L

r_,_'_ —I
s
=l O

g "".x |
| |
T
s
|

= B RS i

= LN

- HIERARCHIES

- AR




JOE CELKO'S
TREES AND

HIERARCHIES
IN' SQL FOR SMARTIES

%

Joe Celko

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ¢ SAN DIEGO

sevamiies SAN FRANCISCO ° SINGAPORE e SYDNEY ¢ TOKYO
ELSEVIER o .

SRR
h?*“/{?g?} 4 ’% Z
T
2T

W2

VTN A VTN /N VT TN /N



For Hilary and Kara
I love and believe in you both




Acquiring Editor: Rick Adams
Development Editor: Dave Bevans
Project Manager: André Cuello
Designer: Joanne Blank

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information or methods described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-387733-8

Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID oo Foundation

For information on all MK publications visit our website at www.mkp.com



Graphs, Trees, and Hierarchies

I..ET‘S START WITH a little mathematical background. Graph theory is a branch of

mathematics that deals with abstract structures known as graphs. These are
not the presentation charts that you get out of a spreadsheet package.

Very loosely speaking, a graph is a diagram of “dots” (called nodes or
vertices) and “lines” (edges or arcs) that model some kind of “flow” or
relationship. The edges can be undirected or directed. The edges might
have values (the distance of a road on a map), as can the nodes (the weight
of packages in the city of the map). Graphs are very general models. In
circuit diagrams, edges are the wires and nodes are the components. On
a road map, nodes are the towns and edges are the roads. Flowcharts,
organizational charts, and a hundred other common abstract models you
see every day are all shown as graphs.

A directed graph allows a “flow” along the edges in one direction only
as shown by the arrowheads, while an undirected graph allows the flow to
travel in both directions. Exactly what is flowing depends on what you are
modeling with the graph.

The convention is that an edge must join two and only two nodes.

This lets us show an edge as an ordered pair of nodes, such as (“Atlanta,”
“Boston”) if we are dealing with a map or (a, b) in a more abstract notation.
There is an implication in a directed graph that the direction is shown by
the ordering. In an undirected graph, we know that (a, b) = (b, a), however.

VTN A VTN /N VTN /N



CHAPTER 1: GRAPHS, TREES, AND HIERARCHIES @\"

A node can sit alone or have any number of edges associated with it.
A node can also be self-referencing, as in (a, a).

The terminology used in graph theory will vary, depending on which book
you had in your finite math class. Here, in informal language, are the terms
used in this book.

Order of a graph: number of nodes in the graph.

Degree: number of edges at a node, without regard to whether the graph is
directed or undirected.

Indegree: number of edges coming into a node in a directed graph.
Outdegree: number of edges leaving a node in a directed graph.
Subgraph: a graph that is a subset of another graph's edges and nodes.

Walk: a subgraph of alternating edges and nodes connected to each other
in such a way that you can trace around it without lifting your finger.

Path: a subgraph that does not cross over itself—there is a starting node
with degree one, an ending node with degree one, and all other nodes have
degree two. It is a special case of a walk. It is a “connect the dots” puzzle.

Cycle: a subgraph that “makes a loop” so that all nodes have degree two.
In a directed graph, all nodes of a cycle have outdegree one and indegree
one. See Figure 1.1.

Connected graph: a graph in which all pairs of nodes are connected by a
path. Informally, the graph is all in one piece.

Figure 1.1



e 1.1 Defining Tree and Hierarchies 3

Forest: a collection of separate trees. Yes, I am defining this term before we
finally get to discussing trees. There are many equivalent ways to define a

tree, and I want to spend some time with them. For now, let's say that it is
a graph without any cycles.

There are many more terms to describe special kinds of graphs, but
frankly, we will not use them in this book. We are supposed to be doing SQL
programming, not learning graph theory.

The strength of graphs as problem-solving tools is that nodes and edges
can be given extra attributes that adapt this general model to a particular
problem. Edges can be assigned “weights,” such as expected travel time for
roads on a highway map. Nodes can be assigned “colors” that put them into
groups, such as men and women. Look around and you will see how they
are used.

1.1 Defining Tree and Hierarchies

There is an important difference between a tree and a hierarchy, which has
to do with inheritance and subordination. Trees are a special case of graphs;
hierarchies are a special case of trees. Let's start by defining trees.

1.1.1 Trees

Trees are graphs that have the following properties:

1. A treeis a connected graph that has no cycles. A connected graph is
one in which there is a path between any two nodes. No node sits by
itself, disconnected from the rest of the graph.

2. Every node is the root of a subtree. The most trivial case is a subtree
of only one node.

3. Every two nodes in the tree are connected by one and only one path.

4. Atreeis a connected graph that has one less edge than it has nodes.

In a tree, when an edge (a, b) is deleted, the result is a forest of two disjoint
trees. One tree contains node (a) and the other contains node (b).

There are other properties, but this list gives us enough information
for writing constraints in SQL. Remember, this is a book about
programming, not graph theory, so you will get just enough to help you
write code, but not enough to be a mathematician.



CHAPTER 1: GRAPHS, TREES, AND HIERARCHIES @\"

1.1.2 Properties of Hierarchies

A hierarchy is a directed tree with extra properties: subordination and
inheritance.

A hierarchy is a common way to organize a great many things, but the
examples in this book will be organizational charts and parts explosions.
These are two common business applications and can be understood easily
by anyone without any special subject area knowledge. And they demonstrate
that the relationship represented by the edges of the graph can run from the
root or up to the root.

In an organizational chart, authority starts at the root, with
the president of the enterprise, head of the Army, or whatever the
organization is and it flows downward. Look at a military chain of
command. If you are a private and your sergeant is killed, you still have
to take orders from your captain; subordination is inherited from the root
downward.

In a parts explosion, the relationship we are modeling runs “up the tree”
to the root, or final assembly. If you are missing any subassembly, you cannot
get a final assembly.

Inheritance, either to or from the root, is the most important property of a
hierarchy. This property does not exist in an ordinary tree. If I delete an edge
in a tree, I now have two separate trees, not one.

Another property of a hierarchy is that the same node can play many
different roles. In an organizational chart, one person might hold several
different jobs; in a parts explosion, the same kind of screw, nut, or washer
will appear in many different subassemblies. And the same subassembly
can appear in many places. To make this more concrete, imagine a
restaurant with a menu. The menu disassembles into dishes, and each
dish disassembles into ingredients, and each ingredient is either simple
(salt, pepper, flour, etc.) or it is a recipe itself, such as Béarnaise sauce
and Hollandaise sauce. These recipes might include further recipes. For
example, Béarnaise sauce is Hollandaise with vinegar for the water and
adds shallots, tarragon, chervil, and (sometimes) parsley, thyme, bay leat,
and cayenne pepper.

Hierarchies have roles that are filled by entities. This role property
does not exist in a tree; each node appears once in a tree and it is
unique.



1.1 Defining Tree and Hierarchies

1.1.3 Types of Hierarchies

Getting away from looking at the world from the viewpoint of a casual
mathematician, let's look at it from the viewpoint of a casual database sys-
tems designer. What kinds of data situations will I want to model? Looking
at the world from a very high level, I can see four kinds of modeling
problems.

1.

Static nodes and static edges. For example, a chart of accounts in an
accounting system will probably not change much over time. This is
probably best done with a hierarchical encoding scheme rather than
a table. We will talk about such encoding schemes later.

Static nodes and dynamic edges, for example, an Internet Newsgroup
message board. Obviously, you cannot add a node to a tree without
adding an edge, but the content of the messages (nodes) never
changes once they are posted, but new replies can be posted as
subordinates to any existing message (edge).

Dynamic nodes and static edges. This is the classic organizational
chart in which organization stays the same, but the people
holding the offices rotate frequently. This is assuming that your
company does not reorganize more often than its personnel
turnover.

Dynamic nodes and dynamic edges. Imagine that you have a graph
model of a communications or transportation network. The traffic
on the network is changing constantly. You want to find a minimal
spanning tree based on the current traffic and update that tree

as the nodes and edges come on and off the network. To make

this a little less abstract, the fastest path from the fire station to a
particular home address will not necessarily be the same route at
05:00 hours as it will be at 17:00 hours. Once the fire is put out,
the node that represented the burning house node can disappear
from the tree and the next fire location becomes a node to which
we must find a path.

Looking at the world from another viewpoint, we might classify
hierarchies by usage—as either searching or reporting. An example of a
searching hierarchy is the Dewey Decimal system in a library. You move from



6 CHAPTER 1: GRAPHS, TREES, AND HIERARCHIES @\"

the general classifications to a particular book—down the hierarchy. An
example of a reporting hierarchy is an accounting system. You move from
particular transactions to summaries by general categories (assets, liabilities,
equity)—up the hierarchy.

You might pick a different tree model for a table in each of these situations
to get better performance. It can be a very hard call to make and it is hard to
give even general advice. But it is hoped that I can show you the trade-offs
and you can make an informed decision.

1.2 Network Databases

Conference on Data Systems Languages (CODASYL) was a consortium
formed in 1959 to develop portable programming languages for commer-
cial use. Their best effort was COBOL, which still dominates commercial
programming today, but they also had a database standard. This project was
assigned to the Data Base Task Group, and its first report in January 1968
was entitled COBOL Extensions to Handle Data Bases.

In 1969 the DBTG published a language specification for the network
database model, which became generally known as the CODASYL Data
Model. It is based on directed graphs that were traversed by an imaginary
cursor.

Like SQL, there were sublanguages. It had a data definition language
(DDL) that defined a schema, much like the DDL in SQL. Then there was a
data manipulation language (DML), which defined new verbs for COBOL.
Back in those days, nobody thought about other languages.

ANSI and ISO adopted CODASYL database specifications under the
name Network Database Language (NDL), with work taking place within
the same working group (X3H2) as SQL standardization. An ISO standard
for NDL was ratified as ISO 8907:1987. It never went anywhere and finally
expired in 1998.

Several commercial products were based on the network model. Some of
the implementations were:

1. Integrated Data Store (IDS/2) from Honeywell

2. Integrated Database Management System IDMS from Cullinet (nee
Cullinane Database Systems)

3. IDS (Integrated Database System). This was the very first DBMS.
It was designed by Charles Bachman in 1960.



e 1.4 The Great Debate 7

4. DMS-1100 from Univac
5. DBMS32 from DEC (Digital Equipment Corporation)

6. IMAGE/3000 from Hewlett-Packard (a port of TOTAL from the
mainframes to HP3000 computers)

7. IMS from IBM. This hierarchic DBMS is still a dominate database
product that uses a tree data model. It may well have as much or
more data in its files than SQL. I have given it Chapter 15 by itself.

1.3 Modeling a Graph in a Program

Long before there was SQL, programmers represented graphs in the pro-
gramming language that they had. People used pointer chains in assembly
language or system development languages such as ‘C’ to build very direct
representations of graphs. However, the later, higher level languages, such
as Pascal, LISP, and PL/I, did not expose the hardware to the programmer
like the system development languages. Pointers in these languages were
abstracted to hide references to physical storage and often required that
the pointers point to variables or structures of a particular type (see PL/I's
ADDR() function, pointers' data types, and based variables as an example of
this kind of language construct).

Traditional application development languages do not have pointers, but
often have arrays. In particular, because FORTRAN only had arrays for a
data structure, a good FORTRAN programmer could use them for just about
anything. Early versions of FORTRAN did not have character string data
types—everything was either an integer or a floating point number.

This meant that the model of a graph had to start by numbering the nodes
and using the node numbers as subscripts to index into the arrays.

Once the array techniques for graphs were developed, they became part of
the “programmer's folklore” and were implemented in other languages.

1.4 The Great Debate

The Great Debate was a debate between proponents of the relational and
network approaches. It was held at the ACM SIGMOD Workshop on Data
Description, Access, and Control in 1974. Dr. E. E Codd spoke for the rela-
tional approach and Charles W. Bachman for the network, or CODASYL,
approach.



8 CHAPTER 1: GRAPHS, TREES, AND HIERARCHIES @\"

Part of the debate was a moderately complicated business problem.

Dr. Codd solved it correctly in a small number of steps. Mr. Bachman gave
an elaborate solution that was wrong. This was the point at which RDBMS
began to replace CODASYL models. ANSI X3H2 was formed, SQL became
the standard, and you know the rest.

However, one of the objections to RDBMS was that it could not represent
hierarchies easily. Because almost all commercial programming and Western
thought is based on hierarchies, set-oriented RDBMS tools would only be good
for ad hoc queries and never for serious, large databases. Well, that was wrong.

Ironically, object-oriented (OO) programming picked up hierarchies for
classes.

1.5 Note on Recursion

I am going to take a little time to explain it because trees are a recursive data
structure and can be accessed by recursive algorithms. Many commercial
programmers are not familiar with the concept of recursion. Recursion does
not appear in early programming languages. Even when it did or was added
later, as was the case in IBM's MVS COBOL product in 1999, most program-
mers do not use it.

There is an old geek joke that gives the dictionary definition: Recursion =
(REE-kur-shun) self-referencing procedure or data structure; also see recursion.

This is really pretty accurate, if not all that funny. A recursive structure is
made up of smaller structures of the same kind. Thus, a tree is made up of
subtrees. You finally arrive at the smallest possible subtrees, the leaf nodes—a
subtree of size one.

A recursive function is also like that. Part of its work is done by invoking
itself until it arrives at the smallest unit of work for which it can return an
answer. Once it gets the lowest level answer, it passes it back to the copy
of the function that called it so that copy can finish its computations. And
so forth until we have gotten back up the chain to the first invocation that
started it all. It is very important to have a halting condition in a recursive
function for obvious reasons.

Perhaps the idea will be easier to see with a simple example. Let's Reverse
a string with this SQL/PSM function:

CREATE FUNCTION Reverse (IN instring VARCHAR(20))
RETURNS VARCHAR(20)
LANGUAGE SQL



1.5 Note on Recursion 9
DETERMINISTIC
BEGIN -- recursive function

IF CHAR_LENGTH(instring) IN (0, 1) -- halt condition
THEN RETURN (instring);
ELSE RETURN -- flip the two halves around, recursively
(Reverse(SUBSTRING (instring FROM (CHAR_LENGTH(instring)/2+1))
|| Reverse(SUBSTRING (instring FROM 1 FOR CHAR_LENGTH(instring)/2))));
END IF;
END;

Given the string 'abcde', the first call becomes:
Reverse('de') || Reverse('abc')
this becomes

(Reverse(Reverse('e') || Reverse('d"))
|| (Reverse((Reverse('c') || Reverse('ab)))

this becomes:

((lel||ldl)
|| (C'c") || Reverse((Reverse('b') || Reverse('a'))))

this becomes:

(Cre'|[|"d") || Ce" || C'b" || "a")))
this finally becomes:

'edcba’

In the case of trees, we will test to see if a node is either the root or a leaf node
as our halting conditions. The rest of the time, we are dealing with a subtree,
which is just another tree. This is why a tree is called a recursive structure.

Graph Theory References

If you do not have graph theory in your mathematical background. Here is a short list of good
introductory books.

Balakrishna, V,, 1997. Schaum's Outline of Graph Theory. McGraw-Hill. ISBN 978-0070054899.
Berge, C., 2001. The Theory of Graphs. ISBN 978-0486419756.

Chartrand, G., Introductory Graph Theory. ISBN 978-0486247755. Fun and easy Dover reprint.



10

CHAPTER 1: GRAPHS, TREES, AND HIERARCHIES @\\’

Cormen, T.H., Leiserson, C.E., Rivest, R.L., 1990. Introduction to Algorithms. McGraw-Hill
Companies. ISBN 978-0262033848.

Even, S., 1979. Graph Algorithms. Computer Science Press, Rockville, MD. ISBN 978-0914894216.

Harary, E, 1994. Graph Theory. Addison-Wesley, Boston. ISBN 978-0201410334. Look for
this author as he is a big name in the field.

Hartsfield, N., Ringel, G., 2003. Pearls in Graph Theory: A Comprehensive Introduction.
ISBN 0-486432328.

McHugh, J.A., 1990. Algorithmic Graph Theory. Prentice-Hall, Englewood Cliffs, NJ. ISBN
978-013236159.

Ore, O. (revised by Robin J. Wilson), 1990. Graphs and Their Uses. American Mathematical
Association. ISBN 978-0883586352. This is a classic book written at the high school level.

Trudeau, RJ., 1994. Introduction to Graph Theory. ISBN 978-0486678702.



,),
N

Adjacency List Model

IN THE EARLY days of System “R” at IBM, one of the arguments against a relational
database was that SQL could not handle hierarchies like IMS could
and would therefore not be practical for large databases. It might have a
future as an ad hoc query language, but that was the best that could be
expected of it.

In a short paper, Dr. E. E Codd described a method for showing
hierarchies in SQL that consisted of a column for the boss_emp_name
and another column for the employee in the relationship. It was a direct
implementation in a table of the adjacency list model of a graph. Oracle
was the first commercial database to use SQL, and the sample database
that comes with their product, nicknamed the “Scott/Tiger” database
in the trade because of its default user and password codes, uses an
adjacency list model in a combination Personnel/Organizational chart
table. The organizational structure and personnel data are mixed together
in the same row.

This model stuck for several reasons other than just Dr. Codd and
Oracle's seeming endorsements. It is probably the most natural way
to convert from an IMS database or from a procedural language with
pointer chains to SQL if you have been a procedural programmer all of
your life.

VTN A VTN /N VTN /N



12 CHAPTER 2: ADJACENCY LIST MODEL @\"

2.1 The Simple Adjacency List Model

In Oracle's “Scott/Tiger” Personnel table, the “linking column” is the employee
identification number of the immediate boss_emp_name of each employee.
The president of the company has a NULL for his boss_emp_name. Here is an
abbreviated version of such a Personnel/Organizational chart table (Figure 2.1).

CREATE TABLE Personnel_OrgChart
(emp_name VARCHAR(10) NOT NULL PRIMARY KEY,
boss_emp_name VARCHAR(10), -- null means root
salary_amt DECIMAL(6,2) NOT NULL,
)

Personnel_OrgChart

emp_name boss_emp_name salary_amt
‘Albert’ NULL 1000.00
‘Bert’ ‘Albert’ 900.00
‘Chuck’ ‘Albert’ 900.00
‘Donna’ ‘Chuck’ 800.00
‘Eddie’ ‘Chuck’ 700.00
‘Fred’ ‘Chuck’ 600.00

Use of a person's name for a key is not a good programming practice,
but we will ignore that for now; it will make the discussion easier. The table
also needs a UNIQUE constraint to enforce the hierarchical relationships

aer |

Albert '

Bert Chuck

—— — ] B
Donna ’ Eddie Fred I

Figure 2.1



2.2 The Simple Adjacency List Model Is Not Normalized 13

among nodes. This is not a flaw in the adjacency list model per se, but this
is how most programmers I have seen actually program the adjacency list
model. In fairness, one reason for not having all of the needed constraints is
that most SQL products did not have such features until their later releases.
The constraints that should be used are complicated and we will get to them
after this history lesson.

I am first going to attack a “straw man,” which shows up more than it
should in actual SQL programming, and then make corrections to that initial
adjacency list model schema. Finally, I want to show some actual flaws in the
adjacency list model after it has been corrected.

2.2 The Simple Adjacency List Model Is Not Normalized

There is a horrible truth about the simple adjacency list model that nobody
noticed. It is not a normalized schema. A boss is not an attribute of an
employee any more than a book is an attribute of an author; subordination
and authorship are relationships.

The classic normal forms are only part of normalization. The short
definition of normalization is that all data redundancy has been removed
and it is safe from data anomalies. Tom Johnston coined the phrase
“non-normal form redundancies” for this particular kind of thing.

I coined the phrase that a normalized database has “one simple fact, in
one place, one time” as a mnemonic for three characteristics we want in a
data model.

We will go into details shortly, but for now consider that the typical
adjacency list model table includes information about the node (the
salary_amt of the employee in this example), as well as who its superior
(boss_emp_name) is in each row. This means that you have a mixed
table of entities (Personnel) and relationships (organization) and
thus its rows are not properly formed facts. So much for the
characteristic one.

The second characteristic of a normalized table is that each fact appears
“in one place” in the schema, that is, it belongs in one row of one table,
but the subtree of each node can be in more than one row. The third
characteristic of a normalized table is that each fact appears “one time”
in the schema, that is, you want to avoid data redundancy. Both of these
conditions are violated and we can have anomalies.



14

CHAPTER 2: ADJACENCY LIST MODEL

2.2.1 UPDATE Anomalies

oY

Let's say that “Chuck” decides to change his name to “Charles,” so we have

to update the Personnel_OrgChart table:

UPDATE Personnel_0OrgChart
SET emp_name = 'Charles’
"Chuck";

WHERE emp_name
But that does not work. We want the table to look like this:

Personnel_OrgChart

emp_name boss_emp_name salary_amt

‘Albert’ NULL 1000.00

‘Bert’ ‘Albert’ 900.00

‘Charles’ ‘Albert’ 900.00 < change as employee

‘Donna’ ‘Charles’ 800.00 < change as boss_emp_name #1
‘Eddie’ ‘Charles’ 700.00 < change as boss_emp_name #2
‘Fred ’ ‘Charles’ 600.00 < change as boss_emp_name #3

Four rows are affected by this UPDATE statement. If a Declarative Referential
Integrity REFERENCES clause was used, then an ON UPDATE CASCADE
clause with a self-reference could make the three “boss_emp_name” role
changes automatically. Otherwise, the programmer has to write two UPDATE

Statements.

BEGIN ATOMIC
UPDATE Personnel_0OrgChart

SET emp_name = 'Charles’
WHERE emp_name = 'Chuck";
UPDATE Personnel_0OrgChart

SET boss_emp_name = 'Charles’
'Chuck";

WHERE boss_emp_name
END;

or, if you prefer, one UPDATE statement, which hides the logic in a faster,

but convoluted, CASE expression.



e 2.2 The Simple Adjacency List Model Is Not Normalized 15

UPDATE Personnel_OrgChart
SET emp_name
= CASE WHEN emp_name = 'Chuck’
THEN 'Charles’,
ELSE emp_name END,
boss_emp_name
= CASE WHEN boss_emp_name = 'Chuck"
THEN 'Charles’,
ELSE boss_emp_name END
WHERE '"Chuck"' IN (boss_emp_name, emp_name);

However, as you can see, this is not a simple change of just one fact.

2.2.2 INSERT Anomalies

The simple adjacency list model has no constraints to preserve subordina-
tion. Therefore, you can easily corrupt the Personnel_OrgChart with a few
simple insertions, thus

-- make a cycle in the graph
INSERT INTO Personnel_OrgChart VALUES ('Albert', 'Fred', 100.00);

Obviously, you can create cycles by inserting an edge between any two exist-
ing nodes.

2.2.3 DELETE Anomalies

The simple adjacency list model does not support inheritance of subordination.
Deleting a row will split the tree into several smaller trees, as for example

DELETE FROM Personnel_0OrgChart WHERE emp_name = 'Chuck"';

Suddenly, ‘Donna’, ‘Eddie’, and ‘Fred’ find themselves disconnected from
the organization and no longer reporting indirectly to ‘Albert’ anymore. In
fact, they are still reporting to ‘Chuck’, who does not exist anymore! Using
an ON DELETE CASCADE referential action or a TRIGGER could cause
the entire subtree to disappear—probably a bad surprise for Chuck's former
subordinates.



16

CHAPTER 2: ADJACENCY LIST MODEL @

‘ Albert '

=y

—
Donna Eddie I Fred
|
’ Albert

e N

—
‘ Bert ’ Eddie Donna I Fred

Figure 2.2

2.2.4 Structural Anomalies

Finally, we need to preserve the tree structure in the table. We need to be
sure that there is only one NULL in the structure, but the simple adjacency
list model does not protect against multiple NULLs or from cycles.

-- self-reference
INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (a, a);

-- simple cycle
INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (c, b);
INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (b, c);

The problem is that the adjacency list model is actually a general
model for any graph. Because a tree is a special case of a graph, you need
to restrict the adjacency list model a bit to be sure that you do have only
a tree.



e 2.3 Fixing the Adjacency List Model 17

2.3 Fixing the Adjacency List Model

In fairness, I have been kicking a straw man. These flaws in the simple
adjacency list model can be overcome with a redesign of the schema.

First, the Personnel list and the Organizational chart could and should
be modeled as separate tables. The Personnel table contains facts about the
people (entities) who we have as our Personnel, and the Organizational
chart tells us how the job positions within the company are organized
(relationships), regardless of who—if anyone—holds what position. It is
the difference between the office and the person who holds that office.

CREATE TABLE Personnel
(emp_nbr INTEGER DEFAULT 0 NOT NULL PRIMARY KEY,
emp_name VARCHAR(10) DEFAULT '{{vacant}}' NOT NULL,
emp_address VARCHAR(35) NOT NULL,
birth_date DATE NOT NULL,
2

[ am assuming that we have a dummy employee named ‘{{vacant}}’ with a
dummy employee number of zero. It makes reports look nicer, but you have
to add more constraints to handle this missing value marker.

Information about the positions within the company goes into a second
table, thus

CREATE TABLE OrgChart
(job_title VARCHAR(30) NOT NULL PRIMARY KEY,
emp_nbr INTEGER DEFAULT O -- zero is vacant position
NOT NULL
REFERENCES Personnel(emp_nbr)
ON DELETE SET DEFAULT
ON UPDATE CASCADE,
boss_emp_nbr INTEGER -- null means root node
REFERENCES Personnel(emp_nbr),
salary_amt DECIMAL (12,4) NOT NULL CHECK (salary_amt >= 0.00),
2

Note that you still need constraints between and within the tables to
enforce the tree properties and to make sure that a position is not held by
someone who is not an employee of the company.



18

CHAPTER 2: ADJACENCY LIST MODEL @\"

The most obvious constraint is to prohibit a single node cycle in the graph.
CHECK (boss_emp_nbr <> emp_nbr) -- cannot be your own boss!

But that does not work because of the dummy employee number of zero
for all vacant positions.

CHECK ((boss_emp_nbr <> emp_nbr) OR (boss_emp_nbr = 0 AND emp_nbr = 0))

If we want to prevent longer cycles, we cannot use the UNIQUE(emp_
name, boss_emp_name) constraint, which limits an employee to one and
only one boss. Again, multiple vacancies will mess up this model.

We know that the number of edges in a tree is the number of nodes
minus one so this is a connected graph. That constraint looks like this in the
original simple adjacency list table.

CHECK ((SELECT COUNT(*) FROM Personnel_OrgChart) —1 -- count of edges
= (SELECT COUNT(boss_emp_name) FROM Personnel_OrgChart)) -- count of
nodes

The COUNT (boss_emp_nbr) will drop the NULL in the root row, which
gives us the effect of having a constraint to check for one NULL:

CHECK((SELECT COUNT(*) FROM Personnel_OrgChart WHERE boss_emp_name IS
NULL) = 1)

This is a necessary condition, but it is not a sufficient condition. Consider
these data, in which ‘Donna’ and ‘Eddie’ are in a cycle and that cycle is not in
the tree structure.

emp_name boss_emp_name
‘Albert’ NULL

‘Bert’ ‘Albert’

‘Chuck’ ‘Albert’

‘Donna’ ‘Eddie’

‘Eddie’ ‘Donna’

One approach would be to remove all the leaf nodes and repeat this
procedure until the tree is reduced to an empty set. If the tree does not reduce
to an empty set, then there is a disconnected cycle.



2.3 Fixing the Adjacency List Model 19

CREATE FUNCTION TreeTest() RETURNS CHAR(6)
LANGUAGE SQL
DETERMINISTIC
BEGIN ATOMIC
-- put a copy in a temporary table
INSERT INTO TempTree
SELECT emp_nbr, boss_emp_nbr
FROM Personnel_OrgChart;
--prune the Teaves
WHILE (SELECT COUNT(*) FROM TempTree) -1
= (SELECT COUNT(boss_emp_nbr) FROM TempTree)
DO DELETE FROM TempTree
WHERE TempTree.emp_name
NOT IN (SELECT T2.boss_emp_nbr
FROM TempTree AS T2
WHERE T2.boss_emp_nbr IS NOT NULL);
IF NOT EXISTS (SELECT * FROM TempTree)
THEN RETURN ('Tree ');
ELSE RETURN ('Cycles');
END IF;
END WHILE;
END;

Checking for errors once they are in the tree with a function gives the
result that there are errors, but to find the place is very hard in a large tree
then. An alternative is to add a CREATE ASSERTION statement to the
schema that will catch and prevent cycles when someone attempts to insert
them. The general skeleton looks like this:

CREATE ASSERTION Valid_Tree
CHECK ((SELECT COUNT(*) FROM Tree)
= (SELECT COUNT(*)
FROM (SELECT parent_node FROM Tree)
UNION
(SELECT child_node FROM Tree)));

This solution is better because it prevents errors from the beginning. SQL
Server and other SQL products do not have ASSERTIONs; however, this was
ported easily to a VIEW, an INSERT trigger, and an UPDATE trigger.



20

CHAPTER 2: ADJACENCY LIST MODEL @\"

These constraints will need to be deferred in some situations; in particular,
if we reorganize a position out of existence, we need to remove it from the
Organization Chart table and make a decision about its subordinates. We will
deal with that problem in another section. The original Personnel_OrgChart
is easy to reconstruct with a VIEW like this for reporting purposes.

CREATE VIEW Personnel_0OrgChart (emp_nbr, emp_name, boss_emp_nbr,
boss_emp_name)
AS
SELECT El.emp_nbr, El.emp_name, El.boss_emp_nbr, Bl.emp_name
FROM Personnel AS E1, Personnel AS Bl, OrgChart AS 01
WHERE Bl.emp_nbr = Pl.boss_emp_nbr
AND El.emp_nbr = Pl.emp_nbr;

2.3.1 Concerning the Use of NULLs

I have shown a NULL-able boss_emp_name column in my examples in
which NULL means that this row is the root of the tree; that is, that it has no
boss_emp_name above it in the hierarchy. While this is the most common
representation, it is not the only way to model a tree.

Alternatives are:

1. Use NULLSs for the subordinates of leaf nodes. This leads to slightly
different logic in many of the queries, reversing the “flow” of NULL
checking.

2. Disallow NULLSs altogether. This will record only the edges of the graph
in the table. Again the logic would change. The root would have to be
detected by looking for the one node, which is only a boss who reports
to a dummy value of some kind and is never an employee, thus:

SELECT DISTINCT boss_emp_nbr
FROM OrgChart
WHERE boss_emp_nbr NOT IN (SELECT emp_nbr FROM OrgChart);

In many ways I would prefer the second option, but using the (NULL,
<root>) convention guarantees that all employees show up in the emp_nbr
column, which makes many queries much easier to write.

This convention was not done for that reason; historically, the boss_emp_
name was considered an attribute of the employee in the data model. This is
a violation of the second normal form (2nf).



e 2.4 Navigation in Adjacency List Model 21

2.4 Navigation in Adjacency List Model

The fundamental problem with the adjacency list model is that it requires
navigation. There is no general way to extract a complete subtree.

