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Preface

There are already some great books on programming 2D games, so why
write one that focuses only on 2D graphics?

The answer is that whereas other books might succeed at covering a
breadth of topics, they don’t necessarily go into the depth required to
make professional-looking games. Some great texts cover other advanced
game development topics, such as game physics, game Al, real-time 3D
graphics, and game architectures, but the information on 2D graphics has
been difficult to find in a single text. Until now, that is.

Further, the books that do discuss the creation of 2D games focus on
only one platform (OpenGL, DirectX, Flash, XNA). In reality, as you will
see in this book, the core concepts of graphics programming are the same,
regardless of platform.

Throughout this book you will learn the concepts and techniques used
in making great 2D graphics. Much of what is included in this book might
be considered general knowledge by many game developers, but those same
developers would be at a loss to tell you where they actually picked up the
information. The truth is that it has been gained by years of experience
developing games.

When I was hired to teach a course on 2D graphics, I spent a great deal
of time looking for a textbook that covered the topics I believe are most
important for new game developers to learn. I could not find one, and the
result is the content within this book.

My goal is that by the time you finish reading and working through the
exercises in this text, you will be able to look at a game such as Castle
Crashers [Zynga Dallas 11] and think, “Sure, I could do that.”

In addition, I suspect you’ll have a newfound respect for the roles of
game artists and designers.

Xi
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{Intreduction

1.1 About This Book

This book is about programming, but at times also presents aspects of
2D graphics that might otherwise be considered more appropriate for a
discussion on art or design. These are useful topics because they allow
you, as a graphics programmer, to communicate effectively with both your
art and design counterparts. They also give you the perspective to offer
meaningful dialogue and suggestions on how a particular art or design
challenge can be solved with a programmatic solution.

My emphasis in this book, as it is in my classroom, is threefold: theory,
minimal code, and experimentation. By starting with a basic concept that
demonstrates both the understanding of what we are trying to accomplish
as well as why we are taking a particular approach, we set the proper
context for the code we write. Minimal code samples allow the reader to
see a particular line of code in action or as it relates to the code around it.
These code samples are provided without the standard robustness of good
coding standards. However, rest assure that this is done for the purpose
of keeping the code consistent to a minimalist goal. A variety of texts are
available on good coding practices for any language of choice, as well as on
object-oriented programming and design patterns. Apply those principles
to the code you write.

The final and most important part of my emphasis is experimentation.
It has been my experience that most learning occurs when working through
a problem, experimenting with solutions, and generally tinkering with code.
The challenges listed in the book are for you to try. In addition to these
challenges, other suggestions throughout the text present possible projects
and added functionality. Take these suggestions to heart. The reader who
experiments is the reader who learns.
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1.1.1 Required Knowledge

This book assumes you already have a basic understanding of programming.
The code samples listed in the text are written in C# but can easily be
applied to most programming languages. When I teach this course at the
college level, the students have only one year of C++ programming as their
background. Assuming you already know Java, C++, or Objective-C, you
should find the transition to C# fairly effortless.

The companion website, http://www.2dGraphicsProgramming.com, of-
fers code samples in other programming languages. However, the focus of
this book is on coding graphics, not the specifics of the language. To use
a fairly bad analogy: when driving from Seattle to Florida, you need to
understand the basic rules of the road and how to navigate, no matter what
your vehicle. As long as you know how to drive at least one vehicle, the
differences between driving a tractor or a sports car are irrelevant. Both
vehicles need fuel and have an accelerator, brake, and transmission. As
long as you can drive one, you will have the other figured out by the time
you get there.

The text also assumes that the reader has a basic background in math-
ematics, including geometry and trigonometry. If it has been a while
since your basic math days, the math primers in the appendices should
help.

Be forewarned: the sample code included in the beginning of the text
includes every line of code, but later you will be required to fill in the blanks
yourself. Code snippets for a new concept are included, but after a while
it is not necessary to repeat the same pieces of code for each sample.

1.1.2 Why 2D Games?

The last five years or so have demonstrated that it is still possible to create
fun, addictive, and immersive game experiences in two dimensions. Run-
away hits such as Angry Birds [Rovio Entertainment 09], Peggle [PopCap
Games 07], and Fruit Ninja [Halfbrick Studios 10] are all examples of highly
successful 2D games, and you probably can think of many more.

On a scale of realistic to symbolic, 2D games tend to fall to the symbolic
side, although this is not always the case. These games speak to us on a
more abstract level, and we are actually quite comfortable with that: we
often communicate in 2D in the form of letters, numbers, symbols, and
charts [Rasmussen 05].

In addition, some developers simply consider 2D a better platform for
achieving certain artistic goals. Game artist Geoff Gunning put it this way:
“I’ve never been a fan of 3D game art ... I can appreciate how impressive
the talent is, but it never looks as characterful as 2D art.”



1.2. Why C# and XNA?

Another important point is that 2D games usually require significantly
less in art assets than their 3D counterparts. This can be a big deal for
a small development team for whom resources are limited. But even in
a 3D game, it is likely that some work is done in 2D. The user interface,
heads-up display, and/or menuing system are likely rendered in 2D. In fact,
unless a game is developed for a 3D television, games are still 2D media.
The final output for most games is still a 2D screen.

Finally, from the perspective of someone who also loves to teach 3D
graphics programming, I believe that focusing on 2D graphics is a great
introduction to the broader graphics topics. In later chapters you will
be able to create particle systems and write your own graphics shaders
without the added confusion of 3D matrix math, lighting algorithms, and
importing 3D models. I believe it is a valuable step in the learning process
of those who want to become 3D graphics programmers to first understand
2D graphics thoroughly.

Beyond these justifications, 2D graphics are simply fun. They provide
instant gratification and allow developers to quickly prototype ideas and
mechanics.

1.2 Why C# and XNA?

The code samples included in this book are in C# with XNA. Every lan-
guage has its advantages and disadvantages, but for the goals of this book,
I strongly believe C#/XNA is the best choice for a number of reasons.

First, like Java, C# is a managed coding language. This means you
won’t get distracted by pointers and memory management. But, this comes
at a cost. C# is not as fast as C++, however most platforms (even mobile
devices) are able to handle this added overhead without that being much
of an issue.

Second, using C#/XNA will allow your game to run natively on PCs
(Windows), game consoles (Xbox 360), and even some mobile devices (Win-
dows 7 Phone) without any significant modification. Then, with the help
of an environment such as Mono, your C# game can easily be ported to
Android, i0S, Mac PCs, Linux, and Sony platforms.

Let’s pause for a moment here for emphasis because this second point
should not be passed lightly. C#/XNA allows you to develop richly graph-
ical games for almost any platform. Very few game development environ-
ments are able to make this same claim—and those that do come with their
own set of challenges.

Third, XNA was created specifically for game development. It provides
common structures and functions useful to game creation that are outside
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the scope of this text. At the same time, the tools provided by XNA are not
so abstract that they become irrelevant to other platforms. For example,
Unity3D has a great particle system, but using that particle system won’t
necessarily give you the experience to create your own.

Finally, XNA allows us to have direct access to the graphics card
through the implementation of shader programming. This tool is pow-
erful for creating advanced graphics effects, and the knowledge is easily
transferable to both DirectX and OpenGL.

At the risk of repeating myself, the concepts discussed in this book are
not specific to any one programming language or graphics library. This
book is about understanding and exploring 2D graphics programming con-
cepts; the language is just a means to an end.

1.2.1 Why not C++7?

Before we get too far, I would like to address an often-cited reason for
avoiding XNA. This is an idea that I see printed over and over, that real
game programming is done in C+—+. Unfortunately, I have to admit that
even a few years ago, I too was guilty of uttering that tired refrain.

The truth is that even though AAA game development almost always
requires the programming performance available only through C++, we are
quickly finding that a thriving new game market is being driven by non-
AAA games. Combined with the power of modern multicore processors,
most of these non-AAA games are being developed on a variety of non-C++
platforms.

That’s not to say that you should avoid C++. It really is a powerful
programming language that should be the foundation of any programming
or computer science degree. However, we just don’t need it for this text,
and it could potentially provide an unnecessary barrier to many of the
graphical concepts we cover here.

I have no doubt that we will continue to hear the “real game devel-
opment” cliche in the future, but it comes from the same naysayers who
claimed there was no future in online, social, mobile, or indie (independent
video) games. It’s just so 2006.

1.2.2 The Future of XNA

Another, more fundamental, concern with C# and XNA is that Microsoft
appears to be on a path to sunset the XNA framework. Early in the
discussion of Windows 8, there were rumors that the new operating system
would not support XNA. Now that the operating system (OS) has been
released, it is clear that there has been a specific choice not to provide direct
support for XNA. Although games can be written to run on Windows 8-
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based PCs, they cannot directly be deployed to Windows 8-based mobile
devices and tablets.

While there is currently no team at Microsoft developing further ver-
sions of the XNA framework, their policy is to continue supporting software
for ten years beyond the last point release. XNA 4.0 was released at the
end of 2011 and I have been assured by my friends at Microsoft that XNA
will be supported until at least 2021. Just know that we may need to do
a little extra work to prepare our XNA game for Windows 8 devices and
associate marketplace.

The good news is that there is a path to publishing XNA games on
Windows 8 mobile devices via Mono and MonoGame (the same technol-
ogy that allows us to use the XNA framework on Android devices, which
conveniently also happen to run the ARM architecture).

The future of XNA might remain uncertain, but for now I am quite
content that, as a game developer, the framework meets my cross-platform
2D game development needs. And if something better does comes along,
I’ll be the first to give it a try.

1.2.3 Required Software

Microsoft provides the developer tools for free. To run the code samples in
this book, you will need (at a minimum)

e Visual C# Express 2010,
e XNA Game Studio 4.0.

These development tools are available for download. It may be easiest to get
them directly from http://create.msdn.com; I have also provided a link on
the book’s companion website http://www.2dGraphicsProgramming.com
in case that ever changes.

In addition to the required software, I suggest you become familiar with
graphics tools, including Adobe Photoshop or the open source alternative
Gimp. Knowing how to work with these tools, even if only to do minor
edits such as resizing, will help you in the long run. It is well worth knowing
the tools of the artist.

1.2.4 An Artistic Programmer

The common perception is that there is a dichotomy between the creative
artist and the logical programmer—right-brained versus left-brained, cold
and calculating versus warm, fuzzy, and touchy-feely. And even though
I might argue that these stereotypes are unfair in any setting, the best
attributes of both are required in game development when programming
graphics for games.
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The rest of this chapter provides some background for those who are
truly new to game development. For the rest of you, feel free to jump to
Chapter 2, where we take our first “byte” into computer graphics.

1.3 Game Development 101

Making games is fun, but its also difficult. My point is that making games
requires specialized skills, and with rare exceptions,! even the most simple
game project needs at least an artist and a programmer. At its core,
that’s what this book is about: the relationship between the artist and the
programmer—as well as the skills, tools, and tricks that will help make the
best game possible.

In most cases, a more typical development team will include a variety
of other talented people. From designer to publisher, quality assurance
to marketing, there are a range of skilled professionals that large-scale
development budgets can afford. It is worth taking a brief look at the
varying skills required for game development.

e Programmer: A programmer is someone who writes computer soft-
ware. Simply put, it’s the programmer’s responsibility to ensure the
game works. In the early days of game development, game program-
mers did all the work (art, design, and coding). Today, those typical
roles are spread across the development team, and there are special-
izations within the field of programming. These may include game
engine programming, graphics programming, artificial intelligence,
and game-play programming; even audio programming has become
its own specialization. On a smaller development team, a program-
mer may be expected to work on just about any part of the game.
If one thing is certain: when the game breaks, it is the programmer
who is called in to fix it.

e Artist: Game artists fall into a variety of categories and specializa-
tions, but art is the key. The skills among artists are quite divergent,
especially when comparing 2D and 3D game artists—the skills of the
2D artist may be completely foreign to those of an accomplished 3D
modeler or animator (and vice versa). However, whatever the spe-
cialization, a good game artist will have aesthetic sensibilities and a
sense of color and style. Technical skills in an artist are highly valued
but not always required.

LGame engines such as Unity3D have allowed single individuals to create polished
games for the iOS (e.g., Colorbind [Lutz 10]).



1.4. Game Developer Platforms

e Designer: The game designer has the responsibility of making the
game into a game. The designer is the first to be praised on the
successes and the first to be blamed when the game does not live up
to expectations. Whereas the programmers build the systems and
the artists create the style, the game designer is tasked with the re-
sponsibility of ensuring the entire experience is compelling, balanced,
interesting, and/or rewarding. From the initial concepts to fine tun-
ing the game mechanics to the tedious details of ensuring each game
level is challenging without being too difficult, the game designer
must be a jack-of-all-trades.

e Additional roles: A variety of other roles and tasks have the potential
to become full-time positions, depending on the size of the team and
the project. These roles typically include a producer to manage the
project and deal with outside forces as well as a quality assurance lead
to ensure the game is thoroughly tested before it is shipped. Games
may also require audio technicians, voice actors, information support
system engineers, website developers, server administrators—the list
goes on.

1.4 Game Developer Platforms

The topics covered in this text can easily be applied to many game plat-
forms. This section highlights the differences in programming on various
platforms. This is not meant to be a complete survey of the field (the list is
always growing), but it should serve to describe some of the various options
for 2D game development. Again, the topics covered in this text can easily
be applied to any of the following.

1.4.1 Adobe Flash

Flash is a great platform for developing games; however, with the advent of
mobile devices, Adobe has had to modify its strategy. Even though Flash
games are not a great choice for web-based mobile development due to lack
of support as well as in-browser performance issues, you can create games
in Flash and deploy them as native applications on mobile devices. Flash
is a great platform for building 2D user interfaces through products like
Autodesk’s Scaleform. In addition, Flash is a very powerful art tool and
can be the primary tool for 2D artists when building game animations.
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1.4.2 HTML 5 and JavaScript

HTML 5 has emerged as a possible platform to fill the need for browser-
based games. Although performance issues still remain, a large number
of developers are having significant success developing sprite-based games
with HTML 5. The biggest advantage for HTML 5 and JavaScript develop-
ment is the potential for huge cross-platform access through a web browser.
The idea is that anything that has a web browser (which is just about every-
thing) is now capable of running your game. Unfortunately, there are still
minor issues with HTML 5 support on older Android devices. Microsoft is
pushing HTML 5 as a potential development environment for native Win-
dows 8 apps, and the ubiquitous nature of freemium games means that the
old arguments about the difficulties of monetizing browser-based games are
no longer valid arguments for avoiding the platform.

1.4.3 i0OS

To date, i0OS 5.0 is the latest operating system available for the various
iDevices such as iPads, iPods, and iPhones. A variety of great resources
exist for learning how to develop on iOS; the details are beyond the scope of
this book. However, these devices are all OpenGL compliant. As previously
mentioned, MonoGame is a great tool for porting the XNA framework onto
an i0S device. In addition, a variety of game engines will generate native
code that can deploy to iOS devices, including Unity3D, cocos2d, Corona
SDK, and even Flash.

1.4.4 Android

Even though there are reportedly more Android devices (including Kin-
dles, Nooks, the Ouya game console, and thousands of tablets and phones)
than iOS mobile devices, the Apple Marketplace remains the best and
most profitable market for most mobile game developers. The Android
market remains the “Wild West” for developers attempting to fight piracy
while trying to maintain support for a never-ending list of device sizes,
OS versions, and marketplaces. Like browser-based game development,
the freemium model remains one of the few ways to make a profit. Game
development for Android is helped through the same engines as for iOS
devices, including Unity3D, cocos2d, Corona SDK, and Flash. If you
want to start from scratch, however, you can write your game in Java and
OpenGL. My advice is still to develop games for Android via XNA through
MonoGame.
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1.4.5 Xbox 360

Presently, XNA remains the only way for non-Microsoft partners to develop
for the Xbox 360. The XNA framework was originally launched as just
that—a way to write games for the console—and the Xbox Marketplace
remains an active location to build, test, and publish indie games. Support
for the Xbox 360 is a native feature of the XNA framework, and once your
account is activated, you can have a simple game demo running on the
console in just a few minutes.

1.4.6 Graphics Libraries

The two primary graphics libraries for interacting with graphics hardware
are OpenGL and DirectX. Commercial graphics cards are almost always
both OpenGL and DirectX compatible, although mobile devices are chang-
ing the landscape. Historically, both OpenGL and DirectX APIs were
predominately accessed through C++ interfaces. That has now changed,
however, and OpenGL is accessed through Objective-C on iOS devices and
through Java on Android devices. Recently, mobile devices have begun to
support programmable GPUs, but in many cases shader programming is
still limited to PC and console game development.

OpenGL. OpenGL is an open source graphics library that is maintained by
the Khronos Group. Until recently, OpenGL was primarily seen as a great
tool for scientists and 3D simulators, but not necessarily the best choice for
game developers. This opinion existed for two reasons. First, unlike Di-
rectX, the OpenGL library is specific to only graphics. You need a separate
library to access input controllers, audio, and other game-specific features.
Second, since Microsoft Windows was the dominant operating system on
the market, there was not a significant demand for developing games in any-
thing other than Microsoft’s proprietary graphics library. However, this all
changed with the release and commercial success of the iPhone as a gaming
device. OpenGL ES, the light version of the full desktop implementation
of OpenGL, is now the graphics library of choice for mobile development,
including both iOS and Android devices. Additionally, OpenGL graphics
libraries will run across all platforms, including Microsoft Windows and
Linux distributions. OpenGL provides support for programmable GPUs
through its shader language GLSL (Graphics Library Shader Language).

DirectX. DirectX has been Microsoft’s “catch all” for all game-related
APIs and libraries, including DirectDraw (the 2D graphics API) and Di-
rect3D. Unlike OpenGL, DirectX has always been primarily focused on
game development and includes a variety of rich features for games, in-
cluding support for 3D audio and game controllers. Although newer ver-
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sions of DirectX have been released and are regularly pushed by vendors at
conferences, until recently DirectX 9.0c was a staple of the game industry
because it was the most recent version of DirectX that would run on all
Xbox 360 hardware. DirectX provides support for programmable GPUs
through its shader language HLSL (High-Level Shading Language).

XNA Framework. XNA is built on the foundation of DirectX. Although
initially limited, recent releases of the XNA framework have become much
more closely aligned with its DirectX foundation. XNA is more than a set
of APIs, however; it is a full framework designed specifically for making
games and built on the strengths of the C# language. It provides an
asset pipeline for importing and working with a variety of game assets,
including audio (both music and sound effects), portable network graphics
(PNG) images, and XML data files. The developers of the framework
have created a system that does the heavy lifting of common game tasks
and provides a great base for building game systems. Often mistaken by
nonprogrammers as a game engine, XNA does not provide the high-level
user interface that might be found in Unity3D or the Unreal Development
Kit (UDK). Instead, XNA still requires strong programming and software
engineering skills. This additional requirement means that it also remains
extremely flexible, and developers have access to the entire C# and .NET
libraries if desired. Like DirectX, the XNA framework provides support for
programmable GPUs through HLSL.

1.5 Book Organization
1.5.1 Sample Code

As a teacher, I believe students often rely on sample code as a crutch. The
goal of code samples should be to give enough to get started but not to
give away the fun of solving the problem. As a result, the sample code
provided in this book is focused on the task at hand.

As you work your way through the book, I suggest you implement good
coding practices as you build your graphics system. The code samples
demonstrate the subject in a way to make it understandable. This often
may not be the best or most efficient solution, so suggestions for building
more robust graphics systems and improving efficiency in your code are
included.

The code samples provided in the book are shown in C# and XNA, but
in most cases they require only minor modifications to implement them in
other languages. The website http://www.2dGraphicsProgramming.com
provides code samples in raw OpenGL, DirectX, and Flash.
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1.5.2 Exercises: Questions

The exercise questions serve to test your understanding of the major topics
discussed in the chapter. If you are able to answer these questions success-
fully, you will know you are well on your way to learning the essentials.

1.5.3 Exercises: Challenges

If you're like me, you may just want to get to coding. The “Challenges”
present programming challenges that allow you to apply what you have
learned in the chapter. They are designed to get you thinking about the
application of the topics and often result in tools or sample code that can
be used in later projects.
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This chapter presents a brief overview of how simple images are stored
and displayed on the screen, especially as computer graphics impacts mod-
ern game development. It is by no means a complete story. During the
early days of computer graphics, a variety of rather complicated hardware
and software tricks were employed by game console manufacturers to dis-
play moving images on a television screen. Techniques such as “racing the
beam” allowed programmers to extend the capabilities of very limited hard-
ware. Although interesting, the details are not relevant to modern game
development and are beyond the scope of this text. Instead, this chap-
ter focuses on some basic theories and implementations of the standard
graphics techniques used today.

2.1 Bits and Bytes

Starting at the most basic level, computers use 1s and 0Os to store informa-
tion. The value (1 or 0) is stored in a bit, analogous to a light bulb that is
either on or off. Series of bits are used to store larger numbers, in which
each number column represents a power of 2. This binary number system
is the basis for modern computing, but, as you can imagine, it is not very
convenient for humans. As seen below, we need four digits just to display
the number 15:

0000 = 0, 0001 =1, 0010 =2, 0011 =3, ..., 1111 = 15.

To make things a bit easier, we group our binary numbers into blocks
of 4 bits. Each group of 4 bits has 16 unique combinations of Os and 1s
(0000 to 1111), corresponding to the decimal numbers 0 to 15. As a matter
of convenience, we can write these 16 combinations into a single “digit”

15
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000000
010010
000000
100001
011110
000000

by using the hexadecimal number system (base 16), in which decimal 10 is
hexadecimal A, 11 is B, and so on. In hexadecimal, then, we can count to
15 as

0,1,2,3,4,56,7,8,9, A, B,C,D, E, F.

A group of 8 bits (called a byte) can store 256 unique combinations of
bits (0000 0000 to 1111 1111) and can also be more easily written by using
the hexadecimal number system of 00 to FF. In counting upward, when
reaching F in the rightmost digit, we start over with 0 in the right digit
and add 1 to the left digit until we reach FF (just as 39 is followed by 40
when counting upward in the decimal system):

00, 01, 02, ... 09, 0A, 0B, 0C, 0D, OE, OF, 10, 11, ... FD, FE, FF.

If you’re feeling a bit overwhelmed by all these numbers (pun intended),
don’t worry. You’ll soon see the reason for this review of introductory
computer science.

2.1.1 Digital Color Theory

The simplest (and perhaps most obvious) way to store a graphical
image is as a two-dimensional array of colors. Or, as in the following
example, an array of bits.

Consider the following array of 36 bits:

000000 010010 000000 100001 011110 000000.

Figure 2.1. Thirty-six
bits aligned in rows. By aligning the array of 36 bits into 6 rows of 6 bits, as shown in

Figure 2.2.
from 36 bits.

Bitmap

Figure 2.1, we can build the image shown in Figure 2.2 where a 0 bit
represents white and a 1 bit represents black.

This type of black and white “1 bits per pixel (bpp) color” was
used in early games such as Atari’s Pong (Figure 2.3) and later in the
graphical user interface (GUT) for the Apple Macintosh OS (Figure 2.4).
This two-dimensional map of bits is where we get the term bitmap.

® File Edit Uiew Special

mmmmmm

rrrrr

i

Figure 2.3. Pong, Atari Inc. (1972).  Figure 2.4. Mac 128k, Apple Inc. (1984).
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Figure 2.5. The 4-bit color palette (right) and some 4-bit games (clockwise from
top left): Namco’s Pac-Man (1980), Origin Systems’ Ultima IV (1985), Bruce
Lee (1984), and Sega’s Zazzon (1982).

The decade between Pong and the Macintosh did see significant ad-
vances in game graphics. By 1977, the Atari 2600 game system featured a
palette of 128 available colors. Advances in this era were achieved through
a variety of creative hardware and software techniques, allowing program-
mers to stretch the limits of game consoles. At the time, RAM was too
significantly expensive to allow for a single bit in memory to represent ev-
ery pixel on the screen. Instead, games had to reuse the same collection of
bits (called a sprite) so that the same chunk of memory could be used mul-
tiple times (sometimes flipping or stretching it) to fill the game screen. It
wasn’t until the early 1980s that we began to see personal computers with
dedicated video RAM for displaying a 2D array of colors directly to the
screen. However, the use of sprites was convenient and continues through
today. We’ll take a closer look at sprites in Chapter 3.

IBM’s Color Graphics Adapter (CGA) featured 16 kilobytes of memory,
capable of displaying either a 2-bit color depth (4 colors) at 320 pixels wide
by 200 pixels high or a 4-bit color depth (16 colors) at 160 x 200:

bit

2 2% (320 x 200) pixels = 128,000 bits = 16,000 bytes,
pixel
bits . .

4 — I x (160 x 200) pixels = 128,000 bits = 16,000 bytes.
pixe

These early graphical systems implemented a specific set of colors that
could be use in developing software for their system. Figure 2.5 shows
an example of a 4-bit color palette. Depending on the system, this usually
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included 8 colors (black, red, green, yellow, blue, magenta, cyan, and white)
in both low and high intensity, providing for 16 colors. In some cases, the
developer could set a specific color palette to use for a particular game,
allowing for at least some color variety between titles.

As hardware became cheaper, software developers soon had access to
greater color depth. Doubling the depth from 4 bpp to 8 bpp allowed a
move from 16 colors to a full palette of 256 colors. Now there was the new
challenge of dealing with all those colors in a way that made sense.

2.1.2 RGB Color Model

Figure 2.6. RGB colors combined: magenta, yel-
low, cyan, and white are all clearly visible in the
intersections of red, green, and blue.

Let’s take a quick side step and look at the
way computer monitors works. First, let’s
look at the traditional CRT computer monitor
(the heavy ones with the large cone-shaped
back, which were typical in the 1980s and
1990s). As with CRT televisions, CRT com-
puter monitors send a stream of electrons that
bombard a net of phosphors located on the
back of the computer screen. A phosphor
is simply a substance that illuminates light
when hit with an electron. Tiny red, green,
and blue (RGB) phosphors group together to
form what we would consider a single pixel.
(See Figures 2.6 and 2.7.)

In the more modern LCD screens, the
same concept is used, but instead of a ray of
electrons and phosphors, LCD monitors make
use of the light-emitting properties of liquid
crystals. Again, the chosen colors are red,
green, and blue.

In both CRT and LED screens, the colors

red, green, and blue are combined in a small point to create the color of
each pixel on the screen. These combinations blend together to form all

the colors we need.

If you have a background in traditional painting, you may know that
from an artist’s perspective, red, yellow, and blue are the primary colors.
Then why not use red, yellow, and blue light instead of RGB?

Actually, the human eye also works by combining RGB light. As you
can see in Figure 2.8, the human eye comprises millions of red, green, and
blue light-sensitive cones. The red cones allow us to perceive red light; the
green cones, green light; and the blue cones, blue light. Combined, these
cones allow us to see all the colors of the rainbow.
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Figure 2.7. The surface of a CRT monitor is Figure 2.8. Cross section of light-sensitive rods
covered with red, green, and blue phosphors and cones that permeate the surface of the human
that glow when energized. retina: (1) retina, (2) cones, and (3) rods.

In addition to the color-sensitive cones, the retina of the eye also has
rods, which work best in low light conditions. This is why colors will seem
more vivid in the light of day.

Therefore, it made sense to use the same RGB color model to store color
data in the computer’s memory. So in the move to 12-bit color depth, in-
stead of simply defining an arbitrary palette of 4,096 colors, game develop-
ers could now divide those 12 bits into groups so that 4 bits were available
to each of the three colors in a color computer monitor:

12 ;)1;;521 = 4 bits red + 4 bits green + 4 bits blue.

From three 0s (R = G = B = 0) to three 15s (R = G = B = 15), we
suddenly had an easy convention for managing 4,096 combinations of the
RGB colors. Conveniently, these values can be recorded hexadecimally: for
example,

e F00 (red), e 000 (black), o AAF (dark blue),
e 0FO0 (green), o 888 (gray), e 44F (light blue),
e OOF (blue), e FFF (white), e 808 (purple).

Even though 12-bit color is good, it doesn’t provide enough colors to
create photographic-quality images. As a result, once the hardware be-
came affordable, 12-bit RBG color was followed by color depths of 16-bit
(commonly referred to as high color) and eventually 24-bit (true color). See
Figure 2.9. The 24-bit color allows a full 8 bits (1 byte) per RGB color
channel, resulting in more than 16 million color combinations.
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Some RGB formats
12-bit RGB (4096 colors) 16 x 16 x 16
16-bit RGB (65,536 colors) 32 x 64 x 32
= e e me—— = mm——— (High Color)
24-bit RGB (16.7 million) 256 x 256 x 256
------------------------ (True Color)

Figure 2.9. RGB colors combined.

In other fields it may be necessary to go beyond 24-bit RGB color (the
bitmap filetype supports up to 64 bpp), but the current standard for game
development is 8 bits per color channel:

bits _ ¢ 1 2 hite o :
24 pixel = 8 bits red + 8 bits green + 8 bits blue.

Figure 2.10 shows an example of a photograph rendered at various color
depths.

Defining colors in terms of various amounts of red, green, and blue is
convenient and has become a game industry standard, but it is not the
only way to define a color. In fact, the human eye does not see those three
colors evenly. When viewing Figure 2.11, you may notice that your eye can
see more detail in the green gradient when compared to the red or blue
gradients. For that reason, when 16-bit RGB color was introduced and the
bits could not be easily divided among the three components, it made sense
to give the remaining bit to green.

Figure 2.10. The same photograph at 1 bpp (left), 8 bpp (center), and 24 bpp
(right).
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Figure 2.11. RGB gradients: you will likely detect more detail in the green band
than in the red or blue bands.

2.1.3 RGBA: Blending with Alpha

With 256 options per channel, the permutations of the 24-bit RGB color
model provide for a significant variety of colors (16.7 million colors per
pixel):

16,777,216 colors =
256 shades of red x 256 shades of green x 256 shades of blue.

In the real world, however, not all materials are completely opaque; some
surfaces allow light through (picture a pair of red-tinted glasses sitting on
a blue tablecloth). In computer graphics, we can store how “transparent”
a pixel is in a fourth byte called the alpha value. Since artists want to layer
images within a game, the color model would not be complete without
transparency.

An 8-bit alpha value is convenient because it allows an additional 256
shades of transparency to the base RGB color scheme, forming the RGBA
color scheme. An alpha value of 255 represents a pixel that is fully opaque,
and a value of 0 signifies a pixel that is completely transparent. The exact
algorithm for determining how overlapping transparent pixels are blended
together is discussed in Chapter 8.
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With the 32-bit RGBA color palette, we now have the ability to store
more than 4 billion color combinations in just 4 bytes of memory. That’s
more than enough for most applications, and a far distance from the two
colors from the beginning of this chapter. But now we have another poten-
tial problem: the memory required for an 800 x 600 image, which is

1.92 MB = 800 pixels x 600 pixels x 4 2Ytes.
pixel

Notice the switch from bits per pixel (bpp) to bytes per pixel (Bpp).

2.1.4 First XNA Project

Building your first XNA project is very simple by using the built-in tem-
plates and the XNA framework game class. Once you have installed Visual
C# Express 2010 and Microsoft XNA Game Studio 4.0, simply start Visual
C# Express. Select File — New Project from the toolbar.

In the dialog box, choose Installed Templates — Visual C# — XNA
Game Studio 4.0 — Windows Game (4.0). Check that you're happy with
the project name and file location, and then click OK.

Within the game class created by the template, you will notice a con-
structor and five overridden functions for initialization, content load, con-
tent unload, update, and draw. The XNA framework is defined so that the
update and draw functions are called at an appropriate frame rate (frames
per second, or fps) for the given platform (60 fps for PC and Xbox, 30 fps
for Windows Phone).

Press F5 to start debugging, and you should soon see a light blue game
window.

2.1.5 XNA Corner

XNA has a built-in 32-bit color structure for defining red, green, blue,
and alpha byte values. In addition to the R, G, B, and A accessors, the
structure includes a variety of predefined named colors. As of XNA Game
Studio 4.0, this includes 142 colors from Alice blue (R: 240; G: 248; B: 255;
A: 255) to yellow green (R: 154; G: 205; B: 50; A: 255).

To demonstrate, temporarily add the following code to your Initialize
function:

//Color values example
Color myColor = Color.DarkOliveGreen;

Console.WriteLine("Color values for DarkOliveGreen");

Console.WriteLine (" Red: " + myColor.R);
Console.WriteLine (" Green: " + myColor.G);
Console.WriteLine (" Blue: " + myColor.B);

Console.WriteLine (" Alpha: " + myColor.A);
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Output > qx

Show output from: | Debug || QS| ==
'ColorSample.exe’ (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_32\Microsc ,
‘ColorSample.exe' (Managed (v4 3@319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_32\Microsc
'ColerSample.exe’ (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_32\Microsc
'ColorSample.exe’ (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Micrc
'ColorSample.exe' (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Syste _
‘ColorSample.exe’ (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Syste
‘ColorSample.exe’ (Managed (v4.8.38319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Syste
Color values for DarkOliveGreen -
Red: 85
Green: 1@7
Blue: 47
Alpha: 255
'ColorSample.exe' (Managed (v4.0.3@319)): Loaded 'C:\Windows\Microsoft.Net\assembly\GAC_MSIL\Micr¢

-

cooDOD®
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Figure 2.12. Output screenshot.

When running your project, you will notice the output in the console
window similar to that shown in Figure 2.12. The choice of colors and as-
sociated RGBA values seems a bit arbitrary and not necessarily very useful
for game development. Instead, we’ll rely on our artist to use colors within
sprites and then we’ll use numeric values to programmatically modify the
color RGBA accessors at runtime.

Microsoft XNA samples use the default color of cornflower blue (R: 100;
G: 149; B: 237; A: 255), which has become synonymous with programmer
art. A quick search for the text “CornflowerBlue” in the XNA template
shows that it is used as the clear color in the Draw function.

2.1.6 Raster versus Vector Graphics

The term for the type of bitmap graphics we have discussed so far is raster
graphics. The term derives its name from the way images were originally
drawn on a television monitor, but it now has a more generalized meaning
to describe graphics comprised of a rectangular grid of pixels.

Storing raster graphics can take up a lot of space in memory, but they
have another disadvantage (consider Figure 2.13). When the sprite is en-
larged, the image appears pixelated. A similar (although sometimes less
noticeable) loss of detail occurs even when the image is made smaller. In
some cases this may be acceptable, but in others you’ll need your artist to
make multiple copies of your images, rendered at the appropriate sizes.

An alternative is vector graphics, which uses mathematical formulas and
the computational power of the computer to draw the exact shape you want
at the exact resolution you need. For example, if you need to draw a line,
you would need only the start and end points of the line and then to tell
the computer to render pixels at all the points in between.
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Radius

[ |

Figure 2.13. An enlarged vector circle (left); note the pixel-perfect smooth edge.
An enlarged raster circle (right); note the jagged edge.

Alternatively, to render a solid circle, you simply need to track a center
location and the radius. For every pixel in the scene, simply check the
distance to the center of the circle. If it is less than or equal to the radius,
then color the pixel with the appropriate color.

Vector graphics comes with both advantages and disadvantages, and
the details of how to use it could fill a book. In this text, the closest we
will get is with splines in Section 10.3.

2.2 Display
2.2.1 UV Coordinates

Often various-sized source images will be used for deploying the same game
to various platforms. For example, large textures may be used when de-
ploying the game to a desktop computer with a powerful graphics card,
whereas smaller textures may be used when deploying the same game to
mobile devices. In these cases, it can make sense to normalize (see Ap-
pendix B.4) the coordinate system so that the top-left pixel is set to be
(0,0) and the bottom-right pixel is set to be (1,1). As a result, any indi-
vidual texel can be measured in terms of percentage from the origin along
the U (normalized X) and V (normalized Y) axes. (Texel is the term for a
pixel on a texture.)

For example, an individual texel located at the coordinates (512, 512) on
a texture that measures 1,024 x 1,024 will have UV-coordinates of (0.5, 0.5).
Measuring texel locations in terms of UV coordinates instead of with XY-
coordinates ensures that the location values are independent of the texture
size.
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UV coordinates are most often used in 3D graphics; it also helps to
distinguish between the UV-axes on the source textures and the XYZ-axes
within the 3D game world. This same normalization of the axes occurs
when working with pixel shaders (see Section 9.3).

For the purposes of clarity, the examples in this book use nonnormalized
XY-coordinates when working with textures.

