case ProjectionChoice.V1OntoV2:

                float v1LengthOnV2 =

                      Vector3.Dot(v1, v2.normalized);

                Debug.Log("Projection Result:

                      Length of V1 along V2 = " + v1LengthOnV2);

                break;

            case ProjectionChoice.V2OntoV1:

                float v2LengthOnV1 =

                      Vector3.Dot(v1.normalized, v2);

                Debug.Log("Projection Result:

                      Length of V2 along V1 = " + v2LengthOnV1);

                break;

            default:

                Debug.Log("Projection Result: no projection,

                           dot=" + Vector3.Dot(v1, v2));

                break;

        }

    }

    #region  For visualizing the vectors

    #endregion

}

The first two lines of the Update() function compute



V P P1 1 0� � 	


V P P2 2 0� � 	

The if condition checks and ensures that the normalization operation will not be 

performed on zero vectors. When conditions are favorable, the switch statement checks 

the user’s projection choice and simply computes and prints the results of one of the 

following:

	 v LengthOnV V V1 2 1 2� �
 ˆ

	

	 v LengthOnV V V2 1 1 2� �ˆ 
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�Takeaway from This Example

This example demonstrates the results of projecting vectors onto each other. Vector 

projection is computed when one of the two operands of a dot product operation is 

normalized. Remember, the normalized vector is the one being projected onto. It is 

important to remember that projection is a simple dot product operation and the result 

is a signed floating-point number.

Relevant mathematical concepts covered include

•	 Calculating the dot product with a normalized vector can be 

interpreted as projecting the length of a vector onto another vector.

•	 The sign of the projection result indicates if the subtended angle is 

less than, when positive, or more than, when negative, 90°.

•	 The projection result is directly proportional to the length of the 

projecting vector and inversely proportional to the subtended angle 

when the angle is between 0° and 90°.

Unity tools

•	 Enum data type appears as drop-down menu options in the 

Hierarchy Window.

EXERCISE

Verify the Vector Projection Formula

When computing v1LengthOnV2 in MyScript

    float v1LengthOnV2 = Vector3.Dot(v1, v2.normalized);

verify the projection formula

	

 

V V V1 2 1� �ˆ cos�
	

and replace that line with

    float cosTheta = Vector3.Dot(v1.normalize, v2.normalized);

    float v1LengthOnV2 = v1.magnitude * cosTheta;

Verify that the runtime results are identical.
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�Representation of a Line Segment
Figure 5-9 shows two checkered sphere positions, P0 and P1, defining a vector, 



V1 ,

	


V P P1 1 0� � 	

Notice that the region bounded by P0 to P1 is a segment of a straight line. In this 

case, the position Pa, when measured along the 


V1  direction, is located before the line 

segment and position Pb is located after the line segment. In Figure 5-9, positions in 

between both P0 and P1 are described as inside the line segment and thus both Pa and Pb 

are both outside of the line segment.

As you will see in later examples, in many applications it is critical to determine if a 

position is within the bounds of a line segment defined by two positions. By referencing 

the vector defined by the two positions, that is, the 


V1  in Figure 5-9, there are two 

convenient ways to identify a line segment region. The first way is to represent a line 

segment based on parameterizing the vector 


V1

l s P sVv � � � �0 1



As illustrated in Figure 5-9, the value of s identifies a position along the P0 and P1 line 

segments. For example,

l P V Pv 0 00 1 0� � � � �


l P Vv 0 5 0 50 1. .� � � � �


midpoint of the line segment

l P V P P P Pv 1 10 1 0 1 0 1� � � � � � �� � �


Figure 5-9.  Representing a line segment with a vector
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In this way, the value of s is the portion, or percentage, of the line segment covered 

as measured from P0 toward P1 or the portion of the line segment covered along the 


V1  direction starting from P0. When there is no coverage, or when s = 0, the position 

identified is the beginning position of the line segment, P0. A complete coverage, or 

when s = 1, is the position identified as the end position of the line segment, P1. In 

general, as illustrated in Figure 5-9, a position is within the line segment boundaries 

when 0 ≤ s ≤ 1. When s < 0, for example, Pa, the position is before the beginning position, 

P0, and when s > 1, for example, Pb, the position is after the end position of the line 

segment, P1.

The second way to represent the line segment region bounded by the positions P0 

and P1 is by parameterizing the normalized 


V1 , or V̂1 ,

l t P tV� � � �0 1̂

In this case, because the vector is normalized, t is the measurement of the actual 

distance traveled from the beginning position, P0, toward the end position of the line 

segment, P1, or the distance traveled along the V̂1  direction starting at P0. For this reason, 

when t = 0, or l(0), it signifies that no distance was traveled, and thus the identified 

position is the beginning of the line segment, P0. The end position of the line segment is 

reached when t V=


1  or the length of the vector 


V1

l V P V V
 

1 0 1 1� � � � �ˆ  P V P0 1 1� �


As illustrated in Figure 5-9, the range 0 1≤ ≤t V


 identifies a position within the line 

segment boundaries. t < 0 and t V>


1  identify positions that are before the beginning 

position and after the end position of the line segment as measured along the V̂1  

direction.

The only difference between the two line segments’ representations is the 

normalization of the 


V1  vector

l s P sVv � � � �0 1



l t P tV� � � �0 1̂
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When comparing these two representations, the 0 to 1 range of the s parameter in 

lv(s) is convenient for determining if a position is within the line segment bounds and the 

distance measurement of the t parameter in l(t) is advantageous when an actual distance 

traveled is required in the computation. Note that the s and t parameters are related by a 

simple scaling factor, 


V1 ,

	
t s V� �



1 	

In practice, when serving as part of more elaborate algorithmic computations, 

line segments are seldom explicitly represented. In these situations, the lv(s) or l(t) 

parameterizations are often used interchangeably depending on the needs of the 

computations.

When represented explicitly, a line segment is often referred to as a ray. Rays are 

always parameterized as l(t) with a normalized direction vector. For this reason, l(t) is 

often referred to the vector line equation, or the ray equation, and is used often in video 

game development. For example, the Unity Ray class, https://docs.unity3d.com/

ScriptReference/Ray.html, is a straightforward implementation of the line equation.

�Inside-Outside Test of a General 1D Interval
Recall from Chapter 2 that a 1D interval is a region that is bounded by a minimum and 

maximum position along one of the major axes of the Cartesian Coordinate System. With 

the knowledge of vectors, the definition of an interval can now be relaxed. In general, a 

1D interval, or a line segment, is defined as the region bounded by two positions along a 

direction (instead of just a major axis). In this way, the line segment in Figure 5-9 can be 

described as a 1D interval with its minimum position at P0 and its maximum position at 

P1 along the 


V1  direction.

Figure 5-10 shows that the inside-outside test for an interval can be based on the 

comparison of coordinate values or the comparison of distances. Recall that given an 

interval defined along the Y-axis with min and max positions, a given y-value, v, is inside 

the interval when

	 min max≤ ≤v 	
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If the value min is subtracted from all sides of the equation,

min min min max min� � � � �v

then

0 � �� � � �� �v min max min

This inequality equation says that the inside-outside test can also be determined 

by examining the distance from the minimum and maximum positions of the interval. 

For example, a given y-value, v, is inside the Y-axis interval when the distance between 

v to the minimum position is greater than zero and less than that of the maximum to 

minimum distance. With this understanding, Figure 5-11 illustrates the case for a general 

interval, with a direction that may not be aligned with a major axis of the Cartesian 

Coordinate System, like the Y-axis of Figure 5-10.

Figure 5-10.  Inside-outside test based on coordinate values and distances
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Figure 5-11.  An interval bounded by P0 and P1, or a line segment along the 


V1  
direction

With the knowledge of vectors, you can now define a vector, 


V1 , with tail position at 

P0, to represent the interval in Figure 5-11, where



V P P1 1 0� � 	

In this way, the interval is simply the line segment

l t P tV� � � �0 1̂ 	

With the interval being described as a line segment, it should not be surprising that 

Figures 5-11 (a), (b), and (c) are similar to that of Figure 5-10. Figures 5-11 (a) and (b) 

illustrate the situation when the position to be tested, Pt, is outside of the line segment 

interval. Figure 5-11 (a) shows that, d, the symbol representing the distance between Pt 

and P0 along the 


V1  direction, is larger than the line segment’s magnitude, d V>


1 , and 

is thus beyond P1. Figure 5-11 (b) shows the case when d < 0, or when Pt is before P0. It is 

obvious that in both Figures 5-11 (a) and (b), Pt is outside of the interval. Figure 5-11 (c) 

shows that Pt is within the bounds of the interval when 0 1≤ ≤d V


. Note the similarities 

between these three cases with those of Figure 2-2, except instead of the coordinate 

value comparisons, the inside-outside conditions are restated in Figure 5-11 based on 

distance measurements.
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Figure 5-11 (d) is a more interesting case; here the position of interest, Pt, does 

not lie on the same line as the interval. You have addressed this type of situation in 

Chapter 2. You may recall that when working with intervals along the Y-axis, the x- and 

z-component values are irrelevant when it comes to determining if a position is within 

a given y-interval. For example, a given position (−3, 2, 5) is inside of the Y-axis interval 

with a bound of min =  − 1 and max = 4 because the y-component value of the position, 

2, is bounded by the values of min, −1, and max, 4. In this case, the position (−3, 2, 5) 

does not lie on the same line as the interval, the Y-axis, and only the coordinate value 

along the axis direction of interest, the Y-axis value of 2, is considered.

Figure 5-11 (d) translates the interval test knowledge from Chapter 2 using the 

vector projections you have learned. In this case, 


V1  is the vector from P0 to P1 and is the 

direction that corresponds to the Y-axis where the interval is defined. Given a position of 

interest, Pt, you can define the vector 


Vt  as



V P Pt t� � 0

then the distance, d in all cases of Figure 5-11, is simply the projected distance of 

vector 


Vt , in the 


V1 direction, or

d V Vt� �


1̂

Note that since 


Vt  is projected onto the V̂1  direction, the vector 


V1  must be 

normalized. Finally, you know that the position, Pon, the projection of the Pt position 

onto 


V1 , is t = d along the l(t) line or d distance away from P0 in the 


V1  direction

P l d P dVon � � � � �0 1̂

Note  You can refer back to the initial discussion of vector projection in 
Figure 5-7. In this case, 



Vt  is simply 


V2  and the projected length, d, is 


V2 cosθ .  
When d V>



1 , the projected length is greater than the size of the vector being 
projected onto, and when d < 0, the subtended angle, θ, is more than 90°.
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�The Line Interval Bound Example
This example demonstrates the results of the inside-outside test for a general 1D interval 

(non-axis-aligned interval). This example allows you to interactively define a general 1D 

interval and manipulate a test position to examine the results of performing the inside-

outside test. Figure 5-12 shows a screenshot of running the EX_5_3_LineIntervalBound 

scene from the Chapter-5-DotProducts project.

Figure 5-12.  Running the Line Interval Bound example

The goals of this example are for you to

•	 Experience defining and interacting with a general interval

•	 Examine the projection of a position onto a general interval

•	 Understand the implementation of an inside-outside test for the 

general interval
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�Examine the Scene

Take a look at the Example_5_3_LineIntervalBound scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are four 

objects in this scene: P0, P1, Pt, and Pon. Here, P0 and P1 are the bounds of the interval, 

Pt is the position to manipulate for the inside-outside test, and Pon represents the 

position when Pt is projected onto the interval.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that 

correspond to the game objects in the scene. For all these variables, the transform.

localPosition will be used for the manipulation of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. Observe that by default and design, this 

example is rather similar to the Interval Bounds in 1D example in Chapter 2. Select Pt 

and adjust its y-component value to move the position along the green line that defines 

the interval. Since Pt is on the green line, the projected position, Pon, is exactly the same 

as Pt. This is why you do not observe a separate projected position. Notice how the 

color of the interval changes if Pt is inside or outside of the interval. You can compare 

the interval color change to the debug messages printed in the Console Window and 

verify that proper inside-outside conditions are being computed. So far, this example has 

worked in exactly the same manner as the one from Chapter 2.

Now, adjust the x- and z-component values of Pt to move the test position away from 

the green line. Notice that as soon as Pt departs from the green line, you begin to observe 

the position Pon. You will also notice that Pon is connected to Pt by a thin black line that 

is perpendicular to the green line. Move the camera around to verify that the thin line 

connecting Pon to Pt is indeed perpendicular to the green line. You are observing the 

exact situation illustrated in Figure 5-11 (d).

Now, you can adjust P0 and P1 to manipulate the direction and length of the 1D 

interval. Observe that the perpendicular projection of Pon and the inside-outside test 

results are both consistently updated and correct for any interval you define.
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

// Positions: to define the interval, the test, and projected

public GameObject P0 = null;   // Position P0 of interval

public GameObject P1 = null;   // Position P1 of interval

public GameObject Pt = null;   // Pt: test position

public GameObject Pon = null;  // Pon: Pt projected on interval

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(P0 != null);   // Ensure proper init

    Debug.Assert(P1 != null);

    Debug.Assert(Pt != null);

    Debug.Assert(Pon != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    if (v1.magnitude > float.Epsilon) {

        Vector3 vt = Pt.transform.localPosition -

                     P0.transform.localPosition;

        Vector3 v1n = v1.normalized;

        float d = Vector3.Dot(vt, v1n);

        Pon.transform.localPosition = P0.transform.localPositio

                                      + d * v1.normalized;
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        if ((d >= 0) && (d <= v1.magnitude))

            Debug.Log("V1.mag=" + v1.magnitude +

                  "Projected Length=" + d + "  ==> Inside!");

        else

            Debug.Log("V1.mag=" + v1.magnitude +

                  "Projected Length=" + d + "  ==> Outside!");

    }

    #region  For visualizing the vectors

    #endregion

}

The first line of the Update() function computes



V P P1 1 0� �

The if condition ensures that 


V1  is not a zero vector, which cannot be normalized or 

projected onto. If 


V1  is not a zero vector, then the four statements within the if condition 

perform the following four computations:



V P Pt t� � 0

V̂ Normalize V1 1� � �

d V Vt� �


1̂

P P dVon � �0 1̂

The Debug.Log() function prints the inside-outside status of Pt according to 
0 1≤ ≤d V



. Note that although the interval is represented by the line equation

l t P tV� � � �0 1̂

this representation is implicit. There is no explicit data structure definition for a 

specific variable referencing the line equation. This implicit evaluation without explicit 

representation is rather typical in the application of the line equation.
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�Takeaway from This Example

This example links the interval discussions in Chapter 2 to the concepts of vectors. At 

this point, you know how to compute the inside-outside test of a position for a general 

interval that is not aligned with a major axis. Recall the discussion in Chapter 2, where 

in Figure 2-7, the point in a bounding area test was derived by applying the one-

dimensional interval test twice, once each to two intervals that are defined along two 

perpendicular directions. The same idea of applying the 1D interval test twice can be 

used for a general bounding area, and following the same concept once more, you can 

use the 1D interval test three times for a general bounding box. Now you can perform the 

inside-outside test of a position for a bounding box with three perpendicular intervals 

that do not need to be aligned with the major axes!

Though exciting, the non-axis-aligned bounding box has a severe limitation; the 

collision computation between these boxes is straightforward only when the three 

corresponding intervals that define the boxes are parallel. In general, given two 

bounding boxes, each with different interval directions, the collision detection between 

two such boxes is complex and non-trivial. For this reason, only axis-aligned bounding 

boxes are typically used in video game development.

Relevant mathematical concepts covered include

•	 An interval along a direction is a line segment and can be represented 

by the vector line equation.

•	 Vector projection can be applied to compute the projected distance 

of a point along a direction.

•	 The projected position along a direction can be determined for any 

given position.

EXERCISES

Verify the Axis-Aligned Interval Discussion with Vectors

Recall that the Y-axis interval is defined by its min and max values. These are actually P0 with 

(0,  min , 0) and P1 with (0,  max , 0). Now, by computing
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

V P Pt t� � 0

d V V� �
 ˆ

1

P P dVon � �0 1̂

verify that given a general test position, Pt with (xt, yt, zt), the projected position, Pon, is 

(0, yt − min, 0), showing that in this case, the x- and z-component values of Pt are indeed 

irrelevant. You can set up the values of P0 and P1 in this example to visualize the described 

results.

Verify the Pon Position

Define 


Von  to be

 

V dV Von t� �1̂

and observe that

P P Von t on� �


Modify MyScript to print out Pon values based on these equations and then compare them to 

the Pon values currently computed in the script to verify they are identical. Notice that 


Von  is 

also, Pon − Pt.

Verify that Vector Projection Is Perpendicular

Refer to the previous definition of 


Von ,



V P Pon on t� �

Since Pon is the projection of Pt onto V̂1 , it follows that 


Von  is perpendicular to 


V1 . Recall 

from the discussion of the dot product that when vectors have a subtended angle of 90°, 

and because cos90°  = 0, the dot product of two such vectors is zero. Modify MyScript to 

compute and print out the values of 
 

V Von ⋅ 1  and 


V Von ⋅ 1̂  and verify that both results are zero.
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�Line to Point Distance
Imagine an adventure game where hidden treasures are exposed when exploration 

agents are within their proximity. By now, you know how to define bounding volumes, 

for example, bounding spheres, for both the treasure and the agent objects, as well as 

support the detection of collisions between these corresponding bounding volumes. 

Figure 5-13 illustrates that for a fast-moving agent, the simple bounding sphere collision 

test may result in missed treasures.

Figure 5-13.  A case where the bounding sphere misses with fast-traveling objects

In Figure 5-13, both the police car agent and the city bus treasure are bounded by 

their corresponding bounding spheres. In this case, the police car is traveling at a high 

speed along the velocity defined by the black line. Here, in one update the car traveled 

from position P0 on the left to position P1 on the right. Notice that the bounding spheres 

of the car and the bus would have collided around Pon if the police car was traveling 

at a much slower speed. However, at the described high speed, the bounding sphere 

collisions at both the current frame and the next frame would be false, thereby missing 

the police car (agent) and the city bus (treasure) collision.

A straightforward approach to address this problem is by modeling this situation as 

a line to point distance computation. In the case of Figure 5-13, the problem is to find 

the closest distance between the line segment defined by P0 and P1 and the point located 

at Pt. This distance would be used to compare against the radii of the bounding spheres 

of the agent and the treasure to determine if a collision should occur during the agent’s 

motion. If this distance is less than the combined radii, then a collision should occur.

From basic geometry, you know that the closest distance between a line segment 

and a position should be measured along a direction that is perpendicular from the line 

to the position. Now, you also know that a vector projection projects the head of a vector 
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perpendicularly onto another given vector. In the case of Figure 5-13, these observations 

can be translated into, defining two vectors,



V P P1 1 0� �



V P Pt t� � 0

Then you can project 


Vt  onto 


V1  to compute Pon, the projection of Pt on the vector 


V1 .  

In this case, you know the vector, 


Von ,



V P Pon on t� �

must be perpendicular to 


V1 , and thus the distance between Pt and Pon, or 


Von , is 

the closest distance between the line segment defined by P0, P1 and the position Pt. This 

distance would be compared with the combined radii of the bounding spheres of the 

agent and treasure for collision determination.

It is encouraging that this problem and its solution are familiar to those of the line 

segment and the general interval inside-outside test. Based on the previous discussions, 

you know that

d V Vt� �


1̂

P P dVon � �0 1̂

You can observe that when the position Pt is within the bounds of the line segment 

end points, or when 0 1≤ ≤d V


, the closest distance between the line segment and the 

point is from Pt to Pon, or the magnitude of 


Von  or 


Von .

Figures 5-14 (a) and (b) show that Pt can also be outside of the line interval. In these 

cases, the closest distance measurements are actually between Pt and the end points 

of the line segment. Figure 5-14 (a) illustrates that when d < 0, Pt is located at a position 

before the line segment and thus the closest distance is actually the distance between Pt 

and P0, or simply the magnitude 


Vt  or 


Vt . Figure 5-14 (b) illustrates that when d V>


1 ,  

Pt is located at a position after the line segment and thus the closest distance is the 

distance between Pt and P1, or the magnitude of P Pt �� �1
� ������

 or P Pt − 1

� ������
. Figure 5-14 (c) is 

the same case as Figure 5-13, when 0 1≤ ≤d V


, and the closest distance is the magnitude 

of 


Von  or 


Von .
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Figure 5-14.  The three conditions of line to point distance calculation

�The Line to Point Distance Example
This example demonstrates the results of the line to point distance computation. This 

example allows you to interactively define the line segment, manipulate the position of, 

and examine the results from the line to point distance computation. Figure 5-15 shows 

a screenshot of running the EX_5_4_LineToPointDistance scene from the Chapter-5-

DotProducts project.
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Figure 5-15.  Running the Line to Point Distance example

The goals of this example are for you to

•	 Experience working with a straightforward application of the vector 

dot product concepts

•	 Interact with and understand the results of line to point distance 

computation

•	 Examine the implementation of line to point distance computation

�Examine the Scene

Take a look at the Example_5_4_LineToPointDistance scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are exact 

same four objects in this scene as in the previous example: P0, P1, Pt, and Pon. Here, P0 

and P1 are the checkered spheres that identify the line segment. Pt is the white sphere 

and is the position (the point) used for the line to point distance computation. Finally, 

Pon, the red sphere, is the position where Pt is projected onto the line.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows four variables with names that 

correspond to the game objects in the scene. For all these variables, the transform.

localPosition will be used for the manipulation of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. Observe that P0 and P1 define the green vector 

direction and a line segment. There is a thin black line connecting Pt, the white sphere, 

to the projected position, Pon, the red sphere, on the line segment. Select Pt and adjust 

its y-component value. Try to move Pt away from the line, for example, by increasing 

the y-component value, and observe the red sphere increase in size. If you move Pt 

closer instead, you will observe the red sphere shrink. The size of the red sphere, Pon, is 

directly proportional to the distance between Pt and the line segment. The results of this 

computation can also be observed in the Console Window.

Now, change the x-component value of Pt to observe the corresponding movement 

of the projection position, Pon. Notice that when Pt is within the bounds of the line 

segment, the thin black line connecting Pt to Pon is always perpendicular to the line 

segment, indicating the projection of Pt onto the line segment. When Pt is moved to 

outside of the line segment, the thin black line becomes connected to the closest end 

point of the line segment, either P0 or P1. This signifies that the closest distance in these 

situations is actually the measurement to one of the end points of the line segment.

You can now select and manipulate P0 and P1 to verify that the distance computation 

is indeed correct for any line segment, including a line segment defined by the zero 

vector, which occurs when P0 and P1 are located at the same position.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

// Positions: to define the interval, the test, and projected

public GameObject P0 = null;  // Position P0

public GameObject P1 = null;  // Position P1

public GameObject Pt = null;  // For distance computation

public GameObject Pon = null; // closest point on line
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#region For visualizing the line

#endregion

void Start() {

    Debug.Assert(P0 != null);   // Ensure proper init

    Debug.Assert(P1 != null);

    Debug.Assert(Pt != null);

    #region For visualizing the lines

    #endregion

}

All the public variables for MyScript have been discussed when analyzing 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    float distance = 0;  // closest distance

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    float v1Len = v1.magnitude;

    if (v1Len > float.Epsilon) {

        Vector3 vt = Pt.transform.localPosition -

                     P0.transform.localPosition;

        Vector3 v1n = (1f / v1Len) * v1; // <<-- what is this?

        float d = Vector3.Dot(vt, v1n);

        if (d < 0) {

            Pon.transform.localPosition =

                               P0.transform.localPosition;

            distance = vt.magnitude;

        } else if (d > v1Len) {

            Pon.transform.localPosition =

                               P1.transform.localPosition;

            distance = (Pt.transform.localPosition -

                        P1.transform.localPosition).magnitude;

        } else {
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            Pon.transform.localPosition =

                          P0.transform.localPosition + d * v1n;

            Vector3 von = Pon.transform.localPosition -

                          Pt.transform.localPosition;

            distance = von.magnitude;

        }

        float s = distance * kScaleFactor;

        Pon.transform.localScale = new Vector3(s, s, s);

        Debug.Log("v1Len=" + v1Len + " d=" + d +

                  " Distance=" + distance);

    }

    #region  For visualizing the lines

    #endregion

}

The first two lines of the Update() function compute

	


V P P1 1 0� � 	

v Len V1 1=


The if condition checks for and avoids performing the normalization operation on a 

zero vector. When the condition is favorable, the following are computed:

	


V P Pt t� � 0 	

V̂
v Len

V1 1

1

1
=



 		  Note: normalize


V1

	 d V Vt� �


1̂ 	

With Pon being the closet point on the line segment and the position being distance 

away from Pt, notice how the computation is governed by the values of the projected 

length, d:
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•	 When d < 0, the condition is as illustrated in Figure 5-14 (a), and

P Pon = 0

distance Vt=


•	 When d > v1Len, or d V>


1 , the condition is as illustrated in 

Figure 5-14 (b), and

P Pon = 1

distance P Pt� � 1

� ��������

•	 The final condition, when 0 1≤ ≤d V


, is as illustrated in Figure 5-14 

(c), and

P P dVon � �0 1̂



V P Pon on t� �

distance Von=


The last three lines of code scale the red sphere that represents Pon in proportion to 

the value of distance and outputs the computation results to the Console Window.

�Takeaway from This Example

This example demonstrates a solution to a fundamental problem in video games and 

interactive computer graphics. In video games, the closest distance and intersection 

computations are some of the most straightforward solutions to the problem of missed 

collisions from fast-moving objects. In graphical interactions, many basic operations 

depend on the results of line to point distance computation. For example, in a drawing 

editor, clicking the mouse button to select a line object is typically implemented as 

determining if the clicked position is sufficiently close to the line object, as clicking 

perfectly on a one-pixel wide line can be challenging and frustrating!

The solution presented in this example to these types of problems is based on the 

concepts of vector projection and builds directly on the knowledge gained from the line 

equation and the general interval inside-outside test discussions. These concepts are 
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some of the most important topics in interactive graphical applications and are widely 

applied in video game development.

Relevant mathematical concepts covered include

•	 The distance between a line segment and a point, Pt, can be solved by 

finding the position, Pon, along the line segment that is closest to Pt, 

and computing the distance between Pon and Pt.

•	 When Pt is outside of the line segment, Pon is located at one of the line 

segment end points.

•	 When Pt is inside the line segment, Pon is the projection of Pt onto the 

line segment.

EXERCISE

Experience Solving the Missing Collision Problem

Modify MyScript to continuously send a fast-moving agent from P0 to P1, for 

example, traveling at a speed of 20 units per second. You can refer to the EX_4_3_

VelocityAndAiming scene of Chapter-4-Vectors for a sample approach of how to 

implement this functionality. In your Update() function, compute the collision between the 

agent and the Pt sphere. Notice even when the P0 to P1 line segment passes right through 

the Pt sphere, you can fail to detect the collision between the agent and the Pt sphere. This 

is because the agent is simply moving too fast for the spheres to overlap. Verify that you can 

resolve this problem with the line to point distance computation.

�Line to Line Distance
Imagine in another adventure game, you want to know if the path of the explorer will 

come too close to a monster pathway. This is a simple case of determining the distance 

between two line segments. This problem has a simple and elegant solution that allows 

you to practice the vector algebra learned. Figure 5-16 illustrates the general case of two 

line segments, where the problem is how to compute the perpendicular, or the shortest, 

distance between the lines.
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Figure 5-16.  Distance between two line segments

The problem of finding the closest, or the perpendicular, distance between two 

given lines is similar to the line to point distance problem. The solution boils down to 

locating a point on each line where when connected are perpendicular to both of the two 

given lines. This description is depicted in Figure 5-16, where the two lines are defined 

by positions P1 and P2 and Pa and Pb, respectively. In this figure, the position Pd1 is d1 

distance away from P1 and Pda is da distance away from Pa where the line segment from 

Pd1 to Pda is perpendicular to both of the other two lines. In this way, the shortest distance 

between the lines is the length of the vector, Pd1 − Pda. In order to find Pd1 and Pda, the 

task is to find the distances d1 and da. You can begin deriving the solution by defining



V P P1 2 1� �


V P Pa b a� �


V P Pp d da� �1

The descriptions of Pd1 and Pda can be formulated as two separate line segments

P P d Vd1 1 1 1� � ˆ

P P d Vda a a a� � ˆ

Since 


Vp  is perpendicular to both 


V1  and 


Va , it must be true that both of the 

following are true:

	
V̂ Vp1 0� �



	

	
V̂ Va p� �



0
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Now, if you substitute Pd1 and Pda into 


Vp , these two equations become

ˆ ˆ ˆ ˆ ˆV V V P P V P d V P d Vp d da a a a1 1 1 1 1 1 1 0� � � �� � � � � � �� � �

	

ˆ ˆ ˆ ˆ ˆV V V P P V P d V P d Va p a d da a a a a� � � �� � � � � � �� � �

1 1 1 1 0
	

Note that these are two simultaneous equations with two unknowns, d1 and da. 

Now, examine the first of the two equations, by following the distributive property of dot 

product over vector operations, collecting the terms with V̂1 , and recognizing ˆ ˆV V1 1⋅  is 1.0

ˆ ˆV V V P Pp d da1 1 1� � � �� �


Substitute the definitions of Pd1 and Pda

� � � � �� �ˆ ˆ ˆV P d V P d Va a a1 1 1 1

Apply the distributive property of dot product for vector

� � � � � � � �ˆ ˆ ˆ ˆ ˆ ˆV P V d V V P V d Va a a1 1 1 1 1 1 1

Collect the P1 and Pa terms

� � �� � � � � �ˆ ˆ ˆ ˆ ˆV P P V d V V d Va a a1 1 1 1 1 1

Apply distributive property over factors d1 and da

� � �� � � �� � � �� �ˆ ˆ ˆ ˆ ˆV P P d V V d V Va a a1 1 1 1 1 1

Recognize the fact that V̂1  dot V̂1  is equal to 1

� � �� � � � �� �ˆ ˆ ˆV P P d d V Va a a1 1 1 1
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Now, let

d V Va� �ˆ ˆ
1



V P Pa a1 1� �

Then

ˆ ˆ ˆV V V V d d dp a a1 1 1 1 0� � � � � �


Following similar simplification steps, left as an exercise, you can show that

ˆ ˆ ˆV V V V d d da p a a a� � � � � � �


1 1 0

In this way, the simultaneous equations become

ˆ ˆV V d d da a1 1 1 0� � � �

� � � � �ˆ ˆV V d d da a a1 1 0

Recall that dot product results are floating-point numbers; therefore, ˆ ˆV Va1 1⋅  

and ˆ ˆV Va a⋅ 1  return simple floating-point numbers. These equations are thus simple 

algebraic equations that are independent from vector operations, and once again, their 

simplification and solution derivation are left as an exercise. You can show that the 

solution to the simultaneous equations is

d
V V d V V

d

a a a

1

1 1 1

21
�
� �� � � �� �

�

ˆ ˆ 

	

d
V V d V V

da

a a a
�

�� � � �� �
�

ˆ ˆ 

1 1 1

21 	
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In this case, to allow easier interpretation of text output, instead of distances you can 

compute the portion of line segment covered or

d
d

V
1

1

1

� �


d
d

V
a

a

a

� �


and

P P d Vd1 1 1 1� � � 

P P d Vda a a a� � � 

where you know Pd1 and Pda are within the bounds of their respective line segments 

only when d1
′  and da

′  are both within the range of 0 to 1. Now, the closest distance 

between the two lines is the distance between Pd1 and Pda, or P Pd da1 −
� ���������

. Note that this is 

also the length of the vector 


Vp , or 


Vp .

�The Line to Line Distance Example
This example demonstrates the results of line to line distance computation. This 

example allows you to interactively define the two line segments and examine the results 

from the line to line distance computation. Figure 5-17 shows a screenshot of running 

the EX_5_5_LineToLineDistance scene from the Chapter-5-DotProducts project.
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Figure 5-17.  Running the Line to Line Distance example

The goals of this example are for you to

•	 Experience deriving and simplifying non-trivial vector expressions

•	 Verify solutions to vector equations with a straightforward 

implementation

•	 Examine the implementation of line to line distance computation

�Examine the Scene

Take a look at the Example_5_5_LineToLineDistance scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are three 

sets of objects defined for the visualization of the two line segments: the two checkered 

spheres P1 and P2, the two stripped spheres Pa and Pb, and the two solid color spheres 

Pd_1 and Pd_a. The transform.localPosition of P1, P2 and Pa, Pb defines the bounding 

positions of the two line segments. The transform.localPosition of Pd_1 is a position 

along the line defined by P1 to P2 and Pd_a a position along the Pa to Pb line where the 

distance from Pd_1 to Pd_a is the closest distance between the two lines.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows six variables with names that 

correspond to the game objects in the scene. These variables are set up to reference the 

game objects with the corresponding names in the scene.

�Interact with the Example

Click the Play Button to run the example. Once running, you will observe two line 

segments. The first is red and is defined by a pair of checkered spheres, P1 and P2. The 

second line segment is blue and is defined by a pair of stripped spheres, Pa and Pb. Along 

each line segment is a semi-transparent sphere, Pd_1 on the red line segment and Pd_a 

on the blue line segment. Notice that the two spheres are connected by a thin black line 

that is perpendicular to both the red and the blue line segments. You are observing the 

solution to the line to line distance computation.

Now, rotate the Scene View camera to verify that the thin black line is indeed 

perpendicular to both the red and blue line segments. Feel free to manipulate any of the 

line segment end points to verify the computation results. Note that when the locations 

of Pd_1 or Pd_a are outside of their respective line segments, the semi-transparent 

spheres will turn opaque. You can also observe the text output in the Console Window. 

There, the values for d1 and da are in the range between 0 and 1, assisting your 

verification of the corresponding position’s inside-outside status on their respective line 

segment.

Lastly, set both of the line segments to be along the same direction, for example, set 

P1 and P2 to the values (0, 0, 0) and (5, 0, 0) and Pa and Pb to (0, 2, 0) and (5, 2, 0). Once 

done, notice that the results of both Pd_1 and Pd_a are no longer visualized. You can 

verify in the Console Window that the line segments are in the exact same direction. This 

is a special case not handled in the derived solution. One of the exercises at the end of 

this example will tell you what this special case is and allow you to practice handling this 

special case.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:
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public GameObject P1, P2;  // define the line V1

public GameObject Pa, Pb;  // define the line Va

public GameObject Pd_1;    // point on V1 closest to Va

public GameObject Pd_a;    // point on va closest to V1

#region For visualizing the line

#endregion

void Start() {

    Debug.Assert(P1 != null);   // Ensure proper init

    Debug.Assert(P2 != null);

    Debug.Assert(Pd_1 != null);

    Debug.Assert(Pa != null);

    Debug.Assert(Pb != null);

    Debug.Assert(Pd_a != null);

    #region For visualizing the line

    #endregion

}

All the public variables for MyScript have been discussed when analyzing 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    Vector3 v1 = P2.transform.localPosition -

                 P1.transform.localPosition;

    Vector3 va = Pb.transform.localPosition -

                 Pa.transform.localPosition;

    if ((v1.magnitude < float.Epsilon) ||

        (va.magnitude < float.Epsilon))

        return;  // only works with well defined line segments

    Vector3 va1 = P1.transform.localPosition -

                  Pa.transform.localPosition;

    Vector3 v1n = v1.normalized;

    Vector3 van = va.normalized;
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    float d = Vector3.Dot(v1n, van);

    bool almostParallel = (1f - Mathf.Abs(d) < float.Epsilon);

    float d1 = 0f, da = 0f;

    if (!almostParallel) {  // two lines are not parallel

        float dot1A1 = Vector3.Dot(v1n, va1);

        float dotAA1 = Vector3.Dot(van, va1);

        d1 = (-dot1A1 + d * dotAA1) / (1 - (d * d));

        da = (dotAA1 - d * dot1A1) / (1 - (d * d));

        d1 /= v1.magnitude;

        da /= va.magnitude;

        Pd_1.transform.localPosition =

                       P1.transform.localPosition + d1 * v1;

        Pd_a.transform.localPosition =

                       Pa.transform.localPosition + da * va;

        float dist = (Pd_1.transform.localPosition -

                      Pd_a.transform.localPosition).magnitude;

        Debug.Log("d1=" +d1+ " da=" +da+ " Distance=" +  dist);

    } else {

        Debug.Log("Lines are parallel, not handled");

    }

    #region  For visualizing the line

    #endregion

}

The first two lines of the Update() function compute

	


V P P1 2 1� � 	

	


V P Pa b a� � 	

The code then ensures that both are not zero vectors and continues to compute

	


V P Pa a1 1� � 	
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V̂1  and V̂a

d V Va� �ˆ ˆ
1

Recall that the dot product of two normalized vectors is the cosine of the subtended 

angle and that the cosine of 0° or 180° is equal to 1 and −1, respectively. For this 

reason, the almostParallel variable is true when V̂1  and V̂a  are almost parallel. In the 

implementation, the computation only proceeds when the two directions are not almost 

parallel. This check is necessary because the solutions for both d1 and da involve a 

division by 1 − d2 and when the two directions are almost parallel, d ≈ 1.0, which means 

d1 and da will be divided by 0, thus causing neither d1 nor da to be defined. When the two 

lines are not parallel, the code computes

dot A V Va1 1 1 1� �ˆ 

	

dotAA V Va a1 1� �ˆ 

	

and

d
dot A d dotAA

d1 2

1 1 1

1
�
� � �

�

	
d

dotAA d dot A

da �
� �
�

1 1 1

1 2
	

where notice that both d1 and da are scaled to values between 0 and 1 for positions 

that are inside the respective line segments, and closest positions are computed 

accordingly,

P P d Vd1 1 1 1� �


	

P P d Vda a a a� �


	

And lastly, the closest distance between the two lines is simply the distance between 

the closest positions

dist P Pd da� �1

� ����������
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�Takeaway from This Example

Though the presented solution of the line to line distance is interesting, it is incomplete. 

First of all, the solution does not address the situation when the line segments are 

parallel. Secondly, the solution does not address the situations when the closest points 

are outside of the given line segments, that is, when either Pd1 or Pda or both are outside 

of their corresponding line segments. As in the case of line to point distance, when the 

closest position is outside of the line segment, the closest distance should be measured 

to the corresponding end position of the line segment. Although not a complete solution, 

this example does demonstrate and allow you to practice simplifying vector equations 

based on the learned vector algebra and serves as a way to illustrate an implementation 

of a typical solution to vector equations.

Through working with this example, you have observed that the actual vector 

equations and their solution process may be complex and involved. However, thankfully, 

as you have also witnessed, the derived solutions are typically elegant and can be 

implemented in a straightforward fashion with a relatively small number of steps. To 

ensure proper implementation, it is essential to maintain precise drawings and notes 

with symbols that correspond to variable names. Lastly, and very importantly, attention 

must be maintained when working with normalized vs. non-normalized vectors.

Relevant mathematical concepts covered include

•	 Vector algebra, or the rules governing vector operations, are 

invaluable in simplifying non-trivial vector equations.

Relevant observations on implementation include

•	 It is vital to understand and check for situations when mathematical 

expressions are undefined, for example, normalization of zero 

vectors, or divisions by 0.

•	 It is often possible to relate mathematical expressions to real-world 

geometric orientations. For example, you know that the dot product, 
ˆ ˆV Va1 ⋅ , computes the cosine of the angle subtended by two vectors; 

therefore, a value of 1 or −1 means that the vectors are parallel. It 

is the responsibility of the software developer to understand these 

implications and ensure all appropriate conditions are considered 

and supported.
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EXERCISES

Verify the Solutions for d1 and da

The derived simultaneous equations for line to line distance are

	
ˆ ˆ ˆV P d V P d Va a a1 1 1 1 0� � � �� � �

	

	
ˆ ˆ ˆV P d V P d Va a a a� � � �� � �1 1 1 0

	

You know



V P P1 2 1� �


V P Pa b a� �


V P Pa a1 1� �

d V Va� �ˆ ˆ
1

Now, show that

d
V V d V V

d

a a a

1

1 1 1

21
�
� �� � � �� �

�

ˆ ˆ 

	

d
V V d V V

da

a a a
�

�� � � �� �
�

ˆ ˆ 

1 1 1

21 	

In your solution derivation process, make sure to pay special attention to normalized and un-

normalized vectors.