2.4.1 Cursors and Procedural Code

The practical problem is that despite existing SQL standards, every SQL
product has a slightly different proprietary cursor syntax. The general for-
mat is to follow the chain of (emp_nbr, boss_emp_nbr) values in a loop.
This makes going down the tree fairly simple, but aggregation of subtrees for
reporting is very slow for large trees.

This approach is fairly simple if you start at leaf nodes and travel to the
root node of the tree structure.

CREATE PROCEDURE UpTreeTraversal (IN current_emp_nbr INTEGER)
LANGUAGE SQL
DETERMINISTIC
WHILE EXISTS
(SELECT *
FROM OrgChart AS T1
WHERE current_emp_nbr = Tl.emp_nbr)
DO BEGIN
-- take some action on the current node of the traversal
CALL SomeProc (current_emp_nbr);
-- go up the tree toward the root
SET current_emp_nbr
= (SELECT T1.boss_emp_nbr
FROM OrgChart AS T1
WHERE current_emp_nbr = Tl.emp_nbr);
END;
END WHILE;

2.4.2 Self-joins

The other method of doing a tree traversal is to do multiple self-joins, with
each copy of the tree representing a level in the Personnel_OrgChart.

SELECT 0l1.emp_name AS el, 02.emp_name AS e2, 03.emp_name AS e3
FROM Personnel_OrgChart AS 01, Personnel_OrgChart AS 02,
Personnel_OrgChart AS 03



22

CHAPTER 2: ADJACENCY LIST MODEL

WHERE O0l.emp_name = 02.boss_emp_name

AND 02.emp_name = 03.boss_emp_name
AND Ol.emp_name = 'Albert’;

oY

This code is limited to a known depth of traversal, which is not always
possible. This sample query produces this result table. The paths shown are

those that are exactly three levels deep.

el e2 e3
‘Albert’ ‘Chuck’ ‘Donna’
‘Albert’ ‘Chuck’ ‘Eddie’
‘Albert’ ‘Chuck’ ‘Fred’

You can improve this query with the use of LEFT OUTER JOINS.

SELECT 0l.emp_name AS el, 02.emp_name AS e2, 03.emp_name AS e3,

04.emp_name AS e4
FROM Personnel_OrgChart AS 01
LEFT OUTER JOIN
Personnel_OrgChart AS 02
ON Ol.emp_name = 02.boss_emp_name
LEFT OUTER JOIN
Personnel_OrgChart AS 03
ON 02.emp_name = 03.boss_emp_name
LEFT OUTER JOIN
Personnel_OrgChart AS 04
ON 03.emp_name = 04.boss_emp_name
WHERE O1.emp_name = 'Albert';

Because any paths at a particular level not in the table will be displayed as

NULLSs, this query can be put into a VIEW and invoked.

Note that it produces:

el e2 e3 e4

‘Albert’ ‘Bert’ NULL NULL
‘Albert’ ‘Chuck’ ‘Donna’ NULL
‘Albert’ ‘Chuck’ ‘Eddie’ NULL
‘Albert’ ‘Chuck’ ‘Fred’ NULL



2.4 Navigation in Adjacency List Model 23

This actually gives you all the subtree paths under ‘Albert’ to a fixed depth
of three. The pattern can be extended, but performance will also go down.
Most SQL products have a point at which the optimizer chokes either on
the number of tables in a FROM clause or on the levels of self-reference in a
query.

Aggregation based on self-joins is a nightmare. You have to build a table
with one column that has the unique keys of the subtree and use it to find
the rows to be used in aggregate calculations. One way to “flatten” the table
is to use an auxiliary table called Series, which contains the single column
seq of integers from 1 to (n), where (n) is a sufficiently large number.

SELECT MAX(CASE

WHEN seq = 1 THEN el
WHEN seq = 2 THEN e?
WHEN seq = 3 THEN e3
WHEN seq = 4 THEN e4

ELSE NULL END)
FROM (Series AS S1
CROSS JOIN
<< Personnel_OrgChart query as above>>
) AS X(el, e2, e3, e4)
WHERE seq BETWEEN 1 AND 4;

As you can see, this approach becomes insanely convoluted very fast and you
do not gain generality.

2.4.3 Finding a Subtree with Recursive CTE

Standard SQL supports recursive CTEs, which can be used with the
adjacency list model. You start the anchor or fixed point at the root and
then attach each level. It is a good idea to track the depth of the recursion.

WITH RECURSIVE Traversal (emp_name, boss_emp_name, recurse_depth)
AS

(-- recursion starts at the anchor or fixed point query

SELECT PO.emp_name, P0O.boss_emp_name, 0 AS recurse_depth,

FROM Personnel_OrgChart AS PO

WHERE boss_emp_name IS NULL

UNION ALL



24

CHAPTER 2: ADJACENCY LIST MODEL @\"

SELECT Pl.emp_name, Pl.boss_emp_name, (T.recurse_depth +1) AS recurse_
depth

FROM Personnel_OrgChart AS P1, Traversal AS T

WHERE T.emp_name = Pl.boss_emp_name

)

SELECT emp_name, boss_emp_name, recurse_depth

FROM Traversal;

This is actually implemented as a loop and cursors inside most SQL
products. However, this declarative from has some chance of being optimized
in the future, whereas loops and cursors do not.

2.4.4 Finding a Subtree with Iterations

This procedure will find the subtree rooted at the manager emp_nbr of your
PersonnelOrg table. The idea is simple. Create a local working table and load
it with the immediate subordinate emp_nbrs. Using the leaf nodes in a loop,
find their subordinates. When you can add no more levels to the working
tree, you have the whole subtree in the working table.

CREATE PROCEDURE GetSubtree(IN in_boss_emp_nbr INTEGER)
LANGUAGE SQL
DETERMINISTIC

CREATE LOCAL TEMPORARY TABLE WorkingTree
(LIKE PersonnelOrg)
ON COMMIT DELETE ROWS;

BEGIN ATOMIC
DECLARE Tocal_prior_size INTEGER;
DECLARE Tlocal_curr_size INTEGER;

DELETE FROM WorkingTree; -- redundant unless table is external
INSERT INTO WorkingTree
SELECT *
FROM Personnel_OrgChart
WHERE in_boss_emp_nbr = boss_emp_nbr;
SET Tocal_curr_size = (SELECT COUNT(*) FROM WorkingTree);
SET local_prior_size = 0;

WHILE Tocal_prior_size < local_curr_size
DO SET local_prior_size = (SELECT COUNT(*) FROM WorkingTree);
INSERT INTO WorkingTree



6 2.4 Navigation in Adjacency List Model 25

SELECT *
FROM PersonnelOrg
WHERE boss_emp_nbr
IN (SELECT Wl.emp_nbr
FROM WorkingTree AS W1
WHERE W1.emp_nbr
NOT IN (SELECT W2.boss_emp_nbr
FROM WorkingTree AS W2));
SET local_curr_size = (SELECT COUNT(*) FROM WorkingTree);
END WHILE;
-- SELECT * FROM WorkingTree;
END;

I chose to use COUNT(*) for the loop control because it is usually
fast and can be obtained from schema information tables. You can
rewrite this as a recursive function, but it is probably not as effective.

This procedure involves some features you might not have in your SQL
product.

Creating a temporary table inside the procedure is part of SQL:2003, but
is not in the core standard. You can create a working table outside of the
procedure body and insert into it.

The LIKE clause in the table definition copies table declarations and has
some other options in SQL:2003. This can be done with a cut and paste instead.

2.4.5 Finding Ancestors

If you want to go up the tree for a known number of levels from a known
employee, you can use this procedure:

CREATE FUNCTION GetAncestor_1
(IN in_emp_nbr INTEGER,
IN in_Tv1l INTEGER) -- levels above employee
RETURNS INTEGER
LANGUAGE sQL
DETERMINISTIC

BEGIN ATOMIC
DECLARE Tocal_boss_emp_nbr INTEGER;
SET local_boss_emp_nbr = in_emp_nbr;

IF in_1vl IS NULL
OR in_emp_nbr IS NULL



26

CHAPTER 2: ADJACENCY LIST MODEL @\"

OR in_Tvl < O
THEN RETURN CAST (NULL AS INTEGER);
END IF;

WHILE in_1vl > 0
AND Tocal_boss_emp_nbr IS NOT NULL
DO SET (local_boss_emp_nbr, in_Tv1)
= (SELECT boss_emp_nbr, in_1vl — 1
FROM Personnel_OrgChart
WHERE emp_nbr = local_boss_emp_nbr);
END WHILE;

If you prefer recursion over iteration, then you can use this version:

CREATE FUNCTION GetAncestor_2
(IN in_emp_nbr INTEGER,
IN in_1v1l INTEGER) -- levels above employee
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC

RETURN
(CASE
WHEN in_Tv1 IS NULL

OR in_emp_nbr IS NULL

OR in_1vl < O
THEN CAST (NULL AS INTEGER)
WHEN in_1vl =0
THEN in_emp_nbr
ELSE GetAncestor

((SELECT boss_emp_nbr

FROM Personnel_OrgChart
WHERE emp_nbr = in_emp_nbr),
in_1vl —-1)

END) ;

The CASE expression first looks to see if the parameters make sense. If the
level is zero, then you wanted this node. For greater levels, we traverse the
tree recursively. The scalar subquery parameter might have to be written as
(SELECT MAX(boss_emp_nbr) FROM Personnel_OrgChart WHERE emp_
nbr = in_emp_nbr) to assure the compiler that it is a scalar value.



e 2.6 Deleting Nodes in the Adjacency List Model 27

2.5 Inserting Nodes in the Adjacency List Model

This is the strong point of the adjacency list model. You just insert the
(emp_nbr, boss_emp_nbr) pairs into the table and you are done. Assuming
that they are valid, you are finished.

2.6 Deleting Nodes in the Adjacency List Model

Removing a leaf node is easy; just remove the row from the tree structure table.
All of the tree properties are preserved and no constraints will be violated.

The code for deleting nodes inside the tree is much more complex. First
you must make a decision about how to handle the surviving subordinates.
There are three basic approaches.

1.  The ancient Egyptian school of management: when a node is
removed, all of his subordinates are removed. When Pharaoh dies,
you bury all his slaves with him.

2. Send the orphans to grandmother: subordinates of the deleted node
became immediate subordinates of their boss_emp_name's boss_
emp_name.

3. The oldest son takes over the shop: one of the subordinates assumes
the position held previously by the deleted node. This promotion
can cause a cascade of other promotions down the tree until a root
node is left vacant and removed, or be stopped with other rules.

Because the adjacency list model cannot return a subtree in a single query, the
constraints will have to be deferred while a traversal of some kind is performed.

2.6.1 Deleting an Entire Subtree

The simplest approach is to do a tree traversal down from the deleted node
in which you mark all of the subordinates and then go back and delete the
subset of marked nodes. Let's use =99999 as the marker for a deleted node
and defer the constraint that forbids (boss_emp_nbr = emp_nbr).

CREATE LOCAL TEMPORARY TABLE Workingtable
(boss_emp_nbr INTEGER,

emp_nbr INTEGER NOT NULL)

ON COMMIT DELETE ROWS;

CREATE PROCEDURE DeleteSubtree (IN dead_guy INTEGER)
LANGUAGE SQL



28

CHAPTER 2: ADJACENCY LIST MODEL @\"

DETERMINISTIC
BEGIN ATOMIC
SET CONSTRAINTS <<constraint 1ist>> DEFERRED;
-- mark root of subtree and immediate subordinates
UPDATE OrgChart
SET emp_nbr
= CASE WHEN emp_nbr = dead_guy
THEN —=99999 ELSE emp_nbr END,
boss_emp_nbr
= CASE WHEN boss_emp_nbr = dead_guy
THEN —99999 ELSE boss_emp_nbr END
WHERE dead_guy IN (emp_nbr, boss_emp_nbr);

WHILE EXISTS -- mark leaf nodes
(SELECT *
FROM OrgChart
WHERE boss_emp_nbr = —99999
AND emp_nbr > —99999)
DO -- get 1ist of next level subordinates DELETE FROM WorkingTable;

INSERT INTO WorkingTable
SELECT emp_nbr FROM OrgChart WHERE boss_emp_nbr = —99999;

-- mark next level of subordinates

UPDATE OrgChart

SET emp_nbr = —99999

WHERE boss_emp_nbr IN (SELECT emp_nbr FROM WorkingTable);
END WHILE;

-- delete all marked nodes
DELETE FROM OrgChart
WHERE emp_nbr = —99999;

SET CONSTRAINTS ALL IMMEDIATE;
END;

2.6.2 Promoting a Subordinate after Deletion

This is tricky and depends on the particular business rules. One of the more
common rules is that the senior subordinate moves the position of her
deleted superior. This creates a vacancy in her old position, which might be
filled by a sibling or by a subordinate.



2.6 Deleting Nodes in the Adjacency List Model 29

I am leaving the node to the reader, but the general idea is to rearrange
the tree structure so that the dummy employee number used earlier is finally
moved to a leaf node where it is a degenerate case of removing a subtree.

For example, we could remove “Chuck” and then promote “Donna” to his
position. Her position is left vacant and can be removed, leaving “Eddie” as
the senior subordinate.

2.6.3 Promoting an Entire Subtree after Deletion

You cannot delete the root or the tree unravels into a forest of dis-
joint subtrees. The constraints will prevent this from happening, but
you can also test for the root in the insertion statement. Let's use the
WorkingTable to hold intermediate traversal results again (Figure 2.2).

CREATE PROCEDURE DeleteAndPromoteSubtree (IN dead_guy INTEGER)
LANGUAGE sQL

DETERMINISTIC

SET CONSTRAINTS <<list of constraints>> DEFERRED;

BEGIN ATOMIC

DECLARE my_emp_nbr INTEGER;

DECLARE my_boss_emp_nbr INTEGER;

INSERT INTO Workingtable (emp_nbr, boss_emp_nbr)
SELECT Tl.emp_nbr, T2.boss_emp_nbr
FROM OrgChart AS 01, OrgChart AS 02
WHERE dead_guy IN (0l.boss_emp_nbr, 02.emp_nbr)
AND dead_guy
* (SELECT emp_name FROM OrgChart WHERE boss_emp_nbr IS
NULL) ;

UPDATE Personnel_OrgChart

SET boss_emp_name = CASE WHEN OrgChart.boss_emp_nbr = dead_guy
THEN WorkingTable.emp_nbr
ELSE OrgChart.boss_emp_nbr END,

emp_name = CASE WHEN OrgChart.emp_nbr = dead_guy

THEN WorkingTable.boss_emp_nbr
ELSE OrgChart.emp_nbr END

WHERE dead_guy IN (emp_nbr, boss_emp_nbr)

AND dead_guy <> (SELECT emp_nbr
FROM OrgChart



30

CHAPTER 2: ADJACENCY LIST MODEL @\"

WHERE boss_emp_nbr IS NULL);

DELETE FROM OrgChart
WHERE boss_emp_nbr = emp_nbr;
END;

SET CONSTRAINTS ALL IMMEDIATE;

2.7 Leveled Adjacency List Model

This next approach is credited to Dr. David Rozenshtein in an article he wrote
in the now defunct Sybase user's SQL FORUM magazine (Vol. 3, No. 4, 1995).
The approach he took was to do a breadth-first search instead of a depth-first
search of the tree.

His objection was that processing a single node at a time leads to
algorithms of complexity O(n), whereas processing nodes by levels leads to
algorithms of complexity O(log2(n)) instead.

His model is a modified adjacency list mode, with an extra column for the
level of the node in the tree. Here is a sample tree, with levels filled in. Note
that LEVEL is a reserved word in Standard SQL as well as some SQL products.

CREATE TABLE Tree

(boss_emp_name CHAR(1), -- null means root
emp_name CHAR(1) NOT NULL,
Tvl INTEGER DEFAULT 0 NOT NULL);

Tree

=

boss_emp_name emp_name

NULL ‘a’

@
g,
GUl U R R R W W W NN =



2.7 Leveled Adjacency List Model 31

2.7.1 Numbering Levels

Assigning level numbers is a simple loop, done one level at a time. Let's
assume that all level numbers start as zeros.

CREATE PROCEDURE RenumberLevels()
LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE Tv1_counter INTEGER;
SET 1vi_counter = 1;

-- set root to 1, others to zero
UPDATE Tree
SET 1v1
= CASE WHEN boss_emp_name IS NULL THEN 1 ELSE O END;

-- Toop thru Tvls of the tree
WHILE EXISTS (SELECT * FROM Tree WHERE Tv1 = 0)
DO
UPDATE Tree

SET 1vl = 1vl_counter + 1

WHERE (SELECT T2.1v]

FROM Tree AS T2
WHERE T2.emp_name = Tree.boss_emp_name) > 0
AND Tv1 = 0;

SET 1vl = 1vl_counter + 1;
END WHILE;
END;

The level number can be used for displaying the tree as an indented list
in a host language via a cursor, but it also lets us traverse the tree by levels
instead of one node at a time.

2.7.2 Aggregation in the Hierarchy

Aggregation up a hierarchy is a common form of report. Imagine that the tree
is a simple parts explosion and the weight of each assembly (root node of a
subtree) is the sum of its subassemblies (all the subordinates in the subtree).
The table now has an extra column for the weight and we have information
on only the leaf nodes when we start.



32

CHAPTER 2: ADJACENCY LIST MODEL @\"

CREATE TABLE PartsExplosion
(assembly CHAR(1), -- null means root
subassembly CHAR(1) NOT NULL,
weight INTEGER DEFAULT O NOT NULL,
Tvl INTEGER DEFAULT O NOT NULL);

I am going to create a temporary table to hold the results and then use this
table in the SET clause of an UPDATE statement to change the original table.
You can actually combine these statements into a more compact form, but the
code would be a bit harder to understand.

CREATE LOCAL TEMPORARY TABLE Summary
(node CHAR(1) NOT NULL PRIMARY KEY,
weight INTEGER DEFAULT O NOT NULL

) ON COMMIT DELETE ROWS;

CREATE PROCEDURE SummarizeWeights()

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE max_1v1l INTEGER;

SET max_1v1l = (SELECT MAX(1v1) FROM PartsExplosion);

--start with leaf nodes
INSERT INTO Summary (node, total)
SELECT emp_name, weight
FROM PartsExplosion
WHERE emp_name NOT IN (SELECT assembly FROM PartsExplosion);

-- loop up the tree, accumulating totals
WHILE max_Tvl > 1
DO INSERT INTO Summary (node, total)
SELECT T1l.assembly, SUM(S1.weight)
FROM PartsExplosion AS T1, Summary AS S1
WHERE Tl.assembly = Sl.node
AND T1.1vl = max_1Tvl
GROUP BY Tl.assembly;
SET max_Tvl = max_Tvl — 1;
END WHILE;



33

6 2.7 Leveled Adjacency List Model

--transfer calculations to PartsExplosion table
UPDATE PartsExplosion
SET weight
= (SELECT weight

FROM Summary AS S1

WHERE S1.node = PartsExplosion.emp_name)
WHERE subassembly IN (SELECT assembly FROM PartsExplosion);
END;

The adjacency model leaves little choice about using procedural code, as
the edges of the graph are shown in single rows without any relationship to
the tree as a whole.



7,

*
(N

Path Enumeration Models

ONE OF THE properties of trees is that there is one and only path from the root to

every node in the tree. The path enumeration model stores that path as

a string by concatenating either the edges or the keys of the nodes in the
path. Searches are done with string functions and predicates on those path
strings. For other references, you should consult Advanced Transact-SQL
for SQL Server 2000 (Chapter 16) by Itzak Be-Gan and Tom Moreau (ISBN
078-1893115828). They made the path enumeration model popular with
this book. The code in this book is product specific, but easily generalized.

There are two methods for enumerating the paths: edge enumeration
and node enumeration. Node enumeration is the most commonly used of
the two, and there is little difference in the basic string operations on either
model. However, the edge enumeration model has some numeric properties
that can be useful.

It is probably a good idea to give the nodes a CHAR(n) identifier of a
known size and format to make the path concatenations easier to handle.
The other alternative is to use VARCHAR(n) strings, but put a separator
character between each node identifier in the concatenation—a character
that does not appear in the identifier itself.

To keep the examples as simple as possible, let's use my five-person
Personnel_OrgChart table and a CHAR(1) identifier column to build a path
enumeration model.

VTN A VTN /N VTN /N



36

CHAPTER 3: PATH ENUMERATION MODELS @\"

-- path is a reserved word in SQL-99
-- CHECK() constraint prevents separator in the column.

CREATE TABLE Personnel_OrgChart

(emp_name CHAR(10) NOT NULL,
emp_id CHAR(1) NOT NULL PRIMARY KEY
CHECK(REPLACE (emp_id, “/’, “’) = emp_id),
path_string VARCHAR(500) NOT NULL);

Personnel_OrgChart

emp_name emp_id path_string
‘Albert’ ‘N N

‘Bert’ ‘B’ ‘AB’
‘Chuck’ e ‘AC’
‘Donna’ ‘D’ ‘ACD’
‘Eddie’ = ‘ACE’
‘Fred’ ‘¥ ‘ACF

Note that I have not broken the sample table into Personnel (emp_id,
path_string) and OrgChart (emp_id, emp_name) tables. This would
be a better design, but allow me this bit of sloppiness to make the code
simpler to read. REPLACE (<str_exp_1>, <str_exp_2>, <str_exp_3>) is a
common vendor string function. The first string expression is searched for
all occurrences of the second string expression; if it is found, the second
string expression is replaced by the third string expression. The third string
expression can be the empty string as in the CHECK () constraint just given.
Another problem is how to prevent cycles in the graph. A cycle would
be represented as a path string in which at least one emp_id string appears
twice, such as ‘ABCA’ in my sample table. This can be done with a constraint
that uses a subquery, thus.

CHECK (NOT EXISTS
(SELECT *
FROM Personnel_OrgChart AS D1,

Personnel_OrgChart AS Pl

WHERE CHAR_LENGTH (REPLACE (Dl.emp_id, Pl.path_string, “’))
< (CHAR_LENGTH(Pl.path_string)

— 1) -- size of one emp_id string
))



e 3.2 Searching for Subordinates 37

Another fact about such a tree is that no path can be longer than the
number of nodes in the tree.

CHECK ((SELECT MAX(CHAR_LENGTH(path_string))
FROM Personnel_OrgChart AS P1)
<= (SELECT COUNT(emp_id) * CHAR_LENGTH(emp_id)
FROM Personnel_OrgChart AS P2))

This assumes that the emp_id is of fixed length and that no separators
were used between them in the path_string. Unfortunately, the SQL-92
feature of a subquery in a constraint is not widely implemented yet.

3.1 Finding the Depth of the Tree

If you have used the fixed length emp_id string, then the depth is
the length of the path divided by the length of the emp_id string,
CHAR_LENGTH(emp_id).

CHAR_LENGTH(path_string)/ CHAR_LENGTH(emp_id)

I have made it easy to compute by using a single character emp_id code.
This is not usually possible in a real tree, with several hundred nodes.
If you used a varying length emp_id, then the depth is

CHAR_LENGTH(path_string) — CHAR_LENGTH (REPLACE (path_string, “/’, *’)) +1

As explained earlier, the REPLACE() function is not a Standard SQL string
function, but is quite common in actual SQL products. This approach counts
the separators.

3.2 Searching for Subordinates

Given a parent, find all of the subtrees under it. The immediate solution is
this.

SELECT *
FROM Personnel_OrgChart
WHERE path_string LIKE ‘%’ || :parent_emp_id || ‘% ;

The problem is that searches with LIKE predicates whose pattern
begin with a ‘%’ wildcard are slow. This is because they usually generate
a table scan. Also, note that using °_%’ in front of the LIKE predicate



38

CHAPTER 3: PATH ENUMERATION MODELS @\"

pattern will exclude the root of the subtree from the answer. Another
approach is this query.

SELECT *
FROM Personnel_OrgChart
WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart
WHERE emp_id = :parent_emp_id) || ‘%";

The subquery will use the indexing on the emp_id column to find the
“front part” of the path string from the root to the parent with whom we are
concerned.

Traveling down the tree is easy. Instead of a ‘%’ wildcard, use a string of
underscore (*_’) wildcards of the right length. For example, this will find the
immediate children of a given parent emp_id.

SELECT *
FROM Personnel_0OrgChart
WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart
WHERE emp_id = :parent_emp_id) ||‘_";

Many SQL products have a function that will pad a string with
repeated copies of an input string or return a string of repeated copies of
an input string. For example, SQL Server has a REPLICATE (<character
exp>, <integer exp>), Oracle has LPAD() and RPAD(), and DB2
uses REPEAT(). This can be useful for generating a search pattern of
underscores on the fly.

SELECT *
FROM Personnel_OrgChart
WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart
WHERE emp_id = :parent_emp_id)
|| REPLICATE (“_", :n);

To find the immediate subordinates, assuming a numeric path string using
periods, like the structure of this book:

SELECT *
FROM Personnel_OrgChart
WHERE path_string LIKE ‘01.02.01.%"
AND path_string NOT LIKE ‘01.02.01.%.%";



e 3.5 Deleting a Single Node 39

The second search condition is there to prevent a table scan and to restrict
the results to the immediate subordinates.

3.3 Searching for Superiors

Given a node, find all of its superiors. This requires disassembling the path
back into the identifiers that constructed it. We can use a table of sequential
integers to find the required substrings:

SELECT SUBSTRING (Pl.path_string
FROM (seq * CHAR_LENGTH(P1.emp_id))
FOR CHAR_LENGTH(P1.emp_id)) AS emp_id
FROM Personnel_OrgChart AS P1,
Series AS S1
WHERE Pl.emp_id = :search_emp_id
AND S1.seq <= CHAR_LENGTH(path_string)/CHAR_LENGTH(emp_id);

The problem is that this does not tell you the relationships among the
superiors, only who they are. Those relationships are actually easier to report.

SELECT P2.*
FROM Personnel_OrgChart AS P1,
Personnel_0OrgChart AS P2
WHERE Pl.emp_id = :search_emp_id
AND POSITION (P2.path_string IN Pl.path_string) = 1;

3.4 Deleting a Subtree

Given a node, delete the subtree rooted at that node. This can be done with
the same predicate as finding the subordinates:

DELETE FROM Personnel_OrgChart
WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart
WHERE emp_id = :dead_guy) || ‘%’;

3.5 Deleting a Single Node

Once more we have to face the problem that when a nonleaf node is removed
from a tree, it is no longer a tree and we need to have rules for changing the

structure.



40 CHAPTER 3: PATH ENUMERATION MODELS @\"

Assuming that we simply move everyone up a level in the tree, we can
first remove that node emp_id from the Personnel_OrgChart table and then
remove that emp_id from the paths of the other nodes.

BEGIN ATOMIC
DELETE FROM Personnel_OrgChart
WHERE emp_id = :dead_guy;
UPDATE Personnel_0OrgChart
SET path_string = REPLACE (path_string, :dead_guy, ‘’);
END;

There are other methods of rebuilding the tree structure after a node
is deleted, as discussed earlier. Promoting a subordinate based on some
criteria to the newly vacant position, leaving a vacancy in the organizational
chart, and so forth are all options. They are usually implemented with some
combination of node deletions and insertions.

3.6 Inserting a New Node

The enumeration model has the same insertion properties as the adjacency
list model. The new emp_id is simply concatenated to the end of the path of
the parent node to which it is subordinated.

INSERT INTO Personnel_OrgChart
VALUES (:new_guy, :new_emp_id,
(SELECT path_string FROM Personnel_OrgChart WHERE emp_id = :new_guy_boss)
|| :new_emp_id);

This basic statement design can be modified to work for insertion of a
subtree, thus.

INSERT INTO Personnel_OrgChart
SELECT N1.emp, Nl.emp_id,
(SELECT path_string FROM Personnel_OrgChart WHERE emp_id = :new_tree_boss)
|| N1.emp_id
FROM NewTree AS N1;

3.7 Splitting up a Path String

Because the path string contains information about the nodes in the path it
represents, you will often want to split it back into the nodes that created. This
is easier to do if the path string was built with a separator character such as a



3.7 Splitting up a Path String 41

comma or slash; I use a slash so this will look like a directory path in UNIX.
You will also need a table called Series, which is a set of integers from 1 to (n).
CharIndex(<search string>, <target string>, <starting position>) is a
vendor version of the Standard SQL function POSITION(<search string> IN
<target string>). It begins the search at a position in the target string, thus
when the <starting position> = 1, the two are equivalent. It can be defined as

CREATE FUNCTION CharIndex (IN search_str VARCHAR(1000), IN target
VARCHAR(1000), IN start_point INTEGER) RETURNS INTEGER
RETURN
(POSITION (search_str
IN SUBSTRING (target FROM start_point)) + start_point -1);

Version 1:

SELECT CASE WHEN SUBSTRING(‘/’ || Pl.path_string || */* FROM Sl.seq FOR 1) =
</
THEN SUBSTRING(‘/” || Pl.path_string || “/° FROM (Sl.seq +1)
FOR CharIndex(*/’, “/’ || Pl.path_string || /", Sl.seq +1)
— Sl.seq — 1)
ELSE NULL END AS emp_id
FROM Series AS S1, Personnel_OrgChart AS Pl
WHERE S1.seq BETWEEN 1 AND CHAR_LENGTH(‘/” | | Pl.path_string | | */’) -1
AND SUBSTRING(*/’ || Pl.path_string || */° FROM Sl.seq FOR 1) = */’

Version 2: This uses the same idea, but with two sequence numbers to
bracket the emp_id embedded in the path string. It also returns the position
of the subordinate emp_id in the path.

CREATE VIEW Breakdown (emp_id, step_nbr, subordinate_emp_id)
AS
SELECT emp_id,
COUNT(S2.seq),
SUBSTRING (*/” || Pl.path_string || /’, MAX(Sl.seq || 1)
FROM (S2.seq - MAX(Sl.seq || 1))
FROM Personnel_OrgChart AS P1, Series AS S1, Series AS S2
WHERE SUBSTRING (“/’ || Pl.path_string || °/’, Sl.seq, 1) = */’
AND SUBSTRING (°*/’ || Pl.path_string || */’, S2.seq, 1) = */’
AND S1.seq < S2.seq
AND S2.seq <= CHAR_LENGTH(Pl.path_string) +1
GROUP BY Pl.emp_id, Pl.path_string, S2.seq;



42

CHAPTER 3: PATH ENUMERATION MODELS @\"

The S1 and S2 copies of Series are used to locate bracketing pairs of
separators, and the entire set of substrings located between them is extracted in
one step. The trick is to be sure that the left-hand separator of the bracketing
pair is the closest one to the second separator. The step_nbr column tells you
the relative position of the subordinate employee to the employee in the path.

Version 3: This version is the same as version 2, but is more concise and
easy to comprehend.