2.2.2 Image Resolution

Thus far, we have explored the ability to increase the
quality of an image by increasing the range of possible
colors for each pixel. Another option is to simply in-
crease the number of pixels. This may seem obvious,
but let’s consider Figures 2.14 and 2.15. Figure 2.14
is rendered at 400 pixels wide, and Figure 2.15 is 200
pixels wide. By doubling the pixel width (assuming
we’re constraining the image proportions), we need
four times the amount of storage space:

New storage = (2 x width) x (2 x height) x l;).%tee?.
Note that some artists (especially those with a
graphic design or print background) think of images
as a combination of pixel density and final physical
width on the screen (rather than as simple pixel res-
olution). Since Figures 2.14 and 2.15 are rendered to
the same physical width on the page, Figure 2.14 has
twice the pixel density of Figure 2.15. On modern
game platforms, it is not common practice to scale
images in a 2D game; game artists will expect a 1:1
relationship between the pixels in the images they
create and how those pixels result on screen.
As a result, graphics programmers have histori- Figure 2.15. 200 x 139.
cally discussed games only in terms of their pixel res-
olution. When developing games for a game console,
developers know players will be playing their games on either standard def-
inition televisions (SDTV) or high definition televisions (HDTV). Assuming
an HDTV, developers ensure their games will render at 1,280 x 720 (a
typical resolution for HDTVs).
In this scenario, the developers do not need to worry about the actual
size of the screen. Whether the player’s game console is connected to a 20-
inch TV set or the game is displayed on a wall through an HD projector,
the resolution is still 1,280 x 720. Similarly, a game on a PC is rendered
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at a specific resolution. If that resolution is smaller than the screen size,
the game is rendered in a window. If the player chooses to switch the game
to full-screen mode, the computer’s hardware and operating system handle
the appropriate upscaling of the game onto the PC monitor.

Occasionally, 2D games are required to support multiple graphical res-
olutions. For a console game, this is done so the game can support both
SDTV and HDTV. Since modern game consoles have enough computing
power to deal with the higher resolution, it has become common practice
to generate game assets only at high resolution and then simply scale the
final game image for the smaller screen. In some cases, such as porting a
game to run on a very low-end PC, the art assets need to be scaled down to
an appropriate size before the game is shipped. In these cases, the game is
programmed to detect the game hardware and then select the appropriate
art assets. (An exception must be made for font sizes, because we never
want the text scaled so small that it becomes unreadable.)

With the move toward game development on tablet computers and other
mobile devices, however, this is changing. The pixel density on these de-
vices is increasing to the point where the human eye cannot detect indi-
vidual pixels, so game developers now need to decide whether they really
want their 720 pixels shoved onto a two-inch wide screen. Even though all
the pixels are still there, is the image now too small? Although “too many
pixels” may be a good problem to have, it’s still something that graphics
programmers need to understand and know how to handle. We’ll look in
more detail at scaling in Chapter 3.

2.2.3 Aspect Ratio

A measure of the relationship of width to height (W:H), aspect ratio is often
discussed in terms of television displays. For decades, SDTVs displayed
images at an aspect ratio of 4:3 (1.33:1), the width being one-third greater
in length than the height. This aspect ratio was common also in computer
monitors, resulting in resolutions that hold the same aspect ratio (400 x
300, 640 x 480, 800 x 600, and 1,024 x 768).

At the same time, feature films are often shot in the much wider aspect
ratio of 1.85:1, and this has been the standard for US theaters since the
1960s. The advantage of the wider aspect ratio is the ability to display an
image in a way that better matches the way we see the world.

With the advent of high-definition displays has come a move toward a
wider aspect ratio. As mentioned earlier, the typical 1,280 x 720 HDTV
resolution is now common, with an aspect ratio of 16:9 (1.78:1). We see the
same move in computer monitors, with many wide-screen monitors running
resolutions to match the HDTV aspect ratio (1,280 x 720, 1,600 x 900, and
1,920 x 1,080). Compare the various aspect ratios shown in Figure 2.16.
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(4:3) 640 x 480

(4:3) 800 x 600

(16:9) 1280 x 720

Figure 2.16. Various aspect ratios and resolutions

2.2.4 Mobile Displays

Since the recent introduction of the iPhone and the subsequent mobile game
boom, we have seen an incredible “mobile arms race” between Apple, its
competitors, and even itself.

Device Resolution Aspect | Release Date
Apple iPhone 480 x 320 1.5:1 29-06-2007
Apple iPad 1,024 x 768 1.3:1 03-04-2010
Google Nexus One 800 x 480 1.67:1 05-01-2010
Apple iPhone 4s 960 x 640 1.5:1 24-06-2010
Amazon Kindle Fire 1,024 x 600 1.7:1 15-11-2011
Apple iPad 3 2.048 x 1.536 1.3:1 13-03-2012
Samsung Galaxy S III 1.280 x 720 1.78:1 29-04-2012
Amazon Kindle Fire HD 1,280 x 800 1.6:1 14-09-2012
Apple iPhone 5 1,136 x 640 1.78:1 21-09-2012
Apple iPad Mini 1,024 x 768 1.3:1 02-11-2012

The resultant constantly morphing expectations for resolution and aspect
ratios have made for a very difficult situation for game developers in the
mobile market. Current devices have anywhere from 320,000 to 3.1 million
pixels, with aspect ratios varying from 1.3:1 to 1.78:1.

In the case of the latest full-size iPads, the resolution of 2,048 x 1,536
is significantly larger than that of HDTVs. While providing some amazing
potential for game display, this resolution is problematically even higher
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than the monitors used by most game developers. Not only is there the
obvious problem of the huge resolution on art resources, there also is an
expectation that the game will deploy and make use of both the low and
high ends of the pixel spectrum. This may mean multiple size art assets
that must be packaged with the mobile game.

These new issues associated with resolution versus
physical width became apparent during the develop-
ment of aliEnd. We had originally planned the game
for the Xbox 360, but as the project neared comple-
tion, it was evident that mobile devices provided a
really cool mechanic for the game. At the time, I was
experimenting with the Windows phone development
and decided that aliEnd provided a perfect opportu-
nity to test out Microsoft’s claim that an XNA game
would easily port to the phone.

Even though the game functioned great on the mobile device, the artist,
Geoff Gunning, wasn’t happy with the way it looked on the small device.
All the personality he had lovingly embodied frame by frame into the game
characters was lost on the tiny screen. I later compared it to an actor
moving from television to the Broadway stage—the subtle facial expressions
are lost on those in the back rows. The solution of zooming in on the
character was a fairly simple solution, but we lucked out. Had the original
view been necessary for the game play, we would have faced a fairly difficult
problem.

2.2.5 Console Standards

Before we leave the topic of resolution, it is worth noting one other dif-
ference in the old analog SDTV. That is, there are actually three primary
standards in place: NTSC (developed in the United States and primarily
used in the Americas and various other locations), SECAM (developed in
Europe and adopted for use in various European and Asian countries), and
PAL (developed in Germany—it eventually became the standard for all of
Europe and Russia). Even though developers now make games targeted
for HDTV systems, the Xbox 360, PlayStation 3, and Wii generation of
game consoles still need to connect with those older standards. The result
is that console games are often released based on their geographic region.
Combined with DVD region coding, languages, and rating bodies that vary
from country to country, publishing games for consoles can be a fairly sig-
nificant undertaking. Whereas issues surrounding languages and ratings
still exist for mobile development, development tasks due to analog televi-
sion standards and DVD regions thankfully are not an issue for mobile and
PC development.
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2.2.6 Frame Rate

The frame rate is a measure of the number of screen draws (frames) per
second. Console players will expect a minimum of 60 fps for action games,
and the limited graphics hardware in mobile devices will often see accept-
able frame rates of 30 fps. In old animation clips, 12 fps was considered
the lowest acceptable frame rate, although today it would look fairly bad
if the entire screen was updating at such a slow speed.

Keeping track of the current frame rate is important because it will
allow you to quickly learn whether you have written any poor performing
code. You can keep track by creating a counter that is incremented every
time the Draw function is executed. Then, once a second has passed,
update your frame rate with the number of frames counted over the last
second.

double m_iElapsedMilliseconds = O0;
int m_iFrameCount = O0;
int m_iFPS = 0;

public void Update(GameTime gameTime)
{

m_iElapsedMilliseconds += gameTime.ElapsedGameTime.
TotalMilliseconds;

if (m_iElapsedMilliseconds > 1000)
{
m_iElapsedMilliseconds -= 1000;
m_iFPS = m_iFrameCount;
m_iFrameCount = O0;

}

//Update Game
Al ooo
}

public void Draw(GameTime gameTime)
{

m_iFrameCount++;
Console.WriteLine("FPS is: " + m_iFPS);

//Draw Scene
/] ...
¥

Running at 60 fps means that the frame should be drawn every 17
milliseconds (ms). The game update may run faster or slower than 60 fps,
but it is important to try to hold the draw rate at 60 fps. If not, the player
will notice.

As a result, if any significant operations occur during your game up-
date that take longer than 17 ms (for example, texture or audio content
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loading, save game operations, artificial intelligence calculations, or leader-
board updates), it is important that these do not block the game draw
from occurring.

One option is to divide the work across multiple frames. For exam-
ple, if you know your path-finding algorithm may take up to 60 ms, you
could pause the path-finding algorithm after 10 ms and then resume the
path-finding calculations on the next frame. Depending on your system
architecture, a better option may be to offload the intensive calculations to
other nonblocking processor threads.

Ensuring background operations do not prevent the game Draw func-
tion from occurring is especially important when saving games or querying
remote databases. In these circumstances, you should always use asyn-
chronous function calls if they are available.

2.3 Double Buffering

Drawing images to the screen is fast, but our eyes are fast too. Imagine we
were to draw a background image and then quickly draw another image on
top of it to hide the background. The goal here is to create a final scene in
which some piece of the background is obscured by the foreground image.

Although this occurs in a fraction of a second, it is likely that our eyes
would catch this. In fact, the result would look pretty bad. If you could
look back at some of the games made in the 1970s for the Apple II, you
would notice that you can actually see the images as they are drawn.

What we do to get around this issue is to make use of two buffers. The
buffer that displays the current image is called the front buffer. A second
buffer (the back buffer) is a duplicate area of graphics memory in which
we can add all the art assets, building up to a final image while the front
buffer displays the previously rendered image. The back buffer is where
we do all our work. When we’re ready, we swap the front buffer with the
back buffer. The result is that the user will see the image only when we’re
finished editing it.

In XNA, all we need to do is request that a back buffer be created at a
specific size, and the framework will do the rest of the work for us.

public Gamel ()

{
graphics = new GraphicsDeviceManager (this);
graphics.PreferredBackBufferWidth = 1280;
graphics.PreferredBackBufferHeight = 720;

WWo oo
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In DirectX and OpenGL, this is only slightly more complicated because
we explicitly tell the system when we want it to swap buffers.

2.4 Graphic File Formats

PNG files are the format of choice for most 2D games today, but it is worth
taking a look at other common file formats.

2.4.1 Bitmap

Bitmap (BMP) files are the most basic of the image file formats. For all
practical purposes, they simply store the raw image data as a 2D array of
colors. For this reason, I use the term bitmap (lowercase B) throughout
this book to refer to the generic concept of storing 2D pixel data in RAM
(or video RAM).

The actual file format (Bitmap) has a few variations, but for the most
part, it is a bit-for-bit match with the data in RAM. As a result, to process
a bitmap file, all we need is the color depth and resolution of the image
(stored in the file header).

This lack of compression means that the bitmap files can be processed
very quickly. The downside is that they almost always require significantly
more storage space than is necessary. As an example, consider the image
part of the Taylor & Francis logo in Figure 2.17.

We can see that the image is composed of large amounts of white space,
stored in a bitmap as a series of white pixels. In memory, a white pixel
takes up just as much space as any other colored pixel, despite the fact
that the white pixels are all the same.

With this in mind, a simple compression algorithm was developed that
is ideal for logos or other images that contain groupings of pixels that are

i i

Taylor & Francis
Taylor & Francis Group

Figure 2.17. Taylor & Francis logo (left) and a scaled version of it (right).



32

2. Basics of Computer Graphics

Figure 2.18.

the same color. Instead of storing the same value for each pixel, we can
group the pixels by color, storing the discrete number of that color. For
example, instead of

FF 00 00, FF 00 00, FF 00 00, FF 00 00, FF FF FF, FF FF FF,

we can store the color of the pixel along with the number of occurrences
before the pixel color changes:

FF 00 00 (x 4) FF FF FF (x 2).

In so doing, we have dramatically decreased the storage requirements for
the logo. This type of compression is called run-length encoding. 1t is
simple to comprehend, and no data are lost during the compression process.
An additional advantage is that the image can be created as the file is
processed.

2.4.2 Graphics Interchange Format

The graphics interchange format (GIF) for images, developed in 1987, imple-
ments run-length encoding for compression as described above. This made
GIF images an ideal choice for logos, and GIF was used extensively in the
1990s, especially on the web. Although GIF images can be used effectively
to store an animation, GIF animations are more of a novelty and do not
serve much use for game development.

Even worse, the GIF format has further strikes against it. First,
the lossless compression algorithm used by the GIF format was
patented by Unisys until 2004. Second, GIF images do not sup-
port transparency. Looking back at Figure 2.17 (right), we see that
the edges of the image are a blend between white and blue. Now
imagine that we wanted to place the image on a dark background.

Taylor & If the logo had a harder edge, we could open a graphics editor and

Francis logo with a dark simply replace all the white pixels with background color. But since

background.

the logo has a soft edge, the result is rather awful (see Figure 2.18).
Without the ability to store transparent pixels, the GIF file for-
mat is simply not robust enough for our needs.

2.4.3 Portable Network Graphics

Like GIF, the portable network graphics (PNG) file format supports lossless
compression. It was developed in 1995 as a result of the two shortcomings of
the GIF file type noted above (lack of support for transparency and patent
issues). The PNG format is now the primary graphical storage format for
2D games.
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2.4.4 Joint Photographic Experts Group

Unlike GIF and PNG, the Joint Photographic Experts Group (JPEG or JPG)
image format utilizes lossy compression. That is, as the image is com-
pressed, the original detail is lost and cannot be recovered.

The advantage of the JPEG format is that when used on photographs,
it allows for a large compression ratio, as much as 10 to 1, with very little
loss in compressed image quality. This makes JPEG a popular standard
for photography and web pages. However, JPEG compression is not a
good choice for 2D games. Not only is detail lost as an image is processed
by JPEG compression, but more important, the format does not support
transparency.

2.4.5 Truevision Advanced Raster Graphics Adapter

Developed as a native format for early graphics cards, Truevision graphics
adapter (TGA) and Truevision advanced raster graphics adapter (TARGA)
files allow for both raw and lossless compression. Simple in structure, TGA
files were historically used for textures in 3D games.

2.4.6 XNA Binary

The last file type worth mentioning is XNA binary (XNB). XNA developers
may notice that their PNG files are converted to XNB files. These binary
files are created automatically during one of the final stages of the game
deployment process by XNA Game Studio. They offer a minimal level of
security so that raw PNGs won’t be available to prying eyes. But, even
though they are compressed into a Microsoft-specific format and protected
by copyright, the images are not completely protected; exporters can be
found on the Internet.

Exercises

Questions

2.1. Calculate the amount of memory (in bytes) to store a 1,024 x 768
24-bit RGB image.

2.1. At a garage sale, you find a used digital camera. On the side of the
camera it states that it takes pictures that are 5.0 megapixels in size.
What is a likely resolution (width and height) of the images taken
by the camera. Assuming the images are in true color and stored
uncompressed, how much space in memory does each image require?
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2.1. Research a classic 2D game (one released prior to 1995). What was
the resolution and color depth? What were other technical specs for
the graphics hardware?

Challenges

Challenge 2.1. Write a program that allows the user to have complete
control of the RGB color of the screen.

Here’s some code to get you started:

1. Add a color member variable to the main game class:

1 public class Gamel : Microsoft.Xna.Framework.Game
{
70 aco
Color backgroundColor = Color.Black;
5 /7

2. Add keyboard controls in the update function:

1
protected override void Update(GameTime gameTime)

{
//
5 if (Keyboard.GetState().IsKeyDown (Keys.Up))
backgroundColor .R++;
//

3. Use the member variable as the clear color in the Draw function:

1 protected override void Draw(GameTime gameTime)
{
GraphicsDevice.Clear (backgroundColor) ;
base.Draw (gameTime) ;

50}

Challenge 2.2. Write a program that displays a chart of all the shades of
gray in the 24-bit RGB color model by mapping a different color to each
pixel.

To get you started, add the code below. For now, don’t worry too much
about the details of how the point sprite is created.

1. Add a tiny 1 x 1 sprite as a Texture2D member variable to the main
game class:
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1 public class Gamel : Microsoft.Xna.Framework.Game
{
//
Texture2D pointSprite;
5 /7

2. The following code will initialize the sprite. Add it to the Initializa-
tion function; we’ll deal with the details of how it works later.

1 protected override void Imnitialize ()

{
Color[] array0fColor = { Color.White };
Rectangle pointRectangle = new Rectangle(O0, 0, 1, 1);

pointSprite = new Texture2D(GraphicsDevice, 1, 1);
pointSprite.SetData<Color>(0, pointRectangle,
array0fColor, 0, 1);

3. Finally, the point sprite is drawn at a screen location and color as
shown below in the Draw function.

1 protected override void Draw(GameTime gameTime)
{

GraphicsDevice.Clear (Color.Blue);

Vector2 myLocation = new Vector2(50, 50);
Color myColor = Color.White;

o

spriteBatch.Begin();

10 //Hint: create a loop of draw commands
spriteBatch.Draw(pointSprite, myLocation, myColor);

spriteBatch.End () ;

15 base.Draw(gameTime) ;

Challenge 2.3. Write a program that displays a chart of all the colors in
the 12-bit RGB color model by mapping a different color to each pixel.

Challenge 2.4. Write a program that allows the user to change the back-
ground color by using the hue-saturation-lightness (HSL) color palette.






This chapter introduces the concept of a sprite and techniques for using
them in games. It includes a discussion of sprite alphas and managing sprite
depth, and it wraps up with a look at how multiple sprites are stored on
a single atlas. The chapter also presents different approaches for ordering
sprite sheets.

3.1 What Is a Sprite?

As mentioned in Section 2.1.1, a sprite is simply a bitmap im-
age that we can use in our game. Very few images represent
this as well as Tomohiro Nishikado’s iconic space invader
(Figure 3.1).
These sprites can represent figures, such as Mario in the
Nintendo series,. or ’can bg used ‘Fo generate background, as Figure 3.1. Sprite from Space Jn-
was dqne in Orllgms' Ultima series. In the latter case, the vaders (1978) [Nishikado 78].
term tile graphics might be used.
Richard Garriott attributes the invention of the tile graphic system he
used in the Ultima series to his friend Ken Arnold. In Garriot’s words,

It’s a little bit-mapped image ... thrown up on the screen that
graphically represents what the world can look like. In the
earliest days we actually had to draw those images on graph
paper, convert those graphs to binary numbers ... convert those
binary numbers into a stream of hex digits, enter those hex
digits into the computer, and then try running the program
and see what it looked like. [Garriott 90]

37
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Of course, now we have much more sophisticated approaches to gener-
ating sprites, which I categorize into three approaches: raster based, vector
based, and 3D based.

3.1.1 Raster-Based Sprite Generation

Raster-based sprite generation is only a step above the process that is de-
scribed by Garriott above. The bitmapped images are created by an artist,
pixel by pixel, in a graphics editor such as Adobe Photoshop. These edi-
tors might have very advanced features that help artists in their creative
process, but the most important feature is that the artist is still working
with individual pixels.

These types of graphics editors were the primary artists’ tool through
the early 1990s. Most 2D artists prefer vector editors, but a few artists still
prefer building their images pixel by pixel, especially when working with
very small sprites or wanting to create a large sprite with a retro look.

Additionally, even when the artist uses vector- or 3D-based tools, raster
editors still play a role in the final editing of graphics. This is because the
raster-based editors provide the pixel-level detail as well as a one-to-one
relationship between what is created and what is rendered in the game.

3.1.2 Vector-Based Sprite Generation

Currently, vector-based sprite generation is more common with modern 2D
games. The artist uses a graphics package such as Adobe Flash or Adobe
Ilustrator to draw vector graphics. Once the artwork is ready for the game,
the vector graphics are exported through a process called rasterization, in
which the artwork is converted into a pixel-based image. As Section 2.1.6
showed, vector graphics is more flexible and forgiving than pixel graphics,
especially when it comes to rendering the same image at different scales.

3.1.3 3D-Based Sprite Generation

A third possibility for sprite generation is to create the image in 3D first,
then take a snapshot of the rendered 3D image and save it as a bitmap.
This was the process used in Rare’s 1994 release of Donkey Kong Country
for the Super NES and later for Blizzard Entertainment’s 1996 Diablo.

Historically, 3D-based sprite generation occurred as a result of an in-
teresting gap in video game graphics when game developers were capable
of generating game-quality 3D images, but most consumer hardware was
not yet ready for the required graphics processing to render these images
in real time. This technique is similar to vector-based sprite generation in
that it allows the artist to work with a powerful toolset and still generate
2D raster graphics as a final product.
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There has been a bit of a resurrection of 3D-based sprite generation re-
cently as some game developers work to deploy the same 3D-quality images
on mobile devices with lower processing power. This can be seen on recent
releases of Sid Meier’s Clhivilization Revolution, a 2D-tiled game enhanced
with 3D-based sprites.

3.1.4 Sprite Sheets

For efficiency, multiple sprites are often grouped together in a single image
file called a sprite sheet. An example is the user interface sprite sheet from
aliEnd shown in Figure 3.2.

When it comes to drawing the sprite to the screen, we need to consider
the three representations of the data:

1. image file: the compressed data as it exists in the file system (usually
as a PNG image file);

2. source data: the bitmap loaded into memory along with any infor-
mation needed to track the bitmap;

3. destination data: the information about where and how the individ-

ual sprite is drawn to the screen.
O

Figure 3.2. User interface sprite sheet for aliEnd.
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3.1.5 Textures and Loading Content

We have already examined file types in Chapter 2 and PNG is the best
choice for our needs. The companion website to this book, http://www.
2dGraphicsProgramming.com, contains the art assets used in the examples.
The first of these is snow_assets.png, described next.

In XNA, we will need to add an instance of the Texture2D class to the
game class, then load the bitmap data from the file system into Texture2D
during the content load phase:

1 public class Gamel : Microsoft.Xna.Framework.Game
{
GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;

Texture2D snowSpriteTexture; // Add a Texture2D sprite

Il oo

1 protected override void LoadContent ()

{
spriteBatch = new SpriteBatch(GraphicsDevice);
5 snowSpriteTexture = Content.Load<Texture2D>("snow_assets"
); // Load the image "snow_assets.png"
40 oo

You now will need to add the image
P— file (in this case, snow_assets.png) to the
File Edt View Project Buld Debug Profilr Team Data Took Te wing DPrOject into the content folder. In Visual

Pl A e ] s s e wndowsphenein| - C# Express you will take the following
i 2t arEEe|Z2 0P33! steps. When you are done, you should see
Solution Explorer 1 < Janac ~ R something similar to Figure 3.3.
) | & =] ‘ [=] “% ColorSample.Gamel
3 Solutien 'ColorSample’ (2 projects) —lusing System; . .
3 F v using System. Collections.G 1. Locate your Content project: The
=3 P i using System.Ling; 3 3 3 .
: o el e sy O Solution Explorer lists two projects;
A — Ui Mo s reny the first is for your game code and
) Game.co using Microsoft.Xna.Framew| .
- using Microsoft.Xna.Framew| the second is for your game content,
4 Gamel.cs using Microsoft.Xna.Framew|
& GameThumbnail.png using Microsoft.Xna.Framew| labeled (Content).
<] Program.cs using Microsoft.Xna.Framew|
4 :Culanamp!eCnn{em (Content) . .
73 e Hinamespace ColorSample 2. Add the file snow_assets.png:
ldl snow_assets.png i Sy Right click on the content project
Thisdtsnthesmin 4 and select Add — Existing ltem.
Find the file and click the Add but-

Figure 3.3. PNG file added to the content folder in
Solution Explorer.

ton.
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3.1.6 Source Data versus Destination Data

Now that we have the sprite file uncompressed and stored in memory, we
can draw it to the screen. Common practice is to group all the sprite draw
requests together in a series. XNA provides a class (SpriteBatch) for just
that purpose.

To draw a sprite to the screen, at a minimum we need to pass the source
texture (Texture2D), the destination location (a point on the screen), and
the color (usually Color.White). We can use the XNA type Vector2 to
store the location.

protected override void Draw(GameTime gameTime)
{

GraphicsDevice.Clear (Color.CornflowerBlue);

Vector2 myLocation = new Vector2(50, 50);
Color myColor = Color.White;

spriteBatch.Begin () ;

//Hint: create a loop of draw commands

spriteBatch.Draw(snowSpriteTexture, myLocation, myColor);
// Minimum parameters needed: Texture2D, Vector2, Color

spriteBatch.End();

base.Draw (gameTime) ;

}

With this code, we draw the entire sprite sheet to the screen (see Fig-
ure 3.4) with the top-left corner of the sprite texture located at = = 50,
y = 50. This simple example has a few interesting properties.

Figure 3.4. Sprite sheet example.
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First, notice that the size of the original texture is
9 512 texels wide by 512 texels high, and the entire tex-
ture is drawn to the screen. This is not something we
commonly would do in practice. In most cases, we want
to draw only a part of the stored bitmap (an individual
sprite). To do this we’ll track the rectangular location of
the sprite on the sprite sheet. In Figure 3.5, we define
a 256-pixel square box around the snowman at location
(0,128) representing the snowman sprite. Similarly, the

1 sled is located at position (0, 0) but has a width of 256 and
] a height of 128. The location of all sprites on the sprite
256 sheet will need to be tracked. We call this information

source data.
Figure 3.5. Values for the location, Second, notice that there is a 1:1 ratio between texels
origin, and width/height of snow- and pixels. This doesn’t have to be the case. When draw-
man sprite on the sprite sheet. ing the sprite, we have the option of scaling the image.

We talk more about scaling in Section 3.4.

Third, the colors of the pixels on the screen are an exact match to the
colors that were in the original image file. This also does not have to be
the case. By applying any color other than white to the Draw call, we can
tint the sprite as it appears on the screen. A shade of gray that changes
over time could be used to implement a fade-in effect, or perhaps the color
red can indicate that the sprite is damaged.

Any information related to the way the sprite is drawn to the screen
we call destination data, and we track it separately from the source data.
We keep them separate because there is not necessarily a one-to-one rela-
tionship between sprites on the sprite sheet and those on the screen. For
example, we may want to draw two snowmen, in which case the source
data will be the same for both, but the destination data will be different.

XNA Sprite Source Data XNA Sprite Destination Data
Data Type Data Type
bitmap  Texture2D screen location and scale  Vector2 and float
location  Rectangle or destination rectangle  Rectangle
origin Vector2 rotation float
color RGBA color
depth float
effects SpriteEffects

In addition to the bitmap and location, it is also useful to take note of
the sprite origin. By default, the origin is in the upper-left corner of the
sprite (0,0). The origin is relative to the z-y location coordinates. When
a sprite is rotated, the rotation occurs around the origin (see Figure 3.6).
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Figure 3.6. Sprite drawn and rotated around default origin (left), and the same
sprite drawn and rotated around an origin defined at the center of the sprite
(right).

3.1.7 Sample Program: A Moving Sprite with Alpha

In the following example, we’ll draw two snowmen. The first will be drawn
normally at a fixed location. For the second, we’ll allow the player to move.

First, we’ll need to add variables to store the source and destination

data:

public class Gamel : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;

//Sprite Source Data
Texture2D snowAssetTexture;
Rectangle snowmanSourcelLocation;

//Sprite Destination Data
Vector2 firstSnowmanLocation;
Vector2 secondSnowmanLocation;
Vector2 secondSnowmanOrigin;
Color secondSnowmanColor;
float secondSnowmanScale;
float secondSnowmanRotation;

VEEE

During the initialization phase, we’ll define the destination locations.

Initialization can also be a good place to set our resolution, so we’ll add
that here as well.

protected override void Imnitialize ()

{

firstSnowmanLocation = new Vector2(200,500) ;
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5 secondSnowmanLocation = new Vector2 (400, 500);
secondSnowmanRotation = 0.0f;
secondSnowmanColor = Color.Plum;
secondSnowmanScale = 0.5f;

10 //Set HD Resolution with a 9:16 aspect ratio

graphics.PreferredBackBufferWidth = 1280;
graphics.PreferredBackBufferHeight = 720;
graphics.ApplyChanges () ;

70 oo

In the content loading phase, we’ll set the details for the source data.

1 protected override void LoadContent ()
{
spriteBatch = new SpriteBatch(GraphicsDevice);

5 snowAssetTexture = Content.Load<Texture2D>("snow_assets");
snowmanSourcelocation = new Rectangle(0, 128, 256, 256);
snowmanSourceOrigin = new Vector2(128, 192);

¥

In the update loop, we’ll allow the player to modify the position of the
second snowman by using the left and right arrow keys.

1 protected override void Update(GameTime gameTime)
{
// Allows the game to exit
if (GamePad.GetState(PlayerIndex.One) .Buttons.Back ==
ButtonState.Pressed)
5 this.Exit ();

if (Keyboard.GetState().IsKeyDown(Keys.Left))
secondSnowmanLocation.X--;
if (Keyboard.GetState().IsKeyDown(Keys.Right))
10 secondSnowmanLocation.X++;

base.Update (gameTime) ;

Finally, in the Draw loop, we’ll draw the two snowmen. Figure 3.7
shows a sample of the output.

1 protected override void Draw(GameTime gameTime)

{
GraphicsDevice.Clear (Color.White);

5 spriteBatch.Begin () ;
spriteBatch.Draw(snowAssetTexture,
firstSnowmanLocation,
snowmanSourceLocation,
Color .White, // Color
10 0.0f, // Rotation
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snowmanSourcelOrigin,

1.0f, // Scale
SpriteEffects.None, // Flip sprite?
1.0£); // Depth

spriteBatch.Draw(snowAssetTexture,
secondSnowmanLocation,
snowmanSourceLocation,
secondSnowmanColor,
secondSnowmanRotation,
snowmanSourcelOrigin,
secondSnowmanScale ,
SpriteEffects.None, //Flip sprite?
0.5f); //Depth

spriteBatch.End () ;

base.Draw (gameTime) ;

}

3.2 Layering with Depth

You may have noticed in the previous example (Figure 3.7) that the smaller
snowman is in front of the larger one. This is simply because the smaller
snowman was drawn after the larger snowman.

You may have also noticed a depth value in the Draw call. The depth
value allows you to place the sprites on layers (any float value between 0
and 1). By default, the depth value is ignored. The Draw calls are placed in
a queue, and then when SpriteBatch.End() is called, the sprites are drawn
to the screen. However, by setting the sort mode in SpriteBatch.Begin(),
you have access to some very useful options. Simply replace

spriteBatch.Begin();
with

spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.
AlphaBlend);

In BackToFront, the sprites are sorted by the depth value so that the greater
values are drawn last. For the reverse, just use the sort mode FrontToBack.

Now imagine a game that involves a tiled surface consisting of randomly
generated sprites from various sprite sheets. On sprite sheet A are sprites
1-9, and on sprite sheet B are sprites 10-19. In the game, you loop through
the tiled background 1, 17, 4, 15, 6, 6, 11, and so on.

When it comes time to draw the sprites, it would be much more efficient
to draw all the sprites from sheet A and then all the sprites from sheet B
(instead of switching back and forth from A to B in the order that was
provided). In this case (where layering does not matter because none of

Figure 3.7. Sam-
ple output from
“Moving  Sprite
with Alpha.”
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the sprites will overlap), choose the sort mode Texture. The system will
automatically order the sprites in the most efficient order before drawing
them.

3.2.1 Tracking Depth

There may be other times that we may want to change the layering of
the sprites based on in-game conditions. As an example, in the snowmen
program we could give the appearance of depth by using the y-value to
control the drawing order, so the closer the sprite is to the top of the
screen, the farther away it is. The faraway sprites are drawn first, so they
are overlapped by the closer sprites.

To track depth in the snowman example, first you’ll need to ensure
the sprite batch is set to use FrontToBack sprite sorting, as shown in the
previous code snippet.

You’ll also need to allow the player to change the y-value of the sprite
by adding the up and down input to the update function:

if (Keyboard.GetState().IsKeyDown(Keys.Up))
secondSnowmanLocation.Y--;

if (Keyboard.GetState().IsKeyDown (Keys.Down))
secondSnowmanLocation.Y++;

Finally, you’ll need to add a depth calculation for the sprites. Since we
need a value between 0 and 1, we can simply divide the y-coordinate of the
sprite’s location by the screen height. In our case,

sprite’s destination y-value
screen height

depth =

In code, this would be

spriteBatch.Draw(snowAssetTexture,
firstSnowmanLocation,
snowmanSourcelLocation,
Color.White,
0.0f,
snowmanSourceOrigin,
1.0f,
SpriteEffects.None,
firstSnowmanLocation.Y/720.0f); //depth

calculated

spriteBatch.Draw(snowAssetTexture,
secondSnowmanLocation,
snowmanSourcelLocation,
secondSnowmanColor,
secondSnowmanRotation,
snowmanSourceOrigin,
secondSnowmanScale,
SpriteEffects.None,
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secondSnowmanLocation.Y / 720.0f); //depth
calculated

Using the sprite’s height to give the illusion of depth is a common
technique in games. We’ll go into much greater detail about this and other
ways to create the illusion of depth in Chapter 6.

3.3 The Sprite Sheet and the GPU

Before we discuss the details of the sprite sheet, it is important to go into
a little detail about computer hardware. Most modern computers and
game consoles have at least two processors: the CPU and a separate GPU.
The GPU is a separate processor dedicated to graphics processing. Unless
you're playing a computer game or some other 3D simulation, the GPU is
mostly idle, waiting for you to send it some graphics to process.

3.3.1 The Power of Two

You may have heard someone in graphics say, “The image needs to be a
power of two.” The power of two refers to a requirement that the textures
on the graphics card must have width and height values that are equivalent
to 2" where n is any number. In other words, width and height have values
of 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192, etc.

Actually, the “etc.” isn’t really needed because most graphics cards
can’t handle larger textures (at least for now). In fact, most systems can
accept textures up to only 2,048 x 2,048. The following chart shows some
current texture limitations.

System Texture Capacity Storage Size
iPad

Most PC graphics cards 20482 at 32 bpp 16,777,216 bytes
iPad retina

PlayStation 3

Many PC graphics cards 40962 at 32 bpp 67,108,864 bytes
Xbox 360 81922 at 32 bpp 268,435,456 bytes

Even though there are some exceptions, it’s important to keep your
textures as powers of two. Many of the functions within the graphics
package require power of two textures. In XNA, this is true for any of the
“wrapping” sampler states.

In going through some old emails, I actually found the following warn-
ing, which was broadcast to the whole company by a clearly frustrated
graphics programmer. I'm sure he won’t mind if I reprint it here:
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Everyone probably knows this, but just for sanities sake.

All textures must have dimensions that are a multiple of 4. Power
of 2 dimensions are preferred for in-game textures.

If anyone checks in a texture with a screwy size, a hot mug of tea
will be thrown in your direction at speed.

Thank you for your cooperation.

3.3.2 Textures and Graphics Hardware

When you use the XNA content pipeline (Content.Load()), you're copying
the data from the file system and storing it onto the graphics card. The
graphics card contains both the GPU and some memory needed to store
your texture data.

The graphics card performs best when the textures are a power of two.
Then it doesn’t need to do any conversion to your texture data to fit it into
memory. (Modern hardware will automatically pad your texture to be a
power of two.)

This is one of the reasons you’ll often see multiple sprites on a single
sprite sheet instead of having them managed as individual textures. The
goal is to pack the sprites so that the final sprite sheet texture is a power
of two.

However, as we discussed earlier, the fact that there are multiple sprites
on a single texture means you have an added overhead of tracking the
location and size of the sprites on the sprite sheet. In addition, you can’t
just pack the sprites as closely as possible. Instead, you have to ensure
there is enough white space around each sprite so that the rectangular
representation of one sprite does not include bits of the others.

