

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

ABOUT THE AUTHOR

AUTHOR’S NOTE

INTRODUCTION
The Basics of a Programming Language: Processing
The Beginning
The Middle
The Rest
Variables
How to Write a Program

PART 1: THE FUNDAMENTALS OF DRAWING
Sketch 1: A Circle
Example A
Example B
Example C
Sketch 2: Colors
Example A
Example B
Sketch 3: if Statements—Changing Colors Conditionally

Example A
Example B
Example C
Sketch 4: Loops—Drawing 20 Circles
Example A
Example B
Sketch 5: Lines
Example A
Example B
Sketch 6: Arrays—Drawing Many Circles
Sketch 7: Lines with Rubber Banding
Sketch 8: Random Circles
Sketch 9: A Rectangle
Sketch 10: Triangles and Motion
Sketch 11: Displaying Text
Sketch 12: Manipulating Text Strings

PART 2: WORKING WITH PREEXISTING IMAGES
Sketch 13: Loading and Displaying an Image
Example A
Example B
Sketch 14: Images—Theory and Practice
Example A
Example B
Sketch 15: Manipulating Images I—Aspect Ratio
Example A
Example B
Sketch 16: Manipulating Images II—Cropping

Sketch 17: Manipulating Images III—Magnifier
Sketch 18: Rotation
Example A
Example B
Sketch 19: Rotating About Any Point—Translation
Example A
Example B
Sketch 20: Rotating an Image
Sketch 21: Getting the Value of a Pixel
Sketch 22: Setting and Changing the Values of Pixels
Example A
Example B
Sketch 23: Changing the Values of Pixels—Thresholding
Sketch 24: User-Defined Functions
Sketch 25: Elements of Programming Style
Sketch 26: Duplicating Images—More Functions

PART 3: 2D GRAPHICS AND ANIMATION
Sketch 27: Saving an Image and Adjusting Transparency
Sketch 28: Bouncing an Object in a Window
Sketch 29: Basic Sprite Graphics
Sketch 30: Detecting Sprite-Sprite Collisions
Sketch 31: Animation—Generating TV Static
Sketch 32: Frame Animation
Example A
Example B
Sketch 33: Flood Fill—Filling in Complex Shapes

PART 4: WORKING WITH TEXT AND FILES

Sketch 34: Fonts, Sizes, Character Properties
Sketch 35: Scrolling Text
Sketch 36: Text Animation
Sketch 37: Inputting a Filename
Sketch 38: Inputting an Integer
Sketch 39: Reading Parameters from a File
Sketch 40: Writing Text to a File
Sketch 41: Simulating Text on a Computer Screen

PART 5: CREATING USER INTERFACES AND WIDGETS
Sketch 42: A Button
Sketch 43: The Class Object—Multiple Buttons
Sketch 44: A Slider
Sketch 45: A Gauge Display
Sketch 46: A Likert Scale
Sketch 47: A Thermometer

PART 6: NETWORK COMMUNICATIONS
Sketch 48: Opening a Web Page
Example A
Example B
Sketch 49: Loading Images from a Web Page
Sketch 50: Client/Server Communication

PART 7: 3D GRAPHICS AND ANIMATION
Sketch 51: Basic 3D Objects
Example A
Example B
Sketch 52: 3D Geometry—Viewpoints, Projections
Sketch 53: 3D Illumination

Sketch 54: Bouncing a Ball in 3D
Sketch 55: Constructing 3D Objects Using Planes
Sketch 56: Texture Mapping
Sketch 57: Billboards—Simulating a Tree
Sketch 58: Moving the Viewpoint in 3D
Sketch 59: Spotlights
Sketch 60: A Driving Simulation

PART 8: ADVANCED GRAPHICS AND ANIMATION
Sketch 61: Layering
Sketch 62: Seeing the World Through a Window
Sketch 63: The PShape Object—A Rotating Planet
Sketch 64: Splines—Drawing Curves
Sketch 65: A Driving Simulation with Waypoints
Sketch 66: Many Small Objects—A Snowstorm
Sketch 67: Particle Graphics—Smoke
Sketch 68: Saving a State—A Spinning Propeller
Sketch 69: L-Systems—Drawing Plants
Sketch 70: Warping an Image

PART 9: WORKING WITH SOUND
Sketch 71: Playing a Sound File
Sketch 72: Displaying a Sound’s Volume
Sketch 73: Bouncing a Ball with Sound Effects
Sketch 74: Mixing Two Sounds
Sketch 75: Displaying Audio Waveforms
Sketch 76: Controlling a Graphic with Sound
Sketch 77: Positional Sound
Sketch 78: Synthetic Sounds
Sketch 79: Recording and Saving Sound

PART 10: WORKING WITH VIDEO
Sketch 80: Playing a Video
Sketch 81: Playing a Video with a Jog Wheel
Sketch 82: Saving Still Frames from a Video
Sketch 83: Processing Video in Real Time
Sketch 84: Capturing Video from a Webcam
Sketch 85: Mapping Live Video as a Texture

PART 11: MEASURING AND SIMULATING TIME
Sketch 86: Displaying a Clock
Sketch 87: Time Differences—Measuring Reaction Time
Sketch 88: M/M/1 Queue—Time in Simulations

PART 12: CREATING SIMULATIONS AND GAMES
Sketch 89: Predator-Prey Simulation
Sketch 90: Flocking Behavior
Sketch 91: Simulating the Aurora
Sketch 92: A Dynamic Advertisement
Sketch 93: Nim
Sketch 94: Pathfinding
Sketch 95: Metaballs—A Lava Lamp
Sketch 96: A Robot Arm
Sketch 97: Lightning
Sketch 98: The Computer Game Breakout
Sketch 99: Midpoint Displacement—Simulating Terrain

PART 13: MAKING YOUR WORK PUBLIC
Sketch 100: Processing on the Web

AN ARTIST’S GUIDE TO
PROGRAMMING

A Graphical Introduction

Jim Parker

An Artist’s Guide to Programming. Copyright © 2022 by Jim Parker.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing
25 24 23 22 1 2 3 4 5 6 7 8 9

ISBN-13: 978-1-7185-0164-5 (print)
ISBN-13: 978-1-7185-0165-2 (ebook)
Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editor: Paula Williamson
Developmental Editors: Athabasca Witschi and Nathan Heidelberger
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Jeffrey Boyd
Copyeditor: Andy Carroll
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Emelie Battaglia

The following images are reproduced with permission: Figure 96-1 by Brocken Inaglory, printed
under the GNU Free Documentation License, Version 1.2.
For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Parker, J. R. (Jim R.), 1955- author.
Title: An artist’s guide to programming : a graphical introduction / Jim
 Parker.
Description: San Francisco : No Starch Press, 2022. | Includes index. |
Identifiers: LCCN 2021046087 (print) | LCCN 2021046088 (ebook) | ISBN
 9781718501645 (print) | ISBN 9781718501652 (ebook)
Subjects: LCSH: Multimedia systems. | Computer graphics. |
 Microcomputers--Programming. | Processing (Computer program language) |
 Java (Computer program language)
Classification: LCC QA76.575 .P357 2022 (print) | LCC QA76.575 (ebook) |
 DDC 006.7--dc23
LC record available at https://lccn.loc.gov/2021046087
LC ebook record available at https://lccn.loc.gov/2021046088

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.

shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

About the Author
Jim Parker is a professor, author, and artist who has published a dozen
books and over 170 technical papers, in addition to writing short stories. He
has degrees in mathematics and computer science, and a PhD from the State
University of Ghent, Belgium. His areas of expertise include computer
simulation, image processing, artificial intelligence, game design, and
generative art. He has exhibited generative art, and even sent art into space.
He lives on a small ranch in the foothills of the Rocky Mountains, where he
helps raise small animals and Tennessee walking horses.

About the Technical Reviewer
Jeffrey Boyd received his PhD in computer science from the University of
British Columbia and is currently an associate professor at the University of
Calgary. His research focuses on sensing and computer vision, with
applications in analyzing human motion, interactive art and music,
sonification, and computational musicology. Dr. Boyd and his students do
diverse work that includes wearable systems that provide real-time, sonic
feedback to train and rehabilitate speed skaters; numerous art and sound
installations; and the musicological study of contemporary composers
through the analysis of ambisonic recordings of their work.

AUTHOR’S NOTE

Processing is a programming language designed by Casey Reas and Ben
Fry to be used by artists creating generative art. It is based on Java, and it
extends Java in many useful ways: it allows the programmer to easily read,
display, and write image files; it has functions for drawing elementary
shapes and curves; it makes manipulating colors simple; and so on. Most
importantly, it opens a window into which the programmer/artist will draw.
All Processing programs are intended to create an image, a visual output.

This book presents the Processing language and its many applications in
a set of graduated examples. The details of the syntax are not the focus,
although they are explained briefly. The idea is to present a collection of
programs that the reader can experiment with. When the book is open to
any sketch, the left side of the page will have descriptive text, while the
right will show the program and the result, as an image.

The code is available to you. Use it, change it, share it. You can
download the code and all the necessary supporting files (images, sound
files, and so on) at https://nostarch.com/artists-guide-programming/.

Some concepts will be more complex than others, of course. There is
plenty of documentation for Processing on the internet, beginning with the
https://processing.org/ site.

Processing can be used with Arduino computers too. It has modules for
sound, video, and scientific calculations, and it can be used to present
images in a browser. It is my hope that this book will allow you to start
experimenting with programming and generative art.

Why are there few comments in the code? To save space on the right
page! The entire left page is a description of the program and method, so it
is in effect a large comment.

—Jim Parker

https://nostarch.com/artists-guide-programming/
https://processing.org/

INTRODUCTION

The Basics of a Programming Language:
Processing
When someone programs a computer, they are really communicating with
it. It is an imperative and precise communication. Imperative because the
computer has no choice; it is being told what to do, and it will do exactly
that. Precise because a computer does not apply any interpretation to what it
is being told. Computers do not think and so can’t evaluate a command that
would amount to “expose the patient to a fatal dose of radiation” with any
skepticism. So we, as programmers, must be careful and precise in what we
instruct the machine to do.

When humans communicate with each other, we use a language.
Similarly, humans use languages to communicate with computers, but these
languages are artificial (humans invented them for this purpose), terse
(there are few if any modifiers—no way to express emotions or gradations
of any feeling), precise (each item in the language means one thing), and
written (we do not yet speak to computers in a programming language).

The process of programming begins with a problem to be solved, and the
first step is to state the problem as clearly as possible. Then we analyze the
problem and determine methods by which it may be solved. Computers can
only directly manipulate numbers, so it is common for solutions discussed
at this stage to be numerical or mathematical. A sketch of the solution,
perhaps on paper in a human language and math, is created. This is then
translated into computer language and typed into the computer using a
keyboard. The resulting text file is called a script, source code, or more
commonly the computer program. Next, another program called a compiler
takes the program and converts it into a form that can be executed on the
computer. Basically, all programs are converted into machine code, which
consists of numbers, and which the computer can execute.

You are going to learn a language called Processing. It was developed for
use by artists, but it’s pretty good for lots of things, and it’s good for
teaching because it makes a lot of things easy and it always has graphical
visual output. It is much like a lot of other languages in use these days in
terms of structure (syntax). It is, in fact, the language Java enclosed in some

special easy-to-use packaging. A Processing program is called a sketch in
honor of its artistic origins.

In order to use a programming language, you need to understand some
basic concepts and structures, at least at a basic level. These concepts will
be introduced in this introduction. The rest of the book will teach you to
program by example: when you open the book to a random location, the left
page will almost always outline a problem or Processing language concept,
and the right page will almost always show code that illustrates that
concept, along with a screen image of the output from that program. The
idea is to introduce only one or two new things on any page. The code will
execute on a computer running any major operating system, once the free
Processing language download has been installed. Go to https://processing.
org/download and download the latest stable version for your OS.

To begin programming, you need to appreciate that a language has a
syntax or structure, and for computer languages this structure cannot be
varied. The computer will always be the arbiter of what is correct, and if
any program has a syntax error or produces erroneous results, it is the
program and not the computer that is at fault.

Next you need to appreciate that the syntax is arbitrary. It was designed
by a human with attitudes and biases and new ideas, and while the syntax
might be ugly or hard to recall, it is what it is. You might not understand
parts of it at first, but after a while and after reading and executing the first
50 or 60 sketches in this book, most of it will make sense.

A program consists of symbols, and their order matters. Some symbols
are special characters with a defined meaning. For example, + usually
means add, and − usually means subtract. Some symbols are words, and
words defined by the language, like if, while, and true, cannot be also
defined by a programmer—they mean what the language says they mean,
and they are called reserved words. Some names have a definition given by
the system but can be reused by a programmer if needed. These are called
predefined names or system variables. However, some words can be defined
by the programmer and are names for things the programmer wants to use
in the program: variables and functions are examples.

https://processing.org/download

The Beginning
All sketches have the same basic structure. There is something called
setup() (a predefined name) that gets executed just once, when the
program begins. This is where we will do initializations, such as defining
the size of the output window. If we need to read a bunch of images or
sounds from files, this is where we might do it.

NOTE

This discussion presents a template that can be used to start coding
any program. Detailed explanation of the syntax will come later.

The syntax of setup() is as follows:

void setup ()
{
 your code goes here
}

This is something we call a function in Processing (see Sketch 24). It is a
bunch of code that is enclosed in braces (the { and }) and is given a name. It
gets executed (called, we say) when we use the name in code later on. In
this case the function is named setup(), and it is invoked automatically by
Processing just once, when the program starts executing. The word void (a
reserved word) is not important just now, but it means the function does not
return a value.

After setup() has finished, a window will open on the screen where the
program will draw. This is called the sketch window, and its size is one of
the things initialized within setup().

The Middle
The second part of a sketch is another function, one named draw(). This
function is called many times each second (the default is 60 times, but this
can be changed), and its purpose is to update the drawing being made by the

program. Processing assumes that the programmer is writing a program to
draw a picture of some kind.

Every 1/60 of a second, the Processing system will call the draw()
function. Whatever code appears there will be executed each time, and the
idea is that the programmer can update the picture being created there as a
user watches. For example, if a set of images of a moving animal is
displayed one at a time, the result will be an animated image of the animal.
The programmer can draw shapes, display text and images, change colors,
and move shapes about the screen as the user watches.

The syntax of draw (a predefined name) is as follows:

void draw ()
{
 your code goes here
}

The Rest
The programmer writes code that is inside either of the functions setup()
and draw() or that is executed by those functions. Any part of the program
that cannot be reached from setup() or draw() will never be executed
(except for some of the mouse and keyboard functions).

The programmer can name and provide code for other functions, and
these can be executed by (called from) draw() or setup(). These functions
are usually placed after the draw() function in the program. For example, if
the programmer wanted to define a function named doSomething(), it
might look like this:

void doSomething ()
{
 your code goes here
}

This would be executed when its name was used in a call:

void draw ()
{

 doSomething();
}

The semicolon is used to end a statement so that Processing knows when
the programmer thinks a statement ends. It is used to detect errors: if a
programmer thinks the statement is complete and the Processing compiler
does not, the compiler issues an error message. The compiler is, after all,
always right.

Variables
The concept of a variable is one that most beginners find difficult.
Essentially, a variable is a place to put a result, usually a number. In a
programming language, a variable is represented by a name, and the
connection between the name and the value is established by a statement in
the language called an assignment statement: it assigns a value to a variable.
Here’s an example:

count = 0;

This establishes that the value of a variable named count is 0. How do
we know that the name count is a variable? It must appear in a declaration:
we “declare” that count is a variable, and we specify a type. The type
defines the set of values that can be assigned to the variable. For a
numerical variable, common types are integer and float (a decimal
fraction). If count is to be an integer, then this would be the declaration:

int count;

The predefined name int means integer, and this declaration states that
the name count will hold an integer. If it were supposed to be a number
with a fraction (a real or floating-point number) the declaration would be as
follows:

float count;

A variable can only be used after it has been declared. It is an error to
attempt to use a variable that has not been in a declaration, partly because
its type would not be known.

Now that you can define variables, you can do complex computations.
For arithmetic the usual operations are possible: + (add), − (subtract), *
(multiply), and / (divide). Both variables and constants can be used in
mathematical expressions, just as in algebra. The following would be a
legal assignment statement (assuming that the name radius was declared):

count = 2 * 3.1419926 * radius;

It would calculate the circumference of a circle with the given radius.

How to Write a Program
When Processing is started, either by clicking processing.exe or by clicking
a Processing source file, the integrated development environment (IDE)
will open a window on the screen. It will look something like Figure 1,
though it may look a little different depending on your operating system and
the version of Processing you use.

Figure 1: A new window in the Processing integrated development environment

This particular sketch is called start, and it resides in a file named
start.pde (pde stands for Processing Development Environment). The
start.pde file must also be located within a directory named start. That’s
just the rule.

Now you can start typing code, and it will appear inside the white
rectangle in the window. This code will execute when the start icon is
clicked, and running code will halt when the stop icon is clicked.

Let’s try a simple program: one that draws a circle. First, enter the basic
empty program just described, as shown in Figure 2.

Figure 2: The basic structure of a Processing program

Now we can write our code. We wish to draw a circle, and Processing
will open a drawing window for us. We should specify its size so it’s not too
small. In setup() we can use the predefined size() function to specify a
sketch window with a size of 400 pixels horizontally and 300 pixels
vertically.

We want the draw() function to draw a circle every time it is called, 60
times per second by default. In Processing, a circle is a special case of an
ellipse, having equal width and height. The ellipse() function draws an
ellipse with its center at specified coordinates (the first two values in the
parentheses after the function name) and having a width and height
specified by the second pair of values. These values in parentheses after a
function name are called parameters. The background color is set by
default to a medium grey, and the color that fills the circle is white. The
circle is outlined by a black line.

The call ellipse (200, 100, 50, 50) will draw an ellipse centered at
(200, 100) that is 50 pixels wide and 50 pixels high. Once this code is
entered, the window will look like Figure 3.

Figure 3: The code for drawing a circle

Now click the start icon. A new window opens with our drawing, as
shown in Figure 4.

Figure 4: The drawing window

You have learned a few things. The value 200 in the ellipse is the x or
horizontal position, and 100 is the y or vertical position. The value 50 is the
size of ellipse, which in this case is a circle because the horizontal and
vertical sizes are the same. The circle is filled with a color, in this case
white, and it has a black line around it.

The remainder of this book essentially involves learning by doing.
There’s a lot of code and relatively little explanation. You can experiment
with the code, change the parameters, and see what happens. That’s the
whole point. You’ll learn the syntax by example and by trying things out.

1
THE FUNDAMENTALS OF DRAWING

Sketch 1: A Circle
Drawing a circle requires quite a bit of code in C or Java, but it’s one of the
simplest programs in Processing. There isn’t a circle function in Processing,
so to draw a circle we draw an ellipse that has equal width and height,
which is the same thing as a circle.

Example A
The setup() function calls the predefined size() function to open a sketch
window with a width of 400 pixels and a height of 300 pixels 1.

The draw() function draws a circle every time it’s called (60 times per
second by default) with the ellipse() function, which has four parameters.
The first and second parameters specify the pixel coordinates of the
ellipse’s center. The third and fourth parameters specify the ellipse’s width
and height. The call ellipse (200, 150, 50, 50) 2 draws an ellipse
centered at (200, 100) that is 50 pixels wide and 50 pixels high, which is
essentially a circle with a diameter of 50 pixels.

By default, the background color is set to a medium grey, and the color
that fills the circle is white. The circle is outlined by a black line.

Example B
This example is much like Example A, but now the background color is set
to white, and the color that fills the circle (and any other basic closed shape)
is set to black.

The background() function 1 specifies the background color with a
single number parameter ranging from 0 to 255 that indicates levels of gray,
where 0 is black and 255 is white. Numerical values outside of this range
are illegal. In this case the color is set to white (255). The background()
function is specified in the draw() function so that the background is
redrawn each time. If background() was called in setup(), the background
would only be drawn once, at the beginning of execution.

The fill() function 2 specifies the fill color of basic closed shapes with
the same single number parameter as the background() function. In this
case the fill color is set to black (0), and it remains so until changed by
another call to fill(). Thus, fill() could have been called just once
within setup() and the effect would have been the same.

Example C
In this case the background color (white = 255) 1 and fill color (black = 0) 2
are specified in setup(). This sketch draws two ellipses, not circles, in the
draw() function to show how the width and height parameters are used. The
first call to ellipse() 3 draws the leftmost ellipse, which is 100 pixels
wide and 50 pixels high. The second call to ellipse() 4 draws the
rightmost ellipse, which is 50 pixels wide and 100 pixels high.

The noFill() function causes ellipses and other objects to be drawn
without any fill color so that the background color shows inside the object.

Example A

void setup ()
{

1 size (400, 300);
}

void draw ()
{

2 ellipse (200, 150, 50, 50);
}

Example B

void setup ()
{
 size (400, 300);
}

void draw ()
{

1 background (255);
2 fill (0);
 ellipse (200, 150, 50, 50);
}

Example C

void setup ()
{
 size (400, 300);

1 background (255);
2 fill (0);
}

void draw ()
{

3 ellipse (100, 150, 100, 50);
4 ellipse (300, 150, 50, 100);
}

Sketch 2: Colors
We can specify a shade of grey with a single numerical component, but we
can also specify a color by providing three numerical components to the
same function. These components are given in the traditional order: red,
then green, then blue. Each component fits in a single byte (8 bits), and it is
represented by a number ranging from 0 to 255 that determines the shade of
the component. Smaller values yield a darker color.

The numbers (255, 0, 0) specify the brightest shade of red, while the
numbers (254, 0, 0) specify a slightly darker shade of red. Green would be
(0, 255, 0) and blue would be (0, 0, 255). Yellow is red and green, so a set
of RGB coordinates for yellow would be (255, 255, 0). Magenta is red and
blue, so it would be written as (255, 0, 255). Grey values have the three
components nearly equal.

This is the RGB representation of color. There are other representations.

Example A
This sketch draws circles of various colors. In the draw() function, the first
three calls to fill() and ellipse() draw the first row of circles: red 1,
green 2, and blue 3. The fill color changes prior to drawing each circle.

The second row of circles is filled with yellow 4, magenta 5, and cyan 6.
Each color here has two nonzero color values.

The final row contains circles filled with increasingly brighter grey
values 7. Each color here has three equal color values.

Example B
We can also use a fourth color component that represents transparency,
sometimes referred to as the alpha channel. The components (255, 0, 0,
128) indicate that red is 255, green and blue are 0, and transparency is 128,
or 50 percent. Higher numerical values indicate lower transparency. We can
give any color any legal transparency value in addition to R, G, and B
values.

This sketch draws sets of overlapping red, green, and blue circles to show
transparency.

In the draw() function, the first three calls to fill() and ellipse() 1
draw the upper-left set of circles with a fill color transparency value of 20.

The second three calls 2 draw the upper-right set of circles with a
transparency value of 100.

The third three calls 3 draw the lower-left set with a transparency value
of 180.

The final three calls 4 draw the lower-right set of circles with a
transparency value of 255, which means the color is completely opaque.

NOTE

Processing defines a color type for specifying colors. It contains
values for red, green, blue, and transparency. The function
color(r, g, b, a) takes numerical values and returns a value of
the color type. Variables can also hold values of the color type.

We could declare a variable and initialize it as follows:

color r;
r = color(255, 0, 0); // The variable r now holds a
red color.

Example A

void setup ()
{
 size (400, 300);
 background (255);
}

void draw ()
{

 1 fill (255, 0, 0); ellipse (100, 50, 50, 50);
 2 fill (0, 255, 0); ellipse (200, 50, 50, 50);
 3 fill (0, 0, 255); ellipse (300, 50, 50, 50);
 4 fill (255, 255, 0); ellipse (100, 150, 50, 50);
 5 fill (255, 0, 255); ellipse (200, 150, 50, 50);
 6 fill (0, 255, 255); ellipse (300, 150, 50, 50);
 7 fill (64, 64, 64); ellipse (100, 250, 50, 50);
 fill (128, 128, 128); ellipse (200, 250, 50, 50);
 fill (196, 196, 196); ellipse (300, 250, 50, 50);
}

Example B

void setup ()
{
 size (400, 300);
 background (255);
}

void draw ()
{

 1 fill (255, 0, 0, 20); ellipse (50, 50, 100, 100);
 fill (0, 255, 0, 20); ellipse (100, 75, 100, 100);
 fill (0, 0, 255, 20); ellipse (50, 100, 100, 100);

 2 fill (255, 0, 0, 100); ellipse (250, 50, 100, 100);
 fill (0, 255, 0, 100); ellipse (300, 75, 100, 100);
 fill (0, 0, 255, 100); ellipse (250, 100, 100, 100);

 3 fill (255, 0, 0, 180); ellipse (50, 200, 100, 100);
 fill (0, 255, 0, 180); ellipse (100, 220, 100, 100);
 fill (0, 0, 255, 180); ellipse (50, 250, 100, 100);

 4 fill (255, 0, 0, 255); ellipse (250, 200, 100, 100);
 fill (0, 255, 0, 255); ellipse (300, 220, 100, 100);
 fill (0, 0, 255, 255); ellipse (250, 250, 100, 100);
}

Sketch 3: if Statements—Changing Colors
Conditionally
In daily life, people often deal with conditional actions, although little if
any thought is given to the idea. We express the conditions in human
language, of course:
“If it is raining, we’ll watch TV, but if it is sunny, we’ll go skiing.”
“If the light is red, then stop, but if it is green, just drive on through.”

We can also use conditional actions when programming a computer. If
some situation is true, we execute a certain section of code. The condition
or situation has to be expressed in numerical terms, and the result is a true
or false result. Such conditions are frequently the result of comparisons
between numbers, such as “is i equal to 10” or “is the x-coordinate less than
the width.”

Conditional code is dealt with using an if statement, which has the
following syntax:

if (condition) code ;

Conditions can be comparisons between numbers, so the following are all
conditions:

(x > 2) (P < q+1) (width == 640) (width !=
height)

There are some special symbols in use here. The = symbol means
assignment, so to compare for equality a different symbol must be used:
Processing uses ==. To compare for inequality, the symbol != is used,
meaning “not equal.”

Example A
This sketch uses an if statement to increase an integer variable, count,
every time draw() is called, and it changes the background color from red

to green when the count reaches 100 1.

Example B
The previous English condition examples illustrate a normal use of another
idea: otherwise. One example was “If it is raining, we’ll watch TV, but if it
is sunny, we’ll go skiing.” That example could also be phrased as “If it is
raining, we’ll watch TV; otherwise we’ll go skiing,” meaning that if it’s not
raining, we’ll go skiing. In most computer languages this is written as an
else part to an if statement with the following syntax:

if (condition) code ;
else code;

Example B uses an else to accomplish the same task as Example A 1.

Example C
The third code example alternates between red and green each time draw()
is called, creating a colored flashing effect.

Example A

int count = 0;
void setup()
{
 size (300, 300);
}

void draw ()
{
 background (0, 255, 0);

1 if (count<100)
 background(255, 0, 0);
 count = count + 1;
}

Example B

int count = 0;
void setup()
{
 size (300, 300);
}

void draw ()
{

1 if (count<100)
 background(255, 0, 0);
 else background (0, 255, 0);
 count = count + 1;
}

Example C

int count = 0;
void setup()
{
 size (300, 300);
}

void draw ()
{
 if (count == 0)
 {
 background(255, 0, 0); count = 1;
 } else
 {
 background(0, 255, 0); count = 0;
 }
}

Sketch 4: Loops—Drawing 20 Circles
Programmers often need to execute the same code over and over again,
sometimes with small variations. A program that draws 50 ellipses within
the sketch window could be written using fifty calls to the ellipse()
function, one for each ellipse drawn. Another way is to have one statement
with a call to ellipse(), and execute it 50 times in a loop.

A loop in a program is a collection of statements that executes repeatedly
from the first statement to the last, in the same order. You must specify the
condition upon which the loop will exit. It’s pretty common to know in
advance how many times the loop should execute, as in the example of
drawing 50 ellipses. Sometimes you won’t know the number ahead of time,
but you can calculate it, so the loop will execute N times, and N depends on
some other thing. In either case, a counting loop is called a for loop in
Processing because the reserved word for is used to begin the loop. For
example,

for (i=0; i<10; i=i+1) statementA ;

This loop executes 10 times: once when the variable i=0, again when
i=1, again when i=2, and so on until i=9. When i is 10, the condition
(i<10) becomes false and the loop ends. As a result, statementA executes
10 times, once for each value of i from 0 to 9.

The for loop has four parts:
i=0 The initialization is executed the first time through the loop.
i<10 The loop will continue to execute so long as the continuation
condition is true.
i=i+1 At the end of each iteration, after the statement is executed, the
increment will be executed.
statementA This is the code that gets executed repeatedly.

If the expression is false at the beginning, the loop does not execute even
once.

The statement that executes can be a compound statement, which is a
collection of statements enclosed in braces. In fact, any time I refer to a
statement, it can mean a compound statement.

Example A
A simple loop in Processing can draw 20 ellipses 1 starting at (20, 40) and
ending at (210, 40). The ellipses are circles and are drawn next to each
other. The draw() function exists but does not do anything 2.

Example B
We can make the color change for each circle by using a compound
statement. Let’s change the green value by 10 each time a circle is drawn,
starting with green = 10 1. Red and blue both stay at their maximum of
255. The code within the loop needs to set the fill color, draw the circle, and
adjust the fill color for the next iteration 2.

The loop executes for 20 values of i: 0 to 19 inclusive. If we were to
expand the code to show what was being executed, it would look like this:

(i=0); fill (255, 10, 255); ellipse (20, 40, 10, 10); g =
20;
(i=1); fill (255, 20, 255); ellipse (30, 40, 10, 10); g =
30;
(i=2); fill (255, 30, 255); ellipse (40, 40, 10, 10); g =
40;
--snip--
(i=19); fill (255, 190, 255); ellipse (210, 40, 10, 10); g =
200;

Example A

void setup ()
{
 size (500, 300);

 1 for (int i=0; i<20; i++)
 ellipse (i*10+20,40,10,10);
}

2 void draw () { }

Example B

void setup ()
{
 size (500, 300);

 1 int green = 10;
 for (int i=0; i<20; i++)
 {
 fill (255, green, 255);
 ellipse (i*10+20, 40, 10, 10);

 2 green = green+10;
 }
}
void draw (){ }

Sketch 5: Lines
Drawing lines is a basic thing to do in graphics. A line in Processing is
really a line segment, and it is specified by identifying two endpoints that
are to be connected by the line. The function that draws a line is named
line(), and it takes the coordinates of the endpoints as parameters (for a
total of four parameters). The call line (10,10, 20,20) will draw a line in
the window between coordinates (10, 10) and (20, 20).

Example A
Let’s draw some note paper. We can draw a horizontal line that runs the full
width of the sketch window using this call, for some vertical position y:

line (0, y, width, y);

The width of the window is given by the variable width, and the height of
the window is given by the variable height. The start of the line is (0, y)
at the left of the image window y pixels down from the top; the end of the
line is at (width, y) at the right of the window and the same y value.

The color for drawing lines can be specified using a call to stroke()
with a color as the parameter. For example, stroke (255,0,0) 1 specifies
that red lines will be drawn.

Example B
Processing will tell you where the mouse cursor is within the window using
the built-in variables mouseX and mouseY 1. Whenever a mouse button is
pressed, Processing calls a function called mousePressed(), if it exists. You
have to write it if you want to use the mouse. When a mouse button is
released, Processing calls the mouseReleased() function 2. You have to
write that one too. The mousePressed() and mouseReleased() functions
are referred to as callbacks, and they offer a very simple way to access
button presses. Additionally, press and release amount to touches on a touch
screen device, so the program will work on touch screen devices as well.

This example uses clicks (presses and releases) to draw lines. The first
mouse click defines the starting point for the line (x0, y0) 3. The second
click (when x1 < 0) 4 defines the endpoint of the line. A third click (when
x1 >= 0) 5 clears the endpoints and starts again.

NOTE

The thickness of a line can be specified by calling the function
strokeWeight(n). The parameter n is the number of pixels thick the
line will be.

The symbol && means and. It can be applied to any pair of
variables or expressions that have the value true or false; in other
words, things of Boolean type. It is used in if statements, and the
effect is that the result is true if both sides of the expression are
true. So the expression (a && b) is only true if both a and b are
true. For example, this statement tests whether the value of x is
horizontally within the window boundaries:

if ((x>=0) && (x<width)) statementA;

That is the same as this:

if (x >= 0)
 if (x<width)
 statementA;

Example A

void setup ()
{
 size(500, 500);
}
void draw ()
{
 background (220, 220, 220);

 1 stroke (255, 0, 0); // Red margin line
 line (20, 0, 20, height);
 stroke (100, 0, 250); // Blue horizontal lines
 for (int i=4; i<50; i++)
 line (0, i*10, width, i*10);
}

Example B

int x0=-1, y0=-1;
int x1=-1, y1=-1;

void setup ()
{
 size(300, 300);
}

void draw ()
{
 background (200, 200, 200);

 if (x1 >= 0) line (x0, y0, x1, y1);

 else if (x0 >= 0) line (x0, y0, 1mouseX, mouseY);
}

2 void mouseReleased ()
{
 if (x0 < 0)
 {

 3 x0 = mouseX; y0 = mouseY;
 }

 else if 4(x1 < 0)
 {
 x1 = mouseX; y1 = mouseY;
 }

5 else { x0 = y0 = -1; x1 = y1 = -1; }
}

Sketch 6: Arrays—Drawing Many Circles
A variable can hold a value, such as a single number. If we want more
values, we can use more variables. For example, to draw two circles, we
could have two sets of coordinate variables, say x0, y0 and x1, y1, and we
could draw the two circles with two calls:

ellipse (x0, y0, 10, 10);
ellipse (x1, y1, 10, 10);

But what if we wanted to draw a circle every time the mouse button was
clicked, and to draw it where the cursor is on the screen? We don’t know
how many circles to draw in advance, so we don’t know how many
variables to declare. Instead, we can keep track of x and y using what
Processing calls an array. An array is a collection of values all having the
same type. The syntax for declaring an array is

int [] x = new int[100];

This declaration defines an array named x that can hold 100 integers. The
phrase int [] x means “define a new array named x,” and the phrase new
int[100] defines the size, where 100 could be replaced by any constant.
The preceding declaration could also be done in two parts:

int [] x;
x = new int[100];

You access the values in the array using an index, a number that specifies
which of the values you want, starting from 0: x[0] is the first element
(value) in the array with an index of 0, x[1] is the second with an index of
1, and so on to the last one, x[99].

The example sketch uses two arrays, one for x and one for y, and it draws
a circle at the coordinates where the mouse button is clicked (pressed and
released). Initially each element in the x and y array is given the value −1 1
in setup(). This is called a sentinel value, and it indicates that there is no
circle defined at that index. The ncircles variable indicates how many

circles have been defined, which is how many mouse clicks have been
recorded; it starts at 0 and is incremented up to the maximum number of
circles (MAXCIRCLES, a constant defined to be 100). When the mouse button
is released, the system calls the mouseReleased() callback function 3,
which saves the current value of the mouse coordinates in the arrays x and y
at the current position (ncircles) and increases ncircles by 1. If ncircles
becomes equal to MAXCIRCLES, it is reset to 0 4, which means that new
circles will be saved over the earliest ones drawn. The old ones will, of
course, be lost.

The draw() function first sets the background and then draws a circle at
the mouse coordinates. Then all the elements of the x array are examined,
and if the value of element i is greater than 0, a circle is drawn at x[i],
y[i] 2 using this call:

ellipse (x[i], y[i], 18, 18);

The constant value MAXCIRCLES is defined using a special final property
in its declaration:

final int MAXCIRCLES = 100;

The value of MAXCIRCLES can’t be changed anywhere in the program
because it is final. It can (and should) be used to define the size of the two
arrays:

int x[] = new int[MAXCIRCLES];

Defining the size of the arrays using a constant means that to increase the
number of circles allowed, you only need to change the value of
MAXCIRCLES.

final int MAXCIRCLES = 100;
int x[] = new int[MAXCIRCLES];
int y[] = new int[MAXCIRCLES];
int ncircles = 0;

void setup ()
{
 size (600, 400);
 fill (200, 150, 100);
 for (int i=0; i<MAXCIRCLES; i++)

 1 x[i] = -1;
}

void draw ()
{
 background (200);
 ellipse (mouseX, mouseY, 20, 20);

 for (int i=0; i<MAXCIRCLES; i++)
 if (x[i] >= 0)

 2 ellipse (x[i], y[i], 18, 18);
 else break;
}

3 void mouseReleased ()
{
 x[ncircles] = mouseX;
 y[ncircles] = mouseY;
 ncircles = (ncircles+1);
 if (ncircles>=MAXCIRCLES)

 4 ncircles = 0;
}

Sketch 7: Lines with Rubber Banding
We are going to use the mouse to draw lines again. A line consists of a
starting point and an endpoint, each having an x and a y component. We
previously drew a line when the mouse was clicked on start and end points
on the screen, but it only drew one line. What if we wanted to be able to
draw many lines like this?

We can define a starting point when the mouse button is pressed 3 and
the endpoint when the button is released 4, as we did before. But now we
can store these points in arrays and draw them all during each screen
update. The array x0 saves the starting x-coordinate of a line, and y0 has the
corresponding y-coordinate. The arrays x1 and y1 will store the end
coordinates. When the mouse button is pressed, we save the starting point
(x0[n], y0[n]), and when the mouse button is released, we save the
endpoint as x1[n] and y1[n] and increment the value of n. This program
will allow us to draw 256 lines because of the fixed size of the arrays.

When the starting point has been selected, we draw a line from that point
to the current mouse coordinates to show how the line would look 2. This is
called rubber banding because the line appears to stretch and contract as the
mouse moves. When the mouse button is released, we finalize the end
coordinates and draw the final line.

During each frame (the default is 30 frames per second) we draw all of
the saved lines by calling line (x0[i], y0[i], x1[i], y1[i]) for all i
from 0 to n-1 1. We then draw the rubber band line if the mouse button is
currently depressed (when down is set to true). Setting down to true
happens in mousePressed, and it is set to false when the button is released,
within mouseReleased. If down is true, a line is drawn from the last
selected point to the mouse coordinates:

line (x0[n], y0[n], mouseX, mouseY);

This implements the rubber banding.
As a new idea, the sketch implements an erase feature. If the user types

the BACKSPACE key, the most recent line is deleted. When the system

detects a key press, Processing calls a user-defined function named
keyPressed() 5. A variable named key provides the value of the key that
was pressed, so inside keyPressed() we check if the key is BACKSPACE,
and if so we decrease the value of n (the number of lines so far) by 1. As a
result, the last line will not be drawn, and the next line will be saved over
the erased line in the coordinate arrays.

int N = 10;
int x0[] = new int[N];
int y0[] = new int[N];
int x1[] = new int[N];
int y1[] = new int[N];
int n = 0;
boolean down = false; // A boolean variable can only be
true or false

void setup ()
{
 size(500, 500);
}

void draw ()
{
 background (200, 200, 200);

 1 for (int i=0; i<n; i++)
 {
 line (x0[i], y0[i],
 x1[i], y1[i]);
 }

2 if (down) line (x0[n], y0[n], mouseX, mouseY);
}

void mousePressed()
{
 down = true;
 if (n<N)
 {

 3 x0[n] = mouseX;
 y0[n] = mouseY;
 }
}

void mouseReleased ()
{
 if (n<N-1)
 {

 4 x1[n] = mouseX;
 y1[n] = mouseY;
 n = n + 1;
 }
 down = false;
}

5 void keyPressed ()
{
 if (key==BACKSPACE && n>0)
 n = n - 1;
}

Sketch 8: Random Circles
This sketch draws circles at random places on the screen, with random
colors. Randomness refers to unpredictability, and it is a complex concept.
If you try to draw straight lines with a pencil, it is impossible that any two
of them will be identical. There are variations that creep in and cause minor
changes in each line. The same is true of brush strokes when painting. No
two human activities will be exactly the same, and the differences will be
unpredictable but apparent.

When using a computer, a random number generator creates numbers
that are random with respect to each other. Random numbers can be used to
simulate random events in games like dice or poker, to do things that a user
would find unpredictable, or to simulate complex real-world situations. For
example, things like the spacing between cars on a road and the appearance
of raindrops on a window appear random because we do not understand all
of the complex factors that went into the situation.

The random number generator in Processing is named random. The call
random (100) will generate a real number between 0 and 100, not including
100. The call random (10, 20) will return a real number between 10 and
20, but less than 20. The call random (0, width) generates a random x
position within the sketch window, and random (0, height) generates a
random y position.

Like Sketch 6, this sketch stores coordinates in arrays and uses them to
draw circles with calls to ellipse(), but instead of drawing circles when
the mouse is clicked, a new circle is created automatically every second. To
do this, we set the rate at which draw() is called (the frame rate) to 1 using
the call frameRate(1) 1 in setup(). Each time draw() is called, we
generate a new x- and y-coordinate using random() and save it in the x and
y arrays 2:

x[ncircles] = (int)random(0, width);
y[ncircles] = (int)random(0, height);

The (int) in front of the calls to random converts the result, a float,
into a new type, int. This is called a cast, and we are changing the floating-
point value into an integer because we can’t use values with decimal points
as coordinates. This can also be done using a call to the function int():

x[ncircles] = int(random(0, width));
y[ncircles] = int(random(0, height));

NOTE

The random number generator can be used to generate random die
rolls using this call:

roll = int(random(1, 7));

This call can never return the value 7, and it truncates the float
values between 1 and 2 to be 1, 2 and 3 to be 2, and so on. A
random coin toss (1=heads, 2=tails) would be generated as follows:

toss = int(random(1, 2) + 0.5);

final int MAXCIRCLES = 256;
int x[] = new int[MAXCIRCLES];
int y[] = new int[MAXCIRCLES];
int ncircles = 0;

void setup ()
{
 size (600, 400);
 fill (200, 150, 100);
 for (int i=0; i<MAXCIRCLES; i++)
 x[i] = -1;

 1 frameRate(1);
}

void draw ()
{
 background (200);

 for (int i=0; i<MAXCIRCLES; i++)
 if (x[i] >= 0)
 ellipse (x[i], y[i], 18, 18);
 else break;

 2 x[ncircles] = int(random(0, width));
 y[ncircles] = int(random(0, height));
 ncircles = (ncircles+1);
 if (ncircles>=MAXCIRCLES)
 ncircles = 0;
}

Sketch 9: A Rectangle
You could draw a rectangle by drawing four lines that represent the edges,
but the Processing system would not consider this to be a rectangle; it has
no way to know that the four lines are a single object. Instead, Processing
has a function for drawing rectangles, called rect(). Rectangles will be
filled using the current fill color, just as circles were.