Handling Parallel Lines

Recall that the solutions for d1 and da are derived based on the observation and simplification 

of the simultaneous equations

V̂ Vp1 0� �


	

V̂ Va p� �


0
	

Chapter 5  Vector Dot Products



230

Now, if the two line segments are parallel, then, ˆ ˆV Va1 =  and thus there is only one equation 

with two unknowns. For this reason, the derived solution is valid only when ˆ ˆV Va1 ≠  or when 

the two lines are not parallel.

In general, the shortest distance between two parallel lines can be determined by computing 

the shortest distance between one of the lines to the end point on the other line. Now, modify 

MyScript to support distance computation between parallel lines.

Notice your solution assumes both line segments are infinitely long where the closest 

positions on each line can be outside of their respective line segments. Once again, 

this is not a complete solution to closest distance between the two finite length line 

segments. Imagine the explorer and the monster pathways when the closest positions 

are outside of the line segments, the distance computed would be based on positions 

that the explorer or the monsters will not move to. The general solution is similar to that 

of the line to point distance when the closest position is outside, it should be clamp to 

the corresponding end point.

�Summary
This chapter continues with the exploration of vectors by introducing the vector dot 

product, a tool for analyzing relationships between two vectors. Since a vector is defined 

by a size and a direction, the tool for analyzing the relationships between two vectors 

reports on the relative directions and sizes of these vectors.

The definition of the vector dot product is straightforward, the sum of the products 

of the corresponding components of the two vectors, and the result is a simple signed 

floating-point number. There are four ways to compute the dot product between 

two vectors and each offers a unique geometric insight into the resulting floating-

point number.

The first way of computing a dot product is by operating on two non-normalized 

vectors. The resulting floating-point number is the product of the sizes of the two vectors 

and the cosine of their subtended angle. While the least useful, this floating-point 

number does provide slight insight into the subtended angle between the two vectors. If 

the number is positive, then the subtended angle is less than 90°; otherwise, the angle is 

between 90° and 180°.
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The second way of computing a dot product is by operating on two normalized 

vectors. In this case, the resulting floating-point number is simply the cosine of the 

subtended angle. This result is invaluable when you need to determine how much two 

directions differ. In fact, checking the dot product results of two normalized vectors 

against approximately 0 or 1 for when the two vectors are almost perpendicular or 

parallel is one of the most frequently encounter test cases in video game development.

The third and fourth way of computing a dot product is to ensure only one of the 

operands is normalized. In this scenario, you are computing the projected length of 

the non-normalized vector along the direction of the normalized vector. These forms 

of computing the dot product have the broadest application. This is because projected 

sizes, as you have experience with line to point and line to line distance computation, 

are the basis for computing distances and, as you will learn in the next chapter, for 

computing intersections.

You have learned about vectors, gained knowledge on how to analyze the 

relationships between vectors, and applied these concepts in solving some interesting 

and non-trivial geometric problems. In the next chapter, you will learn about the vector 

cross product, a tool to relate two vectors to the space that contains those vectors. But 

before you continue, here are the summaries of the vector dot product definition, rules, 

and straightforward applications.

�Vector Dot Product Definition and Implications

Dot Product Definition Remark

 

V V x x y y z z1 2 1 2 1 2 1 2� � � � Definition of the dot product, also referred to as the inner 

product

   

V V V V1 2 1 2� � cos� Geometric interpretation of the dot product definition, θ is 

the angle subtended by the two vectors

  

V V V1 1 1

2� � Dot product of a vector with itself is the squared of its 

magnitude


V ZeroVector ZeroVector1 � � Dot product with the zero vector is the zero vector
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�Interpreting the Dot Product Results

Dot Product Geometric Interpretations

Direction: ˆ ˆ cosV V1 2� � � When both operands are normalized, the result of dot 

product is the cosine of the subtended angle

Projected size: ˆ cosV V V1 2 2� �
 

� Projected size of 


V2  (the un-normalized vector) along the 

V̂1  (the normalized vector) direction

Projected size: 
 

V V V1 2 1� �ˆ cos� Projected size of 


V1  along the V̂2  direction

�Insights into the Subtended Angle

Dot Product Results The Angle θ Conclusions

ˆ ˆ cosV V1 2 1� � �� θ = 0° The vectors are in the exact same direction, 
ˆ ˆV V1 2==

ˆ ˆ cosV V1 2 0� � �� θ = 90° The vector directions are perpendicular to each other

ˆ ˆ cosV V1 2 0� � �� θ < 90° The vectors are pointing along similar directions

ˆ ˆ cosV V1 2 0� � �� θ > 90° The vectors are pointing along similar, but opposite 

directions

ˆ ˆ cosV V1 2 1� � � �� θ = 180° The vectors are pointing in the exact opposite 

direction ˆ ˆV V1 2� �
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�The Line Equations
The line segment bounded by the given two positions, P0 and P1, can be expressed as 

either of the following:

lv s P sV� � � �0 1



l t P tV� � � �0 1̂

where

	


V P P1 1 0� � 	

and the values of the parameters s and t provide the following insights into a position 

on the line segment.

Values of s Values of t Position Identified

s < 0 t < 0 Measured along the 


V1  direction, a position before the 

beginning position, P0

0 ≤ s ≤ 1 0 1≤ ≤t V
 A position within the line segment

s > 1 t V>


1 Measured along the 


V1  direction, a position after the end 

position, P1
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CHAPTER 6

Vector Cross Products 
and 2D Planes
After completing this chapter, you will be able to

•	 Differentiate between the Left-Handed and Right-Handed 3D 

Coordinate System

•	 Discuss the vector cross product definition and the resulting vector 

direction and magnitude

•	 Describe the geometric interpretation of the vector cross product

•	 Relate the 2D plane equation to the vector plane equation and its 

parameters

•	 Interpret the geometric implications of the vector plane equation

•	 Relate the cross product result to 2D plane equations

•	 Derive an axis frame when given two non-parallel vectors

•	 Apply the vector concepts learned to solve point to plane distance, 

point to plane projection, line to plane intersection, and reflecting a 

vector across a plane

�Introduction
In Chapter 4, you learned about vectors—that the relationship between two positions 

can be defined by a direction and a distance. Vectors and their rules of operation 

enabled you to precisely describe and analyze object motions. In Chapter 5, you 

learned about vector dot products—that the relationship between two vectors can be 
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characterized by their subtended angle and projected sizes. The vector dot product 

and its rules of operation allowed you to accurately represent and analyze arbitrary line 

segments, including distances between these line segments and other objects. In this 

chapter, you will learn about how the vector cross product can be used to relate two 

vectors to the space that defines these vectors and some applications of these concepts.

The result of the vector cross product is a new direction. Interestingly, and as you 

will learn, this new direction characterizes the space that defines the two vectors as a 

2D plane, that is, this new direction defines a plane that both vectors exist on. This new 

knowledge enables a convenient representation of and the ability to analyze arbitrary 2D 

planes, including computing distances to, projections onto, and line intersections with 

any 2D plane. Although these are not direct applications, they are topics that become 

more comprehensible because of insights gained from the understanding of the vector 

cross product.

In video games, it is often necessary to process and analyze the relationships 

between planes and objects or the motion of objects. For example, in a city building 

game with a top-down view perspective, when a meteoroid is fast approaching the 

player’s city, you may want to project the shadow of the meteoroid as it travels across the 

city as well as highlight its impact zone to warn players of the impending destruction. 

Additionally, immediately after the impact, you may want the meteoroid to bounce or 

slide across the ground. The shadow indicator can be accomplished by projecting the 

meteoroid onto the city plane, the reflection direction for the bounce is the velocity 

line reflecting off the ground plane, and the sliding direction would be the reflection 

direction projected onto the ground plane. As you can see from this brief example, 

the ability to represent and work with 2D planes is indeed fundamental to video game 

development.

The chapter begins by introducing conventions for representing a 3D coordinate 

system so that you can analyze three perpendicular vectors with consistency. The details 

of the cross products are then described. The application of the cross product results is 

then showcased in the solution to the inside-outside test of a general 2D region. At this 

point the chapter takes a slight change in perspective; instead of analyzing problems and 

solutions based on the results of the cross product, the chapter focuses on applying the 

insights gained from the vector cross product in the interpretation of the vector plane 

equation. The remaining of this chapter examines some of the important problems in 

video game development when working with 2D planes.
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�3D Coordinate System Convention
Since the analysis of the vector cross product involves understanding the direction 

of vectors in 3D space, you need to understand the conventions of representing a 3D 

coordinate system. In 2D space, when referencing the Cartesian Coordinate System, it is 

a generally agreed upon convention that the origin is on the lower left, the X-axis points 

toward the right, and the Y-axis points upward. Note that this is a convention and not 

a mathematical rule or any kind of property. People simply agree to follow these sets 

of rules.

Unfortunately, there are two sets of generally accepted conventions for 3D space. 

Although you have been working with 3D vectors, until now, there has not been the 

need to focus on the specific directions of the major axes. As you will see, unlike the 

dot product, the vector cross product result is not a simple floating-point number, but 

a vector that is perpendicular to both of the operand vectors. In this case, it is critical 

and essential to understand, differentiate, and follow one of the 3D coordinate system 

conventions. Figure 6-1 illustrates the two different conventions in describing a 3D 

coordinate system, either according to the left or the right hand. These are referred to as 

the Left- or Right-Handed Coordinate System.

Figure 6-1.  The directions of the major axes in the Left- and Right-Handed 
Coordinate System

In both the Left- and Right-Handed Coordinate Systems, the first three fingers 

are used to represent and point in the directions of the X-, Y-, and Z-axes. The thumb 

represents and points in the direction of the X-axis, the index finger the Y-axis, and the 
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middle finger the Z-axis. The left and right images of Figure 6-1 show that under this 

convention, while the X- and Y-axes still follow the right- and upward directions, the 

Z-axis directions are opposite. Note that the fingers of the left- and right-hand point 

toward the directions of the major axes and do not define the location of the axes.

Both the Left- and Right-Handed conventions are accepted in general by the video 

game and interactive graphics community. These are conventions for analyzing and 

discussing directions. It is critical to know the reference, the Left- or Right-Handed 

system, being used and essential to be consistent in following the selected convention. 

Fortunately, once selected and followed consistently, there are no other consequences 

or special cases in any of the discussions concerning the fundamentals of vector math. 

It is simply important to know which convention is used and to be sure to follow that 

convention consistently throughout.

�Unity Follows the Left-Handed Coordinate System
Figure 6-2 shows a screenshot of the Unity Editor Scene View where the top-right 

coordinate icon is zoomed in upon and shown on the right of the figure. You can verify 

with your left hand that with your thumb stretching out along the red X-axis, your index 

finger following the green Y-axis, and your middle finger in the direction of the blue 

Z-axis, Unity follows the Left-Handed Coordinate System convention. Therefore, this 

is the convention that will be followed in this book. Once again, all the concepts being 

discussed are applicable to either 3D coordinate system conventions, as long as you 

follow the selected convention and maintained consistency.

Figure 6-2.  The Unity Editor Scene View Window coordinate icon
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�Vector Cross Product: The Perpendicular Direction
Recall in the previous chapter where you verified that a 2D plane can always be derived 

to draw two non-parallel vectors. This 2D plane is the plane that represents the space 

or area that defines or contains these two vectors. Through this chapter, you will learn 

that 2D planes are characterized by a vector that is perpendicular to it and that this 

perpendicular vector is the result of the cross product between two non-parallel vectors.

Figure 6-3 shows that, in general, there are two directions that are perpendicular 

to any two non-parallel vectors 


V1  and 


V2 . Once again, as discussed previously, these 

two vectors are depicted at the same tail location for convenient visual analysis. It is 

important to reiterate that the vector definition is independent of positions and the 

following discussions are valid even when the two vectors do not share the same tail 

position.

Figure 6-3.  Vectors that are perpendicular to the two non-parallel 
vectors, 



V1  and 


V2

Figure 6-3 shows a left-hand thumb pointing in a direction where the index to little 

fingers are aligned with the direction of the first vector, 


V1 , and then curl toward the 

second vector, 


V2 . The left thumb direction is the one that is perpendicular to the plane 

that defines 


V1  and 


V2 . Of course, the direction opposite to the left thumb is the second 

direction that is perpendicular to the plane that defines these two vectors.
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Note T he left hand is used for direction resolution because this book follows 
Unity’s choice of Left-Handed Coordinate System. A Right-Handed Coordinate 
System would follow the same finger curling process as Figure 6-3 with the right 
hand and identify a set of directions that seem opposite to that of Figure 6-3. 
Please do not be concerned. Remember that the left- and right-handed 
conventions also affect the directions of the major axes. Once again, in the end, 
both conventions, as long as followed consistently throughout, will produce 
identical results.

The vector cross product computes the two new directions, along or opposite to 

the thumb direction in Figure 6-3. These are the two directions that are perpendicular 

to both of the vectors, 


V1  and 


V2 .  This chapter will lead you on a journey to examine, 

understand, and relate these results to 2D planes in 3D space. After which, the problems 

and solutions associated with 2D planes that are relevant to video game development 

will be analyzed.

�Definition of Vector Cross Product
Given two vectors in 3D space



V x y z1 1 1 1= ( ), , 	



V x y z2 2 2 2= ( ), , 	

the cross product, or vector cross product, between the two vectors is defined as

 

V V y z z y z x x z x y y x1 2 1 2 1 2 1 2 1 2 1 2 1 2× = − − −( , , )

Notice that

•	 Symbol: The symbol for the cross product operation, “×”, is literally a 

“cross”.

•	 Operands: The operation expects two vector operands.

•	 Result: The result of the operation is a vector with x-, y-, and 

z-component values.
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When compared to the other vector operations you have learned, the cross 

product also expects two vector operands. Additionally, similar to vector addition and 

subtraction, and in contrast to the vector dot product, the result of the vector cross 

product is a vector.

Unlike vector addition and subtraction, the vector cross product result, the x-, y-, and 

z-component values are not straightforward functions of its operands’ corresponding 

components. Examine these values carefully and you will notice a pattern. For example, 

the x-component result, y1z2 − z1y2, is the subtraction of the multiplication of operand 

component values other than their x-components. This pattern is consistent for each of 

the y- and z-components. Though interesting and important in general, in the context of 

video game development, these observations do not lead to direct applications.

The left, center, and right tables in Figure 6-4 illustrate an approach that may help 

you remember the cross product formula. Each of the tables has an x-, y-, and z-heading 

with two rows consisting of the corresponding component values for the two operand 

vectors. The left table shows that the x-component cross product result is computed by 

ignoring the grayed-out x-component values, following the two arrows, and calculating 

and subtracting the products of the y- and z-components y1z2 and z1y2. The center table 

shows a similar computation for the y-component cross product results and the right 

table for the z-component cross product results. Note that the subtraction order for the 

y-component is reversed that of the x- and z-components.

Figure 6-4.  Components of the cross product
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�Geometric Interpretation of Vector Cross Products
Figure 6-5 shows the geometric interpretation of the vector cross product. Since Unity 

follows the Left-Handed Coordinate System, the result of 
 

V V1 2×  is a vector in the 

direction of the thumb on your left hand when following the finger curling process 

described previously. It follows that for 
 

V V2 1× , with the index to little fingers aligned 

with the first operand, in this case the 


V2  vector, and then curl toward the second 

operand, or the 


V1  vector, the resulting vector is in the opposite direction (turn your 

hand so you’re giving a thumbs down instead of a thumbs up). The cross product results, 
 

V V1 2×  and 
 

V V2 1× , are perpendicular to their operand vectors, 


V1  and 


V2 , and, as a 

result, are perpendicular to the plane that defines 


V1  and 


V2 .

Figure 6-5.  The directions of vector cross product results

The magnitude of the vector resulting from the cross product or the magnitude of the 

perpendicular vector, with details left as an exercise, can be shown to be

	
   

V V y z z y z x x z x y y x V V1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2

2

1 2× = − + − + − =( ) ( ) ( ) sinθ 	

where θ is the subtended angle between 


V1  and 


V2 . Notice that when both 


V1  and 


V2  

are normalized, thus both with magnitude of 1.0, then

ˆ ˆV V1 2× =  sinθ
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Note A lthough the cross product result encodes the sine of the subtended angle, 
it is seldom, if ever, used specifically for analyzing subtended angles between 
vectors. Instead, the dot product is always used. This is because when comparing 
the two, the cross product operation involves more floating-point operations, 
and more importantly, the cross product result is a vector and thus a magnitude 
operation must be performed to convert the vector into a floating-point number 
for deriving the angle information. In contrast, the dot product is more efficient to 
compute and the result itself encodes the angle information and thus does not need 
further processing. For these reasons, the dot product is always used for analyzing 
angles subtended by vectors, for example, testing for parallel or perpendicular.

In Figure 6-5, notice that P0P1P2 is a triangle. Assuming the edge, P0P2, is the 

base, then you know the area of the triangle is the half the length of the base, or 


V2 , 

multiplied by the height. In this case, the height is the perpendicular distance between 

P1 and the edge, P0P2, or 


V1 sinθ . In this way, the area of the triangle P0P1P2 is

Area of Triangle P P P V V  0 1 2 1 2

1

2
=

 

sinθ 	

And the magnitude of the cross product result is twice the area of the triangle

	
   

V V Area of Triangle P P P V V1 2 0 1 2 1 22× = × =  sinθ 	

Though the magnitude of the resulting vector and the sine relationship of the 

subtended angle are important information to take note of when learning the vector 

cross product, the analysis presented in the rest of this book only takes advantage of 

the fact that the resulting vector is perpendicular to the operands and the 2D plane that 

defines the operand vectors.

�Properties of Vector Cross Product
The vector cross product properties of commutative, associative, and distributive over a 

floating-point scaling factor s are summarized in Table 6-1.
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Table 6-1.  Properties of vector cross product

Properties Vector Dot Product

Anti-commutative
   

V V V V1 2 2 1× = ×-

Not Associative
     

V V V V V V1 2 3 1 2 3×( ) × × ×( )≠

Distributive over scale factor, s s V V sV V V sV
     

1 ×( ) = ( ) × = × ( )2 1 2 1 2

Table 6-1 shows a set of rather unfamiliar properties. Fortunately, the applications 

of vector cross products in video game development are often limited to simple 

operations in the determination of directions. It is seldom for cross product operations 

to be embedded in complex vector equations. Finally, the definition of the vector cross 

product states that

 

V V ZeroVector1 1× = 	

and that any vector crossed with the zero vector will results in a zero vector

	
 

V ZeroVector ZeroVector V ZeroVector1 1× = × = 	

�The Vector Cross Products Example
This example demonstrates the results of performing the vector cross product between 

two given vectors. This example allows you to interactively manipulate and define two 

vectors and then examine the results of performing the cross product between these 

vectors. Figure 6-6 shows a screenshot of running the EX_6_1_VectorCrossProducts 

scene from the Chapter-6-CrossProducts project.
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Figure 6-6.  Running the Vector Cross Products example

The goals of this example are for you to

•	 Examine the results of the cross product between two arbitrarily 

defined vectors

•	 Verify that the vector resulting from a cross product is perpendicular 

to both of the operands with a magnitude that is directly proportional 

to the sine of their subtended angle

•	 Examine the source code that computes and uses the results of the 

vector cross product

�Examine the Scene

Take a look at the Example_6_1_VectorCrossProducts scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are three 

objects in this scene: a checkered sphere (P0) and two striped spheres (P1 and P2). These 

three game objects will have their corresponding transform.localPosition properties 

referenced to define the two vectors for performing the cross product operations.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows two sets of variables. One set is 

for defining the two vectors and the other set is for examining the visualization of the 

cross product between these two vectors and the plane that they define. The first set of 

variables are P0, P1, and P2 and are defined for accessing the game objects with their 

corresponding names. In this example, you will manipulate the positions of these three 

game objects to define two vectors, 


V1  and 


V2

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

and then examine the result of the cross product between these vectors.

The variables in the second set, DrawThePlane, DrawV1xV2, and DrawV2xV1, are 

toggles for hiding and showing the plane that defines 


V1  and 


V2  and the corresponding 

results of the cross products, while the last variable, Factor, is the scaling factor applied 

to the length of the vector from the cross product result, allowing for easier visualization.

�Interact with the Example

Click the Play Button to run the example. In the Scene View Window, you will observe 

two vectors with tail positions located at the checkered sphere, P0, and a greenish plane 

where the two vectors are drawn. The two vectors are 


V1  and 


V2  and are defined by the 

positions of P0, P1, and P2 game objects as previously explained. You will also observe 

two other vectors in this scene. Both of these vectors are located at the checkered sphere 

location (P0), a black vector that is the result of 
 

V V1 2× , and a red vector, the result of 
 

V V2 1× . You can confirm that both of these results follow the Left-Handed Coordinate 

System by extending the index to little fingers of your left hand along the 


V1  direction 

(the cyan vector) and then curling these fingers toward the 


V2  direction (the magenta 

vector). In a similar fashion to that of Figure 6-5, your thumb should be pointing 

along the direction of the black vector which is the result of 
 

V V1 2× . You can repeat the 

left-hand finger curling process to verify that the red vector is indeed pointing in the 

direction of 
 

V V2 1× .

In the Console Window, you can examine the text output where the subtended angle 

between 


V1  and 


V2  as well as various dot product results are printed for verification 

purposes. First, you can verify that the printed subtended angles between 


V1  and 


V2  
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reflect your observations in the Scene View. Next, examine the results of the dot product 

between the normalized black and red vectors. Since these two vectors are always 

parallel and pointing in the opposite directions, the angle between them is always 180° 

and thus the result of the dot product, or the cosine of this angle, is always −1:

	
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV V V V V V V V1 2 2 1 1 2 1 2 1×( )⋅ ×( ) = − ×( )⋅ ×( ) = − 	

Additionally, the results of the dot product between the cross product result ˆ ˆV V1 2×( )  

and the operands, V̂1 and V̂2 , are also printed out. You can verify that the cross product 

result is always perpendicular with its operands by observing that the dot product results 

between these vectors are always zero, or very close to being zero:

ˆ ˆ ˆ ˆ ˆ ˆV V V V V V1 2 1 1 2 2 0×( )⋅ = ×( )⋅ = 	

Note that since the initial values of P0, P1, and P2 define the three positions to be 

on the X-Z plane, the initial 


V1  and 


V2  vectors are also in the X-Z plane. Therefore, the 

cross product results are vectors pointing in the positive and negative y-directions, 

perpendicular to both 


V1  and 


V2 , and the plane that defines these two vectors is the 

X-Z plane.

In the following interactions, feel free to toggle and hide any of the components if 

you find them distracting. You can also adjust the Factor value to scale the lengths of the 

black and red vectors for easier visual examination.

Select P1 and adjust its z-component value to change the size of 


V1  without changing 

the subtended angle. Notice that although both are changing, the lengths of the black 

and red vectors are always the same. This is because both of the vectors vary in direct 

proportion to the length of 


V1 . Now try moving P1 toward P2 such that the 


V1  vector 

approaches 


V2 , or move P1 toward P0 such that the 


V1  vector approaches the zero vector. 

Notice that in both cases, the cross product result, the black and the red vectors, both 

approach a length of zero. You can repeat and verify all these observations by adjusting 

P2 or by changing 


V2  in a similar fashion. These manipulations and observations verify 

that the magnitude of the cross product result is in direct proportion to the magnitude of 

the operand vectors

   

V V V V1 2 1 2× = sinθ 	
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and that all cross products computed with the zero vector will result in the 

zero vector.

Now restart the game and adjust the x-component of P1 to change the subtended 

angle. Notice that when this angle is between 0° and 90°, the lengths of the black and 

red vectors vary in direct proportion and then change to vary in the inverse proportion 

when the angle is beyond 90°. Continue to adjust both the x- and z-component values 

to increase the subtended angle to beyond 180° and notice the direction swap between 

the black and red vectors. Recall that a subtended angle is always between 0° and 180°; 

you can verify with your left hand that after the direction swap, the black vector is still 

pointing in the direction of ˆ ˆV V1 2× .

Notice that until this point, your manipulation has been restricted to the X-Z plane 

and that the cross product results, the black and red vectors, are always in the positive 

and negative y-directions. Now, select any of the positions and change the y-component 

values. As you have observed when investigating the dot product in the previous chapter, 

the green plane is updated and continues to cut through both 


V1  and 


V2 . The interesting 

observation is that the cross product results, the black and red vectors, are always 

perpendicular to the green plane. This observation suggests that the green plane is 

defined by the cross product result. This concept will be explored in the next subsection.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

//Three positions to define two vectors: P0->P1 and P0->P2

public GameObject P0 = null;   // Position P0

public GameObject P1 = null;   // Position P1

public GameObject P2 = null;   // Position P2

public bool DrawThePlane = true;

public bool DrawV1xV2 = true;

public bool DrawV2xV1 = true;

public float Factor = 0.4f;

#region For visualizing the vectors

#endregion
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// Start is called before the first frame update

void Start() {

    Debug.Assert(P0 != null);  // Verify proper editor init

    Debug.Assert(P1 != null);

    Debug.Assert(P2 != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 v2 = P2.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 v1xv2 = Vector3.Cross(v1, v2);

    Vector3 v2xv1 = Vector3.Cross(v2, v1);

    float d = Vector3.Dot(v1.normalized, v2.normalized);

    bool notParallel = (Mathf.Abs(d) < (1.0f - float.Epsilon));

    if (notParallel) {

        float theta = Mathf.Acos(d) * Mathf.Rad2Deg;

        float cd = Vector3.Dot(v1xv2.normalized, v2xv1.normalized);

        float dv1 = Vector3.Dot(v1xv2, v1);

        float dv2 = Vector3.Dot(v1xv2, v2);

        Debug.Log(" theta=" + theta + "  v1xv2=" + v1xv2 +

            "  v2xv1=" + v2xv1 + "  v1xv2-dot-v2xv1=" + cd +

            " Dot with v1/v2=" + dv1 + " " + dv2);

    } else {

        Debug.Log("Two vectors are parallel,

                   cross product is a zero vector");

    }
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    #region  For visualizing the vectors

    #endregion

}

The first four lines of the Update() function compute



V P P1 1 0= −


V P P2 2 0= −

v v V V1 2 1 2x = ×
 

v v V V2 1 2 1x = ×
 

Next, the cosine of the angle between 


V1  and 


V2  is computed as the dot product of 

the normalized vectors. This value is examined to ensure that the cross product results 

will not be zero vectors. The various dot product results are then computed and printed 

to the Console window.

Note  Collinear and collinear test. In general, given three positions, P0, P1, and P2,  
that define two vectors, 



V P P1 1 0= −  and 


V P P2 2 0= − . If ˆ ˆV V1 2⋅  is approximately 1  
or −1, then you can conclude that the three points are approximately along the 
same line. In this case, P0, P1, and P2 are referred to as being collinear. The dot 
product check against approximately 1 or −1 is a convenient collinear test.

�Takeaway from This Example

This example demonstrates that the result of the cross product is indeed a vector with a 

direction that can be derived by curling your left-hand fingers and that the magnitude 

of the resulting vector is indeed directly proportional to the sizes of the operands and 

the sine of the subtended angle. You have also confirmed that the cross product of 

any vector with itself or with the zero vector results in the zero vector. Additionally, 

you have verified that the cross product is anti-commutative as reversing the operand 

order results in a vector pointing in the perfectly opposite direction. However, the most 

interesting observation is that the cross product result is always perpendicular to the 

operand vectors and thus the 2D plane that contains the two operand vectors.
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Relevant mathematical concepts covered include

•	 The cross product result is a vector that is perpendicular to both of its 

operands and the 2D plane that contains the operands.

•	 The magnitude of the vector resulting from a cross product is directly 

proportional to the magnitude of the operands and the sine of the 

subtended angle.

•	 The cross product is not defined when the two operand vectors are 

derived from three positions that are collinear. This is because three 

collinear positions can only define one direction and thus one vector, 

and the cross product of a vector with itself is the zero vector.

EXERCISES

Derive the Magnitude of the Vector Resulting from a Cross Product

Given


V x y z1 1 1 1= ( ), ,


V x y z2 2 2 2= ( ), ,

You know that the cross product is defined as

 

V V y z z y z x x z x y y x1 2 1 2 1 2 1 2 1 2 1 2 1 2× = − − −( , , )

where the magnitude of the resulting vector is
   

V V V V1 2 1 2× = sinθ

Recall the trigonometry identity and the dot product definition that

sin cos2 2 1θ θ+ =

ˆ ˆ cosV V
V V

V V
1 2

1 2

1 2

⋅ =
⋅

=
 

 
θ

So
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   

V V V V1 2 1 2× = sinθ

= −
 

V V1 2

21 cos θ

=
 

V V1 2

 
1 1 2

1 2

2

−
⋅









 

 

V V

V V

Now, simplify the algebra expression and show that

 

V V y z z y z x x z x y y x1 2 1 2 1 2

2

1 2 1 2

2

1 2 1 2

2× = − + − + −( ) ( ) ( )

Verify the Cross Product Formula

When computing the cross products in MyScript

    Vector3 v1xv2 = Vector3.Cross(v1, v2);

    Vector3 v2xv1 = Vector3.Cross(v2, v1);

replace these two lines of code with the explicit cross product definition by creating v1xv2 

and v2xv1 as new Vector3 objects with appropriate component values and verify that the 

runtime results are identical.

�The Vector Plane Equation
Throughout the last couple of chapters, you have been working with two vectors defined 

by three positions and observed that a 2D plane can always be defined when the two 

vectors are not parallel. Note that both of these observations are identical, and two non-

parallel vectors are the same as saying that the three positions that define the two vectors 

are non-collinear. Intuitively, this should not be surprising because from basic geometry 

you have learned that three points, as long as they are not all along the same line, define 

a triangle, and a triangle is the simplest shape in 2D space. For this reason, if a triangle 

can be formed, as you have observed, then it is always possible to form two non-parallel 

vectors, and thus a 2D plane can always be defined as well.

Now, you can derive the equation of this 2D plane based on the result of the cross 

product. Recall from basic geometry that the equation of a 2D plane in 3D space is

	 Ax By Cz E+ + = 	
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where A, B, C, and E are floating-point constants and x, y, and z are unknowns in 

3D space. This equation states that if you gather all the positions (x, y, z) that satisfy the 

condition where the sum of multiplying x by A, y by B, and z by C is equal to E, then 

you will find that all these positions are points on the given 2D plane. Interestingly this 

equation can also be written in vector dot product form, where you can define the vector 


V  and a position vector, p, where

	


V A B C= ( ), , 	

p x y z= ( ), , 	

Then, the 2D plane equation can be written as



V p E⋅ = 	

Note R ecall that a position, p, can be interpreted as a position vector, 


V , from 
the origin position, P0, where

	


V p P p= − =0 	

Since in this case, P0 is the origin (0, 0, 0). To avoid the confusion and nuance of 
introducing additional symbols, it is a common practice to reuse the symbol of the 
position (p) to represent the corresponding position vector. In the rest of this book, 
please do not be confused when you encounter language and a symbol such as 
“following along the position vector p.” Such statements are always referring to 
the vector from the origin toward the position, p.

If you divide both side of the equation by a nonzero floating-point number, in this 

case, 


V , the equation becomes

V̂ p
E

V
⋅ =


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Now, let D
E

V
=
 , then a 2D plane equation can be written as the vector plane 

equation or

	 V̂ p D⋅ = 	

This equation may look familiar because it is basically the vector projection equation 

as illustrated in Figure 5-7. Figure 6-7 shows the geometric interpretation of the vector 

plane equation.

Figure 6-7.  Geometric interpretation of the vector plane equation

In Figure 6-7, P0 is the origin and the vector V̂  is the direction from the origin that 

is perpendicular and passes through a plane at position Pn. The plane is at a distance D 

from the origin when measured along the direction V̂ . The vector plane equation states 

that for any position p on this plane, it is true that the projection of this position vector 

onto the direction V̂  will be of length D. In this way, the vector plane equation identifies 

all positions that satisfy the projected distance relationship with the V̂  vector. As it turns 

out, these positions define the 2D plane. Notice that you must compute the V̂  and D to 

derive the vector plane equation, V̂ p D⋅ = :

•	 Normal vector: V̂  is the vector that is perpendicular to the plane; 

this vector is generally normalized such that the constant D in the 

equation indicates distance from the origin. As demonstrated in 

the derivation process, when this vector is not normalized, the 

magnitude of the vector can be divided through on both sides of the 

equation to compute the proper value for D.
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•	 Distance to the plane: D, when the normal vector is normalized, this 

is the plane distance from the origin when measured along the V̂  

direction.

It is important to recognize that the vector plane equation identifies a 2D plane 

that is of infinite size. Any position in the Cartesian Coordinate System that satisfies the 

projected distance relationship is part of the solution set of the 2D plane and there are 

infinitely many positions in the solution set. As will be explored later, a 2D region is a 

bounded area on a 2D plane. This is analogous to 1D region, or a 1D interval, being a 

bounded line segment within an infinitely long line that is identified by a line equation.

Note A  normal vector is a vector that is perpendicular to a plane. This should 
not be confused with a normalized vector, which is any vector of size 1. You can 
compute a normal vector which may not be normalized. You can then decide to 
normalize the normal vector such that you can work with a normalized normal 
vector. In the rest of this book, the vector symbol, 



Vn , will be used to represent 
the normal vector of a 2D plane. Once again, a normal vector may or may not be 
normalized. In this case, 



Vn , is a normal vector that is not normalized, and the 
vector, V̂n , is the normalized plane normal vector.

�The Position Pn on a Plane
Notice the position Pn in Figure 6-7; this is the point on the plane that is D distance away 

from the origin when measured along the V̂n  direction. For this reason,

	 P P DV DVn n n= + =0
ˆ ˆ 	

In this case, P0 is the origin (0, 0, 0). In the rest of this chapter, the Pn position is 

computed and displayed on the 2D planes in all examples to provide orientation for and 

facilitate visualization.
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�Given a Position on a Plane
If you are given a plane normal vector, V̂n , and a position, Pon, that is on the plane, then 

you know that for any position, p, on the plane, p Pon−
� �������

 is a vector on the plane and that 

this vector must be perpendicular to V̂n . This means

V̂ p Pn on⋅ −( ) = 0 		  two are perpendicular

This equation can be simplified as follows:

ˆ ˆV p V Pn n on⋅ − ⋅ = 0 		  distributive property

ˆ ˆV p V Pn n on⋅ = ⋅ 		  move term across equality

V̂ p Dn ⋅ =  			  Pon is on the plane

which is simply the vector plane equation. This derivation shows that D, the distance 

from the origin to a plane, can be derived if you know the plane normal and one position 

on the plane.

�Positions on 2D Planes
As a way of verifying the vector plane equation and to provide additional insights, 

Figure 6-8 shows that it is always possible to compute the point where a position vector 

intersects a plane.

Figure 6-8.  Positions on a given plane
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In Figure 6-8, the given plane is defined by the normalized normal vector, V̂n , and 

the distance, D, measured along the V̂n  direction from the origin or

V̂ p Dn ⋅ =

For any arbitrary position, Pt, it is always possible to compute Pon, the point where 

the position vector Pt intersects the given plane. As illustrated in Figure 6-8, Pon is along 

the position vector Pt and is t distance away from the origin

P origin tP tPon t t= + =

Since Pon is on the plane, then it must be true that

V̂ P Dn on⋅ =

or

V̂ tP Dn t⋅ =  		  since Pon = tPt

t V P Dn t
ˆ ⋅( ) =  		  distributive property

t
D

V Pn t

=
⋅ˆ

 		  divide by V̂ Pn t⋅

With the distance, t, defined, it is now possible to compute the value of Pon! In the 

next example, the plane equation will be examined, especially in relation to the cross 

product result.

�The Vector Plane Equations Example
This example demonstrates the vector plane equation. The example allows you to 

interactively define a 2D plane, manipulate an arbitrary point, and examine the 

intersection of this position vector with the 2D plane. Figure 6-9 shows a screenshot of 

running the EX_6_2_VectorPlaneEquations scene from the Chapter-6-CrossProducts 

project.
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Figure 6-9.  Running the Vector Plane Equations example

The goals of this example are for you to

•	 Understand that the result of the cross product defines a plane 

normal vector

•	 Experience working with and gain an understanding of the 

parameters of the vector plane equation

•	 Verify the solution to the intersection between a position vector and a 

2D plane

•	 Examine the implementation of working with the vector plane 

equation

�Examine the Scene

Take a look at the Example_6_2_VectorPlaneEquations scene and observe the 

predefined game objects in the Hierarchy Window. In addition to the Controller, there 

are three sets of variables as follows:

•	 P0, P1, and P2: Game objects for defining two vectors to perform the 

cross product. The result from the cross product will be used as the 

plane normal vector.
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•	 Ds and Pn: Ds is a transparent sphere located at the origin for showing 

the plane distance, D, from the origin, and Pn is the position where 

the plane normal vector with tail at the origin intersects the plane. 

Note, this is the same as saying, Pn is the point on the plane with 

position vector in the plane normal direction.

•	 Pt and Pon: Pt is a position you can manipulate and Pon is the point 

that the position vector Pt intersects with the plane.

�Analyze Controller MyScript Component

The MyScript component on the Controller contains variables with the same name 

as their referenced game objects in the scene; these variables are used for position 

manipulations. The only exception is Ds, which does not have its position manipulated, 

instead its radius is set according to the distance, D, in the vector plane equation. The 

variable that doesn’t represent any game object, ShowPointOnPlane, is a toggle used to 

control the showing or hiding of Pt and Pon computation results.

�Interact with the Example

Click on Play Button to run the example. Notice that initially the ShowPointOnPlane 

toggle is switched off. You will first focus on examining and understanding the cross 

product result and its relationship with the plane normal before examining the 

intersection between a position vector and a plane.

In the initial scene you can observe, similar to the previous example, P0, P1, and P2 

positions defining the 


V1 (in cyan) and 


V2 (in magenta) vectors. You can also observe 

the black vector being computed as the result of 
 

V V1 2× . As with the previous example, 

the 


V1  and 


V2  vectors are defined on a 2D plane. In this scene, the 2D plane tangents, or 

touches at a single point, a transparent sphere centered at the origin. Here you will also 

find a white vector with its tail position at the origin, extending and cutting through the 

2D plane perpendicularly at the red position, Pn. The white vector is the cross product 

result and is thus the plane normal vector, V̂n . The transparent sphere mentioned 

earlier has a radius, D, which is defined by projecting position P0 in the plane normal 

direction or

	 D V Pn= ⋅ˆ
0 	
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In this way, the 2D plane has a vector plane equation

	 V̂ p Dn ⋅ = 	

The red sphere on the plane, Pn, is the position vector that is D distance along the V̂n  

direction from the origin or

	 P DVn n= ˆ 	

It is worth repeating that this vector plane equation is defined completely by the 

positions P0, P1, and P2. The plane normal, V̂n , is the cross product of the two vectors defined 

by those positions, and the plane distance from the origin is the projection of the position 

vector P0, in the V̂n  direction. Since the position P0 is referenced in defining both of the 

parameters of the vector plane equation, adjusting this position causes a profound change 

in the resulting 2D plane. To verify this, select P0 and adjust its y-component value. Notice 

the drastic changes to the plane as a result and how the transparent sphere size changes 

accordingly such that the plane always tangents the sphere. Feel free to adjust any of the P0, 

P1, and P2 positions to verify that the derived vector plane equation is always correct.

