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Preface

This book project was started about two years ago. How the world
since then has changed so much is beyond any kind of data science,
machine learning, or artificial intelligence can ever predict.

Personally, my world has changed as well, from a small university
to a big one, from home country to a second home country where I
spent at least seven years studying as a foreign student.

My working life, however, is a vagabond one. First, as a defense
scientist, as my bosses wanted me to do, I did research in neural
networks, natural language processing for machine translation, com-
puter and network security, and chaos signal processing for pattern
recognition. I had never studied these subjects in my university days.

In physics, I had done down-to-earth experiments to uncover
the three-dimensional structure of a muscle protein, and theoreti-
cal physics. As an academic, my job is always on a contract basis.
I taught myself enough to teach and to do research in finance of
the quantitative type. Interestingly, trade and quote data generated
from trading can be regarded as a kind of experimental data where
market participants are doing their best to estimate the value of an
asset such as a stock or currency.

Now, I am kind of like going back to the beginning of my working
life. In every field that I had done research in, I always find a half
dozen or so people who are the thought leaders. But global competi-
tion in the ruthless publish-or-perish world may not always produce
the best in humans as what humanists want us to believe in. Never-
theless, I would like to offer a sincere apology to many whose works
I did not cite because of constraints of various kinds.

vii
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This book is based on almost all the different courses that I have
ever taught at different universities in Singapore, Hong Kong, China,
and Japan. I would like to thank all my students for tolerating the
lack of clarity, and for doing mini projects with real-world data, which
requires a kind of thinking beyond textbooks.

I also had a shot at trading index futures as a trader of a small pro-
prietary trading firm, where I learned that generating positive P&L
within a risk mitigation framework is everything. As a result, this
book is very much practice oriented. It contains topics and examples
that are not usually covered in textbooks on financial econometrics.
They include the specifics of constructing an ETF, dividend and
stock split adjustments, a new way to conduct event study for addi-
tion to and deletion from S&P indexes, and how pair trading actually
works and why it may not work.

In addition, I also provide detailed derivations for many topics
in basic statistics and linear regression, where I describe how to
go about performing the empirical analyses of capital asset pricing
model, mean-reverting process, and Fama-French 3-factor model.

I firmly believe that learners can self-learn many of these topics,
and replicate the analyses to see for themselves, starting from the
Python codes in my repository http://cting.x10host.com/AF/AF.
html. There is no better way to learn than to hack the codes and
modify them for new data, and to check whether similar results or
“patterns” in this book can be repeatedly reproduced, which is a
hallmark of data science.

Christopher Hian Ann Ting

School of Informatics and Data Science
Hiroshima University

Autumn, 2021


http://cting.x10host.com/AF/AF.html
http://cting.x10host.com/AF/AF.html

About the Author

Dr. Christopher Hian-Ann Ting (f28%) earned his Bachelor’s
degree in mechanical engineering (applying quantum mechanics to
engineering) and Master’s degree in experimental physics (biophysics
of muscle proteins) from the University of Tokyo on two scholarships
from the Japanese Government administered from Singapore. Then
he earned a Ph.D. in theoretical physics from the National University
of Singapore in 1994. He has many papers published in several differ-
ent fields: Physics, Biophysics, Computer Science, and Quantitative
Finance, as well as a text-book on the last.

He is now a professor (special appointment) at the School of Infor-
matics and Data Science, Hiroshima University. His main research
interests are machine learning and applications of data science.

ix



This page intentionally left blank



Contents

Preface

About the Author

1. Introduction

1.1  What is Data Science? . . . . . . . . .. ... ....
1.2 Sample Python Codes and Data . . ... ... ...
1.3 Conclusion . . . . . .. . ... .

2. Cross-Sectional Data Analysis

2.1 Introduction to Cross-Sectional Data . . . . .. ..

2.2  Basic Statistics . . . .. ... ... ..
2.2.1 Population and sample . . . . . ... ... ..
2.2.2 Population mean and variance . . . . . .. ..
2.2.3 Population covariance . . . . . . ... ... ..
2.2.4 Sample mean and sample variance . . . . . . .
2.2.5 Variance of sample averages . . . .. ... ..
2.2.6 Unbiased estimators . . . . . . ... ... ...
227 Ageneralmodel . . . .. ... ... .. ....

2.3 Basic Statistical Testing Methods . . . ... .. ..
231 zscore . . . ... ..o
2.3.2 Statistical hypotheses . . . . . . . .. ... ..
233 pvalue . . . ..o oL
2.3.4 z Test and standard normal distribution

xi

vii

ix

10
15
15
18
19
21
22
24
26
27
28
29
30
31



xii Algorithmic Finance: A Companion to Data Science

2.3.5 Standard normal cumulative distribution
function . . . ... ... L.
2.3.6 Confidence interval . . . ... .. ... ....
2.3.7 tScoreandttest . ... ... ... ......
2.3.8 Chi-square test for the variance . . ... ...
2.4 Prediction . ... ... ... L.
2.5 Summary ... ...
Appendix A: Derivation of Standard Normal Probability
Density Function . . . . . . ... .. ... ..
Appendix B: Stirling’s Approximation . . .. ... .. ..
Appendix C: Convergence of ¢ PDF to Standard
Normal PDF . . ... ... ... .......
Appendix D: Derivation of Chi Square Probability Density
Function . .. ... ... ... ... ... .
Exercises . . . . . ...

3. Comparative Data Analysis

3.1 Binomial Distribution . . . ... ... ... ... ..
3.1.1 Bernoulli random variable and binomial
distribution . . . . ... ...
3.1.2 The chi-square test of independence . . . . . .
3.2  Contingency Table . . . .. .. ... ... .. ....
3.3 Comparison of Two Populations. . . . . ... .. ..
3.3.1 Two-samplettest . . .. ... .. ... ....
3.3.2 F-test for equality of two variances . . . . . .
3.4 Analysis of Variance . . . ... ... ... .. ....
3.4.1 Step 1: Assumptions and hypotheses . . . . .
3.4.2 Step 2: Resolution of total variability
into components . . . . . ... ... L
3.4.3 Step 3: 1-tail F test and inference . . . . . . .
3.5 Summary ... ...
Appendix A: Convergence of Binomial Distribution
to Standard Normal Distribution . . . . . . .
Appendix B: The Law of Large Numbers . . . . . . .. ..
Appendix C: Mean and Variance of Chi-Square
Random Variable . . .. ... ... ... ..
Exercises . . . . . . . ..



Contents

Prices and Returns

4.1 Time Series . . . . . . . ..o
4.2  Multiple Time Series . . . . . .. ... ... .. ..
4.3 Simple Returns . . . ... ... ... ... ... ...
44 LogReturn . . ... ... ... ...
4.5 Multi-Period Returns . . . . . .. ...
4.6 Time-Weighted Return . . . . . . .. .. ... ...
4.7 Case Study: GIC . . . . ... ... ... ... ...,
4.8 Total Return . . . . ... ... ... ... ... ...
4.9 Dividend Adjustments . . . ... ... ... ...

4.9.1 Backward adjustment . . . . .. ... ... ..

4.9.2 Forward adjustment . . . . ... ... ... ..

4.9.3 yahoo!finance method . . . . . . . ... .. ..
4.10 Summary . . ... ..
Exercises . . . . . . . .. o

Stock Market Indexes and ETFs

51 A BriefHistory . . ... ... ... ... .. .....
5.2 Index Weighted by Price . . . . . .. ... ... ...
5.2.1 Four Dow Jones average indexes . . . . . . ..
5.2.2 Nikkei 225 index. . . . . . ... ... ... ..
5.2.3 How to construct a price-weighted ETF? . .
5.3 Index Weighted by Market Capitalization . . . . . .
5.3.1 Value-weighted index . . . . ... .. ... ..
5.3.2 How to construct a value-weighted ETF? . .
533 Freefloat . . . . .. .. ...
54 Case Study: Hang Seng Index . . . . . .. ... ...
5.5 Equally Weighted Index . . . . . ... ... .....
5.5.1 Example: Value line index . . . ... ... ..
5.5.2 How to create an equally weighted ETF? . .

5.5.3 Value-weighted versus equally
weighted ETFs . . . .. ... ... ... ...
5.6 Re-balancing . ... ... ... ... ...,
5.6.1 Price-weighted index . . . ... ... .....
5.6.2 Value-weighted index . . . ... ... .....
5.6.3 Equally weighted index . . . . . ... ... ..
5.6.4 Summary of re-balancing . . . . . .. ... ..
5.7 Reconstitution . . ... ... ... ... ... ...

xiii

101

101
110
112
114
116
119
121
126
130
131
134
135
138
139

143

144
147
147
149

. 152

153
154

. 158

160
161
162
165

. 165



Xiv

0.8

Algorithmic Finance: A Companion to Data Science

5.7.1
5.7.2
5.7.3

Price-weighted index . . . ... ... ... ..
Value-weighted index . . . . ... .. .....
Equally weighted index . . . . ... ... ...

SUMMAry . . . . . oo
Exercises

Indexes from Derivatives

6.1

6.2

6.3

6.4

6.5

Appendix A: Proof of Spot Futures Parity Theorem . . .

Brief Introduction to Futures . . . . . . .. ... ..

6.1.1

Theoretical price or fair value of futures
onstockindex . . . ... ... ... ......

Continuous Time Series of Futures . . . ... .. ..

6.2.1
6.2.2

Backwards ratio method . . . . . .. ... ..
Backwards Panama Canal method . . . . . . .

Commodity Index . . . . ... ... ... ......

6.3.1

6.3.2

6.3.3

A variation of the backward ratio

method . . . . ... ... ... ... ... .
Compilation of the futures industry
association . . . . . ... ... ...,
Commodity composite indexes . . . . . .. ..

Volatility Index . . . . . .. .. ...

6.4.1
6.4.2

Implementation . . ... ... .. .......
Futures on VIX and basis . . .. ... .. ..

Summary ... ...

Appendix B: Proof of Model-Free Formula for

Calculating VIX . . . ... ... ... ....

Log Return and Random Walk

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8

Introduction . . . . . ... .. o oL
Historical Share Prices and Stock Splits . . . . . ..
Log Prices and Log Returns . . . . . . ... ... ..
Modeling Stock Price Movements . . . . . . . .. ..
Simulating Stock Price Movements

and Reality Check . . . .. ... .. ... ......
Statistical Tests of Normality of Log Returns
Autocorrelation of Log Returns . . . . . . .. .. ..
Variance Ratio Test of Random Walks . . . . . . ..

7.8.1

Varianceratio . . . . . . . . . ... ... ...

183
183

186
192
194
197
199

199

201
203
208
212
217
218

. 219

222

227

227
229
232
236



Contents

7.8.2 Asymptotic distribution of variance
estimates . . . . . . . ...
7.8.3 Variance ratiotest . .. .. ... .. .. ...
7.9 Variance Ratio Test Algorithm: An Empirical
Analysis . . . . . ..
7.10 Refinements . . . . . ... ... ... ... .. ...,
7.11 Heteroskedastic Time Series of Log Returns . . . . .
712 Summary . ... ...
Appendix A: Delta Method . . . .. ... ... ... ...
Exercises . . . . . . ...

Linear Regression

8.1 The Model of Single Variable . . . . ... ... ...
8.2 Simple Linear Regression by Least Squares . . . ..
821 Residuals. . . ... ... ... ... ......
8.2.2 Ordinary least squares . . . ... ... ....
8.3 Properties of OLS Estimates . . . .. .. ... ...
8.3.1 OLS estimates are consistent . . . . . . .. ..
8.3.2 OLS estimates as linear combinations . . . . .
8.3.3 OLS estimates are unbiased . . ... ... ..
8.3.4 Variance and covariance of
OLS estimators . . . .. ... .. ... ....
84 Goodnessof Fit . . . ... ... ... .. .. .....
8.5 OLS Confidence Interval . . . . . ... ... .....
8.5.1 Fittedvalue . ... ... ... ... ......
8.5.2 Prediction . . . ... ... ... .. L.
853 Acasestudy . . . . . ... ...
8.6 Capital Asset Pricing Model . . . . . .. ... .. ..
8.7 Mean-Reverting Process . . . . .. ... ... ....
8.8 Multiple Linear Regression . . .. .. .. .. .. ..
8.8.1 Statistical foundation . . . . .. ... ... ..
8.8.2 Algorithm of multiple linear regression
8.8.3 Case study: Fama—French’s 3-factor
model . . . .. ... ...
8.9 Summary . . . ... ...
Exercises . . . . . ...

XV

248
251

256
258
261
263
263
265

267

267
272
272
273
277
277
278
282

283
291
294
294
296
298
300
306
307
308

. 313



xvi Algorithmic Finance: A Companion to Data Science
9. Event Study 321
9.1 Introduction . . . . . ... ... ... ... ... ... 321
9.2 Event Window and Benchmarks . . . . . . ... ... 323
9.2.1 No estimation model . . . ... ... ... .. 325
9.2.2 Constant mean model . . . . . . . ... .... 326
9.2.3 Market model . . . ... ... .. ....... 328
9.2.4 Capital asset pricing model . . . . . . . .. .. 328
9.3 Abnormal Returns . . . .. ... ... ........ 329
9.4 Cumulative Abnormal Returns . . . . ... ... .. 332
9.5 Case Study: AIGin Crisis . . . . ... ... ... .. 334
9.5.1 Background of the case study . ... ... .. 335
9.5.2 Event study: Analysis and results . . . . . . . 336
9.5.3 Trading strategy . . . . . . .. . ... ... .. 340
9.6 Average Abnormal Return . . . . . . .. .. ... .. 340
9.7 Cumulative Average Abnormal Return . . . . . . .. 344
9.8 Case Study: Share Repurchase . ... .. .. .. .. 347
9.9 Addition and Deletion to S&P Indexes . . . . . . .. 351
9.9.1 Three important indices of
S&P Down Jones . . . . ... .. ... 352
9.9.2 Classification of additions and deletions . . . . 353
9.9.3 Fresh entry to S&P indices . . . . . . ... .. 355
9.9.4 Transfer to larger cap indices . . .. ... .. 359
9.9.5 Complete dropout and transfer to smaller cap
indices . . . . .. ... 360
9.9.6 Summary of results . . . . ... .. ... ... 364
9.10 Summary . . . . . ... 366
Exercises . . . . . . ... 367
10. A Case Study of Modeling: Pair Trading 369
10.1 Modeling of Pair Trading . . . . ... ... ... .. 369
10.2 Estimation of Pair Trading Parameters . . . . . . . . 372
10.3 A Pair Trading Example . . . . . . ... .. ... .. 374
Exercises . . . . . . ... 376
Bibliography 377

Index 381



Chapter 1

Introduction

1.1 What is Data Science?

Data science and machine learning for artificial intelligence are the
in-thing in this digital age. Probably most people will agree that we
are overwhelmed in processing a huge load of information churned
out by numerous information portals, each designed in such a way
to grab our attention. To navigate the digital landscape, we need
scientific tools to filter out the chatters and chaff, so as to get to the
meat of data science that matters most to users, in the context of
an application domain.

By way of normative proposition, the term “scientific” used here
refers to a definitive hallmark of science — repeatable repro-
ducibility. Specifically, given the same data set and same algorithm,
everyone who knows programming should be able to reproduce sim-
ilar if not the same results independently, repeatably, at the present
time, not billions of years ago in the past, nor billions of years in the
future.

The criterion of repeatable reproducibility, or scientific
reproducibility, is extremely important. Suppose a scientist claims
that under the conditions ABC, an electric wire of material XYZ
is found to be capable of conducting electricity with no resistance
at all, a phenomenon known as superconductivity. If it is a real phe-
nomenon, other competent scientists can challenge this claim by per-
forming experiments with the same conditions and material. If the
same result is obtained over and over again, then superconductivity
is said to be repeatedly reproducible and thus the claim is verified
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to be true. We then have a strong basis to elevate superconductiv-
ity to the status of scientific fact. In other words, we can include
the discovery of superconductivity into the body of knowledge called
science, i.e., superconductivity is science.

However, if a claim on discovery is not reproducible, then it remains
a hypothesis, a claim, a speculation, anything but a scientific fact.

The orthodox experimental science has its focus on establish-
ing or disproving, objectively, a hypothesis or claim that something
is the cause of an observed fact. In the case of superconductivity,
material XYZ under conditions ABC is the cause.

On the other hand, computational science is about designing
and writing software for simulation, such as the aerodynamics of wind
resistance of tall buildings and long span bridges.

Pretty much everyone agrees that in a nutshell, the ontological
intent of scientific research is to increase the body of objective knowl-
edge, i.e., science, through discoveries and new paradigms of think-
ing that lead to testable hypotheses. Even cooking is science. A fast
food franchise is an example of ubiquitous reproducibility. At times,
a new flavor, or a new method of cooking is discovered. Cooking
may be considered as a type of imperative knowledge under food
science.

Now, what about data science? The “data” part of data sci-
ence is probably easy for us to wrap our mind around. We know
that observation science is essentially data collection. Astronomy
is a good example of observation science. Astronomers design and
construct equipment and systems to observe or map out the sky for
discovering new celestial bodies in it. Likewise, DNA sequencing and
genome mapping are also regarded as observation sciences.

But where is the “science” part? As much as material science
is science, is data science a science, too? According to IBM, data
science is defined as

a multidisciplinary approach to extracting actionable insights
from the large and ever-increasing volumes of data collected
and created by today’s organizations. Data science encom-
passes preparing data for analysis and processing, perform-
ing advanced data analysis, and presenting the results to
reveal patterns and enable stakeholders to draw informed
conclusions.


https://www.ibm.com/cloud/learn/data-science-introduction
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The “science” part of data science, according to this definition, is
arguably the patterns that are revealed by advanced data anal-
ysis. The revealed patterns “enable stakeholders to draw informed
conclusions”, especially in the business setting.

If the results of advanced data analysis reveal a pattern, in princi-
ple, similar results that reveal the same pattern can be independently
reproduced by other data scientists, using exactly the same data and
algorithm. The algorithm or model can be implemented in differ-
ent programming languages. On the same data, however, the results
should be very similar and the same patterns should be revealed,
regardless of operating system, computer hardware, etc. Otherwise,
if the claimed patterns cannot be reproduced, then the claim of
finding patterns in the data is merely a statistical illusion, gener-
ated perhaps by some bugs in the computer codes for expressing the
algorithm.

We can never overemphasize the need to ensure that no statis-
tical illusion occurs. Imagine what would happen when a decision
or conclusion were made on the basis of illusionary patterns that
do not exist in reality. These false positives would give rise to mis-
information and misrepresentation, which invariably lead to loss of
credibility. For some applications, severe financial losses might even
occur.

With regard to applications in science, Blei and Smyth (2017) dis-
cuss data science from the perspective of scientific research, describ-
ing it as “the child of statistics and computer science”. They identify
three areas where classical paradigms need to be replaced by data
science. They are, sequencing technology, digital sky surveys, and
digitization of documents. Data science is well positioned to help
scientists working in these three application domains to take full
advantage of massive archives of data sets.

In fact, data science has changed the way astronomers discover
new objects in space. Zhang and Zhao (2015) review big data astron-
omy and machine learning tools and how they are valuable in helping
astronomers to run through massive amounts of images. Remarkably,
Kunimoto et al. (2020) report the discovery of 17 new planets, includ-
ing a potentially habitable, Earth-sized world, by combing through
data gathered by NASA’s Kepler mission.
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An important perspective Blei and Smyth (2017) propose is that
data science

connects statistical models and computational meth-
ods to solve discipline-specific problems. In partic-
ular, it puts a human face on the data analysis
process: understanding a problem domain, deciding
which data to acquire and how to process it, explor-
ing and visualizing the data, selecting appropriate
statistical models and computational methods, and
communicating the results of the analyses.

This book aims to complement their perspective by suggesting that
algorithmic finance is another area where “data provenance, data
analysis workflows, and scientific reproducibility are critical to
modern scientific research” (Blei and Smyth, 2017) for seizing prof-
itable opportunities while taming the associated risks.

1.2 Sample Python Codes and Data

There is an increasing trend toward the open access of data in many
application domains of data science. One exception, however, is bank-
ing and finance. Financial information is typically costly, as it poten-
tially can give rise to information asymmetry between the informed
and the uninformed. Such information asymmetry drives the profit-
oriented traders to monetize their information advantage. At times,
the academic circle of finance accepts more readily manuscript sub-
missions based on “proprietary” data. That some of the “proprietary”
data sets cannot be distributed is a result of the legal constraints from
the information source. Yet some are, for unknown reasons, not made
available publicly. The latter case goes against the spirit of scientific
inquiry, where results are to be peer-reviewed and cross-checked.
Therefore, as much as possible, let us focus on open access
data that can be obtained from information portals such as
yahoo!finance, despite the plausibility that such data are not the
ones favored by the academic journals of finance. As a commitment to
repeatable reproducibility, algorithms implemented as python codes,
along with the processed data, are posted on a public platform under
the webpage http://cting.x10host.com/AF /AF .html. Readers


https://finance.yahoo.com/
http://cting.x10host.com/AF/AF.html
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are encouraged to use or adapt the Python codes for their own study.
It goes without saying that all the codes come with no warranty and
technical support. Users are encouraged to develop and exercise their
ingenuity to “hack” the codes provided, so that they work in their
specific computing environment.

Data collection is an important stage in the life cycle of a project,
which can be as grand as the digitization of all intellectual properties,
human genome project, the Planck project to map the anisotropies
in the cosmic microwave background radiation, and as mundane as
downloading daily stock prices from yahoo!finance.

In the application domain of banking and finance, the advance-
ments in information and communication technology accelerate the
pace of changes in their modus operandi. Enormous amounts of data
are generated everyday, as financial transactions in the form of elec-
tronic trading occur at the split-second resolution around the clock.

Despite the advancements and overflows of financial data, only a
handful of information portals offer their data for free. Even so, we
need a software that allows us to download data offline by issuing
a command from our computer to scrap the required data from the
information portal, without surfing and interacting with its website.

Long historical time series of major stock market indices around
the world can be obtained from stooq.com. For example, the Dow
Jones Industrial Average Index (DJIA) from May 27, 1896 is avail-
able for download from this Polish information portal. By con-
trast, currently, the earliest date of the time series of DJIA from
yahoo!finance is the beginning of 1992. The ticker symbol' used
by stooq.com is the same as yahoo!finance, which makes it conve-
nient to switch between them. Thus, we have an alternative website
in stooq.com to obtain historical data.

For Hong Kong market, an excellent and comprehensive infor-
mation portal is webb-site.com. This website tracks the history of
each stock listed on the Hong Kong exchange, including changes in
the company name, subsidiaries of a holding company, and tons of
other useful information. In researching Hong Kong’s stock and bond

! As a short-hand reference to a stock of a company listed on an exchange, ticker
symbol is a code consisting of usually letters. For example, Microsoft is traded
under the ticker symbol of MSFT.


https://finance.yahoo.com/
https://stooq.com/t/?i=510
https://finance.yahoo.com/
https://stooq.com/t/?i=510
https://finance.yahoo.com/
https://stooq.com/t/?i=510
https://webb-site.com/dbpub/listed.asp
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markets, as well as business in general, this is the best information
portal to look for publicly available data.

A caveat has to be added here. All the three information portals
are maintained by mortals. Perhaps 20 years later, i.e., in 2040, there
is no guarantee that these websites will still function as they are
today. As for yahoo!finance, which is a privately held company, it
may be sold to another company. Under the new management, the
data may not be publicly available anymore.

In any event, we need an application programming interface (API)
to increase the productivity by way of automation in data collection.
A Python 3 package by the name of yahoo_fin is tested to be working
well for this purpose. Not only can users use yahoo_fin to obtain
historical stock prices from yahoo!finance, it is also possible to
obtain information about a company, such as the sector and industry
the company is classified to belong, number of employees, names of
company executives, and so on.

To download a list of stocks, we can write a Python code to run
through the list for each item with a data acquisition function pro-
vided by yahoo_fin.

For the component stocks of S&P 500, 400, and 600 indices, the
original data source that yahoo_fin relies on is Wikipedia. Although
we cannot trust everything that is on Wikipedia to be true, nonethe-
less we can check against the holdings of ETFs for these three indices,
whose ticker symbols are SPY, MDY, and SLY, respectively. Their
respective holdings match and we are certain of the veracity of such
data from Wikipedia.

Last but by no means least, we have a rich source of stock return
data in French’s data library. This information portal is con-
structed and maintained by Kenneth R. French, who is the Roth
Family Distinguished Professor of Finance at the Tuck School of
Business at Dartmouth College. He has access to a wide range of
expensive databases, including CRSP and Compustat. We do not
know how exactly French created the Fama/French Research Port-
folios and Factors. Nevertheless, French’s data library is the gold
standard in academic research.

Obviously, there are many other open sources that are not cov-
ered. The information portals highlighted here serve as examples
for publicly available information sources. To iterate, the purpose of


https://finance.yahoo.com/
http://theautomatic.net/yahoo_fin-documentation/
http://theautomatic.net/yahoo_fin-documentation/
https://finance.yahoo.com/
http://theautomatic.net/yahoo_fin-documentation/
https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
https://en.wikipedia.org/wiki/List_of_S%26P_400_companies
https://en.wikipedia.org/wiki/List_of_S%26P_600_companies
http://theautomatic.net/yahoo_fin-documentation/
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Introduction 7

using data that are free of charge is to ensure that the reported results
can be scientifically reproduced and tested for their truthfulness.

That said, it is important to stress that we need to abide by the
ethics of using free data. First and foremost, it is common sense
that we should not sell the data for monetary gain. Second, when we
use the data in publication, we should give credit to the information
source. Third, being free of charge, publicly accessible data sets come
with neither warranty nor technical support. Data scientists work-
ing on such data sets have to make intelligent guesses from sparse
descriptions, and to be resourceful in finding indispensable informa-
tion to decipher data, as data providers have absolutely no obligation
to respond to unsolicited queries.

1.3 Conclusion

In conclusion, data science provides tools for analyzing data so that
domain-specific patterns of interest can be discovered, and repeatedly
reproduced by fellow analysts and researchers. Applications without
tools are lame, and tools without applications are vain. Advances in
statistics and computer science are very often driven by an appli-
cation domain. Fields such as astroinformatics and bioinformatics
are birthed by the needs to find patterns, either new planets, galax-
ies, or DNA motifs. When appropriate algorithms are implemented
efficiently, machines can tirelessly go through the big data collected
systematically, and more thoroughly than scientists.

In addition to astronomy and molecular biology, social science
also benefits from the increasing amount of digitized texts. Algorith-
mic finance is another area where data science can bring about new
progress. But as always, it is necessary to understand the application
domain before data scientists can contribute their expertise. Hope-
fully, the following chapters can help data scientists in gaining a head
start in the jungle of banking and finance.
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Chapter 2

Cross-Sectional Data Analysis

This chapter deals with portfolios and examines their properties at
one particular instance of time. “Portfolio” is a jargon used in finance,
but more generically, a portfolio is a special case of cross-sectional
collection of securities. The main characteristic of cross-sectional data
is that they provide a snapshot at a particular instance of time, which
is frozen for data analysis.

The perspective this book takes is global or international, which
is what most investment managers take, as technological advance-
ments and changes in regulations have as if made the world smaller.
Cross-border investments in developed and emerging markets have
become less onerous and more important in controlling risks while
enhancing the return. Examples given in this book are therefore not
restricted to the US, though no doubt US is a very important and
dominant market in the world.

From a pragmatic standpoint, global money managers these days
optimize their usages of funds by moving them around the globe.
Whenever opportunities arise that justify the calculated risk, money
flows occur and inevitably a global perspective is a better approach
than a purely US-centric worldview.

This chapter introduces and utilizes three important probability
density functions (pdf). In the order of appearance, they are standard
normal, Student’s ¢, and chi-square pdfs. For a start, the approach
is parametric, as these pdfs depend on the mean and variance, as
well as the degrees of freedom. The statistical tests treated in this
chapter include z test, t test, and chi-square test. The first two tests
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are algorithms for testing the sample averages, while the last test is
designed for testing the sample variances.

In the appendices of this chapter, mathematical analysis of how
the normal pdf comes about, and how Student’s ¢ pdf converges
to the standard normal pdf when its number of degrees of freedom
approaches infinity, are presented.

2.1 Introduction to Cross-Sectional Data

As the owner of a company, suppose we want to find out the average
annual pay of all the full-time employees for the previous year, what
algorithm should we apply? Probably we would give an instruction to
the human resource chief officer and ask for that piece of information.
The human resource chief officer has a comprehensive list of employ-
ees on the payroll, and he computes the average annual salary for
the previous year. This example is typical in cross-sectional data
analysis. We can substitute annual pay by age, number of years in
formal education, and so on, if we want to find out more.

Definition 2.1. A cross-section is a collection of observations at
a particular point of time for the purpose of finding out the properties
that are common among the observations collected.

In other words, we are not looking so much at the temporal dynamics
of a single security. Rather, we are after the collective properties of
a set of securities, or any set of interest to the problem at hand.

Example 2.1. Founded in 1961, the World Federation of
Exchanges (WFE) is the global industry group for exchanges and
clearing houses around the world. The signature stock exchanges of
almost every country are their members. WFE classifies the world
into three regions of Americas, Asia-Pacific, and Europe—Africa—
Middle East (EAME). Across these three regions, the relevant data
of interest to the operators of security exchanges are captured, as in
Table 2.1.

Contrary to the dictum that “let the data speak for themselves”,
users need to interpret and write a story line. Data cannot speak,
but we do. First, we see that the region of Americas has the largest
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Table 2.1 Cross-sectional data of world exchanges across three regions as at end
of 2019.

Attributes/Region Americas Asia-Pacific EAME
Number of exchanges 16 22 49
Number of listed companies 10,857 32,044 14,889

Total market capitalization (USD millions) 42,008,600 28,934,050 21,976,959
Total value of share trading (USD millions) 50,398,246 31,260,089 11,133,684
Number of trades (in thousands) 7,206,295 15,317,659 1,985,968

Source: World Federation of Exchanges.

values of market capitalization (aka market value) and share
trading. Another salient point is that Asia-Pacific has the largest
number of trades for 2019 — about double that of Americas and
about 8 times that of EAME. But if we divide the value of share
trading by the number of trades, on the per-trade basis, the average
dollar amount is only about $2,041, which is (~3.5 times) smaller
than $6,994 for Americas, and also (~2.8 times) smaller than $5,606
for EAME.

Example 2.2. Another example of cross-sectional data is the set
of all the common stocks listed and traded on a stock exchange.
For ease of illustration and as a case study, we choose one of the
smallest stock exchanges — Barbados Stock Exchange (BSE).
Barbados is an island sovereign state in the Caribbean region of
North America. As at end of April 2019, it has 17 companies listed
on it and some relevant data are given in Table 2.2, which shows the
aggregate numbers of shares traded over the month of April. Included
are also the prices in Barbadian or Bajan dollars.

We find that 6 out of 17 stocks had no trading for the entire
month. Goodard Enterprises, being a multi-national company, was
the most traded stock. Trading liquidity, the ease with which secu-
rities are traded for cash and vice versa, is very important for any
operator of a stock exchange. In fact, JMMB Group has proposed in
August 2018 to be delisted from BSE, citing the low level of trad-
ing. The JMMB Group announced that the low level of trading
liquidity does not justify the costs and complex regulatory require-
ments associated with maintaining the listing of JMMBGL shares
on the BSE. This cross-sectional case study shows that it is very
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Table 2.2 Aggregate number of shares traded for the entire month of
April 2019.

Ticker Company name Volume Last close
ABV ABYV Investments Inc. 0 0.15
BHL Banks Holdings 2,312 4.85
BDI Barbados Dairy Industries 0 3.50
BFL Barbados Farms 4,218 0.30
BCO BICO 0 3.10
CWBL Cable & Wireless (Barbados) 0 2.29
CSP Cave Shepherd & Company 17,192 4.30
EMABDR  Emera Deposit Receipt 0 18.34
CPFD Eppley Caribbean Property Fund 144,134 0.20
CPFV Eppley Caribbean Value Fund 2,126 0.55
FCI FirstCaribbean International Bank 27,225 2.86
GEL Goodard Enterprises 400,943 3.25
ICBL Insurance Cooperation of Barbados 1,256 3.41
JMMBGL  JMMB Group 0 0.47
OCM One Caribbean Media 1,000 5.85
SFC Sagicor Financial Cooperation 72,417 2.59
WIB West India Biscuit Co. 800 24.55

Source: BSE Monthly Report.

important for exchanges to constantly boost the liquidity of stock
trading.

Example 2.3. yahoo!finance classifies a vast majority of the secu-
rities listed on the United States exchanges according to the com-
pany’s primary business. Each security is assigned to one of the eleven
sectors. As at end of December 2020, the numbers of stocks for each
sector are captured in Table 2.3. This set of numbers forms a cross-
sectional data set, i.e., across eleven industry sectors.

It is important to note that a company can issue more than one
equity security, also known as issue. For example, Berkshire Hath-
away Inc., the firm founded by the legendary Warren Buffett, has two
issues (Class A and Class B shares) listed on NYSE. From Table 2.3,
evidently Financial Services sector has the largest number of stocks.
By contrast, Communication Services sector has less than 100 stocks.

Example 2.4. Instead of tabulating cross-sectional data, a visu-
alization technique to capture both the market capitalization and
the return is the heat map. For ease of illustration, we choose the
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Table 2.3 The number of stocks listed on NYSE
and Nasdaq, sorted according to the sector, as at
end of December 2020.

Sector Number of listed stocks
Basic materials 164
Communication services 175
Consumer cyclical 379
Consumer defensive 151
Energy services 205
Financial services 1,417
Healthcare 444
Industrials services 448
Real estate 381
Technology services 426
Utilities 113
Total 3,992

Source: yahoo!finance.

Communication Services sector. Figure 2.1 shows the heat map of
its 65 stocks on May 28, 2019. The color code indicates the daily
return, and the area size corresponds to the market capitalization
or market value of the company. The Western way of coloring is
such that green indicates that the return is positive, and red, neg-
ative. The greener the color is, the larger is the return. Conversely,
the redder the color is, the return is more negative.

An advantage of a heat map is that it shows clearly in a two-
dimensional plane the market capitalization of each stock relative
to others. The heat map, Figure 2.1, allows you to see clearly that
company with the ticker symbol VZ has the largest market value,
followed by T, CMCSA, and CHL, and thereafter, CHTR, AMT,
and TMUS, and so on. At one glance at Figure 2.1, it is evident
that when weighted by market capitalization, the overall sector has
declined.

Example 2.5. We now turn to the different asset class of foreign
exchange. Forex market is “open” almost around the clock, week
after week. Though there are close to 200 countries in the world, the
forex market however is dominated by 10 major currencies. As of
May 28, 10:00:00 AM Eastern Time, the cross-sectional exchange
rates for these 10 currencies are as shown in Figure 2.2.
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VOD TEF
-1.83% -0.25% -0.37%

Figure 2.1 yahoo!finance’s heat map for the Communication Service sector on
May 28, 2019.

@® ELR & usp & Aup % ceP @ NzD (+) cAD © CHF . JPY © HKD & 56D
@ ER 1.11443 1.61115 0.88084 171126 1.50513 1.1229 121.833 8.74799 1.53983
e usb 0.8971 1.44574 0.79036 1.5352 1.3507 1.00735 109.323 7.84968 1.38171
& Aup 0.62065 0.69168 0.54669 1.06208 0.93417 0.69682 75.615 5.42953 0.95571
4 GBP 1.13532 1.26519 1.82915 1.94273 1.70875 1.27469 138.312 9.93184 1.74821
0 NZD 0.58433 0.65119 0.94147 0.51471 0.87952 0.65598 71.19 511173 0.89977
(+) CAD 0.66432 0.74032 1.0699 0.5847 1.1358 0.74569 80.929 5.81122 1.02286
© cHF 0.8901 0.99268 1.43504 0.784 1.5236 1.3398 108.498 7.79228 1.37158
. JPY 0.00821 0.00915 0.01322 0.00723 0.01405 0.01235 0.00921 0.0716 0.0126
© HKD 0.11427 0.12735 0.18414 0.10065 0.19543 0.17204 0.1284 13.92715 0.1759%
@ 56D 0.64923 0.7233 1.04616 0.57181 1.1074 - 0.72906 79.122 5.68115

Figure 2.2 A cross-section of cross rates at the instance of May 28, 2019,
10:00:00 EST
Source: TradingView.

When we go across from the left to the right horizontally, we
will find the amount of currencies needed to exchange for one unit
of currency at the starting point of the row in Figure 2.2. Take for
example the first row of EUR, which is the “ticker symbol” of Euro.
To exchange for one Euro, we need to pay 1.11443 USD or 1.61115
AUD or 0.88084 GBP, or 1.71126 NZD, etc.

On the other hand, if we move down along each column of
Figure 2.2, we will find the amount of currency at the top of the
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column required to exchange for one unit of each of the other curren-
cies. Consider again EUR. We need €0.8971 to exchange for 1 USD;
£0.62065 for 1 AUD; £€1.13532 for each Sterling pound; €0.58433 for
1 NZD; and so on. Indeed, at least at the third decimal place, for
USD, we note that €0.8971 is the inverse of $1.11443 in the row-
wise interpretation of the numbers. Same observation applies to other
currencies.

Finally, the color of either green or red indicates that the numer-
ical values have just increased or decreased, respectively, from the
previous values.

Example 2.6. Moving on to the next asset class, Table 2.4 displays
a cross-section of representative bonds issued by governments of
Western European countries, as well as Australia, Japan, and the
United States on June 3, 2019. The benchmark maturities are 2,
5, and 10 years. The yield to maturity in Table 2.4 consists of
one cross-section for June 3, 2019, and another cross-section a year
ago. Intriguingly, most of the bonds have negative yields to maturity.
Another observation is that, with the exception of 2-year bonds of
Germany, Netherlands, and UK, all the yields have become smaller
compared to a year ago. Finally, we also find that for each country,
the yield of the 2-year bond is lower than that of the 10-year
bond, which means that the yield curve is normal.

2.2 Basic Statistics

In the previous section, six real-world examples of cross-sectional
data sets are given. Without an algorithmic tool, we can assert no
further than some qualitative peculiarities. This section provides sim-
ple tools to gain a quantitative insight into a given data set. They
are average, also known as mean, and variance.

2.2.1 Population and sample

Definition 2.2. The population in statistics is the set of all mem-
bers that share a common characteristic or a set of common features.
It can also be defined as a group of all objects or events that have
something in common.
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Table 2.4 Global government bonds for June 3, 2019.

Coupon (%) Country Maturity/Years  Yield (%) Year ago
5.75 2 1.139 2.018
2.75 Australia 5 1.199 2.349
3.25 10 1.520 2.711
4.25 2 —0.574 —0.522
0.5 Belgium 5 —0.274 0.032
0.9 10 0.260 0.772
0 2 —0.586 —0.512
0 France 5 —0.375 —0.049
0.5 10 0.204 0.708
0 2 —0.650 —0.661
0 Germany 5 —0.567 —0.221
0.25 10 —0.199 0.388
0.05 2 0.656 1.007
2.45 Ttaly 5 1.640 1.872
3 10 2.578 2.716
0.1 2 —0.179 —0.136
0.1 Japan 5 —0.198 —0.109
0.1 10 —0.092 0.048
3.5 2 —0.592 —0.640
1.75 Netherlands 5 —0.533 —0.349
0.25 10 —0.009 0.551
3.85 2 —0.389 —0.075
5.65 Portugal 5 —0.056 0.708
1.95 10 0.760 1.861
0.05 2 —0.376 —0.182
0.25 Spain 5 —0.022 0.340
1.45 10 0.697 1.444
5 2 —0.576 —0.565
1.5 Sweden 5 —0.455 —0.037
0.75 10 —0.057 0.516
2 2 0.644 0.642
0.75 U.K. 5 0.614 0.993
1.625 10 0.864 1.283
2.125 2 1.828 2.480
2 U.S. 5 1.835 2.748
2.375 10 2.081 2.903

Source: Wall Street Journal (WSJ).
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Indeed, the very word “population” is borrowed from the literal
meaning of population, i.e., all the people living in, say, Singapore.
The common features are the set of “people”, “living in”, “Singa-
pore”. Thus, dead persons, tourists who do not live in Singapore
are excluded. This definition of population includes persons holding
non-Singapore citizenship who nevertheless live in Singapore on a
long-term basis. Similarly, the population of all companies listed on
an exchange need to include those that are domiciled in foreign coun-
tries, but exclude stocks that are delisted for whatever reasons. Also,
since a company can issue more than one stock, double counting must
be avoided.

In short, population must be specified as carefully as possible.

Example 2.7. Consider all the companies domiciled in the US and
their security issues listed on Nasdaq on May 24, 2019 after the
trading hours. This is yet another example of cross-section, and it
fits the definition of population.

Our data source is Macrotrends. Describing itself as the premier
research platform for long-term investors, Macrotrends offers for
free many important data sets. From Macrotrends’ stock screener, we
obtain all the individual market values of this population of Nasdaq
issues.

Since the range of market values spans multiple orders of mag-
nitude, we apply the natural logarithm and plot the histogram of
relative frequencies to visualize its distribution in Figure 2.3.

There is a Python library that enables users to obtain a kernel
density estimation of the probability density function (pdf)
based on empirical frequencies. The resulting estimation is plotted as
a smooth curve. We also provide the computed values of population
mean p and population variance o2, which are 19.84 and 2.04,
respectively.

Whereas it is feasible to obtain the entire population of the com-
panies listed on a stock exchange such as Nasdaq, it is implausible
and not practical to line up all the people in Singapore and count
each person one by one. The cost for doing so is way too high. Rather,
we take random samples from each area of the island country that is
as representative as possible, and as randomly as one can go.
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Figure 2.3 The histogram and the kernel density estimate of logarithmic market
values for US stock issues listed on Nasdaq.

Source: Macrotrends.

Definition 2.3. A sample is a subset of population, which is drawn
randomly or “blindly”, i.e., without any preconceived bias of one
member against the other member to be chosen for constituting the
sample.

To put it more accurately, suppose the population has N mem-

1
bers. Then, the first sample will be drawn with a probability of N

1
the second with a probability of N1 and so on. Each remain-

ing member in the population always has equal likelihood to be
randomly chosen.

2.2.2 Population mean and variance

Definition 2.4. The population average p is defined as the sum
of all values divided by the total number N values in the summa-
tion. Given N wvalues of x1,xs,..., 2N, the population mean p is
given by

wi=E(z) = %sz (2.1)
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The symbol E(x) indicates that the expected value of each ele-
ment x;, for i = 1,2,..., N, is identically the same as u. That is
E (xz) = u for every i because each z; comes from the same popu-
lation. In computing the expected value, (2.1) can be rewritten as

1
E(x) = zg\il ~ i That is, every member is assumed to have equal

1
weight or probability of N to contribute toward pu.

Definition 2.5. The population variance o2 is defined as the sum
of squared deviations from the population average divided by the
total number N. More precisely,

o2 =V(z)=E ((z — ,u)2) = %Z (zi — ,u)2. (2.2)

The variance is a statistic that indicates the extent of dispersion
relative to the population average. A larger value of o2 indicates a
greater disparity each value has from the mean. That is, there are
more variations in the data.

In Figure 2.3, we have annotated the population average (or
mean) g, which turns out to be 19.84 on the natural log scale.
Though population variance o2 is defined, in practice, o, which is
called the population standard deviation, is the preferred statis-
tic. For Example 2.7, ¢ is 2.04 on the log scale, which also appears
in Figure 2.3.

2.2.3 Population covariance

A generalized version of variance is called covariance.

Definition 2.6. Consider two populations labeled, respectively, by
their random variables x and y. Their population means are denoted
by pt, and pi,. Both populations have equal number of constituents N.
The population covariance is defined as

N
oay = C (2,y) =E ((z — pa)(y — 1)) = % Z(az — ) (Yi — hy)-
- (2.3)
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It is easy to see that in the special case where z = y, implying
that p, = pu, =: u, we obtain the population variance or simply
variance, i.e.,

C(z,2) =E ((z — p)?) = o>

In general, covariance captures how two random variables co-vary.
Positive covariance indicates that they tend to move in the same
direction. On the other hand, negative covariance reflects their ten-
dency to move in opposite directions.

Proposition 2.1. Suppose x and y form a pair of random variables
with means i, == E(x) and p, = E(y), respectively. Then

V (z) =E (2°) - E(z)?, (2.4)
and
C (z,y) = E(vy) — E(x) E(y)- (2.5)

Proof. We shall prove (2.5) only and treat (2.4) as a corollary,
since C(z,z) = E(z?) — E(z)?. Quadratic expansion produces

C(z,y) =E ((z — pa)(y — 1))
=E (zy — py® — pay + Hafly)
= E(zy) — py B(z) — o E(Y) + Hatty
= E(zy) — Hyhs — Hafly + faply = E(TY) — Hafly
=E (zy) — E(z) E(y). O

Proposition 2.2. Suppose a and b are two constants. Given the
same setting of Proposition 2.1,

A\ (aa; +by) = a’vy (a;) + b2y (y) +2abC (a;, y). (2.6)

Proof. Let z = az + by. It follows from (2.4) that V(z) = E (2*) —
E(z)?. Consequently,

V (az + by) = E ((az + by)?) — (aps + buy)?.
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Expanding the two quadratic terms and collecting the expanded
terms accordingly, we obtain

V (az +by) = a®E (2*) — a’p2 + ° K (y°) — b1,
+ 2abE (xy) — 2abpiz iy

— (B () - )+ (B () 1)
+2ab (E (2y) — patty).

Applying (2.4), the first two terms are a?V(z) and b>V(y),
respectively. Applying (2.5), we recognize that the last term is
2abC(x,y). O

2.2.4 Sample mean and sample variance

Random sampling as defined in Definition 2.4 is an important sta-
tistical technique, which makes it possible to quantify certain char-
acteristics of the population.

Definition 2.7. The sample average T is the sum of all the values
divided by the total number n of values in the summation. Given
a sample of randomly selected observations, x1,zo,...,z,, and by
definition, n < IV, the sample average is calculated with a subset of
the population:

1 n
T = 523; (2.7)
1=

It is important to recognize that the sample average T will have
a different value when a different sample is taken from the same
population. In this sense, T is a random variable; its randomness
is due to the random (unbiased) manner by which the sample is
drawn from the population.

Definition 2.8. The sample variance s is defined as the sum of
squared deviations from the sample average divided by n—1. Given a
sample of randomly selected observations x1,xo, ..., Ty, the sample

variance is obtained as follows:
n

§2 = L Z (z; — E)2. (2.8)

n—1
i=1




22 Algorithmic Finance: A Companion to Data Science

Why is the sum of squared deviations divided by n—1 rather than n?
The answer to this question of curiosity will be clear subsequently
when we define the notion of unbiased estimator.

2.2.5 Variance of sample averages

Proposition 2.3. If each observation of the sample is taken ran-
domly from a population, then the variance V (E) of sample mean
s given by
2 o’
E((f—p,) ) =V (z) = —. (2.9)

n

Proof. The sample average is a linear combination of randomly
taken n observations from the same population. Applying (2.6), we

obtain
1 — 1 "
o) = ()

- %ﬁ:v(%) —i—f: z": C(xi,xj).

i=1 j=1i#i

v (7)

For any pair of observations randomly taken from the popula-
tion, they should have no covariance by definition of randomness.
Therefore,

V(E) = i211:02—1—0: ino*2
n? i=1 n?

o2

= O

What Proposition 2.3 suggests is that the collection of sample
averages has a lower variance than the population variance o2. In
fact, it is n times smaller. This is an important result that is con-
sistent with the intuitive notion of average. Averaging a group of
numbers essentially is to obtain a number “in the middle” that may
serve as a single representative of the group. The average is certainly
less than the largest numbers in the group and more than the small-
est members. Therefore, average provides a smoothing of the group
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with a single number in the middle. When we have many sample
averages, where each sample average is computed from n observa-
tions, the variance of these sample averages will be smaller than
the population variance, because every sample average is already a
“smoothed” representative of the sample.

Example 2.8. How true is Proposition 2.37 As an empirical vali-
dation, we sort the stocks in Example 2.7 alphabetically by their
company names. Altogether, there are 2,249 observations of non-
zero market values (or capitalizations). We then divide exactly the
population of stocks into 173 samples, with each sample having 13
market values in natural log. In other words, every stock is in one
and only one of the 173 samples, from which we obtain 173 sample
averages. The average of these 173 sample averages matches exactly
the population mean p = 19.84, as it should. As we shall see later,
the sample average is unbiased according to Proposition 2.4.

Next, we compute the variance of the sample averages and it
turns out to be 0.3343. Now, the variance o? of the population of
log market values can be computed by (2.2), and it is 4.1684. Since
n = 13, according to Proposition 2.3, the variance of the sample
averages should be

4.1684
13

= 0.3206.

With respect to the actual value of 0.3206, the difference of 0.0137
(= 0.3343—0.3206) between these two variances is only 4.3%.

As a summary, the distribution of the sample averages has the
2

mean of p and variance of 7. This result is important, as it provides
a scientific basis for believi?lg in the validity of sample average. Not
least in part significant is the fact that the result is independent
of the statistical distribution of the population. In other words, we
have assumed only random sampling and nothing else. It is also self-
consistent in that the sample average becomes a better and better
estimate of the population mean, as the number of observations n
in the sample increases. When the sample variance becomes zero
as n tends to infinity, the sample average T converges surely to the
population mean p.
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2.2.6 Unbiased estimators

How good is the sample mean in estimating the true population
mean p? A criterion to assess goodness is unbiasedness.

Definition 2.9. Suppose that x1,z9,...,x, make up a random
sample drawn form the population. An estimator 1 (as a function
of the random sample) of u is said to be unbiased if

E (1) = u.
Intuitively, this definition says that the average (more precisely

the expected value) of the averages is the true value.

Proposition 2.4. The sample average T (2.7), as an estimator of
population mean , is unbiased.

Proof.

= u. 0

The intuitive meaning of Proposition 2.4 is the following. If sam-
ples are taken randomly from a population, although the sample
average ¥ differs from each other, the expected value of each sample
average is the mean p of the population.

Lemma 2.1.

n

D (@i—p) =n(T - p).

=1

Proof. From the definition of sample average, we have > " | x; =
nT. Consequently, noting that u is a constant,

n

n n n
Z(%’—M) :in—zlu.:nf—,u21
i=1 1 =1

=1 = 1=

=NT —N. 0
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This lemma on the summation of the differences between the obser-
vation values x; and the population mean p will be applied in the
following proposition:

Proposition 2.5. The sample variance s* in (2.8), as an estimator

of population variance o2, is unbiased.

Proof. We need to establish that

E(s2)—E<niIZn:(a:i—f)2> = o2

i=1

We focus on the sum of squared deviations from the sample average.
Algebraically, in light of Lemma 2.1,

S (-7 =Y (m—u)— @—m)Q

=1 =1
=5 (= = 2@ = s =)+ (7= 07
=1
—Z WP =2w =) Y (mi— )+ @)1

—Z p)? =2 —p) (@ —p) + (T —p)* 0.

It follows that
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Applying the expectation operator on both sides of the equation, we
obtain, in light of (2.9),

B (Zn: (o _E)2> =E (i(x - u)2> -nE(@-p?)

i=1 1=1

Therefore, we can conclude that

ozzni1E<§n:(xi—E)2> :E<ni1§:(xi—i)2> — ().

i=1 i=1

Since E (32) = 02, we have demonstrated that the sample variance

52 (2.8) is indeed an unbiased estimator of o2. O

In summary, we have found that the sample mean defined by
(2.7) and the sample variance defined by (2.8) are both unbiased.

2.2.7 A general model

Suppose we define the dispersion or deviation from the sample aver-
age as ¢; for a particular observation i, i.e., ¢; := x; — T. Given that
T is unbiased, E (E) = p. Now, since z; for ¢ = 1,2,...,n are ran-
domly taken from the same population with which T is computed,
E (xz) = p for every i. It follows that E (ez) =K (xz) —E (E) =0.

Definition 2.10. A cross-sectional sample y;, which is yet to be
drawn from the population, can be modeled as a random variable
as follows:

Yi =Y+ 6.

Here, 7 is the sample mean, and ¢; is “noise” with the property
that E (e,) =0, and C (ei, Ej) =02 if i = j and zero otherwise.
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An intuitive and practical interpretation of this model is that
the unbiased prediction for y; is the sample average 7, since

E(y:) = E (9) + E(&) = p.

Proposition 2.6. Let 0% be the population variance of y; and n
the sample size. Then the variance of noise is given by

ol =o0".
Proof. The noise can be written as ¢; = y; — §. Accordingly,
V(&) =V (yi) +V (7) —2C (v:,7)-

Now, the sample average 7 is computed based on the samples drawn
randomly from the population. In the context of the model, the sam-
ple average is a constant. Therefore, V (y) =0and C (yi,y) =0.It
follows that

V(EZ’):O'2+O—O:O'2. 0

This proposition suggests that the variance o2 of the noise is nec-
essarily a constant, which equals the variance of the population. In
fact, it is a part of the statement of identical distribution: V (yz) =
V(&) =02 i=1,2,...,N.

As another remark, ¢; = y; — 7 may be interpreted as observations
that have been de-meaned. In other words, {ei}?zl is a sample of
n cross-sectional observations such that the sample mean is zero.
In more advanced statistical analysis, de-meaning the data is an
important procedure before feeding them to the algorithmic engine.

2.3 Basic Statistical Testing Methods

A statistical test provides an algorithm for making quantitative
decisions given a collection of data and a statistical model. What is
scientific about statistics is that a conjecture is put forth and a test
is proposed to determine whether the conjecture can be rejected or
not. The conjecture is called the null hypothesis, which carries the
nuance of nothing interesting. The intent is to determine whether
there is enough evidence to “reject” the null hypothesis about the
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process that presumably generates the data. If the null hypothesis
cannot be rejected, we will take it as if the null hypothesis is true.

It is important to stress that scientists should not yield to the
temptation of unscientifically rejecting the null hypothesis when the
test returns a “disappointing” result. Very possibly, we do not yet
have enough data to “prove” our claim.

2.3.1 =z score

Definition 2.11. The square root of the variance of an estimator 9
is called the standard error. We denote it by se (0)

According to Proposition 2.3, the variance of the sample average

o
estimator 7 is —. Therefore, the standard error is
n

Definition 2.12. Suppose the sample average ¥ is computed from a
sample of n observations. The ratio

p= VR YT (2.10)
Se(y) o2 o

n

is called the z score.

It is easy to verify that z score’s mean is 0 and its variance is 1.

How close is the estimate 7 to the hypothesized value of u? The
difference 7 — p alone cannot answer this question. A major factor
in responding to this question is the way the observations are dis-
tributed. If the variance is large, a numerically big difference may
be considered to be close. Conversely, if the variance is very small,
even a numerically small difference may be considered to be distant.
This is where z score becomes extremely useful, as it is a statistical
measure to indicate the closeness. If the absolute value of the z score
is larger than some number, then we can say with certain level of
confidence that the difference is statistically significant. More
cautiously, the difference is not compatible with the hypothesis of no
difference.
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Example 2.9. For illustration, we take the first few samples of the
173 samples described in Example 2.8. Their values in natural log
scale are as follows:

17.277176 20.860215 17.636295 18.883911 20.861618 21.548366 20.041751
21.598480 19.580890 23.194863 18.980868 21.373855 18.852528

Calculations show that the sample average is 20.05. Earlier in Fig-
ure 2.3, we have already analyzed and found that the population
mean p is 19.84 and that the population standard deviation o is
2.04. The z score with sample size of n = 13 is calculated according
to (2.10) as follows:

Vi3 20.05 — 19.84

2= VI3 2T 00 37,
i 2.04

Statistically, the result suggests that the difference is about 0.37 stan-
dard deviations away from mean 0.

2.3.2 Statistical hypotheses

How significant or insignificant is 0.377 To address this question, we
need the statistical framework of hypothesis setting.

Definition 2.13. The null hypothesis Hj is the statement about
a population parameter. The alternative hypothesis H, is a state-
ment that directly contradicts the null hypothesis.

The statistical paradigm is to produce evidence by way of the z
score or other test statistics to allow us to decide whether to accept
or reject the null hypothesis.

Definition 2.14. If the null hypothesis is such that the population
statistic § = 0 while the alternative hypothesis is either § > 0 or
0 < 0, then the test is said to be one-tail.

Definition 2.15. When the null hypothesis is such that the popu-
lation statistic # = 0 while the alternative hypothesis is 6 # 0, then
the test is said to be two-tail.

Definition 2.16. The level of significance « refers to the like-
lihood of wrongly rejecting the null hypothesis when it is actually
true.
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Typically, the level of significance is set at 5%. At the 5% sig-
nificance level, loosely speaking, there is a 5% chance — 1 in 20
chance — of falsely rejecting the null hypothesis although it is actu-
ally true (or positive). In other words, the probability of getting a
false positive is 5%.

2.3.3 p-value

The practice of random sampling results in a random z score that
follows a standard normal distribution. Under this assumption,
we define the p-value.

Definition 2.17. A p-value is the probability that a statistical sum-
mary of the data (such as the z score) would be equal to or more
extreme than its estimated value Z in magnitude.

p-value := Pr (|z] > 2).

From this definition, it is apparent that when the computed z score
Z is very large, the probability for any z score random variable to
realize a value larger than Zz will be very low. In other words, the
probability of getting a value larger than z by fluke or by accident is
low.

It seems that p-value is a good way to quantify the likelihood of Z,
and thus the statistical significance. Before we get carried away, it is
important to report the concerns raised by the American Association
of Statistics. Wasserstein and Lazar (2016) assert that the widespread
use of “statistical significance” (generally interpreted as “p < 0.05”)
as a license for making a claim of a scientific finding (or implied
truth) leads to considerable distortion of the scientific process.

Some pseudo-scientific malpractices include conducting multiple
analyses of the data and reporting only those with certain p-values,
typically those passing a significance threshold. Cherry-picking those
findings that are promising, also known by such terms as data
dredging, significance chasing, significance questing, selective infer-
ence, and “p-hacking”, leads to excess of statistically significant
results that are actually spurious in the published literature.

Wasserstein and Lazar (2016) suggest the following principles and
caveats when using a p-value.
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(1) The p-value method provides one approach to summarizing the
incompatibility between a particular set of data (sample) and a
proposed model for the data (null hypothesis).

(2) A p-value does not measure the probability that the null hypoth-
esis is true, or the probability that the data were produced by
random chance alone. It is a statement about data in relation
to a specified hypothetical explanation, and is not a statement
about the explanation itself.

(3) Scientific conclusions and business or policy decisions should not
be based only on whether it passes a specific threshold. Practices
that reduce data analysis or scientific inference to mechanical
“bright-line” rules (such as “p < 0.05”) for justifying scien-
tific claims or conclusions can lead to erroneous beliefs and poor
decision-making.

(4) Proper inference requires full reporting and transparency.

(5) A small p-value, or statistical significance, does not measure the
size of an effect or the importance of a result.

(6) By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.

In the context of these guidelines and if the underlying assump-
tions for calculating the p-value hold, then the smaller the p-value
is, the greater will be the statistical incompatibility (rather than sig-
nificance) of the data with the null hypothesis. This incompatibility
can be interpreted as casting doubt on or providing evidence against
the null hypothesis or the underlying assumptions.

2.3.4 z Test and standard normal distribution

It is worthwhile to state the assumptions. First, we assume that ran-
dom sampling results in z scores that are distributed as the standard
normal distribution. Here, “standard” refers to the fact that each
z has mean 0 and variance 1. We express this assumption as

z~ N(0,1).

We also assume that each member of the population is indepen-
dent of each other, as in Proposition 2.3. Also, we assume that each
member of the population has the same mean of u and variance
of 2.
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Under these two assumptions, continuing from Example 2.9, the
p-value of the calculated or empirical z score of 0.37 is 71% under
the two-tail test scenario that the sample average can be less than the
population mean of 19.84, resulting in a negative z score. The null
hypothesis Hj is that the difference between the sample average
and the population mean is zero. The alternative hypothesis H,
is that the difference is non-zero.

The p-value of 71% means that the probability of randomly find-
ing a z random variable having a realized value greater than 0.37
is 71%, which is likely to happen. Therefore, we infer that the null
hypothesis cannot be rejected. Thus, we have a piece of evidence that
the sample average is quite compatible with the population mean,
and they are statistically close to each other.

That said, it is a good practice as advised by Wasserstein and
Lazar (2016) to state the caveats. An immediate one comes to mind:
the sample size of 13 is too small to be representative of the popu-
lation. The next one is that when stocks are sorted alphabetically,
the samples taken may not be random enough, though intuitively it
seems to be, as company name and its market value should have no
correlation whatsoever.

Definition 2.18. Suppose the level of significance is set to a partic-
ular value denoted by «. The one-tail critical value is a positive
value ¢; with respect to « such that

either Pr (z < —01) =« or Pr (z > 01) = a,
where z is the standard normal random variable.

Definition 2.19. The two-tail critical value is a positive value co
with respect to a such that

Pr (z < —62) = % and Pr (z > 02) = %.

Intuitively, the critical value is the cut-off point beyond which z takes
values that are extreme — either extremely large or extremely small.
Figure 2.4 plots the standard normal probability density
function (pdf). As proven in Appendix A, its functional form is
exponential, which is a bell curve, having the maximum at z = 0:

F(z) = —— e 37 (2.11)

g
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Critical

Critical ) ¢
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Number of Standard Deviations from Mean 0
Figure 2.4 Illustration of standard normal probability density function’s
rejection regions, critical values, and the level of significance a for the two-tail
scenario.

Also shown in Figure 2.4 are the two-tail critical values. Being sym-
metric, the two areas under the pdf curve that give rise to the amount

o
of — are equal. When the computed z score from data is larger in

absolute value terms than the critical value, the null hypothesis Hy is
to be rejected. The probability of rejecting wrongly when Hy is actu-
ally true is o, which is the level of significance (Definition 2.16).

At the significance level of 5% for two-tail test, the critical value
is 1.96. The z score in our example is only 0.37. Since it is less than
1.96, we cannot reject the null hypothesis, which provides a piece of
evidence that the sample average is close to the population mean in
Example 2.9.

2.3.5 Standard normal cumulative distribution
function

The total area under the pdf (2.11) must be equal to one, i.e.,
J75 f(2)dz = 1 since f(2)dz is the infinitesimally small probability
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of a random variable taking a value in the infinitesimally small inter-
val (z,z + dz).

Now, what about the probabilities in Definitions 2.18 and 2.19?
To address this question, we need to define the cumulative distri-
bution function.

Definition 2.20. The standard normal cumulative distribu-
tion function ®(x) is defined as

1 2

O(z):=Pr(X <z)= e 27 dz. (2.12)

1 €T
V 2w /oo
It is the area under the bell-shape curve in Figure 2.4 from negative
infinity to an arbitrary real number z.

In light of the standard normal cumulative distribution function
and noting that

Pr( X <z)+Pr(X >2)=1 = Pr(X >uz)=1-o(2),

the one-tail critical value defined in Definition 2.18 can be rewritten
in terms of ®(z) as

either Pr(z < —c;) = ®(—c1) =a or Pr(z>c¢)=1-9(c1) = o

The same expressions apply for the two-tail critical value as well.

As it turns out, ®(x) does not have a closed form, as it is not
possible to integrate the integral in (2.12). Nevertheless, the standard
normal cumulative distribution function can be approximated and
plotted, as in Figure 2.5.

Note that ®(x) is indeed bounded between 0 and 1 as z — £oo. It
is an S-shape curve, with an inflection point at = 0, as anticipated,
because at this value of x, the standard normal pdfis at its maximum

1
value of ——, and the probability is 50%. The S-shape curve is also
V2T

symmetric in the sense that if you were to rotate the part of ®(z) of
negative x clockwise with £ = 0 as the pivot, it will coincide exactly
with ®(x) of positive z.

Finally, it is important to recognize that ®(z) is a monotonically
increasing function of x, since, as evident in (2.12), when the range
of integration controlled by z increases, ®(z) will surely increase as
well. This feature allows ®(z) to be applicable even to a non-standard
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Figure 2.5 Cumulative distribution function of a standard normal random
variable.

normally distributed variable X with mean p and variance o2, for
which we write

X ~ N(p,0%).

For example, given a constant value A, we want to find out about
how the probability Pr(X < A) is connected to the standard normal
cumulative distribution function. Suppose we subtract the mean p
from both sides of the inequality X < A and then divide the differ-
ence by o. Since o is necessarily positive, the inequality direction is
preserved:

In other words, we have performed a linear transformation of X to
X—u A—

and z = Z_# Consequently,
o

Pr(XgA):q><A_”>.

g

z
o

This identification with ®(z) is possible if and only if ®(z) is
monotonous.
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2.3.6 Confidence interval

The purpose of taking a random sample from a population and com-
puting the sample average from the data is to approximate the mean
of the population. How well does the sample statistic estimate the
underlying population value? The notion of a confidence interval
addresses this question as it provides a range of values that is likely
to contain the population parameter of interest, in this case u, which
we know (though we pretend not to) is 19.84. It has been computed
in Example 2.8.