The default way to specify a rectangle is CORNER mode, where the first
two parameters you supply are the coordinates of the upper-left corner of
the rectangle, followed by the width and the height, in pixels. If you specify
CENTER mode, the first two parameters are the coordinates of the center of
the rectangle. CORNERS mode specifies the coordinates of the first corner,
then the coordinates of the diagonally opposite corner. You can change the
mode using one of the following calls:

rectMode(CORNER);
rectMode(CENTER);
rectMode(CORNERS);

In this sketch we’ll use CORNERS mode 1, as specified in the setup
function, and fill the rectangle with a shade of purple: (200, 0, 160). As
in the previous sketches, the mousePressed() function sets a Boolean flag
variable to true when the mouse button is pressed 3, and mouseReleased()
clears the variable (sets it to false) 5.

The global variables x and y represent the first corner of the rectangle and
are initialized to −1. When the mouse button is pressed, we set x and y to
the current value of mouseX and mouseY 4, and the flag variable is set to
indicate that x has been set. Then the draw() function will draw a rectangle
with (x, y) as one corner and the current mouse position (mouseX,
mouseY) as the other 2. This implements the rubber band effect.

Global variables x1 and y1 are the coordinates of the second corner of the
rectangle. When the mouse is released, we see the values of x1 and y1 to the
current mouse coordinates 6, and this completes the rectangle. The draw()

function will draw the rectangle with the value of x1 and y1 as the opposite
corner because flag is now false.

NOTE

Ellipses have drawing modes too, as set by the function
ellipseMode(). ellipseMode(CENTER) is the default mode, and the
one with which you are familiar. ellipseMode(CORNER) treats the
first two parameters of ellipse as the coordinates of the upper-left
corner and the remaining two as the width and height.
ellipseMode(CORNERS) treats the first two parameters as the
coordinates of one corner of a box enclosing the ellipse and the
second two parameters as the coordinates of the second corner.

int x = -1, y = -1;
int x1 = -1, y1 = -1;
boolean flag = false;

void setup ()
{
 size (600, 400);
 fill (200, 0, 160);

 1 rectMode (CORNERS);
}

void draw ()
{
 background (200);
 if (flag)

 2 rect (x, y, mouseX, mouseY);
 else
 rect (x, y, x1, y1);
}

void mousePressed ()
{

3 flag = true;
4 x = mouseX; y = mouseY;
}

void mouseReleased ()
{

5 flag = false;
6 x1 = mouseX; y1 = mouseY;
}

Sketch 10: Triangles and Motion
Just as rectangles are drawn using the built-in rect() function, triangles are
drawn using the built-in triangle() function. Triangles can’t be drawn
using a height and width; their shape is determined by their three angles. As
a result, the triangle() function has six arguments: the x, y coordinates of
the three vertices (corners).

This sketch draws triangles using the mouse. Like the previous sketches
that draw rectangles and lines, this sketch uses mouseReleased() 3 to
determine when a point has been selected. After three clicks, a triangle will
be drawn using the three selected points as the vertices.

After the triangle is drawn, it begins to move downward, as if it had been
pushed slightly. It continues to move downward until it hits the bottom
border of the sketch window, where it disappears.

We accomplish the motion by adding a small value 1 (delta = 1) to the
y-coordinates of the triangle after each time it is drawn. This draws the
triangle at successively lower locations in the window until it appears to
pass beyond the bottom edge of the window. In fact, the triangle still exists
to the Processing system, and its coordinates continue to update even
though it can’t be seen.

If the user of this program clicks the mouse after the triangle is drawn,
the triangle disappears and the drawing process begins again. We restart the
drawing process by re-initializing all of the vertices to −1 4, which indicates
that they have not been defined yet.

The following line of code is commented out inside of draw():

2 // delta = delta + 1;

If you remove the // at the beginning of the line, the line will execute
and the triangle will fall faster and faster, as if being pulled by a force (for
example, gravity). Remove the // from the line near the end of
mouseReleased() as well and the initial speed will reset to 1 with each new
triangle drawn.

int x0=-1, y0=-1;
int x1=-1, y1=-1;
int x2=-1, y2=-1;
int delta = 1;

void setup ()
{
 size (400, 400);
}

void draw ()
{
 background (200);

 if (x2 >= 0)
 {
 triangle (x0, y0, x1, y1, x2, y2);

 1 y0 = y0 + delta; y1 = y1 + delta; y2 = y2 + delta;
 2 // delta = delta + 1;
 }
 else if (x1 >= 0)
 {
 line (x0, y0, x1, y1);
 line (x1, y1, mouseX, mouseY);
 } else if (x0 > 0) line (x0, y0, mouseX, mouseY);
}

3 void mouseReleased ()
{
 if (x0 < 0) { x0 = mouseX; y0 = mouseY; }
 else if (x1 < 0) { x1 = mouseX; y1 = mouseY; }
 else if (x2 < 0)
 {
 x2 = mouseX; y2 = mouseY;
 } else
 {

 4 x0 = y0 = -1;
 x1 = y1 = -1;
 x2 = y2 = -1;
 // delta = 1;
 }
}

Sketch 11: Displaying Text
Text is essential in nearly all practical computational programs and in many
generative art and net art programs as well. Text is a primary way that
humans communicate, and while we say that “a picture is worth a thousand
words,” it is frequently true that a few carefully chosen words can make an
otherwise incomprehensible image into a valuable communications tool.
Think of the labels along the axis of a graph, for instance.

We draw text in the sketch window in the same way that we draw lines
and ellipses, using a simple function. The first thing you need to know is
that text is drawn starting at a particular (x, y) location, where x and y
represent the coordinates of the lower-left corner of the box that encloses
the text when not considering descenders. Characters such as y and j extend
below this box, and they so have y values greater than the value specified.

We will draw text using a call to the function text() 2:

text ("This is a string to be drawn", 100, 20);

In this case, the coordinates of the lower left of the string are (100, 20).
The initial font and size are defaults, and these defaults are system
dependent. Size is easy to specify using the textSize(n) function 1,
passing the desired size of the characters in pixels (not points). The color
used to draw the text is the current fill color, not the stroke color.

The alignment of the text can be specified using calls to the textAlign()
function 3. Horizontal alignment can be LEFT, CENTER, or RIGHT with
respect to the x- and y-coordinates specified in the text() function call; the
default is LEFT. Vertical alignment can be TOP, CENTER, BOTTOM, or BASELINE
with respect to the x- and y-coordinates specified in the text() function
call; the default is BASELINE. BOTTOM is the line that defines the lowest y
value for any character, such as the bottom of a descender. BASELINE
defines the lowest point of a typical character with no descender. So, the
call

textAlign (CENTER, BOTTOM);

will center the current text from left to right (the specified x value is the
center of the string) and aligned so that the specified y value is the bottom
of the string.

Example A illustrates how to display text in two different sizes. Example
B shows a line drawn horizontally on each x-coordinate and vertically down
each y-coordinate specified in the text() call. It shows the alignment of the
text with respect to the specified coordinates.

NOTE

The names CENTER, LEFT, RIGHT, and so on are just constants
declared by the Processing system. Their specific values are not
important, but the system must know what that value is so that the
system can make the proper alignments.

Example A

void setup ()
{
 size (400, 300);
 fill (255, 0, 0);
}

void draw ()
{
 background(200);

 1 textSize(12);
 2 text ("12 pixel text starts at (100, 50).", 100, 50);
 textSize (20);
 text ("20 pixel text starts at (50, 100).", 50, 100);
}

Example B

void setup ()
{
 size (300, 200);
 fill (255, 0, 0);
}

void draw ()
{
 line (100, 0, 100, height);

 3 textAlign(LEFT); text ("LEFT", 100, 50);
 line (0, 50, width, 50);

 textAlign(CENTER); text ("CENTER", 100, 90);
 line (0, 90, width, 90);
 textAlign(RIGHT); text ("RIGHT", 100, 130);
 line (0, 130, width, 130);
 textAlign (LEFT, BASELINE); text ("BASELINE", 200,
50);
 line (200, 0, 200, height);
 textAlign (LEFT, CENTER); text ("CENTER", 200, 90);
 textAlign (LEFT, TOP); text ("TOP", 200, 130);
}

Sketch 12: Manipulating Text Strings
The previous sketch is really an introduction to character strings, which are
a natural way for a human to communicate with a computer. A string is a
sequence of characters; so is a word, a sentence, or a paragraph. At a high
level, a string consists of a collection of characters in a specific order. There
is a first character, a second, and so on until the final one is reached. The
number of characters in this sequence is the length of the string.

String constants are character sequences enclosed in double quotes like
this: "To be or not to be". We can use string constants to declare
variables that are Strings and assign values to them. At 1, for example, we
declare two string variables and assign string constants to them:

String s1 = "To be or not to be"
String s2 = "that is the question."

Strings can be constructed by sticking other strings together. The +
operator, when applied to strings, means concatenate or append, so the
quote can be completed by concatenating these two strings:

s1 = s1 + s2;

This makes s1 become "To be or not to bethat is the question."
Unfortunately, this is not quite right, because we need a comma and a space
between the two strings. This would be better:

2 s1 = s1 + ", " + s2;

The first character, “T”, in this new string has an index of 0, meaning it is
in the 0 position in the string. The character “o” is in position 1, and so on.

A substring is a sequence of characters within the string specified by
indices. The substring of s1 from index 6 to 11 is the string "or not", and it
is found in Processing as follows:

s1.substring (6,12)

The length of this string is six characters, and that length is returned by
the function length():

s1.substring(6,12).length()

The character at a specific location can be found with the charAt()
function. For example, s1.charAt(3) is “b” and s1.charAt(18) is “,”.

Strings cannot be compared using the standard relational operators
(because they are really class instances, which will be discussed later).
Instead, there are functions for comparison. Comparing s1 and s2 could be
accomplished like this:

if (s1.equals(s2)) ...;

This sketch shows some string operations and their results, drawn using
the text() function discussed in Sketch 11. The sketch includes examples
of length() 3, charAt() 4, and substring() 5.

1 String s1 = "To be or not to be";
String s2 = "that is the question.";

void setup ()
{
 size (500, 400); fill(0);
 text ("s1 = '"+s1+"'", 10, 20);
 text ("s2 = '"+s2+"'", 10, 35);
 text ("s1+s2 is '"+s1+s2+"'", 160, 35);
 text ("s1+\", \"+s2 is '"+ s1+", "+s2+"'", 160, 50);
 text ("Let s1 = \"To be or not to be, that is the
question.\"", 10, 75);

 2 s1 = s1 + ", " + s2;
 3 text ("Then s1.length() is "+s1.length(), 25, 90);
 4 text ("s1.charAt(0) is '"+s1.charAt(0)+"'", 160, 90);
 text ("s1.charAt(6) is '"+s1.charAt(6)+"'", 160,
105);
 text ("s1.charAt(13) is '"+s1.charAt(13)+"'", 160,
120);
 text ("s1.charAt(41) is '"+s1.charAt(40)+"'", 160,
135);
 text ("The length() function returns the number of
characters in the string.", 10, 150);
 text ("The index of the final character is
length()-1. It's an error to index past the end.", 10,
165);
 text ("Putting a \" into a string is done by using a
backslash: \\\" does it.", 10, 180);

 5 text ("s1.substring (0, 10) is
\""+s1.substring(0,10)+"\"", 15, 200);
 text ("s1.substring (10, 20) is
\""+s1.substring(10,20)+"\"", 15, 215);
 text ("s1.substring (12) is
\""+s1.substring(12)+"\"", 15, 230);
 text ("s1.substring (20, s1.length()-1) is
\""+s1.substring(20,s1.length()-1)+"\"", 15, 245);
 noLoop();
}
void draw () { }

2
WORKING WITH PREEXISTING

IMAGES

Sketch 13: Loading and Displaying an Image
Images are everywhere in cyberspace, and even people without explicit
computer skills know the names of the image formats, or at least the file
suffixes: GIF, JPEG, BMP, PNG, and so on. Each of these sequences of
letters is symbolic of a different way of storing images in computer form, and
each has specific pros and cons for different purposes. GIF images were
developed for use on the early internet, and they can have transparent color
as well as the ability to store animations. The JPEG (or JPG) format is used
by almost all digital cameras, and it compresses pictures into relatively few
bytes.

You should recognize the importance of images and how complex a task it
is to read data from one of these file formats. A program to read most GIF
files would require more than a thousand lines of code. The fact that
Processing provides an easy-to-use facility to read, display, and write images
is one of its many advantages over other programming languages.

Processing has a type that represents an image, much as an integer is
represented by the int type, and the system can read an image file into a
variable with one call to a function. The type is PImage (short for Processing
Image), and the function is loadImage(). For the image to load, it should be
saved in the same folder as the sketch file, or in a subfolder called data.

Example A
Let’s assume that an image file named image.jpg exists and that we want to
read this image and display it in the sketch window. The first thing to do is
declare a PImage variable, im, into which we’ll place the image 1. Inside of
setup(), we will create a sketch window (using size()) and read the image.
The following statement reads the image and assigns it to the variable im:

2 im = loadImage ("image.jpg");

Now the image data is stored in some internal form in the variable im.
Displaying the image is done from the draw() function, although it could

be done in this instance from setup() as well. The Processing system gives

us a function named image() that will draw a PImage into the sketch window
at a particular (x, y) location (specifying the location of the upper-left corner
of the image). The following call draws the image so that its upper-left
corner corresponds to the window’s upper-left corner:

3 image (im, 0, 0);

Example B
This program is the same as Example A, but it draws the image at location
(150, 30) 1. Now the image is more neatly displayed in the available space.

NOTE

The type PImage is defined by Processing but is a little different in
detail from types like int and float. In fact, PImage is something
called a class, and we can make our own classes.

Example A

1 PImage im;

void setup ()
{
 size (640, 480);

 2 im = loadImage ("image.jpg");
}

void draw ()
{

3 image (im, 0, 0);
}

Example B

PImage im;

void setup ()
{
 size (640, 480);

 im = loadImage ("image.jpg");
}

void draw ()
{

1 image (im, 150, 30);
}

Sketch 14: Images—Theory and Practice
Images are used often in the visual arts, and Processing was designed for
artists, so it’s no surprise that images are pretty easy to use in the program.
There are some basic things you need to know, though.

One is that for an image to be used on a computer, it must be digitized;
that is, it must be turned into numbers. If an image was not created by a
computer in the first place, then it has to be scanned or photographed, and
each location on the original image must be given a number indicating the
color seen there. The result is a two-dimensional array of numbers, each of
which represents the color at a specific location. Each small area of an image
is considered to be uniform in color, even if it’s not, so the most prominent
color is selected to represent the entire area. This color is stored at the
corresponding (x, y) location in the internal representation, and it’s called a
picture element, or pixel for short. The complete collection of these pixels is
an approximation of the original image. Drawing an image on screen means
setting the pixels on a portion of the computer screen to match those in the
image. This is what the image() function does in Processing.

Images are most often thought of as being N×M pixels in size, where N is
the number of rows and M is the number of columns. The total number of
pixels in such an image is N×M.

The PImage data type offers programmers a variety of ways to access the
pixels in an image and manipulate them. Properties of an image can be
accessed using “.” (dot) notation. For a PImage variable named myImage, for
example, we have the following properties:

myImage.width // Width of the image, in pixels
myImage.height // Height of the image, in pixels

We often wish to create a graphics area that is the same size as a particular
image, but the size() function in setup() can only use constants to set the
window size. To get around this, we can add surface.setResizable(true)
to setup(). It lets us resize the graphics area while the sketch is running with
a call to surface.setSize(), which can use non-constants like
myImage.width.

Individual pixel values can be accessed using functions that return or set
colors based on (x, y) coordinates:

myImage.get(x,y); // Returns the color of the
pixel at column x and row y
myImage.set(x,y, color(255,0,0)) // Sets the pixel at (x,y)
to red

If we simply call get() or set() with no image specified, Processing
assumes that the image being referenced is whatever is being displayed in the
sketch window.

Example A
This sketch reads an image file and checks to see if it was read in
successfully 1; if not, the program is ended by calling the function named
exit(). The loadImage() function returns a special value named null if the
image could not be read, so that can be used as an indicator that the image
file, for example, was not found. If the image is okay, the program sets the
size of the sketch window to be the same size as that image, using the
image’s width and height properties 2. When the setup() function displays
the image, it will fill the entire window.

Example B
The second sketch does not call exit() if the image file can’t be opened.
Instead, it displays an error message in the graphics window 1.

Example A

PImage img; // The image to be loaded
String name = "image.jpg"; // Name of the image file

void setup ()
{
 size (100,100);
 surface.setResizable(true);
 img = loadImage ("image.jpg");

 1 if (img == null)
 {
 println ("File image.jpg is missing.");
 exit();
 }

 2 surface.setSize(img.width, img.height);
}

void draw()
{
 image (img, 0, 0); // Display the image
}

Example B

// Display error message if the image is not read in.

PImage img; // The image to be
loaded

void setup ()
{
 fill(0);
 size (400,200);
 surface.setResizable(true);
 img = loadImage ("image.jpg"); // Load the original
image
 if (img == null)
 {
 background(255,0,0);

 1 text ("Error: Image file not found", 100, 100);
 }
 else surface.setSize(img.width, img.height);
}

void draw()
{
 if (img !=null) image (img, 0, 0); // Display the
image
}

Sketch 15: Manipulating Images I—Aspect
Ratio
In the previous sketch we used the size of an image to define the size of the
sketch window. It’s also possible to change the size of an image so that it fits
into an existing space. The resize() function, part of the PImage data type,
can be used to specify a new size for an image. It does not make a copy but
resizes the PImage itself. Here’s an example call to this function:

1 img.resize (w, h);

This call will cause the image stored in the img variable to be expanded or
contracted to be w pixels wide by h pixels high.

Example A
In the first example, we scale the image to be the size of the window, which
is 240×480. Note that the image has been distorted, squashed from the sides
and made taller. Also note that all of the work is done in setup(), and
draw() has no code.

Any image has an aspect ratio, which is the relationship between the
width and height of the image. It is often expressed as w:h. For example,
16:9 would be the aspect ratio of an image that had 16 pixels in the x-
direction (width) for every 9 pixels in the y-direction (height). The aspect
ratio is sometimes expressed as a fraction, dividing the height into the width,
so the ratio of 16:9 would be written as 1.8 in this way. The reason that the
image in Example A looks odd is that the aspect ratio has been changed by
forcing the image to fit into an arbitrary rectangle.

Example B
This sketch draws an image into a window, scaling it so that the aspect ratio
remains intact. The first thing to be done is to compute the aspect ratio of the
original image:

1 aspect = (float)w/(float)h;

We use float variables here because the aspect ratio will be a fraction.
When we place an image into a fixed space, its largest dimension (height or
width) determines the overall size of the image within the window. We’ll
adjust the largest side of the image to exactly fit the corresponding side of the
window 2, whether that means making the image larger or smaller. The other
dimension of the image is kept proportional to this new scaled value. So if
the image is taller than it is wide, we will map the height of the image to the
height of the window:

h = height;

and the width will be in proportion to the original aspect ratio (converted to
an integer):

w = (int)(h*aspect);

Now the image can be resized for display:

img.resize (w, h);

Example A

PImage img;

void setup ()
{
 img = loadImage ("image.jpg");
 size (240, 480); // Fixed size window

 1 img.resize (240, 480);
 image (img, 0, 0);
}

void draw ()
{ }

Example B

PImage img;
int w, h;
float aspect = 1.0;

void setup ()
{
 img = loadImage ("image.jpg");
 size (540, 480);
 w = img.width; h = img.height;

 1 aspect = (float)w/(float)h;

 2 if (w > h)
 {
 w = width;
 h = (int)((float)w/aspect);
 } else
 {
 h = height;
 w = (int)(h*aspect);
 }
 img.resize (w, h);
 image (img, (width - w)/2, (height-h)/2);
}

void draw () { }

Sketch 16: Manipulating Images II—Cropping
Cropping an image refers to the removal of some outer parts. You could
think of it more generally as the selection of an arbitrary rectangular sub-
image. We crop images to make a more appealing image or to remove
extraneous material. In Paint or Photoshop we use the mouse, clicking first
on the desired upper-left corner of the cropped image, then dragging the
mouse to the desired new lower-right corner, and releasing the button. All
parts of the image outside of the selected rectangle will be discarded. This
sketch will crop an image and optionally expand the cropped region to fill
the entire image window.

First the image is read in and the sketch window is resized to fit the image.
The draw() function displays the image (named img) centered in the window
using the following code 2:

image (img, (width-img.width)/2, (height-img.height)/2);

If the image has not been cropped, width-img.width will be 0, and the
call will be image(img, 0, 0). Otherwise the image will be smaller than the
window, and (width-img.width)/2 will be the number of pixels needed on
the left to center the cropped image. The same is done for height, which
places the image in the center of the window.

When the mouse button is pressed (mousePressed()), the cropping
process starts, using the point where the cursor is, which is saved as x0 and
y0. Then a rectangle is drawn from this location to the current mouse
coordinates, implementing a rubber band rectangle 3.

When the mouse button is released, the mouse coordinates are evaluated to
ensure that the current mouseX and mouseY represent the lower-right corner of
the crop box; in other words, make sure that mouseX is bigger than it was
when the mouse button was pressed, and the same for mouseY. If not, the
values of x0 and y0 are swapped with the values of mouseX and mouseY. Then
we create a cropped image with the get() function, using the upper-left and
lower-right coordinates 4:

sub = get(x0, y0, (mouseX-x0), (mouseY-y0));

The get() function returns a rectangular region of an image specified by a
coordinate pair, a width, and a height. In the preceding call (x0, y0) are the
upper-left coordinates, the width is the distance between the mouseX value
and the upper-left x value, and the height is the distance between mouseY and
the upper-left y value. In this case, get() is using the image displayed in the
sketch window as the original.

The sub-image returned by the get() function becomes the current image
to be displayed in draw() (the variable img) centered in the window 5.

A new idea in this sketch is the test to see which mouse button was
pressed. In the mouseReleased() function, this statement tests for the right
mouse button:

if (mouseButton == RIGHT) sub.resize (width, height);

If that was the one released, the sub-image is rescaled to fit the window.

At 1 we resize the graphics window to be the size of the image, as we’ve
done before.

PImage img;
boolean flag = false;
PImage sub;
int x0=0, y0=0;

void setup ()
{

 1 size (100, 100);
 surface.setResizable(true);
 img = loadImage ("image.jpg");
 surface.setSize(img.width, img.height);}

void draw ()
{
 background (200, 200, 200); // White background

 2 image (img, (width-img.width)/2, (height-
img.height)/2);

 3 if (flag) // If a mouse button is
down then x0,y0 are defined
 { // Draw a rectangle from
(x0,y0) to the mouse cursor
 noFill(); stroke(200);
 rect (x0, y0, (mouseX-x0), (mouseY-y0)); // Draw
rectangle
 }
}
void mousePressed ()
{
 flag = true;
 x0 = mouseX; y0 = mouseY;
}

// Mouse button released. Select the sub-image that lies
in the rectangle
// and rescale it; replace current display image with
the new cropped one.
void mouseReleased ()
{
 int t;
 flag = false;
 if (x0 > mouseX) { t = mouseX; mouseX = x0; x0 = t; }
 if (y0 > mouseY) { t = mouseY; mouseY = y0; y0 = t; }

 4 sub = get(x0, y0, (mouseX-x0), (mouseY-y0));

 if ((mouseX-x0 > 0) && (mouseY-y0 > 0))
 {
 if (mouseButton == RIGHT) sub.resize (width,
height);

 5 img = sub;
 }
}

Sketch 17: Manipulating Images III—
Magnifier
Some computers have a “magnifying glass” object that is controlled by the
mouse and displays a close-up (magnified) view of a part of the screen. It
allows people with a minor visual impairment to see things more clearly, and
it allows everyone to get a better look at menus and other screen-based
objects.

Magnification is done by increasing the size of each pixel in the original
image. If each pixel in the original becomes four pixels (in a square) in the
new image, then the size of the new image will be double that of the original,
giving the appearance of a magnified version, as shown in Figure 17-1. The
image will contain no more detail than the original; it will just be easier to
see.

Figure 17-1: Magnifying an image

Implementing a magnifying glass is a simple matter using the functions
that Processing provides. First we display the target image and use the
techniques discussed in previous sketches to select a rectangular region in the
sketch window to be magnified. By pressing the mouse button, the user
selects a square beginning at the mouse coordinates with a size of 50×50 1.
The Processing functions mousePressed() and mouseReleased() are called
when the button is pressed and released 3, and we use these functions to set a
flag variable named mag. If mag is set, we copy the selected part of the
original image into another PImage named sub using the get() function. The
copied image is then resized to be 100×100 pixels using the resize()
function 2:

sub.resize (100,100);

Taking a 50×50 image and making it 100×100 effectively doubles its size.
Now the resized image is drawn on the screen at the location from which it
was copied, more or less. The new image is larger than the extracted one, so
the new position is approximate, and some pixels from the original will be
hidden behind the new, larger copy.

PImage img; // Original image
boolean mag = false; // Has the mouse been pressed?
PImage sub; // Smaller, magnified image

void setup ()
{

 size (100,100);
 surface.setResizable(true);
 img = loadImage ("image.jpg");
 surface.setSize(img.width, img.height);
}

void draw ()
{
 background (200, 200, 200);
 image (img, 0, 0); // Display the image

 if (mag) // If the mouse is being pressed,
 // compute and display
 { // a rectangular and magnified
region
 // with mouse at UL
 stroke(200);
 noFill();
 rect (mouseX, mouseY, 100, 100); // Outline the
magnified region

 1 sub = get(mouseX, mouseY, 50, 50); // Get the sub-
image

 2 sub.resize (100,100); // Double its
size
 image (sub, mouseX, mouseY); // Draw the
sub-image
 }
}

// Set the flag 'mag' when the mouse button is pressed.

3 void mousePressed ()
{
 mag = true;
}

// Clear the flag 'mag' when the mouse button is
released.
void mouseReleased ()

{
 mag = false;
}

Sketch 18: Rotation
When rotating something, we always need to specify an axis of rotation,
which in two dimensions is a point and an angle. A rotation is specified
using a call to the function rotate(),

rotate(angle);

where angle is specified in radians. A circle contains 2π radians and also
360 degrees, so to convert from degrees to radians means multiplying the
degrees by 3.14159/180.0, or by using the Processing function radians(x).
The point (axis) about which the rotation will take place is the origin of the
window’s coordinate system, (0, 0), by default. It is the upper-left corner of
the window, and the rotation will be clockwise about this point.

When a rotation is specified, all things drawn from that point on will be
rotated. Calling rotate() again rotates by a further angle. Turning off the
rotation is not possible as such, but a call to rotate (-angle) will undo the
call to rotate(angle).

Example A
The first example draws a figure illustrating rotations. A horizontal line is
drawn and labeled 1, followed by a line that is rotated by 10 degrees 2 and
then by one rotated by 20 degrees 3. To avoid having the text rotated, the
rotation is “undone” (rotated by the negative angle) before drawing the text
labels.

Example B
A line is drawn from the origin. It has a small ball on the end. This line is
rotated from 0 to 90 degrees in small steps, with each step displayed within
draw() because the line and ball are drawn there. When the line is rotating
clockwise, the angle is incremented by 0.01 radians each time draw() is
called 1. When the line becomes vertical and further rotation would take it
out of the field of view, the change in angle for each frame (variable d) is
changed to -d 2. Now the line rotates back to its original position, and at that

point (0 degrees) the value of d is changed to become positive again. The
object, which looks like a pendulum, bounces between 90 degrees and 0
degrees.

The rotation angle is reset to 0 each time draw() is called.

Example A

float d2r = 3.14159/180.0;
void setup ()
{
 size (400, 400);
 noFill();
 stroke(255);
 ellipse (0,0,280,280);
 stroke(0);
 fill(0);

1 line (100, 100, 200, 100);
 text ("0 degrees", 210, 100);

2 rotate (radians(10));
 line (100, 100, 200, 100);
 rotate (-10*d2r);
 text ("10 degrees", 190, 140);

3 rotate (20*d2r);
 line (100, 100, 200, 100);
 rotate (-20*d2r);
 text ("20 degrees", 165, 180);
}

Example B

float angle = 0.0, d = 0.01;

void setup ()
{
 size (150, 130);
 stroke(0);
}

void draw ()
{
 background (200);
 rotate (angle);
 line (0, 0, 50, 0);
 ellipse (50, 0, 3, 3);

 1 angle += d;
 2 if (angle > 1.6) d = -d;

 else if (angle < 0.0) d = -d;
}

Sketch 19: Rotating About Any Point—
Translation
Being able to rotate objects is essential, but only being able to rotate about
the upper-left corner of the screen is inconvenient. Rotation about an object’s
center is what we usually want, but it requires knowledge of the object.
Objects can be complex things in graphics; an object might be just a circle or
square, or it might be a building or a car. Processing cannot be expected to
know what an object is or where the center might be. However, Processing
makes it possible to move the center of rotation to any coordinate we choose,
using the translate() function.

translate() takes an x- and a y-coordinate and changes the origin to that
location for all future drawing. The following example moves the origin to
the location (100, 200) in the window, which now becomes the coordinate (0,
0):

translate (100, 200);

The word translate means, in mathematical terms, to reposition, so a
translation involves changing the position of an object. If we translate the
origin to (50, 50) and then draw a circle at (0, 0), the circle will appear at
window coordinates (50, 50) on the screen. Further circles will be drawn
relative to window coordinates (50, 50).

Because rotations always use (0, 0) as the axis, this means we can set the
axis to any coordinates we like and rotate an object about any point.

Example A
As a basic example, we’ll draw a circle at (0, 0) using the ellipse()
function 1 and then call translate() to change the origin to (50, 50). A
second call to ellipse() that is exactly the same as the first draws the circle
at screen coordinates (50, 50). A further ellipse() call drawing a circle at
(30, 40) draws the circle at screen coordinates (80, 90); that is, (30, 40)
relative to the new origin at (50, 50).

Example B
In this sketch we rotate a line about its center. The process is to translate()
to the center of the line, in this case (150, 100) 1; rotate by the current angle
2; and then draw the line. The coordinates of the line must reflect the fact
that the origin is the line’s center, not one end. Because the center of the line
is at (150, 100), the line should be drawn from −50 to +50 in the x-direction
so as to be 100 pixels long. The translated coordinates of the start would be
(150 − 50, 200 − 100 − 0), or (100, 100). The coordinates of the endpoint
will simply be 100 pixels further in x, or (200, 100). A small circle is drawn
at the midpoint (origin) so that it can be seen.

The rotation angle increases each time draw() is called 3. Since the line is
drawn each time draw() is called, the image shows a slowly rotating line.

Example A

// Translate a circle
void setup ()
{
 size (300, 200);
 stroke(0);
 fill(200, 100, 50);
}

void draw ()
{
 background (200);

1 ellipse (0, 0, 10, 10);
 translate (50, 50);
 ellipse (0, 0, 10, 10);
 ellipse (30, 40, 10, 10);
}

Example B

// Rotate a line about its origin
float angle = 0.0;

void setup ()
{

 size (300, 200);
 stroke(0);
 fill(0);
}

void draw ()
{
 background (200);

1 translate (150, 100);
2 rotate (angle);

 ellipse (0, 0, 3, 3);
 line (-50, 0, 50, 0);
 translate (-150, -100);

3 angle += .01;
}

Sketch 20: Rotating an Image
Rotation and translation can be applied to complex objects as well as simple
lines and circles. In particular, we can rotate images about arbitrary points by
any angle.

There can be a problem in determining how to place the image so that it
lies entirely on the screen. Images are rectangular, and rotating them
increases their width or height. If we don’t place the image properly within
the window, one or more corners could rotate out of the window’s
boundaries, as shown in Figure 20-1.

Figure 20-1: Rotating an image out of the window’s boundaries

The top pair of images shows the result of rotating an image that was
displayed in the upper-left corner of the window. Rotating by 45 degrees
moves half of the image off of the screen. The bottom pair of images shows

what can happen when an image is rotated about its center without a large
enough window: the corners of the image are cut off.

This sketch displays a continuously rotating image. The image is read in,
and the window size is set to double the image size in each dimension 1. The
draw() function translates the origin to the center of the image and then
rotates the image by angle and displays it, thus rotating the image about its
own center 2. The value of angle is then increased by a tiny amount for the
next time draw() is called 3. The image appears in the center of the window
and appears to rotate.

PImage img; // Image to rotate
float angle = 0.0; // Angle of rotation

void setup ()
{
 size (100,100);
 surface.setResizable(true);
 img = loadImage ("image.jpg");

1 surface.setSize(img.width*2, img.height*2);
}

void draw()
{
 background(200); // White
background
 translate(img.width, img.height); // Move image
to origin

2 rotate(angle); // Rotate
 translate (-img.width, -img.height); // Move back
 image (img, img.width/2, img.height/2); // Draw

3 angle = angle + 0.01; // Increment
angle
}

Sketch 21: Getting the Value of a Pixel
While developing Sketch 14, we discussed how to get a pixel value from a
PImage using the get() function. We can get the color value of the pixel at
(x, y) in a PImage named im as follows:

color c;
PImage im;
c = im.get (x, y);

The picture currently being displayed in the sketch window has a privileged
position because it can be accessed without using a variable. A pixel value
on the screen can be obtained by simply calling get():

c = get (x, y);

We can therefore get the color of the pixel at the current mouse position
with

c = get (mouseX, mouseY);

This sketch loads an image and allows the user to click any pixel to see its
color, which will be displayed on the right side of the screen as a colored bar
and as RGB values in text form. First the sketch loads an image and sizes the
window to fit it, with an extra region on the right side. In draw() it displays
the image with a background color of (200, 200, 200) 1; when the mouse
button is pressed, it assigns the pixel value (color) at the mouseX, mouseY
coordinates to the color variable c 3; then it displays the color on the right
side of the image and the RGB values as text at the upper-right corner of the
screen 2. Whenever the mouse button is clicked, the color value displayed
will change.

NOTE

Another way to describe a color is with the HSB system, in which the
three color values represent the hue, saturation, and brightness. Hue
is the actual color, such as red or blue. Saturation indicates the
intensity of the color. Brightness indicates a value of light. Changing
to HSB mode in Processing is done by calling colorMode (HSB,
256), for example, in which each of H, S, and B have values between 0
and 255. The call colorMode (RGB, 256) would return to the default
RGB coordinates.

No matter what the color mode is, the function hue(c), when c is
a color, will return the hue value. The functions saturation(c) and
brightness(c) yield the other two HSB components.

PImage img;
color c;

void setup ()
{
 size(200, 200);
 surface.setResizable(true);
 img = loadImage ("image.jpg");
 surface.setSize(img.width+55, img.height);
 c = color (200, 200, 200); // Default background
}

void draw()
{

 1 background (c);
 image (img, 0, 0);
 if (red(c) != 200)
 {

 2 text ("R="+red(c), img.width+2, 20);
 text ("G="+green(c), img.width+2, 35);
 text ("B="+blue(c), img.width+2, 50);
 }
}

void mousePressed ()
{
 if (mouseX > img.width)
 c = color(200, 200, 200);
 else

 3 c = get (mouseX, mouseY);
}

Sketch 22: Setting and Changing the Values
of Pixels
Pixel values in an image, including the drawing area, can be changed using
the set() function. We specify a pixel location using coordinates and
identify the color to draw at that point. For example,

set (i,j, color(255, 255, 0));

This sets the pixel in the graphics area at location (i,j) to yellow, or RGB
(255, 255, 0). If the coordinates lie outside of the window, the pixel will be
drawn but will not be visible.

We can set a color for all pixels in the window using the background()
function:

background (255, 100, 40)

This call fills the sketch window with orange.

Example A
Setting all pixels in the window without using the background() function
requires a loop—two nested loops, in fact. The first loop examines all pixels
in the horizontal direction; that is, all pixels in a specified row. The second
loop looks at all possible values of i, which is to say all rows. The first loop
is nested within the second so that all pixels in all rows are modified:

1 for (i=0; i<width; i++)
 for (j=0; j<height; j++)
 set(i,j, color(255, 100, 40));

This sets all pixels in the sketch window to orange.

Example B

The pixel values of an image can be modified before the image is displayed
in the sketch window. Not only can the color be replaced, but a pixel value
can be changed more subtly to a variation of what is already there. This
example first loads and displays an image. When the program detects a
button press with mousePressed(), it sets the flag grey 2, which indicates
that the image on the screen is to be modified, pixel by pixel, in a loop like
that of the previous example. In this case, we replace the RGB value of each
pixel on the screen with its brightness value 1, and the result is a grey image
showing no color. When the mouse button is released (mouseReleased()),
the program clears the flag (sets it to false), and the image is displayed in
color again 3.

Example A

void setup ()
{
 size (400, 300);
}

void draw ()
{
 int i,j;

1 for (i=0; i<width; i++)
 for (j=0; j<height; j++)
 set (i,j, color(255, 100, 40));
}

Example B

PImage img;
color c1, c2, c;
boolean grey = false;

void setup ()
{
 size(200, 200);
 surface.setResizable(true);
 img = loadImage ("image.jpg");

 surface.setSize(img.width, img.height);
 c = color (200, 200, 200); // Default background
}
void draw ()
{
 int i,j;
 color c1, c2;
 background (200);
 image (img, 0, 0);
 if (mousePressed)
 {
 for (i=0; i<width; i++)
 for (j=0; j<height; j++)
 {
 c1 = get (i,j);

 1 c2 = (int)brightness(c1);
 set (i,j,color(c2,c2,c2));
 }
 }
}

2 void mousePressed () { grey = true; }
3 void mouseReleased () { grey = false; }

Sketch 23: Changing the Values of Pixels—
Thresholding
The act of thresholding an image changes the color value of each pixel to
either black or white, depending on the original color or brightness.
Thresholding creates a binary image: each pixel can be thought of as being
either on or off. Why do this? Some images have content that is
fundamentally binary: a scan of a page of text has black characters on a
white background. In other cases, it is a way to simplify an image so that we
can perform other operations, such as detecting edges or faces. Thresholding
an image of red blood cells might facilitate counting them, for example.

Thresholding an image is a two-step process. First we determine a
threshold value—one that retains the required features of the image. We
usually do this by examining all of the pixels in the image and computing a
value using some statistical formula. A threshold value is a number between
0 and 255; all pixel brightness values smaller than the threshold will be set to
black (0), and those greater will be set to white (255). The second step is
looking at all of the pixels and actually applying the threshold.

To address the second step first, applying the threshold is a simple matter
of looking at each pixel and deciding whether it is less than or greater than
threshold. We assign the pixel value to the variable g, extract the brightness,
and then test it:

2 if (g<threshold) g = black;
 else g = white;

The value black is the color (0, 0, 0), and white is (255, 255, 255).
In this sketch, we will determine the threshold manually, using the mouse

position. This is the horizontal position of the mouse as a percentage of the
total window width:

mouseX/width

If we multiply this fraction by 255, we get a value between 0 and 255 1 that
is in proportion to how far to the right the mouse is. We’ll use this value as a

threshold. When the mouse is on the left side of the window, the threshold
will be small and most of the image will be white; when the mouse is on the
right, the threshold will be large and the image will be largely black.

If the draw() function calculates and applies the threshold, it will be
dynamic, and we can watch the image change as the mouse moves.

NOTE

When calculating a threshold from pixel values, we could select the
average pixel level as the threshold; the implication here is that half
of the pixels would be black and half white. However, this is not a
good threshold for text, because many more pixels in a text image
will be white than will be black. There are many algorithms for
thresholding images, but there is no best one in general.

We could also threshold each color value separately to create
interesting images, with each color either full on or full off.

PImage img;
int threshold;
color black = color(0, 0, 0);
color white = color (255, 255, 255);

void setup ()
{
 size(200, 200);
 surface.setResizable(true);
 img = loadImage ("image.jpg");
 surface.setSize(img.width, img.height);
 threshold = 128;
}

void draw ()
{
 color c;
 int i,j,g;

 background(200);
 image (img, 0, 0);

 threshold = (int)((1(float)mouseX/(float)width) *
255);
 for (i=0; i<width; i++)
 for (j=0; j<height; j++)
 {
 c = get (i,j);
 g = (int)brightness(c);

 2 if (g<threshold) g = black;
 else g = white;
 set (i,j,g);
 }
}

Sketch 24: User-Defined Functions
Up to this point, we have been using drawing functions provided by the
Processing system: ellipse(), line(), mousePressed(), and so on. We
have not analyzed the concept of functions much, partly because it appears
fairly obvious what is going on. However, if we wish to create our own
functions, there are some things we need to understand.

A function is a name given to a collection of code. When the name of the
function is used in a statement, that function is said to be invoked or called,
and the code within the function is executed. This means that functions can
be executed from many different places without repeating the code itself,
merely by calling it.

A function can return a value: we’ve used such functions before. For
example, color() and get() return colors and pixel values. Functions that
do not return a value are said to return void, and that’s the reason for the
word void in front of setup() and draw(). They are functions that do not
return a value.

To create a new function, we must follow the same syntax as setup() and
draw(): we write the return type, the function name, parentheses, and then
the function body in curly brackets. For example:

void newFunctionA () int newFunctionB ()
{ {
 code code
 return value;
} }

Above, newFunctionA() does not return a value, and it is called or
invoked using the function call newFunctionA();. newFunctionB() returns
an integer value and must have a return statement indicating the value to be
returned. This type of function is called as if it were part of an expression:

a = newFunctionB();
x = newFunctionB()*2 + 1;

There can be more than one return statement in a function, but only one
will be executed, because once a function returns, no other code in the
function can execute.

Functions may have parameters or arguments, values that are given to the
function when it is called. When calling the function color(), we list three
values in the parentheses: red, green, and blue. These variables are
specifically passed for use by the function, and their values are available to
do calculations within the function.