Now that you have verified how the cross product result relates to the plane 

normal vector and that the plane equation is always correct, you can enable the 

ShowPointOnPlane toggle. The blue sphere, Pt, is a position that you can manipulate and 

observe where it would intersect the plane if it followed its direction path to or from the 

origin or its position vector. The thin black line, extending from the origin to this blue 

sphere, represents the position vector, Pt. The white sphere, Pon, is the intersection of 

the position vector Pt with the 2D plane or where the blue sphere would intersect the 

plane if it followed the black line back to the origin. Feel free to adjust both the 2D plane 

and the position vector by manipulating the P0, P1, and P2 positions and Pt to verify that 

the intersection result is always correct. Note that when Pt is perpendicular to V̂n , the 

position vector will be parallel to the plane and there can be no intersection.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

// Defines two vectors: V1 = P1 - P0, V2 = P2 - P0

public GameObject P0 = null;   // The three positions
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public GameObject P1 = null;   //

public GameObject P2 = null;   //

// Plane equation:   P dot vn = D

public GameObject Ds;         // To show the D-value

public GameObject Pn;         // Where Vn crosses the plane

public bool ShowPointOnPlane = true;  // Show or Hide Pt

public GameObject Pt;         // Point to adjust

public GameObject Pon;        // Where Pt intersects the Plane

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

    Debug.Assert(P0 != null);   // Verify proper editor init

    Debug.Assert(P1 != null);

    Debug.Assert(P2 != null);

    Debug.Assert(Ds != null);

    Debug.Assert(Pn != null);

    Debug.Assert(Pt != null);

    Debug.Assert(Pon != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    // Computes V1 and V2

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    Vector3 v2 = P2.transform.localPosition -

                 P0.transform.localPosition;
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    if ((v1.magnitude < float.Epsilon) ||

        (v2.magnitude < float.Epsilon))

        return;

    // Plane equation parameters

    Vector3 vn = Vector3.Cross(v1, v2);

    vn.Normalize();  // keep this vector normalized

    float D = Vector3.Dot(vn, P0.transform.localPosition);

    // Showing the plane equation is consistent

    Pn.transform.localPosition = D * vn;

    Ds.transform.localScale =

           new Vector3(D * 2f, D * 2f, D * 2f); // diameter

    // Set up for displaying Pt and Pon

    Pt.SetActive(ShowPointOnPlane);

    Pon.SetActive(ShowPointOnPlane);

    float t = 0;

    bool almostParallel = false;

    if (ShowPointOnPlane) {

        float d = Vector3.Dot(vn,

                  Pt.transform.localPosition);  // distance

        almostParallel = (Mathf.Abs(d) < float.Epsilon);

        Pon.SetActive(!almostParallel);

        if (!almostParallel) {

            t = D / d;

            Pon.transform.localPosition =

                t * Pt.transform.localPosition;

        }

    }

    #region  For visualizing the vectors

    #endregion

}
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The first four lines of the Update() function compute the two vectors

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

and verify that both are nonzero vectors before continuing. The next three lines 

compute the vector plane equation parameters

	
  

V V Vn = ×1 2 	

V̂ Vn n=


.Normalized()

	 D V Pn= ⋅ˆ
0 	

The two lines that follow set the Pn position and the diameter of the transparent 

sphere, Ds, such that you can examine these parameters of the vector plane equation

	 P DVn n= ˆ 	

The if condition that follows ensures that Pt and Pon are computed and displayed 

only under the command of the user. The two lines in the if statement compute

	 d V Pn t= ⋅ˆ 	

and verify that d is not close to zero. This check verifies that the plane normal, V̂n ,  

is not almost perpendicular to the position vector, Pt, or that the position vector is not 

almost parallel to the plane. Recall that in such a case, there can be no intersection and 

thus Pon cannot be computed. When verified that the Pt position vector is not parallel to 

the plane, the position of Pon is computed within the last if statement

	
t

D

V P

D

d
n t

=
⋅

=
ˆ 	

P tPon t= 	
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�Takeaway from This Example

This example demonstrates how three non-collinear positions can define two non-

parallel vectors which can define a 2D plane. You have examined and analyzed the 

parameters of the vector plane equation to develop an understanding for their geometric 

interpretations. The plane equation

	 V̂ p Dn ⋅ = 	

describes the plane that is at a distance, D, measured from the origin along the 

plane normal vector, V̂n . Geometrically, this equation can be interpreted as all positions 

on this plane have a projected distance, D, when measured from the origin along V̂n . 

The equation and this interpretation were verified when you manipulated an arbitrary 

position vector, Pt, and observed the computed intersection position, Pon, between the 

position vector and the plane equation.

By now you have observed quite a few examples of vector value checking, but its 

importance cannot be overstated. Please do note that the almostParallel condition is 

effectively ensuring that when computing t

	
t

D

V Pn t

=
⋅ˆ 	

the denominator is not a zero value. Once again, it is the responsibility of a video 

game developer to ensure all mathematical operations performed are well defined and 

edge cases are checked and handled. Ill-defined conditions for mathematical operations 

often present themselves as intuitive geometric situations. In this case, when the 

denominator is close to zero, geometrically, it represents when the position vector, Pt, is 

almost parallel to the plane and thus an intersection does not exist.

Relevant mathematical concepts covered include

•	 Three non-collinear positions define two non-parallel vectors which 

define a 2D plane.

•	 A 2D plane can be described as being perpendicular to a normal 

direction and at a fixed distance away from the origin when measured 

along the normal direction.
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•	 An alternative description of a 2D plane is that it is the collection 

of all positions with position vectors that have the same projected 

distance along the plane normal.

EXERCISES

Verify the Vector Plane Equation

The vector plane equation says that all positions on the plane have the same projected 

distance. Replace P0 with P1 and then P2 in MyScript when computing the distance, D, and 

verify that the results are identical.

The Plane at the Negative Distance

Examine the vector plane equation

					     V̂ p Dn ⋅ = 	

and take note that the distance, D, is a projected result and is thus a signed floating-point 

number. This observation says that there is always a complementary plane that is D away in 

the negative V̂n  direction. Now, modify MyScript to compute

					     P DVd n= − ˆ
	

You can visualize this point and begin to imagine the associated plane by defining and using 

a new sphere game object to represent the position of Pd. This exercise brings home the point 

that you must be careful with the signs; a simple careless mistake can result in an entirely 

plausible solution on a completely wrong geometry.

�Axis Frames and 2D Regions
Recall that the vector plane equation identifies a 2D plane of infinite size. A 2D region 

can be defined on this 2D plane for determining if a given position is within the bounds 

of the region. This functionality is the generalization of the study of interval bounds from 

Chapter 2. For example, Figure 2-7 illustrated a 2D region on the X-Z plane. Here, the 

description is a 2D region on any arbitrary plane.

Defining 2D regions on 2D planes is interesting and has some important applications 

in video game development. However, what is much more important is the implication 
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that given three positions that define two non-parallel vectors, you can actually define 

a general axis frame. Recall that the default axis frame of the Cartesian Coordinate 

System is the three perpendicular X-, Y-, and Z-axis directions centered at the origin. A 

general axis frame is three perpendicular directions which need not be aligned with the 

major axes and can be centered at any position. Figure 6-10 shows such an axis frame 

centered at the position P0.

Figure 6-10.  Defining an axis frame

In Figure 6-10, the three positions, P0, P1, and P2, define two vectors

	


V P P1 1 0= − 	

	


V P P2 2 0= − 	

When these two vectors are not parallel, a new vector, 


Vn , that is perpendicular to 

both 


V1 and 


V2  can be computed

	
  

V V Vn = ×1 2 	

An important observation is that the cross product of 


Vn  with 


V1 , as indicated by the 

curling left hand in Figure 6-10, defines, 


V2
′ ,

	
  

V V Vn2 1
′ = × 	

a vector perpendicular to both 


Vn  with 


V1 . Notice that 


V1 , 


Vn , and 


V2
′  are three 

vectors that are mutually perpendicular and is an axis frame that can be located at 

any position. In the next chapter you will learn about how this axis frame can serve as 
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the basis for a new coordinate system, for example, serving to define the motion on 

a navigating spaceship. Here, the focus will be on defining a 2D region and a general 

bounding box as an exercise.

�Bounds on a 2D Plane
Recall from Figure 5-9 that a general 1D interval, or a line segment, is a direction with 

two positions along that direction defining the beginning and the ending point of 

that line segment. Also recall from Figure 2-7 that a 2D interval, or a 2D rectangular 

region, is two 1D intervals along two perpendicular directions. Figure 6-11 shows two 

perpendicular general 1D intervals. The first interval is along 


V1 , with P0 and P1, and the 

second interval is along 


V2
′ , with P0 and P2

′  as their beginning and ending positions. The 

two intervals have respective lengths of L1 and L2.

Figure 6-11.  Inside condition of a general 2D region

You can follow the exact same logic as in Chapter 2 when generalizing results from 

a 1D interval to a 2D bounding area and apply the logic to a general axis frame. In this 

case, instead of 1D intervals along the X- and Z-axes, you are working with general 1D 

intervals along the 


V1  and 


V2
′  directions. The inside-outside status of the 2D region can 

be determined by applying the general 1D test, as illustrated in Figure 5-11 (d), on each 

of the two perpendicular general 1D intervals. For example, look at the given position Pon 

in Figure 6-11; this position defines the vector 


Von

	


V P Pon on= − 0 	
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The vector, 


Von , can be used to determine if the position Pon is within the 2D region. 

In this case, the position Pon is within the bounds of the region if the projected size of 


Von  

along both 


V1  and 


V2
′  is positive and smaller than the corresponding interval lengths or

d V Von1 1= ⋅
 ˆ  	



Von  size on V̂1

d V Von2 2= ⋅ ′ ˆ  	


Von  size on V̂2
′

With these two projected sizes, the condition for Pon being inside the 2D region can 

be stated by two inequalities: d1 and d2 must both be positive and smaller than the length 

of the corresponding intervals or

0 ≤ d1 ≤ L1   and   0 ≤ d2 ≤ L2

Generalization of the Vector Line Equation
Recall the vector line equation that describes all positions located on the line 

segment which begins from position P0 and extends in the direction of V̂1  is

l t P tV( ) = +0 1̂ 	

In this example, you have observed the corresponding vector plane equation, where 

all positions that are located in the 2D rectangular region begin at position P0 and extend 

in the perpendicular directions of V̂1  and V̂2
′  as

p d d P d V d V1 2 0 1 1 2 2,( ) = + + ′ˆ ˆ 	

Similar to the vector line equation where the range of the value, t, determines the 

inside-outside status, in 2D region the ranges of the values, d1 and d2, determine the 

inside-outside status of a position. Note the straightforward generalization to the third 

dimension for a bounding box

b d d d P d V d V d V1 2 3 0 1 1 2 2 3, , n( ) = + + +′ˆ ˆ ˆ 	

�The Axis Frames and 2D Regions Example
This example builds on the previous example by supporting two additional features. It 

demonstrates the derivation of axis frames and the determination of the position inside-

outside status for a given 2D region. The example allows you to interactively define an axis 

frame by manipulating three positions while it continuously computes the inside-outside 

Chapter 6  Vector Cross Products and 2D Planes



269

status of the intersection of a position vector with the 2D plane. Figure 6-12 shows a 

screenshot of running the EX_6_3_AxisFramesAnd2DRegions scene from the Chapter-6-

CrossProducts project.

Figure 6-12.  Running the Axis Frames and 2D Regions example

The goals of this example are for you to

•	 Observe the creation of axis frames based on three non-collinear 

positions

•	 Appreciate the fact that a 2D region on a plane is indeed defined by 

two perpendicular 1D regions

•	 Examine the implementation of the axis frame definition and the 

inside-outside test for the 2D region

�Examine the Scene

Take a look at Example_6_3_AxisFramesAnd2DRegions scene, observe the predefined 

game objects in the Hierarchy Window, and note that the only difference between this 

scene and that of Example_6_2_VectorPlaneEquations is a single additional game 

object, P2p. The transform.localPosition of this game object will represent the 

position of P2
′  in Figure 6-10, the head position of the 



V2
′  vector that is perpendicular 
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to both 


V1  and 


Vn . All other game objects serve the same purpose as they did in the 

previous example.

�Analyze Controller MyScript Component

The MyScript component on the Controller also shows that P2p is the only additional 

variable when compared to the previous example. This new variable is meant to 

reference the game object with the same name for position manipulation in the script.

�Interact with the Example

Click the Play Button to run the example. Notice the almost identical results of this 

example to that of the previous example. As a quick reminder, pay attention to the 

checkered sphere, P0, and the two striped spheres, P1 and P2. These three positions 

define the two vectors, 


V1  (in cyan) and 


V2  (in magenta), according to Figure 6-10. The 

black vector at P0 is 
  

V V Vn = ×1 2 . The blue sphere, Pt, defines the position vector that 

intersects the plane at Pon, the red sphere. The only addition to this scene is the green 

sphere, P2p, identifying the head position of the 


V2
′  vector, where this vector has the size 

of 


V2  and the direction of 
 

V Vn × 1

	
   

V V V V normalizedn2 2 1

′ = ×( ). 	

Now, select P2 and manipulate its position. Notice how the green vector, 


V2
′ , has the 

exact same length as 


V2  and is always perpendicular to 


V1  and 


Vn  and that the three 

vectors, 


V1 , 


V2
′ , and 



Vn , do indeed define a valid axis frame with three perpendicular 

directions centered at P0, independent of where P0 is located, and as long as P0, P1, and 

P2 are not collinear.

Now restart the scene and select Pt and manipulate its position to move Pon, the 

red sphere, into the region bounded by 


V1  and 


V2
′  by increasing its x-component value. 

Notice as soon as Pon crosses into the region, its color changes from red to white. As long 

as Pon is located within the 2D region, it will remain white. Feel free to adjust P0, P1, or P2 

to change the bounds of the region to verify that the inside-outside test is consistent and 

always correct.
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

#region Identical to EX_6_2

#endregion

public GameObject P2p;  // The perpendicular version of P2

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

    #region Identical to EX_6_2

    #endregion

    Debug.Assert(P2p != null);

    #region For visualizing the vectors

    #endregion

}

As explained, P2p is the only additional variable from an otherwise identical example 

to the previous subsection. The Update() function is listed as follows:

void Update() {

    #region Identical to EX_6_2

    #endregion

    float l1 = v1.magnitude;

    float l2 = v2.magnitude;

    Vector3 v2p = l2 * Vector3.Cross(vn, v1).normalized;

    P2p.transform.localPosition =

                  P0.transform.localPosition + v2p;

    bool inside = false;

    if (!almostParallel) {

        Vector3 von = Pon.transform.localPosition -

                      P0.transform.localPosition;
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        float d1 = Vector3.Dot(von, v1.normalized);

        float d2 = Vector3.Dot(von, v2p.normalized);

        inside = ((d1 >= 0) && (d1 <= l1)) &&

                 ((d2 >= 0) && (d2 <= l2));

        if (inside)

            Debug.Log("Inside: Pon is inside of

                       the region defined by V1 and V2");

        else

            Debug.Log("Outside: Pon is outside of

                       the region defined by V1 and V2");

    }

    #region  For visualizing the vectors

    #endregion

}

The first part of the Update() function in the collapsed region contains code that is 

identical to previous example. Recall that the collapsed code computes 


V1 , 


V2 , 


Vn , and 

Pon. The first four lines of new code derive the vector, 


V2
′ , of the axis frame and its head 

position, P2
′ ,

	 L V1 1=


	

	 L V2 2=


	

  

V L V V normalizedn2 2 1
′ = ×( ).

P P V2 0 2
′ ′= +



When the Pt position vector is not parallel with the plane, Pon is defined, and the 

inside-outside status is computed by the code in the if statement



V P Pon on= − 0 	

d V Von1 1= ⋅
 ˆ  	



Von  size on V̂1

d V Von2 2= ⋅ ′ ˆ  	


Von  size on V̂2
′
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And finally, the inside condition is computed as

	 inside d L and d L= ≤ ≤( ) ≤ ≤( )0 01 1 2 2 	

�Takeaway from This Example

This example demonstrates that an axis frame can be defined based on three non-

collinear positions. As will be discussed and demonstrated in the next chapter, the ability 

to derive axis frames is of key importance in supporting many advanced operations in 

video game development including the support for motion control aboard a navigating 

spaceship.

The generalization of intervals and bounds is now complete. In Chapter 2, you 

learned about intervals and bounds that are aligned with the major axes. In Chapter 5,  

you learned to work with general 1D intervals where the interval does not need to be 

aligned with any major axis. There, you have also learned that if you were given two 

general 1D intervals that are perpendicular, then a general 2D region can be defined 

for inside-outside tests. The challenge was that you did not know how to derive the two 

perpendicular general 1D intervals. Now, with the knowledge of axis frame derivation, 

when given three non-collinear positions, you can compute the two perpendicular 

general 1D intervals and proceed to define a general 2D region.

Following the 2D to 3D generalization logic from Chapter 2, together with the 

fact that the derived axis frame provides the third perpendicular vector, you can now 

define and compute the inside-outside status of any position for bounding boxes at any 

orientation. However, remember that determining the collisions of two bounding boxes 

based on different axis frames is tedious and non-trivial.

Relevant mathematical concepts covered include

•	 Three non-collinear positions not only define two non-parallel 

vectors, they also define an axis frame.

•	 A general 2D rectangular bound can be defined by two general 1D 

intervals along perpendicular directions.

•	 A position can be projected onto any general 1D interval to 

determine its inside-outside status.
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EXERCISES

Implement a General Bounding Box

Modify MyScript to include a public floating-point variable, vnSize. Initialize it to a 

reasonable value, for example, 3.0. Use this variable as the size of the third general 1D interval 

along the 


Vn  direction. Notice a general bounding box is now defined with the two intervals 

identified in Figure 6-11. Now, implement the bounding box inside-outside test for Pt. You can 

print out the status and verify the correctness of your implementation.

Verify the Importance of Cross Product Ordering

Notice that in Figure 6-10, 


V2
′  is defined to be 

 

V Vn × 1  and not 
 

V Vn1 × . This is because a 

Left-Handed Coordinate System axis frame is followed and thus is required. You can verify 

with your left hand thumb, index, and middle finger, that the proper third vector to the existing 


Vn  and 


V1  must be computed by 
 

V Vn × 1 . For example, if you align your index finger with 


Vn , then the middle finger is along the 


V1  direction, and your thumb will point in the 
 

V Vn × 1  

direction. Alternatively, if your index finger is aligned with 


V1 , then, your thumb is in the 


Vn  

direction, and once again, the middle finger will be in the 
 

V Vn × 1  direction. Now, try reversing 

the cross product order when computing 


V2
′  (the v2p variable) and run the game again. Can 

you explain what you observe?

�Projections onto 2D Planes
In video games and many interactive graphical applications, it is a common practice to 

drop shadows of objects in space to convey hints of relative spatial location. For example, 

dropping the shadow of an in-flight meteoroid on the grounds of the approaching city or 

casting the shadow of an amulet tossed by the explorer on the walls of secret chamber to 

help better track its movement. In these cases, the shadows will convey a clear sense of 

the actual location of the in-flight objects and will allow the player to strategize their next 

move and react. Figure 6-13 shows that the shadow casting functionality can be modeled 

as a point to plane projection problem.
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Figure 6-13.  Projection of a point onto a plane or casting shadow onto the plane

Figure 6-13 shows a plane defined by the plane normal vector, V̂n , located at a 

distance, D, away from the origin. You know that the vector plane equation for this 

plane is

V̂ p Dn ⋅ = 	

where

P DVn n= ˆ 	

In Figure 6-13, Pt is the position of the object in flight and Pon is the projection of Pt 

on the given plane. Note that this projection is along the line connecting Pt to Pon, where 

the projection direction is parallel to the plane normal, V̂n . Figure 6-14 includes the 

following additional explanation for the derivation of point to plane solution:

d P Vt n= ⋅ ˆ  		  position vector Pt size on V̂n

P dVl n= ˆ 			   projected position of Pt on V̂n
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Figure 6-14.  Solving for point to plane projection

The solution of point to plane projection can be explained by referring to Figure 6-14 

and observing the following:

•	 First, a decision is made that a projection will only occur if position 

Pt is in front of the plane. This condition is true when the projected 

length of the Pt position vector in the V̂n  direction is greater than the 

plane distance, D, or if d > D.

•	 Second, because the projection is along the V̂n  direction, the 

distance between Pl and Pn is the same as the distance between Pt 

and Pon, and this distance is simply d − D.

•	 Finally, Pon is d − D distance away from Pt in the negative V̂n  

direction or

	 P P d D Von t n= − −( ) ˆ 	
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Note T he derived solution for the point projection is valid for Pt located on either 
side of the plane. In this case, projection is restricted to one of the sides of the 
plane to showcase the “in front of” test. Modifying the solution to support proper 
projections for all locations of Pt is left as an exercise for you to complete.

�The Point to Plane Projections Example
This example demonstrates the results of point to plane projection computation. The 

example allows you to interactively define a 2D plane, manipulate the point to be 

projected, and examine the results of projecting the point onto the plane. Figure 6-15 

shows a screenshot of running the EX_6_4_PointToPlaneProjections scene from the 

Chapter-6-CrossProducts project.

Figure 6-15.  Running the Point to Plane Projections example

The goals of this example are for you to

•	 Gain experience with the “in front of a plane” test

•	 Verify the solution of point to plane projection
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•	 Examine the implementation of the in front of a plane test and point 

to plane projection

•	 Observe the elegance and simplicity of typical implementation of 

vector solutions

�Examine the Scene

Take a look at the Example_6_4_PointToPlaneProjections scene and observe the 

predefined game objects in the Hierarchy Window. In addition to the Controller, 

there are four objects in this scene: Pn, Pt, Pl, and Pon. Following the illustration in 

Figure 6-14, Pn is the position vector along the plane normal that intersects the 2D plane, 

Pt is the position to be projected, Pl is the projection of Pt on the plane normal vector, 

and Pon is the projection of Pt on the plane.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

•	 Display toggles: ShowAxisFrame and ShowProjections will show or 

hide the axis frame and the projections accordingly. These toggle 

switches are meant to assist your visualization, allowing you to hide 

the illustration vectors to avoid screen cluttering.

•	 Vector plane equation parameters: Vn and D are the plane normal 

vector and the distance of the plane from the origin along the normal 

vector direction and will be used to create and modify the plane.

•	 Variables for the positions: Pn, Pt, Pl, and Pon are variables with 

names that correspond to the game objects in the scene. For all these 

game objects, the transform.localPosition will be used for the 

manipulation of their corresponding positions.

�Interact with the Example

Click the Play Button to run the example. The white sphere is Pn, the white vector is V̂n ,  

the red sphere is Pt, and the red vector is the position vector Pt. The semi-transparent 

black sphere on the white vector or the projected position on the plane normal vector 

is Pl, while the semi-transparent blob on the 2D plane or the projected position on the 
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plane is Pon. Notice the thin green line connecting Pt to Pl; since Pl is the projection 

of Pt onto the plane normal vector, this line is always perpendicular to the plane 

normal and parallel to the plane. The thin black line connecting Pt to Pon represents 

the projection of Pt onto the plane and thus is always perpendicular to the plane and 

parallel to V̂n . In the following interactions, feel free to toggle off either or both of the 

display toggles to declutter the Scene View.

With the scene running, first verify the “in front of plane” test by selecting Pt and 

decreasing its y-component value. Notice that as soon as Pt is below the 2D plane, the 

projected positions disappear, verifying that the projection computation is only performed 

when the point, Pt, is in front of the plane. You can also verify this test by manipulating the 

D or Vn variables to move the plane or rotate the plane normal vector. Notice once again, as 

soon as Pt drops below the plane, the projected positions will both disappear.

Feel free to manipulate Pt or the plane parameters D or Vn in any way you like. 

Pay attention to the in front of plane test result and the consistent perpendicular 

relationships between the green line and the white V̂n  vector and the black line and the 

2D plane.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public bool ShowAxisFrame = true;

public bool ShowProjections = true;

// Plane Equation: P dot Vn = D

public Vector3 Vn = Vector3.up;

public float D = 2f;

public GameObject Pn = null;

public GameObject Pt = null;  // Point projected onto the plane

public GameObject Pl = null;  // Projection of Pt on Vn

public GameObject Pon = null; // Projection of Pt on the plane

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {
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    Debug.Assert(Pn != null);   // Verify proper editor init

    Debug.Assert(Pt != null);

    Debug.Assert(Pl != null);

    Debug.Assert(Pon != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    Vn.Normalize();

    Pn.transform.localPosition = D * this.Vn;

    bool inFront = (Vector3.Dot(Pt.transform.localPosition, Vn) > D);

         // Pt in front of the plane

    Pon.SetActive(inFront);

    Pl.SetActive(inFront);

    float d = 0f;

    if (inFront) {

        d = Vector3.Dot(Pt.transform.localPosition, Vn);

        Pl.transform.localPosition = d * Vn;

        Pon.transform.localPosition =

            Pt.transform.localPosition - (d - D) * Vn;

    }

    #region For visualizing the vectors

    #endregion

}

The first three lines of the Update() function compute

ˆ .V V Normalizen n= ( )


		  normalize 


Vn

P DVn n= ˆ  				    D distance along V̂n

infront P V Dt n= ⋅( ) >ˆ 		  Pt is further along V̂n

Chapter 6  Vector Cross Products and 2D Planes



281

The if condition checks for when Pt is indeed in front of the plane. When the 

condition is favorable,

d P Vt n= ⋅ ˆ  				    Pt size on V̂n

P d Vl n= ⋅ ˆ 				    project Pt on V̂n

P P d D Von t n= − −( ) ˆ  		  from Pt in −V̂n

Notice the exact one-to-one implementation code when compared with the solution 

derivation. Once again, the implementation of vector solutions is typically simple and 

elegant and closely matches the mathematical derivation.

�Takeaway from This Example

This example demonstrates an efficient and graceful way to drop shadows which is a 

commonly encountered situation in video games. The example also demonstrates that 

the vector solution to projecting along a 2D plane normal is straightforward and stable 

and involves a small number of lines of code. Additionally, the example shows how dot 

product results can be used to determine the in front of or behind relationship between 

an object position and a given 2D plane.

Relevant mathematical concepts covered include

•	 An object is in front of a given plane when the dot product of the 

object’s position vector with the plane normal is greater than the 

plane distance from the origin.

•	 The projection of a position to a given plane is a subtraction of the 

position vector by a perpendicular distance to the plane, along the 

plane normal.

EXERCISES

Projection Support for Both Sides of the Plane

Notice that the derivation and the vector solution for projection are valid independent of 

whether Pt is in front of or behind the plane. The analysis of MyScript actually demonstrated 

extra computation to purposefully hide the projection results when Pt is not in front of the 

plane. Modify MyScript to disable the in front of check and verify that the projection solution 

is indeed valid for all positions of Pt.
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Criteria for Shadow Casting

The result of the “in front of test” is binary—an object is either in front of the plane or not. In 

this example, an object can either cast shadow or the object cannot cast shadow. Notice that 

the result from the dot product performed P Vt n⋅( )ˆ  encodes more information than just in 

front of or not. The result also tells you the projected distance or, if Pt is normalized, the cosine 

of the subtended angle. This information can be used to refine the criteria of when shadow 

casting should occur. For example, casting a shadow should only happen when the subtended 

angle is within a certain range. Now, modify MyScript to compute the subtended angle and 

allow shadows to be casted only when the subtended angle is less than a degree that is under 

the user’s control.

Characteristics of the Shadow Casted

The shadow casted on the 2D plane contains attributes of its object that can also be refined 

according to the additional information from the projection computation. For example, the 

projected size on the plane normal P Vt n⋅( )ˆ  carries the height information of the object. 

This value can be used to scale the size and the transparency of the shadow object. Modify 

MyScript to compute and use the length of the projected size to scale the size of the Pon 

game object.

Let User Manipulate Pn

The very simple relationship between Pn, D, and Vn

					     P DVn n= ˆ
	

states that a user can also define the plane by manipulating Pn instead of D and Vn. In 

such a case,

					     D Pn= 	

					   
V̂

P

Dn
n=

	

Notice that with this approach, instead of the four floating-point numbers, D, and the x-, y-, 

and z-components of Vn, the user only has the three floating-point components of Pn to 

manipulate the 2D plane. While this is easier for the user, it also means that the user cannot 

define planes with D of zero. With this caveat in mind, please modify MyScript to allow the 

user the option of defining the 2D plane with either approach.
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Projection with 2D Bound Inside-Outside Test

Notice that as you move Pt in the X- and Z-axis directions, the size of the plane adapts and 

continuously shows the projected position on the plane. In an actual application, a 2D bound 

would be defined on this plane, and an inside-outside test could be performed and projected 

positions outside of the 2D bound would simply be ignored. Refer to the previous example 

where instead of allowing the users to adjust Vn and D to define the plane, three positions, P0, 

P1, and P2, are used to define both the plane and an axis frame and then a 2D bound. Adapt 

the solution and support bound testing for the projected position.

Note T he last exercise challenges you to replace the Vn and D parameters with 
three positions to define the 2D plane and an axis frame. In practice, such extra 
efforts are not necessary. This is because an axis frame is actually conveniently 
defined by the initial orientation of the 2D plane and the plane normal vector, 
Vn. This information is available in the rotation matrix of the plane’s transform 
component. However, more advanced knowledge in vector transformations and 
matrix algebra are required to decode this information. Unfortunately, these are 
topics beyond the scope of this book. For now, if you want to define an axis frame 
on a 2D plane, the plane must be defined by three positions that are not collinear. 
In the rest of the examples in this chapter, 2D plane sizes are always adapting to 
include the projected or intersected positions as these planes are created using the 
plane equation which relates better to the math at hand.

�Line to Plane Intersection
You may recall that at the end of Chapter 2’s discussion of bounds, when comparing 

what you have learned with the Unity Bounds class, one of the methods whose details 

were not discussed was

•	 IntersectRay: Does ray intersect this bounding box?

You are now in a position to closely examine this function. By now, you know that 

a ray is simply a line segment. The IntersectRay() function computes and returns the 

closest intersection position between a line segment and the six sides of the bounding 
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box. Note that each side of a bounding box is simply a 2D region as you have previously 

examined in the Axis Frames and 2D Regions example. The IntersectRay() function 

answers the question of how to intersect a line segment with a 2D plane. This solution is 

illustrated in Figure 6-16.

Figure 6-16.  Solving the line to plane intersection

Figure 6-16 depicts two positions, P0 and P1, that define a vector 


V1

	


V P P1 1 0= − 	

where the positions, p, along the line segment with parameter s can be written as

	 p P sV= +0 1



	

Notice that in this formulation, since the 


V1  vector is not normalized, s values 

between 0 and 1, or when 0 ≤ s ≤ 1, identify positions that are inside the line segment. In 

Figure 6-16, the position Pon is at a distance, s = d, along the 


V1  vector or

	 P P dVon = +0 1



	

Remember that the vector plane equation states that given a plane defined by 

normal vector, V̂n , and a distance, D, from the origin, all positions, p, on the plane satisfy 

the plane equation

	 p V Dn⋅ =ˆ 	
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In Figure 6-16, the position Pon lies on the 2D plane, so

P V Don n⋅ =ˆ 	

P dV V Dn0 1+( )⋅ =
 ˆ  substitute P P dVon = +0 1



Note that the only unknown in this equation is d, the distance to travel along the line 

segment. By simplifying this equation, left as an exercise, you can show that

d
D P V

V V

n

n

=
− ⋅( )

⋅( )
0

1

ˆ

ˆ

	

With the d value computed, you can now find the exact Pon position. Note that this 

solution is not defined when the denominator or 


V Vn1 ⋅( )ˆ  is close to zero. Once again, 

this can be explained by your knowledge of the dot product. A dot product result of zero 

means that the cosine of the subtended angle is zero, which says the subtended angle 

is 90° or that the two vectors are perpendicular. These observations indicate that when 


V Vn1 ⋅( )ˆ  is close to zero, vectors 


V1  and V̂n  are almost perpendicular, the line segment is 

almost parallel to the plane, and therefore there can be no intersection between the two.

Note R ay casting is the process of intersecting a line segment or a ray with 
geometries. For example, if you were told to “cast a ray into a scene,” then you 
would simply intersect geometries in the scene with a given line segment. In this 
case, you are learning about ray casting with a 2D plane.

�The Line Plane Intersections Example
This example demonstrates the results of the line plane intersection solution. The 

example allows you to interactively define a 2D plane and a line segment and then 

examine the results of the line plane intersection computation. Figure 6-17 shows a 

screenshot of running the EX_6_5_LinePlaneIntersections scene from the Chapter-6-

CrossProducts project.
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Figure 6-17.  Running the Line Plane Intersections example

The goals of this example are for you to

•	 Verify the line plane intersection solution

•	 Gain experience with the perpendicular vectors test

•	 Reaffirm that it is important to check for all conditions when a 

solution is not defined, in this case, when the line segment is parallel 

to the plane

•	 Examine the implementation of the line plane intersection solution

�Examine the Scene

Take a look at the Example_6_5_LinePlaneIntersections scene and observe the 

predefined game objects in the Hierarchy Window. In addition to the Controller, 

there are four objects in this scene: Pn, P0, P1, and Pon. Pn, the checkered sphere, is 

the position on the plane that is at the defined distance, D, along the plane normal. This 

position is displayed to assist in visualizing the 2D plane. The positions P0 and P1 define 

the black line segment, and Pon is the intersection position between this line segment 

and the defined plane.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows three sets of variables as follows:

•	 Display toggles: ShowAxisFrame will show or hide the axis frame to 

assist your visualization, allowing you to hide the axis frame to avoid 

screen cluttering.

•	 Vector plane equation parameters: Vn and D are the plane normal 

vector and the distance of the plane from the origin along the 

normal vector direction. These parameters will be used to create and 

manipulate the plane.

•	 Variables for the positions: Pn, P0, P1, and Pon are variables with 

names that correspond to the game objects in the scene. For all these 

game objects, the transform.localPosition will be used for the 

manipulation of their corresponding positions.

�Interact with the Example

Click the Play Button to run the example. You can observe a 2D plane with a white 

normal vector extending from the origin and passing through the plane at Pn. You 

can also observe a thin black line between the positions P0 and P1 that define the line 

segment. At the intersection of the plane and the line segment is position Pon. You 

should be familiar with the 2D plane and its parameters, Vn and D.

Select the end points of the line segment, P0 or P1, and adjust its x- and z-component 

values. Observe that Pon changes in response to your manipulation, always locating 

itself at the line plane intersection. This verifies the solution you have derived for Pon. 

You can verify the intersection computation results by referring to the text output in the 

Console Window. Remember, the values for the d parameterization (see Figure 6-16 for 

a reminder of what this variable is) are based on a non-normalized vector; therefore, d 

values between 0 and 1 indicate that Pon is inside the line segment.

Now, select P0 and increase its y-component value. When P0’s position is above 

the plane, the Pon position is still along the line, but is outside of the line segment, 

occurring before position P0. This fact is reflected by the red line segment between Pon 

and P0. Notice that as you continue to increase the P0 y-component value, as the line 

segment comes close to being parallel to the plane, the intersection position is located 

at positions further and further away from Pn. Eventually, when P0 and P1 y-component 
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values are exactly the same, the line segment and the plane are exactly parallel and 

therefore there is no intersection between the two. You can verify this condition by 

referring to the printout in the Console Window. If you continue to increase the P0 

y-component value, you will notice the red line segment switching between P0 to Pon to 

between P1 and Pon. In the case when P0 is above P1, the intersection position is along 

the line segment and after position P1. When this occurs, the value of d will be greater 

than 1 which you can verify has happened via the Console Window.

Feel free to manipulate all of the parameters, Vn, D, P0, and P1, and verify that the line 

plane intersection solution does indeed compute a proper Pon result except when the 

line is almost parallel to the plane or when the length of the line is very small (when P0 

an P1 are located at almost the same position).

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public bool ShowAxisFrame = true;

// Plane Equation: P dot Vn = D

public Vector3 Vn = Vector3.up;

public float D = 2f;

public GameObject Pn = null;  // Point on plane along normal

public GameObject P0 = null, P1 = null;  // The line segment

public GameObject Pon = null;  // The intersection position

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(Pn != null);   // Verify proper editor init

    Debug.Assert(P0 != null);

    Debug.Assert(P1 != null);

    Debug.Assert(Pon != null);

    #region For visualizing the vectors

    #endregion

}
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All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    Vn.Normalize();

    Pn.transform.localPosition = D * Vn;

    // Compute the line segment direction

    Vector3 v1 = P1.transform.localPosition -

                 P0.transform.localPosition;

    if (v1.magnitude < float.Epsilon) {

        Debug.Log("Ill defined line (magnitude of zero).

                   Not processed");

        return;

    }

    float denom = Vector3.Dot(Vn, v1);

    bool lineNotParallelPlane = (Mathf.Abs(denom) > float.Epsilon);

          // Vn is not perpendicular to V1

    float d = 0;

    Pon.SetActive(lineNotParallelPlane);

    if (lineNotParallelPlane) {

        d = (D - (Vector3.Dot(Vn, P0.transform.localPosition)))

            / denom;

        Pon.transform.localPosition =

            P0.transform.localPosition + d * v1;

        Debug.Log("Intersection pt at:" + Pon +

                  "Distant from P0 d=" + d);

    } else {

        Debug.Log("Line is almost parallel to the plane,

                   no intersection!");

    }

}
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The first two lines of the Update() function normalize the user-specified plane 

normal vector and compute Pn’s position to help the user better visualize the 2D plane. 

The code that follows computes

	


V P P1 1 0= − 	

and checks to ensure that this line segment is well defined and has a nonzero length. 

When the line is well defined, the denominator for the solution to d, 


V Vn1 ⋅ ˆ , is computed 

and the condition for the line being parallel to the plane is checked. Note the use of the 

absolute value function when checking for the perpendicular condition. This is because 

the subtended angles of 89.99° and 90.01° are both almost perpendicular and the cosine 

or the dot product results are both close to zero but with different signs. Finally, d is 

computed and printed out to the Console Window when the line is not almost parallel to 

the plane.

�Takeaway from This Example

This example demonstrates the solution to the line to plane intersection, an important 

problem that is straightforward to solve based on vector concepts you have learned. 

The concepts applied include working with the vector plane equation, the sign of the 

vector dot product, vector projections, and fundamental vector algebra. The line to 

plane intersection is a core functionality that can be found in typical game engine utility 

libraries. In the case of Unity, this functionality is presented via the IntersectRay() 

function of the Bounds class.

Relevant mathematical concepts covered include

•	 Two vectors are almost perpendicular when the result of their dot 

product is close to zero.

•	 When a line is almost perpendicular to the normal of a plane, it is 

almost parallel to the plane.

•	 The intersection point of a line and a plane can be derived based on 

vector algebra.
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Relevant observations on implementation include

•	 Testing for perpendicular vectors, or when dot product result is close 

to zero, must be performed via the absolute value function, as very 

small positive and negative numbers are both close to zero

EXERCISES

Verify the Line Plane Intersection Equation

Recall that in Figure 6-16, the position Pon is at a distant, s = d, along the 


V1  vector or

P P dVon = +0 1



You have observed that since this position is also on the 2D plane

P dV V Dn0 1+( )⋅ =
 ˆ

Now, apply the distributive property of the vector dot product over the vector addition operation, 

and remembering that the result of a dot product is a floating-point number, show that

d
D P V

V V

n

n

=
− ⋅( )

⋅( )
0

1

ˆ

ˆ

A More General Shadow Casting Solution

One approach to interpret Figure 6-16 is to ignore P1 and interpret Pon as the projection of P0 

on the 2D plane along the 


V1  direction. Given this interpretation, you can now cast shadows of 

objects onto a 2D plane along any direction specified by the user. Modify MyScript to replace 

P1 by a 3D projection direction, 


V1 , and implement the functionality of casting a shadow of P0 

on the plane along the player-specified 


V1  projection direction.