SELECT SUBSTRING(‘/” || Pl.path_string || */’
FROM Sl.seq +1
FOR CharIndex(*/’,
“/7 || Pl.path_string || */",
Sl.seq +1)— Sl.seq — 1) AS node
FROM Series AS S1, Personnel_OrgChart AS Pl
WHERE SUBSTRING(*/’ || Pl.path_string || */’
FROM Sl.seq FOR 1) = ¢/~
AND seq < CHAR_LENGTH(*/’ || Pl.path_string || */");

Version 4: another way using the LIKE predicate:

SELECT SUBSTRING(Pl.path_string
FROM seq +1
FOR CharIndex(‘/’, Pl.path_string, Sl.seq +1) — (Sl.seq +1))
FROM Series AS S1
INNER JOIN
(SELECT “/” || path_string || */’
FROM Personnel_OrgChart) AS P1l.(path_string)
ON S1l.seq <= CHAR_LENGTH(Pl.path_string)
AND SUBSTRING(P1l.path_string

FROM S1.seq
FOR CHAR_LENGTH(P1.path_string))
LIKE “/_%;

3.8 Microsoft SQL Server's HIERARCHYID

Microsoft added a HIERARCHYID data type to their MS SQL Server 2008
product. It is a path enumeration put into a VARBINARY(892) column. It is
manipulated by methods in an OO format instead of with SQL statements.



e 3.8 Microsoft SQL Server's HIERARCHYID 43

This allows other languages to also invoke these methods and leave you with
mixed system maintenance problems.

The representation uses a slash to separate the levels of the tree; the root is
represented by a single slash. Nodes can be inserted anywhere using decimal
numberings. Nodes inserted after /1/2/ but before /1/3/ can be represented as
/1/2.5/. Nodes inserted before 0 have the logical representation as a negative
number. For example, a node that comes before /1/1/ can be represented as
/1/=1/. Nodes cannot have leading zeros. For example, /1/1.1/ is valid, but
/1/1.01/ is not valid.

So, you're probably wondering how we know how to order nodes in the
same level. This is accomplished by comparing node labels, like versioning
in software. 0.5.1 comes after 0.5 and before 0.6. If we wished to insert a new
node between 0.5 and 0.5.1, we could use 0.5.0.1 or 0.5.0.2, and so forth.
Here is a list of the basic methods available to you.

GetAncestor(n): Returns a HIERARCHYID representing the nth ancestor
of the affected node.

GetLevel: Returns an integer that represents the depth of the affected node
in the tree.

GetRoot: Static method. Returns the root of the hierarchy tree.

IsDescendantOf(parent_node): Returns TRUE if the affected node is
a descendant of the parent.

GetDescendant(child_node_1, child_node_2): Returns a child of the
affected node, depending on child 1 and 2.

1. 1If affected node IS NULL, return NULL.

2. If affected node IS NOT NULL and both child_node_1 and
child_node_2 are NULL, return a child of the affected node.

3. If affected node IS NOT NULL, child_node_1 IS NOT NULL,
and child_node_2 IS NULL, return a child of the affected node
greater than child_node_1.

4. 1If affected node IS NOT NULL, child_node_2 IS NOT NULL, and
child_node_1 IS NULL, return a child of the affected node less
than child_node_2.

5. If affected node, child_node_1, and child_node_2 are not NULL,
return a child of the affected node greater than child_node_1 and
less than child_node_2.



44

CHAPTER 3: PATH ENUMERATION MODELS @\"

6. If child_node_1 IS NOT NULL and not a child of the affected
node, an exception is raised.

7. If child_node_2 IS NOT NULL and not a child of the affected
node, an exception is raised.

8. If child_node_1 >= child_node_2, an exception is raised.

Parse(input_string): Static method. Converts the canonical string
representation of a HIERARCHYID to a HIERARCHYID value. Parse is
called implicitly when a conversion from a string type to HIERARCHYID
occurs. Acts as the opposite of ToString.

ToString: Returns a string with the logical representation of the affected
node. ToString is called implicitly when a conversion from HIERARCHYID
to a string type occurs. Acts as the inverse of Parse.

GetReparentedValue(old_root_node, new_root_node): Returns a node
whose path from the root is the path to new_root_node, followed by the
path from old_root_node to the affected node.

Here is how to modify the usual Personnel_OrgChart with an extra column.

CREATE TABLE Personnel_OrgChart
(emp_id INTEGER NOT NULL PRIMARY KEY,
emp_name VARCHAR(25) NOT NULL),
h_id HIERARCHYID NOT NULL UNIQUE,
Tvl AS h_id.GetLevel() PERSISTED,
UNIQUE (Tv1, h_id));

3.9 Edge Enumeration Model

So far, we have seen the node enumeration version of the path enumeration
model. In the edge enumeration model, the “driving directions” for following
the path from the root to each node are given as integers. You will also rec-
ognize it as the way that the book you are reading is organized. The path col-
umn contains a string of the edges that make up a path from the root (‘King’)
to each node, numbering them from left to right at each level in the tree.

Personnel_OrgChart

emp_name edge_path

‘Albert’ 1)
‘Bert’ 1.1/



e 3.10 XPath and XML 45

emp_name edge_path
‘Chuck’ 1.2/
‘Donna’ 1.2.17
‘Eddie’ 1.2.2/
‘Fred’ 1.2.3/

For example, ‘Donna’ is the second child of the first child (‘Chuck’)
of the root (‘Albert’). This assigns a partial ordering to the nodes of the
trees. The main advantage of this notation is that you do not have to worry
about long strings, but there is no real difference in the manipulations. The
numbering does give an implied ordering to siblings that might have meaning.

3.10 XPath and XML

I have avoided mentioning XML, as this is a book on SQL, but I cannot avoid
it forever because the two are becoming more and more linked. XML is a
mark-up language that shows a data element hierarchy by inserting tags into
the text file that holds the data elements.

XML is becoming the “Esperanto” for moving data from one source to
another, and there are many tools that are de jure or de facto standards for
doing queries on data while they are in XML. One of these tools is XPath,
which is based on a fairly simple notation to describe paths to nodes in an
XML document in a notation that resembles a path enumeration but with
wildcards and other higher level features.

The nodes on the path can then be sent as input to functions. Older
programmers can think of XPath as a nonprocedural version of IMS or other
hierarchical database query languages.

There are tutorials on XPath available on the Internet. At the time of this
writing (2011), there is http://www.w3schools.com/xpath/.

XPath includes over 100 built-in functions. There are functions for
string values, numeric values, date and time comparison, node and QName
manipulation, sequence manipulation, Booleans, and temporal comparisons
as you have programming languages. However, there are navigational
functions for finding and manipulating nodes and sequences.

The XML document is a combination of schema and data. Here is an
example taken from http://www.w3schools.com/xpath/xpath_examples.asp.
The <> and </> pairs indicate the nesting of the hierarchical structure and
what would be the data type and domain in RDBMS.



46

CHAPTER 3: PATH ENUMERATION MODELS

<?xml version="1.0" encoding="1S0-8859-1"7>
<bookstore>

<book category="COOKING">

<title lang="en">Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>

<price>30.00</price>

</book>

<book category="CHILDREN">

<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category="WEB">

<title Tang="en">XQuery Kick Start</title>
<author>James McGovern</author>
<author>Per Bothner</author>

<author>Kurt Cagle</author>

<author>James Linn</author>
<author>Vaidyanathan Nagarajan</author>
<year>2003</year>

<price>49.99</price>

</book>

<book category="WEB">

<title Tang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

The syntax for XPath is also hierarchical. This embeds both hierarchical
structure and program logic into one syntactic unit. XPath includes over



47

e 3.10 XPath and XML

100 built-in functions for strings, numerics, and temporal data comparisons.
However, there are navigational functions for finding and manipulating

nodes and sequences.

Here are some simple examples using our bookstore document. Slashes
look like the directory trees in Linux and Windows, and square brackets hold
functions that are applied at that level in the nesting.

/bookstore/book[Tast()]

/bookstore/book[Tast()-1]

/bookstore/book[position()<3]

//title[@lang]

//titTe[@lang=‘eng’]

/bookstore/book[price>35.00]

/bookstore/book[price>35.00]/title

Selects the last book element that is the
child of the bookstore element

Selects the last but one book element that
is the child of the bookstore element
Selects the first two book elements that are
children of the bookstore element

Selects all the title elements that have an
attribute named lang

Selects all the title elements that have an
attribute named lang with a value of ‘eng’
Selects all the book elements of the
bookstore element that have a price
element with a value greater than 35.00
Selects all the title elements of the book
elements of the bookstore element that have a
price element with a value greater than 35.00



&

Nested Sets Model of Hierarchies

-I.;EES ARE OFTEN drawn as “boxes-and-arrows” charts and that graphic tends to
lock your mental image of a tree into a graph structure. Another way of
representing trees is to show them as nested sets. It is strange that this
approach was overlooked for so long among SQL programmers. Many
of us are old enough to have used The Art of Computer Programming
(Donald Knuth, 978-0321751041) in college as our textbook and we
should remember this representation of trees in a chapter of his book.
Younger programmers think of it as “counting tags” in XML, HTML, and
other mark-up languages. Mathematical programmers can think of it as
parentheses or as, well, nested sets.

Because SQL is a set-oriented language, this is a better model for
the approach discussed here. Let us define an Organizational chart
table to represent the hierarchy and people in our sample organization.
The first column is the name of the member of this organization. I will
explain the (lft, rgt) columns shortly, but for now, note that their names
are abbreviations for “left” and “right,” which are reserved words in
Standard SQL.

CREATE TABLE OrgChart

(member CHAR(10) NOT NULL PRIMARY KEY,
1ft INTEGER NOT NULL,

rgt INTEGER NOT NULL);

VTN A VTN /N VTN /N



50

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

INSERT INTO OrgChart (member, 1ft, rgt)
VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 11),

('Donna', 5, 6),

('Eddie', 7, 10);

To show a tree as nested sets, replace the boxes with ovals and then
nest subordinate ovals inside their parents. Containment represents
subordination. The root will be the largest oval and will contain every other
node. Leaf nodes will be the innermost ovals, with nothing else inside them,
and nesting will show the hierarchical relationship. This is a natural way to
model a parts explosion, since a final assembly is made of physically nested
assemblies that finally break down into separate parts. This tree (Figure 4.1)
translates into this nesting of sets (Figure 4.2).

Using this approach, we can model a tree with (lft, rgt) nested sets with
number pairs. These number pairs will always contain the pairs of their
subordinates so that a child node is within the bounds of its parent. This is a
version of the nested sets, flattened onto a number line (Figure 4.3).

If that mental model does not work for you, then visualize the nested
sets model as a little worm with a Bates automatic numbering stamp
crawling along the “boxes-and-arrows” version of the tree. The worm

Albert
1 12

Bert

Donna Eddie TN
5 6 7 8

Figure 4.1



e 4.1 Finding Root and Leaf Nodes 51

As nested circles

Figure 4.2
9 10
<78ert > < Chuck >
1 2 3 45 6 7 8 9 10 1 12
As intervals on a number line
Figure 4.3

starts at the top, the root, and makes a complete trip around the tree.
When he comes to a node, he puts a number in the cell on the side that
he is visiting and his numbering stamp increments itself. Each node will
get two numbers: one for the right (rgt) side and one for the left (1ft) side.
Computer science majors will recognize this as a preorder (or depth-first)
tree traversal algorithm with a modification for numbering the nodes.
This numbering has some predictable results that can be used for building
queries (Figure 4.4).

4.1 Finding Root and Leaf Nodes

The root will always have a 1 in its Ift column and twice the number of nodes
in its rgt column. This is easy to understand; because the worm has to visit
each node twice, once for the left side and once for the right side, the final



CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

Figure 4.4 Bates numbering stamp

count has to be twice the number of nodes in the whole tree. The root of the
tree is found with the query

SELECT *
FROM Orgchart
WHERE 1ft = 1;

This query will take advantage of an index on the left value. A leaf node is
one that has no children under it. In an adjacency matrix model, it is not that
easy to find all the leaf nodes because you have to use a correlated subquery:

SELECT *
FROM OrgChart AS 01
WHERE NOT EXISTS
(SELECT *
FROM OrgChart AS 02
WHERE 01.member = 02.boss);

In the nested sets table, the difference between (lft, rgt) values of leaf
nodes is always 1. Think of the little worm turning the corner as he crawls
along the tree. That means you can find all leaf nodes with the extremely
simple query

SELECT *
FROM Orgchart
WHERE (rgt - 1ft) = 1;

There is a further trick, to speed up queries. Build a unique index on either
the left column or on the pair of columns (Ift, rgt) and then you can rewrite
the query to take advantage of the index. The previous query will also benefit.



4.2 Finding Subtrees 53

SELECT *
FROM Orgchart
WHERE 1ft = (rgt - 1);

The reason this improves performance is that the SQL engine can use an
index on the lft column when it does not appear in an expression. Do not use
(rgt — lft) = 1, as it might prevent the index from being used unless your SQL
allows indexing on expressions

4.2 Finding Subtrees

Trees have many special properties and those properties are very useful to us.
A tree is a graph that has no cycles in it. That is, no path folds back on itself
to catch you in an endless loop when you follow it. Another defining prop-
erty is that there is always a path from the root to any other node in the tree.

Another useful property is that any node in the tree is the root of a subtree
and certain properties of that subtree are immediately available from the (lft,
rgt) pair. In the nested sets table, all the descendants of a node can be found
by looking for nodes whose (lft, rgt) numbers are between the (lft, rgt) values
of their parent node. This is the nesting expressed in number ranges instead
of in a drawing of circles within circles.

Finally, a tree has exactly one node without a superior, the root. All
other nodes can be reached by paths from the root. In the case of the nested
sets model, it is the node where (rgt —Ift + 1) = 2 * (SELECT COUNT(*)
FROM TREE).

For example, to find out all subordinates of each boss in the organizational
hierarchy, you would write:

SELECT Mgrs.member AS boss, Workers.member AS worker
FROM Orgchart AS Mgrs, Orgchart AS Workers
WHERE Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND Workers.rgt BETWEEN Mgrs.1ft AND Mgrs.rgt;

Look at the way the numbering was done and you can convince yourself
that this search condition is too strict. We can drop the last predicate and
simply use:

SELECT Mgrs.member AS boss, Workers.member AS worker
FROM Orgchart AS Mgrs, Orgchart AS Workers
WHERE Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt;



54 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

This would tell you that everyone is also his own superior, so in some
situations you would also add the predicate

. AND Workers.1ft <> Mgrs.1ft
or change it to

WHERE Workers.1ft > Mgrs.1ft
AND Workers.1ft < Mgrs.rgt;

This simple self-join query is the basis for almost everything that follows
in the nested sets model.

4.3 Finding Levels and Paths in a Tree

The level of a node in a tree is the number of edges between the node
and the root, where the larger the depth number, the farther away the
node is from the root. A path is a set of edges that connect two nodes
directly.

The nested sets model uses the fact that each containing set is “wider”
(where width = (rgt — 1ft)) than the sets it contains. Obviously, the root will
always be the widest row in the table. The level function is the number of
edges between two given nodes; it is fairly easy to calculate. For example, to
find the level of each worker, you would use

SELECT 02.member, COUNT(Ol.member) AS 1v]
FROM OrgChart AS 01, OrgChart AS 02
WHERE 02.1ft BETWEEN 01.1ft AND 0l1.rgt
GROUP BY 02.member;

The expression COUNT(01.member) will count the node itself; if you
prefer to start at zero, use (COUNT(01.member) — 1). You will see it done
both ways in the literature.

4.3.1 Finding the Height of a Tree

The height of a tree is the length of the longest path in the tree. Because we

know that this path runs from the root to a leaf node, we can write a query to
find like this:



4.3 Finding Levels and Paths in a Tree 55

SELECT MAX(level) AS height
FROM (SELECT 02.member, (COUNT(O1l.member) - 1)
FROM OrgChart AS 01, OrgChart AS 02
WHERE 02.1ft BETWEEN 01.1ft AND 0l.rgt
GROUP BY 02.member) AS Ll(member, Tevel);

Other queries can be built from this tabular subquery expression of the
nodes and their level numbers. If you find yourself using this subquery
expression often, you might consider creating a VIEW from this expression.

4.3.2 Finding Levels of Subordinates

The adjacency model allows you to find immediate subordinates of a node
immediately; you simply look in the columns that give the parent of each
child of each node in the tree. The real problem is finding a given generation
or level in the tree.

This becomes complicated in the nested sets model. Immediate
subordinates are defined as personnel who have no other employee between
themselves and their boss.

CREATE VIEW Immediate_Subordinates (boss, worker, 1ft, rgt)
AS SELECT Mgrs.member, Workers.member, Workers.1ft, Workers.rgt
FROM OrgChart AS Mgrs, OrgChart AS Workers
WHERE Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND NOT EXISTS -- no middle manager between the boss and us!
(SELECT =
FROM OrgChart AS MidMgr
WHERE MidMgr.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND Workers.1ft BETWEEN MidMgr.1ft AND MidMgr.rgt
AND MidMgr.member NOT IN (Workers.member, Mgrs.member));

You also need to look at Section 4.9 (Converting Nested Sets Model to
Adjacency List) for better answers for immediate subordinates. I am simply
giving an elaborate query here to show a pattern. Likewise, Mgrs.member
could be replaced with Workers.boss in the SELECT statement.

There is a reason for setting this up as a VIEW and including the (lft, rgt)
numbers of the children. The (Ift, rgt) numbers for the parent of each node
can be reconstructed by



56

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

SELECT boss, MIN(1ft) - 1, MAX(rgt) + 1
FROM Immediate_Subordinates
GROUP BY boss;

This query can be generalized to any distance (:n) in the hierarchy,
thus:

SELECT Workers.member, ' is ', :n, ' levels down from ', :my_member
FROM OrgChart AS Mgrs, OrgChart AS Workers
WHERE Mgrs.member = :my_member

AND Workers.1ft BETWEEN Mgrs.1ft
AND Mgrs.rgt
AND :n = (SELECT COUNT(MidMgr.member) + 1
FROM OrgChart AS MidMgr
WHERE MidMgr.1ft BETWEEN Mgrs.1ft
AND Mgrs.rgt
AND Workers.1ft BETWEEN MidMgr.1ft
AND MidMgr.rgt
AND MidMgr.member
NOT IN (Workers.member, Mgrs.member));

This query can be flattened out and probably runs faster without the
subquery:

SELECT Workers.member, ' is ', :n, ' levels down from ', :my_member

FROM OrgChart AS Mgrs, OrgChart AS Workers,
OrgChart AS MidMgr
WHERE Mgrs.member = :my_member

AND Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND MidMgr.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND Workers.1ft BETWEEN MidMgr.1ft AND MidMgr.rgt
AND MidMgr.member NOT IN (Workers.member, Mgrs.member)

GROUP BY Workers.member

HAVING :n = COUNT(MidMgr.member);

In the nested sets model, queries based on subtrees are usually easier to
write than those for individual nodes or other subsets of the tree.

Switching to another hierarchy, let's look at a simple parts explosion
(Figure 4.5). This table will be modified in later examples to include more
information, but for now, just assume that it looks like this.



e 4.3 Finding Levels and Paths in a Tree

N
-U_Im
(2]
-0
(o]
"?:’ I

':I
~

E F G H
34 7,16 17,18 21,26
K L
22,23 24,25

M N
11,12 13,14

Figure 4.5

CREATE TABLE Assemblies
(part CHAR(2) NOT NULL
REFERENCES Inventory(part) -- assume an inventory
ON UPDATE CASCADE,
1ft INTEGER NOT NULL,
rgt INTEGER NOT NULL,
DN

INSERT INTO Assemblies
VALUES ('A', 1, 28),

('B", 2, 5),
('c", 6, 19),
('o', 20, 27),
('E", 3, 4),
('F', 7, 16),
('G', 17, 18),

('H", 21, 26),



58

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

('1', 8, 9),

('Jdr, 10, 15),
('K, 22, 23),
('L', 24, 25),
('mM', 11, 12),
("N", 13, 14);

If you want, show levels as a single row, where NULLs are used to show
that there is no part at that level:

CREATE VIEW Flat_Parts(part, level_0, level_1, Tevel_2, Tevel_3)
AS
SELECT Al.part,
CASE WHEN COUNT(A3.part) = 2
THEN A2.node
ELSE NULL END AS 1v1_0,
CASE WHEN COUNT(A3.part) =3
THEN A2.node
ELSE NULL END AS 1v1_1,
CASE WHEN COUNT(A3.part) = 4
THEN A2.part
ELSE NULL END AS 1v1_2,
CASE WHEN COUNT(A3.part) =5
THEN A2.part
ELSE NULL END AS 1v1_3

FROM Assemblies AS Al, -- subordinates
Assemblies AS A2, -- superiors
Assemblies AS A3 -- items in between them

WHERE A1.1ft BETWEEN A2.1ft AND A2.rgt
AND A3.1ft BETWEEN A2.1ft AND A2.rgt
AND A1.1ft BETWEEN A3.1ft AND A3.rgt

GROUP BY Al.part, A2.part;

Now you can write a query to show the path from a node to the root of the
tree horizontally:

SELECT part, MAX(Tevel_0), MAX(level_1),
MAX(Tevel_2), MAX(Tevel_3)
FROM Flat_Parts
GROUP BY part;



6 4.3 Finding Levels and Paths in a Tree 59

You could also fold all of this into one query, but the VIEW is useful for
other reports. Another way to flatten the tree is credited to Richard Romley of
Smith-Barney in New York City. He claims that the following query runs with
half the 1/0 of the VIEW-based solution in SQL Server:

SELECT Al.part,
(SELECT part
FROM Assemblies
WHERE 1ft = MAX(A2.1ft)) AS 1v1_0,
(SELECT part
FROM Assemblies
WHERE 1ft = MAX(A3.1ft)) AS 1vi_1,
(SELECT part
FROM Assemblies
WHERE 1ft = MAX(A4.1ft)) AS 1vi1_2,
(SELECT part
FROM Assemblies
WHERE 1ft = MAX(A5.1ft)) AS 1v1_3
FROM Assemblies AS Al
LEFT OUTER JOIN
Assemblies AS A2
ON A1.7ft > A2.1ft AND Al.rgt < A2.rgt
LEFT OUTER JOIN
Assemblies AS A3
ON A2.1ft > A3.1ft AND A2.rgt < A3.rgt
LEFT OUTER JOIN
Assemblies AS A4
ON A3.1ft > A4.1ft AND A3.rgt < A4d.rgt
LEFT QUTER JOIN
Assemblies AS A5
ON A4.1ft > A5.1ft AND Ad.rgt < A5.rgt
GROUP BY Al.part;

This is a little tricky on two points. The use of an aggregate in a WHERE
clause is generally not allowed, but because the MAX() is an outer reference
in the scalar subqueries, it is valid Standard SQL. The nested LEFT OUTER
JOINSs reflect nesting of the (lft, rgt) ranges, but they will return NULLs when
there is nothing at a particular level.

The result is as follows.



CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

Result

part level_0 level_1 level_2 level_3
‘A NULL NULL NULL NULL
‘B’ ‘A NULL NULL NULL
c’ ‘A NULL NULL NULL
‘D’ ‘A NULL NULL NULL
‘E’ ‘B’ ‘N NULL NULL
‘F C’ ‘A NULL NULL
‘a’ '’ ‘A NULL NULL
‘H’ ‘D’ ‘A NULL NULL
gy ‘F c’ ‘A NULL
‘)’ ‘F ’C’ ‘A NULL
K’ ‘H’ ‘D’ ‘N NULL
v ‘H’ ‘D’ ‘A NULL
‘M’ ) ‘F {6 ‘A
‘N’ ‘)’ F G4 ‘N

Both approaches are compact, easy to follow, and easy to expand to as
many levels as desired.

4.3.3 Finding Oldest and Youngest Subordinates

The nested sets model usually assumes that subordinates are ranked by age,
seniority, or in some way from left to right among the immediate subordi-
nates of a node. Because the adjacency model does not have a concept of
such rankings, the following queries are not possible without extra columns
to hold the rankings in the adjacency list model.

Most senior subordinates are found by this query:

SELECT Workers.member, ' is the most senior subordinate of ', :my_member
FROM OrgChart AS Mgrs, OrgChart AS Workers
WHERE Mgrs.member = :my_member

AND Workers.1ft = Mgrs.1ft + 1; -- Teftmost child

Most junior subordinates are found by this query:

SELECT Workers.member, ' is the least senior subordinate of ', :my_member
FROM OrgChart AS Mgrs, OrgChart AS Workers
WHERE Mgrs.member = :my_member

AND Workers.rgt = Mgrs.rgt - 1; -- rightmost child



6 4.3 Finding Levels and Paths in a Tree 61

The real trick is to find the nth sibling of a parent in a tree. If you remember the
old Charlie Chan movies, Detective Chan always referred to his sons by number,
such as “Number One son,” “Number Two son,” and so forth. This becomes a
self-join on the set of immediate subordinates of the parent under consideration,
which is why I created a VIEW for telling us the immediate subordinates before
introducing this problem. The query is much easier to read using the VIEW.

SELECT Sl.worker, ' is the ', :n, '-th subordinate of ', Sl.boss
FROM Immediate_Subordinates AS S1
WHERE S1.boss = :my_member
AND :n = (SELECT COUNT(S2.1ft) - 1
FROM Immediate_Subordinates AS S2
WHERE S2.boss = S1.boss
AND S2.boss <> Sl.worker
AND S2.1ft BETWEEN 1 AND S1.1ft);

Note that you have to subtract one to avoid counting the parent as his own
child. Here is another way to do this and get a complete ordered listing of siblings:

SELECT 0l.member AS boss, Sl.worker,
COUNT(S2.1ft) AS sibling_order
FROM Immediate_Subordinates AS S1,
Immediate_Subordinates AS S2,
OrgChart AS 01
WHERE S1.boss = 0l.member
AND S2.boss = Sl.boss
AND S1.worker <> S2.worker
AND S2.1ft <= S1.1ft
GROUP BY 0l.member, Sl.worker;

The siblings of a given node can be found by looking for a common parent
and rows on the same level. Using the assemblies parts explosion tree, we can
define a view with the level number in it as

CREATE VIEW Siblings (1v1, part, 1ft, rgt)
AS SELECT COUNT(A2.1ft), Al.part, Al.1ft, Al.rgt
FROM Assemblies AS Al, Assemblies AS A2
WHERE A1.1ft BETWEEN A2.1ft AND A2.rgt
GROUP BY Al.part, Al.1ft, Al.rgt;

This VIEW can then be used for



62 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

SELECT DISTINCT S2.part
FROM SibTlings AS S1, Siblings AS S2
WHERE Sl.part = :my_sibling_part
AND EXISTS
(SELECT *
FROM Siblings AS SO
WHERE S1.1ft BETWEEN SO.1ft AND SO.rgt
AND S2.1ft BETWEEN SO.1ft AND SO.rgt
AND SO.1v1 S1.1vl -1
AND A1.1v1 A2.1v1);

This says look at the parent of your current node (part) and then find all
the immediate children of the parent node and they are your siblings.

4.3.4 Finding a Path

To find and number nodes in the path from a :start_node to a :finish_node,
you can repeat the nested set “BETWEEN predicate trick” twice to form an
upper and a lower boundary on the set.

SELECT A2.part,
(SELECT COUNT(*)
FROM Assemblies AS A4
WHERE A4.1ft BETWEEN Al1.1ft AND Al.rgt
AND A2.1ft BETWEEN A4.1ft AND A4.rgt) AS path_nbr

FROM Assemblies AS Al, Assemblies AS A2, Assemblies AS A3
WHERE Al.part = :start_node

AND A3.part = :finish_node

AND A2.1ft BETWEEN A1.1ft AND Al.rgt

AND A3.1ft BETWEEN A2.1ft AND A2.rgt;

Using the assemblies parts explosion tree, this query would return the
following table for the path from ‘C’ to ‘N’, with 1 being the highest starting
node and the other nodes numbered in the order they must be traversed.

node path_nbr

C 1

F 2

J 3
4




e 4.4 Functions in the Nested Sets Model 63

However, if you just need a column to use in a sort for output to a host
language, then replace the subquery expression with “(A2.rgt - A2.1ft) AS
sort_col” and use an “ORDER BY sort_col” clause in a cursor.

4.3.5 Finding Relative Position

Given two nodes, can you find their relative position in the hierarchy; that
is, who is the subordinate of whom or are they in different subtrees of the

hierarchy?

SELECT CASE WHEN :first_member = :second_member
THEN :first_member || ' is ' || :second_member
WHEN 01.7ft BETWEEN 02.1ft AND 02.rgt
THEN :first_member || ' subordinate to ' || :second_member
WHEN 02.7ft BETWEEN 01.1ft AND Ol.rgt
THEN :second_member || ' subordinate to ' || :first_member
ELSE :first_member || 'no relation to ' || :second_member

END
FROM OrgChart AS 01, OrgChart AS 02
WHERE 01.member = :first_member
AND 02.member = :second_member;

Because this query will report all cases, if the same member holds
various positions in the organizational chart, several rows can be returned.
It also will report no relationship if one or both of the parameters is not in
the table at all.

4.4 Functions in the Nested Sets Model

The level of a given node is a matter of counting how many (lft, rgt) group-
ings (superiors) this node's Ift or rgt is within. You can get this by modifying
the sense of the BETWEEN predicate in the query for subtrees:

SELECT :my_member, COUNT(Mgrs.member) AS 1vi
FROM OrgChart AS Mgrs, OrgChart AS Workers
WHERE Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND Workers.member = :my_member;

Let's assume that this organization is involved in a pyramid sales
operation and that a supervising member gets credit for the total sales of



64 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

himself and all his subordinates. First, we need to have a table for the sales
that each member made

CREATE TABLE Sales
(member CHAR(10) NOT NULL PRIMARY KEY,
sale_amt DECIMAL(12,4) NOT NULL);

SELECT :my_member, SUM(S1l.sale_amt) AS total_sales
FROM OrgChart AS Mgrs, OrgChart AS Workers,
Sales AS S1
WHERE Workers.1ft BETWEEN Mgrs.1ft AND Mgrs.rgt
AND Pl.job_title = Workers.job_title
AND Mgrs.member = :my_member;

A slightly trickier function involves using quantity columns in the nodes
to compute an accumulated total. This usually occurs in parts explosions,
where one assembly may contain several occurrences of subassemblies. Let's
assume we have a table called “Blueprint” with the price and quantity for
each part required for each subassembly; for example, an assembly might
require 10 Number 5 machine screws at $0.07 each. The total cost of any
given part would be:

SELECT :this_part, SUM(Subassem.qty * Subassem.price) AS totalcost
FROM Blueprint AS Assembly, Blueprint AS Subassem
WHERE Subassem.1ft
BETWEEN Assembly.1ft AND Assembly.rgt
AND Assembly.part = :this_part;

The use of AVG(), MIN(), and MAX() aggregate functions is possible, but
you have to watch out for the meaning of the results in the context of your
data model.

4.5 Deleting Nodes and Subtrees

Another interesting property of the nested sets model is that subtrees must
fill from Ift to rgt. In other tree representations, it is possible for a parent
node to have a right child and no left child, but this can make traversals
more complicated in exchange for being able to assign significance to the
position of a node within a group of siblings.



4.5 Deleting Nodes and Subtrees 65

Deleting a single node in the middle of the tree is conceptually harder than
removing whole subtrees in the nested sets model. When you remove a node
in the middle of the tree, you have to decide how to fill the hole. There are
several basic ways. The first method is to connect the children to the parent of
the original node—Mom dies and the kids are adopted by Grandma. In effect,
the position itself is removed. This is a vertical promotion of an entire subtree.