3.3.3 Structured Sprite Sheets

An easy way to build your sprite sheets is to simply divide your texture
into equal-size spaces. Referring to Section 3.2, it is easy to see how this
might be done. It also makes it easy to programmatically loop through
the sprites. This is convenient (in fact, I'll use this for some examples in
Chapter 4), but there are a few disadvantages to this approach.

First, it can lead to some wasted space. Each sprite is not packed as
tightly as it could be on the sprite sheet because it must fit nicely into the
predefined box size.

Second, it is unlikely that your artist will work within the sprite sheet
for editing. Creating the sprite sheet is usually a last step, and if the
individual sprites need to be modified later, the sprite sheet will need to
be recreated.
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Third, the sprite sheet does not include any information about the num-
ber of sprites, the sprites’ locations, or their origins. All of that information
must be tracked separately.

3.3.4 Generated Sprite Atlas

As previously mentioned, it is quite likely that your artist’s favorite drawing
software does not generate nicely structured sprite sheets. In fact, it is
possible that your artist may not even know about the power of two issue
(or consider it your problem alone).

As an example, when working on the artwork for aliEnd, the artist
would draw in Adobe Flash and then export the animated cels using an
exporter built into Flash. (We'll take a closer look at animated cels in
Chapter 4.) The resultant output of the Flash sprite exporter is a series of
individual PNG files, one for each frame of the animation.

Here is where your software pipeline can come to the rescue. With the
help of a software tool (e.g., Andreas Low’s TexturePacker), you can au-
tomatically trim, rotate, and create an efficiently packed and sized sprite
sheet along with an associated text file containing the location and orien-
tation of all the sprites in the texture. This type of sprite sheet, which
includes a text file with location information, is often referred to as a sprite
atlas.

3.4 Scaling Sprites

We have briefly discussed the concept of scaling sprites; however, I en-
courage you to scale sprites with caution. Generally, by maintaining a
one-to-one relationship between the pixels created by the artist on a sprite
sheet and the pixels as they appear on screen, you are guaranteed the best
quality (and a happy artist).

With that said, it may be necessary at times to scale an image (we’ll
look at a case sample in Chapter 6). When this happens, you generally
want to scale down instead of scaling up.

3.4.1 Sampler State

Any time you scale an image, there is no longer a one-to-one relationship
between the pixels in your sprite and the pixels on the screen. In fact, it is
fairly easy to imagine that an up-scaled sprite will look pixelated. However,
there are issues with down-scaling an image as well.

Consider the simple example shown in Figure 3.8. If you scale a 4 x 4
sprite to 2 x 2 screen pixels, what color should be placed in each pixel?
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As you can see, there is not an easy answer. Admittedly, this is
an extreme case, but it illustrates the problem of down-scaling.

Figure 3.8. Scaling a 16-

Most graphics packages offer at least two types of scaling
options, called scaling filters or sampler types. Scaling filters
determine which texel on the original sprite will be the sample

texel sprite texture down to used to color the corresponding pixel. Common types are nearest

four-screen pixels.

neighbor, linear, bilinear, and bicubic.

The two latter types are costly in processing time and more
useful for 3D graphics or photo-realistic applications. For 2D
games, the choice is simpler: when scaling an image, do you want
to preserve the specific texel color (creating a more pixelated
image while preserving hard edges and original colors) or are

you willing to render an averaged color (creating a smoother
image but losing the precision).

Figure 3.9 illustrates the difference between nearest-neighbor
and linear filtering. (Note that the middle figure is more pixe-
lated but retains better color quality when compared to the figure
on the right.) In XNA, our options are available when creating
the sprite batch. Just as we defined a sprite sort method in the
Begin call, we can also define a sampler state. In XNA our op-
tions are SamplerState.PointClamp for nearest-neighbor filtering

Figure 3.9. Three snow- and SamplerState.LinearClamp for linear filtering.
men, left to right: original In addition, graphics filters may offer the choice of clamping
scale, nearest-neighbor dou- 1 wrapping. These options are used when determining what to

bled, and linear doubled.

do with edge cases.

3.4.2 Mipmapping

Although beyond the scope of this text, it is worth knowing about mipmap-
ping, a really useful GPU hardware functionality in which the textures are
prescaled and placed on a single texture. If the original texture is 2562 in
size, the subsequent down-scaled images are each half-sized, resulting in a
series of images that are 1282, 642, 322, 162, 82, 42, 22, and 12 in size (see
Figure 3.10).

The result is an increase of only one-third in storage space with great
advantages. This is because instead of scaling a very large image at runtime,
which might create significantly blurry or pixelated results, the prescaled
images can be used. Normally, this technique is used in 3D graphics to
improve the quality of distant (down-scaled) textures.

However, if generated manually (instead of allowing the GPU to do
the mipmapping automatically), the artist can see and edit the resultant
scaled images. This allows the artist to have significantly greater control of
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3
)

Figure 3.10. Mipmapped texture.

the final quality of the graphics if your game uses large amounts of scaled
sprites.

3.4.3 Scaling the Batch

Finally, note that XNA offers the ability to scale the entire sprite batch.
This is really useful if you need to automatically resize your game scene for
different resolutions.

When developing for mobile devices, I tend to render the initial scene
at 1,280 x 720, then apply a scaled matrix to the entire sprite batch based
on the ratio between the default resolution and the device resolution. For
example, the Kindle Fire has a resolution of 1,024 x 600. The result is a
screen width scaled down to 0.8 the original size.

By using code such as the following, you will be able to render to various
screen resolutions without much effort.

Matrix scaledMatrix = Matrix.CreateScale(actualScreenSize.
Width/defaultScreenSize.Width) ;
spriteBatch.Begin(,,,,,, scaledMatrix);

Be aware, however, that, as with other types of scaling, this works only to
a limit. Rendering an image three times larger or smaller than the original
is going to result in a fairly poor quality final image. An actual example
of this appears in Section 5.2.
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Exercises

Questions

3.1. What is the smallest power of two texture that will fit one of each
of the following sized sprites: 1,024 x 1,024, 512 x 512, 256 x 256,
128 x 128, 64 x 64,32 x 32,16 x 16,8 x 8,4 x 4,2 x 2, and 1 x 17

3.1. Research a classic arcade system or game console (released prior to
2000). What was the maximum texture size? By including the sys-
tem’s color depth, calculate the amount of memory required to store
the maximum-size texture for that system.

Challenges

Challenge 3.1. The act of repeating a simple shape in various orienta-
tions has been used throughout history. Great examples can be found by
searching the Internet for images of quilt patterns, tiled floors, and various
stonework. Your challenge is to create a tiled pattern using just one or two
sprites.

As an example, Figure 3.11 shows an output created from a single sprite,
repeated, rotated, and colored via a loop within the sprite batch Draw call.

-/ WindowsGamel - WindowsGamel,
T CCCNwrrrrrrry
hA A A 4

Adddddddd

MWW PP

- WindowsGamel |~ WindowsGamel

T4 "’:‘

—

SIS

Figure 3.11. Sample patterns from repeating a single sprite.
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Challenge 3.2. In the sample code we have worked through so far, the
source and destination data associated with each sprite have been stored
in individual variables. Your challenge is to create a more robust code
architecture to store and render multiple sprites on multiple sprite sheets.

A good place to start is with an object-oriented architecture. A sprite
class could include a reference to the texture as well as sprite source data.
An object class could include a reference to the sprite class as well as the
appropriate destination data.

Challenge 3.3. Create a process for parsing the data in a sprite atlas. Your
project should read in both the image file and the corresponding text file
as generated by software such as TexturePackerPro.
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So far we have covered the basic task of getting a sprite to appear on the
screen. As such, the code samples in the preceding chapters were necessarily
focused on a specific graphics library (OpenGL, DirectX, XNA). Going
forward, we will focus less on the specifics of the language and more on
building structures that are not platform specific.

In this chapter we start by looking at the basics of sprite animation,
dealing with timing issues to ensure the animation works independent of
frame rate. We also look at the broader topic of animation outside of the
game industry and what we can learn from the animation pioneers of the
twentieth century.

4.1 Historical Animation

Animation comes from the Latin word animatus, meaning “to give life” or
“to live.” The process through which an animator gives life is through a
knowledge of form and movement combined with various animation tech-
niques and finally topped off with a considerable amount of patience and
artistic sensibility.

The most successful early film animators were the ones who understood
that animation is more than the mechanics of a walking sequence. The abil-
ity of a talented artist to breathe life into a drawing can be accomplished
even without the help of the animated sequence. The mid-nineteenth cen-
tury artist Honoré Daumier is known for his ability to do just that, and he
was often referenced as an example by early film animators [Thomas and
Johnston 81]. A wonderful example of the sense of animation in Daumier’s
work is shown in Figure 4.1.

57
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Figure 4.1. Breathing life into art: NADAR élevant la Photographie a la hauteur
de UArt (NADAR elevating Photography to Art) by Honoré Daumier (lithograph,
1863).

It is for this life-giving ability that we turn to our game artists and
animators. However, as programmers working closely with animators, we
may be able to augment their work by providing a technology-based set of
tools to help with the mechanics of animation. This is especially important
when we take into account the interactive nature of game animation.
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In traditional animation, the artist had full control of every object lo-
cation and velocity across the scene for every frame in the sequence. The
game animator must give up that control, however, in order to allow play-
ers to feel that they are driving the actions of the game. The player may
want to dive to the right or fire a missile to the left midway through the
walk cycle. This is where the graphics programmer comes in, as a conduit
linking the artist with the player. The programmer must understand the
mechanics of the game as well as the mechanics of animation.

4.2 Cel Animation

The term cel, short for celluloid, refers to the transparent sheet used by film
animators to draw images that would later be placed on top of a generally
static background and photographed as an individual frame on film. We
borrow the term here, as it is the same conceptual process we use when
animating sprites.

This concept of looping through a set of sprites to create the animated
sequence is fairly simple. To implement it, we need to plan the following
steps:

e Add code to track the animation sequence: This means we need
to know the total number of cels, the current cel being displayed, the
amount of time each cel should be displayed, and the current time
that has elapsed.

e Loop through the animation: In the update function, we need to add
the logic for checking how much time has elapsed and for incrementing
the cel counter appropriately when it is time to move to the next
frame in the animation.

e Render the appropriate frame from the sprite sheet: In our case,
the cels are evenly spaced on a structured sprite sheet such that the
first cel is at position (0,0), the second cel is at position (width, 0),
the next at (width x 2,0), and so on. This type of structured sprite
sheet makes it very easy to loop through the sprite cels without any
significant overhead (not necessarily the robust solution we would
want in a full game, but it does allow us to see the animation working
very quickly).

Starting with an XNA game template, all we need to do is add the fol-
lowing code snippets. As before, the sprite sheets we use in this example can
be found on the companion website, http://www.2dGraphicsProgramming.
com.
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So, we add the following member variables to the game class:

//Source Data
private Texture2D runCycleTexture;
private Rectangle currentCelLocation;

//Destination Data
private Vector2 runnerPosition;

//Animation Data

private int currentCel;

private int number0fCels;

private int msUntilNextCel; //in milliseconds
private int msPerCel; //in milliseconds

The value msPerCel is a measure of how many milliseconds are required
for each frame of the animation. For example, if your animation requires a
frame rate of 20 frames per second, milliseconds per cell would be calculated
as

seconds 1,000 milliseconds _ ., milliseconds
- - =50
20 frames second frame

We then use this value in our initialization, along with the total number of
cels and the rectangular coordinates for the first cel on the sprite sheet.

Notice that the sprite width and height are constant. We’ll use these
values when later calculating the position on the sprite sheet for the current
cel in the animation.

number0fCels = 12;
currentCel = 0;
msPerCel = 50;

msUntilNextCel = msPerCel;

currentCelLocation.X = O0;
currentCelLocation.Y = 0;
currentCellLocation.Width = 128; //sprite width

currentCelLocation.Height = 128; //sprite height

runnerPosition = new Vector2 (100, 100);

Loading the content is the same as before, now with our animated sprite
sheet:

runCycleTexture = Content.Load<Texture2D>("run_cycle");

A common mistake for novice programmers is to simply increment to the
next cel for each frame, but we’ll take a better approach. In the Update
function, we will subtract the number of elapsed milliseconds from our
msUntilNextCel counter. For a fixed frame rate of 60 fps on the Xbox 360,
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this would be about 16.7 ms. On a mobile device running at 30 fps, this
would be about 23 ms. Then, once the msUntilNextCel counter reaches
zero, we'll move to the next cel and reset the msUntilNextCel counter to
the value in msPerCel.

Using the elapsed time (instead of simply incrementing the cel counter
every frame) allows us an animation architecture that is more platform
independent. It ensures that the animation will react correctly to inconsis-
tencies in the frame rate at runtime.

This demonstrates an important game programming paradigm. You
should always ensure your code reacts as expected to variations in processor
speed. Early game programmers learned this the hard way. You may have
had the experience yourself when playing an old game on a modern PC and
finding that the animation sequences occur faster than originally intended.

msUntilNextCel -= gameTime.ElapsedGameTime.Milliseconds;

if (msUntilNextCel <= 0)

{
currentCel ++;
msUntilNextCel = msPerCel;
}
if (currentCel >= number0fCels)
currentCel = 0;
currentCellLocation.X = currentCellLocation.Width * currentCel;

The last line in the above code is the key to the structured sprite sheet.
As Figure 4.2 shows, all the cels are structured along a single line in the
sprite sheet. The result is that for each sprite in the animation sequence,
the height, width, and y-value all remain constant. The only variation is
the z-value, and it is simply a product of the cel width and currentCel. If
you ever wondered why programmers like to count from 0 to 9 instead of
from 1 to 10, this is a great visualization of the advantages.

Finally, we add our Draw call into the sprite batch.

spriteBatch.Begin () ;
spriteBatch.Draw( runCycleTexture,
runnerPosition,
currentCelLocation,
Color.White );
spriteBatch.End () ;

RA00PFRREPPRA

Figure 4.2. Run cycle sprite sheet.
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4.3 A Few Principles of Animation

4.3.1 Timing

Now that we’ve looked at implementing animation for a sequence using
50 ms per cel, why don’t we just render all the animations at a constant
frame rate? After all, if the game runs at 60 fps, shouldn’t the animations
also run at 60 fps?

Actually, not only is 60 fps far higher than needed to see clear anima-
tions, it is also a bit much to ask of your animator. The actual frame rate
for an animated sprite is going to be based on two factors:

1. How fast is the object moving?
2. How big is the object?

Smaller and slower-moving objects will require a lower fps than larger,
fast objects for smooth-looking movement. What this really comes down
to is a question of establishing an ideal ratio between the pixel delta and
the frame time. When there is a greater variance in pixels per frame, the
animation will be less smooth. When the pixel delta is relatively small
(say, 5 pixels:50 ms), it’s easy for your brain to fill in the gaps of what
should happen between each frame. However, as the pixel:time ratio is
increased, there will come a point at which your brain is unable to fill in
the gap (at, say, 50 pixels:50 ms). Conversely, if your pixel:time ratio is too
small (5 pixels:500 ms), your brain will be waiting for motion when none
is occurring.

This may be a bit hard to grasp without seeing an example, so one is
provided on the companion website, http://www.2dGraphicsProgramming.
com.

The results of my personal (rather unscientific) testing can be seen in
Figure 4.3, which shows the results of running a 64 x 64 sprite across a
1,280 x 720 screen at various pixel deltas and frame rates. The green area
shows the minimum number of frames per second (maximum milliseconds
per frame) that are needed to prevent the moving image from seeming to
stutter. The yellow area shows where the pixel delta is so great for that
frame rate that it starts to create a blurring of the image. The red area
shows where the blurring becomes so extreme that it appears there are two
images.

In my testing, the fps rate was topped at 60 fps, thanks to the XNA
framework and my monitor’s refresh rate. The results also may vary based
on the monitor’s pixel density.

The point of this slight distraction is to show that your artist may pro-
vide various speeds for different animated clips. For example, a character
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Figure 4.3. Graph of animation fps rate.

in the foreground with lots of detail may have a greater frame rate than
some small background animation. Whatever the rates, it’s important to
work with the artist to ensure that the final look matches what is expected.
Building in the flexibility for a modifiable msPerCel gives your artist a value
that can later be tweaked.

It also is important to ensure that the sprite’s movement speed across
the game world matches the frame rate. If you are too fast or too slow, it
will be obvious. (I suppose if you ran the animation in reverse you would
get a moonwalk effect.)

I’'m obviously not the first to experiment with animation timing. In
1981, Disney animators Ollie Johnston and Frank Thomas released a book,
The Illusion of Life [Thomas and Johnston 81], detailing their experiences
working in animation since the 1930s. The authors describe the 12 basic
principles of animation, including the importance of timing.

Of the 12 principles, most are more relevant to the game artist than
to the graphics programmer. They deal with such concepts as creating
anticipation, exaggerating, ensuring the animated figure looks solid (as
opposed to a two-dimensional drawing), and giving the animated character
charm.
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However, including timing, four of the principles of animation are worth
looking more closely at to see how a bit of code might help the artist achieve
the same goals:
timing,
slow in/slow out,

arcs,

L

follow-through and overlapping action.

Just as with the principle of timing, there may be a role for the graphics
programmer to create a system that will allow the artist to harness the
power of the processor to do some of the work.

4.3.2 Slow In/Slow Out

Put simply, the principle of slow in/slow out
(Figure 4.4) is just the concept of accelera-
tion as applied to animation. In the discus-
sion of timing, we identified that the artist
will set a frame rate for the animated se-
quence. But if we start at the full animation
rate, it doesn’t look natural.

Let’s try the following additions to our
earlier animation code. First, we add a flag to track whether the player is
running and SpriteEffects so that we can flip the sprite when he runs in
the other direction. Add these to the other game class member variables:

Figure 4.4. Animation principle: slow in/slow out.

1 private bool bIsRunning;
private SpriteEffects eRunnerSprEff;

Then we add initialization for the sprite effect:

1 eRunnerSprEff = SpriteEffects.None;

In the game update, we add keyboard input and a check of the bIsRunning
flag before incrementing currentCel:

1 \N\. ..
bIsRunning = false;

5 if (Keyboard.GetState().IsKeyDown (Keys.Left))
{

bIsRunning = true;

runnerPosition.X--;

eRunnerSprEff = SpriteEffects.FlipHorizontally;
10 }
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else if (Keyboard.GetState().IsKeyDown(Keys.Right))

{
bIsRunning = true;
runnerPosition.X++;
eRunnerSprEff = SpriteEffects.None;
}

if ((msUntilNextCel <= 0) && (bIsRunning))

{
currentCel ++;
msUntilNextCel = msPerCel;
}
Woe oo

As alast step, we replace the Draw call with one that includes the sprite
Effect call.

spriteBatch.Begin () ;

spriteBatch.Draw(runCycleTexture,
runnerPosition,
currentCelLocation,
Color.White,

0.0f, //Rotation
Vector2.Zero, //0Origin
1.0f, //scale
eRunnerSprEff ,

1.0£f);

spriteBatch.End () ;

The result should be an animated character that suffers from the lack
of slow in/slow out.

What we need to do now is to add in our understanding of this anima-
tion principle. First, we use acceleration to get the runner up to speed and
add a dampening value to slow the runner once the player is no longer press-
ing the movement key. So, we add Game member values (runnerVelocity
and maxRunnerVelocity)

private Vector2 runnerVelocity;
private Vector2 maxRunnerVelocity;

and initialize

runnerVelocity = new Vector2(0, 0);
maxRunnerVelocity = new Vector2(5, 0);

Then, in our update, we need to replace the previous keyboard input with
one that will handle the new velocity variables:

if (Keyboard.GetState().IsKeyDown(Keys.Left))
{
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if (runnerVelocity.X > -maxRunnerVelocity.X)
runnerVelocity.X -= 0.2f;
eRunnerSprEff = SpriteEffects.FlipHorizontally;

o

}
else if (Keyboard.GetState().IsKeyDown(Keys.Right))
{
if (runnerVelocity.X < maxRunnerVelocity.X)
10 runnerVelocity.X += 0.2f;
eRunnerSprEff = SpriteEffects.None;
}
else
{
15 runnerVelocity *= 0.95f;

}

runnerPosition += runnerVelocity;

Now we need a way to tie the msPerCel to the player’s speed. In this
next bit of code, we do a couple of different things. First, we assume that
the shortest msUntilNextCel is the value previously defined in msPerCel and
the highest msUntilNextCel is twice that value. We then modify the value
we assign to msUntilNextCel based on the relative velocity.

The relative velocity, determined as a percentage of the maximum ve-
locity, is then used in determining the milliseconds until the next cel:

msUntilNextCel = msPerCel X (1.0 + (1.0 _ _current velocity )) .

maximum velocity

This will work as long as the runner is moving, but the moment the runner
stops, you want the animation to stop as well. In that case, we simply
calculate the relative velocity a bit earlier and use it as the conditional flag
instead of our previous isRunning flag.

1 float relativeVelocity = Math.Abs(runnerVelocity.X /
maxRunnerVelocity.X);

if (relativeVelocity > 0.05f)

{
5 if (msUntilNextCel <= 0)
{
currentCel++;
msUntilNextCel = (int) (msPerCel * (2.0f -
relativeVelocity));
10 }
}

This works fairly well and you should be able to see a nice acceleration effect

on the runner and associated animation, as demonstrated in Figure 4.4.
It is important to point out that this is a fairly simple example and it is

not necessarily how you would want to do it in a production environment.



4.3. A Few Principles of Animation

67

There are two issues:

1. The calculation of milliseconds is only indirectly tied to the velocity.
The velocity changes, but we don’t update the milliseconds until the
previous millisecond counter expires and we are moving to the next
frame. If the previous msUntilNextCel time was long and then we
suddenly sped up, we could end up with an animation that is slow
to respond (we would have to wait until the msUntilNextCel value
reached zero before we take into account the higher velocity). We
might have better luck with hooking the velocity directly into the
msUntilNextCel. Such an approach will be a slightly more complicated
solution, but should it produce a more responsive result.

2. The other, perhaps more important issue is the use of magic numbers
throughout the sample. You may find that tinkering with the values
and thresholds (there were references to 50, 5, 0.2, 0.05, and 0.95)
allows for a better effect. But by hard coding these values into the
program, the artists and designers will be unable to edit them. Ide-
ally, these values should be something that you could edit at runtime
(to see the immediate effect of changes). Even better, allow them to
be saved into a configuration file during testing. (Obviously this is a
feature you would turn off before releasing your game.)

The exact nature of your slow in/slow out solution will be up to you
and your artist and should be based on the type of art assets with which
you are working.

4.3.3 Arcs

The principle of arcs simply states that things in the real world
tend to move in arcs (Figure 4.5). A swinging arm or leg, a
log bobbing in the water, branches blowing in the wind—even
the motion of the moon, sun, and stars—all tend to exhibit arc-
ing motion. Linear movement is unusual in nature and looks
artificial when included in a scene.

I actually take this a step further to say that they all exhibit a
type of sinusoidal movement, and that’s where the programming
comes in. We'll look at ways to implement this in Section 10.2.
However, by adding acceleration in the previous example, we have moved
from linear velocity to a velocity that arcs over time.

Figure 4.5. Arcs.!

IFigure 4.5 is provided under Creative Commons License, available at http://
stockarch.com/images/abstract/light /streaking-light-arcs-2018.
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4.3.4 Follow-Through and Overlapping Action

I like to think of follow-through and overlapping action as the observation
of Newton’s First Law, which can be paraphrased as, “An object in motion
will stay in motion, and an object at rest will stay at rest.” This principle
helps the artist demonstrate to the viewer that the animated characters are
not rigid but instead are made of the same types of materials with which
we are familiar.

Imagine the cloak of a rider as he gallops across the scene, the ponytail
of a toddler as she runs for a toy, or the gown of a ballroom dancer as
she gracefully dances across the hall. The action of the cloak, ponytail,
and dress would all look wrong if they moved pixel for pixel with their
character. Instead, they should float or bounce a moment behind. The
mass of the material combined with the elasticity of the connection to the
character result in the actions that flow from the initial action, only slightly
delayed and dampened.

While this is something that the artist could add, it might be nearly im-
possible to anticipate all the player actions. Unlike traditional animation,
the secondary action must occur based on some unknown player action.
This is where the programmer can come to the rescue. As an example,
suppose you are moving a Chinese dragon with a long, flowing tail. The
primary action is the player’s movement of the dragon’s head. The sec-
ondary action could be a series of linked tail segments.

A very simple example of this can be
found on the companion website, http://www.
2dGraphicsProgramming.com. The image in
Figure 4.6 shows that the tail sprites act as
secondary actions. The technique to create
the tail movement is to simply loop through
the tail segment and accelerate toward the
current position of the previous segment.
Combined with animated sprites that trigger
their animation down through the line of seg-
ments, you could quickly get a very nice effect.

It might be interesting to note that, taken
together, these last three principles of anima-
tion are really just the observable phenomena
of Newtonian mechanics, applied to art. Ap-
plied as a whole and combined with cel animation, you have the possibility
of creating a very rich and dynamic scene. For example, combining decel-
eration into the run animation eventually transitions into an idle anima-
tion. In the new animation cycle, the character is stopped but continues
to breathe as his chest rises and drops in a steady arch. Finally, add a

Figure 4.6. Dragon’s tail as overlapping action
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directional rippling effect to a linked series of sprites that represent his
cape blowing in the wind. These cape sprites may lag to his left when he is
running to the right, but when he stops they are caught by the wind and
move past him to flutter to the right.

While this series of events may only represent a second of game time,
the fact that it is an action the player will perform many times throughout
the game means that these small details will be significant to the game play
experience.

4.4 Animation Cycles

So far we have looked at incorporating only a single animation cycle into a
character. In our case, it was a run cycle that works really well for running
left and right, but it doesn’t look quite right when the character is stopped;
the animation will literally stop mid stride.

In a production environment, you have multi-

ple animation cycles per character. FExamples of
the animation cycles for Newman from the game
aliEnd are shown in Figure 4.7. This might include
cycles for running, attacking, jumping, blocking,
and even just standing around. (Often, it is the
idle cycle that will endue the most life into your
animated character.) You need to create a robust
animation system that will allow you to switch be-
tween these cycles. In this system, depending on
the animation sequences, you may need to end one
cycle before continuing on to the next cycle. How-
ever, this won’t always be the case. For example,
if you have just started an animation cycle when
the player presses the attack button, waiting until

the end of the cycle might result in a system that

is not as responsive as the player expects. You will Figure 4.7. AliEnd: selection of Newman’s

need to work with your artist to design a system various animation cycles.
that works best for the task at hand.

The good news is that frame-by-frame animation is forgiving. You may
have noticed in the examples in this chapter—for example, when the char-
acter flips running directions—that it is not as disconcerting as you might
otherwise expect it would be. In many cases, the viewer’s visual system
will unconsciously fill in the gaps, making up for the missing transitions.

Also, keep in mind as you are developing your animation system that
you may need multiple sprite sheets to contain your various animation
cycles.
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4.4.1 Animation in Early Development

During a recent conversation with Brad Graeber, CEO of Powerhourse An-
imation (a company that specializes in 2D animation for games), I asked
the following question: “If you could make one request of the game pro-
grammers with whom you often work on projects, what would it be?”

In his reply, Graeber explained that when animators work on films, they
often have the opportunity to provide pencil sketches and animated story-
boards that are included directly in the early stages of film development,
perhaps even before the storyline is completed. Through this, the ani-
mators are able to see immediately whether the concept they are working
through fits within the context of the film.

Unfortunately, game development never has the technology in place to
provide pencil sketches early into the game. The only request by the game
development team is for a fully animated finished product. As such, the
animators do not have the chance to view and then make changes early in
the process because they do not get to see the early animation and pencil
sketches in the context of the game.

The request is for us, as game programmers, to ensure that our engines
and game systems can support low frame-rate storyboard-style animations
during prototyping and early development. In so doing, we could then have
an expectation for a better end-product.

I think that is a great suggestion, and hopefully it is something you’ll
think about as you start to work with artists on your projects. It is a
reminder that, in many ways, the discipline of game development is still
new, and there is a lot we can still learn from traditional media.

Exercises

Questions

4.1. How many milliseconds pass between cels that are animated to play
at 30 fps?

4.1. The sprite sheet for the runner used in the examples in this chapter
cannot be programmed to jump over obstacles. Why not?

Challenges

Challenge 4.1. Combine the runner animation with the snowman from
the previous examples to create a snow scene. Be sure to implement the
principle of slow in/slow out.
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Challenge 4.2. Add to the scene created in Challenge 4.1 the ability to
throw snowballs. Can you come up with a way to implement gravity on
your snowballs to create an arc?

Challenge 4.3. Add a second player to the snowball game. Implement a
mode so that the other player, when hit by a snowball, moves in slow
motion for 3 seconds. In the slow-motion mode, both the velocity and the
animation should move at a slower rate.

Challenge 4.4. Implement a graphics scene that makes use of follow-through
and overlapping action.

Challenge 4.5. We have seen that many of the principles of animation can
be thought of as the observational results of Newton’s Laws of Motion.
However, none of them mentions Newton’s Third Law (paraphrased as,
“For every action there is an equal and opposite reaction.” Your challenge
is to implement a game scene that makes use of the third law. Hint: What
happens when a character fires a missile from a tank? What should happen
to a floating platform if a player jumps from one platform to the next?

Challenge 4.6. Investigate various pixel deltas and animation speeds. Are
your results similar to what is shown in Figure 4.37
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5.1 A Simple Camera

This chapter shows how easy it can be to create a simple game camera,
although a camera isn’t needed unless the game world is bigger than the
screen. This first example once again uses our runner and snowman assets
to create a very simple scene that is wide enough to require a game camera.
To keep the example simple, let’s start with our original animation sequence
and the example in Section 4.2.

We will add code to the example. Make sure you have both the run_cycle
and snow_assets sprite sheets added to your content folder and then add
the following member variables:

70 o«

//Source Data

private Texture2D runCycleTexture;
private Rectangle currentCelLocation;
private Vector2 runnerCelOrigin;

private Texture2D snowmanTexture;
private Rectangle snowmanCelLocation;
private Vector2 snowmanCelOrigin;

//Destination Data
private Vector2 runnerPosition;
private Vector2[] snowmenPositions = new Vector2[10];

//Camera Data
private Vector2 cameraPosition;

private Vector2 cameraOffset;

//Animation Data

00 oo

73
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Figure 5.1. Camera offset.

The above code snippet has the old runCycleTexture and also has a new
snowman texture and associated source data. This time we also add ten
snowmen with their positions stored in an array of Vector2s.

You may also notice an extra Vector2 in the code to store the origin
source data for the runner. That will ensure that the runner ends up truly
in the center of the screen instead of offset down and to the right, as in
Figure 5.1.

The last set of variables are for tracking the camera. The camera has
a position within the game world, and our scene will be focused on the
camera’s position. So in order to center the screen on the camera, we
also need to know the location of the center of the screen. This is the
value we store in the camera offset: the center of the screen, with position
(screen width/2, screen height/2).

With all the various numbers we are tracking, it may take a moment
to think about which values are represented and where they originate.
Figure 5.1 may help to bring it all into focus.

The black line, with a value of (128,128) on it, notes the sprite source
data (the z-value is actually going to be a multiple of 128 as we move
through the animation cycle on the sprite sheet. The green line represents
runnerPosition as measured from the game origin. Notice that the origin
(0,0) is no longer located in the top-left corner. This is because we are
using the new camera offset value (represented by the red value). We will
look at how this is implemented in our Draw calls in a moment. The runner
position and camera position are both located at (0, 128).

The area of the image that is grayed out is there only to illustrate the
section of the screen that would previously have been unseen. It won’t
actually show up grayed out in your scene.
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In order to get this all to work, we need a few more steps, but first we
must initialize the values:

1 currentCellocation = new Rectangle(0, 0, 128, 128);
runnerCelOrigin = new Vector2 (64, 64);

snowmanCelLocation = new Rectangle(0, 128, 256, 256);
snowmanCelOrigin = new Vector2(128, 128);

o

runnerPosition = new Vector2(100, 100);
cameraOffset = new Vector2(400, 240); //half the screen size
cameraPosition = runnerPosition;
10
for (int i = 0; i < 10; i++)
snowmenPositions[i] = new Vector2 (200 * i, 200);

We also have spaced the ten snowmen evenly along the z-axis, 200 pixels
apart.

You might have noticed that we did not initialize cameraPosition in this
code snippet. Since we want to focus on the player, we set the camera’s
position to be the same as the player’s position. This is the only change
we need to make to the Update function.

1 // ..
cameraPosition = runnerPosition;

5 base.Update (gameTime) ;
}

Now we need to add the snowmen Draw calls in our Draw code. The
loop is included below, but you should notice one more modification: the lo-
cation where we are drawing the runner is no longer simply runnerPosition.
We are now subtracting the camera position from the runner’s position.

1 Vector2 drawlLocation = cameraPosition - cameraOffset;
spriteBatch.Begin () ;
spriteBatch.Draw(runCycleTexture,

runnerPosition - drawLocation,

currentCelLocation,

Color.White,

o

0.0f, //Rotation
snowmanCelOrigin,
1.0f, //scale
10 eRunnerSprEff ,
1.0f);
for (int i = 0; i < 10; i++)

{
spriteBatch.Draw(snowmanTexture,
15 snowmenPositions[i] - drawLocation,
snowmanCelLocation,
Color .White,
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0.0f, //Rotation
snowmanCelOrigin,

1.0f, //scale
SpriteEffects.None,

1.0f);

¥
spriteBatch.End () ;

As a last step, make sure you're loading both textures in the content
load:

runCycleTexture = Content.Load<Texture2D>("run_cycle");
snowmanTexture = Content.Load<Texture2D>("snow_assets");

Now we have a camera that travels with the runner, and the rest of the
game world seems to move around him.

A discerning reader may notice a mathematical curiosity in the previous
code samples. In the Update function, we set the camera position as follows:

cameraPosition = runnerPosition .
But later, in the Draw call, we create a draw location
drawLocation = cameraPosition — cameraOffset
and then finally draw at the location as defined by
final draw location = runnerPosition — cameraPosition.
The result would seem to be
draw location = runnerPosition — (runnerPosition - camera[Jffset)7

and sure enough, we can see that the end result is that the player is drawn
at the location of the camera offset. So if the values cancel each other out,
why not just use

draw location = cameraOffset?

If it appears that the values we set for the runner position and camera
position are completely ignored, well, yes, they are to an extent. Setting the
camera position to be equal to the runner’s position is the culprit. Let’s
now look at some examples of when we might want a different camera
location.

Perhaps we want to indicate to the players that they have reached the
end of the level. In that case, we may want to clamp the camera value to
a certain range. Then we should add something such as the following into
our update:
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1 if (cameraPosition.X > 1000)
cameraPosition.X = 1000;
if (cameraPosition.X < 0)
cameraPosition.X = 0;

By preventing the camera from moving beyond a given range, we are able
to give players a cue as to where they should and should not be headed.

5.1.1 Smoother Camera Movement

Another issue might be a game that has fast action. Locking a camera to
a character that quickly darts back and forth can be a bit annoying. Try it
out for yourself by changing the velocity modifiers from 2 to 20 and then
try running back and forth.

1 if (Keyboard.GetState().IsKeyDown(Keys.Left))

{
bIsRunning = true;
runnerPosition.X -= 20; ;
5 eRunnerSprEff = SpriteEffects.FlipHorizontally;
}
else if (Keyboard.GetState().IsKeyDown(Keys.Right))
{
bIsRunning = true;
10 runnerPosition.X += 20;
eRunnerSprEff = SpriteEffects.None;
}

As you can see, that’s not a very pleasant experience for the player.
One possible solution is to replace the line with code that will cause the
camera to move at a speed relative to the distance it is from the player. In
my testing, I found 0.05 was a good constant to use for the multiplier.

1 //Vector2 goalCameraPosition = runnerPosition - cameraOffset;
const float MULTIPLIER = 0.05f;

5 if (cameraPosition.X < runnerPosition.X)
{
cameraPosition.X -=
((cameraPosition.X - runnerPosition.X) * MULTIPLIER);

}
10 else if (cameraPosition.X > runnerPosition.X)
{
cameraPosition.X
+= ((cameraPosition.X - runnerPosition.X) * -MULTIPLIER);
¥

Note that this code restricts the camera movement to the xz-axis. If you
want vertical camera movement, you will need to add that here as well.
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5.1.2 Jumping and Ground Tracking

There are two schools of thought about what to do in a platformer when a
game character jumps beyond the top of the screen. Here are the obvious

Figure 5.2. Y-axis camera tracking: op-
tion 1 (left) and option 2 (right).

options; you may be able to think of others:

1. Track the player in the y-axis (Figure 5.2,
left): An easy solution is to just have the cam-
era track the player into the vertical space. In
this case, it is likely that the game view will
no longer include the ground for a very high
jump. It will have gone off screen as you track
the jumper.