Ray Casting or Intersecting the General Bounding Box

Refer to your solution from the “Implement a General Bounding Box” exercise from the “Axis 

Frames and 2D Regions” section. With the results from line plane intersection, you can now 

implement the IntersectRay() function. Modify your solution to this previous exercise 
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by allowing your user to define a line segment and then compute the intersection of the line 

segment with all six sides of the bounding box. The intersection position between the ray or 

line segment and the bounding box is simply the closest of all the valid intersection positions.

�Mirrored Reflection Across a Plane
The intersection computation from the previous subsection allows you to collide an 

incoming object with flat planes or walls. In many video games, a typical response to 

the results of collisions is to reflect the colliding object. For example, when an amulet is 

tossed by an explorer, it should bounce and reflect off walls or the floor when it collides 

with them to convey some sense of realism. This reflection is depicted in Figure 6-18 

and can be described as reflecting the velocity of an incoming object in the mirrored 

reflection direction.

Figure 6-18.  Mirrored reflection across a plane

In Figure 6-18, P0, on the left, is the incoming object approaching the plane with 

normal vector V̂n  and is about to collide with the plane at position Pon. Pr is the mirrored 

reflection of P0 across the plane normal V̂n  and is the unknown that must be computed.

Since this is a mirrored reflection, the right-angle triangle formed by the incoming 

object, P0PonPl, is identical to the one formed by the reflected position, PrPonPl, where Pl is 

the position that both P0 and Pr would project onto in the V̂n  direction. Additionally, the 

vector,


m , from Pl to P0 is identical to the vector from Pr to Pl. Given these observations, 

as illustrated in Figure 6-18, you can define the vector 


Von  from Pon to P0



V P Pon on= −0 	 vector from Pon to P0
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Project vector 


Von  onto the plane normal direction, V̂n , to compute the length of 


Von  

when measured along the V̂n  direction

h V Von n= ⋅
 ˆ 				    length of 



Von  along V̂n

Compute Pl, the projected position of P0 on the plane normal, V̂n . This position is 

traveling from Pon along the V̂n  direction by the projected distance, h,

P P hVl on n= + ˆ  			   Pon along V̂n  by h

With the Pl position, you can compute, 


m , the vector from Pl to P0,



m =  P0 − Pl				   vector from Pl to P0

And finally, the mirrored reflection position of P0 across the normal vector V̂n  is 

simply traveling along the negative 


m  vector from Pl

P P mr l= −  				    traveling by the negative 


m

In these steps, you have derived the reflected position, Pr, of the incoming position P0 

with plane normal V̂n  and collision position Pon.

�The Reflection Direction
The derived solution for Pr can be organized to assist the interpretation of mirrored 

reflection geometrically:

Pr = Pl − (P0 − Pl)			   substitute 


m =  P0 − Pl

 = 2Pl − P0				    collecting the two Pl

= +( )−2 0P hV Pon n̂ 	 		  substitute P P hVl on n= + ˆ

= + −2 2 0P hV Pon n̂ 			   distributive property

= + − −( )P hV P Pon n on2 0
ˆ 		  group Pon with P0

= + −P hV Von n on2 ˆ 

			   substitute 


V P Pon on= −0

= + ⋅( ) −P V V V Von on n n on2
 ˆ ˆ 		  substitute h V Von n= ⋅

 ˆ
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Note that this last equation may seem complex; however, it is actually in a simple 

form. If you define the vector 


Vr  to be

  

V V V V Vr on n n on= ⋅( ) −2 ˆ ˆ
	

Then

P P Vr on r= +


                             from Pon along 


Vr

Refer to Figure 6-18; this is the exact complement to the incoming position, P0,

P P Von on0 = +


                           from Pon along 


Von

In this way, given an incoming direction of 


Von  and the normal vector V̂n , the 

reflected direction, 


Vr , is

  

V V V V Vr on n n on= ⋅( ) −2 ˆ ˆ
	

This is the reflection direction equation. Note that this equation says the reflected 

direction,


Vr , is a function of only two parameters—the incoming direction, 


Von , and the 

normal direction, V̂n , that defines the reflection.

Lastly, it is important to note that in this derivation, the incoming direction, 


Von , is 

defined as a vector pointing away from the intersection position (see the arrow above 


Von  in Figure 6-18 for clarification). This convention of defining all vectors to be pointing 

away from the position of interest is a common practice in many video games and 

computer graphics–related vector solutions.

�The Line Reflections Example
This example demonstrates the results of line reflection across a 2D plane. This example 

allows you to interactively define the line segment and the 2D plane, as well as examine 

the results of reflecting the line segment across the normal direction of the 2D plane. 

Figure 6-19 shows a screenshot of running the EX_6_6_LineReflections scene from the 

Chapter-6-CrossProducts project.

Chapter 6  Vector Cross Products and 2D Planes



295

Figure 6-19.  Running the Line Reflections example

The goals of this example are for you to

•	 Verify the reflection direction equation

•	 Examine the reflection of a position across the normal of a plane

•	 Examine the implementation of the reflection computation

�Examine the Scene

Take a look at the EX_6_6_LineReflections scene and observe the predefined game 

objects in the Hierarchy Window. Take note that this example builds directly on the 

results from the EX_6_5_LinePlaneIntersects scene. Similar to the previous example, 

the parameters, Vn and D, define the 2D plane where Pn is the position on the plane to 

assist visualization. The parameters P0 and P1 define the line segment, and Pon is the 

intersection between the line and the 2D plane.

The two new game objects in this scene are the projection of P0 on the plane normal 

vector, Pl, and Pr the mirrored reflection of P0 across the plane normal.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows that there are two additional public 

variables with names that correspond to the Pl and Pr game objects. As in previous 

cases, the transform.localPosition of these variables will be used for the manipulation 

of the corresponding positions.

�Interact with the Example

Click the Play Button to run the example. When compared with the Scene View of 

EX_6_5_LinePlaneIntersects, you will observe the similar 2D plane defined by Vn and 

D, the thin black line segment defined by P0 and P1, and their intersection at Pon. Note 

that the plane normal vector is copied and displayed at Pon to assist in the visualization 

of reflection. Also note that the green sphere, Pl, is the projection of P0 onto the plane 

normal, and the green vector is the 


m  vector as depicted in Figure 6-18



m =  P0 − Pl

The striped sphere, Pr, connected with a thin red line to Pon, is the mirrored 

reflection of P0 across the plane normal vector.

Tumble the Scene View camera to examine the running scene from different viewing 

positions to verify that the red line segment and the black line segment above the plane 

are indeed mirrored reflections. Notice Pl is the projection of P0 onto the normal vector, 

and thus, the green 


m  vector is always perpendicular to the plane normal vector. You 

can manipulate the plane, by adjusting Vn and D, and the line segment, by adjusting 

P0 and P1, to verify that the reflection solution is correct for all cases. Recall from the 

previous example to be careful when the line segment is almost parallel to the plane as 

the plane size will increase drastically to accommodate the intersection position that will 

now be located at a very far distance.

You can set P0 and P1 such that the line segment is in the same direction as the plane 

normal. Observe that in this case, the reflection direction would be parallel to the normal 

vector direction and that the projected position, Pl, and the reflected position, Pr, will be 

located at the same point. In other words, the reflection vector would be exactly the same 

as in the incoming vector!
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

#region identical to EX_6_5

#endregion

public GameObject Pl = null;  // Projection of P0 on Vn

public GameObject Pr = null;  // reflected position of P0

#region For visualizing the vectors

#endregion

// Start is called before the first frame update

void Start() {

    #region identical to EX_6_5

    #endregion

    Debug.Assert(Pl != null);

    Debug.Assert(Pr != null);

    #region For visualizing the vectors

    #endregion

}

As explained, Pl and Pr are the only additional variables from an otherwise identical 

example to the previous subsection, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing these 

game objects via the Inspector Window. The Update() function is listed as follows:

void Update() {

    #region identical to EX_6_5

    #endregion

    float h = 0;

    Vector3 von, m;

    Pr.SetActive(lineNotParallelPlane);

    if (lineNotParallelPlane) {

        von = P0.transform.localPosition -

              Pon.transform.localPosition;
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        h = Vector3.Dot(von, Vn);

        Pl.transform.localPosition =

              Pon.transform.localPosition + h * Vn;

        m = P0.transform.localPosition -

            Pl.transform.localPosition;

        Pr.transform.localPosition =

            Pl.transform.localPosition - m; ;

        Debug.Log("Incoming object position P0:" +

                   P0.transform.localPosition +

                  " Reflected Position Pr:" +

                   Pr.transform.localPosition);

    } else {

        Debug.Log("Line is almost parallel to the plane,

                   no reflection!");

    }

    #region For visualizing the vectors

    #endregion

}

Recall that the previous example computes the intersection position, Pon, when the 

line segment is not almost parallel to the 2D plane. Similar to line plane intersection, 

a line can only reflect off a plane that it is not parallel with. The if condition checks 

for the parallel condition and outputs a warning message to the Console Window. 

Otherwise, the five lines inside the if condition follow the Pr position derivation exactly 

and compute



V P Pon on= −0 	     vector from Pon to P0

h V Von n= ⋅
 ˆ 	



Von  size along V̂n

P P hVl on n= + ˆ  	 Pon along V̂n  by h



m =  P0 − Pl	 vector from Pl to P0

P P mr l= −   	       negative 


m  direction
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�Takeaway from This Example

This example, once again, illustrates a straightforward but important application of 

vector algebra. Note that the reflection direction equation

	

  

V V V V Vr on n n on= ⋅( ) −2 ˆ ˆ
	

is independent of plane to origin distance, D, or the actual incoming object position, 

P0, or intersection position Pon. As depicted in Figure 6-20, this makes intuitive sense.

Figure 6-20.  The mirrored reflection direction

On the left of Figure 6-20, it depicts your eye at an initial position, P0, looking at 

a point, Pon, on a flat mirror on your desk. The right of Figure 6-20 shows that you 

have moved your eye and the mirror such that your eye is now located at Pa, and you 

are looking at a new position, Pan, on the mirror. You know that in both of the mirror 

locations, for the same incoming viewing direction, 


Von , as long as the mirror normal, 

V̂n , is not changed, the reflection direction will always be the same, 


Vr . Notice that 

the reflection direction, 


Vr , is only dependent on the incoming direction, 


Von , and the 

mirror normal vector, V̂n . Neither the location of the mirror, which corresponds to the 

D-value of the plane equation, nor the location of your eye, P0 and Pa, nor the location of 

where you are looking at, Pon or Pan, affects the reflection direction, 


Vr . Only your viewing 

angle and the orientation of the mirror will affect the reflection direction, just as the 

reflection direction equation states.
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Relevant mathematical concepts covered include

•	 The mirrored reflection direction is a function of the normal vector 

and incoming direction.

•	 The mirrored reflection of a position can be found by applying the 

reflection direction to the impact position.

Relevant observations on implementation include

•	 In the mirrored reflection implementation, the normal vector must 

be normalized. Additionally, the vector representing the reflection 

direction is the same length as the vector representing the incoming 

direction

EXERCISES

Verify the Reflection Direction

Edit MyScript to replace the implemented solution by first computing the reflection 

direction, 


Vr ,

				  

  

V V V V Vr on n n on= ⋅( ) −2 ˆ ˆ
	

And then compute

				    P P Vr on r= +


	

Verify your results are identical to the existing implementation. How would you modify your 

solution if 


Von  is a normalized vector?

Compare with the Vector3.Reflect() Function

Please refer to https://docs.unity3d.com/ScriptReference/Vector3.Reflect.

html; the Unity Vector3 class also supports the reflection function. Edit MyScript to 

replace the implementation with the Vector3.Reflect() function and verify the results are 

identical.
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Working with the “in Front of” Test

Modify MyScript to reflect the line only when P0 is in front of the 2D plane and P1 is behind 

the 2D plane.

Support 2D Bound Test

Modify MyScript to remove Vn and D and include three user control positions for defining the 

plane and a 2D bound where reflection only occurs for intersections that are within the bound.

�Summary
This chapter summarizes the discussions on vectors and vector algebra by introducing 

the vector cross product. You have seen that while the results of the vector dot product 

relate two vectors via a simple floating-point number, the results of the vector cross 

product provide information on the space that contains the operand vectors in the form 

of a new vector in a new direction. This new vector is perpendicular to both operand 

vectors and has a magnitude that is the product of the sizes of the two vectors and 

the sine of their subtended angle. You have also learned that the cross product of a 

vector with itself or with a zero vector is the zero vector. In typical video game–related 

problems, it is rare to encounter solutions that depend on the result of the cross product 

of a vector with itself.

You have also learned that an axis frame, or three perpendicular vectors, can be 

derived from the result of the cross product. This is accomplished by performing one 

more cross product between the initial cross product result vector and one of the original 

operand vectors. This newly derived axis frame can serve as a convenient reference for 

more advanced applications that will be discussed in the next chapter. In this chapter, 

you experienced working with derived axis frames in 2D space to compute position 

inside-outside tests for 2D bounds. Remember that it is important to follow the chosen 

coordinate space convention, left- or right-handed, when computing an axis frame.

You have built on the results of the cross product to gain insights into 2D planes and 

to relate the algebraic plane equation, Ax + By + Cz = D, to the vector plane equation, 

P V Dn⋅ =ˆ . You have also examined the geometric implications of the vector plane 

equation where the vector, V̂n , is the plane normal and is perpendicular to the 2D plane 

and D is the distance between the origin of the Cartesian Coordinate System and the 2D 

plane measured along the plane normal, V̂n , direction.
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These insights into 2D planes allowed the derivation of three important solutions 

with wide applications in video games and computer graphics applications: projection of 

a position, intersection with a line segment, and reflection direction. You have interacted 

with and examined the implementation of these solutions as well as verified that these 

solutions are general and can work with any input conditions. Lastly, you have observed 

that the typical implementation of vector solutions match closely with the vector 

algebraic solution, are elegant, and typically involve a small number of lines of code.
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CHAPTER 7

Axis Frames and Vector 
Components
After completing this chapter, you will be able to

•	 Understand that the Cartesian Coordinate System is an example of 

axis frame

•	 Appreciate that the x-, y-, and z-values of the Cartesian Coordinate 

System are examples of vector components

•	 Describe the definition of, and create from three non-collinear 

positions, an axis frame

•	 Discuss the components of a vector with respect to any axis frame

•	 Decompose a vector into the components of any given axis frame

•	 Define and work with vectors in any axis frame

•	 Analyze, design, and implement movements of objects in the context 

of any axis frame

�Introduction
You have learned from Chapter 4 that a vector is defined by two nonoverlapping 

positions. From Chapter 5, you learned that two unique vectors are defined by any three 

positions that are not collinear and that these two vectors always define a 2D plane. 

Lastly, from Chapter 6, you have learned that the perpendicular direction to a plane can 

be derived via a vector cross product, and very importantly, you have also learned that 

an axis frame can be derived based on this perpendicular direction and the two given 
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vectors. A derived axis frame is a unique 3D coordinate system, just like the Cartesian 

Coordinate System, that is capable of describing and representing positions and 

vectors. In this chapter, you will continue to learn about deriving different axis frames 

and representing and working with positions and vectors in these derived coordinate 

systems.

Note  Recall that a vector points from its tail to its head.

The Cartesian Coordinate System, with its perpendicular x-, y-, and z-axes, is the 

most straightforward example of an axis frame. The three axes intersect, with their tails 

at the position that is referred to as the origin and the axes are directions or unit vectors. 

In Chapter 6, when you examined the axis frame in Figure 6-10, you saw that in general, 

the shared tail position of the unit vectors can be located at any arbitrary position, P0. 

Thus, an axis frame can be defined simply as three unit vectors that are perpendicular 

to each other with tails located at the same position, P0. These three perpendicular unit 

vectors are referred to as the major axes and the common position that the major axes 

intersect, P0, is the origin of the axis frame.

In Chapter 2, you learned that the coordinate values of a position (x,y,z) represent 

distances measured from the origin along their corresponding axes’ directions or unit 

vectors. These coordinate values can be considered the magnitude of vectors in the x-, 

y-, and z-directions or components of the major axes. In a 3D world, there are exactly 

three perpendicular unit vectors with exactly three components for each position.

In general, given a position (x,y,z) or any vector defined in the Cartesian 

Coordinate System, it is always possible to compute the corresponding component 

values for any other axis frame. The converse is also true—that given the component 

values of any axis frame, it is always possible to compute the corresponding coordinate 

values in the Cartesian Coordinate System. In other words, it is always possible to 

represent a vector in the context of any axis frame and to convert the representation 

to any other axis frames. Among many applications, this ability to represent vectors 

with respect to any axis frame allows the analysis and manipulation of movements in 

dynamic environments such as resting and running down a hallway toward the medical 

bay of a spaceship while that spaceship is actively dodging asteroids.

In video games, there are many applications of representing vectors in different axis 

frames and working with the resulting components. For example, to continue with the 

player in a spaceship example, even though resting in the spaceship, the player’s position 
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and orientation should be updated as the spaceship navigates in the asteroid field. In 

this situation, an elegant solution would be to represent the position and orientation of 

the player in the context of the spaceship’s axis frame. In this way, the spaceship’s axis 

frame can be updated as it navigates the asteroid field, while a stationary player in the 

spaceship can have its particulars remain constant. With these representations, a player 

resting and facing the front of the spaceship will remain stationary and continue to face 

the front while the spaceship navigates.

Here are some other examples of working with multiple axis frames in video games:

•	 Running and swinging a sword in virtual reality where the sword’s 

position is determined by the player’s hand position, which is 

determine by their moving body

•	 An asteroid mining game where each asteroid spins and has its own 

gravity system that effects the player

•	 Riding in a vehicle that has a rotatable mounted turret

•	 Hopping between a train and horse in a wild west high stakes 

heist game

In practice, representation and conversion between axis frames are usually 

integrated as part of and hidden by the scene hierarchy interface. As will be detailed 

at the end of this chapter, in Unity the functionality of and the transitions between 

axis frames are delivered via the parent-child relationship that can be created and 

manipulated in the Hierarchy Window.

This chapter begins by examining the default Cartesian Coordinate System as an axis 

frame and relates coordinate values to components. The section that follows reviews 

the definition of general axis frames and derives how to compute the components of 

positions in these general axis frames. With proper understanding of components, 

the subsequent section analyzes vectors in general axis frames and discusses the 

details of representing the same vector in different axis frames. The last section of this 

chapter simplifies the player in a spaceship example and demonstrates how to achieve 

independent motion controls for the player moving toward the medical bay while the 

spaceship navigates.

Note T he rest of the book will refer to the axis frame defined by the default 
Cartesian Coordinate System as the Cartesian axis frame.
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Figure 7-1.  A General axis frame with labels

�Positions in the Cartesian Axis Frame
This section reviews how the Cartesian axis frame, or the Cartesian Coordinate System, 

represents positions in 3D space. As discussed, in general, an axis frame is defined by 

three unit vectors, or the major axes, that are perpendicular to each other and intersect 

at a common position, the origin. Figure 7-1 depicts an example axis frame with labels: 

P0 being the origin or the common intersection position and x̂ , ŷ , and ẑ  as the three 

perpendicular unit vectors.

In the case of the default Cartesian axis frame, the origin, P0, is simply (0, 0, 0). 

By convention, the constant x-, y-, and z-directional unit vectors of the Cartesian 

Coordinate System are referred to as î , ĵ , and k̂ , where

	 î � � �1 0 0, , 	

	 ĵ � � �0 1 0, , 	

	 k̂ � � �0 0 1, , 	
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Figure 7-2.  Components of a vector in the default Cartesian axis frame

�Components of a Position Vector
In Chapter 4, when discussing positions, or position vectors, you have learned that

position in the Cartesian Coordinate System at P  =  (x, y, z) can be inter-
preted as x-, y-, and z-displacements measured along the three major axes 
from the origin.

At this point, you have learned enough about vectors to turn this statement into a 

mathematical expression. As illustrated in Figure 7-2, remembering that x-direction is 

represented by î , y-direction is ĵ , and z-direction is k̂ , then x-, y-, and z-displacements 

along the three major axes are simply a vector, 


D , that is the sum of the scaled vectors in 

the î , ĵ , and k̂  directions or



D xi yj zk� � �ˆ ˆ ˆ 	

The phrase, “measured … from the origin position,” simply means that the 

displacement of vector 


D  begins from the origin at P0 or

	
 

V P D P xi yj zk� � � � � �0 0
ˆ ˆ ˆ 	

� � �� � � � � � � � �0 0 0 1 0 0 0 1 0 0 0 1, , , , , , , ,x y z 	

� � �� � � � � � � � �x y z x y z, , , , , , , ,0 0 0 0 0 0 	
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Notice that in this derivation the coordinate values (x, y, z) are used to scale the 

corresponding unit vectors of the axis frame, that is, x is used to scale î , y scaling ĵ , and 

z scaled k̂ . Because the coordinate values scale the corresponding unit vectors of the 

Cartesian axis frame, these values are referred to as the components of vector 


V  in the 

Cartesian Coordinate System.

Note  Vector components are defined with respect to a given axis frame. 
Coordinate values are components of the Cartesian axis frame. In general, for 
an axis frame other than the Cartesian axis frame, components of a position are 
different from the coordinate values of the position.

�The Components of Cartesian Axis Frame Example
This example demonstrates that scaling the unit vectors of a Cartesian axis frame 

with the corresponding coordinate values does indeed compute proper positions. 

This example allows you to interactively manipulate a position and then examine the 

corresponding components of the position vector and magnitudes of the unit vectors. 

Figure 7-3 shows a screenshot of running the EX_7_1_ComponentsOfCartesianAxisFrame 

scene from the Chapter-7-VectorComponents project.

Figure 7-3.  Running the Components of Cartesian Axis Frame example
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The goals of this example are for you to

•	 Review the significance of coordinate values

•	 Examine coordinate values as components of a position vector in 

scaling the corresponding unit vectors of an axis frame

•	 Verify that the sum of component-scaled unit vectors of an axis frame 

does indeed compute the proper position

�Examine the Scene

Take a look at the Example_7_1_ComponentsOfCartesianAxisFrame scene and observe 

the predefined black sphere, P, and red cube, Pt, in the Hierarchy Window. In this 

example, the coordinate values of P are used to scale the unit vectors of Cartesian axis 

frame to compute the position for Pt.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows variables with the same name as 

their corresponding reference game objects in the scene. The toggles draw/hide the 

position vector of P, the default Cartesian axis frame, and the scaled component vectors.

�Interact with the Example

Click the Play button to run the example. You can see the game object Pt (red cube), 

overlapping the game object P (black sphere). Now, select P and manipulate its position. 

Observe that Pt (red cube) always follows and encompasses P (black sphere). In this 

case, the position of Pt is computed based on component value–scaled unit vectors of 

the Cartesian axis frame. This observation verifies that the position P = (x, y, z) is indeed 

derived by the equation

	 P xi yj zk0 + + +ˆ ˆ ˆ 	

Examine the scene more closely by selecting the Controller and toggling on/off 

the display of the position vector for the game object P, DrawPositionVector, and the 

default Cartesian axis frame, DrawAxisFrame. The DrawComponents toggle allows you to 

examine the component-scaled unit vectors: xî , yĵ , and zk̂ .
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject P = null;  // For manipulation

public GameObject Pt = null; // For computed position

public bool DrawPositionVector = true; // Visualization toggles

public bool DrawAxisFrame = true;

public bool DrawComponents = false;

private Vector3 iV = new Vector3(1f, 0f, 0f);  // unit vectors

private Vector3 jV = new Vector3(0f, 1f, 0f);  //  i, j, and k

private Vector3 kV = new Vector3(0f, 0f, 1f);  //

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(P != null);   // Verify proper setting

    Debug.Assert(Pt != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component, and as in all previous examples, the Debug.Assert() 

calls in the Start() function ensure proper setup regarding referencing the appropriate 

game objects via the Inspector Window. The private iV, jV, and kV variables are the 

corresponding î , ĵ , and k̂  unit vectors of the Cartesian axis frame. The details of the 

Update() function are as follows:

void Update() {

    // 1. position and  the position vector

    Vector3 Po = Vector3.zero;

    Vector3 v = P.transform.localPosition - Po;

Chapter 7  Axis Frames and Vector Components



311

    // 2. Verify component-scaled unit vector computes position

    Pt.transform.localPosition = Po + v.x*iV + v.y*jV + v.z*kV;

    #region  For visualizing the vectors

    #endregion

}

The first two lines of code convert the position of P to a position vector in the 

Cartesian axis frame by computing the vector from the origin Po to P or



V P P� � 0 	

Although unnecessary for the Cartesian axis frame because the origin is always 

(0,0,0), this step is taken explicitly to differentiate and remind you that position 

vectors are vectors from the origin to the given positions. This seemingly insignificant 

observation will become important in next sections.

In Step 2, the position of game object Pt is computed by summing the component-

scaled unit vectors from the origin following the given equation

	 Pt � � � �P xi yj zk0
ˆ ˆ ˆ 	

The two steps in the Update() function follow precisely the given equations and the 

result is indeed the same position as expected.

�Takeaway from This Example

This is a relatively straightforward example demonstrating and verifying the intuitive 

equations



V P P� � 0 	

P P xi yj zk� � � �0
ˆ ˆ ˆ 	

The next section will generalize these equations to support derivation of position 

vector components for different axis frames.

Chapter 7  Axis Frames and Vector Components



312

Relevant mathematical concepts covered include

•	 For the default Cartesian axis frame, the sum of components-scaled 

unit vectors does indeed compute the proper position.

EXERCISES

Moving the Origin of Cartesian Coordinate

Try the following. Replace the first line of code in the Update() function with

Vector3 Po = new Vector3(1f, 1f, 1f);

                   // instead of (0,0,0)

and notice that Pt will continue to follow the position of P correctly. In fact, the position of Pt 

will follow that of P for any Po.

What happened is that a new axis frame is created when Po is set to anything other than 

(0,0,0). The next section will explore this in depth by deriving and working with components of 

general axis frames.

�Positions in General Axis Frames
In the previous section you interpreted the default Cartesian Coordinate System as an 

axis frame with the three perpendicular unit vectors, î , ĵ , and k̂ , being the major axes 

intersecting at the origin (0, 0, 0). You have also learned to consider the coordinate values 

of a Cartesian Coordinate position (x, y, z) as the components of its position vector. You 

will now map these concepts to a general axis frame where the three perpendicular unit 

vectors may not be aligned with the x-, y-, or z-directions and these vectors may not 

intersect at (0, 0, 0).

This section begins with a review of the definition and derivation of a general axis 

frame. The section then proceeds to analyze positions as position vectors defined in 

these general axis frames and demonstrates that all positions can be decomposed into 

components of any given axis frame. You will learn that positions can be expressed and 

derived based on components from any axis frame.
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Figure 7-4.  A general axis frame derived from three non-collinear points

�Review of Axis Frame Derivation
As discussed in Chapter 6, an axis frame can be defined by three points that are not 

collinear. This is reviewed in Figure 7-4. The given three positions labeled on the right of 

the figure, P0, Pz, Pt, define two unique vectors, 


Vz  and 


Vt , with tails located at P0

	


V P Pz � �z 0 	

	


V P Pt � �t 0 	

Now, let

	

  

V V Vy z t� � 	

then 


Vy  is perpendicular to both 


Vz  and 


Vt . At this point, 


Vt  may not be 

perpendicular to 


Vz . This can be rectified by computing

	

  

V V Vx y z� � 	

Now, 


Vx , 


Vy , and 


Vz  are three perpendicular vectors which may not be normalized. 

Let x̂ , ŷ , and ẑ , be the normalized versions of the three vectors and an axis frame is 

successfully derived, with the three unit vectors intersecting at the origin, P0.
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The default Cartesian Coordinate System is a special example of an axis frame 

because its x̂ , ŷ , and ẑ  vectors are î , ĵ , and k̂  with corresponding values of (1, 0, 0), 

(0, 1, 0), and (0, 0, 1) and that the vectors intersect at the origin with P0 = (0, 0, 0).

Note A n axis frame (in 3D) is defined by three major axes: perpendicular unit 
vectors, x̂ , ŷ , and ẑ , intersecting at P0, the origin of the axis frame. It is important 
to note that P0 may not be located at (0, 0, 0).

�Position Vectors in General Axis Frames
You have been working with positions specified in the default Cartesian axis frame 

where the origin is conveniently located at (0, 0, 0). For this reason, in the Cartesian 

axis frame the position, P = (x, y, z), and its position vector, 


Vp , always have identical 

components, where

	



V P x y z x y z Pp � �� � � � � � � � � � � �0 0 0 0 0 0, , , , , , , , 	

This property of having identical components for a position and the corresponding 

position vector is a special case for the Cartesian axis frame and is not true for any axis 

frame with origin located at a position other than (0, 0, 0).

In general, the origin of an axis frame, labeled as P0 in Figure 7-4, can be located 

at any position in the 3D space. This definition for the origin implies that the general 

definition of a position vector, 


V , for position, P, is



V P P� � 0 	

Note that since P0 of an axis frame can be located anywhere, in general, position 

vectors for the same position may be different across axis frames. Very importantly, given 

a position, P, its position vector, 


V , in an arbitrary axis frame is usually different from 

the position vector, 


Vp  ,in the Cartesian axis frame.
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Figure 7-5.  Position vector in general and the Cartesian axis frame

Figure 7-5 depicts the two position vectors, 


V  and 


Vp , for the given position, 

P = (x, y, z), in two axis frames: the x̂ , ŷ , and ẑ  with origin at P0 in the top left and the 

default Cartesian axis frame toward the top right of the figure.

Note E ach position vector is defined with respect to the origin of the 
corresponding axis frame.

�Components of Position Vectors
It is now possible to derive the components of a position vector by refining the 

description of a position in the context of a general axis frame:

Position P in an axis frame can be interpreted as the displacements mea-
sured along the major axes from the origin, P0.
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In this case, instead of the î , ĵ , and k̂  of the Cartesian axis frame, a general axis 

frame has x̂ , ŷ , and ẑ  as the major axes, and the origin, P0, can be located anywhere. 

The phrase

from the origin position, P0

refers to the position vector

	


V P P� � 0 	

where

displacements measured along the major axes
are the size of the position vectors measured along the major axes or

	 v V xx � �


ˆ 	

	
v V yy � �



ˆ 	

	 v V zz � �


ˆ 	

Thus, the given description of the position, P, can be formulated as the following 

equation:

	 P P V� �0



	

or
P P V x x V y y V z z� � �� � � �� � � �� �0

  

ˆ ˆ ˆ ˆ ˆ ˆ 	

� � � �P v x v y v z0 x y z
ˆ ˆ ˆ 	

Here, vx, vy, and vz are the components of the position vector of P in the axis frame 

with major axes x̂ , ŷ , and ẑ  and origin P0. Note the similarity between this equation 

and the one from the previous section where, in the Cartesian axis frame, with the î , ĵ , 

and k̂  as major axes and origin located at (0, 0, 0),
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P V i i V j j V k kp p p� � �� �� � � �� � � �� �0 0 0, ,

  ˆ ˆ ˆ ˆ ˆ ˆ
	

	 � � �� � �0 0 0, , xi yj zkˆ ˆ ˆ 	

Recall that in this case x, y, and z are components of the position vector in the 

Cartesian axis frame. Once again, you can observe that in the Cartesian axis frame, and 

only in the Cartesian axis frame, components are identical to coordinate values.

Note I t is important to distinguish between the components (vx, vy, vz) and 
the coordinate values (x, y, z) of a position. Coordinate values are the results of 
evaluating components in the context of an axis frame. That is, coordinate values 
are the results of evaluating P v x v y v z0 + + +x y z

ˆ ˆ ˆ .

Figure 7-5 illustrates the preceding derivations where the same position, P, is 

represented by and can be derived based on two different position vectors. On the left 

shows the accumulation of component-scaled x̂ , ŷ , and ẑ  vectors that resulted in the 

position vector, 


V , while the right side of the figure illustrates the summation of scaled 

î , ĵ , and k̂  that resulted in 


Vp . Clearly, 
 

V Vp≠ , and yet with the two vectors describing 

offset from the origins along the major axes’ directions of their corresponding axis 

frames, the head of both vectors is located at the same position, P. Thus, you can observe 

that the same position can be expressed and represented as components of different 

axis frames.

Note  Components of a vector are defined with respect to specific axis frames. 
The process of computing the values for the components, for example, v V xx � �



ˆ , is 
referred to as vector decomposition, or decomposing a vector into its components.

In mathematical terms, axis frames are examples of vector spaces, where the set 
of three perpendicular unit vectors is an example of a set of basis vectors, and 
deriving components of a vector to be represented in another axis frame is referred 
to as changing of basis.
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�The Components of Any Frame Example
This example demonstrates that for a given position, in addition to the default position 

vector and components of the Cartesian axis frame, a distinct position vector with a 

corresponding set of component values can be derived for any axis frame. Figure 7-6 

shows a screenshot of running the EX_7_2_ComponentsOfAnyFrame scene from the 

Chapter-7-VectorComponents project.

Figure 7-6.  Running the Components of Any Frame example

The goals of this example are for you to

•	 Refamiliarize the steps of deriving an axis frame from three non-

collinear positions

•	 Experience computing and working with vector components

•	 Examine vector components in any given axis frame

•	 Appreciate that for the same position, there is a distinct position 

vector for each different axis frame
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�Examine the Scene

Take a look at the Example_7_2_ComponentsOfAnyFrame scene and observe the 

predefined game objects in the Hierarchy Window. In addition to the Controller, there 

are five objects in this scene: Po (the white sphere), Pt (the red sphere), Pz (the blue 

sphere), P (the black sphere), and Pr (the green cube). In this case, P is the position of 

interest; Po, Pt, and Pz are the three non-collinear positions that you can manipulate 

to define an arbitrary axis frame; and the Pr position is computed based on the 

components of the corresponding position vector.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows that the game objects in the scene 

are referenced by variables with the same names and that you have the option to show or 

hide the Cartesian and the derived axis frames.

Note I n all examples of this chapter, when attempting to manipulate an 
axis frame by adjusting the positions of Pt or Pz, you will experience strange 
constraints and awkwardness. It will appear that the system is fighting against 
you and often undo or modify your actions. As will be discussed at the end of this 
chapter, the orientation of an axis frame should be specified and manipulated 
based on rotation and not independent adjustments of positions. Rotation is a 
topic that will be discussed in the next chapter. Fortunately, in the context of this 
chapter, you are focusing on the relative relation of vectors and components to a 
changing axis frame. Your goal is to manipulate an axis frame, not define or specify 
a particular axis frame. In all examples of this chapter, simply adjust Pt and Pz 
to cause changes to the axis frame. Direct your attention on the vectors and 
components instead of the details of the actual axis frame.

�Interact with the Example

Click the Play button to run the example. With the default setting of hiding the details 

of the derived axis frame, you should observe a scene that is similar to that from the 

previous example: a position (black sphere) and the corresponding position vector 

(white vector) with x-, y-, and z-components in the Cartesian axis frame.
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Now, select the Controller object and flip the axis frame being drawn: disable the 

showing of Cartesian and enable the derived frame. You should observe a scene that 

appears to be very similar to the previous. Instead of white, you will observe a position 

vector in black with components along the x̂  (in red), ŷ  (in green), and ẑ  (in blue) 

directions. Notice that the x̂ , ŷ , and ẑ  directions are perpendicular and that the objects 

P (the black sphere) and Pr (the green cube) overlap and are located at exactly the same 

position. The position of Pr is computed based on the position vector 


V  of position P 

according to

	


V P P� � 0 	

and

                                                                                
P P V x x V y y V z zr � � �� � � �� � � �� �0

  

ˆ ˆ ˆ ˆ ˆ ˆ 	

You can select and manipulate Po (white sphere), Pt (red sphere), or Pz (blue sphere) 

to define arbitrary axis frames and observe the changes in major axes’ directions and 

resulting components size, while the position, P, always remains stationary. You are 

observing new sets of component values of the same position for each distinct axis frame 

defined.

The position of Pr cannot be manipulated because this position is computed based 

on the derived components of position P. Take note that P and Pr always overlap at 

exactly the same location. This observation verifies that it is always possible to compute 

coordinate values from components for any given axis frame.

Now select the Controller object to re-enable and show the Cartesian axis frame 

and components. Observe that the position, P, is defined by two sets of components: the 

white position vector of Cartesian axis frame (the 


Vp  vector in Figure 7-5) and the black 

position vector of the defined axis frame (the 


V  vector in Figure 7-5). This observation 

reinforces that any position can be represented and derived by the components of any 

axis frame. Feel free to manipulate the derived axis frame or P to further observe this 

concept.

Note that the white position vector is 


Vp  in Figure 7-5 and it is simply

	
P V x y zp� � � �



, , 	
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where the sizes of the components are x (in red), y (in green), and z (in blue). The red 

vector originating from (0, 0, 0) is the î  vector scaled by x, or xî , accumulating with yĵ  

(in green) and then zk̂  (in blue). This faithfully implements the equation

P xi yj zk� � �� � �0 0 0, , ˆ ˆ ˆ 	

On the other hand, the black position vector from P0 (the white sphere) is 


V  in 

Figure 7-5, where



V P P� � 0 	

In this case, the red vector originating from P0 is the x̂  vector scaled by vx, or v xx ˆ , 

accumulating with v yy ˆ  (in green) and v zz ˆ  (in blue), implementing the equation

	
P P v x v y v z� � � �0 x y z

ˆ ˆ ˆ 	

You have now verified that for all positions, in addition to the default position vector 

of the Cartesian axis frame, a separate position vector can be derived based on the origin 

and components from any axis frame!

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Po = null; // Origin of the reference frame

public GameObject Pt = null; // Position for defining x-dir

public GameObject Pz = null; // Position on z-axis

public GameObject P = null;  // Position to show components

public GameObject Pr = null; // Derived from components

public bool DrawCartesianFrame = true;  // show/hide frames

public bool DrawDerivedFrame = true;

#region For visualizing the vectors

void Start() {

    Debug.Assert(P != null);   // Verify proper editor init

    Debug.Assert(Pr != null);
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    Debug.Assert(Po != null);

    Debug.Assert(Pt != null);

    Debug.Assert(Pz != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller’s MyScript component. The details of the Update() function are as follows:

void Update() {

    // Step 1: Derive the axis frame

    Vector3 origin = Po.transform.localPosition;

    Vector3 Vt = Pt.transform.localPosition - origin;

    Vector3 zDir = (Pz.transform.localPosition –

                    origin).normalized;

    Vector3 yDir = Vector3.Cross(zDir, Vt).normalized;

    Vector3 xDir = Vector3.Cross(yDir, zDir).normalized;

    // Step 2: Position vector and the components

    Vector3 V = P.transform.localPosition - origin;

    float vx = Vector3.Dot(V, xDir);

    float vy = Vector3.Dot(V, yDir);

    float vz = Vector3.Dot(V, zDir);

    // Step 3: Compute Pr position from the components

    Pr.transform.localPosition = origin +

                                 vx*xDir + vy*yDir + vz*zDir;

    #region  For visualizing the vectors

    #endregion

}

Step 1 closely follows the equations for axis frame derivation, where

•	 Vt: 


V P Pt � �x 0

•	 zDir: ˆ . .z V normalize P P normalizez� � � � �� �


x 0
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•	 yDir: ˆ . .y V normalize V V normalizey z t� � � � �� �  

•	 xDir: ˆ . .x V normalize V V normalizex y z� � � � �� �  

Step 2 computes the position vector, 


V , for P and the components of the derived 

axis frame:

•	 V: 


V P P� � 0

•	 vx, vy, vz: v V xx � �


ˆ , v V yy � �


ˆ , v V zz � �


ˆ

Lastly, Step 3 shows that the coordinate values for the position can be derived based 

on the axis frame and the components, where

Pr: P P v x v y v z� � � �0 x y z
ˆ ˆ ˆ

Note that the same location, P, is derived based on a very different computation 

when compared to that for the Cartesian axis frame.