Another vertical promotion is to move only a single child node to the
deleted node's position—give the business to the oldest son. The problem is
that when the son is promoted, this leaves a vacancy in his former position.

The second method is horizontal promotion. The sibling to the deleted
node's right (i.e., Next most senior) moves over to the vacant position—Dad
dies and his oldest brother takes over the business. This assumes that there is
such a brother to take the vacant position.

In practice, you will find a mixture of these methods as vacancies are
created in the hierarchy and have to be handled. As I said, single node
deletion is not easy.

A Website with a demonstration program for the nested sets model in
PHP written by Arne Klempert (arne@klempert.de) can be found at http://
www.klempert.de/php/nested_sets/demo/. It is under the terms of the GNU
Lesser General Public License. The demo allows you to add or delete nodes
or subtrees with a simple interface.

4.5.1 Deleting Subtrees

This query will take the downsized employee as a parameter and remove
the subtree rooted under him. The trick in this query is that we are using
the node value, but we need to get the (lft, rgt) values to do the work. One
answer is scalar subqueries:

DELETE FROM OrgChart
WHERE 1ft BETWEEN
(SELECT 1ft FROM OrgChart WHERE member
AND
(SELECT rgt FROM OrgChart WHERE member

:downsized_guy)

:downsized_guy);

The problem is that this will result in gaps in the sequence of nested set
numbers. You can still do most tree queries on a table with such gaps, but
you will lose the algebraic properties that let you easily find leaf nodes, the



66

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

size of the subtrees, and other structural properties. Let's put the query and
“housekeeping” into a single procedure instead:

CREATE PROCEDURE DropTree (IN downsized CHAR(10))
LANGUAGE sQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE drop_member CHAR(10);

DECLARE drop_1ft INTEGER;

DECLARE drop_rgt INTEGER;

-- save the dropped subtree data with a singleton SELECT
SELECT member, 1ft, rgt

INTO drop_member, drop_1ft, drop_rgt

FROM OrgChart

WHERE member = downsized;

-- subtree deletion is easy
DELETE FROM OrgChart
WHERE 1ft BETWEEN drop_1ft and drop_rgt;

-- close up the gap Teft by the subtree
UPDATE OrgChart
SET 1ft = CASE
WHEN 1ft > drop_1ft
THEN 1ft - (drop_rgt - drop_1ft + 1)
ELSE 1ft END,
rgt = CASE
WHEN rgt > drop_1ft
THEN rgt - (drop_rgt - drop_1ft + 1)
ELSE rgt END
WHERE 1ft > drop_I1ft
OR rgt > drop_1ft;
END;

A complete procedure should have some error handling, but I am leaving
that as an exercise for the reader. The expression (drop_rgt — drop_lft + 1)
is the size of the gap and we renumber every node to the right of the gap by
that amount. The WHERE clause makes the two ELSE clauses redundant, but
because they make me feel safer, I write them anyway.



4.5 Deleting Nodes and Subtrees 67

If you used only the original DELETE FROM statement instead of the
procedure just given or build a table from several different sources, you could
get multiple gaps that you wish to close. This requires a complete renumbering:

UPDATE OrgChart
SET 1ft = (SELECT COUNT(*)
FROM (SELECT 1ft FROM OrgChart
UNION ALL
SELECT rgt FROM OrgChart) AS LftRgt (seq)
WHERE seq <= 1ft),
rgt = (SELECT COUNT(*)
FROM (SELECT 1ft FROM OrgChart
UNION ALL
SELECT rgt FROM OrgChart) AS LftRgt (seq)
WHERE seq <= rgt);

Alternately, if the derived table LftRgt is a bit slow, you can use a VIEW,
which has the actual replacement numbers for the whole table.

CREATE VIEW SeqLftRgt (old_seq, new_seq)
AS
SELECT old_seq, ROW_NUMBER() OVER (ORDER BY seq) AS new_seq
FROM(SELECT 1ft FROM OrgChart
UNION ALL
SELECT rgt FROM OrgChart)
AS X(old_seq, new_seq)
WHERE old_seq <> new_seq;

Now the update can only be done if the VIEW is not empty.

IF EXISTS (SELECT * FROM SeqLftRgt)
THEN UPDATE
SET 1ft
= COALESCE ((SELECT new_seq
FROM SeqLftRgt AS S
WHERE 1ft = old_seq), 1ft),
rgt
= COALESCE ((SELECT new_seq
FROM SeqLftRgt AS S
WHERE rgt = old_seq), rgt);
END IF;



68

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

But you can now use a MERGE statement.

MERGE INTO OrgChart
USING (SELECT 1ft_rgt, ROW_NUMBER() OVER()ORDER BY 1ft_rgt AC)
FROM (SELECT 1ft FROM Orgchart
UNION ALL
SELECT rgt FROM Orgchart)
AS X(1ft_rgt)
)AS X(old_seq, new_seq)
ON X2.01d_seq IN (OrgChart.1ft, OrgChart.rgt)
WHEN MATCHED
THEN UPDATE OrgChart
SET 1ft = CASE WHEN 1ft = old_seq THEN new_seq ELSE 1ft END,
rgt = CASE WHEN rgt = old_seq THEN new_seq ELSE rgt END;

As the optimizers get better, this single statement should be the best
choice.

4.5.2 Deleting a Single Node

Deleting a single node in the middle of the tree is harder than removing
whole subtrees. When you remove a node in the middle of the tree, you have
to decide how to fill the hole. One approach is to put a “vacant position”
marker in the organizational chart so that the structure does not change.
This might be followed by moving existing personnel into the vacancies as
they are created.

There are two basic ways to change the structure when a node is removed.
One method is to connect the children to the parent of the original node—
Mom dies and the kids are adopted by Grandma, as shown in Figure 4.6.

This happens automatically in the nested sets model; you just delete the
node and its children are already contained in their ancestor nodes. Now you
need to renumber nodes to the left of the deletion.

The second method is to promote one of the children to the original
node's position—Dad dies and the oldest son takes over the business, as
shown in Figure 4.7. The oldest child is always shown as the leftmost child
node under its parent.

There is a problem with this operation, however. If the older child has
children of his own, then you have to decide how to handle them and so on
down the tree until you get to a leaf node.



e 4.5 Deleting Nodes and Subtrees 69

Figure 4.6

Let's use a ‘{vacant}’ as a marker for the vacancy. That way we can promote
the oldest subordinate to the vacant job and then decide if we want to fill his
previous position with his oldest subordinate.

CREATE PROCEDURE Downsize(IN downsized_guy CHAR(10))
LANGUAGE sQL
DETERMINISTIC
UPDATE OrgChart

SET member

= CASE WHEN OrgChart.member = downsized_guy
AND OrgChart.1ft +1 = OrgChart.rgt -- leaf node
THEN '{vacant}'



70

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @

Figure 4.7

WHEN OrgChart.member = downsized_guy
AND OrgChart.1ft +1 <> OrgChart.rgt -- promote subordinate
THEN (SELECT Ol.member
FROM OrgChart AS 01
WHERE OrgChart.1ft + 1 = 01.1ft)
WHEN OrgChart.member -- vacate subordinate position
= (SELECT 01.member
FROM OrgChart AS 01
WHERE OrgChart.1ft + 1 = 01.1ft)
THEN "{vacant}’
ELSE member END;



e 4.6 Closing Gaps in the Tree 71

This leads to cases:

1. Aleaf node has no subordinates to promote, so the node becomes
vacant.

2. If there are subordinates, then we have two steps:
a. promote a subordinate
b. vacate the subordinate's current position

4.5.3 Pruning a Set of Nodes from a Tree

An interesting version of this problem is displaying the tree with some of the
subtrees pruned from the tree. This is usually a dynamic process used for
displaying the tree structure in the front end. The most common example is

clicking on the “+” and “—" boxes of a Windows directory display to open
and close nested files.

First, build a table for the root nodes of the subtrees you wish to hide:
CREATE TABLE Cuts (node CHAR(5) NOT NULL PRIMARY KEY);
Next, use a VIEW to drop subtrees rooted at cut nodes:

CREATE VIEW PrunedTree (node, 1ft, rgt)
AS
SELECT T1.Tl.part, T1.1ft, Tl.rgt
FROM Tree AS T1, Tree AS T2, Cuts AS Cl
WHERE T1.1ft
NOT BETWEEN T2.1ft +1
AND T2.rgt -1
AND Cl.part = T2.part
GROUP BY Tl.part, T1.1ft, Tl.rgt
HAVING COUNT(*) = (SELECT COUNT(*) FROM Cuts);

These actions will not renumber the (Ift, rgt) pairs, but we can do that if
you need it. Otherwise, the “between” predicates for nesting are still valid
and are all that is required for displaying the tree.

4.6 Closing Gaps in the Tree

The important thing is to preserve the nested subsets based on (Ift, rgt) num-
bers. As you remove nodes from a tree, you create gaps in the nested sets
numbers. These gaps do not destroy the subset property, but can present



72

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

other problems and should be closed. This is like garbage collection in other
languages. The easiest way to understand the code is to break it up into a
series of meaningful VIEWs and then use VIEWSs to UPDATE the tree table.
This VIEW “flattens out” the whole tree into a list of nested sets numbers,
regardless of whether they are 1ft or rgt numbers.

Let's start with a table of assemblies and add some constraints to it.

CREATE TABLE Assemblies

(part CHAR(2) PRIMARY KEY,

1ft INTEGER NOT NULL UNIQUE,

rgt INTEGER NOT NULL UNIQUE,

CONSTRAINT valid_1ft CHECK (1ft > 0),
CONSTRAINT valid_rgt CHECK (rgt > 1),
CONSTRAINT valid_range_pair CHECK (1ft < rgt));

INSERT INTO Assemblies
VALUES ('A', 1, 28),

('B", 2, 5),
('c', 6, 19),
('n', 20, 27),
("E', 3, 4),
("F', 7, 16),
('¢', 17, 18),
("H', 21, 26),
("1, 8, 9),
('a', 10, 15),
('K, 22, 23),
('L, 24, 25),
('™M*, 11, 12),
("N", 13, 14);

First, we can use a view with all the (Ift, rgt) numbers in a single
column.

CREATE VIEW LftRgt (visit)

AS SELECT 1ft FROM Assemblies
UNION
SELECT rgt FROM Assemblies;

This VIEW finds left numbers in gaps instead of in the tree.



4.6 Closing Gaps in the Tree 73

CREATE VIEW Firstvisit (visit)
AS SELECT (visit + 1)
FROM LftRgt
WHERE (visit + 1) NOT IN (SELECT visit FROM LftRgt)
AND (visit + 1) > 0;

The final predicate is to keep you from going past the leftmost limit of the
root node, which is always 1. Likewise, this VIEW finds the right nested sets
numbers in gaps instead of in the tree.

CREATE VIEW LastVisit (visit)
AS SELECT (visit - 1)
FROM LftRgt
WHERE (visit - 1) NOT IN (SELECT visit FROM LftRgt)
AND (visit - 1) <2 * (SELECT COUNT(*) FROM LftRgt);

The final predicate is to keep you from going past the rightmost limit
of the root node, which is twice the number of nodes in the tree. You
then use these two VIEWs to build a table of the gaps that have to be
closed.

CREATE VIEW Gaps (commence, finish, spread)
AS SELECT Al.visit, Ll.visit, ((Ll.visit - Al.visit) + 1)

FROM Firstvisit AS Al, LastVisit AS L1

WHERE L1.visit = (SELECT MIN(L2.visit)

FROM LastVisit AS L2
WHERE Al.visit <= L2.visit);

CREATE PROCEDURE X1()
LANGUAGE SQL
DETERMINISTIC

WHILE EXISTS (SELECT * FROM Gaps)
DO UPDATE Assemblies
SET rgt = CASE
WHEN rgt > (SELECT MIN(commence) FROM Gaps)
THEN rgt - 1 ELSE rgt END,
1ft = CASE
WHEN T1ft > (SELECT MIN(commence) FROM Gaps)
THEN 1ft 1 ELSE 1ft END;

END WHILE;



74 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

CREATE VIEW Gaps (commence, finish, spread)
AS SELECT Al.visit, Ll.visit, ((Ll.visit - Al.visit) + 1)
FROM Firstvisit AS Al, LastVisit AS L1
WHERE L1.visit = (SELECT MIN(L2.visit)
FROM LastVisit AS L2
WHERE Al.visit <= L2.visit);

This query will tell you the start and finish nested sets numbers of the
gaps, as well as their spread. It makes a handy report in itself, which is why I
have shown it with the redundant finish and spread columns. But that is not
why we created it. It can be used to “slide” everything over to the left, thus:

CREATE PROCEDURE X2()

LANGUAGE SsQL

DETERMINISTIC

-- This will have to be repeated until gaps disappear
WHILE EXISTS (SELECT * FROM Gaps)

DO UPDATE Assemblies

SET rgt = CASE
WHEN rgt > (SELECT MIN(commence) FROM Gaps)
THEN rgt - 1 ELSE rgt END,
1ft = CASE
WHEN T1ft > (SELECT MIN(commence) FROM Gaps)
THEN T1ft - 1 ELSE 1ft END;
END WHILE;

The actual number of iterations is given by comparing the size of the
original table and the final size after the gaps are closed. This method keeps
the code fairly simple at this level, but the VIEWs under it are pretty tricky
and could take a lot of execution time. It would seem reasonable to use the
gap size to speed up the closure process, but that can get tricky when more
than one node has been dropped.

4.7 Summary Functions on Trees

There are tree queries that deal strictly with the nodes themselves and have
nothing to do with the tree structure at all. For example, what is the name
of the president of the company? How many people are in the company? Are
there two people with the same name working here? These queries are han-
dled with the usual SQL queries and there are no surprises.



4.7 Summary Functions on Trees 75

Other types of queries do depend on the tree structure. For example, what
is the total weight of a finished assembly (i.e., the total of all of its subassembly
weights)? Do Harry and John report to the same boss? And so forth.

Use of the BETWEEN predicate with a GROUP BY and aggregate
functions lets us do basic hierarchical summaries, such as finding the total
salaries of the subordinates of each employee.

SELECT 02.member, SUM(Ol.salary) AS total_salary_budget
FROM OrgChart AS 01, Personnel AS 02
WHERE 01.1ft BETWEEN 02.1ft AND 02.rgt
GROUP BY 02.member;

Any other aggregate function, such as MIN(), MAX(), AVG(), and
COUNT(), can be used along with CASE expressions and function calls. You
can be pretty creative here, but there is one serious problem to watch out for.
This query format assumes that the structure within the subtree rooted at
each node does not matter.

4.7.1 Iterative Parts Update

Let's consider a sample database that shows a parts explosion for a Frammis
in a nested sets representation. A Frammis is the imaginary device that holds
those widgets MBA students are always marketing in their textbooks. This is
built from the assemblies table we have been using, with extra columns for the
quantity and weights of the various assemblies. As an aside, constraint names
in Standard SQL must be unique at the schema level, not the table level.

CREATE TABLE Frammis
(part CHAR(2) PRIMARY KEY,
qty INTEGER NOT NULL
CONSTRAINT positive_qty CHECK (qty > 0),
wgt INTEGER DEFAULT O NOT NULL,
CONSTRAINT non_negative_wgt
CHECK ((wgt = 0 AND rgt-1ft > 1) OR (wgt > 0 AND rgt-1ft = 1)),
1ft INTEGER NOT NULL UNIQUE
CONSTRAINT valid_1ft CHECK (1ft > 0),
rgt INTEGER NOT NULL UNIQUE
CONSTRAINT valid_rgt CHECK (rgt > 1),
CONSTRAINT valid_range_pair CHECK (1ft < rgt));

We initially load it with these data:



76

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES

oY

Frammis

part qty wgt Ift rgt
‘A 1 0 1 28
‘B’ 1 0 2 5
c 2 0 6 19
‘D’ 2 0 20 27
‘B’ 2 12 3 4
‘F 5 0 7 16
‘G’ 2 6 17 18
‘H’ 3 0 21 26
‘1 4 8 8 9
) 1 0 10 15
K’ 5 3 22 23
i 1 4 24 25
‘M’ 2 7 11 12
‘N’ 3 2 13 14

Leaf nodes are the most basic parts, the root node is the final assembly,
and the nodes in between are subassemblies. Each part or assembly has a
unique catalog number (in this case one or two letters), a weight, and the

quantity of this unit that is required to make the next unit above it.

The Frammis table is a convenient fiction to keep examples simple. In
a real schema for a parts explosion, there should be other tables. One such
table would be an Assembly table to describe the structural relationship of
the assemblies. Another would be an Inventory or Parts table to describe each
indivisible part of the assemblies. There would also be tables for suppliers,
for estimated assembly times, and so forth. For example, parts data in the

Frammis table might be split out and put into a table like this:

CREATE TABLE Parts
(part_id CHAR(2) NOT NULL PRIMARY KEY,
part_name VARCHAR(15) NOT NULL,
wgt INTEGER NOT NULL
CHECK (wgt >= 0),
supplier_nbr INTEGER NOT NULL

2

REFERENCES Suppliers (supplier_nbr),

The quantity has no meaning in the Parts table. If a part is an undividable
piece of raw material it will have a weight and other physical attributes.



4.7 Summary Functions on Trees 77

Thus we might have a wheel made from steel that we buy from an outside
supplier that we later replace with a wheel made from aluminum that we buy
from a different supplier and substitute into the assemblies that use wheels. It
is a different wheel, but the same function and quantity as the old wheel.

Likewise, we might stop making our own motors and start buying them
from a supplier. The motor assembly would still be in the tree and it would
still be referred to by an assembly code, but its subordinates would disappear.
In effect, the “blueprint” for the assemblies is shown in the nesting of the
nodes of the assemblies table with quantities added.

The iterative procedure for calculating the weight of any part is fairly
straightforward. If the part has no children, just use its own weight. For
each of its children, if they have no children, then their contribution is their
weight times their quantity. If they do have children, their contribution is the
total of the quantity times the weight of all the children.

CREATE PROCEDURE WgtCalc_1 ()
LANGUAGE SQL
DETERMINISTIC
BEGIN
UPDATE Frammis -- clear out the weights
SET wgt =0
WHERE 1ft < (rgt - 1);
WHILE EXISTS (SELECT * FROM Frammis WHERE wgt = 0)
DO UPDATE Frammis
SET wgt =
CASE -- all the children have a weight computed
WHEN 0 < ALL (SELECT C.wgt
FROM Frammis AS C
LEFT OUTER JOIN
Frammis AS B
ON B.1ft
= (SELECT MAX(S.1ft)
FROM Frammis AS S
WHERE C.1ft > S.1ft
AND C.1ft < S.rgt)
WHERE B.part = Frammis.part)
THEN (SELECT COALESCE (SUM(C.wgt * C.qty), Frammis.wgt)
FROM Frammis AS C
LEFT OUTER JOIN



78

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @

Frammis AS B
ON B.1ft
= (SELECT MAX(S.1ft)

FROM Frammis AS S

WHERE C.1ft > S.1ft
AND C.1ft < S.rgt)

WHERE B.part = Frammis.part)
ELSE Frammis.wgt END;
END WHILE;

END;

This will give us this result, after moving up the tree, one level at a time,
as shown in Figures 4.8 thru 4.12.

A
qty=1, wgt=?

B D
qty=1, wgt=24 qty=2, wgt=?

Iteration one, leaf nodes only

Figure 4.8



79

a 4.7 Summary Functions on Trees

A
qty=1, wgt=?

Iteration two

D
qty=2, wgt="?

Figure 4.9

Frammis

part qty wgt Ift rgt
A 1 682 28
B 1 24 5
C 2 272 19
D 2 57 20 27
E 2 12 3 4
F 5 52 7 16
G 2 6 17 18
H 3 19 21 26
| 4 8 8 9

] 1 20 10 15
K 5 3 22 23
L 1 4 24 25
M 2 7 11 12
N 3 2 13 14



CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @

A
qty=1, wgt=?

Iteration three ﬁ —

Figure 4.10

The weight of an assembly will be calculated as the total weight of all
its subassemblies. Look at the M and N leaf nodes; the table says that we
need two M units weighing 7 kilograms each, plus three N units weighing
2 kilograms each, to make one J Assembly. Therefore, a J assembly weighs
((2*7) + (3 *2)) =20 kilograms. This process is iterated from the leaf
nodes up the tree, one level at a time until the total weight appears in the
root node.

4.7.2 Recursive Parts Update

Let's define a recursive function WgtCalc() that takes part as an input and
returns the weight of that part. To compute the weight, the function assumes
that the input is a parent node in the tree and sums the quantity times the
weight for all the children.



a 4.7 Summary Functions on Trees 81
A
gty=1, wgt=?

= e

Iteration four - -

Figure 4.11

If there are no children, it returns just the parent's weight, which means
the node was a leaf node. If any child is itself a parent, the function calls itself
recursively to resolve that part's weight.

CREATE FUNCTION WgtCalc2 (IN my_part CHAR(2))

RETURNS INTEGER

LANGUAGE sQL

DETERMINISTIC

-- recursive function

RETURN

(SELECT COALESCE(SUM(Subassemblies.qty

* CASE WHEN Subassemblies.1ft + 1 = Subassemblies.rgt

THEN Subassemblies.wgt
ELSE WgtCalc (Subassemblies.part)
END), MAX(Assemblies.wgt))



82 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES é\”

Iteration five, the root

Figure 4.12

FROM Frammis AS Assemblies
LEFT OUTER JOIN
Frammis AS Subassemblies
ON Assemblies.1ft < Subassemblies.1ft
AND Assemblies.rgt > Subassemblies.rgt
AND NOT EXISTS
(SELECT *
FROM Frammis
WHERE 1ft < Subassemblies.1ft
AND Tft > Assemblies.1ft
AND rgt > Subassemblies.rgt
AND rgt < Assemblies.rgt)
WHERE Assemblies.part = my_part);

We can use the function in a VIEW to get the total weight.



e 4.8 Inserting and Updating Trees 83

CREATE VIEW TotalWeight (part, qty, wgt, 1ft, rgt)
AS
SELECT part, qty, WgtCalc(part, 1ft, rgt)

FROM Frammis;

Of course, the UPDATE is now trivial ...

UPDATE Frammis SET wgt = WgtCalc(part);

4.8 Inserting and Updating Trees

Updates to nodes are done by searching for the key of each node; there
is nothing special about them. However, rearranging the structure of

the tree is tricky because figuring out the (Ift, rgt) nested sets numbers
requires a good bit of algebra in a large tree. As a programming project,
you might want to build a tool that takes a “boxes-and-arrows” graphic
and converts it into a series of UPDATE and INSERT statements. Inserting
a subtree or a new node involves finding a place in the tree for the new
nodes, spreading the other nodes apart by incrementing their nested
sets numbers, and then renumbering the subtree to fit into the gap cre-
ated. This is basically the deletion procedure in reverse. First determine
the parent for the node and then spread the nested sets numbers out two
positions to the right.

CREATE PROCEDURE InsertNewNode

(IN new_part CHAR(2), IN parent_part CHAR(2),
IN new_qty INTEGER, IN new_wgt INTEGER)
LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC
DECLARE parent INTEGER;
SET parent = (SELECT rgt
FROM Frammis
WHERE part = parent_part);
UPDATE Frammis
SET 1ft = CASE WHEN 1ft > parent
THEN 1ft + 2
ELSE 1ft END,



CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

rgt = CASE WHEN rgt >= parent
THEN rgt + 2
ELSE rgt END
WHERE rgt >= parent;

INSERT INTO Frammis (part, qty, wgt, 1ft, rgt)
VALUES (new_part, new_qty, new_wgt, parent, (parent + 1));
END;

This code is credited to Mark E. Barney. The idea is to spread the (Ift, rgt)
numbers after the youngest child of the parent, G in this case, over by two to
make room for the new addition, G1. This procedure will add the new node
to the rightmost child position, which helps preserve the idea of an age order
among siblings.

A slightly different version of the same code will let you add a sibling to
the right of a given sibling.

CREATE PROCEDURE InsertNewNode
(IN new_part CHAR(2), IN 1ft_sibling_part CHAR(2),
IN new_qty INTEGER, IN new_wgt INTEGER)
LANGUAGE SQL
DETERMINISTIC
BEGIN ATOMIC
IF (SELECT 1ft -- the root has no siblings
FROM Frammis

WHERE part = 1ft_sibling_part) =1
THEN LEAVE insert_on_1ft;
ELSE BEGIN

DECLARE 1ft_sibling INTEGER;

SET 1ft_sibling

= (SELECT rgt

FROM Frammis
WHERE part = 1ft_sibling_part);
UPDATE Frammis

SET 1ft = CASE WHEN 1ft < 1ft_sibling
THEN T1ft ELSE 1ft + 2 END,
rgt = CASE WHEN rgt < 1ft_sibling

THEN rgt ELSE rgt + 2 END
WHERE rgt > 1ft_sibling;



e 4.8 Inserting and Updating Trees 85

INSERT INTO Frammis

VALUES (new_part, new_qty, new_wgt, (1ft_sibling + 1), (1ft_sibling
+2));

END;
END IF;
END;

The reason for giving both blocks of code is a note from Morgan Kelsey
about some problems he found using a nested set model for a multithreaded
message board. They were doing strange things with replies to posted
messages.

For example, one would assume this was correct behavior, when there are
multiple children:

--1 message 1

----2 - reply to 1
----3 - reply to 1
------ 5 - reply to 3
----4 - reply to 1

However, there are boards around doing this:

--1 message 1

----4 - reply to 1
----3 - reply to 1
------ 5 - reply to 3
----2 - reply to 1

Here's an example: http://boards.gamers.com/messages/overview.asp
?name=scstratboard.

When the tree structure is displayed, you have to go down to the right,
but then up to read the new messages. Apparently, people had taken the first
method (i.e., insert new guy as the rightmost sibling) as the way to do any
insertions and implemented it blindly.

4.8.1 Moving a Subtree within a Tree

Yes, it is possible to move subtrees inside the nested sets model for hierar-
chies. But we need to get some preliminary things out of the way first. The
nested sets model needs a few auxiliary tables to help it. The first is the usual
LftRgt view.



86

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

CREATE VIEW LftRgt (seq)
AS SELECT 1ft FROM Tree
UNION ALL
SELECT rgt FROM Tree;

Yes, LftRgt can be written as a derived table inside queries, but there are
advantages to using a VIEW. Self-joins are much easier to construct. Code is
easier to read. If more than one user needs this table, it can be materialized
only once by the SQL engine. The next table is a working table to hold
subtrees that we extract from the original tree. This could be declared as a
local temporary table.

CREATE LOCAL TEMPORARY TABLE WorkingTree
(root CHAR(2) NOT NULL,

node CHAR(2) NOT NULL,

1ft INTEGER NOT NULL,

rgt INTEGER NOT NULL,

PRIMARY KEY (root, node))
ON COMMIT DELETE ROWS;

The root column is going to be the value of the root node of the extracted
subtree. This gives us a fast way to find an entire subtree via part of the
primary key. While this is not important for the stored procedure discussed
here, it is useful for other operations that involve multiple extracted
subtrees.

Let me move right to the commented code. Input parameters are the root
node of the subtree being moved and the node that is to become its new
parent. In this procedure, there is an assumption that new siblings are added
on the right side of the existing siblings, in effect ordering them by their age.

CREATE PROCEDURE MoveSubtree

(IN my_root CHAR(2),

IN new_parent CHAR(2))
LANGUAGE sQL
DETERMINISTIC
BEGIN ATOMIC
DECLARE right_most_sibling INTEGER;
DECLARE subtree_size INTEGER;



e 4.8 Inserting and Updating Trees 87

-- Cannot move a subtree under jtself
DECLARE Self_reference CONDITION;

-- No such subtree root node
DECLARE No_such_subtree CONDITION;

-- No such parent node in the tree
DECLARE No_such_parent_node CONDITION;

body_of_proc:
BEGIN
IF my_root = new_parent
OR new_parent
IN (SELECT Tl.node
FROM Tree AS T1, Tree AS T2
WHERE T2.node = my_root
AND T1.1ft BETWEEN T2.1ft AND T2.rgt)

THEN SIGNAL Self_reference; -- error handler invoked here
LEAVE body_of_proc; -- or Teave the block
END IF;

IF NOT EXISTS

(SELECT *
FROM Tree
WHERE node = my_root)
THEN SIGNAL No_such_subtree; -- error handler invoked here
LEAVE body_of_proc; -- or leave the block
END IF;

IF NOT EXISTS

(SELECT =
FROM Tree
WHERE node = new_parent)
THEN SIGNAL No_such_parent_node; -- error handler invoked here
LEAVE body_of_proc; -- or leave the block
END IF;

-- put subtree into working table
INSERT INTO WorkingTree (root, node, 1ft, rgt)
SELECT my_root, Tl.node,



88 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

T1.1ft - (SELECT MIN(1ft)
FROM Tree
WHERE node = my_root),
Tl.rgt - (SELECT MIN(1ft)
FROM Tree
WHERE node = my_root)
FROM Tree AS T1, Tree AS T2
WHERE T1.1ft BETWEEN T2.1ft AND T2.rgt
AND T2.node = my_root;

-- remove the subtree from original tree
DELETE FROM Tree
WHERE node IN (SELECT node FROM WorkingTree);

-- get the spread and location for inserting working tree into tree
SET right_most_sibling
= (SELECT rgt
FROM Tree
WHERE node = new_parent);

SET subtree_size = (SELECT (MAX(rgt) +1) FROM WorkingTree);

-- make a gap in the tree
UPDATE Tree

SET 1ft = CASE WHEN 1ft > right_most_sibling
THEN 1ft + subtree_size
ELSE 1ft END,
rgt = CASE WHEN rgt >= right_most_sibling

THEN rgt + subtree_size
ELSE rgt END
WHERE rgt >= right_most_sibling;

-- insert the subtree and renumber its rows
INSERT INTO Tree (node, 1ft, rgt)
SELECT node,
1ft + right_most_sibling,
rgt + right_most_sibling
FROM WorkingTree;

-- close gaps in tree
UPDATE Tree



e 4.8 Inserting and Updating Trees 89

SET 1ft = (SELECT COUNT(*)
FROM LftRgt
WHERE LftRgt.i <= Tree.1ft),
rgt = (SELECT COUNT(*)

FROM LftRgt
WHERE LftRgt.i <= Tree.rgt);

-- clean out working tree table
DELETE FROM WorkingTree;
END body_of_proc;

END; -- of MoveSubtree

As a minor note, the variables right_most_sibling and subtree_size could
have been replaced with their scalar subqueries in the UPDATE and INSERT
INTO statements that follow their assignments, but that would make the
code much harder to read at the cost of only a slight boost in performance.

The final UPDATE statement is a version of the standard self-join trick
used to find the ordinal position of a value in a column.

I also used this code to show how error handling is done in the SQL/

PSM Standard language. You can declare error conditions and then use the
SIGNAL statement to put their names into the diagnostics area when they are
detected by a handler and some action is taken. The LEAVE command voids
out the actions of the labeled block of code in which it appears and jumps
control to the end of the block. In this sample code, LEAVE is never executed
because the SIGNAL terminates execution immediately, and a SIGNAL that
was caught and handled would determine whether the block's actions are
“voided” or not.