Definition 2.21. In statistics, a confidence interval (CI) is a type
of interval estimate that might contain the true value of an unknown
population parameter. Computed from the statistics of the observed
data, the interval has an associated confidence level 1—a, which quan-
tifies the level of confidence that the parameter lies in the interval.

Proposition 2.7. Let 6 be a population statistic and its point esti-
mate is 0 from a sample of observations. At the level of 1 — «, the
two-tail confidence interval is given by

~

0 — 56(5)02 <0<0+ se<§>02,
where ¢ is the two-tail critical value of the distribution of the test

statistic z.

Proof. At the 1 — « confidence interval, the test statistic z lies
within the non-rejection part of the area under the curve, as in
Figure 2.4. Hence,

—cy < Z < co. (2.13)

Given that
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Multiplying both sides by —se (5) leads to
—0+0> —se(@)c%

which results in 6 > 0 — se (5) ¢, equivalently, 0 —se (5) co < 0.
Likewise, for the left inequality in (2.13), i.e.,

00
—C2 < —7
se(H)
similar algebraic moves result in 6 < 0 + se (5) ca. O

In Example 2.9, we have computed the sample average and its
value is 20.05. The population standard deviation o is 2.04. It follows

2.04
that the standard error is \/—1_3 = 0.5658. The level of significance «
is set at 5%. The cutoff on the right side that gives an area of 2.5%
under the pdf of the standard normal distribution is 1.960. Thus,
co = 1.960.

A 1— o confidence interval for the mean of an assumed normal
population is

20.05 — 1.960 - 0.5658 < p < 20.05 4 1.960 - 0.5658,
ie.,
18.94 < pp < 21.16.

Indeed, the population mean 19.84 is in this confidence interval.

2.3.7 t Score and t test

More often than not, the population mean p and the population
variance o2 are unknown. In this subsection, we pretend that the
population mean g = 19.84 is unknown. We also pretend that we
do not know the population variance, or equivalently the population
standard deviation of ¢ = 2.04 in Example 2.9. When neither the
population mean nor the population variance is known, the z score
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is no longer applicable. Moreover, the standard normal distribution
is no longer appropriate.

Since the sample variance s>

is an unbiased estimator of o2, we use
2

s
it as a substitute for the population variance. Accordingly, — is taken
n

as the proxy for the variance of the sample average y. We are now
dealing with Student’s t distribution, as depicted in Figure 2.6.

Definition 2.22. The t score, also known as the t statistic, is
defined as

~_J—n
t: .
se(y)

In this context, u is the hypothesized value of the population mean
and the standard error is given by

2
_ 5
se(y) = .
where s? is the unbiased sample variance (2.8). The number of

degrees of freedom of the ¢ score is n — 1.

Example 2.10. Carrying on with the same sample discussed earlier
in Example 2.9, since we pretend that the population variance o2 is
unknown, we do the next best thing: estimate the sample variance
directly using (2.8) with n = 13. We find that it is equal to 2.94.
Accordingly, given that the sample size n = 13, the standard error is

found to be
12.94
se(y) = 3 = 0.476.

Suppose we make a guess or hypothesize that the population mean
is 19.84. We then set up the null hypothesis that the sample average
is statistically no different from the population mean. The ¢ score is
then calculated as follows:

20.05 — 19.84

= T 0.44.
0.476
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Student's t Probability Density Function
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Figure 2.6 Student’s ¢ distribution with 12 degrees of freedom.

This t score follows Student’s t distribution parameterized by
12 degrees of freedom.

With the same assumptions stated above, we find that the two-tail
p-value is 67%.

The pdf plotted in Figure 2.6 has an analytical form. For —oo <
t < oo and with v denoting the number of degrees of freedom,

. <<> (T

5) VD

In this expression,

is the Gamma function. It is a generalized version of factorial.
That is, for any positive integer n, I'(n + 1) = nl.
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The p-value of 67% suggests that the probability of randomly
finding a t random variable having a realized value larger than 0.44
is 67%. We infer that the null hypothesis cannot be rejected. Most
likely, the difference between these two means is due to randomness
and thus they are statistically no different.

At the 5% significance level, the two-tail critical value for
12 degrees of freedom is 2.179. Since the ¢ score of 0.44 computed
from data is less than the critical value, the rejection of the null
hypothesis is found to be improbable, as it falls within the non-
rejection region in Figure 2.6, which is shaded with a lighter color.
This inference is the same as the z test conducted earlier, as we might
expect. Again, the same caveats discussed earlier apply.

Example 2.11. Given the results in Example 2.10, we want to esti-
mate the confidence interval, again at the 95% level. The point
estimate of the mean is 20.05 as before. The standard error is 0.476.
For Student’s ¢ distribution of 12 degrees of freedom, the two-tail crit-
ical value cg is 2.179. Accordingly, the confidence interval is estimated
as

20.05 — 0.476 - 2.179 < p1 < 20.05 4 0.476 - 2.179,
or
19.01 < p < 21.09.

Note that the hypothesized population mean of 19.84 is inside the
confidence interval. This result is consistent with the earlier inference
based on the t score and p-value.

Proposition 2.8. When the number of degrees of freedom v
increases to infinity, Student’s t pdf becomes the standard normal

pdf.

Proof. The number of degrees of freedom v in the case of Student’s
t distribution is quite close to the sample size. When the sample size
increases, the sample itself becomes more and more like the popula-
tion, which is distributed as a standard normal distribution. Infinity
here represents the entire population. Therefore, the unbiased sample
variance estimate becomes the population variance. O
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The “proof” above is based on an intuitive argument. A technically
rigorous proof can be found in Appendix C, where we mathematically
show that when v — oo, the t pdf (2.14) becomes the standard
normal pdf (2.11).

It turns out that the convergence of the t pdf to the standard
normal pdf is rather fast. When a sample has 30 observations or
more, i.e., the degrees of freedom is 29 or more, the difference between
the t and the standard normal pdf is of the order of 0.1 or smaller,
for the one-tail level of significance bigger than 1%. In other words,
when the number of observations is 30 or more, the t statistic may
be treated as if it is a z score.

2.3.8 Chi-square test for the variance

Having discussed the z score and ¢ score for the sample mean, we
proceed to look at the test statistic for the sample variance.

A chi-square test can be used to test if the variance of a popula-
tion is equal to a specified value. It is an algorithm to answer a ques-
tion of whether the variance is equal, greater, or smaller than some
hypothesized value. In our case, we are interested to know whether
the sample variance is close to the population variance, which is
hypothesized to be 4.16 (: 2.042 from Example 2.9).

An important consideration is that variances are bounded from
below; they are strictly positive. This characteristic is different from
the sample average, which has no such constraint. A different test
with a different distribution is needed.

Now, suppose z is a standard normal random variable. Then
its square, i.e., 22, is a chi-square random variable with one
degree of freedom. Moreover, if z1,z2s,...,2, are independent and
each is a standard normal random variable, then Y 7, 27 is also a
chi-square random variable with n degrees of freedom (see Walpole
et al., 2012).

Proposition 2.9. If s? is the sample variance of a random sample
of size n, which is taken from a normal population with variance o2,

then the test statistic defined as

2
X2 =(n—1)

Qw| ®

has a chi-square distribution with n — 1 degrees of freedom.
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Proof. The normal distribution is parameterized by mean p and
variance 2. Now,

S (o =3 (w2 + @)

i=1 1=1

n

—i(wi—E)Z—l—i(f—u)Z—FQ(f—u)Z(wi—f)

=1

n

= 2 (ri —7)* +n(@—p)’.

7

The third term vanishes because > ; (a;, —T) = 0. Dividing each

term by o2 and in view of (n — 1)s? = 7" | (z; — 5)2, we obtain

n 2
%Z(%_M)2_(n_1)8_2+@_ (2.15)

SN2
The left-hand side is a chi-square random variable Y " , (CEZ ,u)
o
with n degrees of freedom. The right-hand side is a decomposition

into two terms. The second-term on the right-hand side is a chi-

square random variable with 1 degree of freedom. Therefore, the first
2

term on the right-hand side, x? = (n — 1)8—2, must be a chi-square
o

random variable with n — 1 degrees of freedom. O

An intuitive way to appreciate these assertions is to apply expec-
tation operations on both sides of (2.15):

%E (i (932‘—#)2> = (n—l)Eg) +E<(i_z " )

=1

n

On the left-hand side, after exchanging the order of operation for

2?2102

5 = n. Next, the
o
first term on the right-hand side, according to Proposition 2.5, is

expectation with summation, we obtain
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X2 Probability Density Function

0 5 10 15 20 25 30 35 40

Figure 2.7 x? distribution with 12 degrees of freedom.

E (s*) = 2. The second term E ((Z—p)?), from (2.9), is the variance
2

of the sample average, which is 0—. Thus, the right-hand side is
n
(n — 1) + 1, which equals the left-hand side.

The analytical form of the chi-square probability density
function with v degrees of freedom is, for z = 0,

-1

)

e 22

ene)
2

Figure 2.7 provides a plot of the chi-square pdf f(x;12) with 12
degrees of freedom.

flziv) =

Definition 2.23. Let O'g be a hypothesized value. With respect to
0(2], the chi-square hypothesis test is defined as
Hy:0? = o2
H,:0%# 08 two-tail test
o? < 08 lower one-tail test

o2 > 08 upper one-tail test
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and the test statistic is chi-square with n — 1 degrees of freedom:

82

X’ = (n—1)=. (2.16)

90
Example 2.12. With the statistical algorithm in place, we compute
the chi-square test statistic. In Example 2.10, we have computed
the sample variance with 13 observations, i.e., s> = 2.94. For the
hypothesized value 0(2], we set it to the population variance 4.16,
which is the square of 2.04 calculated in Example 2.7. Given these

values, the chi-square statistic is calculated as follows:
2.94
<2
=(13—-1)— = 8.48.
e R RT;

Next, we set the level of significance o to be 5%. The decision
rules to reject the null hypothesis are as follows:

X- > X|_ a or X2<xa two-tail test
— 5 n—1

X2 < Xa,n—l lower one-tail test
2> x%_am_l upper one-tail test
For the two-tail test, the critical values are
Xg.5%, 12 =440 and Xg?.&;%, 12 = 23.34.

Since x? is 8.48, it lies between these two critical values, as can be
seen in Figure 2.7. We cannot reject the null hypothesis.

Therefore, despite the fact that s> = 2.94 and 02 = 4.16 seem to
be numerically quite different, they are statistically no different.

Proposition 2.10. As the number of degrees of freedom n
becomes larger and larger,
Xn

== — 1.
n

Proof. Let v =n—1. From (2.16), we see that
X1 _ f
n—1 o?%

where n is the sample size for estimating the sample variance. When
n increases, i.e., when many more samples are taken, the sample
becomes the whole population. Thus, s> becomes o2. O
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The formula for the two-tail hypothesis test and (2.16) suggest an
2.

interval estimate for the population variance o

In our case study of Example 2.12,

(13-1)-2.94 _ (13—1) - 2.94
2334 -~ 4.40
Thus, the 95% confidence interval is 1.23 < ¢ < 2.83. Indeed, as

anticipated, the population standard deviation o of the value of 2.04
is within this 95% confidence interval.

1.23 =

[IA

= 2.83.

2.4 Prediction

Suppose we have assembled a sample of observations {z;}i; :=
{x1,29,...,2,}. What is a good prediction of the next x,y; yet
to be observed? To address this question, we note that conditional
on the knowledge of {z;}i;, the expectation or forecast of x,1 is
E (a:n+1‘{xi}?:1). In the absence of any other information, we need
to use the general model discussed in Section 2.2.7. That is, we have
the simple model z,+1 = T + €,41 and evaluate as follows:

E (zn1[{zi}ie1) = E (T + ena[{zi}in)
=F (f‘{x,}le) +E (%4—1‘{%}?:1)
T +E (ent1[{zi}iz1)

I
2l

Since knowing {x;}!"_; does not help at all to determine “noise” €41,
it is as good as computing the unconditional expectation of €,1,
which is equal to zero. Therefore, we have demonstrated that the
point prediction for z, is simply the sample average 7.

How good is this point forecast? A criterion is that the forecast
must be unbiased. According to Proposition 2.4, the sample average
indeed is shown to be unbiased: E (E) = u, where y is the population
mean.
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We see that the best prediction is T, and this value is dependent
on which sample is taken. According to Proposition 2.3, the variance
o
of this point forecast due to random sampling is —. And according
n
to Proposition 2.6, the variance of noise €,41 is o2. Consequently,

applying (2.6),

V (@n+1) = V(Z) + V(ent1) + 2C(T; €n41)
—+0°4+0
n

1
= <1+—> 0.
n

2

When the population variance o“ is unknown, which is typically
the case, we use the unbiased sample variance s? as its proxy. In
light of Proposition 2.7, we may entertain the notion of prediction
interval at 1 —« confidence level. After « has been set, typically 5%,
we can find the corresponding critical value denoted by ¢, o o1
of Student’s ¢ probability density function of n — 1 degrees
of freedom. It is the cut-off so that the area under the probability

o
density function (pdf) is 5 on the right side of the pdf.

We adopt n — 1 rather than n degrees of freedom because we do
not know the population variance o and use its unbiased proxy s

instead. Accordingly, the standard error is s and our prediction
interval’s lower bound is

]

T — 1+E.S.t17%7n71
The upper bound is

_ 1

T+ 1—1—5-3-1517%’”71

In other words, we expect with 95% chance that the new observation
Zn41 falls within these two bounds:

_ 1
T—/1+—"-5-1

1
<Tpt1 <TH/1+—-51T, «a
n n

a .
lff,nfl lff,nfl
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Example 2.13. Consider a sample of 30 logarithmic market val-
ues of Nasdaq-listed stocks issued by corporations domiciled in the
United States. The sample average has been computed and it is
7 = 19.58. Furthermore, the sample variance is found to be s? = 2.61,
or s = 1.62.

For the point forecast, we take the sample average 19.58. The crit-
ical value for two-tail 5% significance level and 29 degrees of freedom
is 2.045. It follows that the prediction interval’s lower bound is

19.59 — /14 1/30-1.62 - 2.045 = 16.22,

and the upper bound is

19.59 + /14 1/30 - 1.62 - 2.045 = 22.96.

Is it really true that 95% of the non-sampled observations in the
population fall into this prediction interval? Since we have the pop-
ulation, we can count those in the population that are not in the
sample yet its logarithmic market value lies in the prediction inter-
val. The total number N of the Nasdaq population is 2,249. Since
30 of them are sampled, we are left with 2,219, of which 1,997 are
found to be in the interval. In other words, empirically 90.00% of the
non-sampled log market values are in the interval, which is less than
the 95% expected.

Example 2.14. Consider the sample of 30 logarithmic market values
of NYSE-listed stocks issued by corporations domiciled in the United
States. The sample average has been computed and it is T = 20.93.
Accordingly, the point forecast of other NYSE stocks is 20.93.

Furthermore, the sample variance is s> = 5.04, or s = 2.24. Using
the same critical value of 2.045 and the procedures in Example 2.13,
the prediction interval is found to be

16.28 < 2p11 < 25.59.

The total number of NYSE population is 1,709. Since 30 of them
are sampled, we are left with 1,679, of which 1,633 are found to lie
in the prediction interval. In other words, empirically 97.26% of the
non-sampled values are in the prediction interval, more than the 95%
expected.
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What Examples 2.13 and 2.14 demonstrate is that the 95% con-
fidence interval most likely does not capture exactly 95% of the
population samples not used in the estimation. In other words, the
confidence interval for Example 2.13 is somewhat narrower, as it
captures only 90% of the population samples. On the other hand,
Example 2.14’s confidence interval is a litter wider than necessary. In
reality, since the population is either unknown or too large, or both,
there is no way to tell whether the confidence interval is appropriate.
Users of confidence interval have to brace for outliers, so as not to
be caught by surprises for the lack of “emergency preparedness”.

2.5 Summary

This chapter covers basic statistics from the elementary sample aver-
age to the chi-square test of sample variance. We start our exploration
into data science in Section 2.1 by providing various collections of
publicly available data pertaining to the financial markets around
the world. The asset classes we have discussed include stocks, foreign
currencies, and fixed incomes.

Section 2.2 provides perhaps the most basic way of extracting
some information from the data. To that end, we introduce the con-
cept of population vis-d-vis sample, and present a detailed discussion
of mean, variance, and covariance. We also define the concept of a
sample being unbiased and provide a formula to obtain an unbiased
estimate of the sample variance. We show that the sample mean is
an unbiased prediction of any observation from the population.

In Section 2.3, we present the scientific procedures of performing
a statistical test. The concept of null hypothesis is of utmost impor-
tance. We also highlight some prevalent abuses of p-value to obtain
the desired statistical significance. Every statistical test results in a
binary decision: either not to reject the null hypothesis, or to reject
it. The binary nature of decision-making is the unavoidable product
of the crispness of critical value.

Nevertheless, when the critical value is coupled with the standard
error, a well-defined confidence interval is obtained. The common
mechanism of z and t tests is illustrated with an example. To test
the hypothesis that involves the variance, we present the algorithm
known as the chi-square test.
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Section 2.4 is a short account of how basic statistics can be applied
to forecast the value in the “out-of-sample” fashion. The standard

1
error is larger by a factor of the order of — compared to the “in-
n

sample” case in Section 2.2.7. Consequently, the confidence interval
becomes wider.

Appendix A: Derivation of Standard Normal Probability
Density Function

Gaussian or normal probability density function p(z) with
mean p and variance o? is

Loz—p)?
plw) = ———e (7,

With no loss of generality, we can shift the mean u to 0 by a change of
variable that corresponds to a simple linear shift operation zf = z—p.
Then reuse x for the variable of p(z). So

1 loxzy2
p(x) = e_2(§') .
oV 2r

Our goal is to derive p(x) from first principles, so as to gain an
intuitive understanding of Gaussian distribution.

Suppose we release a packet of fine powder vertically from a height
above the origin of the x — y plane in an infinitely large room of still
air. Consider the interval Az between x and x + Ax. The probability
for the powder to land in this interval Az is p(x)Az. Similarly, the
probability of powder landing in Ay is p(y)Ay. The joint probability
of landing in the infinitesimal area AxzAy is, by the assumption of
independence,

p(x)Azp(y)Ay.

We postulate that this joint probability is equivalent to
q(r)AzAy, where ¢(r) is the probability density function that is
dependent only on the distance r from the origin (0,0). This is
because in the closed room with no ventilation, we may assume that
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the powder is equally likely to disperse to every direction. So in addi-
tion to independence, isotropy is also assumed. Consequently,

p(z)Azp(y)Ay = q(r)ArAy.

In other words, under the assumption of isotropy,

p(x)p(y) = q(r).

In the polar coordinate system, z = rcosf and y = rsinf, we
find that z and y are functions of r and 6. Differentiating both sides
with respect to the angle 6, we obtain

() 220 4 () 2217)

By calculus’ chain rule, we have

op(y)  dp(y) Oy(0) g Opla) _ dp(z) 0x(6)

=0 (A1)

90 dy 09 "% Tag T Tdr 00
Since dsin g =cosf and d(;i(;sﬁ = —sinf, we obtain
) _ _ ox(0) .o
W—rcose—x and 20 = —rsinf = —y.

It follows that the differential equation (A.1) becomes

p(@)p’ (y)z — p(y)p' (z)y = 0.

Here the prime ’ refers to differentiation with respect to the function’s
variable.
To solve this differentiation equation, we rewrite it as follows:

r@) _ vy
zp(z)  yp(y)

Since x and y are independent, the ratio defined by the differential
equation must necessarily be a constant C. That is,

p(z)  p(y)

zp(x)  yp(y)
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/

T
Next, to solve the differential equation, P(z) = C, we write

zp(x)

P (x) c

x, equivalently, d_p = Cxdx.
p(z) p

The solution is the indefinite integral with the integration constant
a, i.e.,

In (p(z)) = %$2 + a.

It can be rewritten as, with A = e?,

p(z) = Aexp (%aﬁ) .

From the standpoint of diffusion in dispersing the powder, it is less
likely for the density p(z) to be large when z is large, i.e., far away
from the origin. Therefore, the constant C is necessarily negative.
Hence, we write C' =: —(?, and the probability density function p(z)
becomes

p(z) = Aexp (-%ﬂ) .

Now, probability must sum to 1.

/OO p(z)dz = 1.

—00

It follows that

1 © ¢ oo ¢
——/ e_2x2da:—2/ e 7% dy.
A —00 0

To change the coordinate system from Cartesian to polar, we
square both sides of the equation to obtain

1 OO_QZQ 0 ¢,
mz(/o e 2 d$>x</0 e 2ydy>. (A.2)
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The Cartesian infinitesimal area dx - dy is equivalent to dr - rdf in
the polar coordinate system. Consequently, we obtain, knowing that

r? = a2 + 92,

¢ o ¢
/ / - 2 2+y2) drdy = /2 / e~ 2" dr do.
o Jo

The region of integration on the left-hand side is the first quadrant.
Accordingly, in the polar system, r ranges from 0 to oo, and the angle
0 goes from 0° to 90°, which is 7/2.

Now, we note that the radius r and € are independent. Accord-
ingly, we can separate the double integral into a product of two single
integrals, as we may expect from the fact that the double integral
originally is a product of two independent variables in (A.2). Hence,

1 T [ 2o, &
—:/ / e 2" rdrd@-/ d@/ 2"

oo <2 7"2
/0 e 2" d(r 2/2)—5/ P2z, Wherez:ZE

w1

22

2ol 3

In this way, we have identified A:

L7 . 45

4A2 22 V2T

It follows that the functional form of p(x) is found to be

p(z) = \/C2_7Texp (—%29;2> .

Finally, to find ¢, we look to the variance o2. When the mean is
zero, the variance is defined as

o2 = / " op(a) da = 2 /0 ~ 2p(a) da. (A.3)

—00
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x2e” 2xd:v

T

1
Performing the integration by parts, it can be shown that { = —
o

in the following. Let u = z. Hence, du = dx, and

2 2 2
dv = xe_CQ%dx = e_<2%d <%> .

2
For the integration /dv, we let w = %, and we obtain /ec%dw.
1 z?
It follows that v = —?e_@ 2 . Therefore, for (A.3), we have

:L <_ $ie—C T h
var 0

2¢ e >
=0+ 2"”3d
<\/ﬁo c o

:C_lz/_ p($)dx:é><l
1 1
:@ = C:;

In this way, we have derived the normal probability density func-

tion (pdf) with mean 0 and variance o2:

p(x) = 127Te%(£) :

When the variance is equal to 1, we obtain the standard normal pdf
(2.11).
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Appendix B: Stirling’s Approximation

Suppose n is a non-negative integer. By performing integration by
parts n times, it is a good exercise to show that the n factorial can

be expressed as
(o]
n! —/ e Tx"du.
0

The integrand can be written as e®™®)~=2 Let f(z) = nln(x) — z.
This function has its maximum at n, since

f(z) = g —1 and f"(z)= —% <0.

Let us perform a Taylor expansion around = n up to the second
order, i.e., f(z) = f(n) + f/(n)( — )+ f'(n)(@ — n)*/2 + O
Since f’(n) = 0 as expected, and f”(n) = —1/n, it follows that

2

oo 00 1(z—n
n! = / enln(:p)fxd$ ~ / enln(n)—n—§( po ) dx
0 0

(z—n)?

] < 1
~e" n(")_"/ e 2 n dzx.
0

The constant outside the integral is n"e™". We need to evaluate
the definite integral. Making the substitution y = x —n, the resulting

integral becomes
o0 y2
/ e 2ndy.
—n

Next, let u = i, which leads to

vn
& 1 2
\/ﬁ/ e 2" du.
—vn
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1
Since the integrand e~ 2% dies out quickly as m increases, we can
extend the range of integration as follows:

19 Lo
e 2" du~ e 2" du.
—/n )

©
Knowing that / e 2% dx = v 27, it follows that

—0oQ
n_ —n * _11’2 -, n
n!~n"e "\/n e 2% dr =e "n"V2mn.
—00

Hence, the Sterling formula for approximating n! for large n is
obtained.

n!~e "n"V2mn |

Appendix C: Convergence of ¢t PDF to Standard
Normal PDF

We assume that the number of degrees of freedom v in (2.14) is a
whole number denoted by d. In this special case, the Gamma func-

tion I'(d) becomes (d—1)!. Instead of (2.14), student’s ¢-distribution
with d discrete degrees of freedom has the probability density func-

tion (pdf) of
d—1Y\,
— )

ta(x) = RS

()"

First, consider only the functional form of ¢;(x):

with —oco < z < 00.
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This is a power function and it is continuous and differentiable for

any real-value x. Since this power function is strictly positive, we let
d+1

x2\ 2
=(1+=) .
v=(1+%)

To turn y into the indeterminate form of 0 when d — oo, we write

22
In <1 + g)
Iny = — (C.1)
d+1

Applying L’Hopital’s rule to the right-hand side of (C.1) with respect
to d, we obtain

xZ
&2
.’132
14+ — 2 1 d 1 2
lim d__ _ lim (d+1)
d—o0 - 2 d—o0 d? 1 x2 2
(d+1) 7
2 2
R () el
2 d—oo d? d—o0 14 .1'2
d
1'2
T2

Thus, we have shown that limg_,. Iny = 2 /2. It then follows that
limg_ 00 ¥ = €xp (a;2 / 2). Equivalently, limgy o, 1/y turns out to be

1 1 2
. . _21’
lim o1 e

d—00 2\G
<1 + g)
Next, to find the following limit of the constant term of t4(x), i.e.,
()
lim 2

2
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we need to apply Stirling’s formula derived in Appendix B when
the number d is large: d! ~ v/2rd e~%d?. Hence,

d—1
(d—l) _ﬂ(d—l)Z
2n [ —— |Je 2 —_—
1 2 2
— lim

lim —-rouor——=1.
d—o0 d—2
2m | ——
2
The second limit is
d—1 d 1
. e 2 . e 2e2 _1
lim —— = lim — = 2.
d—00 p— 5 d—o00
e 2 e z2e

For the third limit, we rewrite it as a product of two limits:

d—1 2
<d—1>2 <d—1>2 d—1
lim 2 = lim 2 2

d%oo\/a<¥>dz2 =00 <%>22\/3 (C.2)

G s AN ey
b \d—2 iseo V T2d

The first term of the product (C.2) is indeterminate of the form 1°°.
-2

d
d—1\ =
So we let y = (ﬂ) . Taking the natural logarithm, we arrive
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| d—1
n PR
d—2

at lIny = — g Applying L’Hopital’s rule, we have
d—2
d—2 (d—2)—(d—-1)
. d—1 (d—2)? . 1ld—2 1
lim = lim -——— = —.
d—o00 _ 2 d—oo 2d—1 2
(d—2)

Consequently, limg_ ooy = e3.
The second term of the product (C.2) is simply

lim —d_l—\/lim —d_l—i
d—o0 2d a d—oo  2d a \/5

Combining the first and second limits with the third limit, we
obtain

In other words, for the constant terms of Student’s ¢ pdf,

<d— 1>|
lim 2 = 1

As a result, we have shown that

1 1
lim t4(x) = ’

d—o0 2T ’

which indeed is the standard normal probability density func-
tion (2.11).
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Appendix D: Derivation of Chi-Square Probability
Density Function

Suppose a random variable X is normally distributed with mean p

and variance o2. Then a standard normal random variable is

given by

X —pu q
o

Z =

N(0,1).

The chi-square random variable is Z2.
To obtain the pdf of chi-square distribution, consider the cumu-
lative distribution function of Z?:

F(z) =Pr (2% < z).

Being a monotonic function, we can take the square root, resulting
in the probability of the standard normal random variable Z that
takes values between —y/z and /z:

F(z) =Pr(—vz<Z<z).

It follows that, since the pdf of standard normal distribution is sym-
metric, we have

VE 1 1. VE L 1
F(z)—/ e2$da:—2/ e 2% dx.
0o V2r

Now, we perform the change of variable. Let x = |/y. So

d 1 7ld
== — 2 .
xz 2y Yy

The range of integration is from y = 0 to y = z. Thus, our integral
becomes

F(z) = 2/02 \/12_7Te% (;@) dy — /0 ﬁlﬁy%e%dy.

By the fundamental theorem of calculus, we differentiate the inte-
gral to obtain the probability density function (pdf), for 0 < z < oo,
£ = F/(z) = == he s
z)=F'(z) = z72e 2.

VTV2
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1
Since I' <§> = /7, the pdf can be written as

It is indeed the chi-square pdf with one degree of freedom.

Before we can claim it, we need to check whether [ f(z)dz = 1.
To integrate, we change the variable by letting z = 2x. Thus, dz =
2dz, and the integral becomes

1 [ 1 1o/~ 1 1 1,
— — — ——x2 e " 2dx.
v lo V2 VTlo V22

Upon further simplification, we obtain

! / T leegy — 1

— x2 e fdr =1,

VT Jo
: . . . 1.
since the integral is the Gamma function evaluated at o ie.,

()

In summary, we have demonstrated that the distribution of Z?2 is
governed by the chi-square probability density function f(z).

l—1 —x _
(2x)2" e " 2dx =

Exercises

2.A Suppose X; for i = 1,2,...,100 constitute a sample randomly
taken from a population. Suppose it is known that for each <,
the population mean of X; is 0.02, and the population variance
of X; is 0.16.

(1) What is the value of E (X?)?

2) What is the value of the mean of the sample average?

)
3) What is the value of the sample variance?

4) What is the value of the mean of Ss7 := Z?L X;?

5) What is the value of the variance of Ss7 := Z?il X;?

(
(
(
(



2.B

2.C
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(6) What is the value of the mean of Ty7 := >0 (—1)"+1X;?
(7) What is the value of the variance of T3; :=
2?21(_1)”1)(2‘?

(8) What is the value of the covariance between X37 and X737
(9) What is value of E (X?) for any i = 1,2,...,1007?

(10) Suppose the sample average X of this sample is 0.01. What
is the value of the z score?

(11) Suppose neither the population mean nor the popular vari-
ance is known. Furthermore, suppose the sample average
X of this sample is 0.01, and the sample variance is esti-
mated to be 0.02. What is the t statistic for the null
hypothesis Hy : p = 07

The central limit theorem is a rather startling claim. Regard-
less of the statistical distribution, a random variable is following
and regardless of whether the statistical distribution is known
or unknown, if the sample size n of each sample is “sufficiently
large”, the distribution of the computed sample averages will
be approximately a normal distribution described as

2
7~N(u,0—>.
n

In this description of the normal distribution, X is the sample
average of the random variable X computed with n observa-
tions. The mean and variance of X is denoted by, respectively,
p and o2,

Consider a random variable defined as

Y =vnX —no.
What are the mean, variance, and distribution of Y'?

Suppose the accuracy of all Al systems for solving a particular
problem has a mean accuracy of 60% with a standard deviation
of 18%. Suppose a particular company’s 225 Al systems scored
an average of 62%. Is this company’s Al technology ordinary?
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(Hint: Apply the property of cumulative distribution func-
tion and perform a one-tail test toward the right tail of the
distribution.)

2.D Suppose X is a standard normal random variable. Explain why

Pr(X £ z) =Pr(X < z).

2.E Suppose the sample variance of a sample is estimated to be 4.0
from 37 observations.

(1) What is the confidence interval for the sample standard
deviation at the confidence level of 95%? (Use a table from
NIST’s online Engineering Statistic Handbook to look up
for the critical values.)

(2) If the unknown population standard deviation is hypothe-
sized to be 6.0, what does the 95% confidence interval say
about this hypothesis?

2.F Given a single random variable Y and a sample of 63 observa-
tions of Y. The sample average is 2.0 and the sample variance
is 9.0.

(1) What is the best prediction of a new observation?
(2) What is the standard error estimated from the sample?

(3) Use a table from NIST’s online Engineering Statistic Hand-
book. What should be the two-tail critical value of Student’s
t distribution for 99% confidence interval?

(4) Use the critical value in the previous sub-question and
calculate the lower and upper bounds of the confidence
interval.


https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm

Chapter 3

Comparative Data Analysis

This chapter is a sequel to Chapter 2, where we now focus on
comparing a population with another population. First we look at
how probabilities are estimated. Beginning with the Bernoulli ran-
dom variable, and working through the Bernoulli trial and binomial
probability, we show that the frequentists’ approach to estimating
probabilities is unbiased. We then draw a connection from Bernoulli
trials to chi-square random variables.

Some important tools in statistics are the contingency table and
the accompanying chi-square test. Concrete examples are provided to
show in particular that we can statistically study whether daily stock
price changes are independent of where the stock is listed. Cramer’s
V' value is also discussed to provide a check on the chi-square test.

The next part of this chapter compares whether two populations
have the same mean. Naturally, this chapter also covers F-tests for
comparing the variances from two populations. Data scientists need
to know more about F' distribution and that each F' random vari-
able has degrees of freedom for the numerator, and other degrees of
freedom for the denominator.

The last part provides an algorithmic description of a power-
ful statistical tool called ANOVA, which is a generalization of two
populations to several populations through the analysis of variance.
Specifically, total sum of squares is decomposed into explained sum of
squares and residual sum of squares. We provide a practical example
to run through the algorithm of ANOVA step by step.
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3.1 Binomial Distribution

In some areas, binary outcomes are important. As an example, sup-
pose we have invested in a stock. Being long-term investors, we lock
ourselves away from monitoring the stock price and the market, so as
to focus on our primary job. A year later, we want to know whether
the stock has gone up or not. So we are talking about a binary
outcome, either up or down.

Though improbable, it is possible that there is no change in the
stock price even after a year. In this case, we can count it as going
down, by virtue of the fact that we have lost the opportunity to
invest in other stocks that have a price change. Also we have to
pay for trading commission, clearing fee, and other administrative
charges. Treating the improbable event of no change in stock price
after a year as a down outcome simplifies our statistical analysis.

With just one stock, there is nothing much to do in data science.
What if we look at all the stocks traded on an exchange? Then, over
a period of time, we can count the number of winning stocks. We
can then calculate the probability p of a stock price going up after
a period of time as follows:

_._ number of stocks whose prices have gone up
P= total number of stocks ’

The probability of a stock price going down after a period of time
is simply 1 — p =: ¢. This simple binary formalism is the frequen-
tist’s approach to estimating the up probability.

3.1.1 Bernoulli random wvariable and binomial
distribution

Definition 3.1. A Bernoulli random variable X is equal to
either zero or one. We define p as the probability that X equals
one and we have

Pr(le):p; Pr(X:O)zl—p.

With respect to Definition 3.1, we may identify or map an up price
change to 1 and a down price change to 0.
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The mean p and variance o2 of a Bernoulli random variable
are easily found to be, respectively,

p=px1+(1—-p)x0=p,
o =px (1—p)*+(1—p)x (0-p)*=p(1—p).

Thus, we see that the discrete Bernoulli distribution with mean p
and variance o? is parameterized by p and only p. Furthermore, the
probability of a Bernoulli random variable can be written as

Pr(X =z) = p°(1 —p)t=.

Moreover, the cumulative distribution function is described as
follows:

1f-mmmmmeeeea °
1—p, forz=0;
<) = ’ ’
F(X s 2) {1, for x = 1. 1—p
O ______________
0 1

As mentioned earlier, the parameter p can be estimated by the
number n of up stocks after a period of time versus the total number
of stocks N:

_n
p= N

Is this estimator unbiased? To answer this important question, we

need the binomial distribution.

Definition 3.2. Suppose the result of each Bernoulli trial is ‘suc-
cess’ with probability p and ‘failure’ with probability ¢ := 1—p. The
binomial distribution gives the discrete probability Pr(n, N;p) of
obtaining exactly n “successes” (X = 1) from N Bernoulli trials:

Pr(n;N,p) = <JZ> PN, (3.1)

M) = 2 is the binomial coefficient of the number of

n/ — nl(N—n)!
ways to choose n items from a total of NV items.

where (
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The binomial probability distribution function (pdf) (3.1) is
by itself a probability. Hence, the sum over all possible values of n
must equal to one. Let us verify whether it is indeed the case. Since
qg=1—p, we have

N N N
ZPr(n; N,p) = Z < )p"an =(p+ q)N =1.
n=0 n=0 n

Example 3.1. Suppose the probability of an up price change a year
later is 0.6. What is the probability of having 3 stocks that experience
a positive price change out of a portfolio of 10 stocks?

To answer this question, we just need to plug the numbers, p = 0.6,
n = 3, and N = 10, into the probability distribution function 3.1
and compute, up to 2 decimal places in percent,

10
Pr(3; 10, 0.6) = < 3 )0.630.47 = 4.25%.

The low probability of 4.25% is to be expected because with the
up probability p being 60%, we anticipate more than 3 stocks (i.e.,
6 stocks) that go through a positive price change.

Proposition 3.1. The mean of a random wariable X that follows
the binomial distribution is Np. That is,

E (X ) = Np.
Proof. By definition, the mean is

N

N

_ . _ N! n N—n
E(X) = ;_:Onpr(n,N,p) = ;::Onmp q

_iv: Nt pnqun

— (N —n)l(n—1)!

N

_ (N_ 1)' n—1 N—-1—(n—1)
*NPZ(N—1—(n_1>)!(n_1)!p 1 '
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Let M = N —1 and m = n—1, and the summation can be written as

al N —1)! o N1
Z(N—l—((n—l)))!(n—l)!p CA.

n=1
M
_ Z M! pqufm
_ Im|
= (M —m)!m!
M
= Z Pr(m; M,p) = 1.
m=0
It follows that
E(X) = Np.

O

Proposition 3.2. The variance o of a random variable X that fol-
lows the binomial distribution is Np(1 — p). That is

o> =V (X) = Np(1 - p).

Proof. By definition, the variance o2 is the expected value of the
squared deviation from the mean, which by Proposition 3.1, is deter-
mined to be Np. Therefore,

N
o> =E((X = Np)*) =Y _(n— Np)* Pr(n; N, p).

n=0

Upon expansion of the quadratic term, which is the squared deviation
from mean Np, we obtain

n? — 2Npn + N?p?.

For the last two terms, who have
N

Z N2p? Pr(n; N,p) = N?p?
n=0
and
N N
Z(—2an) Pr(n; N,p) = —2NpZnPr(n;N,p) = —-2Np-Np
n=0 n=0

= —2N2p2.
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For the first term,

N N NI
nz_:onz Pr(n; N,p) = §n2mpnq]v_n
= N —-1! n— -n
Np;::ln(NEn)!(n)— 1)! "
al (N_ 1)' n—1 N-—n
_Np;(”_l“)w—n)!(n—n! g
N
(N_ 1)' n— -n
_Np;(” D=t —mi? ¢
N
(N_ 1)' n— —-n
+an; ey
N
= Np- (N — 1)pZ v EJZ)T(:)!_ 2)!p"*2 N=n 4 Np

n=2

= N(N —1)p* + Np.
We can now put everything together to obtain

o? = (Np)®> — Np* + Np — 2(Np)? + (Np)* = Np — Np?
= Np(1 —p).

O

To sum up, we have found that the mean of the binomial random
variable is N times the mean of single Bernoulli trial. In the same
fashion, the variance of the binomial random variable is also N times

the variance of a Bernoulli flip of coin.

As for the cumulative distribution function of the binomial
distribution, it is a partial sum up to [z, which denotes the largest

integer that is smaller than x. In other words,

£
N -n
F(a:;N,p)—Pr(ng;)_Z<n>pnqN _

n=0
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The partial sum F'(z; N,p) is a strictly monotonic function of x.
Proposition 3.3. The probability estimator p = % s unbiased.

Proof. The probability of obtaining n successes in N trials is the
binomial probability: Pr(n; N,p). The expected value of the estima-
tor p=n/N is therefore given by

Since E(ﬁ) = p, it follows that p is an unbiased probability
estimator. O

3.1.2 The chi-square test of independence

Having discussed the binomial distribution, we have the ingredients
in place to describe an algorithm for testing the independence among
groups of observations. For a start, let us consider a coin and whether
it is fair — 50% chance of getting a “head” and 50% chance of getting
a “tail”. Suppose we toss the coin 100 times, and we observe that
there are 54 heads and 46 tails. Given that they are not 50 apiece
as we have expected of a fair coin, do these data disqualify the coin
for fairness? The chi-square test of independence is a statistical
protocol that can address this question.

Proposition 3.4. The probability of a coin turning up with a “head”
is p. Let the random variable O = n be the number of occurrences
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of “heads” (or successes) in N trials of tossing the same coin. We
define a random variable Z in terms of O as follows:
O —
Z = ,u‘
o

Suppose N1 is the expected number of “heads”, while Ny is the actual
number in an experiment of N tosses. Similarly, suppose No is the
expected number of “tails” whereas Ny is the actual number of tails.
(These two events are exclusive and thus N1 + Ny = N.) Then the
statistic

72=>" M (3.2)

is a chi-square random variable with one degree of freedom.
Proof. From Propositions 3.1 and 3.2, since 4 = Np and o2 =
Npq, we have
_n—Np
vVNpg
Since we can write N as equal to Np+ Ng and also as n+ N —n,
the term (N —n — Nq) + (n — Np) = 0. It also follows that, when
multiplied by a non-zero combination (N —n — N¢q) — (n — Np), and
then by p,

(N =n—Ng)—(n—Np))((N —n—Ngq)+(n—Np)) =0
= (N —n—Ng)*>—(n—Np)>=0
= p((N—n—Ng)* - (n—Np)*) =0

It follows that,
(n—Np)*> _ (n—Np)>+p((N—n—Ng)*— (n— Np)*)

2
7= Npq Npgq
_ (1=p)(n = NP)*+p(N —n— Ng)°
B Npq
g(n — NP)? + p(N —n — Ng)*
B Npq

(n — Np)? N (N —n— Ng)?
Np Ngq '




Comparative Data Analysis 71

Given the probability p and N trials, the product Np can be inter-
preted as the expected number of “heads”, which is N;. Likewise, Ng
is interpretable as the expected number of “tails”, i.e., No. Letting
the actual numbers be Ny =n and Ny = N — n, we obtain (3.2).
As proven in Chapter 2, when N is large, Z is a standard normal
random variable. It follows that Z2, as demonstrated in Appendix A,
is a chi-square random variable with one degree of freedom. O

Example 3.2. There are 1,500 returns and 55 returns are smaller
than the fifth percentile. What is the chi-square statistic?

There are only two possibilities: either below or above the fifth per-
centile. Fifth percentile means that there is a 5% chance of falling into
the “below” bin. So the expected frequencies are N1 = 1,500 x 0.05 =
75 and Ny = 1,500 x 0.95 = 1,425. The chi-square statistic is there-
fore

9 2
(55 — 75) N ((1,500 — 55) — 1,425) _seL
75 1425
We can now address the question about the fairness of the coin
from the experiment of tossing it 100 times, which yielded 54 “heads”
and 46 “tails”. The expected frequency for both is 50. Therefore, the
chi-square statistic is

(54 — 50)2 N (46 — 50)2
50 50

= 0.64.

Our null hypothesis is that the frequencies of “head” and “tail”
should each be 50.

By design, this is a one-tail test. Looking up the table from NIST,
we find that the critical value for one degree of freedom at the 10%
level of significance is 2.706. Clearly, the null hypothesis cannot be
rejected, which means that there is evidence to support the hypoth-
esis that the coin is fair.

Suppose there are K mutually exclusive bins. A data point falls
into one and only one of these bins. Let the probability that a data
point falls into bin ¢ be p;. Since probabilities add up to 1, it must
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be that

K
ZP@ =1
i—1

The simple fair coin illustration has it that K = 2, i.e., either a
“head”, or a “tail”, and p; = ps = 0.5. For K = 6 and p; = 1/6
for each ¢, we are testing for the fairness of a dice. Since the six
possibilities are mutually exclusive, and by the properties of chi-
square distribution, we have

6 7\ 2

: N; — N;
Zzgzz% L2
i=1 ¢

=1

The number of degrees of freedom is 5 rather than 6 because the
sum of all the numbers for six possible outcomes is the total number
N, which means that one of the occurrences can be written as N —
sum of other occurrences. As a result, a degree of freedom is lost by
this hard constraint.

In general, the individual probabilities p; need not be equal to
each other. The test statistic is calculated as

N N) d 9

ZZQ ZT ~  XK-1» (3.3)

=1

which is a random variable that distributes according to the chi-
square distribution with K — 1 degrees of freedom.

3.2 Contingency Table

Everyday, stock prices traded at NYSE, Nasdaq, and NYSE
American either advance or decline. Though not as frequent, some
stocks remain unchanged. As discussed earlier, at least in part due to
the cost of lost opportunity, stocks that remain unchanged in price
are considered to be in the “decline” category.

We can obtain different lists of stocks with Nasdaq’s Stock
Screener. We use the filter criterion of “Exchange”, which indicates
the venue where the company’s common stock is listed. Nasdaq clas-
sifies or divides all its listed stocks into three markets called “Global


https://www.nasdaq.com/market-activity/stocks/screener?exchange=NYSE&industry=ALL&region=North%20America
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Select”, “Global Market”, and “Capital Market”. For convenience,
we group the remaining three ADR stocks into the “Capital Mar-
ket” category. We can also obtain stocks listed on NYSE, as well as
AMEX, which is now a division of NYSE. So altogether, we have
five venues where all the companies that meet the listing criteria are
currently listed.

Our question of interest is whether the venue of listing has any
relationship with the daily price change. Therefore, the null hypoth-
esis and its alternative are as follows:

Hy : Daily price change is independent of where the stock is listed.

H 4 : Daily price change is not independent of where the stock
is listed.

The hypotheses seem to be rather qualitative. Is there a way or a
statistical test to ascertain which hypothesis is probably more true
than the other?

To provide a quantitative device, consider a matrix called the
contingency table.

Definition 3.3. A contingency table, also known as a cross tab-
ulation, is a type of table in a matrix format that displays the fre-
quency distribution of the variables.

The contingency table allows data with two features (dimensions)
to be compared in the setting of chi-square test.

Before proceeding further, let us examine what assumptions have
been made with regard to the chi-square test that we have performed
so far, and that, using the contingency table, we shall perform again.
The assumptions are as follows (see McHugh, 2013):

(1) The bins must be mutually exclusive and cover all possible
scenarios.

(2) The bins must be independent of each other.

(3) The data must be frequencies, i.e., number of occurrences of
a particular bin.

(4) Each data point is unique to one and only one cell in the con-
tingency table.

(5) Most of the cells of the contingency table must be non-zero and
more than a handful.
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Overall, these assumptions are not exorbitant and they are readily
met in reality. The last assumption will most likely be satisfied if the
design of bins is such that they are not too fine-grained.

To illustrate the concept the chi-square test with a contingency
table, without loss of generality, consider a 2 x 3 matrix of two groups
and three categories. We present the observed numbers of occurrences
by group and category in a table as follows:

Category a  Category b  Category c Row total
GI‘OLlp 1 N1’a Nl,b Nl,c N1’a +N17b+N1,c
Group 2 Naog Naoy Na . Nao+ Nop+ Nac

Column total Nia+ N2a  Nip+ Nop  Nic+ Nope > > 5o Nij

We have added one column to capture the totals across the columns
for each row. An additional row is also included to account for the
totals across the rows for each column. The grand total is the sum
of all the observed frequencies, i.e., 21221 25: o Nij-

Proposition 3.5. The expected frequency for the cell located at
row i and column j is given by

Row Total; x Column Total;
Grand Total

Expected Frequency;; =

Proof. The frequency probability of belonging to row i is the
row total of row i over the grand total. For i = 1,2,

Z;:a NZJ
5 .
Zi:l Z;;a Ni;

pi =

Given this probability, the expected frequency of cell (i, j) is to mul-
tiply p; with the total of column j, i.e.,

2
[ i N 25 Ni
im1 i=1 2uj=a 1Vi,j

To gain further insight into Proposition 3.5, consider the fact that
given row 4, the summation of the expected frequencies IV; ; across
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the column yields the total of row 1.

c c 2 c 2
ZNW' = Z (Z Nm) Pi = ZZNM Di
Jj=a

j=a \i=1 j=a =1

2
= i N | 2ima Vi
- 27] 2
j=a i=1 Zi:l Z;:a Ni,j

C
= Nij
j=a

Let us now compute instead the probability of belonging to col-
umn j as

2
Zi:l Niyj
9 )
Dic1 2j—a Vi

for j = a,b,c. Moreover, the expected frequency of cell (i,7) is to
multiply p; with the total of row i:

b=

a
Nij=|>_Nij|ps
j=a

Same arguments lead us to the outcome that

Example 3.3. Using Nasdaq’s Stock Screener, stock data files are
collected for February 19, 2021. We need to filter out stock issues that
are not common stocks such as preferred stocks, warrants, rights,
funds, and so on. We then count the number of companies by its
daily price change. When the price change is strictly positive, it is
counted in the category of advancing stocks. We take those stocks
that are not advancing as declining stocks. This counting scheme is
applied consistently for each of the five exchanges. The results are
displayed in Table 3.1 as a contingency table.


https://www.nasdaq.com/market-activity/stocks/screener?exchange=NYSE&industry=ALL&region=North%20America
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Table 3.1 Contingency table on February 19, 2021.

Exchange\Price change Advancing Declining Row total
New York Stock Exchange (NYSE) 982 368 1,350
Nasdaq Global Select (NGS) 959 353 1,312
Nasdaq Global Market (NGM) 282 111 393
Nasdaq Capital Market (NCM) 526 306 832
NYSE American (NYSEA) 99 61 160
Column total 2,848 1,199 4,047

Each row total corresponds to the total number of common stocks
listed on each exchange named in the first column. On the other
hand, the column totals are the number of advancing stocks and
that of the declining stocks over all exchanges.

In conjunction with the expected frequencies in Table 3.2, the
chi-square statistic is computed as follows:

o (982—950.0)% =~ (368—400.0)% = (959-923.3)? N (353—388.7)2
950.0 400.0 923.3 388.7
(282—276.6)2 N (111-116.4)2 N (526—585.5)2
276.6 116.4 585.5
(306—246.5)2 N (99—112.6)2 N (61—47.4)2
246.5 112.6 47.4
= 34.604.

Finally, we need to check the number of degrees of freedom of 2
that we have computed. It is given by the following formula:

degrees of freedom = (rows — 1) x (columns — 1) =: (r—1) x (¢—1).

Since there are two rows and five columns, the number of degrees of
freedom of x? is 4.

Now, according to the chi-square table of NIST, the one-tail
critical value of chi-square distribution with 4 degrees of freedom at
the 5% level of significance is 9.488. At the 1% level of significance,
the critical value is 13.277. The computed value of x? is 34.604, which
is much larger than 13.277. Hence, we find that the null hypothesis
must be rejected.
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Table 3.2 Expected frequencies corresponding to the contingency table
on February 19, 2021.

Exchange\Price change Advancing Declining Row total
New York Stock Exchange (NYSE) 950.0 400.0 1,350
Nasdaq Global Select (NGS) 923.3 388.7 1,312
Nasdaq Global Market (NGM) 276.6 116.4 393
Nasdaq Capital Market (NCM) 585.5 246.5 832
NYSE American (NYSEA) 112.6 47.4 160
Column total 2,848 1,199 4,047

The procedures detailed in Example 3.3 allow us to address the
question about the independence of stock price movements with
respect to the listing venue or Nasdaq market classification of com-
panies. The test shows that probably stock price movements are
not independent of where the companies are listed or how they are
classified. This empirical result is intriguing because the orthodox
paradigm of finance is that stock price is supposedly the reflection
of investors’ evaluations about the financial prospect of a publicly
listed company. Where the stock is listed should not be a factor by
any estimation. Yet the chi-square test results with the contingency
table do not support this basic tenet of finance.

However, it is possible that the chi-square test has a tendency to
reject the null hypothesis, which leads us to a false positive finding —
falsely rejecting the null hypothesis when it is actually true. One of
the ways to examine this possibility is to conduct the strength test
for the chi-square through Cramer’s V statistic for a contingency
table with r rows and ¢ columns:

2
V= _ )
Nmin(r — 1,c—1)

where N is the grand total. In Example 3.3, r = 2, c =5, N = 4,047,
and x? = 34.604. Cramer’s V statistic computed is only 9.247%. In
other words, the association or correlation between exchange listing
venue and daily stock price movements is less than 10%.

The strength test result for Example 3.3 is indicative of the lack
of strength in the chi-square value of 34.604. Though the calculated
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chi-square value exceeds the critical value, Cramer’s V statistic shows
that it is still not large enough to elicit an association between venues
of listing and stock price movements.

This case study shows that we need to be careful in not making
a wrong conclusion based only on the test statistic exceeding the
critical value.

3.3 Comparison of Two Populations

Suppose we are interested to find out between the stocks listed on
Nasdaq and those listed on the NYSE, whether the average logarith-
mic market values are statistically equal. What are the tests available
for providing an answer to this question?

3.3.1 Two-sample t test

Before plunging into the test itself, the first stage is to state the
assumptions and they are as follows:

(1) The data follow normal (also known as Gaussian) distribution.

(2) The two samples are independent. There is no relationship
between the individuals in one sample and those in the other
sample.

(3) Both samples are random samples from their respective popula-
tions. Each individual in the population has an equal probability
of being selected.

The second stage is to state clearly the null hypothesis and the
corresponding alternative hypothesis. Let finasdaq and pinyse be the
population means of log market values of equity securities listed,
respectively, on Nasdaq and NYSE.

Hy: The log market values of a Nasdaq stock and an
NYSE stock are equal.
HNasdaq — Mnyse = 0.

Hip: The log market values of a Nasdaq stock and an
NYSE stock are not equal.

HNasdaq — UNYSE ?é 0.
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The third stage is to collect data. Before doing that, it is impor-
tant to refer back to the assumptions. To satisfy Assumption (1)
of normal distribution, we need to take samples with a sufficiently
large sample size. As a guide, if the sample size is 30 or more, then
there is a high likelihood that Assumption (1) is satisfied. Next, with
regard to Assumption (2), we note that the listing criteria differ for
these two exchanges and most likely there is no relationship between
these two samples, when individual members are chosen randomly
with equal probability, as required by Assumption (3).

Proposition 3.6. Suppose d = 1 — H2, where [i1 is the sample
mean of Population 1 and jio that of Population 2. The corresponding
sample variances are sy and sz, respectively. If the sample sizes are
n1 and ng, then the variance of d is given by

2 2
S s

s2=21 72
ni ng

Proof. Under Assumption (2), the two samples are independently
taken from their respective populations, we have C (/’Il, ﬁg) =0 and

s? =V<g> =V (fir — fiz) =V (fin) + V (fiz) — 2C (fin, fiz)

=V (1) + V (1i2)
4,
n1 no ' O
Thus, the standard error for this two-sample t test is simply s.
The fourth stage is estimation. For this purpose, we take one
random sample each from the two populations, i.e., the market values
of 30 stocks listed on Nasdaq, and the market values of 30 stocks

listed on NYSE.

Example 3.4. We find that, in log scale, the sample averages are
i1 = 19.58, fiz = 20.93, and the sample variances are s? = 2.61 and
s% = 5.04. It follows that, with ny = no = 30,

/2.61 5.04

Given that the difference at the population level is d, the ¢ statistic
with the null hypothesis of d = 0 is obtained as

19.58 -20.93 -0 —1.35
= = —2.67.
0.5050 0.5050

t=
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Now, the number of degrees of freedom v of Student’s ¢ pdf is
approximately given by Satterthwaite (2016):

(s7/n1 + s3/n2)* '
(s1/n1)?/(n1 — 1) + (s3/n2)?/(n2 — 1)

Plugging in the estimates in conjunction with ny = ns = 30, we
find that v = 52.71. The p-value for the ¢ score estimate ¢ turns
out to be 1.0%. At the 5% level of significance, the critical value is
2.006. From Example 3.4, we have ‘ﬂ = 2.67. Since ‘tA‘ > 2.006,
the inference is that the null hypothesis must be rejected, suggesting
that the difference in market value is statistically different from O.
In other words, the logarithmic market values of securities listed on
these two exchanges, on average, are not the same.

The fifth stage is to construct the confidence interval. At the
95% confidence level, the 2-tail critical value, as mentioned earlier,
is 2.006. The confidence interval’s lower bound is therefore —1.35 —
0.505 - 2.006 = —2.36, while the upper bound is computed similarly
as —0.34. Note that this confidence interval does not contain the null
hypothesis of d = 0, as would be anticipated based on the evidence
of p-value.

v =

3.3.2 F'-test for equality of two variances

We now test if the variances of two populations are equal. Continuing
from our case study of comparing the market values of US firms
listed on Nasdaq wvis-a-vis NYSE, what can we say about the sample
variances s7 and s37

Definition 3.4. The F' hypothesis test is defined as
Hy: o} =03

H,: o} # 03 two-tail test

0% < o3 lower one-tail test
2 2

0] > 05 upper one-tail test

2
~ 8
and test statistic is the ratio F = —5
53
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Intuitively, the more the ratio F deviates from 1, the stronger
is the evidence for unequal population variances. The F statistic in

fact is the ratio of two chi-square random variables. We can write
2

: 2 _ xiog 2 _ X393
the sample variances as s7 = b and s3 = 22-G. It follows that

17 ni— T no—1°
X3
- -1
F==. (3.4)
2
2
no—1

Therefore, we see that the F' statistic has two different degrees of
freedom: one for the numerator, and the other for the denominator.
Respectively, they are n; — 1 and ng — 1.

After setting the level of significance a, let Fy,, 1 n,—1,o denote the
critical value of the F' distribution with n; — 1 degrees of freedom for
the numerator, and ny — 1 degrees of freedom for the denominator.
The decision rule is to reject the hypothesis that the two variances
are equal if

F> Fl_%7n1_17n2_1 or < F%,m—Lm—l two-tail test
F <Fyni—1n,—1 lower one-tail test

F> Fi_ani—1,n.-1 upper one-tail test

Given that s? = 2.61 and s% = 5.04 in Example 3.4, we calculate
the ratio to obtain

~ st 261
F="t="" =052
53 5.04
The F pdf also has an analytical form. For x = 0,
n1
T (n1-2|—n2) (z_;) 2 x%fl

F(z;ny,ng) = R
D(5)T (%) (1+22)
As shown in Figure 3.1, the critical values are 0.48 and 2.10 in the
case of 2-tail 5% level of significance. That is

F2.5%, 29, 29 = 0.48 and F97.5%, 29,29 = 2.10.

Since F =0.52, which lies in the lightly shaded non-rejection
region under the curve depicted in Figure 3.1, we cannot reject the
null hypothesis of equal variance for these two populations.



82 Algorithmic Finance: A Companion to Data Science

Snedecor's F Probability Density Function

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.1 F distribution with 29 degrees of freedom for both the numerator
and the denominator.

Alternatively, we can form the ratio F= 61 = 1-93. As antici-
pated, it also lies within the non-rejection zone since it is less than
the critical value Fy7 59 29, 29 = 2.10.

Proposition 3.7. When the denominator’s number of degrees of
freedom nsy becomes larger and larger toward infinity, the quantity
V1, 00 becomes X%l-

Proof. Let v9 = ny — 1. Consider the limit of the denominator of
(3.4) as vy — oc:

2
. X
lim 22,
V2 —00 (%))

Now, any chi-square variable x2(v) of v degrees of freedom is a sum of

v squared standard normal random variables, which are independent
of each other:

X (v) = Zv: zz.
i=1
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Since each Zi2 is a chi-square random variable of one degree of free-
dom, we can rewrite it as

X_% _ >z XA(1)
(%] (%] .

By the law of large numbers (see Appendix C for a proof),

2 v2 2 1
lim 22— gy 2= XM ooy
V2 —>00 V9 V2 —>00 (%)

As demonstrated in Appendix C, the mean of y?(v) is v. There-
fore, the denominator of (3.4) becomes 1 and we are left with the
numerator:

X3

nl—l’

Fnl—l,oo -

where x? is a chi-square random variable with n; — 1 degrees of
freedom. Denoting n1 —1 as vy, it follows that v Fy,, « is a chi-square
random variable with vy degrees of freedom. O

3.4 Analysis of Variance

The Macrotrends data come with the classification of each stock
to one of Zack’s 16 Expanded (X) Sectors. A question of interest is
whether stocks of different sectors, statistically speaking, have the
same logarithmic market values on average.

We find that out of 13 sectors, 4 sectors, namely, Computer &
Technology, Consumer Discretionary, Finance, and Medical, have
more than 100 samples for US companies listed on Nasdaq. Their
numbers, as of May 24, 2019, are 388, 130, 517, and 610, respec-
tively. They constitute 4 populations, though each is a subpopula-
tion of the entire population of Nasdag-listed stocks. What we would
like to find out is whether, on average, a company’s market value or
market capitalization is different for different sectors the company is
mainly operating in.

We denote their populations’ means as u;, ¢ = 1,2,..., K, where
K = 4 in this example. For each sector, n = 30 samples are taken
randomly. We label these samples as y;;, where i is the index for the


https://www.macrotrends.net/
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sector, while 7 = 1,2,...,n, is the jth observation of the i sector,
each observation being the logarithmic market value. The hypotheses
are stated as

Ho: pn=p2=-=px;

H,: At least two of the means are not equal.

Note that it is a joint test, and in contrast to the two-sample
t test in Section 3.3.1, the alternative hypothesis is not u; # us #
-+ # ug. As long as a pair out of (1(%2')!21 combinations has unequal

mean, the null hypothesis is rejected.
An algorithm to test Hy is called analysis of variance
(ANOVA). The ANOVA test is performed according to the pro-

cedures described in the following subsections.

3.4.1 Step 1: Assumptions and hypotheses

We assume that the K sector populations are independent and nor-
mally distributed with means w;, ¢ = 1,2,..., K, and the common
variance 2. After all, every stock is listed on Nasdaq. The samples
can be organized in the format shown in Table 3.3.

Each sector’s sample average is obtained as §;, = %, where ¢ =
1,2,..., K. It is important that the sample size n is equal across the
sectors. For illustrating ANOVA, we set the sample size to be n = 30,
which is randomly drawn from each sector’s population.

Table 3.3 Observations by sector samples.

Sector 1 2 e P e K
Y11 Y21 o Yl o YK1
Y12 Y22 v Y2 o YK2
Yin Yon ce Yin ce YKn
Total Y1 Yo - Y: - Yk

Sample mean Y, Yy - Y 0 Tk
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Now, the observation of logarithmic market value may be modeled
as

Yij = i + €ij,

with ¢;;, being a random variable. It represents the deviation from
the ¢th population mean denoted by p;.

Next, we define the grand mean of all the p;. It is none other
than the average of all the sector population means:

T
B= K Z M-
=1
Then, we can write

Wi =+ ;. (3.5)

The quantity d; is interpretable as a measure of deviation from the
total population mean u, as a result of belonging to sector 1.

Lemma 3.1.

Proof. Summing over the sector index i for both sides of (3.5), we
write

K K K
i=1 i=1 i=1

By definition, the left-hand side is K. The first term on the right-
hand side is quil 1 = Ku. For the equation to hold, we need

S 6 =0. O

Substituting in the decomposition of u;, the model for each obser-
vation becomes

Yij = [+ 0; + €5

The null hypothesis that the K population means are equal against
the alternative that at least two of the means are unequal may now
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Table 3.4 Average logarithmic market values of 4 sectors.

Computer Consumer
Sector technology  discretionary Finance Medical
Sample average ¥, 21.39 20.47 20.32 18.83

be replaced by the equivalent hypotheses:

Hy: 01 =02 =--- =0 = 0;

H,: At least one of the 9; is not zero.

Since we have defined the grand mean u, we have the corre-
sponding sample estimate 7 for u. In other words, it is the average
of averages from the K sectors.

N (36)

Now, for our case study of K = 4 sectors, at the accuracy of two
decimals, the average logarithmic market values for our 4 sectors are
presented in Table 3.4.

3.4.2 Step 2: Resolution of total variability into
components

The key idea of ANOVA is to compare two independent estimates
of the common population variance o%. To implement this idea, we
consider the total variability of all sampled observations

Zf: (yij - §)2,

i=1 j=1

and find ways to decompose it into two components.
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Definition 3.5.

Total sum of squares(TSS) Z Z (yij - @)2,
Explained sum of squares(ESS) :=n Z (yz - ?)2,

Residual sum of squares(RSS) Z Z Yij — y2

In other words, we may think of TSS as the sum of squared devia-
tions from the overall average i for the entire data set of 4 sectors.
Note that TSS is not dependent on any model. In the context of this
section, the model we have is the industry model (3.6), resulting in
the 4 averages 7;, for it = 1,2,..., K, where K = 4.

If 5, = 7, then ESS will be zero, which means that the feature of
industry of each company does not matter and provides no particular
explanatory effect on a firm’s market capitalization. Otherwise, the
larger is the ESS, the larger will be the importance of the “industry
feature”.

The RSS, in comparison to TSS, is the replacement of the overall
average 7 by the respective industry averages. It contains the squared
dispersion y;; — ¥; within the industry, where each individual y;; is
the logarithmic market value of firm j in industry 4. In fact, since
the sample size is equal, by definition, it follows that

K
RSS=(n—1)> s,

i=1
where s? is the unbiased sample variance for industry 4.
It turns out that these three sums of squares are related.

Proposition 3.8.