Let’s make a function that calculates the distance between two points, (x0,
y0) and (x1, y1):

float distance (int x0, int y0, int x1, int y1)

The arguments to the function are named x0, y0, x1, and y1, and they have
types, in this case integer (int). The arguments are used to calculate the
distance between the points (x0, y0) and (x1, y1) as follows:

This sketch uses two mouse clicks to determine the points: (x0, y0) 2 and
(x1, y1) 3. It draws a marker at each point and displays the distance between
them as a text message at the bottom of the window 1.

int x0 = -1, y0 = -1;
int x1 = -1, y1 = -1;
boolean ok = false;

void setup ()
{
 size (300, 300);
}

void draw ()
{
 background(200);
 fill (100, 255, 40);
 if (x0 >= 0)
 ellipse (x0, y0, 5, 5);
 if (x1 >= 0)
 ellipse (x1, y1, 5, 5);
 if (ok)
 {
 fill (0);

 1 text ("Distance is "+distance(x0,y0,x1,y1), 100,
250);
 }
}

float distance (int x0, int y0, int x1, int y1)
{
 float d;

 d = (x0-x1)*(x0-x1) + (y0-y1)*(y0-y1);
 d = sqrt(d);
 return d;
}

void mousePressed ()
{
 if (x0 < 0)
 {

 2 x0 = mouseX; y0 = mouseY;
 } else if (x1 < 0)
 {

 3 x1 = mouseX; y1 = mouseY;
 ok = true;
 }
}

Sketch 25: Elements of Programming Style
Style in a program refers to aspects of the code that don’t usually impact the
execution but that do have an effect on how other people read, modify, or
repair it.

For example, there is a way to place human-readable text within a program
for other programmers to read. Any text that follows a pair of slashes is
called a comment, and it is ignored by Processing, as is any text in between
the symbols /* and */, which delineate comments that can span many lines.
Programs should have relevant comments embedded within the code to
explain what is going on to any human beings looking at it. Comments
should be clear, offer an explanation, and never simply repeat the code itself.
The nature of the comments in a program is one aspect of what we call
programming style.

Another aspect of style is the use of indentation to convey structure. There
is no single correct way to indent, but the standard shown in the sketches in
this book has certain consistent features. For example, the “{” and “}”
characters used to enclose blocks of code always line up with each other
vertically so that the blocks are easy to identify. The only exception is when
they are on the same line:

if (x0 < 0)
{
 x0 = mouseX;
 y0 = mouseY;
}

In other books, you might see another style:

if (x0 < 0) {
 x0 = mouseX;
 y0 = mouseY;
}

The location of brackets doesn’t matter to the programming language’s
compiler, but a programmer should be consistent.

Variables should have meaningful names. The variables x0 and y0 above
represent x- and y-coordinates, so the names make sense. A variable named
pixelCount should contain a count of pixels. It is pretty easy to give
variables good names, and doing so does not impact how fast the code is or
how much memory it requires in order to execute.

Numeric constants should be named like variables so that the purpose of
the constant can be inferred from the name. A perfect example is PI instead
of 3.1415. A program should contain very few if any numerical constants,
and names should be used instead. Consider the following code:

r = d*0.01745;

The number 0.01745 is meaningless to most people. Now consider this:

r = d *2*PI/360.0;

This is better. Two times PI/360 is the conversion between radians and
degrees. Best would be

radians = degrees * degrees_to_radians;

where degrees_to_radians equals 0.01745. Now anyone reading the code
can easily see what is happening.

The code in this sketch does the same thing as the previous sketch, but it
shows better style. Note, though, that it takes more space on the screen—this
is typical, and it’s why these rules are not followed all of the time, even in
this book (where it’s important for the text to fit on a single page).

int x0 = -1, y0 = -1; / The first pixel
clicked on
int x1 = -1, y1 = -1; // The second pixel
clicked on
color beige = color(200,200,200); // Background
color black = color(0,0,0); // The color black
(text)
color green = color (100,255,40); // Circle color
boolean bothPixelsSet = false; // Mouse clicked
twice?
int textX=100, textY=250; // Where to draw the
distance
int circleSize = 5; // Size of the
circles at the click points

void setup () // Set up a 300x300
window
{ size (300, 300); }
void draw()
{
 background(beige); // Fill the window
with beige
 fill (green); // Objects will be
filled with green
 if (x0 >= 0) // x0 >= 0 means it
has been set
 ellipse (x0, y0, circleSize, circleSize);
 if (x1 >= 0) // x1 >= 0 means it
has been set
 ellipse (x1, y1, circleSize, circleSize);
 if (bothPixelsSet)
 {
 fill (black); // Set text color
 text ("Distance is "+distance(x0,y0,x1,y1), textX,
textY);
 }
}
// Compute the distance between two points
float distance (int x0, int y0, int x1, int y1)
{
 float d;
 d =sqrt((x0-x1)*(x0-x1) + (y0-y1)*(y0-y1));
 return d;
}
// Mouse is released when a point is defined
void mouseReleased ()
{

 if (x0 < 0) // First click has
not been made
 { x0 = mouseX; y0 = mouseY;
 } else if (x1 < 0) // This is the second
click
 { x1 = mouseX; y1 = mouseY;
 bothPixelsSet = true;
 }
}

Sketch 26: Duplicating Images—More
Functions
The purpose of this sketch is to give you some ideas about how to organize
code into functions properly. This program will read an image, make a copy,
and increase the brightness of the copy. The brighter version will be
displayed when a mouse button is pressed.

The first function is named brighten(). It is passed an image (named img)
and an integer value (named val) as parameters. Its purpose is to increase the
brightness value in an image by a specified amount. It does this by extracting
the HSB value from each pixel in turn in a nested loop 2, adding the amount
val to the brightness portion, and saving the pixel back in the image. This is
the essential code 3:

// Extract the HSB values from the pixel at (i,j)
c = img.get(i,j);
// Add val to the brightness and save again.
img.set (i,j, color(hue(c), saturation(c),
brightness(c)+val));

We will use a new feature in draw(). Processing provides us with a
variable named mousePressed 1 that is true if a mouse button is depressed
and false otherwise, and this can be used in place of the mousePressed()
callback function in very simple cases. In this instance, we display the
brightness-enhanced image when the mouse button is pressed, and the
original otherwise.

if (mousePressed) image (img2, 0, 0);
 else image (img1, 0, 0);

The second function in this sketch makes a copy of the original image. We
define the duplicate function as follows:

PImage duplicate (PImage from)

According to the definition of this function, the function takes an image as
an argument and returns an image. In fact, it returns a new image that is a

copy of the one passed in. The Processing-supplied function that creates a
new image is named createImage() 4, and it has this form:

createImage (width, height, RGB);

The width and height should be self-explanatory; the constant RGB
specifies the form of the image, which in this case is RGB color. The image
returned by CreateImage is uninitialized, having pixels with unknown
values, so after creating an image the same size as the one passed in, our
duplicate() function sets each pixel in the new image to the value of the
corresponding pixel in the original, with a standard nested loop.

NOTE

Alternatives to the RGB parameter for createImage() are ARGB and
ALPHA. Look them up. All of the constants refer to color formats.

PImage img1, img2;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 img1 = loadImage ("image.jpg");
 surface.setSize(img1.width, img1.height);
 img2 = duplicate (img1);
 colorMode (HSB);
 brighten(img2, 60);
}

void draw()
{
 background (128); // Grey background

 1 if (mousePressed) image (img2, 0, 0);
 else image (img1, 0, 0);
}

void brighten (PImage img, int val)
{
 color c;

 2 for (int i=0; i<img.width; i++)
 for (int j=0; j<img.height; j++)
 {

 3 c = img.get(i,j);
 img.set (i, j, color(hue(c), saturation(c),
brightness(c)+val));
 }
}

PImage duplicate (PImage from)
{
 PImage newImage;
 color pixel;
 if (from == null) return from;

 4 newImage = createImage (from.width, from.height, RGB);
 for (int i=0; i<from.width; i++)
 for (int j=0; j<from.height; j++)
 {
 pixel = from.get (i,j);
 newImage.set(i,j,pixel);
 }

 return newImage;
}

3
2D GRAPHICS AND ANIMATION

Sketch 27: Saving an Image and Adjusting
Transparency
We are going to write a sketch that will allow the user to select a color in an
image that will become transparent, and then save the image as a GIF. We
can save any PImage in a file, just as most image files can be read into a
PImage. If img is a PImage variable, we can save it as a file using this
function call:

img.save ("image.jpg");

The parameter is the name of the file to be created. In the situation above,
it will create a file named image.jpg and save the pixels of the PImage in
JPEG format. The format is conveniently determined by the last three
letters of the filename: .jpg for a JPEG file, .gif for a GIF file, .png for a
PNG file, and so on. If no PImage variable is given, Processing saves the
image that appears in the sketch window.

For this sketch, the first step is to read and display the image. Next, we
position the mouse over a pixel with the color we want to make transparent,
and click the button. Finally, we save the image in a format that allows
transparency (GIF).

In Sketch 2 I mentioned transparent colors. We can set a fourth color
component, referred to as alpha, to a value between 0 (completely
transparent) and 255 (completely opaque), as long as the PImage color
format allows transparency; the format that does this is ARGB. In this sketch,
when the image is read in, we make a copy as in the previous sketch, but
using ARGB as the color format. When we click the mouse button, the
program looks at the pixel at the cursor’s coordinates and adds an alpha
value of 0 to the color coordinates. Then the color in the PImage is updated
with the new alpha value.

The original image that we read from the file is a variable named img1;
the copy that includes alpha values is img2. Processing makes a copy of the
image using the following statement, as we do at 2:

img2 = createImage (img1.width, img1.height, ARGB);

This creates an empty image of the correct size, and now we must copy
all of the pixels from img1 into img2. When we do so, the pixels in img2
have the alpha component, because it was specified in the createImage()
call. When a mouse click specifies a background color, all pixels of that
color are given an alpha value of 0 1. Then img2 is saved in a file named
out.gif.

The program ends with a call to exit(), because otherwise it would
continue to save the same file again and again.

Why is it important to set a transparent background for an image?
Computer games!

NOTE

The string parameter in img.save ("image.jpg"); can include a
full path name, so the file can be saved in any directory on your PC.

PImage img1, img2;
color c=color(0,0,0);
void setup ()
{
 size(100,100);
 surface.setResizable(true);
 img1 = loadImage ("image.bmp");
 surface.setSize (img1.width, img1.height);
 img2 = duplicate (img1);
}
void draw ()
{
 color c1;
 background (255);
 image (img1, 0, 0);
 if (mousePressed)
 {
 c = get(mouseX, mouseY);
 for (int i=0; i<width; i++)
 for (int j=0; j<height; j++)
 {
 c1 = img1.get(i,j);
 if (c1 == c)
 {

 1 c1 = color(red(c1), green(c1), blue(c1), 0);
 img2.set (i,j,c1);
 }
 }
 img2.save ("out.gif");
 exit();
 }
}
PImage duplicate (PImage from)
{
 PImage newImage;
 color pixel;
 if (from == null) return from;

 2 newImage = createImage (from.width, from.height,
ARGB);
 for (int i=0; i<from.width; i++)
 for (int j=0; j<from.height; j++)
 {
 pixel = from.get (i,j);
 newImage.set(i,j,pixel);
 }

 return newImage;
}

Sketch 28: Bouncing an Object in a Window
This sketch illustrates a good way to check whether an object is within a
sketch window (though it is only completely accurate when the object is
circular). The object here is a circle, or a ball if you prefer. The program
moves the ball, and when the ball reaches the window boundary (the
“wall”), it bounces, or reverses direction.

A simple test establishes whether the ball has exceeded the boundary. In
the case of the right boundary wall, for example, it’s whether x + radius >
width 2, where x is the ball’s center position, radius is the ball’s radius,
and width is the width of the window. If the ball is moving slowly enough,
we can simply reverse the direction of motion when the ball passes this test
by changing dx (the amount the ball moves horizontally between each
frame) to -dx. However, this approach isn’t completely accurate, and it gets
worse when the ball moves at high speeds. Why? Because the ball will
move past the boundary before the program determines that it has reached
the boundary. Consider the situation in Figure 28-1.

Figure 28-1: A fast-moving ball might overshoot a boundary before you can tell it to bounce
back.

If the chosen dx value has the ball moving several diameters per frame, it
can easily be on the left of the wall in one frame and on the right of the wall
in the next. At some time in between, it must have collided with the wall. In
that case, the amount the ball has overshot the wall should be found, and the
ball should be placed an equivalent distance to the left of the wall, to
simulate a bounce. We calculate that distance as delta (Δ), and it equals (x
+ radius) - width 1 for a circle. Given this distance, the ball’s new, post-
bounce x position is width - delta - radius 3, as shown at the bottom of
Figure 28-1.

At the left side of the window, we know the ball has overshot the
boundary when x < radius 4. In this case, we reposition the ball by setting
x to (2 * radius) - x 5, and we reverse the ball’s direction of motion.

The vertical (y) situation is symmetrical 6.

NOTE

Most objects are not circular but can have a (virtual, invisible)
circle drawn around them, and we can use this circle to detect
collisions against the boundary.

int x=320, y=240; // Coordinates of the circle (ball)
int radius=20; // Size of the circle (ball)
int dx=42, dy=22; // Speed of the circle (ball)

void setup ()
{
 size (640, 480); // Typical window size
 fill (255, 0, 255); // Magenta fill
 noStroke(); // Don't draw outlines
}

void draw ()
{
 background (255); // White
background
 ellipse (x, y, radius*2, radius*2); // Draw the ball
 x = x + dx; y = y + dy; // Move
 xbounce();
 ybounce();
}

void xbounce ()
{
 int delta = 0;

 1 delta = (x+radius) - width;
 2 if (x+radius > width) // right side
 {

 3 x = width-delta-radius;
 dx = -dx;

 4 } else if (x < radius) // left side
 {

 5 x = (2*radius)-x;
 dx = -dx; // Reverse x-direction
 }
}

 6 void ybounce ()
{
 int delta = 0;
 delta = (y+radius) - height;
 if (y < radius) // top side
 {
 y = (2*radius)-y;
 dy = -dy;
 } else if (y+radius > height) // bottom side

 {
 y = height-delta-radius;
 dy = -dy; // Reverse y-direction
 }
}

Sketch 29: Basic Sprite Graphics
We can combine the previous two sketches to show how programmers
move sprites about in computer games. A sprite is a relatively low-
resolution graphic that represents an object in a game. Sprites are usually
primitive shapes or imported images. If the latter, the sprite image must
have a transparent color so that we can see the background behind the
sprite; otherwise the sprite would look like a rectangle of solid color with an
image within it.

This sketch uses the rocket of Sketch 27 as the sprite and the code of
Sketch 28 to move it about in the window. The rocket will move over a
background image of stars to complete the game-like appearance.

The test to see whether the rocket has reached a side differs from the
circle example because the sprite is a rectangular image drawn from the
upper-left corner, and the distance to the boundary differs between left/right
and up/down. The test against the left edge is nearly the same as before, but
the offset by the radius is missing because the x-coordinate is on the left
side of the sprite and not at its center 2:

if (px < 0) // left side
{
 px = -px;
 dx = -dx; // Reverse x-direction
}

The test on the right is different because the entire width of the sprite is
also to the right of the coordinate px 1:

delta = (px+sprite.width) - width;
if (delta > 0) // right side
{
 px = width-delta-sprite.width;
 dx = -dx;
}

So px+sprite.width is the coordinate for the right side of the sprite.

The checks are symmetrical for the y-coordinate 3.

NOTE

Most games allow the player to move one or more of the sprites. The
convention is to do this using key presses: W for up, A for left, D for
right, and S for down. You’d put the code to move the sprite in the
function keyPressed():

void keyPressed()
{
 if (key == 'w') py = py - 1;
 if (key == 's') py = py + 1;
 if (key == 'd') px = px + 1;
 if (key == 'a') px = px - 1;
}

PImage img1, sprite;
color c=color(0,0,0);
int px=100, py=100, dx=2, dy=1;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 img1 = loadImage ("background.bmp");
 surface.setSize (img1.width, img1.height);
 sprite = loadImage("image.gif");
 sprite.resize (90, 50);
}

void draw ()
{
 background (255);
 image (img1, 0, 0);
 image (sprite, px, py);
 px = px + dx; py = py + dy;
 xbounce(); ybounce();
}

void xbounce ()
{
 int delta;
 delta = (px+sprite.width) - width;

 1 if (delta > 0) // right side
 {
 px = width-delta-sprite.width;
 dx = -dx;

 2 } else if (px < 0) // left side
 {
 px = -px;
 dx = -dx; // Reverse x-direction
 }
}
void ybounce ()
{
 int delta;
 delta = (py+sprite.height) - height;

 3 if (py < 0) // top side
 {
 py = -py;
 dy = -dy;

 } else if (delta > 0) // bottom side
 {
 py = height-delta-sprite.height;
 dy = -dy; // Reverse y-direction
 }
}

Sketch 30: Detecting Sprite-Sprite Collisions
It is a relatively simple matter to decide whether a sprite is still within a
window, because the size of the window remains fixed and the window
doesn’t move. But what if there were many sprites moving at the same
time? How would we determine if any two had collided when both were
moving? The situation of circular objects is the simplest and is a general
solution, so this sketch will handle an arbitrary number of circular objects
(balls) that will bounce off the boundaries and each other.

The coordinates of each ball will be stored in the xpos[] and ypos[]
arrays 1. Drawing object i is simple 2:

ellipse (xpos[i], ypos[i], 10, 10);

Any two objects collide if they get nearer to each other than twice the
radius, or in this case 10 pixels. These are the steps in the sketch:

. Define positions and speeds (dx, dy) for each of nballs objects.

. Each step (frame) is defined by a call to draw(). First, draw a circle at each
location xpos[i], ypos[i] 2.

. Change the position: xpos[i] = xpos[i] + dx[i], and the same for y 3.

. Check for a collision with the boundary (bounce), and if there is one,
implement the reaction to the collision. A bounce? An explosion? 4.
For each ball, check the distance between it and every other ball. If the
distance is less than twice the radius, then change the direction of both balls
(implementing a collision as a bounce) 5.

And that’s it. The bounce() function 6 is a little different from the
previous one, but it effectively does the same thing. The distance()
function calculates the Euclidean distance between the two balls, as you
saw in Sketch 24. If two balls overlap after bouncing, they could stick
together until they collide with another ball.

NOTE

A rectangular object N×M pixels in size (N > M) has a circle that
surrounds it that can be used to check collisions. The center is (N/2,
M/2) and the width is N. Using a bounding circle is not precise, but
it is quick. The enclosing circle for the spaceship in Sketch 29 is
shown in Figure 30-1.

Figure 30-1: The enclosing circle for a rectangular object

int MAXBALLS = 100;

 1 int []xpos = new int[MAXBALLS];
int []ypos = new int[MAXBALLS];
int nballs = 30;
int []dx= new int[MAXBALLS];
int []dy = new int[MAXBALLS];
void setup ()
{
 size (400, 400);
 for (int i=0; i<nballs; i=i+1)
 {
 xpos[i] = (int)random(width-10)+5;
 ypos[i] = (int)random(height-10)+5;
 dx[i] = (int)random(10)-5;
 dy[i] = (int)random(10)-5;
 }
}

void draw ()
{
 background (255);
 for (int i = 0; i<nballs; i++)
 {

 2 ellipse (xpos[i], ypos[i], 10, 10); xpos[i] =
xpos[i] + dx[i];

 3 ypos[i] = ypos[i] + dy[i];
 4 bounce(i);
 }
 for (int i=0; i<nballs; i++)
 for (int j=i+1; j<nballs; j++)

 5 if (distance (xpos[i], ypos[i], xpos[j], ypos[j])
< 10)
 {
 dx[i] = -dx[i]; dy[i] = -dy[i];
 dx[j] = -dx[j]; dy[j] = -dy[j];
 }
}

float distance (int x0, int y0, int x1, int y1)
{ return sqrt ((x0-x1)*(x0-x1) + (y0-y1)*(y0-y1)); }

 6 void bounce (int i)
{
 if (xpos[i] < 10) dx[i] = -dx[i];

 if (xpos[i] > width-10) dx[i] = -dx[i];
 if (ypos[i] < 10) dy[i] = -dy[i];
 if (ypos[i] > height-10) dy[i] = -dy[i];
 xpos[i] = xpos[i] + dx[i]; ypos[i] = ypos[i] + dy[i];
}

Sketch 31: Animation—Generating TV Static
We have used random numbers before, in Sketches 8 and 30. Random
numbers serve a few important functions in games, simulations, and other
software:
Nature uses unpredictable forms and shapes. Placing trees in a forest in a
two-dimensional grid is a giveaway that there was a mind at work in the
planting. This does not happen in nature. Instead, trees in a forest have an
average distance from each other and seem otherwise to form a random
collection.
Intelligent creatures do not behave predictably. Cars on a freeway that all
behave in the same manner look very odd. Cars have random distances
from each other, random speeds, and random behaviors within a possible
range.
When playing poker or craps, the cards and dice ought to display random
values, or the game is simply no fun.

This sketch draws a television set that looks as if it were tuned to a
vacant channel. What is seen on the screen used to be called snow, and it is
really pixels created by random voltages from signals received from space
and various local electronic and electrical devices. We cannot predict what
the TV will receive at any particular moment, so we draw a 2D set of
random grey pixel values. This set of values changes every time the screen
updates. There is an impression of random motion, rapid flashing of spots
on the screen, but no organized images.

First, we display a background image of a TV set 1 and then set the
pixels within the screen section to random black/white values each time
draw() is called 3:

if (random(3)<1) set (i, j, BLACK);
 else set (i, j, WHITE);

To make it appear as though a channel were poorly tuned in, we could
display an image faintly over the static by setting the alpha for the image to
a low value, perhaps 30 or so. The static would be visible through the

image. The tint() function changes the color and transparency of whatever
is drawn from then on, so we could use it to change the transparency of the
channel image, as follows:

tint (255, 255, 255, 127);
image (back, 49, 49);

The parameters to tint() are color coordinates, the first three being
RGB and the fourth transparency (alpha). In the preceding example, the
color is white (no actual tint) but the transparency is 127, which is half
transparent.

In the code for this sketch, the tint and TV image are commented out. To
see the image, remove the comment characters from those two lines 2.

PImage tv;
PImage back;
int x0=250, y0=445;
color WHITE = color (255, 255, 255, 90);
color BLACK = color (0,0,0, 90);

void setup ()
{
 size(350, 250);
 tv = loadImage("tv.jpg"); // Load TV set image
 back = loadImage ("screen.jpg");
}

void draw ()
{
 background (90, 90, 200); // Blue background

 1 image (tv, 20, 20); // Display the TV
 snow (20, 20); // Display random pixels
on the screen

2 // tint (255, 60);
// image (back, 49, 49);
}

// Display random black/white pixels
void snow(int x, int y)
{
 for (int i=x+29; i<x+160; i++) // TV screen
coordinate offsets fixed
 for (int j=y+29; j<y+115; j++) // at UL = 29,29
and LR = 152,115

 3 if (random(3)<1) set (i, j, color(0,0,0,4));
 else set (i,j, WHITE);
}

Sketch 32: Frame Animation
Animation involves displaying a sequence of still images on the screen at
such a rate that the human visual system interpolates changes in position in
the images and perceives motion. It is an illusion, in much the same way
that any motion picture is an illusion. The previous sketch animated a
display in a very basic manner, creating the illusion of random TV images
by generating them with code. Most animations require that an image
sequence be created by an artist and then displayed as a sequence.

For a Processing sketch to display an animation, the program has to read
in the images (frames) to be displayed and then display them one after the
other. The set of frames can be stored in an array of PImage values, one per
frame.

The two examples in this sketch use an image sequence that represents
the gait of a human; the 11 images compose one entire cycle of a single
step, and repeating them makes it appear as if the character is walking.

Example A
Eleven images, named a000.bmp through a010.bmp, represent the
animation. The program reads the images into consecutive elements of the
frames array 1. The draw() function displays the next image in sequence
each time it’s called, increasing an index variable n from 0 to 10 and
decreasing it to 0 again repeatedly 2.

Example B
In Example A we needed to know in advance how many images belonged
to the animation. In Example B we only require that the names of the files
begin with a000.bmp and that the number increases by one for consecutive
images. When the program fails to read an image file, as indicated by the
fact that loadImage() returns null, the program presumes that all of the
images have been loaded 1. The program counts the images as they are read
and then displays them as before.

The loop within which the images are loaded has a break 2 statement in
it to escape the loop when null is detected.

Example A

PImage []frames = new PImage[12];
int nFrames = 11, n=0;
void setup ()
{
 size(100,100);
 surface.setResizable(true);

 1 frames[0] = loadImage("a000.bmp");
 frames[1] = loadImage("a001.bmp");
 frames[2] = loadImage("a002.bmp");
 frames[3] = loadImage("a003.bmp");
 frames[4] = loadImage("a004.bmp");
 frames[5] = loadImage("a005.bmp");
 frames[6] = loadImage("a006.bmp");
 frames[7] = loadImage("a007.bmp");
 frames[8] = loadImage("a008.bmp");
 frames[9] = loadImage("a009.bmp");
 frames[10] = loadImage("a010.bmp");
 surface.setSize(frames[0].width, frames[0].height);
}
void draw ()
{
 frameRate (10);

 2 image (frames[n], 0, 0); // Display the Frame
 n = (n + 1)%nFrames;
}

Example B

int MAXFRAMES = 100;
PImage []frames = new PImage[MAXFRAMES];
int nFrames = 0, n=0;
void setup ()
{

 for (int i=0; i<MAXFRAMES; i++)
 {
 if (i<10)
 frames[i] = loadImage("a00"+i+".bmp");
 else
 frames[i] = loadImage("a0"+i+".bmp");

 1 if (frames[i] == null)
 {
 nFrames = i;

 2 break;
 }
 }
 size(100,100);
 surface.setResizable(true);
 surface.setSize(frames[0].width, frames[0].height);
}
void draw ()
{
 frameRate (10);
 image (frames[n], 0, 0); // Display the Frame
 n = (n + 1)%nFrames;
}

Sketch 33: Flood Fill—Filling in Complex
Shapes
Drawing a rectangle or ellipse that is filled with a particular color is easy to
do in Processing. You simply specify a fill color using the fill() function
and then draw the shape. However, there’s no function for filling an
arbitrary shape or region, so let’s make one. It has the advantage of showing
you how filling is done in general.

This sketch reads an image with a white background that contains regions
outlined with black (though you can use other colors). The regions do not
have to be regular polygons, but they should be closed, in that there is an
inside and an outside, with no gaps in the edges. When the user clicks on a
pixel, the region surrounding that pixel will be filled with a random color.

The pixel that is clicked on has a color, the background color (bgcolor in
the sketch). A random color will be selected for the fill color (variable
fillColor). The goal is to set all of the pixels within the region that
currently have the background color value to the fill color. The first step is
to set the selected pixel to the fill color, followed by setting all neighboring
pixels repeatedly, until no more candidates remain.

After the first pixel is changed, every background-colored pixel that is a
neighbor of it is also set to the fill color 1. A neighbor is defined as a pixel
that is immediately adjacent either vertically or horizontally. Then all of the
pixels are scanned again, and any background pixel that is a neighbor of a
fill-colored pixel is set to the fill color. The process is shown in Figure 33-
1.

Figure 33-1: Filling in neighboring pixels

The process is repeated until no change is made. The process stops at the
boundary because boundary pixels do not have the background color and
are not changed. This is not the only method for implementing a fill, nor is
it the fastest, but it is probably the easiest to comprehend.

The mouseReleased() function sets the values of the bgColor and
fillColor variables and sets the first (seed) pixel to the fill color 3. The
nay() function returns true if the pixel indicated by the parameters is a
neighbor to a fill-colored pixel 2. Each time draw() is called (once per
frame), it displays one iteration of the filling process, so the process appears
animated.

PImage inputImage;
color bgColor, fillColor;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 inputImage = loadImage ("image.bmp");
 surface.setSize (inputImage.width,
inputImage.height);
 bgColor = inputImage.get(0,0);
 fillColor = color (40, 200, 30);
}

void draw ()
{
 image (inputImage, 0, 0);

 for (int i=0; i<inputImage.width; i++)
 for (int j=0; j<inputImage.height; j++)
 if ((inputImage.get(i,j)==bgColor) &&
nay(i,j,fillColor))
 {

 1 inputImage.set(i,j,fillColor);
 }
}

2 boolean nay (int x, int y, int c)
{
 if (get(x-1, y) == c) return true;
 if (get(x+1, y) == c) return true;
 if (get(x, y-1) == c) return true;
 if (get(x, y+1) == c) return true;
 return false;
}

void mouseReleased ()
{

 3 bgColor = get(mouseX, mouseY);
 fillColor = color
(random(128,255),random(128,255),random(128,255));
 inputImage.set (mouseX, mouseY, fillColor);

}

4
WORKING WITH TEXT AND FILES

Sketch 34: Fonts, Sizes, Character
Properties
When text is drawn on the screen, there are many ways to draw each
character. The size, weight, orientation, and style can vary widely. A font
specifies a particular size, weight, and style of a typeface. Fonts are saved
as files that contain the instructions for drawing each character. Bold, italic,
normal, and each important size are individual files. The font name, a style,
and a size are frequently part of the filename.

Processing allows many fonts, but each one must be set up in advance as
a file using the Tools menu. Select Tools▶Create Font to open a font-
creation window, within which you can choose the font name, style, and
size, as shown in Figure 34-1.

Figure 34-1: Setting up a font

Select CourierNewPS-BoldMT with size 48 and click OK to create a file
named CourierNewPS-BoldMT-48.vlw inside a local directory named data.
You can repeat this process as often as needed, creating many font files.
You need font files in order to load and use fonts in Processing.

Using a font is a somewhat involved process. You need to first create a
variable of type PFont (Processing font) for each font desired, and then load
the font using the loadFont() function 1:

PFont font1;
font1 = loadFont ("CourierNewPS-BoldMT-48.vlw");

To establish a font as the one to use, call textFont() with the font
variable and desired size: textFont(font1, 48) 2. The size is specified in
pixels, not the standard for a font, which is points. Finally, you can always
change the font size by calling textSize(size) 3.

This sketch loads the Courier Bold 48 font and establishes it. Then it
draws the string “Hello” in sizes varying from 2 pixels to 55 pixels,
changing by one pixel size each time draw() is called.

PFont font1;
int x=20, y=100;
int size = 55, ds=-1;

void setup ()
{
 size (200, 200);

 1 font1 = loadFont ("CourierNewPS-BoldMT-48.vlw");
 2 textFont (font1, 48);
 fill (0);
}

void draw ()
{
 background(200);

 3 textSize (size);
 text ("Hello", x, y);
 size = size + ds;
 if (size < 2) ds = -ds;
 if (size > 55) ds = -ds;
}

Sketch 35: Scrolling Text
A news scroll is a common feature of television news and weather stations.
It is a summary of stories that scrolls from right to left across the bottom of
the screen as other things are happening on the rest of the screen. It’s
common to see stock prices displayed in this way as well. How could we do
this in a Processing sketch window?

First, the text for a particular item has an x-coordinate where it is drawn,
and it will be drawn using the text() function. The y-coordinate is constant
and will be somewhere near the bottom of the screen. In this sketch the
screen is 400×200 and the y-coordinate for the text is 190. The x-coordinate
changes.

The text to be displayed should start near the right side of the screen; for
example, at width-10 pixels 2. Each frame displayed should move the text
to the left, so draw() will subtract one from x each time it is called:

text (s1, x, y);
x = x - 1;

There will usually be more than one message in the scroll. The first
message could disappear before the second one is displayed, but this is
unusual for a text scroll. Another idea is to have multiple scroll strings
being drawn next to each other, moving in lockstep. So the strings
themselves are in an array called headlines 1.

Suppose we have just two strings. Each one has an index into the array
that accesses the strings (i1 and i2) and x position (x1, x2). If the first
string, headlines[i1], is drawn at location x1, the second string should be
drawn at location x1 plus the number of pixels in the string i1 plus a small
space. In Processing terms, it looks like this:

x2 = x1 + (int)textWidth(headlines[i1])+ 10;

textWidth() is a function that takes a string as a parameter and, using
the current font size, returns the width in pixels of that string when drawn.

The value 10 is the small space. When the first string disappears on the left
of the screen, its plotted position plus its length will be less than 0 3:

x1+textWidth(headlines[i1]) < 0

At this point, a new string (that is, the next index) should be obtained and
positioned to the right of the second string:

i1 = (i2+1)%5;
x1 = x2 + (int)textWidth(headlines[i2])+ 10;

The same happens when the second string disappears on the left.

PFont font1;
int x1, y=190, x2;
int size = 55;
int i1, i2;

1 String []headlines = new String[5];

void setup ()
{
 size (400, 200);
 font1 = loadFont ("CourierNewPS-BoldMT-48.vlw");
 textFont (font1, 12);

 headlines[0] = "2 Die, 8 Hurt in Pasadena as Vehicle
Hits Crowd * ";
 headlines[1] = "L.A.'s Open Enrollment Plan Shrinks
for 5th Year * ";
 headlines[2] = "Program for Writers for Young Adults
Starts With Duo Behind 'Buffy' Books * ";
 headlines[3] = "Pickets Want Laguna Festival to Stay
Put * ";
 headlines[4] = "3rd Whale in a Month Washes Up on
Coast * ";
 fill (0);

 i1 = 0; i2 = 1; 2 x1 = width-10;
 x2 = x1 + (int)textWidth(headlines[i1])+ 10;
}

void draw ()
{
 background(200);
 text (headlines[i1], x1, y); text (headlines[i2],
x2, y); x1 = x1 - 1; x2 = x2 - 1;

 3 if (x1+textWidth(headlines[i1]) < 0)
 {
 i1 = (i2+1)%5;
 x1 = x2 + (int)textWidth(headlines [i2])+ 10;
 }

 if (x2+textWidth(headlines[i2]) < 0)
 {
 i2 = (i1+1)%5;
 x2 = x1 + (int)textWidth(headlines [i1])+ 10;
 }
}

Sketch 36: Text Animation
Animating text can create an interesting effect. It has been used in
commercials and by artists in the past, but it has never been as easy to do as
it is now. A string can be drawn along a curved path, even a moving curved
path; characters in the string can change in orientation, size, color, or even
font. Motion can even vary according to user input, either by following the
mouse or moving as a result of audio or video input.

A key to animating text is to access each character in the string using the
charAt() function. The first character in the string str is returned by
str.charAt(0), the second character is str.charAt(1), and so on. In this
way, each character can be accessed individually and be made to behave in
a different way from other characters.

This sketch causes the word Processing to explode, the component letters
flying in all directions at different speeds; character sizes change too. Each
character has a distinct position (arrays x and y), velocity (arrays dx and
dy), and size (array size) 1.

Initially, we draw the word Processing neatly in the center of the screen
as a set of individual characters 2:

for (int i = 0; i<10; i++)
 text (s1.charAt(i), x[i], y[i]);

After a few seconds (60 frames) 3, we change the position of each
character every frame 4, thus moving them, and we adjust individual sizes
too. The characters move off in random directions, eventually disappearing
from the screen.

PFont font1;
int count = 0;

1 int x[] = new int [10];
int y[] = new int [10];
int size [] = new int [10];
int dx[] = new int [10];
int dy[] = new int[10];
String s1 = "Processing";

void setup ()
{
 size (400, 200);
 font1 = loadFont ("CourierNewPS-BoldMT-48.vlw");
 textFont (font1, 12);
 for (int i=0; i<10; i++)
 {
 x[i] = 100+15*i; y[i] = 100;
 size[i] = 12;
 dx[i] = (int)(random(11)-6);
 dy[i] = (int)(random(11)-6);
 }
 fill (0);
}

void draw ()
{
 background(200);

 2 for (int i = 0; i<10; i++)
 if (size[i] > 0)
 {
 textSize(size[i]);
 text (s1.charAt(i), x[i], y[i]);
 }
 count = count + 1;

 3 if (count > 60)
 for (int i=0; i<10; i++)
 {

 4 x[i] = x[i] + dx[i];
 y[i] = y[i] + dy[i];
 size[i] = size[i] + (int)(random (5)-3);
 }
}

Sketch 37: Inputting a Filename
All of the sketches developed in this book so far use filename constants
when reading an image. To be more flexible, most programs allow the user
to enter a command or filename, even a number, from the keyboard, and
that user input directs the code to use specific data. This is our next task—to
ask the user to enter an image filename from the keyboard and display that
image in the sketch window.

We already know that the keyPressed() function is called whenever the
user presses a key, and the variable key contains the character that
represents the key that was pressed, at least for letters and numbers. Other
keys, like arrow keys, use a keycode value, like ENTER or BACKSPACE, to tell
us what the key is. Given these facts, one way to read a user-given filename
would be to append the characters typed by the user to a string and, when
we see the ENTER value, to use the preceding string as a filename. This
should work fine, but we need to handle some conventions.

First, the user needs to see what they are typing. The string that the user
has entered so far must appear somewhere on the screen so that the user can
see what has actually been typed.

Next, corrections must be possible. Traditionally one presses the
BACKSPACE key to move backward over the string and delete characters
so that new, correct ones can be entered, so we’ll implement corrections
using BACKSPACE. Finally, if an incorrect name is entered, a
corresponding image file might not exist, and the user needs to be informed.

When the user types a letter or number, indicated by the variable key, we
add that character to a string named s using the concatenation operation 3:

s = s + key;

If that character is a backspace and the string has characters in it, we
remove the last character entered 1:

if (s.length()>0 && key==BACKSPACE)
s = s.substring (0, s.length()-1);

The draw() function will display this string each time the screen is
updated, allowing the user to see the current string. Finally, if the key
pressed was ENTER, then the string is complete and we should open and
display the file. If loadImage() returns null, there is no such image, and
the word Error is displayed in place of the filename 2.

if(key==ENTER || key==RETURN)
{
 img = loadImage (s);
 if (img == null) s = "Error";
}

PImage img;
String s = "";

void setup ()
{
 size(500, 500);
}

void draw ()
{
 background (200, 200, 200);
 if (img != null) image (img, 0, 0);
 fill(0);
 text (s, 20, height-20);
}

void keyPressed()
{
 fill(0);

 1 if (s.length()>0 && key==BACKSPACE)
 {
 s = s.substring (0, s.length()-1);
 }

 2 else if(key==ENTER || key==RETURN)
 {
 img = loadImage (s);
 if (img == null) s = "Error";
 } else

 3 s = s + key;
}

Sketch 38: Inputting an Integer
In the previous sketch, we had the user enter a string from the keyboard,
and we used the string as a filename. This is a basic use of a string—using a
sequence of characters to communicate data to the computer and back.
What if, instead of entering a filename, we wanted to specify some number
of things to input? This would mean entering an integer. However, when a
number is entered at the keyboard, the string is not the number but is a text
representation of the number. To get the actual number, the characters that
compose it have to be converted into numeric form.

The string “184” is an integer in string form, obviously representing the
number one hundred eighty-four (184). This is one hundred plus eight tens
plus four, or 102 + 8×101 + 4×100. To convert from string form into numeric
form, we need to peel off the digits one at a time and multiply by the correct
power of 10.

We can take the first digit, 1, and add it to a sum. Then we take the next
digit and add to the sum multiplied by 10; and repeat again and again until
the incoming character is not a digit. The powers of 10 accumulate with the
first digit representing the highest power and the final digit representing
100, or one.

This is the essential piece of code 1:

val = val * 10 + (key-'0');

The expression key-'0', where key is a digit, represents the numeric
value of a digit character (that is, from 0 to 9). Assuming that val is initially
0, we get this after the user types '1':

val = 0*10 + ('1'-'0') = 0 + 1 = 1

Now the user types '8', and we get this:

val = 1 * 10 + ('8'-'0') = 10 + 8 = 18

Finally the user types '4':

val = 18*10 + ('4'-'0') = 180 + 4 = 184

To make this sketch marginally useful, it allows us to enter two values,
an x and a y value, and draws a circle at these coordinates. An error on entry
sets the coordinate to 0.

String s = "";
int val = 0;
int x=-1, y=-1;

void setup ()
{
 size(500, 500);
}

void draw ()
{
 background (200, 200, 200);
 fill(0);
 text (s, 20, height-20);
 if (y>=0) ellipse (x, y, 10, 10);
}

void keyPressed()
{
 fill(0);
 if (s.length()>0 && key==BACKSPACE)
 {
 s = s.substring (0, s.length()-1);
 val = val/10;
 } else if(key==ENTER || key==RETURN)
 {
 if (x<0) x = val;
 else if (y<0) y = val;
 s = ""; val = 0;
 } else if ((key>='0') && (key<='9'))
 {
 s = s + key;

 1 val = val * 10 + (key-'0');
 } else
 {
 s = "Error"; val = 0;
 }
}

Sketch 39: Reading Parameters from a File
Many computer programs save values in files for use when the program
starts, or restarts. Initial values, locations for buttons and other interface
objects, high scores for a game: all can be read from files when a program
begins. Most people have had the experience of playing a computer game
and saving the state so that they can resume playing at a later time; this also
involves saving data in a file and then retrieving it later. This sketch
retrieves the state of a game, albeit a simple one—checkers—from a text
file that contains the positions of all of the checkers in a game.

Checkers uses an 8×8 grid of squares on which disks of two colors,
usually referred to as black and white, are placed. Only half of the squares
are really used, and these squares also have two colors. Checkers can only
sit on one of those colors, so the easy part of this sketch is to draw the
squares and place checkers on those squares when it is known what the
locations are. The new part is reading the data and interpreting that data as
checker positions.

As a scheme for representing a checker board, imagine a set of squares
with eight rows of eight columns each. A square can be indexed as (i, j),
where i is the row and j is the column. The color of the checker on the
square can be 0 for one color and 1 for another—the actual colors do not
matter, only that checkers of color 0 belong to one player and the color 1
checkers belong to the other. The squares have fixed positions, but the
checker locations are read from the file, which contains a row for the
position and color of each checker, like this:

row col color (e.g. 1 2 1)
row col color (e.g. 1 4 1)
...

The file contains one-digit integers separated by single spaces, three per
line. A structured format is easy to read and is, in fact, typical of data that
has been created by a computer.

To read a file in Processing, we’ll use the built-in function
loadStrings(), which reads a set of strings from a file (given as a string

parameter), with one string being one line in the file. loadStrings()
returns an array of strings that we’ll assign to the variable dlines 2. To find
the number of items in the array (the same as the number of lines of data in
the file), we use the length property in dlines: dlines.length.

When a line is read in, we use it to place a checker on a square, and when
all checkers are read in, we draw them on the screen. To place the checker,
we extract the three integers from each string in dlines and then place the
correct piece in the correct place using the row and column integers.