2. Don’t track the player in the y-axis (Fig-
ure 5.2, right): In this case, you will lose track
of the player into the clouds. We are used to
having the player in the scene, so this would
be an odd choice.

Your choice depends on your game play, but the experts report that
option 2 actually feels much more natural than you might expect [Ras-
mussen 05]. Players don’t like to lose sight of the ground. When you start
to fall, you want to know where the obstacles are and you want to have
time to avoid them. If the camera is tracking the player, the ground and
associated dangers are obscured until it’s too late for the player to react.
You should be able to find examples of games that do both.

Figure 5.3. Player tracking by Gunther
Fox.

Perhaps the best solution is to zoom the cam-
era out so that you can track both the player and
the ground. Of course, assuming you have built
zoom functionality into your 2D graphics engine
(we haven’t yet), this would be the best solution.
However, you might not want to resize your game
scene in this way.

In his four-player game Super Stash Bros
[Fox 10], Gunther Fox employs a combination of
two techniques for tracking players, which are
shown in Figure 5.3. First, a dynamic camera
zooms in and out based on the distance between
the players. There is a maximum zoom distance,
beyond which the players may be off the screen. If
this occurs, an arrow indicates the player’s location.
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5.2 Simple Camera Zoom

When we discuss pixel shaders in Section 9.5.4, we will look at a more robust
technique for zooming the camera. In the meantime, a simple option is to
make use of the ability to scale the entire sprite batch.

But before we do, it’s important to take a moment to consider the
ramifications of dynamic scaling. That is, there is no longer a 1:1 ratio
between the texels in the texture and the pixels on the screen. This may
not be significant, depending on art style, but it is something to consider.
As we noted in Chapter 3, there are issues with scaling up and scaling
down.

Continuing with the camera code we developed earlier in this chapter,
we add camera-zoom functionality by making use of a scaling matrix. A
matrix is a mathematical construct that comes from the field of linear al-
gebra. Matrices are essential to 3D graphics and are beyond the scope of
this book. All we need to know at this point is that a matrix stores a set of
numbers in a way that they can contain information about how to move,
scale, or rotate a point in 2D or 3D space.

Before we create the matrix, however, we need to track the zoom
amount. To do this, we add the following to our code in the appropri-
ate locations:

//Add member function
private float fZoomLevel;

I oo

//Add to Initialize()
fZoomLevel = 1.0f;

Il oo

//Add to Update ()
if (Keyboard.GetState().IsKeyDown(Keys.Up))
{
fZoomLevel += 0.01f;
}
else if (Keyboard.GetState().IsKeyDown (Keys.Down))
{
fZoomLevel -= 0.01f;
}

40 o
//Replace drawlLocation calculation in Draw ()

Vector2 drawLocation = cameraPosition - (cameraOffset/
fZoomLevel) ;



80

5. Camera and Tiling

Now we need to create a matrix and use it in the spriteBatch.Begin()
call. Unfortunately, the overloaded Begin function that includes a matrix
parameter needs a variety of other parameters as well, making it look more
scary than it is. If we just add the following parameters, we should see
some good results (the mathematical scaling magic happens in the last
parameter).

spriteBatch.Begin(SpriteSortMode.Deferred,
BlendState.NonPremultiplied,
SamplerState.PointClamp,
DepthStencilState.Default,
RasterizerState.CullNone,
null,
Matrix.CreateScale(fZoomLevel)) ;

This is actually a great place to test out the various sampler states
described in Section 3.4.1. Try modifying the sampler state in the above
code to see the results.

5.3 Tiling

By making use of a game camera moving along the z-axis, we have experi-
mented with a graphical design that is familiar in side-scrollers. This could
easily be converted into a y-axis camera such as the one used in such games
as Mega Jump [Get Set Games Inc. 11].

5.3.1 Simple 2D Tiled Graphics

By utilizing another genre familiar to older gamers, we can now implement
the tile graphics of the early Ultima games [Garriott 81] and Legend of
Zelda [Miyamoto and Tezuka 86]. This type of top-down tile graphics is also
used in more modern games, such as Civilization Revolution [Firaxis 09].

In these games, the camera is directly overhead and the tiles are often
more symbolic than realistic, similar to viewing a traditional map. This
type of perspective may be referred to as “god view” (see Figure 5.4) If the
system includes a graphical fog of war, the perspective may be referred to
as a “strategic view.” A third option, used in some of the early games, is
to incorporate the line of sight from the perspective of the player, so that
the hidden objects are not revealed see Figure 5.5.

To generate a simple god-view perspective with tiled graphics, we need

1. a set of tile sprites for the various types of terrain,
2. a map of how those tiles should be distributed,

3. a draw routine that draws only the tiles that are in the field of view.
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Figure 5.4. Search: tile graphics.

Figure 5.5. Search: tile graphics with line of sight.
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At this point I assume that you can include the sprite loading and
initialization yourself and further that you can work through a way to
store sprites in a class. Look at the following class definition and fill in the
blanks as appropriate. We will use this class in our example.

1 class cSpriteClass

{
private Texture2D mTexture;
private Rectangle mLocation;
private Vector2 mOrigin;
public Color mColor;

o

public cSpriteClass () {\\..\\}

10 public void LoadContent (ContentManager pContent, String
fileName, Rectangle pLocation, Vector2 pOrigin)
WL AND

public void Draw(SpriteBatch pBatch, Vector2
pGameLocation, float pRotation, float pScale)
O\ LD

In this example we create a god-view tank game, similar to Figure 5.6,
by utilizing four sprites for terrain (plains, hills, mountains, and water) and
one for the tank.

As before, we use a camera system that includes a position that follows
the player and a zoom feature. In addition, we need to distinguish be-

Figure 5.6. Two-dimensional tile graphics tank game.
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tween the player’s position on the map and the player’s position in screen
coordinates.

For this example I list only code that is significantly different than
anything we’ve covered in the past. You will need to fill in the gaps on
your own.

At a minimum, you need to add the following member variables in order
to draw the sprites:

//Source Data
cSpriteClass plains, mountains, hills, water, player;

//Destination Data
private Vector2 playerMapPosition, playerScreenPosition;
private float playerForwardVelocity;

I have also added the following values for moving the tank:

private float playerForwardVelocity;
private float playerRotation;
private float maxPlayerVelocity;

In addition, it is helpful to put the width and height values that remain
constant in one place. If we ever need to change them, it will be much
easier having them grouped together. It also helps to prevent the use of
magic numbers.

//Size of the game window

private const int SCREEN_W
private const int SCREEN_H

1280;
720;

//S8ize of an individual sprite tile
private const int SPRITE_W = 32;
private const int SPRITE_H = 32;

//Size of the game map
private const int MAP_W = 256;
private const int MAP_H 256;

This last bit is used for loading and storing the game map.

//Game Map
Texture2D mapTexture;
private Color[] gameMap = new Color [MAP_W * MAP_H];

There are many ways to store a game map; in this case I have chosen to
make use of a 2D texture (Figure 5.7). This is a convenient format because,
like a map, a texture is a 2D array. The choice of tile will be encoded as
color information.
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Figure 5.7. Example tex-
ture image used as game map,
map0l.png: R = 255 for
mountains, R = 128 for hills,
G = 255 for forest, and B =
255 for water.

A discerning computer scientist may note that this choice
requires significantly more space in computer memory than
should be necessary. Even if we had 256 different terrain types,
we should need an array comprised only of byte-sized elements,
not 4-byte RGBA. This is true, but as a result of our memory-
intensive choice, we gain a few advantages:

1. We can use any raster-based graphics editor to create and
edit the game map.

2. We already have built-in functionality for working with
Texture2D type.

3. We gain experience storing nongraphical data in a tex-
ture.

Each platform and game requirement is different, however. It
is also unlikely that a raster-based graphics editor will be a

sufficient tool for complex maps. It is your responsibility, as the graph-
ics programmer, to understand the needs of the system, the expectations
of your team, and your own resource limitations. Taking these all into
account, you can then choose and build the most appropriate system.
Continuing with our example, in the game constructor, you need to set
up the game window and create the new sprite class objects. For example:

1 graphics

= new GraphicsDeviceManager (this);

//Set game window size

graphics
5 graphics

plains =
//Repeat

.PreferredBackBufferWidth = SCREEN_W;
.PreferredBackBufferHeight = SCREEN_H;

new cSpriteClass();
above for each terrain type

In the LoadContent function, you need to load the sprite data and map.
The following code provides an example of the plains tile. You will need

to repeat it

for the other terrain types and the player tank, and you will

need to modify the rectangle as appropriate based on the sprite’s location
on the sprite sheet.

1 plains.LoadContent (Content,

o

//Repeat

"tiledSprites",

new Rectangle(0, O, SPRITE_W, SPRITE_H),

new Vector2(SPRITE_W / 2, SPRITE_H / 2));
above for each terrain type and the player

mapTexture = Content.Load<Texture2D>("mapO1");
mapTexture.GetData<Color >(gameMap) ;
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The last line in the above code snippet will copy the data in the texture
directly into the large array of colors we defined earlier. This will be used
as your game map.

In the game update, include player input controls to change the player’s
rotation and velocity. Once you have the new rotation and velocity, it’s
easy to move the player in map coordinates by using the sine and cosine
trigonometry functions:

Az-position = forward velocity x cos(rotation) x elapsed seconds,

Ay-position = forward velocity x sin(rotation) x elapsed seconds.

By multiplying each value by the elapsed seconds, we can ensure that the
velocity remains the same regardless of frame rate. In code, this looks like

//Update Player Rotation from Keyboard Input
if (Keyboard.GetState () .IsKeyDown(Keys.Left))

{
playerRotation -= (playerRotationRate
* gameTime.ElapsedGameTime.TotalSeconds
)
}

else if (Keyboard.GetState () .IsKeyDown(Keys.Right))
{
playerRotation += (playerRotationRate
* gameTime.ElapsedGameTime.TotalSeconds
)
}

//Update Player Velocity from Keyboard Input
if (Keyboard.GetState () .IsKeyDown (Keys.Up))
{
if (playerForwardVelocity <= maxPlayerVelocity)
playerForwardVelocity += 0.5f;

}

//Update Player Position on Map
playerMapPosition.X += (float)(playerForwardVelocity
* Math.Cos(playerRotation)
* gameTime.ElapsedGameTime.
TotalSeconds);
playerMapPosition.Y += (float) (playerForwardVelocity
* Math.Sin(playerRotation)
* gameTime.ElapsedGameTime.
TotalSeconds) ;

By keeping the player’s position in relation to the map, we will later
be able to compare the player’s position with the terrain at that location.
But for now, we need to convert those coordinates into screen coordinates
in order to draw the player at the correct position. We also update the
camera position as before.
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5

Figure 5.8. Sprites used in this example. Note the re-
quired white space on the right. This was done to en-
sure the texture remained a power of two (128 x 64).

10

20

//Convert from map to screen coordinates
playerScreenPosition.X = playerMapPosition.X * SPRITE_W;
playerScreenPosition.Y = playerMapPosition.Y * SPRITE_H;

cameraPosition = playerScreenPosition;

Finally, we need to draw the sprites for
the tiles and player (Figure 5.8). This in-
volves looping through the map and draw-
ing the appropriate sprite in the appropri-
ate location. However, we don’t want to
draw the entire map—only the area that
is visible around the player. For our ex-
ample, that includes about 23 sprites on
the left and right of the player and 15
above and below the player.

In that case, we need to modify the
normal i and j for loop with the appro-
priate values:

Vector2 screenlLocation;
Color mapLocation;

int x0ffset = 23;
int yOffset 13;

int iStart = (int) (playerMapPosition.X - xO0ffset);
if (iStart < 0) iStart = 0;

int iEnd = (int) (playerMapPosition.X + x0Offset);
if (iEnd >= MAP_W) iEnd = MAP_W - 1;

int jStart = (int) (playerMapPosition.Y - yOffset);
if (jStart < 0) jStart = 0;

int jEnd = (int) (playerMapPosition.Y + yOffset);
if (jEnd >= MAP_H) jEnd = MAP_H - 1;

for (int i = iStart; i < iEnd; i++)
for (int j = jStart; j < jEnd; j++)
{

//Draw appropriate tile for this location

}
//Draw player on top of tiled surface
player.Draw(spriteBatch, playerScreenPosition - drawlLocation,

(float)playerRotation, 1.0f);

Now for the details of the Draw call. Let’s consider only the mountains

and plains for now and assume that we have a map (stored in a texture)
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such that red pixels indicate mountains. If the pixel is not a mountain, it
must be a plain. In that case, our Draw call in the middle of the above
loop would look something like this:

screenlocation = new Vector2(i * SPRITE_W, j * SPRITE_H);

maplLocation = gameMap[i + (j * MAP_H)];

if (mapColor.R == 255)
mountains.Draw(spriteBatch, screenLocation - drawLocation
D
else
plains.Draw(spriteBatch, screenLocation - drawLocation);

You can add the logic for the other color and tiles yourself. You could
even go so far as to combine the color combinations. For example, a red
value of 128 might indicate hills and a green value of 255 might indicate
vegetation. The vegetation sprite could then be layered on top of the hill
sprite.

5.3.2 Overlapping Tiles

Occasionally, some game developers have chosen to implement an overlap-
ping tile-based graphics. Game designer Daniel Cook offers a set of these
on his website! as well as some instructions on how they map together. The
result is some amazing-looking environments, as can be seen in Figure 5.9.

Figure 5.9. Art from 2D Circle Graphic Archive by Daniel Cook (Lostgarden.com).

Lhttp://www.lostgarden.com/2006,/07 /more-free- game-graphics.html
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Figure 5.10. Screenshot of the video game : -~ o
Battle for Wesnoth (version 1.8.1).2 creation of additional level editing tools.

5.3.3 Hexagonal Tiles

Instead of allowing for the type of continuous movement demonstrated in
the example above, a feature of many tile games is that they allow for
turn-based game play, in which units are on either one tile or another
tile, but never between tiles. For example, in this type of game, the
player’s unit may be allowed to move across n number of tiles on each
turn. Unfortunately, square grid—based movement has some limitations.
One of the major issues is that units that are across grid corners from one
another are not equidistant to those that are on
side-by-side lines, resulting in extra rules and un-
natural game play. So instead, many tabletop
games make use of a hexagonal grid, which al-
lows for six equidistant faces for every game tile.

Consequently, hexagonal grids are seen in
many turn-based war games, where they provide
a more strategically compelling experience. An
example is the open source game Battle for Wes-
noth [White 05] (Figure 5.10).

While slightly more challenging to code, a
hexagonal grid works in a similar fashion as the
square grid equivalent except that it can’t easily
be mapped to 2D array and therefore requires the

5.3.4 Line of Sight

Another feature of early games was the blocked line of sight that would
occur as you moved through the world. This works well if you want to hide
objects from the player but maintain the top-down perspective (as seen in
Figure 5.5).

Personally, I really like the end result of this technique, but perhaps
that’s because I'm an old-school gamer. I think it helps to create a con-
nection between the players and their avatars in the game world. It’s a
technique I haven’t seen used much in modern games, though.

There are different options to implement this technique, and some are
more efficient than others. The goal is to decide before drawing a particular
sprite whether it should be hidden from view. In other words, does that
tile have a line of sight to the player? Without giving away too much of
a solution, see whether you can design your own system. This problem is
included as a challenge at the end of this chapter.

2 Wesnoth screenshot published under GNU General Public License. Source: http://
wesnoth.org.
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Figure 5.11. Projection comparison: isometric projection featuring parallel van-
ishing points (left) and two-point perspective featuring foreshortening (right).

5.4 Isometric Tiled Graphics

Isometric projection is a method for representing a 3D object in 2D space
(see Figure 5.11, left). We discuss much more about perspective and depth
in Chapter 6, but let’s take a look here at the isometric format as it is
often used in tiled games. The most famous example from recent years is
FarmVille [Zynga 09].

Isometric projection is a type of parallel projection, meaning that the
perspective assumes a camera at an infinite distance. The result is that
there is no foreshortening (all objects appear the same size no matter how
far away they are; see Figure 5.11, right). The term isometric (of equal
measures) refers to the fact that in these drawings, the width, height, and
depth are all drawn at the same scale. As a result, an isometric perspective
is often used in engineering drawings when a 3D perspective is needed but
accurate line scale must be maintained regardless of distance.

Another famous, albeit significantly older game example that makes use
of an isometric perspective is the arcade game @Q*bert [Davis and Lee 82].

The projection angles may be adjusted, but typical isometric projection
is created by producing grid lines at 30 and 60 degrees for a total of 120
degrees between the front faces of the tile. This can be used to create a tiled
game map. As you can see in Figure 5.12, an advantage of the isometric tile

<>

Figure 5.12. Isometric tile with height mapped onto a sprite sheet.




90

5. Camera and Tiling

(b)

Figure 5.13. A 45 degree isometric tiled graphics game prototype: (a) inside and

(b) outside.

is that it may have a height component. When drawn in the appropriate
order (back to front), the front tiles may overlap the back tiles.

Figure 5.13 shows screenshots from a prototype I worked on that used
45-degree grid lines instead of the standard 30/60. They also provide good
examples of overlapping and how well line of sight can work when the
player is in the interior of a building. Here, I limited the height of most

Figure 5.14. Layered isometric
game concept.

game objects to the conceptual cubic area that can be seen
in the wall segments. The only exception to this is the tower
in Figure 5.13(Db).

There is really no limit to the height of the tiles in an
isometric game, however. Large towers can be mixed with
flat tiles, each taking up varying amounts of space on the
sprite sheet. The only significant concern is related to game
play, ensuring that the front tiles do not cover up anything
important to game play.

The game CastleVille [Zynga Dallas 11] regularly has
very high towers and other obstacles that obscure the view
of the tiles behind it. This issue has been addressed, though,
by creating an outline feature that supports any important
object that is otherwise obscured.

You could take it even further with multiple layers and
the use of the alpha channel. Figure 5.14 is a mockup of such
a game. It would be interesting to see what kind of dungeon

or tower game could be made by implementing something
like this.



5.4. Isometric Tiled Graphics

91

5.4.1 Limits of Isometric Perspective

The feature of isometric perspective that it does not have foreshortened
sides is useful when creating a tiled game, but it has some limitations in
depth perception. The result is an ambiguity that has been famously ex-
ploited to create an apparent paradox, which can be seen in M. C. Escher’s
painting Ascending and Descending (lithograph, 1960) and then again later
in his The Waterfall (lithograph, 1961).

These so-called impossible images were inspired by the combined work
of Roger Penrose and his father Lionel Penrose. Roger, after having at-
tended a conference that included presentations by the not-yet-famous Es-
cher, went home to create the Penrose triangle. He showed it to his father,
who then created the Penrose stairs, a never-ending staircase. The images
were eventually published in the British Journal of Psychology. Roger sent
the article to Escher, who then incorporated the impossible staircase con-
cept into his aforementioned works [Seckel 07], the seed of this idea creating
its own cyclical triangle.

With this in mind, I think it would be very interesting to create an
isometric tile-based game that made use of this type of warped perspective.
Although it might be difficult to wrap your head around such a game, both
as a developer and as a player, it seems entirely possible and may create
some interesting game-play mechanics.

Exercises: Challenges

Challenge 5.1. Add a jumping feature to the camera example in Sec-
tion 5.1. Implement the two options for y-axis camera movement (track the
player and don’t track the player), allowing the user to toggle the y-axis
camera movement during runtime. Add an arrow to track players when
they are off-screen.

Challenge 5.2. Complete the tiled program example in Section 5.3, imple-
menting zoom controls and adding your own set of tiled graphical sprites to
represent other terrain types. As discussed at the very end of that section,
implement layered sprites so that vegetation can be mapped over terrain.

Challenge 5.3. Add line of sight to the tiled program example in Sec-
tion 5.3 such that mountains completely block the line of sight.

Challenge 5.4. Expand the line-of-sight program from Challenge 5.3 so
that in addition, after passing through three in a row, hills and trees will
also block the view. Add an exception to this rule so that when the player
is standing on a hill, it takes six in a row to block the player’s line of sight.
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Challenge 5.5. Implement an isometric tiled graphics program.

Challenge 5.6. Implement an isometric game that makes use of the limi-
tations of the isometric perspective to generate impossible structures. At a
minimum, add enough functionality so that the player can navigate through
your impossible world.



The Tl

So far, we have covered the basic systems required for building a simple 2D
graphics engine capable of rendering and animating sprites. We’re able to
maintain and track multiple sprites, sourced from larger sprite sheets, and
our sprites animate smoothly, even across different frame rates.

However, the engine is still limited. Even high-quality artwork pro-
duces a rendered scene that looks flat. For the vast majority of games in
the 1980s, this was the status quo. Incremental graphical improvements
were achieved by higher resolution or an increased color palette. Exam-
ples include Richard Garriott’s Ultima IV, Alexey Pajitnov’s Tetris, and
Shigeru Miyamoto and Takashi Tezuka’s Legend of Zelda. But as a fledgling
industry, these small teams of game developers didn’t yet make use of the
long-established illusionary techniques developed in art or film.

We have already taken a peek at some possible depth creation through
the implementation of overlapping tiled graphics and isometric perspective.
In this chapter, we take a step back in time and focus on the numerous
techniques we can borrow from the more traditional graphical disciplines
in order to apply the illusion of depth into a variety of game genres.

6.1 A Historical Perspective on Perspective

Evolution has trained our brains to create meaningful patterns out of the
millions of photons that land on our retinas. This may have been an issue
of survival for early man, but for the last thousand years, humans have
studied and eventually began to master the techniques that cause us to
perceive depth on a flat canvas.

In 1021, mathematician Ibn al-Haytham (Alhazen) wrote the Book of
Optics, a text based on experimentation and observation that—for the
first time—described how light enters the eye and may be transmitted and

93
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Figure 6.1. A View of the Progress of the Water Castle Julia, Giovanni Battista
Piranesi (eighteenth century).

perceived by the brain. This book paved the way for the science of visual
perception, a field crossing both psychology and biology with the goal of
understanding how our visual system works and how that information is
processed by the brain.

In the fifteenth century, Leonardo Da Vinci continued this work, adding
an understanding of peripheral vision. The nineteenth-century physiologist
and physicist Hermann von Helmholtz is given credit for being the first to
note that our brain unconsciously constructs a three-dimensional represen-
tation of our surroundings from the surprisingly limited amount of infor-
mation received by the optic system. He explained that the mind achieves
this perception of depth through a series of visual assumptions. For exam-
ple, when we watch a squirrel disappear behind a tree, we unconsciously
understand that the tree must exist in a physical space between us and the
squirrel because of our assumption that closer objects will block the view
of more distant objects.

Early artists used the mathematics of perspective to create both beau-
tiful landscapes and detailed cityscapes. (See Figures 6.1 and 6.2 for two
examples.)

Thus, although our game engine is restricted to two dimensions, many
techniques can assist us in creating our own illusion of depth.
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Figure 6.2. Christ Handing the Keys to St. Peter, Pietro Perugino, (1481-1482).

6.2 Layering

Perhaps the simplest way to create depth is to add a background image
“behind the action.”

To keep things simple, let’s start once again with just the animation
example from Section 4.2, and add the snow_bg.png image to the content
folder. Add a Texture2D to track it, load the texture in the LoadContent
function, then add the appropriate Draw call. only the Draw call is listed
in the code below.

//Add member variable:
private Texture2D snowBGTexture;

70 oo

//Add to LoadContent:
snowBGTexture = Content.Load<Texture2D>("snow_bg");

//Add to Draw:
spriteBatch.Draw(snowBGTexture, Vector2.Zero, Color.White);

00 oo

You may notice that the provided background image includes a few
perspective techniques. We go into those in more detail later in this chapter.
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But first, see whether you can incorporate a camera into this image. You
need to horizontally tile the background as well as incorporate the camera’s
position into the draw position for the background. The result should be
a fairly simple effect of the player appearing to walk across the landscape.
; Now add a few game-play elements at the same
FATUTUTUTU_ U level as the player. The results should be similar to
-/ Figure 6.3, in that there becomes a clear distinction
RN R N
J

f AN (¢ ]
R )

T T T between what’s happening at the game-play level and

the graphics that makes up the background.

A perfect example of how a simple background can
add depth to a game can be seen in the original Super
Mario Bros [Miyamoto and Tezuka 85]. Interestingly,
Figure 6.3. Layering: game-play cle- in the background in that game, the shape of the cloud
ments plus background only. is repeated in the shape of the bushes.

6.2.1 Foreground

Another common technique is to add a third layer on top of the game-play
layer to display information relevant to the player. This layer becomes
the GUI for the game, and a variety of styles can be implemented. The
foreground choice can have a surprisingly significant effect on the gamer’s
experience. We explore options for the GUI in much more detail in Chap-
ter 7.

It is not a requirement that the foreground also be a GUI, however.
Consider instead a foreground that simply provides a layer on top of the
game-play layer. In Figure 6.4, for example, by adding a pair of out-of-
focus snowmen as a foreground layer, the result is that the game layer is
pushed back into the scene, once again creating a layer of depth. As a final
comparison, Figure 6.5 a screenshot of the same image with a foreground
only.

Figure 6.4. Layering: game play plus Figure 6.5. Layering: game play ele-
background and foreground. ments plus foreground only.
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In these very simplistic examples, the background and foreground layers
are static. As you build your engine, you may want to provide the option
for the layers to be animated as well.

6.3 The Six Principles of Depth

The previous section looked at depth created outside of the game-play
environment. This section examines what I call the six principles of depth
for 2D games, along with simple techniques for implementing each of the
principles within the game-play layer. These six principles are

. overlap,
. base height (vertical perspective),

. scale,

1

2

3

4. atmosphere,
5. focus,

6

. parallax.

These six principles are a simplified subset of what are called monocular
cues, the visual triggers that provide depth information when viewing a
scene with one eye. We look briefly at the study of perspective, including
a few rules that govern how these principles may be combined to create
realistic scenes.

6.3.1 Overlap

Overlap is a simple concept—so simple that it’s easy to over-
look its importance. Figure 6.6 shows three shapes, and it
is immediately apparent that the blue triangle is in front of
the green circle, which is in turn in front of the red square.
Without the use of relative sizes, shadowing, or tricks of per-
spective, we are nevertheless absolutely clear on which shape
is in front and which shape is in back simply due to overlap-
ping.

We have already seen that we can control the overlapping
of sprites in one of two ways. The easiest is to use the draw

order, knowing that where the final rendered screen pixels Figure 6.6. Depth principle 1:

are the same, the pixel color defined by the red square will ©verlap-

be overwritten when the pixel color is redefined by the blue
triangle.
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The second option is to make use of the sprite depth in the Draw call.
On the graphics card, this is done by maintaining a separate 2D array of
floats with values from 0.0 to 1.0. This 2D array (called the depth buffer) is
generated automatically and available for the graphics programmer’s use.
Every time a pixel is drawn to the screen, a corresponding depth value
is entered into the depth buffer. When the depth check is activated, the
next time a sprite needs to draw a color in that same pixel, the current
sprite’s depth is compared against the depth already stored in the depth
buffer. Based on that comparison, a decision is made as to whether ignore,
replace, or blend the new color.

In XNA, we have seen that the sprite batch allows us to sort the sprites
(BackToFront7 FrontToBack, or Texture) as well as a blend mode. In OpenGL
and DirectX we would be more likely to simply use the depth buffer directly.
In any case, the concept is the same and is important for tracking and
rendering sprites with the appropriate overlap.

Other scientific terms for the principle of overlap are occlusion and
interposition.

6.3.2 Base Height

The next significant principle in determining the distance of
a sprite on the screen uses vertical perspective or the sprite’s
base height. Consider the images in Figure 6.7, which shows
three snowmen of equal size. It appears that of the three,
one of them is farther back than the others, even though no
overlap is occurring.

When you think of the definition of perspective, you
might be tempted to define it as an optical illusion by which
objects that are farther from the camera appear to be smaller
than those that are closer to the camera. Yet, in Figure 6.7,
a fourth snowman is included at a smaller scale but we are

Figure 6.7. Depth principle 2: pot tempted to think of it as being farther away. On the con-

base height.

trary, it appears to be closer to the camera than the other
three.

This is because our mind assumes that the four snowmen all are rest-
ing on the same surface. Without any other visual cues, that is a natu-
ral assumption and fits our unconscious understanding of the world. Put
simply, the lower the base of an object in our field of view, the closer it
must be.

Final Fight [Capcom 89] and similar side-scrolling beat-’em-ups use
only a combination of overlap and base height to display the depth of each
character. This is significant because the player’s distance from the camera
is an integral aspect of the game play: two game characters must be at the
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same depth for the attacks to make contact. A more recent example is
Castle Crashers [The Behemoth 08], in which the characters can move
within a range of depth. The best example of base height is in Plants vs.
Zombies [PopCap Games 09], in which the perspective of depth is very
clear, despite the fact that the entire play area is built only on base height
and overlap. In all of these cases, distant players are no smaller in scale
than their closer counterparts, yet the depth of play is clear.

After overlap, the principle of base
height is also one of the earliest techniques
used to demonstrate depth in early paint-
ings. It is in this context that the technique
is more often called vertical perspective. Ver-
tical perspective is often associated with the
art of ancient Egypt, in which scale was re-
served for signifying the importance of the
person represented in the image. Nearer fig-
ures are shown at a lower base height than
larger, more distant figures. For example, in
Figure 6.8, the images of Senejem and his
wife are painted at a very large scale, but
they are overlapped by the smaller figures
drawn with a lower base height.

The exception to the base height princi-
ple can be seen in Figure 6.9, in which the
apparent closeness of the smaller object is
no longer a certainty. Two significant fea-
tures of this figure cause the smaller balloon
to now appear to be a more distant object.
First, because the content is hot air balloons,
our brain knows it is possible that we are
perceiving the images as in the air. When
an object is no longer secured to a surface,
the base height rule does not hold true. This

assumption is reinforced by the lack of shad- Figure 6.8. Depth principle 2: base height used in
ows under the object. ancient Egyptian art from the Tomb of Senejem.

A second feature that changes the illu-

sion of depth in Figure 6.9 is that our experience tells us that any two
hot air balloons are normally about the same size. Unless we are in a
fantasy environment that has miniature baskets for miniature people, we
know that the smaller object must be farther away due to its relative size
when compared to the apparently larger ones. This was not a problem for
the snowmen example in which our experience tells us that smaller-sized
snowmen are possible.
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ORA()

Figure 6.9. Depth principle 2: base height ex-
ception.

Y

Figure 6.10. Depth principle 2: base height ex-
ception with overlap.

However, even the exceptional features present in Figure 6.9 can be
outweighed by the first principle of overlap, as can be seen in Figure 6.10.
Despite our knowledge that hot air balloons should all be about the same
size, the overlap shows that in this particular environment, they can be

different sizes.

Note that the lack of overlap is not the only distinction between Figures

6.7 and 6.9.

Importantly, there were no evident shadows in the latter.

Shadows play an important role in determining an object’s base height.

Figure 6.11. Depth principle 2: base height from
shadows.

When the base of a shadow makes contact
with the base of our sprite, we know that the
object is grounded, giving precedence to base
height in our perception of the scene. Then,
when the shadows are absent, we may be un-
certain as to whether we can assume the ob-
ject is in contact with the ground.

At those times when an object is not in
contact with the ground, the shadow will es-
tablish a base height for which we can once
again compare the depths of objects. This
is evident in Figure 6.11 in which the three
spheres have the same base height, yet the
locations of the shadows indicate clearly that
the largest object is farthest from the camera.
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6.3.3 Scale

The third and perhaps most obvious princi-
ple of depth is scale. The greater the dis-
tance an object is from the view point, the
smaller it appears. In Figure 6.12 we can see
that scale can be very effective when com-
bined with base height. In this image we also
get our first glimpse at traditional perspective
drawing: guide lines indicate both a vanishing
point and a horizon line.

However, even without the help of base
height, scale is an effective indicator of dis-
tance when we can assume that the objects
we are comparing would otherwise be equivalent in size. Figure 6.13 shows
an example of this, as there are no consistent visual cues other than the
relative scale of the balloons and our expectations of the balloons’ actual
sizes.

Figure 6.12 is an example of the monocular cue called relative size,
whereas Figure 6.13 is an example of familiar size.

Figure 6.12. Depth principle 3: scale with base
height.

Figure 6.13. Depth principle 3: scale.
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Figure 6.14. Depth principle 4: the effect of atmosphere on the distant hills
along the Alaskan Highway. (Photograph by John Pile Jr.)

6.3.4 Atmosphere

A fourth and often overlooked principle of distance, especially for objects
a significant distance from the camera, is the effect that atmosphere has
on the object being rendered. The best way to demonstrate this effect is
by looking at actual photographs (or even just looking out the window).
In the photo shown in Figure 6.14, note the crisp colors of the foreground
objects and how they compare to the colors of the distant hills.

This dulling of colors is due to the fact that as the photons of light make
their way across the valley, they are scattered as they interact with the
molecules in the air. Combining the complexity of the various wavelengths
of visible light with the various particles that may exist in the air at any
point, distant objects may appear dulled, darkened, hidden, or otherwise
have their natural color obscured by the atmosphere. The term for this
monocular cue is aerial perspective.

This effect can be seen in the painting in Figure 6.1 at the beginning of
this chapter. Note how the most distant columns of the aqueduct are lighter
than the nearest ones. These atmospheric effects may be intensified during
rain, snow, or fog. The effect is even more apparent when the objects are
lit only by a localized light source.
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6.3.5 Focus

When the focus of a lens is on a particular object, objects at other distances
may be out of focus. Most often, 2D games assume an infinite viewing dis-
tance (as with isometric tiled graphics). However, if we want to emphasize
the depth of a scene or when we want to focus the player’s attention on
a particular layer of depth, it may be appropriate to blur objects that are
not important to game play and are very close or very far away from the
most important action.

We saw this principle earlier in the chapter in Figure 6.4. The snowmen
in the foreground were purposely blurred to make them appear out of focus.

Since we should assume the image is naturally in focus, a more appro-
priate term for application of this principle to outlying objects would be
defocus blur.

6.3.6 Parallax

A final and regularly used principle of depth is called
parallax. Fundamentally, the concept is the same as
that described for scale. That is, objects that are
farther away appear to be smaller. However, what
makes it a separate principle is that we can also scale
motion.

Specifically, if the scale of an object appears to be
at half its normal size, it should also appear to move
at half the speed. For example, assume we are ani-
mating a scene in which the sprite of a car (20 pixels
wide) moves across the screen. On a 1:1 scale, assume
that the vehicle is now moving at 10 pixels per frame
(half a car length), when rendered in the distance at
half the scale, the vehicle should now cover only 5
pixels per frame.

While this adds a nice realistic effect, the real vi-
sual magic happens when we apply this same concept
to inanimate objects and combine it with a panning
camera. As the camera moves to the right, objects
will appear to move to the left at a rate proportional
to their relative scale. In Figure 6.15, at each frame
the snowmen move one unit to the left, but the unit Figure 6.15. Depth Principle 6: Paral-

size is relative to their scale. The result is a scene lax. From top to bottom, as the camera
that pans correctly. moves to the right the game object ap-
pear to move to the left at a rate pro-
portional to their distance.

The first significant application of this technique
on a large scale was achieved through Disney’s multi-
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plane camera. Through the use of a camera vertically positioned above
multiple layers of background images painted onto sheets of glass, the Dis-
ney animators could render moving backgrounds, which would move at the
appropriate speed based on the rules of parallax [Disney 57]. As mentioned
initially, this is not just limited to the relative motion of the static back-
ground objects but should also be applied to objects moving within these
layers.

However, applying the effect of parallax on very distant object (for
example, a mountain range that is 100 miles away) means that these objects
appear to be completely static in relation to a moving background. Any
object that we would consider infinitely far away should be held static when
the camera pans from side to side as well as when the camera zooms in
and out. That is, we assume the zoom of the camera is meant to simulate
a camera that is moving forward into the scene.