�Takeaway from This Example

Through this example you have verified that the Cartesian Coordinate System is indeed 

just a special example of axis frame. In general, for any given axis frame, locations of 

positions can be described by offsets from the origin with three perpendicular vectors 

scaled by their corresponding components. You have also analyzed and examined the 

details of deriving the components of a vector for any arbitrary axis frame.

Relevant mathematical concepts covered include

•	 A general axis frame is defined by three major axes: perpendicular 

vectors, x̂ , ŷ , and ẑ , with tails intersecting at the origin, P0.

•	 For any general axis frame, the position vector, 


V , of P is

	


V P P� � 0 	

where the components of vector 


V  can be determined by 

projecting the vector onto each of the three major axis

v V xx � �


ˆ, 	

v V yy � �


ˆ
, and

	 v V zz � �


ˆ 	
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•	 Coordinate values of positions in an axis frame can be derived based 

on the computed components

	
P P v x v y v z� � � �0 x y z

ˆ ˆ ˆ 	

Note the coordinate values are computed based on two separate sets of parameters: 

those that define the axis frame P0, x̂ , ŷ , and z, and the values of the components vx, 

vy, and vz.

EXERCISES

Front and Up in an Axis Frame

In the given example, the verification position, Pr, is computed according to

P P v x v y v zr � � � �0 x y z
ˆ ˆ ˆ

Try changing this expression to

P P v x v y v zr x y z� � � � �� �0 2ˆ ˆ ˆ

Recall that Pr is the green cube, now ensure that the derived axis frame is displayed, 

manipulate the positions, P, Po, Pt, and Pz, and you will observe that the green cube is 

always a constant offset of 2 units in the ẑ -axis direction from P. If you consider the ẑ -axis 

as the front direction, then in this case, Pr is always “in front of” P. Do you know how to 

modify the equation for Pr such that it is always “on top of” P?

Convert Components Between Axis Frames

Given that a position P has components ad, ae, and af in an axis frame with major axes, d̂ , ê ,  

f̂ , and origin at Pa. How can you compute the corresponding components for P in a different 

axis frame with major axes, l̂ , m̂ , n̂ , and origin at Pb?
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The solution process is actually rather straightforward; you would first compute the coordinate 

values for position P, followed by the position vector and then the new components in the new 

axis frame. The first step would be to compute the coordinate values of P

P P a d a e a f� � � �a d e f
ˆ ˆ ˆ

Next, the position vector in the new axis frame



V P P� � b

Lastly, projecting the position vector to derive the proper components

b V ll � �
 ˆ

b V mm � �


ˆ

b V nn � �


ˆ

�Vectors in Axis Frames
With the systematic analysis and thorough understanding of positions as position 

vectors and components in general axis frames, you are now ready to analyze 

relationships between these positions or vectors in general axis frames. Recall from 

Chapter 4, a vector is defined by the difference of the corresponding coordinate values 

between two positions and it encodes the displacements between these two positions. 

As you will learn in this section, similar to positions, vectors, with all of their elegant 

properties you learned about in Chapter 4, can also be represented and defined by 

components in any axis frame. Additionally, just as in the case for positions, there is a 

distinct set of components describing a vector for each given axis frame and it is always 

possible to convert between the components of different axis frames.
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Figure 7-7.  A vector between two positions in an axis frame

�Vector Components
The top portion of Figure 7-7 shows an arbitrary axis frame with x̂ , ŷ , ẑ  as major axes 

and origin at Po. A vector, 


V , defined by two positions, P1 and P2, is illustrated in the 

lower-center region of the figure.

You have learned that, given the axis frame, the position vector of P1 is

	


V P P1 1 0� � 	

and that the components of P1 for the given axis frame are vx1, vy1, and vz1, where

	 v V xx1 1� �


ˆ 	

	
v V yy1 1� �



ˆ 	

	 v V zz1 1� �


ˆ 	
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and that P1 is located at

	
P P v x v y v zx y z1 0 1 1 1� � � �ˆ ˆ ˆ 	

In a similar fashion, the location of P2 can be expressed as follows:

	
P P v x v y v zx y z2 0 2 2 2� � � �ˆ ˆ ˆ 	

Note T he details of P2 and 


V2  are similar to the correspondence of P1 and 


V1 ; to 
avoid excessive cluttering, these are not annotated in Figure 7-7.

The components of a position are derived from the position vector of the position 
and not the coordinate values of the position.

From Chapter 4, you have learned that the vector, 


V , from P1 to P2 is defined as

                                                           


V P P� �2 1 	

	
� � � �� ��P v x v y v zx y z0 2 2 2

ˆ ˆ ˆ 	

	
P v x v y v zx y z0 1 1 1� � �� �ˆ ˆ ˆ 	

With P0 subtracted and collecting terms for each of the major axis,

	



V v v x v v y v v zx x y y z z� �� � � �� � � �� �2 1 2 1 2 1
ˆ ˆ ˆ 	

Let

v v vx x x� �2 1 	

v v vy y y� �2 1 	

v v vz z z� �2 1 	
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then

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

There are two important observations in this derivation. First, in axis frames, vectors 

are defined by subtracting the corresponding components of the positions. Second, 

vectors are always defined by the summation of the major axis directions (the unit 

vectors) scaled by the difference of the corresponding components from the head and 

tail positions.

�Analysis in Cartesian Axis Frame

Figure 7-8 shows the details of analyzing the same vector, 


V , in the Cartesian axis frame. 

Assuming the coordinate values of positions P1 and P2 to be

P1 = (x1, y1, z1) and

	 P x y z2 2 2 2� � �, , 	

Figure 7-8.  Analyze the vector in Cartesian axis frame
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Recall that with origin at (0, 0, 0), the component and coordinate values are identical 

in the Cartesian axis frame, such that

	 P x k y j z k x k y j z k1 1 1 1 1 1 10 0 0� � �� � � � � �, , ˆ ˆ ˆ ˆ ˆ ˆ 	

	 P x k y j z k x k y j z k2 2 2 2 2 2 20 0 0� � �� � � � � �, , ˆ ˆ ˆ ˆ ˆ ˆ 	

In this way, the vector, 


V , is defined as

	


V P P x x i y y j z z k� � � �� � � �� � � �� �2 1 2 1 2 1 2 1
ˆ ˆ ˆ 	

Let

d x xx � �2 1 	

d y yy � �2 1 	

d z zz � �2 1 	

then



V d i d j d kx y z� � �ˆ ˆ ˆ 	

You have verified that the vector with components, vx, vy, and vz, in the axis frame 

with x̂ , ŷ , and ẑ  as the major axes and origin at Po is the same vector with components, 

dx, dy, and dz in the axis frame with î , ĵ , and k̂  as the major axes and origin at (0, 0, 0). 

The key observation is that the same vector is represented by components with distinct 

values in different axis frames. Lastly, note that since î , ĵ , and k̂  are constants with 

values (1, 0, 0), (0, 1, 0), and (0, 0, 1):

	



V d d dx y z� � �� � � � � �1 0 0 0 1 0 0 0 1, , , , , , 	

� � �� � � � � � � � �d d d d d dx y z x y z, , , , , , , ,0 0 0 0 0 0

This derivation, once again, verifies that for Cartesian axis frame, the values of 

component and coordinate are identical.
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�The Vectors in Any Frame Example
This example demonstrates the definition of vectors based on specifying component 

values and computing the difference in corresponding components from existing 

positions. Figure 7-9 shows a screenshot of running the EX_7_3_VectorsInAnyFrame 

scene from the Chapter-7-VectorComponents project.

Figure 7-9.  Running the Vectors in Any Frame example

The goals of this example are for you to

•	 Verify that displacements or vectors can be defined explicitly based 

on component values specified in any axis frame

•	 Derive vectors based on computing the difference in the 

corresponding components of two positions

•	 Examine the defined vectors in the context of and with respect to a 

changing axis frame

�Examine the Scene

Take a look at the Example_7_3_VectorsInAnyFrame scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are six 

objects. Similar to the previous example, Po (white sphere), Pt (red sphere), and Pz (blue 
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sphere) allow the definition and manipulation of an axis frame. The components of P1 

and P2 (both black spheres) positions define the vector for examination and the position 

of Pr (green cube) is derived based on the computed vector.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the six references to the 

corresponding game objects discussed. Additionally, there are three floating-point 

controls, vx, vy, and vz. Through these controls, you can specify the values for the 

components of the x̂ , ŷ , and ẑ  directions to define a vector, 


V , for computing the 

position of Pr

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

                                                                      P P Vr � �1



	

The four toggles control the showing or hiding of the derived axis frame, the 

components of the vector, the Cartesian axis frame, and if the vector should be 

computed based on the positions P1 and P2 (instead of from the specified component 

values).

�Interact with the Example

Click the Play button to run the example. You will observe a white vector from P1 

(black sphere) to Pr (green cube). Also visible are the axis frame (with the red plane), 

the position vectors for P1 and Pr (in black), and the components of the white vector. 

Pay attention to the components of the white vector: the three perpendicular segments 

in red, green, and blue showing the displacements along the x̂  (in red), ŷ  (in green), 

and ẑ  (in blue) directions. Take note to verify visually that these three components are 

perpendicular and parallel to their respective axis in the axis frame.

In following this example, your interaction will consist of three categories: examine 

vectors defined by explicitly specified components, examine vectors in the derived and 

the Cartesian axis frames simultaneously, and examine vectors computed based on 

subtracting corresponding components of positions.
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Defined by Specified Components

Select the Controller and verify the initial values of vx, vy, and vz to be three, two, and one. 

Notice that these values correspond to the lengths of the displayed components—that the 

red segment is about three times the length of and the green segment is about two times the 

length of the blue segment. You can adjust these values to observe the intuitive changes in 

the corresponding component size that control the white vector and the position of Pr. For 

example, decreasing the value of vx will shorten the red component resulting in the position 

Pr moving closer to P1 along the red component or x̂  direction. You have just experienced 

defining vectors based on specifying component values explicitly.

Now, manipulate the positions of Po, Pt, and Pz to redefine the general axis frame. 

Observe that when you change the positions of Pt and Pz, the orientation of the axis 

frame changes. Since the vector component values are specified explicitly, the lengths of 

the red, green, and blue component segments do not change when only the directions of 

x̂ , ŷ , and ẑ  are updated. For this reason, the white vector maintains a constant relative 

relationship to and follows the axis frame changes. When you change the position of the 

origin, Po, since the vector is defined as a displacement from P1 and independent from 

any other positions, the white vector remains constant as expected.

You have interacted with a vector defined by explicitly specified components in a 

changing axis frame. You have observed that as the orientation of the axis frame changes, 

such a vector also re-orientates and maintains a constant relative relationship with the 

axis frame. This can be further understood mathematically. The vector, 


V , is defined as

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

With the values of vx, vy, and vz specified and constant, changing the axis frame 

corresponds to changing x̂ , ŷ , and ẑ . Thus, the constant relative relationship with 

the underlying axis frame reflects constant displacements with respect to the changing 

major axes.

Analyze in Derived and Cartesian Axis Frames

Select the Controller and toggle DrawCartesian to enable the displaying of Cartesian 

axis frame, position vectors, and components. You will observe an additional and 

thicker set of red, green, and blue components showing the corresponding î , ĵ , and 

k̂  component sizes in the Cartesian axis frame. Try toggling DrawCartesian on and off 

repeatedly to verify and differentiate between the two sets of components.
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Now, when you manipulate vx, vy, and vz values, you will continue to observe 

intuitive changes in the first thinner set of components: only the size of the 

corresponding component will change! Verify that this may not be the case for the 

thicker set of components of the Cartesian axis frame. For example, you can adjust the 

value for vx to observe changes in all three components of the Cartesian axis frame. In 

this case, you are observing the changes in size along the x̂  direction and that the x̂  

direction is described by the combination of î , ĵ , and k̂  directions of the Cartesian axis 

frame. You have just observed the same vector having drastically different component 

values in two axis frames.

Defined by Positions

Select the Controller and toggle off DrawCurrentFrame, DrawComponents, and 

DrawCartesian for a clean display. Toggle on VectorFromP1P2 to define the vector 


V  by 

subtracting corresponding components of positions P1: vx1, vy1, vz1 and P2: vx2, vy2, vz2,



V P P� �2 2 	

� �� � � �� � � �� �v v x v v y v v zx x y y z z2 1 2 1 2 1
ˆ ˆ ˆ 	

Adjust the positions of P1 and P2 to update the components of the vector. You can 

verify the component values are updated by examining either the corresponding fields in 

the Controller or the printouts in the Console Window. Recall that the position for Pr is 

still computed according to

P P Vr � �1



	

In your interactions you will observe that Pr position always follows and matches 

exactly to that of P2. You have now verified that vectors can indeed be defined by 

subtracting the corresponding components of the head and tail positions.

Lastly, and very importantly, select the Controller and toggle DrawCurrentFrame 

and DrawComponents to re-enable the displaying of the general axis frame and the 

components. Now, once again manipulate Pt and Pz to redefine the general axis frame. 

Since the vector is now defined by two positions that are stationary with respect to the 

axis frame, as the axis frame changes, the white vector stays constant. However, notice 

that the components of the vector are defined with respect to the current axis frame 
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and thus are constantly changing when the axis frame is updated. You can observe the 

printout of the component values in the Console Window. Mathematically, given the 

vector 


V

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

When the axis frame is updated, x̂ , ŷ , and ẑ  are changed, and vx, vy, and vz values 

are updated to maintain a constant vector.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Po = null;    // Origin of axis frame

public GameObject Pt = null;    // x-direction of frame

public GameObject Pz = null;    // z-direction of frame

public GameObject P1 = null;    // Position for manipulation

public GameObject P2 = null;    // P1P2 defines V

public GameObject Pz = null;    // Position derived from V

public float vx = 3.0f;         // Component values

public float vy = 2.0f;

public float vz = 1.0f;

public bool DrawCurrentFrame = true; // Visualization toggles

public bool DrawComponents = true;

public bool DrawCartesian = false;

public bool VectorFromP1P2 = true;

#region For visualizing the vectors

void Start() {

    Debug.Assert(P1 != null);   // Ensure proper setup

    Debug.Assert(P2 != null);

    Debug.Assert(Pr != null);

    Debug.Assert(Po != null);
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    Debug.Assert(Pt != null);

    Debug.Assert(Pz != null);

    #region For visualizing the vectors

}

All the public variables for MyScript have been discussed, and as in all previous 

examples, the Debug.Assert() calls in the Start() function ensure proper setup 

regarding referencing the appropriate game objects via the Inspector Window. The 

details of the Update() function are as follows:

void Update() {

   // Step 1: Drive the axis frame

   Vector3 origin = Po.transform.localPosition;

   Vector3 Vt = (Pt.transform.localPosition - origin);

   Vector3 zDir = (Pz.transform. localPosition –

                   origin).normalized;

   Vector3 yDir = Vector3.Cross(zDir, Vt).normalized;

   Vector3 xDir = Vector3.Cross(yDir, zDir).normalized;

   // Step 2: Compute vector components if necessary

   if (VectorFromP1P2) {

       Vector3 V1 = P1.transform.localPosition - origin;

       float vx1 = Vector3.Dot(V1, xDir);

       float vy1 = Vector3.Dot(V1, yDir);

       float vz1 = Vector3.Dot(V1, zDir);

       Vector3 V2 = P2.transform.localPosition - origin;

       float vx2 = Vector3.Dot(V2, xDir);

       float vy2 = Vector3.Dot(V2, yDir);

       float vz2 = Vector3.Dot(V2, zDir);

       // Difference of the P1 and P2 components

       vx = vx2 - vx1;

       vy = vy2 - vy1;

       vz = vz2 - vz1;

   }
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   Debug.Log("Component values: vx="

              + vx + " vy=" + vy + " vz=" + vz);

   // Step 3: compute the vector and position for P2

   Vector3 V = vx * xDir + vy * yDir + vz * zDir;

   // Derive Pr position from computed vector

   Pr.transform.localPosition = P1.transform.localPosition + V;

   // P1.transform.localPosition += 0.001f * V.normalized;

            // What does the above do?

   #region  For visualizing the vectors

}

Step 1 is identical to the previous example in deriving the parameters of the axis 

frame. In Step 2, if user specifies to derive the values of vx, vy, and vz from the P1 and P2 

components, then the position vector, V1, for P1 is computed

	


V P P1 1 0� � 	

And the components of P1 for the given axis frame, vx1, vy1, and vz1, are derived

	 v V xx1 1� �


ˆ 	

	
v V yy1 1� �



ˆ 	

	 v V zz1 1� �


ˆ 	

The same operations are repeated for P2, and the values for vx, vy, and vz are 

computed as

	 v v vx x x� �2 1 	

	
v v vy y y� �2 1 	

	 v v vz z z� �2 1 	
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Step 3 defines vector, V, and position of Pr to be

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

                                                                      P P Vr � �1



	

�Takeaway from This Example

You have verified that in a general axis frame, vectors can be defined by either specifying 

component values explicitly or subtracting the corresponding component values of the 

head and tail positions. You have also verified that given a vector

	



V v x v y v zx y z� � �ˆ ˆ ˆ 	

When the component values, vx, vy, and, vz, are specified in a changing axis frame, 

the vector will update along with the axis frame maintaining a constant relative 

relationship. On the other hand, to maintain a constant vector in a varying axis frame, 

the component values must be recomputed.

Relevant mathematical concepts covered include

•	 Vectors are defined by component-scaled major axes’ directions 

(perpendicular unit vectors) of axis frames.

•	 It is possible to define a vector to follow and maintain constant 

relative relationship to a varying axis frame by explicitly specifying 

the component values.

•	 It is also possible to define a vector to remain constant in a varying 

axis frame by continuously updating the component values.

EXERCISE

Velocity in an Axis Frame

Instead of computing the position for Pr, try using the derived vector, V, to update the position 

of P1 in the Update() function. That is, uncomment the very last line in Step 3 and enable 

the following:

    P1.transform.localPosition += 0.001f * V.normalized;
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The vector is scaled by a small number to avoid drastic position changes. As expected, when 

running the modified example, you will observe P1 traveling at a constant speed. The constant 

speed behavior persists even if you manipulate the axis frame. As you have learned, speed is 

the magnitude of a velocity or the vector; in this case, with the normalized vector, the small 

number is the actual size of the displacement per update, or the speed.

Now, enable the VectorFromP1P2 toggle on the Controller and try modifying the axis 

frame. Notice the movement of P1 is completely independent from the axis frame. This is not 

surprising as you have observed that the velocity (vector) is derived based on the positions of 

P1 and P2 which are both independent from the axis frame.

A more interesting case is to disable the VectorFromP1P2 toggle. In this case, notice that 

the movement is constant with respect to the varying axis frame. Since the velocity (vector) is 

defined by specified components, as the axis frame changes, velocity follows. This observation 

suggests a solution for the player in a navigating spaceship example discussed earlier. This 

will be covered in the next section.

�Motion Control in Axis Frames
Recall the example from earlier in the chapter of a player resting but wanting to move 

toward the medical bay on a navigating spaceship. You know that the position of 

the player is changing with the navigating spaceship. However, in the context of the 

spaceship, the player is currently resting with no movement. Additionally, when the 

player is ready, the movement toward the medical bay is independent of the asteroid 

dodging maneuvers of the spaceship. That is, the spaceship’s turning should not affect 

the player’s pathway of moving toward the medical bay. You are now ready to design a 

solution to support this scenario.

You have learned that for a general axis frame with origin at P0 and major axes x̂ , ŷ , 

and ẑ , a position, P, with components vx, vy, and vz is located at

	
P P v x v y v zx y z� � � �0

ˆ ˆ ˆ 	

Notice that the location is described by two separate and independent sets of 

parameters: the axis frame and the components. This observation points to an elegant 

solution where the spaceship and the player can be described by the two sets of 

parameters. The first is to describe the location and orientation of the spaceship by the 
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origin and major axes of an axis frame. And the second is to keep track of the player 

location based on its components with respect to the spaceship axis frame. With this 

design, as the spaceship navigates, the corresponding axis frame is updated while the 

components of the position of a resting player stay constant. Then, when the player 

wants to move, the movement can be represented by updating the components of the 

player’s position independent from the spaceship’s axis frame.

For clarity and simplicity of notations, in the following, the superscript c is 

introduced to represent vectors of components. For example, position P1 with 

components vx1, vy1, and vz1 and P2 with components vx2, vy2, and vz2 are expressed as

P v v vc
x y z1 1 1 1� � �, , , and

P v v vc
x y z2 2 2 2� � �, , 	

The components of the vector, 


V , between positions P1 and P2 are

	



V P P v v v v v vc c c
x x y y z z� � � � � �� �2 1 2 1 2 1 2 1, , 	

� � �v v vx y z, , 	

It is important to note that, in general, P Pc
1 1≠ ; instead,

P P P P P zx yc c c
1 0 1 1 1= + .x + .y + .z� � � � � �ˆ ˆ ˆ 	

Now, assuming Pc
1  is the components of the player’s position and Pc

2  is that of the 

medical bay, then the normalized 


V c  or V̂ c  is the direction that will lead the player to 

the medical bay.

Given a speed, s, when traveling toward the medical bay, the total traveling of the 

player at time t is 


T c



T c = tsV cˆ

Now, the components of the player position, Pc, at time t are 


T  displacements from 

the initial Pc
1

P P Tc c c� �1


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where the actual coordinate values of the player are located at

	
P P P x P y P zc c c= + .x + .y + .z0 � � � � � �ˆ ˆ ˆ 	

Take note that the preceding derivation is carried out with respect to the components 

based on the vector notations. Though working on components instead of coordinate 

values, you are still able to apply all of the vector concepts learned.

This solution defines positions and traveling velocity inside the spaceship by 

components with respect to the axis frame of the spaceship. In this way, the navigation of 

the spaceship updates its axis frame while the player location and movements within the 

spaceship are based on the specifics of the current axis frame at any given instance. The 

key observation is that while intimately related, the controls of the spaceship and player 

movements are completely independent. For example, while the spaceship is navigating 

(axis frame being updated), it is trivial to change the traveling direction of the player 

to move toward any other position, P3, in the spaceship, for example, the command 

deck, and at any other speed, s′. The following example demonstrates the detailed 

implementation of this design.

�The Motion in Axis Frame Example
This example demonstrates the advantage of defining positions and velocities based on 

components with respect to a changing axis frame. Figure 7-10 shows a screenshot of 

running the EX_7_4_MotionInAxisFrame scene from the Chapter-7-VectorComponents 

project.
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Figure 7-10.  Running the Motion in Axis Frame example

The goals of this example are for you to

•	 Explore the application of axis frame concepts covered in this chapter

•	 Understand the advantage of defining positions and vectors as 

components with respect to a varying axis frame

•	 Observe that Cartesian Coordinate axis frame, with origin at (0, 0, 0) 

and major axes î , ĵ , and k̂ , is indeed a simple example of axis frame 

and conforms to all of the concepts discussed

�Examine the Scene

Take a look at the Example_7_4_MotionInAxisFrame scene and observe the predefined 

game objects in the Hierarchy Window. In addition to the Controller, there are four 

objects. Similar to the previous examples, Po (white sphere), Pt (red sphere), and Pz 

(blue sphere) allow the definition and manipulation of an axis frame. P (green sphere) is 

the current position of the player within the “spaceship.”

Chapter 7  Axis Frames and Vector Components



342

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the four references to the 

corresponding game objects discussed. The P1Components and P2Components allow the 

specification of components for positions P1 and P2 representing the initial position of the 

player and that of the medical bay. The two check boxes toggle the drawing of the axis frame 

and if the computation should be carried out in the defined or the Cartesian axis frame.

�Interact with the Example

Click the Play button to run the example. You will observe the object P (green sphere) 

continuously travels along a white line from a black sphere to a black cube. Select the 

Controller object and adjust the values of P1Components and P2Components to observe 

and verify that the black sphere location is controlled by P1Components and the cube by 

P2Components. These are the components of P1 (player location) and P2 (medical bay 

location) where the green sphere simulates the continuous motion from P1 toward P2.

Now, toggle on DrawAxisFrame to observe the Cartesian axis frame in relation to the 

objects. You can verify the computation is performed with respect to the Cartesian axis 

frame by setting P1Components to (0, 0, 0) and P2Components to a location on one of the 

major axes, for example, (2, 0, 0) or (0, 2, 0). Through these interactions, you have verified 

that the computation is performed with respect to the Cartesian axis frame.

You can now toggle on MotionInAxisFrame to observe that Po (white sphere), Pt 

(red sphere), and Pz (blue sphere) are now displayed. At this point, the exact same 

computations are performed with respect to the defined axis frame. The system behaves 

in exactly the same manner, except that instead of a constant and static Cartesian axis 

frame, you can now update the axis frame.

You can simulate the spaceship in motion by selecting and changing the location of 

Po or manipulating Pt and Pz to rotate the axis frame and simulate asteroid dodging. In 

all cases, notice how P (green sphere), P1 (black sphere), and P2 (black cube) maintain 

their relative positions to the axis frame as the entire axis frame updates. In addition, 

note the motion of the green sphere continues as usual and is not affected by the axis 

frame manipulation.

In this example, P1 and P2 are represented by components with respect to a changing 

axis frame. The position of the traveling object, P, is computed based on velocity 

(vector) derived from the components of the positions. You have experimented with and 

observed the independence of axis frame and object motion controls.
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�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Po = null;    // Origin of axis frame

public GameObject Pt = null;    // x-direction of frame

public GameObject Pz = null;    // z-direction of frame

public GameObject P = null;     // traveling object

public Vector3 P1Components = Vector3.zero; // P1 Components

public Vector3 P2Components = Vector3.one;  // P2 Components

public bool DrawAxisFrame = true;

public bool MotionInAxisFrame = false;

private const float kSpeed = 0.005f;

private float Traveled = 0f;

#region For visualizing the vectors

void Start() {

    Debug.Assert(P != null);   // Ensure proper setup

    Debug.Assert(Po != null);

    Debug.Assert(Pt != null);

    Debug.Assert(Pz != null);

    #region For visualizing the vectors

 }

All the public variables for MyScript have been discussed. The first private constant 

floating-point variable, kSpeed, defines the speed of the traveling object and the second 

variable, Traveled, is to accumulate the total distance traveled. As in all previous 

examples, the Debug.Assert() calls in the Start() function ensure proper setup 

regarding referencing the appropriate game objects via the Inspector Window. The 

details of the Update() function are as follows:

void Update() {

    // Parameters of an axis frame

    Vector3 origin, xDir, yDir, zDir;

    // Step 1: Set up the axis frame

    if (MotionInAxisFrame) {
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        // Derive the axis frame

        origin = Po.transform.localPosition;

        Vector3 Vt = (Pt.transform.localPosition - origin);

        zDir = (Pz.transform.localPosition –

                origin).normalized;

        yDir = Vector3.Cross(zDir, Vt).normalized;

        xDir = Vector3.Cross(yDir, zDir).normalized;

    } else {

        // Default Cartesian axis frame

        origin = Vector3.zero;  // (0, 0, 0)

        xDir = Vector3.right;   // (1, 0, 0)

        yDir = Vector3.up;      // (0, 1, 0)

        zDir = Vector3.forward; // (0, 0, 1)

    }

    // Step 2: direction and distance traveled

    Vector3 Vc = P2Components - P1Components;

    Traveled += kSpeed * Time.deltaTime; //

    if (Traveled > Vc.magnitude)

        Traveled = 0f; // restart

    Vector3 Tc = Traveled * Vc.normalized;

    // Step 3: components and coordinate of P

    Vector3 Pc = P1Components + Tc;

    P.transform.localPosition = origin +

                  Pc.x * xDir + Pc.y * yDir + Pc.z * zDir;

    #region  For visualizing the vectors

}

The first line of the Update() function defines the parameters of an axis frame, 

origin (P0), xDir ( x̂ ), yDir ( ŷ ), and zDir ( ẑ ). The first step is to determine the actual 

values for the axis frame parameters: either follow the derivation introduced in previous 

section based on the three manipulatable non-collinear positions Po, Pt, Pz or assign the 

constant values associated with the Cartesian axis frame. You should take special note 

of the fact that independent of the values for the axis frame, the rest of the computations 

are exactly the same. This is the most striking example of the fact that Cartesian axis 

frame is a specific example of the general axis frame.
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Step 2 computes the components of the vector between positions P1 and P2 by 

subtracting the corresponding component values



V P Pc c c� �2 1 	

The step then accumulates the distance traveled, Traveled, where each update 

results in the coverage of kSpeed×Time.deltaTime distance. The implementation checks 

to ensure that the traveling is always in between P1 and P2 and then computes the total 

traveling


T c = tsV cˆ

Step 3 computes the components of the green sphere position, Pc, by traveling from 

P1Components

P P Tc c c� �1



	

Lastly, the actual location for the position P is computed based on the computed 

component values, Pc

	
P P P x P y P zc c c= + .x + .y + .z0 � � � � � �ˆ ˆ ˆ 	

The key observation is that the implementation indeed follows the derivation exactly 

and that independent controls of the motions for the spaceship and the player in the 

spaceship are accomplished.

�Takeaway from This Example

You have observed that it is advantageous to represent locations and velocities of objects 

by their component values in a constantly changing axis frame.

Relevant mathematical concepts covered include

•	 Actual locations and velocities of objects can be conveniently 

represented by components while the reference axis frame varies.
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EXERCISES

Vectors from Coordinate vs. Component Values

In this example, the motion vector, 


V c , is computed based on subtracting corresponding 

component values of the head and tail positions



V P Pc c c� �2 1 	

An alternative approach is to recognize that P1 and P2 locations can be derived based on the 

specified component values, P1Components and P2Components

	
P P v x v y v zx y z1 0 1 1 1� � � �ˆ ˆ ˆ 	

P P v x v y v zx y z2 0 2 2 2� � � �ˆ ˆ ˆ 	

With the coordinate values computed, the vector, 


V , can be computed by subtracting the 

corresponding coordinate values, just as what you have done in Chapter 4



V P P� �2 1 	

Note that, in this case, the position of P is simply

P P tsV� �1
ˆ 	

You can modify MyScript to implement the preceding cases. This exercise shows you that the 

same results can be derived based on computations performed with coordinate or component 

values. When you become familiar with the subject, you are free to choose either to work with.

�Axis Frames in Unity
The concepts of axis frame and representing locations as components are crucial and 

their applications can be found in all interactive graphics software systems, especially in 

video games. These concepts are applied in all situations when there are interactions and 

controls involving connected or contained elements of objects, such as player holding on 

to objects, riding on vehicles, hoping on/off from horses, or a player in a spaceship.
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Modern graphical applications typically abstract the detail specifics of axis frame 

and present the functionality to the end users via the interface to the scene hierarchy: the 

parent-child relationship between game objects that users can create and manipulate. 

In the Hierarchy Window of the Unity Editor, when you create a game object as a child of 

an existing game object, from the perspective of axis frame concepts discussed, you are 

effectively specifying the child location as components based on the axis frame defined 

by the parent game object. The actual implementation of the parent-child relationship is 

abstracted into a more advanced mathematical topic: matrices.

Matrix algebra based on strategically design data structure can encompass and hide 

the details and the transitions of axis frames. These are interesting topics of discussions 

for a more advanced book on math for game development.

�Summary
This chapter continues with the discussion of positions and vectors by pointing out that 

the Cartesian Coordinate System is simply an example of the more general concept of 

axis frames. The chapter analyzes the characteristics of axis frames and explains that 

coordinate values are component values evaluated in specific axis frames. You have 

examined the representation and the conversion of components for the same location 

based on different axis frames. You have also learned to express vectors as components 

of axis frames and experimented with defining a constant vector with respect to a 

varying axis frame.

The chapter concludes the coverage with a simplified example of a position (e.g., 

a player) moving toward a destination (e.g., the medical bay) in a varying axis frame 

(e.g., a navigating spaceship). You have witnessed the importance and advantage of 

representing locations as components of an axis frame in accomplishing independent 

motion controls.

In all of the examples from this chapter, you may have noticed, or felt frustrated 

by, the awkwardness in manipulating the orientation of the axis frame by adjusting the 

Pz and Pt objects on the two corresponding major axes. There seem to be strange or 

arbitrary constraints limiting the interactions where it can be challenging to manipulate 

these objects to achieve your desired axis frame orientation. This is not surprising as the 

implicit requirement that Pz and Pt must be on perpendicular axes dictates that the two 

objects should not be manipulated separately. In this case, what is required is to rotate 

the entire axis frame as an integral object. This is the topic of study for the next chapter.
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CHAPTER 8

Quaternions 
and Rotations
After completing this chapter, you will be able to

•	 Appreciate that the rotation of a position is a movement of constant 

distance around an axis

•	 Characterize the rotation of a position by an angle and an axis of 

rotation

•	 Discuss quaternions as operators for representing rotations

•	 Implement basic quaternion algebra in rotating positions

•	 Appreciate that consecutive rotations on objects can be modeled by 

ordered concatenation of quaternions

•	 Derive the rotation required to align two arbitrary position vectors

•	 Describe and model homing and chasing behaviors

•	 Configure and work with the rotation operator of the Transform 

component on the Unity GameObject

•	 Derive the necessary quaternions to align two axis frames

�Introduction
In previous chapters you have analyzed positions, studied intervals, learned to relate two 

positions via a vector, examined relationships between two vectors via a dot product, 

and studied the space that contains two vectors via the cross product. In the last chapter, 

you learned about axis frames and began to understand the convenience of considering 
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multiple coordinate spaces simultaneously in non-trivial situations such as describing 

motions in a navigating spaceship. You have also encountered awkwardness when 

trying to manipulate an axis frame by individually adjusting the locations of three non-

collinear positions. As discussed, what is desired is a tool for rotating the axis frame as 

an integrated object. This chapter introduces the quaternion as an operator to rotate 

positions, or position vectors.

Strategically defined quaternions and the associated algebra are efficient and 

powerful tools for describing vector rotations. You will learn that rotations can be 

characterized as angular motions with respect to an axis, where the angle can be derived 

from the result of a dot product while the axis for the rotation is simply the result of 

a cross product. Integrated with concepts of interpolation, quaternion rotations are 

capable of supporting continuous and smooth transitions from an existing direction to a 

new vector direction. More significantly, quaternions are operators that are independent 

from any given vector. For this reason, once computed, a quaternion operator can be 

applied to many instances of vectors, achieving identical rotation operations.

Imagine once more that you are traveling on a spaceship flying through an asteroid 

field. Now that you know how to apply concepts from axis frames to steer the hero to 

the medical bay, it is time to learn how to navigate the spaceship to dodge the asteroids. 

Recall that movement is defined by the changing of position along a vector. Navigating 

a spaceship generalizes this movement by requiring alignment with an axis frame while 

moving forward. The spaceship captain would react to the on-coming asteroids by 

manipulating, or rotating, an axis frame to orientate the spaceship while the spaceship 

changes its position along the axis that represents the front direction. In other words, 

the spaceship would continuously move along its forward direction while the captain 

determines the orientation and forward direction of the spaceship. The knowledge of 

how to strategically rotate a default axis frame to align with one being manipulated by a 

user is the key to navigation. Additionally, during navigation, you would want the change 

of direction to be gradual and smooth as it would in real life. As you can see from this 

simple example, the ability to effectively and efficiently represent and control rotations is 

indeed important in video game development.

This chapter begins by introducing quaternions and their rules of operation, or 

quaternion algebra, that are relevant to describing rotations. Representing rotations 

with quaternions is then described and analyzed including approaches to aggregate 

the results from multiple rotations. The second half of this chapter focuses on applying 

quaternion rotations to align directions and axis frames. To emulate the organic motions 
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of gradual changing from an initial to a final direction, spherical linear interpolation, or 

SLERP, is introduced. With this knowledge, the actual navigation of a spaceship is left as 

the last exercise in this chapter.

Note T his chapter presents quaternion as an operator, or a tool, from the specific 
perspective of characterizing and implementing rotations. There is no attempt to 
cover the fundamental mathematical concept behind quaternions. You can learn 
more about quaternions in general here: https://en.wikipedia.org/wiki/
Quaternion.

�Rotation Terminologies
You may remember when learning about circles that the shape is defined by moving a 

position while maintaining a constant distance from a second stationary position. As 

illustrated on the left of Figure 8-1, the stationary position is the center and the constant 

distance is the radius of the circle. When the movement is less than the circumference of 

the circle, you may describe that scenario as a rotation that sweeps out an arc or rotating 

from an initial position to a rotated position.

Figure 8-1.  Rotation about an axis in 2D and 3D
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The right side of Figure 8-1 depicts the exact same rotation, only in 3D. Take note of 

the following:

•	 Axis of rotation: A vector that passes through the center of the circle 

or is the center of the rotation. Rotations are described as rotating 

with respect to, around, or about the axis of rotation. Note that an axis 

is simply a direction or a vector.

•	 Plane of rotation: Both the initial and rotated positions are located 

on this plane and this plane is always perpendicular to the axis of 

rotation.

•	 Direction of rotation: The positive direction of a rotation, in the 

case of the Left-Handed Coordinate System followed by this book, 

is pointed to by the thumb when the other four fingers are curled 

around the axis of rotation. In other words, if the thumb is pointing 

toward you, the positive direction of a rotation is clockwise.

It is important to note that the preceding terminologies and descriptions are true for 

any rotation operation. A rotation is a circular movement around the axis of rotation, the 

initial and rotated positions are always located on the plane of rotation, and the plane of 

rotation is always perpendicular to the axis of rotation.

Note R otations in 2D, or the rotation of position (x,y), are always about the Z-axis 
with the x/y plane being the plane of rotation.

�Quaternion: Tuple of Four
Quaternion is a tuple of four floating-point numbers expressed as

q � � �x,y,z,w 	

Given two quaternions, q1 and q2,

	 q x y z w1 1 1 1 1� � �, , , 	

	 q x y z w2 2 2 2 2� � �, , , 	
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The quaternion multiplication

q q q x y z wr � � � �1 2 r r r r, , ,

is defined as

x x w y z z y w xr � � � �1 2 1 2 1 2 1 2

y x z y w z x w yr � � � � �1 2 1 2 1 2 1 2 	

z x y y x z w w zr � � � �1 2 1 2 1 2 1 2 	

w x x y y z z w wr � � � � �1 2 1 2 1 2 1 2 	

Take note that the quaternion multiplication operator takes two quaternions as 

operands and computes a new quaternion as the result. Given the definition, it is 

important to recognize that quaternion multiplication is not commutative, that is, in 

general,

q q q q1 2 2 1≠ 	

However, as you will demonstrate in the exercise at the end of this section, 

quaternion multiplication is associative; it is always the case that

q q q q q q q q q1 2 3 1 2 3 1 2 3� � � � � � 	

Lastly, the quaternion identity is

qI , , ,� � �0 0 0 1 	

In the exercise at the end of this section, you will show that given any quaternion, qa, 

it is always true that

q q q q qa I a a I= = 	

It will become clear when discussing quaternion concatenation in later sections that 

the identity quaternion, qi, plays the important role of serving as the initial value in a 

concatenation operation.
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�Encoding of Angle and Axis
A quaternion encodes a rotation of θ degrees along an axis, V̂ , ,a a a a� � �x y z , as

q x y z�
� � � �

,V , , ,a a a a
ˆ sin sin sin cos� � � �

�
�

�
�
�2 2 2 2 	

In this encoding, the axis of rotation, V̂a , must be normalized as a unit vector. Notice 

that with V̂a  being normalized, the magnitude of q, or the sum of the components 

squared, is one. This magnitude of size one is important to ensure that the size of objects 

remains the same after a quaternion rotation operation.