Ei (i —7)" = ”Z: @ - 9)° +§;§:1 (i —7)°.

i.€.,

TSS = ESS + RSS.
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Proof. We add 0 = —%; + ¥; to y;; — y. Accordingly,

n n

Z (yij — 7)° = Z ((vij —9:) + @ — ?))2
7j=1 7j=1
= (yz - y) + Z(ylj - yz)2
j=1 J=1

+2> (vij — 7))@ — 1)
j=1

For the cross term, since (7; — ) does not have the j index, we pull
it outside the summation over j.

n n

Z(yij — U)W —9) =" — V) Z(yij — i)

J=1 J=1

It is evident that 37, (yij — ¥;) = -7y yij — nY; = ngy; — ny; = 0.
It follows that the cross term vanishes, resulting in

n

S (i -9 =n@ -0+ > (v — )
j=1

7j=1
Taking summation over ¢ on both sides completes the proof. O

The proposition expresses how inter-industry variation, n Zfi 1 (yz —
y)Z, and intra-industry variation, Zfi i 2;21 (yij — yi)2, sum up to
the total sum of squares.

To gain further insight, we take the expected value of ESS and
we have the following proposition.

Proposition 3.9.
K

E(ESS) =n) 67 + (K — 1)o”.
i=1
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Proof. First, we write ESS as

K K K K
BSS=n) (5 —7) =n (ny .7 —EZ@)
i=1 i=1 i=1 i=1
K
=n (Z 72+ K72 — 2Ky2>

Next, we evaluate the expected value of each term. By the definition
of variance, in conjunction with (3.5) and the fact that the sample
average ¥, is an unbiased estimator for the industry mean p;, we have

o2
E(7) = V(@) + (E@,))* = — T (1+6;)2,

fori=1,2,..., K.
Next,

It follows that

E (ESS) = nEK:IE (¥3) — nKE (7°)

=1
K
:KO‘Z—{—TLZ(/J,—{—(Si)2— (02+nK,u2). (3.7)
=1

Expanding the second term, we obtain, given that Zfi 10, =0
according to Lemma 3.1,

K K K K K
nZ(,u—l—éi)Q = nz,u2 —|—2n,u25i —i—nZ(SZ-Z = nKp? —|—n25i2.

i=1 i=1 i=1 i=1 i=1
Substituting this result into (3.7), it follows that

K K
E (ESS) = Ko®+nKp?4+n) 67 —o®—nKp® =n) 6 +(K-1)o>.
i=1 i=1 O



90 Algorithmic Finance: A Companion to Data Science

If Hy is true, each §; in Proposition 3.9 is equal to zero. It follows

that
ESS
E(K— 1) = E(s5) = o”.

Thus, s is an unbiased estimate of 0. But if H, is true, some of the
§; are non-zero, and Proposition 3.9 suggests that s3 has an upward
bias of

)
K—lizl

By way of reminder, for each sector i, the unbiased sample vari-
ance is computed as

1 " 2

We thus obtain the average of variances denoted by s%:

K
Z:: N n—lK

In summary, we have two estimators — s3 based on ESS and s%
based on RSS. If the alternative hypothesis H, is true, then some or
all of §; are non-zero. Owing to the upward bias from the sum of 5?,
it must be that E (8%) >E (S%%).

For our 4-sector example, K = 4, the sample size n = 30, and we
obtain the quantities of importance, which are captured in Table 3.5.

3.4.3 Step 3: 1-tail F test and inference
We define the ratio

3(2) nK — 1 ESS

f=@ =K 1Tss

The number of degrees of freedom for the numerator of f is K — 1

and that for the denominator is nK — 1. Since 3(2) overestimates o2 if
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Table 3.5 Sector, residual, and total variances.

Source of Sum of Degrees of Sample variance

variation squares freedom estimate

Sector ESS = 101.49 K—-1=3 50 = I?Ssl =33.83

Residual ~ RSS =574.00 (n—1)K =116 | s} = % =4.95

Total TSS =675.49 nK —1=119 2= 155 568
nK —1

Hj is false, the alternative hypothesis is equivalent to f > 1, and the
critical region sits entirely on the right tail of the F' pdf.

The null hypothesis Hy is rejected at the « level of significance
if f> Fi_qx-1,m-1)Kk- In our 4-sector experiment, we find that
f = 5.96, which is larger than the critical value of Fj g5 3, 116 = 2.68.
Therefore, the null hypothesis is rejected, with a p-value of 8.15 basis
points. In other words, the hypothesis of the 4 population means
being equal fails to hold. The test favors the alternative hypothesis
that at least two of the means are unequal.

As a remark, F' test allows us to compare more than two sample
averages. Having more sample averages for comparison suggests that
the probability of being different is higher. Therefore, F' test tends
to reject the null hypothesis. In this example, the F' test provides a
piece of statistical evidence that average logarithmic market values in
Table 3.4 are different. For additional evidence, we can conduct ¢ tests
on the pairwise basis, using the method discussed in Section 3.3.1.

3.5 Summary

This chapter covers statistics that compare one sample with another
sample. By way of preparation, Section 3.1 starts with the Bernoulli
trail and the binomial distribution. We show that the frequentist
approach of estimating the probability is unbiased. We then compare
two groups and use the chi-square test to ascertain whether they are
independent. Section 3.2 generalizes the comparison of two groups
to many groups in the form of a matrix called the contingency table.
We also introduce Cramer’s V statistic to measure the power of the
chi-square test.
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The probability density functions we have discussed thus far come
under the names of normal, Student’s ¢, and chi-square. Section 3.3
introduces the application of Snedecor’s F' probability density func-
tion for comparing two populations. Two-sample ¢ test and the F' test
for comparing two variances are laid out. Additionally, we also show
that chi-square distribution is a special case of the F' distribution.

The final section is an algorithmic recipe for the analysis of vari-
ance for comparing the means and variances of a finite number of
populations. We look into 4 industrial sectors to answer the following
question: Are the cross-sectional logarithmic market values and their
cross-sectional variances across firms statistically no different? We
need to introduce the total, explained, and residual sums of squares
along the way. These sums of squares are intimately related to the
sample variances, which allow us to perform the F' test to answer the
question.

Appendix A: Convergence of Binomial Distribution
to Standard Normal Distribution

A proof of convergence to the standard normal distribution is based
on a useful device called the moment generating function (see
Bagui and Mehra, 2016).

Definition 3.6. Let X be a random variable with probability
mass function or probability density function fx(z). Then the
moment generating function (mgf) of the random variable X is
defined as the function

e fx(z), if X is discrete
Mx(t) =E (") =

75 e fx(x)de, if X is continuous

for all |t| < h, where h is a strictly positive real number.

Let us first compute the mgf of the standard normal random
variable Z.
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We can complete the square for the exponents as follows:

(2tz — 2° —? +17) = %(tZ — (2 —1)%).

N =

1 1
Mz(t)_ﬁ/ o313 dz—e2t2\/_/ ~30% g,

1.
:e2t‘

It is easy to see that after a variable transformation, y = z — ¢, the

integral — f )’ dz evaluates to 1 as probabilities have to
sum up to 1

Theorem 3.1. Let Mx, (t),n = 1,2,..., denote the sequence of mgfs
corresponding to the sequence of random variables X,,,n = 1,2,...,
and Mx (t) the mgf of the random variable X. If lim,, o, Mx, (t) =

Mx (t), then X, 4, X, i.e., as n — oo, the distribution of the ran-
dom wvariable X,, converges to the distribution of the random wvari-

able X.

The proof of this theorem is well beyond the scope of this book. Nev-
ertheless, we apply this theorem to prove the convergence of bino-
mial distribution to the normal distribution as the number of trials
approaches infinity.

Now, let the random variable X,, be binomial with parameters n
and p. By definition, the mgf is

My, (t) =) e <Z>pmqnm = (g +pe)".

Applying Propositions 3.1 and 3.2, we write the variance of the bino-
mial random variable as o2 Wthh is npq.



94 Algorithmic Finance: A Companion to Data Science

We transform X, to a random variable Z,, of mean 0 and vari-
ance 1:

PR L )

Vv 1Pq On On
The mgf of Z,, is

t t t
Mzn(t) =K (etZ") = e_% E (eEX") = e_%MXn (i>
_npt Lo,
= e On (q+pecn)

t t
(qe fn +pe<(71n )n

The next step is to perform the Maclaurin expansion of the
exponential function of ¢ up to the second order:

_pt t p2t2 t\3
e an—l_p_+p_+0 - ,
2152 NG
at t 242 t\?
qat g
Un_l —_— — O .
T <ﬁ>

Plugging these two series into the mgf of Z,,, we obtain

3 n
My, (t) = ((Q+p)+ z—t;(q+p) +0 ((%) >>

bqg _ P9
on  npq

My, (t) = <1+ %+o ((%)3»”

When n — oo,

1
It turns out that — = —. Therefore
n

t2

lim Mzn(t) =e2 = Mz(t),

n—oo

where Z & N(0,1).

_ Xn—np
By Theorem 3.1, we can conclude that Z, = NG
to the standard normal distribution as n — oo. It follows that the
binomial random variable X,, becomes, for large n, an approximate

normal distribution random variable with mean np and variance npq.

converges
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Appendix B: The Law of Large Numbers

Before proving the law of large numbers, we need to prove the
Chebyshev inequality.

Theorem 3.2. Let X be a real continuous random wvariable with

mean E(X) = pu and variance V(X) = o2. Then for any strictly

positive real number k,

o2

Pr(IX —pl 2 4) £ 7. (B.1)

Proof. By the definition of variance, and given the probability den-
sity function of x, which is denoted by f(z), we have

=v(x) = [ @ pP s

— 00

—k 00
2 [ e [ - w s

—00 utk
Since we are considering the event | X — u| = k, we have,
k<|z—pl =k < (z—p?

It follows that

u—k 0

o2 > / k2 f(x)dx +/ k2 f(x)dz.
—00 utk

The two integrals can be rewritten as

k2</ukf(a:)da:+ h f(x)d3?> =KPr(X<Sp—kor XZu+k)
o ptk

=k*Pr (|X — p| 2 k).
In other words, it must be that
o® 2 k*Pr (|X — p| 2 k).

Dividing both sides by k2, we arrive at Chebyshev’s inequality
(B.1). O
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The Chebyshev inequality is an interesting fact that applies to
a wide variety of probability distributions. What it says is that for
a random variable to realize itself as a very large number, such an
event is highly unlikely. That is, when k increases, the probability
decreases; only a small fraction k% of the distribution is more than
k standard deviations from the mean. For example, if k = 1, the
probability of deviation from the mean being greater than 1 is less
than the variance. As k increases, the probability dwindles more

rapidly — by a factor of k2.

Theorem 3.3. Suppose X; fori= 1,2, ...,00 is an infinite sequence
of identically and independently distributed random wvariables with
mean E(X;) = p and variance V(X;). Then the sample mean con-
verges (in probability) to the population mean p as n approaches
infinity.

Proof. First, we recall the sample variance of identically and inde-
pendently distributed random variables Xj:

V(Yn) =V <%(X1 + e +Xn)> = %V(Xl‘F“‘—FXn) = 5 = -

Next, apply the Chebyshev inequality on X, to obtain, for any
strictly positive real number ¢,

0,2
2

Pr([Xo s 2e) < 7

A

It follows that

o2

X -1 — X > >1 - -
Pr(|X,—pl<e)=1-Pr(|X,—p|/ze)21 —

As n approaches infinity, the probability of the sample mean being
different from p by any arbitrary amount £ becomes infinitesimally
small. O
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Appendix C: Mean and Variance of Chi-Square Random
Variable

The analytical form of the chi-square probability density func-
tion (pdf) with v degrees of freedom is, for x = 0,
-1

v
2 T v

z
y
22T

—

where C is the constant term
22F( )
First, we compute the moment generating function

Mx(t) =E (etX) = C/ etxef%a:%flda: = C/ e_(%_t)xngld:c.
0 0

We perform a change of variable y = (% — t) x. Hence, dy =
(% — t) dx, equivalently, z = %%y and dx = %ztdy, and we get

v
o0 5*1 2
—C/ eV oY —dy
0 — 2t 1—2t
v
2 V27" v, 2
%> y2 ! dy

_ —y
CA ¢ <1— 1-2t
2 3 [ vy
—c—=_ yZ1d
C<1—%> A ¢ v

By definition, the integral is the Gamma function I' (%) Conse-

quently,

Mx (t) = 2%1}(%) <1 _22t>%r (g) = <1_L2t>% (C.1)

Next, we differentiate Mx (t) with respect to t:

M’ (t) C/ zete 322 . (C.2)
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It follows from (C.1) that

M) = 52 (1

Interestingly, the expected value of X can be obtained as follows:

e

H—U( ! >g+1. (C.3)

1—-2¢

/ > -z Y
My (0) = C/ xe 222 dr =E(X).
0
Substituting 0 for ¢ in (C.3), we obtain the mean of chi-square random
variable:
E(X) = My(0) = v.

The mean of X is its number of degrees of freedom.
Next, we differentiate the moment generating function (C.1) with
respect to t twice to obtain

v
0o z v 1 5+2
MY%(t) = C’/ 22" T2 s =v(v+2) <1 2t> ,
0 _

which is the expected value of X? when ¢t = 0. In other words,
E (XZ) = M%(0) = v* 4 2uv.

AsV(X)=E (X?) - (E(X))?, the variance of the chi-square random
variable with v degrees of freedom is

V(X) = M%(0) = v* 4+ 2v — v? = 2v.

Exercises

3.A Earnings announcements are important events for investors and
analysts alike. We collect data of earnings announcements
that happened on January 27, 2021 from Nasdaq website. We
want to know whether stocks followed by many analysts have
more positive surprises than those followed by a handful of ana-
lysts. For a given company, since each analyst gives an estimate
of the earnings per share (eps), the number of estimates is
therefore a proxy for the number of analysts.


https://www.nasdaq.com/market-activity/earnings
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From the estimates, a consensus eps is computed, which is usu-
ally the average. If the actual eps is larger than the consensus
eps, then a positive surprise is said to have occurred. If the
actual eps is equal to the consensus eps, then there is no sur-
prise. Negative surprise is the event where the actual eps is less
than the consensus eps. We count the number of occurrences
for each event, and obtain a contingency table as follows:

Positive No Negative

surprise  surprise  surprise
Few estimates 59 4 12
Many estimates 31 1 7

(1) What is the null hypothesis and its alternative for the chi-
square test?

(2) Construct a table of expected frequencies.
(3) Compute the chi-square statistic y2.

(4) What is the number of degrees of freedom of the chi-square
statistic x2?

(5) What is the critical value at 95% confidence level for the
chi-square test?

(6) What conclusion can be drawn in view of the chi-square
statistic only?

(7) What is the value of Cramer’s V' statistic?

(8) What conclusion can be drawn in conjunction with
Cramer’s V statistic?

Suppose a statistical data analyst runs a comparison test of
two samples. The first sample has 40 observations whereas the
second sample has 60 observations. Their sample averages are
4 and 12 with variances of 5 and 20, respectively.

(1) What is the standard error of this two-sample test?

(2) Given that the null hypothesis of zero difference in the two
sample averages, what is the t statistic of the two-sample
test?

(3) What is the number of degrees of freedom for the ¢ statistic?
(4) What is the F statistic for the two-sample test?
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3.C This question is set in the context of ANOVA as in Section 3.4.

(1) Compute the ratio defined as R? := ?—Z: using the numbers
in Table 3.5.

(2) What is the interpretation of R*?

(3) What is the interpretation of s3 — s2?
(Hint: In Proposition 3.9, divide both sides by K — 1. As
an approximation, assume that E(ESS) = ESS and that o2
can be replaced by s2.)



Chapter 4

Prices and Returns

Quantitative analysis of investments is no doubt an important topic.
This chapter deals mainly with time series data. As John F. Kennedy
once said, “There is nothing more certain and unchanging than
uncertainty and change.” He also said, “The one unchangeable cer-
tainty is that nothing is certain or unchangeable.” Indeed, the price
of a security, for instance, changes over time and its time series is,
going forward, uncertain. What we can observe in the financial mar-
kets are the historical prices only. From the perspective of invest-
ment, however, returns are more important. This chapter shows us
how to compute various kinds of historical returns. It also provides
a detailed account of the effects of dividends on prices and returns.

4.1 Time Series

Suppose we are interested in a financial asset such as a publicly listed
stock of a company. In the digital age, it has become a lot easier to
gain assess to news and reports about the company. We examine
past and current financial strength of the company, its corporate
governance, future potential, and so on. We also listen to what other
analysts and investors are saying about the company. Of course, we
look at the stock price, which reflects, at any given time, the level of
demand for the shares issued by the company.

The initial public offering (IPO) of a company ushers in the
birth of stock prices on a company’s stock. By market convention,
regardless of changes that have occurred in the past, the last traded
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price of a business day is regarded as the stock price. Supposedly,
it reflects the market evaluation of a company’s value per share. The
fact that the stock price moves in a seemingly random fashion sug-
gests that the market, comprising of investors and speculators, is not
sure about the company valuation. Literally, the share price can
change from one transaction to another. What it means is that we can
either sample the stock price as and when a transaction occurs, or at
a specified time such as the closing time of the exchange. Whichever
the case may be, if we sample consistently, we will obtain a chrono-
logically arranged sequence of prices.

To make things precise, we introduce the notion of event, which is
a fundamental concept in probability theory. The events of interest in
the financial market are many. They range from company announce-
ments, releases of monetary policy, announcements of macroeconomic
indicators, down to the very transactions of 100 shares of a stock.
We can record the last traded price of a stock according to the clock
time on every working day, say 4 PM local time. We can also record
the transaction as and when it occurs. In this case, the time at which
the transaction occurs is said to be the business time.

Definition 4.1. In time series analysis, regular sampling is a
data collection scheme that is based on the clock time. On the other
hand, irregular sampling is based on the business time, which is
the arrival time of an event that gives rise to a set of numbers to be
recorded as a sample.

Throughout this book, we use the symbol ¢ to denote time. For
regular sampling, ¢ is the clock time by which the last transaction
of the trading day or trading session takes place. For irregular sam-
pling, ¢ is the time at which a trade occurs. Each trade is identified
by a serial number ¢, which indicates its chronological order in the
time series. Though we refer to financial transaction for specificity,
in general, the subject of interest can be any event such as weather
forecast announcements.

Regardless of whether the observations are collected by clock
time or business time, we have a formal definition of a sequence
of quantities.

Definition 4.2. We define time series as a chronologically
arranged sequence of quantities sampled by applying a sampling
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scheme consistently. The time series of prices is denoted by F;, for
t=1,2,...,T, where T indicates the last or latest observed value in
the sample.

It is important to emphasize that the same sampling scheme must
be applied consistently. We must stick to the same sampling scheme
throughout the process of recording a time series.

Note that we have implicitly assumed that the time series is dis-
crete with respect to time t, i.e., the time interval between any
pair of consecutive points in the time series is a finite value. This
assumption is fine for empirical analysis using numerical algorithms,
because the nature of computing by a digital computer is always
discrete. From the standpoint of modeling, however, it is often con-
venient to consider a continuous time series, which is a mathemat-
ical construct in the limit when the time interval is infinitesimally
tiny.

Example 4.1. We list a few examples of time series in Table 4.1,
where we have included two major events for a publicly listed com-
pany as examples. Earnings announcement is a highly watched event
for analysts and investors. In the US, companies are obliged under
regulations to announce their financial reports on a regular basis.
One of the most important numbers is earnings per share (eps).
It shows how much a company has earned for each share over a period
of time, usually three months or a quarter of a year. The other event
is what is known as distribution of earnings to the shareholders. Usu-
ally, the distribution is in the form of cash. At times, it can be in the
form of shares, or other alternatives beneficial to the investors. A key
date for this event is known as the ex date. If you are an investor
and your name is in the registry of company shareholders before the
ex date, then you are entitled to receive the distribution.

Listed also in Table 4.1 are two of the most highly watched
macroeconomic news. The US employment situation shows
the number of non-farm jobs created. Its significance is underscored
by the fact that it is a monthly indicator of aggregate economic activ-
ity, as it encompasses all major sectors of the economy. On the other
hand, the ISM manufacturing composite index is an indicator
of the overall trend of manufacturing activities. It provides insights
on commodity prices, as well as clues regarding inflation.
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Table 4.1 Examples of economic and financial time series.

Event Quantity Time Remarks
Transaction Price Clock  Usually last traded
price, daily
Transaction Intraday price Clock  Usually 5-minute
interval
Transaction Tick-by-tick price Business High frequency
Earnings announcement  Earnings per share Business Scheduled
Company distribution Dividend per share Business Ex date
US employment Non-farm payrolls Clock  Every first Friday of
situation the month
US ISM manufacturing Index level Clock  First business day of
index the month

By definition, time series is the name given to a discrete sequence
of chronologically ordered numbers. It comes with no surprise that
everyone has difficulty looking at just numbers. Therefore, it is nec-
essary to present these ordered numbers in a visually intuitive and
insightful fashion. Data visualization is an important sub-branch of
data science. A key application of data visualization is to bring
out different aspects embedded or hidden in the data. The simplest
data visualization method is to plot the time series.

Example 4.2. Total Non-farm Payroll is a measure of the num-
ber of US workers in the economy, which accounts for about 80% of
the work force. It is one of the most watched macroeconomic news,
as it provides useful insights into the current economic situation in
terms of the number of jobs added or lost. Increases in employ-
ment indicate that businesses might be hiring or growing. Those
who are newly employed will have their personal incomes, and with
the increment in disposable incomes, economic expansion is fostered
further.

Figure 4.1 is a plot of the recent changes in nonfarm payrolls.
Positive values indicate job growth. On the other hand, negative val-
ues signify job losses, which usually coincide with the slump in busi-
ness activities. The onset of COVID-19 pandemic in the US forced
many companies to retrench workers, resulting in massive job losses.
April 2020 job loss of about 21 million is the largest ever in the US
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Figure 4.1 Monthly time series of changes in nonfarm payrolls.

Source: US Bureau of Labor Statistics. “All Employees, Total Nonfarm
[PAYEMS]” was retrieved from FRED, a data portal of Federal Reserve Bank
of St. Louis (https://fred.stlouisfed.org/series/PAYEMS) on February 9,
2021.

history since the US Bureau of Labor started to publish the statis-
tics in 1939. All the jobs created during Trump’s administration were
wiped out. In total, there is a net loss of 2.8 million jobs.

Example 4.3. As a holding company based in Beijing, China,
Alibaba provides internet infrastructure, e-commerce, online finan-
cial, and internet content services through its subsidiaries worldwide.
At $21.8 billion, its initial public offering (IPO) is the largest ever
in the history of stock market (according to NYSE). Traded by the
ticker symbol of BABA, Alibaba’s daily time series of stock prices
is plotted in Figure 4.2. Often, Figure 4.2 is referred to as a line
chart for a single time series.

The IPO subscription price is $68.00 per share. On September
19, 2014 — first day of trading of Alibaba shares — the last traded
price is $93.89, which is substantially higher. After about a month of
heading lower, it starts to rise above $100 per share and eventually
reaches $120. But from November 2014, the stock price is on the
downward trend, and eventually dips below $60. From January 2017,
however, the stock is finally on the trajectory of a bull run, reaching
close to $180 at the end of November 2017. Surely, the line chart is


https://fred.stlouisfed.org/graph/?g=8eiB
https://fred.stlouisfed.org/series/PAYEMS
https://www.nyse.com/network/article/Alibaba-Lists-on-the-NYSE
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Figure 4.2 Stock prices of Alibaba Group Holding Ltd. since IPO.
Source: yahoo!finance.

more palatable than just looking at the ordered sequence of prices:
$68.00, $93.89, $89.89, $87.17, ..., $186.69, $179.91, $177.08.

Example 4.4. Copper is an important industrial material for man-
ufacturing various kinds of goods. An article in Nikkei Asian
Review, dated April 7, 2019 at 02:01 JST, has the following to

say about copper:

Since copper is used in a wide range of industries, the com-
modity is called Dr. Copper for being a reliable prognosticator
of where the world economy is heading. Many market players
closely watch copper prices as a good gauge of the economic
outlook in China. The country accounted for about half the
23.46 million tons of copper consumed worldwide in 2017, up
from just 25% a decade earlier.

As another example of daily time series, we have gathered the histor-
ical spot copper prices from Macrotrends. Visualization of the time
series of spot copper prices is presented as a line chart in Figure 4.3.

Example 4.5. Dukascopy Swiss Banking Group, a Swiss online
bank, is a regulated provider of electronic trading facilities and ser-
vices for spot forex, precious metals, and other financial contracts.
It also provides historical data for downloading with no charge. We
utilize their Historical Data Export widget to download 1-minute


https://finance.yahoo.com/quote/BABA/history?p=BABA
https://asia.nikkei.com/Economy/Dr.-Copper-gives-troubling-prognosis-for-China-s-economy
https://www.macrotrends.net/1476/copper-prices-historical-chart-data
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
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Figure 4.3 Spot copper prices.
Source: Macrotrends.

intraday data for providing an example of how intraday time series
can be presented. Figure 4.4 plots the intraday time series of Coffee
Arabica. To show how to plot an intraday time series that straddles
midnight, we chose 11 PM for the starting time. Compared to the
line plot for daily prices, there are 1-minute intervals during which
no trade occurs and thus the price remains unchanged, which shows
up in Figure 4.4 as horizontal line intervals.

Example 4.6. Started in March 1973 with a base of 100, the US
Dollar Index (USDX) is an indicator of the value of US dollar
against a basket of six currencies. They are Euro (EUR), Japanese
yen (JPY), British pound (GBP), Canadian dollar (CAD), Swedish
krona (SEK), and Swiss franc (CHF). The constituent currencies of
the basket has only been changed once since the index started, when
the Euro replaced many European currencies previously in the index
such as Germany’s Deutschemark and French’s Franc.

Currently, the dollar index is maintained and published by ICE
(Intercontinental Exchange, Inc.). The US Dollar Index is calculated
with the following formula:

USDX = 50.14348112 x EURUSD %576 » UspJpyY-136
x GBPUSD Y119 » uspcAp?-091
x USDSEKY%42 « USDCHFV-036,


www.macrotrends.net
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Figure 4.4 Intraday prices of coffee Arabica for trading day starting on June 26,
2019.

Source: Dukascopy Swiss Banking Group.

The forex convention is such that the first currency in the pair is
known as the base currency of one unit and the second currency
in the pair is the quote currency. Take EURUSD for example. To
exchange for one euro, which is the base currency, you need ¢ amount
of US dollars. Likewise, for GBPUSD, the British pound is the base
currency. But for the other four currencies, such as USDJPY, to get
one dollar, ¢ Japanese yens are required to pay for it.

Theoretically, as soon as any one of these six currencies has a
change in the exchange rate with the US dollar, the dollar index
value can be updated by this formula immediately. Since the arrivals
of new FX rates are random, the updates occur at random time,
resulting in an irregular time series of dollar index.

We obtain the tick-by-tick data from the Dukascopy Swiss
Banking Group for the constituent currencies of the dollar index.
We line up the six currencies according to time stamps. Instead of
updating the dollar index as soon as a constituent FX rate has just
changed, it is more practical to update the dollar index only when the
currency that is least frequent in having new updates with respect


https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
https://www.dukascopy.com/trading-tools/widgets/quotes/historical_data_feed
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to a given short time period receives the arrival of a change in its
FX rate. For the other five FX rates, we take the freshest (or latest)
before this arrival time. We then consolidate the latest bid and ask
prices of the six currencies, and compute the average of these two
prices for each FX rate. The midpoint averages are the inputs to
the USDX formula. In this way, we obtain the dollar index value at
the latest time among the six currencies. We then proceed to do like-
wise for the next set of latest bid and ask prices, find their mid-prices,
compute the US dollar index, and so on.

Foreign currencies are traded almost 24 hours globally. The FX
market starts the trading week on Monday at 6 AM Japan Standard
Time (JST). The trading week ends on Saturday 7 AM JST. During
the day light saving period in the US, the FX trading week ends on
6 AM JST instead.

Now, let us look at the trading week ending on February 6, 2021;
the last portion of the constructed USDX is presented in Table 4.2.
Evidently the time interval is irregular. For example, the time dif-
ference between the last two rows is 10 s, whereas the first two rows
has a time difference of only 265 ms.

Table 4.2 Dollar index toward the end of the
first week of February 2021.

Date Time USDX

06.02.2021  06:58:00.087 GMT+0900  90.9970
06.02.2021  06:58:00.352 GMT+0900  90.9955
06.02.2021  06:58:13.466 GMT+0900  90.9950
06.02.2021  06:58:21.783 GMT+0900  90.9931
06.02.2021  06:58:29.437 GMT+0900  90.9965
06.02.2021  06:58:40.560 GMT+0900 90.9961
06.02.2021  06:58:54.909 GMT+0900  90.9927
06.02.2021  06:58:58.466 GMT+0900 90.9924
06.02.2021  06:59:02.393 GMT+0900  90.9929
06.02.2021  06:59:18.323 GMT+0900  90.9920
06.02.2021  06:59:23.846 GMT+0900 90.9944
06.02.2021  06:59:30.222 GMT+0900  90.9963
06.02.2021  06:59:35.114 GMT+0900  90.9955
06.02.2021  06:59:36.907 GMT+0900  90.9939
06.02.2021  06:59:45.278 GMT+0900  90.9885
06.02.2021  06:59:55.583 GMT+0900  90.9868
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4.2 Multiple Time Series

At times, not only can you get the last traded price, but also the
opening price, the highest price of the day, and the lowest
price of the day. These three other prices allow us to see at least
the following features of trading for an asset of interest for any given
trading day:

(1) If the opening price is lower than the closing or the last traded
price, we can easily infer that the stock price has gone up over
the trading day.

(2) Conversely, we know that the stock price has declined over the
trading day.

(3) The price range is the highest price less the lowest price of the
day. It tells us the level of volatility over the trading day.

There are several ways to visualize the open-high-low-close
time series. One of the popular methods is called the Japanese
candlesticks. This data visualization toolkit was invented by
Homma Munehisa (4524, 1724-1803), a Japanese rice merchant
and trader in the 18th century Edo Era (JT 7 #¢ft). From the candle-
stick patterns, stories were told that Homma could forecast the likely
future direction of rice prices, with a high degree of probability —
and profitability, estimated to total more than the equivalent of one
trillion yen.

The up candle and the down candle are illustrated in
Figure 4.5. In the Western culture, red has the connotation of danger

Highest Price - - - - - - - - q- - - - - - - - - - -

Closing Price - - - - - - - gubgy- = pmay-------- Opening Price
Body -------4Sm = R -------- Body
Opening Price - ---- - - .. = ________ Closing Price

********************* Lowest Price
Up Candle Down Candle

Figure 4.5 Data visualization by the Japanese candlesticks.
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and thus it is chosen for down candles to indicate that the transaction
price eventually goes down from the opening to the closing hours. By
contrast, green is the color chosen for up candles to tell us that the
price eventually rises from the opening to the closing hours. However,
in the Eastern culture, it is the exact opposite, as red is considered
to be the color of good luck or fortune.

Note that there are two lines coming out of each candle in Figure
4.5. The line from the body to the highest price of the day is called
the upper shadow, and the line from the body to the lowest price
of the day is called the lower shadow.

Example 4.7. We plot the candlestick chart of Alibaba prices for
the first day and the following four consecutive weeks of trading in
Figure 4.6. It is easily noticeable that the upper and lower shadows
are very long for the first candle compared to the other 20 candles.
This characteristic is a reflection of perhaps the euphoric mood and
the high level of speculative trading in the market, as the IPO is
a “blockbuster” success. The wide range of about $10 tells us that
trading was volatile, as valuation and re-valuation of Alibaba stock
went on very rapidly on September 19, 2014. Below the candlestick
chart, the volume traded is also plotted. It is evident that the first
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Figure 4.6 Japanese candlesticks of Alibaba Group Holding Ltd. for the first
month since IPO.

Source: yahoo!finance.


https://finance.yahoo.com/quote/BABA/history?p=BABA
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day of trading registers an unusual volume, which corroborates with
the wide range of prices on the first day of trading.

In Figure 4.6, there are 13 black candlesticks compared to 8 white
ones, which is indicative of the possibility that as the frenzy on the
first trading day subsided, market players then began to realize that
Alibaba might be over-valued.

As a quick summary, candlesticks give us a richer set of informa-
tion. We can find out the price direction by the candlestick colors,
opening and closing prices by the candlestick body, and the trading
range by the price difference between the upper shadow and the
lower shadow.

4.3 Simple Returns

Earlier, we alluded to the fact that the IPO price of Alibaba is $68.
Suppose we subscribe to Alibaba IPO and are lucky to receive an
allotment of, say 100 shares. Moreover, suppose we sell at the closing
hours of the exchange. Then our profit in dollars can be calculated
by a general formula:

Profit and Loss = Selling price — Buying price.

This general formula has its basis through the cash flow analysis.
When we buy an asset, we have a cash flow out, as our money is
exchanged for a piece of financial contract such as stock. The cash
flow is an outflow and therefore, on our P&L statement, there is a
debit, which is why we have to subtract the buying price per share.
On the other hand, when we sell the security, we receive cash and so
there is a cash flow in.

Note that the P&L in this simple setup is the same as price change
if the assumption is that we buy first to own the security at time ¢t—1,
and a day later we sell it at time t.

Definition 4.3. The price change at time t of a price series P;, for
t=20,1,2,...,T, is a time series given by the price difference of
a pair of adjacent prices.

AP := P, — P,



Prices and Returns 113

for t = 0,1,2,...,T, where T is the last observation time of the
sampled time series. The IPO price of the stock is denoted by Fp.

In the earlier Alibaba example, the price change on day 1 is
AP = P — Py = $93.89 — $68.00 = $25.89.

Given that we are allotted 100 shares, our P&L will be $2,589, before
costs (broker commission, clearing fee, etc.) and taxes.

Now, suppose we want to compare the price change across differ-
ent investments. We need to define simple return.

Definition 4.4. The simple return, denoted by Ry, of a price series
P, fort =0,1,2,...,T is a time series given by the price differences
of any pair of adjacent prices divided by P;_;.

Py — Py
Ry := ———|
! P
fort =1,2,...,T, where T is the last observation time of the sampled

time series.

Why is it that in the definition of simple return, the price change
AP, is divided by P;_1 and not P;? To answer this question, we refer
to the P&L description in Definition 4.3. We know that the price
change APF; is the P&L. The buying price P;_1 is the money we put
on the table to bet that the stock price will go up. Obviously, we need
capital to generate the profit and it is natural for us to think about
the profit over the capital. In this context, P;_ is the capital needed
for each share and the simple return defined above is indeed the
return on capital. Therefore, in the computation of simple return,
we divide the price change, i.e., the P&L, by P;_;.

In the example of the first trading day of Alibaba, where the
stock price direction is in our favor, our simple return over one day
is therefore our profit divided by the IPO price, namely, $25.90/$68 =
38.07%.

Note that the simple return can be re-expressed as

)

Ry 1. (4.1)
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I

Definition 4.5. The payoff ratio is defined as . It indicates,

t—1
in terms of per dollar capital, the amount an investor will either win

or lose in the investment.

Again, in the example of Alibaba IPO, the payoff ratio is
$93.89/$68 = 1.38. What it means is that for every dollar of cap-
ital, it has appreciated to $1.38. Of course, it is never guaranteed
that the stock price will move up when we buy. If the payoff ratio is
say, 0.70, then every dollar invested is reduced to 70 cents, which is
the same as saying that our capital has depreciated by 30%.

4.4 Log Return

The simple return defined earlier has a lower bound: —100%. This is
because for any standard asset, be it stock, forex, spot commodity,
or bond, at worst we can lose is our entire capital. Shareholders are
under no obligation to cough out additional cash or capital to support
the company in financial troubles. The worse-case scenario happens
when the asset price plunges to zero, or when the asset becomes
totally worthless. We express this market reality as a lower bound of
R;, when P; becomes zero.

For some applications, the lower bound could be a hindrance. To
P,
overcome this problem, we start with the payoff ratio P—t’ which
t—1
is never negative as P, = 0. We then consider the natural logarithm
of the payoff ratio. By the property of logarithm that turns a division
into subtraction, we arrive at the definition of log return.

Definition 4.6. The log return, denoted by r:, of a price series
P, for t = 0,1,2,...,T is a time series given by the differences of
adjacent log prices. That is

ry = lnPt—lnPt_l,

fort =1,2,...,T, where T is the last observation time of the sampled
time series.
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Figure 4.7 Simple return and log return of Alibaba.

. b

Since r; = In <Pt—1
tion, it can become very negative when P, is a very small number.
In Figure 4.7, we plot the time series of simple and log returns of
Alibaba stock. As expected, both simple and log returns are very
different from the stock price series plotted in Figure 4.2.

On the other hand, these two time series of returns are visually
almost indistinguishable from each other.

Given how they are defined, we expect a relationship between the
simple return R; and the corresponding log return r;. In fact, we find
that, with (4.1),

>, i.e., the log return being a logarithm func-

re=1In (PP’* ) =In(1+ Ry). (4.2)

t—1

We note that usually |R;| < 1, i.e., the absolute value of the simple
return is much smaller than 1. We perform Taylor’s expansion of
In(1 4+ R;) and obtain, up to the second order,

1
re=In(1+ Ry) = Ry — §R§ +O(R}),
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where O(Rf) denotes all the remaining terms of third and higher
orders. With the simple return being small, even the second-order
term can be ignored, resulting in r; ~ R;. This simple mathematics
allows us to understand why the simple return and the log return in
Figure 4.7 look so similar.

The Taylor expansion in (4.2) also shows that the log return is
always smaller than the simple return. In general, we know that a
log function In(1 4 x), being a concave function, is always smaller
than the linear function z, for all x except at a special point x = 0
where they are equal.

In view of the apparently random nature of returns in Figure 4.7,
it is natural to consider a simple model to ascribe randomness to
the asset price.

Definition 4.7. Let the payoff ratio M; be a strictly positive random
variable at time ¢. For emphasis, we write M; > 0 for all t. Consider
a time series of M;. A model of asset prices P; is as follows:

P, = P_1 M.
Equivalently, we have a model of random logarithmic asset prices:
InP,=InPFP_1+ In M,
fort=1,2,...,T.

Definition 4.7 is a simple statement claiming that the log return is
random:

Tt = h’IPt — h’lpt,1 = h’lMt.

Let & = In M,;. It follows that r; = & is random.

4.5 Multi-Period Returns

So far, in the definitions of simple return and log return, we have
implicitly assumed that the two prices are adjacent chronologically.
In other words, the time interval is one unit or one period. To endow
the model of random log prices with a richer structure, we need to
consider multi-periods. That is, in general, we consider P; versus P;_,
for a given integer ¢ = 1. For example, ¢ = 1 is the daily log return,
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q = 2 represents bi-daily log return, ¢ = 3 corresponds to tri-daily
log return, and in general, we speak of ¢-daily log return.
An interesting property of the payoff ratio in the context of
multi-period return is called the rule of telescopic multiplication:
Py Py Py P Prgro  Pign1

= X X X oo X X . (43)
Py B P2 P3 P g1 Py

When we apply the natural logarithm on both sides of (4.3), we
obtain

Tgt =Tt +7T—1+ T2+ -+ Tt—g+2 + Tt—g+1,

where 7,; is a notation for g-daily log return:

ret:=1n < Fi ) —InP,—InP,
P,
Therefore, g-daily log return is a sum of ¢ daily log returns.
The exponential function is the inverse function of logarithm,
ie., exp (ln(a;)) = x. Thus, another property of multi-period log
return is that

By

exp (Tq,t)

which is, by definition,
Pt = Pt—q exp (Tq,t)
= Bqexp (Tt +ri—1+ 12+ g2 + Tt—q+1)-

From time ¢t — g + 1 to t, there are ¢ log returns. We write the
arithmetic average log return as

1
Ty = g(n F 1 T e T2 gt
It follows that
P, =P,_gexp (qﬂ).

In other words, the average log return 7 is the continuously com-
pounding return, and ¢ is the length of the holding period. Even
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so, daily log return is also a continuously compounding return over
one period when ¢ = 1.

Now, from the institutional investment perspective, one of the
greatest concerns of any fund manager of a portfolio is the asset
under management (AUM). A more relevant return to fund man-
agers is the notion of geometric average over a number of years.

Definition 4.8. The geometric average return, denoted by g,
is defined primarily for calculating the average rate of return per
period on investments that are compounded over multiple periods.
It is defined with respect to the payoff ratio:

1

P\
= —1. 4.4
o <P> (4.4)

By the rule of telescopic multiplication (4.3), we can rewrite g; as

1

P, P P P P q

1+gt=< LVl VSl B SNl S tq+1>q.
Py P2 PB3 Prgt1 Py

Each period’s payoff ratio is related to the simple return, i.e.,
P

P

=14+ R;; fori=0,1,2,...,q. Consequently,

(1+9)" =0+ R)(1+ Re1) -+ (14 Regp1)- (4.5)

In this form, we can obtain an insight into the average nature of g,
as follows. The simple returns most likely differ from one period to
another. But the geometric average return g; is a single number that
tells us the average return per period for ¢ periods. Intuitively, what
we find is that if we hold the investment throughout the ¢ periods,
every dollar invested will become (1 + g;)? dollars.

Proposition 4.1. The geometric average return g; is always
larger than the arithmetic average of the log returns. That is, it must
be that

gt 2 T

Proof. To extract g¢, we take logarithm on both sides of (4.5) to
yield

gin(1+¢:) =In(1+Ry) +In(1 + Re—1) + - + In(1 4+ Re_g41)-
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Noting the relationship between log return and simple return, (4.2),
we have

In(1+¢g) = A —:. e Tt (4.6)

which leads to 14 g; = e”*. Since |[7¢| < 1, by Maclaurin’s expansion,
I SN
gr=e 1—rt+2rt+0(rt)~rt+2rt.

Thus, we see that the geometric average return g; is greater than the

arithmetic average of the log returns by an amount of approximately
1
S5Ti- O

2
Even so, if ¢ = 1, then 7y = 1. The geometric return g; in the case of
one period is equal to the simple return R;, and we have g = Ry = 4.
They are equal in the trivial case when both returns are 0.

4.6 Time-Weighted Return

In the investment industry, investors at times will invest more by
infusion of fresh money. Conversely, at times, investors will invest less
by withdrawing money from their investment accounts. How should
we, as the fund manager, compute some sort of average return for
the investors?

The answer to this question lies in the calculation of simple
returns followed by computing the geometric average return. The
resulting average is referred to as the time-weighted return. Per-
haps the best way to explain the procedures of computing time-
weighted return is through illustrative examples.

Example 4.8. An institutional investor, Rotsevni, invests $1 mil-
lion into a fund on December 31. Rotsevni is the only client. Ten
months later on October 31 the following year, through tactical and
strategic investments, the value of the portfolio becomes $1.2 mil-
lion. On that day, Rotsevni invests $0.8 million more on October
31, bringing the asset under management to $2 million. By the
end of the year, the portfolio value becomes $1.9 million because a
particular blue-chip stock in the portfolio is in trouble, and its share
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price plunges. The fund needs to report to its client, and the obvious
question is, “What is the return?”
For the first 10 months, the simple return is

1.2-1.0

= 20%.
1.0 %

For the next two months, the simple return is

1.9-2

7 = —5%.

Having computed the simple returns, the fund manager then pro-
ceeds to compute the annual return for Rotsevni by the geometric
average

(1+0.20) - (1 — 0.05) = 1.14.
Therefore, the time-weighted return is (1.14 — 1) = 14%.

Example 4.9. Suppose a fund is investing on behalf of its only client
as in Example 4.8. Again, the portfolio grows by 20% over the first
10 months. Instead of injecting more funds, Rotsevni withdraws $0.2
million, bringing the AUM to $1.2 million — $0.2 million = $1 mil-
lion, as of October 31. Likewise, the portfolio takes a knock and its
value becomes $0.95 million by the end of the year.

For the first 10 months, the return is 20% as before. For the last
two months of the year, the simple return is

0.95—-1

= —5%.

The geometric average return is again (1+0.2)-(1—0.05)—1 = 14%.

Time-weighted return may be a misnomer. We could easily fall
into the trap of interpreting it literally as an average weighted by
time. In the two examples, the first period is longer whereas the
second period is only 2 months. So we may be tempted to compute
the following time-weighted average:

10 2
20 — 4+ (=5 — =15.83
% x D + (=5%) x 5 %,

which is higher than the geometric average return of 14%.
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Therefore, it is very important to understand that time-weighted
return is essentially a geometric return that ought to be utilized to
find the average of simple returns in the multi-period context.

As a matter of fact, in portfolio management, when an investor
wants to either invest more or request a withdrawal, it is as if the fund
has to reset the investment. Specifically, on paper, the fund sells the
portfolio and takes the current market price to compute the simple
return, which yields 20% in the two examples above. If the client
wants to pump in more investment, the fund has to actually buy the
asset with the additional money at the current price. If an investor
requests for a withdrawal, the fund has to actually sell the assets in
such a way that the proceeds equal the amount of withdrawal.

4.7 Case Study: GIC

In 1981, Mr Goh Keng Swee, then chairman of the Monetary Author-
ity of Singapore, saw the danger of Singapore’s growing foreign
reserves in the midst of heightened inflation risk. Being also the first
Deputy Prime Minister, he rolled out an initiative to set up the Gov-
ernment of Singapore Investment Corporation Pte. Ltd. (GIC), with
the mandate to invest Singapore’s foreign reserves, so as to earn rea-
sonable returns within acceptable risk limits over the long term.

GIC is one of the so-called sovereign wealth funds in the world.
As the name suggests, a sovereign wealth fund is a state-owned
investment vehicle to manage national budget surpluses, accumu-
lated over the years due to favorable macroeconomic, trade, and fiscal
positions, coupled with long-term budget planning under spending
restraint. Traditionally, sovereign wealth funds prefer to remain low
key and opaque as they are under no obligation to disclose their
financial positions. In fact, for whatever reasons, the states forbid
their sovereign wealth funds to disclose information that might com-
promise their positions.

With some quarters expressing concerns that sovereign wealth
funds might destabilize markets and financial systems — especially
those investments of the cross-border nature — IMF and OECD were
called upon to develop a non-binding, self-regulatory code of conduct
for sovereign wealth funds to agree to operate under. The intention
is to bring about some financial stability in the turbulent market
of 2008.
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GIC, being a sovereign wealth fund, answers only to one and only
one client: the Ministry of Finance. Nevertheless, GIC participated
actively in discussions on the codes of investment practices and prin-
ciples for sovereign wealth funds to abide by voluntarily.

Against this backdrop, in 2008, GIC voluntarily published for the
first time an annual report containing information about its 20-year
returns, as well as the people who were leading this extraordinary
private limited company. Notably, Robert Litterman was among the
advisers to the GIC Board of directors. He and Fischer Black had
developed the well-known Black and Litterman (1992) model for opti-
mizing the return while taming various risks. Overall, GIC has strong
industry connections to attract and retain top talents all over the
world.

Recall that the mission of GIC is to preserve and enhance the
international purchasing power of the reserves. Therefore, the
effects of global inflation have to be taken into account when comput-
ing the portfolio return. Essentially, inflation is about the increasing
trends in the price levels of goods and services.

Inflation erodes our purchasing power; to buy the same item in
the future, we need to pay more dollars as opposed to buying a unit
of the item now. In other words, the amount of goods and services
we can buy today is less than what we could have bought in the past
if our wealth is not growing.

Definition 4.9. The nominal return is defined as the return that
does not take inflation effects into account. The real return, on the
other hand, is the return adjusted for changes in the price levels due
to inflation.

In its annual report for 2010, GIC published a chart that plots the
nominal returns in US dollars and real returns for 2001 to 2007 as
well. By carefully reading off the chart, we can estimate the nominal
returns in US dollars for these years before 2008.! In Table 4.3, a few
returns are estimated from the chart in 2010 annual report, while

In GIC’s first 2008 annual report, there is a chart showing the time series of
nominal returns for 2001 to 2007. But these nominal returns are in Singapore
dollars. Since GIC uses US dollars as the base currency from 2009 onward, we
can nevertheless use the chart in the 2010 report to estimate the nominal and
real returns from the chart for 2001 through 2008.



Table 4.3 GIC’s 20-year annualized nominal return in percent calculated based on US dollars and GIC’s 20-year
annualized real return.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Nominal 95 95 87 95 97 85 79 77 57 71 72 68 65 65 61 5T 57
Real 58 58 45 50 49 49 48 45 26 38 39 39 40 41 49 40 3.7
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20-year return in 2014

20-year return in 2015

20-year return in 2017

1995 1996 1997 1998 2014 2015 2016 2017

Figure 4.8 Illustration of rolling by 1 year for calculating geometric returns.

most returns are the exact numbers captured from the subsequent
annual reports. It is important to mention that the real return is
independent of the currency because in the adjustment for inflation,
the inflation rates used for adjustments are of the same currency with
which to compute the nominal returns.

All the figures in Table 4.3 are the annualized time-weighted
returns over 20 years. Figure 4.8 illustrates the notion of rolling
the time window by a year implicit in Table 4.3. Note that since the
1-year return for the starting year is included, even though the dif-
ference between the starting year and the ending year is 19, indeed
there are 20 one-year geometric returns for any 20-year return.

What must be stated upfront is that GIC does not publish one-
year returns and does not provide exact formulas on how the returns
are computed. Therefore, whenever the 1-year return is mentioned,
it is at best a concept and tool invented for extracting information
from the time series of 20-year returns.

Next, consider the 20-year nominal geometric average return of
5.7% in the 2017 annual report. Conceptually, it corresponds to the
return obtained from comparing the GIC portfolio value of March
1997 with that of March 2017.2 Applying (4.4), we obtain

1
P2017 20
(o —

2@GIC does not report the exact portfolio values.
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To get a more intuitive picture, we rewrite this equation as
Py, = P1997(1 + 0057)20

To make the concept of geometric average return more concrete,
suppose we had US$100 in 1997 and suppose we could invest our
money in the exact way GIC invests. Our $100 would become
$100 x (1.057)2° = $303.04 in 2017. Given that the corresponding
20-year real return is 3.7%, for which inflation has been adjusted,
our purchasing power in 2017 would be $100 x (1.037)%?° = $206.81,
which is twice more than we could afford to buy 20 years ago.

What story does the two time series in Table 4.3 tell us? The
answer is given by the following proposition:

Proposition 4.2. If the 20-year geometric return this year is smaller
(bigger) than that of the last year, then the simple return over the
past one year is less (more) than the simple return 20 years ago.

Proof. Let ¢g; and ¢g;—1 be the m-year geometric return for the
reports published in year ¢ and year t — 1, respectively. Suppose Ry
is the 1-year simple return — the return made over the past year,
i.e., from ¢ — 1 to t. Also, suppose R;_,, is the 1-year simple return
obtained from year ¢t — m — 1 to ¢ — m. By the definition of rolling
window by a year,

(14 Ri—n)G = (14 gi—1)"
and

G+ Ry) = (1+g)",

1

t—
where G is the product H . Jrl(1 + g;), which is common to both
i=t—m

m-~year geometric returns. Note that G is necessarily positive because
the simple return is strictly bounded from below by —1.
Now, the difference of these two expressions is

(I+g)™—(1+ gtfl)m‘

(1+R0) = (L+ Riop) = 5

Thus, we see that the sign of Ry — R;_,, is dependent on the numer-
ator (1+g;)™ — (14 g;—1)™. Being a monotonic power function, the
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sign of the simple return difference will be positive if on the right-
hand side, g: > ¢:—1. Vice versa, the sign will be negative if g; < g;_1.
Let m = 20 and the proof is complete. O

In general, when the return decreases from the previous reporting
year to the current reporting year, it must be that GIC had made
lesser money over the past year compared to 20 years ago. Making
lesser money does not necessarily mean that the past year simple
return is negative, i.e., losing money. It just means that in the relative
sense, the past year simple return is inferior to the one-year simple
return 20 years ago.

Since reaching the peak of 9.7% in 2015, in terms of nominal
returns, it can be observed that GIC had four consecutive years of
declining return. Noticeably, the drop of nominal return from 7.7%
to 5.7% in 2009 — a hefty 2% decline, is the most drastic ever for the
sample period 2001 through 2017. This decline is inevitable because
of the global financial crisis. Though there was a V-shape recovery in
2010, the nominal return continues to trend lower to 5.7% in 2017.

On the other hand, the real return, which is what matters most
to GIC, is somewhat different. It used to be a whopping 5.8% in
2001 and 2002. The declining trend is nevertheless not as clear, as
GIC still managed to earn 4.9% in 2015. At any rate, the real return
hovers around 4% since the 2008 global financial crisis.

The takeaway is that it is not easy even for big institutional
investors such as GIC to make more money. Part of the reason is
that there are more and more sovereign wealth funds coming into
the market. Probably there were low-lying fruits in the past, but
they are gone. The portfolio management industry has become more
complex in the global digital age. It would be quite a herculean task
and probably a long process for GIC to recover to the real return of
5.8% registered in 2001.

4.8 Total Return

Though not obligatory, companies usually pay dividends to their
shareholders. Dividends are typically a part of the profit that the
company decides to share with its shareholders. Dividends can be
issued in various forms, such as cash payment, stocks, or any other
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benefits. A company’s dividend distribution is decided by its board
of directors and it requires shareholders’ approval.

Suppose we invest in a dividend-paying stock, which pays divi-
dends on the regular basis. To determine whether we would get a
dividend, we need to check a few important dates. When a com-
pany declares a dividend on the declaration date, it announces three
important dates, plus the dividend per share. In chronological
order, these three dates are ex date, record date, and payment
date.

(1) Ex date is the cutoff date before which existing and new share-
holders are entitled to receive the upcoming dividend payments.

(2) Record date is the date at which the book containing the par-
ticulars of each shareholder such as the number of shares owned,
mailing address, etc., are updated and closed.

(3) Payment date is the earliest date on which you will receive your
dividend.

Ex-date is very important. If we purchase a company’s shares
before the ex-dividend date, we are entitled to receive the upcoming
dividend from the company. But if we buy on the ex-dividend date
or after, we will not receive the upcoming dividend payment.

Table 4.4 shows a portion of the dividend history of Coca-Cola
Company. The data source is Nasdaq. It is clear that the ex date
is one business day before the record date, and the payment date is
typically two weeks after the record date.

For every share, a shareholder who holds the share before the
ex date is entitled to receive a dividend, which we denote as Dj;.
In other words, D; is dividend per share that investors will receive.
A natural question arises: What should the date ¢ be? Should ¢ be
the announcement date, ex date, record date, or payment date? As
mentioned earlier, if we purchase the stock after the ex date, we will
not receive the upcoming dividend. On the other hand, if we sell the
stock on or after the ex date, we will still get to receive the dividend.

Moreover, by a simple argument of no risk-free arbitrage, the
stock price should drop by an amount equal to the dividend per share
D; on ex date. Suppose the stock price does not change from ¢ — 1
to t. Investors will always buy the stock at day ¢ — 1 and sell it on
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Table 4.4 A portion of the dividend history of Coca-Cola.

Declaration Record Payment
date Type Amount Ex date date date

2017-10-19 Cash $0.37 2017-11-30  2017-12-01  2017-12-15
2017-07-20 Cash $0.37 2017-09-14  2017-09-15  2017-10-02
2017-04-27 Cash $0.37 2017-06-13  2017-06-15  2017-07-03
2017-02-16 Cash $0.37 2017-03-13  2017-03-15  2017-04-03
2016-10-20 Cash $0.35 2016-11-29  2016-12-01  2016-12-15
2016-07-21 Cash $0.35 2016-09-13  2016-09-15  2016-10-03
2016-04-28 Cash $0.35 2016-06-13  2016-06-15  2016-07-01
2016-02-18 Cash $0.35 2016-03-11  2016-03-15  2016-04-01
2015-10-15 Cash $0.33 2015-11-27  2015-12-01  2015-12-15
2015-07-16 Cash $0.33 2015-09-11  2015-09-15  2015-10-01
2015-04-30 Cash $0.33 2015-06-11  2015-06-15  2015-07-01
2015-02-19 Cash $0.33 2015-03-12  2015-03-16  2015-04-01
2014-10-16 Cash $0.305 2014-11-26  2014-12-01  2014-12-15
2014-07-15 Cash $0.305 2014-09-11  2014-09-15 2014-10-01
2014-04-24 Cash $0.305 2014-06-12  2014-06-16  2014-07-01
2014-02-20 Cash $0.305 2014-03-12  2014-03-14  2014-04-01
2013-10-17 Cash $0.28 2013-11-27  2013-12-02  2013-12-16
2013-07-18 Cash $0.28 2013-09-12  2013-09-16  2013-10-01

Source: Nasdaq.

ex dividend day ¢, and they will receive the dividend without risk.
Therefore, holding all the market conditions constant, the share price
on ex date t will have to drop by D;. It follows that ¢ should be the
ex date.

Now, in computing the return on an asset as an investor, more
often than not, it is important to take into account the cash flow
from dividend.

Definition 4.10. The total return, denoted by é, is the return
that recognizes dividend D; as the cash flow receipt in the P&L
computation, resulting in

o P.+D,— P,
R:t+t tl‘

: 4.
! P (47)

Albeit not guaranteed and uncertain, dividend is nevertheless a
source of income. From the investment standpoint, P; is the current
market value of the stock. Since the stock is generating income, it is
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a common practice to compute the yield with respect to the market
value of your capital P;.

Definition 4.11. The ratio of dividend Dy to stock price P, is called
the dividend yield.

Proposition 4.3. If the total return and the simple return are given
for time t, then the dividend yield can be inferred by the following
formula:

Dy Ri—R
P, 1+R’

(4.8)

Proof. First, we express the total return (4.7) as

- Dy P — P4 Dy
Ry = + = + R;.
t P4 P P !

Shifting Ry to the left-hand side, and multiplying the dividend yield

by 1= Ft’ we obtain, after swapping the denominators,
t

v D; P D,
— = ——=—(1 .
Ry — Ry P P 2 ( + Rt)

Dividing both sides by 1 + Ry, the proof of (4.8) is complete. O

Example 4.10. Suppose we can observe the simple and total returns
of a stock, but we do not have information about the dividends.
Specifically, on day t, the simple return is 1% and the total return is
1.9%. What is the (implied) dividend yield?

Applying (4.8), we obtain

1.9% — 1% _ 0.9%

- — 0.0089 = 0.89%.
1+1% 101% 0

Note from Table 4.4 that Coca-Cola pays dividend quarterly. In
fact, most companies in the US pay a dividend on the quarterly basis.
We may add up the 4 dividend payments together to arrive at the
annualized dividend yield.

Example 4.11. For the four dividends in 2017 in Table 4.4, the
end of day stock prices of Coca-Cola a day before ex dates are,
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respectively, $42.03 (March 13), $45.03 (June 13), $46.11 (Septem-
ber 14), and $45.77 (November 30). From Table 4.4, each dividend
cash amount is $0.37. Therefore, the annual dividend yield is

07 (4L o L 1) gay
‘ 42.03 " 45.03 ' 4611 ' 4577) T

Example 4.11 is just one of the many ways to compute annual
dividend yield. A simpler approach could be simply adding up all
the quarterly payments and dividing the resulting sum by the current
price.

As an illustration, suppose today’s date is June 30, 2017. A
backward-looking dividend yield is to take four most recent divi-
dend payments before June 30, namely, two dividends of $0.35 each
in the second half of 2016, and two dividends of $0.37 each in the
first half of 2017. Given that the stock price of Coca-Cola Com-
pany is $44.85 on June 30, 2017, the dividend yield is obtained as
2x(%0.35 + $0.37)/$44.85 = 3.21%. An implicit assumption in this
approach of computing the dividend yield is that investors are hold-
ing the stock for at least a year.

4.9 Dividend Adjustments

How should we adjust stock prices in order to take into account
dividend payments? There are at least two reasons why we want
to adjust stock prices. First and foremost, it is at times imperative
to analyze total return, taking into account dividend reinvestments
for reporting performance and so on. Second and equally important,
we may need to apply trading strategies based on the time series of
stock prices.

Suppose we receive the dividend D; and we immediately reinvest
this D; into the same stock. Suppose we initially have N shares.

The total dividend amount we receive in dollars is N D;. With this
Dy

amount of cash, we can buy shares. We have just transformed

t
the cash dividend into shares. So at the end of time ¢, our number of

D
shares has increased from N to N <1 + ﬁ)
t
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Suppose we can hypothetically liquidate our entire position. Let
us calculate our return on paper:

D
N <1 T —t> P, — NP,
y P,

= 4.
R, NP (4.9)
P+ Dy — P4
= - ' 4.10
o (4.10)
P—P_1 Dy
_ 42t 411
P ) (4-11)

The second equality (4.10) is exactly the same as our earlier definition
of total return, which is (4.7).
Clearly, there are two return components in (4.11). The first com-
ponent is the simple return R; = %, which captures our
t—1
capital appreciation (R; > 0) or depreciation (R; < 0). The second
component is due to dividend “reinvestment”, which is never negative.
In reality, of course, we do not receive dividend cash on ex date
t per se. What we can do, nevertheless, is to borrow money equivalent
to N Dy, and use that amount of cash to reinvest, i.e., transform from
cash into owning more shares on the same stock. Since we are entitled
to receive ND; on the date of payment, we are able to repay the
bank.3

4.9.1 Backward adjustment

The goal we have in mind is to adjust stock prices to account for

dividends.

Definition 4.12. Knowing the ex date ¢ and the dividend per share
Dy, the dividend adjustment factor is defined as

1

Bt = 7D
1 -
+ 2

3Obviously, we need to pay interest to the lending bank. In all the definitions, we
are not taking all the transaction costs into account. We also ignore the interest
paid. So we can expect the actualized total return to be smaller than the total
return on paper.
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The adjusted stock price for s =t —1,t —2,...2,1,0 is defined as
P, s = P,B;.

Proposition 4.4. The total return R; can be expressed in terms of
the adjusted price as follows:

N S
Ry = L _1himl (4.12)

It has the same form of a simple return. Note that P; is the ex date
stock price and thus it needs no adjustment.

Proof. We multiply the total return (4.9) by 1 = B;/B; to obtain

Dy
N|(14+—|PB,—NP,_1B
. < a)tt 1Y NP NPy P~ Py

R - — — 5
! NP,_1B NPy Pyi1

In other words, to compute total return, we need to use the time
series of adjusted prices. O

Moreover, if neither s nor s — 1 is an ex date, it can be easily
shown that
2 Pb,s _Pb,s—l Pth_Ps—lBt Ps _Ps—l

Ry = - - — R,.
Pb,sfl Ps—lBt Ps—l

This result is consistent with (4.8). Since Dy = 0, it must be that
Rs; = R,. Also, it is important to emphasize that for any arbitrary
non-zero number c,

ab—aP1  P— PB4

R, — —
! al;_q P4

In other words, using adjusted prices on days that do not involve
any dividend payment at all will produce the same value for simple
return as using the unadjusted prices. It also follows that the log
return will not be affected by the adjustment factor when there is no
dividend payment.

As in Table 4.4, a blue chip company such as Coca-Cola pays
dividend on a regular basis. For each dividend, there will be a divi-
dend adjustment factor. Suppose we have information about all the
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ex dates t; and the dividend per share Dy, for i = 1,2,...,n, where
n is the latest distribution of dividend. Obviously, we need all the
stock prices P; for t = 0,1,...,7T, that we want to adjust. We label
T as the latest or the most current time. Stock prices on the ex dates
are indicated by F;,.

The algorithm for adjusting the stock prices backward works as
follows:

(1) Compute all the n dividend adjustment factors By, where i = 1,
2,...,n.

(2) For all the oldest prices before the first ex date t1, multiply them
by Bt1 .

(3) For all the oldest prices before to, multiply them by By,.
(4) Do likewise for i = 3,4,...,n.

(5) For the most recent prices from ¢, onward, no adjustment is
needed.

The outcome is that the prices before ¢t; are multiplied by all the
dividend adjustment factors, i.e.,

P,g =B X By, x---x By, x Py, fors=0,1,2,...,t; — 1.
For stock prices between t; and to — 1, they are adjusted as follows:
Pb,s = Bt2XBt3X---XBtnXPs, for s=t1,t1 +1,t1 +2,...,t5 — 1.

In general, with tg = 0, and for j = 1,2,...,n, the adjusted prices
are given by

Py s = Btj X By
for s =t;_1,t;1+1,t;_1+2,...,t; — L.

j+1><---><Btn><PS,

The algorithm for backward adjustment is illustrated in Figure 4.9.
Since B, < 1, past historical prices will become smaller and
smaller. This backward adjustment method is popularly employed

BtlBtQBts » Bt2Bt3 Btg

1L 1L

=0 tq to ts t=T

SN

Figure 4.9 Illustration of backward dividend adjustments.
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by most financial service providers. The main merit is that the most
recent prices are the same as what you observe from stock exchanges
on which the stocks are traded.

4.9.2 Forward adjustment

But as investors, especially those long-term ones such as GIC, the
most important question perhaps is this: If we invest $1,000 today,
what is a reasonable estimate of the total value (before costs) of our
investment in the future, at least on paper? To answer this question,
we have to adjust the stock prices forward instead. In so doing, we are

actually constructing a time series of total-return stock prices.
D

Looking at (4.9), we need to multiply P;, Py, Piyo, ..., by 1—1—%,

t

which is the inverse of B; in Definition 4.12.