We convert the string data into numbers as follows 3:

y[i] = dlines[i].charAt(1) - '0';

Each piece is one of two colors, indicated by the variable k[i]. A
checker is 20 pixels wide, so we draw one at location (x[i], y[i]) with
these lines:

if (k[i]==0) fill (200,0,0); else fill (200,2000,0); //
Color?
 ellipse (x[i]*40+20, y[i]*40+20, 20, 20);

The horizontal position is offset from the left by 20 pixels, and each
successive position is 40 pixels further right. The expression x[i]*40+20
gives the x location at which to draw checker number i. It is symmetrical
for the vertical y position.

Squares are 40×40 pixels and alternate in color, so when we draw a red
one, we toggle the fill color to that of the next square. After 8 squares, an
extra toggle is done so that the colors alternate vertically as well. If i and j
are the coordinates of a square, we draw it this way:

1 rect (i*40, j*40, 40, 40)

In the sketch, the checkers are red or green, and the squares are red or
yellow.

String dlines[];
boolean errorFlag = false;
int []x = new int[12]; // Column for checker
int []y = new int[12]; // Row for checker
int []k = new int[12]; // Color of checker
int n = 0;

void setup ()
{
 size (400, 400);
 readFile ("save.txt"); // Read data
}

void draw ()
{
 background (200);
 board (); // Draw the board
}

void board ()
{ // Draw the squares
 for (int i=0; i<8; i++) // Columns
 for (int j=0; j<8; j++) // Rows
 { // Alternate the color for the squares
 if ((i+j)%2 == 0) fill (255, 0, 0);
 else fill (255, 255, 0);

 1 rect (i*40, j*40, 40, 40);
 }
 for (int i=0; i<n; i++) // Draw the checkers
 {
 if (k[i]==0) fill (200, 0, 0); else fill (100,
200, 0); // Color?
 ellipse (x[i]*40+20, y[i]*40+20, 20, 20);
// Location.
 }
}

void readFile (String fileName)
{

 2 dlines = loadStrings(fileName); // Read the
names as strings
 for (int i=0; i<dlines.length; i++) //
dlines.length is how many items in the array
 {

 3 y[i] = dlines[i].charAt(1) - '0';

 x[i] = dlines[i].charAt(3) - '0';
 k[i] = dlines[i].charAt(5) - '0';
 }
 n=dlines.length;
}

Sketch 40: Writing Text to a File
Computer programs use text to tell their users what is going on. Sometimes,
as in the previous sketch, they use text to save the state of the program,
often a game; sometimes the program writes numerical results or records
the progress of a program. Text is a typical and natural way for computers
to communicate with humans.

Here’s the problem to be solved: we want to simulate a ball on the screen,
moving at a constant speed, as was done in Sketch 28; write the position of
the ball to a file during each frame; and record when the ball collides with
the edge of the screen.

The output method that corresponds to loadStrings() is the function
saveStrings(). We’ll declare an array of strings, where each string will be
written as a line of text to the file. When a ball position is to be saved, a
string is created that represents the position, and it is stored in one of the
array locations. Then the array index is incremented so the next string goes
in the next location 2.

data[index] = "(X0,Y0)= ("+x0+","+y0+")";
index = index+1;

When the ball collides with a side of the screen, we put a message like
“Collision left” in the array and then increment the index 1.

When the array is full, which happens when the index is greater than 499,
saveStrings() writes all of the strings to a file and ends the program 3:

saveStrings("save.txt", data);

It is not possible to add more to a file using saveStrings() after the file
has been closed; if you call it again with the same filename, it will
overwrite the file. So you must save everything first, and then write it all
out at once. With 500 strings, you can record about 7 seconds.

String []data = new String[501];
int x0=40, y0=90, index, dx0=3, dy0=2;
void setup ()
{ size (300, 300); }

void draw ()
{
 background (40, 40, 190);
 ellipse (x0, y0, 10, 10);
 x0 = x0 + dx0; y0 = y0 + dy0;
 if (x0<10)
 {
 dx0 = -dx0;

 1 data[index] = "Collision left"; index= index+1;
 }
 if (x0>width-10)
 {
 dx0 = -dx0;
 data[index] = "Collision right"; index= index+1;
 }
 if (y0<0)
 {
 dy0 = -dy0;
 data[index] = "Collision top"; index= index+1;
 }
 if (y0>width-10)
 {
 dy0 = -dy0;
 data[index] = "Collision bottom"; index= index+1;
 }

 2 data[index] = "(X0,Y0)= ("+x0+","+y0+")";
 index = index+1;
 if (index > 499)
 {

 3 saveStrings("save.txt", data);
 exit();
 }
}

Sketch 41: Simulating Text on a Computer
Screen
Imagine working on a made-for-TV movie. It’s about computers and
hackers and programmers, and the actors playing the roles of the hackers
are, well, actors. They don’t know anything about programming. They can’t
type, and they certainly can’t enter code. So, in the scenes where the camera
is looking over the main character’s shoulder at the screen while she types,
we need a special effect—something that makes it appear as if she’s coding.
Do we use computer animation? That can be expensive. No, the usual trick
is to use a simple program that displays text, specific text, no matter what
keys are struck. That way the actors don’t have to know anything except
how to press a key.

Making this program in Processing is straightforward, given what we
know so far. The program opens a window and initializes a string, message,
to the text to be typed onto the screen 1, which could be read from a file. A
variable N starts as 0 and indexes the string: every character up to character
N has been typed and should appear on the screen. The draw() function
draws all of the characters up to N each time it is called, one character at a
time, spacing them (in the example) nine pixels apart horizontally.

To organize the text into lines, we use the “!” character to indicate where
lines end. When the program sees that character in the string, it doesn’t
display it, but instead resets the x position to the starting value and increases
the y position by 15 pixels (one line).

The draw() function outputs the text, starting at the statement 2:

for (int i=0; i<N; i++) // display the next character

Either it displays one of the characters in the string 4:

text (""+message.charAt(i), x, y);
x = x + 10;

or the character in the string is “!” and it begins a new line 3:

if (message.charAt(i) == '!')
{
 y = y + 15; // Move vertically down to next line
 x = 15; // and start over at pixel 15.
}

Finally, when a key is pressed, as indicated by Processing calling the
keyPressed() function, the count value N increases by one so that one more
character appears on the screen 6. Regardless of what character was typed,
the predefined character in the message string will be displayed. If N
exceeds the string length, the program can set N to 0, which starts over again
with a fresh screen, or further key presses could just be ignored.

NOTE

Another possibility is to have the text display automatically, one
character at a time, without anything being typed. The code to do so
appears in the Processing program at the end of the draw() function
but has been commented out 5:

// N = N + 1
// if(N >= message.length()) N = 0;

Removing the comment characters will make the text appear
magically without a typist.

Note also that the background color is green because in older
programming days, like the 1960s and 1970s, screens tended to be
green. This is easy to change, and for a real movie application, the
designers would specify the color they wanted.

int count = 0;
int N = 0;
int increment = 2;
String message;

void setup ()
{
 size (450, 500);
 background (0, 80, 0);

 1 message = "Processing 3.5.4 September 2021. !// J
Parker - Sketch 041!";
 message = message + "void draw()!{! boolean more =
true;! int x, y;!"+
 "! x = 15; y = 50;! background (0, 80,
0);!"+
 "! for (int i=0; i<N; i++)! {! if
(message.charAt(i) == '-')"+
 "! {! y = y + 15; ! x =
15;! }! else!"+
 " {! text (message.charAt(i), x,
y);! x = x + 10;"+
 "! }! }! ! count = count + 1;! if
(count > increment) ! "+
 "{ count = 0; N++; }!"+
 " if(N > message.length()) N = 0;!}!";
 message = message + "-- Abort at line 201 --!' c
= chr(128)'! ^!!!";
}

void draw()
{
 boolean more = true;
 int x, y;

 x = 15; y = 50;
 background (0, 80, 0);

 2 for (int i=0; i<N; i++)
 {

 3 if (message.charAt(i) == '!')
 {
 y = y + 15;
 x = 15;
 }
 else
 {

 4 text (""+message.charAt(i), x, y);
 x = x + 10;
 }
 }

 5 // N=N+1; if(N >= message.length()) N = 0;
}

void keyPressed()
{

 6 N=(N+1)%message.length();
}

5
CREATING USER INTERFACES AND

WIDGETS

Sketch 42: A Button
After text from the console or a file and basic mouse gestures, the simple
button is the third most popular user input method. It is ubiquitous on web
pages, game screens, and any system that requires on/off or yes/no choices
from a user. It is, of course, based on the old-fashioned push button that has
existed for a long time as an electrical device, and it works in a natural way:
push the button and something happens.

Graphically, a button is really just a rectangle. It is usually filled with a
color and has a text label or image to indicate its function. When the user
clicks the mouse button while the cursor is within the button, the task
assigned to the button is executed, usually by calling some function.
Properties that a button has include its position (the x- and y-coordinates of
the upper left corner of the button), size (the width and height of the
button), label (the string that is written in the button), and a color or image
that will appear in the button.

A button is said to be armed when the mouse cursor lies within it. When
armed, a mouse click will execute the function of the button. Sometimes the
button is drawn with a different color or font when it is armed to indicate
the activation to the user.

The button implemented in this sketch causes the background color of the
sketch window to change. It is armed when the mouse enters the rectangle
3:

if ((mouseX>=bx) && (mouseX<bx+bw) && (mouseY>=by) &&
(mouseY<by+bh))

where (bx, by) is the position and (bw, bh) is the size of the button.
The buttonArmed() function returns true when this if condition is true.

The drawButton() function draws and fills the rectangle and draws the text
1. When the button is armed, drawButton() also changes the fill color to
green from red. And, of course, the mousePressed() function determines
whether the button was armed when the mouse button was pressed and
changes the background color if so 4.

Because this sketch only implements a single button, it doesn’t use much
code. It is common for an application to have many buttons, as you’ll see in
the next sketch.

NOTE

Instead of drawing and filling a rectangle, you can draw an image
to represent the button, using the image() function instead of
rect() 2. In this case, the unarmed and armed images would also
be properties of the button. The test of the mouse coordinates is
against the numeric values of the rectangle or image size and is
independent of whether anything is actually drawn. The graphical
rendition of the button is for the convenience of the user.

color bgcolor = color (200, 200, 200);
int bx=10, by=260, bw=60, bh=30;

void setup ()
{
 size (250, 300);
}

void draw ()
{
 background (bgcolor);
 drawButton ();
}

 1 void drawButton ()
{
 if (buttonArmed()) fill (20, 200, 40);
 else fill (200, 60, 80);

 2 rect (bx, by, bw, bh);
 fill (0);
 text ("Button", bx+13, by+19);
}

boolean buttonArmed ()
{

 3 if ((mouseX>=bx) && (mouseX<bx+bw) &&
 (mouseY>=by) && (mouseY<by+bh)) return true;
 return false;
}

void mousePressed ()
{

 4 if (buttonArmed())
 bgcolor = color(random(128,255), random(128,255),
random(128,255));
}

Sketch 43: The Class Object—Multiple
Buttons
This sketch will create and display three buttons, one for each color
component: red, green, and blue. When a button is clicked, the
corresponding components of the background color will change randomly.

If an application needs many buttons, the scheme presented in Sketch 42
becomes awkward. What we want is a type, like PImage or PFont, that
represents a button, so we can declare button variables or an array of
buttons. The new button type should contain within it all of the properties
of a button along with all of the code, written as functions, that performs the
legal button operations.

Making a custom type with associated functions is done using a feature
called a class. A class is a way to enclose some variables and functions and
give them a name. The button class would look like this:

class button
{
 your code here
}

Inside the braces, we declare the variables used by the button: x, y,
width, height, label, and so on. The functions drawButton() and
buttonArmed() go inside the class too, along with something called a
constructor: a function that is called automatically each time a new button
(or, in general, a class object) is created. The class statement and what
follows inside the braces declares the class as a custom type, and when you
declare a variable of that class, you create an instance, one specific object
that has the class variables and functions within it.

A variable of class button is declared just like a PImage variable:

button b1, b2, b3;

The next step, as with a PImage or PFont, is to create an instance of the
button class using new and assign it to a variable:

b1 = new button (100, 150, 90, 30, "Button");

When you use new, Processing calls the constructor for the class. The
constructor accepts parameters, such as position or size, and saves them for
later use in drawing the button. The constructor function has the same name
as does the class 2 (in this case, button), and it has no function type—it is
not preceded by void or a type name. The constructor itself has no return
value, but the new operator will return a new instance of the class. If you
define more than one constructor, Processing calls the one that matches the
type and number of parameters given in the new statement. The constructor
then returns a new instance of the class. You can create as many instances
as your computer memory allows.

You access variables and functions in a class variable using dot notation.
For the button class instance bred 1, the x position is bred.bx, and to draw
it, you’d call bred.draw(). The main draw function must call draw() for
each of the buttons, or they won’t be displayed, and the mousePressed()
function in the main program must check each button to see if it was
clicked (that is, if the mouse cursor is inside the button) using the armed()
function in each button.

color bgcolor = color (200, 200, 200);
button bred, bgreen, bblue;
void setup()
{
 size (450, 300);

 1 bred = new button (10, 200, 50, 30, "Red");
 bgreen = new button (220, 200, 50, 30, "Green");
 bblue = new button (300, 200, 50, 30, "Blue");
}

void draw ()
{
 background (bgcolor);
 bred.draw();
 bgreen.draw();
 bblue.draw();
}

void mousePressed ()
{
 if (bred.armed()) bgcolor = color(random(128,255),
 green(bgcolor), blue(bgcolor));
 if (bgreen.armed()) bgcolor = color(red(bgcolor),
 random(128,255), blue(bgcolor));
 if (bblue.armed()) bgcolor = color(red(bgcolor),
 green(bgcolor), random(128,255));
}
class button
{
 int bx, by, bw, bh;
 color armedColor= color(20,200,20);
 color unarmedColor = color (200,200,40);
 String label;

 2 button (int x, int y, int w, int h, String s)
 {
 bx = x; by = y; bw = w; bh = h;
 label = s;
 }

 void draw ()
 {
 if (armed()) fill (20, 200, 40);
 else fill (200, 60, 80);
 rect (bx, by, bw, bh);

 fill (0); text (label, bx+13, by+19);
 }

 boolean armed ()
 {
 if ((mouseX>=bx) && (mouseX<bx+bw) &&
 (mouseY>=by) && (mouseY<by+bh)) return true;
 return false;
 }
}

Sketch 44: A Slider
A slider is a user interface widget that allows the user to move a small
object (a cursor) along a linear path, either horizontally or vertically. The
relative position of the cursor along the path represents a number. The
cursor in one extreme position corresponds to the minimum value, and the
cursor in the other extreme position represents the maximum. If the cursor
is halfway between the min and max positions, the value associated with the
slider is halfway between the min and max values.

This widget can be used to position a large image in a small window or a
lot of text within a smaller area, and we call it a scroll bar in those cases.
The purpose of a slider is, more generally, to allow the user to select a
number geometrically by sliding a cursor between two limits, rather than
typing it. It is a natural idea to choose a number as a fraction of a total, or as
a part of a range of values. If we define sliderPos as the position of the
cursor in pixels from the start of the slider, sliderWidth as the width of the
slider in pixels, and sliderMax and sliderMin as the numerical values
associated with the min and max cursor positions, this is the selected value
3:

value = (int)(((float)sliderPos/sliderWidth)*sliderMax +
sliderMin);

This expression is based on the fact that the slider position is a fraction of
the total possible set of positions, and this represents the same fraction of
the range between the sliderMin and sliderMax values (see Figure 44-1).

Figure 44-1: A slider

A slider can be represented graphically in many different ways. In this
sketch, the widget is a horizontal rectangle with a circular cursor, and the
current numerical value is drawn to the right. However, the cursor can be
rectangular, elliptical, triangular, a pointer, or other shapes.

The drawSlider() function 1 draws the rectangle and positions the
cursor using the sliderPos variable, which is set when the user selects the
cursor with the mouse and then moves (slides) it between the ends of the
rectangle. To build a slider class, you would make class variables for the
position, size, current cursor position and value, and class functions to draw
the slider and position the cursor (which you’d then call as, for example,
slider.drawSlider() or slider.draw()).

A common use for sliders is as a way to display an image. Often an
image will not fit into a particular window, or into any window; some
images are very large. Rather than resize the image, it is common to have a
slider at the bottom and the right side of the window, and to use the cursor
to position the window over the image so that various parts can be seen.

The values selected with the sliders represent the (x, y) location of the
window over top of the larger image.

NOTE

The mouseDragged() function 2 is called once every time the mouse
moves while a mouse button is pressed. Also, note that mouse and
keyboard events only work when a program has a draw() function,
even if that function does not do anything.

int sliderX=10, sliderY=100, sliderWidth=100,
sliderHeight=8;
color sliderColor = color(128,128,128);
int sliderPos=0, sliderMin=0, sliderMax=1000;
int value=0;

void setup ()
{
 size(600,300);
}

void draw ()
{
 background (200);
 drawSlider ();
}

 1 void drawSlider ()
{
 fill (sliderColor); // The bar part
 rect (sliderX, sliderY, sliderWidth, sliderHeight);
 fill (200,40,40); // Slider partl
 ellipse (sliderX+sliderPos,
sliderY+sliderHeight/2,12,12);
 fill (0);
 line (sliderX+sliderPos, sliderY, sliderX+sliderPos,
sliderY+sliderHeight);
 text (value, sliderX+sliderWidth+7,
sliderY+sliderHeight);
}

2 void mouseDragged()
{
 if ((mouseY<sliderY) ||
(mouseY>sliderY+sliderHeight))
 return;
 if ((mouseX>=sliderX) &&
(mouseX<=sliderX+sliderWidth))
 sliderPos = mouseX - sliderX;

 3 value = (int)(((float)sliderPos/sliderWidth)*sliderMax
+ sliderMin);
}

Sketch 45: A Gauge Display
The obvious way for a computer to display a numeric result is to simply
display the number, but sometimes a more analog approach is easier for
people to deal with. Some people like digital clocks, and some prefer the
old kind with hands. The analog display can be faster for a human to
process. A common kind of display is a gauge, where a pointer of some
kind rotates and points to a number. Most older speedometers are displays
of this type, for example. Figure 45-1 illustrates a gauge as a graphic and
shows a simple abstraction of the situation.

Figure 45-1: A gauge showing a value near 0 (left), and the angles that are involved in the
display (right)

A gauge can display values between a minimum and a maximum
numeric value. The minimum value corresponds to the minimum angle the
pointer can have (labeled α in the figure), and the maximum value
corresponds to the maximum angle the pointer can have (labeled β). In this
sketch, angles map directly onto values so that a difference of one degree
always represents the same amount of change. To display a value, we
calculate the angle that corresponds to that value, named theta 1 in the
sketch, and draw the pointer at that angle.

One way to look at this is as a slider that is shaped like a curve. Although
the gauge is only a display, the mathematics of where to place the pointer is
the same as for a slider, except we use angles instead of straight-line
distances, and it is reorganized to provide a value for the position. Figure 45
-2 shows how the slider situation converts into what we need for a gauge,

and shows the formula for finding where to draw the pointer. This formula
is really the same as the one used for the slider.

Figure 45-2: The gauge is like a bent slider. The equation shown here determines a position
value (angle) given a numerical value, but it is otherwise the same as the one we used for
the slider.

We do need to understand that 0 degrees is horizontal, and we convert the
starting (α) and ending (β) angles so they are relative to 0. Starting at α, we
decrease the angle of the pointer as the value increases toward the
maximum. If α is 140, then β should be −45 rather than the equivalent
angle, 315, so that β < α.

The gauge() function draws the pointer at the angle specified by the
equation in Figure 45-2 given a data value, v. Don’t forget that angles in
Processing need to be given as radians, so pos has to be converted from
degrees.

int val = 0;
int dv = -1;
int count = 0;
float dtor = 180.0/3.14159;
PImage background_image; // Rendered gauge
int dataMin=0, dataMax=100;
float alpha=230, beta=-40;

void setup ()
{
 size (170, 108);
 background_image = loadImage
 ("data/gauge.png");
 frameRate(30);
 background (255);
}

/* Test main for a gauge widget */
void draw ()
{
 image (background_image, 0, 0);
 gauge (119, 55, val, 25);
 val = val + dv;
 if (val > dataMax)
 { val = dataMax; dv = -dv; }
 else if (val < dataMin)
 { val = dataMin; dv = -dv; }
}

void gauge (int x, int y, int v, int dial_length)
{
 float theta;
 int xx, yy;
// Calculate rotation angle of pointer

 1 theta = radians (((v-dataMin)*(beta-alpha))/(dataMax-
dataMin) + alpha);
 stroke (0, 0, 0);
 yy = int(dial_length * sin(theta)); // x-coordinate
of rotated pointer end
 xx = int(dial_length * cos(theta)); // y-coordinate
of rotated pointer end
 yy = y-yy; xx = xx + x;
 line (x, y, xx, yy);
}

Sketch 46: A Likert Scale
A Likert scale is a rating scale for answering questions, commonly used in
questionnaires. The person being asked the question selects one of the
answers from a set of choices (often five) ranging from “Strongly Disagree”
to “Strongly Agree.” The idea is to collect standard answers upon which
statistics can be computed.

This sketch poses a question by drawing it near the top of the screen 2.
The possible answers are numbered from 1 (Strongly Disagree) to 5
(Strongly Agree), and each answer corresponds to a circle. To select an
answer, the user clicks on a circle, and the circle gets filled in 3. When the
user has answered to their satisfaction, then they type any key and the
sketch asks another question.

The questions reside in a text file named questions.txt that is opened
within setup(). We assume that there are multiple questions, and each is
one line of text in the file. The loadStrings() 1 function reads them all
into an array named question, the length of which is the number of
questions. Each question is asked (displayed) according to its index
variable, questionNo, which iterates from 0 to the number of questions. The
user selects an answer, one of five possible, by clicking the mouse within
one of the five circles. That answer is chosen as the current selection (using
a variable named select) in the mouseReleased() function.

When the user types a key, keyPressed() is called, and the selection will
be written to a file named save.txt 4. Then the questionNo variable will be
incremented, resulting in the next question being displayed. When all
questions have been asked (that is, when questionNo > question.length),
the file is closed and the program ends. The answers chosen by the user to
all questions are now stored in the save.txt file.

NOTE

There is only one output file, but there may be many users. We can
prompt users for their name or an ID number, and that could be
used as the basis for a filename, so that many distinct sets of
answers could be saved. Another option would be to create
filenames that end in consecutive numbers. When the program
begins, it could try to open files until it arrived at one that did not
exist; that would be the next usable filename.

int questionNo = 0;
String [] question;
int select = 0;
String list[];

void setup ()
{

 1 question = loadStrings("questions.txt");
 list = new String[question.length];
 size (600, 300);
}

void draw ()
{
 background(200);
 drawGraphic();
 fill (0);
 textSize (20);

 2 text ((questionNo+1)+". "+question[questionNo], 20,
70);
}

void drawGraphic ()
{
 text ("Strongly Disagree 1 2 3 4 5
Strongly Agree",
 20, 140);
 noFill();
 if (select==1) fill(0); else noFill();
 ellipse (230, 180, 15, 15);
 if (select==2) fill(0); else noFill();
 ellipse (260, 180, 15, 15);
 if (select==3) fill(0); else noFill();
 ellipse (290, 180, 15, 15);
 if (select==4) fill(0); else noFill();
 ellipse (320, 180, 15, 15);
 if (select==5) fill(0); else noFill();
 ellipse (352, 180, 15, 15);
}

void mouseReleased ()
{

 3 if (mouseY<173 || mouseY > 188) return;
 if (mouseX>=223&&mouseX<=238) select = 1;
 if (mouseX>=253&&mouseX<=268) select = 2;

 if (mouseX>=283&&mouseX<=298) select = 3;
 if (mouseX>=313&&mouseX<=328) select = 4;
 if (mouseX>=345&&mouseX<=360) select = 5;
}
void keyPressed ()
{
 list[questionNo] = "Question "+str(questionNo+1)+"
"+str(select);
 questionNo = questionNo + 1;
 if (questionNo >= question.length)
 {

 4 saveStrings("save.txt", list);
 exit();
 }
}

Sketch 47: A Thermometer
The original thermometer, made of glass with a colored fluid inside, had a
design imposed by its function, but it was also an excellent way to display
numeric data. It represents a number as the height of a colored line or
rectangle. It is easy to see how tall a rectangle is and easy to compare it to
others. This idea has been used in many places, most noticeably on sound
equipment to show volume.

The representation on a computer is straightforward. A colored rectangle
grows and shrinks as a function of how large a numeric variable is. Such a
variable has a minimum and maximum value, and the rectangle has a
minimum (usually 0) and maximum height. The mapping between the
number and the height can be done as it was for the slider (Sketch 44) and
the dial gauge (Sketch 45). In this sketch, it is implemented a bit differently,
but it is computed in the same way.

This sketch computes how much taller the rectangle gets for each
increase in the variable 1. If the rectangle’s height can go from ystart to
yend, and the range of data values is from dataMin to dataMax, then the
change in rectangle height for each data increment is as follows:

delta = (float)(ystart-yend)/(float)(dataMax-dataMin);

Then for any data value, data, the height of the rectangle relative to
ystart is the following:

val = ystart-(int)(data*delta);

This process only draws a rectangle, which is not very exciting, so we’ll
add a background image (created specifically for this program) that
contains an image of a glass thermometer and gradations that allow the user
to interpret the height as a number. The coordinates of the rectangle have to
be mapped specifically onto the image so that the rectangle aligns with the
thermometer column, using a similar process as in Sketch 45.

This example generates a random numeric value for display. After
starting arbitrarily at data = 15, the value changes by a small random
amount each frame.

PImage thermo; // Thermometer image
int xpos=100, ypos=50; // Position of upper left
int ystart = 240; // Position of Y lowest
point
int yend = 44; // Position of Y highest
point
int xstart = 32; // Left of red column
int xend = 50; // Right of red column
int dataMin=0, dataMax=90; // Range of data values
float delta = 1;
float data = 15.0;

void setup ()
{
 size (400, 400); // Window
size
 thermo = loadImage ("thermo.gif"); // Read
button images

 1 delta = (float)(ystart-yend)/(float)(dataMax-dataMin);
 rectMode (CORNERS);
 noStroke();
}

void draw ()
{
 int val;

 background (200);
// White background
 image(thermo, xpos, ypos);
// Draw the basic thermometer

 2 val = ystart-(int)(data*delta);
// Scale data to Y range
 fill (140, 4, 20);
// Fill with red
 rect (xstart+xpos, val+ypos, xend+xpos, ystart+ypos);
// Draw red
 text (""+(int)data, xstart+xpos, ystart+ypos+30);
// Draw data value
 data = data + random(2) - 1;
// Modify data for display purposes
 if (data > dataMax) data = dataMax;
 else if (data < dataMin) data = dataMin;
}

6
NETWORK COMMUNICATIONS

Sketch 48: Opening a Web Page
A web page is really just a text file containing the description of that page
in enough detail to draw it on the screen. A program called a browser reads
and renders that file into a viewable page. The file itself resides on a
computer somewhere on the internet, and in order to display it, we must
first upload it to the user’s computer. The browser arranges for this to be
done, but the file must have a unique name that identifies it—unique in the
whole world, because the internet is a planetwide network. This unique
name is called the Uniform (or Universal) Resource Locator, shortened to
URL. Most people know this by the term web address, and an example is htt
ps://www.microsoft.com.

The URL contains the directions for how to find the web page, and it is
the equivalent of a filename. Displaying the page is a complex operation,
and browsers are very complicated software systems.

Processing opens and displays web pages using a function named
link(), which accepts a URL as a parameter. This function passes the URL
to the default browser on your computer, which opens and displays the
page. So the following call will open the Microsoft page in a browser:

link ("https://www.microsoft.com");

If the browser is already open, it may open a new tab.

Example A
This sketch opens the Microsoft page as previously described 1. It does so
when a mouse button is pressed while the cursor is within the display
window.

Example B
This sketch is a combination of Example A and Sketch 37. The user types a
URL, and the sketch builds a string from the characters being typed. When

https://www.microsoft.com/

the user types ENTER, the sketch passes the URL to link(), and the
browser will open and display the corresponding page.

When the user types a character, it is usually placed in the variable key,
then added to the string. However, some keys do not produce characters,
such as the arrow keys, or SHIFT. In Processing, uppercase characters
involve two key presses: the SHIFT key and the character. The Processing
system refers to these as coded keys and treats them differently. If the key
variable has the value CODED, then the key pressed was one of these special
ones, and the keyCode variable indicates what key was pressed 1. The value
UP, for example, indicates that the up-arrow key was pressed.

In this sketch, we’ll ignore all coded keys, because the SHIFT key is
needed to send uppercase letters and some punctuation (like the colon, “:”),
but it should not be thought of as a key press. The keyPressed() function
ignores coded keys using the following code:

if (key == CODED) return;

Example A

void setup ()
{
 size (200, 200);
}

void draw ()
{
 rect(20, 20, 60, 60);
}

void mousePressed ()
{

1 link ("https://www.microsoft.com");
}

Example B

String url = "";

void setup ()
{
 size (240, 200);
}

void draw ()
{
 background (200, 200, 200);
 fill(0);
 text (url, 20, height-20);
}

void keyPressed ()
{
 fill(0);

 1 if (key == CODED) return;
// if (keyCode==SHIFT) return;
 if (url.length()>0 && key==BACKSPACE)
 url = url.substring (0, url.length()-1);
 else if(key==ENTER || key==RETURN)
 link (url);
 else
 url = url + key;
}

Sketch 49: Loading Images from a Web Page
Since a web page is really just a text file, as you saw in Sketch 48, it should
be possible to read that file and see what is inside. For example, it should be
possible to identify any sound files (for example, MP3s) accessed by the
page, or which images (.jpg, .gif, .png, and so on) will be a part of the page.
This sketch will locate image files referenced in a web page and display
them in the display window.

The first thing to do is to read the page. It contains HTML, a language for
describing the document, and reading it turns out to be easy: Processing
allows URLs to be used just like filenames in the loadStrings() function.
You can read the Mink Hollow Media web page as a text file by directly
passing the URL to loadStrings():

String webin[] = loadStrings("https://minkhollowmedia.ca");

Or, as is done in this sketch, loadStrings(url+"/"+file), where url is
the web address and file is the name of the file that we want 1. At this
point, the web page is available as a collection of strings in the array webin,
one per line in the file.

HTML uses what is called an img tag to display images in a page:

The filename of an image follows the text src=", so the sketch should
look for this sequence of characters within the strings in webin. If found, the
following characters, up to the closing quote character ("), are the filename.
We can locate a string within another string using the indexOf() function 2:

i = s.indexOf ("src=", j);

In this example, indexOf() searches the string s for the string "src=",
starting at the character index j. It returns the index of the location where
the string was found, or −1 if it was not found. If the string is found, we call
the getName() function 3 to extract the filename itself from the string. The

getName() function reads and saves characters until it encounters the
terminal double quote and returns the filename as a string 4. This string is
used as a filename for loadImage(), and if an image with that name can be
loaded, then it is displayed.

There are many legal ways to specify a filename, and the code here also
tries one other: it will take the URL and add a slash (/) and the filename 1
to see if that works. Some images will not be located using this method, and
some files that are not images (like JavaScript, video, and audio) can be
extracted. They will fail to display as images, and error messages will
appear in the console.

NOTE

You could save the extracted images as files by simply calling
save() when the image is successfully loaded. The act of extracting
information from a web page using a program is called scraping.

String [] webIn;
String url = "https://minkhollowmedia.ca/41-2/games";
String file = "", name="", s="";
int index = 0, i=0;
PImage next;

void setup ()
{
 size (400, 400);

 1 webIn = loadStrings(url+"/"+file);
 fill (0);
}

void draw ()
{
 background (200);
 if (next != null) image (next, 0, 0);
 index = index + 1;
 if (index>=webIn.length)
 {
 text ("DONE", 10, 370);
 return;
 }
 text (webIn[index], 10, 370);
 s = webIn[index].toLowerCase();

 2 i = s.indexOf ("src=", i);
 if (i<0) return;
 s = webIn[index];

 3 name = getName(s.substring(i+4));
 if (name == null) return;
 if (name.charAt(0) != '/') next = loadImage
(url+"/"+name);
 if (next == null) next = loadImage (name);
}

String getName (String s)
{
 int i=1;
 if (s.charAt(0) != '"') return null;
 while (i<s.length())
 {

 4 if (s.charAt(i) == '"') return s.substring(1, i);
 i = i + 1;
 }

 return null;
}

Sketch 50: Client/Server Communication
A lot of computer network communication is based on what is called a
client/server model. It could just as easily be called a listener/speaker or
receiver/sender model because it amounts to having one computer or
process sending information across a network (the server) and another
computer, or many other computers, receiving that data (the clients).

Here’s how client/server software should work. A server first announces
to the world that it is active and sending data. It must have an address that
can be used to identify it uniquely, and it must start sending data (bytes, for
example). A client identifies a server that it wishes to collect data from by
using the server’s address. If the address represents an active server, the
client starts to read data from the server. The server must indicate when new
data is available, and if data is requested and none has yet been sent, the
client waits until data is present.

This example has a server sending character data and a client receiving
and displaying the data, implemented as two different sketches. The server
sends the message “This is a message from J Parker” repeatedly; the client
reads characters from the server, constructs a string from them, and displays
this string in the display window.

Processing does not have a native ability to build client/server systems,
but a library exists that enables it. Processing uses external libraries for
many things, including video, audio, and various specific interfaces. For
this example, we need to import the Network library at the beginning of
both the client and server sketches 1, using this line:

import processing.net.*;

In the server code, the first step is to create a Server (part of the Network
library) and assign it to the variable named sender, and then specify the
port (in this case, port 5000), which is simply a number. A port is like a
television channel, used to send or receive data, and all that matters here is
that no other software is using this port. The server sends characters one at a

time from a string to the outside world through the port by calling the write
function 2:

sender = new Server(this, 5000);
--snip--
sender.write(nextChar);

nextChar is a character from the message.
The client sketch first tries to connect to the server. The client must know

the IP address of the server, which is its unique identifier
(***.***.***.*** in this case). The client connects to the server through
the constructor using the same port 3:

me = new Client(this, "***.***.***.***", 5000);

The client reads characters, one at a time, using the readChar() function
4:

nextChar = (char)me.readChar ();

In this example, you have to start the server first and find out its IP
address. You can use the ipconfig program on the computer where you are
running the server sketch to find the IP address. Then you can start the
client on some other computer on your network.

NOTE

The address ***.***.***.*** was used to avoid publishing a real
address.

Server

1 import processing.net.*;
Server sender;
int ind = 0;
char nextChar;
String message = "This is a message from J Parker ";

void setup ()
{
 size(200, 100);

 2 sender = new Server(this, 5000); // Create server
}

void draw ()
{
 background(200);
 if (ind >= message.length()) ind = 0;
 nextChar = message.charAt(ind);
 sender.write(nextChar);
 text ("IP address: "+sender.ip(), 30, 40);
 ind = ind + 1;
}

Client

1 import processing.net.*;
Client me;
char nextChar = ' ';
String message = "";

void setup ()
{
 size(200, 200);

 3 me = new Client(this,"***.***.***.***",
 5000);
 fill (20);
 frameRate (10);
}

void draw ()
{
 if (me.available() > 0)
 {
 background(50, 250, 50);

 text ("IP address: "+me.ip(), 30, 40);

 4 nextChar = (char)me.readChar ();
 message = message + nextChar;
 if (message.length() > 20)
 message = message.substring(1,message.length());
 text (message, 10, 100);
 } else
 {
 background (200, 30, 10);
 text ("No server at port 5000.", 10, 20);
 }
}

7
3D GRAPHICS AND ANIMATION

Sketch 51: Basic 3D Objects
We have been drawing only two-dimensional (2D) objects so far: lines,
circles, triangles, rectangles, and images. Processing can draw three-
dimensional (3D) objects too, although all that we can represent on a
computer screen is a view of these, a 2D projection onto a plane. This
projection aspect is what makes 3D more difficult. The x dimension is
horizontal, and the y is vertical, and displaying those coordinates on a 2D
screen is obvious. The third dimension, called z, would be perpendicular to
the screen’s surface. In order to visualize it, the three coordinates must be
reduced to two, which is what the projection does.

Processing provides a 3D box (cube) and a sphere. In this sketch, we’ll
draw these standard objects to show how 3D works.

To render 3D objects, Processing needs to use software that performs 3D
drawing operations, called a 3D renderer. The default renderer, called P2D,
only handles two dimensions. To specify three dimensions, we provide the
P3D renderer 1 as an argument to the size function within setup:

size (300, 400, P3D);

Now all 3D operations are available. Cubes and spheres are provided
through functions, just as rectangles and ellipses are in 2D. The function
sphere(R) 3 draws a sphere having radius R at the origin.

A sphere is drawn as a collection of triangles that have x-, y-, and z-
coordinates at each vertex, oriented along the surface of the sphere and
connected edge to edge. Think of it as the 3D version of drawing a circle
using many short straight lines; it’s not exactly smooth, but if the triangles
are small enough, the illusion works. The triangles will be visible unless
outlines are turned off with a call to noStroke().

The box(s) function draws a cube where each side is s pixels long 4. To
specify the size in each direction, we can use the second form of box:
box(w, h, d).

To draw either shape somewhere other than the origin, we must first call
the translate() 2 function to move the origin to the location where the
sphere is to be drawn. In 3D, coordinates have three values: x, y, and z, and
translate() has three corresponding parameters.

Finally, when drawing in three dimensions, we need illumination to
create depth. To enable lighting, we call lights() in the draw() function.
Without the call to lights(), the sphere on the left of the Example A
output would just look like a circle.

Example A
We draw two spheres: one with the triangles composing the sphere visible
(right) and one with them hidden (using noStroke(), left). The spheres
move away from the point of view and then back, showing the third
dimension more clearly than if they were still.

Example B
We draw two cubes, again with the right one showing the cube outlines and
with the left one not. The cubes also move away from the camera and then
back again (along the z-axis).

Example A

int z = 50, dz = 1;
void setup ()
{

 size(400, 300, 1P3D);
}

void draw ()
{
 background (200);
 noStroke();
 lights();

 2 translate(100, 150, z);
 3 sphere(50);
 translate(200, 0, 0);
 stroke (0);
 sphere (50);
 z = z + dz;
 if (z > 50) dz = -dz;
 if (z < -350) dz = -dz;
}

Example B

int z = 50, dz = 1;

void setup ()
{
 size(400, 300, P3D);
}

void draw ()
{
 background (200);
 noStroke();
 lights();
 translate(100, 150, z);

 4 box(50);
 translate(200, 0, 0);
 stroke (0);
 box(50);
 z = z + dz;
 if (z > 50) dz = -dz;
 if (z < -350) dz = -dz;
}

Sketch 52: 3D Geometry—Viewpoints,
Projections
3D objects are really simulations in which the edges and faces have
locations in a virtual space having three coordinates. Because computer
screens are 2D, visualizing these objects means projecting them onto a
plane so they can be drawn on a screen.

This plane lies between the object and the location from which the object
is being seen, or the viewpoint. The viewpoint is a location in 3D space,
marked by an eye in Figure 52-1. (2D scenes don’t really have a viewpoint;
the entire image is a plane in the first place.)

Figure 52-1: Viewing a 3D object

There is a second crucial point for defining how a 3D view appears, and
that is the location where the viewer (camera) is looking. This is the center
of the scene, denoted by (cx, cy, cz). The plane on which the 3D scene is
projected is perpendicular to the line between (ex, ey, ez) and (cx, cy,
cz), and precisely what can be seen depends on the field of view, or the
angle of the visible field, which determines what can be seen without
moving the camera.

In Processing, we use a call to camera() 1 to set up the basic 3D
configuration:

camera(ex, ey, ez, cx, cy, cz, 0, 1, 0);

The first three parameters are the viewpoint, and the next three are the
center of the scene. The last three represent a vector that defines the
direction up so that the scene is oriented correctly. In this example, up is the
positive y-direction. It is a choice made by the programmer.

This sketch uses the camera() function to change the view of a pair of
3D objects according to user key presses. We move the location of the
viewpoint by incrementing or decrementing the values of ex and ez inside
the keyPressed() function 2 when the proper keys are pressed: A decreases
x (moves left), D increases x (moves right), W decreases z, and S increases
z (the distance to the objects). This is the equivalent of moving the player in
a video game. The sphere is drawn at (cx, cy, cz) so that it is guaranteed
to be visible at the outset. To move the center of the scene away from the
sphere, we can change the value of cy with the up and down arrow keys.
You can see the effect of changing the viewpoint and the center of the scene
by experimenting with them using the keyboard.

int x=100, y=100, z=100; // Sphere position
int ex=100, ey=100, ez=400; // Viewpoint
int cx=100, cy=100, cz=100; // Point we are looking
at

void setup ()
{
 size (500, 400, P3D);
}

void draw ()
{
 background (200, 200, 200);

 1 camera(ex, ey, ez, cx, cy, cz, 0, 1, 0);
 noStroke();
 lights();
 translate (x, y, z);
 sphere (12);
 translate (20, 0, 0);
 box (12);
 translate (-x-20, -y, -z);
}

 2 void keyPressed ()
{
 if (key == 'w') ez = ez - 10;
 if (key == 's') ez = ez + 10;
 if (key == 'a') ex = ex - 10;
 if (key == 'd') ex = ex + 10;
 if (keyCode == UP) cy = cy + 10;
 if (keyCode == DOWN) cy = cy - 10;
}

Sketch 53: 3D Illumination
Illumination can profoundly change the appearance of a scene. The location
of lights will cause specific portions of objects or scenes to be visible while
others are not. Colored lights can change the apparent color of objects.
Directional lighting can illuminate some portions of an object and not
others. Processing provides all of these options.

In this sketch, we’ll draw a sphere and permit the user to select the type
of lighting used by typing a number. The lighting may be ambient (1),
directional (2), point (3), spot (4), or all three: directional, point, and spot
(5). The default lighting is code 0. When the user changes the kind of
lighting, the color changes as well: ambient is cyan, directional is violet,
point is yellow, and spot is green.

The previous sketches have used a call to lights() to provide default
illumination. Alternatively, we can use a call to the ambientLight()
function 1 to specify a color and, optionally, a location for ambient lighting,
which is illumination that permeates the scene.

ambientLight (r, g, b, x, y, z);

The first three parameters specify the RGB values for the color of the
light. The next three are optional, and specify a location in three
dimensions. Light spreads in all directions from this point.

The directionalLight() function 2 specifies light from a specific
direction, so it appears brighter when striking a surface perpendicular to
that direction and less bright as the angle changes.

directionalLight (r, g, b, dx, dy, dz);

Again, the first three parameters represent the color of the light. The next
three specify the direction. So, for example, if dy=1 while dx=0 and dz=0,
the object will be illuminated from above.