The inverse of the q rotation: a rotation of −θ along the V̂a  axis or a rotation of θ 

along the negative V̂a  axis is the quaternion

	
q x y z�

� � � �
,V , , ,a a a a
ˆ sin sin sin cos� � � � � ��

�
�

�
�
�

�1

2 2 2 2 	

The derivation for the inversed rotation is left as an exercise at the end of this section.

�Rotation Operation
In order to rotate a given position, Pi = (xi, yi, zi), by θ degrees with respect to an axis, V̂a ,  

with a properly encoded quaternion, q, the position must be expressed as a quaternion 

with the last component being zero

P x y zq � � �i i i, , ,0
	

The rotation operation is then defined by multiplying the rotation quaternion, q, and 

its inverse, q−1

P q P q x y z wr q
� �� � � �1

r r r r, , ,
	

In an exercise you will show that the w-component of Pr
′ , wr, is always zero, where 

the rotated result, Pr, is

Pr = (xr, yr, zr)

Remember that quaternion multiplication is not commutative and that the order of 

applying the q-rotation and its inversed is important. The quaternion representing the 

position to be rotated must be the operand in between q-rotation and its inversed with 

the q-rotation being on the left-hand side of the position.
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Figure 8-2.  Axis of rotation, ˆ ,V  that passes through the origin and P1

�Quaternion Rotation Limitation
Take note that a quaternion is a four floating-point tuple and that all four floating-point 

numbers are used in the representation of a rotation of θ angle around the V̂ , ,� � �x y z  

axis of rotation

	
q x�

� � � �
,V , y sin , z sin ,ˆ sin cos� � � �

�
�

�
�
�2 2 2 2 	

Absent from this encoding is the information on the location of the axis of rotation. 

This is the limitation of quaternion rotation representation: it is a compact and efficient 

representation of rotations where the axes of rotation are assumed to pass through 

the origin.

Figure 8-2 explains this limitation by depicting two rotations with identical axes of 

rotation, V̂. The rotation located near the top has the axis, V̂, passing through the origin, 

while the lower rotation axis passes through the position P1 instead of the origin. The 

quaternion rotation representation, q � ,V̂� � , with no way to encode the P1 location, is 

only capable of describing the rotation with the axis V̂  passing through the origin. For 

this reason, applying q � ,V̂� �  to rotate Pi will result in Pr. In general, quaternion 

representation is not capable of describing the rotation from Pi to Pr
′.

The discussed quaternion rotation assumes that the axis of rotation passes through 

the origin. This limitation is not an issue when quaternions are used in concert with 

other tools, for example, matrices. In such cases, quaternions can support rotations with 
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axes located at any position. However, general rotation with respect to an axis that does 

not pass through the origin is a subject of coordinate transformation, a more advanced 

topic not covered in this book. Later in this chapter, you will learn about working with 

the Unity Transform component on GameObjects to create rotations with general axes of 

rotations.

�Rotating Positions and Vectors
Recall that vectors are independent of positions. Given a vector, 



V x y zi i i i, ,� � � , it is 

often convenient to depict the vector with tail position located at the origin for visual 

inspection. When depicted at the origin, the head of vector 


Vi  locates at the position 

Pi = (xi, yi, zi).

In this way, rotating position Pi = (xi, yi, zi) is the same as rotating the head of the 

position vector for Pi or the vector 


Vi . The rotated result Pr = (xr, yr, zr) can also be 

interpreted as the head of the position vector for Pr or the vector 


V x y zr r r r= ( , , ).

This discussion points out that it is equivalent to rotate positions, or head of position 

vectors, or head of vectors depicted at the origin. When considered in concert with the 

limitation that quaternions only support rotations with the axis of rotations passing 

through the origin, in the rest of this chapter, you can interpret coordinate values (x, y, z) 

as either a position, a position vector, or a vector.

�The Rotation with Quaternion Example
This example demonstrates the quaternion rotation operation. It will allow you to 

interactively manipulate the angle and axis of a rotation and the position to be rotated so 

that you can observe and verify the quaternion definition, multiplication, and rotation 

operation. Figure 8-3 shows a screenshot of running the EX_8_1_QuaternionRotation 

scene from the Chapter-8-Quaternions project.

Chapter 8  Quaternions and Rotations



357

Figure 8-3.  Running the Quaternion Rotation example

The goals of this example are for you to

•	 Define quaternion rotations based on specified angles and axes

•	 Verify the validity of quaternion rotation operation

•	 Experience and observe the results of quaternion rotations

•	 Examine the implementation of a quaternion rotation

•	 Appreciate the limitation of quaternion rotation: the axis of rotation 

must pass through the origin

�Examine the Scene

Take a look at the Example_8_1_QuaternionRotation scene and observe the predefined 

checkered sphere A, the green sphere Pi, and the red sphere Pr. In this example, the 

rotation quaternion is derived from a user-specified angle and the axis of rotation 

defined by the position vector to A. This quaternion is then used to compute the rotated 

position Pr from the Pi position that is under the user control.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the 

same names as their corresponding reference game objects in the scene. The Theta 

variable is the angle to rotate and the DrawQuaternion toggle draws/hides the axis and 

perpendicular plane that defines the rotation quaternion.

�Interact with the Example

Click the Play button to run the example. You can see a red vector that passes through 

the origin with head located at the position of the A sphere. This vector is the axis of 

rotation, V̂a . You can also observe the green, Pi, and red, Pr, spheres resting on a white 

plane that perpendicularly intersects the axis of rotation. These are the user controllable 

initial (green sphere) and the rotated (red sphere) positions.

The white plane is the plane of rotation where in addition to always intersecting the 

axis of rotation perpendicularly, the initial and rotated positions, or the green and red 

spheres, are always resting on this plane. Lastly, the red sphere’s location is always a 

fixed rotation away from the green sphere on the white plane.

Select the Controller object and adjust Theta to observe that this variable indeed 

represents the angle between the green and red spheres. Take note to verify that as you 

increase and decrease the angle of rotation, the red sphere always rotates on the white 

plane. You can also select and manipulate the green sphere position and observe that 

the white plane always follows and maintains its perpendicular intersection with the 

axis of rotation, and that the red sphere is always a constant angular distance away from 

the green sphere on the white plane. You have observed that a quaternion rotation does 

indeed always rotate a position by the specified angle and that the rotation is indeed 

defined with respect to the axis of rotation.

Now select and manipulate the checkered sphere, A. As expected, when the 

checkered sphere position changes, the axis of rotation or the position vector of A 

follows. Take note that as the axis of rotation changes, the green sphere does not move 

while the white plane follows to maintain its perpendicular intersection with the axis 

of rotation and always cuts through both the green and red spheres. The location of 

the rotated red sphere also updates constantly to continue to lie on the white plane 

and maintains its angular distance from the green sphere. You have now observed and 

verified that a quaternion rotation always rotates a position perpendicular to the axis of 

rotation.
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Finally, notice that the axis of rotation is defined based on a position vector. This 

says, the rotation of position Pi is defined with respect to an axis that passes through the 

origin. Once again, the discussed quaternion rotation only supports rotations with an 

axis of rotation that passes through the origin.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject A = null;     // The axis of rotation

public GameObject Pi = null;    // initial position

public GameObject Pr = null;    // rotated position

public float Theta = 30.0f;

public bool DrawQuaternion  = true;

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(A != null);   // Verify proper setting

    Debug.Assert(Pi != null);

    Debug.Assert(Pr != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing the 

appropriate game objects via the Inspector Window.

In this example, in addition to Update(), three additional utility functions are 

defined to support quaternions: definition, QFromAngleAxis(); multiplication, 

QMultiplication(); and rotation, QRotation(). The details of QFromAngleAxis() are as 

follows:
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Vector4 QFromAngleAxis(float angle, Vector3 axis) {

    float useTheta = angle * Mathf.Deg2Rad * 0.5f;

    float sinTheta = Mathf.Sin(useTheta);

    float cosTheta = Mathf.Cos(useTheta);

    axis.Normalize();

    return new Vector4(sinTheta * axis.x,

                       sinTheta * axis.y,

                       sinTheta * axis.z, cosTheta);

}

This function receives as input an angle θ and axis V̂ x y za � � �a a a, ,  and encodes the 

rotation in the returned quaternion

	
q x y z� �

�
�

�
�
�a a a, , ,sin sin sin cos

� � � �
2 2 2 2 	

The details of QMultiplication() are as follows:

Vector4 QMultiplication(Vector4 q1, Vector4 q2) {

    Vector4 r;

    r.x =  q1.x*q2.w + q1.y*q2.z - q1.z*q2.y + q1.w*q2.x;

    r.y = -q1.x*q2.z + q1.y*q2.w + q1.z*q2.x + q1.w*q2.y;

    r.z =  q1.x*q2.y - q1.y*q2.x + q1.z*q2.w + q1.w*q2.z;

    r.w = -q1.x*q2.x - q1.y*q2.y - q1.z*q2.z + q1.w*q2.w;

    return r;

}

This function receives two quaternions, q1 and q2, where

q x y z w1 1 1 1 1� � �, , , 	

q x y z w2 2 2 2 2� � �, , , 	

compute the multiplication

q q q x y z wr r r r r, , ,� � � �1 2 	
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and return the resulting quaternion, qr, where

x x w y z z y w xr � � � �1 2 1 2 1 2 1 2 	

y x z y w z x w yr � � � � �1 2 1 2 1 2 1 2 	

z x y y x z w w zr � � � �1 2 1 2 1 2 1 2 	

w x x y y z z w wr � � � � �1 2 1 2 1 2 1 2 	

The details of QRotation() are as follows:

Vector3 QRotation(Vector4 qr, Vector3 p) {

    Vector4 pq = new Vector4(p.x, p.y, p.z, 0);

    Vector4 qr_inv = new Vector4(-qr.x, -qr.y, -qr.z, qr.w);

    pq = QMultiplication(qr, pq);

    pq = QMultiplication(pq, qr_inv);

    return new Vector3(pq.x, pq.y, pq.z);

}

This function receives a quaternion, qr,

q x y z wr r r r r, , ,� � � 	

and a position, P,

P x y z� � �, , 	

computes and returns the result of rotating P by qr. The first line in this function 

expresses the input position P as a quaternion, Pq,

P x y zq � � �, , ,0
	

The function then defines the inverse of qr, qr
−1 ,

q x y z wr
� � � � �� �1

r r r r, , , 	

computes the quaternion rotation

	
P q P q x y z wq r

� �� � � �� � � �r q , , ,1
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and returns the resulting position, (x′, y′, z′). With the utility functions defined, the 

details of Update() are as follows:

void Update() {

    Vector3 axis = A.transform.localPosition;

    Vector4 q = QFromAngleAxis(Theta, axis);

    Pr.transform.localPosition =

                QRotation(q, Pi.transform.localPosition);

    #region  For visualizing the vectors

    #endregion

}

The first two lines of the function interpret the location of A as a position vector 

representing the axis of rotation and construct a rotation quaternion, q, based on the 

user-specified angle of rotation, Theta. The last line of the function computes the 

quaternion rotation using the position of Pi and sets the result as the location of Pr.

�Takeaway from This Example

This is a straightforward example for verifying the validity of the discussed quaternion 

definition, multiplication, and rotation.

Relevant mathematical concepts covered include

•	 Quaternion, a tuple of four floating-point numbers, can be used to 

represent a rotation.

•	 Rotating a position by an angle about an axis through the origin can 

be implemented by multiplying the position with an appropriately 

defined quaternion and the inverse of that quaternion.

•	 Quaternion rotation, encoded in four floating-point numbers, is only 

capable of supporting rotations where the axis of rotation passes 

through the origin.
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EXERCISES

Inverse of a Rotation Quaternion

The rotation quaternion, q, for a rotation with an angle θ along the axis V̂ x y za � � �a a a, ,  is 

defined as

q x y z� �
�
�

�
�
�a a a, , ,sin sin sin cos

� � � �
2 2 2 2 	

Show that the inverse of q is

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

There are two ways to consider the inverse of a rotation. First, the inverse of a rotation is a 

rotation by the same angle along the negative rotation axis. In this case, the angle of rotation is 

still θ and along the negative axis � � � � �� �V̂ x y za a a a, , ,

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

Second, an alternative way to consider an inverse of a rotation is a rotation along the 

same axis by a negative angle. In this approach, the angle of rotation is −θ and along the 

same axis V̂a

	
q x y z� �

� � � ��
�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �

	

Since

sin sin� � �� � 	

cos cos� �� � 	

The inverse of the rotation is still

	
q x y z� � � � ��

�
�

�
�
�

1

2 2 2 2a a a, , ,sin sin sin cos
� � � �
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You have demonstrated that both of the approaches to defining the inverse of a quaternion 

rotation result in the same expression.

The qI Identity Quaternion

By following the definition of quaternion inverse and multiplication, show that given the 

quaternion identity, qI,

qI , , ,� � �0 0 0 1 	

It is always true that

q qI
� �1

I 	

And given any quaternion, qa, it is always true that

q q q q qa I a a I= = 	

These observations indicate that the quaternion identity is ideal for serving as the initial value 

when accumulating quaternion multiplication results.

Quaternion Multiplication: Commutative and Associative

It is stated, but without proof, that quaternion multiplication is not commutative and is 

associative or in general

q q q q1 2 2 1≠ 	

and it is always the case that

	 q q q q q q1 2 3 1 2 3� � � � � 	

Knowing the definition of quaternion multiplication, you can now substitute and expand the 

preceding expressions to demonstrate for yourself that the preceding properties are true in 

general.
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Verify Quaternion Multiplication Is Associative

Notice that in the QRotation(), the expression

	
P q P qq r

� �� r q
1

	

is implemented by the following two lines:

       pq = QMultiplication(qr, pq);

       pq = QMultiplication(pq, qr_inv);

This two-line implementation corresponds to

	
P q P qq r

� �� � �r q
1

	

Since quaternion multiplication is associative, you can switch the order of the two lines of 

code to implement

	
P q P qq r

� �� � �r q
1

	

Now, modify the given code and verify that the example continues to function correctly.

The w-Component of a Quaternion-Rotated Position

Expend the quaternion rotation expression

	
P q P qq r

� �� r q
1

	

and verify that the w-component of Pq
′  is always zero. You can reconfirm your derivation by 

making a Debug.Log() function call in the QRotation() function to print out the value of 

the w-component of Pq before the return statement.

Verify the Quaternion Rotation Formula

From trigonometry, you know or you can show that the result of rotating a 2D position (x, y) by 

θ around the Z-axis is the position

	 � � �x x ycos sin� � 	

	 � � �y x ysin cos� � 	
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Note that this rotation can be described by the quaternion rotation q � ,V̂� � , where

V̂ , ,� � �0 0 1 	

or

q �
� �

, , , , , ,0 0 1 0 0
2 2

� �� � � �
�
�

�
�
�sin cos  and

	
q� � �� � � ��

�
�

�
�
�

1 0 0 1 0 0
2 2

�
� �

, , , , , ,sin cos
	

Now, show that the given quaternion rotation formula for the position Pq = (x, y, 0, 0)

P q P q x y z wr q r r r r
� �� � � � � �� �1 , , , ,

	

is valid for 2D rotation about the Z-axis, where

x x x yr
� � � �� cos sin� � 	

y y x yr
� � � �� sin cos� � 	

zr
� � 0 	

wr
� � 0 	

�Quaternion Concatenation
You have learned that a quaternion encodes a rotation of θ degrees along an 

axis, V̂ , ,a a a a� � �x y z , as

q x y z1 2 2 2 2
�

� � � �
,V , , ,a a a a
ˆ sin sin sin cos� � � �

�
�

�
�
�

	

To rotate a position, Pi = (xi, yi, zi), with the quaternion q1, you would express the 

position as a quaternion with the last component being zero

P x y zq � � �i i i, , ,0
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and compute

	
P q P q x y z wr q

� �� � � �1 1
1

r r r r, , ,
	

With the w-component, wr, being zero, the rotated position is

P x y zr � � �r r r, , 	

Now, following the same process, you can continue to rotate the position Pr by 

another rotation q2

P q P qr r
" � � �

2 2
1

	

If you express Pr
′  as a function of the origin position, Pq,

P q q P q qr q
" � � �� �

2 1 1
1

2
1

	

Since quaternion multiplication is associative, this same expression can be written as

P q q P q qr q
" � � � � �� �

2 1 1
1

2
1

	

In the exercise at the end of this section, you will show that the inverse of q2 q1, or 

(q2 q1)−1, is q q1
1

2
1− − . If you let

q q qc = 2 1 	

then

P qr c
" =  Pq qc

−1

Note T he operation qc = q2q1 combines two rotation quaternions into one and is 
often referred to as concatenating quaternions. For example, qc is the concatenated 
result of q2 and q1.

The preceding derivation shows that applying new rotations, q2, on a q1 rotated 

result, Pr
′ , is the same as concatenating q2 and q1 and applying the resulting rotation, 

qc, on the initial position, Pq. The key observation is that quaternion rotations can be 

concatenated to capture the combined results of multiple subsequent rotations.
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Remember that quaternion multiplication is not commutative and that qc = q2 q1 is in 

general different from qd = q1q2. The order of rotation is important: the order for qc is q1 

first than q2, while the order for qd is q2 first than q1. These two rotations are different in 

general.

Note T he quaternion, qc = q2 q1, encodes a rotation that performs q1 first 
followed by q2. It may be counterintuitive, but although q1 is on the right-hand 
side of the concatenation further away from the assignment, the q1 operation is 
performed first.

�The Quaternion Concatenation Example
This example demonstrates the results of applying multiple quaternions and a single 

concatenated quaternion in rotating a position. This example allows you to interactively 

manipulate three individual rotations and examine the results of applying the rotations 

independently verses the concatenated result as one single quaternion. Figure 8-4 

shows a screenshot of running the EX_8_2_QuaternionConcatenation scene from the 

Chapter-8-Quaternions project.

Figure 8-4.  Running the Quaternion Concatenation example
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The goals of this example are for you to

•	 Examine the results of applying multiple quaternion rotations to a 

position

•	 Gain experience with concatenation of quaternion rotations

•	 Verify that the concatenated quaternion delivers identical results as 

applying the rotations individually

•	 Appreciate the importance of concatenation ordering: subsequent 

rotations are concatenated on the left

�Examine the Scene

Take a look at the Example_8_2_QuaternionConcatenation scene and observe three sets 

of variables representing the input and results of three subsequent quaternion rotations. 

In the following discussion, the three rotations are referred to as q, q1, and q2.

•	 Axis of rotations: A, A1, and A2 checkered spheres. The position 

vectors to these objects define the axes of rotations for the three 

corresponding rotations q, q1, and q2.

•	 Input and results of individual rotations: Pi (green), Pr (red), Pr1 

(blue), and Pr2 (black). The following equations summarize the 

relationships of these variable:

P q P qr i� �1

	

P q P qr r1 1 1
1� �

 or P q q P q qr i1 1
1

1
1� � �

P q P qr r2 2 1 2
1� �  or P q q q P q q qr i2 2 1

1
1
1

2
1� � � �

where Pi is the user-controlled input of the q-rotation. Pr is the 

result of the q-rotation and is the input to the q1-rotation with 

output of Pr1 which in turn is served as the input to the q2-

rotation with final output of Pr2.

•	 Result of the concatenated rotation: Pc (gray) is the result of 

concatenating q, q1, and q2 rotations and applying to user input Pi or

P q P qc c i c� �1
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where

	 q q q qc = 2 1 	

Note that quaternion multiplication is not commutative and that 

the preceding concatenation order says that the order of performing 

rotations is q first then q1 and lastly q2.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the variables with the same names 

as their corresponding reference game objects in the scene. Additionally, there are three 

floating-point variables, Theta, Theta1, and Theta2, for defining the degrees of rotations 

for the three rotations and corresponding toggles for showing/hiding the details of each 

rotation to avoid screen cluttering. The very last Boolean, DrawPc, toggles the drawing/

hiding of Pc.

�Interact with the Example

Click the Play button to run the example. You can see a cluttered of three independent 

rotations with three axes of rotations showing as vectors in red, blue, and black pointing 

to the three checkered spheres, A, A1, and A2. Take note that with DrawPc default to false, 

the gray Pc sphere is not visible.

In the following steps, your goal is to display, interact with, and examine each of the 

three rotations individually to verify the relationship of their inputs and results. You can 

begin with examining the first rotation, q, by selecting the Controller and toggling off 

DrawQuaternion1 and DrawQuaternion2. You are left with the details of the q-rotation 

defined by the axis A and Theta where the input is Pi (green) and result is Pr (red). Feel 

free to manipulate the positions of Pi, and A, and the value of Theta to note that as you 

modify the q-rotation, the positions of the other three objects (Pr, Pr1, and Pr2) follow in 

rigid manners maintaining constant angular displacements. This is as expected because 

these three objects are results of subsequent rotations. You can repeat this exercise 

for the other two rotations by hiding/showing the corresponding quaternions and 

manipulating the respective GameObjects and variables.

Verify that Pi maintains its location when you are examining the q1-rotation and that 

the positions of both Pi and Pr do not change when you examine the q2-rotation. These 

are inputs, and thus their positions are independent from the corresponding rotations.
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Now, with all three quaternions showing, toggle on/off the DrawPc variable. Verify 

that Pc (gray) is located at exactly the same position as Pr2 (black). You can manipulate 

the three rotations, A (Theta), A1 (Theta1), and A2 (Theta2), and the Pi position to verify 

that the positions of Pr2 and Pc always overlap perfectly.

Recall that the position of Pr2 is the result of applying the three individual 

rotations or

	 P q q q P q q qr i2 2 1
1

1
1

2
1� � � �

	

while the position of Pc is the result of applying the concatenated quaternion

q q q qc = 2 1 	

P q P qc c i c� �1

	

You have verified that rotation quaternions can indeed be concatenated to capture 

the results of the combined rotations.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Pi = null;  // user control input position

public GameObject Pr = null;  // q-rotated position

public GameObject A = null;   // Axis of q-rotation

public float Theta = 30.0f;   // Angle of q-rotation

public bool DrawQuaternion = true;

public GameObject Pr1 = null;  // q1-rotated position

public GameObject A1 = null;   // Axis of q1-rotation

public float Theta1 = 40f;     // Angle of q1-rotation

public bool DrawQuaternion1 = true;

public GameObject Pr2 = null;  // q2-rotated position

public GameObject A2 = null;   // Axis of q2-rotation

public float Theta2 = 50f;     // Angle of q2-rotation

public bool DrawQuaternion2 = true;
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public GameObject Pc = null;   // qc-rotated position

public bool DrawPc = false;

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(Pi != null);   // Verify proper setting

    Debug.Assert(Pr != null);

    Debug.Assert(A != null);

    Debug.Assert(Pr1 != null);

    Debug.Assert(A1 != null);

    Debug.Assert(Pr2 != null);

    Debug.Assert(A2 != null);

    Debug.Assert(Pc != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component, and as in all previous examples, the Debug.

Assert() calls in the Start() function ensure proper setup regarding referencing the 

appropriate game objects via the Inspector Window.

This example utilize the exact same three quaternion utility functions as the 

previous example to define QFromAngleAxis(), multiply QMultiplication(), and rotate 

QRotation() quaternions. Please refer to the previous section for the details of these 

functions. The details of Update() are as follows:

void Update() {

    Vector4 q  = QFromAngleAxis(Theta,

                                A.transform.localPosition);

    Vector4 q1 = QFromAngleAxis(Theta1,

                                A1.transform.localPosition);

    Vector4 q2 = QFromAngleAxis(Theta2,

                                A2.transform.localPosition);
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    Pr.transform.localPosition =  QRotation(q,

                                  Pi.transform.localPosition);

    Pr1.transform.localPosition = QRotation(q1,

                                  Pr.transform.localPosition);

    Pr2.transform.localPosition = QRotation(q2,

                                  Pr1.transform.localPosition);

    Vector4 qc = QMultiplication(q1, q);

    qc = QMultiplication(q2, qc);

    Pc.transform.localPosition = QRotation(qc,

                                 Pi.transform.localPosition);

    #region  For visualizing the vectors

    #endregion

}

The first three lines define the three quaternion rotations q, q1, and q2 based on the 

user-specified angles Theta, Theta1, and Theta2 and the positions of A, A1, and A2 as 

position vectors for axes of rotation. The next three lines compute the three individual 

rotations: Pi by q to compute Pr, Pr by q1 to compute Pr1, and Pr1 by q2 to compute Pr2.

The last three lines compute the concatenated qc

	 q q q qc = 2 1 	

and rotate Pi by qc to compute Pc.

Note T he observed concatenated result being identical to applying individual 
quaternions is valid for any number of quaternions in the concatenation.

�Takeaway from This Example

Through this example you have examined and verified that applying a sequence of 

quaternion rotations to a position is the same as concatenating the rotations and 

applying the resulting quaternion.
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Relevant mathematical concepts covered include

•	 Multiplying multiple quaternions into a single quaternion is referred 

to as concatenating the quaternions.

•	 The inverse of a concatenated quaternion is the concatenation of the 

inverse of individual quaternions in the reversed order, that is, for n 

number of quaternions if

q q q qc n� � 2 1 	

then

q q q q q qc n
� � � �� �� � � �1

2 1

1

1
1

2
1  qn

−1

•	 The rotation order of a concatenated quaternion is from the 

rightmost toward the left. That is, given

q q q qc n� � 2 1 	

The rotation qc is the equivalent of applying q1 first, followed by q2 and so on, 

where qn would be the last to be applied.

•	 Rotating a position by a sequence of quaternion rotations is identical 

to concatenating the rotations and rotating the position with the 

resulting concatenated quaternion

EXERCISES

Inverse of Concatenated Rotation Quaternion

Show the inverse of q2q1, or (q2q1)−1, is q q1
1

2
1− − . Note that q2q1 is applying rotation q1 followed 

by q2. Intuitively, to undo these two rotations, you would first undo the second rotation, thus 

applying q2
1−  first, and then undo the first rotation. Thus, intuitively the inverse of q2q1 would 

be q q1
1

2
1− −  (apply q2

1−  before q1
1− ). Algebraically, since you know the definition of quaternion 

multiplication, you can simply compute and expand

q q x y z wc c c c2 1 � � �, , , 	
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and

	 q q x y z wr r r r1
1

2
1� � � � �, , , 	

And verify that xc =  − xr, yc =  − yr, zc =  − zr, and wc = wr.

The Number of Quaternions Concatenated

Verify the validity of concatenating two and four rotations. For two rotations, q1q, you can 

modify MyScript to verify

	 P q q P q qc i� � �
1

1
1
1

	

is identical to Pr. For four rotations, you can include support for an additional axis and theta 

accordingly.

The Importance of Order of Concatenation

Verify the importance of order of concatenation by modifying MyScript to compute

	 q q q qc = 1 2 	

and show that the resulting location of Pc is in general very different from that of Pr2.

�Aligning Vector Directions
Given two normalized vectors, V̂1  and V̂2 ,

	 V̂ x y z1 1 1 1� � �, , 	

	 V̂ x y z2 2 2 2� � �, , 	

You have learned that the cosine of the angle, θ, between these two vectors is

	 cos� � �V V 

1 2 	

or

� =cos 1 2
-1 V V �� �
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You have also learned that when the two vectors are not parallel, if θ is not equal to 00 

or 1800, a plane with a normal vector, 


Vn , can always be defined where

	
  

V V Vn � �1 2 	

Remember that vectors are independent from locations, and when depicted at the 

origin, V̂1  and V̂2  can be interpreted as the position vectors of positions, P1 = (x1, y1, z1) 

and P2 = (x2, y2, z2).

This fact, combined with the knowledge of quaternion rotation representation, 

can make the following derivation. Given any two vector directions, V̂1  and V̂2 , you 

can compute

� � �� ��cos 1
1 2V V   and

	
  

V V Vn � �1 2 	

and define the rotation, q Vn� , ˆ� � , with rotation angle of θ and axis of V̂n . This 

rotation will rotate position P1 to P2 and thus is a rotation that aligns vector V̂1  to point to 

the direction of V̂2 .

The key observations are that the angle of rotation can be derived by the dot product 

and that the axis of rotation is the cross product between the vectors. Since V̂1  and V̂2  

are two arbitrary vectors, you have just derived a rotation that aligns the directions of any 

two given vectors.

�The Align Vector Directions Example
This example demonstrates the derivation of angle and axis of rotation to define a 

quaternion rotation for aligning any two position vectors. Figure 8-5 shows a screenshot 

of running the EX_8_3_AlignVectorDirections scene from the Chapter-8-Quaternions 

project.
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Figure 8-5.  Running the Align Vectors example

The goals of this example are for you to

•	 Verify the vector direction aligning quaternion rotation

•	 Define and manipulate two arbitrary vectors to derive and examine 

the required rotation for aligning their directions

•	 Experience implementing the direction aligning quaternion rotation

•	 Appreciate that the alignment is specific to directions

�Examine the Scene

Take a look at the Example_8_3_AlignVectorDirections scene and observe the green 

P1, red P2, and blue Pc spheres. The positions of these objects represent the position 

vectors where P1 and P2 are positions under user control while Pc will be in continuous 

motion showing the process of rotating from the directions of P1 position vector to 

that of P2.
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�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same 

names as their corresponding reference game objects in the scene. As in previous 

examples, the DrawQuaternion toggles the showing/hiding of the axis and plane of 

rotation. The NextPcFrom option, as will be detailed, specifies one of three different ways 

to compute the next Pc position.

�Interact with the Example

Click the Play button to run the example. You can see a red rotation axis with P1, P2, and 

Pc lying on the corresponding white rotation plane where Pc (blue) is in continuous 

motion rotating from the directions of P1 (green) to P2 (red) position vectors. You are 

observing the rotation that aligns the directions of 


V1  and 


V2  for position vectors of 

P1 and P2.

Note that in the following manipulations you will not affect the Pc rotation being 

from 


V1  toward 


V2 . In other words, throughout the manipulations you will always 

observe Pc traveling from P1 toward P2. Your manipulation will change how Pc', the 

next Pc position, is computed. The interesting observation is that the same continuous 

rotation can be accomplished in at least three different ways.

Now, select the Controller object and iterate through each of the three options 

for NextPcFrom: FromPc, FromP1, and FromP2. Notice that while the color of Pc changes 

the rotation motion is completely unaffected. As illustrated in Figure 8-6, the angular 

movement of Pc is constantly from P1 toward P2 where the next Pc position, Pc', is 

Figure 8-6.  The three rotations to compute Pc', the next position of Pc
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always ∆θ in the direction of P2. However, the actual Pc' position can be derived in three 

different ways according to NextPcFrom option:

•	 FromPc: Computes Pc' by rotating ∆θ from current Pc and sets the 

color to blue

•	 FromP1: Computes Pc' by rotating θ1 + ∆θ from P1 and sets the color 

to green to match the color of P1

•	 FromP2: Computes Pc' by rotating θ2 − ∆θ from P2 and sets the color 

to red to match the color of P2

Through these options you have verified that there are multiple ways to implement 

a rotation and that the quaternion rotation can indeed be inversed, or reversed: the next 

Pc position, Pc', can be calculated based on rotations from either P1 or P2.

In the next manipulation, you will verify that the quaternion rotation aligns 

direction. Now, select and manipulate P1 position to observe the red rotation axis 

updating to maintain the perpendicular plane of rotation that contains all three spheres; 

P1, P2, and Pc. Note the continuous motion of Pc rotating from the directions of 


V1  to 


V2  

is independent from the length or magnitude of the 


V1  vector. You can further verify this 

by selecting and setting the position of P1 to be located along the X-axis, for example, 

(4, 0, 0). Now, increase and decrease the x-component value and note that the change 

does not affect the axis of rotation or the Pc motion of continuously rotating from P1 to 

P2. In this case, changing the x-component value does not affect the direction of 


V1  and 

thus has no effect on the quaternion rotation. Feel free to repeat the manipulation with 

P2. In these interactions you have verified that the derived rotation is indeed aligning 

directions or unit vectors.

Note  When manipulating the x-component value of the P1 position, if you change 
the sign of from positive to negative, you are effectively reversing the direction of 
the 



V1  vector, and thus, you will observe a change in the rotation motion.

Lastly, you can observe the subtle and important difference of computing the next 

result from the current value in the FromPc computation vs. computing the next result 

from the actual initial or final value in the FromP1 and FromP2 options. With NextPcFrom 

set to FromPc, select and manipulate P1 position away from the current plane of rotation, 

for example, by drastically increasing the y-component value of P1 from the previous 
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manipulation. Notice the blue vector to Pc, while rotating toward P2, does not reside 

on the plane of rotation anymore. This is not surprising, since in FromPc mode, the next 

Pc position is derived from the current Pc position, which in this case does not lie on 

the updated plane of rotation. Note that in FromP1 or FromP2 modes, since the next Pc 

position is derived from the actual initial or final values, the next Pc position will always 

be on the plane of rotation. While the behaviors are different, there is no correct, wrong, 

or better solution.

Different approaches to computing a solution have different characteristics. As a 

developer, your job is to understand these options and choose the best desired behavior.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public enum PcPositionMode {

    FromPc,

    FromP1,

    FromP2

};

public GameObject P1 = null;    // The first position

public GameObject P2 = null;    // The second position

public GameObject Pc = null;

public bool DrawQuaternion = true;

public PcPositionMode NextPcFrom = PcPositionMode.FromPc;

private const float kDeltaTheta = 30f; // rotation speed

private const float kSmallAngle = 1f;  //

#region For visualizing the vectors

#endregion

void Start() {

    Debug.Assert(P1 != null);   // Verify proper setting

    Debug.Assert(P2 != null);

    Debug.Assert(Pc != null);

    Pc.transform.localPosition = P1.transform.localPosition;
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    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component. The two private constants define the rate to 

rotate Pc and when Pc is sufficiently close to P2 for re-initializing the rotation. As in all 

previous examples, the Debug.Assert() calls in the Start() function ensure proper 

setup regarding referencing the appropriate game objects via the Inspector Window. 

The very last line initializes the position of Pc such that the rotation will begin from the 

position of P1.

As in the case of the previous examples in this chapter, this example utilizes the 

exact same three quaternion utility functions as the previous examples to define 

QFromAngleAxis(), multiply QMultiplication(), and rotate QRotation() quaternions. 

Please refer to the previous section for the details of these functions.

The details of Update() function are as follows:

void Update() {

    Vector3 V1n = (P1.transform.localPosition).normalized;

    Vector3 V2n = (P2.transform.localPosition).normalized;

    Vector3 Vcn = (Pc.transform.localPosition).normalized;

    float cosTheta = Vector3.Dot(V1n, V2n);

    if (Mathf.Abs(cosTheta) >= (1.0f-float.Epsilon)) {

        Debug.Log("V1 and V2 are almost parallel:

                                  cannot rotate to align");

        return; // V1 V2: almost parallel

    }

    float theta1 = Mathf.Acos(Vector3.Dot(Vcn, V1n)) *

                                           Mathf.Rad2Deg;

    float theta2 = Mathf.Acos(Vector3.Dot(Vcn, V2n)) *

                                           Mathf.Rad2Deg;

    float alpha = 0f;

    Vector3 axis = Vector3.zero;

    Vector3 Pf = Vector3.zero;
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    if (theta2 > kSmallAngle) {

       switch (NextPcFrom) {

          case PcPositionMode.FromPc:

               alpha = kDeltaTheta * Time.deltaTime;

               axis = Vector3.Cross(Vcn, V2n);

               Pf = Vcn;

          break;

          case PcPositionMode.FromP1:

               alpha = theta1 + (kDeltaTheta * Time.deltaTime);

               axis = Vector3.Cross(V1n, V2n);

               Pf = V1n;

          break;

          case PcPositionMode.FromP2:

               alpha = theta2 - (kDeltaTheta * Time.deltaTime);

               axis = Vector3.Cross(V2n, V1n);

               Pf = V2n;

           break;

       }

       Vector4 q = QFromAngleAxis(alpha, axis);

       Pc.transform.localPosition = QRotation(q, Pf);

   } else {

       Pc.transform.localPosition = P1.transform.localPosition;

   }

   #region  For visualizing the vectors

   #endregion

}

The first three lines of the Update() function compute the normalized position 

vectors to positions P1 (V̂1 ), P2 (V̂2 ), and Pc (V̂c ). The dot product and if condition that 

follow check for the condition when P1 and P2 are collinear and a rotation cannot be 

defined. The following two lines, as illustrated in Figure 8-6, compute the angles between 

V̂1  and V̂c , theta1 (θ1), and V̂2  and V̂c , theta2 (θ2).

The if statement that follows ensures that θ2 is sufficiently large, where V̂2  and V̂c  

are not already aligned. Otherwise, the else condition re-initializes the rotation to begin 

from the direction of position vector to P1.
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When θ2 is sufficiently large or when the directions V̂2  and V̂c  are not already 

aligned, the three cases in the switch statement implement three rotations based on the 

value of NextPcFrom. The next Pc position, or Pc' in Figure 8-6, is computed by rotating a 

variable position, Pf, with the q � ,Â� �  rotation, where depending on NextPcFrom

•	 FromPc: α = ∆θ, 


A V Vc� �ˆ
2̂ , and P Vf c= ˆ

•	 FromP1: α = θ1 + ∆θ, 


A V V� �ˆ ˆ
1 2 , and P Vf = 1̂

•	 FromP2: α = θ2 − ∆θ, 


A V V� �ˆ ˆ
2 1 , and P Vf = 2̂

Note that since ∆θ is a constant positive number, although the next position of Pc, 

Pc' in Figure 8-6, is derived in different ways, the resulting rotation motion is always 

from P1 toward P2 position. The modulation by deltaTime, the wall-clock time, is to 

ensure the rotation speed is based on real-world time instead of the frame rate of your 

machine.

�Takeaway from This Example

This example led you through defining two position vectors, deriving three different 

rotations in opposite directions to align these vectors, and examining the results of 

applying those rotations. It is important to remember that in this example all positions 

represent position vectors and that you have observed the rotation and aligning of 

directions.

Relevant mathematical concepts covered include

•	 The rotation that aligns two directions can be derived based on the 

angle between the directions and the axis that is defined by their 

cross product.

•	 The derived alignment rotation is specific to aligning directions.

•	 There are variations to the implementation of the alignment rotation 

where the rotation can be carried out from either of the directions.
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EXERCISES

Concatenation of Quaternions

When NextPcFrom is FromP1, compute, concatenate, and apply the following two 

quaternions to P1: first, q1 to rotate P1 to current Pc, and second, q2 to rotate Pc toward P2 by 

∆θ. Verify that the angular motion of Pc remains unchanged.

The rotation q1 rotates from P1 to Pc, and thus the angle of rotation is θ1 and axis of rotation is 
ˆ ˆV Vc1 × . The rotation q2 continues the rotation toward P2 and thus the angle of rotation is ∆θ 

based on the same axis of rotation.

The concatenated result will be applied to rotate P1 and thus the first rotation to be applied 

must be q1 and followed by q2. For this reason, the concatenated rotation is qc = q2q1. You can 

now verify that applying qc to P1 results in identical Pc motion.

Aligning P2 to P1

Modify the Update() function to compute the rotation that aligns the directions from P2 to 

P1. In order words, flip the direction of the angular movement such that Pc always rotates 

from the P2 and ends in the P1 direction.