Definition 4.13. The forward dividend adjustment factor Fj is
defined as

1 D
1+ 2L (4.13)

F,=—=
t Bt Pt’

where t is the ex date. The total-return stock prices are given by
Pt = PF;, fors=tt+1,t+2,...,.

Suppose we have a series of stock prices P, t = 0,1,2,...,T,
where T' is the latest or the most current time. The algorithm for
forward adjustment of stock prices is described as follows:

(1) Calculate all the n forward dividend adjustment factors Fy,,
where i = 1,2,...,n,

2
3

Start from chronologically the oldest date, i.e., t = 0.
Do not adjust the stock prices before the first ex date ;.

)
6

(2)

(3)

(4) Multiply by F;, all prices from P;, through Pr.
(5) Multiply by F;, all prices from P, through Pr.
(6)

Do likewise for ¢ = 3,4, ..., n.
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Figure 4.10 Illustration of forward dividend adjustments.

The outcome from forward adjustment is that from the most cur-
rent ex date t,, to the most current time 7', the stock prices within
and inclusive of these two dates get adjusted by all the forward div-
idend adjustment factors Fy,. In other words,

n
Pry= HFtiPS, fors=t,, t,+1,...,T.

i=1
Generally, when k < n,

k
Pf,s:HFtiP& fOI‘S:tk, tk71+1,---,tk+1_1-
1=1

The algorithm is illustrated in Figure 4.10.

Example 4.12. We download the stock prices of Coca-Cola from
yahoo!finance. With reference to Table 4.4, we set our sample
period starting from September 3, 2013 through January 2, 2018. The
results of forward dividend adjustments are plotted in Figure 4.11.
Clearly, the total-return price series starts to become larger and
larger compared to unadjusted price series as time increases.

If you have bought 100 shares on September 3, 2013 at the price
of $37.90 per share, the reinvestment will grow the number of shares
— in a compounded fashion — to 115.19 shares at the end of the
sample period. In terms of returns, over the sample period,

45.54 — 37.90
Pri t = —— =20.16%;
rice return 3790 %;
52.46 — 37.90
Total ret = ——— = 38.41%.
otal return 3790 %

The total return is about 18.25% higher than the price return without
reinvestment.


https://finance.yahoo.com/quote/KO/history?period1=-252403200&period2=1514995200&interval=1d&filter=history&frequency=1d
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Figure 4.11 Prices and total-return prices of Coca-Cola.

4.9.3 yahoo!finance method

Many finance oriented bloggers and web sites rely on yahoo!finance
as their data source, as yahoo!finance provides historical prices of
stocks for free. This practice is scientific, as it allows anyone to inde-
pendently reproduce their claims by using the same data download-
able from the same source.

First, we must know the data structure used by yahoo!finance.
Each row of the time series of historical prices has the data fields
labeled as Date, Open, High, Low, Close, Adj Close, and Volume.
The column of Adj Close corresponds to the Close prices adjusted
for dividends and stock splits. The adjustment is backward and hence
the most current Adj Close and Close prices are no different.

How does yahoo!finance perform backward adjustment for div-
idends? As a quant or data scientist, you need to perform a little bit
of “reverse engineering” to figure out.

It appears that yahoo!finance uses the following formula to cal-
culate the backward adjustment factors Y;_; one business day before
the ex date.

Dy _Pai=Di_

Yi1:=1-—
-t Py Py

(4.14)
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Example 4.13. To test the claim, let us download the historical
prices from yahoo!finance for Coca-Cola from March 11 through
December 2, 2020. In this sample period, there are four dividend
payments to the investor of $0.41 each. we can also find out the
ex dates and the dividend per share from yahoo!finance.

We apply the formula (4.14) to the data to obtain first and
foremost yahoo!finance’s backward adjustment factors Y;_1. Then,
using the backward adjustment approach, the relevant products of
Y;_1 are obtained throughout the sample period. Finally, we calcu-
late Adj Close by multiplying the product of Y; 1 with the closing
price (Close).

Table 4.5 presents the calculation results for a few days sur-
rounding the four ex dates. At the accuracy of four decimal places,
our calculated adjusted close is exactly equal to yahoo!finance’s
adjusted close. The last column contains the difference between these

Table 4.5 Checking yahoolfiance’s method of backward adjustment for
dividends.

Adj Product Calculated

Date Close close Yi_1 of Vi1 AC Difference

2020-03-11 52.21  50.4825 0.9669 50.4825 1.82E—07
2020-03-12 47.16  45.5996  0.9913 0.9669 45.5996 1.33E—06
2020-03-13  48.47 47.2772 0.9754 47.2772 2.71E—06
2020-03-16  45.26  44.1462 0.9754 44.1462 4.02E—-06
2020-03-17 47.18  46.0190 0.9754 46.0190 1.68E—06
2020-06-10 48.62 47.4235 0.9754 47.4235 4.83E—-07
2020-06-11 45.54  44.4193 0.9910 0.9754 44.4193 —4.32E—07
2020-06-12  45.60  44.8819 0.9843 44.8819 —5.62E—07
2020-06-15 46.30 45.5709 0.9843 45.5709 3.94E—-07
2020-06-16  46.77 46.0335 0.9843 46.0335 2.02E—-07
2020-09-10  50.00  49.2126 0.9843 49.2126 1.80E—06
2020-09-11  51.06  50.2560  0.9920 0.9843 50.2559 —1.23E—06
2020-09-14 50.71  50.3155 0.9922 50.3155 1.99E—06
2020-09-15 51.05 50.6528 0.9922 50.6528 —1.73E—07
2020-09-16  50.79  50.3949 0.9922 50.3949 1.58E—06
2020-11-25 52.93 52.5182 0.9922 52.5182 —3.66E—07
2020-11-27 52.70 52.2900 0.9922 0.9922 52.2900 0.00E4-00
2020-11-30 51.60  51.6000 1 51.6000 0.00E+4-00
2020-12-01  52.04  52.0400 1 52.0400 0.00E+4-00

2020-12-02  52.11  52.1100 1 52.1100 0.00E+00
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2 sets of values. It shows that the difference lies in the 6th or 7th
decimal place.

Any formula for calculating the dividend adjustment factor
assumes that the dividend reinvestment is done at the closing price.
Obviously, this assumption is rather difficult to fulfill simply because
on any given day ¢, to trade at exactly the yet unknown closing price
is precarious because P; in the adjustment formula is the closing
price. The implication is that, in practice, the total return computed
by the adjustment with 4.13 or (4.14) may not be accurate. Be that
as it may, if the intent is only to adjust for stock prices and to be
compatible with the historical prices, say, half a century ago, then
the adjustment by either method is as good as it can be.

4.10 Summary

Time series are prevalent in economics and finance. Data scientists
who want to work in the financial industry need to be familiar with
the jargon of investors, analysts, fund managers, and traders. In
terms of data collection, Section 4.1 provides a presentation of the
notions of regular and irregular sampling methods in connection to
the notions of clock time and business time. Through publicly avail-
able data sources, concrete examples of the time series of nonfarm
payroll, stock, commodity, and foreign exchange are given, ranging
from monthly, daily, intra-daily, to tick-by-tick sampling frequency.
Section 4.1 also lays out an algorithmic description of the dollar index
by showing how it can be constructed. In Section 4.2, our focus is on
a data visualization tool called the candlestick.

From Section 4.3, we turn to the time series of returns. The con-
cept of simple return is discussed from the perspective of trading
and cash flow. Motivated by a shortcoming in the simple return,
Section 4.4 presents the notion of log return and how it is related
to the simple return. Given the same prices, the log return is always
smaller. We also provide a multiplicative model to capture the ran-
dom behavior exhibited by the time series of log returns.

Section 4.5 dives into returns over multiple time periods. Through
telescopic multiplication, we connect the single-period log return with
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the multi-period log return. For long-term investors, the notion of
geometric average return is perhaps most relevant. We also show that
the geometric average return is necessarily larger than the arithmetic
average of the log returns. Section 4.6 defines the notion of time-
weighted return in preparation for a case study of a sovereign wealth
fund in Section 4.7.

Section 4.8 examines the effects of dividends. We introduce the
notion of total return, and in combination with the simple return,
we can infer the dividend yield. In Section 4.9, we discuss why
stock prices need to be adjusted, from the perspective of reinvest-
ing the dividends. Both the dividend backward and forward adjust-
ment methods are provided as algorithms for implementation. We
also build a case for demonstrating how yahoo!finance adjusts their
stock prices.

Exercises

4.A The one-year returns of a portfolio are 2.22%, —7.77%, and
3.33%. What is the geometric average return of the portfolio?

4.B The arithmetic monthly average log return of a portfolio over
20 months is 1.717%.

(1) What is the value of the average monthly geometric return?

(2) What is the value of the average annualized geometric
return?

4.C At year t, the 2-year geometric average return of a portfolio
is 5.55%, and the 3-year geometric average return is —8.88%.
What is the 1-year geometric average return for year ¢ — 27

4.D You are a long-term investor and you invest $1,000 in 2000 and
after 10 years, your investment value is $4,000. What is the
average geometric return?

4.E The following shows the index levels of S&P 500 index and its
total return index.
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4.F

4.G

4.H

4.1
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End of year S&P index S&P total return index

2017 2673.61 5212.763
2018 2506.85 4984.217

(1) What is the (implied) dividend yield for 20187
(2) What is the (implied) amount of dividend in index points?

The backward adjustment formula of yahoo!finance can be
written as a function of dividend yield at time ¢ and the simple
return. Give a proof of this proposition.

The dividend yield at day ¢ of an ex date is 0.5%, and the simple
return is —1%.

(1) What is the value of the backward dividend adjustment
factor?

(2) What is the value of the backward dividend adjustment
factor using the method of yahoo!finance?

An institutional investor, Creaj, invests $100 billion into your
fund on December 31. Three months later on March 31 the fol-
lowing year, the value of the portfolio becomes $103 billion. On
that day, Creaj invests $1 billion more. By the end of the year,
the portfolio value becomes $110 billion, and Creaj withdraws
$2 billion from the fund. What is the 1-year return for Creaj?

Is it possible for an institutional investment fund to make money
consistently year after year? A central tenet of finance aca-
demics and practitioners is that the random nature of stock
prices is such that it is highly unlikely for any firm to make
money consistently for many years.

But the Medallion hedge fund seems to defy the doctrine. Its
l-year net returns (after administration fees (5%) and perfor-
mance fees (20 to 44%)) are captured in Table 4.6. Except for
1989, the net return is positive from 1988 to 2018.

(1) If the net return is a binomial random variable, and assum-
ing that each hedge fund is equally likely to earn a positive


https://finance.yahoo.com/
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Table 4.6 Net return of Medallion Fund.

1988 9.04% 1998  41.68% 2008  82.38%
1989  —3.20% 1999  24.48% 2009  38.98%
1990 58.2% 2000 98.48% 2010  29.40%
1991 39.44% 2001  33.02% 2011 37.02%
1992 33.60% 2002 25.82% 2012 29.01%
1993 39.12% 2003  21.90% 2013 46.93%
1994  70.72% 2004  24.92% 2014  39.20%
1995  38.32% 2005 29.51% 2015  36.01%
1996  31.52% 2006 44.30% 2016  35.62%
1997 21.20% 2007  73.42% 2017 45.02%

2018  39.98%

Source: Cornell (2020).

net return and to suffer a negative net return, what is the
probability to encounter a fund like the Medallion Fund,
which has 30 positives out of 31 years? State the odds as
one out of x funds, where x is the nearest integer.

If you had invested $100 since the inception of the Medallion
Fund, what is the value of your investment at the end of
20187

What is the annualized geometric return over the entire
period from 1988 to 20187

Construct the geometric returns with a 20-year rolling win-
dow and list them as a table like Table 4.3.
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Chapter 5

Stock Market Indexes and ETF's

For those who have made any attempt to penetrate their mys-
teries, index numbers seem to have a perennial fascination.

Fisher (1922)

An index is a system of numbers for comparing values of interest
to market participants. In his bid to demystify the notion of index,
Fisher (1922) suggests that it is essentially some sort of an average
of prices and quantities. Stock market indexes first appeared in the
19th century. With the benefit of hindsight, stock market indexes
arguably can be regarded as one of the earliest financial innovations,
far ahead of their time.

Today, many exchange traded funds (ETF's) are being created
to track their respective indexes as closely as possible. An ETF is
essentially a basket of securities designed specifically to mimic the
index behaviors, as closely as possible. Without the indexes, you
would not have ETF's to invest in.

This chapter provides an overview of market indexes that are
regularly covered as part of news across different media platforms,
including television, online news, prints, and so on. Not surprisingly,
indexes are very important in finance because they are applied when
a publicly listed company goes about measuring its cost of equity
with the capital asset pricing model. Technical analysts study
the charts of indexes to forecast the economic conditions and market
direction. Therefore, data scientists who want to work in this domain
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need to understand market indexes and how they are constructed,
maintained, reconstituted, and so on.

5.1 A Brief History

In the United States, many companies have their stocks listed and
traded on the stock exchanges. Obviously, it is difficult for investors
to look at all the prices of publicly listed stocks at any given time,
especially on the continuous basis. Yet, market participants need to
know whether the stock market as a whole is going up or down. In
the past era when neither computers nor information display systems
were present, it was difficult for a layman to collect and keep track of
stock prices. This need was identified and filled by three journalists:
Charles Dow, Edward Jones, and Charles Bergstresser.! In Novem-
ber 1882, they founded the Dow Jones & Company as a financial
news provider. It became the delivery platform for Dow’s invention
of a stock market index, as a single number that tracks the stock
market direction and movement over time.

The first ever US index could be traced back to July 3, 1884. Dow
Jones & Company started to publish the average price of the prices of
9 railroads and 2 industrial companies in its The Customers’ After-
noon Letter, which later was branded The Wall Street Journal by
Bergstresser. This average index is a precursor to what is known as
the Dow Jones Transportation Average (DJTA) index today.
The 20-stock version was introduced on September 23, 1889. It had
18 railroad stocks and two industrial stocks. Dow created these aver-
ages to illustrate his theories in what is today called technical anal-
ysis (see (Lo, 2016)).

In the beginning of the 19th century, the US economy was still
in a developing, pre-industrial stage. In the later half of the century,
many industrial products and services, for example, electricity and
telegraph for communication, became more and more ubiquitous.

!Before venturing out on their own, they were working for the leading finan-
cial publisher of the day, Kiernan News Agency. While at Kiernan, Charles
Bergstresser, known for his photographic memory, developed a stylus that could
record news onto 35 sheets of bulletins simultaneously, a technique that quadru-
pled productivity and gave their fledgling company a technological edge.
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Yet, shares issued by industrial companies such as General Elec-
tric were considered to be highly risky. Nevertheless, on May 26,
1896, the Dow Jones Industrial Average (DJIA) index consist-
ing of a dozen component stocks was officially launched. Interestingly,
DJTA, DJIA, and the Dow Jones Utility Average (DJUA) index
launched in 1929 are still being published by some media and used
by investors today. This is quite a remarkable feat, considering the
fact that there were many other indexes in the early half of the
20th century (see Cowles 3rd, 1939) competing to win over investors’
attention and devotion.

The rival index provider, Standard & Poor’s (S&P), debuted
their equity indexes in 1923, covering 233 stocks in 26 sectors on
the weekly basis. A daily index of a 90-stock average was intro-
duced in 1928. It comprised 50 industries, 20 rails, and 20 utilities.
On March 4, 1957, S&P expanded the coverage to 500 stocks and
renamed it the S&P 500 index. Today, its 505 constituents are lead-
ing US company stocks.

Notably, the method by which the S&P 500 index is computed is
different from the price-weighted method used by Dow Jones. For
the first time in history, S&P uses the market capitalizations rather
than prices only to construct the index. The market capitalization
of a company reflects the valuation of the company’s equity through
the market mechanism. S&P’s approach to constructing an index is
considered to be better, because it is based on a special case of “the
ideal formula” put forth by Fisher (1922). Computationally, however,
it is more challenging since the market capitalization is the num-
ber of outstanding shares times the last traded price. Over the years,
the S&P 500 index gained prominence and became a bellwether and
leading indicator of the US economy.

After a few initial attempts, the first exchange traded fund
(ETF) by the name of SPDR S&P 500 ETF Trust started trading
about 100 years later. As the name suggests, this ETF is based on
the S&P 500 index, which currently is regarded as the de facto proxy
for market portfolio of the US market by both the academia and the
industry.

In 1971, NASDAQ began its all-electronic trading market. With
this innovation, NASDAQ attracted new growth companies, such as
Microsoft and Apple. On February 2, 1971, NASDAQ introduced
its stock market index called the NASDAQ Composite Index at
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Figure 5.1 Comparison of three US stock market indexes.

the inception value of 100 with 50 companies listed on its exchange.
The calculation method uses the market capitalization approach pio-
neered by S&P. Along with the Dow Jones Industrial Average and
S&P 500, it is one of the three most-followed indexes in the US stock
markets.

In Figure 5.1, we have re-based the Dow Jones Industrial Aver-
age and S&P 500 indexes to 100 on the same day of February 2,
1971. Clearly, over about 40 years, NASDAQ Composite index out-
performed the other two established indexes, which are not too far
apart by comparison. Also intuitively obvious is the fact that NAS-
DAQ Composite index is the most volatile. What the chart shows
is that if you had invested $100 in 1971, the value of your invest-
ment at the end of about 40 years will increase substantially. The
more volatile NASDAQ composite index would grow to about $7,000,
whereas the less volatile S&P 500 and DJIA indexes would yield
about $3,000.

Now, the value proposition in providing and licensing indexes as
intellectual properties saw the emergence of Morgan Stanley Cap-
ital International (MSCI) in 1969, when it began licensing its first
equity index products. In the face of growing competition, interest-
ingly, Dow Jones and S&P buried their hatchets and they merged to
become S&P Dow Jones Indices. Another index provider is FTSE
Russell. Together, these three index providers founded the Index
Industry Association in March 2012 as an independent, not-for-profit
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organization. Its current members include niche index providers such
as Hang Seng Indexes and Japan Exchange Group.

Today, we have a myriad of indexes, covering not just equity
but also other asset classes: bond, currency, commodity, real estate,
and so on. Some indexes are multiple asset classes and some include
derivatives such as futures and options, even credit default swaps.

On top of that, alternative methods to construct indexes have
appeared. Indeed, index construction has taken on the color of port-
folio management that has traditionally been the territory of fund
managers. Notably, Arnott, Hsu, and Moore (2005) propose the idea
of fundamental indexes and they provide empirical evidence to con-
clude that the resulting portfolios outperformed the S&P 500 by an
average of 1.97 percentage points a year over the 43-year span in their
study. A new bandwagon of alternative, fundamental, and smart beta
indexes arrived at the scene as more and more ETF's based on these
next generation indexes appeared as newborn stars in the universe
of investables.

5.2 Index Weighted by Price

In the past era, when computing power and access to market infor-
mation were limited, the easiest way to construct an index was to
compute the average price of component stocks.

5.2.1 Four Dow Jones average indexes

Take the 15-component DJUA index as an example. The last prices
of the 15 component stocks as of May 18, 2018 are tabulated in
Table 5.1.

To compute the DJUA index, we first sum up the prices, which
is 844.67 in this example. We then divide this sum by the divisor
1.2634134826603 to obtain the index level of 704.377476, which is
usually expressed up to two decimal places, i.e., 668.56. Indeed, this
is the value of the DJUA index for that day.

Definition 5.1. Divisor is a numerical device that gives an index
provider some level of flexibility to construct, compute, re-balance,
and re-constitute the index. It gives the index constructor the flexi-
bility to maintain the index.
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Table 5.1 Dow Jones Utility Index as at end of May 18, 2018.

Symbol Company name Last price
AEP American Electric Power Company, Inc. 65.22
AES The AES Corp. 12.05
AWK American Water Works Company, Inc. 80.34
CNP CenterPoint Energy, Inc. 25.29
D Dominion Energy, Inc. 63.68
DUK Duke Energy Corp. 74.15
ED Consolidated Edison, Inc. 73.94
EIX Edison International 61.22
EXC Exelon Corp. 39.35
FE FirstEnergy Corp. 33.25
NEE NextEra Energy, Inc. 156.42
NI NiSource Inc. 24.36
PCG PG&E Corp. 42.22
PEG Public Service Enterprise Group Incorporated 49.56
SO The Southern Company 43.62

In particular, when changing the index constituents, the index
constructor may adjust the divisor so that the value of the index
with the new constituents equals the value of the index prior to
the changes. Namely, the index constructor adjusts the value of the
divisor to circumvent changes in the index value that are unrelated
to changes in the prices of its constituent securities.

At the inception of an index, divisor is typically set in such a
way that the index has a nice initial value, such as 100, as in the case
of NASDAQ Composite Index.

This method of calculating the DJUA index value applies also to
the DJTA and DJTA indexes. More recently, a composite index
consisting of all the stocks in these three average indexes was con-
structed. So altogether, there are four price-weighted indexes for
the US stock market. Officially they are described as

e Dow Jones Industrial Average: The index is a 30-stock, price-
weighted index that measures the performance of some of the
largest US companies. The index provides suitable sector represen-
tation with the exception of the transportation industry group and
utilities sector, which are covered by the Dow Jones Transporta-
tion Average and the Dow Jones Utility Average, respectively.
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e Dow Jones Transportation Average: The index is a 20-stock,
price-weighted index that measures the performance of some of the
largest US companies within the transportation industry group.

e Dow Jones Utility Average: The index is a 15-stock, price-
weighted index that measures the performance of some of the
largest US companies within the utilities sector.

e Dow Jones Composite Average: The index is a price-weighted
measure of 65 US companies that include all components of the
Dow Jones Industrial Average, Dow Jones Transportation Aver-
age, and Dow Jones Utility Average.

Definition 5.2. A price-weighted index of n component stocks
is formally computed as, given all the last traded prices P;; of the
component stocks at a given time ¢,

I — E?:IPM
t—T-
S

The divisor dy is last updated or adjusted at time s < ¢.

5.2.2 Nikkei 225 index

It turns out that most if not all of the stock market indexes in non-
US countries are not price-weighted, except Nikkei 225 index. In
other words, only four Dow Jones Average indexes and Nikkei 225
index are price-weighted.

Nikkei 225 index is calculated and published by a Japanese news-
paper publisher — HAZEF i (Nihon Keizai Shimbun) or Nikkei
in short. It consists of 225 highly liquid stocks listed on the Tokyo
Stock Exchange First Section. Since its inception on September 7,
1950, Nikkei 225 index has become an index widely followed as a
barometer of the Japanese market or the state of Japan’s economy.
Being the major index in the Japanese equity market, Nikkei 225 is
the underlying index for several popular financial products such as
index futures contracts and index funds.

The historical Nikkei 225 index is plotted in Figure 5.2. We see
that the index is calculated back to May 16, 1949 when the Tokyo
Stock Exchange reopened after World War II. At that time, the
Tokyo Stock Exchange calculated and announced the index as “TSE
adjusted average price”. But when the Tokyo Stock Exchange started
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Figure 5.2 Nikkei 225 Index.

the TOPIX index in 1970, Nikkei group took over and renamed it
the “Nikkei Stock Average”, which is its formal name.

There is one slight variation in the calculation of Nikkei 225 index.
Constituent stock prices are to be adjusted before they are summed.
The adjustment is based on the presumed par value. This is a his-
torical vestige, because in the past, every stock had a par value for
the purpose of computing the dividend as a percentage of the par
value, much like the coupon rate of a bond. The adjusted price of a
constituent stock is simply the last traded price times 50 and then
divided by the presumed par value of the stock, which by default
is ¥50.

Definition 5.3. An adjusted-price-weighted index of n compo-
nent stocks is formally computed as, given all the last traded prices
P;; and the presumed par values p; 5, of the component stocks at a
given time ¢,

50
> ieg — Pt
L= ———.

The divisor d, is last updated at time s < ¢. Also, s; < t for
i1=1,2,...,n, which is the time when the presumed par value of
Stock 17 is last updated.
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The reason for this adjustment is that stocks traded by the lot
size of one share, which tend to have a higher par value (¥10,000)
in the past and stocks traded by a lot size of 100 or 1,000 shares with
much smaller par values have different price levels. Intuitively, it is
inappropriate to use the price of such different levels, raw as they
are, to calculate the index. Since the revision of the Commercial
Law in October 2001, Nikkei circumvents this problem by using the
“presumed” par value and adjusts the prices of constituent stocks to
the default par value of ¥50.

It turns out that this variation from the standard price-weighted
calculation has an unexpected benefit. If a stock undergoes a stock
split, Nikkei just needs to change its presumed par value. There
is no need to change the divisor. In a stock split of split factor f,
the price will be adjusted on the effective day t:

P;
Py — f’t =: P

In the usual stock split by which more shares are created, f > 1.
On the other hand, in the case of a reverse stock split, f < 1.

The split factor f can be absorbed by adjusting the presumed par
value p; 5, without changing the divisor as follows:

pi,si — pi,si/f = pi,ti'
This is because
50 50 f 50 Py 50 -
— Py =—=FP1=——F; = —1I¢.
Dis; Pis; | pisi/f [ Dpig
Example 5.1. As an example, consider a press release dated

March 16, 2018 regarding the reverse stock split of NH Foods, a
constituent stock of Nikkei 225 index.

NH Foods Ltd. (2282), a Nikkei Stock Average (Nikkei 225)
constituent, is planning a reverse stock split of 2 to 1. From the
market open of the ex-right date, which is March 28, Nikkei
Inc. will change the presumed par value of NH Foods from 50
yen to 100 yen.

Since the price level of NH Foods in the Nikkei 225 will stay
the same, the divisor will not be changed by this event.

The split factor x in this real-life 2-to-1 reverse stock split is 2. So in
this way, the legacy par value is turned into a modern apparatus to
manage stock splits.


https://indexes.nikkei.co.jp/en/nkave/archives/news/20180316E_1.pdf
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5.2.3 How to construct a price-weighted ETF?

Definition 5.2 indicates that all the prices are traded equally. To
mimic a price-weighted index, we simply buy the same number or
shares at the inception of an ETF.

Example 5.2. As an example, suppose we buy 100 shares for each of
the constituent stocks of Dow Jones Utility Average (DJUA) index.
Before transaction costs, from Table 5.1, the amount of money needed
is $889.92 x 100 = $8,899.20. It is easy to see that the current value
of our ETF is 100 times of

n
Ld, =Y Py =$889.92.
i=1
In the case of Nikkei 225 index, because of the price adjustments

by presumed par values, the equal-share approach does not work
anymore. In principle, we buy each share according to the adjustment

factor . Put differently, the adjustment factor may be interpreted

pi,si
as the number of shares.
Since a stock cannot be traded in less than 1 share, we need to find
50
a number N such that N x
pi,si
Given that the largest presumed par value is ¥500 as at May 11,
2018, the smallest possible N is 500. Thus, the number of shares we

25,000 when we construct an ETF on Nikkei 225

Pi.s;

is an integer for all : = 1,2, ...,225.

buy for Stock i is

index.

It is important to point out that the methods of creating an ETF
described so far are void of regulatory and legal frameworks. Obvi-
ously, not anyone can create an ETF. Only authorized participants
(AP) are allowed to construct. An AP may be a market maker, prime
broker-dealers, or any other large financial institutions. The method
for Dow Jones Average indexes and the presumed par value adjusted
method for the Nikkei 225 index described above are what an AP
would probably use to acquire the shares needed for constructing
these price-weighted ETFs.

The process of an ETF creation begins when a prospective ETF
trust manager (known as a sponsor) files an application with the reg-
ulator to obtain the license to create an ETF. Once the application is
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Creation Unit

Figure 5.3 Illustration of ETF creation.

approved, the sponsor enters into an agreement with an AP. The AP
acquires the necessary basket of shares in accordance to the weights
of an index that the ETF is tracking, and delivers the basket to the
ETF manager. In return, the AP receives the ETF shares in creation
units. Every creation unit is usually a block of 50,000 ETF shares.
Because this transaction is an in-kind transaction, i.e., securities are
traded for securities, there are no tax implications, which is a major
advantage of the ETF creation mechanism.

Once the authorized participant receives the creation units, they
sell them to the public on the open market as a publicly listed ETF,
just like a company is listed. The AP usually takes on the role of a
market maker for the ETF. Figure 5.3 illustrates the essential process
of ETF creation.

Meanwhile, the basket of securities that has been acquired to
form the creation units remains in the trust account managed by the
ETF trust manager. Generally, the trust manager who provides
administrative oversight has little activity beyond paying dividends
from the stocks held in the trust to every ETF investor.

ETF redemption works in reverse, with the AP providing ETF
shares to the ETF sponsor in return for the underlying securities.

After the ETF is listed on the exchange, the authorized partic-
ipant may create more ETF shares when the demand from general
public is high. Conversely, redemption takes place if the ETF is not
well received.

5.3 Index Weighted by Market Capitalization

Note that in the price-weighted approach to constructing an index,
the number of shares issued by each component stock is not needed.
A disadvantage of this method, however, is that adjustments need
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to be performed, either on the divisor or the presumed par value,
whenever a stock split occurs.

5.3.1 Value-weighted index

Consider instead the market capitalization, which is basically a
measure of the market value of a company. Stock split is a corporate
action that involves neither the financial fundamental nor the value
proposition of a company. Thus, intuitively, it makes sense to assert
that the market capitalization remains invariant following a stock
split.

Mathematically, it is easy to see why. First we define the market
capitalization as follows:

Definition 5.4. Market capitalization of a company at time ¢,
denoted by My, is defined as

Mt = NsPt.

Here P, is the price of the stock per share at time ¢, and Ny is the
number of outstanding shares issued by the company, correct as at
time s, which of course is prior to time ¢.

It is easy to verify that the market capitalization remains
unchanged. Suppose t is the ex date of a stock split characterized
by a split factor f. As a result of the stock split, the number of
shares becomes S; := fS, and the share price becomes P, = P/f.
It turns out that

Mt:SSPti:fSSXi:StPt.

f f
As mentioned earlier, the convention is that in a stock split, f > 1,
and in a reverse stock split, f < 1.

As information and computing technologies advance, it becomes
easier to keep track of the number of outstanding shares and to per-
form arithmetic multiplication. Therefore, most of the stock market
indexes around the world use market capitalization as the basis for
weighing component stocks.

Definition 5.5. Let the market capitalization of a constituent
stock be M; ;. The index based on the market capitalization is then
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defined as

J R E?:l Miﬂf _ Z?:l Ssipi,t
t-— ds = ds .

The resulting index is referred to as the value-weighted index. The
divisor is last updated at time s < ¢, and S, is the last updated
number of shares for Stock 3.

Though less often referred to, the value-weighted index is also
called size-weighted index because market capitalization is taken
to be the size of a company in finance.

Proposition 5.1. If the divisor remains unchanged from time t to
time u, then

Z’?Zl SSiPivu
Z?:l SSiPiﬂf .

Proof. By definition, at time t,

— Zzﬂzl Ssipi,t
Ji ’

Ju = Jt X (51)

ds

Likewise, at time u,

_ 2zt Ssibiu

ds
Ju

Equating these two expressions and after a simple algebraic move,
the proposition is demonstrated to be true. O

Why is this apparently trivial proposition included in the book?
This is because historically, Cowles 3rd (1939) points out that the
ratio on the right-hand side of (5.1) corresponds to a special case of
the general ideal method highlighted by Fisher (1922):

Z;L:l S”"iPiyu Z?:l Ssipivu
> i1 SriPii Y iy SsiPit

In this expression, which Fisher (1922) says was first proposed
by Laspeyres in 1864, the time r; < s; for all i = 1,2,...,n, and
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t < u. A property highlighted by Fisher (1922) is that the expression
is invariant with respect to

T < S;.

Fisher (1922) asserts that this is a desired property. As a special case,
2iz1 95 Piu

A o which is the ratio we
i=1%8;" 7,

if we let S,, = S;,, and we obtain
see in (5.1).

Using the same component stocks of Dow Jones Utility Average
as of May 2018, in Table 5.1, we compare the contribution of every
stock by two methodologies. One is the price-weighted methodology
discussed earlier in Section 5.2. The contribution of Stock ¢ is com-
it

> i1 P
prices.

The other is based on the market capitalization. Tabulated in
Table 5.2 are the numbers of shares outstanding, with which the
market capitalizations are computed according to Definition 5.4.

puted as . Note that the denominator is the sum of all

Table 5.2 Comparison of contribution weights by price-weighted (PW) and
market-capitalization-weighted (MCW) methods, as at May 18, 2018. Data
source: Nasdagq.

Ticker Last PW Shares Market MCW
symbol price ($) weight (%) outstanding capitalization  weight (%)
AEP 65.22 7.72 492,523,000 32,122,350,060 7.51
AES 12.05 1.43 661,400,000 7,969,870,000 1.86
AWK 80.34 9.51 178,048,000 14,304,376,320 3.34
CNP 25.29 2.99 431,473,000 10,911,952,170 2.55
D 63.68 754 652,552,000  41,554,511,360 9.71
DUK 74.15 8.78 701,000,000 51,979,150,000 12.15
ED 73.94 8.75 310,730,000 22,975,376,200 5.37
EIX 61.22 7.25 325,811,000 19,946,149,420 4.66
EXC 39.35 4.66 965,000,000 37,972,750,000 8.87
FE 33.25 3.94 476,909,000 15,857,224,250 3.71
NEE 156.42 18.52 471,000,000 73,673,820,000 17.22
NI 24.36 2.88 337,737,000 8,227,273,320 1.92
PCG 42.22 5.00 516,428,000 21,803,590,160 5.10
PEG 49.56 5.87 505,217,000 25,038,554,520 5.85

SO 43.62 5.16 999,000,000  43,576,380,000 10.18



https://www.nasdaq.com/symbol/d/stock-report
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The contribution w; of Stock ¢ relative to each other is thus given by

SS‘Pit
Wy = —=—————. 5.2
(2 2?21 Ssij7t ( )

Noteably, AWK’s contribution to DJUA is 9.51%. But its contri-
bution to a would-be value-weighted index is only 3.34%. Conversely,
Stock SO’s contribution in DJUA is 5.16% , whereas it accounts for
10.18% of the total market capitalization from the 15 stocks with
ticker symbols in Table 5.2.

It must be said that the number of outstanding shares does not
remain constant. As can be seen from Figure 5.4, it can change more
frequently than expected. The AES Corporation’s number of out-
standing shares plotted in Figure 5.4 as a time series is obtained
from CRSP. The sample period is from June 25, 1991 through end
of December 2018.

In particular, we have found 121 changes over a period of 26.5
years, i.e., at a rate of 4.57 changes per year. These changes are not
caused by stock split or reverse stock split because CRSP’s data allow
us to adjust for this corporate action. Overall, we see that the number
of shares increases from about 265 million shares to about 800 million
shares in May 2010. Since then, the company has been buying back
the shares and reducing the number of outstanding shares to around
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Figure 5.4 Number of outstanding shares of AES Corporation.
Source: CRSP.
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660 million shares by the end of December 2017. If the index main-
tenance policy is to adjust the divisor as long as and as soon as
a component stock changes its number of outstanding shares, then
the divisor of a value-weighted index — in principle — needs to be
updated very frequently, especially when the number of stocks is
large, such as the S&P 500 index.

To reduce the frequency of update, S&P Dow Jones Indices sets a
rule that says that changes in a company’s total shares outstanding
of 5% or more are dealt with on a weekly basis.

5.3.2 How to construct a value-weighted ETF?

The method to construct a value-weighted ETF is fundamentally
different from the method of equal number of shares in Section 5.2.3
for creating an ETF after a price-weighted index.

First, we need to compute the weight according to the formula
(5.2). The next thing to do is to portion our funds according to the
weights. Once a component stock is given the apportioned fund, we
proceed to use the money to purchase the shares.

Obviously, we need to consider the costs of trading, something
we do not have to think about when we construct an index. The
algorithm to construct a value-weighted ETF is illustrated in the
following pedagogical example.

Example 5.3. We have $100,000 dollars to invest in the VISE
stocks. For reference, see the article by Sean Williams: Forget
“FANG” Stocks, and Say Hello to “VISE”. The acronym VISE
is coined for the following four companies, along with the exchanges
where they are being listed, and their respective ticker symbols.

Visa (NYSE: V)

Intuitive Surgical (NASDAQ: ISRG)
Sirius XM Holdings (NASDAQ: SIRI)
Electronic Arts (NASDAQ: EA)

We want to create an ETF based on the value-weighted “VISE
index”. The prices, numbers of shares outstanding of these four com-
panies, and the necessary computations are tabulated in Table 5.3.


https://www.fool.com/investing/2018/04/26/forget-fang-stocks-and-say-hello-to-vise.aspx
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Table 5.3 Construction of a value-weighted ETF with a basket of four stocks.

Ticker A\ ISRG SIRI EA
Intuitive Sirius Electronic

Name Visa surgical XM arts

Last traded $129.93 $458.79 $6.97 $132.00

Shares 1,786,164,000 112,299,000 4,491,864,000 306,728,000
outstanding

Market $232,076,288,520 $51,521,658,210 $31,308,292,080 $40,488,096,000
capitalization

Weight 65.30% 14.50% 8.81% 11.39%

Funds allocated $65,301.07 $14,497.04 $8,809.45 $11,392.44

Tentative 502.59 31.60 1,263.91 86.31
shares

Rounded shares 503 31 1,264 86

Actual funds $65,354.79 $14,222.49 $8,810.08 $11,352.00
spent

The total market capitalization, $355,394,334,810, is the sum of
the market values of the four VISE stocks. That is,

$232,076, 288,520 + $51, 521,658,210 + $31, 308, 292, 080
+ $40, 488,096,000 = $355, 394, 334, 810.
To begin the VISE index at the level of 100, the initial divisor is

set at

$355, 304, 334, 810
100

= 3,553,943, 348.10.

We can then proceed to compute the weight of each stock with
respect to the total market capitalization.

Next, to construct an ETF based on the VISE index, we need
to allocate our fund, say $100,000, among the four VISE stocks.
The weights we have computed earlier allow us to do so. We ration
the fund to each stock by multiplying $100,000 with its weight. To
obtain the tentative numbers of shares to buy, divide the funds by
the respective last traded share prices.

Finally, we need to exercise discretion to either round up or round
down the calculated numbers, because the smallest unit of trad-
ing is one share. A key consideration here is that the actual total
funds spent should be very close to, yet not exceeding the budget of
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$100,000. As shown in Table 5.3, if we sum up the amounts needed
to buy the rounded shares, we find that the actual total is

$65, 354.79 + $14,222.49 + $8,810.08 + $11,352.00 = $99, 739.36,

which gives rise to a balance of $260.64. Given the online commission
of $4.95 per trade, and the fact that the numbers of shares we need to
buy are small, the left-over cash allows us to pay for the transaction
costs.

5.3.3 Free float

As discussed earlier, the rise of index-based mutual funds and ETFs
is, to a large extent, due to the availability of equity indexes. These
financial innovations in turn affect how the indexes are to be con-
structed. A major concern of the fund managers is the actual or
effective number of shares that are publicly traded.

Suppose a company stock is a constituent of an index. The com-
pany has issued a total of 10,000 shares, out of which 5,100 shares
are held strategically by the company founders who intend to retain
an ultimate say on how the company is to be run. Another group
of investors may have other strategic objectives. They buy and hold
substantial percentage of the total number of shares, so as to, for
example, sit on the board of directors of the company. These shares
held by company insiders are therefore not “floated” on the stock
market for the general public to trade freely. Even though there are
10,000 issued shares, the actual number available for the general pub-
lic to trade is only a fraction, say 25% of the total amount, or 2,500
shares in our illustration. If an ETF needs to acquire 2,600 shares of
the company, then it becomes impossible since the supply is less than
the required quantity. Moreover, the share price will rise drastically
as soon as the market, by the animal spirit, detects a huge demand
for these 2,500 free-float shares.

Definition 5.6. The notion of free float refers to the issued shares
of a company that are in the hands of public investors, as opposed
to shares closely held by investors who have an agenda other than
just an investment in the company.

Institutional investors prefer to invest in stocks with a large free
float, as they can trade a significant number of shares without heavily
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impacting the share price. In 2001, the FTSE UK Index Series
under FTSE Russell and MSCI pioneered the practice of making
adjustments to the market capitalization? through the application of
investability weightings to constituents’ share totals.

5.4 Case Study: Hang Seng Index

The Hang Seng (164:) Index (HSI) is a market capitalization-
weighted index of a selection of the largest and most liquid stocks
listed on the Main Board of the Stock Exchange of Hong Kong. Like
many major stock market indexes, free-float adjustments are applied.
Furthermore, HSI has a 10% cap on the weight to avoid the domina-
tion by a single stock in the index.

Originally, the index was an in-house tool of Hang Seng Bank.
The bank then decided to launch Hang Seng Index on Novem-
ber 24, 1969 with 33 constituent stocks. HSI can be backdated to
July 31, 1964 with a starting base index level of 100. It has become
the most widely quoted gauge of the Hong Kong stock market.
Since 2007, HSI has 50 stocks. Currently HSI is maintained by the
Hang Seng Indexes Company.

HSI is calculated and disseminated real-time every two seconds
during trading hours on each trading day of the Hong Kong stock
market. The formula to compute HSI consisting of 50 component
stocks can be expressed as, with ds being the most current divisor,

50
1
HSL = = > PiiSs, fici,
8 =1

where P;; is the last traded price of stock i at time t, S, is the
most current number of issued shares of Stock i, f; is the free-float
adjustment factor, which is between 0 and 1, and ¢; is the capping
factor, which is also between 0 and 1.

Example 5.4. At the March 2018 review, only two component
stocks of HSI, namely, HSBC and Tencent, were given the capping

2 MSCI in a press release announced that it would implement the adjustments
of free float on or before June 30, 2001.


https://www.hsi.com.hk/eng
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factors (CF) of, respectively, 61.05% and 38.36%, so as to amelio-
rate their huge market capitalization relative to the other 48 stocks,
which do no need cap adjustment.

Suppose the number of issued shares is obtained for each of the
50 constituent stocks. The adjusted market values in Hong Kong
dollars (HKD) and weights or contributions to the index for HSBC
and Tencent are computed and tabulated in Table 5.4, as at end of
May 21, 2018.

The free-float adjustment factor (FFAF) of Tencent is only 60%,
and the free-float adjusted (FFA) number of shares is reduced by
40% to 5,701,916,121.6 shares. For index, in contrast to ETF, having
a decimal for the number of shares is not a problem since index is
not directly tradable. The free-float and cap adjusted market capi-
talization is the product of the last traded price, the cap factor, and
the number of FFA shares.

Definition 5.7. The investible weight factor (IWF) is the per-
centage of total shares outstanding that are included in the index
calculation.

It maybe more convenient to compute instead the investible
weight factor as the product of the free-float adjustment factor and
the capping factor:

Thus, in the case of Tencent in Example 5.4, its IWF is 0.6x 0.3836
= 0.23016, or 23.015%. In other words, only about 23% of the total
number of issued shares are investible in the context of creating an
ETF based on HSI.

5.5 Equally Weighted Index

By far, most of the representative stock market indexes are essen-
tially value-weighted. This approach requires the index provider
to update the number of issued or outstanding shares. A modern
modification is that before the market capitalization of a component
stock is computed, its free float percentage and other factors such as
weight capping are taken into account to arrive at the effective or
adjusted number of shares. Attempts to compute the value-weighted



Table 5.4 Free-float adjustment factors (FFAF) and cap factors (CF) are determined by Hang Seng, from which FFA

shares and free-float and cap adjusted (FFCA) market capitalization are calculated.

Last FFCA market

price Issued capitalization
Name (HKD)  FFAF (%) CF (%) shares FFA shares (HKD) Weight (%)
HSBC 77.8 100 61.05 20,378,431,083 20,378,431,083.0 967,912,303,306 10.07
Tencent  408.0 60 38.36 9,503,193,536 5,701,016,121.6  892,400,049,892 9.29
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index are also compounded by the fact that the constituent compa-
nies may issue more shares, or buy back their shares.

In contrast, for the price-weighted approach explained in the
earlier section, we are spared the tedium of accounting for the
adjusted number of outstanding shares.

Another approach called the equally weighted or unweighted
method also possesses this attractive feature of not being bogged
down by the arduous tasks of looking up for the numbers of issued
shares, free-float factors, and so on.

Definition 5.8. Equally weighted index, also known as unweighted
index, is defined as the index constituted by giving equal
dollar amount and thus equal weight to every component
stock.

Equally weighted index can be easily constructed by averaging
all simple returns of the component stocks. At any given time, it is
a cross-sectional average across all securities in the basket. If we
chronologically collect the averages of the simple returns, we can eas-
ily construct an equally weighted index, as illustrated in the following
example.

Example 5.5. Suppose the cross-sectional averages of simple
returns at Days 1 to 5 are, respectively, 1%, —2%, 3%, 10%, and
—5%. We can start at Day 0 with a base index value of 100. On
Day 1, the index value becomes 100 x (1 + 0.01) = 101. Likewise on
Day 2, we have 101 x (1 —0.02) = 98.98. On Day 3, the index value
becomes 101.95, and 112.15 on Day 4. Finally, on Day 5, we obtain
106.54.

In contrast to value-weighted method, equally weighted
approach assigns equal weight to every constituent in the index,
regardless of the company size, which is typically measured by market
capitalization. Therefore, the smallest and largest companies receive
the same weight. The upshot is that each constituent within an
equally weighted index exerts a similar impact on the overall per-
formance. In other words, component stocks of small market size
influence the unweighted index equally with those of large market
size.
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From the perspective of portfolio management, equally weighted
indexes provide sector exposures and risk-return profiles that are
different from those of their value-weighted counterparts.

5.5.1 Exzample: Value line index

As a practical example of an unweighted index, we have the
Value Line Average index. It was introduced on June 30,
1961. This market benchmark assumes equally weighted positions
in every stock covered in The Value Line Investment Survey,
which is the flagship newsletter that tracks about 1,700 individual
stocks.

The Value Line Average index assumes that an equal dol-
lar amount is invested in each and every stock of the index.
The returns from doing so are averaged geometrically every day
across all these stocks in The Value Line Investment Survey.
Consequently, this index is frequently referred to as the Value
Line Geometric Average index. By covering a larger number
of stocks than the S&P 500 index, and by giving equal weight
to every stock, the Value Line Average index ought to provide
a better indication of the performance of the overall stock mar-
ket as opposed to large-cap stocks or particular segments of the
market.

On February 1, 1988, Value Line began publishing the Value
Line Arithmetic Average index, in response to a need that sub-
scribers and investors had. This new variant is also equally weighted.
The difference lies in the mathematical technique employed to calcu-
late daily changes. This arithmetic average is the one that we have
dealt with in Example 5.5.

5.5.2 How to create an equally weighted ETF?

The method to create an equally weighted ETF is quite straightfor-
ward. We simply portion the total fund equally to every constituent
stock.

As an illustration, consider again the VISE value-weighted ETF
discussed in Example 5.3.
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Example 5.6. The fund of $100,000 is divided equally among the
four stocks. The rounded numbers of shares are tabulated as follows:

Ticker A% ISRG SIRI EA

Name Visa Intuitive Surgical Sirius XM Electronic Arts
Last traded $129.93 $458.79 $6.97 $132.00
Funds allocated $25,000.00 $25,000.00 $25,000.00 $25,000.00
Tentative shares 192.41 54.49 3,586.80 189.39
Rounded shares 193 54 3,587 189
Actual funds spent | $25,076.49 $24,774.66 $25,001.39 $24,948.00

The total actual money spent is $99,800.54, giving rise to a cash
balance of $199.46. This amount should be sufficient to pay for the
transaction costs of acquiring the rounded shares.

Compared to the rounded shares in Example 5.3, Visa, which
takes a lion share of 65.03% of the total fund, is drastically reduced
to 25% in the unweighted approach. Consequently, the number of
shares for Visa decreases from 503 shares to 193 shares.

5.5.3 Value-weighted versus equally weighted ETFs

Under the ticker symbol SPY, the SPDR S&P 500 ETF seeks to pro-
vide investment results that, before expenses, correspond generally
to the price and yield performance of the S&P 500 index. The Trust
seeks to achieve its investment objective by holding a portfolio of the
common stocks that are included in the index, with the weight of
each stock in the portfolio substantially corresponding to the weight
of such stock in the index.

Launched in January 1993, SPY is the very first exchange traded
fund listed in the United States. It has enjoyed enormous success
since inception. As at end of March 2018, its market capitalization
is about $201.2 billion dollars, which is indicative of its popularity
among investors.

On January 8, 2003, the S&P 500 Equal Weight index was
launched, which could be back-dated to end of December, 1989. It is
a size-neutral version of the S&P 500 index, i.e., having the same con-
stituents as the value-weighted S&P 500 index. Each security issue
in the S&P 500 Equal Weight index is allocated the same weight.
About three months later, Invesco PowerShares listed the Power-
Shares S&P 500 Equal Weight ETF under the ticker symbol of RSP
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on the New York Stock Exchange’s Arca platform. It is extolled to
be the first smart beta ETF in the industry, and it has the poten-
tial to outperform ETFs that were constructed with the traditional
cap-weighted approach.

Naturally, investors would be interested to compare the perfor-
mance of SPY versus RSP. For this purpose, we need to define the
notion of net asset value (NAV) first.

Definition 5.9. NAV is the market value of a mutual fund’s
or ETF’s total assets, minus liabilities, divided by the number of
shares outstanding. The market value is determined by the mid-
point between the bid-offer prices as of the closing time of the stock
exchange on business days.

Historical NAV data for SPY and RSP are taken from
Bloomberg.? We align RSP’s NAV to SPY by scaling at the begin-
ning for ease of visual comparison. Noteable in Figure 5.5 is the clear
out-performance of RSP over SPY.

What we can take away from Figure 5.5 is that if we invest a dol-
lar on each of the two ETFs at the beginning of the sample period,

400
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3501 — SPY

N
9,1
o

USD per Share
N
o
o
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100
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Figure 5.5 NAV Comparison of value-weighted SPY and unweighted RSP.

3Regrettably, historical NAV of ETF is usually not publicly available.
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i.e., the inception of RSP, we will get our reward from capital appre-
ciation handsomely over about 15 years. Specifically, our every $1
becomes about $2.75 for SPY, and about $3.65 for RSP.

What could possibly drive a wedge between these two ETFs?
Despite having identical stocks as constituents, the different methods
of allocating funds to acquire their shares are likely to cause the NAV
to deviate between the two. We also observe from Figure 5.5 that
when the market is bullish, the unweighted RSP tends to outperform
the value-weighted SPY. Conversely, when the market is bearish,
RSP seems to decline more than SPY.

5.6 Re-balancing

After an index has been created, the ongoing job of the index
provider is to maintain it. There are many corporate actions and
updates that necessitate adjustments. In response to a corporate
action, re-balancing refers to changing the divisor and other adjust-
ment factors after the trading hours. The basic principle underlying
re-balancing is that the index level should not experience a jump as
a result. In other words, the index level before and after re-balancing
must remain unchanged.

5.6.1 Price-weighted index

An advantage of the price-weighted method is that it will continue
to be price-weighted if there is no stock split. If the price of a stock
increases more than other stocks in the index, its weight will increase.
Conversely, the weight or contribution in the price-weighted index
will decrease if the price decreases more than the rest.

Now, suppose a component stock experiences a stock split. As
discussed in Section 5.3.1, everything else being equal, the price P;
will change to P;. This price change will impact the price-weighted
index and make it incorrect. Since stock split is a corporate action
that will not change the profitability of a company, the price-weighted
index should not change. Thanks to the divisor, we can adjust
it so that the index level remains invariant even when there is
a stock split.
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Without loss of generality, suppose Stock 1 has a stock split at
time t. Using the pre-split price P4, the index is computed as

1 n
Iy = d_s <P17t+;Pi,t>-

We have isolated P ; so as to see the change clearly. To obtain the
same Iy, we need to find a new divisor d; so that

1 5 n
Iy = T (Pl,t + Z Pi,t)-
¢ i=2
Solving for the new divisor d;, we obtain

_ Pia+>" Py 4. x P+ Y0, Py

d .
! I T P+ Yoo Piy

(5.3)

Now, Pl,t = P,;/f at the close of the trading session, where
f > 1 for a stock split. The new divisor will be smaller than the
old divisor dg, as can be seen from (5.3), which is rewritten as, with

C:= Z:LZZ Pivt7

dy %"’_C
ds_Pl,t+C

Conversely, for reverse stock splits, d; > ds.

5.6.2 Value-weighted index

As discussed in Section 5.3.1, value-weighted index is invariant to
stock splits. Therefore, index providers do not need to adjust the
value-weighted index when a stock split occurs.

The caveat, however, is that, whenever a company issues more
shares, say more than 5% of the existing shares outstanding, index
providers have to adjust the divisor.

The principle of adjustment is still the same — the index
must not change because of the additional shares. Without loss of
generality, suppose the number of issued shares of Stock 1 increases
by ASi4, so that its market capitalization becomes

P14S16; — P1yS1s; + Pre < ASq4.
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To account for the additional market capitalization, we need to adjust
the divisor to
_ PiSie + Prax ASiy+ 300 o PiuSis,
t = = ds
Ji
y Py x ASy + 25;1 P;1Sjs;
2 =1 PjSis;

=d, <1 + Pl,t%%) . (5.4)
t

From this equation, we see that the new divisor d; will be larger than
the old divisor dg by a fraction P;; x AS;/J;. Conversely, when a
share repurchase occurs, AS1 ; is negative and thus the new divisor
will be smaller than the old divisor.

Given that the corporate actions of issuance of more shares and
share buybacks occur more frequently than stock splits, it seems
that updating of divisor for value-weighted index has to be carried
out more often than for the price-weighted index.

5.6.3 FEqually weighted index

Recall that an equally weighted index is one for which every stock
has the same weight in the index, and a portfolio that tracks the
index will invest an equal dollar amount in each component stock.
As stock prices move, the weights will shift and exact equality will be
lost. Therefore, an equally weighted index must be rebalanced from
time to time to re-establish equal weighting.

Same as any value-weighted index, the equally weighted index is
also not affected by stock split. This is because when we buy an
equal dollar amount of component stock, its market value is simply
the market price times the number of shares hypothetically acquired
at inception, i.e., Pj;Sjo x IWF; for j = 1,2,...,n. Here, IWF,
is the investible weight factor defined in Definition 5.7.

What about the issuance of new shares or share buybacks?
Before answering this question, it is important to mention that index
providers such as the S&P Dow Jones Indices typically redefine the
market capitalization for each stock used in the calculation of the
equally weighted index. The principle of re-balancing, however,
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remains the same, i.e., after the market closes on day t,
Index level before re-balancing = Index level after re-balancing

In addition to the investible weight factor IWF enunciated
in Definition 5.7, a new adjustment factor is introduced in the mar-
ket capitalization calculation to establish equal weighting. More con-
cretely, an additional weight factor (AWF) is given to each stock.
The following definition and the algorithm for re-balancing are based
on the methodology of S&P Dow Jones Indices (2018).

Definition 5.10. The additional weight factor (AWF) is the
adjustment factor of Stock ¢ assigned at each index re-balancing
date t, which makes all index constituents’ modified market capital-
ization equal (and, therefore, equal weight), while maintaining the
total market value of the overall index.

Now, let Zy be the hypothetical capital at the inception of an
equally weighted index. We understand that Zy/n amount is appor-
tioned equally to each of the m stocks. Also, let s be the last
re-balancing date, and ¢ is the day when re-balancing is to be per-
formed. The algorithm for re-balancing goes as follows. First, we need
to compute the market value of the index before re-balancing:

n
> PjuSe; x IWF; o x AWF; = Jyds.
7j=1

Note that only the index level J; and the last-traded price P;; are
the most current; the other quantities were updated at a time older
than time t¢.

Next, suppose the number of issued shares has changed from S;;
to Si;, and the investible weight factor from IWF; s to IWF; ;. The
new AWF;; is re-calculated as

2

AWF.,; = n . 9.9
W 7t Pj,tStj X IWFj7t ( )

The denominator is the free-float adjusted market value of Stock j
calculated from the updated data for the number of issued shares and
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its free-float percentage. It can be easily recognized that at inception,
AWF;o = 1.

In this way, the divisor after re-balancing is given by

Z?:l Pj,tStj X IWF]‘J X AWFj,t
= 7 )
The numerator is none other than the index market value after
re-balancing. Equivalently,

y 2221 PjﬂgStj X IWF]‘J X AWFj,t
T Y0 PisSs; X IWF; o x AWF

dy

dy=d

This S&P Dow Jones Indices’ method of re-balancing seems rather
complicated. In fact, a simpler approach does not require divisor
adjustment. The key insight of equally weighted method is that each
component stock’s market capitalization will differ from the others,
whether due to share price changes, which is the primary cause, or
due to changes in the number of issued shares.

At any rate, the total market capitalization of the component
stocks is none other than the current index level J; times the initial
divisor dy designed specifically for making the unweighted index start
at the level of, say 100. In re-balancing, we again portion equal fund
of Jidy/n dollars to each of the n component stocks. The new number
of shares for Stock ¢ of current price P;; is

Jidg

fori=1,2,...,n.

5.6.4 Summary of re-balancing

In this section, we deal with two corporate actions: stock splits and
changes in issued shares. We summarize whether the divisor of an
index must be adjusted or not in Table 5.5.

Two remarks are in order. First, for the (modified) price-weighted
Nikkei 225 index, because of the adoption of presumed par value,
which is utilized to take care of stock split, divisor is unchanged
when a component stock experiences a stock split. Second, for value-
weighted indexes, in order to lower the frequency of re-balancing,
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Table 5.5 Summary of whether the divisor of an index
must be changed during re-balancing.

Method Stock split Change in issued shares
Price-weighted Yes No
Value-weighted No Yes
Equally weighted No No

the change in issued shares must be higher than a certain percent-
age, typically 5%. This is the rule index providers set as they go
about maintaining the index. Third, on the surface, it seems that
the equally weighted index is the most “robust” in relation to stock
splits and changes in the number of outstanding shares. But index
providers need to readjust the composition regularly to make their
weights equal again. From the standpoint of constructing an ETF
or portfolio based on the equally weighted method, the frequency of
re-balancing can be an operational bane.

5.7 Reconstitution

Every index has a set of eligibility criteria by which to decide whether
a stock should or should not be included. Over time, a component
stock may fail to satisfy all the criteria. The index provider will need
to replace some of the existing component stocks that no longer are
representative of the index anymore. Reconstitution is the process of
addition and deletion of an index’s component stocks. It is parallel
to portfolio managers changing the securities in their portfolios.

The overriding principle, again, is that the index level remains
unchanged before and after reconstitution.

5.7.1 Price-weighted index

The formula for reconstitution is exactly the same as re-balancing a
stock split. In (5.3), we simply interpret Pl,t as the newly added secu-
rity, and Pp; as the security deleted. Thus, a new divisor is obtained
that ensures that the price-weighted index does not change.
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Example 5.7. Suppose there are four investible stocks, and their

data are captured as follows:

Stock A B C D
Share price | $1 $2 $3 $5

Suppose before reconstitution, a price-weighted index is based on
Stock A, B, and C, and the divisor is 0.0075. The index level is
therefore

1+243

00075 o00.

Now, suppose Stock A is to be replaced by Stock D. Using (5.3), we
obtain the new divisor

(2+3)+5

= 0.0125.
800

t =
Note once again that for price-weighted index, we only need the
information of share prices; other quantities are not required.

Example 5.8. Consider an ETF based on the price-weighted index
in Example 5.7. For pedagogical purposes, suppose the transaction
cost is negligible. An ETF manager has bought 3 million shares for
each of the three stocks, as the asset under management of the ETF
is 18 million dollars.

(31 + $2 + $3) x 3,000,000 shares = $18, 000, 000.

In response to the reconstitution, how many shares must the manager
hold for each stock?
The answer is easy to find as follows:

$18, 000, 000
$2 + $3 + $5

Therefore, assuming zero trading cost, the transactions that the ETF
manager must carry out are as follows:

= 1,800, 000 shares.

(1) Sell all 3 million shares of Stock A, and obtain the proceeds of
3 million dollars.

(2) Sell (3 — 1.8 =) 1.2 million shares of Stock B, and obtain the
proceeds of 2.4 million dollars.
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(3) Likewise, sell 1.2 million shares of Stock C, and obtain the pro-
ceeds of 3.6 million dollars.

(4) Use the total proceeds, i.e., (3 + 2.4 + 3.6 =) 9 million dollars,
to buy 1.8 million shares of Stock D at $5 per share. Indeed,

$9, 000, 000
$5

In this way, Stocks B, C, and D have equal number of shares after

these transactions.

Now, it is by no means easy to liquidate 3 million shares of
Stock A. The market for Stock A will likely trend down as a result
of this demand to sell. Likewise, for Stock B and Stock C, the ETF
manager also need to sell 1.2 million shares each. On the flip side, the
market for Stock D will likely trend up because the ETF manager
must buy 1.8 million shares. These temporary market imbalances are
the results of reconstitution.

= 1,800,000 shares.

5.7.2 Value-weighted index

When one security is removed and another is added, the weights of
all the other stocks in the basket must be changed. This is because
the total market capitalization changes when an existing stock is
replaced by another stock. As can be seen in (5.2), since the total
market capitalization is the denominator, the weight w; of any Stock
¢ will change. Once the new weight for each stock is calculated, we
can then compute the number of shares to hold, and thereafter adjust
the divisor so that the value-weighted index remains at the same level
before reconstitution.

Example 5.9. Consider again the same 4-stock market of Exam-
ple 5.7. Information relevant to the value-weighted index is captured
in Table 5.6.

The adjusted number of shares N; in Row 5 of Table 5.6 is com-
puted as the product of the number of issued shares Sj;, investible
weight factor IWEF; , and additional weight factor AWF; .

Ni = Ssi X IWFZ‘,S X AWFLS.

Consequently, the adjusted market value denoted by A;; of each
stock is simply the share price times the adjusted number of shares.

Air = PN
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Table 5.6 Reconstitution of a value-weighted index.

Row A B C D

1 Share price $1 $2 $3 $5
2 Issued shares 60,000,000 50,000,000 40,000,000 21,000,000
3 IWF 90% 50% 80% 100%
4 AWF 100% 100% 100% 99.0476191%
5 Adjusted shares 54,000,000 25,000,000 32,000,000 20,800,000
6 Adjusted MV $54,000,000 $50,000,000 $96,000,000 $104,000,000
7 Weight 27.0% 25.0% 48.0% 0.0%
8 New weight 0.0% 20.0% 38.4% 41.6%

Initially, we have Stocks A, B, and C as the constituents of the
value-weighted index. The total adjusted market capitalization is the
sum of adjusted market values (MV), which is calculated as

$54, 000, 000 + $50, 000, 000 + $96, 000, 000 = $200, 000, 000.

Now, suppose the divisor is 250,000 before reconstitution. The index
level is

200, 000, 000/250, 000 = 800.

The weight of each stock is found by dividing its adjusted market
value by the total adjusted market capitalization.

Again, suppose Stock A is to be dropped and Stock D included.
We need to compute the total adjusted market capitalization of the
new combination, and the result is

$50, 000, 000 + $96, 000,000 + $104, 000,000 = $250, 000, 000.

To ensure that this value-weighted index remains at 800, the new
divisor is updated as

~ 250,000,000

d
t 800

= 312, 500.
Finally, the new weights based on the reconstituted total

market capitalization are computed and reported in Row 8 of
Table 5.6.
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Table 5.7 Value-weighted ETF and its response to index reconstitution.

Row A B C D

1 Share price $1 $2 $3 $5
2 Adjusted MV $54,000,000 $50,000,000 $96,000,000 $104,000,000
3 Weight 27.0% 25.0% 48.0% 0.0%
4 Stock’s MV $4,860,000  $4,500,000  $8,640,000 $0
5 Stock’s shares 4,860,000 2,250,000 2,880,000 0
6 New weight 0.0% 20.0% 38.4% 41.6%
7 New ETF fund $0  $3,600,000 $6,912,000  $7,488,000

allocated
8 New ETF shares 0 1,800,000 2,304,000 1,497,600

Example 5.10. Suppose we are the manager of an ETF based
on the value-weighted index of Example 5.9. Essential information
about the stocks is the same as Table 5.6. In particular, the share
price, the adjusted market value (MV), and the weight of each stock
are repeated in the first three rows of Table 5.7 for ease of reference.

Given that the asset under management is 18 million dollars, the
fund for each stock moves in accordance to its weight in Row 3. As
shown in Row 4, Stock C has the largest fund amount because its
weight is 48%, which is the heaviest. The number of ETF shares for
each stock is computed as the ETF’s NAV divided by the stock price
per share.

Again, suppose Stock A is to be dropped and Stock D is to be
included. The fund allocations and ETF shares have to be changed
in response to the new set of weights. These items are captured,
respectively, in Rows 7 and 8.

Assuming zero transaction cost, the concrete actions we must take
are as follows:

(1) Liquidate Stock A completely by selling 4.86 million shares to
obtain 4.86 million dollars.