The pointLight() function 3 creates a single location from which
illumination comes, like a lamp. This call places a light with the specified

RGB values at the given (x, y, z) location:

pointLight (r, g, b, x, y, z);

Finally, a spotlight() 4 is a concentrated directional light, and it is the
most complex of the lighting sources. This call specifies a light of color
RGB at location (x, y, z) pointed in direction (dx, dy, dz):

spotlight (r,g,b, x,y,z, dx,dy,dz, angle, concentration);

The value of angle is the dispersion angle of the light; the smaller the
angle, the smaller the circle of light. This angle is in radians. The
concentration specifies how the light varies across a cross section,
brighter in the center and less bright at the edges. Values can vary from 1 to
10,000.

int x=100, y=100, z=100; // Sphere position
int ex=100, ey=100, ez=147; // Viewpoint
int cx=100, cy=100, cz=100; // Point we are
looking at
int code = 0;
void setup()
{
 size (500, 400, P3D);
}

void draw ()
{
 background (200, 200, 200);
 camera(ex, ey, ez, cx, cy, cz, 0, 1, 0);
 if (code == 0)
 lights();
 else if (code == 1)

 1 ambientLight (0, 200, 200, 0, 1000, 0);
 else if (code == 2)

 2 directionalLight (200, 0, 200, 0, 1000, 0);
 else if (code == 3)

 3 pointLight (200, 200, 0, 0, -1000, 0);
 else if (code == 4)

 4 spotLight (0, 200, 0, -300, 100, 100, 100, 0, 0,
PI/16, 1000);

 else if (code == 5) // All three!
 {
 directionalLight (200, 0, 200, 0, 1000, 0);
 pointLight (200, 200, 0, 0, -1000, 0);
 spotLight (0, 200, 0, -300, 100, 100, 100, 0, 0,
PI/16, 1000);
 }
 translate (x, y, z);
 sphere (12);
}

void keyPressed ()
{
 if (key == '0') code = 0;
 if (key == '1') code = 1;
 if (key == '2') code = 2;
 if (key == '3') code = 3;
 if (key == '4') code = 4;

 if (key == '5') code = 5;
}

Sketch 54: Bouncing a Ball in 3D
Sketch 28 was a simulation of a bouncing ball. A circle (ball) moved about
a window, bouncing when it struck the boundary. An obvious extension of
this into three dimensions has a sphere bouncing about the inside of a cube.
When the sphere (ball) strikes one of the sides of the cube, it bounces. This
is conceptually the same problem as in two dimensions, but it requires quite
a bit more code because there are more conditions to check and more things
to draw.

The scene consists of the cube and a sphere. The cube occupies most of
the field of view, bounded by the coordinate axes. We’ll draw the
coordinate axes in special colors to show the three primary directions: x
will be green, y will be blue, and z will be red. Instead of calling box(),
we’ll draw the cube as the 12 lines that compose the edges so that we can
see the ball inside.

We’ll start drawing the cube from the origin in the upper-left corner,
followed by the remaining nine edges, using the mycube() function 1. To
see if the ball has collided with a side, we’ll test the ball’s coordinates
against the x, y, and z values of the bounding planes, which are aligned with
the coordinate axes.

We can still use the sphere() function to draw the bouncing ball at
position (x, y, z) using a translation of the origin to that point before
drawing. After each frame, we move the ball an amount (dx, dy, dz). If the
ball coordinates are such that the ball extends past any of the cube faces,
then the ball bounces—it reverses the direction of motion to move away
from the face. This is implemented by the moveSphere() function. For
example, in the x-direction, this is the specific test for a bounce 2:

if (x<=6 || x>=194) dx = -dx;

This test is specific for a sphere size of 12, because it checks against the
radius of 6 pixels. A sphere of radius r is in contact with the cube if its
center is within r pixels of a face, and r is half of the specified sphere size.

Because the cube starts at (0, 0, 0) and is 200 units in each direction, the
ball collides around x-coordinates 6 and 194.

The center of the cube is at (100, 100, 100) 3. This point is the center of
the scene. We stare into the cube from the viewpoint at the (x, y) center,
which is (100, 100), but along the z-axis 400 units.

NOTE

A 3D version of the game Pong could be created from this basic
program. Paddles could be small rectangles aligned to the opposite
y-z axes. The left paddle could be moved with the W, A, S, and D
keys, and the right paddle with the arrow keys. Bouncing off of the
y-z planes would occur only if the sphere’s y- and z-coordinates
placed it within the rectangle defined by the paddle.

int x=100, y=100, z=100; //
Sphere position
int dx=2, dy=3, dz=4; //
Velocity of the sphere
int eyex= 100, eyey=100, eyez=400; //
Viewpoint
int cx=100, cy=100, cz=100; //
Point we are looking at

void setup() { size (400, 400, P3D); }

 1 void mycube ()
{
 stroke (255, 0, 0); line (0, 0, 0, 0, 0, 200); //
Z axis is red
 stroke(0, 0, 255); line (0, 200, 0, 0, 0, 0); //
Y axis is blue
 stroke(0, 255, 0); line (0, 0, 0, 200, 0, 0); //
X axis is green
 stroke (255); //
All other edges are white
 line (0, 0, 200, 0, 200, 200);
 line (0, 200, 200, 0, 200, 0);
 line (0, 200, 0, 200, 200, 0);
 line (0, 200, 200, 200, 200, 200);
 line (0, 0, 200, 200, 0, 200);
 line (200, 0, 0, 200, 0, 200);
 line (200, 0, 200, 200, 200, 200);
 line (200, 200, 200, 200, 200, 0);
 line (200, 200, 0, 200, 0, 0);
 noStroke();
}

void moveSphere ()
{ // Move the sphere position one frame
 x = x + dx; y = y + dy; z = z + dz;

 2 if (x<=6 || x>=194) dx = -dx;
 if (y<=6 || y>=194) dy = -dy;
 if (z<=6 || z>=194) dz = -dz;
}

void draw ()
{
 background (45, 45, 120);

 3 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);

 mycube();
 lights();
 noStroke();
 translate (x, y, z);
 sphere (12);
 moveSphere();
}

Sketch 55: Constructing 3D Objects Using
Planes
Processing provides only spheres and boxes as basic 3D objects, but that
does not mean that we can’t make more complex things. We can construct
arbitrary objects from polygons. This means we need to design the objects
first, either on paper or using a 3D modeling program like Blender or Maya.
The design yields a set of coordinates of the vertices (corner points) of the
polygons in three dimensions. Then we can use Processing to draw these
polygons and thus display the object.

Since prisms are the easiest objects to build, this sketch will draw a prism
and color the various faces differently so we can tell which are which. The
point of view will move in a pattern so that the 3D nature of the object is
clear.

A rectangular prism consists of rectangles joined along their edges. A
cube is a rectangular prism, for example. The first step is to determine the
values of the coordinates for each of the corners of the rectangles that will
compose the prism. A piece of graph paper is useful for this: sketch the
prism and define the x, y, z coordinate system (x is horizontal). Then start
with the origin, the (0, 0, 0) point, and place the coordinates on the drawing
where they belong, as in Figure 55-1. Now you can simply read off the
coordinates of each rectangle in any order you like. For example, the front
face of the prism in the figure is defined by the following coordinates: (0, 0,
0), (sx, 0, 0), (sx, sy, 0), and (0, sy, 0).

Figure 55-1: 3D coordinates of a prism

To draw polygons that are connected as an object, we bookend that
drawing code between calls to the beginShape() and endShape()
functions. In this case, because the polygons used are rectangles,
beginShape() is passed the argument QUAD 1; another option would be
TRIANGLES. This argument specifies to Processing the number of vertices
needed for each polygon (in this case four). Between the begin and end
calls, we place calls to a function named vertex() 2. Each such call
specifies a point in 3D space that represents, in this instance, a corner of a
rectangle. For example, the front face of the prism is defined by these calls:

vertex (0., 0., 0.);
vertex (sx, 0., 0.);
vertex (sx, sy, 0.);
vertex (0., sy, 0.);

The sketch draws four rectangles connected along vertical edges, creating
a rectangular prism with no top or bottom. Each is filled with a different

color merely by placing a call to fill() immediately before the four
vertices for that rectangle are specified.

The viewpoint changes by the amount dz during each frame between a
minimum of z = −200 and a maximum of z = 300 4 so that various views of
the prism are displayed.

NOTE

After an object is complete, it can be terminated by a call to
endShape(CLOSE) 3; the parameter indicates the polygon should be
closed. This will connect the first coordinate and the last so that
there is no gap in the polygon. Floating-point approximations can
cause gaps because small errors in individual calculations can
accumulate and result in small errors. Adding 0.01 to a value 100
times may not be exactly the same as adding 1.

float sx=30., sy=40., sz=12.;
int eyex= 144, eyey=0, eyez=245;
int cx=30, cy=40, cz=32;
int dz = -1;

void setup ()
{
 size(300, 300, P3D);
 stroke(0);
}

void draw ()
{
 background(255);
 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);

 1 beginShape (QUAD);
 fill (170, 120, 50);

 2 vertex (0., 0., 0.);
 vertex (sx, 0., 0.);
 vertex (sx, sy, 0.);
 vertex (0., sy, 0.);
 fill (120, 170, 50);
 vertex (sx, 0., 0.);
 vertex (sx, 0., sz);
 vertex (sx, sy, sz);
 vertex (sx, sy, 0.);
 fill (170, 50, 120);
 vertex (sx, 0., sz);
 vertex (0., 0., sz);
 vertex (0., sy, sz);
 vertex (sx, sy, sz);
 fill (50, 120, 170);
 vertex (0., 0., 0.);
 vertex (0., sy, 0.);
 vertex (0., sy, sz);
 vertex (0., 0., sz);

 3 endShape (CLOSE);

 eyez = eyez + dz;

 4 if (eyez < -200) dz = -dz;
 if (eyez > 300) dz = -dz;
}

Sketch 56: Texture Mapping
In Sketch 55 we gave each side of a prism a distinct color to make it easy to
identify each face. This was done as an exercise, but in most real
applications, a prism would either be a single color or would have a texture
placed on it. A texture is a pattern, often simply an image, that we apply
like a decal to a polygon. In this way, we can make a simple prism look like
many things: a building, a book, a chair—nearly anything with corners.
This sketch applies a texture (carpet) to a polygon (a rectangle) and moves
the viewpoint so that the 3D effect can be seen.

Applying an image to a polygon as a texture is a process called texture
mapping. The details of the algorithm are complex, but the idea is simple
enough, and the way it is implemented in Processing fits nicely into the
scheme already explained for drawing objects. In English, the process is as
follows:

. Read in an image that will serve as the texture 1. This will be a PImage.

. Define the coordinates of a 3D polygon, possibly part of a bigger object.

. Map each of the four corners of the texture image to a vertex of the
polygon; that is, if the polygon is a rectangle, decide which corners of the
texture image will be placed over which corners of the rectangle.

. Convert the coordinate mapping into calls to the vertex() function 4.

. Bracket the vertex calls between beginShape() 2 and endShape() 5.

. Immediately after beginShape(), tell Processing which texture image to use
by calling the built-in texture() function 3.

In this example, we use an image of carpet texture. As an orientation
marker, a red rectangle is placed in the upper-left corner and a green one in
the upper right. The texture image is 524 by 928 pixels. This is the
coordinate mapping from texture to vertices, as shown in Figure 56-1:
Texture (0, 0) maps to polygon (0, 0, 0).
Texture (524, 0) maps to polygon (sx, 0, 0).

Texture (524, 928) maps to polygon (sx, sy, 0).
Texture (0, 928) maps to polygon (0, sy, 0).

Figure 56-1: Mapping texture coordinates to a polygon

The vertex() function allows us to specify the mapping with two
optional parameters for texture coordinates. This would be the mapping of
the previous vertices:

vertex (0., 0., 0., 0., 0.); vertex (sx, 0., 0., 524,
0.);
vertex (sx, sy, 0., 524, 928); vertex (0., sy, 0., 0.,
928);

Because Processing knows the size of the texture image (timage), the
numeric constant 524 in the preceding mappings can be replaced by
timage.width 4. Similarly, we can use timage.height instead of 928.

float sx=30., sy=40., sz=12.;
int eyex=30, eyey=50, eyez=60;
int cx=20, cy=30, cz=12;
int dx = -1;
PImage timage;

void setup ()
{
 size(200, 200, P3D);
 stroke(0);

 1 timage = loadImage ("carpets.jpg");
}

void draw ()
{
 background(255);
 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);

 2 beginShape (QUAD);
 3 texture (timage);
 vertex (0., 0., 0., 0., 0.);

 4 vertex (sx, 0., 0., timage.width, 0.);
 vertex (sx, sy, 0., timage.width, timage.height);
 vertex (0., sy, 0., 0., timage.height);

 5 endShape (CLOSE);

 eyex = eyex + dx;
 if (eyex < -30) dx = -dx;
 if (eyex > 100) dx = -dx;
}

Sketch 57: Billboards—Simulating a Tree
Let’s draw a tree in three dimensions. A prism is a simple thing, but a tree?
Trees have many parts: leaves, branches, bark, and myriad details. Graphics
specialists have devised very complex methods to create complex things
like trees, mountains, and living things, but in most cases, it is not necessary
to go to that trouble. For artwork, animations, and games, there are ways to
simplify things (to “cheat”) so that they look pretty good while still being
easy to implement. Building a tree as a billboard is one of those things.

In its simplest form, a billboard is a rectangle with a texture drawn on it.
It resembles the kind of billboard you can see while driving down tourist
highways, and in computer graphics, it would normally occur only at a large
distance from the viewer. To make a tree, we’ll use two billboards at right
angles to each other, joined at the vertical center of each. Each one is a
rectangle with a tree image textured onto it. The idea is that from any angle
one sees the entire tree, and moving the viewpoint appears to change the
view of the tree. From close up it is obvious what is happening, but when
seen from a medium distance or while the viewer is moving, the illusion is a
good one.

Figure 57-1 shows how we arrange the two perpendicular rectangles in
three dimensions. The texture placed on them needs to have a transparent
background, or the white rectangles will be visible. This means using either
a GIF or PNG format image file, which are the ones that support
transparency.

Figure 57-1: Two perpendicular rectangles

The sketch first reads in the tree image that we’ll use as a texture and
opens the window, as usual. The draw() function sets up the camera 1 and
draws two rectangles at the origin, both using the tree as a texture that we
map onto the rectangles 2, similar to what was done in Sketch 56. We rotate
the second texture-mapped rectangle by 90 degrees 3 and translate it by 13
units in the x and z directions to align it with the center of the first
rectangle. (The rectangle is 26 units wide, and 13 units is half of that.)

We also change the viewpoint slightly in each frame so that the 3D effect
is obvious when the sketch is executing.

NOTE

The use of billboards can be more interesting and dynamic than this.
Imagine that we need a burning torch. We could make a set of
animation frames of a burning torch using Paint and then map them
onto the billboard in sequence. The result is a convincing
representation of a burning torch, especially if the background is
otherwise dark.

PImage tree; // https://pngimg.com/download/204/

float sx=30., sy=40.;
int eyex=30, eyey=20, eyez=60;
int cx=20, cy=15, cz=12;
int dx = -1;

void setup ()
{
 size (500, 400, P3D);
 tree = loadImage ("tree.gif");
 noStroke();
}

void draw ()
{
 background (200, 255, 0);

 1 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);
 beginShape (QUAD);

 2 texture (tree);
 vertex (0., 0., 0., 0., 0.);
 vertex (sx, 0., 0., tree.width, 0.);
 vertex (sx, sy, 0., tree.width, tree.height);
 vertex (0., sy, 0., 0., tree.height);
 endShape (CLOSE);

 3 rotateY (PI/2.0);
 translate (-13, 0, 13);

 beginShape (QUAD);
 texture (tree);
 vertex (0., 0., 0., 0., 0.);
 vertex (sx, 0., 0., tree.width, 0.);
 vertex (sx, sy, 0., tree.width, tree.height);
 vertex (0., sy, 0., 0., tree.height);
 endShape (CLOSE);

 eyex = eyex + dx;
 if(eyex<-40 || eyex>60) dx = -dx;
}

Sketch 58: Moving the Viewpoint in 3D
In a first-person computer game, the representation of the player in the
game is an avatar, controlled by the player. Pressing W moves the avatar
forward, S moves it backward, A moves it left, and D moves it right. This
scheme is easy for a player to understand but harder to implement than the
scheme we have been using.

In the sketches presented so far, the movement has been automatic or
based on simplistic assumptions—A and D move along the x-axis and W
and S move along the z-axis—but people don’t move in that way. The A
and D keys should rotate the player about their own axis, and the W and S
keys should move the player forward and backward along the direction
defined by that angle. As a demonstration of avatar movement control, this
sketch draws nine cubes and allows the user to move among them using this
technique.

The avatar has a direction in which it is facing, defined by the variable
angle (in degrees). The A and D keys allow the user to change this angle by
one degree per key press 3. Changing the angle will not modify the camera
position, but it does modify the center of the scene by rotating it about the
avatar. Because the vertical axis is y, we can calculate this in the x-z plane
as a simple trigonometric relationship 4:

cx = cos(radians(angle))*20000.0;
cz = sin(radians(angle))*20000.0;

The value 20,000 represents a large distance, effectively infinite, that
provides a distant focus point.

Pressing W moves the avatar one unit along the direction it is facing,
which is the variable angle. Each unit moved changes the x position by dx
and the z position by dz, as defined in Figure 58-1.

Figure 58-1: Converting (x, z) motion to (angle, distance)

The position of the avatar is (eyex, eyez), and it is likely that for any
given forward 1 or backward 2 movement, both of these values will change.
One key press will move the avatar 5 units, or dx*5.

NOTE

The radians() function can be used to convert an angle in degrees
into radians.

int eyex=30, eyey=0, eyez=60;
int cx=20000, cy=15, cz=20000;
float angle = 0.0;
float dx = 1.0, dz = 1.0, sx, sy, sz;

void setup ()
{
 size (500, 400, P3D);
 fill (200,0,0);
 keyPressed(); // Initialize the viewpoint
}

void draw ()
{
 background (200, 255, 0);
 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);
 for (int i=0; i<9; i++) // Draw nine boxes (30,0,30)
apart
 {
 translate (30, 0, 30);
 box (20);
 }
}

void keyPressed ()
{
 if (key == 'w') // Move 'forward'
 {

 1 eyex += 5*dx; eyez += 5*dz;
 }
 else if (key == 's') // Move 'backward'
 {

 2 eyex -= 5*dx; eyez -= 5*dz;
 }
 else if (key == 'a') // Turn left a unit (CCW)

 3 angle = angle - 1.0;
 else if (key == 'd') // Turn right a unit (CW)
 angle = angle + 1.0;
 if (angle < 0) angle = angle + 360.0;
 else if (angle > 360.0) angle = angle - 360.0;
 dx = cos(radians(angle)); dz = sin(radians(angle));

 4 cx = (int)(dx*20000.0); // cx = x coordinate of
center point
 cz = (int)(dz*20000.0); // cz = z coordinate of

center point
}

Sketch 59: Spotlights
If the ambient illumination is off and the background is dark, any objects
drawn within the 3D space of the Processing graphics world will not be
visible. This sketch simulates illumination in a new way—as a small
spotlight source in a dark space. The spotlight shines on the center-of-scene
coordinates, and the rest of the scene is unlit. The sketch places three cubes
of different colors around the scene 2, and the user can explore the space by
rotating and watching for the cubes to light up.

This sketch uses the same code for keyPressed() as does the previous
sketch, so the avatar can rotate and move forward and backward 3. A
Processing spotlight is placed at the camera coordinates 1:

spotLight(255,255,20, eyex,eyey,eyez, cx,cy,cz, PI/4, 300);

The first three parameters (255, 255, 20) of the spotlight represent the
RGB values for the color of the light, the next three (eyex, eyey, eyez) are
the 3D coordinates of the light, and the next three (cx, cy, cz) are the
coordinates toward which the light is pointed. This means that wherever the
camera/avatar moves, a spotlight is shining on the center of the scene. The
angle for the light, PI/4 (45 degrees) is the 10th parameter, and we can
increase or decrease it to see what happens to the scene. The value 300
indicates how strongly the light concentrates near the center of the spot,
with larger numbers being more focused.

We can define lights for other types of local illumination. Car headlights,
for example, are simply two spotlights separated by a small distance. There
is a commented-out statement that adds a second light to the one in the
sketch:

spotLight(255,255,20, eyex+3*dz,eyey,eyez+3*dx, cx,cy,cz,
PI/4, 300);

Spotlights are only visible by their light reflected off of objects. They
cannot be seen as glowing objects. The same is true of point lights and other
sources. In that sense, lights are not objects. Surrounding a light with an

object illuminates the objects around it but does not make the light source
visible.

We can make lights flash on and off or change color by alternately calling
the spotLight() function or not, depending on a flag that is either true or
false, here named flash. Simply change a counter after each frame, and
change the flag after a fixed number of frames (20 here). The following
code illuminates one of two spheres alternately with red or blue, like police
car lights.

if (count % 20 == 0) flash = !flash; // If flash is true,
make it false
if (flash) spotLight(255,0,0, 0, 335, 0, 0, -1, 0,
PI/4, 300);
else spotLight(0,0,255, 50, 335, 0, 0, -1, 0, PI/4,
300);
sphere(20);
translate (50, 0, 0); sphere(20); translate (50, 0, 0);

float eyex = 35, eyey = 10, eyez = -300.0;
float cx = 200.0, cy = 5.0, cz = 100.0;
float dx = 0.0, dz = 1.0;
float angle = 90.0;

void setup ()
{
 size(400, 300, P3D);
 keyPressed ();
}

void draw ()
{
 background (60);
 camera (eyex, eyey, eyez, cx, cy, cz, 0.0, -1.0,
0.0);

 1 spotLight(255,255,20, eyex, eyey, eyez,cx, cy,
cz,PI/4, 300);
// spotLight(255,255,20, eyex+3*dz, eyey, eyez+3*dx,
cx, cy, cz, PI/4, 300);

 2 fill (255,255,255); box (20);
 fill (255,0,0); translate (200, 0, 300); box(20);
 fill (0,255,255); translate (-50, 0, -400); box(20);
}

 3 void keyPressed ()
{
 if (key == 'w') // Move 'forward'
 {
 eyex += 5*dx; eyez += 5*dz;
 }
 else if (key == 's') // Move 'backward'
 {
 eyex -= 5*dx; eyez -= 5*dz;
 }
 else if (key == 'a') // Turn left a unit (CCW)
 angle = angle + 1.0;
 else if (key == 'd') // Turn right a unit (CW)
 angle = angle - 1.0;
 if (angle < 0) angle = angle + 360.0;
 else if (angle > 360.0) angle = angle - 360.0;
 dx = cos(radians(angle)); dz = sin(radians(angle));
 cx = (int)(dx*20000.0); // cx = x coordinate of
center point = cos(angle)*20000
 cz = (int)(dz*20000.0); // cz = z coordinate of

center point = sin(angle)*20000
}

Sketch 60: A Driving Simulation
Driving simulations and games have a specific, standard interface and
visual presentation. Unlike previous sketches, where users can move about
the space but are not themselves visible, driving simulations display the
avatar as a car, and the camera (viewpoint) is usually behind and above the
car so that the view of the car is always looking forward. Cars drive on
roads, so a background is important; without one the user can’t tell when
they are on a road or have any real idea of how fast they are moving. This
sketch will allow a user to drive a vehicle (a rectangular prism, actually)
around a track, using the same scheme to move the avatar as before.

The first thing to do is create a track. It will simply be an image, so we
can use Paint or some other drawing program. It should be large enough so
that it provides some entertainment value (variety) and does not distort too
badly when displayed. The example shown in Figure 60-1 is 1,000×1,000
pixels.

Figure 60-1: A simple track for driving on

The sketch reads this image and uses it as a texture for a 1,000×1,000
square drawn on the x-z plane 1:

beginShape(QUADS);
 texture (track);
 vertex (0, 0, 0, 0, 0); vertex (1000, 0, 0, 1000, 0);
 vertex (1000, 0, 1000, 1000, 1000);
 vertex (0, 0, 1000, 0, 1000);
endShape();

The viewpoint needs to be above and behind the car. If the variables dx
and dz represent the unit change in the x and z directions for the given
angle (the current facing angle of the car), and carX and carZ are the
horizontal and vertical positions of the car, then this should be the
viewpoint 3:

eyex = carX - dx*50; eyez = carZ - dz*50;

And it should have some fixed height eyey=20. The value 50 is a scale
factor that depends on the image size.

We draw the car at coordinates (carX, 0, carZ). After each step, these
coordinates change as a function of the car’s speed (variable velocity); the
velocity value increases or decreases as the user presses the W and S keys
4 (as opposed to previous sketches in which we moved forward and
backward using those keys). The W key is the accelerator pedal, and the S
is the brake. The car maintains its speed once the user presses one of those
keys, and the user can focus on steering using A and D.

We calculate the motion of the car as follows:

carX = carX + velocity*dx
carZ = carZ + velocity*dz

Then we use the translate() function to make the car face the direction of
motion 2. The car should always face away from the camera, so to make the
car face in the correct direction, we rotate it by –angle.

The effect is that the car (a red prism) can speed up (W) and slow down
(S) and turn left (A) or right (D) so as to stay on the grey circular path, and

the camera follows the car at a discreet distance.

PImage track;
float eyey = 20,eyex = 213,eyez = 400.0;
float cx=200.0, cy=5.0, cz= 200.0,dx = 0.0, dz = 1.0;
float angle = 265.0, velocity=0.,carX=200, carY=0,
carZ=310;

void setup ()
{
 size (600, 400, P3D);
 track = loadImage ("road.png");
 keyPressed();
 fill (180, 30, 30);
}

void draw ()
{
 background(0);

 1 beginShape(QUADS);
 texture (track);
 vertex (0, 0, 0, 0, 0);
 vertex (1000, 0, 0, 1000, 0);
 vertex (1000, 0, 1000, 1000, 1000);
 vertex (0, 0, 1000, 0, 1000);
 endShape();
 translate (carX, 4, carZ);

 2 rotateY(-radians(angle));
 box(20, 5, 10);
 carX = carX + velocity*dx;
 carZ = carZ + velocity*dz;

 3 eyex = carX - dx*50; eyez = carZ - dz*50;
 camera (eyex, eyey, eyez, cx, cy, cz, 0.0, -1.0,
0.0);
}

void keyPressed ()
{

 4 if (key == 'w') velocity += .1; // Move 'forward'
 if (key == 's') velocity -= .1; // Move 'backward'
 if (key == 'a') angle = angle +2.0; // Turn left a
unit (CCW)
 if (key == 'd') angle = angle -2.0; // Turn right a
unit (CW)
 if (angle < 0) angle = angle + 360.0;
 else if (angle > 360.0) angle = angle - 360.0;
 dx = cos(radians(angle)); dz = sin(radians(angle));

 cx =(int)(dx*20000.0); // cx = x coordinate of
center point = cos(angle)*20000
 cz =(int)(dz*20000.0); // cz = z coordinate of
center point = sin(angle)*20000
}

8
ADVANCED GRAPHICS AND

ANIMATION

Sketch 61: Layering
One of the key features of modern graphics programs like Photoshop is the
idea of layers. That’s the creation of a set of graphical objects (images) that
are placed on top of each other to achieve a complex effect. Transparency
makes it possible to see objects on lower layers. This sketch uses three
layers: an image of the moon, a circle around a crater, and a targeting
display (reticle). Using the keyboard, the user can reposition the moon
image. The goal of the interface is to allow the user to align the reticle with
the target circle.

Drawing inside the sketch window involves using a graphics object class
called PGraphics. The background(), line(), and ellipse() functions,
and many others, are part of the PGraphics class, though we can use them
without a PGraphics object. Alternatively, our drawing can take place in
one of these objects and then be displayed on the screen later by calling
image(). This sketch will draw the moon image with an ellipse highlighting
a crater inside of a PGraphics instance, and we’ll then display it in the
sketch window.

The variable used for the PGraphics object is named pg, and the function
that creates one is called (reasonably enough) createGraphics() 1:

PGraphics pg;
pg = createGraphics(moon.width, moon.height);

Here, moon is the PImage variable that holds the background image of the
moon.

To draw in a PGraphics object, we use the graphics functions that we
have used before, but specify the pg variable as the target 2:

pg.beginDraw();
pg.image(moon, 0, 0);
pg.stroke (0, 200, 0);
pg.noFill();
pg.ellipse (393, 233, 12, 12);
pg.endDraw();

Drawing is preceded by a call to beginDraw(), a function that is similar
to a bracket; the corresponding end bracket is a call to endDraw(). If you
don’t use these calls, Processing doesn’t initialize the object, and drawing
will not work (even though Processing may not generate an error). The
preceding code draws the moon image in the PGraphics objects and draws
a circle around a target.

The draw() function displays the PGraphics object using the call
image(pg, xoff, yoff), where xoff and yoff are positional offsets that
are controlled using key presses of W, A, S, and D in the traditional way 3.
(A PGraphics object has many of the properties of a PImage, since image()
can display both.) The values of xoff and yoff are generally negative so
that the underlying graphic gets shifted left and up under the window, which
remains stable, from its starting point in the upper-left corner. The draw()
function also draws the reticle as a small set of lines that point to the center
of the window 4.

PImage moon;
int xoff=0, yoff=0;
PGraphics pg;

void setup ()
{
 moon = loadImage ("moon.jpg");
 size (300, 300);

 pg = 1createGraphics(moon.width, moon.height);
 2 pg.beginDraw();
 pg.image(moon, 0, 0);
 pg.stroke (0, 200, 0);
 pg.noFill();
 pg.ellipse (393, 233, 12, 12);
 pg.endDraw();
 stroke (200);
 noFill();
}

void draw ()
{
 background (200);

 3 image(pg, xoff, yoff);
 4 line (0, height/2, width/2-10, height/2);
 line (width/2+10, height/2, width, height/2);
 line (width/2, 0, width/2, height/2-10);
 line (width/2, height/2+10, width/2, height);
 ellipse (width/2, height/2, 10, 10);
}

void keyPressed ()
{
 if (key == 'w') yoff = yoff + 1; // Move up
 else if (key == 's') yoff = yoff -1; // Move down
 else if (key == 'a') xoff = xoff +1; // Move left
 else if (key == 'd') xoff = xoff -1; // Move right
 if (xoff > 0) xoff=0;
 if (xoff < -(moon.width-width)) xoff = -(moon.width-
width);
 if (yoff > 0) yoff = 0;
 if (yoff < -(moon.height-height)) yoff = -
(moon.height-height);
}

Sketch 62: Seeing the World Through a
Window
Many games, animations, and simulations (driving or space travel, for
example) use a view through a window as a part of the interface. This
sketch implements a window that looks out on a 3D scene and allows the
user to move about that scene while looking through the window.

This is a more advanced application of PGraphics. We’ll render a simple
3D scene to a PGraphics instance named pg, read a 2D image with
transparent sections (the window) into a PGraphics instance named g2, and
draw the two graphics objects to the screen using calls to image().

The 3D primitives we’ll use to draw the 3D scene are all part of
PGraphics. We’ll enable the 3D rendering engine with a parameter to
createGraphics() 1, instead of to size() as in Sketch 51, and then we’ll
set up the 3D parameters with calls to camera() 2 and ambientLight().
The basic call to size() sets up the graphics window; each PGraphics
instance is like having a distinct window to draw in, and all of the usual
graphics methods can be used via the dot notation: pg.line(),
pg.ellipse(), and so on. No PGraphics object is visible until drawn in the
graphics window. Thus we can create a simulated 3D space inside the pg
object, drawing four cubes there that provide targets to be viewed through
the window.

The 2D portion involves displaying a 2D image (a PImage variable
named back) that represents the window (Figure 62-1). The GIF image has
transparent sections, created by defining a color (in this case green) as
transparent using an image editor like Photoshop. We call this kind of
image a stencil.

Figure 62-1: The stencil for the window

The sketch draws the two images on the window, pg first (the 3D
rendering) 3 followed by g2 (the stencil) 4. The transparent parts of g2
allow the 3D scene to be seen through the window portions.

The user can control the viewpoint for the 3D scene using the keyboard
in the usual way 5. The 3D scene changes as a consequence of the change
in the viewpoint, but the 2D scene does not. The result is that the window
stays in the same place but the view seen through it (the transparent
portions) changes as a function of that viewpoint, as if the user were inside
a moving vehicle looking at a scene outside.

int ex=-70, ey=0, ez=-225, cx=0, cy=0, cz=0;
float dx, dz, angle=74;
PGraphics pg, g2;
PImage back;

void setup ()
{
 size(200, 200, P2D);
 surface.setResizable(true);
 back = loadImage ("window.gif");
 surface.setSize(back.width, back.height);

 pg = createGraphics(back.width, back.height, 1P3D);
 g2 = createGraphics (back.width, back.height);
 g2.beginDraw(); g2.image(back, 0, 0); g2.endDraw();
}
void draw ()
{
 background (200);
 pg.beginDraw();
 pg.background(0,0,200);

 2 pg.camera (ex, ey, ez, cx, cy, cz, 0.0, -1.0, 0.0);
 pg.ambientLight (0, 200, 0);
 pg.translate (100, 0, 100); pg.box(20); pg.translate
(-100, 0, -100);
 pg.translate (-100, 0, 100); pg.box(20); pg.translate
(100, 0, -100);
 pg.translate (100, 0, -100); pg.box(20); pg.translate
(-100, 0, 100);
 pg.translate (-100, 0, -100); pg.box(20);
pg.translate (100, 0, 100);
 pg.endDraw();

 3 image(pg, 0, 0); 4image (g2, 0, 0);
}

void keyPressed ()
{

 5 if (key == 'w') // Move 'forward'
 { ex += 5*dx; ez += 5*dz;
 }
 else if (key == 's') // Move 'backward'
 { ex -= 5*dx; ez -= 5*dz;
 }
 else if (key == 'a') // Turn left a unit (CCW)
 angle = angle + 1.0;
 else if (key == 'd') // Turn right a unit (CW)

 angle = angle - 1.0;
 dx = cos(radians(angle)); dz = sin(radians(angle));
 cx = (int)(dx*20000.0); // cx = x coordinate of
center point = cos(angle)*20000
 cz = (int)(dz*20000.0); // cz = z coordinate of
center point = sin(angle)*20000
}

Sketch 63: The PShape Object—A Rotating
Planet
This sketch will display a rotating planet (a sphere) and allow the user to
move around it in 3D. The new part in this sketch is texture-mapping the
planet’s surface onto the sphere, which is really a collection of polygons.
One way to do this would be to build a model of a sphere out of polygons
and do the texture-mapping within a beginShape() and endShape() block.
An easier way is to use a PShape object, which is a data type for storing
arbitrary shapes.

To implement the rotating planet, we’ll create a PShape object through a
call to createShape(), which allows us to build arbitrarily complex shapes
using the large set of drawing operations provided by the PShape class. It is
possible to create almost anything using a PShape, and the documentation
available online is necessary for complex creations. Our case is simple,
because a sphere is one of the shapes provided. This is the call that makes
the planet, where globe is a PShape object 1:

globe = createShape(SPHERE, 100); // 100 is the size of the
sphere

The texture, a map of Mars as a PImage variable named timg, is applied
using globe.setTexture(timg) 2.

Then we display the planet in draw() using a call to the shape() function
3:

translate (x, y, z);
globe.rotateY(radians(0.5)); // rotateY function is a part
of PShape
shape(globe); // This displays the shape in
the window

This code positions the sphere in the center of the field of view and
rotates it about its own axis before displaying it. The usual keys allow the
user to change the viewing position.

NOTE

A 3D modeling package such as 3D Studio Max or Maya creates
shapes such as cars and chairs out of polygons and saves them to a
file with the suffix .obj. Animations and games use polygon files to
create objects within their imaginary worlds by rendering and
texture-mapping the polygons. Processing programs use the
loadShape() function to read an .obj file and return a Processing
PShape object. Here is an example code sequence:

PShape s;
s = loadShape ("chair.obj");
shape (s);

int x=100, y=100, z=100; // Sphere position
int eyex=100, eyey=100, eyez=400; // Viewpoint
int cx=100, cy=100, cz=100; // Point we are
looking at
PShape globe;
PImage timg;
float theta=270, dx=0, dz=0;

void setup ()
{
 size (400, 400, P3D);
 frameRate(10);
 timg = loadImage("globe03.jpg");

 1 globe = createShape(SPHERE, 100);
 globe.setStroke(255);

 2 globe.setTexture(timg);
}

void draw ()
{
 background (45, 45, 120);
 camera(eyex, eyey, eyez,
 cx, cy, cz, 0, 1, 0);
 translate (x, y, z);
 globe.rotateY(radians(0.5));

 3 shape(globe);
}

void keyPressed ()
{
 if (key == 'w') // Move 'forward'
 { eyex += 5*dx; eyez += 5*dz; }
 else if (key == 's') // Move 'backward'
 { eyex -= 5*dx; eyez -= 5*dz; }
 else if (key == 'a') // Turn left a unit (CCW)
 theta = theta + 1.0;
 else if (key == 'd') // Turn right a unit (CW)
 theta = theta - 1.0;
 dx = cos(radians(theta)); dz = sin(radians(theta));
 cx = (int)(dx*20000.0);
 cz = (int)(dz*20000.0);
}

Sketch 64: Splines—Drawing Curves
So far, we’ve rendered simple geometric objects like lines, ellipses,
rectangles, and spheres using predefined Processing functions. But many
real-world objects are not linear or elliptical; they have complex shapes.
Examples are legion, including cars, fan blades, jewelry, clothing, and
living things—even graphs of data. In Processing, complex shapes are
rendered using curves. To demonstrate, this sketch allows the user to draw
curves using a series of mouse clicks and to see how the selected “control
points” affect the curves.

Processing uses splines to render curves. In the earlier days of drafting,
when people used pencils and T-squares, people used something called a
spline to draw smooth, oddly shaped curves. It was a long, flexible metal
strip that could hold a shape, align with points on paper, and allow the
drafter to connect them using a pencil. Mathematically, a spline is a
polynomial function that approximates a curve by using a set of points. The
details can be complex, but the idea is to use many polynomials connected
end to end to build the curve. Processing hides the complexity.

Processing provides a function named curve() that implements a type of
polynomial named the Catmull-Rom spline. This function uses four points
to define each section of the curve. The first two define the direction the
curve will have at the beginning, and the second two define the direction it
will have at the end. The curve itself consists of a set of points (pixels)
between the middle two points. As seen in Figure 64-1, the angle defined
by the first two points establishes the direction of the curve at point P1,
which defines the shape of the polygon between P1 and P2; we establish the
direction of the curve at P2 by the direction between P2 and P3. In the
figure, the points P1 and P2 in the two examples are the same, but the curves
have a different shape due to the different positions of P0 and P3.

Figure 64-1: Control points of a spline curve

This is the function call used in Processing to draw a curve section
between P1=(x1,y1) and P2=(x2,y2):

curve (x0,y0, x1,y1, x2,y2, x3,y3);

The start and end points, (x0, y0) and (x3, y3), control the shape 1. To
draw a longer curve, we need multiple calls to curve(), with the endpoints
of one being the beginning of the next.

This sketch allows the user to select points, drawn as small red circles
using mouse clicks 2, and to observe the shape change caused by the
position of the next point as the mouse moves. Four points define a curve,
so when the user selects the fourth point, a red curve is drawn using the
points specified, and then a blue curve that changes as the mouse moves is
drawn from the final point to the mouse position, (mouseX, mouseY).
Clicking again will add a new point to the curve, extending the red portion
to include the new point and showing a new blue section. Pressing the
BACKSPACE key deletes the last point in the curve 3, and the spacebar
turns the drawing of the final (blue) section on and off 4.

This sketch keeps the point coordinates in arrays x and y and passes
successive groups of four coordinates to curve().

final int SIZE = 200;
float x[] = new float[SIZE];
float y[] = new float[SIZE];
int N = 0;
boolean drawLast = true;

void setup ()
{
 size(400,400);
 noFill();
}

void draw ()
{
 background(200);
 stroke(255, 102, 0);
 if(drawLast)
 for (int i=0; i<N; i++) ellipse (x[i], y[i], 2, 2);
 if (N>=4)
 {
 for (int i=0; i<=N-4; i++)

 1 curve (x[i],y[i], x[i+1],y[i+1],
 x[i+2],y[i+2], x[i+3],y[i+3]);
 stroke(0,0,200);
 if (drawLast)
 curve (x[N-3],y[N-3], x[N-2],y[N-2],
 x[N-1],y[N-1], mouseX, mouseY);
 }
}

void mousePressed ()
{

 2 x[N] = mouseX; y[N] = mouseY;
}

void mouseReleased ()
{ if (N < SIZE-1) N = N + 1; }

void keyPressed ()
{

 3 if (key == BACKSPACE && N>0) N=N-1;
 4 if (key == ' ') drawLast = !drawLast; // ! means
'not'
}

Sketch 65: A Driving Simulation with
Waypoints
Sketch 60 allowed a user to drive around a track in 3D, and Sketch 64
illustrated how to create curves, like a track that a simulated car could drive
on. Computer driving games often have automated vehicles that compete
with the player, giving the impression of being a real opponent. This sketch
will implement a system for computer-controlled cars that is similar to the
methods used in those computer games.

It’s important to realize that games and simulations do not necessarily do
things the way people do. A human driver would orient the car based on the
next turn they could see and would steer continually to remain on the track.
We could build a computer program to do this too, but it would be pretty
complicated. Another option is to use predetermined knowledge about the
track to steer the vehicle. In this case, the programmer has to provide more
information to the program at the outset, but the resulting simplicity in the
code is worth the effort.

To be specific, the programmer breaks up the track into linear pieces. The
linear pieces should be as long as possible and join to each other at vertices
called waypoints, places where the direction of the line, and hence the car,
changes. (We can dissect any curve this way.) Each waypoint has a number
or a label assigned by the programmer. When the car is at waypoint 1, the
program will change its direction of motion to move toward waypoint 2.
When it arrives at waypoint 2, it will steer to waypoint 3. Because the
segments are lines, we don’t need to steer between waypoints.