This is another feature of Disney’s multiplane camera. It would allow
the animators to zoom into a scene while correctly holding the most distant
objects at the correct scale. This illusion of a camera moving into what
would otherwise be a flat image can be seen most dramatically in the
opening scene of Disney’s Beauty and the Beast [Disney 91], in which the
camera moves through a very stylized forest.

6.3.7 Additional Monocular Cues

Through these six principles of depth, we have covered what I consider to
be the most important monocular cues for use in programming our game.
However, there are others.

We have already noted how the location of shadows can play a role
in understanding the depth of an object; however, lighting and shading
can have a much more significant effect than just helping us understand
the relative distance of objects. The shape of the shadows in Figure 6.11
indicates the geometric shape of the object. In this case, the shadows
indicated that each blue circle is a sphere instead of a flat disc or the blunt
end of cylinder.

Additionally, shadows on objects help to define the shape of the object.
In the snowmen in Figure 6.7, the curved shaded region on the bottom-left
defines the spherical curve to the base of the snowman. In each of these
cases, these are subtle details best left to a 2D artist.

Another cue, also best left to the artist, is the fact that fine detail
becomes difficult to see when viewed at a distance. Sometimes referred
to as texture gradient, it might be easiest to understand by considering
a concrete surface. When the surface is close to the viewer, the texture
of the concrete become very apparent, but at a distance, the detail is
lost.
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A final monocular cue is curvilinear perspective, the apparent curve of
parallel lines as they reach the edge of our vision or when viewed through

a fisheye lens.

6.4 The Six Principles in Code

Now let’s look at a very simple way of implementing these six principles
of depth in code. To keep things simple, let’s start with a basic animated
character similar to the one created in Section 4.2 in which the running boy
is drawn on screen. The following code samples make use of a runner class
that contains all the information necessary to draw the runner, similar to

the sprite class defined earlier.

Specifically, this new runner class has the following structure:

class cRunner

{
//Source Data

private Texture2D m_tSrcSpriteSheet;
private Rectangle m_rSrcLocation;

private Vector2 m_vSrcOrigin;

//Destination Data

public Vector2 m_vPos;

public Color m_cDestColor;
public float m_fDestRotation;
public float m_fDestScale;
public float m_fDestDepth;

public SpriteEffects m_eDestSprEff;

//Animation Data

private int m_iCurrentCel;
private int m_iNumberO0fCels;
private int m_iMsUntilNextCel;
private int m_iMsPerCel;

public bool m_bIsRunning;
public cRunner()...
public void Imnitialize ()
{

m_fDestRotation = 0.0f;
m_fDestScale = 1.0f;

m_rSrcLocation = new Rectangle (O,

m_vSrcOrigin = Vector.Zero();

}

128,

128) ;

public void LoadContent (ContentManager pContent,

fileName)

String
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{
m_tSrcSpriteSheet = pContent.Load<Texture2D>(fileName) ;
}

public void Update(GameTime gameTime)
{
UpdateAnimation(gameTime) ;
m_fDestDepth = 1.0f;
}

public void Draw(SpriteBatch pBatch)...
private void UpdateAnimation(GameTime gameTime)...

}

The definitions for the longer functions should be fairly obvious by now.
However, if you need help, see the following:

public cRunner ()

{
m_cDestColor = Color.White;
m_eDestSprEff = SpriteEffects.None;

m_iNumberQ0fCels = 12;

m_iCurrentCel = 0;

m_iMsPerCel = 50;

m_iMsUntilNextCel = m_iMsPerCel;
}

public void Draw(SpriteBatch pBatch)
{
pBatch.Draw(m_tSrcSpriteSheet,
m_vPos,
m_rSrcLocation,
m_cDestColor,
m_fDestRotation,
m_vSrcOrigin,
m_fDestScale,
m_eDestSprEff ,
m_fDestDepth) ;
}

private void UpdateAnimation(GameTime gameTime)
{
m_iMsUntilNextCel -= gameTime.ElapsedGameTime.
Milliseconds;

if ((m_iMsUntilNextCel <= 0) && (m_bIsRunning))
{

m_iCurrentCel++;

m_iMsUntilNextCel = m_iMsPerCel;
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if (m_iCurrentCel >= m_iNumberOfCels)
m_iCurrentCel = O0;

m_rSrcLocation.X = m_rSrcLocation.Width * m_iCurrentCel;

}

Then in the game code, all we need is something like the following:

//Member Functions:
cRunner runner;

//In Constructor:

Il oo

graphics = new GraphicsDeviceManager (this);
graphics.PreferredBackBufferWidth = 1280;
graphics.PreferredBackBufferHeight = 720;
Content .RootDirectory = "Content";

runner = new cRunner();

//In Initialize Function:
runner.Initialize();
runner .m_vPos = new Vector2 (400, 400);

//In LoadContent Function:
runner .LoadContent (Content, "run\_cycle");

//In Update Function:
runner .m_bIsRunning = false;

if (Keyboard.GetState () .IsKeyDown (Keys.Up))

{
runner .m_bIsRunning = true;
runner .m_vPos.Y -= 3;
}
else if (Keyboard.GetState().IsKeyDown(Keys.Down))
{
runner .m_bIsRunning = true;
runner .m_vPos.Y += 3;
}
if (Keyboard.GetState () .IsKeyDown(Keys.Left))
{
runner .m_eDestSprEff = SpriteEffects.FlipHorizontally;
runner .m_bIsRunning = true;
runner .m_vPos.X -= 5;
}
else if (Keyboard.GetState().IsKeyDown(Keys.Right))
{

runner .m_eDestSprEff = SpriteEffects.None;
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runner .m_bIsRunning = true;
runner .m_vPos.X += b;

}

runner .Update (gameTime) ;

//In Draw Function:

40 oo

spriteBatch.Begin(SpriteSortMode.FrontToBack, BlendState.
NonPremultiplied) ;

runner .Draw (spriteBatch);

spriteBatch.End () ;

40 oo

6.4.1 Base Height

It makes sense to start with the concept of base height first. We already
track a sprite’s position in z-y coordinates, so we just need to ensure that
the origin of the sprite is located at the base of the figure on the sprite.
For the runner sprite, the base texel occurs at about (57, 105).

In that case, you'll need to update the source origin in the cRunner
class initialization as follows:

m_vSrcOrigin = new Vector2(57, 105);

6.4.2 Overlap

In order to get overlap to work correctly, we use the XNA depth value and
make use of the principle of base height. That is, the lower the y-value
of the destination position, the lower the depth value should be. XNA
requires that we track a depth value between 0 and 1, so our equation
might look like the following:

y-position

depth = screen height”

The result would give us a value from 0 to 1, where 0 indicates the sprite
is at the top of the screen and thus farthest from view and 1 indicates the
sprite is at the bottom of the screen and thus closest to view.

The end result will look much better, however, if we create a horizon
line and modify the equation as follows, which will provide a depth value
such that the 0 is aligned with the horizon line:

y-position—horizon
screen height—horizon"

depth =

The value for the line should match the horizon line in any background
image. However, without a background image, in this example we can
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simply set the horizon to an arbitrary but appropriate value, say y = 240
(one-third the way down a 720-pixel-high screen).

In the runner class, we create a new function and modify the update
function to make use of the new function:

1 public int m_cHorizon = 240;

public void UpdateDepth(GameTime gameTime)

5 ¢ m_fDestDepth = (m_vPos.Y - m_cHorizon) / (720 - m_cHorizon)
. 5
public void Update(GameTime gameTime)
10 ¢ UpdateAnimation (gameTime) ;
UpdateDepth (gameTime) ;
}

This code makes the assumption that the player will never have a y-axis
position value less than the horizon value. We need to add that limitation
to the game’s Update function, just after checking for keyboard input. In
XNA, we can use the MathHelper.Clamp function.

1 //In Game Update:

0 oo
runner .m_vPos.Y = MathHelper.Clamp(runner.m_vPos.Y, runner.
m_cHorizon, 720);
5 runner . Update (gameTime) ;

00 oo

Of course, none of this will be visible unless we have something for the
character to overlap. In this case, we can quickly create a second instance
of the runner class. We won’t worry about moving or animating the second
runner for now.

Be sure to add the following in the appropriate locations of your game:

1 //Member variables
cRunner runner?2;

//Constructor
5 runner2 = new cRunner ();

//Initialize
runner?2.Initialize () ;
runner2.m_vPos = new Vector2 (600, 400);
10
//Load Content:
runner2.LoadContent (Content, "run_cycle");
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//Update:
runner2.Update (gameTime) ;

//Draw:
runner2.Draw (spriteBatch) ;

Figure 6.16. Base height and overlap applied to sprites.

1

10

6.4.3 Scale

Your two runners should now be
layered and interact appropriately.
You should now have no trouble tak-
ing this a step further, creating a
snowman class and randomly placing
snowmen throughout the scene. Be
sure to define the snowman sprite’s
origin appropriately.

By adding a background image,
you should get something similar to
Figure 6.16, in which I have added 25
randomly placed snowmen.

To add the scale principle, we need to decide the minimum scaling value
we are willing to use in our game. In this case, let’s assume that when a
sprite is as close to the viewer as possible, its scale is 1.0 and, when a sprite
is standing on the horizon line, its scale is 25% of its original size. We can
then linearly calculate all other values by making use of the depth value,
which already gives us a value between 0 and 1:

scale = 0.25 + (depth x 0.75).

Once again, create a function to update the scale and be sure to add a
call in the Update function of the runner class.

public void UpdateScale(GameTime gameTime)

{

m_fDestScale = 0.25f + (m_fDestDepth * 0.75f);

}

public void Update(GameTime gameTime)

{
UpdateAnimation (gameTime) ;
UpdateDepth (gameTime) ;
UpdateScale (gameTime) ;

}

The result of scaling based on depth is fairly dramatic, as can be seen

in Figure 6.17.
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Once again, remember that the de-
cision to scale your sprites should be
done with care. You can see signifi-
cant degradation in the quality of the
smallest snowmen in Figure 6.17 as a
result of real-time scaling of the sprite.
You may want to limit the amount of
scaling you apply to your sprites or
use a prescaled sprite when the scal-
ing is significant. In 3D graphics, with
a technique called mipmapping (see
Section 3.4.2), the graphics card se-
lects the most appropriately sized tex-
ture to use from a series of prescaled
textures. Using a mipmapping tech-
nique when scaling greatly improves
the quality of the final image.

6.4.4 Atmosphere

Figure 6.17. Adding the principle of scale to sample
code.

To create an atmospheric effect, we are somewhat limited in what we can
achieve with sprites and the sprite batch. By using the color parameter, we
can make a sprite darker, but it is not necessarily an easy task to render a
sprite at a lighter color. Let’s start by looking at a possibility for rendering
distant objects slightly darker than nearer objects.

As before, we come up with a linear relationship between the objects
based on their depth. In this case, it is the color of the object that will be

modified.

public void UpdateColor (GameTime gameTime)

{

float greyValue = 0.75f + (m_fDestDepth * 0.25f);
m_cDestColor = new Color(greyValue, greyValue, greyValue);

}

public void Update(GameTime gameTime)

{
UpdateAnimation(gameTime) ;
UpdateDepth (gameTime) ;
UpdateScale (gameTime) ;
UpdateColor (gameTime) ;

The result is an image in which the closest sprites are drawn with RGB
values of 1.0, and the sprites on the horizon are drawn with RGB values of
0.75 (see Figure 6.18). Even though this does create an atmospheric effect,
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it would be more appropriate for a night scene in
which the farthest sprites blend into the darkness.

Instead, you might be tempted to use the al-
pha value. Using an alpha blend does create a
nice effect of fading to white, but only when there
is no overlap occurring. When two sprites over-
lap, the result is a seemingly translucent sprite,
as seen in Figure 6.19.

Figure 6.18. Atmospheric effect with dark- In order to achieve a better fade-to-white ef-

ening.

fect, we will need to apply advanced graphics
techniques that we have not yet covered. Come

back to this section after completing Chapter 9,
which will help you find a solution to the problem.

A ﬁ’g 6.4.5 Focus
@ Dynamically blurring out-of-focus sprites is an-
other principle that must wait until we have dis-
g

Figure 6.19. Atmospheric effect with alpha

blend.

cussed advanced graphical techniques. Just as for
fade-to-white, Chapter 9 will help you to create a
pixel shader that will achieve the desired result.

6.4.6 Parallax

Finally, parallax is not difficult to build into our game. The easiest way to
achieve parallax is to distinguish the difference between the sprite’s position
in the game and where it appears to be located on the screen. Then scale
the player’s display position based on the previously calculated scale by
using

draw position (z-value) = game position (z-value) x scale.

However, before we can do this, let’s make sure we are using a combi-
nation of velocities and positions. Since we want to move at various rates,
depending on how far away we are from the camera, using velocities will
help ensure we understand how this is all working.

First, we update our input to use velocity values, measured in pixels
per second.

//Game Update Function:

if (Keyboard.GetState().IsKeyDown (Keys.Up))
{
runner .m_vVel.Y -= 10f;
}
else if (Keyboard.GetState().IsKeyDown (Keys.Down))
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{
runner .m_vVel.Y += 10f;

}

if (Keyboard.GetState().IsKeyDown(Keys.Left))

{
runner .m_eDestSprEff = SpriteEffects.FlipHorizontally;
runner .m_vVel .X -= 10f;

}

else if (Keyboard.GetState().IsKeyDown(Keys.Right))
{
runner .m_eDestSprEff = SpriteEffects.None;
runner .m_vVel .X += 10f;

Notice the new value of m_vVel. We need to add this velocity to the
runner class.

//Game Data
public Vector2 m_vVel;
public Vector2 m_vPos;

We then need to make the link between the position and the velocity.
As just mentioned, the velocity is now a measurement of pixels per second.
To ensure that this value is accurate, in every frame we modify the position
by the velocity proportional to the number of seconds that has elapsed since
the last frame.

We also need a maximum velocity. This can be calculated by considering
the maximum speed for pixels to move across the frame. Let’s use 6.0
seconds for a sprite to move across the screen that is 1280 pixels wide.

Note that the y-position clamp has also moved into this same function.

public void UpdatePosition(GameTime gameTime)

{
float MAX_VEL = 1280 / 6.0f;
m_vVel *= 0.95f; //friction
m_vVel.X = MathHelper.Clamp(m_vVel.X, -MAX_VEL, +MAX_VEL);
m_vVel.Y = MathHelper.Clamp(m_vVel.Y, -MAX_VEL, +MAX_VEL);
m_vPos.X += (float)(m_vVel.X * gameTime.ElapsedGameTime.
TotalSeconds) ;
m_vPos.Y += (float)(m_vVel.Y * gameTime.ElapsedGameTime.
TotalSeconds) ;
m_vPos.Y = MathHelper.Clamp(m_vPos.Y, m_cHorizon, 720);
}

public void Update(GameTime gameTime)
{
UpdatePosition(gameTime) ;
UpdateAnimation (gameTime) ;
UpdateDepth (gameTime) ;
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UpdateScale (gameTime) ;
UpdateColor (gameTime) ;

We need to add the new draw position. As before, we also add a camera

location in order to keep the view centered on the player. However, this
time we limit the camera movement to the x-axis.

public void Draw(SpriteBatch pBatch,

{

Vector2 m_vDrawPos = m_vPos;
m_vDrawPos.X -= (pCameralocation.X);
m_vDrawPos.X += (1280/2);

pBatch.Draw(m_tSrcSpriteSheet,
m_vDrawPos ,
m_rSrcLocation,
m_cDestColor,
m_fDestRotation,
m_vSrcOrigin,
m_fDestScale,
m_eDestSprEff ,
m_fDestDepth) ;

modify the Draw call to use the camera location.

protected override void Draw(GameTime gameTime)

{

GraphicsDevice.Clear (Color.White);

cameralocation = new Vector2(runner.m_vPos.X,
spriteBatch.Begin(SpriteSortMode.FrontToBack,
NonPremultiplied) ;

//Draw background image

/0 oo

//Draw runners
runner .Draw(spriteBatch,
runner2.Draw(spriteBatch,

cameralocation) ;
cameralLocation) ;

//Draw other game sprites

I oo
spriteBatch.End () ;

base.Draw(gameTime) ;

//Camera Offset

Vector2 pCameraLocation)

//previously m_vPos,

Finally, in the game class, we add the camera position tracking and

0.0f);

BlendState.
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With those modifications we are ready to add parallax to the scene.
As noted, we simply scale the z-value based on the sprite’s calculated
depth value. We do this after adjusting for the camera location but before
adjusting for the camera offset in the Draw function of the camera class.

public void Draw(SpriteBatch pBatch,
{

Vector2 m_vDrawPos = m_vPos;

m_vDrawPos.X -= (pCameralocation.X);

m_vDrawPos.X *= m_fDestScale;
m_vDrawPos.X += (1280/2);

4] < oo
}

Figures 6.20 and 6.21 show the difference
in scaled position due to parallax. Another
important thing to note in the parallax before
and after images is that although the snow-
men are evenly spaced, they are not correctly
scaled in the y-direction. This is because the
we have based all the depth calculations on
y-position.

An easy solution would be to ensure that
as a sprite moves, we scale the motion in the
y-direction. This can be accomplished in the
position update function in the runner class.

//m_vPos.Y +=
TotalSeconds) ;

Vector2 pCameraLocation)

//Camera Offset

Figure 6.20. Before applying parallax, the dis-
tant snowmen are spread evenly across the z-
axis.

(float) (m_vVel.Y * gameTime.ElapsedGameTime.

m_vPos.Y += (float)(m_fDestScale * m_vVel.Y * gameTime.

ElapsedGameTime.TotalSeconds) ;

This will fix relative movement, ensuring
that motion away from the camera is scaled.
However, this is not a very good solution be-
cause it requires that we adjust for the draw-
ing scale when setting initial positions of ob-
jects in the game world. Since it is possi-
ble that the drawing scale may change dur-
ing game development, it would be better to
have a solution that scaled the y-axis appro-
priately. This is a challenge presented at the
end of this chapter

tbbbbd

Figure 6.21. After applying parallax, the dis-
tant snowmen are scaled evenly across the z-axis
based on their depth.
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6.5 Traditional Perspective

By themselves, the six principles of depth are only parts a much broader
topic. They describe individual visual effects, but not the traditional artis-
tic rules that have developed over the last half millennium for ensuring that
these rules are applied correctly.

As a brief introduction to the traditional perspective, we consider three
concepts when applying the six principles of depth: vanishing point, hori-
zon, and eye level.

6.5.1 Vanishing Point

Consider a straight road as it heads into the distance, as in Figure 6.24. In
the image, the vanishing point is that location where the lines of the road
merge to become a single pixel. This type of single-point linear perspective
is a common starting point for beginning artists to explore the concepts
of perspective. In more advanced types of perspective, multiple vanishing
points may be used.

These points are used by the artist as guideline when placing objects
and ensuring they are the correct size. We have a significant advantage
in that we are not restricted to the traditional rules governing vanishing
points and perspectives. This is because we can use code to appropriately
size our sprites by using mathematical equations instead of basing the scale
on guidelines. It is important to work closely with the artist to ensure that
our equations are appropriate for the particular background and art assets
for the game.

6.5.2 Horizon

A common definition of horizon might be “a hori-
zontal line representing the intersection of sky and
earth when viewed from a particular location” (see
Figure 6.22).

For our purposes, it is tempting to think of the

horizon as the point on the y-axis at which the scale
of the game objects become zero. In other words, we

Figure 6.22. Horizon.

get an infinite set of vanishing points, defined by the
Cartesian coordinates, of all the x-values at a given
y-value. This is the general rule we applied in our
code examples earlier in this chapter. However, this
is not always true and occurs only when the vanishing points are actually
located on the horizon line, as would be the case when standing on an
infinite flat terrain looking out horizontally.
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In the real world, the relationship between
the horizon line and the vanishing points is
only an approximation. There are plenty of
examples in which it is easy to see that the
vanishing points are not actually located on
the horizon. For example, when standing on
a beach and looking out across the ocean, we
know that the curvature of Earth causes a
ship to disappear beyond the horizon before
it has a scale that is too small to be seen. An-
other example involves looking up from the
bottom of a hill. The actual horizon line may
be obscured, but we may have an artificial
horizon line apparent from many objects lo-
cated on the constant slope. In an opposite
example, the camera may be looking downbhill,
as shown in Figure 6.23.

However, it is unlikely that these limita-
tions will be an issue in our games. Game play
is often limited to an area significantly closer
than the horizon, and it is unlikely that your
artist and designers will create a 2D game that

Figure 6.23. Looking down a sloped terrain with
a horizon in the distance. The short marks on
either side of the image represent the artificial
horizon line for the objects on the slope.

occurs on a significant slope. If they do, however, you should now be able
to create an appropriate framework that is close enough. You will have
to deal with the limitations of scaling raster graphics before you will need
to worry about the discrepancy between the horizon line and vanishing

points.

6.5.3 Eye Level

The final important aspect to perspective is eye level. We might be better

off to consider this as the camera height.

In any case, eye level is an

important aspect of perspective that helps our mind to understand the

relative height of the objects in the scene.

As you can see in Figure 6.24(a), the boy’s eyes are aligned to the
horizon line. Because of this, we know that the camera is at the same
relative height from the ground as the boy’s eyes. We also know that since
the eyes of the snowman are aligned above the horizon line, the snowman
is both taller than the boy and taller than the viewer.

In Figure 6.24(b), the horizon line is aligned with the snowman’s eyes.
In this case we know that the viewer is roughly the same height as the

snowmen as well as taller than the boy.
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Figure 6.24. (a) Boy’s eye level at the horizon. (b) Snowman’s eye level at the
horizon.

More generally, this tells us that on level terrain, any distant object
with a height that does not cross the horizon line is shorter than the viewer.
This is an important tool in helping us create an appropriate scale, and it
is something to consider in your application.

Let us now re-examine our depth code from earlier. Recall that in
Section 6.4.3 we used the following rather arbitrary values for calculating
scale:

scale = 0.25 + (depth x 0.75).

To take a more exact approach, suppose now we want to ensure that the
camera is located at the same height as the snowman eye level. On the
sprite sheet, the distance from the snowman’s eye level to the snowman’s
base is approximately 135 pixels. Taking into account from our knowledge
of perspective that the horizon should be aligned with the eye level of the
snowman, we can calculate the appropriate scale of the snowman whose
base is located at the very bottom of the screen:

screen height—horizon height
snowman base—snowman eye level

maximum scale =
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Figure 6.25. Snowman’s eye level. Figure 6.26. Runner’s eye level.

At the same time, we can see that the distance from the runner’s eye
level to its base on the sprite sheet is about 70 pixels. So replacing the
scale calculation, we could use something like the following. In either case,
we simply set the eye level to match that of the sprite with which we want
to align.

public void UpdateScale(GameTime gameTime)

{
float fEyeLevel = 70.0f; //runner
//float fEyelevel = 135.0f; //snowman
m_fDestScale = m_fDestDepth * ((720.0f - m_cHorizon) /
fEyeLevel) ;
}

The results of switching between these two eye levels can be seen in Fig-
ures 6.25 and 6.26.

6.5.4 False Perspective

It is important to note the results of the incorrect application of the basic
rules of perspective. We can mix and match a variety of techniques, but if
the scene as a whole does not apply perspective correctly and consistently,
the results could be absurd (see Figure 6.27).

But we are making games that don’t necessarily have to fit reality. As
we have already noted, a variety of games do not scale the sprites as they
move forward and backward. Given the stylized nature of the graphics
and the benefit of artistic license, the results of this lack of scale are rarely
noticed by the player.

However, we could take this even further. By purposely creating a false
perspective, we may end up with a unique game play that takes the work
of artists such as Rob Gonsalves, Giovanni Piranesi, or M. C. Escher to
an interactive level. I encourage you to play with perspective and false
perspective within your 2D games.
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Figure 6.27. Satire on False Perspective by William Hogarth, 1753. The caption
reads: “Whoever makes a design without the knowledge of perspective will be
liable to such absurdities as are shewn in this frontispiece” (from a book on linear
perspective by John Joshua Kirby) [Kirby 54].

6.6 Summary

A variety of tools help us to create the illusion of depth in our 2D games.
The six principles of depth offer a foundation for building the type of system
that can help your artist and possibly offer some new and interesting game

play.
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Figure 6.28. Gunther Fox’s 2.5D prototype, 2010.

One of the best examples from film of applying the illusion of depth to
a 2D image can be found in the “Circle of Life” opening of Disney’s The
Lion King [Disney 94]. During this sequence, the animators repeatedly
apply the techniques covered in this chapter in an attempt to demonstrate
the depth of the images. How many can you count?

After going through these topics with my class in 2010, one of my
students took the six basic principles and built a first-person shooter using
only 2D sprites and the simple math we have listed above. In Gunther Fox’s
prototype (see Figure 6.28), he applied the additional math for moving
and rotating the camera within the game world. While this is not the
method I would advise for anyone wanting to work in three dimensions,
Fox’s prototype does show the ability to take 2D to an extreme.

Exercises: Challenges

Challenge 6.1. Analyze a 2D game or animated film looking for a scene
with an interesting perspective. Create a game prototype making use of
the same perspective, allowing the character to navigate within the scene
in a believable way.

Challenge 6.2. The examples in this chapter were limited to objects that
rest on the ground. Now add the ability to have the player jump.



122

6. The lllusion of Depth

Hint: You'll need to use an “offset height” in your jump calculation,
applied in a way that will ensure the sprite scale does not shrink as the
player jumps into the air. At the same time, the jump height should be
scaled appropriately based on the current depth.

Challenge 6.3. Replace the runner class with an animated sprite class de-
rived from a sprite class.

Challenge 6.4. Redesign the parallax code to scale the y-axis appropri-
ately. Give the user the ability to change the values that determine the
parallax scale while the game is running.



A graphics programmer’s job does not end at rendering the in-game world.
A large amount of work is required to develop menus, interfaces, and other
on-screen feedback to players, programmers, and testers.

The reality is that the user interface (UI) can be as important to the
player’s experience as the game itself. Giordano Contestabile, director of
the team that developed Bejewled Blitz stressed the importance of the
user interface at a 2012 Game Developer Conference: “Don’t let Ul be
an afterthought. Hire a great UI designer and empower them to make
decisions. Put them at the management table” [Contestabile 12].

This chapter looks at different types of Uls, addresses multiple-language
support, and explores the Ul expectations of game publishers.

7.1 Ul Types

7.1.1 Overlay

As mentioned above, the Ul choice can have a surprisingly significant effect
on the gamer’s experience. On the one extreme are flight simulators and
racing games that implement a complete cockpit, full of realistic gauges, in
an attempt to put the player “in the driver’s seat.” As a result there is a
clear boundary between the game-play world (out there) and the cockpit
(in here). Often this is taken a step further by simulating the existence of a
window that may occasionally be splashed with splotches of mud or dotted
with pools of raindrops. In the extreme, the play may even see the interior
of a fighter pilot’s helmet or an American football helmet guard (although
I can’t think of any examples where this has been done).
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On the other extreme is the minimalist foreground used in Thief [Look-
ing Glass Studios 98]. In this game, Warren Spector’s stated goal was to
completely immerse the player into the game. He did not want the feeling
that anything was between the player and the environment. All that was
included was a tiny inventory menu that would quickly disappear from view
when unused and a small light meter to indicate how well the player was
concealed by shadows.

In both extremes, the game view is represented by a first-person per-
spective, but it is the foreground (or lack there of) that determines the
depth of the game play. Somewhere in between is the situation of needing
a great deal of information displayed to the player, but with the goal of
not adding the layer of abstraction that is achieved with a full cockpit. In
these cases, the concepts (and terminology) are borrowed directly from mil-
itary aircraft, that is, the use of a heads-up display (HUD). In the physical
aircraft, the image is shown in a way that only the necessary information
is displayed superimposed over the pilot’s view. In many cases, the term
HUD has become synonymous with any GUI presented in the foreground.

A more typical GUI for the third-person perspective is the atypical role-
playing game (RPG) foreground, made standard with the release of Diablo
[Blizzard North 96], consisting of health and mana orbs or a similar type
of percentage-depleted gauge, an inventory that can be hidden from view,
and a set of buttons representing quick access skills. The more information
that is displayed, the more the game play is hidden from view. Whether
intentional or not, this type of GUI sends a clear message to the player that
the avatar is there in the game world and the player is separate, detached
from that action. Again, it is the depth created by the foreground that
creates a layer of abstraction.

As a side note, an interesting twist on this type of game play layered
by a foreground is found, for example, in Guitar Hero [Harmonix 05|, in
which the GUI is the game play. The background may consist of a fully
rendered 3D environment, but it is irrelevant to the game play.

7.2 Fonts

7.2.1 Font Sprite Sheet

In some cases, the library or framework you are utilizing to build your game
may come with built-in fonts. In other cases, or in the cases for which the
built-in fonts are not sufficient, you may want to create your own font as a
combination of sprites.

In these cases, just as easily as a sprite sheet contains individual sprites,
a font sprite sheet (with bitmap fonts) can contain all the individual letters
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that make up your desired font (see the ex-
. X I » # $ % & ] ( )
ample in Figure 7.1). The order of these 0 i 234 50 6789
can be made to match the ASCII value of AB z DEFGCHI
the characters for ease of use. %D QRSTUVUNWXY
In addition to the location of each sprite,
. ABCDEFGHI
you also want to track the width of each let-

: . PQRSTUUNWXY
ter. For example, the letter W will require ¢ NI
more pixels than the letter i. A variety of . f I jr f - "T
freely available programs (bitmap font gen- cfmn¥l g ®
erators) exist that will allow you to create . '+ 22 %] ) ;
a spr}te sheet of fonts. In adFllthIl to the AAAAAAZCEE
final image, these programs will also create PROOCOOSD x @ U
a te?(t file with a list of letter width infor- AA4ad8am@cé 6
mation. 5A 00660606+ o 0

cCoD» T o W oox m‘"h"h" *

YO RT R

BRI PA

o MY A
o~ o —

o

g

~ETRT

-
=0

@ N N

Va Vo Ya

|
Y
i

y

- g —
<: = > —ice

k=2

N A

oV~

<

Figure 7.1. Sample bitmap font sheet.

7.2.2 Sprite Fonts in XNA

Using XNA, creating and working with fonts becomes frighteningly easy.
Not only does the framework automatically convert any TrueType font for
use in your game, a host of library files allow you to work with the text.

A spritefont file is created in the content folder and consists of an XML
definition of the font settings (name, size, spacing, style, etc.). Then, the
content pipeline in XNA converts the TrueType font into an asset that is
usable within your game.

Assuming a spritefont file in your content folder called fontDefinition
.spritefont exists, you can then load the spritefont as follows:

public SpriteFont myFont;
//In LoadContent:

Content .Load<SpriteFont>("fontDefinition");

Rendering the spritefont is similar to rendering any other sprite, only
we will now use the DrawString function. Otherwise, it will act just like
the Draw function, requiring location, scale, rotation, and other values.

spriteBatch.Begin();
spriteBatch.DrawString (myFont, "Hello World", /*x ... */ );
spriteBatch.End();

In addition to the ability to easily generate spritefonts through the XNA
content pipeline, XNA also has a set of useful spritefont manipulation tools.
These allow you to measure the pixel width of a string for ease in text
alignment. For example, the following code centers the text on the screen.
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1 String myString = "Hello World";
Vector2 size = myFont.MeasureString(myString);
Vector2 centeredLoc = new Vector2((1280 / 2) - (size.X / 2),
(720 / 2) - (size.Y / 2));

spriteBatch.Begin();

spriteBatch.DrawString (myFont, myString, centeredLoc, Color.
Black) ;

spriteBatch.End () ;

7.3 Localization

Localization is the process of converting your game for use in other regions.
It is important to note that there are slight differences even among English-
speaking countries; the most significant localization task is converting from
one language to another. Although this might not seem like a job for the
graphics programmer, the truth is that the conversion from one language to
another often results in significant changes to the layout of your game UL

The most common example is the issue
faced when converting from English to Ger-
man. The German language is notorious
SCORE: THE DANGER WHEN among game developers because the German
MEALTI: ERANSLATING TEXTIS translations often contain far more letters
ARMOR: THAT THE OTHER LANGUAGE c .

R U EL) (and thus screen space) than the original En-
- O\ OVERLAP ISSUES glish. The result is overlapping text (see Fig-
wiTHVGUR USER INTERF ACE ure 7.2) or text that is rendered outside the
screen.

As the graphics programmer, you need to
come up with a solution for such issues. You
may be tempted to simply render the text at
a smaller scale, but it is likely that this would
lead to unreadable text at certain resolutions.
More robust solutions may be required, by
Figure 7.2. Localization: overlap issues. first wrapping and then dynamically scrolling

the text in a particular text window.

However, before you start designing your graphical UI solution, you
should implement a localization plan that allows you to change languages
while the game is running for debugging purposes (perhaps by pressing a
secret key combination). The more common (and ill-advised) solution is to
load a single language at the start of the game. This means that in order to
test your game in various languages, you need to restart the game. Imagine
the worst-case scenario in which you have to play through the entire game

» .

SECONDS REMAINING: 34.89
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in order to test that the new language layout is correct in the end-game
sequence.

Ideally, at any point in the game, you should be able to cycle through
the various languages to make sure they all look correct, even if you can’t
read what they say.

Of course, this assumes that all on-screen text is stored in a look-up
table such as a dictionary or other data structure. It is very important
to never (even in the early stages of game development) hard-code text
strings. If you do, you may spend hours searching for the text when you
want to edit it later. The best solution is to read all your text from a file
so that it is in a single location and can easily be edited without requiring
you to recompile the code.

7.3.1 Other Localizations

In many cases, it’s not only the language itself that is different. In parts
of Europe, the symbols used for numeric representation are quite differ-
ent from those used in the United States and United Kingdom. For ex-
ample, in the United States, large numbers are separated by commas,
as in 1,234,567, whereas in Europe the same number may be written as
1.234.456. Conversely, in the United States 1/4 = 0.25, instead of the
European 1/4 = 0, 25.

Another common issue concerns dates. The United States has a pref-
erence for the "month day, year” format, but in most of the rest of the
world the format is “day month year.” This might not be an issue when
written out, but it definitely is an issue when using the numeric notation
DD-MM-YYYY compared with MM-DD-YYYY.

None of these are serious issues in themselves, but it is important to
note the differences and plan for them in your localization. With digital
distribution, the reach of our games becomes global, and you don’t want
simple localization mistakes to frustrate or alienate your audience.

7.3.2 Special Characters

In designing for other languages, there may be cases when your font does
not have sufficient characters—for example, when converting to use the
Cyrillic letters of the Russian languages. In these cases, it may be necessary
for your artist to add characters in your bitmap font.

In other cases, it may be important to note cultural significance in the
language. For example, in Japan the cross button (what we might call the
X button) on the PlayStation console is swapped with the circle button. In
Japan, the concept of “press X to continue” does not make sense because
the cultural significance is that the cross is equivalent to “stop.”
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Figure 7.3. Platform-specific localization: press
A to continue.

7.3.3 Platform-Specific Localization

In addition to these international issues, it is
likely that for clarity (and it is often required
by a publisher), you will need to place graph-
ics of the buttons inline (see Figure 7.3) or
other system features in place of the letters
or descriptions. For example, an up arrow
may have to be overlaid on an image of the
direction pad instead of simply writing “press

b

up.

7.4 Safe Frames

When building the user interface, it is important to ensure that all vital
information is visible on the screen. This is not usually an issue when
deploying games to the PC or mobile devices, but it is common for the
inside border around a television to obscure the edges of the screen.

Knowing that this is a likely possibility, important game information is
commonly kept within a smaller frame of the screen, called the safe frame
(see Figure 7.4). The valid unsafe range varies by console manufacturer,
but it can be as much as the outer 15 percent of the screen. Planning for
this early in the game development phase will ensure you don’t end up with
issues later.

Therefore, you should align your text with the edges of the safe frame.
Further, while testing your game, it may be useful to create an overlay so
that anything outside the safe frame is immediately obvious.

Figure 7.4. The area in red (the outer 15 percent of the screen) is outside of the
safe frame.
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Figure 7.5. Level selection screen in aliEnd [Pile 12].

7.5 Menus

Menus can be very platform specific. The way you in-
teract with a menu via a mouse is significantly different
than what you can do with a game pad. Additionally,
when working with a touch device, you want to en-
sure that the interactive features are not too small and
that important information is not obscured by the fin-
gers of a player trying to interact with the system (see
Figure 7.5).