This is one of the few times I will show you possible error handling or even
the deferring of constraints. Each vendor's procedural language will be different
and you will have to adjust this code to your product in the real world.

4.8.2 MoveSubtree Second Version

Another version of the MoveSubtree procedure that does not use the
WorkingTree table looks like this:

CREATE PROCEDURE MoveSubtree
(IN my_root CHAR(2), IN new_parent CHAR(2))



90

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE origlft INTEGER;
DECLARE origrgt INTEGER;
DECLARE new_parent_rgt INTEGER;

SELECT 1ft, rgt
INTO origlft, origrgt
FROM Tree
WHERE node = my_root;

SET new_parent_rgt
= (SELECT rgt
FROM Tree
WHERE node = new_parent);

UPDATE Tree
SET 1ft
= 1ft
+ CASE
WHEN new_parent_rgt < origlft
THEN CASE

WHEN T1ft BETWEEN origlft AND origrgt
THEN new_parent_rgt - origlft
WHEN 1ft BETWEEN new_parent_rgt
AND origlft -1
THEN origrgt - origlft + 1
ELSE 0 END
WHEN new_parent_rgt > origrgt
THEN CASE
WHEN 1ft BETWEEN origlft
AND origrgt
THEN new_parent_rgt - origrgt -1
WHEN 1ft BETWEEN origrgt + 1
AND new_parent_rgt -1
THEN origlft - origrgt -1
ELSE 0 END

ELSE O END,

oY



6 4.8 Inserting and Updating Trees 91

rgt
= rgt
+ CASE
WHEN new_parent_rgt < origlft
THEN CASE
WHEN rgt BETWEEN origlft
AND origrgt
THEN new_parent_rgt - origlift
WHEN rgt BETWEEN new_parent_rgt AND origlft -1
THEN origrgt - origlft + 1
ELSE 0 END
WHEN new_parent_rgt > origrgt
THEN CASE
WHEN rgt BETWEEN origlft
AND origrgt
THEN new_parent_rgt - origrgt -1
WHEN rgt BETWEEN origrgt + 1
AND new_parent_rgt -1
THEN origlft - origrgt -1
ELSE 0 END
ELSE 0 END;
END; -- Movesubtree

This code is credited to Alejandro Izaguirre. It does not set a warning if
the subtree is moved under itself, but leaves the tree unchanged. Again, the
calculations for origlft, origrgt, and new_parent_rgt could be put into the
UPDATE statement as scalar subquery expressions, but the code would be
more difficult to read.

4.8.3 Insertion of an Immediate Subtree

Inserting a subtree can be done with a simple procedure in which we start
with a subtree parent node and a varying number of mediate subordinates.
Let's use a generic Tree table skeleton that can have up to 10 children under
a parent node.

CREATE TABLE Tree
(node_name VARCHAR(15) NOT NULL,
1ft INTEGER NOT NULL CHECK (1ft > 0) UNIQUE,



92

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

rgt INTEGER NOT NULL CHECK (rgt > 1) UNIQUE,
CHECK (1ft < rgt));

You will need a single node to start the tree.
INSERT INTO Tree VALUES ('Global', 1, 2);

The procedure uses a technique known as the long parameter list. While
the SQL/PSM Standard is silent on the issue, most SQL procedural language
implementations allow a large number of parameters. SQL Server 2008 allows
2K and IBM DB2 allows 32K parameters in the list.

CREATE PROCEDURE InsertChildrenIntoTree
(IN root_node VARCHAR(15),

IN child_01 VARCHAR(15),

IN child_02 VARCHAR(15),

IN child_03 VARCHAR(15),

IN child_04 VARCHAR(15),

IN child_05 VARCHAR(15),

IN child_06 VARCHAR(15),

IN child_07 VARCHAR(15),

IN child_08 VARCHAR(15),

IN child_09 VARCHAR(15),

IN child_10 VARCHAR(15) )

BEGIN

-- Find the parent node of the new subtree
DECLARE Tocal_parent_rgt INTEGER;

SET local_parent_rgt

= (SELECT rgt

FROM Tree

WHERE node_name = root_node);

-- put the children into Kindergarten;
-- it is a local temporary table that clears on COMMIT

INSERT INTO Kindergarten

SELECT node_name,

(1ft + lTocal_parent_rgt -1) AS 1ft,
(rgt + local_parent_rgt -1) AS rgt
FROM (VALUES (child_o01, 1, 2),



4.8 Inserting and Updating Trees 93

(child_o02, 3, 4),

(child_03, 5, 6),

(child_04, 7, 8),

(child_05, 9, 10),

(child_06, 11, 12),

(child_07, 13, 14),

(child_o08, 15, 16),

(child_09, 17, 18),

(child_10, 19, 20))

AS Kids (node_name, 1ft, rgt)

WHERE node_name IS NOT NULL;

--use the size of the Kindergarten to make a gap
UPDATE Tree

SET 1ft = CASE WHEN 1ft > Tocal_parent_rgt

THEN 1ft + (2 * (SELECT COUNT(*) FROM Kindergarten))
ELSE 1ft END,

rgt = CASE WHEN rgt >= local_parent_rgt

THEN rgt + (2 * (SELECT COUNT(*) FROM Kindergarten))
ELSE 1ft END

WHERE 1ft > local_parent_rgt

OR rgt >= local_parent_rgt;

INSERT INTO Tree (node_name, 1ft, rgt)

SELECT node_name, 1ft, rgt

FROM Kindergarten;

END;

As examples, let me do a simple geographical hierarchy:

CALL InsertChildrenIntoTree ('Global', 'USA','Canada', 'Europe', 'Asia');
CALL InsertChildrenIntoTree ('USA', 'Texas', 'Georgia', 'Utah', 'New
York', 'Maine', 'Alabama');

4.8.4 Subtree Duplication

In many hierarchies, subtrees are repeated in different parts of the structure.
The same subassembly might appear under many different assemblies. In the
military, squads, platoons, divisions, and so forth are defined by a known col-
lection of soldiers, each with particular military occupational skills. It would
be nice to be able to copy the structure of a subtree under a different root node.



94

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

Consider a simple tree where we are going to duplicate node values in
each copy of the structure. Obviously, duplicated nodes cannot be keys, so we
have to use the (Ift, rgt) pairs instead.

CREATE TABLE Tree

(node VARCHAR(5) NOT NULL,
1ft INTEGER NOT NULL,

rgt INTEGER NOT NULL,
PRIMARY KEY (1ft, rgt));

Let's do this problem in steps with the calculations explained and then
consolidate everything into one procedure.

1. We need to find the rightmost position of the node that will be the
new parent of the copy of the subtree.

2. Find out how big the subtree is so that we can make a gap for it in
the new parent's (lft, rgt) range.

3. Insert the copy, renumbering the (lft, rgt) pairs to fill the gap you just
made. This is like moving a subtree, but the original subtree is not
deleted in the process, nor do we need a working table to hold the
subtree.

CREATE PROCEDURE CopyTree
(IN new_parent VARCHAR(5),
IN subtree_root VARCHAR(5))
LANGUAGE SQL
DETERMINISTIC
BEGIN ATOMIC
-- create the gap
UPDATE Tree
SET 1ft = CASE WHEN 1ft > (SELECT rgt
FROM Tree
WHERE node = new_parent)
THEN T1ft + (SELECT (rgt - 1ft + 1)
FROM Tree
WHERE node = subtree_root)
ELSE 1ft END,
rgt = CASE WHEN rgt >= (SELECT rgt



6 4.8 Inserting and Updating Trees 95

FROM Tree
WHERE node = new_parent)
THEN rgt + (SELECT (rgt - 1ft + 1)

FROM Tree
WHERE node = subtree_root)
ELSE rgt END
WHERE rgt >= (SELECT rgt
FROM Tree
WHERE node

new_parent);

-- insert the copy
INSERT INTO Tree (node, 1ft, rgt)

SELECT Tl.node || '2',
T1.1ft
+ (SELECT rgt - 1ft + 2
FROM Tree
WHERE node = subtree_root),
Tl.rgt
+ (SELECT rgt - 1ft + 2
FROM Tree
WHERE node = subtree_root)

FROM Tree AS T1, Tree AS T2
WHERE T2.node = subtree_root

AND T1.1ft BETWEEN T2.1ft AND T2.rgt;
END;

I gave the new nodes a name with a digit 2’ appended to them, but that is
to make the results easier to read and is not required.

This little renaming trick also solved another problem you have to
consider. If I try to copy a subtree under itself, I may have a recursive
relationship that is infinite or impossible. Consider a parts explosion that has
a subassembly ‘X’ in which one of the components is another ‘X', in which
this second ‘X’ in turn has to contain a third ‘X’ to work, and so forth.

You might want to add the predicate to assure that this does not happen.

CONSTRAINT new_parent
NOT BETWEEN (SELECT 1ft FROM Tree WERE node subtree_root)
AND (SELECT rgt FROM Tree WERE node = subtree_root)



96

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

4.8.5 Swapping Siblings

The following solution for swapping the positions of two siblings under the
same parent node is due to Mr. Vanderghast and originally appeared in a
posting on the MS-SQL Server Newsgroup.
If the leftmost sibling has its (lft, rgt) = (i0, i1) and the other subtree, the
rightmost sibling, has (i2, i3), implicitly, we know that (i0 <il <i2 <i3).
With a little algebra, we can figure out that if (I) is a Ift or rgt value in the
table between i0 and i3, then

1. If G BETWEEN i0 AND il) then (i) should be updated to (i + i3 —1il).
2. If G BETWEEN i2 AND i3) then (i) should be updated to (i +i0 —i2).

3. I (iBETWEENIil + 1 AND i2 — 1), then (i) should be updated to
(10 +i3 +1—12—1il).

All of this becomes a single update statement, but we will put the (Ift, rgt)
pairs of the two siblings into local variables so that a human being can read
the code.

CREATE PROCEDURE SwapSiblings

(IN 1ft_sibling CHAR(2), IN rgt_sibling CHAR(2))
LANGUAGE SQL
DETERMINISTIC

BEGIN ATOMIC

DECLARE i0 INTEGER;
DECLARE il INTEGER;
DECLARE i2 INTEGER;
DECLARE i3 INTEGER;

SET i0 = (SELECT 1ft FROM Tree WHERE node = 1ft_sibling);
SET il = (SELECT rgt FROM Tree WHERE node = 1ft_sibling);
SET i2 = (SELECT 1ft FROM Tree WHERE node = rgt_sibling);
SET i3 = (SELECT rgt FROM Tree WHERE node = rgt_sibling);

UPDATE Tree
SET 1ft = CASE WHEN 1ft BETWEEN i0 AND i1l
THEN i3 + 1ft - il
WHEN 1ft BETWEEN i2 AND i3
THEN i0 + 1ft - i2
ELSE i0 + i3 + 1ft - il - i2 END,



e 4.9 Converting Nested Sets Model to Adjacency List Model

rgt = CASE WHEN rgt BETWEEN i0 AND il
THEN i3 + rgt - il
WHEN rgt BETWEEN i2 AND i3
THEN i0 + rgt - i2
ELSE i0 + i3 + rgt - il - i2 END
WHERE 1ft BETWEEN i0 AND i3
AND i0 < il
AND il < 2
AND i2 < 13;
END;

4.9 Converting Nested Sets Model to Adjacency List Model

Most SQL databases have used the adjacency list model for two reasons.
The first reason is that in the early days of the relational model, Dr. Codd
published a paper using the adjacency list and he was the final authority.
The second reason is that the adjacency list is a way of “faking” pointer
chains, the traditional programming method in procedural languages for
handling trees.

To convert a nested sets model into an adjacency list model, use this
query:

SELECT B.member AS boss, P.member
FROM OrgChart AS P

LEFT OUTER JOIN

Personnel AS B

ON B.1ft = (SELECT MAX(S.1ft)
FROM OrgChart AS S

WHERE P.1ft > S.T1ft

AND P.1ft < S.rgt);

This single statement, originally written by Alejandro Izaguirre, replaces
my own previous attempt that was based on a pushdown stack algorithm.
Once more, we see that the best way to program SQL is to think in terms of
sets and not procedures.

Another version of the same query is credited to Ben-Nes Michael of
Italy.

SELECT B.member AS boss, P.member
FROM OrgChart AS B, Personnel AS P



98 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

WHERE P.1ft BETWEEN B.1ft AND B.rgt
AND B.member
(SELECT MAX(S.member)
FROM OrgChart AS S
WHERE S.1ft < P.1ft
AND S.rgt > P.rgt);

He found that this was faster and simpler according to the EXPLAIN
results in PostgreSQL. However, the Ben-Nes version does not produce a
(NULL, <root>) row in the result set, only the edges of the graph.

4.10 Converting Adjacency List Model to Nested Sets Model

Because the adjacency list model is still more common, you can expect

to have to convert it into a nested sets model. There are a few ways to
do this.

4.10.1 Stack Algorithm

To convert an adjacency list model to a nested sets model, use this bit of
SQL/PSM code. It is a simple pushdown stack algorithm and is shown with-
out any error handling. The first step is to create tables for adjacency list data
and one for the nested sets model.

-- Tree holds the adjacency model
CREATE TABLE Tree

(node CHAR(10) NOT NULL,

parent CHAR(10));

-- Stack starts empty, will hold the nested set model
CREATE TABLE Stack

(stack_top INTEGER NOT NULL,

node CHAR(10) NOT NULL,

1ft INTEGER,

rgt INTEGER);

The Stack table will be used as a pushdown stack and will hold the final
results. The extra column “stack_top” holds an integer that tells you what the
current top of the stack is.



4.10 Converting Adjacency List Model to Nested Sets Model

CREATE PROCEDURE AdjToNested()
LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE 1ft_rgt INTEGER;
DECLARE max_1ft_rgt INTEGER;
DECLARE current_top INTEGER;

SET 1ft_rgt = 2;
SET max_1ft_rgt = 2 * (SELECT COUNT(*) FROM Tree);
SET current_top = 1;

--clear the stack
DELETE FROM Stack;

-- push the root
INSERT INTO Stack
SELECT 1, node, 1, max_1ft_rgt
FROM Tree
WHERE parent IS NULL;

-- delete rows from tree as they are used
DELETE FROM Tree WHERE parent IS NULL;

WHILE 1ft_rgt <= max_1ft_rgt - 1
DO IF EXISTS (SELECT *
FROM Stack AS S1, Tree AS T1
WHERE S1.node = Tl.parent
AND S1.stack_top = current_top)
THEN BEGIN -- push when top has subordinates and set 1ft value
INSERT INTO Stack
SELECT (current_top + 1), MIN(Tl.node), 1ft_rgt, NULL

FROM Stack AS S1, Tree AS T1
WHERE S1l.node = Tl.parent
AND S1.stack_top = current_top;

-- delete rows from tree as they are used
DELETE FROM Tree
WHERE node = (SELECT node



100 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

FROM Stack
WHERE stack_top = current_top + 1);
-- housekeeping of stack pointers and 1ft_rgt
SET 1ft_rgt = 1ft_rgt + 1;
SET current_top = current_top + 1;
END;
ELSE
BEGIN -- pop the stack and set rgt value
UPDATE Stack
SET rgt = 1ft_rgt,
stack_top = stack_top -- pops the stack
WHERE stack_top = current_top;
SET 1ft_rgt = 1ft_rgt + 1;
SET current_top = current_top - 1;
END;

END IF;
END WHILE;
-- stack top is not needed in final answer

IF EXISTS (SELECT * FROM Tree)

THEN << error handling for orphans in original tree >>
END IF;

END;

4.10.2 Ben-Gan's Recursive Common Table Expression (CTE)

This solution is credited to Itzak Ben-Gan. It uses a rather complicated recur-
sive CTE to find the (Ift, rgt) pairs and the level number, starting at a given
root node.

CREATE TABLE Personnel_Orgchart
(emp_id INTEGER NOT NULL PRIMARY KEY,
mgr_emp_id INTEGER NULL
REFERENCES Personnel_OrgChart,
UNIQUE (mgr_emp_id, emp_id),
emp_name VARCHAR(25) NOT NULL,
salary_amt DECIMAL (10,2) NOT NULL);



4.10 Converting Adjacency List Model to Nested Sets Model

101

INSERT INTO Personnel_OrgChart(emp_id, mgr_emp_id, emp_name,

salary_amt)

VALUES(1, NULL, 'David', 10000.00);

(2, 1, 'Eitan', 7000.00),
(3, 1, '"Ina', 7500.00),
(4, 2, 'Seraph', 5000.00),
(5, 2, 'Jiru', 5500.00),
(6, 2, "Steve', 4500.00),
(7, 3, "Aaron', 5000.00),
(8, 5, 'Lilach', 3500.00),
(9, 7, 'Rita', 3000.00),

BEGIN
DECLARE root_emp_id INTEGER;
SET root_emp_id = 1;

-- CTE with two numbers: 1 and 2

WITH TwoNumsCTE (n)
AS
(VALUES (1), (2))

--CTE with two binary sort paths for each node:
-- One smaller than descendants sort paths
-- One greater than descendants sort paths

Sort_pathCTE
AS
(SELECT emp_id, 0 AS 1v1, n,

CAST(n AS VARBINARY(MAX)) AS sort_path

FROM Personnel_OrgChart
CROSS JOIN
TwoNumsCTE

WHERE emp_id = root_emp_id
UNION ALL

(10, 5, 'Sean', 3000.00),
(11, 7, 'Gabriel', 3000.00),
(12, 9, '"Emilia', 2000.00),
(13, 9, 'Michael', 2000.00),
(14, 9, 'Didi", 1500.00);



102 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

SELECT C.emp_id, P.1vl + 1, TN.n,
P.sort_path
+ CAST(ROW_NUMBER()
OVER(PARTITION BY C.mgr_emp_id -- order of siblings
ORDER BY C.emp_name, C.emp_id, TN.n)
AS BINARY(4))
FROM Sort_pathCTE AS P, Personnel_OrgChart AS C
WHERE P.n =1
AND C.mgr_emp_id = P.emp_id
CROSS JOIN
TwoNumsCTE AS TN),

-- CTE with row numbers representing sort_path order
SortCTE
AS
(SELECT emp_id, 1vI1,
ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval
FROM Sort_pathCTE),

-- CTE with 1ft and rgt values

NestedSetsCTE

AS

(SELECT emp_id, 1vI1,
MIN(sortval) AS 1ft,
MAX(sortval) AS rgt

FROM SortCTE
GROUP BY emp_id, 1v1)

SELECT emp_id, 1v1, 1ft, rgt
FROM NestedSetsCTE;

This was written for the Microsoft SQL Server, so be careful when
porting it.

4.11 Separation of Edges and Nodes

One of the most important features of a model for hierarchies is the separation
of edges and nodes. The personnel of a company are entities, and the organi-
zational chart for the company is a relationship among those entities. Because



4.11 Separation of Edges and Nodes 103

they are different kinds of things, they need to be in separate tables. Not only
is this just good data modeling, but it has some very practical advantages.

4.11.1 Multiple Structures

As an example, a shoe company had two reporting hierarchies: one for the
manufacturing side of the company, which was based on the physical con-
struction of the footwear, and another volatile hierarchy for the marketing
department. The marketing hierarchy was based on where and to whom the
shoes were sold.

For example, steel-toed work boots were one category in the
manufacturing reports. But at that time, there were two distinct groups of
buyers of steel-toed work boots: construction workers with really big feet and
teenaged girls into punk rock with really small feet. People with average-sized
feet did not wear these things. For marketing, size was a vital factor, and for
manufacturing, it was a few switches on a shoe-making machine.

CREATE TABLE Shoes
(shoe_nbr INTEGER NOT NULL PRIMARY KEY,
.);

CREATE TABLE ManufacturingReports
(shoe_nbr INTEGER NOT NULL
REFERENCES Shoes(shoe_nbr),
1ft INTEGER NOT NULL,
rgt INTEGER NOT NULL,
)

CREATE TABLE MarketingReports
(shoe_nbr INTEGER NOT NULL
REFERENCES Shoes(shoe_nbr),
1ft INTEGER NOT NULL,
rgt INTEGER NOT NULL,
)

4.11.2 Multiple Nodes

Aaron J. Mackey pointed out that you can attach a variable number of attri-
butes to a node and then make queries based on searching for them. For
example, given this general structure



104

CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES

CREATE TABLE Tree
(node INTEGER NOT NULL PRIMARY KEY,
1ft INTEGER NOT NULL UNIQUE,
rgt INTEGER NOT NULL UNIQUE,
.

Now attach various attributes to each node.

CREATE TABLE NodeProperty_1
(node INTEGER NOT NULL
REFERENCES Tree (node)
ON DELETE CASCADE
ON UPDATE CASCADE,
value CHAR(15) NOT NULL);

CREATE TABLE NodeProperty_2
(node INTEGER NOT NULL
REFERENCES Tree (node)
ON DELETE CASCADE
ON UPDATE CASCADE,
value CHAR(15) NOT NULL);

Y

Each node may have 0 to (n) related properties, each of which has a
value. This query gives all the parents of the set defined by nodes that have a

particular property.

4.12 Comparing Nodes and Structure

There are really several kinds of equality comparisons when dealing with a

hierarchy:

1.  Same nodes in both tables.

2. Same structure in both tables, without regard to nodes.

3. Same nodes in the same positions in the structure in both tables—

they are identical

Let me once more invoke my organization chart in the nested sets

model.



e 4.12 Comparing Nodes and Structure 105

CREATE TABLE OrgChart

(member CHAR(10) NOT NULL PRIMARY KEY,

1ft INTEGER NOT NULL UNIQUE CHECK (1ft > 0),
rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
CONSTRAINT order_okay CHECK (1ft < rgt));

and insert the usual sample data:

INSERT INTO OrgChart (member, 1ft, rgt)
VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 11),

('Donna', 5, 6),

('Eddie', 7, 8),

("Fred', 9, 10);

The organizational chart would look like this as a directed graph:

Albert '

| Donna ’ Eddie ’ Fred ‘
56 7,8 9,10

Let's create a second table with the same nodes, but with a different structure:

Figure 4.13

CREATE TABLE OrgChart_2
(member CHAR(10) NOT NULL PRIMARY KEY,
1ft INTEGER NOT NULL UNIQUE CHECK (1ft > 0),



106 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
CONSTRAINT order_okay CHECK (1ft < rgt));

Insert this table's sample data:

INSERT INTO OrgChart_2 (member, 1ft, rgt)
VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 5),

('Donna', 6, 7),

('Eddie', 8, 9),

('Fred', 10, 11);

Now we can do queries based on the set of nodes and on the structure.
Let's make a list of variations on such queries.

Albert
1,12

Bert Chuck ' Donna Eddie Fred
2,3 4,5 ‘ 6,7 8,9 10, 11

1. Do we have the same nodes, but in a different structure? One way to
do this is with this query.

Figure 4.14

SELECT DISTINCT 'They have different sets of nodes'
FROM (SELECT * FROM OrgChart
UNION ALL
SELECT * FROM OrgChart_2) AS PO (member, 1ft, rgt)
GROUP BY PO.member
HAVING COUNT(*) <> 2;

But do they have to occur the same number of times? That is, if we were to
put ‘Albert’ under ‘Donna’ in the first organizational chart, how do we count
him—once or twice? This is the classic sets versus multisets argument that
pops up in SQL all the time. The code given previously will reject duplicate
multisets. If you want to accept them, then use this:



6 4.12 Comparing Nodes and Structure 107

SELECT DISTINCT 'They have different multi-sets of nodes'
FROM (SELECT DISTINCT =*
FROM OrgChart)
UNION ALL
(SELECT DISTINCT *
FROM OrgChart_2) AS PO (member, 1ft, rgt)
GROUP BY PO.member
HAVING COUNT(*) <> 2;

2. Do they have the same structure, but with different nodes? Let's
present a table with sample data that has different people inside the
same structure as the original personnel table.

INSERTN INT OrgChart_3(member, 1ft, rgt)
VALUES ('Amber', 1, 12),

("Bobby", 2, 3),

('Charles', 4, 11),

('Donald', 5, 6),

('Edward', 7, 8),

('Frank', 9, 10);

The structure is held in the (Ift, rgt) pairs, so if they have identical
structures, the (Ift, rgt) pairs will exactly match each.

SELECT DISTINCT 'They have different structures’
FROM (SELECT * FROM OrgChart)
UNION ALL
(SELECT * FROM OrgChart_3) AS PO (member, 1ft, rgt)
GROUP BY PO.1ft, PO.rgt
HAVING COUNT(*) <> 2;

3. Do they have the same nodes and same structure? That is, are the
trees identical? The logical extension of the other two tests is simply:

SELECT DISTINCT 'They are not identical’
FROM (SELECT * FROM OrgChart)
UNION ALL
(SELECT * FROM OrgChart_3) AS PO (member, 1ft, rgt)
GROUP BY PO.1ft, PO.rgt, PO.member
HAVING COUNT(*) <> 2;



108 CHAPTER 4: NESTED SETS MODEL OF HIERARCHIES @\"

More often than not, you will be comparing subtrees within the same tree.
This is best handled by putting the two subtrees into a canonical form. First
you need the root node and then you can renumber the (Ift, rgt) pairs with a
derived table of this form:

(SELECT Ol.member,
01.1ft - (SELECT MIN(1ft)
FROM OrgChart
WHERE member
0l.rgt - (SELECT MIN(1ft)
FROM OrgChart
WHERE member = :my_member_1) +1
FROM OrgChart AS 01, OrgChart AS 02
WHERE 01.1ft BETWEEN 02.1ft AND 02.rgt
AND 02.member = :my_member_1) AS PO (member, 1ft, rgt);

:my_member_1) +1,

4.13 Nested Sets Code in Other Languages

Flavio Botelho (nuncanadaig.com.br) wrote code in MySQL for extracting an
adjacency list model from a nested sets model. While the code depends on the
fact that MySQL is not really a relational database, but does sequential process-
ing behind a “near-SQL dialect” language, it is worth passing along. Mr. Botelho
had seen the outer join query for the conversion (Section 4.9) and wanted to
find a faster solution without subqueries, which were not supported in MySQL.

SELECT parent_1ft
SELECT parent_rgt

33; //Change these to fit your needs
102;

SELECT next_brother :

parent_1ft;

SELECT next_brother :=
CASE WHEN 1ft >= next_brother

THEN rgt + 1
ELSE next_brother END AS next_brother,
name, rgt

FROM Categories

WHERE 1ft >= parent_1ft

AND rgt <= parent_rgt
HAVING next_brother = rgt + 1
ORDER BY 1left;



e 4.13 Nested Sets Code in Other Languages 109

Because the next_brother stores the right value from the last direct child,
whatever is left comes immediately after this right value and is the next
direct child.

So you update the next_brother to this new child and then the HAVING
clause will filter to only those children that have the next_brother equal to
their right-side sibling. It works in MySQL, but it requires that you are able
to change next_brother's value inside the SELECT statement. Because that
is impossible in Standard SQL, you would have to do this with cursors and a
loop construct of some kind.

Those who like the nested sets model and work with MySQL and PHP
may want to look at a PHP library Mr. Botelho made to handle nested sets
tables in MySQL at http://dev.e-taller.net/dbtree/.

Although it is good to add, update, and delete records, he recommends
writing your own queries to get data from a table instead of using the library
function.

There is also a thread or two in the PostgreSQL newsgroups that give
code for manipulating the nested sets model. You can start with this link and
then explore on your own: http://archives.postgresql.org/pgsql-sql/2002-11/
msg00397.php.

Look for the names “Robert Treat” (xzillausers.sourceforge.net) and
“Martin Crundall” (pgsqlac6rm.net) on postings. I do not know what will be
out there by the time you read this book.

For a Java library, go to http://www.codebits.com/ntm/java.htm. This
library was written by David Medinets, who cautions you that you might
want to improve it for production work.

For ACCESS code, go to http://www.mvps.org/access/queries/qry0023.htm.



s
(N

Frequent Insertion Trees

l HE PROBLEM IN a nested sets tree with frequent insertions is that the (Ift, rgt) pairs

have to be adjusted so often that locking the table, changing the rows,
and unlocking the table again become a major overhead. The nested
sets model does not require that the union of rgt and lft numbers be an
unbroken sequence to show nesting. All you need is the condition that
(Ift < rgt), uniqueness of Ift and rgt numbers, and that subordination is
represented by containment of one (Ift, rgt) pair within the ranges of the
other (lft, rgt) pairs.

This means that we can put gaps into the initial design of the table and
fill them without having to reorganize the table each time. The size of the
gaps depends on the available physical implementation of exact numeric
types and the expected depth of the tree. The other related factor is how
much fill factor (free space) was allocated for the data pages so that new
rows can be added without reorganizing the physical storage.

The most common example for computer people is trees in the forest
of messages that make up a Newsgroup thread (Figure 5.1). A reply to a
posting can be inserted anywhere and to almost any depth. The number of
messages posting to a newsgroup can also be huge.

VTN A VTN /N VTN /N



112

CHAPTER 5: FREQUENT INSERTION TREES @\"

Figure 5.1

As a first attempt at this approach, let's renumber my little organizational
chart by multiplying all the lft and rgt numbers by 100.

CREATE TABLE Personnel_Orgchart

(emp_id CHAR(10) NOT NULL PRIMARY KEY,

1ft INTEGER NOT NULL UNIQUE CHECK (1ft > 0),
rgt INTEGER NOT,

CONSTRAINT order_okay CHECK (1ft < rgt));



e 5.1 The Data Type of (Ift, rgt) 113

Personnel_Orgchart

emp_id Ift rgt

‘Albert’ 100 1200
‘Bert’ 200 300
‘Chuck’ 400 1100
‘Donna’ 500 600
‘Eddie’ 700 800
‘Fred’ 900 1000

The term spread will mean the value of (rgt — Ift) for one node, and the term
gap will mean the distance between adjacent siblings under the same Parent
node. To insert someone under ‘Bert’, say ‘Betty’, you look at the size of Bert's
range (300 — 200 = 100) and pack the newcomer to the leftmost position, while
leaving her node wide enough for more subordinates. One way of doing this is:

INSERT INTO Personnel_Orgchart VALUES ('Betty', 201, 210); -- spread of 9

To insert someone under ‘Betty’, you look at the size of Betty's range (210 —
201) and pack from the left:

INSERT INTO Personnel_Orgchart VALUES ('Bobby', 202, 203); --spread of 1

The new rows should be inserted in the table without locking the table for
an update on multiple rows. Assuming you have a 32-bit integer, you can have
a depth of 9 or 10 levels before you have to reorganize the tree. There are two
tricks in this approach. First you must decide on the data type to use for the (Ift,
rgt) pairs and then get a formula for the spread size you want to use. You will see
shortly that my simple multiplication is not the best way to achieve the goal.

5.1 The Data Type of (Ift, rgt)

The (lft, rgt) pairs will obviously be an exact numeric data type. Because the
goal is to get as wide a numeric range as you can, SMALLINT or TINYINT is
obviously not going to be considered. Here are your three choices.