(2) We also need to sell 2,250,000 — 1,800,000 = 450,000 shares of
Stock B, since its weight is reduced from 25% to 20% as a result
of reconstitution. We will obtain $2 x 450,000 = $900,000.

(3) Similarly, for Stock C, we need to sell 2,880,000 — 2,304,000 =
576,000 shares. And we will have a cash flow of $3 x 576,000 =
$1, 728, 000.
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(4) The total cash flow from sales is
$4, 860, 000 + $900, 000 + $1, 728,000 = $7,488, 000.

Use this money to buy Stock D. At the price of $5 per share, the
number of shares acquired is $7,488,000/$5 = 1,497,600 shares.

5.7.3 Equally weighted index

Interestingly, the divisor need not be changed when reconstitution
is conducted for equally weighted index. This is because the company
entering the index is given the adjusted market value of the company
exiting the index. Consequently, the total market value of the index
neither increases nor decreases. Since the total market value does not
change, there is no need to change the divisor.

Let the replacement Stock i,’s share price be P;, ;; the number of
issued shares be Sx; and the investible investment weight be IWF;_;.
These quantities are known or can be found for any given stock. The
only unknown is the additional weight factor AWF;, ;. As the dollar
amount of A;; is assigned to Stock i, it follows that

Aiy
Pi*,tSt;‘ x IWF;, ¢ .

AWF,, ; = (5.6)

We have a one-for-one exchange of incoming and outgoing stocks
in the reconstitution of an equally weighted index; other stocks in
the basket are not affected. That said, if the reconstitution is not
one-for-one — more added than deleted or vice versa — then all the
component stocks will be affected.

Example 5.11. Suppose we start with Stocks A, B, and C in
Table 5.6 to constitute an equally weighted index. As expected, in
between scheduled re-balancing, the market values of the component
stocks are no longer equal. Specifically, Stock A’s adjusted market
value A; ¢ is 54 million dollars, as in Row 6 of Table 5.6. The adjusted
market values of Stock B and Stock C are, respectively, 50 and 96
million dollars.

Suppose Stock A is to be replaced by Stock D. We simply assign
the adjusted market value of Stock A to Stock D. Applying (5.6),
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Table 5.8 Impact of reconstitution on equally weighted ETF.

Stock A B (@) D

Market value $6,480,000 $6,000,000 $11,520,000 $0
ETF shares 6,000,000 3,000,000 2,000,000 0
New ETF fund $0 $6,000,000 $11,520,000 $6,480,000
New ETF shares 0 3,000,000 2,000,000 1,296,000

the new AWF for Stock D is

$54, 000, 000

AWFp, =
Dt 5% 21,000, 000

x 100% = 51.43%.

In this way, the total adjusted market value remains unchanged at
$200 million dollars. It follows that the index level is unchanged as
well. Note that no adjustment is done to the divisor.

Example 5.12. Suppose we manage an ETF based on a 3-stock
equally weighted index. We portion 18 million dollars equally among
Stocks A, B, and C, each getting 6 million dollars for purchas-
ing them. Over time, before the next scheduled re-balancing, the
adjusted market values change and they are reflected in Table 5.8.

In response to an index reconstitution of Stock A being replaced
by Stock D, we must liquidate all shares of Stock A. Assuming zero
transaction cost, we then use the entire proceeds of $6,480,000 to
acquire 1,296,000 shares of Stock D at $5 per share:

6,480,000
5

Other stocks are not affected by the reconstitution.

= 1,296,000 shares.

5.8 Summary

Financial and economic indexes have progressively innovated into
indispensable and multi-purpose devices. They are of great value for
investors to gauge and track the investment performance, as well as
to estimate risks. A security market index is a tool to measure the
value of a portfolio of securities in a target market, market segment,
or asset class. The constituent securities selected for inclusion in the
security market index are intended to represent the target market.
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Substantially, indexes provide the basis for new investment
products, including exchange-traded funds, mutual funds, other
fund-based financial products, futures, and options. It is therefore
important to understand the algorithms by which an index is con-
structed, re-balanced, and reconstituted. This imperative knowledge
will likely provide data scientists a competitive edge in the domain
of banking and finance.

Exercises

5.A

5.B

Suppose you are employed as a junior quant/data scientist in an
ETF firm and you are given a task to construct a price-weighted
index, a market-cap-weighted index, and an equally-weighted
index. You have selected three stocks and their characteristics
are as follows:

Stock A Stock B Stock C
Initial price at time 0 $2.00 $20.00 $200.00
Shares outstanding 100,000,000,000 100,000,000 1,000,000
Initial market cap $200,000,000,000 $2,000,000,000 $200,000,000
Daily simple return at -1.20% 0.80% 10.00%

time 1

(1) What is the level of the price-weighted index initially?

(2) What is the value of the divisor if you are to set the initial
level of the value-weighted index at 1007

(3) Starting with a hypothetical value of $14,400, how many
shares of Stock B must you buy when you are constructing
the equally weighted index?

(4) What are the respective simple daily returns of the price-
weighted, value-weighted, and unweighted indexes after the
prices move to the new prices according to the respective
daily simple returns?

(5) A new Stock D of price $10 is to be added to the equally-
weighted index at Time 1. What is the value of the new
divisor?

Assume that the equity market has only four stocks. The num-
ber of free-float (FF) shares is constant across Time 0 and
Time 1 for each stock as in the following table:
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Stock A B C D
FF Shares | 20,000 25,000 50,000 40,000
Time Price $35 $68 $72 $100
0 Volatility 80% 40% 60% 20%
Time Price $40 $75 $79 $110
1 Volatility 72% 36% 54% 18%

You are an intern with a quantitative hedge fund from Time
0 to Time 1. Being a progressive hedge fund that believes in
real-world investment, you are given $40,000 to set up an ETF
at Time 0. The instruction is that you must use up as close to
$40,000 as possible, i.e., as little left over cash as possible. You
are to hold the ETF and re-balance it at Time 1. Trading cost
is fixed at 0.5% of the trading amount in dollars. Suppose you
want to construct an equally weighted ETF.

(1) Describe how you go about constructing the ETF at Time 0.
(e.g., numbers of shares of A, B, C, and D; total cost of
trading in constructing the ETF, etc.).

(2) Describe how you go about re-balancing the ETF so that
it becomes equally weighted again (e.g., numbers of shares
of A, B, C, and D; total cost of trading in re-balancing the
ETF, etc.). You must once again make sure that as little
cash is left over as possible.

(3) As an intern wanting to secure a job, you have the drive to
suggest a new idea for constructing a “smart beta” index at
Time 1. Suppose the risk-free interest rate is 1%. You have
an idea of using the 1/volatility as the criterion to give
weight to each stock. What is the weight of each stock?
Explain your answer.
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Chapter 6

Indexes from Derivatives

This chapter focuses on indexes that are not the usual stock market
indexes. These non-equity indexes are constructed from derivatives,
which are financial contracts that expire after a time period. The
non-equity indexes play an increasingly important role in providing
market participants a glimpse of the market condition from the per-
spective of derivative traders.

Our focus in this chapter is to discuss indexes created from futures
and options. These derivative indexes are especially important for
commodities. We shall dive into the algorithmic details of creating
continuous time series of futures prices. We also introduce a few
composite commodity indexes that are commercial in nature.

A second portion of this chapter is devoted to the volatility index
(VIX), popularly known as the fear gauge in the market. We discuss
in depth the algorithm provided by the Chicago Board of Options
Exchange to compute VIX. We show that it is possible to construct
VIX from options when the algorithm is carefully followed.

6.1 Brief Introduction to Futures

Stock shares and bond certificates are financial instruments used
by corporations to raise capital. Governments, too, issue bonds to
finance their budgets. As a legal tender, currency is fiat money,
which has value because the government guarantees that value. On
the stage of global trade, the value of one currency is relative and the
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foreign exchange is about trading one particular currency for another
currency, as their relative values shift. Investors can also buy com-
modities such as gold or silver when they hold the view that the
values of these precious metals will increase over their investment
horizon.

Most investors and traders alike participate in the trades of shares,
bond certificates, forex, and commodities, which are the major asset
classes that play a significant role in the globalized financial market.
In terms of the mode of settlement, stocks, bonds, forex, and com-
modities are said to be traded in the spot market. When we buy
100 shares, a bond of $1,000, a million dollar worth of foreign cur-
rency, or a gold bar, we need to pay for the asset immediately or
within three working days.

Now, suppose we do not have investment money now but we will
have it a month later. We see an investment opportunity of a foreign
currency and we want to buy it. What can we do? Thanks to finan-
cial innovations, there are other ways to express our view about
a financial asset. In general, they are classified under the name of
“derivative”.

Definition 6.1. A derivative is a financial contract that by itself
has no value. The value of a derivative is derived from the financial
asset that underpins the contract.

Of all the financial derivatives, futures is essentially a contract
that allows commodity buyers to “book” the asset now for receiving
its delivery much later when the contract matures or expires. On the
other hand, futures allows commodity sellers to “lock in” a price now
for the underlying asset that they shall deliver much later. By having
the price fixed in advance, both buyers and sellers have achieved their
objective of removing a substantial portion of the risk from their
business.

Definition 6.2. Futures is a financial derivative (contract) to trade
a particular commodity or financial product at a predetermined
price at a specified time in the future. The predetermined price is
also known as the forward price. In any futures contract, at least
the following terms are spelled out:

(1) Underlying asset: The particular commodity or financial
product.
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(2) Contract size: A multiplier that allows the notional amount or
volume of the contract to be obtained from the futures price

(3) Expiration date: The specified time in the forthcoming date
when the futures contract expires.

(4) Delivery mode: Either physical or cash-settled (netting the
futures price difference with the underlying asset’s settlement
price).

To ensure that futures traders do not renege on their contractual
promises spelled out in the futures contract, futures exchanges
provide the service of a neutral intermediary in selling futures con-
tracts to the buyer and buying them from the seller. And there are
also the futures commission merchants, who play the crucial role of
setting up a financial framework to enable their customers to send
buy or sell orders to a futures exchange.

Futures trading has come a long way since the day of the Dojima
% 55 Rice Exchange! in the 18th century. In terms of the number of
contracts traded, Table 6.1 provides a picture of futures markets
growing rapidly over the last 12 years from 2009 to 2020. It serves as a
piece of evidence for the growing importance of futures. Consistently,
we find that the Asia-Pacific region has the largest volume traded
compared to other regions. In particular, Asia-Pacific region enjoyed
a growth of 280% over these 12 years, hitting a record of 10.46 billion
contracts in 2020.

It must be emphasized that the underlying asset can be any
numerical variable of interest or significance to the market partic-
ipants. As long as the market variable fluctuates in a random fash-
ion, a futures can be written on that market variable. For example,
the market variable can be the stock market index such as the S&P
500 index. The mechanism and institutionalization of futures have
progressed to work so well that futures exchange operators are com-
fortable to list futures that they think will become popular among
traders. No longer restricted to only commodities, futures contracts
can also be written on interest rates, which attract many transactions
as interest rates are very important to investors.

! Artistic depictions of the Dojima Rice Exchange can be found from the URL
https://www.jpx.co.jp/dojima/en/index.html published by the Japan
Exchange Group.
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Table 6.1 Global volume of futures traded by regions in billion
contracts.

Asia- North Latin Grand
Year Pacific America FEurope America Other total

2009 2.75 2.35 2.47 0.39 0.23 8.19
2010 4.66 2.79 3.06 0.57 0.22 11.30
2011 4.60 3.09 3.57 0.63 0.23 12.12
2012 4.21 2.71 3.22 0.65 0.23 11.01
2013 4.78 3.11 3.30 0.70 0.25 12.14
2014 4.56 3.22 3.38 0.66 0.32 12.14
2015 6.18 3.27 3.73 0.74 0.56 14.48
2016 6.70 3.63 4.14 0.86 0.56 15.89
2017 5.57 3.72 3.91 1.14 0.50 14.84
2018 6.55 4.32 4.16 1.73 0.39 17.15
2019 7.66 4.26 3.96 2.85 0.51 19.24
2020 10.46 4.48 4.55 4.40 1.64 25.54

Source: The Futures Industry Association (FIA).

6.1.1 Theoretical price or fair value of futures
on stock index

As a case study, we shall examine the futures on a stock market index
— Singapore MSCI (Simsci) free index. This index, known as Simsci
in the market, is designed to measure the performance of the large
and mid-cap segments of Singapore’s equity market.

In this section, we shall address an important question: Are the
futures price and the price of the underlying asset equal? Moreover,
does the pair of prices move in the same direction?

Although the index by itself is not tradable, the futures written
on it is designed in such a way that no actual delivery of the under-
lying asset shall take place. The P&L is based on netting the price
difference with the underlying index at expiration. As a result, the
underlying stock market index is treated as if it is an asset in futures
trading.

Historical data of this stock market index can be obtained from
investing.com. For the futures prices, they were obtained from the
Singapore Exchange. We take the futures contract that had expired
at the end of April 2018.

Over a calendar month, we find in Figure 6.1 that the futures
prices are consistently below the index for this particular futures.
The difference or spread between the two price series may narrow


https://www.fia.org/etd-volume-reports
https://www.investing.com/indices/simsci-historical-data
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Figure 6.1 Singapore MSCI index and the futures on it.

or widen. But on the last day of trading of the expiring futures, the
two price series converge. Although this example is limited in scope
in many aspects, we can nonetheless claim that futures prices differ
from the prices of the underlying asset, and that they move in the
same direction. The reason for this claim is grounded on the spot
futures parity theorem, whose proof is in Appendix A.

Theorem 6.1. The theoretical price or fair value Fj of an index
futures with maturity T is expressed as

m

Fy=(1+710T)So— Y _ (1+74,(T —tm)) Dy, (6.1)
=1

where rg is the spot risk-free interest rate at time 0, Sy is the spot
price of the index, i.e., index level, at time 0, m is the number
of stocks that pay dividends before expiration, t,, is the mth ex-
dividend date, 1, is today’s forward risk-free interest rate effective
at ty,, Dy, is the mth dividend converted to index point of component
stock m.

What Theorem 6.1 tells us is that, from the buyer’s perspective,
because the seller enjoys the benefits from the underlying asset, to
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be fair, the price Sy of the underlying asset should be adjusted by
the total dividend amount. Indeed, we can rewrite (6.1) as
m
Fy=So—Y (1474, (T —tn)) Dy, + 0TSy,
i=1
and define the dividend-adjusted price as
m
Sp=S0— Y (1474, (T —ty))Dy,.
i=1
Then the theoretical price Fj is simplified and becomes
Fy = S(/) + roT'Sg.

It is the sum of adjusted underlying price S and the interest
amount roT'Sy.

Another insight from Theorem 6.1 is that, everything else being
equal, the cost of carrying the underlying asset increases the theoret-
ical price over the spot price Sy, whereas the benefits derived from
the underlying asset decreases the fair value.

Example 6.1. Simsci index has a small number of constituent
stocks. For an illustration of the spot futures parity theorem, i.e.,
(6.1), let us look at a futures contract that has already expired on
the last working day of August 2020. The reason for the choice is
that quite a number of the component stocks — in particular, the
top four largest stocks — had dividend ex-dates in that month.

Information regarding the dividends can be found from the Sin-
gapore Exchange (SGX), because every SGX-listed company is
required to notify the general public through SGX’s corporate
action portal. For August 2020, we have, in the order of their
weights in the Simsci index:

Dividend per

Company name Date of August  share (SGD)
DBS Group Holdings 14 $0.18
OCBC Bank 21 $0.159
United Overseas Bank 26 $0.39
Singapore Telecom 4 $0.545
Wilma International 18 $0.04
Keppel Corp. 7 $0.03

ST Engineering 21 $0.05



https://www.sgx.com/securities/corporate-actions?cat=DIVIDEND
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The next step is to find the number of free-float shares for each
stock from MSCI. The performance Excel spreadsheet downloadable
from MSCI also contains information about the MSCI index level, as
well as the daily closing prices of the constituent stocks.

We also need the divisor. Since MSCI does not publish the divisor
of Simsci index, we need to infer from the closing index level and the
sum of market capitalizations of all the component stocks. We then
obtain an inferred divisor for each day when the August 2020 futures
was the front month contract, i.e., the most active contract
by its trading volume. There were 20 working days and hence we
have 20 inferred divisors, which are close to each other and differ
only slightly due to truncation of decimals on the part of Simsci’s
closing level, which is accurate up to three decimal places. We find
that the simple average of these 20 inferred divisors, which has a
value of 685944308.246, is a natural and excellent choice, because it
reproduces index levels that are very close to the original ones from
MSCI, i.e., they match exactly (up to three decimal places).

We also need the interest rates. A proxy for the risk-free rate is
the yield on the Treasury bill issued by Singapore Government. The
interest rate data are downloadable from the Monetary Authority
of Singapore (MAS). Ideally, the tenor of the Treasury bill should
match futures’ days to maturity. But during the sample period, the
shortest tenor of the Treasury bill is 6 months. We then take the
6-month yield as the proxy for the risk-free interest rate, even
though our futures mature in a month’s time. On the basis of percent
per annum, these risk-free yields are listed in the sixth column of
Table 6.2.

Let us now consider the dividend of DBS Group Holdings. The
company paid $0.18 per share. There were 1,794,755,503.8 free-float
shares and thus in Singapore dollars the amount was

$0.18 x 1,794, 755,503.8 = $323, 055, 990.70.

We need to convert the dollar amount to index points. Same as the
calculation to obtain the index level from total market capitalization,
we simply divide the dollar amount by the divisor. Hence,

$323, 055, 990.70

D f—
* T 685,944, 308.246

= 0.471.



https://app2.msci.com/eqb/custom_indexes/sg_performance.html
https://eservices.mas.gov.sg/statistics/fdanet/BenchmarkPricesAndYields.aspx
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With respect to the expiration date, which is August 31, DBS’s
dividend ex date has 16 days to maturity. Based on the year fraction
convention used by the banks in Singapore, and given that the risk-
free rate is 0.28% per annum, the benefit in index points is

0.28 16
1+ —x — 471 =0.471.
(+100X365>X07 0.47

We find that in index points, the investment from depositing the
dividend at the risk-free rate is insignificant, as it does not affect the
first three decimals.

What about the cost of carry? As an illustration, we take July
30, which is 32 days to maturity. the risk-free rate is 0.305%, and the
spot index level is 291.318. In index points, the cost is

0.305 32
100 X 367 x 291.318 = 0.077.

With all the ingredients in place, using (6.1), we compute the
theoretical price for each sample day. Table 6.2 presents the results,
along with the time series of actual market futures prices downloaded
from investing.com.

For the purpose of comparison, the last two columns of Table 6.2
tabulate how different, in absolute values, are the computed the-
oretical prices from the futures market prices traded on SGX.
Compared to the difference with the Simsci index levels, as antici-
pated in Theorem 6.1, we find that the theoretical futures prices are
much closer to the actual futures market prices than the cash index
levels. The main cause for this result is the dividends that make the
theoretical fair value smaller in comparison to the cash index.

Even so, it is rare to find that the futures market price matches
exactly the theoretical fair value. Though small, a difference of, say,
0.20 on August 26, is economically significant to small traders. This is
because the price multiplier of Simsci futures is $100. A difference
of 0.20 amounts to $20 per contract.

As a practical application, if we have a live feed of the compo-
nent stock prices, we can compute the Simsci index as and when a
component stock has a price change. Using the spot futures parity
theorem, we can compute the fair value on a real-time basis by
a computer program. The ability to do so gives an advantage over


https://www.investing.com/indices/singapore-msci-futures-historical-data

Table 6.2 Results of spot futures parity analysis of Simsci futures.

Singapore Days Spot Futures  Theoretical Risk-free Cost Benefit

business to index (.St) market fair rate of of

date maturity  (Simsci) price (M) value (F%) % p.a. carry carry  |S¢— M| |Fy — M|
2020-07-30 32 291.318 287.60 288.55 0.300  0.077 2.84 3.72 0.95
2020-08-03 28 287.316 284.90 284.54 0.300 0.066 2.84 2.42 0.36
2020-08-04 27 290.364 288.70 288.24 0.310 0.067 2.20 1.66 0.46
2020-08-05 26 292.595 290.70 290.46 0.270  0.056  2.20 1.90 0.24
2020-08-06 25 295.831 293.30 293.69 0.280 0.057 2.20 2.53 0.39
2020-08-07 24 293.960 291.85 291.88 0.280 0.054 2.13 2.11 0.03
2020-08-11 20 293.722 290.75 291.64 0.280  0.045  2.13 2.97 0.88
2020-08-12 19 296.622 294.75 294.53 0.280 0.043 2.13 1.87 0.22
2020-08-13 18 300.198 298.50 298.11 0.280 0.041 2.13 1.70 0.39
2020-08-14 17 299.298 297.60 297.68 0.280  0.039  1.66 1.70 0.08
2020-08-17 14 297.280 295.25 295.65 0.280 0.032 1.66 2.03 0.40
2020-08-18 13 295.764 293.85 294.24 0.280 0.029 1.55 1.91 0.39
2020-08-19 12 295.825 293.75 294.30 0.280  0.027  1.55 2.07 0.55
2020-08-20 11 292.206 290.50 290.68 0.290 0.026 1.55 1.71 0.18
2020-08-21 10 291.664 291.40 291.02 0.290 0.023 0.67 0.26 0.38
2020-08-24 7 291.990 291.50 291.34 0.290  0.016  0.67 0.49 0.16
2020-08-25 6 294.595 294.05 293.94 0.300 0.015 0.67 0.55 0.11
2020-08-26 5 292.288 292.10 292.30 0.300 0.012 0.00 0.19 0.20
2020-08-27 4 289.384 287.55 289.39 0.300  0.010  0.00 1.83 1.84
2020-08-28 3 292.087 292.10 292.09 0.300 0.007 0.00 0.01 0.01
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other small traders, because the live-feed Simsci index is updated by
Bloomberg at a regular interval of about 10 seconds. So, within that
10-second window, if there is a sudden big change in the component
stock prices, we will be updated by our computer program immedi-
ately and can therefore react faster than the rest who do not have
this technology to create an information advantage.

6.2 Continuous Time Series of Futures

As much as every futures contract comes with an expiration date,
construction of a continuous time series of futures prices that
extend well beyond the expiration dates of the individual contracts
requires a careful design of an algorithm.

Definition 6.3. Consider a futures on a given underlying asset has
multiple contracts, which are designed to expire with a fixed pattern
in the successive months. The one that will expire first is called the
front month futures contract. All the other contracts that expire
later are called the back month futures.

For a start, Table 6.3 is an illustration of piecing together the
front month and back month futures contracts. On the last day ¢ of
the expiring front month futures contract, the back month futures
contract takes over to be the front month futures contract on day ¢
and from then onward.

Definition 6.4. Constructed from the individual contracts of dif-
ferent maturities, the futures index is a continuous time series of
futures prices, which may or may not be adjusted for “changing of
the guard” from the expiring front month contract to the back

Table 6.3 Continuous futures index without
adjustments as an index of futures written on an
underlying: Fi, Fy, ..., Fi—1,Gt,Gig1,Geg2, . . ..

1 2 R A | t t+1 t+2
F, Fy - ... F_, F
Gi-1 Gy Gipr Gigo

Note: The last trading day of the front month
futures contract is t.
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month contract. The day when the “changing of the guard” takes
place is called the roll day.

Now, it must be said that there is nothing sacrosanct about the
last trading day of the front month futures contract. Depending on
the circumstances, the roll day for a particular futures can be chosen
to be the day before the last trading day, or even one week before
the last trading day. For the sake of consistency, however, the crucial
point is that once the roll day is defined, it must not be changed
arbitrarily to any other days.

A perennial feature of futures is that at any given time, the price
of the front month contract differs from that of the back month
contract.

Definition 6.5. For any given time ¢, the price G; of the back month
futures less the price F} of the front month futures is defined as the
spread S, i.e.,

St = Gt — Ft.

For an illustration of spreads, consider the cross-section of gold
futures prices on March 21, 2021 in Table 6.4. The front month
futures that expires in April 2021 is indicated with the serial num-
ber (1). As expected, it has the largest volume traded as well as open
interest.

Table 6.4 Prices and spreads of gold futures traded on CME on March 12, 2021.

Serial Maturity Closing  Spread Volume Open Change
number  month price  (x) — (1) traded Interest (OI)  of OI

(1) 21-Apr  1,719.8 226, 890 248,013 —18,606
(2) 21-Jun  1,7224 2.6 58, 586 168, 138 16,606
(3) 21-Aug  1,724.3 4.5 7,203 28,962 2,299
(4) 21-Oct  1,726.1 6.3 596 9,237 —49
(5) 21-Dec  1,727.8 8.0 1,196 12,734 83
(6) 22-Feb  1,729.3 9.5 403 4,376 —76
(7) 22-Apr  1,730.5 10.7 0 59 0
(8) 22-Jun  1,731.7 11.9 0 126 0
9) 22-Aug  1,733.2 13.4 0 4 0
(10) 22-Oct  1,736.2 16.4 0 0 0
(11) 22-Dec  1,738.3 18.5 10 351 10

Source: Moore Research Center, Inc.


https://www.mrci.com/ohlc/ohlc-all.php
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We denote all the back month futures contracts from (2) to (11)
by (x). We can easily find the spread of (x) with (1) by taking the
price difference. Note that for the CME gold futures, the spread
increases when the back month futures contract’s maturity is longer.

The monotonously increasing nature of the CME gold futures
spread with respect to maturity is not a universal feature. For
other futures, the spreads may be monotonously decreasing. Yet, for
some other futures, they have neither an increasing nor a decreasing
trend as maturity is scheduled well into the future.

6.2.1 Backwards ratio method

Proposition 6.1. Suppose t is the roll date. To maintain the verac-
ity of simple return for the front month futures, all the futures
prices prior to t must be multiplied by the ratio of the back month
futures price and the front month futures price.

Specifically, let F; for i = 1,2,...,t be the front month futures
prices, and let Gy be the back month futures price on the roll date.
If the trader is taking a long position, then the adjusted prices are
given by

fori=1,2,...,t.

Proof. Assuming that the futures trader has a long position, the
simple return R; on roll date ¢ for the front month futures is, as
usual,

Fy—F 4
= 6.2
Ry o (6.2)

Divide the numerator and the denominator of R; by F;. Equivalently,
1

multiply the simple return by 1 = % to rewrite R; as
Fy

1- &=
Fy
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G
Next, multiply R; by 1 = Et to obtain
t

(6.4)

As the incoming G takes over from the outgoing F; on the roll
date, the simple return calculated with the formula (6.4) provides
the same value of R; when it is computed with F; and F;_; only, as
in (6.2).

Finally, for ¢ = 1,2,...,¢t — 1, the return R; computed with

adjusted prices F; is

jod jod G G
7o fizFio Fig—Fiag  F—Fi
G - F_ .Gt - F
Fi 4 i1 i—1
In other words, before time ¢, whether the simple return is com-
puted with adjusted futures prices or with unadjusted futures prices
makes no difference. The backward ratio method preserves the simple
return. O

=R,

As a remark, the adjusted price F, on the roll date is none other
than G;.

G
Proposition 6.2. The adjustment factor Ft 1s also applicable to

t
a short position in the front month futures that need to be unwound
on the roll date.

Proof. For the short position, the simple return is computed as
_ B F
F ’
since F} is the buying price to close out the short position at the
price of F;_;.
Correspondingly, the simple return computed with adjusted prices

Ry

is

Gy Gy
~ ~ R 2t p Tt
fit:Ft—l_Ft: tlFt tFt :Ft—l_Ft:Rt
Fy Ft% F

Inthesamevein,Ei:Riforizl,Q,...,t—l. O
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Figure 6.2 Continuous time series of crude oil futures prices with and without
adjustment on the roll date.

: . . Gy
For all the futures prices prior to ¢, an adjustment ratio ~t s

multiplied to each of them. This process is repeated whenever tthe
front month futures expires.

The results of this process are shown in Figure 6.2 for crude oil
futures. As most of the adjustment factors at each roll are larger
than 1, due to the compounding effect, the adjusted futures prices
are much larger than the unadjusted prices. We note that on
April 20, 2020, for the first time in history, the futures price plunged
below $0. A negative futures price means that the seller is willing to
pay the buyer to receive the delivery of crude oil as the front month
contract was expiring.

At first glance, it does not make sense to give something valuable
to someone and to also pay for him to receive the goods. The seller
surely incurs a loss. But the global pandemic of COVID-19 in April
2020 started to create fear and uncertainty in the minds of people.
Governments all over the world began to close the borders to the
outside world. This unprecedented closure in recent history brought
about a dramatic stoppage of supply chain. Most of the oil tankers
were full and warehouses were stocked with barrels of crude oil.

Oil futures traders who had taken a long position found them-
selves caught in the situation where they had no capacity to receive
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the delivery. To rid themselves of the obligation, they sold their out-
standing contracts in a frenzy. Even as they were trying to outdo
each other in selling the soon-to-expire futures, there were no buy-
ers. Eventually, they were forced to offer a negative price, which
basically reflects their plea for help in not receiving the delivery of
crude oil barrels at their doorsteps. As the virtue of charity is not
in the dictionary of any trader, traders who were desperate to sell
their futures to new buyers had no choice but to pay them for their
“help”.

6.2.2 Backwards Panama Canal method

A major drawback of the backwards ratio method is that the
adjusted prices cannot be used to compute the P&L, i.e., the price
difference. To see how it is so, we note from (6.2) that the P&L is
equal to F; — F;_1 = RtFt 1 for a trader who has a long position.
Since Rt Rt, the P&L Ft 1Rt based on the adjusted price difference

Ft - Ft,1 is ?t
value of F; — F;_;.

Consider now an unadjusted continuous series of futures prices.
Suppose a trader has a long position at time ¢t — 1, the day before the
last trading day of the expiring front month contract. At day ¢, the
roll rule is such that the back month contract takes over. What is
his P&L based on the unadjusted continuous series? To answer this
question, we let F;_1 be the futures price at which the trader takes
a long position. When he sells at time ¢, the P&L should rightly be
F; — F;_1. But because the continuous series does not contain F3,
as it has been replaced by Gy, the P&L is incorrectly calculated as
Gt — Ft—l-

Therefore, another adjustment method is needed to preserve the
veracity of P&L in the continuous series of futures prices, which is
called the futures index. It is based on a simple mathematical trick
of adding a 0 written as Gy — Gy:

(Fy — F;_1), which is not equal to the correct P&L

Fo—F1=F+ (G —Gy) —F1 =G — (G — Fy + Fi_1).

What we can gather from this observation is that, to preserve the
veracity of P&L, we simply adjust all the past prices Fy_1, F;_o,...,
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by the spread G; — F;. Specifically, the adjusted futures prices are
defined as, fori =t —1,t —2,...,

Fl' Z:E+Gt—Ft.

It is easy to verify that for P&L that does not involve the roll
date is intact:

F—F = (F+G —F)— (F14+G — F)=F,— F_,.

This is the rationale for the so-called Panama Canal method.
Stated simply, on every roll date, adjust all the past prices by adding
the current spread between the back month contract and the front
month contract.

Example 6.2. From the individual contracts on corn futures
traded at CME, we construct a continuous time series with adjust-
ments by the Panama Canal method. The time series is plotted
in Figure 6.3, along with the unadjusted version. It is evident that
the two time series look rather different, especially during the early
portion of the sample period before 2008. Whereas the adjusted
continuous series has a visible downward trend, for the unadjusted
continuous series, by contrast, it is not until around 2007 that
the continuous corn futures breaks above $300.
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Figure 6.3 Comparison of adjusted and unadjusted corn futures’ continuous time
series.
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In summary, if the computation of simple return is needed,
then use the continuous series constructed by the backwards ratio
method. Otherwise, if we want to compute the P&L, then we have
to use the continuous futures series obtained from the Panama
Canal method.

6.3 Commodity Index

In this section, we turn our attention on how an index of a commodity
can be constructed.

6.3.1 A wvariation of the backward ratio method

If the purpose is to construct an index to reflect how an investment
of $100 performs going forward, we need a different method to con-
catenate individual futures contracts.

Let us say we want to construct an index for a particular com-
modity futures from a certain date (time 0) when the front month
futures price is Py. We may start the index with a value of 100. For
time t = 1,2, ..., the index I; is defined as

I

It = It—l Pt_l’

(6.5)

since the ratio between two chronologically consecutive prices is 1 +
simple return.

A big advantage of (6.5) is that the adjustment factor of the
backward ratio method cancels out and therefore no adjustment to
the futures prices is needed.

Definition 6.6. The commodity index based on formula (6.5) is
called the excess return index.

In principle and in practice, the roll can be performed over a
few days. If a trader has a large position, rolling the entire position
in one day is risky because his trading activities may tip off other
traders. As a result, the market will offer him prices not in his favor.
Rolling over a few days can minimize such risk that a sizable position
is exposed to inevitably.
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Suppose the roll policy is to be carried out over 4 days. The roll
from the front month to the immediate back month of the relevant
futures contract is to take place over a period of 4 business days for
each calendar month. Presumably, traders roll this position in equal
amount of 25% on each day in the roll period, in such a way that by
the fourth day, 100% of the weight will be on the immediate back
month.

Under this scheme, the prices that enter (6.5) are the weighted
prices for Day 1 to Day 4 of the roll period as follows:

Day 1: P; =0.75F) 4+ 0.25B4,
Day 2: P, = 0.50F5 4 0.50B85,
Day 3: P3; =0.25F5 4 0.75B3,
Day 4: Py = By,.

We have used F, Fo, and F3 as the prices of the front month contract,
as well as B1, By, Bz, and By for the back month contract. At Day 4,
nevertheless, the roll of the last 25% position in the old front month
contract turns the back month contract into the new front month
contract.

The result of an example of this method is plotted in Figure 6.4
for RBOB gasoline futures.
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Figure 6.4 Commodity index of RBOB gasoline based on its futures prices from
May 30, 2014 to March 12, 2021.
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6.3.2 Compilation of the futures industry association

The Futures Industry Association (FIA) groups futures contracts
from all regions into nine categories. Table 6.5 captures the num-
ber of contracts traded and presents them by the category assigned
by FIA. It can be discerned that the futures contracts on financial
instruments — interest rates, currency, equity index, and individual
equity — tend to have higher volume in comparison to commodi-
ties — agriculture, energy, precious and non-precious metals.

According to FIA’s market statistics, in terms of the volume
traded? in 2020, the top 10 agricultural futures in 2020 are from the
commodity exchanges in China. Dalian Commodity Exchange occu-
pies the top 4 spots with futures on soybean meal, RBD palm olein,
corn, and soybean oil. Its egg futures is 6th. Zhengzhou Commodity
Exchange breaks the monopoly and occupies the 5th position with
rapeseed meal futures, 7th to 9th places with white sugar, cotton, and
rapeseed oil. Coming in 10th is rubber futures offered by Shanghai
Futures Exchange.

In the energy sector, Moscow Exchange’s Brent oil futures is num-
ber one with about 743 million contracts traded. On an annual vol-
ume of 477 million contracts for 2020, Shanghai futures exchange’s
fuel oil futures is second. At a far third — 274 million contracts — is
WTT light sweet crude oil futures of CME Group’s New York Mer-
cantile Exchange.

Perhaps it is high time now for the media to cover the futures
prices of these exchanges.

For the equity index futures, the number one spot is no longer
the E-mini S&P 500 futures traded on CME but the Bovespa mini
index futures of B3 in Brazil. Its volume of around 2.89 billion con-
tracts is about 6 times the E-mini S&P 500 futures contracts traded
in 2020. The third position goes to the Euro Stoxx 50 index futures

2Volume is measured by the number of contracts traded. It is not an apple-
to-apple comparison because the contract size is disregarded. A good example
is Nikkei 225 futures. It has a “big” version whose contract size is ¥1,000, and
a “mini” version with a multiplier of ¥100. Everything else being equal, the
notional amount of one contract of big Nikkei futures is equivalent to 10 contracts
of mini Nikkei futures. Almost surely, the volume of mini Nikkei futures is larger
than that of the big Nikkei futures.



Table 6.5 Global volume of futures contracts traded by category in billion contracts.

Equity Individual Interest Non-precious Precious
Year Agriculture Currency Energy  index equity rate metal Other metal
2009 0.88 0.95 0.59 2.17 0.95 1.94 0.46 0.11 0.14
2010 1.25 2.47 0.65 2.33 1.12 2.55 0.64 0.14 0.16
2011 0.92 2.85 0.73 2.64 1.19 2.80 0.43 0.23 0.33
2012 1.18 2.16 0.80 2.29 1.12 2.35 0.55 0.25 0.31
2013 1.15 2.17 1.17 2.41 1.05 2.79 0.64 0.35 0.42
2014 1.31 1.88 1.03 2.47 1.13 2.74 0.86 0.35 0.36
2015 1.56 2.31 1.27 2.84 1.40 2.70 1.27 0.82 0.31
2016 1.85 2.42 2.06 2.67 1.23 2.89 1.87 0.62 0.30
2017 1.23 2.16 2.01 2.50 1.28 3.18 1.73 0.48 0.27
2018 1.39 2.76 2.08 3.43 1.54 3.68 1.51 0.49 0.28
2019 1.65 2.60 2.40 4.29 1.74 3.69 1.42 0.89 0.56
2020 2.43 3.32 2.99 6.61 3.09 3.32 1.40 1.42 0.96

Source: The Futures Industry Association (FIA).
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traded at Eurex, the fourth to Nikkei 225 mini futures of Japan
Exchange (JPX), the fifth and sixth to, respectively, the micro ver-
sions of E-mini S&P 500 and Nasdaq 100 index futures of CME.

It seems that a judicious design of the contract size is critical to
the success of index futures in terms of trading liquidity.

For currency futures, as expected, top spot is occupied by US
Dollar/Russian Rubble futures traded on the Moscow Exchange, fol-
lowed closely by mini US dollar futures at B3. The third to fourth
positions are won by India’s National Stock Exchange (NSE) and
BSE. Argentina’s MATba ROFEX, Korea Exchange, and B3, respec-
tively, take the fifth to seventh places in US dollar futures. The eighth
spot goes to the British Pound/Indian Rupee futures offered by NSE.
CME’s Euro FX futures is ninth.

In metal futures, Shanghai futures exchange tops the world in
steel rebar, silver, nickel, hot rolled coil, and zinc. The third spot is
taken by Dalian Commodity Exchange’s iron ore, while the fifth spot
by Borsa Istanbul’s gold futures. CME’s gold futures is seventh. The
eight and ninth places are occupied by Moscow Exchange’s refined
silver futures and London Metal Exchange’s aluminium futures.

When it comes to interest rate futures, CME remains domi-
nant, although the top spot is won by B3’s one day inter-bank deposit
futures.

Finally, in the so-called “other” category, in the order of hundreds
of million contracts traded, they are mostly futures on chemicals
traded at Zhengzhou and Dalian commodity exchanges. Perhaps it
is time for FIA to create a new category called “chemical” to reflect
the trading activities in this area?

6.3.3 Commodity composite indexes

Given the diversity of futures, is there some sort of an equivalent
of a stock market index in the commodity space? The answer is
an emphatic yes. In 1957, the Commodity Research Bureau (CRB)
was the first to publish what was then called the CRB index. This
index was originally designed to provide a broad picture of the overall
commodity market. It has gone through a few changes in intellectual
property ownership. The Thomson Reuters/Jefferies CRB index, the
Thomson Reuters/CoreCommodity CRB index, and the Refinitiv/
CoreCommodity CRB index (RF/CC CRB) are related to the CRB

index.
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Table 6.6 Weights of RF/CC CRB index.

Index
weight
Commodity (%) Contract months Exchange

WTTI Crude Oil 23 Jan—Dec NYMEX
Group I  Heating Oil 5 Jan—Dec NYMEX

RBOB Gasoline 5 Jan—Dec NYMEX

Total 33

Natural Gas 6 Jan-Dec NYMEX

Corn 6 Mar, May, Jul, Sep, Dec CBOT

Soybeans 6 Jan, Mar, May, Jul, Nov CBOT
Group II Live Cattle 6 Feb, Apr, Jun, Aug, Oct, Dec = CME

Gold 6 Feb, Apr, Jun, Aug, Dec COMEX

Aluminum 6 Mar, Jun, Sep, Dec LME

Copper 6 Mar, May, Jul, Sep, Dec COMEX

Total 42

Sugar 5 Mar, May, Jul, Oct NYBOT
Group III Cotton 5 Mar, May, Jul, Dec NYBOT

Coffee 5 Mar, May, Jul, Sep, Dec NYBOT

Cocoa 5 Mar, May, Jul, Sep, Dec NYBOT

Total 20

Nickel 1 Mar, Jun, Sep, Dec LME

Wheat 1 Mar, May, Jul, Sep, Dec CBOT
Group IV Lean Hogs 1 Feb, Apr, Jun, Jul, Aug, Oct, Dec CME

Orange Juice 1 Jan, Mar, May, Jul, Sep, Nov  NYBOT

Silver 1 Mar, May, Jul, Sep, Dec COMEX

Total 5

Currently, the RF/CC CRB index comprises 19 commodities. In
alphabetical order, they are aluminum, cocoa, coffee, copper, corn,
cotton, crude oil, gold, heating oil, lean hogs, live cattle, natural gas,
nickel, orange juice, silver, soybeans, sugar, unleaded gas, and wheat.
The weights for these 19 core commodities are listed in Table 6.6,
along with their cycles of maturities and futures exchanges.

Another commercial commodity composite index is the S&P
GSCI. This index, which is prominent among market participants, is
designed to measure the performance of the commodity market. The
S&P GSCI was called the Goldman Sachs Commodity Index (GSCI)
before it was purchased by Standard & Poor’s in 2007. The index
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currently comprises 24 commodities from all commodity sectors —
energy, agricultural, livestock, industrial metals, and precious metals.

A recent commodity index is invented by SummerHaven Index
Management. Comprising of 14 commodity futures contracts, it is
called the SummerHaven Dynamic Commodity Index (SDCI).
From a universe of 27 eligible commodities futures contracts, the 14
selected contracts are equally weighted and they represent five sec-
tors: petroleum (e.g., crude oil, heating oil, etc.), precious metals
(e.g., gold, silver, platinum), industrial metals (e.g., zinc, nickel, alu-
minum, copper, etc.), grains (e.g., wheat, corn, soybeans, etc.), and
non-primary sector (e.g., sugar, cotton, coffee, cocoa, natural gas, live
cattle, lean hogs, feeder cattle). SummerHaven Index Management
reconstitutes and rebalances SDCI monthly.

At this juncture, we need to introduce the notion of total return
of these indexes. RF/CC CRB provides a formula for the calculation
of total return as follows:

I
Ji = Ji1 <I—t + xt) (14 2)%78, (6.6)
tf

where d is the number of calendar days between the current and pre-
vious business days, and x; is the daily interest from cash investment
in a three-month Treasury bill with a yield of y;. Given y;, one of the
conventions to calculate x; is

1
1 91
g =—] -1
(1—%%)

The motivation for the total return is that it should include the
return on the hypothetical investments used as collateral for those
futures contracts.

Definition 6.7. The commodity index based on the formula (6.6)
is called the total return index.

Figure 6.5 plots the three commodity indexes (total returns) and
compares their performance with a base value of 100 at the begin-
ning of 1994. In other words, $100 is invested on each of the three
commodity indexes. Since January 3, 1994, these commodity indexes
tell us what happens to the $100 investment. As at March 4, 2021, we
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Figure 6.5 Comparison of three commercial commodity indexes.

find that the performance of S&P GSCI total return is almost flat, as
the appreciation is only 9.66% over 27 plus years. The Refinitiv/CC
CRBs climbed by 217%, while SDCI skyrocketed by 972%.

How did SDCI achieve such high performance compared to other
commodity indexes? One of the secrets lies in the way SDCI exploits
prices of futures contracts on the same underlying but different matu-
rities. When these prices at any given time are arranged from the
front month contract to the far back month contract by their matu-
rities, we obtain a curve called the futures curve.

Definition 6.8. A futures curve is in backwardation when the
price of the closest-to-expiration front month contract is greater than
or equal to the price of the next closest-to-expiration back month
contract.

Definition 6.9. A futures curve is in contango when the price of
the closest-to-expiration front month contract is less than the price
of the next closest-to-expiration back month contract.

Since the commodity index, like the stock index, is a hypo-
thetical buy-and-hold strategy, the spread between the back
month contract and the near front month contract will affect its
performance.
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Backwardation is advantageous to the commodity index because
when rolling the long position over, we can sell the front month con-
tract at a price higher than the buying price of the back month
contract.

SDCI makes use of this market reality. It is dynamic in that it
comes with a changing choice of 14 commodities with the greatest
backwardation (or least contango) among a variety of commodities.

For each commodity, backwardation is measured as the annu-
alized percent price difference between the futures price for the front
month contract and the next closest-to-expiration back month con-
tract. SDCI is re-balanced every month and a new choice is made if
changes happen in the futures curve, such as backwardation becomes
contango for a particular commodity, and so on. SDCI targets an
equal-weight position of approximately 7.14% in each of the selected
commodity contracts (see Nelson et al., 2021).

Example 6.3. Let us consider the SummerHaven Copper Index
(SCI). On its official website, it is stated that

The SummerHaven Copper Index (“SCI”) was developed by
SummerHaven Index Management to provide an investment
benchmark for copper as an investible asset. The SCI attempts
to maximize backwardation and minimize contango while uti-
lizing contracts in liquid portions of the futures curve.

According to the SummerHaven Index Management algorithm, on
every scheduled selection date, it will determine if the copper futures
curve is in backwardation or contango. Contract selection is per-
formed as follows:

(1) If the copper futures curve is in backwardation, then SCI selects
the front investible contract.

(2) If the copper futures curve is in contango, then SCI takes
equally weighted positions in the first three nearest-to-expiration
contracts.

Price observations are carried out on the 10th business day of each
month, which is the “selection date” mentioned above. Re-balancing
starts on the 11th business day and ends on the 14th business day, so
that the three selected contracts have equal weight. At the end of each
of these days, one-fourth of the prior month portfolio positions are
replaced by the new positions in the commodity contracts determined
on the selection date.
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6.4 Volatility Index

Another type of derivative we discuss in this section is option. This
derivative allows option buyers to exercise their right to buy or
sell when the underlying asset price moves in their favor. Otherwise,
they have no obligation to trade. By contrast, option sellers have no
right but obligation to fulfill when option buyers exercise their rights
against them. This asymmetry in right and obligation means that
option buyers must pay option sellers a sum of money.

Suppose we let Sy indicate the price of the underlying asset at
time ¢.

Definition 6.10. A European call option contract has a strike
price X and a fraction of a year to maturity 7. Its payoff at
maturity is

c(X,Sr,T) = (St — X)™.

In other words, if S — X < 0, the value of call option is zero, i.e.,
call option buyers have no liability. Before expiration, ¢(X, S, t) is
known as the call option price.

Definition 6.11. A European put option contract has a strike
price X and fraction of a year to maturity 7. Its payoff at maturity
is

p(X, ST,T) = (X — ST)+.

In other words, if S — X > 0, the value of put option is zero, i.e.,
put option buyers have no liability. Before expiration, p(X, S, t) is
known as the put option price.

Definition 6.12. An option is said to be near the money when
the difference between its strike price X and the spot price of the
underlying asset is small.

Definition 6.13. A call option is said to be out of the money
(OTM) when its strike price X is larger than the spot price of the
underlying asset. A put option is said to be out of the money
(OTM) when its strike price X is smaller than the spot price of the
underlying asset.
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Given the same underlying asset and the same expiration date,
typically there are multiple options of different strike prices written
on it. Such options are arranged as an option chain, from the option
with the lowest strike price denoted by L to the highest strike price
denoted by H.

With its option price, or more commonly the average of bid and
ask quotes, an option allows market participants to back out infor-
mation about the volatility of the underlying asset. Since volatility
is an important barometer of risk in investment, the need to measure
the market volatility prompted CBOE to pioneer a volatility
index called VIX. The old version of VIX relied on the Black-
Scholes model to back out an implied volatility for each of the
eight options that are near the money. Old VIX is the average of
these implied volatilities.

The most recent version of VIX is based on the superior model-
free approach, which uses as many out-of-the-money S&P 500
index options as possible. Its theoretical foundation is based on
Proposition 6.3.

Before stating the proposition, we need to describe briefly the
notion of risk neutral measure. It is simply a fanciful name that
is attached to a theoretical world where there is no risk premium
and, on average, all investments’ rates of return are equal to the risk-
free interest rate. In other words, under the risk neutral measure,
the expected payoff in the future time T is to be discounted to the
present by the risk-free rate.

From Definition 6.10, we know that the payoff of an European call
option is (ST - X )jL at the predetermined future time 7. It follows
that the theoretical value of the European call option is, under the
risk neutral measure,

o = O TES (7 - X)),

where rq is the risk-free interest rate for the tenor from time 0 to
time 7. In this formula, the expected payoff Eg (ST — X)7T) is
discounted by r¢ continuously from time 7" back to time 0.

In the same vein, from Definition 6.11, since the future payoff of
an European put option is (X — ST)+, the present value of the
expected payoff is

Py = e_mTEé]Q ((X - ST)+) .
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As alluded to earlier, options on a particular underlying asset
and of the same maturity come in the form of a chain along a series
of strike prices. With this simple observation, let us consider the
following proposition:

Proposition 6.3. Given that the price of the underlying security Sy
evolves continuously and that risk-free interest rate r is constant, the
expected value of the return variance V(0,T) realized from time 0
to time T under the risk-neutral measure Q is

Fo (X, 80, T
oy T = EG[V(0,T)] = 2" ( /L PUX, 50, T) ;20 Jax

[ e

Here, Fy is the expected value of St conditional on the information
at time 0:

Fo =EZ[Sr] = T (Sy — PV(D)), (6.8)

where PV (D) is the sum of the present values of dividends D with
ex-dates prior to the options’ expiry date. Furthermore, L < Fy is
a small positive number, being the lowest strike price in the option
chain. On the other hand, a much larger number H > Fy corresponds
to the highest strike price of the option chain.

Note that Sy—PV (D) is the dividend-adjusted price of the under-
lying asset. Also, Fp is the continuously compounding version of
the same theoretical formula 6.1 for calculating the predetermined
or forward price of an index futures. Proof of 6.3 is given in
Appendix B.

The Chicago Board of Options Exchange (CBOE) is the first in
the world of exchanges to implement (6.7). Because the strike price in
practice is never continuous, CBOE lays out an algorithm to compute
the model-free variance by specifying how the discretization of
the integrals is to be carried out. In particular, the integrals are
approximated by a sum of option price times the length of the strike
price interval weighted by the squared strike price as follows:
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2e"07 ~ AX; 1 (Fy 2
otpoR = T > X2 (Xi) — & <f0 - 1> . (6.9)

7

where X is the strike price immediately below Fp, X; is the strike
price of the ith out-of-the-money option, which is a call option if
X; > Xo, a put if X; < Xg, and both put and call options if X; =
Xo, AX; is the interval between strike prices — half the difference
between the strike prices on either side of X; in the option chain,
and Q(X;) is the midpoint of the bid-ask spread for each option
of strike X;.

The last term in (6.9) is the adjustment for the fact that the
discrete Xy is almost unlikely to be exactly equal to the theoretical
forward price Fj.

It must be said that Proposition 6.7 and its CBOE implementa-
tion are rather remarkable in that option prices weighted by their
respective strike prices determine the variance of returns on S&P

500 index. Note also that Q(X)zi)f&

is a dimension-less quantity
because X;, Q(X;), and AX; are 311 prices in dollars.

Another observation of market reality is that few out-of-the-
money (OTM) options have bid prices that are 0. This observation
is indicative of the lack of buyers for these OTM options in the
chain of options. Therefore, in a white paper, CBOE (2019) set

several selection criteria as follows:

e Out of the money with respect to Xj.

e Non-zero bid price.

e Once two puts (calls) with consecutive strike prices are found to
have zero bid prices, no further puts (calls) with lower (higher)
strikes are considered for inclusion.

Those options in the option chain that satisfy these selection cri-
teria are henceforth called the eligible options.

In CBOE (2019), the algorithm for (6.9) with the selection criteria
goes as follows when we are given a chain of options with the same
expiration date:

(1) For each option in the chain, compute the average of the bid and
ask prices if the bid price is non-zero. The result of this first step

is Q(X;).


https://cdn.cboe.com/resources/vix/vixwhite.pdf
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(2) For all options that satisfy the selection criteria, calculate the
absolute difference between call option’s Q(X;) denoted by ¢(X;)
and put option’s Q(X;) denoted by p(X;).

(3) Identify the strike price Xy at which ¢(Xy) > p(Xp), and the
midpoint quote difference ¢(Xp) — p(Xo) between the call and
put options is the smallest.

(4) Compute the forward S&P 500 index level, Fy, by the model-free
put-call parity, which is an equation as follows:

Fy=Xo+ eroT(C(Xo) — p(XQ)). (6.10)

Recall that Xy is the strike price immediately below Fy, i.e. less
than Fy. Since ¢(Xp) > p(Xp), it is guaranteed that Xy < Fy.
(5) Calculate the strike price interval AXj.
AX;Q(X;)
X2

)

(6) Compute for the contribution from the ith option.

6.4.1 Implementation

Option quotes and other important information can be obtained from
an open source hosted by The Options Industry Council (OIC).
Following CBOE’s practice, we consider only the so-called standard
options on S&P 500 index with the last day of trading on the third
Friday every month.

An implementation example is presented in Table 6.7 for the front
chain of options that expire on May 21, 2021, as well as Table 6.8 for
the back chain of options that expire on June 18, 2021. The bid and
ask prices in these two tables are as at end of the trading session on
April 29, 2021. On that day, CBOE’s VIX stood at 17.61%.

It is first of all noteworthy that the strike price interval AX is
larger for strike prices that are further away from the strike price of
near-the-money options.

For the front option chain of eligible options, the strike price
ranges from 2,300 to 4,600. To determine Xy, knowing from (6.10)
that Fy must be larger than Xy, we need only to consider the dif-
ference when ¢(Xy) — p(Xp) is positive. We find that the smallest
difference between call option’s midpoint price and that of put
option occurs at the strike price X of 4,200. For the back option
chain of eligible options, the coverage of strike price is from 1,575


https://www.optionseducation.org/toolsoptionquotes/options-quotes
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Table 6.7 Chain of front month options on S&P 500 Index.

Call ¢(X) Strike Put p(X) Midpoint

Midpoint  Bid Ask  Price Bid Ask Midpoint ¢(X)—p(X) AX

1904.65 1901.9 1907.4 2300 0.05 0.1 0.075 1904.575 50

1854.6 1851.7 1857.5 2350 0.05 0.2 0.125 1854.475 50

1804.8 1802.1 1807.5 2400 0.05 0.15 0.1 1804.7 50
66.5 65.9 67.1 4185 47.2 47.8 47.5 19 5
63.15 62.6 63.7 4190 489 49.5 49.2 13.95 5
59.9 59.4 60.4 4195 50.6 51.3 50.95 8.95 5
56.7 56.2 57.2 4200 52,5 53.1 52.8 3.9 5
53.6 53.1 54.1 4205 54.3 55 54.65 5
50.6 50.1 51.1 4210 56.3 57 56.65 5
47.65 47.2 48.1 4215 584 59.1 58.75 5
0.375 0.3 0.45 4525 317.5 322.8 320.15 25
0.275 0.2 0.35 4550 342.4 347.8 345.1 37.5
0.2 0.15 0.25 4600 392.3 398 395.15 75

Table 6.8 Chain of back month options on S&P 500 Index.

Call ¢(X) Strike Put p(X) Midpoint

Midpoint  Bid Ask  Price Bid Ask Midpoint c¢(X)—p(X) AX

2624.15  2620.7 2627.6 1575 0.05 0.15 0.1 2624.05 25
2599.35 2596.1 2602.6 1600 0.05 0.2 0.125 2599.225 25
2574.35 2571.1 2577.6 1625 0.05 0.2 0.125 2574.225 25
100.85 100.5 101.2 4185 85.3 86 85.65 15.2 5
97.55 97 98.1 4190 87.1 87.8 87.45 10.1 5
94.45 93.9 95 4195 89 89.6 89.3 5.15 5
91.3 90.7 91.9 4200 90.8 91.5 91.15 0.15 5
88.25 87.7 88.8 4205 92.8 935 93.15 5
85.25 84.7 85.8 4210 94.8 955 95.15 5
82.3 81.8 82.8 4215 96.8 97.5 97.15 5
0.275 0.2 0.35 4900 695.9 702.3 699.1 100
0.2 0.1 0.3 5000 795.7 802.5 799.1 100

0.125 0.05 0.2 5100 895.6 902 898.8 100
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Figure 6.6 Plot of eligible put and call options in the front month option chain
of standard monthly options nearest to expiration.

to 5,100, and the smallest absolute difference also occurs at the same
strike price Xq of 4,200.

All the eligible options in the option chains are plotted in Figures
6.6 and 6.7, with the midpoint of the bid-ask quote against the strike
price. There are 353 pairs of put and call options in Figure 6.6, and
409 pairs in Figure 6.7. We see that the call option’s mid quote
monotonously decreases as the strike price increases. By contrast,
the put option’s mid quote monotonously increases as the strike price
becomes larger. The special strike price Xy is located near where the
call and put option’s curves intersect.

Next, on April 29, 2021, based on the Treasury yields, the annual
risk-free rate for the front month chain of options with 22 days to
maturity is 0%. Applying (6.10), which is simplified to Fy = Xo +
¢(Xo) — p(Xp) when the risk-free rate is zero, we find that Fy =
4,203.95. For the back month option chain with 50 days to maturity,
the annualized risk-free rate is also 0%, and we obtain Fj = 4, 200.15.
Having determined Fp, we can then compute the adjustment term
in (6.9).

These two values for Fy are smaller than the spot S&P 500 index
of 4,211.47. We can infer from Theorem 6.1 that because the risk-free
interest rate is 0%, it must be that some component stocks are paying

dividends.
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Figure 6.7 Plot of eligible put and call options in the back month option chain
of standard monthly options next nearest to expiration.

With respect to the strike price Xy, we compute for

AXQ(Xq)
e
eligible put options whose strike prices are equal to or less than
Xo, and for eligible call options of strike prices equal to and greater
than Xy. CBOE’s formula (6.9) allows us to obtain o, = 16.61% for
the front month option chain, and o, = 18.86% for the back month
option chain.

Additionally, CBOE provides a linear interpolation formula to
compute VIX, which is the expected volatility of return on S&P
500 index. Specifically, VIX quantifies option traders’ expectation of
future volatility for the next 30 calendar days. To obtain the annu-
alized volatility index o for a fixed time horizon or constant
maturity T, we interpolate the model-free variances 02T, and agTb
with T, < T < Ty, where T, is strictly smaller than Tp.

At time 0, following CBOE’s practice, the model-free volatility
index o is obtained by linear interpolation as follows:

T, —T
T, - 1T,

T-T,
+ 02T, . (6.11)

o’T = 02T, T, T,

The Actual/365 day-count convention is used to annualize the
variance, since the expiration of an option is based on the calendar
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date, which includes Saturday, Sunday, and holidays. Using (6.11),
we compute as follows:

o230 = 0.16612 - 22 - 20 —30 18862 .50 . 20— 22

0—22 o0 — 22

— 02 =0.031392263.

Note that 365 is immaterial in the linear interpolation as it is canceled
off from both sides of the equation. Our calculation obtains 17.72%
for o at 30-day constant maturity. This value is rather close to
the VIX index value of 17.61% published by CBOE. The error is only
0.612% of 17.61.

With this model-free algorithm and its discretized implementa-
tion, CBOE is successful in getting market participants interested in
VIX, so much so that most major news media often refer to it as the
“fear gauge” of the market.

Figure 6.8 is a plot of VIX and the S&P 500 index from the
beginning of 1990. It is evident that there are two big and rapid
surges in the time series of VIX, where it went above 80%. The first
surge happened in November 2008 during the global financial crisis.
Financial stocks such as Citigroup, J.P. Morgan, Bank of America,
and Morgan Stanley were bludgeoned amid fears that more credit
losses could begin to pile up from bets on commercial real estate,
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Figure 6.8 Plot of VIX and S&P 500 Index.
Source: COBE and yahoo!finance.
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and that the balance sheets of financial institutions would be further
sullied by what appeared to be a worsening economic outlook.

The second occurrence set the highest record of VIX in March
2020 when the Wall Street witnessed one of its worst days in history
as Corona virus (COVID-19) spread like wild fire, threatening a pos-
sible global recession in the near term. Major stock indexes plunged
by 12% or more as market participants started panic selling with no
clue of when the debilitating effects of this pandemic would come to
an end.

What is clear from these episodes in the recent history of stock
markets is that VIX moves in the opposite direction of the S&P 500
index.

6.4.2 Futures on VIX and basis

From the standpoint of portfolio managers, the negative correlation
of VIX and the underlying S&P 500 index provides a novel possibility
to manage the risk exposure of the assets they have invested in.
When the market goes into a tailspin, VIX increases dramatically. If
a portfolio manager anticipates a downturn over the next few weeks,
and if he can take a long position in VIX, then it will hedge against
the drop in value of his portfolio of assets.

But VIX per se is not investible. Seeing such need, CBOE Futures
Exchange rolled out a futures contract on VIX as early as May 2004.
Initially, the volume of contracts traded was sluggish — less than
500 contracts per day. Now in 2021, daily volume is in the order of
80 thousand contracts for the front month VIX futures alone.

We obtained the daily VIX futures data from MRCI, and con-
structed a continuous futures time series without adjustment. We
then consider the difference between the “cash” VIX and the futures
price of VIX. In the futures market, this difference is known as the
basis. It is a critically important risk to portfolio managers and
traders because basis affects the values of the contracts used in
hedging.

Figure 6.9 is the histogram of basis for the sample period from
October 1, 2012 to March 12, 2021. It is evident that majority of
the basis is negative, implying that VIX futures sellers embed into
the VIX futures the cost of holding options that are used for the
computation of VIX.
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Figure 6.9 The difference between VIX and VIX futures.

The large positive basis of 17.17% occurred on March 12, 2020,
when S&P 500 closed down 9.51% for its worst day since the black
Monday of 1987. In this extreme situation, the VIX value published
by CBOE is much larger than VIX futures price. It appears that
VIX futures sellers are selling it at a huge discount. Large positive
basis tends to persist when the market suffers a big drop. Neverthe-
less, volatility is well known to “mean revert down to the normal”
long-term level.

A takeaway is that when the market is volatile, the basis of VIX
tends to be positive, and vice versa.

6.5 Summary

In Section 6.1, we get to know what a futures contract is, the annual
exchange-traded volume, and other basic knowledge that is abso-
lutely necessary for data scientists who intend to work in this domain.
As a concrete case study, this chapter presents the spot futures parity
theorem, which is important in allowing us to compute a theoretical
futures value of a futures written on a stock market index.

Section 6.2 is seldom covered in most textbooks. In contrast to
stocks, futures contracts are short-lived and they will expire and
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thus exit the market. To obtain a long time series of futures prices,
it is necessary to piece together individual futures, each with a spe-
cific expiration date. In the backwards ratio method, the ratio of
the back month futures price over the front month futures price
on roll date is used as the adjustment factor. In the backwards
Panama canal method, it is their spread that adjusts past futures
prices. To compute simple return, we must use the futures price series
adjusted by the backwards ratio method. But to compute the P&L,
the futures price series must be adjusted by the backwards Panama
Canal method.

Section 6.3 has its focus on commodity futures and provides a con-
crete algorithm to create a commodity index. Using the data collected
from Moore Research Center, Inc., we are able to construct the
commodity indexs of RBOB gasoline as an example. We also provide
some details of current futures markets around the world and three
major commodity composite indexes.

Given the importance of VIX index, we devote Section 6.4 to
demonstrate that the algorithm provided by CBOE can be replicated,
in such a way that we can independently reproduce the VIX values
published by CBOE. This is the “science” part of data science. We
also provide the theoretical underpinning for the model-free approach
to obtain VIX from option prices.

Appendix A: Proof of Spot Futures Parity Theorem

The key idea to ascertain the forward price is to execute a simple
strategy. Immediately after entering into a forward contract at the
forward price of Fy, the seller in this deal borrows cash amounting
to Sp from a bank today to buy the asset at the price of Sy from
the market. The net cash flow today is zero, as the cash borrowed is
used to pay for the asset, and the forward contract involves no cash
flow. This simple strategy is said to be self-financing because the
seller does not have to incur his own fund to enter into this forward
contract. Moreover, the seller is assumed to be 100% trustworthy to
the bank and the bank is willing to lend money to him at the risk-free
rate of rg.

What is the net cash flow to the seller T fraction of a year later?
By delivering the asset he bought 1" fraction of a year ago to the
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So (1 + ToT)Sol
Figure A.1 The cash flows of forward seller.

buyer, the seller receives the predetermined cash flow of Fy. The
seller is also required to pay back the borrowed sum Sy to the bank
plus interest. Specifically, the seller pays the bank Sy together with
the interest amount of SyryT. It follows that the net cash flow to the
seller T fraction of a year later is

Fy — S(](l + T(]T).