Good menu design is an art; unfortunately, the de-
tails of that art are far beyond the scope of this text.
However, as a graphics programmer, it will be your job
to implement the system devised by the UI designer.

One useful tip when building your game menu is
to ensure that you do not use a change in color to
represent text that is selected from a list of choices.
Even though this will work well when you have several
orange items in a list and the one that is selected is
green (as in Figure 7.6), if you instead have only two
items in the list, it is impossible to tell if the selected
item is the orange one or the green one (see Figure 7.7).

Instead, ensure that the selected item has some-
thing other than color to distinguish it. An easy so-
lution is to have the selected item pulse. Thus, it is
clear not only which item is currently the one that is
selected (the pulsating one) but also that the screen is
not static.

MAKE YOUR SELECTION:

OPTION |
OPTION 2

OPTION Y

Figure 7.6. Using colors to highlight
the player’s selection works fine when
there are many options.

MAKE YOUR SELECTION:

OPTION |

Figure 7.7. Using colors to highlight
the player’s selection does not work
when there are only two options.
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Exercises: Challenges

Challenge 7.1. Implement a second language. Load the languages from a
file and allow the user to swap between languages. (If you’re not bilingual,
use Google Translate or a similar tool to test localization within your game
system. Of course you’ll want to find a better solution before you ship your
game.)

Challenge 7.2. Create and implement a function that will automatically
wrap lines in a text string given a specific desired maximum display width.

Challenge 7.3. Expand on the implementation of Challenge 7.2 by adding
a feature that will automatically scroll text when the text string exceeds a
maximum screen height.
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After animation, nothing brings a game world alive like particle effects (see,
for example, Figure 8.1). Whether it’s a crackling fire, a flurry of snow,
or an explosion of debris, all these effects can be created with a particle
system.

We have already seen one type of particle system. The tail of the dragon
in Section 4.3.4 could be considered a set of static particles. That is, the
segments of the tail act as independent particles but are attached to the
main body. The particles exist as long as the main body exists.

The type of particles we look at in this chapter are sometimes called
animated particles to distinguish them from static particles. Animated par-
ticles are often generated from a single point referred to as a particle emitter.
These particles are generated from that given point in space, exist for a

Figure 8.1. Fire and smoke particles, by Christopher Brough.
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Figure 8.2.
smoke particles, by Jacob
Neville.

Fire and

finite lifetime, and then fade out of existence. This chapter focuses on sys-
tems for generating this type of animated particle, but many of the same
concepts could be applied to create a static particle system as well.

Both 2D and 3D games have many examples of particle systems. Ex-
amples of various particle effects can be viewed in Figures 8.17-8.19.

This chapter goes through the steps needed to build a robust particle
effects system, starting with theory and ending with multiple examples of
implementation. The chapter ends with a discussion of how to build the
tools that will allow the programmer to hand the work of creating and
editing the effects back to the artists.

The particle system is a hierarchical structure, starting with nothing
more than a single sprite:

1. Particle: an individual sprite that can move independently.

2. Particle effect: a set of particles that, when combined, create a par-
ticular effect (such as fire).

3. Particle system: a library of particle effects, designed to work within
your game or application.

To build a robust particle system capable of displaying a variety of particle
effects, it is easiest to start by examining a single particle and then work
your way up to the entire system.

8.1 What Is a Particle?

8.1.1 The Forest and the Trees

An individual particle is often short lived, fading into existence
then fading back out moments later. The particle may accelerate
as it is carried on the wind or it may float to the ground. A particle
may be a lick of flame (Figure 8.2), a wisp of smoke, or a leaf falling
from a tree.

What makes a particle uniquely different when compared to
other game objects is that particles rarely have any effect on the
game world. A fire may cause a player damage, perhaps by a
comparison between the player’s position with a radius around the
source. However, the individual particles of flame are graphical
only and should not affect the game play. For example, if a player
is using a slower computer, the number of particles generated by
the flame could be limited. The result might be a less impressive
looking fire, but the effect of the fire should remain unchanged.
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Similarly, particle positions should not need to be sent between players
in a networked game. The two players may both have smoke particles that
are generated from a smoldering building, but it is not important for the
individual particles to exist in the same location on both PCs.

Let’s start with some basic values we need in order to track the particle.
This is in addition to the basic information we need for displaying the sprite
itself, such as the texture and the sprite’s location on that texture.

public int m_iAge;

This first value is the particle’s lifespan in milliseconds. Once the particle’s
age is below zero, it should be considered to be dead. The initial age for a
particle may be as much as a few seconds to as little as 500 milliseconds.
Rain or smoke particles could exist even longer, whereas particles from fire
and explosions would range on the shorter lifespans.

public Vector2 m_vPos;
public Vector2 m_vVel;
public Vector2 m_vAcc;

public float m_fDampening;

The first set of values above track the particle’s position and how it
might change over time. For example, a particle affected by gravity needs
an acceleration value, and a particle emitted from an explosion might have
a high initial velocity.

The fourth value in the list is used for wind resistance or other types
of friction that decelerate the particle’s velocity over time along an axis
aligned with the current velocity. This should be a value between 0 and 1,
such that 1.0 represents no friction at all.

Your particle class will need functions to create the new particle, as well
as to update and draw it. Use the following code to get started, but the
actual implementation is up to you. Notice that I have added a reference
to a sprite class—that’s something you need to create yourself.

public class cParticle
{
public int m_iAge;

public Vector2 m_vPos;
public Vector2 m_vVel;
public Vector2 m_vAcc;
public float m_fDampening;

public cSprite m_cSprite;

public cParticle ()
{
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m_cSprite = new cSprite();

}

public void Create(Texture2D texture, int agelInMS, Vector2
pos, Vector2 vel, Vector2 acc, float damp)
{

m_iAge ageInMS;

m_vPos = pos;

m_vVel = vel;

m_vAcc = acc;

m_fDampening = damp;
m_cSprite.m_tTexture = texture;

}

public void UpdatePos(GameTime gameTime)
{
m_vVel *= m_fDampening;
m_vVel += (m_vAcc * (float)gameTime.ElapsedGameTime.
TotalSeconds) ;
m_vPos += (m_vVel * (float)gameTime.ElapsedGameTime.
TotalSeconds) ;

m_cSprite.m_vPos = m_vPos;

}

public void Update(GameTime gameTime)

{
if (m_iAge < 0)
return;

m_iAge -= gameTime.ElapsedGameTime.Milliseconds;

UpdatePos (gameTime) ;
}

public void Draw(SpriteBatch batch)
{
if (m_iAge < 0)
return;

m_cSprite.Draw(batch) ;
}

The Update function updates the particle age and then calls the func-
tion that updates the particle’s velocity and position. As we cover the
other parts of a particle, we add more functionality to the update.

In order to test the single particle, you can create a testing environment.
Start with an XNA game shell and add the following;:

cParticle myParticle;
Texture2D spriteSheet;
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\\In Constructor:
myParticle = new cParticle();

\\In Load Content ():
spriteSheet = Content.Load<Texture2D>("whiteStar");

\\In Update():
if (Keyboard.GetState().IsKeyDown(Keys.Up))

{
int initAge = 3000; //3 seconds
Vector2 initPos = new Vector2 (400, 400);
Vector2 initVel = new Vector2(0, -100);
Vector2 initAcc = new Vector2(0, 75);
float initDamp = 1.0f; //No friction
myParticle.Create(spriteSheet, initAge, initPos, initVel,
initAcc, initDamp) ;
}

myParticle.Update (gameTime) ;

\\In Draw():

spriteBatch.Begin(SpriteSortMode.FrontToBack, BlendState.
NonPremultiplied) ;

myParticle.Draw(spriteBatch) ;

spriteBatch.End () ;

In this example, the particle is created with an initial upward velocity;
however, the downward acceleration eventually overcomes the upward ve-
locity. After three seconds, the particle is considered dead and is no longer
updated or drawn to the screen.

Now try modifying the initial values used to create the particle to see
what kind of motion you can create.

8.1.2 Particle Rotation

This next set of values are used to track the rotation of the particle (Fig-
ure 8.3). It is unlikely that the particle will use rotational acceleration,
but if needed, it could be added. A dampening value has been added for
rotational friction.

public float m_fRot;
public float m_fRotVel;
public float m_fRotDampening;

As with the position, you need to add initial values to the Create
Particle function. I have listed below a possible Update function for the
particle class.

public void UpdateRot (GameTime gameTime)
{
m_fRot *= m_fRotDampening;

Figure 8.3. Sample:
particle rotation.
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m_fRot += (m_fRotVel * (float)gameTime.ElapsedGameTime.
TotalSeconds) ;

o

m_cSprite.m_fRotation = m_fRot;

}

public void Update(GameTime gameTime)
10 {
if (m_iAge < 0)
return;
m_iAge -= gameTime.ElapsedGameTime.Milliseconds;

15 UpdatePos (gameTime) ;
UpdateRot (gameTime) ;

8.1.3 Particle Scale

Just like position and rotation, it is likely that a parti-
cle’s scale will change over time (Figure 8.4). Since it is
graphically important that the scale of a sprite not exceed
certain values, I have added a maximum scale. Alterna-
tively, you could use an initial and final scale and linearly
interpolate between the two scales based on the particle’s
age (as we will do with the particle’s color). However, that
would prevent the scale from growing and then shrinking.

1 public float m_fScale;
public float m_fScaleVel;
public float m_fScaleAcc;

Figure 8.4. Particles scale defined public float m_fScaleMax;

in code, by Christopher Brough.

Once again, I have provided a possible set of Update
functions for your particle class. You need to set the initial values appro-
priately in your Create function.

1 public void UpdateScale(GameTime gameTime)
{
m_fScaleVel += (m_fScaleAcc * (float)gameTime.
ElapsedGameTime.TotalSeconds) ;
m_fScale += (m_fScaleVel * (float)gameTime.ElapsedGameTime.
TotalSeconds) ;
m_fScale = MathHelper.Clamp(m_fScale, 0.0f, m_fScaleMax);

o

m_cSprite.m_fScale = m_fScale;
}
10 public void Update(GameTime gameTime)
{

if (m_iAge < 0)
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return;
m_iAge -= gameTime.ElapsedGameTime.Milliseconds;

UpdatePos (gameTime) ;
UpdateRot (gameTime) ;
UpdateScale (gameTime) ;

In this case, we have clamped the scale to be between 0 and the maxi-
mum defined scale. An interesting set of initial values might be something
like the following code sample.

int initAge = 3000; //3 seconds

Vector2 initPos = new Vector2 (400, 400);
Vector2 initVel = new Vector2(0, -100);
Vector2 initAcc = new Vector2(0, 75);
float initDamp = 1.0f;

float initRot = 0.0f;
float initRotVel = 2.0f;
float initRotDamp = 0.99f;

float initScale = 0.2f;
float initScaleVel = 0.2f;
float initScaleAcc = -0.1f;
float maxScale = 1.0f;

myParticle.Create (initAge, initPos, initVel, initAcc,
initDamp, initRot, initRotVel, initRotDamp, initScale,
initScaleVel, initScaleAcc, maxScale);

It is possible that you might want the particle to pulse in scale. In that
case, a more robust solution is required. That is the first challenge at the
end of this chapter.

8.1.4 Particle Color

Since most particles are short lived, modifying the particle’s color is a great
way to allow the particle to simply fade out. However, it is likely that you
will want the particle to be fully visible for most of its lifespan then fade
out during the last n milliseconds. For that reason, I have added a fade
age value. When the particle’s age is less than the fade age, the color will
be linearly interpolated between the initial color and the final color. (See
Figure 8.5.)

public Color m_cColor;

public Color m_cInitColor;

public Color m_cFinalColor;

public int m_iFadeAge;
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Figure 8.5. Particle color defined in code, by Alex Tardif.

For simply fading the particle out, the initial and final colors might be
set to white but the alpha value transitions from 255 to 0 over the fade-out
period. Alternatively, a lick of fire may transition from blue to red.

These color values can make a significant difference to the appearance
of the particle. In the first examples, therefore, we use a sprite consisting
of nothing but a single white shape. The sprite will be blended with the
colors as appropriate.

At any given point, each component of color will be a blend of the initial
color and the final color, determined by the age. For example, the amount
is determined by

A age B age
red = (lmt red x start fading age) + (ﬁnal red x (1 start fading age))

In code, the Update function to apply that linear interpolation will look
something like the following code sample.

public void UpdateColor (GameTime gameTime)

{
if ((m_iAge > m_iFadeAge) && (m_iFadeAge != 0))
{
m_cColor = m_cInitColor;
}
else
{

float amtInit = (float)m_iAge / (float)m_iFadeAge;
float amtFinal = 1.0f - amtlInit;



15

20

25

30

8.2. Creating Effects

141

m_cColor.R = (byte) ((amtInit * m_cInitColor.R) + (
amtFinal * m_cFinalColor.R));

m_cColor.G = (byte) ((amtInit * m_cInitColor.G) + (
amtFinal * m_cFinalColor.G));

m_cColor.B = (byte) ((amtInit * m_cInitColor.B) + (
amtFinal * m_cFinalColor.B));

m_cColor.A = (byte) ((amtInit * m_cInitColor.A) + (
amtFinal * m_cFinalColor.A));

}

m_cSprite.m_cColor = m_cColor;

}

public void Update(GameTime gameTime)
{
if (m_iAge < 0)
return;
m_iAge -= gameTime.ElapsedGameTime.Milliseconds;

UpdatePos (gameTime) ;

UpdateRot (gameTime) ;

UpdateScale (gameTime) ;

UpdateColor (gameTime) ;
}

If you want your particle to cycle through a series of colors, you could
create a small array of colors with associated time stamps.

However, even if you don’t create something that extravagant, its still
important to use actual color values instead of creating a color velocity.
This is because we want our artists to use our particle system to fine-tune
the values. Creating a color velocity might make sense from a programmer’s
perspective, but it would add a layer of complexity that most artists would
not appreciate.

Your job as a graphics programmer is to bridge the gap between the
code and the art. This includes creating artist-friendly tools. The end
goal should be the creation of a flexible particle system that can be given
to the artists and designers without needing any further work from the
programming team. You don’t want to be asked to edit code every time
the designer wants more flames or the artist wants the smoke to be a slightly
different shade of blue.

8.2 Creating Effects

Now that we have a fairly robust particle class, we need to build a system
that will generate and manage many particles at once. As a combined set,
these particles will create the desired effect.
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Consider a particle effect class with the following member variables.

public Texture2D particleTexture;

public Vector2 m_vOrigin;
public float m_fOriginRadius;

public int m_iEffectDuration;

public int m_iNewParticleAmount;
public int m_iBurstFrequencyMS;
public int m_iBurstCountdownMS;

public List<cParticle> m_1lParticles;

The first value is obviously the texture. We may use different textures for
different effects, but for now we’ll just use this one.

The next two values (Origin and OriginRadius) designate a circular area
from which the effect will be generated.

The third set of values controls the size and duration of the effect.
EffectDuration designates how long the effect will generate particles; how-
ever, the effect should not be considered dead until all the particles within
the effect are also dead.

NewParticleAmount indicates how many particles should be generated at
each burst, and BurstFrequency indicates the length of time between bursts,
which is tracked with the BurstCountdown variable. For example, if you
want five particles every frame, you would set NewParticleAmount to 5 and
BurstFrequency to 16 (60 frames per 1000 ms). If you wanted to generate
only one new particle every second, you would set NewParticleAmount to 1
and set BurstFrequency to 1,000 ms.

Finally, the last member variable is the C# list containing all the par-
ticles. Let’s start by generating one particle every frame for ten seconds.
First we need to create a new particle list and initialize the effect, setting
the duration, particle amount, and frequency. We also need to load the
texture that will be used by the particle.

public cEffect ()
{
m_allParticles = new List<cParticle>();

}

public void Imitialize ()

{
m_iEffectDuration = 10000;
m_iNewParticleAmount = 1;
m_iBurstFrequencyMS = 16;
m_iBurstCountdownMS m_iBurstFrequencyMS;

}

public void LoadContent (ContentManager content)
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15 o
particleTexture = content.Load<Texture2D>("whiteStar");
}
public void createParticle ()
20 {
7] <o
¥

The first part of the update checks to see whether the effect is still
active. If it is and it is also time for the next burst of particles, we can
create as many particles as specified by NewParticleAmount. We will get to
the details of what happens in createParticle() in a moment.

1 public void Update(GameTime gameTime)
{
m_iEffectDuration -= gameTime.ElapsedGameTime.Milliseconds;
m_iBurstCountdownMS -= gameTime.ElapsedGameTime.

Milliseconds;

o

if ((m_iBurstCountdownMS <= 0) && (m_iEffectDuration >= 0))

{
for (int i = 0; i < m_iNewParticleAmount; i++)
createParticle () ;
10 m_iBurstCountdownMS = m_iBurstFrequencyMS;
}
N ooo

In the second half of the update function, we step through all the par-
ticles, updating them each individually. And then, while we’re looping
through them, we also remove any particles that have expired.

1 for (int i = m_allParticles.Count()-1; i>=0; i--)
{
m_allParticles[i].Update(gameTime) ;

if (m_allParticles[i].m_iAge <= 0)
m_allParticles.RemoveAt (i);

o

Note that we are traversing the list backwards. This is to ensure that
we don’t break the loop logic by removing a particle in the wrong order.

Note that using a list in this way may create a variety of memory and
performance issues. We discuss that problem later in this chapter.

For the Draw function we simply call the Particle Draw function for
each particle in the list of particles.

1 public void Draw(SpriteBatch batch)
{
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batch.Begin() ;
foreach (cParticle p in m_allParticles)
{
p.Draw(batch) ;
}
batch.End () ;

What we have avoided up until this point is the Create Particle function.
With the various values we have created, this function involves a lot of
variables and may seem a bit unwieldy, but it’s actually fairly simplistic.
We have a variety of values that need to be set for a specific effect, and
that is exactly what we are doing here.

public void createParticle ()
{
int initAge = 3000; //3 seconds

Vector2 initPos = m_v0Origin;
Vector2 initVel = new Vector2(((float) (100.0f * Math.Cos(
m_iEffectDuration))),
((float) (100.0f * Math.Sin(
m_iEffectDuration))));

Vector2 initAcc = new Vector2(0, 75);
float initDamp = 1.0f;

float initRot = 0.0f;
float initRotVel = 2.0f;
float initRotDamp = 0.99f;

float initScale = 0.2f;
float initScaleVel = 0.2f;
float initScaleAcc = -0.1f;
float maxScale = 1.0f;

Color initColor = Color.White;
Color finalColor = Color.White;
finalColor.A = 0;

int fadeAge = initAge;

cParticle tempParticle = new cParticle();
tempParticle.Create (particleTexture, initAge, initPos,
initVel, initAcc, initDamp, initRot, initRotVel,
initRotDamp, initScale, initScaleVel, initScaleAcc,
maxScale, initColor, finalColor, fadeAge);
m_allParticles.Add(tempParticle) ;
¥

Here, I set the variables and then create a temporary particle that I
add to the particle list. The only slightly unusual aspect of this function is
the use of the sine and cosine functions.
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What I want to do is create a particle effect that emits particles with
an initial velocity of 100, but I want the direction of that velocity to rotate
as a function of time.

In this case, I know that EffectDuration counts down until it reaches
zero. Using basic trigonometry, I know that I can set the components as
follows, using the remaining time as the rotation amount. This works well
because rotation values repeat after 2m:

2 component = 100 x cos(remaining time),
y component = 100 X sin(remaining time).

The result is a spiraling particle emitter. As before, the particles fade
from white to white with alpha set to zero, starting with an initial upward
velocity and finally being turned around by the downward acceleration.
Similarly, the individual particles start with an initial scale that begins by
increasing but is eventually overwhelmed by the negative scale acceleration.
The rotation of the individual particles is dampened with a value of 0.99,
causing a resistance to the rotation over time.

Of course, for any of this to occur, we need to activate the particle effect
within the main game.

Using an XNA game shell, we need only to add the following code:

//Member variables:
// ...
cEffect myEffect;

//In Constructor:
myEffect = new cEffect();

//In Load Content:
// ...
cEffect.LoadContent (Content) ;

//In Update:
// ...

if (Keyboard.GetState().IsKeyDown(Keys.Up))
{

myEffect.Initialize ();
}

myEffect.Update (gameTime) ;
A0 oo

//In Draw:

A aoc

myEffect.Draw(gameTime, spriteBatch);
A aoc

The result should look similar to Figure 8.6.
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Figure 8.6. Example: particle spiral.

8.3 Blending Types

A discerning reader may have noticed a different value for the blending op-

tion in the previous example’s Sprite Batch Begin function. That is, I used

the value BlendState.NonPremultiplied instead of BlendState.AlphaBlend.
When blending a pixel with the pixel previously drawn to the back

buffer, a calculation must be made to determine the resultant color. It’s

not enough to simply add the individual RGBA values together because

the result value would likely result in a number higher than a byte (255).
In XNA, we are given four options for blending:

1. Additive: With additive blending, the alpha value is ignored but the
colors are still blended. This means that when dark red is blended
with more dark red, the result is a higher value of red and thus a
lighter red.

2. AlphaBlend: With alpha blending, the source and destination colors
are blended by using the alpha value. The result of this may be a bit
unexpected. Given our knowledge of color, the assumption might be
that if you set the alpha value to zero, the sprite would be completely
transparent. But that’s not quite the case, and the reason is a bit
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beyond the scope of this book. The important thing to know is that
if you want to set the alpha value of a color when using AlphaBlend,
instead of manually setting the alpha value, simply multiply the entire
color by the desired alpha value.

3. Non-premultiplied: By default, XNA will premultiply the alpha val-
ues of your sprites as part of the content pipeline. If you do not
want this to occur, set Premultiply Alpha to False in the property
value of the texture. I have included a link on the companion web-
site, http://www.2dGraphicsProgramming.com, for more information
about premultiplied alphas. This allows us to get the result we would
have otherwise expected by setting the alpha value to zero as de-
scribed above for AlphaBlend mode.

4. Opaque: The simplest blending is no blending. Opaque simply over-
writes the color with the new color.

The variation of results from choosing a particular blending mode are
significant, especially when working with multiple layers of particles in an
attempt to create various effects.

In Figures 8.7-8.9, the particles start with a value of dark red (R: 139;
G: 0; B: 0; A: 255) and transition to a value of dark red without alpha.
The clear color is blue to show the way the background color affects the
blended results. In parts (a), I have set the alpha value manually (R: 139;
G: 0; B: 0; A: 0). In parts (b), I have used the built-in XNA operator
override of multiplying a color by an alpha value.

As you can see, the differences are significant. 1 have not included
opaque blending because it is rarely useful. You can try it for yourself to
see the result.

Note both the way the final color blends with the background blue as
well as the way the sprite blends with other sprites. The only two that
match are the Figures 8.8(b) and 8.9(a). This has to do with the equations
used to blend source and destination colors.

We can use this variety to our advantage when creating various ef-
fects. For this reason, I have added another Member variable to the effect
class.

//Effect member variable
public BlendState m_eBlendType;

//Effect Draw
batch.Begin(SpriteSortMode.BackToFront, m_eBlendType);
40 oo
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(a) (b)

Figure 8.7. Additive with (a) finalColor.A = 0 and (b) finalColor = finalColor * O.

(a) (b)

Figure 8.8. AlphaBlend with (a) finalColor.A = 0 and (b) finalColor = finalColor * 0.

(a) (b)

Figure 8.9. Non-premultiplied with (a) finalColor.A = 0 and (b) finalColor = finalColor * O.
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8.4 Types of Effects

Now that we have a simple effect system, let us take a mo-
ment to look at how our various starting parameters might
be used to generate specific effects. In each of these, we
will modify the Create Particle function and initialization
values.

8.4.1 Fire

For a simple fire effect (Figure 8.10), I start with randomly
generating ten particles around a particular point in every
frame. If the particles are generated at the left of the origin,
they are given an initial velocity to the right. If they are
generated at the right, they are given an initial velocity to
the left. In addition, the particles have an upward velocity
and random upward acceleration.

The particles blend from red (A = 255) to yellow

(A = 0) by using additive blending, starting small and Figure 8.10

slowly scaling down the white circle texture.

public void Imnitialize ()

{
m_iEffectDuration = 60000;
m_iNewParticleAmount = 10;
m_iBurstFrequencyMS = 16;
m_iBurstCountdownMS = m_iBurstFrequencyMS;
m_vOrigin = new Vector2(400, 400);
m_iRadius = 50;
m_eBlendType = BlendState.Additive;

¥

public void LoadContent (ContentManager content)

{

particleTexture = content.Load<Texture2D>("whiteCircle");

}

public void createFireParticle ()
{
int initAge = 3000; //3 seconds
int fadeAge = 2750;

Vector2 initPos = m_vOrigin;

Vector2 offset;

offset.X = ((float)(myRandom.Next(m_iRadius) * Math
myRandom.Next (360)))) ;

offset.Y = ((float) (myRandom.Next(m_iRadius) * Math
myRandom.Next (360)))) ;

.Cos (

.Sin(

. Example: fire effect.
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initPos += offset;

Vector2 initVel = Vector2.Zero;
30 initVel.X = -(offset.X * 0.5f);
initVel.Y = 0.0f;

Vector2 initAcc = new Vector2(O0,
35 float initDamp = 0.96f;

float initRot = 0.0f;
float initRotVel = 0.0f;
float initRotDamp = 1.0f;

float initScale = 0.5f;
float initScaleVel = -0.1f;
float initScaleAcc = 0.0f;
float maxScale = 1.0f;

Color initColor = Color.Red;
Color finalColor = Color.Yellow;
finalColor.A = 0;

-myRandom.Next (200) ) ;

cParticle tempParticle = new cParticle();

tempParticle.Create(particleTexture, initAge, initPos,
initVel, initAcc, initDamp, initRot, initRotVel,
initRotDamp, initScale, initScaleVel, initScaleAcc,
maxScale, initColor, finalColor, fadeAge);

m_allParticles.Add(tempParticle) ;

We can create a wider flame base (Figure 8.11)
by moving the origin along the z-axis while also in-
creasing the number of particles that are generated

in each frame.

Figure 8.11. Row of flames.

1 //In Initialization:
m_vOrigin = new Vector2(640, 400);
m_iNewParticleAmount = 50;

5 //In Create Particle, add:
Vector2 offset2 = Vector2.Zero;

offset2.X += (float) (400 * Math.Cos(m_iEffectDuration));

initPos += offset2;

Then, with a few more modifications, we can create a faster blue-colored
flame (Figure 8.12) that moves back and forth by modifying the values as

in the following code:
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Figure 8.12. Moving blue flame. Figure 8.13. Example: smoke effect.

//In Initialization:
m_iNewParticleAmount = 15;
m_iRadius = 30;

//In Create Particle:

//Modify age of particles

int initAge = 500 + (int)myRandom.Next (500); //3 seconds
int fadeAge = initAge - (int)myRandom.Next (100);

70 o oo

//Decrease offset movement speed
offset2.X += (float) (200 * Math.Cos(m_iEffectDuration/500.0f));
70 oo o

//Increase y Velocity
initVel.Y = -500;
Il ooo

//Modify y Acceleration
Vector2 initAcc = new Vector2(0, -myRandom.Next (300));
// ...

//Modify Color Range

Color initColor = Color.DarkBlue;
Color finalColor = Color.DarkOrange;
8.4.2 Smoke

For smoke (Figure 8.13), I apply a process similar to that for the fire by
using the white circle textures but with a more subtle effect. The color
transitions from black (A = 128) to a dark gray defined by the RGBA
values (R: 32; G: 32; B: 32; A: 0). Because the particles themselves are
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almost completely transparent, the primary source of the effect occurs as
an interaction between the additive interaction of the blended particles:

public void Imitialize ()

{

}

//Smoke

m_iEffectDuration = 60000;
m_iNewParticleAmount = 4;
m_iBurstFrequencyMS = 16;
m_iBurstCountdownMS = m_iBurstFrequencyMS;

m_vO0rigin = new Vector2 (640, 640);
m_iRadius = 50;
m_eBlendType = BlendState.Additive;

public void createSmokeParticle ()

{

int initAge = 5000 + (int)myRandom.Next (5000) ;
int fadeAge initAge - (int)myRandom.Next (5000) ;

Vector2 initPos = m_vOrigin;

Vector2 offset;

offset.X = ((float) (myRandom.Next(m_iRadius) * Math.Cos(
myRandom.Next (360))));

offset.Y = ((float) (myRandom.Next(m_iRadius) * Math.Sin(
myRandom.Next (360)))) ;

initPos += offset;

Vector2 offset2 = Vector2.Zero;

offset2.X += (float) (400 * Math.Cos(m_iEffectDuration /
500.0f));

initPos += offset2;

Vector2 initVel = Vector2.Zero;
initVel.X = 0;//
initVel.Y = -30 - myRandom.Next (30);

Vector2 initAcc = new Vector2(10 + myRandom.Next (10), 0);
float initDamp = 1.0f;

float initRot = 0.0f;
float initRotVel = 0.0f;
float initRotDamp = 1.0f;

float initScale = 0.6f;

float initScaleVel = ((float)myRandom.Next (10))/50.0f;
float initScaleAcc = 0.0f;

float maxScale = 3.0f;

Color initColor = Color.Black;
initColor.A = 128;
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Color finalColor = new Color (32, 32, 32);
finalColor.A = 0;

//Create and add particle to list as before

70 < oo

In addition to generating smoke, a similar set of values could be used
to generate fog, clouds, or mist. An even better result could be obtained
by using a different texture, perhaps something that looked more like a
puff of smoke. We could then randomly rotate the texture, creating more
realistic-looking smoke.

8.4.3 Explosions

For an explosion (Figure 8.14), I generate many star particles in one frame.
The particles are given high initial velocities and a downward acceleration.
They are also given an acceleration value based on whether they are on the
right or left side of the explosion base, as shown in the code below.

Figure 8.14. Example: explosion effect.
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public void Imitialize()

{

}

//Explosion

m_iEffectDuration = 16;
m_iNewParticleAmount = 800;
m_iBurstFrequencyMS = 16;
m_iBurstCountdownMS = m_iBurstFrequencyMS;

m_vO0rigin = new Vector2(200, 720);
m_iRadius = 20;
m_eBlendType = BlendState.NonPremultiplied;

public void createExplosionParticle ()

{

int initAge = 3000 + (int)myRandom.Next (5000) ;
int fadeAge = initAge /2;

Vector2 initPos = m_vOrigin;

Vector2 offset;

offset.X = ((float) (myRandom.Next(m_iRadius) * Math.Cos(
myRandom.Next (360))));

offset.Y = ((float) (myRandom.Next(m_iRadius) * Math.Sin(
myRandom.Next (360)))) ;

initPos += offset;

Vector2 initVel = Vector2.Zero;
initVel.X = myRandom.Next (500) + (offset.X * 30);
initVel.Y = -60 * Math.Abs(offset.Y);

Vector2 initAcc = new Vector2(0, 400);

float initDamp = 1.0f;

float initRot = 0.0f;

float initRotVel = initVel.X / 50.0f;

float initRotDamp = 0.97f;

float initScale = 0.1f + ((float)myRandom.Next(10)) / 50.0f
float initScaleVel = ((float)myRandom.Next (10)-5) / 50.0f;

float initScalelAcc = 0.0f;
float maxScale = 1.0f;

byte randomGray (byte) (myRandom.Next (128) + 128);
Color initColor = new Color (randomGray, O, 0);

Color finalColor = new Color (32, 32, 32);
finalColor = Color.Black;

//Create and add particle to list as before

D coo
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This effect could be used for a variety of types of explosions, from
meteor impacts to fireworks. This is also a great effect for smaller-scale
events, such as when a child jumps into a pile of leaves. In fact, a similar
type of explosion of feathers happens in Flock! [Proper Games 09] every

time a chicken lands on the ground.

8.4.4 Snow or Rain

In this example, I have created a simple
falling snowflake effect (Figure 8.15) by
using a snowflake texture. I first calcu-
late a particle scale, and then I modify
the particle age and fall velocity based on
the scale so that smaller flakes fall slower
and last longer, creating a very simplistic
parallax effect.

I've also changed the clear color to
something slightly more appropriate for
this example.

public void SnowInitialize ()

{

//Snow
m_iEffectDuration = 60000;
m_iNewParticleAmount = 1;

m_iBurstFrequencyMS = 64;
m_iBurstCountdownMS

m_vO0rigin = new Vector2(640, -50);

m_iRadius = 50;

Figure 8.15. Example:

m_iBurstFrequencyMS;

m_eBlendType = BlendState.NonPremultiplied;

}

public void createSnowParticle ()

{

float initScale = 0.1f + ((float)myRandom.Next (10)) / 20.

float initScaleVel = 0.0f;
float initScalelAcc = 0.0f;
float maxScale = 1.0f;

int initAge
int fadeAge = initAge;

Vector2 initPos = m_vOrigin;
Vector2 offset;

(int) (10000/initScale) ;

offset.X = ((float) (myRandom.Next(m_iRadius) * Math.Cos(

myRandom.Next (360)))) ;

offset.Y = ((float) (myRandom.Next(m_iRadius) * Math.Sin(

myRandom.Next (360)))) ;
initPos += offset;

snowflake effect.

of
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30 Vector2 offset2 = Vector2.Zero;
offset2.X += (float) (600 * Math.
/500.0));
initPos += offset2;
35 Vector2 initVel = Vector2.Zero;

Cos(m_iEffectDuration

initVel.X = myRandom.Next (10) - 5;

initVel.Y = 100 * initScale;

Vector2 initAcc = new Vector2(0, 0);
40

float initDamp = 1.0f;

float initRot = 0.0f;

float initRotVel = initVel.X / 5.0f; ;
45 float initRotDamp = 1.0f;

Color initColor = Color.White;

Color finalColor = Color.White;

finalColor.A = 0;

//Create and add particle to list as before

70 oo

The use of the snowflake sprite creates

a really nice effect. An enhance-

ment to this example would be to add some variety in the snowflakes,
editing the code to select randomly from a set of snowflake textures.

8.4.5 Other Effects

Figure 8.16. Example: silly effect of head on fire.

We have seen how particles
can be emitted from points
and by lines when we offset
the origin. But what if we
were to update the effect ori-
gin through our game code?
We would then have the abil-
ity, for example, to create
effects like flames shooting
out from the top of a char-
acter’s head (Figure 8.16).
We can achieve a variety of
other effects with particles
that might not seem as obvi-
ous as the examples we have
looked at so far.
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Total particles on the screen: 1496

Figure 8.17. Various particles, by Brett Chalupa.

Consider what would happen if we set the effect origin to match the
player’s feet and generated a new particle whenever the player was moving.
This would allow us to create footsteps in dirt or tire tracks through snow.

Another option is to use the player’s current sprite as the particle. By
leaving behind a series of particles in the shape of the player as the sprite
moved, we could create a 1970s blurred running effect.

From an explosion of sparkles as a player receives a gold medal award
to the mud thrown from motorcycle tire, the variety of possible effects that
we can create with particles is limited only by our imagination. A few
further examples of various effects in action can be seen in Figures 8.17,
8.18, and 8.19.

8.4.6 Combining Types

Now that we have looked at some of the effects that are possible with
particle systems, it is time to make the system a bit more robust. The
first thing we need to do is to define the various types of effects that are
possible to generate.

We start by creating an enumerated type and adding an instance of
that type to the effect class, as shown in the following code.

public enum eEffectType
{

smoke ,

fire,

explosion,
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Figure 8.18. Particles create smoke trails and explosions, by Alex Toulan.

snow

}

public class cEffect

{
public

public
static
static
static

40 oo

static

{

eEffectType m_eType;

Texture2D
Texture2D
Texture2D
Texture2D

particleTexture;
snowflakeTexture;
circleTexture;
starTexture;

public void LoadContent (ContentManager content)

snowflakeTexture = content.Load<Texture2D>("snowFlake");
circleTexture
starTexture =

= content.Load<Texture2D>("whiteCircle");
content .Load<Texture2D>("whiteStar");

Notice that the individual textures and the LoadContent function are
now listed as static to ensure that the textures are loaded only once during
the load content phase and are independent of the individual instances of
the effect class.