This sketch implements waypoints as a collection of arrays, each array
containing one dimension of the waypoints. The location of waypoint i is in
the array locations wpx[i] and wpy[i] 1. In a more accurate simulation, a
waypoint would have much more information associated with it: changes in
speed and acceleration, rate of change of the turn, and perhaps graphical
information like brake lights turning on. In the current sketch, the only
other thing needed is the angle between the current and the next waypoint
so that we can rotate the car to face the new direction. We could calculate
this, but it would take more code, and the positions of the waypoints and the

angles between them can be determined in advance. We declare arrays wpx,
wpy, and wpa 2 and initialize them with the position and angle data, which
implicitly defines the size of the arrays. (It is not possible to both specify
the size of an array using a number and initialize it using data.)

Using the vehicle’s assigned speed (changed using W and S), we
compute its position change during each frame as dx = speed * (
wpx(i+1) - wpx(i))/d(i,i+1) where d(i,i+1) is the distance between
waypoints i and i+1 4. We say that the vehicle has arrived at waypoint i
when it is within speed pixels of it, at which point it changes direction and
aims for the next waypoint, i+1 3. The wayPoint variable indicates the last
waypoint encountered, meaning that the vehicle is aiming for wayPoint+1.
The waypoint count wraps around at the end, so we increment modulo-N
where N is the number of waypoints: the waypoint following N is 0.

Pressing the spacebar allows the user to see where the waypoints and
paths are.

1 float wpx[] = { 172, 221, 354, 787, 848, 846, 747, 645,
198};
float wpy[] = { 217, 166, 129, 100, 165, 536, 869, 884,
734};

2 float wpa[] = { 39, 70, 80, 135, 175, 195, 260, 290,
354}; // Degrees
PImage track;
float x=wpx[8], y=wpy[8], dx, dy;
int wayPoint = 8, speed=2, N= wpx.length;
boolean lines = true;
void setup ()
{
 size(100,100);
 surface.setResizable(true);
 track = loadImage("road.png");
 surface.setSize(track.width, track.height);
}

void draw ()
{
 fill (255, 0, 0);
 image(track, 0, 0);
 if (lines) for (int i=0; i<N; i++) // Draw lines?
 line(wpx[i], wpy[i], wpx[(i+1)%N], wpy[(i+1)%N]);
 translate (x, y); // Rotate car to
face motion
 rotate (radians(wpa[wayPoint]));
 rect (0, 0, 5, 10); // Arrived at
waypoint?

 3 if (distance (x, y, wpx[(wayPoint+1)%N],
wpy[(wayPoint+1)%N]) < speed)
 {
 wayPoint = (wayPoint+1)%N; // Yes. Aim at
next one
 x = wpx[wayPoint];
 y = wpy[wayPoint];
 } // Change x and y car position

 4 dx = speed * (wpx[(wayPoint+1)%N]-wpx[wayPoint])/
 distance (wpx[wayPoint],wpy[wayPoint],
wpx[(wayPoint+1)%N],
 wpy[(wayPoint+1)%N]);
 dy = speed* (wpy[(wayPoint+1)%N]-wpy[wayPoint])/
 distance (wpx[wayPoint],wpy[wayPoint],
wpx[(wayPoint+1)%N],
 wpy[(wayPoint+1)%N]);

 x = x + dx; y = y + dy;
}

float distance (float x0, float y0, float x1, float y1)
{ return sqrt ((x0-x1)*(x0-x1) + (y0-y1)*(y0-y1)); }

void keyPressed ()
{
 if (key == ' ') lines = !lines; //
Toggle waypoint display.
 if (key == 'w') speed = speed+1; //
Faster
 if (key == 's') if (speed>0) speed = speed-1; //
Slower, but not backwards
}

Sketch 66: Many Small Objects—A
Snowstorm
A Processing program redraws the screen many times each second. Visible
objects must be redrawn in each frame, and to do so the program must save
the graphical parameters (size, location, shape, and color) of all of them.
Drawing each object takes time, so if there are many, is it still possible to
redraw them all quickly enough? In many cases it is, if the objects
themselves are not complex. This sketch will draw snow falling, with each
snowflake being an object that moves realistically between frames.

Snowflakes are, in fact, very complex shapes, but from a distance they
are just white blobs. We’ll draw them as small rectangles whose width and
height vary by a small random value each frame to simulate the effect of the
snowflake fluttering as it falls 1. We set the dimensions with the formula
width = size + random(3)-1.5.

size is a constant set to 3, and the value of random(3) is a number
between 0 and 3, so random(3)-1.5 will have a value between −1.5 and
+1.5, creating a change in the size between 1.5 and 4.5. Each snowflake
also has a slightly different falling speed 5. This gives the illusion of depth
because flakes that fall faster appear nearer to the viewer than ones that fall
slower. The speed is selected at random, but it yields the desired effect.

The program creates snowflakes at the top of the screen and gives them a
downward (+y) speed, which will make them appear to fall. To track the
position, size, and speed in both the x- and y-directions, we use arrays: for
example, the array x stores the x position, and x[i] is the x location of the
ith snowflake. The array size, given by the constant SIZE, is the maximum
number of snowflakes. (The value here is 5,000, found by trial and error
based on the observed number needed given the background and the
maximum rate of snowfall.)

Snow does not normally fall straight down; we observe it drifting and
floating with air currents. The speed at which the snowflakes fall remains
constant, but the x position of each flake changes a bit at random as it falls

to try to give the illusion of real snow 2. If we set dx to a nonzero value, it
simulates a wind, and snow will blow in the specified direction.

Each frame, we generate up to 30 new snowflakes with random
horizontal positions and y-coordinates of 0 4 (at the top of the window, to
maintain the illusion). The number of snowflakes created during each frame
is random but is a function of the y position of the mouse 3. The nearer the
mouse is to the top of the screen, the less snow will appear to fall. This is
the number of flakes created:

N = (int)random (((float)mouseY/height)*30);

This means that almost no flakes will fall for small values of mouseY, while
the maximum of up to 30 new snowflakes during each frame occurs when
mouseY/height is at its maximum of 1.0.

The global variable SIZE has a value of 5,000, which is the number of
snowflakes that can be on the screen at any time. Initially there are only a
few, but the array will fill up quickly. When all 5,000 array elements are
occupied, we start over again at 0, assuming that the snowflakes at the
beginning of the array have fallen past the bottom of the screen and are not
visible. This technique is referred to as a circular array.

final int SIZE = 5000;
float x[] = new float[SIZE];
float y[] = new float[SIZE];
float dx[] = new float[SIZE];
float dy[] = new float[SIZE];
float size[] = new float[SIZE];
int last = 0, N=0;
PImage background;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 background = loadImage("background.png");
 surface.setSize (background.width,
background.height);
 for (int i=0; i<SIZE; i++) x[i] = -1;
}

void draw ()
{
 fill (210);
 noStroke();
 image (background, 0, 0);
 for (int i=0; i<SIZE; i++) // Draw existing
 {
 if (x[i] >= 0)
 {

 rect(x[i], y[i], 1 size[i]+random(3)-1.5,
size[i]+random(3)-1.5);

 2 x[i] = x[i] + dx[i] + random (3)-1.5;
 y[i] = y[i] + dy[i];
 } }

 3 N = (int)random (((float)mouseY/height)*30); //
Create new
 for (int i=0; i<N; i++)
 {

 4 x[last] = random(width); y[last] = 0;
 5 dx[last] = 0; dy[last] = random(2)+1;
 size[last] = 3;
 last = last + 1;
 if (last >=SIZE) last = 0;

 }
}

Sketch 67: Particle Graphics—Smoke
Some things are difficult to model using polygons: soft and amorphous
shapes like water, fire, clouds, and smoke, for example. Such things can
move in unpredictable ways and expand to fill arbitrary shapes. This sketch
will draw smoke emitting from a smokestack and illustrate a key method in
modern computer graphics: a particle system.

A particle system combines a large number of small objects to form a
complex shape. The objects are usually simple, like spheres or circles, and
have a set of parameters that control their display. The basic parameters of a
circle are position, velocity, color, and size. Initial parameters usually have
a random element: speed plus or minus a random number, for example. An
emitter is the location where the system creates new particles (circles),
usually with a small, random displacement, so the particles aren’t exactly at
the emitter.

The particle system in this sketch produces a large number of
overlapping circles, possibly somewhat transparent, moving with slightly
different speeds (not unlike the previous sketch except for density). The
previous sketch drew a large number of small objects that could still be seen
as individual snowflakes. In this sketch, if enough of these particles exist,
we can’t distinguish them individually, and they form an object in
combination. As the number increases and the objects overlap, the result
looks like fog or smoke.

The sketch defines a large number of circles to be created (SIZE) and
declares arrays to hold the position, speed, and size of each one: the value
of x[121] is the x position of the 121st circle, for example. Initially there
are none, and the variable last holds the index of the last one defined. We
increment last each frame as we create new circles, and we reset it to zero
when the number exceeds SIZE.

The draw() function first runs through the arrays and draws each circle
that exists (meaning x[i] > 0) 1. It changes the circle’s position by a small
random amount, may change the size slightly, and gives it a color that
varies around RGB = (205, 205, 150). It then creates a random number of

new circles, giving them positions near the emitter, a vertical speed, and a
small size 2.

The effect is striking. With up to 800 circles, the system yields a
remarkably good impression of smoke moving upward. The sketch reads
and displays a background image of a smokestack for a better visual effect.

The outline around the circles has been turned off with noStroke(), but it
is educational to delete that statement and run the program so that the
particles can be seen. The way the particles move and overlap is clearer, as
in Figure 67-1.

Figure 67-1: Particles showing the outline of the circles

final int SIZE = 800;
float x[] = new float[SIZE];
float y[] = new float[SIZE];
float dx[] = new float[SIZE];
float dy[] = new float[SIZE];
float size[] = new float[SIZE];
int last = 0;
PImage background;
int emitterx=252, emittery=200;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 background = loadImage ("background.png");
 surface.setSize(background.width, background.height);
 for (int i=0; i<SIZE; i++) x[i] = -1;
}

void draw ()
{
 int N=0;

 noStroke();

 image (background, 0, 0);
 for (int i=0; i<SIZE; i++) // Draw existing
particles

 1 if (x[i] > 0)
 { // Vary the color slightly
 fill (200+random(10), 200+random(10), 150, 64);
 ellipse (x[i], y[i], size[i], size[i]); // Draw
circle
 x[i] = x[i] + random(3)-1.5; //
Jiggle X
 y[i] = y[i] + dy[i] + random(3)-1.5; // Move
up
 size[i] = size[i] + random(3)-1.5; //
Change size
 }

 N = (int)random(15); // Create N new particles

 2 for (int i=0; i<N; i++)
 {
 last = (last+1);

 if (last >= SIZE) last = 0;
 x[last] = emitterx+random(2)-1; // X position
(emitter)
 y[last] = emittery; // Y position
(emitter)
 dx[last] = 0; dy[last] = -2; // Initial
speed (up)
 size[last] = 4; // Initial size
 }
}

Sketch 68: Saving a State—A Spinning
Propeller
This sketch will draw a spinning propeller. We can code this in many ways,
some of them simpler than the method in this sketch, but the purpose here is
to use a simple example to explain how and why to save (and restore) the
geometric state of a sketch.

The geometric state is the resultant combination of all the translation,
rotation, and scaling that accumulate during the display of an object up to a
specific point in the drawing process. Rotating an object about its center
means first translating the origin to the center of the object, doing the
rotation, and then translating the origin back to the original location. If the
state is not restored by undoing the translation, then all objects drawn from
that time on will translate to the location of the object.

The current state, whatever it is, including all rotation, translation, and
scaling, is saved using a call to the function pushMatrix() and is restored
by a call to popMatrix(). These calls must always occur in pairs, like
brackets; a call to pushMatrix() always has a corresponding call to
popMatrix(). For example, you could save and restore state while rotating
a triangle about its center at (100, 100), shown in Figure 68-1, as follows:

pushMatrix();
translate (100, 100);
rotate(angle);
triangle (0.-20, 20, -20, -20, 20);
popMatrix();

At this point, the origin and rotation angle are back to their original
values, and the next object can be drawn from a clean state.

This sketch draws a propeller with four sections, each being one blade,
which is an image. We draw this blade four times: once in the original
orientation, and then three times each rotated about the propeller center
point by 90 degrees 1. Each section drawn uses a save and restore:

pushMatrix(); // Save
rotate(PI); // Rotate
image (prop, 0, 0); // Draw
popMatrix(); // Restore

The four-section propeller is drawn inside a drawProp(x,y) function that
saves the state on entering the function, then translates to (x, y), scales the
image, rotates it, updates the angle so the next call to drawProp() draws the
propeller at a different angle 2, and draws the four sections. We use multiple
calls to the drawProp() function to draw a rotating propeller at multiple
locations.

Figure 68-1: The transformations needed to rotate an object about its center

PImage prop;
float angle = 0.0;
void setup ()
{
 prop = loadImage("props.gif");
 size(400, 200);
}

void draw ()
{
 background(255);
 fill (128); noStroke();
 ellipse (175, 100, 30, 40); // Draw simple aircraft
 rect (50, 95, 250, 10);
 stroke (128);
 line (175, 100, 175, 75);
 drawProp (100, 100); // Left propeller
 drawProp (250, 100); // Right propeller
}

void drawProp(int x, int y)
{

 1 pushMatrix(); // Save state on entry to the
function
 translate(x, y); // Translate to the specified
propeller position
 scale (0.2); // Make it smaller
 rotate(angle); // rotate the propeller as a whole

 2 angle = angle + 0.1;
 image (prop, 0, 0); // Draw the first prop
section
 pushMatrix(); // save state
 rotate(PI/2); // Rotate 90 degrees
 image (prop, 0, 0); // draw second prop section
 popMatrix(); // restore
 pushMatrix(); // Save again
 rotate(PI); // Rotate by 180 degrees
 image (prop, 0, 0); // draw third prop section
 popMatrix(); // Restore
 pushMatrix(); // save one more time
 rotate(-PI/2); // Rotate 270 degrees (-90)
 image (prop, 0, 0); // Draw final section
 popMatrix(); // restore
 ellipse (0, 0, 30, 30); // draw the center part of
the propeller

 popMatrix(); // Restore state to what it
was when function was called
}

Sketch 69: L-Systems—Drawing Plants
Drawing realistic-looking plants is difficult. Living things do not usually
contain straight lines, which is what computers draw best. In addition, there
is a random nature to life forms that humans recognize, so we are critical of
renderings. In 1968 a botanist named Aristid Lindenmayer developed a
scheme for describing the growth of fungi and algae, and then later
expanded it to deal with more advanced plant life. This was in turn adapted
by computer graphics practitioners into a scheme for drawing plants. We
call this scheme an L-system.

An L-system is technically a grammar, which is a set of rules for making
strings. If a grammar has two rules, X -> Xf and X -> z, then it is showing
how to take a symbol, X, and transform it into a sequence of characters. For
each X, we choose which replacement rule to follow, and we continue
replacing capital Xs (referred to as non-terminal symbols) until there are no
more left to replace. Here’s an example expansion for this grammar: X ->
Xf -> Xff -> Xfff -> zfff.

In an L-system, a grammar that can define a plant, the final string
represents a recipe for drawing something. It uses the following symbols:
f Draw a straight line segment.
[Save the current state (pushMatrix()).
] Go back to the previous state (popMatrix()).
+ Rotate by a fixed positive angle.
- Rotate by a fixed negative angle.

The grammar uses two rules to produce a string of these symbols:
X -> ff
X -> f–[[X]+X]+f[+fX]–X

Unless the plant consists of only two straight lines (ff), the first step
would be X –> f–[[X]+X]+f[+fX]–X. Then each X would be replaced by
the right side of a production, so the second step might be f–
[[X]+X]+f[+fX]–X –> f–[[f–[[X]+X]+f[+fX]–X]+ff]+f[+ff]–ff, followed

perhaps by f–[[f–[[ff]+ff]+f[+fff]–ff]+ff]+f[+ff]–ff, which can now be
drawn.

The makeString() function 1 calls itself to expand the non-terminal X
symbols into strings and append these to the string being constructed. It will
only call itself to a depth specified by the first parameter, levels, and will
then return, thus guaranteeing that the program will eventually end. The
string generated by the grammar is passed to the drawPlant() function 2,
which executes each character as a graphical operation, thus drawing the
plant. In the function void drawPlant(float length, float angle,
String s, int drawLevel), the first parameter, length, is the length of
the line to draw (for the symbol f); the angle is the rotation angle for the +
and - characters; s is the string generated by makeString(); and drawLevel
indicates a depth level for drawing lines. Essentially, makeString() creates
a string that is a program for how to draw the plant, and drawPlant()
executes that program.

public void setup ()
{
 String rules;
 size(800, 800, P2D); stroke(0);
 translate(width/2,height);
 rules = makeString(6, "X");
 drawPlant (4, 22, rules,rules.length()-1);
}

1 String makeString(int levels, String s)
{
 String next = "";
 char c;
 if (levels > 0)
 { // Check if there are any levels left to render
 for (int i=0; i<s.length(); i++)
 {
 c = s.charAt(i);
 if (c == 'X')
 next+=makeString(levels-1, "F-[[X]+X]+F[+FX]-
X");
 else if (c == 'F') next += makeString(levels-1,
"FF");
 else next = next + c;
 }
 } else next = s;
 return next;
}

2 void drawPlant(float length, float angle, String s, int
drawLevel)
{
 char c;
 int i=0;
 for (int j=0; j<s.length(); j++)
 {
 c = s.charAt(j);
 if (c == '-') rotate(radians(angle));
 else if (c == '+') rotate(-radians(angle));
 else if (c == '[') pushMatrix();
 else if (c == ']') popMatrix();
 else if (c == 'F')
 {
 if (i <= drawLevel) line(0, 0, 0, -length);
 translate(0,-length);

 }
 i++;
 }
}
// (This sketch is a reworking of the one found at
https://www.openprocessing.org/sketch/103747/)

Sketch 70: Warping an Image
In 1991 the general public saw morphing for the first time, an effect that
uses a computer to smoothly convert one image into another. The computer
produces a small sequence of images so that, when played back as a video
sequence, an object appears to continuously change shape to become the
other. The film Terminator 2 used it and, probably most strikingly, the
Michael Jackson music video for the song “Black or White” used it in a
sequence where faces morphed into one another. This sketch performs a
warp or bending of an image, but does not do a complete morph.

The principle underlying the morphing method is something called a
polynomial warp. Imagine we place an image over a regular grid and then
bend the grid using a mathematical function and take the image with it. The
result is an image that changes in a particular way—a warp. Morphing
between two images requires that we establish a correspondence between
the image, usually by a human. A function bends (maps) one image into
another (a warp) while the pixel color values change systematically from
the source to the destination values.

If the image is a face and the warp is based on a sine curve, we get an
effect that looks like a funhouse mirror, as shown in Figure 70-1. The
geometry of the original face bends (maps) into that of the new one
according to the function.

Figure 70-1: Warping a face

This sketch implements an image warp. We read an image and display
the pixels according to a sine function transformation of coordinates. The
original image is source, and this is the mapping between original and new
pixel coordinates:

newX = (int)(x + size*sin(radians(3*y)));
newY = (int)(y + size*cos(radians(4*x)));

This mapping is arbitrary, chosen for an amusing effect. The loop that
does the mapping 2 has to map pixel values from the destination back to the
source, not the other way around. Each pixel in the source does correspond
to a pixel in the destination, but there may be unmapped pixels in the result
if we do the mapping the other way. So for each pixel (x,y) in the
destination image, we transform it to (newX, newY) values using the
desired function and then find the corresponding pixel in the source image.
We then set the destination (x,y) to the source (newX, newY).

In the sketch, the values of ds and size are parameters to the
transformation function, and they change slightly each frame 1, creating a
cyclical change in the image that a person will perceive as an animation of
the bending or warping motion.

float size = 0;
float ds = .3;
PImage source, destination;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 source = loadImage("image.jpg"); // Fill in your own
image here
 surface.setSize(source.width, source.height);
 destination = new PImage(source.width,
source.height);
}

void draw ()
{
 background (200);
 warp(source);
 image(destination, 0, 0);
 size -= random(ds);
 if (abs(size) > 12)
 {

 1 ds = -ds;
 size = size - ds;
 }
}

void warp(PImage source)
{
 int w = source.width, h = source.height;
 int newX, newY;
 color c;

 for(int x = 12; x < w-12; x++)
 for(int y = 12; y < h-12; y++)
 {

 2 newX = (int)(x + size*sin(radians(3*y)));
 newY = (int)(y + size*cos(radians(4*x)));

 if(newX >= w || newX < 0 || newY >= h || newY <
0)
 c = color(200);
 else
 c = source.get (newX, newY);

 destination.set (x, y, c);
 }
}

9
WORKING WITH SOUND

Sketch 71: Playing a Sound File
One displays an image but plays a sound; why is that? Whatever the reason,
Processing has no standard facility for displaying audio. It does have some
libraries for that purpose, however, most importantly Minim. (We used a
library in Sketch 50.)

Using Minim, this sketch will play an MP3 or WAV sound file using the
standard PC sound interface. Adding to this, if the user presses the A key, the
sound will move toward the left speaker, and if they press the D key (which
is to the right of the A key), the sound will move toward the right speaker.

The first statement in the program 1 indicates that we want to access the
Minim library:

import ddf.minim.*;

Then we need to create a single instance of the Minim library. The Minim
library is a class, and it contains functions that can load and play sound files.
Define a variable named minim of type Minim, and initialize it in the setup()
function 3 as follows:

minim = new Minim(this);

Now declare a sound player variable 2:

AudioPlayer player;

Assign it a sound file as read from an MP3 file using the Minim function
loadFile() 4:

player = minim.loadFile ("song.mp3");

We can play this file using the PC sound hardware by using the play()
function 5, a part of the AudioPlayer:

player.play();

To change the balance (pan) of the sound in stereo speakers, the user
presses the A (left) and D (right) keys. Each key press adds a small value to
or subtracts one from the pan variable, which is then used to set the balance
6:

player.setPan (pan)

For other effects, there are a variety of functions that control the sound
display, including the getting and setting of pan/balance, gain, and volume:
getBalance(), getVolume(), getGain(). Documentation for Minim can
move around the web, but in 2022 it’s found at http://code.compartmental.ne
t/2007/03/27/minim-an-audio-library-for-processing/.

NOTE

AudioPlayer is a class, and it’s a part of the Minim library. Each
sound file needs its own instance (variable) of the AudioPlayer class.
Also, you can play sound files on the web by passing the loadFile()
function a URL instead of a local file. See the commented-out
statement in setup().

http://code.compartmental.net/2007/03/27/minim-an-audio-library-for-processing/

1 import ddf.minim.*;
Minim minim;

2 AudioPlayer player;
float pan = 0;

void setup ()
{
 size (500, 400);

 3 minim = new Minim(this);
 4 player = minim.loadFile ("song.mp3");
// player = minim.loadFile ("https://file-examples-
com.github.io/uploads/2017/11/file_
 example_MP3_700KB.mp3");

 5 player.play();
 player.printControls();
 frameRate(10.0);
}

void draw ()
{
 float bal, vol=1, p, g;
 background (0);
 bal = player.getBalance();
 vol = player.getVolume();
 p = player.getPan();
 g = player.getGain();
 text ("Balance: "+bal+" Pan: "+p+" Volume: "+vol+"
gain: "+g, 10, 40);
 player.setGain (vol-1.0);
}

void keyPressed ()
{
 if (key == 'a')
 {
 if (pan>-1) pan = pan - .1;

 6 player.setPan (pan);
 } else if (key == 'd')
 {
 if (pan<1.0) pan = pan+.1;
 player.setPan(pan);
 }
}

Sketch 72: Displaying a Sound’s Volume
Sketch 71 does not have a very visually interesting display. Its display is
auditory, and while that is in keeping with its primary function, the
Processing language usually creates more graphical output. One obvious way
to accomplish this is to display the volume of a sound visually, as numbers
on a dial or, as in this sketch, as the height of vertical bars.

To make this sketch work, we must get numerical values for the sound that
we read from the file. The AudioInput component class of Minim allows a
connection to the current record source device for the computer. For this
sketch to function properly, the user needs to set the source device to monitor
the sound as it plays. For example, if the sound input is a file, we could use
this code:

3 player = minim.loadFile ("song.mp3");

Assuming this is true, the sketch uses a variable of the AudioInput type
(named in 1) and initializes it using getLineIn() 2:

in = minim.getLineIn(Minim.STEREO);

Now the variable in can access the functions belonging to AudioInput,
which include the ability to get individual data values. Sound on a computer
consists of sampled voltages that have been rescaled to a convenient range.
Thus, an audio value is a number, normally between −1 and +1, that
represents the volume. We can access each of the stereo channels: the left
channel is in.left, and the right is in.right (these are of type
AudioBuffer, which is just an array of real numbers). The get() function
allows access to the numerical values:

ly = in.left.get(128);

This gets the first value in the buffer, which could be positive or negative,
so for display purposes it is better to use the value
abs(in.left.get(128))*2 4, which is simply the magnitude of the value

shifted to the range 0 to 2. Now this number can represent the height of a
rectangle 6, proportional to the sound volume:

rect (100, 200, 20, -ly*100);

The same process works for both the left and right channels.
The total duration of a sound loaded into the variable player is

player.duration(); the current position, assuming that it is playing, is
player.position(). When the sound is over, player.length() <=
player.position(), and the Minim specification says that it is important to
close and stop Minim to ensure that resources are given back to the system
(via in.close(); minim.stop();). In the sketch, the stop() function 7
does this.

The sketch also displays a numerical value for the sound data. A real
number potentially has a lot of digits, most of which are not really important.
To print only two decimal places, as in the sketch, multiply the value by 100
and then convert it to an integer. This removes the remaining fractional part
(all other digits to the right). Then convert this back to real and divide by 100
5:

(int)(ly*100)/100.0

import ddf.minim.*;

Minim minim;

1 AudioInput in;
AudioPlayer player;

void setup ()
{
 size(300, 300);
 minim = new Minim(this);

 2 in = minim.getLineIn(Minim.STEREO);
 3 player = minim.loadFile ("song.mp3");
 player.play();
 stroke(255);
 fill (100);
 frameRate(10);
}

void draw ()
{
 float ly, ry;

 background(0);
 ly = ry = 0;

 ly = 4abs(in.left.get(128))*2;
 ry = abs(in.right.get(128))*2;
 fill (255, 255, 0);
 text ("Left: "+" Right: ", 100, 230);

 5 text (""+(int)(ly*100)/100.0+" "
 +(int)(ry*100)/100.0, 100, 250);

 6 rect (100, 200, 20, -ly*100);
 rect (200, 200, 20, -ry*100);
 if (player.length() <= player.position())
 {

 7 stop(); exit();
 }
}

void stop () // always close Minim audio classes when
done with them
{
 in.close();
 minim.stop();

 super.stop();
}

Sketch 73: Bouncing a Ball with Sound
Effects
In movies, animations, theater, and computer games, a sound effect is
(usually) a short piece of audio that indicates that something has happened. A
telephone ringing, the smack of a bat hitting a baseball, and the splash of a
stone falling into a lake are all examples of sound effects. This sketch will
illustrate the use of a sound effect in a simple simulation.

Sketch 28 simulated a bouncing ball. It looks nice, but it would be better
as an animation if a sound accompanied each bounce. Sound is an important
cue to humans, and a sound effect lends realism to the graphics. It does not
have to be accurate; it just has to be some click or bump noise that
corresponds to the event. Beginning with the code from Sketch 28, we’ll add
an AudioPlayer object from the Minim library to play a short MP3 file when
the ball strikes a side of the window.

To create the sound effect, we’ll save the sound of a thump (such as a ball
bouncing on the floor or a cup being set down on a table) using a PC
microphone and a freely available sound editor/capture tool such as Audacity
(https://www.audacityteam.org/) or GoldWave (http://www.goldwave.ca/).
This sketch assumes the sound is saved as click.mp3.

After the initialization of Minim 1, an AudioPlayer (the variable player)
reads the MP3 file. When the ball strikes a side of the window, as detected by
the functions xbounce()2 and ybounce() 5, the ball changes direction and
we play the sound with a call to player.play() 3.

We have to rewind the sound file each time before it is played to make
sure it starts from the beginning. The rewind() 4 function within
AudioPlayer does this.

https://www.audacityteam.org/
http://www.goldwave.ca/

NOTE

Four kinds of sound are normally used in animations and computer
games: sound effects, music, ambient sound, and voice. Ambient
sound is continuous, sometimes random sound from the background.
The sound of rain falling, traffic, crowds, and water flowing are
examples. Ambient sound, like music, starts at some particular point
in the animation of a graphic and has a long duration, often
repeating when it has finished. Human voice usually consists of
individual sentences, each saved as a separate file. These play back
as a part of a narrative, sometimes in an undetermined order. The
activity of a user can determine what voice snippet plays at a
particular time. In that sense, it is like a sound effect, a short audio
segment, but one that is not necessarily always associated with the
same action.

import ddf.minim.*;
int x=320, y=240; // Coordinates of the
circle (ball)
int dx=3, dy=2, radius=10; // Size and speed of the
circle (ball)
AudioPlayer player;
Minim minim;

void setup ()
{
 size (400, 300); // Window size
 fill (255, 0, 255); // Magenta fill

 1 minim = new Minim(this);
 player = minim.loadFile ("click.mp3");
}
void draw ()
{
 background (128); // Grey background
 ellipse (x, y, radius+radius, radius+radius); // Draw
the ball
 x = x + dx; y = y + dy; // Move
 xbounce(); ybounce();
}

 2 void xbounce ()
{
 if (x+radius > width) // right side
 { // Reverse x-direction
 x = width-((x+radius) - width);

 dx = -dx; 3 player.play(); 4 player.rewind();
 } else if (x < radius) // left side
 {
 x = radius-x; player.rewind();
 dx = -dx; player.play();
 }
 x = x + dx;
}

 5 void ybounce ()
{
 if (y<radius) // Top side
 { // Reverse y-direction
 y = radius+y; player.rewind();
 dy = -dy; player.play();
 } else if (y+radius > height) // Bottom side
 {
 y = height-((y+radius)-height); dy = -dy;

 player.play(); player.rewind();
 }
 y = y + dy;
}

Sketch 74: Mixing Two Sounds
In the process of sound mixing, we assign each of a number of sound sources
to different output levels or volumes. In live music concerts, this makes the
sound of each instrument audible at the proper volume level. We also do this
when recording multiple sources of sound, such as microphones, guitars, and
other instruments, which need to have their volume levels adjusted so that no
one component overwhelms the total. Mixers have been around for a long
time, and most have sliding controls to adjust volume levels of multiple
sound signals. This sketch will use the slider control developed in Sketch 43
to adjust the volume of two different sound files.

The sketch begins by declaring two AudioPlayer variables 1, one for each
sound, loading the sound files 2, and starting to play them both 3. Next we
create two slider controls; one is control A, having position and control
variables beginning with “a” (asliderX, asliderY, avalue) and the other is
control B (bsliderX, bsliderY, and so on). The value of slider A is used to
set the volume of the first of the sound files being played (by playera), and
slider B controls the volume of the other (playerb).

We set the output level by calling the Minim function setGain(). This
function has a parameter that represents the value of the gain (proportional to
volume). The units on gain are decibels (dB) and they begin at −80 and end
at +14 for a total range of 94 dB units. The total range of the slider values is
1,000. Thus, the gain for playera is set using the following call 4:

playera.setGain(avalue/1000.0 * 94 - 80);

If the slider value is at the minimum of 0, the gain will be 0/1,000 * 94 −
80 = 0 − 80 = −80. If the slider value is at the maximum of 1,000, the gain
will be 1,000/1,000 * 94 − 80 = 94 − 80 = 14. That the gain values have the
correct output for the extreme values supports the idea that the mapping is
correct. The dB scale is logarithmic, though, so this is an approximation of
the truth.

When the sketch is executing, the two sound files will play. Sliding the top
slider right will increase the volume of the sounda.mp3 file, and sliding the

lower slider will control the volume of the soundb.mp3 file. The idea is to
find relative levels that sound right.

NOTE

It would be better to implement the slider widget that controls the
volume as a class so that multiple sliders could be placed on any
screen and pass multiple values to the program. Some mixers have
scores of inputs, each controlled separately. Also note that in this
sketch the usual call to play() has been replaced by a call to loop()
3, which continually replays the sound from the beginning after it
ends (for example, playera.loop()).

import ddf.minim.*;
int asliderX=10, asliderY=100, avalue=0,
sliderWidth=100;
int bsliderX=10, bsliderY=150, bvalue=0;
int asliderPos=0, bsliderPos=0, sliderMin=0,
sliderMax=1000;

1 AudioPlayer playera, playerb;
Minim minim;
void setup ()
{
 size(300,300);
 minim = new Minim(this);

 2 playera = minim.loadFile ("sounda.mp3");
 playerb = minim.loadFile ("soundb.mp3");

 3 playera.loop(); playerb.loop();

 playera.setGain(-100);
 playerb.setGain(-100);
}
void draw ()
{
 background (200); fill (0);
 drawSliders ();
}
void drawSliders ()
{
 line (asliderX, asliderY, asliderX+sliderWidth,
asliderY);
 ellipse (asliderX+asliderPos, asliderY, 12,12);
 text (avalue, asliderX+sliderWidth+7, asliderY);
 line (bsliderX, bsliderY, bsliderX+sliderWidth,
bsliderY);
 ellipse (bsliderX+bsliderPos, bsliderY, 12,12);
 text (bvalue, bsliderX+sliderWidth+7, bsliderY);
}
void mouseDragged ()
{
 if ((mouseY>=asliderY-6) && (mouseY<=asliderY+6))
 {
 if ((mouseX>=asliderX) &&
(mouseX<=asliderX+sliderWidth))
 asliderPos = mouseX - asliderX;
 avalue = (int)(((float)asliderPos/100)*sliderMax +
sliderMin);

 4 playera.setGain(avalue/1000.0 * 94 – 80);

 }
 if ((mouseY>=bsliderY-6) && (mouseY<=bsliderY+6))
 {
 if ((mouseX>=bsliderX) &&
(mouseX<=bsliderX+sliderWidth))
 bsliderPos = mouseX - bsliderX;
 bvalue = (int)(((float)bsliderPos/100)*sliderMax +
sliderMin);
 playerb.setGain(bvalue/1000.0 * 94 - 80);
 }
}

Sketch 75: Displaying Audio Waveforms
Most computer-based sound editors display a graphical rendering of the
audio signal and allow the user to “grab” parts of it with the mouse and move
or delete them. This graphical display is actually a plot of audio volume
versus time. Some music players display such a plot in real time, as the
music is playing. That’s exactly what this sketch will do. It draws the plot of
whatever sound the computer is playing.

Drawing this requires the ability to get the sound data as numbers in real
time. A bit of error does not matter, because this is not a scientific tool, so
it’s possible to use some of the code from Sketch 72, which also displayed an
audio visualization. Here we will fill a sound buffer and then play it as sound
data until the data is finished.

Audio is represented as a set of consecutive numerical values that can
reasonably be stored in an array (a buffer). There are usually two channels
(stereo), and any value from a buffer can be retrieved using the
in.left_get() or in.right_get() functions, specifying which sample is
wanted. For example, the program gets a data point from the left channel
using a call to left_get() 3 and uses this value to represent all levels in the
current buffer. This is just one data point from many samples, and it is
possible to specify the buffer size when the getLineIn() call is made. The
system plays sound from this buffer and refills it whenever it needs more
data. We specify a size of 1,024 samples per buffer 1:

in = minim.getLineIn(Minim.STEREO, 1024);

If the window is 512 pixels wide, there is 1 pixel for every 2 samples, its
height being the value retrieved using the call to get(). Assuming that the
value of a data element is between −1 and +1, we draw the 1,024 data points
as a line from (i, datai) to (i+1, datai+1) for all i between 0 and 1,023
by twos 2. This is illustrated in Figure 75-1.

Figure 75-1: Scaling samples and plotting them as lines

In other words, we have the following:

for (int i=0; i<1024; i=i+2)
{
 ly = in.left.get(i)*100+height/2;
 if (i!=0) line (i, y, i+2, ly);
 y = ly;
}

We do this in the draw() function so it will refresh every 10th of a second
and display an animated version of the audio. We scale the data by
multiplying by 100, giving a total height of 200 pixels, and then translate it
to the vertical center of the window by adding this value to the data point.

NOTE

It may be better to show both stereo channels simultaneously, or to
average the two as the volume for each sound moment.

import ddf.minim.*;
Minim minim;
AudioInput in;
AudioPlayer player;

void setup ()
{
 size(512, 300);
 minim = new Minim(this);

 in = minim.getLineIn(Minim.STEREO, 1 1024);
 stroke(255);
 fill(100);
 frameRate(10);
}

void draw ()
{
 float ly, y=0;

 background(0);
 ly = 0;

 2 for (int i=0; i<1024; i=i+2)
 {

 3 ly = in.left.get(i)*100+height/2;
 if (i!=0) line (i,y, i+2, ly);
 y = ly;
 }

}
// always close Minim audio classes when you are done
with them
void stop ()
{
 in.close();
 minim.stop();
 super.stop();
}

Sketch 76: Controlling a Graphic with Sound
PC-based music players frequently offer a set of visualizers that present
abstract moving images that change in coordination with the music, as shown
in Figure 76-1. Sketch 75 is a visualizer that displays the actual signal, which
can be useful for signal analysis and editing, but the purpose of music player
visualizations is to entertain by presenting interesting images. This sketch
represents one attempt to implement such a visualizer.

Figure 76-1: An example visualizer

There are many ways to control images using music, but the underlying
idea is to pull numbers from the sound data and use them as parameters to
some graphical model so the display reacts to the actual sound. Beyond the
raw sound data points described in the previous sketch, we want to measure
values that indicate changes in the sound so that the display is dynamic. The
difference between two consecutive values is one measure. These numbers
would tend to be similar to each other, so two values at a fixed time from

each other might give a better range of numbers. Another idea would be to
use the difference between the left and right channels. More complicated
measurements include the difference between a data value and the average
for a short time or the difference between the maximum and minimum values
over a time period.

Once we decide which measurements to use, what will we use the values
for? This depends on the visual effect we desire. They could represent x, y
positions, colors, speed, or even shape parameters.

This sketch will use ellipses as the basis for the display. The data from the
left and right channels of the current buffer will define the width and height
parameters of an ellipse to be drawn at the center of the screen. The size of
the ellipse will increase by five pixels for each frame, so it will grow from
the center outwards 2. The color of the ellipse will be related to the
difference between the current left data value and the corresponding left data
value from the previous buffer 4; this means that color is a function of
variation over time. By drawing each ellipse with a transparency (alpha)
value of 30, we can make the colors blend into each other. Because we’re
using transparency, we should display the largest ellipses first, and then
smaller ones, or the smaller ones could be overwhelmed by ones drawn
above them. We must maintain a set of parameters for these ellipses so that
we can display all of them correctly each iteration, and we do this by saving
them in a set of arrays: colors, hsize, and vsize for the ellipse color and
size.

Start the program and then play a sound file with another program on your
PC. The sketch extracts the numeric parameters from the sound 3 and
displays the corresponding ellipses each frame 1. The visual is surprisingly
interesting given the simplicity of the method.

import ddf.minim.*;
final int MAXOBJECTS = 50;
color colors[] = new color[MAXOBJECTS];
int hsize[] = new int[MAXOBJECTS];
int vsize[] = new int[MAXOBJECTS];
int last = 0;
float lastd=0, dl, dr, d;

Minim minim;
AudioInput in;
void setup ()
{
 size (400, 300);
 minim = new Minim(this);
 in = minim.getLineIn(Minim.STEREO, 1024);
 ellipseMode (CENTER); colorMode(HSB);
 noStroke(); frameRate(50);
}

void draw ()
{
 background(128);
 for (int i=MAXOBJECTS-1; i>=0; i--)
 {
 fill (colors[i]);

 1 ellipse (200, 150, vsize[i], hsize[i]);
 2 vsize[i] += 5; hsize[i] += 5;
 }

 3 dl = ((in.left.get(0)+1)/2) *100;
 dr = ((in.right.get(0)+1)/2) *100;
 if (dl>dr)
 {
 vsize[last] = (int)(dl-dr)*200; hsize[last] = 1;
 }
 else
 {
 vsize[last] = 1; hsize[last] = (int)(dr-dl)*200;
 }

 4 colors[last] = color(abs(lastd-dl)*100, 200, 250, 30);
 lastd = dl;
 last = (last + 1)%MAXOBJECTS;
}

Sketch 77: Positional Sound
Because humans have two ears, we can roughly identify the location of a
sound. We do this partly by using the difference in time of arrival and the
volume of the sound at each ear. A sound is louder in the ear that is nearest to
the source, and we can use this fact to simulate positional sound using a
computer. In this sketch, we’ll play a sound and let the user select a listening
position in the center of the sketch window. The user can move about,
changing the angle they are facing with the A and D keys and stepping
forward and backward using W and S.

When the user is facing exactly toward or away from a sound source, the
loudness in each ear should be about equal. When they are facing so that the
left ear is pointing to the source, the volume in the left ear is loudest and in
the right ear it is the quietest, and vice versa when the right ear is facing the
sound. With this in mind, we can map volumes from loudest in the left to
equal to loudest in the right as a function of the way the listener is facing.

Imagine an angle made between the listener’s position, the source position,
and the x-axis, labeled θ in Figure 77-1. The angle that the listener is facing
combines with the angle between the listener and the object to determine
how loud the sound will seem in each ear, and thus determines how loud we
should play the sound from each speaker to simulate positional sound.

Figure 77-1: Geometry of positional audio

The angle θ is determined using trigonometry as the arctangent of the
difference in x over the difference in y 3, or the following, where the atan2
function handles the case where the angle is vertical:

θ = atan2(y1-y0, x1-x0)

The difference between the facing angle and θ (theta) defines an angle that
controls the volume between two stereo channels being played, via the
setPan() function. A parameter of −1 means full left channel, 0 means a
balance, and +1 means full right. A bit of fiddling on paper shows that a 0-
degree angle to the source should correspond to a pan of 0, 90 degrees has a
pan of −1, 180 degrees has a pan of 0, and 270 degrees has a pan of +1.
These are the extreme points of the function -sin(facing-theta), so this
value is passed to setPan().

In summary, the sound file (a simple tone) starts playing 1; the sound
source is initially located at (200, 200) 2, and the user is initially at (300,
200) but can rotate and move. The volume of the sound played in each
speaker is set by determining the angle θ, computing delta = facing-
theta, and setting the pan to –sin(delta) 4.