The cash flows are depicted in Figure A.1. Upward arrows mean
incoming cash flows and downward arrows indicate outgoing cash
flows. At maturity, time ¢ = 0, seller’s asset is a share, and his liability
is Sp. The seller is also contractually bounded to sell the asset T
fraction of a year later to the buyer. At maturity when time ¢t = T,
the seller honors the forward contract by selling the asset at the
predetermined price Fy. After paying off the debt, the seller is free
of both the asset and the liability.

It is important to note that the quantities rg, So, T, and Fy are
known today to both the seller and the buyer. The interest rate rq
is obtained from the bank, and the asset price Sy is observed from
the market. The maturity 7" and forward price Fy must be deter-
mined and agreed by both parties today. Therefore, T fraction of a
year later, the seller has no uncertainty whatsoever in the net cash
flow Fy — (1 +1¢T")Sy. Since there is no uncertainty, there is no risk
to the seller, and there should not be any risk premium. It follows that
the net cash flow T fraction of a year later must be zero as well since the
net cash flow today is zero. Otherwise, if Fy — (1 + 7¢T")Sy > 0, the
seller is sure to make a gain and the buyer will not be willing to seal
the deal today. Conversely, if Fy — (1 + r¢T")Sy < 0, the seller ends
up losing money for sure and he will be unwilling to sign the forward
contract. Therefore, the net cash flow must be

Fy — (1 + ToT)SO =0.
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Hence, the forward price that is fair to both parties should be
Fo=(1+10T)So.

Next, we examine a self-financing strategy from the buyer’s per-
spective. Since the buyer can and must buy the asset T fraction of a
year later, she sells the security she owns today at the price of Sy. She
then deposits the proceeds at the risk-free rate of ro. Therefore, the
net cash flow today is zero, as the cash obtained from selling the asset
is converted into a time deposit at a risk-free bank. The time deposit
matures T fraction of a year later, and she obtains (1 4 r¢7")Sp cash
from the bank. She pays the seller Fy for the asset. Her net cash flow
T fraction of a year later is

(1 + T(]T)S(] — Fy.

Again, this net cash flow in the future is precisely known today.
Therefore, there is no uncertainty and thus no risk, and no risk
premium. The seller gets back her asset eventually and no addi-
tional cash flow is involved. The future cash flow (1 + roT")Sy — Fy
must be zero as well to prevent risk-free arbitrage. It follows that
Fy = (14 roT)Sy as anticipated.

Finally, we examine how dividends affect the forward price. With-
out loss of generality, suppose there is only one constituent stock in
the index that pays a dividend per share of D; at time ¢, which is
before the maturity time 7. The seller invests the benefit from hold-
ing the asset in a risk-free time deposit that matures at the same
date as the futures contract, over a time period of (T' — t), at the
prevailing spot interest rate of r;.

As illustrated in Figure A.2, the self-financing policy is adhered to
when at time ¢ the net cash flow is zero. At maturity, the investment

Fy

D,
TSO T" (1 + (T — t))Dfi[
lSo D, (1+ W‘OT)SOJ

Figure A.2 The cash flows of a forward seller when the asset pays a dividend at
time ¢ before the expiry date of the forward contract.
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D; becomes a cash flow (1 + (T — t))Dt to the seller, in addition
to Fy. Therefore, the net cash flow to the seller is

Fy+ (1+ 7T — 1)) Dy — (1 +70T)So.

Since the seller does not use his own fund, and since all the financial
instruments (except the negligible r;) involved are risk-free and can
be predetermined, there is no risk and hence no risk premium. It
follows that the net cash flow at maturity should be 0 as well. As a
result, we find that the theoretical value of F{y becomes

Fo=(1+7T)So— (1 + (T —t))Dy.

When there are multiple dividend ex dates before maturity, each
dividend is invested with the same procedure described earlier. Con-
sequently, we obtain (6.1) and the proof of the theorem is complete.

Appendix B: Proof of Model-Free Formula
for Calculating VIX

We assume that the underlying asset S; evolves continuously with
drift w(t,S;) and volatility o(t,S;) as an Itd process. For ease of
exposition, we write u; = p(t, Sy) and oy = o(t,S;). The stochastic
differential equation for S; is as follows:
dsS;
S
where dW; is any stochastic process that has a continuous sample

path almost surely.
By Ito’s formula, the function In S; evolves according to

= ,U,tdt—f-O'tth, (Bl)

1
d(InS;) = <,ut - §O't> dt + o dWy. (B.2)
It follows that
d
% —d(InS;) = —O't 2dt. (B.3)
t

Next, we consider the integrated variance V' (0,T") defined as

V(0,T) := /0 ' o2 dt. (B.4)
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The variance V(0,7 is the sum of instantaneous variances o7 real-

ized over time 0 to time T'. By equation (B.3), we obtain

vor =2 [ Las, - wmr (B.5)
s = ) St t SO . .
Thus, we just need to prove that
Tas S
Q _ 9@ Wt 2T
Ey [V (0,T)] = 2E; [ /0 g, I So} (B.6)

equals the right-hand side of (6.7).

To proceed with the proof, we note that in the risk-neutral set-
ting, the expected return is the continuously compounded risk-free
rate rg when there is no dividend, or more generically, rg — ¢ when

the dividend rate is ¢. This dividend rate is a convenient construct
defined by

e 'Sy := Sy — PV(D). (B.7)
Thus, the first term in (B.6) is
T
EZ [ / —dSt} = (ro — ¢)T, (B.8)
o St
and we obtain
oyrT = ES[V(0,T)] = 2(rg — q)T — 2E§ [m ‘;—z] . (B.9)

Next, for the second term in equation (B.6), we consider a quan-
tity Fp known at time ¢ = 0, and we express In(S7/Fpy) as

lnﬁ—lnST—lnFo—ST(i—i>—i—&—l

Fo FO ST FO
Stoq St St
_ —dX -8y | —dx+2L_1
x/F() X Fo X2 FO
St St — X St
=— dX + —=— —1. B.10
AO X2 + FO ( )

For any z > —1, In(1+ 2) is a strictly concave function and In(1+
z) < z. The left-hand side of (B.10) is In(1+ 2) with z := S¢/Fy — 1.
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- X

’e dX equals —(In(1 + z) — 2)

0
and hence is strictly positive. We can then rewrite the integral as

ST §p — X ST §p — X
dX =1 ——dX
/FO X2 S1>Fy /FO X2

Fogp— X
_1ST<F[) /ST X2 dX

ST Sp — X
:1ST>F0 /FO TdX

Fo x — St
+15 <F{ / ——dX
T 0 ST X2

_ /H (= 0% ax
Fo X2

Fo(x —Sp)t
+/ = = dX. B.11
f X2 (B.11)

St ST
It follows that the integral /
F

In the last step, we have used the fact that the asset price Sy, which
is unknown at time ¢ = 0, can potentially become a low value denoted
by L, or appreciate substantially to a high value H.

In view of (B.11), (B.10) becomes, under the risk-neutral mea-
sure Q,

" e(X, 80, T Fo (X, So, T
Eé]Q [lnﬁ] ——eToT/ MdX—eTOT/ MdX
L

Ty W X2 X2
St
EQ|ZL 1
‘ [Fo ]
0
—_eT’OT/ C(X,S;,T) dX— T’()T/ p(X7‘S'207T) dX
Fo X L X

To arrive at this result, Eé]Q [ST] = Fy has been applied.
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Finally, we write
ln& = ln& +ln@ (B.12)
and substituting (B.12) into (B.9), we obtain

H
X, S50, T
orpT = 2(rg — q)T + 2™ </ X, 5, T) ax

Fo X2
Iy
p(XaSOaT) FO
——————dX ) —2In—. B.13
+A X2 nSO ( )

In view of (B.7), we have Fy = e("™~97Sy. The first and last terms
cancel out and Proposition 6.3 is obtained.
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Chapter 7

Log Return and Random Walk

7.1 Introduction

In finance, the basic unit of producers of economic goods and services
is a company. Owners of a company invest their money, time, and
energy to produce goods and services to generate wealth. When they
do not have sufficient cash or capital to invest or to expand their
business, they borrow from others. There are a few options to raise
the capital:

e Take a loan from the bank.

Issue bonds.

Conduct private placements of shares.

Obtain stock listing in a stock exchange to issue shares to the
general public.

A loan is a bilateral contract between the company and the bank
while a bond is a contract between the company and a number of
financial institutions and retail investors. In return, the company
must pay interest to the bank and the bond holders.

Private placement is a business deal between the company, its
business partners, or venture capitalists. In a private placement,
company shares are sold at a fixed price after negotiation. It is an
exclusive share offer. In contrast, stock listing on an exchange via
initial public offering (IPO) is non-exclusive. Members of the pub-
lic who want to be co-owners of the company can bid for the shares.

227
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A share of a stock is a contract that confers company owner-
ship to shareholders under well-specified terms. Shareholders are not
liable to meet the demand of company’s creditors if the company goes
bust. They have the right to vote during annual and extraordinary
general meetings. One share is entitled to one vote and it represents
a slice of the company’s equity, which is whatever is left over after
the company’s liabilities are fully accounted for by the company’s
assets.

Shareholders are not answerable to the company’s creditors. In
accounting terms, a company’s equity — assets less liabilities —
can be negative. Even if the company has more liabilities than assets,
shareholders do not have to make up for the shortfall. So, the value of
a share cannot be negative. Since the share value is always positive,
the share price must also be strictly positive as well.

It is important to recognize from the investment standpoint that
the main reason for investing in stocks is that the company is prof-
itable in its business, and the company equity remains positive
and growing. Mature companies usually distribute earnings as div-
idend or other types of distributions such as bonus shares to the
shareholders.

As a publicly listed company, the stock is open for trading for
several hours each business day on an exchange. The last traded
price of the day is typically recorded in the press. It is important to
note that the last traded price does not occur exactly at the closing
time of the exchange. For example, on the New York Stock Exchange,
the closing time is 4:00 PM Eastern Time. Some stocks may have 4:00
PM when the last trades occur. Other stocks may have the last trade
any time before 4:00 PM. Nonetheless, the last traded price is taken
as the closing stock price for the day.

For this reason, time ¢ is implicitly assumed to be progressing
at a fixed quantum. If P; is the closing price at time or day t,
then P;_; is the closing price a day earlier, and F;4; is the clos-
ing price a day later. The day here refers to business day when
trading occurs. Sundays, Saturdays, and public holidays are non-
business days and they are not considered. If P; is the closing price
for Friday, then P,1; denotes the closing price for the non-holiday
Monday.
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7.2 Historical Share Prices and Stock Splits

Though stocks were traded since the 17th century in Holland, a com-
prehensive and systematic archive of stock prices, however, dates
back to December 31, 1925 only in the database of the Center for
Research in Security Prices! (CRSP). We take General Electric (GE)
as a case study. This company has an illustrious history going back to
1890. It was founded by the renowned inventor Thomas Edison. Two
years later, General Electric was formed after Edison’s company was
merged with its rival, Thomson-Houston Electric Company. Shares
were issued (see Figure 7.1) and started trading on NYSE. On its
first day of trading, only 50 shares changed hands at $108 per share.
In May 1896, GE was selected as one of the 12 original companies in
the newly formed Dow Jones Industrial Average index.
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Figure 7.1 A specimen of GE common stock certificate.
Source: NYSE.

LThis high quality database is not free.



230 Algorithmic Finance: A Companion to Data Science

USD per Share
N w B ()] [e)]
o =) o o <)

=
o

01929 1939 1949 1959 1969 1979 1989 1999 2009

Figure 7.2 Adjusted closing prices of GE from end of 1925 through end of 2011.
Source: CRSP.

The historical closing prices of GE are plotted in Figure 7.2 for
the sample period from December 1925 through December 2011. It
is evident from the time series plot that the stock price increases
exponentially from end of December 1925 to the all-time high of $60
per share on August 28, 2000 in this sample period. However, on
March 3, 2009, GE’s share price dropped to $7.01, or more than 88%
from the all-time high.

By eyeballing CRSP data of GE, we find that it was actually
traded at hundreds of dollars in the 1920s. But Figure 7.2 shows
that the share price was less than a dollar. The reason is that the
time series of stock prices and volumes must be adjusted for stock
splits. When a company’s share price increases rapidly, it becomes
“expensive”. The company decides to split one share into = shares,
thereby reducing the share price by x times. For example, GE’s most
recent stock split occurred on May 8, 2000 in our sample period when
a share split into three shares. Everything else being equal, the share
price must be 1/3 of the pre-split or “old” price, so that the dollar
value of holding GE’s shares remains unchanged. In other words, the
market capitalization of GE, which is the number of shares Ngq
times the stock price P4, i.e.,

MCgla = Noa X Poid,

must not change under a stock split.
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Figure 7.3 Multiple stock splits.

Now, the new number of outstanding shares is Nypew = Ngg. It
follows that

Poq

Mcold = xNold X = Nnew X Pnew = MCH€W7
where Pyew = Polq/x. Indeed the market capitalization is unchanged
when stock split is effected (before the trading session begins).

Suppose there were n stock splits in the past, and the split ratios
were x;, ¢, = 1,2, ..., n, respectively. How should the historical prices
be adjusted when more than one stock split had occurred? To answer
this question, consider the diagram in Figure 7.3, where three stock
splits were observed at times t1,to, and t3, with t3 being the most
recent.

To compute the adjustment factor, we start from the most
recent stock split at time t3. The stock split at time t3 requires prices
to be adjusted from t3 — 1 all the way back into the historical past.
Similarly, the stock split at to necessitates the adjustment from t5 —1
backward in dates; and the stock split at ¢; needs further adjustment
to the historical prices from t; — 1 backward.

In other words, from ¢y to t3 — 1 (inclusive of both dates), the
price adjustment factor is ds = x3. For the time period from t; to
to — 1, the adjustment factor is do = wod3 = zox3; and finally prior
to t1, the adjustment factor is d; = x1ds = x1x22x3.

At and after time t, of the most recent stock split, the closing
price needs no adjustment. For convenience, we define d,, 11 = 1. The
cumulative adjustment factor after ith stock splits is thus given
by

d; = xidiy1 = v122 - - 4,

for i = n,n —1,...,1. If each stock split ratio is 2 or higher, it is
obvious that

1:dn+1<dn<dn71<"'<d2<d1.
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Table 7.1 Stock splits of GE since December 31, 1925
but before December 31, 2011.

Split date Split ratio  Cumulative adjustment factor

4,608
1926-05-27 4 1,152
1930-01-28 4 288
1954-06-14 3 96
1971-06-08 2 48
1983-06-02 2 24
1987-05-26 2 12
1994-05-16 2 6
1997-05-12 2 3
2000-05-08 3 1

In other words, when many stock splits occur, the adjustment factor
increases in a stepwise fashion backward in time. So, at the chrono-
logical beginning of the time series of share prices, the adjustment
factor is the largest, and that is why before 1960, the adjusted prices
of GE are less than a dollar in Figure 7.2.

Example 7.1. The ratios of stock splits (that are integers) for GE
are listed in Table 7.1. In this example, a total of nine stock splits
had occurred. Using the method described, we have dijg = 1. Over the
sample period, the most recent stock split occurred on May 8, 2000,
when a share was split into three shares. Accordingly, dg = 3, which
applies to prices from May 12, 1997 to a business day before May 8,
2000. The next most recent stock split gives rise to dg = 2 x 3 = 6.
With dy = 96, d3 = 288, and so on, and since adjustment is carried
out by dividing the pre-split stock price by the applicable adjustment
factor, it is easy to appreciate why the adjusted prices become smaller
and smaller in Figure 7.2 when we go back in time.

7.3 Log Prices and Log Returns

In Figure 7.4, the log price p = In(P) is plotted instead. The loga-
rithm function transforms the exponentially increasing price P into
a log price p that appears more balanced in highlighting the price
fluctuation.
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Figure 7.4 Adjusted logarithmic closing prices of GE from end of 1925 through
end of 2011.

Source: CRSP.

It is noteworthy that in contrast to the usual price P, the log price
p can be negative, for the logarithm function yields negative values
when P is less than $1. In light of Figure 7.4, a great deal of ups
and downs become visible in the early part of the time series. There
was a rapid increase in the share price since December 1925 until
1929 when the peak was reached on August 19. What follows was
the Great Depression in 1930s, during which the share price dropped
by more than 90% from its peak.

The time series of log prices demonstrates clearly that even a risky
asset such as GE stock can produce a good return over a long period
of time. In the worst case scenario, suppose an investor bought GE
shares at the height of the 1920s’ bubble, and sold the shares at the
rock bottom of the 2007-2009 financial crisis, his log price difference
would be

In(7.01) — In($398.75/1,152) = 3.0083.

Note that $7.01 per share is GE’s closing price on March 3, 2009
mentioned previously. The last traded price on August 19, 1929 is
$398.75 per share, and 1,152 is the applicable price adjustment factor.
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Now, the log price difference is related to return r. To substantiate
this claim, consider the return

P,—FP P,
r = = — — ].
B B
In other words,
Py
v _q
B

where time u is later than ¢. Applying the logarithm on both sides,
we find that

P,
In(P,) —In(P;) =In <Fu> =1In(1+7).
t
Accordingly, the log price difference is related to return r by the
logarithmic function of r.
If the return r is obtained over T number of years, the annualized
return r, can be backed out by the following formula:
I+r)f=14r= FZ
This equation suggests that r, is the compound annual return
that is averaged across T years. To back out r,, we rewrite the equa-
tion as
In(P,) — In(P;)

In(1+7,) = ——“———".

It follows that

S <ln(Pu); ln(Pt)> L

In the worst case scenario described above, we have In(P,) —
In(P;) = 3.0083, from August 19, 1929 (time ¢) to March 3, 2009
(time u), for which the number of years T is approximately 80. Insert-
ing these data into the equation, we find that

rq A exp (3.0083/80) — 1 = 3.8320%.

The capital appreciation of GE stock over these 80 years was 3.8320%
per year.
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‘We note that

3.0083
S 3.7604%,
80 0

which is a mere difference of 0.0716 percentage points from r,. To
account for the small difference, we perform Taylor’s expansion and
obtain

1 1
1H(1+TQ):TG—§T2+§T2+"'

For small r,, we have
In(1+ry) = rq.

Accordingly,
ln(Pu) — ln(Pt)
— 7 R Ty,
Motivated by this finding, we proceed to define the continuously

compounded rate of return r. as follows, even though log return has
been discussed previously.

Definition 7.1. Given two prices P, and P; at times u and ¢, which
are T years apart, i.e., u —t = T years. The log return r, is defined
as the difference of log prices:

re = In(P,) — In(P,).

Definition 7.2. The rate of log return, also known as the con-
tinuously compounded rate of return r., is defined as

re  In(P,) — In(FP;)
o= — = — -~ 7

T T
A few simple steps lead to
P, = P, (7.1)

This equation suggests that, on average, the stock price increases
exponentially from the initial price of P; over T years, i.e., u—t =T.
Indeed, Figure 7.2 provides an example of the exponential growth.
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7.4 Modeling Stock Price Movements

In the previous section, by introducing a continuously compounded
rate of return, a simple model of stock price is obtained,

P, = Pye" " (7.2)

This simple equation is a rewrite of (7.1), with ¢ replaced by 0,
u replaced by t, and hence T'=1¢t — 0 = t.

The model is crudely simple. The randomly wiggling and undu-
latory nature of the path taken by the stock price is missing in the
model. As a matter of fact, model (7.2) is deterministic. Going for-
ward in time, it can only increase and not decrease. Moreover, with P,
being an exponential function of timeht, it is smooth; P; can be differ-
dd;:t = T?Pt, forh=1,2,...,0c.
Clearly, the price path in Figure 7.2 is anything but smooth.

A natural improvement to model (7.2) is to postulate that the
log return is random. Specifically, we alter the constant r. into a
function of the random variable X;

entiated infinitely many times, i.e.

re(Xe) =T+ 0X. (7.3)

In other words, we let the log return r. fluctuate with respect to
an “average” value 7. The fluctuation is described by the random
variable X;, and the magnitude of fluctuation is measured by a con-
stant parameter o. It is easy to see that r. as defined in (7.3) is a
generalization of model (7.2). If we set o to zero, then r.(X;) =T is a
constant and model (7.2) is recovered. With random function (7.3),
we have

P, = Pye"ttotXe, (7.4)

The legacy from the deterministic model (7.2) can still be seen in
P(]eﬂ.

To gain insight into model (7.4), we partition the time interval
from time 0 to time ¢ by n subperiods. The duration of each time
interval At is

At =

t
o
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Figure 7.5 Partition of time from 0 to ¢ by n equal intervals.

Altogether, there are n intervals of equal length. A pictorial illustra-
tion of uniform partition is depicted in Figure 7.5.

To simplify the notation, we write 7, = kAt, where k& = 0,
1,...,n—1,n. In this notation, 7y = 0, and 7,, = t. With regard to this
partition, there are n random variables X, , where £k =1,2,...,n.

Consequently, the stock price at time 71 according to model (7.4)
is

PT1 — P’To e?At-ﬁ-o’AtXTl )

In general,

Py =P, _ e tttoatXn, (7.5)

Tk—1

By repetitive substitution, we find that

n
P,=P. = Pyexp (ﬁ +oALY Xﬂ) : (7.6)
i=1

So far, we have not specified the behavior of the random variable
X;. We make further assumption on X, as follows:

1 n
X =—=—=Y,=,/-Y,, 1=12...,n, 7.7
SR o

where Y7, for simplicity, is a Bernoulli random variable, which
takes the value of either 1 or —1 with equal probability. The Bernoulli
random variable is a fanciful way to describe two possible outcomes
of tossing a coin.

Discrete Bernoulli random variable has mean 0 and variance 1,
ie,E(Y;) =0, and V(Ys,) = 1. We also assume that Y7, is indepen-
dent of each other. Given the independence assumption, it follows
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from (7.6) that

E(In(P;) —In(Py)) =Tt, (78)
n n 2 n
= o2t. (7.9)

In other words, the expected value of the log return is 7¢, and the
variance of the log return is o?t. The parameter o2 can be interpreted
as the rate of variance.

The constant 1/v/At in (7.7) is deliberately included so that the
variance of log return scales linearly with time t. The paradigm in
which we operate is the random walk model. In the simplest form,
this model is a series of random steps. Each step is either up or down
by the same amount a\/E, as we have assumed that the randomness
is generated by the Bernoulli trials.

Specifically, from equations (7.5) and (7.7), we have the random
walk model as follows:

In (PTk) —In (Pqu) =TAt+ o AtX,, =TAL+ O'\/EYTk.

It can be readily shown that E (ln (PTk) —1In (Pqu)) = TAt, and
that Vv (ln (PTk) —In (Pqu)) = ¢2At. Since the variance increases
linearly with time ¢, random walk, being a model for the log price,
is non-stationary.

Now, if we set the time scale in such a way that At = 1, then the
one-period log return r;, :=In (PTk) —In (Pqu) is a random walk
with drift 7. In other words, the deviation from mean 7 is purely
random:

Tr —T =0Y,,. (7.10)

7.5 Simulating Stock Price Movements
and Reality Check

A simulation of the price process model (7.5) with Bernoulli fluctua-
tion is shown in Figure 7.6. The simulated price series looks realistic
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Figure 7.6 Simulated prices using model (7.5).

and qualitatively similar to the time series of GE prices in Figure 7.2.
However, this model of price process has a fundamental flaw. Namely,
as seen from equation (7.5), the log return is restricted to take two
values only, either TAt — ov/At or FAt + ov/At, since At, 7, and o
are fixed. But in reality, the log return of any stock such as GE can
have many different values.

Therefore, instead of the over-simplified model to drive the stock
price fluctuation, we substitute the Bernoulli random variable Y7, in
(7.10) by a standard normal random variable, which too has zero
mean and unit variance. It turns out that the resulting price model
is the discretized version of the well-known geometric Brownian
motion, for which the log return is a normally distributed random
variable.

Definition 7.3. A discretized geometric Brownian motion is a
purely random process, i.e., the log price is random in such a way that
the log return is a fraction of standard normal random variable
Zy in the one-period setting:

Zy ~ N(0,1).
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Figure 7.7 Histogram of GE’s log returns and the kernel density of normally
distributed random numbers, which are generated in such a way that their mean
and variance match those of GE’s log returns.

In other words, the deviation of one-period log return from its mean
is pure noise u;. Mathematically, we write

Up =1y —T = 0. (7.11)

Now, does the geometric Brownian motion correspond to reality?
In Figure 7.7, the histogram of the log returns of GE is plotted. It
displays the normalized frequency (called density) of realized log
returns with respect to the discrete interval (called bin) of their
values. For comparison, values of a normally distributed random vari-
able are generated, and their kernel density estimate plot is super-
imposed as a dashed curve. The total number of these randomly
generated values is the same as GE’s total number of log returns
observed over the sample period. The randomly generated values are
generated in such a way that their mean and variance are the same
as those of GE’s log returns.

In comparison to the simulated histogram in Figure 7.7, the real-
ized log returns have many “outliers” in the sense that there are
more extreme values. For example, it is noteable that log returns
more negative than —3% occur more frequently than normally dis-
tributed random values do. Similar observation can be made of
returns that are larger than 3%. Conversely, small returns around
the mean are more frequent than the normal distribution. It is intu-
itively evident that the distribution of GE’s daily log returns is not a
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normal distribution. Hence, the stock price process is most likely
not a geometric Brownian motion.

7.6 Statistical Tests of Normality of Log Returns

Jarque and Bera (1987) provide a test to infer whether a sample
of log returns is drawn from a normal distribution. Recall that a
normal distribution is defined by its mean p and variance o2. Since
the distribution is symmetric with respect to the mean, any higher
odd-order (centralized) moment is zero. The skewness of a random
variable X, which is of the third order, is defined as

E((X — p)?)

v = g

The skewness measures the slant of the distribution. It is negative
when the distribution is skewed toward the left, i.e., there are “out-
liers” to the left of the mean. Conversely, a positive skewness indi-
cates the presence of extreme values to the right of the mean. Being
symmetric, the skewness of the normal distribution is zero.

On the other hand, all the even-order (centralized) moments of a
normally distributed random variable are not zero. In particular, the
kurtosis, which is defined as

E((X —p)*)

K =
o4

Y
is a fourth-order statistic, and it measures the frequency of extreme
values expected of a distribution. For the normal distribution, the
kurtosis is 3.

To examine whether a sample of T' observations is normally dis-
tributed, we consider the Jarque—Bera statistic:

JB = % <§2 + @) : (7.12)

Here, 7 is the sample skewness and k is the sample kurtosis,
which are estimated in the following algorithm. First, the sample
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average is estimated:

T

_ 1

T = th.
t=1

Next, the estimate for the variance is based on the following esti-
mator:

=l

o2 = Z (xt —5)2.

t=1

1l

Finally, the sample skewness is obtained as

T _\3
>, (¢ —7)

Y= 83 ’

and the sample kurtosis is computed as

1 T _
thﬂ (e - a:)4
7 |

//%:

As can be seen from expression (7.12), a large value of 4 and /or a
large difference of & from 3 will lead to a large value for the Jarque—
Bera statistic. Since the skewness and kurtosis are, respectively,
0 and 3 for the normal distribution, a large Jarque—Bera statistic
provides a measure for the deviation from normality.

To conduct the Jarque—Bera test of normality, we set the null
hypothesis as Hy : JB = 0. The alternative hypothesis is H;: JB # 0.
Jarque and Bera (1987) show that the JB statistic is a x3 dis-
tributed random variable with 2 degrees of freedom. We perform six
separate tests for daily, weekly, monthly, quarterly, biannual, and
yearly log returns. Table 7.2 shows the relevant statistics in the con-
text of Jarque—Bera tests.

The critical value of the chi-square distribution at the 0.5%
significance level is 10.597. Since all the Jarque—Bera statistics are
greater than 10.597, there is evidence to reject the null hypothesis
of normality. It is also noteworthy that the kurtosis decreases mono-
tonically as the sample frequency increases.
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Table 7.2 Results of Jarque—Bera tests for GE’s log returns at different
frequencies.

Observations  Skewness Kurtosis Jarque—Bera statistics

Daily 22,776 0.025999  13.13398 97,462.5
Weekly 4,486 —0.04181 10.00023 9,160.8
Monthly 1,032 —0.31251 7.77295 996.4
Quarterly 344 —0.27640 6.66580 197.0
Biannual 172 —0.94224 6.47470 112.0
Annual 86 —0.88798 4.26247 17.0

7.7 Autocorrelation of Log Returns

The mean, variance, skewness, and kurtosis do not take the tempo-
ral structure of the log returns into account. The time ¢ of the log
return r; is used purely as the index in the summation when these
descriptive statistics are computed. The histogram, too, does not
provide information about the temporal sequence of the log return.

This section provides a different statistical tool to ferret out any
insightful information that might be hidden in the temporal realm
of ry.

Definition 7.4. We define the autocorrelation of a time series
x; as the correlation of x4 with x;, for all s and ¢.

(xsa wt)

It is evident that p(¢,t) = 1. The question of interest is p(s,t) for
s=t—1,t—2,...,t—k. Accordingly, we have the following definition.

Definition 7.5. We define an autocorrelation function (ACF)
up to lag k as follows:

C(»Tt h@t)

\/thh\/Va:t7

To simplify the analysis, an important assumption of homoske-
dasticity is made. Namely, for all h,

V(i) =V(24p) = 0. (7.13)

ACF(h)

for h=0,1,2,...,k.
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Under this assumption, the autocorrelation function is written as

(C(ﬂftfm xt)

o2

ACF(h) = , for h=0,1,2,...,k.

Following Box et al. (1994), given a time series of 1" observations

{xt}thl, the sample estimate of ACF(h) for h = 0,1,...,k, can be
obtained as

Chp,

Yh = —,

Co

where
1 T
eh = > (0= D)(xp =), (7.14)
t=ht1

and T is the sample mean T = ?:1 ﬁ In (7.14), note that the

summation index starts from ¢ = h + 1. This is simply because the
time series starts from ¢ = 1 and x;_j is meaningless if ¢t < h + 1.

Intuitively, v, for a given h is the correlation between the random
variable at time ¢ with the same random variable at a different time
t — h. Suppose 7 is 0.7 and the autocorrelations at other lags are all
zero. Then roughly speaking, there is a 70% chance that x; is positive
in this (hypothetical) example.

Panel A of Figure 7.8 plots the sample autocorrelation func-
tion of the daily log price of GE. For lag 1 to lag 20, the values of v
are close to 1, which provides little information about the temporal
structure of p;. A possible explanation is that the sign of log price at
time ¢ — ¢ and the sign at time ¢ are almost always the same when 7 is
a small number. More importantly, the value of the log price p; at
time ¢ is usually not much different from p;_; when normalized by cj.
Even despite the fact that the log price of GE can be either positive
or negative as evident in Figure 7.4, the temporal structure nonethe-
less is such that they are highly correlated. This characteristic of
v = 1for j =1,2,...is typical of a non-stationary time series.
Although not statistically rigorous, the sample ACF does provide a
quick diagnosis of whether a time series is non-stationary.

By contrast, Panel B shows that the daily log returns at differ-
ent times have practically no correlations at all. Some of the v, are
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Figure 7.8 Two sample ACF(20) of GE’s daily log price (left) and log returns
(right).

however statistically significant. As shown by Bartlett (1946), the
variance of 7, is well approximated by 1/T. Consequently, a large T’
gives rise to a small variance, and thus it is easy for even small vy
estimates to exceed the two-tail critical values, which are indicated
by two horizontal lines parallel to the horizontal axis of lag h.

Since the log return is the first difference of the log price, i.e.,

re = Apy = pp — pi—1 = 1H(Pt) - ln(Pt—1)7

it can be said that the log price difference Ap; at time ¢ has no
memory of the past log price difference Ap;_;. In this context, using
the past daily return to forecast the future daily return is quite futile.

7.8 Variance Ratio Test of Random Walks

This section examines how closely the time series of stock prices fol-
low a random walk. What exactly is a random walk in our context?
Well, it is a time-series process in which future behavior is indepen-
dent of the past. Put differently, the process has no memory of the
history in the past, and exhibits no discernible trend as each move
is random. An intuitive way to grasp the idea of a random walk
is to observe a drunkard walking. Being in stupor, the drunkard’s
next move is erratic and without pattern. No one, even the drunkard
himself, will be able to predict what the next step will be.
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7.8.1 Variance ratio

Do stock prices behave like a drunkard? The answer to this important
question rests on a statistical test for the hypothesis of random walk.
When the daily log return r; is treated as a random variable, the
variance of a sum of ¢ daily log returns in sequel is

v (gn> = gV(n) + 22%@(7«5,7}).

This expression is an application of the proposition that for any two
random variables, X and Y,

V(X +Y) =V(X) +V(Y) +2C(X,Y).

To simplify the analysis, two assumptions on the log returns are
made:
(1) zero covariance: C(rs,rt) =0 for any s # t;
(2) homoskedasticity: V(r;) = o2 for any ¢.

Suppose we have T + 1 daily log prices. Let ¢ be an integer larger
than 1 and T' = ¢M. The discrete time (day) ¢, where t = 0,1,...,T

is re-indexed as qj — ¢, where j = 0,1,2,..., M. The index i = 0,
1,...,4—1 when j > 0 and ¢ = 0 when j = 0.

Definition 7.6. The non-overlapping ¢-daily log return is
defined as

r¢(J) :=In(Py) — In (P(q,l)j) . (7.15)
Note that in this definition, the prices are indexed by (¢—1)j+i for
which i =1,2,...,qj—1 are ignored. It is analogous to the definition

of monthly return, which is based on end-of-month daily prices only.
All other daily prices are not considered.

Since we already have two definitions of log returns, (7.1) and
(7.2), why is this definition of non-overlapping ¢-daily log return
required? Moreover, these three definitions of log returns share a com-
mon feature, namely, the log price at the later time minus another log
price at the earlier time. Definition 7.6 is no different from the two
previous definitions as they implicitly assume that log prices do not
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overlap over time. That said, the intent of defining non-overlapping
g-daily log return is in anticipation of the concept of overlapping log
return, which shall be discussed in the subsequent section.

Proposition 7.1. Let r1(qj — i) denote the daily log return con-
structed from T + 1 log prices, with j = 1,2,...,M and i = 0,
1,...,9 — 1. The non-overlapping g¢-daily log return can be
expressed as

q—1

= ri(qj — ).

=0

Proof. The telescoping sum of ¢ daily log returns r1(qj — 7)
provides the proof as follows:

q—1
> ri(gj—i) = (In Py —In Pyj_1) + (InPyj_y —InPyj_p) + -+
=0

+(In Pyjgra — In Pyjg11)
+(In Pyjgi1 —In Pyj—g)
=In Py —In Py
= 74(j)- O
Definition 7.7. The variance ratio for the ¢-daily log return is

defined as the variance of the ¢-daily return divided by ¢ times of
the daily variance.

V(Tq(j))‘

VR(q) = =

Under the assumptions of zero covariance and homoskedas-

ticity, we can interchange the order of summation and variance oper-
ation to obtain

q—1 q—1 g—1
V(Tq(j)):V<ZT1 CIJ—Z> ZV ri(qj — 1) 2202:
‘ i=0

In this expression, the constant o2 is the variance of daily log return.
It follows that VR(q) should be equal to 1 when the conditions of log
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returns being serially uncorrelated and homoskedastic are satisfied.
The variance ratio test is a test of

Hp:VR(q)—1=0  versus  H,:VR(q) —1#0.

If the null hypothesis cannot be rejected, then it means that the
two assumptions made are consistent with the reality. Conversely, a
rejection of Hy implies that either one or both of the assumptions is
or are inconsistent with the data.

What is the intuition behind the variance ratio test? As a mat-
ter of fact, the variance of random walk increments is linear in all
sampling intervals, i.e., the sample variance of ¢-daily return of the
time series 7; is ¢ times the sample variance of daily return. And for
a random walk, the variance computed at each individual ¢, where
q=2,3,..., should be equal to one.

7.8.2 Asymptotic distribution of variance estimates

To set up the framework for inference, we recall a few definitions and
facts. The sample mean of daily log returns is estimated as usual,

T M g—1

=g Y= MiqZZqu—i), (7.16)

t=1 j=1i=0

where the sample size T' is assumed to be divisible by ¢ so that the
quotient is M?2. The sample variance of daily log returns, however,
is estimated as

T

~ 1 ~
0'% = f Z ('I“t — 7“1)2.

t=1

The subscript 1 in 71 and 5% is meant to indicate that these estimates
are obtained from T' daily log returns.

2This assumption is meant for convenience for proving the proposition. In prac-
L . . . T
tice, it amounts to discarding a few observations as M = —J .
q
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Definition 7.8. An estimator is said to be consistent if it converges
to the true value as the number of observations approaches infinity.

Proposition 7.2. As T — oo,
E(&%) —s o2

In other words, the variance estimator 77 is a consistent esti-

mator.

Proof. Let u be the population mean of the log return r;. We can
insert 0 = —p + p as follows:

re =71 = (re —p) — (M — p).
A quadratic expansion results in
(re =71)" = (re = )* = 20re = ) (Fr = 1) + (F1 = ).
Now, the expectation operator E(-) is linear. Therefore,

E@a:E<§xn_af>:%i?qM_af)

t=1

It follows that

E (8%) = %ZE ((re = M)Q) - %ZE ((re = p)(r1 — )
t=1 t=1
£ B (- w?).
t=1

By the assumption of homoskedasticity, the first term becomes

1
E ((re — M)Z) = TTUQ =o?,

N[~
E

&
Il
—

which is a constant.
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Next, when T" — oo,

lim —ZE ((ry — — )

T—oo T

T
2 . . o~
“TE (%525” < Jim (7))
0

This outcome is based on the fact that the sample mean is a con-
sistent estimator. i.e., limy_,o, 71 — . Consequently, the last term
also vanishes when T' — oo. O

Proposition 7.3. The variance of the sample variance estimator
18
204
V(5%) = .

( 1) T
Proof. From (7.11), it is clear that, for the log return, the deviation
from the mean, i.e., r, — 71, is 0Z;, where Z; is a standard normal
random variable. Hence, given the assumption of zero covariance
and homoskedasticity,

V(E2) =v (% EZ: (re - af) =V (i(oZtF)

t=1 t=1
1 Z
T2 ZV( O'Zt ) assumption of zero covariance
t=1
1 4 2 . . .
= ET o V(Zt) assumption of homoskedasticity
4
g 2

Now, as shown in Chapters 2 and 3, if Z; is a standard normal
random variable, then Z? is a chi-square random variable with one
degree of freedom. Also, the variance V(Zf) of the chi-square random
variable with one degree of freedom is 2. O
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By the central limit theorem, as T" — oo,

VT (57 — 0%) ~ N(0,20%). (7.17)

7.8.3 Variance ratio test

Recall the definition (7.15) of non-overlapping g-daily return denoted
by 74(j), where j = 1,2,..., M, where M is the maximum number
of non-overlapping ¢- daﬂy returns that are obtainable from T + 1
prices starting from Fj.

Proposition 7.4. The sample average of q-daily log return rq;(q) is
simply q times of 71, i.e., qT1.

Proof. After multiplying both sides of (7.16), we obtain

q—

Applying Proposition 7.1, it follows that

1 M
qri = Mzrq(j)-

The right-hand side is anything but the average of M ¢-daily log
returns. U

Note that Proposition 7.4 is in agreement with the linear scaling
law expressed as (7.8).

Definition 7.9. Given that the sample mean is ¢r; by Proposition
7.4, the maximum likelihood sample variance estimator is

M

52 = %Z (ra() — a1)>. (7.18)
=1

Example 7.2. Table 7.3 contains GE’s stock prices from November
28 through December 14, 2018. For simplicity, they are labeled as
Day 0 through Day 10. There are 11 prices, from which 10 daily log
returns are obtained. Though there are nine 2-daily log returns, the
five non-overlapping contributions to 55 in (7.18) tabulated as the



Table 7.3 Illustration of bi-daily returns.

Day 0 1 2 3 4 5 6 7 8 9 10
Price 7.94 7.50 7.81 7.28 7.35 7.01 6.93 6.76 6.71 7.20 7.10
log price 2.073  2.015 2.055 1.985 1.995 1.947 1.936 1.911 1.904 1.974 1.960
Daily — —5.70% 4.05%  —7.03% 0.96% —4.74% —1.15% —2.48% —0.74% 7.05% —1.40%
bi-daily — — -1.65% —2.98% —6.07% —3.78% —5.88% —3.63% —3.23% 6.31% 5.65%
Non-overlapping 3.43x107° 1.47x1073 1.33x1073 9.80x10° 6.22x103

4*14
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last row are (rg (J)— 2?1)2, j=1,...,5, which correspond to Days 2,
4, 6, 8, and 10.
Proposition 7.5. Asymptotically, as M — oo,

E 3_2 _Lfﬂz(( N A)2)_> 2
q - Mq pu T‘](]) qri o.

Proof. The ¢-daily log return r,(j) for each j is a sum of ¢ daily
returns,

7q(J) = Tgj +rgj—1+ F Te(-1)41-

Now, g1 can be expanded out as a summation. Then, applying (7.11)
for each term, we obtain

rq(§) — a1 = (rgj —71) + (rgj—1 —71) + -+ + (Tg(j—1)41 — T1)

= Ugj T Ugj—1 7 Ug(j—1)+1 (7.19)
Since all the u; have zero covariance with each other,
q—1 q—1
, N2 ~9 . 9.
E((rg() — g7)*) =E (Z%_i) =" 510) = 457 ().
i=0 i=0
Consequently,
6_\2 1 M ) 1 M
El-2)= —ZE<(T¢1(]) — qr1) ) = —> 451(j)
q 153 M =1
j= j=
M
M Z 3% (7)
j=1

This is the mean of 52(j). By the law of large number, when M is
large, the expected value of ¢-daily variance divided by ¢ approaches
the true value of the daily variance o2. O

Proposition 7.6. Given that Mq =T, the variance of the estimator

82 18
v 32 _ 2q04
q) T
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Proof. In view of (7.19) and by the assumption of zero
covariance,

q—1 q—1

2 _ 2 2
g Ugi_; =0 E zZ7,
=0 i=0

where Eg;& ZZ-2 is a chi-square random variable with ¢ degrees
of freedom. Thus, we have M chi-square random variables, and the
degrees of freedom of each of these ¢ independent chi-square random
variables is 2. It follows that

8‘? 1 2 X 2 1 2 g 2
VI 2 ]|=—vV|o zZ7 | = V(o Z;
q Mq? ; (Mq)q ;

_L 2,2y _ 9 4 2
7TqV(qUZ)7TUV(Z)

_2qa4
== 0

By the central limit theorem, as M — oo, the symptotic
distribution is normal:

~2

VMg (%‘1 - 02> ~ N (0,2g0%). (7.20)

Definition 7.10. To perform the variance ratio test, we define
the sample statistic
~2

o~ g —
Jr(q) :== —Aq2 —1=:VR(q) — 1.
qo7y
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Proposition 7.7. The asymptotic distribution of VT.J,(q) is
normal with mean 0 and variance 2(q—1) (see Chapter 2 in Campbell
et al., 1997):

VTJ:(q) ~ N(0,2(g - 1)). (7.21)

Proof. Given a data set, let 52 be the maximum-likelihood esti-
mator of o by using every observation. By (7.17), we have

ﬁ(&% —o?) ~ N(0,20%).
32
Next, let —Z be the maximum-likelihood estimator of o2, using

q
every g-th observation instead. Likewise, (7.20) suggests that, with
Mq=T,

=2

VT (U—q — 0'2> ~ N(O, 2q04).

q

Then the asymptotic variance of
/7 [ %a 2 J(~2 2 (%
T|——-0"| — T(O‘l—O'): T|— -0
q q

is simply the difference of the asymptotic variances: 2go* —20*. Con-
sequently,

=2

VT (qu—q - 8%) ~ N(0,2(q — 1)o*).

The asymptotic distribution (7.8.3) of the ratio can be
obtained by applying the delta method (see Appendix A) as fol-
~2

o c
lows. Denote —£ by O'g, and let the function g(z;c) be —, where c is
q T

2

2 _ C—4 and it follows that
T

a constant. Hence, (g/(x;c))

~4

(¢ (6%:57) = =%,
1
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and
(¢ (3%:0%)" = %5
Therefore, with respect to \/T(g(?f\%; ﬁg/q) — g(ff\%; 02)), the
~4 4

o o

delta method yields the variance 2go* - A—g — 20 —g- Asymptot-
01 o1

ically, i.e., when T is large, both 5% and 35 become ever so much

closer to 0. Accordingly,

~4 4
g g
lim (2go*- =% —20" | — 2¢ -2,

and it follows that
~2

VT (q) =VT (% - 1> ~ N(0,2(q — 1)).

qo7 ]

It is interesting to note that this proposition suggests that the
variance of the estimator v/7'J.(¢) is a known value of 2(q — 1). It
follows that for ¢ > 1, the z score is computed as

2y = VIa—2D N0, 1), (7.22)
Vv2(g—1)
It is called the z score rather than the ¢ statistic because the vari-
ance of the estimator is known.
As a passing remark, the variance ratio methodology has gained
tremendous popularity in recent years. See Charles and Darné (2009)
for a comprehensive survey of this field.

7.9 Variance Ratio Test Algorithm: An Empirical
Analysis

We use the daily log returns of GE to conduct the variance ratio
tests? for ¢ = 2,3,...,10. For each ¢, the algorithm for the variance
ratio test proceeds as follows:

3 A reference for this part is Lim (2011).
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(1) Compute daily log prices In P, for the sample period of end of
December 1925 through end of December 2011.

(2) Compute daily log returns r; from the resulting daily log prices.
(3) Estimate 7 and the maximum likelihood variance 7;°.
(4) Construct non-overlapping ¢-daily log returns.
(5) Estimate ry(j) and 52
(6) Compute the variance ratio estimate ﬁ(q) according to (7.7):
— o2
VR(q) = é.

(7) Compute the statistic J,(g), which is \//ﬁ(q)

(8) Compute the z, score for inference according to (7.22).

In Table 7.4, we present the results of the variance ratio tests. For
reference, we also tabulate the autocorrelations ~; at first lag.

We find that the variance ratios are generally above 0.9 with the
exception of ¢ = 9. It is clear, however, that the null hypothesis must
be rejected for all ¢ except for ¢ = 2 and ¢ = 7. A rejection of the null
hypothesis means that either serial correlation or homoskedas-
ticity, or both are not compatible with the empirical evidence.

Note also that all the first-lag autocorrelations are statistically
insignificant. Therefore, the assumption of zero covariance is not
violated at lag 1. Though only ~; for each g is tabulated, it serves as
a representative for the order of magnitude of sample autocorrelation
function at higher lags.

An implication of these findings is that the homoskedasticity
assumption as stated in (7.13) is likely to be the main source that
causes the rejection in this empirical analysis of GE stock.

Table 7.4 Results of variance ratio tests based on GE’s daily log returns.

q 1 2 3 4 5 6 7 8 9 10
Obs. 22,776 11,388 7,592 5,694 4,555 3,796 3,253 2,847 2,530 2,277
7 —0.017 —0.048 —0.021 —0.029 —0.003 —0.037 —0.037 —0.004 0.027 —0.010
VR(q) 1 1.002 0946 0.939 0916 0926 0.968 0.933 0.871 0.920

Zq — 0.20 —4.08 —-3.74 —4.46 -3.53 —-140 -2.69 —4.85 —2.86
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7.10 Refinements

In this section, we modify the variance ratio test algorithm so that
it can include almost all data points that we have collected.

We first put forth a definition that makes use of all data in con-
structing ¢-daily variance. This feature is in stark contrast to the
one in Proposition 7.5 for which only M out of the total of Mq daily
returns are utilized.

Definition 7.11. According to Lo and MacKinlay (1999), the esti-
mate of a variance based on overlapping ¢ daily log returns In P; —
In P;_, is defined as

1 U 2
5§:mZ(InPi—1DPi7q—q?1) )
i=q

which is a sum over (M — 1)g + 1 terms.

Example 7.3. The overlapping case uses all the two-daily log
returns in Example 7.2. There are 11 log prices. Hence, we have
(841 =) 9 of these bi-daily log returns for Definition 7.11.

The corresponding test statistic is now

_ 72
qoy

The second refinement involves an unbiased variance estimator.
The unbiased daily variance is estimated as

Mg

1 ~
E% Mq_lg(lnPi—lnPil—rl)Z.

Definition 7.12. The g-daily unbiased variance that corresponds to
the unbiased daily variance above is

Mgq

. . =2
o—qM_qu_quZ:q(lnPk In Py_q — q71)".
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The corresponding statistic for the variance ratio test is

Proposition 7.8. Under the null hypothesis, the asymptotic distri-
bution of K, is approzimately given by

Vg Ry (q) ~ ¥ (0, 222020,

Likewise, for ZT, the asymptotic distribution is approximately given
by

it~ (0220010

Proof. Owing to the overlapping nature of the sum of squares,
upon an expansion of it, many terms that involve auto-covariances
emerge. See Lo and MacKinlay (1999) for details. Eventually, the
variance of 62 is a sum of ¢ — 1 terms:

[y ) e ()]

2 la-17

+ (=24 +22+17].
m(m+1)(2m + 1)

We then apply the fact that Y ° | k? = 5 . Setting
m = q— 1 leads to
—1 2(g —1 1
oyt | (= D@ (2(a—1) +1) ’
64>
which is then algebraically simplified to
A (22a-Dle-1)\
3q
The last step is to apply the delta method to remove o#, as we did

in the proof of Proposition 7.7. O
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Definition 7.13. Suppose 9 and 0 are two estimators of 6. If the
variance of 0 is smaller than the variance of 9 then 6 is said to be
more efficient than 0.

It is interesting to note that we can rewrite the distribution vari-
ance in Proposition 7.8 as

(2¢ - 1)

30 2(g—1).

Since 2(g—1) is the variance for the non-overlapping case as in Propo-

(2¢ - 1)
3

the distribution variance is less than 2(¢ — 1). Thus, the overlapping
variance ratio test algorithm is more efficient.

Therefore, by using overlapping ¢-daily returns, we obtain a more
efficient estimator and hence a more powerful test. Everything else
being equal, the null hypothesis of random walk becomes more sus-
ceptible to rejection with overlapping variance.

Finally, the standard normal test scores, also known as statistics,
are then given by, respectively,

sition 7.7, and since < 1 for all ¢ > 1, we can conclude that

o = VIR o) (P oy

1

o= VI L) (22 o)

Example 7.4. We run the variance ratio test by using the algo-
rithm of overlapping returns for GE over the same sample period
from the end of December 1925 through the end of December
2011.

Parallel to Table 7.4, the results are presented in Table 7.5. This
time round, all the z scores are statistically significant, suggest-
ing that stock prices of GE are not random walk. Owing to the
overlapping nature of the g-daily returns, the autocorrelations at
lag 1 are much larger compared to their respective non-overlapping
counterparts.

N

M
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Table 7.5 Results of overlapping variance ratio test for GE.

q 2 3 4 5 6 7 8 9 10

Obs. 22,776 22,775 22,774 22,773 22,772 22,771 22,770 22,769 22,768
" 0.483 0.650 0.741 0.788 0.820 0.845 0.866 0.880 0.893
VR(g) 0.9830 0.9661 0.9509 0.9476 0.9441 0.9357 0.9255 0.9190 0.9145
Z, —257 —344 —3.96 -361 -341 —356 —3.80 —3.85 —3.82

7.11 Heteroskedastic Time Series of Log Returns

When the assumption of homoskedasticity fails to hold, the time
series is said to be heteroskedastic. As shown in Figure 7.9, the time
series of GE’s log returns exhibits non-uniform magnitude of fluctu-
ation. Notably, during the early 1930s, early 2000s, and also from
2008 to 2009, the magnitude of fluctuation is a lot larger. Though
less pronounced, pockets of high volatility, which is intuitively the
amplitude of log return, are still observable against the backdrop of
much milder fluctuation. This temporal structure of volatility clus-
tering is an ubiquitous feature of many financial time series.

Shown in Figure 7.9 are the outlines of the clusters. These out-
lines are obtained by averaging the daily log returns. The following
smoothing algorithm is used:

(1) Select the half window size, which is denoted by w.
(2) Compute the smoothed log return 7; for each time t by

w
Tt = E E Tt+jlrt+j>017’t+j<m
p—

where n is the number of daily log returns in the time window
for which —w < j < w, and satisfy the two conditions of r,4; > 0
and ryy; < k. The threshold parameter & is a positive number.

(3) Nonlinearly scale the smoothed log return 7; to obtain the upper
cluster outline or envelope at time ¢:

Ttﬁ = exp ()\ft) X T.

The amplification parameter ) is also a positive constant.
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Figure 7.9 Log returns of GE from the beginning of 1926 through end of 2011,
along with the upper and lower outlines of the volatility clusters.

(4) Compute another smoothed log return 7 for each time ¢ by

w

Tt = E E Tt+j1Tt+j<017"t+j>fl£-
p—

(5) Nonlinearly scale the smoothed log return 7 to obtain the lower
cluster outline or envelope at time t:

2 = exp (= AFt) X 7y

In Figure 7.9, we use the half window size w = 252, which is about
a calendar year. Therefore, for each day t, the smoothed log return
is centered with respect to a year of log returns in the past, and a
year of log returns in the future. The threshold parameter x is
set equal to 0.05 to filter out extreme log returns. To sharpen the
contrast between peaks and troughs, the amplification parameter
A is set to a value of 80.

By counting the number of peaks in the upper and lower outlines,
we find 13 volatility clusters in Figure 7.9. So, for over 86 years, the
volatility cluster takes about 7.17 years to complete a cycle on
average.
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What is the implication of this finding? First, multi-year oscilla-
tions suggest that volatility is cyclical in nature and it is important
to know which phase the volatility is in, whether it is moving up
toward the peak, or coming down into the valley. In our case study
of GE, it appears that going forward for the next few years, GE’s
log return volatility is trending downward. Second, since each cycle
or cluster has different length and overall amplitude of fluctuation,
volatility is stochastic even at the multi-year scale.

7.12 Summary

Using GE stock as a case study, this chapter provides an account of
how the time series of stock prices is to be adjusted for stock splits.
A takeaway is that it is more informative for long-term investors of
GE to look at the time series of GE stock prices at the log scale, i.e.,
log prices.

By examining the log returns based on the Jarque—Bera test and
the variance ratio test, we find that GE’s log returns are by no means
normally distributed, and the time series of log prices is not a random
walk. The implication is that there might be some pockets of oppor-
tunities for pundits who think they have good trading strategies to
“beat the market”.

Using the simple autocorrelation analysis, we also show that log
prices are non-stationary and that log returns have virtually no serial
correlation. In other words, it is very hard to beat the market, for
otherwise, too many traders would profit from their “technical anal-
yses”.

Finally, this chapter also provides a simple and intuitive algorithm
to evaluate the volatility on a macro scale. The upshot is that for the
sample period from the beginning of 1926 to the end of 2011, clusters
are evident and surely it is crucial to know the phase of the volatility.

Appendix A: Delta Method
As a result of random sampling, an estimator is a random variable.

Asymptotically, that is, when the sample size approaches infinity, the
estimator becomes normally distributed. Now, consider the function
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of the estimator. The delta method allows us to obtain an approxi-
mate probability distribution for this function, based on the variance
of the estimator.

More specifically, suppose there is a sequence of random variables
X, indexed by n.

Proposition 7.9. Suppose X,, satisfies
Vi(X, —0) 2 N(0,02),

where  and 0 are constants and 2> denotes convergence in distri-
bution. Then, for any function g(X,) for which ¢'(0) exists and is
continuous and non-zero,

Vi(9(X,) — g(8)) 2 N (0,0%(g'(6))?).

Proof. Let 0 lie between X, and 0, ie., X, < < 0. By the mean
value theorem,

9(X0) = 9(0) + ' (0) (Xa = 0).

By assumption, X, Doy, Applying the continuous mapping theorem
yields

g (0) L 40).

where 5 denotes convergence in probability.
Rearranging the terms and multiplying by /n gives

Vi(g(Xa) = 90)) = ' (8) V(X — 0).

Since \/E(Xn — 0) £>N(0, 0?) by assumption, it follows that the
square of the right-hand side’s ¢’ (5) gets multiplied to 2. In other

words,

Valg(Xa) = 9(0)) 2N (0,07('9))*)

and the proof is complete. O
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Exercises

7.A

7.B

7.C

7.D

GE'’s original (before adjustment for stock splits) closing price
is $62.875 on May 26, 1961. Calculate the corresponding split-
adjusted price based on the information provided in Table 7.1.

Based on Table 7.1, the split-adjusted price of GE on September
30, 1966 is $0.88541667. What is the original price?

Suppose there are 12 daily log returns, 1, 79, ..., 712, and their
values are 0.5%, 1.0%, —1.1%, —1.2%, 1.3%, 0.7%, —0.1%,
—0.4%, 0.9%, 0.6%, —1.5%, and —0.8%, respectively.

(1) Suppose initially the price is Py = $10. What is the price
at time 127

2
3

What is the (arithmetic) average daily return?

What is the sample variance 5 of the bi-daily log return?

)
6

(2)
(3)
(4) What is the first-lag autocorrelation of bi-daily log returns?
(5) What is the variance ratio Vﬁ(?)) of tri-daily return?

(6)

What is the z score of the variance ratio for tri-daily
return?

(7) What are the three 4-daily log returns?

Martingale is a concept that says that given all the past prices,
the prediction of tomorrow’s price is the price today. Mathe-
matically, suppose {P;}1_, is a stochastic process. It is said
to be a martingale if

E(Piy1|P;, Pi—1,...) = P,
Equivalently, since P; is a known constant at time ¢,
E (Piy1 — PPy, Pieq,...) =0.

Now, consider instead the mean-squared error forecast X,
which is expressed as

E((X: — Pis1)*|P, Prea, ... ) =t f(Pry1, Xe; Py Py, ).
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7.E

Algorithmic Finance: A Companion to Data Science

Show that when X; = P;, the function f(PtH, Xy, PP q,. .. )
is at its minimum. Specifically,

f(Pt—i-laXt :Pt;Pt,Pt_l,...) :E(Pt%l—l _Pt2‘Pt7Pt—1a---)-

Consider a drift-less random walk on a discrete grid of 18 points
labeled as 0 through 17. Suppose you have equal probability of
stepping up or down. The random walk will stop when you
reach the boundary of 0 or 17. If you start at point 7, what is
the probability that you arrive at 17 before you arrive at 07



Chapter 8

Linear Regression

Among social scientists and many researchers of various fields, includ-
ing data scientists, the general consensus is that linear regression is
the work horse. It is robust, and relatively less mysterious compared
to other machine learning methods.

This chapter focuses on the foundation of linear regression and
demonstrates that ordinary least squares is a wonderful method that
leads to explicit formulas for estimating the parameters of the model
in an unbiased fashion. We apply linear regression to asset pricing
and mean reversion process and obtain interesting results that may
be relevant to practitioners.

8.1 The Model of Single Variable

In the previous chapter, we have a model of data, where each obser-
vation is the sample average plus noise, which is random, owing to
the random nature of drawing the samples from the population. By
design of the model, the mean of the noise is zero, and the variance
is the variance of the random observation y;.

In this chapter, suppose we have another set of observations
denoted by x;, where ¢ = 1,2,...,n. What if z; is related to y;
for each i? Is there a way to use x; to “explain” y;?

Definition 8.1. A single-variable modeling of y; with z; is
defined as

yt=a+bry +¢, where t=1,2,... T. (8.1)

267
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The constants a and b are called the parameters or the coefficients
of this model. The names given to ¢; are either noise or innovation.

Although this definition uses the time series index ¢, the very
same can be defined for cross-sectional data, with ¢ replacing ¢ and n
replacing T'. In any case, ¥, is called the dependent variable, whereas
x; is referred to as the independent or the explanatory variable.

Definition 8.1 is a single-variable “upgrade” of the zero-variable
model y; = 7 + . In particular, if b = 0, then we see that a corre-
sponds to 7, as (8.1) reduces to the zero-variable model. This remark
suggests that the parameter a should be a function of 7 in the simple
linear regression model (8.1).

Nevertheless, it is of extreme importance to emphasize that x; is
not the cause of y;. Model (8.1) is merely a statistical tool for decom-
posing y; into three components of a, bxs, and the noise term ¢;. It is
quite a misnomer to call it “noise”, because in effect, €; encapsulates
our ignorance about other elements or factors that contribute toward
explaining or describing the variation in y;. It is as if we are sweeping
all the unknowns under the carpet of ¢;.

Example 8.1. Suppose we know that ¢ = 1 and b = 0.5. We treat
the model (8.1) as the data generating process of y;. In other words,
given the input x; from 0 to 5 and in the presence of noise €, what
will the values of the output y; be? For a start, we want to see the
effect of the standard deviation of the noise, i.e., o, = \/V(€).
Asin Figure 8.1, when o, = 0.1, the linear relationship between
y¢ and xy is clearly visible. However, when o, is much larger, at 1.0,
the range of y; produced by simple regression model becomes
larger. The y; values are between 0 to more than 4, as opposed to

0. =0.1 ‘ wl 0:=1.0

o 1 2 3 4 5 o 1 2 3 4 5

Figure 8.1 Single variable model as a data generating process.
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the range of between 1 and 3.5 when o, is much smaller. It is now
harder to perceive a linear relationship.

This example serves to illustrate that Model 8.1 has three param-
eters: a, b, and o..

Definition 8.2. The plot of (xt,yt), where t = 1,2,...,T is called
the scatter plot.

Figure 8.1 provides two examples of what scatter plots look like.

To quantify the relation between the paired data (x¢,v:), i.e.,
to measure how x; varies with y;, we use the notion of covariance
from statistics.

Definition 8.3. An estimator of covariance denoted by s, is
defined as
;I
Szy = ﬁ ;(xt - E)(yt - y)a (82)

where T and g are the respective sample averages of z; and ;.

Lemma 8.1. The essential part of the estimator of covariance
can be written alternatively as

T

T 1 I T
Z(wt —T)(ye—Y) = thyt— sztZys- (8.3)
t=1 t=1 s=1

t=1

Proof. Expansion of (z; — T)(y; — ¥) yields 4 terms: xyy, —a47,
—yx, and Ty. Noting how the sample average is estimated, we have

T T T T T
Z(xt Ty — ) = Z%&yt - szt - ?Z%& +E§Z 1
t=1 t=1 t=1 t=1 t=1

T
= amy — 2T —§IT+ TTY
t=1
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When the sample averages are zero, we find that covariance is
essentially the average of the product x;y:. If x; and y; are, more often
than not, either both positive or both negative at the same instance ¢,
the covariance tends to be positive, especially when both are large
in magnitude. An intuitive interpretation of a positive covariance
therefore is that x; and y; tend to have the same sign, or to move in
the same direction. If we know that z; is positive, it is more likely
that gy is positive, too.

Conversely, covariance will be negative when x; is positive, y; is
more likely to be negative, as well as when x; is negative, y; tends to
be positive. If we find that x; is positive, then more likely than not,
y; is negative, and vice versa.

In this way, covariance captures the relationship between two
variables. A large absolute value of covariance suggests that this rela-
tionship is strong, which constitutes the basis for a simple linear
model between z; and y;.

Proposition 8.1. The covariance estimator denoted by sy, is
unbiased. That is,

E (Szy) = Oay,
where o4y is the population or the true covariance.

Proof. To prove whether the estimator is unbiased, we need to
compute its expected value. Applying the expectation operator on
the right-hand side of (8.3), we obtain

T 1 T T
E (Z «Ttyt> T E (Z Tt Z ys>
t=1 t=1 s=1
T B T T
:ZE $tyt ZZE $tys

t=1 r=4
T A

= TE (zy:) T ZE (zeyr) — = Z ZE (z1ys)
=1 t=1 s£t
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= (T — 1)(E(zey:) — E(ze) E(yt))
= (T — 1)0gy,

We have applied the fact that z; and ys are mutually independent
when ¢ # s. Thanks to Lemma 8.1, we have established that

T
E (Zm — )yt - y)) = (T~ 1)ou,.

t=1
In other words,

T

E (% > (= 7)o - y)) = 0wy,

t=1
ie, E (sxy) = Ogy- (]

Definition 8.4. The normalized s, is called the correlation r,,
between z; and y;. Specifically,

Sccy
= 8.4
Tgcy sty7 ( )

where s, is the square root of the unbiased variance s for z;, and

sy is that for vy, ie.,

T T

1 _ 1 _
si—ﬁ;(xt—x)Z and Si_m;(yt_y)2

Example 8.2. For the data generated in Example 8.1, we obtain the
following estimates for the two different values of the parameter o..

O¢ 0.1 1.0
Sey | 116 0.6

When the noise level o, is low, we see that the covariance estimate is
relatively larger, and the correlation estimate is closer to 100%. On
the other hand, a much higher noise level leads to a relatively lower
covariance estimate and a lower correlation estimate of about 40%.
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8.2 Simple Linear Regression by Least Squares

In the real world, we do not know what is the true data generating
process. Rather, we are given data, and the task is to model the
given set of data in the context of a few questions that the researchers
seek to answer. In other words, we postulate, assume, or take a leap
of faith that the data generating process or the statistical model
is (8.1).