We have already created the functions to initialize and create the par-
ticles. Now we just need to ensure they are utilized as defined by the
enumerated effect type we just added.
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Figure 8.19. Particles create fireworks over rippling water, by Andrew Auclair.
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1 public void Initialize(eEffectType pType)
{
m_eType = pType;

5 switch (m_eType)
{
case eEffectType.fire:
FireInitialize ();

break;

10 case eEffectType.smoke:
SmokeInitialize () ;
break;

case eEffectType.explosion:
ExplosionInitialize();
15 break;
case eEffectType.snow:
SnowInitialize ();
break;
}
20}

public void createParticle ()
{
switch (m_eType)
25 {
case eEffectType.fire:
createFireParticle () ;
break;
case eEffectType.smoke:
30 createSmokeParticle () ;
break;
case eEffectType.explosion:
createExplosionParticle ();
break;
35 case eEffectType.snow:
createSnowParticle () ;
break;

}

public void SnowInitialize ()
{
//Explosion
particleTexture = snowflakeTexture;
45 // ...
}

public void FireImitialize ()

{
50 //Fire
particleTexture = circleTexture;

D coo
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public void SmokeInitialize ()
55 {
//Smoke
particleTexture = circleTexture;
I oo
}
60 public void ExplosionInitialize ()
{
//Explosion
particleTexture = starTexture;
70 e o
65 }

In our main game, we can now initialize a specific type of particle effect
at the press of a button.

1 if (Keyboard.GetState().IsKeyDown (Keys.Up))

{
myEffect.Initialize (eEffectType.explosion);
}
5 if (Keyboard.GetState () .IsKeyDown(Keys.Down))
{
myEffect.Initialize (eEffectType.fire);
}
if (Keyboard.GetState().IsKeyDown(Keys.Left))
10 {
myEffect.Initialize (eEffectType.snow);
}
if (Keyboard.GetState().IsKeyDown(Keys.Right))
{
15 myEffect.Initialize (eEffectType.smoke);
}

This is certainly something fun to play with, but we are not yet done.
Since every time a key is pressed, the same effect is reinitialized, a better
solution would be to create a new effect and not reuse the same one.

Before we can do that, though, we need to add one more function:
when we build the effect system, we need to know when a particular effect
is completely dead. As mentioned before, the effect duration tells us only
how long the effect is generating new particles, not whether those particles
are still alive.

For our current particle list, however, the solution is simple enough:

1 public bool isAlive ()
{
if (m_iEffectDuration > 0)
return true;
5 if (m_allParticles.Count() > 0)
return true;
return false;
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8.5 An Effect System

We now have all we need to build an effect system. This is the third and
final tier, as we have moved from particle, to effect, to effect system.

The effect system can be thought of as a software engineering structure
for managing all the effects. Listed below is the entirety of a simple effect
manager.

public class cEffectManager

{
public List<cEffect> m_lAllEffects;

public cEffectManager ()
{

m_1Al1lEffects = new List<cEffect>();
}

public void LoadContent (ContentManager Content)
{

cEffect.LoadContent (Content) ;
}

public void AddEffect(eEffectType type)

{
cEffect tempEffect = new cEffect();
tempEffect.Initialize (type);
m_lAllEffects.Add (tempEffect);

}

public void Update(GameTime gameTime)
{
for (int i = m_1AllEffects.Count() - 1; i >= 0; i--)
{
m_1Al1Effects[i].Update (gameTime) ;

if (!m_lAl1Effects[i].isAlive())
m_lAll1Effects.RemoveAt (i);
}
}

public void Draw(SpriteBatch batch)
{
foreach (cEffect e in m_lAllEffects)
{
e.Draw(batch) ;
}
}

Just like the effect class stores a list of particles, the effect manager
stores a list of effects. The effect manager allows us to create a new effect
through an AddEffect function.
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In the main game loop, the code might look something like the following;:

public class Gamel : Microsoft.Xna.Framework.Game

{

GraphicsDeviceManager graphics;
SpriteBatch spriteBatch;

cEffectManager myEffectsManager;
int keyboardDelayCounter = O0;
int keyboardDelay = 300;

public Gamel ()
{

graphics = new GraphicsDeviceManager (this);
Content .RootDirectory = "Content";

myEffectsManager = new cEffectManager ();

}

protected override void Initialize ()

{
graphics.PreferredBackBufferWidth = 1280;
graphics.PreferredBackBufferHeight = 720;
graphics.ApplyChanges () ;

base.Initialize();

}

protected override void LoadContent ()

{
spriteBatch = new SpriteBatch(GraphicsDevice);
myEffectsManager .LoadContent (Content) ;

}

protected override void Update(GameTime gameTime)

{
if (Keyboard.GetState () .IsKeyDown(Keys.Escape))
this.Exit () ;

if (keyboardDelayCounter > 0)

{

keyboardDelayCounter -= gameTime.ElapsedGameTime.

Milliseconds;
}
else
{

if (Keyboard.GetState () .IsKeyDown(Keys.Up))

{
myEffectsManager .AddEffect (eEffectType.explosion) ;
keyboardDelayCounter = keyboardDelay;

}

if (Keyboard.GetState () .IsKeyDown (Keys.Down))

{

myEffectsManager .AddEffect (eEffectType.fire);
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keyboardDelayCounter = keyboardDelay;

}
myEffectsManager .Update (gameTime) ;

base.Update (gameTime) ;
}

protected override void Draw(GameTime gameTime)

{
Color clearColor = Color.Black;
GraphicsDevice.Clear (clearColor);

myEffectsManager .Draw(spriteBatch);

base.Draw (gameTime) ;

After implementation and a little testing of the above code, you should
notice a very significant problem. Even on a very fast computer, once we
have a large number of particles moving around the scene, the processing
requirements are too much for the system to handle. In the next section,
we work through the options for improving the performance of the particle
system.

8.6 Optimization

8.6.1 Limitations

The first and easiest optimization is to simply place a limit on the number
of particles that can exist within a given particle effect and then a limit on
the total number of particles being processed by all currently active effects.

We need to approach this problem on two fronts. First, we need to
ensure that new particles are not created when the maximum number of
particles has been reached. But more important, we need to ensure good
communication with our artists and designers on these limits. The tools
we build to help them create effects should help with this as well.

To set your particle cap, you first need to understand what is caus-
ing the drop in frame rate. The number of particles your particle system
can process can be limited by the simulation stage (processing orientation
and position updates) or the rendering phase (drawing the particles to the
screen). Both cases have nested for loops (processing every particle for
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every effect). It is important to understand your platform to understand
where the bottleneck is occurring.

An easy solution is to simply cap the number of particles available for
a given effect by adding an if statement that will not create new particles
when the cap has been reached. However, we also need to consider the
number of effects we have at any given time. After all, one effect with 10,000
active particles will likely have computational and rendering requirements
very similar to ten effects each rendered with 1,000 particles.

Additionally, tracking the current total number of particles on the
screen can be useful for debugging purposes. In so doing, you may find
that you need different particle limits for various platforms; for example,
a PC may be able to handle significantly more particles than a mobile
phone. You want to design a solution that ensures you get a good effect
on all systems to which you plan to deploy.

8.6.2 Early Particle Removal

In some cases (e.g., explosive effects), you may still be processing particles
long after they have left the field of view. You may find improved perfor-
mance by marking as dead the particles that have left the screen. If you do
that, however, you must use care. If you have a moving camera, a particle
that was once off-screen may need to be visible once again when the camera
moves.

8.6.3 Memory Management and Particle Reuse

Although doing your best to limit the total number of particles may help to
improve performance, it might be addressing the symptom rather than the
underlying problem. For example, your game may start to drop in frame
rate when 5,000 particles are being generated, but another game may run
30,000 particles on the same platform without any difficulty.

In the first particle example in Section 8.2, we used the C# List< T >
data structure to store our array of particles. Let’s consider, however, what
is happening within the memory of a list. The items in the list are quickly
created and removed, and each of these list operations has its own overhead
set. As an item in a list is removed, the memory making up that list is
resized.

As a first step, if you want to increase performance, you can make a
decision never to remove a particle from a list. Instead, you could start
with a specific number of items in the list and skip both processing and
rendering any dead particle. When it’s time to create a new particle, you
would simply find the first dead particle and reset it with the new values.
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A better solution may be found through using a data structure with less
overhead. Consider using a fixed size array instead of the list. You may also
find success by using LINQ for processing the elements within the particle
list. No matter what the case, you want to employ good benchmarking and
timing techniques so you know what works best for your specific system.
Some compilers are very good at optimizing, so you want to be sure that
your “solution” really is faster than the built-in functionality.

Of course, these same techniques could be applied to the list of particle
effects. It is reasonable at initialization to consider a solution that defines
the memory necessary for all the particles that will ever be used in the
game. In such a case, there will be very little worry about unexpected
consequences of high particle count at some later point in the game.

8.6.4 Multithreading

Another great option for improving the performance of your particle system
is to consider the fact that the particle system may be running completely
independently of other game events. Particles are often generated, but
they may never interact with other game data. As a result, they can be
a perfect option for multithreading. Depending on your system, this may
offer significant improvements on your game performance.

However, be aware that some systems have better multithreading op-
tions than others. You may decide you want to limit the number of particles
based on the availability of multiple processors.

Exercises: Challenges

Challenge 8.1. Alter the particle system to allow for particles that pulse
in size.

Challenge 8.2. Create a fireworks particle effect, as in Figure 8.19.
Challenge 8.3. Add the ability to use animated sprites and create an ef-
fect that makes use of the animated sprites. This would be ideal for a

kaleidoscope of butterflies.

Challenge 8.4. Add the ability to cycle through a range of colors. Create
an effect that makes use of this feature.

Challenge 8.5. Build an effect editor into your system. Artists should be
able to test the results.
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Challenge 8.6. Add the ability to count the total number of particles cur-
rently being rendered. Use this counter to limit the creation of new parti-
cles.

Challenge 8.7. Convert the particle system to use an array instead of List
<T>. Analyze any performance differences.

Challenge 8.8. Convert your particle system to run on a separate thread.
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9.1 Pixel Modification

So far we have manipulated the scale, orientation, and color of sprites to
create various effects in our game. As we have seen, this allows for a great
deal of creativity. But what happens if we want to modify individual pixels,
as required to create the blur effect seen in Figure 9.17

Consider the following code, in which we generate a gradient mixture
of blue and red. We first create a 2D array of colors, and then we create a
texture using that color array.

protected override void LoadContent ()

{
int width = 256;
int height = 256;
//Create 2D array of colors
Color[] array0fColor = new Color [width * height];
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
{
array0fColor [i + (width * j)] = new Color(i, 0, j);
}
//Place color array into a texture
pixelsTexture = new Texture2D (GraphicsDevice, width, height
)
pixelsTexture.SetData<Color>(array0fColor) ;
}

Once the new texture has been created, we can now add that into our
Draw function:

169
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Figure 9.1. Blur effect by Adam Reed in his unpublished game, Tunnel Vision.

1 spriteBatch.Begin();
spriteBatch.Draw(pixelsTexture, Vector2.Zero, Color.White);
spriteBatch.End () ;

The result of drawing this new texture to the screen can be seen in
Figure 9.2.

This is easy enough, and we could take this one step further. Instead
of creating a new color array, we could get the color array from an existing
texture. We could then modify that array in an interesting way and create
a second texture with our modified color array.

For example, in the following code I have inverted the color data for
the snowman.

1 protected override void LoadContent ()

{

spriteBatch = new SpriteBatch(GraphicsDevice);

int width = 256;
int height = 256;
spriteSheet = Content.Load<Texture2D>("snow_assets");

10 //Get 2D array of colors from sprite sheet
Color [] array0fColor = new Color [width * height];
spriteSheet.GetData<Color>(0, new Rectangle (0,128, 256,
256) , array0fColor, O, (width * height));
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Figure 9.2. Gradient created from a color array. Figure 9.3. Snowman and inverted snowman.

//Place color array into a texture

pixelsTexturel = new Texture2D(GraphicsDevice, width,
height) ;

pixelsTexturel.SetData<Color>(array0fColor);

for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)

{
int currentElement = i + (width * j);
array0fColor [currentElement] .R = (byte) (255 -
array0fColor [currentElement].R);
array0fColor [currentElement] .G = (byte) (255 -
array0fColor [currentElement].G);
array0fColor [currentElement] .B = (byte) (255 -
array0fColor [currentElement].B);
}

//Place color array into a texture

pixelsTexture2 = new Texture2D(GraphicsDevice, width,
height) ;

pixelsTexture2.SetData<Color>(array0fColor);

Then in the following code, we draw the two newly created textures
side by side. Note that we need to use the non-premultiplied blend state
because we want to render based on the original unmodified alpha value.

spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.
NonPremultiplied) ;

spriteBatch.Draw(pixelsTexturel, Vector2.Zero, Color.White)

spriteBatch.Draw(pixelsTexture2, new Vector2(256,0), Color.
White);

spriteBatch.End () ;

The result can be seen in Figure 9.3.
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The ability to modify individual pixels provides a great deal of power to
our graphics programming skills. Unfortunately, we will quickly run into
limitations on what types of effects we can create based on the capabuility
of the computer’s CPU.

In the previous examples, we modified the graphics data as part of
the LoadContent function. But what if we wanted to do something more
dynamic, such as modifying the graphics data during the Update function.
Let’s consider the following addition to the previous code.

Vector2 pos = Vector2.Zero;
Vector2 vel = new Vector2(1.0f, 1.5f);

70 oo

public void updatePosition ()

{

pos += vel;

if ((pos.X < 0) || (pos.X > 255))
vel . X x= -1f;
MathHelper.Clamp(pos.X, O, 255);

if ((pos.Y < 0) || (pos.Y > 255))
vel.Y x= -1f;
MathHelper.Clamp(pos.Y, 0, 255);
¥

public void modifyPixelTextures2()
{

int width = 256;

int height = 256;

//Get 2D array of colors from texture2
Color [l array0fColor = new Color[width * height];
pixelsTexturel.GetData<Color>(array0fColor);

//Modify color array into a texture
for (int j = 0; j < height; j++)
for (int i = 0; i < width; i++)
{
int currElement = i + (scr_width * j);
double distance = Math.Sqrt(Math.Pow(i-pos.X, 2) + Math
.Pow(j-pos.Y, 2));
double radius = 50;
if (distance < radius)
{
array0fColor [currentElement] .R = (byte) (255 -
array0fColor [currentElement].R);
array0fColor [currentElement] .G = (byte) (255 -
array0fColor [currentElement].G) ;
array0fColor [currentElement].B = (byte) (255 -
array0fColor [currentElement].B);
array0fColor [currentElement].A = 255;
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}
}

//Place color array into a texture
pixelsTexture2.SetData<Color>(array0fColor);
¥

protected override void Update(GameTime gameTime)

{
Al oo
updatePosition () ;
modifyPixelTextures2 () ;

base.Update (gameTime) ;

With the addition of the above code, the inversion of
the texture occurs dynamically around a given point that
bounces around the screen (see Figure 9.4).

The distance formula is used here, which causes a
square root function that can be computationally expen-
sive to execute. As with any large loop that we need
to process, this can be time consuming for the proces-
sor. And this is not just a one-time requirement—the
loop must be processed for every frame. In this example,
let’s assume it requires eight CPU operations to calcu-
late the square root; the result is that the CPU needs
to perform more than 31 million operations per second
just to create a dynamic inverted circle on a 256-square
texture:

Figure 9.4. Snowman and inverted
radius of snowman.

256 x 256 x 8 operations « g0 frames _ 31,457,280 operations

calculation second

second

Depending on the processor, this may be enough to slow down the frame
rate. Even if not, it will add up quickly as we attempt to do more compli-

cated effects across larger areas of the screen.

Note, however, that calculating the square root is overkill. When calcu-
lating distance, instead of comparing the square root to the radius, we can
calculate the square of the radius by using the square of the distance. This
simple modification (shown in the following code) ensures that we never
need to perform the square root calculation when calculating distance.

double distanceSQR = Math.Pow(i-pos.X, 2) + Math.Pow(j-pos.Y,

2);
double radiusSQR = 50;
if (distanceSQR < radiusSQR)
{
// ...
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9.2 Full-Screen Pixel Modifications

Now that we know how to modify a single texture, we can take this a
step further. Let’s assume we have created a complicated scene involving
multiple sprites at various layers. Suppose also that we now want to apply
an effect (like the inverted circle from the previous example) across the
entire scene.

The process to achieve this is fairly simple, even if it might seem a little
complicated at first:

1. Store a reference to the current back buffer (render targets).
Create a temporary back buffer.

Draw the scene as usual to the temporary back buffer.
Restore the original render target.

Create a color array from the temporary back buffer.
Modify the color array (as before).

Create a texture from the modified color array.

S B A T o

Draw the modified texture to the screen.

In this case, we apply each of these as steps in the Draw function. The
first step is to store a reference to the current back buffer. We call such a
location a render target; normally, this is the back buffer. We can access
the list of render targets as follows:

RenderTargetBinding[] tempBinding = GraphicsDevice.
GetRenderTargets () ;

We now want to create a temporary location to which we can draw
the scene. This acts just like the original back buffer, except it won’t
automatically send the results to the screen. To create a new render target
and set it as the current location to draw the scene, we can add the following
code. In this case, we assume we're drawing to a 1,280 x 720 screen.

int scr_width = 1280;
int scr_height = 720;

RenderTarget2D tempRenderTarget = new RenderTarget2D (
GraphicsDevice, scr_width, scr_height);
GraphicsDevice.SetRenderTarget (tempRenderTarget) ;

Now we simply draw our scene as usual. In this case, I have left the
details out of the code because we can apply this technique to any scene.
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GraphicsDevice.Clear (Color.Black) ;

spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.
NonPremultiplied) ;

//Draw sprite batch as usual.

spriteBatch.End () ;

Once the scene is complete, we need to switch back to our original back
buffer. We stored a reference to the back buffer in tempBinding, so we can
call SetRenderTargets with that binding. Anything we draw after this point
will be drawn to the screen, as we would expect.

GraphicsDevice.SetRenderTargets (tempBinding) ;

The scene we drew in the first step is still stored in tempRenderTarget.
We can access it just as if it were a single texture of size 1,280 x 720. And
as with our previous example, we can store the color data from the texture
into an array of colors.

int scr_width = 1280;

int scr_height = 720;

Color [] array0fColor = new Color[scr_width * scr_height];
tempRenderTarget .GetData<Color>(array0fColor) ;

We now have an array of colors as before. This time, however, instead
of containing only a single sprite, the array contains the entire scene. As
before, we can modify the individual colors of the array. In this case, let’s
apply a very simple blur effect.

The blur effect is achieved by replacing the current color with a blended
average of the colors from either side of the current pixel color.

for (int j = 0; j < scr_height; j++)
for (int i = 0; i < scr_width; i++)

{
int blurAmount = 5;
int currElement = i + (scr_width * j);
int prevElement = currElement - blurAmount;
int nextElement = currElement + blurAmount;
if ( ((currElement - blurAmount) > 0 )

&% ((currElement + blurAmount) < (scr_width *
scr_height)))

array0fColor [currElement].R =
(byte) ((array0fColor [currElement].R
+ array0fColor [prevElement].R
+ array0fColor [nextElement].R) / 3.0f);
array0fColor [currElement].G =
(byte) ((array0fColor [currElement].G
+ array0fColor [prevElement].G
+ array0fColor [nextElement].G) / 3.0f);
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20 array0fColor [currElement].B =
(byte) ((array0fColor [currElement].B
+ array0fColor [prevElement].B
+ array0fColor [nextElement].B) / 3.0f);

Now that we have blurred the color array, the next step is to create a
new texture and push the color array into the new texture, creating a 1,280
x 720 texture that contains a blurred version of our image.

1 //Place color array into a texture
Texture2D newTexture = new Texture2D(GraphicsDevice,
scr_width, scr_height) ;
newTexture.SetData<Color>(array0fColor);

As a last step, we now draw that new texture to the screen as one large
sprite.

1 spriteBatch.Begin () ;
spriteBatch.Draw(newTexture, Vector2.Zero, Color.White);
spriteBatch.End () ;

However, blurring the entire scene isn’t very appealing. Let’s instead
generate a different blur amount for each pixel, determined by the distance
from the pixel to the center of the screen.

1 Vector2 center = new Vector2(scr_width / 2.0f, scr_height /
2.0f);
double maxDistSQR = Math.Sqrt(Math.Pow(center.X, 2)
+ Math.Pow(center.Y, 2));

5 for (int j = 0; j < scr_height; j++)
for (int i = 0; i < scr_width; i++)
{
double distSQR = Math.Sqrt(Math.Pow(i - center.X, 2)
+ Math.Pow(j - center.Y, 2));
10
int blurAmount = (int)Math.Floor (10 * distSQR /
maxDistSQR) ;

int currElement = i + (scr_width * j);
int prevElement = currElement - blurAmount;
15 int nextElement = currElement + blurAmount;
if ( ((currElement - blurAmount) > 0 )
&& ((currElement + blurAmount) < (scr_width x*
scr_height)))
{
array0fColor [currElement].R =
20 (byte) ((array0fColor [currElement].R
+ array0fColor [prevElement].R
+ array0fColor [nextElement].R) / 3.0f);
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array0fColor [currElement] .G =
(byte) ((array0fColor [currElement].G
+ array0fColor [prevElement].G
+ array0fColor [nextElement].G) / 3.0f);
array0fColor [currElement].B =
(byte) ((array0fColor [currElement].B
+ array0fColor [prevElement].B
+ array0fColor [nextElement].B) / 3.0f);

The result of this modification can be seen in Figure 9.5.

This technique allows us to create some very impressive effects, but the
load on the CPU is much higher than before, with upwards of a billion
operations per second when applied to the 921,600 pixels that make up a
1,280 x 720 screen. With a billion operations per second, a 1-GHz CPU
would be needed just to render the graphics. At this point, the average
processor starts to get maxed out, and we haven’t yet added any game
play, physics simulation, or artificial intelligence.

By now, you probably see where we're going with this. With modern
graphics processors, we can take the load of graphics processing off the CPU
and hand it to the GPU. The GPU is a highly specialized processor designed
to process graphics, specifically textures. And that just so happens to be
exactly what we were trying to do with the CPU. The good news is that
the GPU is mostly idle in 2D games, just waiting for us to make use of its
processing power.

Figure 9.5. Snowmen blurred from the center.
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9.3 What Is a Shader?

A shader is small program that runs on the graphics card. In 3D graphics,
one of the primary tasks of a shader is to light (shade) the geometry of 3D
objects. If this small shader program is applied to individual vertices in a
3D mesh, it is called a vertex shader.

Additionally, a shader can be written and applied to individual pixels.
These shaders may be referred to as pixel shaders (sometimes called frag-
ment shaders because they can be applied to a fragment of the screen). I
prefer the term pizel shader because it emphasizes that the code is applied
to individual pixels.

In the example in Section 9.2, we looped through every pixel in the
color array, applying a small snippet of code to each pixel. This is the
exact technique pixel shaders use as well; however, now the loop is already
created for us and handled by the graphics card. In fact, because each pixel
is modified independently, the shaders are well suited to parallel process-
ing, and many GPUs will automatically divide the work among multiple
processes.

9.4 Shader Languages

Because the shader is compiled for graphics hardware that is highly spe-
cialized, it needs to be written in a different and limited programming
language. The two common programming languages for writing shader
code are (1) GLSL (Graphics Library Shader Language), an open source
language used when working with OpenGL; and (2) HLSL (High Level
Shading Language), maintained by Microsoft and used when working with
DirectX and XNA.

These two languages are very similar and resemble C code. The exam-
ples in this book are written in HLSL. In addition, because the graphics
card in the Xbox 360 is compliant up to HLSL version 2.0, that is the
standard we will use.

9.4.1 Shader Structure

The structure of a pixel shader is simple. By default, the shader has access
to only a single texture (the array of colors representing the screen) and
the current position of the pixel the shader will modify. The return value
of a pixel shader is simply an RGBA color value.

An important thing to know when working with shaders is that the
coordinate value for the current pixel is stored as a float value between
0 and 1. For example, the center pixel (640,360) of a screen that is 1280
pixels wide and 720 pixels high will be referenced as (0.5,0.5) in the shader.
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This makes it easy to work within a shader because the screen resolution
is irrelevant, but you need to remember to apply the appropriate screen
ratio. For example, an attempt to render a circle on a square region of the
shader will result in the circle being stretched out due to the aspect ratio
when the image is applied to the screen.

In addition, shaders really must remain as small snippets of code. With
HLSL Pixel Shader version 2.0, we are limited to 64 operations per pixel
per pass.

In XNA, we can store the code as a text file (given the .fx extension) in
the content folder. The XNA content pipeline will automatically compile
the .fx shader code.

With all that in mind, let’s look at the exact same radial blur function
written in HLSL.

uniform extern texture ScreenTexture;

sampler ScreenS = sampler_state
{

Texture = <ScreenTexture>;
}s

float4 PixelShaderFunction(float2 curCoord: TEXCOORDO)
COLOR
{
float2 center = {0.5f, 0.5f};
float maxDistSQR = 0.7071f; //precalulated sqrt(0.5f)

float2 diff = abs(curCoord - center);
float distSQR = length(diff);

float blurAmount = (distSQR / maxDistSQR) / 100.0f;

float2 prevCoord = curCoord;
prevCoord [0] -= blurAmount;
float2 nextCoord = curCoord;

nextCoord [0] += blurAmount;

float4 color = ((tex2D(ScreenS, curCoord)
+ tex2D(ScreenS, prevCoord)
+ tex2D(ScreenS, nextCoord))/3.0f);

return color;
}
technique
{
pass PO
{
PixelShader = compile ps_2_0 PixelShaderFunction();
}
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In order to apply this effect, we first need to save the above code as
blur.fx and add it to the content directory. Then we need to ensure the
effect is added to the project and loaded as content.

1 Effect blurEffect;

70 o<
5 protected override void LoadContent ()
{
1 oo
blurEffect = Content.Load<Effect>("blur");
1 oo
10 X

Then in our Draw function, as before, we need to render to a temporary
render target.

1 int scr_width = 1280;
int scr_height = 720;

RenderTargetBinding [] tempBinding = GraphicsDevice.
GetRenderTargets () ;

o

RenderTarget2D tempRenderTarget = new RenderTarget2D(
GraphicsDevice, scr_width, scr_height);
GraphicsDevice.SetRenderTarget (tempRenderTarget) ;

GraphicsDevice.Clear(Color.Black) ;
10 spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.
NonPremultiplied) ;
//Draw sprite batch as usual.
spriteBatch.End () ;

GraphicsDevice.SetRenderTargets (tempBinding) ;

But this time, instead of generating a color array and modifying the
individual elements, we allow the shader to do the work for us.

1 spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.
AlphaBlend) ;

//Apply shader code
blurEffect.CurrentTechnique.Passes [0].Apply ();

//Draw previous render target to screen with shader applied
spriteBatch.Draw(tempRenderTarget, Vector2.Zero, Color.White)

spriteBatch.End () ;

On my development PC, the CPU version of this code caused my system
to slow down to 4 fps, but by pushing the blur code onto the GPU, my
game speed jumped by up to 60 fps.
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9.4.2 Updating Shader Variables

Now that we have a great way to write code that will run on the GPU, we
need one more option in order to write great effects. That is, we need to
be able to pass values to the GPU.

Since the shader is running once for every pixel on the screen, it is
convenient to update values within our shader code once a frame. That
is, we update the shader in our Update function so that the next time we
apply the shader to the scene in our Draw function, the updated variable
has been set.

Let’s start with a very simplistic example. This time, let’s darken all
the pixels by a specific value. In this case, the shader code will be the
following:

//Listing for darken.fx

uniform extern texture ScreenTexture;

sampler ScreenS = sampler_state
{

Texture = <ScreenTexture>;
};

float fBrightness;

float4 PixelShaderFunction(float2 curCoord: TEXCOORDO) : COLOR
{

float4 color = tex2D(ScreenS, curCoord);

color [0] *= fBrightmness;
color [1] #= fBrightness;
color [2] *= fBrightmness;

return color;
}
technique
{
pass PO
{
PixelShader = compile ps_2_0 PixelShaderFunction();
}
}

Note that the parameter brightness is used but never set. This will happen
within our main game code.

To do this, we create an effect parameter that is initialized along with
the effect itself.

public EffectParameter brightnessParam;
public Effect darken;
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At the same point when we load the Effect file (in the content loader),
we also need to make the link between the variable inside the shader code
and the variable as it exists within our main game.

//In Load Content:
darken = content.Load<Effect>("darken");
brightnessParam = darken.Parameters["fBrightness"];

Notice in this code that the quoted text fBrightness matches the variable
name in the shader code exactly.

Now that the link has been made between brightnessParam (in the C#
game code) and fBrightness (in the HLSL shader), we need only to set the
value.

//In Update:
brightnessParam.SetValue (0.1f);

Finally, as before, if we apply the darkening shader when drawing, the
result will be a darkened scene.

Now let’s take it one step further by modifying the brightness parameter
in each frame, as done in the following code:

double fPulse = Math.Abs(Math.Sin(gameTime.TotalGameTime.
TotalMilliseconds / 500.0f));
brightnessParam.SetValue ((float) fPulse) ;

With that, you have all the tools you need to create advanced graphical
effects on the GPU. In the next section, I list a few ideas to get you started,
but they really are just the beginning. My advice is to start simple and
work your way up. It can take time to become comfortable with how
and why you can use shaders to generate effects. But once you have a
solid understanding, you’ll realize just how powerful and beneficial GPU
programming can be.

9.5 Pixel Shader Examples

Thus far, we have seen examples of modifying pixels to invert colors and to
blur the scene. But what else can you do with a pixel shader? The answer
is only limited by your imagination.

To get you thinking about the possibilities, a good place to start is with
the filters that are available in raster graphics editors, such as Blender
or Adobe Photoshop. This might include image distortion, for example,
creating a moving ripple effect or a fisheye lens effect that follows the
player. It might also include the ability to modify light, such as darkening
an image and then reapplying light where lanterns are located.
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In general, the web is a great source to find sample pixel shader code.
However, I encourage you to explore the language of pixel shaders on your
own before relying too heavily on web examples. Start with something very

simple and work your way up.

9.5.1 Greyscale

A simple greyscale (Figure 9.6) can be achieved by re-
placing every component of RGB color with an average
of the individual components. For example,

red value 4 green value + blue value
3 .

red value =

9.5.2 Lights and Fog of War

As another very simple example, we can create a light
effect by simply darkening all the pixels outside a given
radius around the player, with the result that the player
can see only the immediate surroundings (Figure 9.7).
This technique could also be used to illuminate only
areas of the game that the player has already explored
(Figure 9.8).

Games such as Sid Meier’s Civilization [Meier and
Shelley 91] use a similar effect to mimic the concept of
a fog of war, the idea that any area where the player
does not actively have units does not get updated on
the map. This can be done by using a shader to slowly
fade out the surrounding area.

Creating a series of lights potentially has two op-
tions. The first option is to pass an array of light loca-
tion to the pixel shader, and then to use the distance
to all individual light locations within the array to cal-
culate the color at a given pixel. This approach might
work for a few lights, but it becomes inefficient fairly
quickly as we increase the number of lights.

Figure 9.6. Shader renders scene in
greyscale, by Thomas Francis.

Figure 9.7. Light radius shader, by
Christopher Brough.

Figure 9.8. Light radius shader (mo-
ments later), by Christopher Brough.

A Dbetter solution is to use a separate buffer and draw solid circular
sprites in white, centered on the light locations. This second buffer can
then be saved as a texture and used to create a kind of stencil. The colors
of the two images are then combined, and the result is that wherever white
has been added to the stencil, the scene is visible. Everywhere else is dark.

(See Figure 9.9.)
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Figure 9.9. Advanced light shader with multiple lights sources, before (left) and after (right), by

Thomas Francis.

L N
LI L L]

Figure 9.10. Shader used to apply pixilation to
menu text, by Thomas Francis.

Figure 9.11.
zoom by Gunther Fox in his unpublished game,
Super Stash Bros.

Shader used to create dynamic

9.5.3 Pixelation

By taking the average of the colors in an area
of pixels and then replacing all the colors in
that region with that average, we can create
a simple pixelation effect.

Although pixelating a scene creates an in-
teresting effect (see, for example, Figure 9.10),
it is not necessarily very useful by itself. If the
amount of the pixelation is modified dynami-
cally (for example, by starting small and then
increasing the pixelation effect), however, it
be used as a transition between scenes.

In fact, many of these effects can be used
dynamically. We look at more options for
transitioning between scenes in Chapter 10.

9.5.4 Camera Zoom

Another simple shader effect is to scale up,
such as doubling the area required to draw
each pixel. If this process is used dynamically,
it can be used as a camera zoom. This effect is
employed in Gunther Fox’s Super Stash Bros
as seen in Figure 9.11.
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Figure 9.12. Before applying fisheye shader, by Melissa Figure 9.13. After applying fisheye
Gill. shader, by Melissa Gill.

9.5.5 Fisheye

If, instead of setting the magnification as a constant value for every pixel
(as in Figure 9.12), it is scaled up based on the distance from a center
point, a fisheye lens effect is created (see Figure 9.13).

9.5.6 Ripple

Microsoft provides a great ripple example as part of the XNA Game Studio.
This can be the basis for a great shock-wave or knock-back effect, perhaps
as the result of an exploding shell from a tank.

0.5.7 Combined Effects

Combining effects may seem daunting,
but it does not have to be. Depending
on the effect, you may want to either
swap render targets for each effect you
want to implement or make use of mul-
tiple passes of the shader. Figure 9.14
shows the result of combining blurring
and dimming.

9.5.8 Shader Editor

One of the frustrating things about
working with shaders is that if some-
thing goes wrong, the screen will just
go blank (or a default purple color
will indicate an error). For obvious

Figure 9.14. Multiple shaders combine blur and de-
creasing light radius effects in Adam Reed’s unpublished
game, Tunnel Vision.
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reasons, we don’t currently have tools

that allow us to step through a shader debugger with breakpoints. Either
our code will work, or it won’t. For that reason, I once again recommend
starting very simply (see the challenges at the end of this chapter to get
started).

When you are ready to take on more significant shader tasks, see the
companion website, http://www.2dGraphicsProgramming.com, for a link
to a real-time shader editor that will allow you to modify your shader code
and see the effect immediately. This ability can be quite helpful when
experimenting with new ideas.

Exercises: Challenges

Challenge 9.1. In order to become skilled with shaders, start small. Start
by writing a shader that will show only the red channel (set color[1] and
color[2] equal to zero).

Challenge 9.2. Create and implement a pixel shader that will invert all
the colors on the right side of the screen.

Challenge 9.3. Create and implement a pixel shader that will cause the
top-right portion of the screen to be displayed in greyscale.

Challenge 9.4. Create and implement a pixel shader that darkens the pix-
els based on their distance from the center of the screen.

Challenge 9.5. Create and implement a pixel shader that darkens the pix-
els around the mouse location. You have to pass the mouse location to the
shader and update the mouse location in every frame.

Challenge 9.6. Create and implement a pixel shader that distorts the back-
ground but does not affect the rest of your game. You can achieve this by
applying the shader and then drawing the rest of the sprites as usual.

Challenge 9.7. Combine two shader effects so that they are drawn simul-
taneously.
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A little extra effort can go a long way in making a game feel professional.
This chapter covers those little techniques that make good games look
great.

Polish can be achieved with various combinations of animations, parti-
cles, and pixel shaders (see, for example, Figure 10.1). All that is required
is the extra time to apply these techniques in creative and interesting ways.
A great dynamic example of this is Denki’s Save the Day (Figure 10.2),
throughout which particles and animations are used to create exciting and
active scenes.

Figure 10.1. In Nuage, Alex Tardif uses particles, shaders, and transitions effec-
tively to create a relaxing game-like experience.
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Figure 10.2. Concept art from Denki’s Save the Day.

10.1 Transitions

Creating a simple transition between game states (for example, from the
menu to the game) can make a surprisingly big difference in the quality
of the game. Good transitions can make the game feel like a complete
experience, even when the player is doing something as simple as pressing
Pause.

In traditional film, transitions from scene to scene (as opposed to a
straight cut) are important tools that have been used for decades. A com-
monly cited example is the wipe transition used by George Lucas in the
Star Wars films [Lucas 77].

Transitions can be as simple as modifying the alpha value over time to
fade to a background, or something significantly more complicated involv-
ing particle effects or a GPU shader. Various examples of simple transitions
can be found in video editing software. Microsoft’s Windows Live Movie
Maker [Microsoft 00] is free software that includes a variety of transitions
for digital video editing, including categories such as cross-fades, diago-
nals, dissolves, patterns and shapes, reveals, shatters, sweeps and curls,
and wipes. All of these could be used as inspiration for the transitions in
your game.