5.1.1 Exploiting the Full Range of Integers

If you do not mind negative numbers, you can use the full range of the
integers, something like this on a typical 32-bit machine:

INSERT INTO Tree VALUES ('root', -4294967295, 4294967296);



114

CHAPTER 5: FREQUENT INSERTION TREES @\\’

I am obviously skipping some of the algebra for computing the spread size,
but you get the basic idea. There are some other tricks that involve powers of
two and binary trees, but that is another topic. If this is not enough, there is also
a BIGINT data type in Standard SQL. The standards are deliberately vague on
physical implementation details. The choice of binary versus decimal precision
is implementation defined, but the same radix shall be chosen for all exact
numeric data types. The precision of SMALLINT is less than or equal to the
precision of INTEGER, and the precision of BIGINT is greater than or equal to
the precision of INTEGER. Currently, this usually means an INTEGER is 32
bits, a BIGINT is 64 bits, and a SMALLINT is 16 bits. As a bit of history, some
Algol implementations used the keywords LONG and SHORT to double or halve
the number of bits as many times as physically possible on the hardware. That
meant that if INTEGER was 16 bits, then SHORT INTEGER was 8 bits, SHORT
SHORT INTEGER was 4 bits, LONG INTEGER was 32 bits, LONG LONG
INTEGER was 64 bits, and LONG LONG LONG INTEGER was 128 bits.

5.1.2 FLOAT, REAL, or Double Precision Numbers

Floating point numbers just give the illusion that the spread can be almost infinite
while truncation and rounding errors will, de facto, impose their own limitations.
Two floating point numbers will be considered to be equal, if they are within an
epsilon—a small quantity that allows for rounding error in computations.

I strongly recommend that you do not use FLOAT or REAL because they
will fail when your tree is very deep because the math they use is not precise.
Double precision has the same problems, but they will not show up as soon.
This is the worst situation—failure occurs when the database is large and
errors are harder to detect.

There is also the problem that many machines used for database
applications do not have floating point hardware. Floating point math is
seldom used in commercial applications on mainframes. This means that
floating point math has to be done in software, which takes longer.

5.1.3 NUMERIC(p,s) or DECIMAL(p,s) Numbers

The DECIMAL(p,s) data type gives you a greater range than INTEGER in
most database products and does not have the rounding problems of FLOAT.
Precision of over 30 digits is typical, but consult your particular product.
The bad news is that math on DECIMAL(p,s) numbers is often slower than
on either INTEGER or FLOAT. The reason is that most machines do not have
hardware support for this data type like they do for INTEGER and FLOAT.



e 5.2 Computing the Spread to Use 115

5.2 Computing the Spread to Use

There are any numbers of ways to compute the size of the spread that you
want to use when you initialize the tree. In the nested sets model, sibling
nodes have an order from left to right under their parent node. Given a
parent node (‘Parent’, x, z), we can assume that the oldest (leftmost) child
is of the form (‘child_1’, (x + 1), y), where (x < (x + 1) <y < z). Likewise, in
a fully packed nested sets model, we would also know the youngest (right-
most) child is of the form (‘child_n’, w, (z— 1)), where (x<w< (z—-1) < z).

When we have to insert a new sibling and there is no room in the right
gap under his parent, we want to push the existing siblings to the left and
leave a gap on the right for the new sibling (Figures 5.2 and 5.3).

First let's construct a VIEW that will show us what numbers we have for
the spread under each parent node.

CREATE VIEW Spreads (emp_id, commence, finish)
AS
SELECT 0l.emp_id, MAX(02.rgt), (0l.rgt-1)
FROM Personnel_Orgchart AS 01, Personnel_Orgchart AS 02
WHERE 02.1ft BETWEEN 01.1ft AND 01l.rgt
AND Ol.emp_id <> 02.emp_id
GROUP BY Ol.emp_id, 0l.rgt

“* =

Figure 5.2



116

CHAPTER 5: FREQUENT INSERTION TREES @

Figure 5.3

UNION ALL
SELECT Ol.emp_id, (01.1ft +1), (0l.rgt-1)
FROM Personnel_Orgchart AS 01
WHERE NOT EXISTS
(SELECT *
FROM Personnel_Orgchart AS 02
WHERE 02.1ft BETWEEN 01.1ft AND Ol.rgt
AND Ol.emp_id < > 02.emp_id)

The reason for using a UNION-ed query is that the leaf nodes have no
children and will not show up in the SELECT statement of the UNION. We
do not need this VIEW, but it makes the code much easier to read than if we
folded it into a single statement. Now, the real work.

CREATE PROCEDURE InsertNewGuy (IN parent CHAR(10), IN new_guy CHAR(10))
BEGIN ATOMIC

DECLARE commence INTEGER;

DECLARE finish INTEGER;

SET commence = (SELECT commence + 1 FROM Spreads WHERE emp_id = parent);
SET finish = (SELECT finish - 1 FROM Spreads WHERE emp_id = parent);

IF (finish - commence) <= 0 THEN LEAVE; -- error handling needed

-- give the new guy 1/10 of the remaining spread
INSERT INTO Personnel_Orgchart
VALUES (new_guy, commence,
commence + CAST (((finish - commence)/ 10.0) AS INTEGER));
END;



5.2 Computing the Spread to Use 117

What this procedure does is allocate a tenth of the remaining available
spread space to each sibling. Perhaps a demonstration will make this easier to
see. Using my organizational chart again:

DELETE FROM Personnel_Orgchart;
INSERT INTO Personnel_Orgchart VALUES ('Albert', 1, 10000000);

The maximum depth that a path in this tree can have is 7 because 1017 =
10,000,000. A different choice of initial width and spread size would give
different results. This series of calls will rebuild the original sample tree
structure with different (lft, rgt) pairs.

CALL InsertNewGuy ('Albert', 'Bert');

CALL InsertNewGuy ('Albert', 'Chuck');
CALL InsertNewGuy ('Chuck', 'Donna');

CALL InsertNewGuy ('Chuck', 'Eddie');

CALL InsertNewGuy ('Chuck', 'Fred');

Here are some new rows

CALL InsertNewGuy ('Albert', 'Allen'); -- under the root
CALL InsertNewGuy ('Fred', 'George');

CALL InsertNewGuy ('George', 'Herman');

CALL InsertNewGuy ('Herman', 'Irving');

CALL InsertNewGuy ('Irving', 'Joseph');

CALL InsertNewGuy ('Joseph', 'Kirby'); -- failure!

The attempt to insert ‘Kirby’ fails because the maximum depth is exceeded
and the “order_okay” constraint is violated. This is easier to see if we show
the spread at each level size as (rgt — Ift).

emp_id Ift rgt spread
Albert 1 10000000 9999999
Allen 1900003 2710002 809999
Bert 3 1000002 999999
Chuck 1000003 1900002 899999
Donna 1000005 1090004 89999
Eddie 1090005 1171004 80999
Fred 1171005 1243904 72899
George 1171007 1178296 7289
Herman 1171009 1171737 728
Irving 1171011 1171083 72
Joseph 1171013 1171019 6



CHAPTER 5: FREQUENT INSERTION TREES @\"

When we insert ‘Joseph’, this node only has a range of seven positions,
and attempting to divide that range into tenths causes a failure.

We need to consider other ways of determining the divisors and what to do
if we need to reorganize the tree because we have nodes where (rgt — Ift) = 1
and we wish to insert a new node under them.

5.2.1 Varying the Spread

If you know something about the general shape of the tree—if it is shal-
low and wide or deep and narrow—you can replace the constant divisor
with a parameter in the procedure, a formula, or a table lookup subquery
expression.

5.2.2 Divisor Parameter

This is a trivial change to the original procedure:

CREATE PROCEDURE InsertNewGuy
(IN parent CHAR(10), IN new_guy CHAR(10),
IN divisor INTEGER)
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE commence INTEGER;
DECLARE finish INTEGER;
DECLARE divisor INTEGER;
SET commence
= (SELECT commence FROM Spreads WHERE emp_id = parent);
SET finish
= (SELECT finish FROM Spreads WHERE emp_id = parent);
INSERT INTO Personnel_Orgchart
VALUES (new_guy, commence,
commence + ((finish - commence)/ divisor));
END;

Note that the computation in the last INSERT INTO statement depends
on the truncation and rounding rules of your particular product, as they are
implementation defined in Standard SQL; you might want to use an explicit
CAST() expression and perhaps truncation and rounding functions.



e 5.2 Computing the Spread to Use 119

The actual procedure might want to call itself recursively with smaller
and smaller spread sizes when it finds a failure due to an absurdly large
spread size. Then, if we reach a spread size of one, call a reorganization
procedure.

5.2.3 Divisor via Formula

The depth of a node in the tree is given by

CREATE VIEW DepthFormula (emp_id, depth)

AS

SELECT 0l.emp_id, COUNT(02.emp_id)
FROM Personnel_Orgchart AS 01, Personnel_Orgchart AS 02
WHERE 01.1ft BETWEEN 02.1ft AND 02.rgt
GROUP BY 0Ol.emp_id, 01.1ft;

The root will be at (depth = 1), and the depth will increase as you
traverse to the leaf nodes. The depth column in the VIEW can be used as
part of a more complex formula to determine the divisors at each level
in the tree. I have shown just the depth itself, but one possible example
might be (10ACOUNT(*)), or a CASE expression driven by the depth,
such as

CASE depth
WHEN 1 THEN 5
WHEN 2 THEN 10
WHEN 3 THEN 25
ELSE 5 END;

I do not have any suggestions for the proper formula to use. That would
require knowledge of the particular tree's shape.

5.2.4 Divisor via Table Lookup

You can also construct a table of the form:

CREATE TABLE DepthDivisors
(depth INTEGER NOT NULL PRIMARY KEY,
divisor INTEGER NOT NULL);



120

CHAPTER 5: FREQUENT INSERTION TREES

or a table of the form:

CREATE TABLE EmpDivisors
(emp_id CHAR(10) NOT NULL PRIMARY KEY,
divisor INTEGER NOT NULL);

The first version uses the depth to determine the divisor, so there is an
assumption that all nodes at the same level behave approximately the same in

regard to subordinates.

The second version uses the employee to determine the divisor, so there
is an assumption that some nodes are expected to have more or fewer

subordinates than other nodes.

5.2.5 Partial Reorganization

The traditional approach to return the table to the original nested sets model
uses a simple UNION-ed VIEW that puts the lft and rgt values in a single

column.

CREATE VIEW LftRgt (seq)

AS SELECT 1ft FROM Personnel_Orgchart
UNION ALL
SELECT rgt FROM Personnel_Orgchart;

Then we use that to update the table.

UPDATE Personnel_Orgchart
SET 1ft = (SELECT COUNT(*)
FROM LftRgt AS LR
WHERE LR.seq <= 1ft),
rgt = (SELECT COUNT(*)
FROM LftRgt AS LR
WHERE LR.seq <= rgt);

There is no need for a WHERE clause because all of the nodes will be
changed. Unfortunately, we have also destroyed the “big spread” property.
A better version uses the ordinal ROW_COUNT() function. This version
will do sequential numbering once in the VIEW instead of repeating the

COUNT(*) over and over.

CREATE VIEW LftRgt2(1r, seq)
AS



5.2 Computing the Spread to Use 121

SELECT Tr, ROW_COUNT() OVER (ORDER BY 1r)
FROM (SELECT 1ft FROM (Personnel_Orgchart
UNION ALL
SELECT rgt FROM Personnel_Orgchart)
AS LR(1r));

Note that we could also write this as “<spread value or formula> * ROW_
COUNT() OVER (ORDER BY Ir)” in the VIEW.

UPDATE Personnel_Orgchart
SET 1ft = (SELECT seq
FROM LftRgt2 AS LR
WHERE LR.1r = 1ft),
rgt = (SELECT seq
FROM LftRgt2 AS LR
WHERE LR.Tr = rgt);

There are several approaches to spreading the (lft, rgt) pairs apart in the
usual nested sets model. We can write a query that converts the nested sets
model into the adjacency list model, puts it into a temporary table, and then
passes each (emp_id, boss) node pair to the InsertNewGuy() procedure, one
pair one at a time. This is a lot of work, but you get complete control over the
reorganization.

The most obvious method is simply to multiply each (Ift, rgt) by a
constant in the aforementioned UPDATE statement. There are trade-offs
in this approach. The code is easy and will close up some of the gaps left
by deletions. However, it creates new gaps between siblings. Consider the
original Personnel_Orgchart table with a constant of 100 as the spread used
at the start of this chapter.

Personnel_Orgchart

emp_id Ift rgt

‘Albert’ 100 1200
‘Bert’ 200 300
‘Chuck’ 400 1100
‘Donna’ 500 600
‘Eddie’ 700 800

‘Fred’ 900 1000



122

CHAPTER 5: FREQUENT INSERTION TREES @\"

We have lost the ranges 1 to 99, 101 to 199, 301 to 399, and so forth to
give every node a larger spread of the same proportions. If the insertions are
made randomly in the table, this is not a big problem. However, if insertions
are made at the leaf nodes, or into one particular subtree, then we will be
doing this again sooner than if we had planned better.

You will notice that there is a pattern to the gaps that we created. Because
the gaps are all of size (spread constant —1), we can shift all of the nodes left
by that amount, as long as we do not shift a node's (lft, rgt) pair outside the
range of its parent or change the size of the node. This leads us to the next
topic.

5.2.6 Rightward Spread Growth

A simpler approach is to increase the spread only to the right of the point
where the failure occurred. This can be done by either “stretching” the tree
to the right or “squeezing” some of the nodes to the left at the point of fail-
ure. Let's assume that we have captured the node where we failed to insert a
new node.

UPDATE Personnel_Orgchart
SET 1ft = 1ft + 100,
rgt rgt + 100
WHERE T1ft > (SELECT rgt
FROM Personnel_Orgchart

WHERE emp_id = :failure_emp_id)
OR rgt >= (SELECT rgt
FROM Personnel_Orgchart
WHERE emp_id = :failure_emp_id);

Use of a step of 100 is arbitrary and could be replaced by a computation of
some sort. The constant is simply easier to code and I am assuming that the
tree will not need reorganization very often.

The other approach is to pack subordinate nodes to the left to create a
larger spread on the right side of the node where the insertion failed.

CREATE PROCEDURE ShiftLeft()
LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC



e 5.2 Computing the Spread to Use 123

DECLARE squeeze INTEGER;
SET squeeze
= (SELECT CASE WHEN MIN(O02.1ft - 0l.rgt) - 1 >1
THEN MIN(02.1ft - Ol.rgt) - 1
ELSE 1 END
FROM Personnel_Orgchart AS 01,
Personnel_Orgchart AS 02
WHERE 0l.rgt < 02.1ft
AND Ol.emp_id <> 02.emp_id);

UPDATE Personnel_Orgchart
SET 1ft = (1ft - squeeze),
rgt = (rgt - squeeze)
WHERE (1ft - squeeze) > 0
AND NOT EXISTS
(SELECT *
FROM Personnel_Orgchart AS 01
WHERE Ol.emp_id <> Personnel_Orgchart.emp_id
AND (01.1ft
BETWEEN (Personnel_Orgchart.1ft - squeeze)
AND (Personnel_Orgchart.rgt - squeeze)
OR 01.rgt
BETWEEN (Personnel_Orgchart.1ft - squeeze)
AND (Personnel_Orgchart.rgt - squeeze)));
END;

This routine can be executed over and over until all of the children of
each node are packed to the left and the largest possible gap is on the right.
The problem is that it “slows down” rather quickly and depends on the value
of the squeeze parameter.

First call:
emp_id Ift rgt
Albert 100 1200
Bert 101 201
Chuck 400 1100
Donna 401 501
Eddie 601 701

Fred 801 901



124

CHAPTER 5: FREQUENT INSERTION TREES @\"

Second call:

emp_id Ift rgt

Albert 100 1200
Bert 101 201
Chuck 400 1100
Donna 401 501
Eddie 502 602
Fred 702 802

Third call:

emp_id Ift rgt

Albert 100 1200
Bert 101 201
Chuck 400 1100
Donna 401 501
Eddie 502 602
Fred 701 801

The rightmost node, ‘Fred’, will continue to shift to the left, but only one
step at a time. Albert never gets to (1, 1101), Bert never gets to (2, 102), and
so forth.

5.3 Total Reorganization

There may come a time when you need to reorganize the entire table rather
than simply shifting part of the table structure. The goal will be to shift all
of the nodes over to the left without changing their spread so as to give the
largest possible gap on the right side of the siblings of every parent in the
tree. If you need a physical analogy, think of a collection of various sized
boxes nested inside each other. Pick up the outermost box and turn it on its
left side so that all the boxes shift to the left.

5.3.1 Reorganization with Lookup Table

The following solution is credited to Heinz Huber. Let's start with the origi-
nal table given in Section 5 and decide what we want it to look like after
reorganization.



5.3 Total Reorganization 125

Personnel_Orgchart—reorganized

emp_id Ift rgt

Albert 1 1101
Bert 2 102
Chuck 103 803
Donna 104 204
Eddie 205 305
Fred 306 406

The structure and the spreads have remained the same, but the gaps
between the employees have been closed by shifting them to the right.
This leaves larger gaps on the right side of each row of siblings, for
example, ‘Fred” has a gap of (803 —406) = 397 to his right, which is
room for three more additions to his family, as the spread is 100 at
this level.

The problem is that there is no “universal” shift factor. Instead, the
shift is different for each employee, based on the gaps at their level in the
tree. Let's assume that we do not want to implement a cursor solution,
we can add another column to the table to hold the shift factor for each
node and fourth column for the preorder traversal order. The problem
with a cursor solution is that you need a stack for the rgt column values
of all the parents so that you can traverse the tree. This is expensive and
not very portable because every product has slightly different cursor
implementations.

CREATE TABLE Personnel_Orgchart

(emp_id CHAR(10) NOT NULL PRIMARY KEY,

1ft INTEGER NOT NULL UNIQUE CHECK (1ft > 0),

rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
CONSTRAINT order_okay CHECK (1ft < rgt));

shift INTEGER, -- null means not yet computed
traversal_nbr INTEGER -- null means not yet computed);

Yes, this could all be done with a temporary table or a second table that
joins to the original Personnel_Orgchart. However, these attributes are part of
the tree structure and having them all in one place makes sense. Let's begin
by initializing the table.



126

CHAPTER 5: FREQUENT INSERTION TREES @\"

UPDATE Personnel_Orgchart
SET shift = NULL,
traversal_nbr = NULL;

The NULLs act as markers for the computations.

-- Calculate shift factor within a parent node.
-- Leftmost siblings are computed Tater.
UPDATE Personnel_Orgchart
SET shift
=1ft -1
- (SELECT MAX(Siblings.rgt)
FROM Personnel_Orgchart AS Siblings
WHERE Siblings.rgt < Personnel_0Orgchart.1ft)
WHERE shift IS NULL
AND EXISTS -- has sibling on left side
(SELECT *
FROM Personnel_Orgchart AS Siblings
WHERE Siblings.rgt < Personnel_Orgchart.1ft);

That gives us this result at the leaf nodes.

Personnel_Orgchart—step 1

emp_id Ift rgt shift traversal_nbr
Albert 100 1200 NULL NULL
Bert 101 201 NULL NULL
Chuck 400 1100 198 NULL
Donna 401 501 199 NULL
Eddie 601 701 99 NULL
Fred 801 901 99 NULL

Now it is time to look at the parents and shift them and their family.

UPDATE Personnel_Orgchart
SET shift
=1ft -1
- (SELECT MAX(Parents.1ft)
FROM Personnel_Orgchart AS Parents
WHERE Parents.1ft < Personnel_Orgchart.1ft
AND Parents.rgt > Personnel_Orgchart.rgt)



127

e 5.3 Total Reorganization

WHERE shift IS NULL
OR (1ft - shift)

Personnel_Orgchart—step 2

< (SELECT MAX(Parents.1ft)
FROM Personnel_Orgchart AS Parents
WHERE Parents.1ft < Personnel_Orgchart.1ft
AND Parents.rgt > Personnel_Orgchart.rgt);

emp_id Ift rgt shift traversal_nbr
Albert 100 1200 NULL NULL
Bert 101 201 0 NULL
Chuck 400 1100 198 NULL
Donna 401 501 0 NULL
Eddie 601 701 929 NULL
Fred 801 901 99 NULL

At this point, only the root is still NULL. Shifting it will shift every node

in the tree leftward.

UPDATE Personnel_Orgchart

SET shift = 1ft - 1
WHERE shift IS NULL;

Personnel_Orgchart—step 3

emp_id ft rgt shift traversal_nbr
Albert 100 1200 99 NULL
Bert 101 201 0 NULL
Chuck 400 1100 198 NULL
Donna 401 501 0 NULL
Eddie 601 701 99 NULL
Fred 801 901 99 NULL

Processing each level of the tree still does not give us the final results.
We have not yet applied the shift values. For the shift itself, you need
another additional column that contains the preorder traversal

sequence.



128 CHAPTER 5: FREQUENT INSERTION TREES @\"

UPDATE Personnel_0Orgchart
SET traversal_nbr
= (SELECT COUNT(*)
FROM Personnel_Orgchart AS Original_Personnel_Orgchart
WHERE Original_Personnel_Orgchart.1ft <= Personnel_Orgchart.1ft);

Personnel_Orgchart—step 4

emp_id Ift rgt shift traversal_nbr
Albert 100 1200 99 1
Bert 101 201 0 2
Chuck 400 1100 198 3
Donna 401 501 0 4
Eddie 601 701 99 5
Fred 801 901 99 6

Now it is time to do the big shift. Each node is moved leftward by the sum
of the gaps to its left, and the order of execution is governed by the preorder
traversal.

UPDATE Personnel_Orgchart
SET 1ft
= 1ft
- (SELECT SUM(shift)
FROM Personnel_Orgchart AS Original_Personnel_Orgchart
WHERE Original_Personnel_Orgchart.traversal_nbr
<= Personnel_0Orgchart.traversal_nbr),
rgt
= rgt
- (SELECT SUM(shift)
FROM Personnel_Orgchart AS Original_Personnel_Orgchart
WHERE Original_Personnel_Orgchart.traversal_nbr
<= Personnel_0Orgchart.traversal_nbr);

You are now ready to reset the shift and traversal_nbr columns to NULLs.
The final answer is what we wanted.

UPDATE Personnel_Orgchart
SET shift = NULL,
traversal_nbr = NULL;



6 5.3 Total Reorganization 129

Personnel_Orgchart—step 5

emp_id Ift rgt shift traversal_nbr
Albert 1 1101 NULL NULL
Bert 2 102 NULL NULL
Chuck 103 803 NULL NULL
Donna 104 204 NULL NULL
Eddie 205 305 NULL NULL
Fred 306 406 NULL NULL

It is hoped that this procedure will not be called very often. It will be
expensive to run on a large deep tree and will probably lock the table
while it is running. If you have a tree that is being dynamically altered this
much, you might try using the quick but inadequate shift by a constant
method first and then call this routine when you can take the application
off line.

5.3.2 Reorganization with Recursion

This solution is credited to Richard Romley. Instead of using a table to hold
the shifts, they are computed recursively inside a user-defined function.

CREATE FUNCTION LeftShift (IN my_emp_id CHAR(10))
RETURNS INTEGER
LANGUAGE sQL
DETERMINISTIC
--recursive
RETURN
(SELECT CASE WHEN MAX(Par.emp_id) IS NULL
THEN 0
ELSE LeftShift (MAX(Par.emp_id)) END
+ COALESCE (SUM(Sib.rgt - Sib.1ft), 0)
+ COUNT(Sib.emp_id) + 1
FROM Personnel_Orgchart AS E1
INNER JOIN
Personnel_Orgchart AS Par
ON E1.1ft > Par.1ft
AND El.rgt < Par.rgt
AND NOT EXISTS



130 CHAPTER 5: FREQUENT INSERTION TREES @\"

(SELECT *
FROM Personnel_Orgchart
WHERE 1ft < E1.1ft
AND 1ft > Par.1ft
AND rgt > El.rgt
AND rgt < Par.rgt)
LEFT OUTER JOIN
Personnel_Orgchart AS Sib
ON Par.1ft < Sib.1ft
AND Par.rgt > Sib.rgt
AND Sib.1ft < E1.1ft
WHERE El.emp_id = my_emp_id);

A node can have only zero or one parent. The only node without a parent
is the root. There can be many siblings to the left of a node, but all result
rows will always have the same value for their parent. The MAX(Par.emp_id)
in the SELECT list returns the value for parent and eliminates the need to do
a GROUP BY.

The algorithm says that the new lft value for each employee node
equals its parent's new lft value plus the sum of the spreads of all its older
siblings (Sib.rgt — Sib.Ift + 1)(which is the same as SUM(Sib.rgt — Sib.Ift) +
COUNT(Sib)) plus one. Because the spreads will be the same for the new
values as they were for the old values, they can be calculated from the old
values. But the parent's new lft value must be determined, which is done with
a recursive function call.

So if a parent exists, the function calls itself to get the parent's new lft
value, and this process will continue all the way up the tree until the root is
found. Tree navigation takes place via recursive function calls.

5.4 Rational Numbers and Nested Intervals Model

Vadim Tropashko showed that it is possible to use rational numbers [for those
of you who have forgotten your math, these are numbers of the form (a/b),
where a and b are both integers]. This would avoid problems of floating point
rounding errors, but it would require a library of functions for this new data
type. Although nearly every programming language today implements IEEE
floating point numbers, there are some—notably, computational algebra sys-
tems, such as Maple and Mathematica—that have internal formats for rational
or even algebraic and irrational numbers, such as the square root of 2 and e.



6 5.4 Rational Numbers and Nested Intervals Model 131

Rational numbers and the use of half-open intervals, which are the basis
for the temporal model in SQL, are all we would need. Suppose we want to
insert a new child of the root node [0, 1)(or if you prefer [0/5, 5/5) to make
the math cleaner) between the children bracketed by [1/5, 2/5) and [3/5,
4/5). You can insert new intervals with the gaps on each side. New members
can be fit at any position there. For example, looking at 4/5 and 5/5, I can
fitin a node at [21/25, 23/25) and still have plenty of room for more nodes.
Given that my integers in most SQL products can go into the billions, I
have a pretty big range of values to use before I would have to reorganize.
The algebra for rational numbers is well known. You can find greatest
common divisor (GCD) algorithms in any textbook and use them to keep the
numerators and denominators as small as possible.

CREATE FUNCTION gcd(IN x INTEGER, IN y INTEGER) RETURNS INTEGER
LANGUAGE sQL
DETERMINISTIC
BEGIN
WHILE x <>y

DO IF x >y THEN SET x

IF y > x THEN SET y

END WHILE;
RETURN (x);
END;

X —y; END IF;
y — x; END IF;

This is known as the nested intervals model and it generalizes nested sets.
A child node [clft, crgt] is a (indirect) descendant of a parent node [plft, prgt] if

((p1ft <= c1ft) AND (crgt <= prgt))

Now adding a child node is never a problem. You use an unoccupied
segment [1ftl, rgtl] within a parent interval [plft, prgt] and insert the new
child node at [(2 = Ift] + rgt1)/3, (Iftl + 2 = rgt1)/3](Figure 5.4).

plft Ift1(2*Ift1+rgt1)/3 (Ift1 +2*rgt 1)/3 rgt1 prgt

Figure 5.4



132

CHAPTER 5: FREQUENT INSERTION TREES @\"

After insertion, we still have two more unoccupied segments [lft1, (2 = lftl +
rgtl)/3] and [(rgtl + 2 = 1ft1)/3, rgtl] to add more children to the parent node.
The problem is that SQL would have to represent rational (Ift, rgt) pairs

as pairs of pairs, and the user will have to provide a complete math library
for them. If your product supports SQL-99 style user-defined data types and
functions, this is much easier.
Now we can easily see why nested sets cannot model arbitrary directed acyclic
graphs; two dimensions are just not enough for representing any partial order.
IBM provides DECFLOAT in DB2. It is a floating point number without
the precision issues of floating point. DECFLOAT is compliant with the
industry standard IEEE754r specification. SQL Standards do not prohibit
their use as implementation for REAL numerics.

Still, users may want to avoid using DECFLOAT because they are not
widely supported in programming languages yet (e.g. there is no support for
itin COBOL and other programming languages).

5.4.1 Partial Order Mappings

Let's introduce a path enumeration model of a tree (see Chapter 8). You will
also recognize it as the way that the book you are reading is organized. The
path column contains a string of the edges that make up a path from the root
(‘King) to each node, numbering them from left to right at each level in the
tree. This sample organizational chart is from Tropashko and we are using it
because it is a bit larger and deeper than the examples we have used before;
this will help explain the calculations more easily.

Personnel_Orgchart

emp_id_name path
‘King’ 1"
‘Jones’ 1.1
‘Scott’ 1.1.17
‘Adams’ 1.1.1.1
‘Ford’ 1.1.2/
‘Smith’ 1.1.2.17
‘Blake’ 1.2
‘Allen’ 1.2.1
‘Ward’ 1.2.2
‘Clark’ 1.3’

‘Miller’ 1.3.1



e 5.4 Rational Numbers and Nested Intervals Model 133

For example, ‘Ford’ is the second child of the first child (‘Jones’) of the
root (‘King’). We are going to turn these directions into numbers shortly, so
please be patient.

Let's look at the two-dimensional picture of nested intervals and assume
that rgt is a horizontal axis x, and Ift is a vertical axis y. Then, the nested
intervals tree looks like Figure 5.5.

Each node [Ift, rgt] has its descendants bounded within the two-
dimensional cone ((y >=lft) AND (x <= rgt)). Because the right interval
boundary is always less than the left one, none of the nodes are allowed
above the main diagonal, x =y.

The other way to look at Figure 5.5 is to note that a child node is a
descendant of the parent node whenever a set of all points defined by the
child cone ((y >= clft) AND (x <= crgt)) is a subset of the parent cone (y >=
plft) AND (x <= prgt). A subset relationship between the cones on the plane
is a partial order (Figure 5.6).

We now need to assign pairs of points in the x—y plane that conform to
these two constraints.

1.1

Xy

Figure 5.5



134

CHAPTER 5: FREQUENT INSERTION TREES m

i L
L
LA
1.2.1 2 1.1
o 7
=3 7
X7
1.3.1 Bt s
47, P
- 7
s 1.2
.
2.1.1 == L. -
<1 P 1.8 1
/
221 | ~
7
] 7
7 A 2
it s
3]1 P
=7 s 2.2
N Kol 1% | 2
B
,/ P
4
L1 Q

e
2

2/?
Figure 5.6

Because the choice of a root for the tree is arbitrary, let's start with the
interval [0, 1]. In our geometrical interpretation, all tree nodes belong to the
lower triangle of the unit square on the x—y plane.

For each node of the tree, let's first define two important points at the
x—y plane. The depth-first convergence point is an intersection between the
diagonal and the vertical line through the node. For example, the depth-
first convergence point for (x =1,y =1/2) is (x = 1, y = 1). The breadth-first
convergence point is an intersection between the diagonal (x = y) and the
horizontal line through the point. For example, the breadth-first convergence
point for (x =1,y =1/2) is (x = 1/2, y = 1/2). Refer to Figure 5.2 if this is hard
to see in your head.