The data come in the form of pairs (z,y;), and the sample size
refers to the number T of such pairs. We need to estimate the value
of a and b, as well as the “noise” term o.. We also need to pro-
vide quantitative measures of how good the postulated model is in
describing the linear relationship between x; and y;. Moreover, we
also need to supply the standard errors of the estimates for a and b
to allow hypotheses to be tested.

8.2.1 Residuals

Now, suppose that we have estimated a and b, and they are denoted
by @ and b, respectively. Once these two parameters have been esti-
mated, you can compute the “fitted” value 7; of y; given x4. In other
words,

i =+ bay. (8.5)

Definition 8.5. The residual ; or error is defined as the difference
between the observed value y; and the fitted value y;:

€t =Yt — Yt

Intuitively, it is evident that the smaller the residual is, the better
is the model in describing the relationship between the dependent
variable y; and the explanatory variable. The residual € can be
either positive or negative, but €7 is always non-negative.

Definition 8.6. We treat every squared residual € equally. The
residual sum of squares (RSS) is defined as

RSS =

T
t=1

T
2? = (yt - @t)Z- (8.6)
t=1
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Intuitively, RSS is a measure or amount of errors made by the
estimated model due to noise ¢;.

8.2.2 Ordinary least squares

Definition 8.7. The ordinary least squares (OLS) method is an

algorithm to find @ and b such that the residual sum of squares
(RSS) is minimized. That is, in view of Definitions (8.6) and (8.5),

T N2
mp (yt—’d—ba:t>

Proposition 8.2. Under OLS, the estimates for the unknown a and
b are

a=7y— bz (8.7)

b= ==l . (8.8)

Proof. The two first-order conditions for minimization are, with
(x¢,y:) being considered as “constants”,

-2 Z$t€t Z t(yt - Zi —?)\$t) =0 (810)

t=1

The solution of the first first-order condition is

T T T -
Zt:l Yt = Zt:l s Zt:l by

— Ty=Ta+Thx



274 Algorithmic Finance: A Companion to Data Science

The solution of the second first-order condition is

T T T
g Ty = E 0 + E bw?
=1 t=1 t=1

T T T
= thyt = ina—i- be?
t=1 t=1 t=1
T n R R T
== thyt = th(y — ba:) —l—bef
t=1 t=1 t=1
T T
— Zl’t(yt —y) = bet(@ —E)
t=1 t=1

To show that these solutions indeed minimize RSS, we find that

T o~ T ~
DI ) _ o

da? o b2 ;f”t

Since both partial derivatives are strictly positive, these solutions are
proven to bring about the minimum RSS. O

It is interesting to note that @ is the adjusted average value of y;.
As a matter of fact, if b vanishes, that is, if we are back to the
zero-variable model, then (8.7) reduces to @ = 7, as anticipated.

Due to the linear form, @ is called the estimate for y-intercept
and b is the estimate of slope.

Proposition 8.3. OLS’s b (8.8) can be equivalently expressed as

S (w7 (- )

b= . (8.11)

Z; (2, — 7)?
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Proof. First, we evaluate

T
> (m-7 Zyt—ny—ny—ny—o

t=1 t=1

In the same vein,

NE

(xt—f) :th—nfznf—nfz().
1 t=1

o
Il

For the numerator of (8.8), we find that

T T T
th(yt—y)—f'O:th(yt—y) zy (v -7
=1 =1

ZZ%& Yt — Z

=1 t=1
T
:Z(xt—f)(yt—y).

For the denominator of (8.8),

T T T
w(w—7)-T0=) z(2—7)—FT Y (1 —7)
t=1

T
=> (@ -2

t=1 O

Proposition 8.4. The slope estimate b is the unbiased covari-
ance sz, normalized by the unbiased variance s2 of the explanatory
variable. That is,

b= SS"’;?/. (8.12)
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1
Proof. Multiply (8.11) by 1 where 1 =

and the proof is

T-1
complete. O

Thus, we see the important role of covariance s;, in determining
the slope estimate.

As a summary, we started with the notion of the fitted value 3;
as a line parameterized by the estimates for y-intercept and the slope,
though we do not know what their values are. We then defined the
residual €; for each ¢ and compute the residual sum of squares.
The technique of ordinary least squares (OLS) allows us to find
’(Ai and b as functions of ;. Now that we have the estimates a and
b, we can compute the fitted value 7;, and the residual &, also
known as error. The line 3 = @ + by is plotted in Figure 8.2, along
with the residual € corresponding to the pair (z¢,y;). The range of
x variable from x; to z7 shows that our simple linear regression
is valid within the stated bounds.

Figure 8.2 Plot of the fitted line and the residual.
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8.3 Properties of OLS Estimates

How good or how bad are the estimates obtained from OLS algo-
rithm? This section looks into some of the important properties of
OLS estimates.

8.3.1 OLS estimates are consistent

Consistency is a desirable characteristic of an estimator. Recall that
it is about whether the estimate will or will not converge in some
fashion to the actual or population value when the sample size
increases to infinity. Of course, there is no such thing like a sample
that has an infinite number of observations. A sample whose sample
size is infinitely large exists only in theory. It is simply a concept
that says in practice that the sample size T is very large. In the
case of very large T, we are confident that the estimate obtained is
very close to the actual value.

The ways by which convergence happens are quite technical and
there are subtle differences among them. But in practice they are
not as important as they appear to be. For the OLS estimators to be
consistent, we need to make the following assumption:

(C(xt et) =0, for allt.

What this assumption means is that the explanatory variable x; has
no linear overlap with ¢;. After all, the noise ¢; is any other expla-
nations of the variation in y; that z; fail to offer.

Proposition 8.5. Suppose x; and y; are random wvariables. More-
over, they are related, and their relationship is the simple linear
model

Y = a + bry + €.
Then

C(xta yt)

b= V()
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Proof. We evaluate the (population or real) covariance between
x¢ and y; as follows:

C(xt, yr) = Clay, a+ by + €)
= C(z¢,a) + bC(xy, ) + C(xy, €)
=bV(xy)
The first term vanishes because a, being a constant, is not random

and thus has no covariance with any random variable. The last term
also vanishes by the model assumption. O

Proposition 8.4 shows that OLS slope estimate b is the ratio of
two consistent estimators. Accordingly,
~ limp 008y C (xtayt) .

lim b= =
T e limy 00 82 V()

Next, since a =7 — EE, by the law of large numbers, the sample
averages T and 7 are consistent estimators. As b is demonstrated
earlier to be consistent, it follows that @, being a linear combination
of consistent estimators, is also consistent.

8.3.2 OLS estimates as linear combinations

First, we want to show that @ and b can be written as linear combina-
tions of y;. Consider the numerator of (8.11). It can also be written
as

> (=9)(m-7) =3 (fvt—f)yt—?; (ze=7) = >_ (2 =2)u

t=1 t=1 t=1
For convenience, we write the denominator of (8.11) as

T

52 .= Z (2 —5)2 = (T —1)s2.

t=1

Accordingly, (8.11) is rewritten as

T

~ (ﬂft - T) Yt T

b= Zt:l 5 = Z WY, (8.13)
z t=1
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where

Ty — T

S

Wt 1=

Note that w; is made exclusively of x;, where t = 1,2,...,T. Clearly,
(8.13) is a linear combination of y; with w; being the linear coef-
ficients or weights. We have the following proposition:

Proposition 8.6. The OLS estimates are linear combinations of
yt. That is,

T T
a=> vy and b= wy,
t=1

t=1

where
1 (z—72)%
Vy 1= T - T, (814)
and
Ty —T
wy tSZ (8.15)

Proof. The proof for b has already been given. Now we focus on a.
From (8.7) in Proposition 8.2, we have

~ 1 T I xt—x
a—7— f_f; Z _
T T xt—a:
DL D Dy

Thus, we have demonstrated that a = Z VLYt
t=1
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Proposition 8.7. The properties of vy are

T
> u=1, (8.16)

T
Z’Ut$t == 0, (817)

T 1z

2
E v = =+ 2k (8.18)
t=1

Proof. (8.16) is straightforward:

d (1 (n-7)7
I B
t=1 t=1 z

1 X = T

t=1

1
==T-0=1
T

To show (8.17), we employ the technique used in the proof of
Proposition 8.3 for the denominator.

since S2 is the short form for Z (xt — E)Q.
t=1
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Given the definition (8.14) of v, the proof for (8.18) is also
straightforward:

T T N\ 2

1 (xt —a:)x
D=2 (T B T)
t=1 t=1 z

1 o d 7 & 2
=Y o gg ) (@ =7+ 5> (n-7)

t=1 T t= T =1

1 72
17
TS O

Proposition 8.8. The properties of wy are
T
> w =0, (8.19)
=1
T
> wm =1, (8.20)
t=1

T
2 _ ].
> wi= 5k (8.21)

t=1

8

Proof. (8.19) is straightforward:

T T

l’t—f 1 I
Zwt: th—x —0.

t=1 t=1 T t=1

To show (8.20), again, we employ the technique used in the proof
of Proposition 8.3 for the denominator.

Zwtwt 522 T —T)x Slzz(xt_ff:l’

T t=1 T t=1

T
since S2 is the short form for Z (z¢ — E)Z.
t=1
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(8.21) is also straightforward:

2

T
1 \2 1 1
Tmi Y et

T T
Sup=y T
t=1

t=1

8.3.3 OLS estimates are unbiased

Thus far, we have not made any assumption concerning the noise

term ¢;. To show that the estimates obtained from OLS algorithm are

unbiased, we need to assume that E (et) = 0 for all ¢t. This assump-

tion of mean 0 is not demanding and can be validated by checking

whether it is satisfied by the residuals €. Indeed, for our simple
T

linear regression under ordinary least squares, E € = 0 is the

=1
first-order condition (8.9), which implies that & = 0.

Proposition 8.9. The OLS estimates a and b are unbiased if
E (Et) = O

Proof. The properties of v; are the keys to prove the unbiasedness
of a.

T

T T T
a= th(a—i—bxt—i—et) :ath—i—vatwt—{—thet
t=1 t=1 t=1 t=1

T
:(I+0+th€t
t=1

T
=a+ ) v (8.22)
t=1

Therefore, under the assumption of E(e;) = 0,

T
E(a) :a—i—thE(et):a
t=1
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To prove the unbiasedness of E, we apply the properties of w; to
obtain

T T T T
b= Zwt(a—i—bxt +et) = aZwt —i—watxt + Zwtﬁt
t=1 t=1 t=1 t=1

T
:O—i-b—i-Zwtet
t=1

T
—b+ Y we (8.23)
t=1

It follows that by assuming E(e;) = 0, we obtain

T
t=1

8.3.4 Variance and covariance of OLS estimators

Due to random sampling, all estimates have a statistical distribu-
tion, which means that they have variances. To find the variances of
a and b, we need to make two further assumptions:

(1) The variance of ¢ is constant for all time ¢. That is
V (et) = 062.

(2) The covariance between ¢; and € is zero for all s # ¢. That is,
C (et, 65) =0.

These two assumptions are demanding in the sense that their viola-
tions by our data set may lead to undesirable consequences.

Now these two assumptions may be combined into a convenient
mathematical device. Since E (et) = 0, the variance V (et) simplifies
to E (e%) Also, since the covariance of a random variable with itself
is variance, we obtain
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Accordingly,
2
C (et, 65) =K (eset) = 0204, (8.24)

where ;5 is the Kronecker delta function, which equals 1 if ¢t = s
and 0 if t # s.

Proposition 8.10. Under the assumption of homogeneous
variance, i.e., V(et) = o2 for all t and zero covariance, i.e.,

C (etres) =0 for all t # 5,
v -E(@-0’) - (3+%). 6
v(5) =E((6-1)*) = o? <$> (8.26)
c(a.0)=E(@-6-1) =0 (g). G20

Proof. The dispersion of a from the true value is given by (8.22)

T
a—a= E V€.
t=1

The variance is the expected value of the squared dispersion from
the mean. The expected mean of @ is the true value as @ is an

unbiased estimator. It follows that V (et) = E((ZZ - a)2>. What

remains is to compute, in view of (8.24), as follows:

E((a-0)") =E (g m) AR E (ET: szvtetes>

s=1 t=1
T T T T
2 2 2
= g E vsvtE(eset) = g g Vg0 -0t = O E vy
s=1 t=1 s=1 t=1 t=1

Taking note of (8.18), the proof of (8.26) is complete. The proof of
(8.26) follows the same steps as those for (8.25).
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Finally, noting the definition (8.14) for v; and (8.15), we evaluate

E((Zi — a) (5— b)) = Z Z vsw E (eset) = Z Z vswt035ts

s=1 t=1 s=1 t=1
T T _
1 Tt —T)T \ (xy — T
—aEthwt—a?Z<T_ ( tS2) >( tS2 )
t=1 t=1 z z
2 1 ¢ 2 T 2
:06?2($t—$)—06§2(l’t—$)
T =1 T =1
:o_azs%sg
__ 2T
O'ES% .

A few observations concerning the variances of @ and b are in
order. First and foremost, we see that S2, which reflects the range of
explanatory variable, has an inverse relationship with both Vv (’d)

and YV (3) To decrease these variances, what we can do is to obtain
samples with a large variation in the explanatory variable z.
Second, the variances are directly proportional to the variance of
noise denoted as 2. A larger o2 suggests that the simple linear
model is most likely not a good model for the data set we are
analyzing.

Third, and significantly, if Z = 0, then from (8.25) V (a) becomes
smaller. Moreover, (8.27) tells us that the covariance between a and b
becomes zero. Thus, it is a good practice to de-mean the explana-
tory variable before performing OLS regression. In other words, we
construct a new explanatory variable z;

Ty :=x; — T for each t.

We regress y; on Z; instead. Since the average Z; = 0, the variance
of the estimate for a parameter is simply o2 /7.

Finally and most importantly, the square roots of these variances
are the respective standard errors for checking the statistical sig-
nificance of @ and b.
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What remains unknown to the simple linear model is quantified
by 2. To find the estimate for o2, we recall the definition of RSS and
(8.6) in particular. Motivated by the meaning of (8.6), the practice
is to use the following estimator:

RSS
~2
= 8.28
One of the intuitive ways to appreciate the subtraction by two is the
fact that our linear model has two parameters a and b that have to
be estimated. In a way, two data points are used up and thus the

total becomes T — 2.

Definition 8.8. The standard deviation of 52, i.e., G, is called
the standard error of regression.

For emphasis, we state again that by definition (8.6), RSS is a sum of
squared deviations, each of which is the difference between the fitted
value produced by the estimated model and the actual observation
value of the dependent variable y;. Thus, o, provides a measure of the
level of information in the variation of y; that the model is incapable
of capturing. To the model, such information appears as noise.

Under the null hypothesis of a = 0, the t score of the OLS estimate
for @ is given by

-

tg=—— (8.29)
N 1+52
Ot =+ =
T35

Likewise, with the slope parameter b hypothesized to be zero, the ¢
score or t statistic of the OLS estimate for b is given by

)

(8.30)

These two t scores have T — 2 degrees of freedom each.

Example 8.3. Curious writing on the Internet claims that the
Hebrew word numbers of Sun, Earth, and Moon are able to explain
the variation of logarithmic radius of these celestial bodies. The sim-
ple linear relationship is claimed to be strong.
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Can the claim of such a pattern be reproduced independently?

First, data scientists need to know sufficiently enough about the
application domain. As shown in Table 8.1, it is factual that there
are 22 Hebrew alphabets.

Before the symbols “1, 2, 3,...,” were adopted internationally,
people used alphabets to represent numbers. Hebrew is no exception.
The Hebrew numbering system known as Gematria is displayed in
Table 8.1. Five of the 22 Hebrew alphabets have alternative forms
when they appear at the end of a word.

Having introduced the linear regression toolkit, we can test
whether the claim has any statistical basis.

A Hebrew word is made of a few Hebrew alphabets. Each letter
has a Gematria value as in Table 8.1. The word number of a word
is the sum of Gematria values of the alphabets that constitute the
word.

The data for testing the claim are tabulated as follows:

English | Hebrew | Word number | Equatorial radius (km)
Moon 7 218 1,738.1

Earth ?1& 291 6,378.137

Sun onY 640 695,508

We can easily verify the word number of each word using the lookup
Table 8.1. For example, the word number of Moon is (right to left)
8+200+10 = 218. Data on equatorial radii of the Moon, the Earth,
and the Sun are taken from NASA website.

The word number is the z; variable, and the dependent variable
y; is the natural logarithm of the radius. The average value of the
explanatory variable is

21 291 4
— 8+ Z +60:383.

We then use (8.11) to compute the slope estimate E, while a estimate
is computed with (8.7).



Table 8.1 Hebrew alphabets, their ordinal numbers, and Gematria.

11 10 9 8 7 6 5 4 3 2 1 Ordinal Number
'] 2 0 ) ) 7 ] ul B J ul N | Hebrew Alphabet
Kaf Yod Tet Chet Zayin Vav Hey Dalet Gimmel Bet Aleph Alphabet Name

20 10 9 8 7 6 5 4 3 2 1 Gematria

22 21 20 19 18 17 16 15 14 13 12 Ordinal Number

D ¥ 7 P Y% B Y © 11 OR D | Hebrew Alphaber
Tav Shin  Resh Qof Tsade Pey Ayin  Samekh Nun Mem Lamed Alphabet Name
400 300 200 100 90 80 70 60 50 40 30 Gematria

88C

20U910G VID(] 07 UOWDAULOY) T/ :DIUDUL] D1UYPLL0B] |
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In(radius in km)

0 100 200 300 400 500 600 700

Word Number

Figure 8.3 Regression of logarithmic equatorial radius on word number.

The regression results are plotted in Figure 8.3:
In(equatorial radius) = 4.54 + 0.0140 - word number,

and the 2-tail 95% confidence bounds as nonlinear curves for each z,
which will be discussed in the subsequent section.

Now, the standard errors are 0.2682 for @ = 4.54 and 6.3122 x 10~4
for b = 0.0140. Using (8.29), the ¢ statistic is computed and it yields
a value of 16.94 for the y-intercept estimate. With (8.30), the ¢ score
for the slope parameter estimate is found to be 22.12.

At the 5% level, the 2-tail critical value with one degree of freedom
is 12.71. Therefore, the null hypotheses are to be rejected; these two
estimates are significantly different from zero. This scientific analysis
provides a piece of statistical evidence that the claim is independently
verified to be true.

But how good is the fit, given that there are only three paired
data points? To address this important question, we define the total
sum of squares (TSS) and decompose it into the explained
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sum of squares (ESS) and residual sum of squares (RSS) in
Proposition (8.11).

Proposition 8.11. Let y; be the fitted value and €; = y; — Ui be the
residual. Then,

Z(yt—y)QZZ@t—y)z + Z@Q

t=1 t=1 t=1
~ ~ SN——

Total Sum of Squares  Explained Sum of Squares  Residual Sum of Squares

TSS ESS RSS
In other words,
TSS = ESS + RSS.

Proof. We add 0 = ; — ¥; to the dependent variable’s dispersion
from its sample average y; — v, resulting in

d 2 — 2
(yt—ﬂ) :Z(ﬂt—§+yt—ﬂt)

&
Il
—
-
Il
—

:Z(ﬂt—y)2+2§:(ﬂt—y)(%—ﬂt)—I—ET:(yt—ﬂt)Q

~
—_

T T T
=S @G-9)’+2Y @G-na+d &
t=1 t=1 t=1
For the second term, we find that
T T T T R
2Z(§t_y)€t:2 @\tgt—zgza:22(a+bxt)et—0
t=1 t=1 t=1 t=1
T T
=20) G+2bY we
t=1 t=1

All the estimates, those with = on top, are operating at the level of
optimal configuration ordained by the first and second conditions of

T
Proposition 8.2. Interestingly, Ztﬂ €; is the first first-order condi-

T
tion (8.9) and the term Zt—l x4€; is the second first-order condition

(8.10). Accordingly, these two terms have to vanish and the proof is
complete. O
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8.4 Goodness of Fit

Definition 8.9. The ratio of ESS over TSS is called the R square,
i.e. R2, also known as the coefficient of determination.
o ESS

B =753
Obviously, when each fitted value 7; is close to its corresponding
actual value y;, the explained sum of squares (ESS) will become
closer to the total sum of squares (TSS), implying that the value of
R? approaches one.

Lemma 8.2. The average of fitted values y; is the sample average
of y¢. That is,

|
Zﬂt =71.
t—1

Proof. By definition, residuals and fitted values are related:

sl

Yt — Yr = €.
Therefore, we can write y; = y; — €. It follows that

§5A 155 1<
==Y y—=> ¢
t T - t T t

t=1

1l

T
since ZE} = 0 is the first-order condition (8.9)
t=1
Lemma 8.3. The point (Z,7) lies on the fitted line 3 = a + bay.

Proof.

O

By Lemma 8.2, the left-hand side is equal to 7. Hence,
7=7a+bT.
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Proposition 8.12.

2 _ .2

R™ =13,

Proof. First we note that, by Lemma 8.3, we have

ESS =

E
)

T R T
:Z(Zi—i—bxt—a—bx = Z$t—$
t=1 t=1

t=1

s2(T —1).

Y

From (8.12), we know that b is the ratio of the sample covariance

. . > Sx
over the sample variance of xy, i.e., b = —2y From (8.4), we have
S

xX
Spy = TzySzTy. Therefore,

ESS  VS2(T—1)  risisy 2

R2 _ _ T — Yy y . Zx _ 7“:% )
TSS s2(T —1) sl 52 Y
O
Since ESS = TSS — RSS, R? can also be written as
RSS
2
=1-—=——". 31
R TSS (8.31)
Definition 8.10. The adjusted R? is defined as
RSS
5 ~2
»2.__T-2_, 0Oc
R =1 TS — 1 2 (8.32)
T-1
— 1
We can write B = 1 — _2§—z§ Since (T'—1)/(T —2) > 1, it

follows that Ez < R2.

Example 8.4. We are now ready to answer the question of how
good is the fit in Example 8.3. The total sum of squares is 19.87 and
the residual sum of squares is 0.0405. Applying formula (8.31), we
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obtain

0.0405
2
R < 1987 > x 100% = 99.80%
Applying formula (8.32), the adjusted R? is

— 31 0.0405
S 100% = 99.59%.
R < 3-2 1087 ) x 100% %

These numbers are close to the maximum possible value of 1. The fit
is very good indeed.

Example 8.5. We may think that the result of Example 8.3 is just a
coincidence. What about the word numbers of these three elements —
gold, silver, and iron — and their “explanatory” power in relation to
the logarithmic densities of metals at room temperature?

Using the data science approach, we first collect the data. We use
the lookup Table 8.1 to verify the word number of the Hebrew name
for each metal. From Ptable, we obtain the densities of these three
metals at room temperature.

The word numbers and the densities of these three metals are
listed as follows:

English | Hebrew | Word number | Density at room temperature (g/cm?)
Gold =il 14 19.30
sitver | F]02 160 10.49
Tron 5172 239 7.874

The OLS regression results are shown in Figure 8.4. We plot the
fitted line:

In(density) = 3.01 4 0.0040 - word number,

along with two nonlinear curves that are the bounds of the confidence
interval at the 2-tail 95% level. These bounds will be discussed in the
subsequent section. R

The ¢ statistics of 130.05 for @ and of —28.79 for b are significant at
the 5% level. The R? value is 99.88% and the adjusted R? is 99.75%.


https://ptable.com/#Properties
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3.2

In(density in g/cm?3)

1.8 T T T T T
0 50 100 150 200 250 300

Word Number

Figure 8.4 Regression of logarithmic density on word number.

These results provide a piece of statistical evidence for the intrigu-
ing connection between the word number and a representative prop-
erty of these three metals.

8.5 OLS Confidence Interval

In this section, we provide details concerning the confidence bounds
in Figures 8.3 and 8.4.

8.5.1 Fitted value

We have the fitted value y;. What then is the standard error of ;7
With the standard error, we can compute the upper and lower
bounds of this fitted value at the 95% level of confidence.

Proposition 8.13. The standard error of the fitted value 3 is

1 (2 -7)°
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Proof. We need to compute the variance of 7; given that x; is
known and fixed.

V (Gi]ar) =V (a+6xt1xt) — V@4V (th) 20 (a,zxt)
=V(@)+V (E) 2 +2C (’d,g) Xt
We recall the three formulas proven in Proposition 8.10.

. 1z 1 T
V(yt|xt): 2(T+§+Sz 2 2%%})

xT

1 22— 2T, + 72
X

1 (2 —7)
2 t
I <_1 +T> '

The standard error is the square root of the variance. O

From the expression of (8.33), it is evident that the standard error
of 7; is smallest when z; = Z. Also from Lemma 8.3, at Z, the fitted
value equals 7. In other words, the point (Z,7) on the fitted line has

O .
the lowest standard error of —. Also, as x; deviates more and more

from 7, the standard error becomes larger and larger.

With the standard errors computed, and given the t-distribution’s
two-tail critical value of tg7 507 ,, = 12.71 when v = 1, the upper
bound is given by the function of z;:

~ ~ 1 (.Z't — 5)2
Yt +lors%, v O\t T (8.34)
and the lower bound by
2
—~ ~ 1 (.Z't - f)
Yt = tors%,v O\t T (8.35)

where o, is the standard deviation of the unbiased variance of the
residuals.

These bounds are plotted in Figures 8.3 and 8.4, and we can see
a clear constriction at the average x; value of 383 in Figure 8.3 and
the average x; value of 137.7 in Figure 8.3.
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8.5.2 Prediction

Suppose a new xr,q is observed. This xr41 is out of sample in the
sense that it is not the data points employed for estimating the a
and b parameters.

Definition 8.11. Given the new observation xr41, the OLS point
forecast Yy, is defined as

Jre1=a+bary. (8.36)
Substituting (8.7) into @ of (8.36), we obtain

Ure1= T —0T) +bary =7+ b(aryr — 7). (8.37)

This is an alternative formula to compute the point forecast.
Now, since we are finding a forecast of 3,41, for which the cor-
responding x411 is not in the data employed to obtain a and b, we

need to use the population linear regression model y; = a + bx; + €.
Summing over t = 1,2,...,T and dividing the sum by 7', we obtain

L I
yza—i—bE—G—TZet.
t=1
It follows that when we substitute this 7 into (8.37), we arrive at
T

~ ~ 1
Yre1 = a—l—bf—i—b(xTH —E) + T;et.

As a digression, when the sample size T is large, the law of big
T

1
numbers demands that T ; & — E (et) =0.

Proposition 8.14. The OLS forecast yr.1 is unbiased.

Proof. The true yry1 is a+bxrry1+ery1, so the forecast error is
T

~ o~ 1
Y7r+1 — YT+1 = b(ﬂJT+1 —E) — b(xTH —E) +eryq — T Zet
t=1

T
- 1
= (b=b)(eri1—T) +erp— 5 ) e (8.38)
t=1
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Taking expectation conditional on knowing x7,1, we have

E (yri1 — Ursi|eria) =E ((b —b) (2741 — 7) ‘$T+1>
+ E (5T+1‘xT+1 -7 ZE ft’xT-I—l

:(xTH—x ( )—1—0—1—0.

We have applied the assumption that E (et) = 0. Since b under OLS

is unbiased, we have
E(b-2) =b-E(b) =0.

E (yr1 — Urva|eria) = 0.

It follows that

So on average, the forecast yry; is equal to the true value yry1. O

Proposition 8.15. Given that either the true or hypothesized value
is yri1, the t statistic of the forecast yry1 is

n 27T+1 —Yr+1
tr_o = ( )2 .
~ 1 41— T
AT+ 7+ ———
o \/ + T + 52

Proof. We need to compute the variance of the OLS forecast error
(8.38), conditional on knowledge of z741, and to invoke the covari-

ance assumption (8.24). Also, the estimate b should have no covari-
ance with the noise ¢, for t = 1,2,...,T + 1. Thus, the computation
simplifies to

V(yrs1 — Ur|er) =V ((b —3) (2141 — ) ‘$T+1> +V (er41)

1 T
™ EEV(@)
t=
~ 1
= (»TT+1 —w) V(b) + 02 + TO‘?
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We have shown that the standard error (SE) is

SE =641+~ + (o1~ 7)° (8.39)
- e T sz '
with the estimate o, replacing the true value o.. O

Note that the standard error (8.39) is larger than the in-sample
standard error (8.33).

With the ¢ statistic, we can find the bounds for 2-tail 95% confi-
dence level. Let t; o be the 2-tail critical value of the ¢ distribu-

)

tion with v number of degrees of freedom at the significance level
of a. For 95% confidence level, a = 5%. Accordingly, for the point
estimate g1, its 95% confidence level bounds are

Yrs1 — tl—%,u -SE < yr41 < Yr41 + tl—%,u - SE. (8.40)

8.5.3 A case study

ETFs are handy securities for investors who are executing a passive
investment strategy. Many ETFs are in the financial market and we
consider two earliest ETFs, namely, SPDR S&P 500 ETF (SPY) and
SPDR Dow Jones Industrial Average ETF (DIA), both belonging to
the fund family of SPDR State Street Global Advisor.

Since DIA came later than SPY, our sample period for the log
return starts from January 21, 1998 to July 19, 2019, which lasts
about 21 years and six months. For scientific reproducibility, daily
prices of SPY and DIA were downloaded from yahoo!finance.

The 30 stocks that make up the Dow Jones Industrial Average
Index are a subset of the S&P 500 index. We can therefore consider
DIA as a portfolio and SPY as the market. The question of interest
is: to what extent is the return on DIA explainable by the return on
SPY?

The algorithmic steps for simple linear regression to answer this
question are as follows:

(1) Compute the log returns of SPY (x;) and the log returns of
DIA ().

(2) Plot the scatter plot of x; against y;.

(3) Compute the sample averages of x and y.
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(4) Estimate b by (8.11) and @ by (8.7).

(5) Plot the fitted line §; = @ -+ bay on the earlier scatter plot.

(6) Compute the residuals y; — 7, RSS, and > = RSS/(T — 2), R?,
and adjusted R?. R

(7) Compute the standard errors of @ and b.

(8) Using (8.34) and (8.35), compute the bounds at the confidence
level of almost 100% for every t.

(9) Plot the bounds on the same scatter plot, as in Figure 8.5.

We present the regression result as

yi=6.22x 1077 + 091162, R = 91.52%.
(4.56 x 1077)(0.0038) (8.41)

This is a standard form to present an estimated linear regression
model. Below each parameter estimate, its standard error is pre-
sented in parentheses. So at one look, we can tell whether the param-
eter estimates are statistically significant, by checking the order of
magnitude of the estimate and of its standard error. At the 5% sig-
nificance level, @ = 6.22 x 10° is not statistically different from 0.
By contrast, b is highly significant. It can be said that the fit is good,
as the adjusted R? is 91.52%.

15

Log Return on DIA (%)

T T T T T
-10 -5 0 5 10 15

Log Return on SPY (%)

Figure 8.5 Regression of log return on DIA on log return on SPY.
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Despite the high adjusted R? value, there are many data points
falling outside the bounds with almost 100% confidence. A concern
more pertinent to investment is the fact that the slope estimate b =
0.9116 is about 10% less than 1. What that means is that when SPY
goes up by 1%, DIA tends to go up by 0.9116%.

We are now ready to “predict” the log return of DIA given newly
observed value of the log return of SPY. The adjusted closing price
($297.90) of SPY on July 22, 2019 is obtained, and the daily log
return is computed and we substitute it into the right-hand side of
(8.41) to obtain yry; = 0.2299%. Using (8.40), we obtain the lower
bound of —0.004278% and the upper bound of —0.008875%. With
these numbers, and the fact that DIA price on July 19, 2019 in our
sample is $271.45, we obtain the point forecast of

$271.45 - exp (0.002299) = $272.07

for July 22.

Similar calculations lead to the lower bound of $270.29 and the
upper bound of $273.87 at the 95% level of confidence. These values
compare well with the actual adjusted closing price of DIA on July
22, 2019, which is $271.65. This price falls within the 95% prediction
bounds, i.e.,

$270.29 < $271.65 < $273.87.

8.6 Capital Asset Pricing Model

As alluded to previously, an application domain of data science is
finance. In this field, a popular model used by practitioners is known
as the capital asset pricing model (CAPM) proposed by Sharpe
(1964) and Lintner (1965). A key idea behind CAPM is the postulate
that there exist two hypothetical constructs in the financial market.
One is a risk-free security, such as the Treasury bill. Let us denote the
return on risk-free instrument as ry;. The other one is the return
on the risky market portfolio, which is a collection of all tradable
securities, i.e., N stocks, etc., along with their weights denoted by
w;, where i = 1,2,..., N. Each weight reflects the amount invested
in a stock relative to the total investment. All the weights sum to
one.
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The most important formula of CAPM can be derived by a sur-
prisingly easy method. To set up, consider a portfolio with w por-
tion invested in an asset i of expected return r; := E(ri7t) and
1 — w portion invested in the market portfolio of expected return
rm = E (rmt). The return of this portfolio, denoted by 7, is the
weighted average of r;; and 7, ;, which is

Twgt = Wi + (1 —w)rmg. (8.42)

By the linear property of the expectation operator E( . ), the
expected return of this portfolio is

Tw = wry + (1 — w)rpy,. (8.43)
The variance of the portfolio is
V (rws) = w? Vv (rig) + (1 — w)? vy (rmyt) + 2w(1 — w) C (Tig rmyt)-
For convenience, we denote
§ 02 :=V (rwﬂg), 022 =V (Ti,t) and o2 :=V (Tm,t)
§ The covariance g, := C (Ti,h T‘mﬂg).

With these notations, the variance V (rw,t) simplifies to

02 = w?o? + 2w(l — w)oim + (1 —w)?02,. (8.44)
As a matter of terminology, o, is called the volatility of the
portfolio. In the same vein, o, denotes the market volatility, and
o; is the volatility of the stock.

Let us denote the expected return of the risk-free asset as r;.
Since the portfolio does not include the risk-free asset, and since it
is free from the stock market risk, its volatility is zero. We can plot
the expected returns versus the volatilities as in Figure 8.6.

With two points (0,7) and (o, ), we can draw a line. This line
is called the capital market line (CML). Effectively, we treat the
expected return of the portfolio 7, as a function of the volatility o,.

Let us now consider the slope of CML. When w = 0, i.e., when
all the funds are invested in the market portfolio, it must be that
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Tw

CML

L7

rf

Figure 8.6 Capital market line (CML).

rw = Tm and o, = 0,,. We have

dro | _Tmzrs (8.45)

doy, w=0 Om
The left-hand side is based on differentiation of the generic r,, with
respect to o, which is the gradient of the curve. To restrict the
investment to the market portfolio, the weight is set to zero, i.e.,
w = 0. Thus, the left-hand side represents the slope of the tangent
to the curve at w = 0. Now, the right-hand side is the slope based
on the two points (0,7f) and (o, 7m),

Definition 8.12. The slope of the CML is known as the Sharpe
ratio.

dr
It is tedious to compute d—w directly. Instead, we have, by chain

Ow
rule,
dry
dry — quw
doy — dow’
dw

d
From (8.43), we obtain % = 1;—rm, which is the difference between

two expected returns. From (8.44), we obtain

d
QJw% = 2wo? 4+ 2(1 — 2w)ogm — 2(1 — w)o?,,
w
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equivalently,
dow  wo?+ (1 —2w)om — (1 —w)o

dw Ow

Putting everything together,

dry,

dry, _dw _ i — T'm,

dow dU_w N wai2 + (1 = 2w)oim — (1 —w)o2,
dw Ow

Recall that at w = 0, i.e., the investment is fully on the market
portfolio, we get o, = 0,,. Moreover, given that the slope is the

Sharpe ratio, from (8.45), we have

T —Tf  Ti—Tp,
— -
Om Uim_am
Om

The expression after simple algebra is

TP —T TP —T
T L
Oim — O Oim 1
o2 02
m m

Uzﬂ—l#O. So we

For any asset ¢ that is not a market portfolio, 3
Um

multiple it to both sides of (8.46) to obtain

o
(Tm_rf) <O-2;n _1> =Ti = Tm,
m

o
— Z;n(?"m—rf)—(rm—Tf):Ti—Tm.
Um

Oim .
Let f; := —-, and we write,
O-m

Bi(rm —1f) = (rm — 1) + 15— =13 — Tf.
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Hence, CAPM ensues:
ri—rf=Bi(rm —rg). (8.47)

Definition 8.13. The excess return is defined as the expected
return on a risky asset less the return on a risk-free security.

With this definition, CAPM can be stated simply as follows: The
excess return on an asset is proportional to the excess return on
the market. Obviously, the proportional constant §; is different for
different asset indexed by i.

Now, an econometric specification motivated by CAPM is the
simple linear regression model for an asset i:

Tit = e = G + Bi(Tmt — rpe) + €t (8.48)

where €;; is noise, i.e., information that CAPM fails to capture.
Indeed, if the expectation operator E() is applied on both sides of
the OLS model, we obtain

T —Tf :Oéi—i-ﬂi(Tm—Tf),

since E (Gz‘t) is necessarily equal to zero. Note that if CAPM is true,
«; should be statistically equal to zero.

Despite the theoretical underpinning of CAPM, it is silent on the
sampling frequency. The current practice is to use monthly returns
ri¢ and 7, as well as the monthly risk-free yields rp in (8.48).
Even in sampling daily prices for computing the monthly return, it
is not theoretically determinable whether it should be done at the last
trading day or the first trading day of each month. For that matter,
it can be the middle of the month, and generally many other days of
the month are conceivable. Nevertheless, using the last trading day
of the month has become a common practice.

Example 8.6. The French data library is a standard database for
estimating «; and (; in the academic setting. The market portfolio
of French data library is the value-weighted return of all CRSP firms
incorporated in the US and listed on NYSE, AMEX, or NASDAQ,
which have sufficient trading activities. The database also provides
one-month Treasury bill rates.

In practice, S&P 500 index is used as a proxy for the market
portfolio. We sample the end-of-month daily index levels to compute
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the monthly market return. We use the one-month Treasury bill rate
in French’s data library as a proxy for the risk-free rate.

Suppose we are interested in estimating the most recent 3; of a
stock. We download the daily prices from yahoo!finance and com-
pute the monthly returns. The sample period is the most recent 60
months — from June 2016 through May 2021.

We screen the stocks to look for US-incorporated companies in
the industry of discount stores. We find one company that has less
than 60 months of history and therefore it is excluded. Altogether
we have 10 stocks. For each stock, we perform an OLS regression to
estimate the alpha and beta parameters. The results are tabulated
in Table 8.2. The first row for each stock in Table 8.2 presents the
parameter estimates, and the second row contains their ¢ statistics.
Since the adjusted R? for all stocks are below 41%, we can conclude
that there are other factors that affect the variations in the excess
return of a stock.

Table 8.2 CAPM estimation results of 10 stocks.

Ticker Company name ; Bi R (%)
BIG Big Lots —0.01 2.35 31.7
—0.46 5.33
COST Costco Wholesale 0.01 0.65 27.3
1.75 4.81
DG Dollar General 0.01 0.52 10.7
1.18 2.84
DLMAF Dollarama, 0.00 1.15 40.6
—0.04 6.43
DLTR Dollar Tree —0.01 0.87 16.9
—0.56 3.61
DQJCY Pan Pacific International 0.02 —0.15 —0.87
1.99 —-0.70
OLLI Ollie’s Bargain Outlet 0.01 1.24 17.9
0.85 3.72
PSMT PriceSmart —0.01 0.82 15.1
—0.56 3.40
TGT Target 0.01 1.00 25.3
1.37 4.58
WMT Walmart 0.01 0.46 14.4

1.35 3.30
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By and large, we find that the «; estimates are not statistically
significant, whereas the (3; estimates are. This result is consistent with
CAPM, which “predicts” that «; is statistically no different from 0.
The only exception is Pan Pacific International. Its a; estimate of
0.02 is statistically significant at about 5% level of significance.

8.7 Mean-Reverting Process

A mean-reverting process is a model of time series for describ-
ing the dynamic behavior of financial assets and quantities such as
volatility, short-term interest rates, daily prices of oil and natural
gas, and so on. This process is characterized intuitively by the dic-
tum that what goes up must come down, and what falls down will
surely climb back up. As an example, when the volatility is high, it
will tend to be pulled back toward the long-term average level.
On the other hand, when the volatility is low, it will have an upward
drift toward the average level.

Let S; be the mean-reverting process driven by a stochastic
term €. A model of such process focuses on the change of S; denoted
by AS; over a short time period At:

ASt = )\(/,L — St_l)At + €.

In this model, p is the long-term mean, and A is the rate at which
Sy is pulled toward pu.

The mean reversion rate A is necessarily positive. To obtain an
intuitive understanding of A, it may be useful to entertain the notion
of half life h given by In(2)/A. The half life tells us the time taken
by the process to travel half of the distance between S;_1 and the
long-term mean u. As anticipated, a small value of A implies a long
half life, which is indicative of the slowness in returning to the long-
term average. Conversely, a large \ implies a readiness to return to
the long-term mean.

The time interval between two observations of S; and S;_; is At.
If the mean-reverting process is sampled with a constant time inter-
val, then without loss of generality, we can set At = 1. The mean-
reverting process can be expressed in the form of ordinary least
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squares (8.1) as follows:
ASy = A — ASi—1 + €,

where we can identify y; as AS;, x; as S;_1, the parameter a as Ay,
and the parameter b as \.

Example 8.7. As a case study, we use the simple linear regression
method to estimate the A parameter of VIX. We obtain a historical
daily time series of VIX from January 2, 1990 through June 22, 2021.
The data source is CBOE.

Given 7,925 observations, the OLS estimate for the A\ parameter
is 0.0208 with a t statistic of 9.13, which is statistically significant.
The corresponding half life is computed to be 33.27 business days.

Next, the estimate for y-intercept is found to be 0.41, with a
t statistic of 8.44, suggesting that the estimated value is also statis-
tically significant. Dividing it by the A estimate, we can back out the
estimate for the long-term mean, which turns out to be 19.48%.
This result is well within the expected order of magnitude of market
volatility. Indeed, the independently calculated mean of VIX over
a period of 31 and a half years is 19.49% — a mere difference of 0.01
percentage point from the inferred mean.

It must be said that, despite the statistical significance of the
parameter estimates, and despite the standard error of the mean
reverting model being only 1.64 percentage points, the adjusted
goodness of fit is merely 1.03%. In other words, there are unknown
factors underlying the variation in the daily change of VIX that the
simple mean-reverting model fails to capture. That said, the model
is still useful in telling us the mean reversion speed of VIX, which
is potentially beneficial for traders of VIX futures.

8.8 Multiple Linear Regression

So far, we have only one explanatory variable. But a great virtue
of linear regression is that it allows a straightforward generalization
to multiple explanatory variables. The only caveat is that we have
to apply linear algebra, specifically, vector and matrix. But we only
need to know a few basic matrix operations, which are addition,
multiplication, transpose, and inverse.
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8.8.1 Statistical foundation
We begin by defining multiple linear regression model.

Definition 8.14. With K parameters denoted by 1, 5o,..., Bk,
multiple linear regression is a linear model given by

Y = Brxe1 + Baxe2 + Baxe 3 + -+ Brxe i + Uy, (8.49)

fort=1,2,...,T, and u; is the noise term.
We collect all T observed values of each independent variable
as a column vector X;:

i1
4,2

Xi = . )

Ti,T
for ¢ = 1,2,..., K. The first parameter 5 is the y-intercept, and
the first “explanatory variable” is a constant, i.e., X;; = 1 for each
instance t. As a column vector of T rows, we construct a constant
vector with the value of 1 in all T" rows as

With these K vectors, we construct the X matrix for the observed
values of explanatory variables and y vector for the observed values
of dependent variable:

1 72 3 - 11K Y1

1 x990 23 -+ T2k Y2
X=1 . : o Y=

1 z2r2 xr3 ... 27K yr

Likewise, for the unobserved values of noise, the corresponding vec-
tor is

U
U2

ur
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In this way, multiple linear regression model (8.49) can be expressed
compactly in the vector-matrix form as follows:

y=XB+u. (8.50)

Example 8.8. If K = 2, we are back to the single-variable linear
regression, also known as simple linear regression.

Y1 1 x9 U1
Y2 1 x99 U2
A ol |
. SRR N :
YT 1 xor ur

Tx1 T x2 2x1 Tx1

Note that the matrices written in this way are conformable, which
describes the mathematical situation where matrix multiplication is
possible. In particular, the product X gives rise to a vector of T'
rOWS.

The transpose of a vector u is denoted by u'. Essentially, the
transpose operation is to turn a column vector into a row vector,
and vice versa. Likewise, the transpose of a matrix is denoted by X’.
The notation for inverse matrix is X ~'. A matrix X is said to be
invertible if the inverse matrix exists.

By the rule of matrix multiplication,

T
wu =) uf
t=1
is a scalar, which is just a number.

Proposition 8.16. For the multiple linear regression model, mini-
mizing the noise through ordinary least squares results in B, which is
the vector of parameter estimates:

B=(X'X)"Xy. (8.51)

Proof. In the vector-matrix paradigm, the residual u is given by
Yy — ¥y, where

y=XB
is the vector of fitted values given the vector of parameter esti-
mates 8.
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As in the case of simple linear regression, our task is to find ,E
such that the sum of squared residuals is as small as possible:

n%in Wi = n%in (y - XE)/ (y - XB) . (8.52)

~/
We perform vector differentiation with respect to 8 to obtain the
first-order condition:

—2(X'y - X'XB) =0,
which is rewritten as
X'XB =Xy. (8.53)

The matrix X'X is a K x K symmetric matrix, and hence invert-
ible. Multiplying both sides of (8.53) from the left by the inverse
matrix (X'X )71, the vector of parameter estimates is obtained as
follows:

B=(X'X)"'Xy. 0
Proposition 8.17. The vector of OLS estimates B 1s unbiased.

Proof. We just need to substitute in the multiple linear regression
model (8.50) for y in (8.51) and evaluate.

B=(X'X)"'X'y = (X'X) "' X'(XB +u)
- (X'X) "(X'X)B+ (X'X) ' X'u
=08+ (X’X)_lX’u.

Applying the expectation operator on both sides of the above
equation, we obtain

E (B) =B+ (X'X) ' X' E(u).
Since the mean of noise is zero, we thus obtain
E(B) = 8.

which fits the definition of an unbiased estimator. O
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Proposition 8.18. Suppose noise us has zero covariance with noise
U, i.e.,

C (Us, ut) = Jzést

for s,t = 1,2,...,T, where 02 :== V (ut) is the variance of noise.
Since E (ut) =0 for all t,

V (u) =E (vu') = 021,
where I is the T x T identity matrix.

Proof. We just need to evaluate E (uu’ ) as follows:

uy
! u2
E(uu):E : [U1U2"'UT]
ur
[E(uiu1) E(uiuz) - - E(uiur)
E(uguz) - - - E(ugur)

E(urw) Elurus) - - E(upur)

(620 --- 0
0c2---0
=1. .u, . :051.
0 0 - g2 O

u

Proposition 8.19. Under the same assumption of Proposition 8.18,
2 2 / -1
v (B) =a2(x'x) ",

We call (E) the variance—covariance matrixz of the parameter
estimates by OLS.

Proof. From the proof of 8.17, we know that

B=8+(X'X)"'X"u.
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Since the constant term 3 does not contribute to variance, it follows
that

v (8) =v((X'X)"'X"u)
K <(X’X)‘lx’u((X’X)‘leu)'> .

Now, it is a property of transpose and inverse that
/

((X’X>_1X’u)’ —wXx ((x'X)7")

Moreover, for any symmetric matrix such as X’X, its inverse is also
symmetric, i.e.,

((X’X)_l)/ = (x'x)7".
Accordingly, applying Proposition 8.18,
v(B) =& ((X'X) " Xuu'X (X'X) ")
- (X'X) ' X'E (vwu) X (X' X)
- (X'X)'X'o2IX(X'X) "
1

= o2(X'X) ' X'X(X'X)”

—o2(X'Xx) 7" 0

An example of the variance—covariance matrix Y (B) is when

K = 2. From Proposition 8.10, we can express V (a), V (E), and

covariance C (’d,a as
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8.8.2 Algorithm of multiple linear regression

As a summary of the mathematical statistics of multiple linear regres-
sion, let us distill out an algorithm for estimating multiple parameters
and for calculating their test statistics. The steps are as follows:

(1) Estimate the parameter estimates:
B=(X'X)"'Xy (8.54)
(2) Compute the vector of fitted values y:
¥=XB (8.55)
(3) Compute the vector of residuals or errors
i=y—79 (8.56)

(4) Compute the residual sum of squares (RSS):

T
RSS = w'u =) ;. (8.57)
t=1
(5) The variance of residuals is
~2 _ 1 A~
oL = u'u. (8.58)

Y T-K
(6) Let ©:= (X’X)fl. The variance of 3; is, for i = 1,2, ..., K,

\% (B\z) = 0. (8.59)
(7) The standard error for B\Z is given by, fori =1,2,..., K,
SE (B) = Gu/ . (8.60)

(8) For i = 1,2,..., K, given the hypothesized value f3;, the t test
statistic for §; is

~

Bi — Bi
~ tr_ 8.61
i T ol
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(9) At the a% level of significance, the true §; lies within the con-
fidence interval

Bi — q6u/Qi < Bi < Bi + qur/ i, (8.62)

where ¢ is the (1 —af 2)“1 percentile of the tp_ g distribution.
(10) The coefficient of determinant is computed as

RSS
R*=1- TSg (8.63)
where, by way of reminder,
T
TSS = (1 —7)". (8.64)
t=1
(11) The sample variance of y; is 312/ = TT—Ssl The adjusted R? is
given by B
R = —%—1-%?—22. (8.65)

8.8.3 Case study: Fama—French’s 3-factor model

It will be interesting to find out how different the Fama—French
3-factor model! (FF3FM) is in comparison to CAPM. We use the
stock and market data sets of Example 8.6. For the same sample
period, we run the multiple linear regression algorithm. Estimation
results are presented in Table 8.3.

With more explanatory variables or factors, we should expect
FF3M to fit the data better. For a fair comparison, adjusted coef-
ficient of determinant R- is appropriate as the number of factors
is adjusted so that CAPM does not suffer a disadvantage for hav-
ing only one explanatory variable. We find that generally speaking,
FF3FM’s adjusted R? is larger, which means that FF3FM is a better
model for explaining the variation in the monthly return on a stock.

For the y-intercept, which is 81 in Table 8.3, similar to the finding
in CAPM, all of them are insignificant, as the critical value is 2.00

!See Fama and French (2004) for a review.
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Table 8.3 Fama-French 3-factor model

-2

Ticker Company name 51 Ba B3 Bs R (%)

BIG Big Lots —0.01 2.24 0.92 —-0.24 31.2
—0.53 4.75 1.24 —-0.43

COST Costco Wholesale 0.01 081 —-0.49 -0.34 39.0
1.47 6.16 —2.36 —2.27

DG Dollar General 0.01 0.64 —-0.34 —-0.27 12.6
0.96 3.31 —1.12 —-1.19

DLMAF Dollarama 0.00 1.22 0.00 —-0.35 41.3
—0.33 6.47 0.00 —1.59

DLTR Dollar Tree 0.00 0.88 —0.41 0.29 16.5
—0.37 3.44 —-1.03 0.98

DQJCY Pan Pacific International  0.02  0.00 —0.39 —0.35 2.6
1.74 —-0.01 —-1.15 —1.41

OLLI Ollie’s Bargain Outlet 0.01 1.11 1.20 —-0.39 22.2
0.67 3.20 2.22 —-0.97

PSMT PriceSmart 0.00 0.63 0.69 0.34 19.9
—0.35 2.51 1.77 1.17

TGT Target 0.01 1.01 0.09 —0.09 229
1.26 4.26 0.25 —0.34

WMT Walmart 0.01 0.61 —0.66 —0.14 26.2

1.28 442 -3.03 —-0.87

at the 5% level of significance. With the exception of Big Lots, the
absolute value of the ¢ statistic for 5, estimate in Table 8.3 is smaller
than the corresponding statistic for a; estimate in Table 8.2.

Since «; and (31 represent the return that is not exposed to any
risk, it should be zero to prevent risk-free arbitrage. There is no free
lunch in the financial market. In this regard, FF3FM is better than
CAPM in describing this important principle of finance.

Next, we examine the market factor, whose parameter is 3; for
CAPM and By for FF3FM. There is no clear pattern, although 7
stocks under FF3FM register higher estimates of 5. It is worth men-
tioning that, with the exception of Pan Pacific International, all the
B2 estimates are statistically significant. As mentioned in Example
8.6, here, Pan Pacific International is once again an exceptional stock.
FF3FM also fails to account for its excess return.

The estimates for the additional two factors that Fama and French
propose generally do not yield significant parameter estimates. If we
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weigh the marginal improvement in adjusted R? against the cost of
obtaining the returns for these factors, it is no surprise that market
participants still prefer CAPM in practice.

If French did not provide the data for free, it would be anybody’s
guess whether FF3FM is widely accepted by most academics and
some practitioners.

This case study shows that providing research data for free allows
fellow researchers to benefit from not reinventing the wheel. On the
other hand, data providers also benefit from citations and acknowl-
edgments, which will surely enhance their visibility and perhaps even
their thought leadership in their respective fields of expertise. This
win—win symbiosis is an ideal of scientific research and progress. It
allows results to be replicated to demonstrate repeatable repro-
ducibility, which is a hall mark of data science.

8.9 Summary

This chapter presents the foundation of ordinary least squares (OLS).
At the heart of the OLS algorithm is the covariance between two vari-
ables; one is called the dependent variable, and the other is referred
to as the independent variable. The OLS algorithm is a framework
where the independent variable is hypothesized to be able to explain
the variation in the dependent variable.

In Section 8.1, we show that the covariance estimator is unbiased.
Section 8.2 defines residuals and the residual sum of squares (RSS),
and shows that the OLS algorithm is rooted in the minimization of
RSS through which the parameter estimates are obtained. In par-
ticular, we find that the slope estimate is essentially the unbiased
covariance estimate divided by the unbiased variance of the indepen-
dent variable.

In Section 8.3, we show that OLS estimates are consistent, that
they are linear combinations of the dependent variable, and that
they are unbiased. We also derive the respective variances of the
OLS estimates, and their covariance. Consequently, the ¢ score or
t statistic of each OLS is obtained. We have also demonstrated that
the total sum of squares is equal to the explained sum of squares plus
the residual sum of squares. In Section 8.4, the goodness of fit R? is
defined naturally as the proportion of total sum of squares that is
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explained by the simple linear regression model. It turns out that R?
is the square of the correlation between the dependent variable and
the independent variable.

Section 8.5 discusses the standard error of the fitted value. With
it, we can construct a confidence interval for each fitted value. We
also show that the OLS forecast is unbiased. A case study of a sim-
ple regression of two ETFs serves as a tutorial to illustrate all the
steps from obtaining the OLS estimates to the computation of the
adjusted R2.

Usefulness of OLS algorithm is demonstrated in Section 8.6, where
the Capital Asset Pricing Model (CAPM) is derived with a simple
method. We provide examples to show that the model works for most
stocks.

In Section 8.7, we apply OLS simple linear regression to estimate a
model of mean-reverting process. Although the goodness of fit is quite
poor, the volatility index VIX is found to exhibit a mean-reverting
behavior, with a half life of about 33 trading days.

Finally, Section 8.8 generalizes the single-variable simple linear
regression to multiple variables. Although the vector—matrix formal-
ism seems to be different in terms of algorithmic implementation,
multiple linear regression model reduces to the special case of single-
variable regression; empirically, estimation results and their accom-
panying test statistics match exactly.

Exercises

8.A Suppose y; is the return on an equity portfolio at month ¢, and
x¢ is the market return. Their sample means are, respectively,
0.4% and 0.2%. Suppose we run an OLS regression

Y =a+ bz + ey
(1) Find the estimates for a and b given that

120 120
> e =0.004; )7 =0.003,
t=1 t=1

(2) Given that the residual sum of squares (RSS) is 0.007, com-
pute the t statistic of the a estimate under the hypothesis
that Hy : a = 0. What inference can be drawn?
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8.B

8.C

8.D
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(3) Do likewise under the null hypothesis that Hy : b = 0. What
inference can be drawn?

For the simple linear regression in Question 8.A, show that
(1) The point (T, g) is on the OLS regression line.

(2) Suppose the number of observations is n. The OLS residuals
. n ~
add up to zero, i.e., thl e = 0.

(3) The sample average of the actual y; is the same as the
sample average of the fitted values.

n

(4) Y, U@ =0.

(5) Does the property 2 still hold if the linear specification is
without the intercept, i.e., y4 = bx; + €7 Explain your
answer.

The variance-covariance matrix for @ and b of a simple linear
regression Y; = 0.9 + 1.2 X; with 10 observations is given by

0.65 —0.70
—0.70 0.80

(1) What is the sample mean of the explanatory variable?

(2) What is the variance of the residuals?

(3) What is the sample variance of the explanatory variable?
Consider an OLS regression of Y on X using 1,000 observations.
The straight line through the plot below is Y = a + bX, and

the standard error of the regression, typically denoted by &,
is 29.
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Now, another dot is going to be added to this chart, in line
with the distribution of the plot. Choose the X value of the dot
in such a way that a Y value of greater than zero is obtained.
More precisely, at what value of X are you going to have a 95%
chance of getting a dot such that it is in the positive territory
of the Y axis? Note that all the information required to answer
this question is already given in the chart (plus the fact that
0. = 29). Provide the arguments and workings by which you
arrive at your answer.
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Chapter 9

Event Study

9.1 Introduction

Event study as a research methodology is about the quantitative
analysis of news for ascertaining whether it has any material effect
in the financial market. A key question addressed in event study
involves an intuitive dictum about market reality: “Good” news is
associated with share price appreciation, whereas “bad” news brings
about share price decline. “Neutral news” is not expected to produce
an anomalous price change.

An interesting and certainly significant application of event study
is in the courtroom. Mitchell and Netter (1994) provide a detailed
account of the Securities and Exchange Commission (SEC) applying
the event study methodology to establish evidence of illegal insider
trading. Moreover, Tabak and Dunbar (2001) conclude that event
studies are useful in quantifying damages in litigation cases requiring
the calculation of lost profits.

The notions of “good”, “bad”, and “neutral” require some sort
of market expectations. Anecdotal evidence suggests that many
company-related announcements are likely to impact the share
price. In the event study, each of such announcements is treated as an
event. Typically, stock analysts who cover the company will provide
updated forecasts before an impending announcement. The con-
sensus in the form of their forecasts’ average constitutes the market
expectation. When the actual value announced is greater than the
consensus, i.e., when it is of upside surprise, the announced news
is said to be good news. By the same token, downside surprise

321
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is bad news, and when the actual and the consensus coincide, the
news is said to be in line with the market expectation. Moreover, if
the surprise element of an event is large, its impact will tend to be
more salient and the share price may change dramatically after the
announcement.

What are the possible types of events that have the potential to
bring about an unusual response in the market? In the following, we
present a list of 22 event types.

(1) Company earnings

(2) Company revenues from sales
(3) Manager’s guidance or forecast
(4) Profit warning

(5) Launch of new products & services
(6) Stock split

(7) Change in dividend payout

(8) Shares buyback

(9) Seasoned shares offering

10) Change in company’s key personnel
11) Sales and purchase of company shares by key personnel
12) TPO of a company’s subsidiary
13) Bankruptcy

14) Merger & acquisition

15) Sales or purchase of a business unit

16) Accounting irregularity

17) Litigation

18) Stock analysts’ upgrade and downgrade

19) Upgrade and downgrade by credit ratings agencies
20) Addition to and deletion from an index membership
21) Investment and divestment by financial institutions
22) Change in regulatory measures

Event types from items 1 to 13 originate from company insiders,
who are the managers running the company On the other hand, event
types from items 18 to 22 are engendered by company outsiders.
Items 14-17 may be announced by either the insider or the outsider,
or both.

This list of 22 event types is by no means exhaustive. Moreover,
even for events of the same type, it is important to emphasize that the
sample of events used for the empirical analysis must be of the same
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nature. As an example, consider event type 1, company’s earnings.
To make the event analysis meaningful, samples consisting of positive
earnings surprises must be separated from events about negative
earnings surprises, as well as from events that have no surprises.
Otherwise, the effects arising from positive surprises may annihilate
the price impacts of negative surprises, and the events of no surprises
may compromise the statistical significance of the test.

The listing is also by no means non-overlapping. Announcements
of company earnings for the quarter just ended tend to occur in
conjunction with managers’ guidance with regard to the prospect of
next-quarter earnings. One can argue that the positive price effect is
not due so much to the positive earnings surprise. Rather, it may be
attributable to the earnings guidance or outlook that beats analysts’
expectation.

It is therefore critical to control for other concurrent events when
analyzing the effects of earnings surprises. In the context of daily
sampling, the term “concurrent events” refers to all the news that
arrive after the previous trading session has ended, and before the
current market opening hours. For example, in sampling earnings,
choose only those for which the manager guidance is in line with the
market, or better still, managers provide no guidance at all.

9.2 Event Window and Benchmarks

Another crucial ingredient in an event study is the accuracy of the
announcement dates. Complications will arise when the announce-
ment dates are not exactly determined. Even so, it is also important
to know whether the announcement occurs before the market opens,
during the market session, or after the market has closed for trad-
ing. If the announcement is after the trading session has closed, then
the next business or trading day will be taken as the event date.
In other words, for such cases, the event date is the trading day
immediately after the announcement.

Definition 9.1. The event date is defined as the date of an
announcement if it is made before the stock market opens, or dur-
ing the stock market in trading session before the market closing
hours. On the other hand, if an announcement is made after the
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Pre-announcement window Post-announcement window
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Figure 9.1 Event window.

Estimation period Event window

Figure 9.2 Time frame of event study.

stock market has closed, then the event date is the following trading
day. All event dates are denoted as day 0.

Relative to the event date, day 0, the event window comprises
pre-announcement window and post-announcement window.
Figure 9.1 is an example of event window, which is £10 days sur-
rounding day 0. Of course, nothing is sacrosanct about “10 days”.
Depending on the problem at hand, the half length of the event win-
dow can be 2 or 5 days, or longer than 10 days.

It is very important to understand the relative nature of the event
window. As long as the event date is known, it is assigned as day
0. Whether the actual date is 10 years ago, or a year ago, makes
no difference. Moreover, whether the company is ABC or XYZ, so
long as the event is of the same nature and in the same category of
surprises, the events are collected as a sample for event study.

The event window is part of a much larger time frame as shown in
Figure 9.2. The period before the event window is referred to as the
estimation period. Observations in this time period form the basis
for establishing a comparison benchmark with which to ascertain
whether the returns in the event window are abnormal.

Suggested only as an example, the length of 250 from day 0 for
the estimation period in Figure 9.2 is not a number cast in stone.
Depending on the benchmark used, it can be as short as —30 from
day 0.
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Example 9.1. Consider Event 11: Sales and purchase of company
shares by key personnel. The main interest of this event study is to
find out whether the transactions by company insiders will impact the
share price or not. This event type needs to be fine-tuned, however, as
it does not make sense to mix buying with selling. The three examples
listed as follows are the share sales by CEOs. These records can be
obtained from the Securities and Exchange Commission (SEC),

Transaction Company Number of  Average Total

date name shares share price  transaction
2020-08-25  Apple 265,160 $496.91 $131,760,655.60
2019-02-06  Microsoft 267,466 $106.01  $28,354,070.66
2018-10-03  Alphabet 10,000  $1,200.04  $12,000,400.00

In this event study, the transaction date can be taken as the event
date. We then take the time series of daily returns for each company,
and sample the returns from day —20 relative to day 0 through 10
days after the event date. Altogether, for each event, we obtain 261
daily returns.

Now, the benchmark is of critical importance in any event study.
Without the benchmark, it is impossible to claim abnormality on
the event day. For example, suppose at day 0, the stock price is 2%
higher than the stock price at day —1. Is the 2% increment normal or
abnormal? In the absence of a benchmark, one can always argue that
the increment is due to its usual co-movement with the market, or
with the industry group the company is classified as a member.

9.2.1 No estimation model

The simplest approach is to take a widely accepted stock market
index such as the S&P 500 index as the benchmark. In other words,
the return r,,; on the market is the benchmark. It is a quick and easy
way to perform an event study. However, the assumption is that the
stock return has a one-for-one exposure to the market, which is not
true in general.
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9.2.2 Constant mean model

Suppose the mean return for stock 7 is denoted by p;. The constant
mean model is simply

Tit = Hi + Eit,

where r;; is the daily return on security ¢ and €;; is “noise” with mean
0 and constant variance Ugi. For this benchmark, the mean of r;; is
estimated using the observations in the estimation period. Though
not often, at times, the post-event period is included to estimate ;.