NOTE

This sketch does not consider the decrease in sound volume as a
function of distance d from the source. To incorporate the volume
decrease, try multiplying the volume by a factor of 1/d2.

import ddf.minim.*;
float facing=0, delta=0;
float x=300, y=200, dx=1, dy=0;
AudioPlayer player;
Minim minim;
void setup ()
{
 size(400, 400);
 minim = new Minim(this);
 player = minim.loadFile ("sound.mp3");

 1 player.loop();
}

void draw ()
{
 background(200);
 ellipse (200, 200, 10, 10); ellipse (x, y, 10, 10);

 2 line (x, y, 200, 200); line (x, y, x+10*dx, y+10*dy);
 text ("Angle is "+theta (x, y, 200, 200)+" Facing "+
 facing+" Delta is "+delta+" Pan is "+(-
sin(radians(delta))), 10, 30);
}

float theta (float x0, float y0, float x1, float y1)
{
 float x;

 3 x = (float)atan2(y1-y0, x1-x0);
 if (x<0) x = x + 2*PI;
 return degrees(x);
}

void keyPressed ()
{
 if (key == 'w') // Move 'forward'
 { x += 5*dx; y += 5*dy; }
 else if (key == 's') // Move 'backward'
 { x -= 5*dx; y -= 5*dy; }
 else if (key == 'a') facing = facing - 1.0; // Turn
left
 else if (key == 'd') facing = facing + 1.0; // Turn
right
 if (facing < 0) facing = facing + 360;
 else if (facing>360) facing = facing - 360;
 dx = cos(radians(facing)); dy = sin(radians(facing));

 4 delta = facing - theta(x, y, 200, 200);

 player.setPan (-sin(radians(delta)));
}

Sketch 78: Synthetic Sounds
This sketch will implement a small sound synthesizer. It will only have eight
keys, more like a child’s toy piano, but it will be functional and can serve as
the basis for more complex sound synthesis projects.

Minim provides a type (a class) named AudioOutput that allows us to
display signals, not just sound files, on the PC hardware. It allows the
playing of a note, although not exactly musical notes as normally understood.
A note in this context is a digital audio signal having a specific frequency.

The name of the AudioOutput variable in the sketch is out, and it is
initialized 1 as the following:

out = minim.getLineOut(Minim.STEREO);

This call allocates a new instance of AudioOut that is accessible from the
variable out. To play a note, call the playNote() function 2:

out.playNote(440.0);

This sends a sine wave with a frequency of 440 Hz (the musical note A) to
the sound card. playNote() can be called with nearly any frequency, because
the “notes” are just snippets of a sine wave.

Unfortunately, the AudioOutput object likes to impose a specified duration
on a note, so the note plays for what the system believes to be a single unit of
time. To imitate a musical instrument played by a human who can vary the
duration, we need to call playNote() with more parameters:

out.playNote(0, 1000, 493.9);

In this example, 0 is the time until the note is to be played (immediately),
1,000 is the duration, and the final parameter is the frequency; 1,000 units is
a long time.

The sketch displays a simple piano image with labeled keys. When the
user clicks the mouse on one of the graphical piano keys, the program plays
that note 2; the value of the x position of the mouse tells us what the note is

(in mousePressed()). When the mouse button is released, the program
creates a new AudioOutput 3 so that the old note stops playing and a new
one can start (in mouseReleased()).

import ddf.minim.*;
import ddf.minim.signals.*;

Minim minim;
AudioOutput out;
PImage piano;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 piano = loadImage ("piano.png");
 surface.setSize(piano.width, piano.height);
 minim = new Minim(this);

 1 out = minim.getLineOut(Minim.STEREO);
}

void draw ()
{
 image (piano,0,0);
}

void mousePressed ()
{

 2 if (mouseX<20) out.playNote(0, 1, 440.0);
 else if (mouseX < 38) out.playNote(0, 1, 493.9);
 else if (mouseX < 57) out.playNote(0, 1, 523.3);
 else if (mouseX < 77) out.playNote(0, 1, 587.3);
 else if (mouseX < 95) out.playNote(0, 1, 659.3);
 else if (mouseX < 114) out.playNote(0, 1, 698.5);
 else if (mouseX < 134) out.playNote(0, 1, 784.0);
}

void mouseReleased ()
{

 3 out = minim.getLineOut(Minim.STEREO);
}

void keyPressed ()
{
 out.close();
 super.stop();
 exit();
}

Sketch 79: Recording and Saving Sound
This sketch captures the audio currently playing on the computer and saves it
in a file in .wav format. This would permit recording sound from Skype calls,
websites, and podcasts, to name a few.

In Sketches 75 and 76 we used Minim and an AudioInput object to access
the currently playing sound for visualization. In this case, the next step is to
create an AudioRecorder, which takes as a parameter an input from which
we can collect sound; that is, the AudioInput object connected to the
currently playing sound.

An AudioInput has three functions (methods) of importance:
beginRecord() Start saving audio samples.
endRecord() Stop saving the audio samples.
save() Store the saved samples as an audio file.

How much audio data we can save depends on the memory available on
the computer.

The sketch opens a window and displays the playing sound signal as in
Sketch 75. If the user types the R character 2 (handled by keyReleased()),
we call beginRecord() and start saving data. When the user types Q 3, we
call endRecord() and the recording stops. If the user types S, we call save()
4.

We specify the file used to save the data as a parameter on the creation of
the AudioRecorder 1:

recorder = minim.createRecorder(input, "processing.wav",
true);

Here, input is the already existing AudioInput object, processing.wav is the
file where we’ll save the sound data, and the final parameter represents
whether or not the recording is buffered, which is to say whether the data is
saved in memory or written directly to the file. If it’s not buffered, the system
opens the file when recording begins. Otherwise the system opens the file
when we write the data.

A small change to this code would allow the user to save to a different file
each time they start and stop recording. This could be useful for voice
recording, such as reading scripts or reading books to tape.

import ddf.minim.*;
Minim minim;
AudioInput input;
AudioRecorder recorder;
void setup ()
{
 size(512, 200);
 minim = new Minim(this);
 input = minim.getLineIn(Minim.STEREO, 1024);

 1 recorder = minim.createRecorder(input,
"processing.wav", true);
}

void draw ()
{
 background(0); stroke(255);
 for(int i = 0; i < input.left.size()-1; i++)
 line (i,input.left.get(i)*100+height/2, i+1,
 input.left.get(i+1)*100+height/2);

 if (recorder.isRecording())
 {
 fill(255, 0, 0);
 text("Recording. Type 'q' to quit recording.", 5,
15);
 } else
 {
 fill(0, 255, 0);
 text("Type 'r' to record.", 5, 15);
 }
}

void keyReleased ()
{

 2 if (key == 'r' && !recorder.isRecording())
recorder.beginRecord();

 3 else if (key == 'q' && recorder.isRecording())
recorder.endRecord();

 4 else if (key == 's') recorder.save();
 else if (key == '0') stop();
}

void stop ()
{
 input.close();

 minim.stop();
 super.stop();
 exit();
}

10
WORKING WITH VIDEO

Sketch 80: Playing a Video
We can use Processing to play videos but, as was the situation with audio,
Processing does not have its own facility for doing so. Instead, we use the
Movie class from the processing.video library, which in turn uses the
underlying Java-based video functions. As a first example, this sketch will
load and display a short video.

First, we import the processing.video library 1 as the first line in the
program:

import processing.video.*;

Now we can declare an instance of the Movie class 2, one for each movie
we want to play:

Movie movie;

We load the video file when we initialize the class instance by calling its
constructor (see Sketch 43), specifying the name of the file as a parameter
3:

movie = new Movie(this, "car.avi");

In the setup() function, we begin reading the video from the file by
calling the movie.play() function (which doesn’t just play the video, as
you’d expect). A video is a sequence of compressed images or frames, just
like an animation, and each one can take some significant time to read and
decode. After we call play(), the system tries to read frames from the file,
and when one is ready, the available() function returns true. We can then
acquire the frame using read(). Like a PGraphics object, a Movie object
can be treated as an image and displayed using the image() function. Thus,
this is the process for displaying a movie 4:

if (movie.available())
{
 movie.read();

 image (movie, 0, 0);
}

If no new frame were available, read() would not be called, and the
previously read frame would be displayed in its place. This is usually not
noticeable.

The Movie class plays the sound with the movie.
The sketch also prints relevant information at the top of the window. It

counts the number of frames read in and displays that number. It also
displays the time count, which is the number of seconds that have been
played so far, retrieved using the movie.time() function call 5. When the
movie is complete, as indicated by movie.time() >= movie.duration() 6,
the counters reset and the movie resumes playing from the first frame by
calling movie.jump(0). The jump(t) function call moves the current frame
to the one at time t. Playing in a loop could also be accomplished by calling
movie.loop() instead of movie.play(). In that case, the replaying of the
movie from location 0 would be automatic.

1 import processing.video.*;

boolean playing = true;

2 Movie movie;
int frame = 1;

void setup ()
{

 3 movie = new Movie(this, "car.avi"); // Create the
instance of Movie
 size(320, 300);
 movie.play(); // Start playing
}

void draw ()
{

 4 if (movie.available()) // New frame?
 {
 movie.read(); // Read it
 frame = frame + 1; // Count it
 }
 image(movie,0,0); // Display the current frame

 5 text ("Frame "+frame+" Time: "+ (float)((int)
(movie.time()*100))/100, 10, 20);

 6 if (movie.time() >= movie.duration()) // End
 {
 frame = 1; movie.jump(0); // Restart the counters.
Rewind.
 }
}

void mouseReleased ()
{
 if (playing)
 {
 movie.pause();
 playing = false;
 } else
 {
 movie.play();
 playing = true;
 }
}

Sketch 81: Playing a Video with a Jog Wheel
A jog wheel (or shuttle dial) is a device, often circular, that allows the user
to advance or back through a video. Turning it clockwise moves the video
forward by individual frames, and turning it counterclockwise moves the
video backward. Editors often use this for editing where the video needs to
be positioned frame by frame. This sketch will implement an approximation
of this jogging process. The video will begin to play, and the user can adjust
the speed and direction of play using the mouse. At any point, the user can
stop the video and back up slowly to arrive at any specific frame.

To do this we have to address the problem of how to play a video
backward. The jump() function permits the positioning of the video at any
moment in time 2. The time of any particular frame depends on the frame
rate, which is the number of frames played per second. Given a frame rate
of rate, we know that each frame lasts 1/rate seconds. The final frame
occurs at duration() seconds from the start, so positioning at the frame
before that could be done with the following call:

movie.jump (movie.duration-(1/rate))

The frame before that one is at movie.jump (movie.duration-
(1/rate)*2) and so on. Simply step backward through the frames in this
way, read the frame, and display it.

In the sketch, we store the time of the current frame in a time variable,
and the time between frames is in the variable ftime. We will use the
mouse to control the speed with which the video will be displayed. A
mouse click in the middle of the screen sets the speed to 0 by setting ftime
to 0. A click on the right sets ftime to a value in proportion to the distance
from the middle, and it moves the video forward; a click on the left sets
ftime to a value that moves the video backward. Initially ftime = 1/rate,
but this becomes −3 times that for a far left click and +3 times that for a far
right click. This is the whole calculation 3:

ftime = 3*((float)(width/2 - mouseX)/(width/2))/rate;

A minor problem occurs at the end of the video, which is really the
beginning if it is playing in reverse. Time is set to 0 if the end is found
while moving forward, and it is set to duration()-ftime if the beginning is
found while moving backward.

The basic display process 1 occurs within draw() and is as follows:

if (movie.available()) movie.read(); // Read a frame if one
is there
image(movie,0,0); // Display it
time = time - ftime; // Advance/retard the
time value
movie.jump(time); // Set frame to the
one at that time

The sketch displays a simple calibration to allow the user to select a
speed, and it also displays the value of ftime.

import processing.video.*;

boolean playing = true;
Movie movie;
float time = 1, ftime = 1, rate = 20;

void setup ()
{
 movie = new Movie(this, "car.avi");
 size(320, 300);
 ftime = 1.0/rate;
 time = movie.duration() - ftime;
 movie.play(); // Start playing
 fill (0);
}

void draw ()
{
 background(200);

 1 if (movie.available()) movie.read(); // Read
it
 image(movie,0,0); // Display the current frame
 text (" Time: "+ (float)((int)
(movie.time()*100))/100, 10, 20);
 time = time - ftime; // Control which is the next
frame
 movie.jump(time);
 if ((time < 0) || (time>movie.duration()))
 {
 if (time<0) time = movie.duration() - ftime;
 else time = 0;

 2 movie.jump(time); // Restart the counters.
Rewind.
 }
 text ("Mouse click controls speed and direction", 50,
260);
 text (" Reverse
Forward", 30, 275);
 ellipse (160, 245, 3, 3);
 for (int i=160; i<320; i=i+30) ellipse (i, 245, 1,
1);
 for (int i=160; i>0; i=i-30) ellipse (i, 245, 1, 1);
 text (""+ -((int)(ftime*100))/100.0, 150, 275);
}

void mouseReleased ()
{

 3 if (mouseX < width/2) ftime = 3*((float)(width/2 -
mouseX)/(width/2))/rate;
 else ftime = -3*(float)(mouseX-
(width/2))/(width/2)/rate;

}

Sketch 82: Saving Still Frames from a Video
This sketch will allow the user to save a set of still image frames from a
video. The video is played in a loop so that the user can select all of the
frames they need. Clicking the mouse will start saving images, and clicking
again will stop it.

Saving frames is accomplished using the save() function of the Movie
class object. If movie is a Movie object, the following call saves the current
frame in the named file as the type indicated by the file extension:

movie.save("name.jpg");

This is the same way we save PImage pictures. In this case, we save a
JPEG, but GIF, PNG, and other file formats work too.

To save multiple frames without overwriting the same file each time, we
might use the number of stills that we have already saved, stored in the
variable v, in the filename, as follows:

movie.save("frame"+v+".jpg");

This means that the filenames would be frame1.jpg, frame2.jpg, and so on.
With this labeling scheme, however, there’s no way to tell where one

saved sequence ends and the next one begins. This sketch solves that
problem by using the variable nclicks in conjunction with v. When the
user clicks the mouse while the frames are being saved, then saving ceases,
nclicks is incremented, and v is reset. We build a filename using the frame
count and a letter that is relative to the nclicks variable: nclicks = 0 adds
the letter “a” to the name, nclicks = 1 adds “b” to the name, and so on.
The file for each frame is actually saved as follows 1:

movie.save("frame"+char(nclicks+int('a'))+v+".jpg");

The first sequence would be framea1.jpg, framea2.jpg, . . . and the
second would be frameb1.jpg and so on.

The sketch draws the time on the screen, but this is for the user—it will
not appear on the saved image.

Another way to save video frames is to display them in the sketch
window and then save the sketch window as an image. If we did that in this
case, the time drawn on the window would in fact be saved to the file with
the image.

import processing.video.*;

boolean saving = false;
Movie movie;
float time = 1, rate = 20;
int frame = 1, v = 0;
int nclicks = 0;

void setup ()
{
 movie = new Movie(this, "car.avi"); // Create the
instance of Movie
 size(320, 300);
 movie.frameRate(rate);
 movie.play(); // Start playing
 fill (0);
}

void draw ()
{
 if (saving) background (0, 200, 20);
 else background(200);
 if (movie.available())
 {
 movie.read(); // Read it
 image(movie,0,0); // Display the current
frame
 if (saving)
 {
 v++;

 1 movie.save("frame"+
char(nclicks+int('a'))+v+".jpg");
 frame = frame + 1;
 }
 } else image(movie,0,0);

 text (" Time: "+ (float)((int)
(movie.time()*100))/100, 10, 20);
 if (saving) text ("Saving file "+frame, 20, 275);
 if (movie.time() >= movie.duration())
 movie.jump(0); // Restart the video
}

void mouseReleased ()
{
 saving = !saving;

 if (!saving) {
 nclicks = nclicks + 1;
 v = 0;
 }
 if (nclicks > 25) nclicks = 0;
}

Sketch 83: Processing Video in Real Time
Some applications process or analyze a video frame by frame, and it is not
necessary to see the result in real time. For example, it is possible to
analyze a batter’s swing by capturing a video, enhancing relevant portions
in each frame, and then putting the enhanced frames back in video form. It
is even possible, when the analysis of each frame does not require too much
computational effort, to do the processing as the video is playing and see
the result as the action is going on.

In this sketch, the video that we used in the previous two sketches will be
converted to grayscale and then thresholded in real time, just as we did in
Sketch 23 for a still image.

Recall that we can treat a Movie object just like a PImage (they have the
same local functions). We extract each pixel p in the movie image using
movie.loadPixels() 1 and calculate a brightness or grey level by
averaging the color components: (red(p)+green(p)+blue(p))/3 2. If this
value is less than a threshold, the corresponding pixel in the display image
is set to black; otherwise it is set to white. In this sketch, the threshold value
is 100. The result is a video that displays only black and white pixels.

The setup is the same as before, but we also create a second image the
size of a video frame (named display) that will hold a processed copy of
each frame as it is displayed. The draw() function reads a frame when it is
ready and then calls a local thresh() function to calculate a thresholded
image. After thresh() has created a thresholded version of the movie
image, both are displayed, one above the other, and both versions play
simultaneously.

The result in this case is unimpressive, but it does give an idea of what
we could do. For example, if we choose the threshold carefully, it might be
possible to show only the motion of the car in the scene, removing the
background clutter.

In other videos, we could locate faces, enhance and read license plates on
moving cars, or inspect and count apples moving past the camera on a
conveyor belt. These are problems in computer vision, and Processing is a

good tool for building computer vision systems because of the ease with
which it deals with images.

NOTE

A tool called SimpleOpenNI is available for download from https://c
ode.google.com/p/simple-openni/. It allows Processing to
communicate with Kinect devices, which in turn allows us to
acquire 3D images in real time. Microsoft uses this to build
computer games, but there are many other potential uses, like the
computer vision problems just described.

https://code.google.com/p/simple-openni/

import processing.video.*;

PImage display;
Movie movie;

void setup ()
{ // Create the instance of Movie
 movie = new Movie(this, "car.avi");
 size(320, 480);
 movie.play(); // Start playing
 movie.frameRate(15);
 fill (0);
 display = createImage (320, 300, RGB);
}

void draw ()
{
 background (255);
 if (movie.available())
 {
 movie.read();// Read it
 thresh();
 }
 image(display,0,0);
 image (movie, 0, 240);

 text (" Time: "+ (float)((int)
(movie.time()*100))/100, 10, 20);
}
void thresh ()
{
 color p,q;

 1 movie.loadPixels();
 for (int i=0; i<movie.pixels.length; i++)
 {
 p = movie.pixels[i];

 2 if ((red(p)+green(p)+blue(p))/3 < 100) q =
color(0,0,0);
 else q = color(255,255,2525);
 display.pixels[i] = q;
 }
 display.updatePixels();
}

Sketch 84: Capturing Video from a Webcam
Webcams are present on most computers and almost all laptops. The
previous sketches dealt with video that had already been captured, in the
sense that a video file was available to be displayed or processed. This
sketch will capture live video data from a webcam and display it in
grayscale.

The Capture class deals with cameras and image/video capture. To use it,
first declare an instance 1:

Capture camera;

Then initialize it using the class constructor. The class constructor may take
only the parameter this, or this and a device specifier 2:

Camera = new Capture (this);
camera = new Capture (this, myCamera);

The myCamera variable is a device specifier string of the following form:

"name=USB2.0 HD UVC WebCam,size=160x120,fps=15"

Much of the information in this string has an obvious meaning, and most
is not absolutely necessary. If you know that the camera has a resolution of
640×480, the following call will open the camera:

camera = new Capture (this, "size=640x480");

Image capture begins with a call to start() 3:

camera.start();

As when playing a video, a frame is available when
camera.available() returns true. The camera instance can now be treated
like a PImage and be displayed with a call to image().

This sketch copies the camera image into a PImage variable, display 4.
The function grey() converts the color image into a grey one, which is
displayed in place of the original. The result is a moving grayscale image of
what is being captured by the camera. Be patient—it can take some time to
open the camera device.

The Capture class function list() looks at the camera devices available
on the computer and returns a list of descriptors that can be used in the
constructor. So, if this line

String[] cameras = Capture.list();

were to be followed by this

for (int i=0; i<cameras.length; i++)
 println (cameras[i]);

then a list of available cameras would be printed to the window. We could
select one and use the index for it in the code to select it from the
cameras[] array. For instance, you could search for a camera that is
640×480 at 130 frames per second and find it as camera i in the list. Then
you could use the selector you want by indexing the array:

camera = new Capture (this, cameras[i]);

import processing.video.*;

1 Capture camera;
PImage display;
void setup ()
{
 String[] cameras = Capture.list();
 if (cameras.length == 0)
 {
 println("There are no cameras.");
 exit();
 }

 2 camera = new Capture(this, cameras[0]);
 display = createImage (640, 480, RGB);

 3 camera.start();
 size (640, 480);
}

void draw ()
{
 if (camera.available() == true) camera.read();

 4 display.copy (camera, 0,0,640, 480, 0,0,640, 480);
 grey();
 image(display, 0, 0); // set(0, 0, camera);
}

void grey ()
{
 color p;
 int k;

 for (int i=0; i<display.pixels.length; i=i+1)
 {
 p = display.pixels[i];
 k = (int)((red(p)+green(p)+blue(p))/3);
 display.pixels[i] = color(k,k,k);
 }
}

Sketch 85: Mapping Live Video as a Texture
In the previous sketches, you saw that a Movie object can be treated as a
PImage for display purposes and even for extracting pixels from a video
frame. This sketch shows the use of a video as a texture for a 3D surface,
again like a PImage. The idea is to paint a four-cornered plane (a quad) with
a movie so that the video plays on a 3D plane and is foreshortened as the
user’s point of view changes.

The first part of the sketch sets up the webcam (as before), establishes the
camera variable as a source of images, and establishes P3D as the current
renderer. When executing, the system requires a few seconds to figure out
what cameras are attached and which one to use. We do all of this,
including starting the camera, by calling start() 1 in setup().

In draw(), the first thing is to check if there is a new image available. If
so, we read it; if not, then the previous image remains as the current one 2.
Then we establish a 3D environment, with a call to camera setting up the
viewpoint 3. We draw a quad in the 3D space and use the webcam as a
texture 4. The viewpoint oscillates a little bit (x between −30 and 100) 5 to
show that the view is changing.

The effect is that the quad seems to continuously change location and
orientation while the live video plays within the quad. An interesting
variation on this would be to draw a rotating cube with the video mapped
on all faces. This would show nothing new, but it would take more code.

import processing.video.*;
Capture camera;
float sx=30., sy=40., sz=12.;
int eyex=30, eyey=50, eyez=60;
int cx=20, cy=30, cz=12, dx=-1;

void setup ()
{
 String[] cameras = Capture.list();
 size (640, 480, P3D);

 if (cameras.length == 0)
 {
 println("There are no cameras.");
 exit();
 }

 camera = new Capture(this, cameras[0]);

 1 camera.start();
}

void draw ()
{

 2 if (camera.available() == true) camera.read();
 background(255);

 3 camera(eyex, eyey, eyez, cx, cy, cz, 0, 1, 0);
 textureMode(NORMAL);
 beginShape (QUAD);

 4 texture (camera);
 vertex (0., 0., 0., 0., 0.);
 vertex (sx, 0., 0., 1., 0.);
 vertex (sx, sy, 0., 1., 1.);
 vertex (0., sy, 0., 0., 1.);
 endShape (CLOSE);
 eyex = eyex + dx;

 5 if (eyex < -30) dx = -dx;
 if (eyex > 100) dx = -dx;
}

11
MEASURING AND SIMULATING TIME

Sketch 86: Displaying a Clock
Time in a computer program can mean many things. There is execution
time, which is the number of CPU cycles used by a program to a particular
point. There is process time, or the amount of time that a program has been
active. There is real time, which is the time on your watch. We can also call
that clock time. This sketch will acquire the clock time from the computer
system and display it as the hands of a traditional clock.

Getting the time of day from Processing is easy. These are the basic
functions:
hour(): Returns the current hour in the day using a 24-hour clock.
minute(): Returns the number of minutes past the hour.
second(): Returns the number of seconds into the current minute.

The clock will be a circle, and there will be three linear indicators
(hands): a second hand, a minute hand, and an hour hand. Since there are 60
seconds in a minute, the second hand will rotate about its center point by
360/60, or 6 degrees each second. The same is true of the minute hand;
since there are 60 seconds per minute and 60 minutes in an hour, it rotates 6
degrees per minute. The origin for drawing the second hand is the clock’s
center, but the other endpoint is not known, only the angle. If the length of
the second hand is r, then the second point can be determined with
trigonometry, as seen in Figure 86-1.

Figure 86-1: Determining the position of a clock hand

The angle as defined by Processing is not the same as that for a clock. On
a clock, vertical represents 0, whereas in Processing that is −90 degrees.
Drawing the second hand with (cx, cy) as the center point and with a length
of r would be done as follows, where the variable s is the number of
seconds 1:

s = radians(second()*6 - 90.0);
line (cx, cy, cx + cos(s)*sr, cy+sin(s)*sr);

The same scheme works for the minute hand, which is shorter. The hour
hand should be shorter still, and the hour() value is divided by 2 if it
exceeds 12. Also, there are only 12 hours in the 360-degree cycle, not 60,
so each hour amounts to 30 degrees. The hour hand moves continuously
around the face and does not jump when the hour changes, so each minute
that passes should move the hour hand a little bit; 30 degrees (1 hour) is 60
minutes, so each minute moves the hour hand by 0.5 degrees 2. This is the
code:

h = radians(hour()*30.0-90.0) + radians(minute()*0.5);

int cx=259, cy=380;
float hr = 8;
float mr = 15;
float sr = 20.0;
PImage clock;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 clock = loadImage ("clock.jpg");
 surface.setSize(clock.width, clock.height);
}

void draw ()
{
 float s, m, h;
 float angle, x, y;

 background(200);
 image (clock, 0, 0);

 1 s = radians(second()*6 - 90.0);
 m = radians(minute()*6 - 90.0);
 h = hour();

 if (h > 12) h = h - 12;

 2 h = radians(hour()*30.0-90.0) + radians(minute()*0.5);

 stroke(21); // Draw the hands
 strokeWeight (2);
 line (cx, cy, cx + cos(s)*sr, cy + sin(s)*sr);
 line (cx, cy, cx + cos(m)*mr, cy + sin(m)*mr);
 strokeWeight(3);
 line (cx, cy, cx + cos(h)*hr, cy + sin(h)*hr);
}

Sketch 87: Time Differences—Measuring
Reaction Time
Measuring the time between two events is the subject of this sketch: in
particular, the time between a prompt by the computer and a response by
the user, the reaction time. A typical (average) reaction time for a human is
about 0.215 seconds. That is, between the time that a light goes on and the
time that someone can press a button in response, an average of 215
milliseconds will pass.

This sketch measures reaction time by having the user click the mouse as
quickly as they can when the background changes from grey to green. The
background then changes back to grey, and the cycle repeats five times. The
program measures the time between the screen turning green and the mouse
click using the millis() function, and it averages the five trials to get a
more precise measurement.

We use millis() because the function used in the previous sketch to
move the second hand, second(), only returns whole seconds. millis()
returns the number of milliseconds (1/1,000 seconds) since the sketch
started executing. On the face of it, that value does not seem to have much
meaning, but it does mean that the time difference between two events can
be measured pretty accurately. Simply call millis() 1 when the first event
happens, save the value, call it again when the second event occurs 2, and
subtract the two.

The millis() function can be used for other purposes, not the least of
which is to determine how long it takes for a particular loop or function to
execute. This sort of measurement is important when a program takes too
long and the programmer needs to find ways to speed it up. Measuring one
call to a function would not likely work, because most functions execute too
quickly to measure, even slow functions. Instead, we put a function to be
tested within a loop and execute it many times. We divide the time required
to execute the loop by the number of iterations to determine the time needed
for a single execution. Here is how the function get(12,100) could be
timed:

t1 = millis();
for (int i=0; i<100000000; i++) y = get(12,100);
t2 = millis();
println ("Time was "+(t2-t1)+" or "+((t2-t1)/100000000.0));

The times obtained vary, so taking an average over many trials should
give a more accurate result. Execution times may change depending on
what other programs are executing at the same time or how many virtual
memory page faults occurred.

float m0,m1, sum=0;
int wait = 0, count=0;
boolean timing = false;

void setup ()
{
 size (400, 200);
 fill (0);
}

void draw ()
{
 if (timing) background(0,200,0);
 else background(200);
 text ("Count is "+count+" You need "+(5-count)+"
more trials.", 10, 180);
 text ("When the background turns green, click the
mouse.", 10, 20);
 wait = wait + 1;
 if (wait > random (5000) && !timing)
 {
 background(0, 200, 0);
 timing = true;

 1 m0 = millis();
 }
 if (count == 5)
 {
 noLoop();
 sum = sum/count;
 text ("Reaction time is "+sum/1000 + " seconds.",
20, 100);
 }
}

void mousePressed ()
{
 if (timing)
 {

 2 m1 = millis();
 timing = false;
 sum = sum + (m1-m0);

 count = count + 1;
 wait = 0;

 }
}

Sketch 88: M/M/1 Queue—Time in
Simulations
A single-server queuing system, or M/M/1 queuing system, is like a bank
teller. Customers arrive at random times to the teller for service. The service
requires some random amount of time, and then the customer departs. If the
teller is busy with a customer when another one arrives, the new arrival
waits in a queue or waiting line. When a departure occurs, the next
customer in line is served; if there is no one in the queue, the teller (the
server) becomes idle. This system resembles many that we see in real life:
grocery checkouts, gas stations, waiting for a bus, even air traffic and ships
arriving in a port.

This sketch simulates one server and one queue, but it can be adapted to
do more, and it calculates the average queue length. The value in doing a
simulation of such a system is in finding out how long the queue becomes,
how much time a client spends in the queue, what percentage of the time
the server is busy, and so on. All of this concerns costs and wasted time.

In the real world, time is continuous, but on the computer, that is not
possible. Instead, the time of the simulation takes on discrete values: time =
0, time = 1.5, time = 3.99, and so on. When the simulation starts, we set the
variable time to the time of the first arrival 1, and the time after that will be
the time of the event being processed. This is known as a next event
simulation: the current time in the simulation keeps jumping ahead to the
time of the next event (arrival or departure) that occurs.

Arrivals happen at random times according to a particular probability
distribution. When an arrival happens, it (the customer) enters the queue for
the service (teller). If there is no queue, it gets served immediately;
otherwise it must wait. When it gets to the server (the teller), it will require
some random amount of time to be served, and then it will leave. Here are
the steps to handle each event:

Arrival Departure
1. Place the arrival into the queue 2. 1. Remove the job from the queue 3.
2. Is the server busy? 2. Queue empty?

3. If not, start the server. 3. If so, the server becomes idle.
4. Schedule the next arrival. 4. If not, schedule a departure.

The queue is an array holding numbers. Adding to the queue means
placing a new value (the randomly generated service time for the job) at the
end of the queue. When a value departs the queue, it means removing the
first element and moving each consecutive value forward by one place. The
function into(t) 5 inserts time t into the queue, whereas out() 6 removes
the front element from the queue. The queue is empty (or the system is idle)
if there is nothing in the queue 4.

The statistical distribution of times between arrivals and departures is
according to the negative exponential distribution. If the average time
between arrivals is μ, then this will be the time of the next arrival in the
simulation:

–μ * log(random(1))

A similar situation exists for departures.

float queue[] = new float[200], end=2.0e3;
float miaTime=16.0, msTime=8.0,arrival,departure;
int Nqueue=0, nq;
float qsum=0.0, time=0.0;
void setup ()
{
 size (500, 350);
 fill(0);

 1 arrival=-miaTime*log(random(1));
 departure = end*2;
}
void draw ()
{
 if (time>end) return;
 background(200);
 if (arrival<departure)
 { // An arrival

 2 into(time + -msTime*log(random(1)));
 arrival = time + -miaTime*log(random(1));
 if (departure>end) departure = queue[Nqueue-1];
 time = arrival;
 } else if (departure<end)
 { // A departure

 3 out();
 time = departure;

 4 if (Nqueue>0) departure = queue[Nqueue-1];
 else departure = end*2;
 }
 fill (0); text ("Time "+time+" Length is "+Nqueue+"
Mean length "+(qsum/nq),30,145);
 nq += 1; qsum += Nqueue;
}

5 void into(float t)
{
 queue[Nqueue] = t;
 Nqueue = Nqueue + 1;
}

6 void out ()
{
 if (Nqueue <= 0) return;
 for (int i=0; i<Nqueue-1; i++) queue[i] = queue[i+1];

 Nqueue = Nqueue - 1;
}

12
CREATING SIMULATIONS AND

GAMES

Sketch 89: Predator-Prey Simulation
Picture rabbits and coyotes living together in their natural environment.
They don’t get along in the traditional sense: coyotes tend to eat rabbits
when they can. Rabbits can breed very quickly, whereas coyotes cannot.
And, of course, if rabbits are the only prey, then if the rabbits should all
perish, the coyotes will also, soon after. This is a predator-prey relationship,
and it can be simply modeled when there is only one species in each group.

Mathematically the predator-prey relationship is represented by a pair of
differential equations (don’t worry, very little actual math here) that look
like this:

Here represents how fast the coyote population is growing, and is
how fast the rabbit population is growing. The solution to these equations,
known as the Lotka-Volterra equations, is not important. The program will
simulate them. In these equations, the variables are as follows:
x: The number of rabbits (prey animals)
y: The number of coyotes (predator species)
α: The rate at which the rabbit population grows, unfettered
β: The rate at which prey and predators meet and a rabbit dies as a result
γ: The rate of death of predators due to natural causes or moving away
δ: The rate of growth of the predator population

The simulation will begin with specified values of the four variables α, β,
γ, and δ, (alpha, beta, gamma, and delta) and will have known initial
population sizes. It will then compute a new population each time draw()

executes, based on the preceding equations. This is the critical code for the
rabbits 3:

dr = alpha*Nrabbits - beta*Nrabbits*Ncoyotes;
Nrabbits = (int)(Nrabbits + dr);

And for the coyotes 4:

dc = delta*Nrabbits*Ncoyotes - gamma*Ncoyotes;
Ncoyotes = (int)(Ncoyotes + dc);

The populations are then rendered graphically in the window. We draw
each rabbit as a green circle someplace on the screen (position does not
matter) 1, and each coyote is a red circle 2. We can observe the relative
populations increase and decrease as the predator population and the prey
population change. If all of the prey die, the predators do too; if all of the
predators die, the prey grows without limit.

int Nrabbits=190, Ncoyotes=16;
float time=0, alpha=.19, beta=0.008, gamma=0.15,
delta=.0005;

void setup ()
{
 size (500, 500);
 frameRate(2);
 noStroke();
}

void draw ()
{
 background(200);
 fill (0,200,0);

 1 for (int i=0; i<Nrabbits; i++)
 ellipse (random(width),random(height),2,2);
 fill (200,0,0);

 2 for (int i=0; i<Ncoyotes; i++)
 ellipse (random(width),random(height),4,2);
 prey();
 predator();
}

void prey ()
{
 float dr=0.0;

 3 dr = alpha*Nrabbits - beta*Nrabbits*Ncoyotes;

 Nrabbits = (int)(Nrabbits + dr);
 if(Nrabbits<0) Nrabbits = 0;
 fill(0);
 text (" Rabbits = "+Nrabbits, 10, 25);
}

void predator ()
{
 float dc=0.0;

 4 dc = delta*Nrabbits*Ncoyotes - gamma*Ncoyotes;
 Ncoyotes = (int)(Ncoyotes + dc);
 fill (0);
 text (" Coyotes now "+Ncoyotes, 150, 25);
}

Sketch 90: Flocking Behavior
Craig Reynolds created a system he called Boids in 1986. It was a
simulation of the behavior of birds when in a flock, or fish in a school. A
flock is a collection of distinct objects of the same kind. They move, and
wish to end up in the same place. They also don’t wish to hit each other.
The simulation involves knowing where each object is, how fast it is
moving, and what direction it is traveling, and then updating the position of
each object iteratively. Three rules make the objects a flock:
Separation Objects try to maintain a small distance between themselves
and their neighbors. During each iteration, an object moves away (if
possible) from any neighbor nearer than a distance d.
Alignment Objects try to match velocities with nearby objects. This keeps
them moving in a similar direction and keeps them from spreading out too
much. We compute a local velocity as seen from the object and then add a
fraction of that to the object’s velocity for the next iteration.
Cohesion An object will try to move toward the center of mass of its
neighbors. This keeps them in a group. We find the center of mass, not
including the current object itself, and move the object a fraction (1 percent
to 3 percent) of the way toward that point.

Each position is stored as a vector (PVector object) that has an x and y
component. The vector array FlockV stores the velocity of each object. The
draw() function calls functions that move and then draw the flock. match()
computes a new velocity, trying to match neighbors 2; toCenter() moves
each object toward the center of mass 3; and away() attempts to keep the
spacing between objects 4. We call each of the three for each object during
each iteration. Each of these functions returns a value that we add to the
object’s position 1. Objects are small circles, and they will follow the
mouse as we move it.

NOTE

Read more about Craig Reynolds at https://www.red3d.com/cwr/.

https://www.red3d.com/cwr/

final int N = 42;
PVector flock[]=new PVector[N],
flockV[]=new PVector[N];

void setup ()
{
 size (500,400);
 for (int i=0; i<N; i++)
 {
 flock[i]= new PVector(random(width),
 random(height));
 flockV[i] = new PVector(0, 0, 0);
 }
 noStroke(); fill (255); frameRate(15);
}

void draw ()
{
 background (0);
 drawFlock();
 moveFlock();
 }

void drawFlock ()
{
 for (int i=0; i<N; i++)
 ellipse(flock[i].x, flock[i].y, 5,5);
}

void moveFlock ()
{
 PVector c = new PVector(0,0);
 for (int i=0; i<N; i++)
 {
 c = toCenter (i);
 c.add(away(i));
 c.add(match(i));
 flockV[i].add(c);

 1 flock[i].add(flockV[i]);
 flockV[i].normalize();
 flockV[i].mult(6);
 }
}

2 PVector match (int b)

{
 PVector c=new PVector (0,0);
 for (int i=0; i<N; i++)
 if (i!=b) c.add(flockV[i]);
 c.div(N-1);
 c.sub(flockV[b]);
 c.div(8);
 return c;
}

3 PVector toCenter (int b)
{
 PVector c = new PVector(0,0,0);
 for (int i=0; i<N; i++) // Find center of mass
 if (i!=b) c.add(flock[i]);
 c.div(N-1);
 c.sub(flock[b]);
 c.x -= 2*(flock[b].x-mouseX);
 c.y -= 2*(flock[b].y-mouseY);
 c.normalize();
 return c;
}

4 PVector away (int b)
{
 PVector r=new PVector (0,0),q=new PVector
 (flock[b].x, flock[b].y);
 for (int i=0; i<N; i++)
 if (flock[b].dist(flock[i]) < 100)
 {
 q.set(flock[b]);
 q.sub(flock[i]);
 r.sub(q);
 }
 r.normalize();
 r.mult(-.5);
 return r;
}

Sketch 91: Simulating the Aurora
Among objects that are difficult to render on a computer, the northern
lights, or aurora, is near the top of the list. They flicker and roll, the colors
change, the shape changes at various speeds, and they generally have no
one specific shape. There have been efforts to draw them with more or less
success; this sketch is one of those attempts.

There are many shapes that the aurora can take, and we will only attempt
to draw one of those in this sketch: the typical curtain type, one example of
which appears in Figure 91-1.

Figure 91-1: Red and green aurora

The sketch will make the color change slowly as a function of y position.
Starting with a red value at the bottom of the auroral curtain, the hue will

increase in pixels above. Starting with a hue value of h=15, the hue
increases according to this equation 2:

h = h + random(.87);

Thus, the hue increases at a random rate, but it always increases as the y-
coordinate changes. At the very top of the curtain, the brightness will
decrease, fading the color away.

Next, notice that the aurora appears to consist of vertical strokes and is
banded horizontally. This is accomplished in the program by changing the
saturation of the pixels periodically as a function of the x-coordinate 1. This
is the code, where i is the horizontal position and s is the saturation:

if (i%3 == 0) s = 220+random(20)-10;
else if (i%2 == 0) s = 210+random(20)-10;
else s = 200+random(20)-10;

i%3 is the remainder when i is divided by 3, so there is a somewhat random
variation in the saturation, giving darker bands.

The curtain effect is accomplished using a sine function to locate the
pixels vertically. For a basic coordinate (i, j) the actual pixel will be at
(i,j-bb*sin(a*i)), where the parameters a and bb change by a small and
random amount during each iteration 3. This makes the curtain move.

The visual effect is enhanced using a pair of images. An image of stars is
used as a background, mimicking the night sky. We draw the aurora over
this, followed by a foreground image of trees and shrubs. This image is a
stencil, with black objects on a transparent background. The result is a
pleasing interpretation of the aurora, although it is far from perfect, and
much work could be done to improve the realism.

float a=.02, bb=10;
PImage foreground, background;
void setup ()
{
 foreground=loadImage("trees.gif");
 background=loadImage("stars.jpg");
 size (400, 224);
 colorMode(HSB);
}

void draw ()
{
 float h, s, b=250, dt=0;
 image (background, 0, 0);
 for (int i=0; i<390; i++)
 {

 1 if (i%3 == 0) s = 220+random(20)-10;
 else if (i%2 == 0) s = 210+random(20)-10;
 else s = 200+random(20)-10;
 h = 15;
 for (int j=130; j>30; j--)
 {
 if (j<=100) dt = (100-j)*3;
 else dt = 0;
 stroke (h, s, b, 200-dt);

 2 h = h + random(.87);
 3 point (i,j-bb*sin(a*i));
 }
 a = a + random(0.001)-0.0005;
 bb = bb + random(1)-0.5;
 if (bb>16) bb = 15;
 if (bb<-10) bb = 0;
 if (a<-0.1 || a>0.1) a = 0;
 }
 image (foreground, 0, 0);
}

Sketch 92: A Dynamic Advertisement
On video screens all over the world, we see public advertising. In airports,
shopping malls, and even schools, promotional material of all kinds is
presented to a captive audience. Video is a convenient medium, since the
price of large plasma and LCD screens has dropped below $10 per inch.
Video is a more dynamic medium as well, allowing ads that move and
multiple presentations in sequence, something that printed posters and
billboards can’t do.