5.4 Rational Numbers and Nested Intervals Model 135

For each parent node, we define the position of the first child as a midpoint
halfway between the parent point and depth-first convergence point. You draw
a straight line from the parent's point and the depth-first convergence point and
then find the midpoint of that line. Each sibling is defined as a midpoint halfway
between the previous sibling point and breadth-first convergence point:

For example, node 2.1 of the Personnel_Orgchart tree is positioned at the
point (x = 1/2,y = 3/8).

Now that the transformation is defined, it is clear which dense domain we
are using: it's not rational or real numbers, but binary fractions. As an aside,
the descendant subtree for the parent node “1.2” is a scaled-down replica of
the subtree at node “1.1” and the subtree at node 1.1 is a scaled-down replica
of the tree at node “1” so we have a little fractal.

5.4.2 Summation of Coordinates

Note that x and y are not completely independent; we can find both x and y if we
know their sum. We will store two INTEGER numbers—numerator and denomi-
nator of the sum of the coordinates x and y—as an encoded node path. Given the
numerator and denominator of the rational number representing the sum of the
node coordinates, we can calculate (x, y) coordinates back with this function.

CREATE FUNCTION Find_x_numer (IN numer INTEGER, IN denom INTEGER)
RETURNS INTEGER
BEGIN
DECLARE ret_num INTEGER;
DECLARE ret_den INTEGER;
SET ret_num = numer + 1;
SET ret_den = 2 * denom;
WHILE FLOOR(ret_num/2) = ret_num/2
DO SET ret_num = ret_num/2;
SET ret_den = ret_den/2;
END WHILE;
RETURN ret_num;
END;

Likewise, there is a function for the denominator of x.

CREATE FUNCTION Find_x_denom (IN numer INTEGER, IN denom INTEGER)
RETURNS INTEGER

BEGIN

DECLARE ret_num INTEGER;



136

CHAPTER 5: FREQUENT INSERTION TREES @\"

DECLARE ret_den INTEGER;
SET ret_num = numer + 1;
SET ret_den = 2 * denom;
WHILE FLOOR(ret_num/2) = ret_num/2
DO SET ret_num = ret_num/2;
SET ret_den = ret_den/2;
END WHILE;
RETURN ret_den;
END;

The two functions differ from each other by which variable is in the
final RETURN statement. Informally, numer + 1 increment would move the
ret_num/ret_den point vertically up to the diagonal; the x coordinate is half
of the value, so we just multiplied the denominator by two. Next, we reduce
both numerator and denominator by the common power of two.

Naturally, the y coordinate is defined as a complement to the sum:

CREATE FUNCTION y_numer (IN numer INTEGER, IN denom INTEGER)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
BEGIN
DECLARE num INTEGER;
DECLARE den INTEGER;
SET num = x_numer(numer, denom);
SET den = x_denom(numer, denom);
WHILE den < denom
DO SET num = 2 * num;
SET den 2 * den;
END WHILE;
SET num = numer - num;
WHILE FLOOR(num/2) = num/2
DO SET num = num/2;
SET den = den/2;
END WHILE;
RETURN num;
END;

CREATE FUNCTION y_denom(IN numer INTEGER, IN denom INTEGER)
LANGUAGE SQL



5.4 Rational Numbers and Nested Intervals Model 137

DETERMINISTIC
BEGIN
DECLARE num INTEGER;
DECLARE den INTEGER;
SET num = x_numer(numer, denom);
SET den = x_denom(numer, denom);
WHILE den < denom
DO SET num = 2 * num;
SET den = 2 * den;
END WHILE;
SET num = numer - num;
WHILE FLOOR(num/2) = num/2
DO SET num = num/2;
SET den = den/2;
END WHILE;

RETURN (den);
END;

Now, the test (where 39/32 is the node 1.3.1), using a dummy table for now.

SELECT x_numer(39, 32)||'/"||x_denom(39, 32),
y_numer(39, 32)||'/"||y_denom(39, 32)

FROM Dummy ;
Results
5/8 19/32

SELECT 5/8 + 19/32, 39/32
FROM Dummy ;

Results

1.21875 1.21875

Note that we did not use floating points to represent rational numbers and
wrote all the functions with INTEGER arithmetic instead. In the last test,
however, we used a floating point just to verify that 5/8 and 19/32, returned
by the previous query, do indeed add to 39/32.



138

CHAPTER 5: FREQUENT INSERTION TREES @\"

We'll store two INTEGER numbers—numerator and denominator of the
sum of the coordinates x and y—as an encoded node path. Unlike the pair of
integers in the nested sets model, this mapping is stable. The nested intervals
model is essentially an enumerated path encoded as a rational number. This
is why the Personnel_Orgchart table was shown as an enumerated path
model.

5.4.3 Finding Parent Encoding and Sibling Number

Given the (numer, denom) pair of a child node, we can find the node's
parent with these functions.

CREATE FUNCTION parent_numer (IN numer INTEGER, IN denom INTEGER)
RETURNS INTEGER
LANGUAGE sQL
DETERMINISTIC
BEGIN
DECLARE ret_num INTEGER;
DECLARE ret_den INTEGER;
IF numer = 3
THEN RETURN CAST(NULL AS INTEGER);
END IF;
SET ret_num = (numer-1)/2;
SET ret_den = denom/2;
WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4
DO SET ret_num = (ret_num + 1)/2;
SET ret_den = ret_den/2;
END WHILE;
RETURN ret_num;
END;

CREATE FUNCTION parent_denom (IN numer INTEGER, IN denom INTEGER)
LANGUAGE SsQL
DETERMINISTIC
BEGIN
BEGIN
DECLARE ret_num INTEGER;
DECLARE ret_den INTEGER;
IF numer = 3



6 5.4 Rational Numbers and Nested Intervals Model 139

THEN RETURN CAST(NULL AS INTEGER);

END IF;
SET ret_num = (numer-1)/2;
SET ret_den = denom/2;
WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4
DO SET ret_num = (ret_num + 1)/2;
SET ret_den ret_den/2;
END WHILE;
RETURN ret_den;
END;

If the node is the root node, then it has a numerator of 3 and has no
parent. Otherwise, we must move vertically down the x—y plane at a distance
equal to the distance from the depth-first convergence point. If the node
happens to be the first child, then that is the answer.

Otherwise, we must move horizontally at a distance equal to the distance
from the breadth-first convergence point until we meet the parent node. Here
is the test of the method in which (27/32) is the node 2.1.2’ and (7/8) is 2.1".

SELECT parent_numer(27, 32)||'/"'||parent_denom(27, 32)
FROM Dummy ;

Results

7/8

In the previous method, counting the steps when navigating horizontally
would give the sibling number with this function.

CREATE FUNCTION sibling_number (IN numer INTEGER, IN denom INTEGER)
RETURNS INTEGER
LANGUAGE sQL
DETERMINISTIC
BEGIN
DECLARE ret_num INTEGER;
DECLARE ret_den INTEGER;
DECLARE ret INTEGER;
IF numer = 3
THEN RETURN CAST(NULL AS INTEGER);
END IF;



140

CHAPTER 5: FREQUENT INSERTION TREES @\"

SET ret_num = (numer - 1)/2;
SET ret_den
SET ret = 1;
WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4
DO IF ret_num =1
AND ret_den =1
THEN RETURN ret;
END IF;
SET ret_num = (ret_num + 1)/2;
SET ret_den = ret_den/2;
SET ret = ret + 1;
END WHILE;
RETURN ret;
END;
The root node is a special stop condition, ret_num = 1 and ret_den =1,
which we can test with:

denom/2;

SELECT sibling_number(7, 8) FROM Dummy;

Results

5.4.4 Calculating the Enumerated Path and Distance between
Nodes

Strictly speaking, we do not have to use an enumerated path, as our encod-
ing is an alternative. However, because an enumerated path provides a much
more intuitive visualization of the node position in the hierarchy, we can use
the materialized path for input and output of data if we provide mapping to
our model.

Implementation is a simple application of the methods from the previous
sections. We print the sibling number, jump to the parent, and then repeat
these two steps until we reach the root:

CREATE FUNCTION Path (IN numer INTEGER, IN denom INTEGER)
RETURNS VARCHAR (30)

LANGUAGE SQL

DETERMINISTIC



6 5.4 Rational Numbers and Nested Intervals Model 141

IF numer IS NULL
THEN RETURN ('"?");
ELSE
RETURN Path(parent_numer(numer, denom),
parent_denom(numer, denom))
[| "." || sibling_number(numer, denom);
END IF;

Now we are ready to write a function that takes two nodes, P and C,
and tells us when P is the parent of C. A more general query would return
the number of levels between P and C, if C is reachable from P, and some
exception indicator.

CREATE FUNCTION Distance (IN numl INTEGER, IN denl INTEGER,
IN num2 INTEGER, IN den2 INTEGER)
RETURNS INTEGER
LANGUAGE SQL
DETERMINISTIC
RETURN CASE
WHEN numl = num2 AND denl = den2 -- same node
THEN 0O
WHEN numl IS NULL -- missing data
THEN CAST (NULL AS INTEGER)
ELSE (1 + Distance(parent_numer(numl, denl),
parent_denom(numl, denl), num2, den2))
END;

Test it.
SELECT Distance (27, 32, 3, 4) FROM Dummy;

Results

Negative numbers are interpreted as exceptions. If the (num1/denl) node
is not reachable from (num2/den2), then the navigation converges to the
root. The alternative way to answer whether two nodes are connected is by
simply calculating the (x, y) coordinates and checking if the parent interval
encloses the child. A more thorough implementation of the method would



142

CHAPTER 5: FREQUENT INSERTION TREES @\"

involve a domain of integers and rational numbers with an unlimited range,
such as those kinds of numbers supported by computer algebra systems, so
that a comparison operation would be part of the compiler.

Our system would not be complete without a function inverse to the path,
which returns a node's (numer/denom) value once the path is provided. Let's
introduce two auxiliary functions, first:

CREATE FUNCTION Child_Numerator

(IN num INTEGER, IN den INTEGER, IN child INTEGER)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN (num * (child * child) + 3 - (child * child));

and likewise, the matching function:

CREATE FUNCTION Child_Denominator

(IN num INTEGER, IN den INTEGER, IN child INTEGER)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN den * (child * child);

For example, the third child of the node ‘1’ (encoded as 3/2) is the node
‘1.3’ (encoded as 19/16). The path encoding function is:

CREATE FUNCTION Path_Numer(path VARCHAR)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

DECLARE postfix VARCHAR(1000);

DECLARE sibling VARCHAR(100);

SET num = 1;
SET den = 1;
SET postfix = '.' || path || '.";

WHILE CHAR_LENGTH(postfix) > 1



5.4 Rational Numbers and Nested Intervals Model 143

DO SET sibling = SUBSTRING(postfix FROM 2 FOR INSTR(postfix, '.',

2)-2);

SET postfix = SUBSTRING(postfix FROM INSTR(postfix, '.', 2) FOR
CHAR_LENGTH(postfix) - INSTR(postfix, '.', 2) + 1);

SET num = Child_Numer(num, den, CAST(sibling AS INTEGER));

SET den = Child_Denom(num, den, CAST(sibling AS INTEGER));
END WHILE;
RETURN num;
END;

The function INSTR() is a version of the POSITION() function that
returns the nth occurrence of the second parameter string within the first
parameter string. Again, the corresponding function for the denominator is

CREATE FUNCTION Path_Denom(path VARCHAR)
LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

DECLARE postfix VARCHAR(1000);

DECLARE sibTing VARCHAR(100);

SET num = 1;
SET den = 1;
SET postfix = "." || path || ".";

WHILE CHAR_LENGTH(postfix) > 1
DO SET sibling = SUBSTRING(postfix FROM 2 FOR INSTR(postfix, '.',
2)-2);
SET postfix = SUBSTRING(postfix FROM INSTR(postfix, '.', 2) FOR
CHAR_LENGTH(postfix) - INSTR(postfix, '.', 2) + 1);
SET num = Child_Numer(num, den, CAST(sibling AS INTEGER));
SET den = Child_Denom(num, den, CAST(sibling AS INTEGER));
END WHILE;
RETURN den;
END;

SELECT Path_Numer('2.1.3") || '/" ||
Path_Denom('2.1.3")
FROM Dummy ;



144

CHAPTER 5: FREQUENT INSERTION TREES

Results

51/64

5.4.5 Building a Hierarchy

Let's create the Personnel_Orgchart hierarchy in this table.

CREATE TABLE Personnel_Orgchart
(name VARCHAR(30) NOT NULL UNIQUE,
numer INTEGER NOT NULL,
denom INTEGER NOT NULL,
UNIQUE (numer, denom));

INSERT INTO Personnel_Orgchart
VALUES ('King', Path_Numer('l'), Path_Denom('1")),
('Jones', Path_Numer('1.1"'), Path_Denom('1.1")),

('Scott', Path_Numer('1.1.1'), Path_Denom('1.1.1")),
('Adams', Path_Numer('1.1.1.1"), Path_Denom('1.1.1.1")),
('Ford"', Path_Numer('1.1.2'), Path_Denom('1.1.2")),
('Smith', Path_Numer('1.1.2.1'), Path_Denom('1.1.2.1')),

('Blake', Path_Numer('1.2"'), Path_Denom('1.2")),

('Allen', Path_Numer('1.2.1'), Path_Denom('1.2.1")),
('Ward', Path_Numer('1.2.2'), Path_Denom('1.2.2")),
('Martin', Path_Numer('1.2.3'), Path_Denom('1.2.3")),
('Turner', Path_Numer('1.2.4'), Path_Denom('1.2.4")),

("Clark', Path_Numer('1.3"), Path_Denom('1.3")),

('Miller', Path_Numer('1.3.1'), Path_Denom('1.3.1"'));

All the functions written in the previous sections are combined

conveniently in a single view:

CREATE VIEW Hierarchy (name, numer, denom,
numer_1ft, denom_1ft,
numer_rgt, denom_rgt,

path, depth)

AS SELECT name, numer, denom,

y_numer (numer, denom),
y_denom(numer, denom),
X_numer(numer, denom),



e 5.4 Rational Numbers and Nested Intervals Model 145

x_denom(numer, denom),

path (numer, denom),

Distance(numer, denom, 3, 2)
FROM Personnel_Orgchart;

Finally, we can create the hierarchical reports.

5.4.6 Depth-first Enumeration by Left Interval Boundary

This is a depth-first enumeration by the left interval boundary.

SELECT depth, name, (numer_1ft/denom_1ft) AS indentation
FROM Hierarchy

ORDER BY indentation;

Results

depth name

‘King’
‘Clark’
‘Miller’
‘Blake’
“Turner’
‘Martin’
‘Ward'’
‘Allen
‘lJones’
‘Ford’
‘Smith’
‘Scott’
‘Adams’

W N W N = NN NN = N = O

5.4.7 Depth-first Enumeration by Right Interval boundary

Depth-first enumeration, ordering by right interval boundary:

SELECT depth, name,
(numer_rgt/denom_rgt) AS indentation
FROM Hierarchy
ORDER BY indentation DESC;



146 CHAPTER 5: FREQUENT INSERTION TREES @\"

Results

depth name

‘King’
‘Jones’
‘Scott’
‘Adams’
‘Ford’
‘Smith’
‘Blake’
‘Allen’
‘Ward’
‘Martin’
“Turner’
‘Clark’
‘Miller’

N = NN NN = W N W = O

You can get the same results by ordering by path.

SELECT depth, name, path
FROM Hierarchy
ORDER BY path;

5.4.8 All Descendants of a Node

Using ‘Ford’ as the ancestor in question and excluding him, the query is

SELECT H2.name
FROM Hierarchy AS H1, Hierarchy AS H2
WHERE Hl.name = 'Ford'
AND Distance (Hl.numer, Hl.denom, H2.numer, H2.denom) > 0;

Results

name
‘King’

‘Jones’

You can change the “>0” to “>= 0" in the predicate if you wish to get the
entire subtree rooted at the ‘Ford’ node.



e 5.5 Egyptian Fractions 147

5.5 Egyptian Fractions

As an aside, before modern notation for fractions, the Egyptians and
early Europeans used a sum of positive (usually) distinct unit fractions
(i.e., fractions of the form 1/n). An Egyptian fraction is a sum of positive
(usually) distinct unit fractions. Instead of writing 2/5, they wrote 1/3 +
1/15. For 2/7, they wrote 1/4 + 1/28. Some of the fractions were very
complicated. For 2/29, they wrote 1/24 + 1/58 + 1/174 + 1/232.

The math is hard enough that you have to use lookup tables for them. The
Rhind papyrus (circa 1650 BCE) is the first such lookup table for fractions of
the form 2/n for odd values of n between 5 and 101. The Egyptians also had a
special symbol for 2/3.

Any rational number has an Egyptian fraction representation with
arbitrarily many terms and with arbitrarily large denominators. An infinite
chain of unit fractions can be constructed using the identity

1/n=1/(n + 1)+ 1/(n(n + 1)).

There are algorithms such as the binary remainder method, continued
fraction unit fraction algorithm, generalized remainder method, greedy
algorithm, reverse greedy algorithm, small multiple method, and splitting
algorithm for decomposing an arbitrary fraction into unit fractions. However,
we have no algorithm for finding unit fraction representations having either a
minimum number of terms or smallest possible denominator.

In short, it is a nice math problem but of no practical use for representing
rational numbers in a computer.



L

Linear Version of the Nested Sets
Model

I F YOU LOOK at the diagram that shows the left and right numbers on a number line,
you will realize that this diagram can be used directly to represent a tree in
a nested sets model. The (lft, rgt) numbers each appear once, but the nodes
of the tree appear exactly twice—once with the lft number and once with
their rgt number. The table can be defined like this:

CREATE TABLE Personnel_Orgchart
(emp_id CHAR(10) NOT NULL,
emp_seq INTEGER NOT NULL UNIQUE,
CONSTRAINT natural_numbers
CHECK(emp_seq > 0),
CONSTRAINT got_all_numbers
CHECK ((SELECT COUNT(*) FROM Personnel_Orgchart)
= (SELECT MAX(emp_seq) FROM Personnel_Orgchart)),
CONSTRAINT exactly_twice
CHECK (NOT EXISTS
(SELECT *
FROM Personnel_Orgchart
GROUP BY emp_id
HAVING COUNT(*) <> 2)),
PRIMARY KEY (emp_id, emp_seq));

VTN A VTN /N VTN /N



150 CHAPTER 6: LINEAR VERSION OF THE NESTED SETS MODEL @\"
Albert
9 10
< Bert > < Chuck >
<Donna> <Eddie> < Fred
1 2 3 45 6 7 8 9 10 11 12
As intervals on a number line
Figure 6.1

In fairness, the “got_all_numbers” and “exactly_twice” constraints will
be hard to implement in most SQL products today, but they are legal in full
Standard SQL. Our Personnel_Orgchart tree is represented by these data.

Personnel_Orgchart
emp_id mp_

‘Albert’

‘Bert’

‘Bert’

‘Chuck’

‘Donna’

73
(97
K=}

‘Donna’
‘Eddie’
‘Eddie’
‘Fred’
‘Fred’ 10
‘Chuck’ 11
‘Albert’ 12

x® N O Ul AW N =

©

The standard nested sets model can be constructed using this
nonupdatable VIEW for queries:

CREATE VIEW Personnel_Orgchart_NS (emp_id, 1ft, rgt)
AS
SELECT emp_id, MIN(emp_seq), MAX(emp_seq)
FROM Personnel_Orgchart
GROUP BY emp_id;

Why bother with this approach? It can be handy for parsing markup
language data into a relational table. You add a row for every begin tag and



6 6.1 Insertion and Deletion 151

every end tag that you find as you read the text from left to right. It is also
handy for groupings whose data are gathered in a linear fashion; more on
that later.

6.1 Insertion and Deletion

Insertion and deletion are just modifications of the routines used in the stan-
dard nested sets model. For example, to remove a subtree rooted at :my_
employee, you would use:

CREATE PROCEDURE RemoveSubtree (IN my_employee CHAR(10))
LANGUAGE SQL
DETERMINISTIC
BEGIN ATOMIC
DECLARE leftmost INTEGER;
DECLARE rightmost INTEGER;
-- remember where the subtree root was
SET leftmost = (SELECT MIN(emp_seq)
FROM Personnel_Orgchart
WHERE emp_id = my_employee);
SET rightmost = (SELECT MAX(emp_seq)
FROM Personnel_Orgchart
WHERE emp_id = my_employee);
-- remove the subtree
DELETE FROM Personnel_Orgchart
WHERE emp_seq BETWEEN Teftmost AND rightmost;
-- compute the size of the subtree & close the gap
UPDATE Personnel_Orgchart
SET emp_seq = emp_seq - (rightmost - leftmost + 1) / 2
WHERE emp_seq > Teftmost;
END;

Insertion is the reverse of this operation. You must create a gap and then
add the new subtree to the table.

CREATE PROCEDURE InsertSubtree (IN my_boss CHAR(10))
LANGUAGE sQL

DETERMINISTIC

BEGIN ATOMIC



152 CHAPTER 6: LINEAR VERSION OF THE NESTED SETS MODEL @\"

-- assume that the new subtree is held in NewTree
-- and is in Tinear nested set format

DECLARE tree_size INTEGER;

DECLARE boss_right INTEGER;

-- get size of the subtree

SET tree_size = (SELECT COUNT(*) FROM NewTree);
-- place new tree to right of siblings

SET boss_right = (SELECT MAX(emp_seq)

FROM Personnel_Orgchart
WHERE emp_id = my_boss);
-- move everyone over to the right
UPDATE Personnel_Orgchart
SET emp_seq = emp_seq + tree_size

WHERE emp_seq >= boss_right;

-- re-number the subtree and insert it

INSERT INTO Personnel_Orgchart

SELECT emp_id, (emp_seq + boss_right) FROM NewTree;
-- clear out subtree table

DELETE FROM Subtrees;
END;

6.2 Finding Paths

The path from anode to root can be found by first looking for the emp_
seq number, which would represent the 1ft number of the node in the
nested sets model, and then returning emp_seq numbers lower than that
value.

SELECT Pl.emp_id
FROM Personnel_Orgchart AS P1
WHERE Pl.emp_seq <= (SELECT MIN(P2.emp_seq) -- left parentheses
FROM Personnel_Orgchart AS P2
WHERE P2.emp_id = :my_guy)
GROUP BY emp_id
HAVING COUNT(*) = 1;

This is a “flatten” version of the BETWEEN predicate in the nested
sets model. The HAVING clause will remove pairs of siblings, leaving only
the path.



6.4 Cash Register Tape Problem 153

6.3 Finding Levels

6.4 Cash

Getting the level is a little trickier. You count the “parentheses” (i.e., emp_
seq) and then count the number of distinct things inside the parentheses
(emp_id); every pair of parentheses moves you up a level. Then you do some
algebra and come up with this answer.

SELECT :my_guy,
2 * COUNT(DISTINCT P2.emp_id)
— COUNT(DISTINCT P2.emp_seq) AS 1vl
FROM Personnel_Orgchart AS P1, Personnel_Orgchart AS P2
WHERE Pl.emp_id = :my_guy
AND P2.emp_seq <= (SELECT MIN(emp_seq)
FROM Personnel_Orgchart
WHERE emp_id = :my_guy);

Register Tape Problem

Data collected by cash registers and other devices will often produce
a file that has a sequential number, an item type, and the item. For
example,

CREATE TABLE Meals
(register_emp_seq INTEGER NOT NULL PRIMARY KEY
item_type CHAR(5) NOT NULL
CHECK (item_type IN ('MEAL', 'FOOD', 'DRINK")),
item_name VARCHAR(15) NOT NULL);

with data such as

INSERT INTO Meals

VALUES

(1, 'MEAL', 'Fat Boy Box'),
(2, 'FOOD', 'Fat Burger'),
(3, 'FOOD', 'Fries'),

(4, 'DRINK', 'Coke'),

(5, "MEAL', 'fountain item'),
(6, 'DRINK', 'Diet Coke"),
(7, "MEAL', 'a Ta carte'),
(8, 'FOOD', 'Fat Burger'),



154

CHAPTER 6: LINEAR VERSION OF THE NESTED SETS MODEL @\"

(9, 'FOOD', 'Burger'),
(10, 'MEAL', 'Fish Sandwich')
etc

The hierarchy is that food and drink are subordinates of a meal. The first step
is to find the bracketing MEAL register sequence numbers. In this example, the
first meal includes all items between (1, 4), the second meal is (5, 6), and the
third meal is (7, 9); we do not have enough data for the fourth meal, which is
incomplete in this table (hence the use of the OUTER LEFT JOIN).

CREATE TABLE Meal_tree
(item_name VARCHAR(15) NOT NULL,
rgt INTEGER NOTN NULL,
1ft INTEGER NOT NULL
PRIMARY KEY (rgt, 1ft));

Is first loaded with query:

INSERT INTO Meal_Tree
SELECT MI1.item_name,
Ml.register_seq AS rgt, MAX(M2.register_seq)-1 AS 1ft
FROM Meals AS M1
LEFT OUTER JOIN
Meals AS M2
ON M1l.item_type = 'MEAL'
AND M2.item_type = "MEAL'
AND Ml.register_seq < M2.register_seq
GROUP BY M1.item_name, Ml.register_seq;

You can then insert the food and drinks with

INSERT INTO Meal_Tree
SELECT ml.item_name, Ml.register_seq, Ml.register_seq
FROM Meals AS M1;

which gives us:

('Fat Boy Box', 1, 4),
('Fat Burger', 2, 2),
('Fries', 3, 3),
('Coke', 4, 4),



6.4 Cash Register Tape Problem 155

('fountain item', 5, 6),
('Diet Coke', 6, 6),

('a la carte', 7, 9),

('Fat Burger', 8, 8),
('Burger', 9, 9),

("Fish Sandwich', 10, NULL)
Etc.

This is a “crunched” version of a nested sets model that can produce a meal
with the usual BETWEEN lft AND rgt search conditions. If you wished to have
the item type at the second level of the hierarchy and the item_name at the third
level, then first create leaf nodes with the same (rgt, 1ft) values, create a ‘DRINK’
node and a FOOD’ node, and finally subordinate them to a MEAL node.



Binary Trees

BINARY TREES ARE a special case of trees in which each parent can have at most only
two children that are ordered. There are no children, a left child, a right
child, or both a left and a right child at each node. Binary trees are the
subject of many chapters in data structures books because they have such
nice mathematical properties. For example, the number of distinct binary
trees with (n) nodes is called a Catalan number and is given by the formula
((2n)!/((n + 1)!n!)). Let's stop and define some terms before we go any
further.

Complete binary tree: a binary tree in which all leaf nodes are at level
(n) or (n— 1), and all leaves at level (n) are toward the left, with
“holes” on the right. There are between (2"(n— 1)) and ((2”n) — 1)
nodes, inclusively, in a complete binary tree. A complete binary tree
is efficiently implemented as an array, where a node at location (i) has
children at indexes (2*i) and ((2*i) + 1) and a parent at location (i/2).
This is also known as heap and is used in the HeapSort algorithm; we
will get to that in a little while.

Perfect binary tree: a binary tree in which each node has exactly zero or
two children and all leaf nodes are at the same level. A perfect binary
tree has exactly ((27h) — 1) nodes, where (h) is the height. Every perfect
binary tree is a full binary tree and a complete binary tree.

VTN A VTN /N VTN /N



158

CHAPTER 7: BINARY TREES @\"

Balanced binary tree: a binary tree where no leaf is more than a certain
amount farther from the root than any other leaf. See also AVL tree, red-
black tree, height-balanced tree, weight-balanced tree, and B-tree.

Balanced binary search tree: a binary tree used for searching for values in
nodes. It is usually an index structure. Nodes in the right subtree are all less
than or equal to the value at the root node. Nodes in the left subtree are all
greater than or equal to the value at the root node. This is usually done with
pointer chains so that a search for a value is a simple navigation algorithm.

AVL tree: a balanced binary tree where the heights of the two subtrees
rooted at a node differ from each other by at most one. The structure is
named for the inventors, Adelson-Velskii and Landis (1962).

Height-balanced tree: a tree whose subtrees differ in height by no more
than one and the subtrees are height balanced, too. An empty tree is
height balanced. A binary tree can be skewed to one side or the other. As
an extreme example, imagine a binary tree with only left children, all in
a straight line. The ideal situation is to have a balanced binary tree—one
that is as shallow as possible because at each subtree the left and right
children are the same size or no more than one node different. This will
give us a worst search time of LOG2(n) tries for a set of (n) nodes.

Fibonacci tree: a variant of a binary tree where a tree of order (n) where (n > 1)
has a left subtree of order n — 1 and a right subtree of order (n —2). An order
0 Fibonacci tree has no nodes, and an order 1 tree has one node. A Fibonacci
tree of order (n) has (F(n + 2) — 1) nodes, where F(n) is the nth Fibonacci
number. A Fibonacci tree is the most unbalanced AVL tree possible.

In this example, ‘b’ is the left son of ‘a’ and ‘¢’ is the right son of ‘a’. Because all
the locations have a value, this is called a complete binary tree (Figure 7.1).

In procedural programming languages, binary trees are usually represented
with pointer chains or in a one-dimensional array, where the array subscript
determines the relationship the node holds within the tree structure. The
array location is determined by the rule that if a node has an array location of
(n), then its left child has an array location of (2*n) and its right child has an
array location of ((2*n) + 1). With a little algebra, you can see that the parent
of a node is FLOOR(1n/2).

A binary tree is used for searching by placing data in the nodes in such a
way that for every node in the tree, all nodes in its left subtree are less than
the parent node's value and all nodes in its right are greater than the parent



e 7.1 Binary Tree Traversals 159

LI I U U s

Figure 7.1

node's value. You locate a value by starting at the root of the tree and turning
left or right as required until you find the value or that the value is not in the
tree. All tree indexing schemes, such as B-trees and B+-trees, generalize this
idea to a traversal in a multiway tree.

7.1 Binary Tree Traversals

One of the standard programs you have to write in freshman computer sci-
ence is a traversal for a binary tree. A traversal is an orderly way of visiting
every node so that you can perform some operation on it. There are three
ways to traverse a binary tree, starting at the root.

1.  Postorder traversal
a. Recursively traverse the left son's subtree
b. Recursively traverse the right son's subtree
c. Visit the root of the current subtree

In this sample tree, you would get the list (B, ‘E’, ‘D", ‘F’, ‘G’, ‘C’, ‘A). This
algorithm can be generalized to nonbinary trees and is called a depth-first
search. If you were given the parse tree for an infixed arithmetic expression,
as shown in Figure 7.2, the postorder traversal would give you the reverse
Polish notation equivalent of the expression.

This algorithm can be generalized to nonbinary trees and is called a
breadth-first search.

2. Preorder traversal
a. Visit the root of the current subtree
b. Recursively traverse the left son's subtree
c. Recursively traverse the right son's subtree



160 CHAPTER 7: BINARY TREES @\"

(23+4)

Figure 7.2

In this sample tree, you would get the list (‘A, ‘B, 'D’, ‘E’, ‘C, ‘F’, ‘G’). This
algorithm can be generalized to nonbinary trees and is called a depth-first
search. If you were given the parse tree for an infixed arithmetic expression,
as Figure 7.2 shows, the preorder traversal would give you the Polish notation
equivalent of the expression.

This algorithm can be generalized to nonbinary trees and is called a
breadth-first search.