�Interpolation and Chasing Behavior
Recall that you were able to launch an agent to travel toward a moving target in the 

Velocity and Aiming example, EX_4_3_VelocityAndAiming scene, from the Chapter-4-

Vectors project. While interesting, you may have found the instantaneous and rigid 

updates of the agent’s traveling direction to be unrealistic. In practice, when a target 

moves, it takes time for you to react and the adjustment you make should be continuous, 

changing gradually from your current direction to the target’s new direction. This 

gradual change is more profound in the case of mechanical systems. For example, 

consider updating the aiming direction of a projectile launching turret, you would expect 

the device to rotate steadily from its current aim direction to the new direction.
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This section first introduces the concept of interpolation as a solution to support 

gradual value changes over time. The interpolation of angles of rotation is then discussed 

to integrate interpolation into direction aligning quaternions to simulate the chasing or 

home-in behavior.

�Interpolation: Gradual Changes
In the physical world, it takes time to react and respond. In the case of aiming at or 

traveling toward a target in motion, the change of direction should be gradual over time. 

In other words, the change of direction should be interpolated.

Figure 8-7 uses the change of an arbitrary parameter as an example to explain 

interpolation, where at time t1 a parameter with an old value is to be assigned a new one. 

In this case, instead of updating the value abruptly, interpolation will change the value 

gradually over time. It will compute the intermediate results with decreasing values and 

complete the change to the new value at a later time t2.

Figure 8-7.  Interpolating values based on linear and exponential functions

Figure 8-7 shows that there is more than one way to interpolate values over time. 

For example, linear interpolation computes intermediate results according to the slope 

of the line connecting the old and new values. In contrast, an exponential function may 

compute intermediate results based on percentages from previous values. With linear 

interpolation, the change of aiming direction would occur with a constant rotation. In 

comparison, interpolation based on a given exponential function would update the aim 

direction rapidly at first, then slow down quickly over time giving a sensation of reacting 

and re-aiming at the new target position.
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Human motions and movements typically follow exponential interpolation 

functions. For example, try turning your head from facing the front to facing the right 

or moving your hand to pick up an object on your desk. Notice that in both cases, you 

began with a relatively quick motion and slowed down significantly when the destination 

is in close proximity. That is, you probably started by turning your head quickly and 

slowed down rapidly as your view approaches your right side, and it is likely your hand 

started moving quickly toward the object and slowed down significantly when the hand 

is almost reaching the object. In both of these examples, your displacements followed 

the exponential interpolation function as depicted in Figure 8-7—quick changes 

followed by a rapid slowdown as the destination approaches. This is the function you 

will integrate later in this section into quaternion rotations to align vector directions 

because it mimics organic movements.

Note  Linear interpolation is often referred to as LERP or lerp. The result of lerp 
is the linear combination of an initial and a final value. In almost all cases, the 
exponential interpolation depicted in Figure 8-7 is approximated by repeatedly 
applying the lerp function where in each invocation, the initial value is the result 
of the previous lerp invocation—in effect, approximating the exponential function 
with a piecewise linear function. For this reason, lerp is also used to refer to the 
depicted exponential interpolation.

Figure 8-8.  Current and new directions of a chasing behavior
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�The Chasing or Home-In Behavior
Figure 8-8 illustrates an agent at location Pa moving toward a target at Pt, where Pt is in 

motion. The chasing of Pa toward the in-motion Pt can be simulated by interpolating 

the angle of the direction aligning quaternion rotations. In Figure 8-8, Pa and V̂a  are the 

existing agent position and traveling direction. As the target position, Pt, changes over 

time, the traveling direction of the agent can be gradually adjusted as follows.

The new traveling direction of the agent should be from Pa toward the current Pt, V̂at ,

ˆ .Vat t a� �� �P P Normalized 	

Since the existing traveling direction of the agent is V̂a , a rotation, q Vn� , ˆ� �  is 

required to align V̂a  to V̂at , where

� � �� ��cos 1 V V 

a at  and

  

V V Vn a at� � 	

In order to support gradual rotation of V̂a  toward V̂at , the values of θ should be 

interpolated over time. Following the exponential function depicted in Figure 8-7, the 

direction realignment can be accomplished via a series of rotations, each with a fraction 

of the actual angle required

	
� � � �� ��� Rate V Vcos 1

 

a at
	

where

0 0 1 0. .< <Rate 	

When traveling with a constant speed and a direction that is constantly adjusted by 

the rotation q Vn�� �� , ˆ , the agent would result in gradually approaching homing into or 

chasing after the target position.

Note  Linearly interpolating the angle of a quaternion rotates the head of a vector 
following the circumference of a sphere and is referred to as spherical linear 
interpolation, or SLERP.
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�The Chasing Behavior Example
This example demonstrates how chasing behavior can be improved by using gradual 

instead of instantaneous direction changes. This example allows you to interactively 

manipulate a target and an observer position, examine gradual direction changes, 

and launch an agent from the observer position to home in to or chase after the target 

position. Figure 8-9 shows a screenshot of running the EX_8_4_ChasingBehavior scene 

from the Chapter-8-Quaternions project.

Figure 8-9.  Running the Chasing Behavior example

The goals of this example are for you to

•	 Examine the implementation of interpolating directions

•	 Interact and gain experience with the results of linearly interpolating 

the angle for rotation, or SLERP

•	 Observe the results of direction interpolation

•	 Verify the home-in or chasing behavior
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�Examine the Scene

Take a look at the Example_8_4_ChasingBehavior scene and examine the three spheres: 

checkered observer, Po; red target, Pt; and green agent, Pa. In this example, the user can 

interactively manipulate the positions of Po and Pt and activate the agent to chase after 

the target position.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the three variables with the same 

names as their corresponding reference game objects in the scene. The ActivateAgent 

toggle launches the green agent to chase after the target position, and the Rate variable 

controls the rate of interpolation where values of zero would mean ignoring the target 

and a value of around 60 would change agent traveling direction instantaneously.

Note T o maintain consistency in performance, as you will observe when 
analyzing the source code, the Rate variable is modulated by the wall-clock 
elapsed time. The value 60 corresponds to an approximate frame refresh rate of 
your machine. Your actual frame refresh rate may be higher or lower than 60, but a 
value of 60 will approximately give you an instantaneous update.

�Interact with the Example

Click the Play button to run the example. You can see a green vector attached to the 

checkered observer, Po. The green vector represents the direction from the checkered 

observer to the red target, Pt. On start, the green vector begins by pointing toward the 

positive x-direction and rotates gradually to align with the direction from the checkered 

observer to the red target sphere.

Select and manipulate the positions of the checkered observer or the red target to 

verify that the green vector always follows and gradually matches the actual direction 

from the observer to the target. You can compare and contrast this behavior to that of 

EX_4_3_VelocityAndAiming, where without interpolation, the aiming at the target is 

instantaneous and rigid and lacks the realism of organic reaction time.
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Select the Controller and set the Rate to 0. You can verify that the green vector will 

not update as the positions of the observer and target change. Recall that a rate of zero 

means ignoring the final value and to not change the current value. Set the Rate to a 

larger value, for example, 10, to observe that the interpolation occurs too quickly for you 

to observe any gradual changes. In this implementation, the values of the Rate variable 

convey a sense of stiffness, or how quickly and rigidly the green vector follows the actual 

direction.

Now, set the Rate value to 0.8 and enable the ActivateAgent toggle. The green 

vector on the green agent is the direction of its velocity. Observe that the green agent 

initially travels toward the x-direction and then adjusts gradually to the direction toward 

the target. Upon reaching the target position, since there is no support for collision, 

the agent continuously moves beyond the target and attempts to adjust its traveling 

direction resulting in orbiting the target. You can manipulate the red target position to 

observe the green agent always chases after and attempts to home in on the target. You 

can toggle ActivateAgent to relaunch the agent.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Po = null;    // Observer position

public GameObject Pt = null;    // Target position

public GameObject Pa = null;    // Agent position

public bool ActivateAgent = false;

public  float Rate = 0.8f;

private Vector3 Vot = Vector3.right;  // (1,0, 0)

private Vector3 Vat =  Vector3.right; // (1, 0, 0)

private const float kAgentSpeed = 0.01f;

private const float kSmallAngle = 1f;

#region For visualizing the vectors

#endregion
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void Start() {

    Debug.Assert(Po != null);    // Verify proper setting

    Debug.Assert(Pt != null);

    Debug.Assert(Pa != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component. The private variables, Vot and Vat, are the vectors 

representing the directions from the observer to the target, 


Vot , and from the agent 

to the target, 


Vat . Note that these two vectors are initialized to point in the positive 

x-direction. The two constants define the speed of the traveling agent and the condition 

when directions are aligned. As in all previous examples, the Debug.Assert() calls in 

the Start() function ensure proper setup regarding referencing the appropriate game 

objects via the Inspector Window.

In this example, in addition to the three previously defined quaternion utility 

functions, QFromAngleAxis(), QMultiplication(), and QRotation(), an additional 

function AlignVectors() is introduced to compute and interpolate vectors with details 

as follows:

Vector3 AlignVectors(Vector3 from, Vector3 to, float rate) {

    from.Normalize();

    to.Normalize();

    float theta = Mathf.Acos(Vector3.Dot(from, to))

                                            * Mathf.Rad2Deg;

    Vector4 q = new Vector4(0, 0, 0, 1); // Quaternion identity

    if (theta > kSmallAngle) {

        Vector3 axis = Vector3.Cross(from, to);

        q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta,

                           axis);

    }

    return QRotation(q, from);

}
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The first three lines of the function normalize the input from and to vectors and 

perform a dot product to compute the angle, θ, between the two input vectors. When θ 

is sufficiently large, the vector aligning quaternion is defined to rotate the from vector by 

an angle that is rate×θ toward the to vector. The Time.smoothDeltaTime modulation is 

to ensure that the rate of rotation is independent from the performance of your machine. 

In this way, the value of rate scales the angle for rotation and is spherically linearly 

interpolated; thus, the returned vector is a SLERP between the from and to vectors. The 

details of Update() are as follows:

void Update() {

    Vector3 o2t = Pt.transform.localPosition -

                  Po.transform.localPosition;

    Vot = AlignVectors(Vot, o2t, Rate);

    if (ActivateAgent) {

        Vector3 a2t = Pt.transform.localPosition –

                      Pa.transform.localPosition;

        Vat = AlignVectors(Vat, a2t, Rate);

        Pa.transform.localPosition += kAgentSpeed * Vat;

    } else {

        Pa.transform.localPosition = Po.transform.localPosition

        Vat = Vector3.right;

    }

    #region  For visualizing the vectors

    #endregion

}

The first two lines compute the vector, o2t, from the observer to target and call 

AlignVectors() to compute the SLERP result Vot. The Vot vector is the one shown 

on the checkered observer. When ActivateAgent is enabled, a similar computation is 

performed for the agent position to derive a2t and Vat, where the Vat direction is used 

as the velocity direction for updating the position of the agent, Pa. Since the agent’s 

velocity direction, Vat, is constantly updated and gradually points toward the target 

position, the agent’s motion showcases that it is chasing the target position.
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�Takeaway from This Example

Through this example you have observed the importance of gradual changing based on 

interpolation and gained experienced with the chasing behavior, a common application 

of the vector aligning quaternion rotation.

Relevant mathematical concepts covered include

•	 Interpolation computes a result that is in between the inputted initial 

and final values.

•	 Linear interpolation (LERP) computes the results based on a 

constant change factor.

•	 Spherical linear interpolation (SLERP) linearly interpolates the angle 

of a rotation.

EXERCISES

Chasing with Constant Rotation

Instead of SLERP with a constant rate, you can experience rotating directions based on a 

constant angular speed. In the AlignVectors() function, instead of computing the rotation

q = QFromAngleAxis(rate * Time.smoothDeltaTime * theta, axis);

try defining the rotation with a constant angular speed, for example,

q = QFromAngleAxis(1.0f, axis);

Now run the example to observe that a constant angular rotation speed seems mechanical 

and lacks the organic realism of SLERP.

�Aligning Axis Frames
With the knowledge of quaternion rotation, concatenation, and alignment of vector 

directions, you can now derive the solution to align axis frames. The problem is 

straightforward: after a user manipulates an object, for example, a spaceship, how can 

you align objects with the rotated axis frame, that is, the navigated spaceship. This 
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is an important issue to resolve because you may want to supply the spaceship with 

emergency equipment where it is crucial that the container boxes land on the spaceship 

appropriately.

Recall that an axis frame is defined by three perpendicular axes or vectors. It is 

always the case that the direction of the third vector is defined by the cross product of the 

first two. This means, the orientation of an axis frame can be completely specified by the 

directions of two of the vectors. For this reason, when aligning axis frames, you only need 

to ensure two of the vectors are aligned. In other words, when given two axis frames, if 

the directions of two of the vectors are aligned, then it is guaranteed that the directions 

of the third vector must also be aligned.

Figure 8-10.  Rotations to align the default to a rotated axis frame. (a) The two 
axis frames, (b) the first rotation to align V̂x  to V̂x

r , (c) the resulting axis frames 
after the first rotation, (d) the second rotation along V̂x

r  to align V̂y
′  to V̂y

r
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For clarity, instead of depicting alignment from a rotated axis frame, Figure 8-10 

illustrates the rotations required based on the default axis frame to an arbitrarily rotated 

axis frame. It is important to recognize that in the following derivation there are no 

assumptions made on the actual directions of any of the vectors. For this reason, the 

derived results are applicable to align any two arbitrarily rotated axis frames.

Figure 8-10 (a) shows two sets of axis frame drawn at the origin: the first thinner set 

on the right defined by V̂x , V̂y , and V̂z  and the rotated thicker set to the left defined by 

V̂x
r , V̂ r

y , and V̂ r
z . The goal is to derive an operator to align any two of the three vectors, 

for example, align V̂x  to V̂x
r  and V̂y  to V̂ r

y .

The actual choice of directions for alignment does not affect the result. In Unity the 

Y- and Z-axes are used as the upward and forward directions and thus are the choice 

of directions for alignment. In the following derivation, x- and y-directions are used. 

In the exercise at the end of this section, you will verify that the alignment results are 

independent from the directions of choice.

Figure 8-10 (b) illustrates the rotation, q Ax� , x
ˆ� � , required to align V̂x  to V̂x

r  

direction. Vectors V̂y
r  and V̂z

r  are not shown to avoid cluttering the figure and because 

they do not contribute in the derived rotation. For the rotation, q Ax� , x
ˆ� � , you know

�x x

r
V V� �� ��cos 1
 

x  and

	
  

A V Vx x x
r� � 	

Figure 8-10 (c) shows the results of applying q Ax� , x
ˆ� �  to the axis frame, V̂x , V̂y , and 

V̂z . The rotation aligns the thinner V̂x  with the thicker V̂x
r ; thus the rotated V̂x , or V̂x

′ , 

is occluded by V̂x
r  and not visible in the figure. It is crucial to recognize that the rotation 

is applied to all three vectors where the resulting axis frame is now V̂x
′ , V̂y

′ , and V̂z
′ . Take 

note that at this point, ˆ ˆV Vx x
r� � , and that this vector is the x-direction of both axis frames. 

This is to say V̂x
′  is perpendicular to all four vectors, V̂y

′ , V̂z
′ , V̂y

r , and V̂z
r . For this reason, 

in the following rotation to align V̂y
′  with V̂y

r , the axis of rotation is along the positive or 

negative V̂x
′  direction.

Lastly, Figure 8-10 (d) illustrates the rotation, q y� ,Ây� � , required to align V̂y
′  to 

V̂y
r  direction. There are two key points to this rotation. First, as discussed, Ây , the axis 

of rotation will be along the positive or negative V̂x
r  direction. Second, the rotation is 

defined to be applied to the results of the q x� , xÂ� �  rotation, or V̂y
′  and V̂z

′ , and not the 

original V̂x , V̂y , and V̂z . Once again, to avoid cluttering, V̂z
′  and V̂z

r  are not shown in 

Figure 8-10 (d). In this case, you know
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�y y y

r
V V� �� �� �

cos 1
   and



A V Vy y y
r� ��ˆ ˆ

	

The final rotation operator that aligns the two given axis frames, qc, is,

	
q q A q Ac y x� � � � �� �, ,y x

ˆ ˆ
	

Once again, the importance of concatenation ordering cannot be overstressed. In 

this derivation, it is important that the x-alignment rotation, q Ax� , x
ˆ� � , is applied before 

the y-alignment rotation, q Ay� , y
ˆ� � , and thus q Ax� , x

ˆ� �  must be on the right-hand side of 

the concatenation.

�The Unity Quaternion Class
In the next example, the results from the derived axis frame alignment formulation will 

be compared to the solutions defined by the Unity Quaternion class. This is an excellent 

opportunity to relate and contrast relevant concepts learned. Unity API documents the 

Quaternion class (https://docs.unity3d.com/ScriptReference/Quaternion.html) as 

follows:

Quaternions are used to represent rotations.

If you browse through their utility methods, you will notice the following similarities:

•	 AngleAxis: This is the QFromAngleAxis() utility function.

•	 FromToRotation: This is similar to the QAlignVectors() utility 

function.

•	 Slerp: This is covered in the example scene Example_8_4_

ChasingBehavior.

Additionally, you have also learned about the Inverse() function and the *-operator 

(concatenation operator). Pay attention to the LookRotation() function:

Creates a rotation with the specified forward and upward 

directions

Note that this is precisely the subject of coverage in this section and you will work 

with this function in the next example.
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Finally, notice the absence of an actual rotation function. That is, there is no 

correspondence of the QRotation() function defined in the Unity Quaternion class. 

Recall that a significant limitation of the quaternion representation for rotation is its 

inability to describe rotations when the axis of rotation does not pass through the 

origin. As pointed out when first introduced, this is not an issue because quaternions 

are typically integrated with matrices in representing coordinate transformation. 

Together, the tools can address the off-origin rotation limitation. In the case of Unity, the 

integration of quaternions with matrices occurs in the Transform class (https://docs.

unity3d.com/ScriptReference/Transform.html), where rotations are represented 

by quaternions and the transformation functionality is encoded as matrices. It is the 

Transform class that defines the relevant position and vector rotation functions.

The details of the Transform class, the subject of coordinate transformation, are an 

advanced topic that is out of the scope of this book. However, you have been working 

with the Transform class in all of the examples where you have set the transform.

localPosition to control the location of objects. In the example that follows, you will 

compute and set the transform.localRotation to control the orientation of objects to 

verify the axis frame alignment formulation.

Note T he Unity Transform class explicitly maintains the axis frame of an object. 
The x-, y-, and z-directions of a transformed axis frame are accessible via the 
transform.right, transform.up, and transform.forward properties on a 
Transform object.

�The Align Frames Example
This example demonstrates the results of applying the derived rotation to align with 

a user-manipulated axis frame. To assist in gaining insights into the alignment, this 

example also shows the results of applying only the first axis alignment rotation. 

Additionally, to assist in verifying the solution, the results from the Unity quaternion 

utility are also displayed. Figure 8-11 shows a screenshot of running the EX_8_5_

AlignFrames scene from the Chapter-8-Quaternions project.
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Figure 8-11.  Running the Align Frames example

The goals of this example are for you to

•	 Interact with the smooth manipulation of positions that define an 

axis frame

•	 Verify the results of aligning the first of the directions in axis frames

•	 Observe that the concatenation of the two axis aligning rotations can 

indeed define an axis frame alignment rotation operator

•	 Examine the implementation of the axis frame alignment 

formulation

•	 Validate the alignment results by comparing with the results from the 

Unity quaternion utility

�Examine the Scene

Take a look at the Example_8_5_AlignFrames scene and observe the three spheres and 

three flattened rectangular cubes. Similar to examples from the previous chapter, the 

spheres Po, Px, and Pz are the three non-collinear positions that you can manipulate 

to define an arbitrary axis frame. The orientations of the three flattened rectangular 

cubes represent the results of aligning with the user-defined axis frame: the red, 
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AlignX, with only the first X-axis alignment rotation applied; the green, AlignXY, with 

the concatenated xy-axis rotations applied; and the blue, AlignUnity, with alignment 

performed based on the quaternion utility from Unity.

�Analyze Controller MyScript Component

The MyScript component on the Controller shows the six variables with the same 

names as their corresponding reference game objects in the scene.

�Interact with the Example

Click the Play button to run the example. You can see four sets of three vectors 

representing axis frames wrapping around each of the four axis frames: the three 

flattened rectangular cubes and the spheres. In all cases, the red vector is the x-direction, 

green is the y-direction, and blue is the z-direction. In this context, alignment refers to 

the matching of the vector directions with the same colors. For example, the X-axis is 

aligned when the red vectors are pointing in the same direction. Two axis frames are 

aligned when all three colored vectors are pointing in the same directions.

Select and adjust the y-component of the blue sphere, Pz. This manipulation results 

in rotating the axis frame around the x-direction where the red vector, or the X-axis 

direction, does not changed. Observe that the green, AlignXY, and blue, AlignUnity, 

cubes always align exactly with the manipulated frame. This is in contrast to the red 

cube, AlignX, where it is only rotated by the x-direction alignment rotation, and in the 

absence of x-direction changes, the red cube stays stationary.

Select and manipulate either Px or Pz freely to observe that the green and blue cubes 

continue to always align exactly with the user-defined axis frame while the orientation 

of the red cube only guarantees that the red X-axis is aligned. Now compare the red and 

the green cubes and observe that the orientations of these two cubes are always different 

by one rotation about their red vector. In other words, the alignment can be achieved 

by rotating either the red or the green cube about the red vector. A straightforward way 

to establish this observation is by analyzing the green vectors on these two cubes when 

viewing the red vector straight down. You will see that the green vectors are a simple 

rotation apart.

In these manipulations, you have observed and interacted with the two-step axis 

frame alignment rotation. You have also verified that the derived alignment formulation 

matches the results from the Unity quaternion utility.
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Lastly and very importantly, take note that in this example all three cubes are located 

at positions other than the origin where they can be moved to any position and yet you 

were able to flawlessly manipulate their rotations. In other words, you have worked 

with but did not encounter the quaternion limitation that the axis of rotation must 

pass through the origin. As pointed out earlier, the Unity Transform class strategically 

integrates quaternions with matrices and avoids that limitation completely.

�Details of MyScript

Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

public GameObject Po = null; // Origin of the reference frame

public GameObject Px = null; // X-position defining the x-axis

public GameObject Pz = null; // Z-position defining the z-axis

public GameObject AlignX = null;  // X-axis aligned

public GameObject AlignXY = null; // X,Y-both aligned

public GameObject AlignUnity = null;  // Unity aligned

private const float kSmallAngle = 1f;

#region For visualizing the vectors

#endregion

void Start()  {

    Debug.Assert(Po != null);   // Verify proper setting

    Debug.Assert(Px != null);

    Debug.Assert(Pz != null);

    Debug.Assert(AlignX != null);

    Debug.Assert(AlignXY != null);

    Debug.Assert(AlignUnity != null);

    #region For visualizing the vectors

    #endregion

}

All the public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component. The private kSmallAngle defines when two vectors 

are in the same direction and that the alignment rotation is not necessary.

Chapter 8  Quaternions and Rotations



401

This example defines the same quaternion utility functions: QFromAngleAxis(), 

QMultiplication(), and QRotation(). The previous AlignVectors() function is 

replaced by a similar QAlignVectors() function with details as follows:

Vector4 QAlignVectors(Vector3 from, Vector3 to) {

    from.Normalize();

    to.Normalize();

    float theta = Mathf.Acos(Vector3.Dot(from, to))

                                               * Mathf.Rad2Deg;

     Vector4 q = new Vector4(0, 0, 0, 1); // Quaternion identity

     if (theta > kSmallAngle) {

         Vector3 axis = Vector3.Cross(from, to);

         q = QFromAngleAxis(theta, axis);

     }

     return q;

}

This new function removed the SLERP functionality and returned a quaternion 

rotation instead of a rotated vector. The last additional utility function, V4ToQ(), is 

defined for type conversion to be compatible with the Unity Quaternion class. The 

details are as follow:

Quaternion V4ToQ(Vector4 q) {

    return new Quaternion(q.x, q.y, q.z, q.w);

}

With these utilities, the details of Update() are as follows:

void Update() {

    Vector3 vxr = (Px.transform.position –

                  Po.transform.position).normalized;

    Vector3 vzr = (Pz.transform.position –

                  Po.transform.position).normalized;

    Vector3 vyr = Vector3.Cross(vzr, vxr);

    Quaternion qUnity = Quaternion.LookRotation(vzr, vyr);

    AlignUnity.transform.localRotation = qUnity;
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    Vector4 qx = QAlignVectors(Vector3.right, vxr);

    AlignX.transform.localRotation = V4ToQ(qx);

    Vector4 qy = QAlignVectors(AlignX.transform.up, vyr);

    Vector4 qc = QMultiplication(qy, qx);

    AlignXY.transform.localRotation = V4ToQ(qc);

    #region  For visualizing the vectors

    #endregion

}

The first three lines compute the user-defined axis frame, the V̂x
r , V̂ r

y , and V̂ r
z  in 

Figure 8-10. The next two lines call the Unity Quaternion.LookRotation() utility with 

V̂ r
z  as the forward and V̂ r

y  as the upward directions to compute and set the rotation to 

the transform.localRotation of the AlignUnity object. Recall that AlignUnity is a 

reference to the blue cube. The matching alignment of the blue cube axis frame verifies 

that Quaternion.LookRotation() indeed computes an axis frame alignment rotation.

In the line that follows, the variable qx represents q Ax� , x
ˆ� � , rotating Vector3.right, 

or (1, 0, 0) or V̂x  in Figure 8-10, to V̂x
r . This rotation is set to AlignX, or the red cube. 

Note that when the x-direction is not changed, V̂x
r  would remain (1, 0, 0) and qx would 

be a quaternion identity. This is why in the previous interaction the red cube would stay 

stationary when the axis frame is rotated about the x-direction.

The variable qy represents q Ay y� , ˆ� � , rotating AlignX.transform.up to V̂y
r . In 

this case, AlignX.transform.up is the result of V̂y  rotated by q Ax� , x
ˆ� � , or V̂y

′  in 

Figure 8-10(c). The last two lines concatenate qx with qy to compute the actual axis 

frame aligning operator qc and set the rotation to AlignXY, or the green cube. The fact 

that the blue and green cubes, or AlignUnity and AlignXY, align identically verifies 

that the computed qc is indeed the same as the results from the Unity Quaternion.

LookRotation() function.

Note T he Unity GameObjects, AlignX, AlignXY, and AlignUnity, are 
located at positions other than the origin and with axes of rotations that do 
not pass through the origin. The Unity Transform class, where the computed 
quaternion rotations are set via transform.localRotation, integrates matrix 
transformation functionality and seamlessly overcomes the quaternion rotation 
limitation.
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�Takeaway from This Example

Through this example you have examined and interacted with each of the two rotations 

involved in aligning axis frames. You have also verified that strategically concatenating 

two rotations can indeed result in an axis frame aligning operator.

Relevant mathematical concepts covered include

•	 To align two axis frames, you only need to ensure two of the three 

axes are aligned.

•	 You can choose to align any of the two axes to accomplish axis frame 

alignment.

•	 The second rotation of axis frame alignment aligns the results from 

the first rotation and not the original axis directions.

•	 The limitation of quaternion rotation that the axis of rotation must 

pass through the origin can be avoided with strategic integration with 

matrices.

Unity tools

•	 Quaternion.LookRotation(): Aligns the default to a given axis frame 

based on forward, z-directions, and up, y-directions

•	 Transform.localRotation: Encodes rotation with a quaternion

•	 Transform.right/up/forward: The major axes’ directions of a 

rotated GameObject

EXERCISES

Replace Our Functions with Unity Quaternion

Replace QAlignVectors(), QFromAngleAxis(), and QMultiplication() with the 

corresponding Unity Quaternion class utility functions and verify that the exact same results 

can be observed.
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Align Based on Two Other Axes

Replace the X- and Y-axes with z- and y-directions to verify that the choice of axes for 

alignment indeed does not affect the results. You can repeat this exercise with any other two 

axes, for example, X and Z, if desired.

Align a Rotated Axis Frame to the Default Axis Frame

Derive and display the rotations required to align the user-defined axis frame to the default 

axis frame.

In this case, the first rotation required is to align vxr to the default x-direction, V̂x , ,� � �1 0 0 . 

In other words, q Ax� , x
ˆ� �  has

�x x

r
V V� �� ��cos 1
 

x  and

	
  

A V Vx x
r

x� � 	

Not surprisingly, the direction of the axis of rotation is reversed from that in this example. The 

rotation q Ax� , x
ˆ� �  would be applied to the user-defined axis frame: V̂x

r , V̂ r
y , or V̂ r

z . The 

second rotation should align the rotated y-direction, V̂y
′ , the q Ax� , x

ˆ� �  rotated V̂ r
y , to align 

with the default Y-axis, 


Vy � � �0 1 0, , , where q Ay� , y
ˆ� �  has

�y y yV V� �� �� �
cos 1

   and

	

  

A V Vy y y� ��
	

You can now edit MyScript to implement the preceding formulation. With this exercise, you 

have verified that not only can you rotate the default to a user-defined axis frame, you can 

indeed reverse the alignment from a user-defined axis frame to the default axis frame. Since 

you can align an axis frame, A, with the default and then align the default with another axis 

frame, B, you can indeed align any two given axis frames A and B.

An alternative and much more straightforward approach is to recognize that quaternion 

rotations are reversible. The inverse of the computed qc in the existing code will accomplish 

the specified axis frame alignment.
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Integrate SLERP to Axis Frame Alignment

Integrate the SLERP functionality of AlignVectors() from the previous example to the 

QAlignVectors() function and experience with gradual and smooth axis frame alignment 

that more resembles the steering of a spaceship.

Navigation with Axis Frame

As discussed, navigating a spaceship is simply aligning the ship with an axis frame and 

moving along the front direction. If the AlignXY object represents a spaceship with 

transform.forward as the front direction, then you can navigate the AlignXY object by 

including the following line at the end of the Update() function:

AlignXY.transform.localPosition =

         0.5f * Time.deltaTime * AlignXY.transform.forward

Now, if you run the game, you will observe the green cube moving toward the positive 

z-direction. Try manipulating the positions of Po and Pz to verify that you can indeed steer the 

traveling of the AlignXY object.

�Summary
This chapter introduces the four-tuple quaternion to represent a rotation. You have 

learned that three of the numbers describe the axis of rotation where the forth number 

encodes the angle to be rotated. The mathematical rules for working with quaternion, 

or quaternion algebra, are well established for supporting rotation operations. You 

have learned the inverse of a quaternion reverses a rotation and the concatenation of 

quaternions aggregates and captures the results of multiple rotations. The limitation of 

the compact four-number representation of a rotation is that there is no way to encode 

the location of the axis of rotation: quaternion representation and the involved algebra 

implicitly assume that the axis of rotation passes through the origin of the Cartesian 

coordinate.

You have examined quaternion rotation as a tool for aligning directions. Chapter 5  

has taught you that the angle between two normalized vectors is the arccosine of the 

dot product. From Chapter 6, you know that the axis of rotation for aligning two vectors 

is simply the cross product of the vectors. Based on this knowledge, you have derived 
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the formulation for aligning the directions of any two vectors. By analyzing how you 

would turn your head when changing viewing directions, you recognized that real-world 

organic and mechanical movements are gradual and continuous. You have learned 

to emulate such movements by continuously applying quaternion rotations based on 

repeatedly linear interpolated angle of rotation, or SLERP. Lastly, you learned that by 

strategically computing and concatenating two rotations, you can align any two given 

axis frames. Through working with the Unity Transform class, you have witnessed that 

the quaternion rotation limitation of requiring the axis of rotation to pass through the 

origin can be avoided completely. The steering and navigation of a spaceship will be 

further explored in the next chapter via the motion of a traveling agent.

It is important to recognize that this chapter has led you to investigate quaternions 

as being used as a tool for rotation. Thus, the focus of this chapter has been on the 

characteristics of quaternions in effectively rotating vectors. This is very different from 

learning quaternions as a field of mathematical study. You may have noticed some of 

the missing details, such as the derivation or justification of quaternion multiplication 

definition. Though important, such details are outside of the scope of using quaternions 

as a tool for rotations. The limited coverage of quaternion fundamentals means that 

while you are able to use quaternion as a tool to align vectors and axis frames, it may be 

challenging for you to use it as a general mathematical tool for solving other problems.

Lastly, you may have noticed a slight deviation of topic coverage in this chapter. 

While the other chapters in the book analyzed and studied the application of points 

and vectors, this chapter examined how to manipulate and change them. For example, 

instead of applying vectors in representing axis frames, this chapter examined how 

to manipulate a defined axis frame. This subtle shift serves as the introduction to the 

next topic area in mathematics for supporting video game development: matrices and 

transformation. A more involved topic for a more advanced book.
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CHAPTER 9

Conclusion
With your background in basic algebra and trigonometry, this book took you on the 

journey from the review of the Cartesian Coordinate System to the application of vector 

algebra to solve frequently encountered problems in video game development. In 

Chapter 1, you reviewed and familiarized yourself with the Unity system as a learning 

tool. Then, in Chapter 2, you learned about bounding boxes, one of the most used tools 

in game engines, by revising and generalizing number intervals. Along the way, you also 

examined issues related to bounding volumes.

In Chapters 3 and 4, you studied the relationships between positions. You began 

studying these relationships in Chapter 3 through exploring bounding volumes by 

examining another important tool: bounding spheres. From here, you were led into 

Chapter 4 where you were introduced to the concept of vectors. That chapter provided 

you with a comprehensive and formal foundation for discussing relationships between 

positions in the form of directions and distances. It was also in that chapter that you 

gained experience in applying vector concepts to model and implement object velocity 

manipulation and how to calculate object motions under external factors such as wind 

or current flow conditions.

In Chapters 5 and 6, you learned to relate vectors to each other and to the space 

that defines them. The vector dot product introduced in Chapter 5 demonstrated that 

two vectors are related by the angle they subtend and their mutual projected sizes. You 

applied this knowledge to describe and analyze line segments and then connected 

these vector line segments back to the simple number intervals reviewed in Chapter 2. 

You then applied these concepts to solve the problem of high-speed objects’ missing 

collisions. Then, in Chapter 6, you learned about the vector cross product and used 

it to analyze 2D planes. This analysis included exploring 2D planes from additional 

perspectives including the ability to define general axis frames and to create your own 

line intervals to define 2D regions on 2D planes.
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In Chapter 7, you analyzed axis frames and began to appreciate complex situations 

with independent movements of elements that are geometrically related or connected. 

You generalized axis frames and learned that they can be located at any position with 

any orientation. You then applied that knowledge to define multiple overlapping 

coordinate systems and learned about the conversion between these systems so that 

you can describe and control character motion in a navigating spaceship. The attempt 

to navigate the spaceship brought up the next topic: an operator for manipulating 

orientation, specifically, the quaternion. In Chapter 8, you learned and represented 

rotations with quaternions. Building on your knowledge of dot and cross products, 

you derive solutions for aligning vectors and axis frames. You have also observed 

and emulated organic movements with gradual changes through repeated linear 

interpolation, LERP and SLERP.

The insights gained from learning these basic math concepts have enabled you to 

analyze and solve some of the most encountered problems in video game development. 

This chapter summarizes the book, continuing with the philosophy that interactive 

exploration is an important and integral part of learning, by presenting the concepts 

learned throughout this book in a straightforward and comprehensive example. Though 

not a video game, this example highlights solutions that are implemented in many 

modern video games.

�The Final Comprehensive Example
This example integrates and demonstrates the concepts learned in this book in a 

comprehensive and coherent application. This example allows you to interactively 

manipulate the speed and direction of a traveling agent. On the agent and within its 

bounds, you can control the movement of a hero. You will also be able to manipulate 

a 2D plane that represents a wall that the traveling agent can reflect off of and cast 

a shadow upon. Finally, you will also be able to manipulate the radius of a treasure 

bounding sphere that the agent can collide against. During the interaction, you can 

suspend all movements and examine the computed projection and collision results, the 

paths of the agent and the hero on it, and the results of the treasure collision. Figure 9-1 

shows a screenshot of running the EX_9_1_FinalComprehensiveExample scene from the 

Chapter-9-Conclusion project.
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Figure 9-1.  Running the Final Comprehensive Example

The goals of this example are for you to

•	 Experience an interaction session based on a coherent collection of 

vector-based solutions

•	 Examine solutions studied in the context of a simple yet 

comprehensive application

•	 Examine the implementation source code of a non-trivial system

�Examine the Scene
Take a look at the Example_9_1_FinalComprehensiveExample scene and observe the 

predefined game objects in the Hierarchy Window. Due to the slight complexity of this 

scene, the game objects are categorized into seven groups according to their roles. Each 

group is an empty game object that serves as the parent or, in this case, a holder, for all 

the relevant objects that you will actually manipulate. Please pay attention to and only 

manipulate the relevant game objects when interacting with this example. Additionally, 

make sure to avoid changing the transforms of the empty grouping game objects during 

your interactions as it will also change the transforms of the game objects within them. 

Figure 9-2 depicts the grouping and object names in this scene.
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Figure 9-2.  The groups and game objects in the Final Comprehensive Example

The six groups of objects are as follows. You can click the small triangle icon beside 

each object's name in the Hierarchy Window to expand the group.

•	 1. Aiming System: The two spheres in this group are the base, Pb in 

blue, and the control, Pc in green. The positions of these two spheres 

and the distance between them serve to define the direction and 

speed of the traveling agent.

•	 2. Agent: The only object in this group is the red flattened rectangle, 

the agent Pa. This rectangular object represents the position and 

orientation of the traveling agent.

•	 3. Hero: The only object in this group is a white capsule, Ph, 

representing the hero in motion referencing the axis frame of the 

agent object.

•	 4. Plane: The only object in this group is the position on the 

reflecting wall or the checkered sphere Pn. This object exists to assist 

with visualization. As with all 2D plane examples in Chapter 6, Pn is 

the intersection of the plane normal position vector with the plane. In 

other words, if the vector plane equation of the wall is

	 p V Dn� �ˆ
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Then,

	 P DVn n= ˆ
	

where Pn is the position on the plane along the V̂n  direction from the origin.

•	 5. Shadow: The only object in this group is a semi-transparent 

black sphere, Ps, indicating the shadow of the agent object or the 

projection of the position Pa on the plane that represents the wall.

•	 6. Reflection: The two objects in this group are Pon, the striped 

sphere, and Pr, the white sphere. Pon is the predicted intersection 

position of the agent with the wall, and Pr is the agent position, Pa, 

reflected across the wall.

•	 7. Treasure: The only object in this group is the semi-transparent 

red sphere, Pt, representing the bounding sphere of a treasure 

located at this position.

In all cases, the objects' transform.localPosition will be referenced as the 

positions for performing the necessary vector computations and the orientation of the 

agent will be updated via transform.localRotation. Additionally, since Pt represents a 

bounding sphere, its transform.localScale property represents the radius and is also 

referenced.