The technology connected with video ads is well known too (Biteable Ad
Maker, InVideo, even Adobe Premiere), and it’s available on the computer
desktop. This sketch is one example of a simple advertisement—for a Tex-
Mex restaurant. It is loosely based on a collection of actual video
presentations seen in airports in North America.

First we need a good image of the subject (the product): a burrito. The
image used here is publicly available (https://commons.wikimedia.org/wiki/
File:Carne-asada-burrito.jpg), but in general such images are professional
photographs taken at high resolution. In the sketch, this image is 800×431
pixels. We reduce it to a smaller size, 770×401, or 30 pixels smaller in each
dimension. This is so we can slowly move the image for a more dynamic
presentation. We display the image using this statement 1, where xoff and
yoff are pixel offsets for positioning the image before display:

image (ad1, xoff, yoff);

These offsets change in each frame by a small amount, up to a maximum of
30 pixels, at which time the displacement reverses direction 2:

xoff += dx; yoff += dy;
if (xoff <= -30 || xoff > 0) dx = -dx;
if (yoff <= -30 || yoff > 0) dy = -dy;

The values of dx and dy are very small, 0.05 and 0.03 respectively. They
differ in value so that the image appears to move in a vaguely elliptical
manner.

https://commons.wikimedia.org/wiki/File:Carne-asada-burrito.jpg

The text is displayed over the image in a fixed position, reinforcing the
motion of the image. The text at the bottom remains the same throughout,
but the text at the top changes. The implementation has two stages: if the
variable stage = 0, we display the first text string (“It takes us hours to
make it”) 3. After 850 frames (about 28 seconds) have passed, we
increment the variable stage, and as a result we display the second string
(“It takes you five minutes to eat it”) 4. After 900 more frames, stage
becomes 1 again and the cycle repeats.

We could allow an arbitrary number of stages to allow for the
presentation of multiple distinct messages and images, and in a random
sequence.

PImage ad1;
float xoff=0, yoff=0;
float dx=-.05, dy=.03;
int stage = 0, count = 0;

void setup ()
{
 size(100,100);
 surface.setResizable(true);
 ad1 = loadImage ("burrito.jpg");
 surface.setSize (ad1.width-30, ad1.height-30);
}

void draw ()
{
 noStroke();

 1 image (ad1, xoff, yoff);
 xoff += dx; yoff += dy;

 2 if (xoff <= -30 || xoff > 0) dx = -dx;
 if (yoff <= -30 || yoff > 0) dy = -dy;
 fill (150, 150, 90);
 rect (0, height-50, width, 90);
 triangle (width-260, height, width, height-120,
width, height);
 fill(200);
 textSize(30);
 text ("Organically raised, no additives. Only the
best.", 40, height-20);

 3 if (stage == 0)
 {
 fill (30);
 text ("It takes us hours to make it.", 40, 90);
 count += 1;
 if (count > 850)
 { count = 0; stage = 1; }
 } else if (stage == 1)

 4 {
 fill (30, 100, 100);
 text ("It takes you five minutes to eat it.", 40,
90);
 count += 1;
 if (count > 900)
 { count = 0; stage = 0;

 }
 }
}

Sketch 93: Nim
Nim is a game so old that its origins are lost to history. It was likely
invented in China, and it is one of the oldest games known. It was also one
of the first games to have a computer or electronic implementation and has
been the frequent subject of assignments in computer programming classes.
The game starts with three rows of objects, such as matches or coins, and
there are a different number of objects in each row. A player may remove as
many objects from one row as they choose, but they must remove at least
one and must take them only from one row. Players take turns removing
objects, and the player taking the final one is the winner.

This sketch will implement the game using 9, 7, and 5 coins, and it will
play one side.

Setting the stage for the game play involves reading an image for the
object, in this case a penny, and drawing the correct number of them in the
window. When the human player clicks the mouse over one of the coins,
that coin and all of the coins to the left are removed, and the remaining ones
will move left. Then the computer will remove some coins.

There are three rows 100 pixels apart, so when the player clicks the
mouse, the row index is simply i = (mouseY/100)-1. The number of coins
removed is the number of coins to the left, which in the case of the sketch is
j = (mouseX-10)/45+1 because of how we drew them (45 pixels apart,
indented 10 from the left) 1. An array named val contains the number of
coins in each row, so when the user clicks the mouse, this is the action 2:

val[i] = val[i] - j;

This reduces the number of coins in row (mouseY/100)-1 by (mouseX-
10)/45+1.

Then it is the computer’s turn. There is a strategy that will permit the
computer to almost always win, as long as the user makes the first move. It
involves computing a parity value and making a move to ensure that we
maintain that parity value. Consider the initial state and the state after
taking two coins from row 1:

Before After
Row 1 5 = 0 1 0 1 3 = 0 0 1 1

Row 2 7 = 0 1 1 1 7 = 0 1 1 1

Row 3 9 = 1 0 0 1 9 = 1 0 0 1

Parity 1 0 1 1 1 1 0 1

The parity is determined by looking at each digit in the binary
representation of the values. In each column position, the parity bit for that
column is 1 if the number of 1 bits in the column is odd and 0 if it is even.
We can calculate this using the exclusive OR operator, which in Processing
is “^”, like so: val[0]^val[1]^val[2] 3.

The strategy in Nim is to make a move that makes the parity value 0. It
turns out that this is always possible; in the preceding situation, the
computer might remove 5 coins from row 3 giving this state:

Row 1 3 = 0 0 1 1

Row 2 7 = 0 1 1 1

Row 3 4 = 0 1 0 0

Parity 0 0 0 0

This is what the sketch does after every move the player makes:
computes the parity of all possible moves until it finds one with 0 parity 4.

PImage piece;
int val[] = {5, 7, 9}, i, j;

void setup ()
{
 size (500, 400);
 piece = loadImage ("coin.gif");
 frameRate (0.5);
}

void draw ()
{
 background (0);
 for (int j=0; j<3; j++)
 for (int i=0; i<val[j]; i=i+1)

 1 image (piece, i*45+10, (j+1)*100);
}

void mouseReleased ()
{
 i = (mouseY/100)-1; j = (mouseX-10)/45+1;
 if (i<0) return;

 2 if (j<=val[i]) val[i] = val[i] - j;
 draw(); move();
 if (val[0]+val[1]+val[2] == 0)
 { draw(); text ("Computer wins.",20,300);
 noLoop(); return;
 }
}

3 int eval() { return val[0]^val[1]^val[2]; }

void move()
{
 if (val[0]+val[1]+val[2] == 0)
 { text ("You Win.",20,300); noLoop(); return; }
 for(int i=0; i<3; i++)
 for (int j=1; j<=val[i]; j++)
 {
 val[i] = val[i] - j;

 if (4eval() == 0) return;
 val[i] = val[i] + j;
 }
 text ("Computer resigns- you win.", 20, 300);

 noLoop();
}

Sketch 94: Pathfinding
Pathfinding amounts to finding a route from one place to another in two or
three dimensions. Potential routes could be blocked by walls, rivers, wires,
or a host of other obstacles. Of course, it is the best route that is desired,
where “best” can be based on many factors, such as physical distance, time,
or cost. In circuit design, we use pathfinding to create a connection between
circuit elements. In computer games, it finds a path to get a game object
from one place to another. This sketch will implement a basic pathfinding
method in two dimensions.

The method begins at some initial point, (x, y), and there is a destination
or target point to be reached, (xt, yt). Each neighbor (xn, yn) of (x, y) is
marked with its distance to (x, y). Then we look at the neighbors of those
locations (xn, yn) and mark those locations with the distance to (x, y) by
adding the distance to the neighbor (xn, yn) to the distance of (xn, yn) to (x,
y). We keep repeating this until we find ourselves at the target pixel (xt, yt).
Now we know the distance to the start pixel, and the best route can be
traced backward following the connected locations having the smallest
marked value. A neighbor must be an open space, not an obstacle, in order
to be marked, so the route will never pass through obstacles.

The program begins by reading in an image on which obstacles appear in
black and the background is white. The start and end positions of the path
are specified in the program as x, y coordinates: startx, starty, and endx,
endy (you can change these to find a different path).

Beginning at the start coordinates, we examine the immediately
neighboring pixels 1. The neighbors of any pixel are the ones to the left,
right, above, or below. The distance between pixels (x0, y0) and (x1, y1) is
therefore |x0 – x1| + |y0 – y1| and is an integer. The distance between the start
pixel and its neighbors is 1. This way of measuring distance is called
Manhattan distance; you could adapt the pathfinding method to use other
distance measurements as well.

If one of the neighbors is the end of the path, the search is complete 2;
otherwise we color the pixel a shade of cyan proportional to its distance

from the start point. We use the red component of the RGB color as the
distance, so as the red increases, the color gets brighter. We could instead
use a separate 2D array to store distances, especially if floating-point
distances are required, such as when calculating Euclidean distances.

Next, we examine all pixels that have the red value 1 (those that are a
distance 1 from the start) in the same way, and set their neighbors to 2.
Then we set their neighbors to 3, and so on until we reach the end location.

At this point, the distance to the start point is N. To trace a route back to
the start, we look for a neighbor of the end location that has a value of N −
1; any one will do. Mark that location as being on the route, and look for a
neighbor of that location that has a value of N − 2; mark it and repeat. At
any moment there will be many pixels having a particular value, but only
ones connected to the path are interesting. The path is complete when we
reach the start location. The drawRoute() function searches the neighbors
of the end pixel for a neighbor with a value of N, marks that pixel with a
specific color, and then recursively finds a neighbor of that pixel, marks it,
and so on 3:

set (i,j,color(0,100,200));
drawRoute (i,j,n-1);

The result is that a path is drawn on the displayed image.

NOTE

The colors indicate distance in this sketch only to illustrate the
method. This would not be done in an actual application. Also, this
method is generally too slow for many applications, and better (and
more complex) algorithms exist. The most commonly used method is
the A* algorithm.

int startx=20, starty=20;
int endx=99, endy=73;
PImage back;
int stage = 1, n=1;

void setup ()
{
 size (200, 200);
 back = loadImage("plan.png");
 back.set(startx, starty, color(1,1,1));
 image(back, 0, 0);
}

void draw ()
{
 if (stage == 1) step();
 else
 if (drawRoute(endx, endy, n-1)) noLoop();
}
void step ()
{
 for (int i=0; i<width; i++)
 for (int j=0; j<height; j++)
 if (red(get(i,j)) == n)
 {

 1 if(red(get(i-1,j))>n) set(i-1,j,color(n+1, 255,
255));
 if(red(get(i+1,j))>n) set(i+1,j,color(n+1, 255,
255));
 if(red(get(i,j-1))>n) set(i,j-1,color(n+1, 255,
255));
 if(red(get(i,j+1))>n) set(i,j+1,color(n+1, 255,
255));

 2 if (i==endx && j==endy) { stage = 2; return; }
 }
 n=n+1;
}
boolean drawRoute (int x, int y, int n)
{
 for (int i=x-1; i<=x+1; i++)
 for (int j=y-1; j<=y+1; j++)
 if (red(get(i,j)) == n)
 {

 3 set (i,j,color(0,100,200));
 drawRoute (i,j,n-1);

 return true;
 }
 return false;
}

Sketch 95: Metaballs—A Lava Lamp

Figure 95-1: A lava lamp (shown in motion online: https://en.wikipedia.org/wiki/File:Lava_la
mp_(oT)_07_ies.ogv)

This sketch represents an attempt to create a dynamic graphical simulation
of a lava lamp, a popular item from the 1960s (see Figure 95-1). Most
North Americans will recognize one, because they have undergone a
resurgence in popularity, perhaps due to an interest in retro furnishings. The
lamp is a glass container filled with oil. There is an incandescent lamp at
the bottom and some colored wax. When the lamp heats up, it melts the
wax, and globules slowly rise to the top, changing shape. Cooling globules
fall to the bottom, creating a dynamic visual effect as the smooth wax
shapes interact.

Each blob in the lamp seems to move on its own, so we’ll use a
collection of points with x, y coordinates that form the center of each blob,
and these points can move about in a 2D area. We’ll create the actual blob
in an interesting way: each one is a 3D function, and we’ll render a 2D view
looking down at the part of the 3D blobs that have z (height) values greater

https://en.wikipedia.org/wiki/File:Lava_lamp_(oT)_07_ies.ogv

than a threshold, like an aerial view of an island sticking out of the water (F
igure 95-2). These 3D functions are referred to as isosurfaces or metaballs.

Figure 95-2: How the threshold slices the 3D function

As two metaballs get close to each other, the height of the area where
they intersect is the sum of the two objects, and as they get nearer, this
region will exceed the z threshold, so it will appear in the 2D rendering (Fig
ure 95-3). This creates the illusion of wax blobs interacting.

Figure 95-3: How the metaballs add up to produce a blob

We will use a simple function for the metaball: a sphere, as defined by
the function named equation() 5. It defines a pixel value at any point x, y
with respect to a sphere k at some other point, as follows:

radius[k] / sqrt((xx-x[k])*(xx-x[k]) + (yy-y[k])*(yy-y[k]))
);

This sketch has six spheres defined by arrays x and y, and they move as
defined by arrays dx and dy. The setup() function initializes the six
spheres. The first one is quite large, does not move, and lies at the bottom of

the region to simulate the large wax reservoir at the bottom of most lamps
1.

The draw() function calculates the sum of all spheres at any point in the
drawing area 2. In many instances this will be zero, but as the balls get
nearer, the sum increases and becomes visible if it is greater than the
threshold MINT. Visible pixels will be drawn as green, and the background
will be yellow. The balls are moved each iteration 3 and can change size
randomly 4.

int maxMetaballs = 6;
float x[] = new float[maxMetaballs];
float y[] = new float[maxMetaballs];
float dx[] = new float[maxMetaballs];
float dy[] = new float[maxMetaballs];
float radius[] = new float[maxMetaballs];
float MINT = 1.4f, MAXT = 50f;

void setup ()
{
 size(500, 500);

 1 for (int i=0; i<maxMetaballs; i=i+1) radius[i] = -1;
 x[0] = 250; y[0] = 850; radius[0] = 400;
 x[1] = 100; y[1] = 300; radius[1] = 20; dx[1] = 0;
dy[1] = -0.55;
 x[2] = 120; y[2] = 100; radius[2] = 30; dx[2] = 0.01;
dy[2] = 0.57;
 x[3] = 90; y[3] = -330; radius[3] = 23; dx[3] =
-0.01; dy[3] = 0.32;
 x[4] = 320; y[4] = -650; radius[4] = 19; dx[4] =
0.01; dy[4] = 0.4;
 x[5] = 230; y[5] = -800; radius[5] = 24; dx[5] =
-0.01; dy[5] = 0.42;
}

void draw ()
{
 float sum;
 background(230, 220, 40, 90);
 for(int yy = 0; yy < height; yy++)
 for(int xx = 0; xx < width; xx++)
 {
 sum = 0;

 2 for(int i = 0; i < maxMetaballs && radius[i] > 0;
i++)
 sum += equation(xx,yy,i);
 if(sum >= MINT && sum <= MAXT)
 set(xx, yy, color(0,170,50,100));
 }
 for (int i=1; i<maxMetaballs; i=i+1)
 {

 3 if (radius[i] >0)
 {
 y[i] += dy[i];
 if (y[i]>height+6*radius[i] || (y[i]

<-3*radius[i])&&(dy[i]<0))
 { dy[i] = -dy[i]; x[i] += random (10)-5; }
 }
 ellipse (x[i], y[i], 3, 3);
 }

 4 if (random(500)< 2) radius[(int)random (maxMetaballs)]
+= random (1)-0.5;
}

 5 float equation(float xx, float yy, int k)
{ return (radius[k] / sqrt((xx-x[k])*(xx-x[k]) + (yy-
y[k])*(yy-y[k]))); }

Sketch 96: A Robot Arm
The word robot is often associated with a human-shaped mechanical
device, but by far the most common robots are more restricted devices with
a single function and a small range of motion. An example would be the
kind of robot that welds joints or paints cars in factories. These frequently
look like an arm, complete with multiple joints and some kind of tool at the
end of the arm where the hand would be. This sketch allows a user to move
a 2D simulated robot arm using key presses.

The robot in the simulation is typical of the type described, such as the
commercially available PUMA. It consists of three linked segments, each of
which can be rotated at the joint, as shown in Figure 96-1. The joints are
the shoulder (jangle1), joined by the bicep to the elbow (jangle2), joined by
the forearm to the wrist (jangle3), which connects to the hand. The user
controls the angles subtended by the joints using keys: jangle1 is controlled
by Q and E, jangle2 by A and D, and jangle3 by Z and C.

Figure 96-1: Three linked segments forming a robot arm

We’ll represent each arm section by an image. The axis of rotation is not
the upper-left corner or the center of the image but instead is a point in the
image where the joint is connected to the previous one. The angle for any

joint is increased by pressing one key and decreased by another, but because
they are connected to each other, the rotations must be relative to the
previous section. The rotations are computed from the shoulder down to the
hand. Then the hand is drawn at the final rotated location (all three
rotations), the forearm is drawn at the location previous (two rotations), and
finally the bicep after its rotation. This is accomplished using the
Processing functions pushMatrix() and popMatrix(): the shoulder joint is
rotated and then the state pushed 1; the elbow is rotated and pushed 2; the
wrist is rotated and drawn. Then we restore the previous state, draw the
bicep 3, and then perform one more restoration.

The images that represent the arm parts must be analyzed and the results
coded into the program as coordinates. For example, consider the elbow:
this is where the bicep (armA in the code) meets the forearm (armB in the
code). The point where they meet has an offset from both images by a
different amount, as shown in Figure 96-2. For the bicep, the point of
contact is (167, 37) as measured from its upper left. The connection to the
forearm is at (31, 25) relative to the forearm image, which is its axis of
rotation as well. So, to rotate the forearm, we first translate it by (−31, −25)
so that it appears to rotate about the correct place. The forearm must be
translated when drawn so that the connection on the bicep at (167, 37)
aligns with the connection on the forearm at (31, 25), so the next translation
is (167 − 30, −(37 − 24)), or (137, −13). We reverse the sign on the y-
coordinate because the direction of y is reversed from the usual y-axis in
mathematics. The coordinates of each connection point are obtained from
the images, and if they change, the points will have to be remeasured.

Figure 96-2: The connection points between the arm segments

float jangle1=-40, jangle2=22, jangle3=90;
PImage armA, armB, armC;
void setup ()
{
 size(500, 500);
 armA = loadImage ("robotA.gif");
 armB = loadImage ("robotB.gif");
 armC = loadImage ("robotC.gif");
 fill (200, 200, 110);
}

void draw ()
{
 background(100, 100, 100, 1);
 makeArm();
}

void makeArm ()
{
 translate (100, 400);
 rect (0, 0, 100, 100);
 translate (50, 40);
 pushMatrix();

 1 translate (-31, -37); rotate (radians(jangle1));
 pushMatrix();

 2 translate (137, -13); rotate(radians(jangle2));
 pushMatrix();

 3 translate (137, -11); rotate (radians(jangle3));
 translate (-16, -15); image (armC, 0, 0);
 popMatrix();
 translate (-30, -25); image(armB, 0, 0);
 popMatrix();
 translate (-31, -37); image (armA, 0, 0);
 popMatrix();
}
void keyPressed ()
{
 if (key=='q') jangle1 = jangle1-1;
 if (key=='e') jangle1 = jangle1+1;
 if (key=='a') jangle2 = jangle2-1;
 if (key=='d') jangle2 = jangle2+1;
 if (key=='z') jangle3 = jangle3-1;
 if (key=='c') jangle3 = jangle3+1;
}

Sketch 97: Lightning
Lightning moves quickly, randomly, and brightly. It would seem to be a
difficult thing to capture in a computer graphic sense, and yet because it is
in everyone’s experience, there are situations where it would be important
to be able to draw lightning. This sketch is a basic attempt to do that.

As was the situation with the auroral simulation of Sketch 91, there is a
history and literature on the subject of drawing lightning, and a lot of it is
based on an effort to model the physical process by which lightning occurs
in the real world. This is too complex to reproduce in a small program, but
some of the fruits of that work can be useful. Researchers have measured
the angle between a streak of lightning and a branch, for instance (about 16
degrees), and also the likelihood of a branch.

This sketch will generate random lightning shapes as small, connected
line segments. The length of the segment and an angle from the previous
one will be random. A 2D array will hold the various segments for the main
and branching parts. The main part is a sequence of line segments in the
first part of the array: a line segment with starting point x[0][i] and y[0]
[i] connected to segment endpoint x[0][i+1], y[0][i+1] 1. A branch will
occur at random, with probability 0.11 2, and it will occupy another row of
the array, the first branch starting at x[1][0], y[1][0], the second at x[2]
[0], y[2][0], and so on.

A branch can also terminate, with probability 0.2 3, but the main branch
cannot. It will continue until it reaches a y value greater than 205, where it
terminates 4. A new lightning stroke will occur later, at a random time and
x location 2.

Each time draw() is called, a new section of each stroke is created and
drawn, so the lightning is a dynamic display. It appears to descend from the
top of the image down to the ground, or to the water in this case: a
background image of a storm at sea is displayed, and the lightning appears
to start in the clouds and strike the water.

This scheme has some flaws. Sometimes, at random, strokes can appear
in what a human would consider an unrealistic way. Branches can pass over

each other, sometimes more than once. This could occur in real life, but it
does not happen very often. A lightning path usually has a surrounding
glow, too, and this is missing from the sketch. Lightning is also a source of
illumination and would alter the ambient light in the scene. It is possible to
reproduce this effect, but using a static image as the background makes it
difficult to change the illumination. Finally, we add to the lightning strokes
iteratively and, once they are determined to a specific point, do not change.
Lightning paths have been seen to move along their length, not just at the
lower end, but the effect is subtle.

The code offers chances for experimentation. We can alter the
probabilities of the creation of a new branch or of an existing one being
deleted. The length of each section, now random between 0 and 12, and the
angle, random between −30 and +30 degrees, can also have a significant
visual impact on the result.

PImage back;
float x[][] = new float [40][600];
float y[][] = new float [40][600];
int n[] = new int [40], m=0, count=0;
void setup ()
{
 size(100,100);
 surface.setResizable(true);
 back = loadImage ("back.jpg");
 surface.setSize (back.width, back.height);
 m=1; n[0] = 1;
 x[0][0] = 30; x[0][1] = 35;
 y[0][0] = 43; y[0][1] = 47;
}
void draw ()
{
 float a, d;
 stroke (250,255, 250,128);
 image (back, 0, 0);
 if (count<=0)
 if (random(300) < 2)
 {
 m=1; x[0][0] = random(width); x[0][1] = x[0][0];
 y[0][0] = random(50)+12; y[0][1] = y[0][0]; n[0]
= 1; count=1;
 }
 for (int i=0; i<m; i++)
 for (int j=0; j<n[i]; j++) // Draw existing
 if (x[i][0]>0) line (x[i][j], y[i][j], x[i]
[j+1],y[i][j+1]);

 1 for (int i=0; i<m; i++) // Grow existing
 {
 a = random (60)+60; d = random (12);
 if (x[i][0] < 0) continue;
 x[i][n[i]+1] = x[i][n[i]]+d*cos(radians(a));
 y[i][n[i]+1] = y[i][n[i]]+d*sin(radians(a));
 n[i] = n[i] + 1;

 2 if (random (1)<0.11) // New branch
 {
 a = random (60)+60; d = random (12);
 x[m][0] = x[i][n[i]-1]; y[m][0] = y[i][n[i]-1];
 x[m][1] = x[i][n[i]-1]; y[m][1] = y[i][n[i]-1];
 n[m] = 1; m = m + 1;
 }

 3 if (i!=0 && random(1) < 0.20) for (int j=0; j<600;

j++) x[i][j] = -1;
 }

 4 if (y[0][n[0]-1] > 205) { m=0; count = -1; }
}

Sketch 98: The Computer Game Breakout
The original game Breakout was designed and built in 1975 by legendary
early builder of games Nolan Bushnell, Steve Wozniak (later of Apple
fame), and Steve Bristow at Atari. In basic concept, it is a variation on Pong
for one player, where the paddle is used to bounce a ball into bricks that
vanish when hit. The original game has eight rows of rectangular bricks,
with pairs of rows having the same color. The ball bounces off the sides and
top of the game screen, and off a brick after it disappears, but is free to pass
through the bottom. The player must move the paddle to hit the downward-
moving ball to prevent it from disappearing. The player has three turns (that
is, they can miss the ball three times) to clear the screen of bricks, and
different colored bricks score a different number of points.

This sketch will implement a simplified version of the game. There are
three rows of red bricks, all worth the same amount. There is no sound and
no high score. The bricks are filled rectangles, 30 pixels by 15 pixels, and
the ball is simply a small circle, 3 pixels across. A 2D array, exists[][], is
used to keep track of which bricks have been eliminated, and the brick in
row i column j will be drawn if exists[i][j] is true. Drawing the bricks
is therefore simple 1:

for (int i=0; i<Ncols; i++) // Draw all bricks
 for (int j=0; j<Nrows; j++)
 if (exists[i][j]) rect (i*30+20, j*15+30, 30, 15);

The ball is drawn at location (x, y) and is moved during each frame by
an amount (dx, dy) 2. The paddle is simply a line drawn centered at (px,
py). Typing the A key moves the paddle left by 10 pixels (px=px-10), and
typing D moves it right by the same amount. If the ball moves past the
coordinate py (= 300) and its x value is between px − 30 and px + 30, then
the ball changes y-direction (dy=-dy) and it appears to bounce. The ball also
bounces off the top of the screen (y==0) and the sides (x<0 or x>width).

We test the ball against each brick for a collision during each frame; this
is done using the absolute coordinates of each brick. If the brick at (i, j)
exists, then these are the brick boundaries:

Dimension Coordinate value Boundary Coordinate value Boundary
X i*30+20 Left edge i*30+50 Right edge
Y j*15+30 Top edge j*15+45 Bottom edge

Simply check the ball’s coordinates against these values for every brick,
and bounce if the ball is inside the brick 3, at the same time setting
exists[i][j] to false and increasing the score.

After the ball falls past the bottom, we decrement life and the ball is
redrawn at a random x location at y value 150. The game is over when
either the value of life is 0 or the score is the maximum of 36.

This simple version has flaws. The bounce off of the bricks is not
dependent on the side of the brick that was hit; the y-direction of the ball is
always changed. The bounce off the paddle is always the same, no matter
where the point of impact.

final int Ncols = 12, Nrows = 3;
boolean exists [][] = new boolean[Ncols][Nrows];
int x, y, dx, dy, px, py, score = 0, life=5;
int direction = 0;
void setup ()
{
 size (400, 400); fill (200, 40, 40);
 for (int i=0; i<Ncols; i++) // All bricks exist
 for (int j=0; j<Nrows; j++) exists[i][j] = true;
 x = (int)random(300)+100; y = 150; // Random X
 start
 dx=1; dy=-2; px = 120; py = 300; // Initial paddle
 position
}

void draw ()
{
 background(200);

 1 for (int i=0; i<Ncols; i++) // Draw all bricks
 for (int j=0; j<Nrows; j++)
 if (exists[i][j]) rect (i*30+20, j*15+30, 30,
 15);
 line (px-30, py, px+30, py); // Paddle
 ellipse (x, y, 3, 3); move(); // Ball
 text ("Score: "+score+" Lives remaining:
 "+life,20,350);
 if (score>=36) text (" YOU WIN!",100, 300);
 else if (life <= 0)
 {
 text (" YOU LOSE!",100, 300);
 noLoop(); // Win or lose.
 }
}
void keyPressed () // Use the 'a' and 'd' keys to
 move the paddle
{
 if (key == 'a' && px > 30) direction = -4;
 else if (key == 'd' && px<width-30) direction = 4;
 else direction = 0;
}

void keyReleased ()
{
 direction = 0;
}

2 void move () // Move the ball

{
 x = x + dx; y = y + dy; // Basic move
 px = px + direction;
 if (x<2|| x>width-2) dx = -dx; // X bounce?
 if (y>=py-1&&y<=py+1 && (x>=px-30&&x<=px+30)) dy =
 -dy; // Paddle bounce
 if (y<0) dy = -dy; // Y bounce top

 3 for (int i=0; i<Ncols; i++) // Ball hits a brick
 for (int j=0; j<Nrows; j++)
 if(exists[i][j] && x>=i*30+20 && y>=j*15+30 &&
 x<=i*30+50 && y<=j*15+45)
 {
 exists[i][j] = false; // Brick is destroyed
 dy = -dy; score++; // Ball bounces, score
 }
 if (y>height) // Ball through the bottom
 {
 if (score < 36) life--; y=150; // Lose a life,
 restart the ball
 x = (int)random(width-100+50);
 }
}

Sketch 99: Midpoint Displacement—
Simulating Terrain
This sketch will generate a pseudo-random terrain profile, with a darkening
sky and twinkling stars. The heart of this sketch is the midpoint
displacement method for generating terrain, and while this example is only
two-dimensional, it illustrates the more general algorithm pretty well.

The method starts with a line, which in the case of this sketch is a line
that runs horizontally across the entire image. Next we select the midpoint
of the line, displace it by a random value between dy and –dy, and create
two lines as in Figure 99-1.

Figure 99-1: Splitting a line

Then we do the same thing again with the two lines just created, except
we decrease the value of dy. The result is four lines. Each time we generate
a new line pair, the resulting segments can be split again using a smaller dy
value until some termination criterion is reached. In the sketch, the initial
value of dy is 75, and the splitting process ceases when it becomes smaller
than 2.

The splitting process is accomplished by a recursive procedure, md() 4:

void md (float x0, float y0, float x1, float y1, float dy)

Here, (x0, y0) and (x1, y1) are the line segment endpoints, and dy is the
maximum value of the random height change. This procedure finds the

midpoint and calls itself twice, passing the left and right halves of the line
and a smaller dy. The process continues as illustrated in Figure 99-2 until
we reach the minimum dy value.

The line endpoints are then saved in an array pair, lx[] and ly[]. We
don’t actually draw the line segments but make a filled region by drawing a
line from each endpoint down to the bottom of the window that is as thick
as half of the line segment x width 3. The result is a horizon line with a
convincing random nature.

Figure 99-2: Multiple recursive splits create a realistic horizon.

The sky is a set of horizontal lines starting at a color of (50, 50, 240) and
decreasing by 1 in the blue value for every two lines drawn 1. This
produces a nice deep blue gradient in the sky.

The stars are simply small circles drawn in random locations, but they
must appear in the same place during each frame, so the arrays starx[] and
stary[] hold their locations. They don’t exactly twinkle, but we draw them
with a probability of 99 percent so that once in a while one of the stars is
not drawn during a particular frame 2. During any one frame it is likely that
at least one star has gone dark. The overall effect is that of an evening sky
and a rural landscape.

int starx[]=new int[50], stary[]=new int[50];
float lx[]=new float[1000], ly[]=new float[1000];
int n=0;
void setup ()
{
 size(640, 480);
 fill (255);
 for (int i=0; i<50; i++)
 {
 starx[i] = (int)random(width);
 stary[i] = (int)random(height/2);
 }
 md(0,300,width, 300, 75.0);
}

void draw ()
{
 for (int i=0; i<height; i++)
 {

 1 stroke(50, 50, (float)(height-i)/2);
 line (0,i, width, i);
 }
 noStroke();

 2 for (int i=0; i<50; i++)
 if (random(1)<0.99) ellipse (starx[i], stary[i], 2,
2);
 stroke(0); strokeWeight(lx[1]-lx[0]+1);

 3 for (int i=0; i<n; i=i+1)
 line (lx[i],ly[i], lx[i],height);
}

 4 void md (float x0, float y0, float x1, float y1, float
dy)
{
 if (dy < 2)
 {
 lx[n] = x0; ly[n] = y0;
 lx[n+1] = x1; ly[n+1] = y1;
 n = n + 2;
 } else
 {
 float d = random(dy+dy)-dy;
 md (x0,y0, x0+(x1-x0)/2, y0+(y1-y0)/2-d, .6*dy);
 md (x0+(x1-x0)/2, y0+(y1-y0)/2-d, x1, y1, .6*dy);

 }
}

13
MAKING YOUR WORK PUBLIC

Sketch 100: Processing on the Web
Processing sketches can usually execute within a browser, requiring little to
no modification to make dynamic and interactive web objects. The system
that allows this is Processing.js; it converts the Processing sketch into
JavaScript before running it and displays the result in an HTML5 canvas.

There are four steps in running a sketch from the web:

. Download Processing.js. This means going to a site like https://processingj
s.org/download/ and getting the files processing.js and processing.min.js.

. Create the Processing sketch. We’ll use Sketch 91, the aurora simulation, as
our example. This sketch will be named sketch100.pde.

. Create a web page within which you’ll embed the sketch. It must load
processing.min.js as a script in the header of the page 2:

<script src="processing.min.js"></script>

. Create a canvas, specifying sketch100.pde as a data processing source 3:

<canvas data-processing-sources="sketch100.pde"> </canvas>

This will only work properly on a web server, so you need to upload all
files to a server and display the page from the internet, or install a server on
your computer.

All three files—the HTML source, the sketch, and processing.min.js—
should be in the same directory on the web server. When the page is loaded,
the sketch should run and display results in the canvas.

There may be some other issues depending on the sketch. First, if the
sketch uses images, these must be preloaded so that their size and other
properties are available when the sketch runs. A preload directive must
appear in a comment at the beginning of the sketch. For example, in this
case, the files trees.gif and stars.jpg are used 1:

/* @pjs preload="trees.gif, stars.jpg"; */

https://processingjs.org/download/

Next, be careful if the sketch uses integers. The Processing code is
translated into JavaScript, which has no integer type. Integers will become
floating-point values. Any program that depends on integer arithmetic (like
5/2 = 2) will not work properly.

Any program that requires a Java library won’t work either. Minim is a
Java library, and so are the video classes. There are JavaScript variations of
these, but using them will require learning how JavaScript works and how
to access JavaScript from Processing and vice versa.

The HTML code for the web page follows the code for the sketch on the
next page.

1 /* @pjs preload="trees.gif, stars.jpg"; */
float a=.02, bb=10;
PImage foreground, background;

void setup ()
{
 foreground=loadImage("trees.gif");
 background=loadImage("stars.jpg");
 size (400, 224);
 colorMode(HSB);
}

void draw ()
{
 float h, s, b=250, dt=0;
 image (background, 0, 0);
 for (int i=0; i<390; i++)
 {
 if (i%3 == 0) s = 220+random(20)-10;
 else if (i%2 == 0) s = 210+random(20)-10;
 else s = 200+random(20)-10;
 h = 15;
 for (int j=130; j>30; j--)
 {
 if (j<=100) dt = (100-j)*3;
 else dt = 0;
 stroke (h, s, b, 200-dt);
 h = h + random(.87);
 point (i,j-bb*sin(a*i));
 }
 a = a + random(0.001)-0.0005;
 bb = bb + random(1)-0.5;
 if (bb>16) bb = 15;
 if (bb<-10) bb = 0;
 if (a<-0.1 || a>0.1) a = 0;
 }
 image (foreground, 0, 0);
}
<!DOCTYPE html>
<html>
<head>
<title> Sketch 100: Processing on the Web</title>

2 <script src="processing.min.js"></script>
</head>
<body bgcolor=aa99aa>

<h1> Sketch 91: Simulating the Aurora
 </h1>
This is sketch 91 adapted for the web.

Among objects that are difficult to render on a
computer, the northern lights or aurora is near the top
of the list. They flicker and roll, the colors change,
the shape changes at various speeds, and they generally
have no one specific shape. There have been efforts to
draw them with more or less success; this sketch is one
of those attempts.

<center>

3 <canvas data-processing-sources="sketch100.pde">
</canvas>
</center>

There are many shapes that the aurora can take, and
this sketch will only attempt to draw one of those: the
typical curtain type.

The sketch will make the color change slowly as a
function of Y position. Starting with a red value at
the bottom of the auroral curtain, the hue will
increase in pixels above. Starting at a hue value of
h=15, the hue increases according to:

 h = h + random(.87)

So that the hue increases at a random rate, but always
increases, as the y coordinate changes. At the very top
of the curtain the brightness will decrease also,
fading the color away.

Next, notice that the aurora appears to consist of
vertical strokes and is banded horizontally. This is
accomplished in the program by changing the saturation
of the pixels periodically as a function of X
coordinate. The code is:

if (i%3 == 0) s=220+random(20)-10;

else if (i%2 == 0) s = 210+random(20)-10;

else s = 200+random(20)-10;

where i is the horizontal position and s is the
saturation. i%3 is the remainder when i is divided by
3, so there is a somewhat random variation in the
saturation, giving darker bands.

The curtain effect is accomplished using a sine
function to locate the pixels vertically. For a basic
coordinate (i,j) the actual pixel will be at (i,j-
bb*sin(a*i)) where the parameters a and bb change by a

small and random amount during each iteration. This
makes the curtain move.

</body>
</html>

	Title Page
	Copyright
	About the Author
	Author’s Note
	Introduction
	The Basics of a Programming Language: Processing
	The Beginning
	The Middle
	The Rest
	Variables
	How to Write a Program

	Part 1: The Fundamentals of Drawing
	Sketch 1: A Circle
	Example A
	Example B
	Example C

	Sketch 2: Colors
	Example A
	Example B

	Sketch 3: if Statements—Changing Colors Conditionally
	Example A
	Example B
	Example C

	Sketch 4: Loops—Drawing 20 Circles
	Example A
	Example B

	Sketch 5: Lines
	Example A
	Example B

	Sketch 6: Arrays—Drawing Many Circles
	Sketch 7: Lines with Rubber Banding
	Sketch 8: Random Circles
	Sketch 9: A Rectangle
	Sketch 10: Triangles and Motion
	Sketch 11: Displaying Text
	Sketch 12: Manipulating Text Strings

	Part 2: Working with Preexisting Images
	Sketch 13: Loading and Displaying an Image
	Example A
	Example B

	Sketch 14: Images—Theory and Practice
	Example A
	Example B

	Sketch 15: Manipulating Images I—Aspect Ratio
	Example A
	Example B

	Sketch 16: Manipulating Images II—Cropping
	Sketch 17: Manipulating Images III—Magnifier
	Sketch 18: Rotation
	Example A
	Example B

	Sketch 19: Rotating About Any Point—Translation
	Example A
	Example B

	Sketch 20: Rotating an Image
	Sketch 21: Getting the Value of a Pixel
	Sketch 22: Setting and Changing the Values of Pixels
	Example A
	Example B

	Sketch 23: Changing the Values of Pixels—Thresholding
	Sketch 24: User-Defined Functions
	Sketch 25: Elements of Programming Style
	Sketch 26: Duplicating Images—More Functions

	Part 3: 2D Graphics and Animation
	Sketch 27: Saving an Image and Adjusting Transparency
	Sketch 28: Bouncing an Object in a Window
	Sketch 29: Basic Sprite Graphics
	Sketch 30: Detecting Sprite-Sprite Collisions
	Sketch 31: Animation—Generating TV Static
	Sketch 32: Frame Animation
	Example A
	Example B

	Sketch 33: Flood Fill—Filling in Complex Shapes

	Part 4: Working with Text and Files
	Sketch 34: Fonts, Sizes, Character Properties
	Sketch 35: Scrolling Text
	Sketch 36: Text Animation
	Sketch 37: Inputting a Filename
	Sketch 38: Inputting an Integer
	Sketch 39: Reading Parameters from a File
	Sketch 40: Writing Text to a File
	Sketch 41: Simulating Text on a Computer Screen

	Part 5: Creating User Interfaces and Widgets
	Sketch 42: A Button
	Sketch 43: The Class Object—Multiple Buttons
	Sketch 44: A Slider
	Sketch 45: A Gauge Display
	Sketch 46: A Likert Scale
	Sketch 47: A Thermometer

	Part 6: Network Communications
	Sketch 48: Opening a Web Page
	Example A
	Example B

	Sketch 49: Loading Images from a Web Page
	Sketch 50: Client/Server Communication

	Part 7: 3D Graphics and Animation
	Sketch 51: Basic 3D Objects
	Example A
	Example B

	Sketch 52: 3D Geometry—Viewpoints, Projections
	Sketch 53: 3D Illumination
	Sketch 54: Bouncing a Ball in 3D
	Sketch 55: Constructing 3D Objects Using Planes
	Sketch 56: Texture Mapping
	Sketch 57: Billboards—Simulating a Tree
	Sketch 58: Moving the Viewpoint in 3D
	Sketch 59: Spotlights
	Sketch 60: A Driving Simulation

	Part 8: Advanced Graphics and Animation
	Sketch 61: Layering
	Sketch 62: Seeing the World Through a Window
	Sketch 63: The PShape Object—A Rotating Planet
	Sketch 64: Splines—Drawing Curves
	Sketch 65: A Driving Simulation with Waypoints
	Sketch 66: Many Small Objects—A Snowstorm
	Sketch 67: Particle Graphics—Smoke
	Sketch 68: Saving a State—A Spinning Propeller
	Sketch 69: L-Systems—Drawing Plants
	Sketch 70: Warping an Image

	Part 9: Working with Sound
	Sketch 71: Playing a Sound File
	Sketch 72: Displaying a Sound’s Volume
	Sketch 73: Bouncing a Ball with Sound Effects
	Sketch 74: Mixing Two Sounds
	Sketch 75: Displaying Audio Waveforms
	Sketch 76: Controlling a Graphic with Sound
	Sketch 77: Positional Sound
	Sketch 78: Synthetic Sounds
	Sketch 79: Recording and Saving Sound

	Part 10: Working with Video
	Sketch 80: Playing a Video
	Sketch 81: Playing a Video with a Jog Wheel
	Sketch 82: Saving Still Frames from a Video
	Sketch 83: Processing Video in Real Time
	Sketch 84: Capturing Video from a Webcam
	Sketch 85: Mapping Live Video as a Texture

	Part 11: Measuring and Simulating Time
	Sketch 86: Displaying a Clock
	Sketch 87: Time Differences—Measuring Reaction Time
	Sketch 88: M/M/1 Queue—Time in Simulations

	Part 12: Creating Simulations and Games
	Sketch 89: Predator-Prey Simulation
	Sketch 90: Flocking Behavior
	Sketch 91: Simulating the Aurora
	Sketch 92: A Dynamic Advertisement
	Sketch 93: Nim
	Sketch 94: Pathfinding
	Sketch 95: Metaballs—A Lava Lamp
	Sketch 96: A Robot Arm
	Sketch 97: Lightning
	Sketch 98: The Computer Game Breakout
	Sketch 99: Midpoint Displacement—Simulating Terrain

	Part 13: Making Your Work Public
	Sketch 100: Processing on the Web