Recent games present many examples of great transitions. Both
8bit Games’ Elefunk [8bit Games 08] and Proper Games’ Flock! [Proper
Games 09] use a transition reminiscent of the iconic shrinking circle em-
ployed at the end of Warner Bros.” Looney Tunes; however, instead of em-
ploying a circle, the transitions are accomplished with cutouts of elephants
and sheep, respectively. Another example is the monkey head stencil as
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Figure 10.3. Choco Says [Trzcinski 11] monkey stencil transition effect.

demonstrated in the game Choco Says [Trzcinski 11] seen in Figure 10.3.
In Zombiez 8 My Cookiez by Triple B Games [Triple B Games 10], the
hands of cartoon zombies sweep across the screen.

10.1.1 Seamless Transitions

Note that although transitions are very important in creating a polished
game, the average player should be completely unaware that anything un-
usual is occurring. The goal is to create a smooth shift from one game state
to another. If the transition takes too long, players will become frustrated.
With that in mind, the transition should occur very quickly, taking less
than a second to complete.

10.1.2 Simple Linear Interpolation

In aliEnd, I implemented a simple transition between scenes that fades to
and from a star field. The game employs an enumerated set of game states
as well as an enumerated set of transition states. Fade-ins and fade-outs
each take half a second.

public enum eGameStates

{
STATE_NULL = O,
STATE_SETUP ,
STATE_FRONT_END ,
STATE_WARP_TO,
STATE_MAIN_GAME,
STATE_LEVEL_END,
STATE_PAUSE ,
STATE_EXIT,
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public enum eTransitionStates

{
15 FADE_IN = O,
FULL,
FADE_OUT,
}
20 private eGameStates m_eStateNext;

private eTransitionStates m_eTransState;

private double m_fTimeNext;
private double m_fTimeMax = 0.5f;

public byte fadeAlpha;

When the state is fading in or out, I drew the star field on top of
the current scene by using the fadeAlpha value. Then in a State Update
function, I modified the alpha value used to draw the star field.

1 public void Update(GameTime gameTime)
{

m_fTimeNext -= gameTime.ElapsedGameTime.TotalSeconds;

5 if (m_fTimeNext <= 0)

{
if (m_eTransState == eTransitionStates.FADE_IN)
{
m_eTransState = eTransitionStates.FULL;
10 }
else if (m_eTransState == eTransitionStates.FADE_0UT)
{
m_eTransState = eTransitionStates.FADE_IN;
eCurrentState = m_eStateNext;
15 m_fTimeNext = m_fTimeMax;
}
else
{
//Do nothing, timer not used until in transition
occuring
20 }
}
if (m_eTransState == eTransitionStates.FADE_IN)
{
25 if (eCurrentState != eGameStates.STATE_LEVEL_END)
{
fadeAlpha = (byte) ((m_fTimeNext / m_fTimeMax) * 255); //
0->255
}
¥

30 else if (m_eTransState == eTransitionStates.FADE_O0UT)
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{
if (m_eStateNext != eGameStates.STATE_LEVEL_END)
{
fadeAlpha = (byte) (((-m_fTimeNext / m_fTimeMax) * 255) +
255); //255->0
35 }
}
else
{
fadeAlpha = 0;
40 }

}

However, when it came time to implement the system, I identified that
there were times when I wanted a transition to occur between game state
changes but there were other times when I needed the state to change
immediately. With that in mind, I created two functions for triggering
state changes:

1 public void Set(eGameStates next)
{
if (next == eGameStates.STATE_NULL)
return;
if (m_eStateNext != next)
{
m_eStateNext = next;
m_eTransState = eTransitionStates.FADE_OUT;
10 m_fTimeNext = m_fTimeMax;
}
}

public void SetImmediate (eGameStates nextState,
eTransitionStates nextTransition)

15 {

if (nextState == eGameStates.STATE_NULL)

return;

m_eStateNext = eGameStates.STATE_NULL;
20 eCurrentState = nextState;

m_eTransState = nextTransition;

m_fTimeNext = 0.0f;

}

This small block of code provided a very convenient system. For ex-
ample, when the level was over, I could set the next state with one line of
code (as shown below), and the fade-in and fade-out transitions would be
implemented during the state change.

1 g_StateManager.Set (eGameStates.STATE_LEVEL_END) ;
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LOADING

10.1.3 Never a Static Screen

Like transitions, the use of progress bars or other graphics to indicate that
work is occurring in the background can be a subtle but important part
of user feedback. Just as for transitions, this can range from the simple to
the complex.

In a game, it may take a few moments to load a file or wait for some
process to complete. While this is going on, we never want the user to think
that the game is hung up. In professional game development, publishers
will set specific requirements related to this issue. For example, a console
publisher may require that the game never have a static screen for more
than three seconds.

Obviously, the first goal should be to limit the amount of time any
code prevents the game from continuing. In many cases, asynchronous
programming techniques will allow the game to continue while the would-
be blocking operation is processed on a background thread. However, there
are times when delay may be unavoidable, such as when querying data from
a remote leader board across a slower Internet connection.

In aliEnd, while developing for the Xbox,
this was never a significant issue. However,
when I ported the game to the Android OS, I
found that it took a few seconds to load the
game assets. Even a few seconds can feel like
an eternity for a player trying to start a game.
Even though the asset loading was occurring
in the background, it was important to update
the user that progress was indeed happening.

For a simple solution (see Figure 10.4),
as each asset loaded, I incremented a counter
called iLoadLoop. I then added a dot to the

GUNPILE

Figure 10.4. The aliEnd loading screen. word “Loading,” so that on every fifth asset

a subsequent dot is drawn to the screen, as in
“Loading . . .”

spriteBatch.DrawString (g_FontManager .myFont, GameText.
FRONTEND_LOADING, new Vector2(50, 50), myColor);

for (int i = 0; i < iLoadLoop; i++)
{
if ((1 % 5) == 0)
spriteBatch.DrawString (g_FontManager.myFont, ".", new

Vector2 (350 + (i * 10), 50), myColor);

The disadvantage of using a series of dots is that the user has no idea
how long the wait will be. A graphical progress bar that stretches a band
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of color based on the percentage complete might have provided a better
solution. In this case, since the delay was only a few seconds, the text
solution was sufficient.

For games in which the total time until completion is unknown (for ex-
ample, when querying a remote network), something as simple as a spinning
wheel will at least indicate that a process is occurring in the background.

10.2 Sinusoidal Movement

As discussed with animation techniques in Chapter 4, when we look at
nature, we see that objects rarely move linearly. Objects will speed up and
slow down instead of moving at a constant rate. In fact, when looking out
across a landscape, we can see many objects that have a cyclic motion.
This is as true for a leaf rolling on ocean waves as it is for the limbs of a
tree as they blow in the wind.

By noticing this type of cyclic motion and then implementing similar
movement into our games, we can create movement that seems more fluid
and less robotic. This is easily done by using the sine formula.

Recall that the sine function returns a value between —1 and 1 based on
the angle, which represents the y-value as you rotate around a unit circle.
Likewise, the cosine function returns the z-value.

The following example demonstrates the difference in linear motion.

Texture2D whiteCircleTexture;

float counter;

float lineary;

float direction = 1;

float speed = 2.0f;

//In LoadContent:

whiteCircleTexture = Content.Load<Texture2D>("whiteCircle");
//In Update:

counter += ((float)gameTime.ElapsedGameTime.TotalSeconds *

direction * speed);

if (counter > (Math.PI * 0.5f))

{
counter = (float)(Math.PI * 0.5f);
direction *= -1;

}

if (counter < -(Math.PI * 0.5f))

{

counter = -(float) (Math.PI * 0.5f);
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direction *x= -1;

25 X
linearY = counter / (float)(Math.PI * 0.5f);
//In Draw:
GraphicsDevice.Clear (Color.Black);
double scaledLin2 = (linearY * 256) + 300;

35 spriteBatch.Begin();
spriteBatch.Draw(whiteCircleTexture,
new Vector2 (790, scaledLin2),
Color.White) ;
spriteBatch.End () ;

As you can see, this creates a very sharp bounce, similar to that used
in early games such as Atari’s Pong [Alcorn 72]. Although this may be
the effect you're looking for, it can feel less natural than if the movement
followed the sine curve.

Add the following code to the project to compare sinusoidal and linear
movement.

1 float sinusoidaly;
//In Update:

sinusoidalY = (float)Math.Sin(counter);

o

//In Draw:

double scaledSinY = (sinusoidalY * 256) + 300;
10

74 oo«
spriteBatch.Draw(whiteCircleTexture,
new Vector2(360, scaledSinY),
Color.White) ;
15 // ...

Notice that the frequency of motion is the same but sine provides a
smoother motion.

Now let’s see what happens when we restrict the y-values to being
positive by adding the following to the end of the update function:

1 linearY = -Math.Abs(linearY);
sinusoidalY = -Math.Abs(sinusoidalY);

Figure 10.5.
Sinusoidal motion.

Notice that the circle on the left (see Figure 10.5) bounces in a natural
motion, whereas the circle on the right appears much more rigid. (You
may need to take a moment and hold your hand over the right side and



10.3. Splines 195

then the left in order to see the difference. The motion of the two together
can play tricks on your eyes.)

In this simple example, we have applied sinusoidal motion to a sprite
moving across the screen, but this could just as easily be applied to any
value that changes over time. For example, if we want to create a pulsating
light, modifying a color with the sine function can create a nice effect.

10.2.1 Look-Up Tables

One possible disadvantage to using sinusoidal motion is the computational
cost of performing a sine calculation. This is not a significant issue on
modern PCs, but it has the potential to be a performance issue when
developing for mobile devices if sine is calculated thousands of times per
frame.

A simple solution is to precalculate all the values of sine (for example,
at every degree or tenth of a degree) and to store the results in a table or
even a simple array. The resultant necessary memory usage would then be
small compared to the potential for improved performance.

10.3 Splines

A spline is a curved line created from a mathematical relationship between
multiple points. Consider the clear linear steps used to locate the pixels
on a line between points. A spline uses the same concept, but instead of
considering only two points, multiple control points are considered. The
result of this nonlinear interpolation is a smoother curve.

Splines offer great opportunities to cre-
ate additional types of nonlinear motion,
mostly beyond the scope of this text. Var-
ious packages can help with the mathemat-
ics behind splines, and XNA comes with
functions to quickly implement a variety
via polynomial interpolations as part of the
MathHelper library, including the Smooth-
Step, Hermite, and CatmullRom methods.

The spline in Figure 10.6 was generated
by calculating a y-value for every z-value be-
tween a series of points by using the follow-
ing function, in which control points have
varying weights, depending on how far along
the z-axis the control point is from the cur-
rent pixel:

Figure 10.6. Spline with control points.
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1 private float quadraticInterp(int xValue)
{
float percentX = (xValue - m_controlPoints [0].X)
/ (m_controlPoints [(m_controlPoints.Count-1)
].X - m_controlPoints [0].X);

float sum = O0;
for (int i = 0; i < m_controlPoints.Count; i++)
{
float tempValue;
10 if (i == 0 || 1 == (m_controlPoints.Count - 1))
tempValue = 1;
else
tempValue

1.5f *(m_controlPoints.Count - 1);

15 sum += (float)(Math.Pow((1.0f - percentX), (
m_controlPoints.Count - (i+1))))
* (float) (Math.Pow((percentX), (i)))
* tempValue
* (float) (m_controlPoints[il].Y);

20
return sum;

The control points are simply a set of (x,y) coordinates that are gen-
erated and added at initialization.

1 public void Imnitialize()
{
m_controlPoints.Add (new myVector2 (100, 300));
m_controlPoints.Add(new myVector2 (300, 600));
5 m_controlPoints.Add(new myVector2 (500, 550));
m_controlPoints.Add(new myVector2 (700, 350));
m_controlPoints.Add(new myVector2 (900, 150));
m_controlPoints.Add(new myVector2(1100, 700));
}

It is then simply a matter of stepping along the z-axis to generate a
y-value for every z-value. The sprite is then drawn at that (z,y) point.

1 batch.Begin () ;
for (int x = 0; x <= 1280; x += xStep)
{
float y = (int)quadraticInterp(x, m_controlPoints);
5 batch.Draw(gameAssetSheet, new Vector2(x, y), Color.White);
¥
batch.End () ;

The result is a much smoother and more polished result than could
otherwise be achieved with such a limited set of data points.
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Note that although this is a fairly crude implementation of what is
possible with the use of splines, it serves to demonstrate the concept. In
this example, all control points contribute to all y-values. Ideally, you
would use only a limited number of control points (the four nearest). In
addition, full implementation would calculate both z- and y-values based
on how far you have proceeded down the spline.

Splines have various uses. As an example, a properly implemented
spline in a tank game could be used as a basis for destructible terrain so
that shells fired from a tank may lower a control point, resulting in large
chunks blown from the soil. A more common use for splines is as paths for
game objects. This results in smooth movement from a series of control
points predefined by the designer.

10.4 Working with Your Artist

In general, the best polish is going to come while working closely with your
artist(s). Your artist will not know what is possible with your code, and
you probably won’t have the same aesthetic and style sensibilities as your
artist. Don’t be afraid to prototype and try new things. Innovation often
comes from experimentation, and not simply repeating what you have seen
in the past.

Whenever possible, provide the ability for your artist to modify in-
game values without requiring recompilation of the code in order to see
the results. As a first step, you might create values that can be imported;
however, the best results will come from providing an interface in which the
artist can modify values at runtime and then be able to save those values
once they are “just right.”

Early in game development, you will want to allow large changes (orders
of magnitude) to game values. For example, how well does the smoke effect
look when it emits 10 particles per second? Then don’t restrict your artist
to increasing the emission value by just single digits; instead, allow the
artist to crank it up to 100 particles per second, and then 1,000. If it then
looks good at 1,000 particles per second but starts to cause frame-rate
issues, try larger particles at lower speeds. The key is understanding the
artist’s goal and then using code to find creative ways to reach that goal.

10.5 Conclusion

The field of game development remains new and exciting, and we are still
only experimenting and learning to tap into the potential of the kind of
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interactive experiences we can have with games. Young game developers
have the opportunity to take games in a variety of new and exciting direc-
tions, especially now that the barriers to entry are lower than ever and the
development platforms have never been more varied.

Someone once said to me that game development is still in a stage of
progression similar to that of silent films. We have yet to reach our true
potential as a creative medium.

The one overriding thought I want to leave with you is that you should
learn as much as you can from traditional art, television, film, comics, and
cartoons. Then work with your artist to apply those lessons, along with an
attention to detail and polish that is worthy of this new media.

Exercises: Challenges

Challenge 10.1. Build a state transition system that allows for various
transition effects.

Challenge 10.2. Add the ability to use a particle effect as a fade. For
example, quickly fill the screen with bubbles. Once the image is completely
covered, swap states and allow the bubbles to quickly and randomly pop,
revealing the new game state.

Challenge 10.3. Create an artist interface to your transition system that
allows your artist to modify and test transitions in real time. This can
include the speed of the transition, the type of the transition, and the color
used in fading or blending.

Challenge 10.4. Overload the sine function with your own look-up table.
Analyze the performance against the original sine function.

Challenge 10.5. Research and implement sprite movement along splines
by using the built-in packages for Hermite and Catmull-Rom. Compare
the results.
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Math Review: /Geometry
e R

A.1 Cartesian Mathematics

In the Cartesian coordinate system, values of = are measured along a hori-
zontal line and values of y are measured along a vertical line. The resultant
grid space allows us to chart the location of objects.

On the computer, screen coordinates are measured from either the top-
left or bottom-left corner, depending on the graphics API. In XNA and
DirectX, the position (0,0) is located in the top-left corner of the screen,
with y increasing in value as we move downward. In OpenGL, the position
(0,0) is located in the bottom-left corner of the screen, with y increasing
in value as we move upward.

A.2 Line

The equation of a line, where m is the slope and b is the offset from the
r-axis, is
y=mx+b.

A.3 Circle

A circle can be described in terms of the following relationship between z
and y, where r is the radius and the circle is centered on the origin (0,0):

2?42 =12,

A unit circle is the circle of radius 1 centered at the origin (0,0). Thus, its
equation is
2, .2 _
- +y =1
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A.4 Pythagorean Theorem

From the unit circle, we can derive the Pythagorean theorem, where z = £

and y = %:
2 =a% 4+ b2

A.5 Distance

As a result, we can calculate the distance between two points as
¢ =/ (Az)? + (Ay)?,

or more specifically, between points A and B as

c= \/(Bz —Ag)? +(By — Ay)*.

A.6 Distance Squared

Often, we need to compare two distances—for example, to find whether
the distance from A to B is less than the distance from C to D.

As a first pass at answering this question, we might write code to per-
form the following comparison:

s /(B — 40) + (B, — A,)? < /(D — Co)? + (D, — C,)*?

It should be clear that simplification of this calculation would allow us to
perform the same comparison without the need to calculate the square root
(resulting in improved performance). So, our code should instead perform
the following (squared) comparison:

Is (Bx - Am)Q + (By - Ay)Q < (D:c - Cx)2 + (Dy - Oy)Q?



Math’Review;:/ Vectors
& &
Courtesy of Dr. Scott Stevens

This appendix presents a review of vectors and the geometry of 2D space.
We consider a vector as a directed line segment that has a length and a
direction. This vector can be situated anywhere in space. As such, a single
vector actually describes infinitely many possible directed line segments
starting at any location in our geometry. Because of this ambiguity, we
generally consider a vector to start at the origin.

Understanding that we can divide the vector into component form al-
lows us to easily perform the mathematical operations of addition and
subtraction on those vectors. This component-based use of vectors is the
basis for position and motion in our graphics systems.

B.1 Vectors and Notation

B.1.1 Directed Line Segment

A directed line segment from an initial point P to a terminal point @ is
denoted .@ It has a length (or magnitude) denoted by H.@H Directed
line segments with the same length and direction are called equivalent. For
any directed line segment, there are infinitely many equivalent directed line
segments.

A vector is a standardized representation of all equivalent line segments.
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B.1.2 Component Form of a Vector

If ¥/ is a vector with initial point at the origin (0,0) and terminal point
(x,y), then the component form of Tis W = (x,y). Note the angled

If ¥ is a vector defined by the directed line segment with initial point
P = (P, P») and terminal point Q = (Q1, Q2), then the component form of
this vector is defined by ¥ = (Q1 — P1,Q2 — Py). This has the geometric
effect of taking the original directed line segment and translating it to an
equivalent one with its initial point at the origin.

Example: Given P = (—1,3) and Q = (3, —5), find ¥ = ]@

Answer: The vector is 1@ =(3—(-1),-5-3)={4,-8) =7.

e Vectors are denoted in two different ways. In typeset material, a
vector is generally denoted by a lowercase, boldface letter such as u
v, or w. When written by hand, the arrow notation is used, such as

e Components of a vector are generally given in terms of the vector
variable, such as u = (uy, uz) and v = (v1, vs).

Two vectors are considered equivalent if they have the same length and
direction. This results in the two vectors having identical components when
written in component form. Thus, if u = (u1,u2) and v = (v, vs), then

u=v <= wu; = v and us = vs.

(3,6) Example: Verify that the three vectors in the
figure here are equivalent.

Answer: The vectors in component form are

u=(3-1,6-3)=(23),
=(2-0,3-0) = (2,3),
w=(7T-54-1)=(23).

Since the components are identical, these vec-

204
brackets.
B.1.3 Vector Notation
WU, or W.
B.2 Vector Comparison
B.2.1 Equivalent Vectors
Jy
(7,4)
(1,3)
23) w
v
5,1)
(0,0)

x tors are equivalent.
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B.2.2  Scalar Multiplication of Vectors
If k is a scalar (real number) and u = (uy,us) is a vector, then
ku = (kuq, kug) .

The geometric interpretation of scalar multiplication of vectors is that if
the length of the vector is multiplied by |k| and k is negative, then the
direction of the vector switches. Thus, if K = —1, ku looks just like u, only
pointing in the opposite direction.

B.2.3 Parallel Vectors

Two vectors are parallel if they are scalar multiples of each other, v = ku.
If u = (ui,up) and v = (vq,v2) then,

u is parallel tov <= vy = k u; and vy = k us.
Example: Verify that the two vectors in the 6,7)
figure here are parallel. (3,6)
Answer: The vectors in component form are

u=(3-1,6-3)=(23),

v=(6—-2,7—1)=(4,6). 13) y
Notice that
V1 4 V2 6
Ul 2 a (%) 3 ’
so v = 2u, and the vectors are parallel. &
(Or O) X

B.2.4 Application: Collinear Points

To determine if three points P, @), and R are collinear (lie in a line), check

to see whether the vectors PQ) and PR are parallel. If they are, then the
three points are collinear.

Example: Verify that the points P = (1,3),

Q = (3,6), and R = (9,15) are collinear.
Answer:
PO=(3-1,6—3)=(2,3)
PR=(9—-1,15—3) = (8,12)

Since ﬁ =1 ]@, these vectors are parallel
and the points are collinear.

3 collinear
points

3 non-collinear
points
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B.3 Length, Addition, and Subtraction

B.3.1 Length of a Vector

A vector in component form v = (vy,vy) has length (or magnitude or norm)

given by

V][ = y/vf + 3

A vector of zero length is called the zero vector, 0 = (0, 0).

Example: Find the length of the vector from P = (—1,3) to @ = (4, 15) .

Answer: PO = (5,12), and ||PO|| = v/5? + 122 = v/169 = 13.

u and v

(0,0)

—_
- -
-

u+v

(0,0)

(0,0)

B.3.2 Vector Addition

Vector addition is performed component by component:
u+v= <U1 +1)1,’U,2+’L}2>.

The geometric interpretation of vector addition (known
as tip-to-tail) is to align the end (tip) of u with the beginning
(tail) of v and then connect the tail of u with the tip of v to
create u + v. See the figure on the left.

Note that if u and v represent forces, then u+v is called
the resultant force.

B.3.3 Vector Subtraction

Vector subtraction is also performed component by compo-
nent:

u—v=(u; —v1,us — Va).

The geometric interpretation of vector subtraction (know
as tip-to-tip) is to align the tip of u with the tip of v and
then connect the tail of u to the tail of v to create u — v.
See the figure on the left. It might be easier just to picture
u—vasu+ (—v).
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B.4 Unit Vectors and Normalizing a Vector

A unit vector is a vector with length 1. The unit vector u in the direction
of v is given by
1 v
u=—v=—:.
Il (vl

This is called normalizing the vector v.

Example: Find the unit vector (u) in the direction of v = (—3,2). That is,
normalize v.

Answer: ||v|| = 1/(=3)% + 22 = v/13. So, u = \/%fgv = <%, \/%>

Example: Given points P = (2,3) and @ = (7,12), find point S such that
S is 4 units from P in the direction of Q.

Answer: The strategy is to normalize 1@ and multiply it by 4 to get ﬁ ,

and then add ﬁ to point P to get S. (Mathematically speaking, you can’t
add a vector to a point without defining a new operation, but we allow it
here for practical purposes.) So,

PO =(7-2,12—3) = (5,9),
IPG|| = /52 + 92 = v/106. y .

Thus,
1 1
u= PG = —— (5,9),
H‘@” 106 Length = 4
4 P
PS = —— (5,9,
vios 9
O x
which leads to
1
S=P+PS=(23)+——(509) ~ (3.94,6.50).
2.8) + = (5.9) = (394,650

B.5 Vector Properties

Let u, v, and w be vectors, and let ¢ and d be scalars. Then we can define
the properties of vectors as follows:
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1. Commutative property: u+v =v +u.
2. Associative property: u+ (v+w) = (u+v)+w.
3. Distributive properties:

e (c+d)u=cu+du,

o c(lut+v)=cu+cv.

4. Additive identity: 0 = (0, 0) is called the zero vector and u+0 = u.
5. Multiplicative identity: 1 u = u.

6. Additive inverse: u+ (—u) = 0.

7. Zero property: 0 u = 0.

8. ¢(du) = cd u.

9. [[kual| = [K[ [[u]].

10. Triangle inequality: |[u+ v|| < [|ul| + ||v]].

B.6 Standard Unit Vectors and Polar
Representation

B.6.1 Standard Unit Vectors

The standard unit vectors (basis vectors) in 2D space
arei=(1,0) and j = (0,1).
Any vector u = (uj,us) can be expressed as a

y
@3 linear combination of i and j by
u=1up i —+ U2 j
Y/ ou=2i+3
’ Here, uy is called the horizontal component of u and
©.1) ug is called the vertical component of u.
! Example: Express the vector u = (2,3) as a linear
o r——g > combination of the standard unit vectors i and j.

Answer: u = (2,3) =2i+3j. Yes, it’s that simple.
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B.6.2 Polar Representation of Vectors

If u is a vector with length ||u|| that makes a (coun-
terclockwise) angle 6 from the positive z-axis, then

u = ||u||cos@ i+ ||ul|sind j = ||u]| (cosf,sinb).

Example: Suppose the vector u has length 2 and
makes an angle of 60° with the positive z-axis. Ex-
press u as a linear combination of i and j, and then
give the component form of u.

Answer: Since the vector must have length 2, we know
that ||u|| = 2. Also, 60° = 7/3 radians.
Expressed as a linear combination of i and j,

u = ||ul| cos@i+ ||u]| sinfj
=2 cos(m/3)i+ 2 sin (7/3)j
1. V3

—9lipo V.
21-1— 5 J

=i+V3j

Expressed in component form, u = <1, \/§>

[Jeel] sin(6)
0

(0,0)

[lz¢l] cos(8)






Math Review: Trigonometry
Courtesy of Dr. Scott Stevens

In this appendix,we start briefly with some triangle trigonometry and then
move onto unit-circle trigonometry and trigonometry as periodic functions
of a continuous variable. We end with how to create circles and ellipses
and a brief description of the tangent function.

C.1 Triangle Trigonometry

Consider the right triangle shown here. We focus here on three trigonomet-
ric functions: cosine (cos), sine (sin), and tangent (tan). These functions
are defined in terms of an angle, 0 (theta) as follows:

in(6) a  adjacent edge 0<8<90°

sin(f) = - = —————
c hypotenuse ’
0 b  opposite edge
cos(f) =-=———>
c hypotenuse ’
tan(6) a  adjacent edge
an(f) = - = —————.

b  opposite edge )

There are quite a few things you can determine from these
relations:

e If you know two of the side lengths, you can utilize Pythagorean’s
theorem (a? + b = ¢?) to get the third side length and hence all
of the trigonometric functions of all of the angles. Through inverse
trigonometric functions, you can get both of the unknown angles as
well.
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e If you know # and one side length, you can, through various identities
and inverse trigonometric functions, determine the other two side
lengths and all of the trigonometric functions of that angle and the
other angle.

e Once you include the law of sines and/or the law of cosines, you can
start to play with non-right triangles as well.

C.2 Unit-Circle Trigonometry

©.1 (y) = Consider the circle centered at (0,0) in the Cartesian
(cos(®), sin(®)) plane with radius equal to one. Now we define our
trigonometric functions in terms of the angle traced

out by the ray moving counterclockwise around the

o . circle.
- P For every point (z,y) on the unit circle,
cos(f) = z,
sin(9) =y,
Y
©-1 tan(f) = =.
0)="

Here are a few things to notice:

e These match the triangle trigonometric functions when 0 < 6 < 90°
(because ¢ = 1).

e We can use any angle we want, even negative angles.

It is immediately obvious what cos(f) and sin(#) are for 6 = 0, 90,
180, 270, 360, ....

It is obvious that the sine and cosine functions repeat themselves
after every full rotation. In other words, these functions are periodic.

C.2.1 Radians

Instead of measuring 6 in degrees, we now measure it with respect to the arc
length traced out by the unit circle to the point (z,y). This type of angle
measurement is called radians. One full revolution is 360° = 27 radians.
A half a revolution is 180° = =7 radians. A quarter revolution is 90° =
/2 radians. Almost all calculators and software calculate trigonometric
functions assuming the argument is in radians.
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C.2.2 Converting between Degrees and Radians
If r is radians and d is degrees, then

d:@r and T:Ld.
T 180

C.3 Trigonometry as a Collection of 0D
Periodic Functions

(o y) =
(cos(t), sin(t))

Here we look at sine and cosine as periodic functions

of a continuous variable. (We will save tangent for =
later.) Consider the unit circle as the angle (now
denoted by t in radians) goes around the circle in

a counterclockwise direction as shown. If we track

x = cos(t) and y = sin(t) to plot these functions, we

get the following periodic graphs:

sin(z)

sin(t) has period 2. e 1- ~
For k = any integer, / \ / \

sin(t + k 27) = sin(t), / \ / \

sin(km) =0, om 7;&’ [ 3\1;[ ‘f“

. <<4k + 1> > \ / \ /

sin T =1, \ / \ /
2 \ / \ /

. 4k — 1 \ oy \

sin (( 5 )7‘(’) =-1. i \//

cos(t)

cos(t) has period 2. \ } \ /

For any integer k, \ | \ |

cos(t + k 2m) = cos(t),
cos(2km) =1, \ ! \ /
cos((2k + 1)) = —1, \ / \ /

2k +1 \ \
cos<< 5 >7r>:0. \// g \/
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C.4 The Tangent Function
The tangent function is defined in terms of the sine and cosine functions by
tan(z)
¥
34
2 Dashed: cos(x)
///’lﬂﬁ\ Dotted: sin(z)
-3/ T2 B2 Solid: tan(z)

tan(z) = sin(x)
cos(x)
dotted
an =
dashed

Two properties of the tangent function can be seen in its graph. Unlike
sine and cosine, tangent has a period of 7 rather than 27. Also, the tangent

function is undefined at

2k+1

7 for all integers k (i.e., when cos = 0), and

the graph of tan(x) has vertical asymptotes at these locations.

(9

6 = arctan (y/x)

The arctangent (arctan) function is the inverse of
the tangent function (sometimes denoted tan=1):

—m/2 < arctan < /2.

Most calculators and software contain an atan2(y,x)
function, which resolves all of the issues of using the
arctan function when z < 0:

—m < atan2(y,x) <.
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C.5 Translations and Transforms of
Trigonometric Functions

C.5.1 Horizontal and Vertical Translations

y=cos(x —¢)+ B and y=sin(z—¢)+ B.

Dashed: y = cos(z).
Solid: y = cos(x — w/2) + 1

Horizontal shift by 7/2

Vertical shift by 1.

C.5.2 Amplitude Changes
y=Acos(zx) and y= A sin(z),

where A is the amplitude.
y

Dashed: y = cos(z).

Solid: y = 2 cos(z)

* Vertical stretch by 2.

Amplitude increases.

C.5.3 Period (Frequency) Changes
y = cos(wz) and y = sin(wx),

where the period = %’T
y

Dashed: y = cos(z).
\ //\ /\ /\ / Solid: y = cos(2x)
/
/
/ Period = (27/2) =7
=T // X
/\\/ \/ \/ \/ Period decreases and
. 4 Frequency increases.
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C.6 Circles and Ellipses

Getting the graph of a circle in terms of y = f(x) is tricky, and defining the
graph of an ellipse is even trickier. These curves are much easier to create
when you define them as a set of trigonometric parametric equations. In
a parametric curve, the values of z and y are both determined in terms of
another variable (parameter) usually denoted as t or 6.

An ellipse with center (xo,y0),  radius of r,, and y radius of ry is
defined by

x(t) = wo +recos(t), y=yo+rysin(t), tel0,2n].

To make partial ellipses and circles, let the parameter range over an ap-
propriate subset.

SN
T N
Nl

AN
g L

4 X

-3+

Dashed (circle)
z(t) = 2cos(t)
y(t) = 2sin(t)

t € [0, 27)

Dotted (ellipse)
z(t) = 3cos(t)
y(t) = sin(t)

t € [0, 27]

Solid (ellipse)
z(t) = 3 + cos(t)
y(t) = 3 + 2sin(t)

t € [0, 27)

Solid (half-ellipse)
z(t) = —1 + 2cos(t)
y(t) = 3 + sin(t)

t e [n/2,37/2]
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Glossary

alpha value A numeric representation of the effective transparency of an object.
When stored as a byte, values range from 0 (completely transparent) to
255 (completely opaque). 21

aspect ratio The proportional relationship between the width and height of an
image commonly expressed in two numbers separated by a colon, as in 4:3.
26

atlas A programmatically generated sprite sheet. 37, 49

bit Short for binary digit, the smallest unit of information stored on a computer,
having the value 1 or 0. 15

bitmap A 2D array of pixels. Each member of the array stores the color of the
corresponding pixel. This is not to be confused with “Bitmap,” the image
file format discussed in Chapter 2. 16, 31

Bpp A measure of the number of bytes (8 bits) used to store the color of each
pixel in an image. See color depth. 22

bpp A measure of the number of bits used to store the color of each pixel in an
image. See color depth. 16, 18, 22

byte An 8-bit computational value with a storage range of 0 to 255 in decimal
(00 to FF in hexadecimal). 16

color depth A measurement of the number of bits used to indicate the color of a
single pixel, also sometimes referred to as bit depth or bits per pixel (bpp).
17-19, 31

fog of war In computer graphics, a fog of war is a graphical representation of the
uncertainty of your opponents military operations. It may be represented
by hidden or darkened areas of the game map that are revealed only when
occupied by an active unit. 80, 183

frame rate Number of screen draws per second, measured in frames per second
(fps). Console players will expect 60 fps for action games. In old animation
clips, 12 fps is considered the lowest acceptable. 22, 29
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Glossary

GUI In games, the graphical user interface (GUI, commonly pronounced “gooey”)
usually refers to the on-screen buttons, text, gauges, and icons that allow
the player to influence the events within the game. In a 3D game, the
GUI is often rendered in 2D as the top layer of graphics, providing a clear
boundary between the game world and the real world. 16, 96, 124

HDTV High definition television is the newer television standard. Resolution
for HTDV is measured in number of lines, for example 720p (1,280 x 720)
and 1080p (1,920 x 1,080). 25, 26

isometric projection A method of rendering three dimensions onto a two-dimen-
sional surface such that all parallel lines along an axis have equal dimen-
sions with the result that no foreshortening occurs. 89

linear interpolation Interpolation is a method for finding a point on a curve,
given a certain distance along that curve. The term linear indicates that
the curve is a simple line, and as a result the curve can be evaluated from
just its starting and ending points. For example, to find the point 50%
along the z-axis between points (0,4) and (10, 8), the resulting point (5, 6)
can be discovered by using the slope of the line. Sometimes called LERP
for short, linear interpolation can be used to transition between Cartesian
points on a grid but also between any two values, such as colors or scales,
that change linearly over time, space, or other values. 140

localization The process of ensuring a game is appropriate for a particular coun-
try or region including but not limited to language translation. 126

pixel delta A measurement of the difference between the pixels rendered from
frame to frame. For a moving sprite, this may simply be the distance
between the leading edge when compared to the previous frame. For an
animated sequence, it is a measure of the greatest amount of rendered
movement from cel to cel (e.g., in a run cycle, it may be the relative
movement of a foot from one frame to the next, measured in pixels). 62

pixel density A measurement of the number of pixels in a physical space, com-
monly across a span of 1 inch: pixels per inch (ppi). In printed media, the
term dots per inch (dpi) is more commonly used. 25

raster An image comprised of individual colored pixels as opposed to points,
lines, and shapes. Most computer images with which we work on a daily
basis (including photographs) are raster graphics. 23, 38

rasterization The process of converting a vector-based graphic into a bitmapped
image. 38

RGB A combination of red, green, and blue values used to define a specific color.
18

RGBA A combination of red, green, blue, and alpha values used to define a
specific color. 21
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SDTV Standard definition television (SDTV) is an older television standard,
supporting either a 4:3 or 16:9 aspect ratio at resolutions equivalent to 640
x 480. 25, 26

spline A mathematical function describing the curve of a line between two or
more points.. 195

sprite A single two-dimensional image that may be drawn as part of a larger
scene. Often a single sprite is defined by the rectangular location of the
image on a larger source file (sprite sheet). 17, 37

sprite sheet A source file that includes one or more individual sprites. Sprites
are grouped onto a single sprite sheet either because they are related or for
efficiency during rendering. See also atlas. 39

texel A texture is a 2D grid of pixels. An individual pixel on a texture may be
referred to as a texel. 24
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