�Analyze Controller MyScript Component
The MyScript component on the Controller shows variables that can be categorized 

into the same groups as those of the scene hierarchy. These groups and their 

accompanying MyScript variables are listed as follows:

•	 Aiming System

•	 Pb: A reference to the Pb game object

•	 Pc: A reference to the Pc game object

•	 Aspeed: The speed of the traveling agent and also the distance 

between Pb and Pc
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•	 Agent

•	 MoveAgent: A toggle controlling the agent's motion

•	 AgentSentInterval: The time period before a traveling agent will 

have its position reset to the control position, Pc, and repeat the 

entire traveling path

•	 Pa: A reference to the Pa game object

•	 Hero

•	 Ph: A reference to the Ph game object

•	 HeroXMotion: A toggle controlling the x-direction motion of 

the hero

•	 HeroYMotion: A toggle controlling the y-direction motion of 

the hero

•	 Plane

•	 ShowAxisFrame: A toggle to show or hide the Cartesian 

Coordinate axis frame for verifying the vector plane equation

•	 D: The plane distance from the origin of the vector plane 

equation, p V Dn� �ˆ

•	 Vn: The plane normal vector of the vector plane 

equation, p V Dn� �ˆ

•	 Pn: A reference to the Pn game object

•	 Shadow

•	 CastShadow: A toggle to show or hide the shadow 

computation results

•	 Ps: A reference to the Ps game object

•	 Reflection

•	 DoReflection: A toggle to show or hide the reflection 

computation

•	 Pon: A reference to the Pon game object

•	 Pr: A reference to the Pr game object
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•	 Treasure

•	 CollideTreasure: A toggle to show or hide the collision 

computation

•	 Pt: A reference to the Pt game object

•	 Tr: The radius of the treasure bounding sphere

The very last variable in the MyScript component of Controller is the 

ShowDebugLines toggle which is used for showing or hiding all the debug lines in 

the scene.

�Interact with the Example
Click the Play Button to run the example. Notice that initially the red rectangle, or the 

agent, Pa, is stationary. This is by design. You will analyze and understand the scene 

before setting the agent in motion.

The aiming system, the blue and green spheres, Pb and Pc, is connected by a red 

vector representing the direction and speed of the velocity of the agent. The red agent 

is in front of the aiming system with the white capsule hero pacing back and forth on 

the agent. A thin black line extending from the center of the agent toward the plane 

visualizes the location of the projected shadow on the plane, Ps. The two thin red lines 

connecting the agent to Pon on the plane and Pr in the mirrored reflection direction 

show, when in motion, the intersection position with the 2D plane and the reflection 

of the agent across the plane. The transparent bounding sphere at Pt is red because it 

intersects the reflection ray.

During your interaction, be careful to avoid adjusting the transforms of the empty 

container parent or holder objects. Additionally, pay attention to the Console Window 

printout. If you accidentally set the application to an ill-defined state, for example, 

by overlapping Pb and Pc positions, warning messages will be printed to the Console 

Window and the script will reset its state to ensure that the application does not crash.

Now toggle off CastShadow, DoReflection, and CollideTreasure such that you can 

focus on and examine each of the seven functionalities separately.
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�Interact with the Aiming System

Figure 9-3 focuses on the aiming system and the orientation of the agent. Details of the 

hero object, the white capsule, will be discussed later. The objects are annotated with 

their corresponding variable names in the implementation such that you can observe 

their behaviors to examine the mathematics of the vector solution.

Figure 9-3.  The aiming system and the agent orientation

As illustrated in Figure 9-3, the vector from Pb to Pc defines the direction of the agent 

velocity, Âdir , and the distance between these two positions is Aspeed, which is under 

the user control via the variable Aspeed. The agent, Pa, always aligns its forward and 

up directions with that of Âdir  and the vertical direction V̂y � � �0 1 0, ,  of the Cartesian 

Coordinate System. In this way, as illustrated in Figure 9-3, the agent defines a separate 

and independent axis frame with its center, Pa, being the origin of this axis frame.

In the Hierarchy Window, expand the 1.AimingSystem game object by clicking 

the triangle icon beside it. Select Pb and manipulate its position. You will observe that 

changes to Pb always result in corresponding changes in Pc and the agent, Pa, ensuring 

that the agent is always located in front of and aligned with the velocity direction, Âdir

. The center of the agent is located at a constant distance of 2xAspeed away from Pb. 

You can change the Aspeed magnitude to observe the in-between space adjusting 

accordingly.

Select Pc and adjust its position to observe that by maintaining a constant distance 

from Pb, Pc can only orbit Pb. That is, the position Pc can only change along the 

circumference of the circle centered at Pb with radius Aspeed. Note that as the velocity 

direction, Âdir , changes, so does the position and orientation of Pa. This is because the 
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distance and direction between Pb and Pc is same as the distance between Pc and the 

center of Pa, and the agent's front or z-direction is always aligned with that of Âdir .

As described, the velocity direction, Âdir , is simply the vector between Pb and Pc. The 

behaviors you just walked through identify Pb as the base, or tail, of the aiming system, 

controlling both the Pc and the agent, Pa, positions. The aiming direction and Pc position 

can be computed as follows:

ˆ .A P P Normalizedir c b� �� �   direction from Pb to Pc

P P A Ac b speed dir� � ˆ                     Aspeed from Pb

where the agent's position and orientation can be determined by

P P A Aa b speed dir� � 2 ˆ                  2× the distance

	
P localRotation Quaternion.LookRotation A Va dir y. = ,ˆ ˆ� �

	

�Interact with the Agent

Enable the agent motion by switching on the MoveAgent toggle. For now, continue 

to ignore the pacing hero on the agent. Notice that Pa orientates along and moves in 

the Âdir  direction, and at about every six-second interval, the position of Pa is reset to 

that of Pc and the motion repeats. This interval period is the time period controlled by 

AgentSentInterval, which uses seconds as its unit of time. You can adjust this variable 

to observe its effect. Notice that when AgentSentInterval is a negative number or zero, 

Pa's position is being reset at every update, and as a result, it becomes stationary at 

position Pc. You can verify the direction of the agent velocity by adjusting Pc's position 

and the speed of the agent by manipulating the Aspeed value. The agent's orientation 

and traveling direction only update at the beginning of each interval period. These 

observations suggest that when MoveAgent is true and AgentSentInterval time limit 

is reached, the position of Pa is reset to that of Pc with orientation updated to align 

with Âdir  or

P Pa c= 	

	
P rotation Quaternion.LookRotation A Va dir y. = ,ˆ ˆ� �
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And during motion, Pa position is updated according to

	
P P ElapsedTime A Aa a speed dir� � �� � ˆ

	

where the new position is the old position plus time × speed. Note that the "×" symbol 

in this case is a floating-point multiplication and not a vector cross product. You know 

this because the cross product between floating-point numbers is undefined; therefore, 

it must be multiplication.

Lastly, tumble the Scene View camera to observe that while traveling in space, it 

is actually rather challenging to resolve the relative distance and position between 

the agent and the plane. To assist with distance determination, the ShowDebugLines is 

switched on by default where you can observe a thin red line in the direction of Âdir  in 

front of Pa indicating the pathway of Pa. This thin red line is informative because it assists 

in resolving relative positions. However, it is also distracting because in real life such 

indicating lines do not exist. As you will verify soon, dropping a shadow can also be an 

effective way of addressing the challenge of resolving relative distance.

�Interact with the Hero Motion

Please restart the game to ensure a proper initial setting. In the following, before 

enabling the agent to travel, you will first focus on analyzing and understanding the 

pacing motion of the hero, Ph, the white elongated capsule on the agent.

Now, observe the back and forth pacing of the hero along the direction defined by 

the aiming system, Pb to Pc, or Âdir . Select and adjust the position of Pc to manipulate 

Âdir  and verify that the pacing direction indeed followed. Now, enable the HeroYMotion 

toggle and observe the hero hopping vertically on the agent with respect to and along the 

Âdir  direction. You can adjust the y-value of Pc to aim Âdir  up- or downward and verify 

that the hero's hopping direction is indeed aligned perpendicular to the flat surface of 

the agent. Now, disable the HeroYMotion and enable the HeroXMotion toggle. Notice 

that in this case the hero is sweeping along a sinusoidal pathway on the surface of the 

agent. Once again, manipulate Pc position to alter the agent's orientation and verify that 

the hero movement pathway remains. Feel free to enable both motions of the hero and 

manipulate Pc position to examine and admire the hero's constant sinusoidal hopping 

that follows the changing orientation of the agent.
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You have interacted with and observed the movement of the hero being defined 

with respect to the axis frame of the agent. Recall that the axis frame of the agent has its 

origin located the agent's center position, Pa, and is defined by Âdir  being the forward 

or z-direction and V̂y � � �0 1 0, ,  being the y-direction. This means that the back and forth 

pacing of the hero is z-direction, the hopping is y-direction, and sinusoidal sweeping is 

x-direction movements. In this way, the hero position, Ph, is a vector, 


V x y zh � � � �� �, , , 

offset from the origin, Pa, of the agent axis frame or

	 P P x x y y z zh a� �� �� ��ˆ ˆ ˆ 	

where x̂ , ŷ , and ẑ  are the directions of the major axes of the agent axis frame. 

In this case, let the constant pacing speed be HeroSpeed, the y-direction hopping is 

implemented as an absolute cosine, and x-direction sweeping is a simple sine function:

� � �z ElapsedTime HeroSpeed 	

∆y = abs( cos (π∆z))

� � �� �x zsin � 	

�Interact with the Plane

With the agent in motion (ensure MoveAgent is toggled on), please switch on the 

ShowAxisFrame toggle, and begin to investigate the plane and its spatial relationship with 

the agent. First, note the white line extending from position Pn to the origin overlapping 

with the plane normal vector. This shows that Pn is indeed a position vector in the 

direction of the plane normal vector.

Adjust the parameter D to change the distance between the plane and the axis frame 

as well as components of Vn to see the plane rotating about the axis frame. Because of 

the large size of the plane, you may have to zoom out the camera to observe the effects 

of adjusting Vn. Notice that Pn is always located at the intersection of the plane normal 

vector extending from the origin. You have verified that this plane is indeed defined by 

the vector plane equation

p V Dn� �ˆ
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and that

	 P DVn n= ˆ
	

is a position on the plane along the V̂n  direction from the origin. When examining 

the relative position of the agent, its motion, and the normal direction of the plane, 

along with the anticipation for later shadow and reflection computations, there are few 

concerns. Please refer to Figure 9-4 for the details.

Figure 9-4.  The plane and its relationship to the position and motion of the agent

This example specifies that shadow casting and reflection can only occur when Pa is 

on the side pointed toward by the plane normal vector or along the direction of V̂n .  

Additionally, you have already verified that reflection computation should not occur if 

the agent's velocity, Âdir , is parallel to the plane or perpendicular to the normal vector, 

V̂n . Lastly, note that a reflection cannot occur if Pa is moving away from the plane. These 

discussions identify three geometric conditions of interests:

•	 In front of condition: This is when the position of the agent is on the 

side of the 2D plane that is pointed to by the plane normal vector, V̂n .  

To determine if this is true, you can simply verify that the projected 

size of position vector Pa in the plane normal direction, V̂n , is greater 

than the plane distance, D, or

	
In front P V Da n : �� � �

	

•	 Perpendicular or not parallel condition: When a velocity vector is 

perpendicular to a plane normal vector, the velocity is parallel to and 

will never intersect with the plane. This condition can be determined 

by one of the following tests:
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•	 Perpendicualr to normal vector : A Vdir n
ˆ ˆ�� � � 0

subtended angle≈90°

•	 Not  to plane : A Vdir nparallel ˆ ˆ�� � � 0

subtended angle≠90°

•	 Approaching condition: When an object is in front of and moving 

toward a plane, its velocity will be pointing in the direction opposite 

to the plane normal vector or

	
is approaching from front : A Vdir n

ˆ ˆ�� � � 0
	

90° ≤ subtended angle≤180°

�Interact with the Shadow

Please restart the game to ensure a proper initial setting and then toggle off 

DoReflection and CollideTreasure, switch on MoveAgent, and increase Aspeed to 8. 

Now, you can toggle the ShowDebugLines on and off to experience the full effect of the 

shadow object, Ps, in conveying the relative spatial relationship.

Notice that, as defined by the application, shadow casting does not occur once the 

agent moves past the plane. You can verify this as follows. First, set the plane normal, Vn, 

to (0, 1, 0) to observe the shadow when the agent velocity is parallel and in front of the 

plane. Then, if you flip the plane around, by setting Vn to (0, −1, 0) and D to positive 6, you 

can now notice that the agent is not on the side pointing to by the plane normal and thus 

shadow casting does not occur. Figure 9-5 illustrates the solution for computing Ps when 

Pa is in front of the plane.
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Figure 9-5.  The shadow Ps computation

A quick review of “Projections onto 2D Planes” discussion from Chapter 6 says that 

the projected length of the position vector Pa onto the plane normal, V̂n , is

	 h P Va n� � ˆ    Pa length along V̂n

Position Ps is simply h − D distance from the position Pa in the negative V̂n  direction

P P h D Vs a n� � �� � ˆ 	

�Interact with the Reflection

Once again, please restart the game to ensure a proper initial setting, toggle off 

CollideTreasure, switch on MoveAgent, and set the Aspeed to 5. Feel free to switch 

CastShadow toggle off if you find the shadow distracting.

Observe how the red agent and the white Pr sphere approach the Pon intersection 

position in perfect synchronization. When the distance between Pa and Pon is very small, 

the bounding spheres around these two objects will collide. After the collision, since the 

agent is moving away from the plane and its velocity does not reflect with the 2D plane 

anymore, the white sphere representing the agent's reflection, Pr, disappears leaving 

the red agent to continue with its motion in the mirrored reflection direction. You can 

adjust the plane by manipulating the Vn and D parameters and observe that the reflected 

motion adjusts correctly.

If you flip the 2D plane from its initial orientation by setting Vn to (0, 0, −1) and D 

to 6 you, will notice that the reflection computation does not occur. This example only 

computes reflection when the agent travels into the plane from the front. Note that this is 

not a limitation of the solution; rather, this is a design choice for showcasing the in front 
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of test with a 2D plane. Now, if you set Vn to (0, 1, 0), the plane will be parallel to the agent 

velocity direction, Âdir . When this occurs, notice that both Pr and Pon disappear. In this 

case, the reflection is not defined and therefore the computation for these positions is 

not invoked.

Restart the game again, switch on MoveAgent, and this time, set the Aspeed to a large 

number, for example, 15. Notice now that the agent sometimes fails to collide with the 

plane and instead simply crosses the plane. What you are observing is the exact same 

problem as the one described in Figure 5-13 of the “Line to Point Distance” section in 

Chapter 5 or the problem of failed collision for fast-moving objects. You will resolve this 

issue in an exercise. It is interesting that the collision detection only fails some of the 

time depending on the actual rate that the Update() function is called. Unfortunately, 

these types of uncertainty are rather common in typical video game development and 

must be predicted and resolved.

Figure 9-6 depicts the reflection computation that supports the behaviors you just 

observed.

Figure 9-6.  Reflecting Pa across the wall

As seen in Figure 9-6, reflection computation will only proceed when the agent is in 

front of the plane and has a velocity direction, Âdir , that is not parallel to and is headed 

toward the plane. In this case, the reflection direction can be derived by first computing 

the position, Pon, where the line segment that begins at Pa with a direction of Âdir  

intersects the plane, p V Dn� �ˆ ,

P P dAon a dir� � ˆ    d along Âdir  from Pa
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in this case, d, which as shown in the discussion of “Line to Plane Intersection” in 

Chapter 6 as illustrated in Figure 6-16, can be derived as

d
D P V

A V

a n

dir n

�
� �� �

�� �
ˆ

ˆ ˆ
   from Pa to plane along Âdir

and



Von =  Pa − Pon  from Pon to Pa

The “Mirrored Reflection Across a Plane” discussion, as illustrated in Figure 6-18, 

showed that



 

m V V V Von n n on� �� � �ˆ ˆ    perpendicular to V̂n
 at Pa

and the reflection direction is

 



V V mr on� � 2    reflection of 


Von  across V̂n

where

P P Vr on r� �


   mirrored reflection of Pa

�Interact with the Colliding Treasure

For the last time, please restart the game to ensure a proper initial setting. For now, 

please do not enable MoveAgent. Feel free to switch the CastShadow toggle off if you find 

the shadow distracting.

Notice that the Pt sphere is highlighted in red because the reflection vector, 


Vr

, passes through this sphere. Now, select position Pc in 1.AimingSystem and adjust 

its x-component value. This will change the velocity direction of the agent, Âdir , and 

thus affect the reflection vector, 


Vr . Notice the Pt sphere changing to white when the 

reflection vector is outside of the sphere. This application is designed to detect the 

condition when the reflection vector is sufficiently close to the Pt sphere.

You can adjust the Pt position and the sphere's radius via Tr to modify the reflection 

vector and the bounding sphere respectively to verify the correctness of the vector inside 

sphere results. Now if you enable the MoveAgent toggle and increase the agent speed 

Chapter 9  Conclusion



423

or its interval time so that collision can occur before the agent motion is reset, you can 

verify the correctness of the results for a changing reflection vector. Notice that after the 

collision at Pon, the 


Vr  vector is not defined anymore and thus the Pt sphere becomes 

white in color.

As illustrated in Figure 5-13 and discussed in the “Line to Point Distance” section 

of Chapter 5, the vector cutting through a bounding sphere functionality can be 

implemented as a point to line distance computation. The details of this computation 

are illustrated in Figure 9-7.

Figure 9-7.  Point to line distance for bounding sphere collision detection

Refer to Figure 9-7 and note that 


Vt  is defined to be the vector from Pon to the center 

of the treasure bounding sphere, Pt,



V P Pt t on� �    from Pon to Pt

Then note that the projected distance of 


Vt  along 


Vr  is dt,

d V Vt t r� �
 ˆ   



Vt  length in V̂r
 direction

And that when dt is larger than zero and less than the magnitude of 


Vr , then the 

closest point, Pdt, between Pt and the line segment is

P P d Vdt on t r� � ˆ    dt along V̂r
 from Pon

And finally, the line segment intersects the given bounding sphere when

	 P P Bounding Sphere Radiusdt t� �   	
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�Summary of Interaction

Now that you have a comprehensive understanding of this example and insights into the 

solutions, please feel free to adjust any and all parameters to examine the consistency of 

the results.

�Details of MyScript
Open MyScript and examine the source code in the IDE. The instance variables and the 

Start() function are as follows:

// Aim System

public GameObject Pb = null;

public GameObject Pc = null;

public float Aspeed = 2.0f;           // Agent Speed

// Agent Support

public bool MoveAgent = false;

public float AgentSentInterval = 4f;   // Re-send Interval

public GameObject Pa = null;

private Vector3 Adir = Vector3.zero;

private float AgentSinceTime = 100f;   // Since resent

// Hero

public GameObject Ph = null;

public bool HeroXMotion = true;

public bool HeroYMotion = true;

private Vector3 Vh = Vector3.zero;

private float HeroSpeed = 0.5f;

private const float kHeroZMotionRange = 1f;

//  Plane

public bool ShowAxisFrame = false;

public float D = -6.7f; // The distance to the plane

public Vector3 Vn;     // Normal vector of reflection plane

public GameObject Pn;  // Location where the plane center is

// Shadow

Chapter 9  Conclusion



425

public bool CastShadow = true;

public GameObject Ps;  // Location of Shadow of Agent

// Reflection

public bool DoReflection = true;

public GameObject Pon; // Collision point of Agent

public GameObject Pr;  // Reflection of current Agent position

// Treasure Collision

public bool CollideTreasure = true;

public GameObject Pt;   // Treasure position

public float Tr = 2f;   // Treasure radius

public bool ShowDebugLines = true;

#region For visualizing

#endregion

void Start() {

    Debug.Assert(Pa != null);     // Verify proper setting

    Debug.Assert(Pb != null);

    Debug.Assert(Pc != null);

    Debug.Assert(Pn != null);

    Debug.Assert(Ps != null);

    Debug.Assert(Pon != null);

    Debug.Assert(Pr != null);

    Debug.Assert(Pt != null);

    Debug.Assert(Ph != null);

    #region For visualization

    #endregion

}

All public variables for MyScript have been discussed when analyzing the 

Controller's MyScript component. The only internal states or private variables 

maintained are for supporting the hero movement, reflection of the agent's velocity, Adir 

( Âdir ), and for keeping track of the elapsed time since the previous agent position and 

velocity were reset, AgentSinceTime.
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As in all previous examples, the Debug.Assert() calls in the Start() function ensure 

proper setup regarding referencing the appropriate game objects via the Inspector 

Window. The Update() function is organized into the following regions where the details 

will be examined accordingly:

void Update() {

    Step 0: Initial Error Checking

    Step 1: The Aiming System

    Step 2: The Agent

    Step 3: The Hero motion

    Step 4: The Plane and infront/parallel checks

    Step 5: The Shadow

    Step 6: The Reflection

    Step 7: The collision with treasure

    #region  For visualization

    #endregion

}

�Step 0: Initial Error Checking

Expand this region and examine the following:

# #region Step 0: Initial error checking

Debug.Assert((Pc.transform.localPosition -

      Pb.transform.localPosition).magnitude > float.Epsilon);

Debug.Assert(Vn.magnitude > float.Epsilon);

Debug.Assert(Aspeed > float.Epsilon);

Debug.Assert(Tr > float.Epsilon);

// recoveries from the errors

if ((Pc.transform.localPosition -

     Pb.transform.localPosition).magnitude < float.Epsilon)

        Pc.transform.localPosition

        = Pb.transform.localPosition - Vector3.forward;
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if (Vn.magnitude < float.Epsilon)

    Vn = Vector3.forward;

if (Aspeed < float.Epsilon)

    Aspeed = 0.01f;

if (Tr < float.Epsilon)

    Tr = 0.01f;

#endregion

These lines of code are simple edge case error checking before any computation 

begins. The first three nonzero assertions are to avoid working with zero vectors and the 

last assertion ensures that the treasure bounding sphere has a valid radius. The four if 

statements are attempts to recover from ill-defined states. Notice the error recoveries 

are rather ad hoc, where the application state is simply set to a defined situation. In a 

real application, it is the responsibility of the game designers to ensure that inputs from 

the users are not capable of setting or creating such ill-defined states. For example, 

in this scenario, the game designer is responsible for defining limitations such that 

during the aiming process, the user will not accidentally set the agent speed to zero or a 

negative value.

�Step 1: The Aiming System

Expand this region and examine the following:

#region Step 1: The Aiming System

Vector3 aDir = Pc.transform.localPosition -

               Pb.transform.localPosition;

aDir.Normalize(); // assuming not located at the same point

Pc.transform.localPosition =

               Pb.transform.localPosition + Aspeed * aDir;

if (!MoveAgent) { // controls only when agent is not moving

    Pa.transform.localPosition =

                 Pb.transform.localPosition + 2 * Aspeed * aDir;

    Pa.transform.localRotation =

                 Quaternion.LookRotation(aDir, Vector3.up);

    Adir = aDir;

}

#endregion
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This code computes

ˆ .A P P Normalizedir c d� �� �

P P A Ac b speed dir� � ˆ

and when the agent is not in motion, the code also computes

P P A Aa b speed dir� � 2 ˆ

�Step 2: The Agent

Expand this region and examine the following:

#region Step 2: The Agent

if (MoveAgent) {

    Pa.transform.localPosition += Aspeed * Time.deltaTime * Adir

    AgentSinceTime += Time.deltaTime;

    if (AgentSinceTime > AgentSentInterval) {  // Should re-send

        Pa.transform.localPosition = Pc.transform.localPosition

        Adir = aDir;

        Pa.transform.localRotation =

                 Quaternion.LookRotation(aDir, Vector3.up);

        AgentSinceTime = 0f;

    }

}

if (ShowVelocity && ShowDebugLines)

    Debug.DrawLine(Pa.transform.localPosition,

          Pa.transform.localPosition + 20f * Adir, Color.red);

#endregion

This code shows that actual computations are required for the agent object only 

when MoveAgent toggle is enabled. When this toggle is enabled, the agent's new position 

is updated via its current velocity

	
P P ElapsedTime A Aa a speed dir� � �� � ˆ
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Then, when the wall-clock elapsed time is more than the user-specified 

AgentSentInterval, the agent position is reset to Pc and its velocity is set to the current 

(Pc − Pd). Normalize. The last line of code in this region draws a red line with length of 20 

units from the agent position in its velocity direction when the user settings are favorable.

�Step 3: The Hero Motion

Expand this region and examine the following:

#region Step 3: The Hero motion

// Hero's follows Agent (Pa) axis frame

Vector3 po = Pa.transform.localPosition;

Vector3 vx = Pa.transform.right;

Vector3 vy = Pa.transform.up;

Vector3 vz = Pa.transform.forward;

Vh.z += HeroSpeed * Time.deltaTime;  // moved

if (Mathf.Abs(Vh.z) > kHeroZMotionRange) {

    Vh.z = (Vh.z>0f) ? 1f : -1f;

    HeroSpeed = -HeroSpeed;

}

if (HeroYMotion)

    Vh.y= Mathf.Abs(Mathf.Cos(Mathf.PI * Vh.z));

if (HeroXMotion)

    Vh.x= Mathf.Sin(Mathf.PI * Vh.z);

Vector3 vhc = Vh.x * vx + Vh.y * vy + Vh.z * vz;

Ph.transform.localPosition = po + vhc;

Ph.transform.localRotation = Pa.transform.localRotation;

#endregion

The first four lines extract the agent axis frame: po being the origin and vx, vy, and vz 

are the directions of the major axes. The last two lines set the position and orientation of 

the hero

P P Vh.x x Vh.y y Vh.z zh a� � � �ˆ ˆ ˆ 	

	 P locationRotation P locationRotationh a. .= 	
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The lines in between compute and set the hero movement vector, Vh,

                                                                      Vh z HeroSpeed ElapsedTime. � � 	

Vh. y = abs( cos (π Vh. z))

                                                                     Vh. sin .x Vh z� � �� 	

�Step 4: The Plane

Expand this region and examine the following:

#region Step 4: The Plane and infront/parallel checks

Vn.Normalize();

Pn.transform.localPosition = D * Vn;

// agent position checks

float paDotVn = Vector3.Dot(Pa.transform.localPosition, Vn);

bool infrontOfPlane = (paDotVn > D);

// Agent motion direction checks

float aDirDotVn = Vector3.Dot(Adir, Vn);

bool isApproaching = (aDirDotVn < 0f);

bool notParallel = (Mathf.Abs(aDirDotVn) > float.Epsilon);

#endregion

This region ensures a proper vector plane equation and computes object and 

velocity to plane relationships. The first two lines compute

V̂
V

V
n

n

n

=





  normalization after user manipulations

                                                          P DVn n= ˆ
	

Next, the in front of, approaching, and not parallel conditions are computed as 

follows:
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In frontOfPlane P V Da n � �� � �ˆ

	

                                                            
isApproaching A Vdir n� �� � �ˆ ˆ 0

	

                                                            notParallel A V
dir n

� � �ˆ ˆ 0 	

These conditions will assist in determining if shadow casting, reflection, and 

collision with the treasure bounding sphere should occur.

�Step 5: The Shadow

Expand this region and examine the following:

#region Step 5: The Shadow

Ps.SetActive(CastShadow && infrontOfPlane);

if (CastShadow && infrontOfPlane) {

    float h = Vector3.Dot(Pa.transform.localPosition, Vn);

    Ps.transform.localPosition =

                 Pa.transform.localPosition - (h-D) * Vn;

    if (ShowDebugLines)

        Debug.DrawLine(Pa.transform.localPosition,

                       Ps.transform.localPosition, Color.black);

}

#endregion

The first line shows or hides the Ps game object depending on user command. 

The next conditional statement determines if shadow computation should occur. This 

computation will occur only if the user wants to examine shadow casting and if the agent 

is in front of the plane. Shadow is computed by

                                                            h P Va n� � ˆ 	

P P h D Vs a n� � �� � ˆ 	

Lastly, when users specify, a black line is drawn from Pa to Ps to assist in visualizing 

the projection.

Chapter 9  Conclusion



432

�Step 6: The Reflection

Expand this region and examine the following:

#region Step 6: The Reflection

Pon.SetActive(DoReflection && notParallel

                           && infrontOfPlane && isApproaching);

Pr.SetActive(DoReflection && notParallel

                          && infrontOfPlane && isApproaching);

Vector3 vr = Vector3.up;  // Reflection vector

bool vrIsValid = false;

if (DoReflection && notParallel && isApproaching) {

    if (infrontOfPlane) {

        float d = (D -

                   Vector3.Dot(Pa.transform.localPosition, Vn))

                  / aDirDotVn;

        Pon.transform.localPosition =

                  Pa.transform.localPosition + d * Adir;

        Vector3 von = Pa.transform.localPosition -

                      Pon.transform.localPosition;

        Vector3 m = (Vector3.Dot(von, Vn) * Vn) - von;

        vr = 2 * m + von;

        Pr.transform.localPosition =

                      Pon.transform.localPosition + vr;

        vrIsValid = true;

        if (ShowDebugLines) {

            Debug.DrawLine(Pa.transform.localPosition,

                  Pon.transform.localPosition, Color.red);

            Debug.DrawLine(Pon.transform.localPosition,

                  Pr.transform.localPosition, Color.red);

        }

        // What will happen if you do this?

        // if (von.magnitude < float.Epsilon)

        if (von.magnitude < 0.1f) {

             // collision with "virtual" bounding sphere

             Adir = vr.normalized;
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             Pa.transform.localRotation =

                Quaternion.LookRotation(Adir, Vector3.up);

        }

    } else {

        Debug.Log("Potential problem!: high speed Agent,

                   missing the plane collision?");

        // What can you do?

    }

}

#endregion

The first two lines show or hide the Pon and Pr game objects based on user 

command and the relationship between the agent and the plane. Reflection 

computation will occur only if the user wants to examine the reflection, when the agent 

is in front of the plane, has a velocity that is not parallel to the plane, and the velocity 

is moving toward the plane. The in front of condition is a design choice; the parallel 

condition is required to avoid undefined solutions; and the last condition is required 

because when an object is in front of and moving away from the plane, no collision will 

occur and thus no reflection computation is necessary.

Note that the outer if condition checks for user command, "not parallel", and "is 

approaching" conditions, whereas the "in front of" condition is checked in an inner if 

statement. When all conditions are satisfied, the reflection position, Pr, is computed as

d
D P V

A V

a n

dir n

�
� �� �

�� �
ˆ

ˆ ˆ
 			   agent to plane distance

P P dAon a dir� � ˆ  			   agent intersects plane at Pon



Von =  Pa − Pon 			   plane to agent �� �dAdir
ˆ



 

m V V V Von n n on� �� � �ˆ ˆ  	 perpendicular to plane

 



V V mr on� � 2  			   reflection direction

P P Vr on r� �


 			   mirrored reflection of agent
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The two red lines from Pa to Pon and from Pon to Pr are then drawn according to 

user's command. The last if statement compares 


Von  to a small number, 0.1f. This is 

essentially checking for the intersection of the bounding spheres around the agent and 

the Pon position. When these two positions are close to each other or when 


Von  is very 

small, a collision is detected and Âdir  becomes the reflected direction, ˆ ˆA Vdir r= . The 

vrIsValid flag informs the next step, collision with the treasure bounding sphere, when 

there is a valid reflection vector. Recall from Chapter 3 that bounding spheres are less 

than ideal for detecting collisions for the rectangular agent, and yet, as in this case, when 

rectangular objects are not aligned with the major axes, it is often the default solution.

You can now analyze the reason for checking the "in front of" condition in the 

inner if statement. Recall that in the initial setup, the AimingSystem sends the agent 

toward the plane. If a condition should occur where the agent's velocity indicates that 

it is approaching the plane and yet its current position is not in front of the plane, then 

there are two possible cases. First, the agent's initial position is behind the plane, and it 

continues to move away from the plane. In this situation, there is no cause for concern as 

everything is functioning as it should. However, if it is the second case, then something 

should be done. Recall that the agent's position was already updated in Step 2; it 

therefore may be the case that, in one update, the agent has moved from a position that 

is in front of the plane to a position that is behind the plane. As you have observed, this 

situation can occur for an agent traveling at high speeds. In this implementation, such 

a situation is detected, and a warning message is printed to the Console Window. In an 

exercise, you will be led to develop a solution for this missing collision problem.

�Step 7: The Collision with Treasure

Expand this region and examine the following:

#region Step 7: The collision with treasure

Pt.SetActive(DoReflection && CollideTreasure);

Pt.transform.localScale = new Vector3(2 * Tr, 2 * Tr, 2 * Tr);

                              // this is the diameter

Pt.GetComponent<Renderer>().material.color =

                            MyDrawObject.NoCollisionColor;

if (DoReflection && CollideTreasure && vrIsValid) {

    Vector3 vt = Pt.transform.localPosition -

                 Pon.transform.localPosition;
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    float dt = Vector3.Dot(vt, vr.normalized);

    if ((dt >= 0) && (dt <= vr.magnitude)) {

        Vector3 pdt = Pon.transform.localPosition +

                      dt * vr.normalized;

        if ((pdt - Pt.transform.localPosition).magnitude <= Tr)

            Pt.GetComponent<Renderer>().material.color =

                                  MyDrawObject.CollisionColor;

    }

}

#endregion

The first two lines of code show or hide the Pt sphere and set its radius according to 

the user commands. The third line initializes the sphere to the no-collision color, white. 

The treasure bounding sphere collision computation is performed only when the user 

demands it and when reflection was successful in the previous step. The two lines of 

code in the if condition compute



V P Pt t on� �  		  from Pon on the plane to Pt

d V Vt t r� �
 ˆ  		  project 



Vt  along V̂r

The inner if condition checks for 0 ≤ ≤d V
t r



, or the condition when the projected 

length is within the bounds of the reflected vector, and computes the 


Vt  projection 

on 


Vr , Pdt,

P P d Vdt on t� � r̂  		  treasure position V̂r

Since the position, Pdt, on the reflection vector is closest to the treasure position, 

Pt, the reflection vector will intersect the treasure bounding sphere when the distance 

between these two positions is less than the radius of the sphere; in other words, a 

collision occurs when this condition is true:

P P T
dt t r
� � 	

closest distance is less than the treasure bounding sphere radius.
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�Takeaway from This Example
This has been the most complex example in this book. This example demonstrates 

many of the concepts discussed throughout this book in a straightforward and 

coherent application. Though the exact form and details involved can vary, all of the 

interactions you have gone through in this example can be found in popular video 

games. Notice how you approached the analysis and examination of both the scene 

and the implementation. You first understood the entire narration: the aiming system, 

agent traveling, hero movement, casting shadow, reflecting, and colliding. After that, 

you categorized the scene and the implementation into distinct steps. This is a top-

down, divide, and conquer approach to problem analysis and solution derivation. The 

lesson here is to understand the problem space, subdivide into smaller tasks, solve each 

individually, and then combine the results as the final solution to the original problem. 

Video games and the vast majority of software applications, graphical or otherwise, can 

be intimidating when you first examine their requirements. The key is to avoid being 

overwhelmed by the complicated problem narrative and to break the narrative down 

into pieces that you can understand and accomplish, just like you did for this example.

Relevant mathematical concepts covered include most of the concepts learned in 

this book. The important lesson here is that when combining concepts in solving a series 

of related problems, it is critical to subdivide the problems into individual tasks and then 

to apply the concepts to accomplish each task independently.

Relevant observations on implementation include what to avoid when building 

software solutions. It is important to recognize that all example implementations in this 

book were designed to serve a narrow purpose—to best showcase the math concepts. 

This single goal overrides all other vital software development guidelines, including the 

very important concepts of information hiding and abstraction. A significant strategic 

effort was made to ensure that all solutions can be presented in a single execution 

unit, MyScript, with most of variables being publicly accessible. Though the code in 

the MyScript files is straightforward to comprehend and interact with, they can be 

challenging to expand, generalize, and build upon. In the case of the last example, you 

may have noticed the important and yet messy relationships between the individual 

steps in the implementation. For example, the agent velocity is computed and updated 

conditionally in Steps 1, 2, and 5. While the implementation of this last example served 

well as a demonstration of vector operations, it does not serve to demonstrate how to 

structure a video game. Properly designed software should hide essential information 

and define abstract interfaces.
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EXERCISES

Line to Plane Intersection Solution to the Missed Collision Problem

You have witnessed the agent traveling right through the wall at high speed. This condition 

is even detected in Step 5 of MyScript. In general, a straightforward solution for an object 

traveling toward the wall is to define a line segment representing the current motion of the 

object, in this case, the line segment

l d P dAa dir� � � � ˆ

and to compute the intersection of this line segment with the 2D plane that represent the wall

p V Dn� �ˆ

If the computed d value is less than zero, then the intersection position is behind the object 

and the object has overshot. Please refer to Figure 9-6 and observe that this computation is 

already performed. Now, modify MyScript to avoid the overshooting situation by reflecting 

the agent accordingly.

Your Own Quaternion Rotations

Replace the Unity Quaternion.LookRotation() function with your own quaternion 

rotation functions.

Location of Hero on the Agent

Unity capsules are defined with respect to their center. This is why only half of the pacing hero 

is above the agent. In this example, the height of the agent is exactly 1.0; you can place the 

hero above the agent by offsetting its position by 0.5 when computing the offset vector, vhc, 

in the Update() function

Vector3 vhc = Vh.x * vx + (Vh.y + 0.5f) * vy + Vh.z * vz;

With this fix, you can see the hero pacing on top of instead of "in" the agent.
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Before-After Position Solution to the Missed Collision Problem

Examine the line to plane intersection solution to the missed collision problem and observe 

that the computation result is the actual amount of overshooting. This is invaluable information 

if precision is important. For example, you can always backtrack the object by the overshot 

amount and then perform the reflection. In other cases, such as in this example, where the 

precise position of the agent is of less consequence, there is a simpler solution. You can 

compute the in front of status for both the current and the next agent positions. If the status of 

these two positions is different, you know during this update, the agent will overshoot the wall. 

Notice that this solution only provides a binary answer, yes or no, and does not provide the 

information on the amount overshot. Now, modify MyScript to support this solution.

Proper Treasure Collision Support

It is somewhat annoying that the treasure bounding sphere interacts with the reflection vector 

and not the actual agent. For example, after the reflection, the treasure bounding sphere does 

not detect when the agent actually passes through it! Please modify MyScript to support the 

highlight of the treasure bounding sphere after the reflected agent collides with it instead of 

just its reflection vector.

�What’s Next
This book approached introductory mathematical concepts from the perspective of 

video game development. The relevant concepts in vectors are introduced, examined, 

and applied in solving problems related to this one application area. Through this book 

you have learned one of a large variety of flavors of vector applications. Though you 

haven't learned everything about vectors and their applications, what you have learned 

is a powerful tool set for solving some very important problems, both in and out of video 

games and other interactive graphical applications.

You have learned that quaternion rotations only work when the rotation axis 

passes through the origin. However, you have also witnessed and experienced that the 

integration with matrix math can resolve this limitation but no details were provided. 

It is hoped that the awareness of available, yet inaccessible information can serve as a 

motivation to continue this fun and rewarding journey of learning.
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In the meantime, you can begin practicing and experimenting with your newly 

acquired powerful knowledge in vector applications. As a first step, you can tweak and 

enhance the example from this chapter in the following ways:

•	 Project shadows onto either side of the wall.

•	 Compute shadow size as a function of object distance or 

projection angle.

•	 Reflect the agent when it approaches from either side of the wall.

•	 Replace the wall definition to be based on three positions and 

support the definition of a 2D region for shadow casting and 

reflection.

•	 Include an external wind factor to affect the agent's motion.

Next, you can consider supporting "gaming features" in the form of challenges, 

accomplishments, and rewards. For example, include hazardous barriers that must be 

avoided, treasures that can be collected when passed in close proximity, and power 

ups in the form of speed increments when sufficient treasures are acquired. During 

this process, you should constantly apply object-oriented design principles and design 

separate classes to support and hide the behaviors of each element in the interaction.

As you can see, you are on your way to building your first agent exploration game! 

The key is to describe what you want, depict the solution with careful drawings and 

consistent symbol labels, and then implement and verify your solution, just as you have 

followed in this book. It is fun, and practice really does make perfect.
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