The constant mean model is especially useful when we want
to evaluate the stock market response to a macro-economic
announcement. A well-known example is the monetary policy
announcement by the Federal Reserve. Specifically, the Federal
Open Market Committee (FOMC) usually holds eight regularly
scheduled meetings every year. Many economists and analysts in the
financial industry, within their job scope, attempt to forecast whether
FOMC will adjust the target federal funds rate, and going for-
ward, FOMC’s stance on the monetary policy. This macro-economic
news impacts almost all markets: bond, foreign exchange, stock, and
to some degree, commodity markets. In other words, the impact is
market-wide and not company-specific. We can estimate the impact
by the response of a stock market index such as the S&P 500 index.
The constant mean model is particularly useful in serving as a
benchmark for studying the price impacts of FOMC announcements.

Example 9.2. At 5 P.M. EDT, March 15, 2020, which was a Sunday,
FOMC made an unscheduled announcement. FOMC’s assessment
was that “the effects of the coronavirus will weigh on economic activ-
ity in the near term and pose risks to the economic outlook.” The
FOMC decided to lower the target range for the federal funds rate
to 0-1/4%, and “to maintain this target range until it is confident
that the economy has weathered recent events.”

This unexpected announcement caused market participants
to realize that, as what the FOMC had announced, the outlook of
the economy was really bad. For this event, the event date was
March 16, which was a Monday.

Let us take two days for the pre-announcement window and
10 days for the post-announcement window. The intent here is to
capture the impact of this “surprising” announcement over a period
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of two weeks. To obtain the benchmark, and in view of the heightened
level of volatility, we take 30 past trading days of data in the estima-
tion period, which is prior to the pre-announcement window. Specif-
ically, the estimation period is from January 29 through March 11.
The mean of daily log returns in this period is found to be —0.59%,
and the corresponding standard deviation is 2.71% per day.

The abnormal return is naturally the quantum of deviation
from the mean, and the ¢ statistic is this deviation divided by the
unbiased standard deviation. The results of this event study are tab-
ulated as follows:

Trading S&P Log Abnormal

date index  return (%) return (%) t-statistic
2020-03-12  2,480.64 —-9.99 —-9.40 —3.47
2020-03-13  2,711.02 8.88 9.47 3.50
2020-03-16  2,386.13  —12.77 —-12.17 —4.49
2020-03-17  2,529.19 5.82 6.42 2.37
2020-03-18  2,398.10 —5.32 —-4.73 —1.74
2020-03-19  2,409.39 0.47 1.06 0.39
2020-03-20 2,304.92 —4.43 —3.84 —1.42
2020-03-23  2,237.40 —2.97 —2.38 —0.88
2020-03-24 2,447.33 8.97 9.56 3.53
2020-03-25 2,475.56 1.15 1.74 0.64
2020-03-26  2,630.07 6.05 6.65 2.45
2020-03-27 2,541.47 —3.43 —-2.83 —1.04
2020-03-30  2,626.65 3.30 3.89 1.44

Despite FOMC’s big cut to the target federal funds rate, there was
a crisis of confidence in the stock market on the event date, which
led to the worst day of losses since the crash of 1987. The ¢ statistic
of —4.49 shows that the abnormal return of —12.17% is statistically
significant. In terms of magnitude, the event date’s ¢ statistic is the
largest in the table.

Overall, we see that in the post-announcement window, there are
six positive t-statistics against four negative ones. It may indicate
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that stock market participants began to re-assess the benefits of
being in a zero interest rate environment, where the cost of borrow-
ing money to buy stocks had become cheaper. Thus, it seems that
the Federal Reserve had managed to shore up investors’ confidence.

9.2.3 Market model

The market model is motivated by the empirical observation that
the return of an asset tends to co-move with the equity index, which
serves as a mirror to reflect the overall market behavior. It is an
empirical model and requires no assumptions on market equilibrium,
rational behaviors on the part of “agents” in the economy, market
efficiency, and so on. For an asset ¢’s return r; at time ¢, it is con-
temporaneously dependent on the explanatory variable, r,,; — the
return on the market index. Specifically, we have

Tit = o + Bitmt + €it, (9.1)

where €;; is the noise term.

Like any other simple linear regression model, the market
model assumes that the “noise” ¢;; has zero mean and homoskedastic
variance of 0622,. The regression coefficients «; and ;, along with ai,
characterize asset i’s return in the market model. The other two
assumptions of the market model are (C(eit, eis) = 0 for t # s, and
(C(eit, rmt) = 0 for all ¢ in the estimation period.

9.2.4 Capital asset pricing model

From the standpoint of regression specification, the capital asset
pricing model (CAPM) is the inclusion of risk-free rate fy; to
the market model:

rit — e = Qi + b (Pt — 7pe) + eir.

But at the daily sampling frequency, ry; is a small value. For exam-
ple, if the risk-free rate is 1% per annum, then the daily risk-free
rate is only 2.73 x 107° (= 0.01/(365)). This quantity is minuscule
compared to the daily returns on the stock (r;;) and on the market

(Tmt)-
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As a remark, the market model is econometrically equivalent to
the CAPM benchmark, since we can set 3; = b; and o; = a; + (1 —

Bi)r st

9.3 Abnormal Returns

As discussed earlier, to remove the effect of co-movement with the
market, we need an appropriate return on the benchmark index,
which is denoted by 7p; here.

Definition 9.2. Given the return on the benchmark index
denoted by 7p,, the abnormal return of an event ¢ in the event
window is defined as

ARir == Tir — Tpr.

MacKinlay (1997) suggests that ordinary least squares (OLS)
is a consistent estimation procedure for the market model’s param-
eters under general conditions. We denote the OLS estimates by a;,
Bi, and 33@_, respectively.

Definition 9.3. Using the market model as the benchmark, the
abnormal return denoted by AR, of an event involving company ¢
is defined as

ARiT = Tir — Tir
=Tir — 0 — BirmT-
In other words, given the observation of market return r,,, in the
event window, abnormal return is the difference between the

actual return r;; and the benchmark return 7;, given by the market
model.

Proposition 9.1. In the event window where day number is indexed
by T, the expected value of AR;; conditional on the knowledge of Ty,r
18 zero, i.€.,

E(ARir|rms) = 0. (9.2)
Proof. From the market model (9.1), we have r;; = a;+B;i"mr+€ir-
By assumption, E(eit‘rmT) = E(eit) = 0, since the explanatory vari-
able does not co-vary with “noise” and hence provides no information
on the expected value of €.
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As OLS estimates &; and B\Z are unbiased, their expected values
are the true values, a and S, respectively. It follows that

E(ARir|rmr) = E(0 + Birmr + €ir — Gi = Birme |Tmr)
= o; + Birmsr + E(fit‘Tm’r)
— E(&Z‘rmT) - TmTE(B\i‘TmT)
=0 0

Suppose the average market return 7, is estimated with L daily
observations in the estimation period, i.e.,

—11

Tm = % Z T'mt-

t=—L—-10

Moreover, we denote the market sum of squares (MSS) as

11
— \2
MSS:= > (rm—Tm) -
t=—L—10
Note that, for each day 7 in the event window from day 7 = —10

to 7 = 10, MSS is a constant.
Proposition 9.2. The variance of AR;: conditional on the knowl-

edge of ryr 1S

) 2 l (TmT - Tm)Z
V(ARir|rmr) =02, (1 +Tt s ) (9.3)

for each day T in the event window.

Proof. Following Lim (2011), the conditional variance of AR;; is
computed as follows:

V(ARqrlrnr) = V(rir — @ = Birme|rmr)
=V (rir|rmr) + V(Gi|rme) + 12V (Bi]rmr)
+ 2TmT(C(54ia /37, ‘Tmr) —2C (Tir, Q; ‘TTTLT)

- 2Tm7—(C(Ti7—, /37, ‘Tm’r) .

Given the market return r,,,, the conditional variance of 7.
under the market model is V(riT‘rmT) = 0?1_. The two covariances
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C(riT,ai‘rmT) and (C(TZ-T,BZ-‘rmT) are zero because given r,,,, the
estimates ¢; and f3; are constants.
Consequently, we obtain

1 72 2 _
VAR o) = 0% (54 ) ot T ot Tl

L  MSS “ MSS “ MSS

1 =2 -9 = 2
- (1) oo ()

:03@+}4$&1;Ef>_

L MSS 0

With these two propositions in place, the distribution of the
abnormal return for each 7 in the event window is given by

d 2 1 (Tmr — Fm)2
AR |lrmr ~N (0,02 1+ =+ ——"— .
Barr <O “f@< MR VS

It is noteworthy that the variance is dependent on 7,,;, and thus
V(ARiT\rmT) is different for different 7 in the event window.

The null hypothesis of the event study is Hy : AR;; = 0 for each 7.
To perform the statistical test, variance of the OLS residuals is first
estimated as

—11
=1 S &
G L-2 e
t="L-10

From (9.3), the standard error (SE) for the abnormal return is

P 1 (P — Tm)?
SE(AR”—) = O'El\/l + Z + TSS,

and the t statistic for the null hypothesis of zero abnormal return at
time 7 is
ARiT d
oA s ~ tr—a.
SE(AR;;)

Note that the standard error is different for different 7 in the event
window.
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9.4 Cumulative Abnormal Returns

To draw an overall inference for the event, the abnormal return is
aggregated in the cumulative fashion. The resulting quantity is called
the cumulative abnormal return (CAR).

Definition 9.4. For an event ¢, having computed the abnormal
returns for each 7 in the event window of half-size W, the cumula-
tive abnormal return is defined as

CAR;( Z AR;;, (9.4)

with 73 ranging from —W to W.

Example 9.3. Suppose W = 10. The first cumulative abnormal
return of an event ¢ CAR;(—10) is simply AR; _19. The last CAR is
CAR;(10), which is the sum of all AR;; from 7 = —10 to 7 = 10. In
general,

CAR;(1x) = AR;—10+AR; 9+ -+ AR; -, 1 + AR, 7.
Moreover, since
CAR;(mx —1) =AR; 10+ AR; 9+ -+ AR; -, 2 + AR, _1,
it is clear that
CAR;(1) = CAR;(1, — 1) + AR, +, .

Thus, to find the next CAR, we simply add the next AR that is not
already in the current CAR.

The expectation of CAR;(7x) conditional on k market returns
{rmT}Tk —w is zero. It can be easily verified that indeed,

E(CARZ‘(Tk)HTmT}:;_W) —E( Zk: AR”> - zk: E(ARi;) =0
T=—W T=—W

Next, assuming that the abnormal returns AR;, for 7 =
—W,—-W +1,...,W are independent of each other, the conditional
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variance CAR;(7x) is simply the sum of the conditional variances,
ie.,

Tk

V(CARi(Tk)HrmT}l 7W> = 3 V(ARilrme). (9.5)

T=—W

As in the case of AR;;, for the cumulative abnormal return, the
null hypothesis is Hy : CAR;(7) = 0 for 7, = —W to 7, = W. When
L is large, the test statistic is approximately given by

CAR; (1)
\/V<CARi(Tk)‘{rmT}:’“_ _W)

Proposition 9.3. When log returns are used instead of the simple
returns in the event study, CAR;(ty) for 7o, = =W, =W +1,..., W —
1, W, may be interpreted as market adjusted price.

L N(0,1).

Proof. Due to the telescoping property, a sum of log returns
is equal to the difference between the last log price and the first log
price. It follows that, with the half window size W = 10, without loss
of generality,

Tk
CAR;(m) = Z (HT o 52‘7“m7>
7=—10
Tk Tk
= Z rir — ko — B Z Tmr
=-—10 7=—10

=In(Pi7,) —In(F-n) — B\i(ln(Pm,Tk)
— ln(Pm,,H)) — kay
—n(Piy,) = Biln(Pnr) —c
=In(P,7,) = In(Pyr,) — c,
where c is the sum of three constant terms:

c:=q; +1n (PZ'7,11) — Bz In (Pm7,11). (96)
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We define market price denoted by ﬁm,m as follows:

vaTk = P?’éLZ,T]’C
Therefore, up to a constant ¢, CAR;(7;) can be interpreted as the
log price at time 7 normalized by the market price, i.e.,

CAR; () = In (f—> —e (9.7)

m,Tk
(]

Moreover, Proposition 9.3 allows us to profit from our research on
the element of surprise in a particular event. Suppose we have reason
to believe that CAR;(0) will be significantly positive on event day 0.
To express this view, we can take a long position in Stock 7 and at the
same time, take a short position in an exchange traded fund (ETF)
on S&P 500 index on day —11 or more generally —(W 4+ 1). Then on
the event day, we can unwind our position by buying back the ETF
and selling Stock 1.

Moreover, ¢ in (9.6) can be interpreted as the cost of this long-
short strategy. To be closer to this trading strategy, it is therefore
better to use the ETF in the event study, rather than the S&P 500
index, which is untradable. R

In this long-short strategy, 5; acts as the “hedge ratio”, since
our long-short spread is

In(P;;) — B1In(P, 7).

9.5 Case Study: AIG in Crisis

To demonstrate how an event study is carried out, this section pro-
vides a case study of a news release about AIG during the 2008
financial crisis. A point of interest is to examine whether or not
there is any form of information leakage prior to the news release.
By information leakage, we mean that the cumulative abnormal
return is statistically significant for at least one day in the pre-
announcement window, i.e., when 7 < 0. The economic significance
of leakage can be assessed from the corresponding abnormal return
in the pre-announcement period.
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Another aspect concerns the impact on AIG’s stock price after
the news release. The cumulative abnormal return may shed
light on whether the event has a temporary or permanent effect on
the stock price. The effect is said to be temporary if CAR reverts
back to the pre-announcement level. Otherwise, the impact is said to
be permanent.’

9.5.1 Background of the case study

AIG, or American International Group, is an international insurance
company that has an extensive web-like network covering more than
130 countries and jurisdictions. In the United States, companies of
AIG provide life insurance and retirement services. Incorporated in
1967, its roots, however, can be traced to an insurance company
started by Starr in Shanghai, China, in 1919. Since then, AIG enjoyed
glorious years of expansion after expansion.

In 1987, AIG set up AIG Financial Products (AIGFP) to focus
on trading complex derivatives. About 10 years later, this money-
making subsidiary of AIG started selling insurance protections
against debt defaults. AIGFP was running a profitable business
when the default risk was low. But in 2007, with the housing mar-
ket collapsing and sub-prime assets plummeting in value, AIG was
demanded by its counterparties to post more collateral. As mortgage
defaults kept rising, AIGFP lost more than $10 billion in 2007 and
another $14.7 billion in the first six months of 2008.

By September 2008, bond ratings agencies made suggestions
about their plans to downgrade AIG’s rating yet again. Further
downgrade would trigger more collateral calls, which AIG knew it
could not cover. Desperate negotiations to keep the company afloat
ensued. With no suitable white knight in sight, AIG had to ask the
US federal government to bail it out.

On September 14, 2008, 9:57 PM, the New York Times’s DealBook
posted a nerve-racking news with the following headline:

A.IG. Seeks $40 Billion in Fed Aid to Survive

'In finance, nothing is permanent. We use this adjective as the antonym of
“temporary”. More precisely, over the half window W after the event day, CAR
maintains its level attained on that day.
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This was very bad news, as Federal Reserve is the lender of the last
resort. In other words, it meant that AIG failed to secure short-term
financing from banks, while they themselves were trying to ensure
that they had enough cash to keep afloat during the time of credit
crunch.

9.5.2 Ewvent study: Analysis and results

Since the breaking news appeared on September 14, 2008, which was
a Sunday, the event date for this analysis therefore is September 15.
On that fateful Monday, AIG stock fell $7.38, or 61% (equivalent to
94.16% log return), to $4.76. The S&P 500 index declined 59 points,
or 4.71%, to 1,192.70, its biggest drop since 9/11 and the first time
it closed below 1,200 in three years.

To perform the event study, the daily closing prices of AIG and
those of an ETF on S&P 500 index with the ticker symbol SPY are
obtained from yahoo!finance. The length L of the estimation period
is set at 240. OLS regression on the market model produces

rit = —0.003492 + 2.073427 X 7.

The two coefficient estimates are statistically significant at the 5%
significance level.

AR;;, CAR;(71), and their ¢ statistics are computed using the for-
mulas in Sections 9.3 and 9.4. The results are presented in Table 9.1
and plotted in Figure 9.3 for abnormal returns.

For cumulative abnormal returns and their ¢ statistics, they are
plotted in Figure 9.4. Notably, CAR;(7x) looks like a price series.

The statistical evidence suggests that, as anticipated, there was
a material impact from the news release on AIG’s stock price on
the event day. The t statistic for CAR;(0) shows that it is highly
significant, implying that the camulative abnormal return is non-
zero on the event day.

The negative abnormal return on September 15 might have
been even more negative. AIG’s share price pared some of its losses
after news came, confirming that AIG was allowed by the State of
New York to access $20 billion of assets held by AIG’s subsidiaries
to stay in business.


https://finance.yahoo.com/

Table 9.1 AR and CAR in the event window.

T —-10 -9 -8 -7 —6 -5 —4 -3 -2 -1 0
AR (%) 3.27 0.47 4.80 —2.09 -14.84 —5.38 —240 —-3750 —-83.16 —27.00 —50.50
CAR (%) 3.27 3.74 8.54 6.45 —-8.39 —13.77 —16.17 —53.67 —136.83 —163.83 —214.33
T 1 2 3 4 5 6 7 8 9 10

AR (%) 21.39 29.25 25.46 10.87 —41.60 —12.09 4.42 —5.80 20.53 17.26

CAR (%) —192.94 -163.69 —138.23 —127.36 —168.96 —181.05 —176.63 —182.43 —161.9 —144.64
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Figure 9.3 Abnormal returns and their ¢ statistics.
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Figure 9.4 Cumulative abnormal returns and their ¢ statistics.

Subsequently, a report hit late Monday that the Federal Reserve
had asked Goldman Sachs and JPMorgan Chase, two key survivors of
the mortgage-bond shakeout, for up to $75 billion in credit to extend
to the giant insurer. AIG was deemed to be such an integral part of
the financial system that systemic risk was assessed to be clearly
present. If AIG were to tread the demise path of Lehman Brothers,
all insurance policy holders on the main street would probably lose
confidence in the entire financial system. Even the outgoing Bush
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Administration could not afford to displease the main street, cer-
tainly not when the election was just around the corner. The bail-out
deal, effectively a move toward nationalization, or “conservatorship”,
was structured so that AIG had an incentive to clean up the mess as
quickly as possible.

In the statistical test, extremely noteworthy is a day before the
event day. The t statistic for AR; 1 is —13.28 and for CAR;(—1) is
—5.26. These statistics lead us to the inference that the null hypoth-
esis must be rejected. This finding implies that there might either
be an information leakage, or some statements about AIG were
released before or during the market hours on September 12 (Friday).

A news item in the Wall Street Journal, “AlG Scrambles to Raise
Cash, Talks to Fed”, which appeared on September 14, reported
that

But its shares fell 31% on Friday alone. Late that day, Standard
& Poor’s warned that it could cut AIG’s credit rating by one to
three notches, citing concerns that AIG would have difficulty
raising capital. Such a step would make it more expensive for
AIG to borrow and further undermine investor confidence in
the company.

From this news, it seems likely that S&P’s threat of downgrade was
issued after the market had closed on September 12, 2008 (Friday). If
that is the case, then the plunge of 31% on September 12 was not due
to any particular news or announcement before the trading ended. If
there was no major news concerning AIG from 4 PM, September 11
to 9:30 AM September 12, then leakage of information about either
S&P’s downgrade plan or AIG seeking a bail-out from the Federal
Reserve might have occurred.

But the financial system under credit crunch at that time was not
functioning normally. It could well be that somehow a rumor of AIG
in big trouble was already circulating in the financial industry. After
all, even journalists of New York Times and Wall Street Journal were
able to get hold of crucial information for them to write a report. It
could be that some hedge fund managers who had long and wide
antenna shorted AIG shares before the bad news was released by the
press.

Finally, we note that the bad news about AIG seems to have had
a permanent effect. The market adjusted price appears to remain
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depressed at about —1.75, which is —175%. As shown in the CAR
plot in Figure 9.4, CAR does not return to 0.

9.5.3 Trading strategy

Suppose we take a short position in AIG and a long position in SPY
with the hedge ratio § = 2.073427 ~ 2 on day —11. The cash flow
in percent is

ID(PZ",H) —2X ln(Pm,,H).

On event date, we unwind our position, and the cash flow in percent
is

— IH(PZ‘7Q) + 2 X ln(Pm@).
It follows that our P&L in percent is

2xIn (Pno/Pn,-11) —In (Pyo/P;-11)-

AIG’s prices per share are $21.51 and $4.76 for days —11 and 0,
respectively. That is, P; _;; = $21.51 and P; o = $4.76. The corre-
sponding prices of SPY are P, _1; = $130.19 and P, o = $120.09.
Thus, the P&L is

2 x In (120.09/130.19) — In (4.76/21.51) = 1.347 = 134.7%.

This value of 1.347 is compatible with the value of |CAR;(0)| =
1.302 computed using (9.4) or (9.7). The difference comes from ka

as in (9.6), and to a lesser extent, the rounding down of B In our
illustration, k = 11 and thus k& = 11 x (—0.003492) = —3.84%.

9.6 Average Abnormal Return

In the case study of AIG in crisis, there is only one event. For
regular and scheduled earnings announcements, however, there are
many events. As mentioned previously, it is important to control
for company guidance if one were to ascertain whether positive
earnings surprises would or would not have a positive price effect,
for announcements of earnings and guidance tend to occur on the
same date.
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Roughly speaking, event type 1 in Section 9.1 has three possible
outcomes: upside earnings surprise, in line, and downside earn-
ings surprise. Similarly, event type 2 can be categorized into three
possible outcomes: upside guidance surprise, in line, and downside
guidance surprise. Altogether there are nine possible outcomes and
they are denoted by the symbols ue, ne, and d. for upside, no, and
downside earnings surprises, respectively. The same set of three out-
comes for guidance comprises u4, ng4, and dy. The nine combinations
along with the numbers of earnings and guidance surprises are tab-
ulated in Table 9.2. Announcements of these events were made from
2001 to 2012, which were arduously collected during that time from
briefing.com.

We find that earnings surprises tend to be on the upside. In total,
18,568 earnings beat the street’s forecast, compared to 3,844 in line
with the market, and 5,111 earnings that are disappointing. For guid-
ance on future earnings, it appears that managers and analysts tend
to agree more; 12,874 events are in line, compared to 6,634 events
where managers are more optimistic than the analysts, and 8,015
events for which managers are less optimistic. Taken together, com-
pany managers tend to report earnings per share that are higher than
analysts’ consensus, and their guidance for future earnings usually
matches analysts’ expectation. Indeed, the combination (u.,i,) has
9,423 events, which is the highest among nine combinations.

Table 9.2 Combinations of earnings and
guidance surprises, along with the numbers
of surprises from 2001 through 2012.

Guidance

Earnings Ug ig dg Total
Ue Ue, Ug Ue, tg Ue, dg

5,632 9,423 3,513 18,568
e le, Ug le,lg le,dg

468 1,161 2,215 3,844
de de7 Ug de7 ig d67 dg

534 2,290 2,287 5,111
Total 6,634 12,874 8,015 27,523

Source: briefing.com.


https://www.briefing.com/
https://www.briefing.com/

342 Algorithmic Finance: A Companion to Data Science

Earnings announcements at time 7" pertain to financial accounts
for the past quarter that has just ended, whereas guidance is typ-
ically for the current quarter in which the announcement date T
resides. Before the announcement, company managers know the lat-
est analysts’ consensus for the immediate past quarter, and also their
consensus for the current quarter. These forecasts are either in the
public domain or are made available by financial information service
providers. Given these statistics, managers are somehow motivated
to beat the market, and also to go along with the market expectation
in their guidance.

Consider the combination (ue,uy), i.e., upside earnings and guid-
ance surprises, which has M = 5,632 events in our sample. The
average abnormal return (AAR) across these M events is

M
1
AAR; = o ;AR”, for 7 = —10,-9,...,9,10.

Observe that there is no subscript i for AAR, because it is a cross-
sectional average of all stock-events in the sample.

Suppose the covariance of AR;; and AR, is zero for a given 7
and for all 4 # j. This reasonable assumption implies that company
i’s earnings and guidance surprises and those of company j, in prin-
ciple, have no association over different announcement dates on the
calendar. Under this assumption, the conditional variance therefore is

M
V(AAR; |rp,) = % > V(ARir|rmr).
i=1

Each of the conditional variance in the summation is computed
according to (9.3). Consequently, the test statistic of the null hypoth-
esis Hp : AAR, = 0 for a given 7, assuming large estimation length
L, is given by

AAR,
\% (AART ‘rmT)

L N(0,1).

Example 9.4. We obtained a high-quality data set from a paid sub-
scription of briefing.com. It contains the actually reported earnings


https://www.briefing.com/
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per share (eps) of the company, along with the actual revenues.
For these two important barometers of the company’s performance,
the data set comes with the analysts’ consensus. Additionally, the
data set provides the eps a year ago, the year-to-year revenue growth,
and the company guidance. We filter out events that are really bad
news:

The actual eps is less than the analysts’ eps consensus.

The actual revenue is less than the analysts’ revenue consensus.
The actual eps is less than the actual eps a year ago.

The revenue growth is negative.

The guidance is downward.

In other words, across these five dimensions, the firm is not doing
well and its firm managers are pessimistic about the future outlook.
For firms that report their financial account before the market opens,
we find 197 events involving 162 different firms. In other words, some
firms have more than one such bad episode over the sample period
from June 7, 2011 to July 24, 2019.

Plots of AAR and their respective ¢ statistics are presented in
Figure 9.5. Clearly, the ¢ statistic on the event day for which 7 = 0 is
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Figure 9.5 The AAR and their ¢ statistics of bad events from June 7, 2011 to
July 24, 2019.
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highly negatively significant. On average, the decline of an amount
—8.11% is economically significant. Note also that a day before the
announcement date for which 7 = —1, AAR’s ¢ statistic is —2.55%,
which is also statistically significant. It appears that, somehow, the
bad news is anticipated by market participants. Probably some of
them sell the shares of companies of bad financial qualities ahead of
bad news.

9.7 Cumulative Average Abnormal Return

Definition 9.5. The cumulative average abnormal return
(CAAR) is defined as, for a given 7y,

CAAR(7;) Z CAR;(71). (9.8)

This is a cross-sectional average of all CAR;(73), where i =
1,2,..., M. The event window time 73 ranges from —W to W.

Proposition 9.4. Suppose the cumulative abnormal returns are
uncorrelated across events. The conditional variance of CAAR(7y)
is then simply the sum of the conditional variance of each cumula-
tive average abnormal return, i.e., for each %,

V(CAAR(Tk) ‘ {rm}f;_w) = # éV(CARi(m)\{Tmr}fi_w)

= > V(AAR;|rp,).
=W

Proof. The key assumption is that event ¢ and event j do not
have association whatsoever. Under this assumption, summation and
variance operator are interchangeable, i.e.,

w0 =¥ (5 2%)
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Therefore,
1 M
i 2 (AR )| {rar )y )
i=1
1 M
—v (M ; CAR;(x) {Tmf}:k__w>
1 M Tk -
=V (M Z Z AR;r {TmT}’Tk: W)
=1 17=—W
Th 1 M -
T=—"W i=1

The proof is complete after we interchange the variance operator and
the summation over 7. O

As anticipated, for cumulative average abnormal return, the null
hypothesis is Hy : CAAR(7;) = 0 for each of 7 ranging from 75, =
—W to 7, = W. When L is large, the test statistic is approximately
given by

CAAR(g)
\/V<CAARi(Tk) ‘ {Tmr}:k:—w)

Example 9.5. We continue from Example 9.4. The cross-sectional
CAAR is computed for each day in the event window according to
(9.8). The variance of each CAAR is computed according to Propo-
sition 9.4. Finally, we use (9.9) to obtain the ¢ scores. The results are
shown in Figure 9.6. Consistent with Example 9.4, there is a precip-
itous drop to about —9%. We find that the values of CAARs after
the event date remain low, suggesting that this bad-news event has
a permanent effect on the company stock price.

LN, 1). (9.9)
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Figure 9.6 The CAAR and their ¢ statistics of bad-news events from June 7,
2011 to July 24, 2019.

Example 9.6. We reverse the filter of Example 9.4 for good news.
Specifically, the grouping is based on the following criteria:

The actual eps is more than the analysts’ eps consensus.

The actual revenue is more than the analysts’ revenue consensus.
The actual eps is more than the actual eps a year ago.

The revenue growth is positive.

The guidance is upward.

We obtain 1,010 events of really good news that involve 425 different
firms. Performing the same event study, the AAR and CAAR are
obtained. Along with the respective t statistics, we plot the results
in Figures 9.7 and 9.8. At the event date, we find that the AAR
is 4.11% and it is statistically significant. Nevertheless, in absolute
terms, it is twice smaller than the bad news’ AAR. We also find that
the t statistic a day before the announcement is 2.79, which is statis-
tically significant. We interpret this empirical finding as the preemp-
tive trade by informed traders who are highly skilled in extracting
signals and predictive forecasting. The CAAR plot in Figure 9.8 sug-
gests that good-news events produce a permanent effect on stock
prices.



Event Study 347

_ 70
S

- 60
>

23 50
o

= o
€2 40 S
2 300
Ke]

<

L1 20
©

9] 10

>

<C

/»\/0/9/%/’\ OS5 K203 K9S 01 9 940

Figure 9.7 The AAR and their ¢ statistics of good-news events from June 7,
2011 to July 24, 2019.
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Figure 9.8 The CAAR and their ¢ statistics of good-news events from June 7,
2011 to July 24, 2019.

9.8 Case Study: Share Repurchase

Another important company action that carries the potential to
affect share value is the buying back of substantial amount of shares
from the open market. Sometimes, a company’s management wants
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to signal to the market that it has a strong balance sheet and financial
performance. The company then decides to initiate a share repur-
chase program and announces that the management has authorized
using the cash flow generated from the business to buy back the
company shares in the open market.

Share repurchase will surely reduce the number of outstanding
shares. What about the value of the company? Before the repur-
chase, suppose the number of issued shares is N, and the equity is
decomposed into two parts, e + C, where C is the cash authorized
for repurchase of company shares. After the repurchase campaign,
which reduces N by n, the equity becomes e, and the equity per
share becomes e/(N — n) instead of (e + C')/N before the buyback.

In equilibrium, the equity per share should be equal before
and after the repurchase. This is because no real investment or new
business project is involved. It follows that

e e+ C
N-—n N

(9.10)

Solving for n, we obtain

Ne e
n=N e+C_N<1 e+C>'

Obviously, there is no guarantee that with the cash amount of
C, the number of repurchased shares equals n. The straightforward
reason is that the share price fluctuates and will not remain constant
at the price of C'/n per share. If the company repurchases less shares
than n, then from (9.10), the equity per share after the buyback will
be smaller than that before the repurchase. Conversely, the equity
per share will become larger if the repurchased share is more than n.

Speculators know this simple logic and they will be unwilling to
sell at a price less than C'/n. What it means is that existing investors
who have bought and currently hold the stock will “suffer” for the
loss of equity per share.

Now, since there is less number of issued shares, the earnings
per share will artificially become larger. By “artificial”, it means
that it is not the genuine increase in earnings that causes the ratio
to become larger. Everything else being equal, stock of a larger earn-
ings per share is a better choice for investment. Although artificially
generated, existing investors stand to “benefit” from this increase in
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earnings per share. Investors who do not already have the shares
may consider it a better stock to buy, since its eps has become higher.
From this analysis, we may hypothesize that the share price tends to
increase.

On the other hand, returning the capital back to investors can also
be interpreted as a signal that the company does not have a high-
margin business project for organic growth. Therefore, it can also be
interpreted as a signal that the company management is not willing
to take risks in new projects and decides that it is better or safer to
return the capital back to investors. These possible interpretations
imply that the company has reached its growth potential and may
have even reached its apex. Going forward, it is not likely to have an
upward breakout and so the share price should drop upon repurchase
announcement.

At the end of the day, is share repurchase a good news or bad
news? In other words, will the announcement of repurchase cause
an increase or a drop in share price? Or, will the positive and neg-
ative interpretations cancel out each other, resulting in statistically
insignificant share price movements?

To test these hypotheses, we obtain a list of share buy-
back announcements from MarketBeat. Most companies announce
repurchase of shares in conjunction with their quarterly financial
report. Therefore, it is necessary to filter out those stock buyback
announcements that are made on the scheduled date of earnings
reporting. Additionally, the announcement time is unavailable from
MarketBeat.

To obtain the time of announcement, we check against various
sources, including PR Newswire and businesswire. Altogether,
we obtain 41 events. So we have the necessary data for our event
study on the effects share repurchase has on share price.

The results are presented in Figure 9.9 for average abnor-
mal return and Figure 9.10 for cumulative average abnormal
return. Since there are only 41 events of share repurchase, for which
the announcement is not scheduled, the statistical significance, or the
lack thereof, should not be taken as facts cast in stone. This event
study of share repurchase is just an exploratory data analysis.

Nevertheless, we find that AAR is highly significant with a ¢ statis-
tic of 6.16 on the event date. The economic significance, on the other
hand, is a mere 2.29%. In other words, after discounting for the mar-
ket effect via the proxy of S&P 500 index ETF (ticker symbol: SPY),


https://www.marketbeat.com/stock-buybacks/
https://www.marketbeat.com/stock-buybacks/
https://www.prnewswire.com/
https://www.businesswire.com/portal/site/home/
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Figure 9.9 The AAR and their ¢ statistics for 41 share buyback events. The
event dates are in the first seven months of 2021.
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Figure 9.10 The CAAR and their ¢ statistics for 41 share buyback events. The
event dates are in the first seven months of 2021.

the stock return after the repurchase announcement beats the mar-
ket by 2.29%. If a speculator could buy the stock and sell SPY with
the appropriate hedge ratio, and then unwind the position at the
end of event date, he would gain 2.29% on average. Of course it is
impossible because the announcement is not scheduled and there is
no way for outsiders to know the event date.
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Another important observation from Figure 9.9 is that leakage of
information is not apparent, on average, prior to share repurchase
announcements, as the absolute values of ¢ scores are less than 2 in
the pre-announcement window.

Moving on to CAAR in Figure 9.10, we find that all the ¢ scores
are statistically insignificant at the 5% level. Nevertheless, we see a
mild jump on the event date, and the upward movement persists,
which reaches the peak 3 days after the event date. Thereafter, the
effect wanes as the t score moves downward.

In summary, this section provides preliminary evidence that, on
balance, most investors take the share repurchase action as a pos-
itive signal. That said, from the post-announcement window, we find
that the effect is not permanent.

9.9 Addition and Deletion to S&P Indexes

So far, we have been analyzing events that are generated exclusively
by companies. The information source is the company management,
and the events are either scheduled (earnings announcements)
or unscheduled (share repurchase). These events provide material
information for investors to reevaluate and readjust their positions,
leading to stock price changes that cannot be explained by correlating
movements in the market.

What about the events generated by a complete outsider, such as
S&P Dow Jones Indices? Specifically, if this index publisher selects
a company to be included in the well-known index such as the S&P
500 index, will there be a stock price reaction?

At first glance, addition or deletion of a company to or from an
index membership has nothing to do whatsoever with the company’s
business. It neither enhances nor degrades corporate competitiveness.
In principle, there should not be any abnormal return. This is the
null hypothesis, which can be empirically tested.

On the other hand, an ETF that tracks the index must buy the
stock of a company that is added to the index. It must also sell the
shares of a company that is deleted from the index. Although addition
to or deletion from an index by an index service provider certainly
does not change the intrinsic value of a company, it nevertheless
affects investors’ perception and valuation. On top of that, it creates
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a demand as ETFs buy shares of a company according to the weight
it will have in the reconstituted index. For those stocks that are
dropped from an index, ETFs must sell them, so as to track the
reconstituted index as closely as possible.

In the announcement, S&P Dow Jones Indices admit a caveat
that “additions to and deletions from S&P Dow Jones Indices do not
in any way reflect an opinion on the investment merits of the compa-
nies involved.” This section provides an analysis to examine whether
there are investment merits in connection with the announcements
on changes in index membership.

9.9.1 Three important indices of SEP Down Jones

First of all, we recall the structure of S&P indices by market cap-
italization. The most famous one is none other than the S&P 500
index (called BigCap henceforth). Of the 500 companies, the top
100 firms are singled out to form the S&P 100 index. Obviously,
S&P 100 index is a subset of BigCap; every constituent company
in S&P 100 index is also a member of BigCap. Importantly, S&P Dow
Jones Indices also provide MidCap S&P 400 index and S&P Small-
Cap 600 index. In total, it follows that this index service provider
maintains a virtual portfolio of 1,500 companies.

As a replacement, when S&P Dow Jones Indices decide to add a
company stock to BigCap, two possibilities are to be considered:

(1) Membership deletion from MidCap is involved.

(2) Membership deletion from MidCap is not involved.

Type (1) addition is indicative of an “upgrade” from MidCap to
BigCap. This upgrade happens when the market capitalization of a
MidCap company, over the years, has increased to the extent that it
can now join the league of BigCap. On the other hand, Type (2) is
a brand new or fresh addition, because the company has not been
a constituent of either the MidCap or SmallCap index before in the
immediate past few years.

Next, when a SmallCap company is set to join MidCap, its current
SmallCap membership has to be deleted. By contrast, a company
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completely alien to S&P Dow Jones Indices’ virtual portfolio is a
new addition.

Now, for membership deletion from BigCap to make way for a
replacement, there are two possibilities also:

(1) Membership addition to MidCap is involved.

(2) Membership addition to MidCap is not involved.

Type (1) deletion carries the nuance of a “downgrade” from Big-
Cap to MidCap. The most likely scenario is that the stock price
has declined so much that the market capitalization falls below the
proprietary threshold set by S&P Dow Jones Indices. Nevertheless,
the company still qualifies for membership in MidCap, and thus an
addition to MidCap is announced concomitantly.

Next, for MidCap, the deletion from it could be due to an
“upgrade” to BigCap as discussed earlier, or a “downgrade” to Small-
Cap. That is, the “downgrade” from MidCap to SmallCap occurs as
the result of deletion from MidCap and simultaneous addition to
SmallCap. Being at the bottom of the market value chain, deletion
of SmallCap is a clear cut departure for good from SmallCap.

Therefore, in analyzing the effects of addition and deletion, it
is necessary to differentiate addition of new companies and deletion
of the nature of complete dropout, from membership transfers among
these three indices. In other words, we cannot take the events of addi-
tion and deletion at face value. A distinction has to be made because
the nature of new entry and complete departure is very different from
that of inter-index transfer.

9.9.2 C(Classification of additions and deletions

In empirical analysis, we tap on the publicly available resource
prnewswire.com. Using the search keyword “S&P Dow Jones”, we
are able to obtain announcements by S&P Dow Jones Indices per-
taining to addition and deletion. Each announcement news is marked
by not only the date but also the time, which allows us to determine
the event day for each event.


https://www.prnewswire.com/news/s%26p-dow-jones-indices/
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We then classify and code the events as follows:

(1) New: Addition of a completely new company to any of the three
indices.

(2) Drop: Deletion with complete elimination from any of the three
indices.

(3) Up: Addition of the type of upgrade transfer either from Mid-
Cap to BigCap, or from SmallCap to MidCap.

(4) u2: Deletion that accompanies an upgrade transfer either from
MidCap to BigCap or from SmallCap to MidCap.

(5) UUp: Addition of the type of upgrade transfer from SmallCap
to BigCap.

(6) uu2: Deletion that accompanies an upgrade transfer from Small-
Cap to BigCap.

(7) Down: Deletion of the type of downgrade transfer either from
BigCap to MidCap, or from MidCap to SmallCap.

(8) d2: Addition that accompanies a downgrade transfer either from
BigCap to MidCap or from MidCap to SmallCap.

(9) DDown: Deletion of the type of downgrade transfer from Big-
Cap to SmallCap.

(10) dd2: Addition that accompanies a downgrade transfer from Big-
Cap to SmallCap.

Note the addition—deletion pairing between “New” and “Drop”,
“Up” and “u2”, and so on. As a result of such pairing, the total
number of companies in each index should remain unchanged.

Altogether, from July 2, 2012 to July 27, 2021, we have found
2,256 events of addition and deletion for BigCap, MidCap, and Small-
Cap. The distribution of codes is presented in Table 9.3.

Despite having over two thousand events, many are not usable for
event study for a variety of reasons. Some stocks are already delisted
from the exchanges prior to August 2021 when this event study was
conducted. Some of the stocks are added to the indexes near their
IPO dates, and some stocks do not have sufficient historical data to
satisfy 240 days in the estimation period. And some companies have
been merged with their acquirers.
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Table 9.3 Distribution of addition—deletion event codes across three S&P
indices.

S&P New Drop Up wu2 UUp wu2 Down d2 DDown dd2

500 75 98 108 NA 1 NA 84 NA 3 NA
400 152 163 170 108 0 0 138 84 NA NA
600 398 364 NA 170 NA 1 NA 138 NA 3

Nevertheless, a noteworthy point of Table 9.3 is the correspon-
dence between “Up” and “u2”, “Down” with “d2”, and so on. For
example, there are 108 events of upgrade to BigCap, which means
that there should be 108 deletions from MidCap, because these 108
companies have to relinquish their MidCap membership in order to
join BigCap. In other words, these 108 companies in BigCap involve
a transfer from MidCap.

9.9.3 Fresh entry to SEP indices

For each of the three indices, we first present the event study results
for “New” addition events. From Figures 9.11, 9.13, and 9.15, for each
index, it is evident that on the event date, the average abnormal
return (AAR) is statistically significant. At the value of 5.38%, the
average abnormal return is the highest for the event of fresh entry of
a company into MidCap. The next highest AAR is 4.43% registered
by SmallCap.

For BigCap, though being statistical significant given that the
t statistic is 6.63, AAR is only 1.92%. Moreover, an idiosyncratic
feature is that a day after the announcement, the average abnormal
return does not turn lower as expected but it becomes higher instead.
It is intriguing that the effect of announcement concerning the addi-
tion of a new company to BigCap is stronger a day later. This is a
puzzling result and it may have to do with the fact that several big
ETFs are tracking the S&P 500 index, with total assets in the order
of a trillion dollars. They need to buy the shares of the new company
and they may need more than a day to complete the acquisition.

Turning now to the cumulative average abnormal return or
CAAR in short, we find in Figures 9.12, 9.14, and 9.16 that new
additions to the three S&P indices seem to have a permanent effect
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Figure 9.11 AARs and their ¢ statistics for 47 addition events of companies
selected to join S&P 500 index for the first time.
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Figure 9.12 CAARs and their ¢ statistics for 47 addition events of companies
selected to join S&P 500 index for the first time.

on the stock price, as the t statistic in the post-announcement
window remains elevated with high statistical significance. Particu-
larly notable is the CAAR of MidCap (Figure 9.14), which maintains
above the 6% registered on event day.
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Figure 9.13 AARs and their ¢ statistics for 87 addition events of companies

selected to join S&P 400 index for the first time.
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Figure 9.14 CAARs and their ¢ statistics for 87 addition events of companies

selected to join S&P 400 index for the first time.

For SmallCap, Figure 9.16 shows that the CAAR in the post-
announcement window traces a slight and slow decline from the
peak value. By contrast, for BigCap, as in Figure 9.12, the decline
from the peak value is relatively larger and faster.
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Figure 9.15 AARs and their ¢ statistics for 282 addition events of companies
selected to join S&P 600 index for the first time.

8
—— CAAR
7 12
6 ~ ] 10
5
8 o
o
O
%]

N
N

w
\\
)]

=

o

Cumulative Average Abnormal Return (%)
S

A%Ag// —— tscore 2

098N 6.5 5352303123 55619 940

Figure 9.16 CAARs and their ¢ statistics for 282 addition events of companies
selected to join S&P 600 index for the first time.

Overall, these results provide strong evidence that the null
hypothesis of no price impact must be rejected for the event where
S&P Dow Jones Indices announce that a company is set to join, as

new member, of one of the three S&P indices (BigCap, MidCap, and
SmallCap).
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9.9.4 Transfer to larger cap indices

What about companies that are upgraded? Running the same event
study, we obtain the results and present them in Figures 9.17 and
9.19 for average abnormal returns. Surprisingly, upgrade to larger
market capitalization index has a negative impact for 100 events
of upgrade to BigCap from MidCap. It is surprising because this
result is contrary to most market participants’ intuitive expectation
of a positive price effect, since a membership in BigCap is more
“prestigious”. Though the quantum of decline is merely —0.67% on
event day, the t statistic of —3.60 suggests its statistical significance.
Interestingly, the decline persists for another day before rebounding.
This idiosyncrasy of “one more day” has been discussed for “New”
BigCap earlier.

For 145 upgrades from SmallCap to MidCap, Figure 9.19 shows
a distinct V-shape recovery from a sharp dip to the statistically sig-
nificant —2.14% on event day.

How can we digest these counter-intuitive results? One possible
explanation might have to do with the fact that the market capi-
talization of an upgrade-transfer company is large compared to the
average MidCap stock but small compared to the average BigCap
stock. Likewise, for the transfer from SmallCap to MidCap, stock
used to have a larger weight in SmallCap sees its weight reduced
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Figure 9.17 AARs and their ¢ statistics for 100 addition events of companies
that are upgraded from S&P 400 index to join S&P 500 index.
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Figure 9.18 CAARs and their ¢ statistics for 100 addition events of companies
that are upgraded from S&P 400 index to join S&P 500 index.

significantly after the upgrade-transfer to MidCap. From the stand-
point of ETFs that replicate these indices, the net effect is therefore
more selling than buying shares of upgraded companies, resulting in
a negative price impact.

Let us now look at the CAARs plotted in Figures 9.18 and 9.20. It
is evident that stocks that are upgraded to either BigCap or MidCap
continue to have their prices depressed for about two weeks in the
post-announcement window. This interesting behavior is yet another
puzzling phenomenon, because trading activity for the purpose of
reconstitution should not take such a long time.

9.9.5 Complete dropout and transfer to smaller cap
indices

When a company is completely dropped from the three S&P indices,
in most cases, its shares are no longer traded on exchanges for a
variety of reasons. Some companies become private and thus delisted,
and some become defunct. As a result, for BigCap and MidCap, we
do no have sufficient data for analyzing the effect of deletion of the
type of complete departure, i.e., dropout (coded as “Drop”).

For SmallCap, we find 91 “Drop” events that are viable for
event study. The results for these 91 “Drop” events are presented
in Figure 9.21 for AAR. A sharp drop to —10.44% on the event day
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Figure 9.19 AARs and their ¢ statistics for 145 addition events of companies
that are upgraded from S&P 600 index to join S&P 400 index.
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Figure 9.20 CAARs and their ¢ statistics for 145 addition events of companies
that are upgraded from S&P 600 index to join S&P 400 index.

is clearly evident. This outcome is both statistically and economically
significant. In contrast to the good news that gives rise to 4.43% in
Figure 9.15 for fresh entry of a company into SmallCap, dropout
deletion is bad news.

Moreover, Figure 9.22 shows that those “dropout” companies
on average cannot recover from the price impact in the post-
announcement window where CAAR continues to dip lower than
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Figure 9.21 AARs and their ¢ statistics for 91 deletion events of S&P 600 com-
panies, which are completely removed from S&P family of indices.
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Figure 9.22 CAARs and their ¢ statistics for 91 deletion events of S&P 600
companies, which are completely removed from S&P family of indices.

the —14.29% recorded on the event day. It appears that membership
of a small company in SmallCap seems to command a market pre-
mium. As soon as S&P Dow Jones Indices delete its membership,
for at least two weeks from the business day of announcement, the
stock price remains depressed.
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Figure 9.23 AARs and their ¢ statistics for 60 deletion events of S&P 500 com-
panies by way of downward transfer to S&P 400 index.
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Figure 9.24 CAARs and their ¢ statistics for 60 deletion events of S&P 500
companies by way of downward transfer to S&P 400 index.

Turning now to the downward transfer from BigCap to MidCap,
Figures 9.23 and 9.24 of this event study show that neither AAR
nor CAAR is statistically significant. In other words, the downward
transfer from BigCap to MidCap does not affect the stock price.

On the other hand, the downward transfer from MidCap to Small-
Cap comes with a statistically significant AAR of 3.78% on event day.
Like its upward transfer counterpart of SmallCap to MidCap (see
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Figure 9.25 AARs and their ¢ statistics for 96 deletion events of S&P 400 com-
panies by way of downward transfer to S&P 600 index.

Figure 9.25), this is a counter-intuitive outcome. Despite the down-
ward transfer due to the company’s market capitalization being less
than the threshold for MidCap, it becomes one of the largest stocks
in the SmallCap category. Since these S&P indices are weighted by
market capitalization, ETFs need to purchase more shares of this
“downgraded” company during the process of reconstitution, so that
it has a larger weight in SmallCap now than it had in MidCap. This
could be a possible explanation for these counter-intuitive findings.

9.9.6 Summary of results

We summarize all results of the event study in this section in
Table 9.4. It is interesting to find that the announcement of addition
to an index provided by S&P Dow Jones Indices does not necessar-
ily lead to a positive price impact on event day. Similarly, deletion
does not necessarily suggest that it is a bad news for a deleted stock.
Next-level detail of distinguishing a fresh entry of a company from
an upgrade transfer must be considered. In the same vein, a complete
departure or dropout must be separated from a downgrade transfer.

Except for the case of downgrade transfer of a BigCap company to
MidCap, average abnormal returns are generally statistically signif-
icant. Since most of the announcements are unscheduled, are there
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Table 9.4 Summary of the event study of S&P additions and deletions. All
AARs, except those of the “Down” event for BigCap, are (highly) statistically
significant.

Code S&P Index Events Events used AAR Figures

BigCap 75 47 1.92%  9.11, 9.12

New MedCap 152 87 5.38% 9.13, 9.14

Addition SmallCap 398 282 4.43% 9.15, 9.16
Up BigCap 108 100 —0.67% 9.17, 9.18

MedCap 170 145 —2.14% 9.19, 9.20

Drop  SmallCap 364 91 —10.44% 9.21, 9.22

Deletion  Down BigCap 84 60 0.58% 9.23,9.24
MedCap 138 96 3.78% 9.25, 9.26
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Figure 9.26 CAARs and their t statistics for 96 deletion events of S&P 400
companies by way of downward transfer to S&P 600 index.

any statistical arbitrage opportunities for speculators? One possi-
ble opportunity is the case of MidCap companies downgraded to
SmallCap. From Figure 9.26, we find that over the 2-week post-
announcement period, CAAR moves upward from 5.06% to 7.53%,
which is a gain of 48.81%.

At any rate, it is interesting that company outsiders such as an
index service provider can influence the stock price.
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9.10 Summary

Event study is an application of simple linear regression when the
market model is used as the benchmark. A meaningful event study is
one where the events are well defined. First and foremost, the event
day must be known. An announcement may occur before, during, or
after the trading session. For news that becomes public after the stock
market has closed, the event day is the business day immediately after
the day of announcement.

Moreover, events must be judiciously separated or classified. In
other words, samples are to be grouped according to whether the
event is potentially good news, bad news, or no news.

The event study methodology involves the division of event win-
dow into two parts, pre- and post-announcement windows. For
stocks, it is very important to adjust for stock market movement.
The so adjusted return is called abnormal return, and it captures
the return attributed to news that can potentially affect the stock
price.

This chapter provides description of how a trading strategy can
be implemented by treating the abnormal return as a net return from
the spread between the return on a stock and the return on an ETF
that tracks the equity market. Simple linear regression is applied to
establish the spread ratio, which is the OLS slope estimate with daily
returns in the estimation period.

The events covered in this chapter include an unscheduled
announcement of a drastic cut of the target interest rate, a case
study of AIG in the 2008 global financial crisis, company earnings,
share repurchase, and S&P Dow Jones Indices’ addition and deletion
of companies for S&P 500, 600, and 400.

Hopefully, data scientists can come to appreciate the impor-
tance of knowing the application domain deeply enough. Event study
methodology is a well-designed tool, which allows the hypothesis to
be tested. But without a problem to solve and without a data set,
it remains a tool. Data sets are indispensable in empirical analysis.
Techniques of data science are useful in data collection, verification,
and error detection, for curating data sets that allow “patterns” to
be discovered in event study.
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Exercises

9.A

9.B

9.C

9.D

With the market model being employed as the benchmark, and
the length of the estimation period being 91, the residual sum of
squares is 0.5 from the simple linear regression. Coincidentally,
the market return r,, 10 equals its sample average. What is the
standard error for AR; 109 (accurate to 2 decimal places)?

When the length L of the estimation period is large, what is a
good approximation of the variance of AR;; in (9.3)7

Suppose AR;, 2 N(0,0.02) for all 7. What is the distri-

bution of the cumulative abnormal return CAR;(10,—10) =
Ziozflo AR;r?

Consider M = 5 events of the same type. Suppose the sum of
the variances for these events is 0.06 for a particular day 7 in
the event window. What is the distribution of AAR,?
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Chapter 10

A Case Study of Modeling:
Pair Trading

Data scientists, working with other quantitative analysts, at times
may need to design a model or to understand how a new model
actually works. This short chapter presents a case study in the field
of algorithmic trading.

A very important element to begin any modeling work is to have
a breakthrough in grasping the key idea — the essence. For pair
trading strategy, it is essentially about taking a neutral or zero
position in terms of the net cash amount needed to buy a stock, and
at the same time short-sell another stock. Both stocks are assumed
to be highly correlated, and better still, to be co-integrated, which
is a fanciful term given by economists.

Although pair trading, according to Do and Faff (2010), may not
work as well as it used to, from the standpoint of pedagogy in mod-
eling, it will be interesting for data scientist to figure out how it
actually works.

10.1 Modeling of Pair Trading

Suppose P, and (@ are the prices of two stocks that are
co-integrated at time s. With no loss of generality, suppose
P, > Q5. The essence of a pair trading strategy is, given a constant
denoted by h,

Ps = hQsa (101)

369
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which occurs not frequently. From the perspective of trading, the
cash value of stock Ps is equal to that of hQ)s. Thus, the net cash
amount is zero, and hence dollar neutral. This is the main idea
behind pair trading.

Definition 10.1. In general, at a different time t,
St = Py — hQy

and call it the spread between these two stock prices. The constant
h is referred to as the hedge ratio. Pair trading strategy is said to
be dollar neutral when S; = 0.

The spread Sy generally is non-zero most of the time. To describe
this situation, we modify the dollar-neutral equation, i.e., (10.1), by
a multiplicative random variable p;, which is strictly positive, as
follows:

Py = hQ:pr.
Applying natural logarithm on both sides, we obtain
InP;, =1Inh+1InQ; + uy,

where u; = In p;. Alternatively, we write

Taking the exponential on both sides, we obtain
Pt = e“tth. (102)

If u; is assumed to be normally distributed with mean m and
variance o2, then when the expectation operator E(-) is applied on
both sides of (10.2),

E(F) = hE (€") E(Qr) = he™ 27" E(Qy).

We have also assumed that e“* and (); are independent of each other,
which is most likely true because u; is a normally distributed random
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variable. As a result, the expected spread in dollars is
E(P) — hE(Q:) = E (P — hQ:) = 0,
where
f = he™t3o”, (10.3)
We shall name h the effective hedge ratio.
Definition 10.2. The effective spread is defined as
S, := P, — hQ,.

Taking a long position in an effective spread means buying a share
of stock P; and selling h shares of ;. Conversely, a short position
in an effective spread involves selling a share of stock P; and buying
h shares of Q.

Next, we consider the variance by first rewriting (10.2) as

I
L= e, 10.4
"o, (10.4)

v <%> = gZmto’ (e"2 - 1).

We can rearrange the terms to obtain

1 P, o2 1
e2m+o? 2 v @ =¢ -4

Given the definition of effective hedge ratio (10.3), we have h? =
e2m+02 h2

The variance is

and the variance expression on the left-hand side can be
rewritten as

hQy hQ: hQy hQy

We have used the property that the variance of a random variable
plus a constant is no different from the variance of the random vari-
able only.
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Hence, we obtain

where
w:i=Ver -1 (10.5)

is called the effective standard deviation, which is the volatility
of effective spread.

We can now formulate a pair trading strategy as follows. In
anticipation of approximately 2.5% probability of adverse moves,

e when the spread return % > 2w, sell the effective spread §t,
t
and _ ~
e when the spread return % < —2w, buy the effective spread S;.
t

The variance o2 at the daily rate is a small value. Consequently, w?
is also a small number. For practical use, it is more convenient to sell
the spread when S; > 2wh@;, buy the spread when S; < —2wh(Q,
and do nothing when —2wh@; < S; < 2whQ;.

10.2 Estimation of Pair Trading Parameters

For estimation, we start with (10.4), which can be rewritten as
In(P;) — In(Q¢) = ut + In(h). (10.6)

Since the mean reverting u; has mean m, we obtain

E(In(h)) +m=E <ln <%>>

which can be rewritten as

E(In (he™)) = E (m (%)) (10.7)

Suppose there are n observations. The estimate for the right-hand
side of (10.7) is

(5
i Q: i
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Since the hedge ratio h and mean m are assumed to be constants, and
so is In (hem), it follows that E (ln (hem)) =1In (hem). In practice,
(10.7) tells us that we can estimate he™ by

hem = e,

Moving on to the estimation of o2, we note that since In(h) is a
constant, from (10.6), we have

\Y (lnPt - tht) =V(u) = 2.

Therefore,

Accordingly, from (10.3), we obtain an estimate for the effective
hedge ratio,

Likewise, from (10.5), we get

O=Ve" —1.

With these two estimates, the pair trading strategy is summa-
rized as follows:

long, if S, < —gEDﬁQt
spread position = ¢ short, if S; > g@ﬁ@t
neutral, if — g(&ﬁQt <5 < g(&ﬁQt.
Here, g acts as a control for users to set. Earlier in Section 10.1,
g = 2 is set for exposure to 5% risk of a move in the market that is

adverse to the trading position taken. If we are risk averse, we can
set g to a higher value such as 5.
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10.3 A Pair Trading Example

The S&P 500 index attracts at least three financial institutions to
offer ETF's that track this de facto market portfolio. In their respec-
tive ticker symbols, they are State Street Global Advisors’ SPY and
SPLG, Blackrock’s IVV, and Vanguard’s VOO.

Purely for the purpose of illustration of how a pair trading works,
we shall consider only the pair SPLG and VOO. Their daily prices
can be downloaded from yahoo!finance. Since the prices of VOO
are larger than those of SPLG on any given day, we let P, denote the
price of VOO and let QQ; be the price of SPLG.

For the entire sample period from September 9, 2010 to September
17, 2021, we obtain an estimate of 7.82 for the effective hedge

ratio, which allows to construct the effective spread St th
The time series of Sy is plotted in Figure 10.1. Is S; a mean—revertmg
process?

To answer this important question, we run the regression
described in Section 8.7, obtaining an estimate of 0.3728 for the
)\ parameter, which is statistically significant as its ¢ statistic is 25.20.
By contrast, the estimate for y-intercept of 0.012852 is not statisti-
cally significant.

These estimates allow us to infer that the half life is 1.86 days,
and that the long-term mean is 0.0344, which agrees with the average

Effective Spread ($)

N lg\ﬁ ° P e

10\’1 20

Figure 10.1 Time series of effective spread between Vanguard’s VOO and State
Street Global Advisors’ SPLG.
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Table 10.1 Pair trading results at the control of g = 5.

Position Date Effective spread ($) Threshold ($) Profit ($)

Short 2011-06-29 2.22 2.12
Short 2011-08-29 2.59 1.95
Long 2011-09-09 —2.76 —1.98 10.32
Long 2011-09-21 —2.40 —2.00
Long 2011-09-30 —2.86 —-1.95
Short 2011-10-04 291 1.81 16.75
Long 2015-08-20 —4.75 —=3.77 7.67

value obtained from direct computation. Moreover, we find that the
adjusted R? is 18.61%), which is much better than the 1.03% obtained
for VIX.

This diagnostic of finding evidence for the mean-reverting prop-
erty of the effective spread is extremely important. This mean-
reverting behavior is what makes a pair trading strategy work.

As an illustration and for simplicity, let us set the risk aversion
control ¢ = 5. For this value of g, crossings of upper and lower
thresholds occur seven times. Table 10.1 provides the details.

We note that first of all, the effective spread is much larger in
magnitude than the threshold. At this stringent control of g = 5, the
signal, which is the event of crossing the threshold, occurs six times
in 2011 and once in 2015. In other words, pair trading signals exhibit
clustering behavior.

Suppose we can buy one unit of spread each time. For ease of
understanding, let us look at the last profit of $7.67 in the last row
of Table 10.1. It is obtained from selling the effective spread at the
price of $2.91 and buying it back at the price of -$4.75. Since P&L
is the selling price minus the buying price, we thus obtain $2.91 —
(—$4.75) = $7.67. For the profit of $10.32, since there are two short
positions, the profit is therefore

$2.22 — (—$2.76) + $2.59 — (—$2.76) = $10.32.

Finally, for the profit of $16.75, there are three long positions and
hence

3% $2.91 — (—$2.76 — $2.40 — $2.86) = $16.75.
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It must be said that on paper, pair trading seems easy and
straightforward, but nothing could be further from the truth. The
first thing we need to realize is that the effective hedge ratio is not a
whole number. Therefore, we need to scale up to 100 shares of VOO
to 782 shares of SPLG. Next, for long position, we need to buy 100
VOO shares and at the same time sell 782 SPLG shares. Conversely,
for short position, we need to sell 100 VOO shares and buy 782 SPLG
shares simultaneously. Also, a judgment call has to be made to round
782 shares to 800 shares.

Certainly, the most critical aspect to consider is the liquidity of
each ETF. In particular, SPLG had very low trading activity in the
early part of the sample period. Surprisingly, no share was traded
for all days in Table 10.1 except September 21 (800 shares) and
October 4, 2011 (14,000 shares). In view of such appalling liquidity,
this spread trading strategy is not going to work.

Data scientists therefore need to check all aspects in modeling.
For pair trading, it is important to check by assuming the role of a
trader to run through trade executions on paper to examine whether
they are feasible. In this example, it is clear that VOO-SPLG pair
trading is impossible in practice.

Exercises

10.A Two stocks are highly correlated and their prices are, respec-
tively, $20 and $50 per share at time ¢. The estimate for the
effective hedge ratio is 2.0, and the variance of the noise is
estimated to be 0.1.

(1) Which should be the price P, in the effective spread S;?

(2) How many shares of @); are needed for one share of P, in
the effective spread?

(3) What is the value of the effective spread?
(4) What position should be taken?
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market factor, 315
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market premium, 362

market price, 334
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154, 170, 177, 179

market variable, 185

market volatility, 209, 301, 307

material science, 2

matrix, 73

maturity, 187, 190, 194, 208, 222

maximum likelihood sample variance
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maximum likelihood variance, 257

maximum-likelihood estimator, 255

mean, 370, 372

mean reversion rate, 306

mean reverting model, 307

mean-reverting process, 306, 374

measure of deviation, 85

metal futures, 203
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midpoint, 109, 211-212, 214
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model of data, 267

model of stock price, 236

model-free algorithm, 216

model-free approach, 209

model-free variance, 210

model-free variances, 215

model-free volatility index, 215

moment generating function (mgf),
92, 97

monetary policy announcement, 326

money managers, 9

monotonically increasing function, 34

multi-period return, 117

multiple linear regression, 308-309,
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multiplier, 201

mutual funds, 160

mutually exclusive, 71, 73
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NASDAQ composite index, 145-146

near the money, 208

near-the-money options, 212

negative surprise, 99

net asset value (NAV), 167-168, 177

net cash flow, 219, 221-222

new addition, 353

Nihon Keizai Shimbun, 149

Nikkei, 149, 225

no memory, 245

no risk-free arbitrage, 127
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noise, 26, 268, 273, 277, 282, 304, 308,
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non-stationary, 238

non-stationary time series, 244

nonfarm payrolls, 104

normal distribution, 78-79, 92

normal pdf, 10

normal probability density function,
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normally distributed, 84, 370
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observation science, 2
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OLS forecast, 296

OLS model, 304

OLS regression, 293, 336

OLS residuals, 331
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size-weighted index, 155

skewness, 241
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success, 65
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t distribution, 298
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t statistic, 38
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total non-farm payroll, 104
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total return index, 205
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total-return price, 135
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trading liquidity, 203
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true covariance, 270

true value, 249, 297

two-sample t test, 79, 84

two-sample test, 99

two-tail, 29
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unconditional expectation, 45
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underlying price, 188

underlying security, 210

unexpected announcement, 326

uniform partition, 237

unweighted, 164
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up candle, 110

up probability, 64
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upper shadow, 111-112

upside surprise, 321

US dollar futures, 203

US Dollar Index (USDX), 107, 109
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value line arithmetic average, 165

value line geometric average, 165

value line index, 165

value per share, 102

value-weighted, 162, 164, 166

value-weighted ETF, 158
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value-weighted return, 304

variance, 20, 22, 295, 301, 370

variance of an estimator, 28

variance of noise, 27
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volatility cluster, 262
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weighted average, 301

weights, 279, 300

World Federation of Exchanges,
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Y

10-year bond, 15
2-year bond, 15
y-intercept, 274, 276, 289, 308

yield curve, 15
yield to maturity, 15

Z
z score, 28—29, 256
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zero covariance, 246-247, 250, 253,
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zero mean, 328

zero-variable model, 268, 274
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