3. Inorder traversal:
a. Recursively traverse the left son's subtree
b. Visit the root of the current subtree
c. Recursively traverse the right son's subtree

In this sample tree, you would get the list (‘D’, ‘B, ‘E’, ‘A, ‘F’, ‘C’, ‘G).
If you were given the parse tree for an arithmetic expression, as shown in
Figure 7.2, the inorder traversal would give you the standard infixed notation
equivalent of the expression.

This algorithm does not generalize to nonbinary trees. Damjan S. Vujnovic
points out that preorder and postorder representations work because at
most one tree exists that matches a given set of values. The inorder traversal
situation is somewhat different. Consider the following two trees (nodes ‘b’
and ‘¢’ are left children of node ‘a’; node d is the right child of node ‘a’, and
so on. Nodes having a “/” above are left children, and nodes having a “\” are
right children:

MultiTree A (Figure 7.3):

MultiTree B (Figure 7.4):

If we try to represent these trees using an inorder traversal, we find that
they share the same representation; note node ‘X’ in the diagrams. Inorder
traversal works only with binary trees.



e 7.2 Binary Tree Queries 161

~@—— Leftnode

<——— Right node

@/@\@ ([
OlONOI0IO

Figure 7.3

-

<— Right node
Figure 7.4

7.2 Binary Tree Queries

Damjan S. Vujnovic (damjan@galeb.etf.bg.ac.yu) worked out the details of
the following queries against a binary tree. Let's construct a binary tree and
load it with some sample data from (Figure 7.1).



162

CHAPTER 7: BINARY TREES @\"

CREATE TABLE BinTree

(node CHAR(10) NOT NULL,

lTocation INTEGER NOT NULL PRIMARY KEY);

INSERT INTO BinTree(node, Tlocation)

VALUES ('a', 1), ('b', 2), ('c', 3), ('d", 5),
(‘e', 6), ('f', 7), ('g', 14), ("h", 15);

The following table is useful for doing queries on the Heap table.

CREATE TABLE Powers0fTwo
(exponent INTEGER NOT NULL PRIMARY KEY
CHECK(exponent >= 0),
pwr_two INTEGER NOT NULL UNIQUE
CHECK(pwr_two >= 1)
--, CHECK(2”exponent = pwr_two), but this is not standard SQL
)

INSERT INTO PowersOfTwo

VALUES (0, 1), (1, 2), (2, 4), (3, 8),
(4, 16), (5, 32), (6, 64), (7, 128),
(8, 256);

Most SQL implementations have base 10 or natural logarithm
functions, and LOG2() can be expressed using either of them. The
general formulas, carried to more precision than most computers can
handle, are:

LOGI0(x)/L0OG10(2) = LOG10(x)/0.30102999566398119521373889472449
LN(x)/LN(2) = LN(x)/0.69314718055994530941723212145818

7.2.1 Find Parent of a Node

Getting the parent of a given child is trivial:

SELECT BinTree.*, :my_child
FROM BinTree
WHERE Tocation
=(SELECT FLOOR(Tocation/2) AS parent
FROM BinTree T1
WHERE T1l.node = :my_child)

Likewise, we know that the root of the whole tree is always at location one.



e 7.2 Binary Tree Queries 163

7.2.2 Find Subtree at a Node—Recursive Common Table
Expression (CTE)

The recursive definition of a binary tree can be put directly into a recursive CTE:

WITH RECURSIVE Subtree(node_nbr)
AS
(SELECT Tl.node_nbr
FROM Binary_Tree AS T1
WHERE T1.node_nbr = :in_root_nbr
UNION
SELECT T2.node_nbr
FROM Binary_Tree AS T2, Subtree AS S1
WHERE T2.node_nbr IN ((2*S1.node_nbr), (2*S1.node_nbr +1))
SELECT ..
FROM Subtree AS S2
WHERE ..;

This is a simple enough CTE, but recursion is always expensive. You need to
compare it to the next version.

7.2.3 Find Subtree at a Node—Data Driven

Finding a subtree rooted at a particular node is a little bit complicated. Note
that the locations of the children of a node with location (n) are:

(2*n), (2*n) + 1

(4*n), ..., (4*n) + 3
(8*n), ..., (8*n) + 7
(16*n), ..., (16*n) + 15

The node with location (s) is a subordinate of a node with location (n) if
and only if (k) exists such that:

(2%k) * n <= s < (2"k) * (n + 1)

We know that (k) exists, therefore k = FLOOR (LOG2(s/n))
In other words, if

s < (2*FLOOR(LOG2(s/n))) *(n + 1)

then the node with location (s) is a subordinate of a node with location (n).
This is easier to see with an example:



164 CHAPTER 7: BINARY TREES @\"

Example one:

n=3,s =13
13 < (272)* 4
13 < 16

TRUE

Example two:

n=2,s~=12
12 < (272)* 3
12 < 12

FALSE

Thus we have the subordinates query:

SELECT :my_root, T1.*
FROM BinTree AS T1, BinTree AS T2
WHERE T2.node = :my_root
AND Tl.location
<(FLOOR(LOG2(T1.location/T2.Tocation))*2) *(n + 1);

This predicate lets you test a location number, (j), and see if it is a descen-
dant of the node with location number (k) at level (i).

J BETWEENC(271) * k) AND((27i) * k + 1)

To get all of the descendants, you could use a table of sequential integers
that includes an integer from one to at least the depth of the tree.

This method can be generalized for n-ary tree with a bit of algebra. If
the value of (n) is known in advance, we could improve its performance by
adding the node level as another column.

7.3 Deletion from a Binary Tree

Deletion of a leaf node from the binary tree is easy. Remove the row with the
target node and leave the rest of the tree alone. Deleting a subtree requires
using the subordinates query, thus

DELETE FROM BinTree
WHERE node = :my_root
AND Tocation
IN (SELECT Tl.location
FROM BinTree AS T1
WHERE T1l.location
< (FLOOR (LOG2(T1.location/BinTree.location))”2) *(n + 1));



e 7.5 Heaps 165

Deleting a node with subordinates requires a business rule about promotion
of the subordinates, as every node must have a parent. This depends on the
individual case and I cannot give a general statement about it.

7.4 Insertion into a Binary Tree

Insertion into the binary tree is easy if there is a vacant position in the tree.
In general, new nodes are added as the left child and then the right child of
the target parent node. If all child positions are full, then the tree must be
reorganized according to some business rule.

7.5 Heaps

One of the nice things about a binary tree is that its predictable growth pat-
tern allows you to assign a single number to locate each node. Sequentially
number the nodes across the levels in the tree from left to right. This struc-
ture is also known as a heap when it is presented in an array and is the basis
for the HeapSort algorithm.

Therefore, given a root node located at location (1), you know that its
sons are at locations (2) and (3). Likewise, using integer division, the parent
of a node is at location (n/2), and therefore the grandparent is at ((n/2)/2) =
(n/4). This leads to a recurrence relation based on powers of two.

CREATE TABLE Heap
(node CHAR(10) NOT NULL,
location INTEGER NOT NULL PRIMARY KEY);

INSERT INTO Heap
VALUES ('A", 1),

('B", 2),
('cr, 3),
('n', 4),
('E", 5),
('F', 6),
G, 7),
('H", 8);

The following table is useful for doing queries on the Heap table.

CREATE TABLE PowersOfTwo
(exponent INTEGER NOT NULL PRIMARY KEY
CHECK(exponent >= 0),



166

CHAPTER 7: BINARY TREES @\"

pwr_two INTEGER NOT NULL UNIQUE
CHECK (pwr_two >= 1)

--, CHECK (2%exponent = pwr_two), but this is not standard SQL
)s
INSERT INTO PowersOfTwo
VALUES (0, 1), (1, 2), (2, 4), (3, 8),

(4, 16), (5, 32), (6, 64), (7, 128),

(8, 256);

In actual SQL products, you might want to use base two logarithms (LOG2(n) =
LOG(n)/LOG(2.0) = LOG(1n)/0.69314718055994529) or user-defined functions to
check that the PowersOfTwo rows are correct. The LOG() and FLOOR() functions
are not actually part of Standard SQL, but are common enough to be portable.

Given a table with powers of two, we can find all the ancestors of a node
with this query, which depends on integer division.

SELECT Hl.node, Hl.location
FROM Heap AS H1
WHERE Hl.location
IN (SELECT :in_node/pwr_two
FROM PowersOfTwo
WHERE pwr_two <= :my_location);

The level of a node is easy, as each level starts with a power of two on the
left side (remember that “Level” is a reserved word in SQL-99).

SELECT Tocation,
CAST (FLOOR(LOG(Tocation)/L0OG(2.0)) AS INTEGER) AS 1vli
FROM Heap;

The depth of the heap is much the same, but because it must include the
incomplete level, it is the maximum level or the maximum level plus one.

(SELECT CAST (FLOOR(LOG(MAX(location))/L0G(2.0)) + 1.0 AS INTEGER)
FROM Heap) AS depth;

Finding the descendants is much harder. Here is a solution from John
Gilson, who also provided the two previous queries.

CREATE VIEW HeapDescendants

(node, Tocation, descendant, dscnt_loc)
AS

SELECT Hl.node, Hl.location,



e 7.5 Heaps 167

FROM

H2.node AS dscnt,
H2.location AS dscnt_loc
(SELECT FLOOR(LOG(MAX(Tocation))/L0G(2.0)) + 1.0
FROM Heap) AS D(depth)
CROSS JOIN
(SELECT Tocation, FLOOR(LOG(location)/L0G(2.0))
FROM Heap) AS L(location, 1v1)
INNER JOIN
Heap AS H1
ON Hl.Tocation
INNER JOIN
PowersOfTwo AS T
ON T.exponent >= 0
AND T.exponent < D.depth - L.1vl
INNER JOIN
Heap AS H2
ON H2.Tocation >= Hl.location * pwr_two

L.Tlocation

AND H2.location < Hl.location * pwr_two + pwr_two;

Given the sample table, we would get this result.

Results

node location dscnt dscnt_loc
‘A 1 ‘A 1
‘A 1 ‘B’ 2
N 1 (¢ 3
‘A 1 ‘D’ 4
A 1 ¥ 5
‘A 1 ‘F 6
‘A 1 ‘G’ 7
N 1 ‘H 8
‘B’ 2 ‘B’ 2
‘B’ 2 ‘D’ 4
‘B’ 2 ‘B 5
‘B’ 2 ‘H’ 8
c 3 O 3
' 3 P 6
c 3 ‘G’ 7
‘D’ 4 ‘D’ 4



168 CHAPTER 7: BINARY TREES @\"

Results—Cont'd

node location dscnt dscnt_loc
‘D’ 4 ‘H’ 8
‘B 5 ‘B 5
‘F 6 ‘F 6
‘G’ 7 ‘G 7
‘H’ 8 ‘H’ 8

7.6 Binary Tree Representation of Multiway Trees

There is a simple way to represent a multiway tree as a binary tree. The algo-
rithm is given in Knuth's Art of Programming (Vol. 1, Section 2.3.2, Page 234,
ISBN 978-0201485417). Binary tree representation of a multiway tree is based
on first child-next sibling representation of the tree. In this representation,
every node is linked with its leftmost child and its next (right nearest) sibling.

Informally, you take the original tree and traverse the nodes by going down a
level and then across siblings. The leftmost sibling (if any) becomes the left child
in the binary tree. The sibling in the second position (if any) becomes the right
child in the binary, and the third and younger siblings become right children
under the second child. The algorithm is applied recursively down the tree.

If you see one example, you will understand the idea. Let's start with this

multiway tree (Figure 7.5).

@ )
00

Figure 7.5



e 7.7 Stern—-Brocot Numbers 169

This tree can be represented in the first child—next sibling manner as
shown in Figure 7.6.

Now grab this graph and pull it up a little so that things flop down 45°
(Figure 7.7). Yes, that is not a very scientific description but it makes good
visual sense, doesn't it?

Behold! A binary tree! [This example is credited to Paul E. Black (paul
black@nist.gov) and is part of the dictionary of algorithms from NIST http://
www.nist.gov/dads/HTML/binaryBinTreeRepofBinTree.html. |

The left child of a node is its immediate oldest subordinate, and the chain
of right children from this root node are other subordinates in order by age
(i.e., left to right).

NIST, the National Institute of Standards and Technology, was known
between 1901 and 1988 as the National Bureau of Standards (NBS) and
was the “Office of Weights and Measures” under John Quincy Adams. It
is a federal government agency in charges of maintaining measurement
standards laboratories. It does not have regulatory powers, however, it sets
up tests for enforcement agencies.

Most Americans are effected in daily life by Handbook 44 that provides
the “Specifications, Tolerances, and Other Technical Requirements for
Weighing and Measuring Devices” used in the United States. We computer
people care about Information Technology Laboratory (ITL). NIST are also
active in ANSI (American National Standards Institute) ISO (International
Organization for Standards), and other organizations that deal with IT.

7.7 Stern—Brocot Numbers

This is a method for constructing the set of all nonnegative fractions, (m/n),
where m and n are relatively prime. It also represents any binary tree by
assigning a unique fraction to each node.

The process begins with a pair of fractions (0/1, 1/0) (Figure 7.8)
and then the fraction (m1 + m2)/(nl + n2) is inserted between each pair
of fractions (m1/nl, m2/n2). For example, the first steps in the process
give us:

(0/1, 1/0)

(0/1, 1/1, 1/0)

(o/1, 1/2, 1/1, 2/1, 1/0)

(o/1, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, 1/0)






6 7.7 Stern—-Brocot Numbers 171

on, 1/0)

on, 1/0)

on,
1/0)

N, e 172, e 11, @ , 1/0)

Remove (0/1) (i.e., zero) and (1/0) (i.e., infinity) and leave (1/1) (i.e., one)
as the root of a binary tree. This maps every rational number into a set of left—
right paths. For example, we can arrive at (5/7) by traversing the tree (left,
right, right, left). It is a bit of algebra and programming, but you can map
any tree into a binary tree and then use Stern—Brocot numbering to identify
the nodes. Unfortunately, finding relationships in such a representation also
requires bit of algebra and programming.

Figure 7.8



Other Models for Trees

l HE MODELS FOR trees and hierarchies discussed so far are not the only ones. Others
use different approaches and properties of trees, some of which are hybrids
of other models.

8.1 Adjacency List with Self-References

A slight modification of the usual adjacency list model is to include an
edge that loops back to the same node.

CREATE TABLE Personnel_OrgChart
(boss_emp_name VARCHAR(20) NOT NULL,
emp_name VARCHAR(20) NOT NULL,
PRIMARY KEY (boss_emp_name, emp_name));

VTN A VTN /N VTN /N



174 CHAPTER 8: OTHER MODELS FOR TREES @\"

Personnel_OrgChart

boss_emp_name emp_name
‘Albert’ ‘Albert’
‘Albert’ ‘Bert’
‘Albert’ ‘Chuck’
‘Bert’ ‘Bert’
‘Chuck’ ‘Chuck’
‘Chuck’ ‘Donna’
‘Chuck’ ‘Eddie’
‘Chuck’ ‘Fred’
‘Donna’ ‘Donna’
‘Eddie’ ‘Eddie’
‘Fred’ ‘Fred’

This makes the table longer, but avoids a NULL in the boss_emp_name
column of the root. The query for finding the leaf nodes is

SELECT boss_emp_name
FROM Personnel_OrgChart
GROUP BY boss_emp_name
HAVING COUNT (boss_emp_name) = 1;

Other queries for the adjacency list still work in a modified form, but
produce slightly different results.

8.2 Subordinate Adjacency List

Another modification of the usual adjacency list model is to show edges of
the graph as oriented from the superior to the subordinate. Nodes without a
subordinate are leaf nodes and have a NULL.

CREATE TABLE Personnel_OrgChart

(boss_emp_name VARCHAR(20) NOT NULL,
emp_name VARCHAR(20), -- null means Tleaf node
PRIMARY KEY (boss_emp_name, emp_name));



e 8.3 Hybrid Models 175

Personnel_OrgChart

boss_emp_name emp_name
‘Albert’ ‘Bert’

‘Bert’ NULL
‘Albert’ ‘Chuck’
‘Chuck’ ‘Donna’
‘Chuck’ ‘Eddie’
‘Chuck’ ‘Fred’
‘Donna’ NULL
‘Eddie’ NULL
‘Fred’ NULL

This avoids a NULL in the root, but gives you more NULLSs in the table.
Finding all the leaf nodes is easy:

SELECT Pl.emp_name
FROM Personnel_OrgChart AS P1
WHERE P1l.subordinate_emp_name IS NULL;

Queries for the adjacency list model still work, but they need
modifications.

8.3 Hybrid Models

It is possible to mix the models we have discussed. The idea is to gain the
advantages of each in one table, but the price can be increased for overhead
and storage.

8.3.1 Adjacency and Nested Sets Model

This approach retains the parent node column in each row of a nested sets
model. The problem is that you cannot include the constraints on the (Ift,
rgt) pairs that assure the tree structure, thus:

CREATE TABLE Tree
(node CHAR(5) NOT NULL,
parent_node CHAR(5),



176 CHAPTER 8: OTHER MODELS FOR TREES @\"

1ft INTEGER DEFAULT 0 NOT NULL,
rgt INTEGER DEFAULT O NOT NULL);

INSERT INTO Tree

VALUES ('A', NULL, 1, 18),
('B", 'A", 2, 3),
('c', 'A', 4, 11),
('n', 'C', 5, 6),
(‘e', 'c", 7, 8),
('"F', 'C", 9, 10),
('g", "A", 12, 17),
('H", 'G", 13, 14),
('1', 'G", 15, 16);

The advantage of this model is that you can insert nodes using this
statement and let the default values take effect.

INSERT INTO Tree (node, parent)
VALUES (:my_node, :my_parent);

The clean-up procedure has to detect any (0, 0) pairs in the tree table.
If there is at least one such pair, we know nodes have been added, so the
procedure needs to perform a complete rebuild of the tree from the (child,
parent) columns. If there is no such pair we know that nodes might have
been deleted, so the procedure needs to rerenumber the (lft, rgt) columns.

8.3.2 Nested Sets with Depth Model

This approach retains the level or depth in each row of a nested sets model,
disregarding constraints, thus:

CREATE TABLE Tree

(node CHAR(5) NOT NULL,
"depth"™ INTEGER NOT NULL, -- depth is reserved in Standard SQL
1ft INTEGER NOT NULL,
rgt INTEGER NOT NULL);

INSERT INTO Tree

VALUES ('A', 1, 1, 18),
('B', 2, 2, 3),
('c', 2, 4, 11),



e 8.3 Hybrid Models 177

('b', 3, 5, 6),
(‘e', 3,7, 8),
('F', 3, 9, 10),
6", 2, 12, 17),
('H", 3, 13, 14),
('1', 3, 15, 16);

While the level number can be generated from the nested sets model in a
VIEW, the query involves an expensive self-join. The advantage is in bill of
materials (“B.O.M.” or BOM) problems where subassembly data have to be
computed up the tree from the leaf nodes (parts).

8.3.3 Adjacency and Depth Model

This model adds a column for the depth of the node to the adjacency
list, thus:

CREATE TABLE Tree

(node CHAR(5) NOT NULL PRIMARY KEY,
parent CHAR(5),
"depth"™ INTEGER NOT NULL, -- depth is reserved in Standard SQL
CHECK (...), -- constraints for tree structure

)

Adding a node is easy:

CREATE PROCEDURE AddChildNode (IN c INTEGER, IN p INTEGER)
DETERMINISTIC
LANGUAGE SQL
INSERT INTO Tree
SELECT ¢, p, ("depth™ + 1)
FROM Tree
WHERE node = p;

However, this is a bad hybrid if you need to change the tree structure.
When you delete a node, the elements of its subtree all have to be raised one
level. Likewise, the depth has to be recalculated if a node is moved to a new
parent. Tracing the path down the tree can be expensive in the adjacency list
model because you need procedural code.



178

CHAPTER 8: OTHER MODELS FOR TREES @\"

8.3.4 Computed Hybrid Models

John Gilson (jag@acm.org) came up with this set of VIEWs. For a given
node N and a depth-first (preorder) traversal, each ancestor's sequence
number is the greatest number on that level that is less than N's sequence
number. For a given node N and breadth-first (postorder) traversal, each
ancestor's sequence number is the least number on that level that is greater
than N's sequence number. We can use these relationships directly to
define the following views:

CREATE TABLE PreorderTree

(node VARCHAR(10) NOT NULL PRIMARY KEY,
postorder_nbr INTEGER NOT NULL CHECK (postorder_nbr > 0),
Tvl INTEGER NOT NULL CHECK (1vl > 0),

UNIQUE (1v1, postorder_nbr));

-- Preorder
INSERT INTO PreorderTree
VALUES ('A', 1, 1),

('B', 2, 2),
('c', 3, 2),
('D", 4, 3),
("E', 5, 3),
("F', 6, 3),
('G", 7, 2),
('H", 8, 3),
("I, 9, 3);

CREATE VIEW PreorderRelationships
AS
SELECT Tl.node AS descendant,
T1.1v1 AS descendant_Tv1,
Tl.postorder_nbr AS descendant_postorder_nbr,
T2.node AS ancestor,
T2.1v1 AS ancestor_1v1,
T2.postorder_nbr AS ancestor_postorder_nbr
FROM PreorderTree AS T1
INNER JOIN
PreorderTree AS T2
ON T2.Tvl < T1.1v]



e 8.3 Hybrid Models 179

AND T2.postorder_nbr < Tl.postorder_nbr
LEFT OUTER JOIN
PreorderTree AS T3
ON T3.1vl = T2.7v]
AND T3.postorder_nbr > T2.postorder_nbr
AND T3.postorder_nbr < Tl.postorder_nbr
WHERE T3.postorder_nbr IS NULL;

And likewise for a postorder traversal.

CREATE TABLE PostorderTree

(node VARCHAR(10) NOT NULL PRIMARY KEY,
postorder_nbr INTEGER NOT NULL CHECK (postorder_nbr > 0),
Tvl INTEGER NOT NULL CHECK (Tv1 > 0),
UNIQUE (1v1, postorder_nbr));

-- Postorder

INSERT INTO PostorderTree

VALUES ('A', 9, 1),

('B', 1, 2),
('c', 5, 2),
('n', 2, 3),
('E", 3, 3),
('"F', 4, 3),
('g', 8, 2),
('H', 6, 3),
('1', 7, 3);
CREATE VIEW PostorderRelationships

AS
SELECT Tl.node AS descendant,
T1.1vl AS descendant_Tvl,
Tl.postorder_nbr AS descendant_postorder_nbr,
T2.node AS ancestor,
T2.1v1 AS ancestor_1v1,
T2.postorder_nbr AS ancestor_postorder_nbr
FROM PostorderTree AS T1
INNER JOIN
PostorderTree AS T2
ON T2.Tvl < T1.1v]
AND T2.postorder_nbr > Tl.postorder_nbr



180 CHAPTER 8: OTHER MODELS FOR TREES @\"

LEFT OUTER JOIN
PostorderTree AS T3
ON T3.Tvl = T2.1v]
AND T3.postorder_nbr < T2.postorder_nbr
AND T3.postorder_nbr > Tl.postorder_nbr
WHERE T3.postorder_nbr IS NULL;

We can then write some of the standard queries easily. Using the preorder
tree, get all ancestors of a given node.

SELECT *
FROM PreorderRelationships
WHERE descendant = :my_guy;

Using postorder, get all descendants of C

SELECT *
FROM PostorderRelationships
WHERE ancestor = :my_ancestor;

8.4 Path Enumeration Using Prime Number Products

This model is credited to P Thomas Roji. It uses a prime number table and

basic mathematical operations to do basic hierarchy operations. Having said

that, the disadvantage is that the product of prime numbers gets big very fast.
This model depends on two mathematical properties.

1. There is a unique path to every node in a tree from the root node.
2. The prime numbers that can be a divisor of the product of a set of
prime numbers are only the prime numbers in the set.

That is, let the product of prime numbers be I1(p(n)), then the factors of
[T(p(n)) can only be the prime numbers, p(n) that participated in the multi-
plication, or the subproducts. Maple and other mathematical software tools
have a built-in function for finding the ith prime. We are not so lucky in SQL
and will use a one column table of primes, PrimeNumbers(prime).

The following is the table used in the examples.

CREATE TABLE Personnel_Orgchart
(emp_name VARCHAR(15) NOT NULL PRIMARY KEY,
node_prime BIGINT NOT NULL
REFERENCES PrimeNumbers(prime,
path_product BIGINT NOT NULL);



e 8.4 Path Enumeration Using Prime Number Products 181

Here are sample data for my five-node organizational chart.

INSERT INTO Personnel_Orgchart (emp_name, node_prime, path_product)
VALUES

("Albert', 2, 2),

('Bert', 3, 6),

('Chuck', 5, 10),

('Donna', 7, 70),

('Eddie', 11, 110),

("Fred', 13, 130);

The column node_prime is a unique prime number assigned to each
employee. The column path_product holds the product of the node_prime
values from the root to the current node.

We can also create a VIEW or CTE of the next available prime number with

REATE VIEW NextPrime(prime)

AS

SELECT MIN(prime)

FROM (SELECT prime FROM PrimeNumbers

EXCEPT

SELECT FROM node_prime FROM Personnel_Orgchart);

8.4.1 Find the Subordinates of a Node

The logic is simple. We get the prime number of the parameter node and find
all the multiples of it.

CREATE PROCEDURE Find_Subordinates(IN in_emp_name VARCHAR(15))
LANGUAGE SQL
DETERMINISTIC

SELECT Pl.emp_name, P2.emp_name AS manager_emp_name
FROM Personnel_Orgchart AS P1,

Personnel_Orgchart AS P2

WHERE in_emp_name = Pl.emp_name

AND MOD(P2.path_product, Pl.path_product) = 0;

8.4.2 Find the Superiors of a Node

The logic is simple. We get the path product of the parameter node and find
all the divisors of it.



182

CHAPTER 8: OTHER MODELS FOR TREES @\"

CREATE PROCEDURE Find_Superiors(IN in_emp_name VARCHAR(15))
LANGUAGE SQL
DETERMINISTIC

SELECT Pl.emp_name, P2.emp_name AS manager_emp_name
FROM Personnel_Orgchart AS P1,

Personnel_Orgchart AS P2

WHERE in_emp_name = Pl.emp_name

AND MOD(P1.path_product, P2.path_product) =0

8.4.3 Hierarchy with Levels

This requires a table of prime numbers and the assumption that prime
numbers are assigned to nodes in ascending order

CREATE PROCEDURE Find_Level(IN in_emp_name VARCHAR(15))
LANGUAGE SQL
DETERMINISTIC
SELECT P1l.emp_name,
SUM (CASE WHEN MOD(P1l.path_product, N.prime) = 0
THEN 1 ELSE 0 END) AS 1vl
FROM Personnel_0Orgchart AS P1,
PrimeNumbers AS N
WHERE in_emp_name = Pl.emp_name
AND N.prime < = MAX(Pl.node_prime) OVER()
GROUP BY Pl.emp_name;

The CASE expression counts the divisors at the parameter. The root is at
level one, and then we count down to the leaf nodes.

8.4.4 Insert New Employee under a Boss

This is done in one statement in full SQLs that support the use of scalar
subquery expression in a VALUES() list.

CREATE PROCEDURE Insert_New_Employee
(IN in_new_emp_name VARCHAR(15),
IN in_boss_emp_id VARCHAR(15))



8.4 Path Enumeration Using Prime Number Products 183

LANGUAGE SQL
DETERMINISTIC
INSERT INTO Personnel_Orgchart (emp_name, node_prime, path_product)
VALUES (in_new_emp_name,
(SELECT prime FROM NextPrime),
(SELECT prime FROM NextPrime)
* (SELECT Pl.path_product
FROM Personnel_Orgchart AS P1
WHERE P1.emp_name = in_boss_emp_id));

If your SQL has problems with this, then declare local variables and load
them with the node_prime and path_product computation.

8.4.5 Delete an Employee

The first rule is that you cannot ever delete the root node. The tree would fall
apart without a root. The next problem is what to do with the subordinates.
In this case, we have opted to move the subordinates to the immediate
superior.

The approach is simple. Given an employee, find the node_prime, and we
are done with that row, so we delete it. We then factor out the delete_prime
from all the subordinates.

CREATE PROCEDURE Delete_Employee
(IN in_emp_name VARCHAR(15))
LANGUAGE SQL
DETERMINISTIC
BEGIN ATOMIC
--- find the prime of the deletion node
DECLARE delete_prime INTEGER;
SET delete_prime
= (SELECT Pl.node_prime
FROM Personnel_Orgchart AS P1
WHERE P1l.emp_name = in_emp_name);

--- delete the node
DELETE FROM Personnel_Orgchart
WHERE emp_name = in_emp_name;



184

CHAPTER 8: OTHER MODELS FOR TREES @\"

--- delete the prime from the products
UPDATE Personnel_Orgchart
SET path_product
= CASE WHEN MOD(path_product, delete_prime) = 0
THEN (path_product / delete_prime)
ELSE path_product END
WHERE node_prime > 2;
END;

8.4.6 Decomposing a Path

The product paths in this model are made up of single occurrences of primes.
We assume that there is a table of primes, but we don't want to test all of
them if we can help it. The WHERE clause tells us that the root is always at 2
and that the product we are testing could itself be a prime at the second level
of the tree.

CREATE PROCEDURE Prime_Path_List(IN @in_path_product INTEGER)
LANGUAGE SQL
DETERMINISTIC
SELECT N.prime
FROM PrimeNumbers AS N
WHERE MOD(@in_path_product, N.prime) =0
AND N.prime BETWEEN 2 AND @in_path_product;

8.4.7 Helpful Functions

Because this method is based on factoring and products, it can be handy to
have a small library of useful integer math functions.

8.4.7.1 Greatest Common Divisor

The greatest common divisor or GCD(a, b) is a classic algorithm in procedural
programming language. The name describes the results. Because it has been
around for millennia, there are several ways to do it. Here are three. The first is
iterative and relatively fast.

CREATE FUNCTION GCD(IN a INTEGER, IN b INTEGER)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN



8.4 Path Enumeration Using Prime Number Products 185

DECLARE tINTEGER;
WHILE b <> 0

DO SET t = b;
SET b = MOD (a, b);
SET a = t;
END WHILE;
RETURN a;

END;

The next iterative version comes from Euclid, the remainder calculation
(b=MOD (a, b)) is replaced by repeated subtraction.

CREATE FUNCTION GCD(IN a INTEGER, IN b INTEGER)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

IFa=20

THEN RETURN b;

ELSE WHILE b <> 0

DO IF a > b
THEN SET a = a - b;
ELSE SET b =b - a;
END IF;
END WHILE;

RETURN a;

END IF;

END;

The recursive version is based on the equality of the GCDs of successive
remainders and the halting condition GCD(n, 0) = n.

CREATE FUNCTION GCD(CIN a INTEGER, IN b INTEGER)
RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

IFb=20

THEN RETURN a;

ELSE RETURN GCD(b, MOD (a, b));

END IF;



186 CHAPTER 8: OTHER MODELS FOR TREES @\\’

8.4.7.2 Least Common Multiple

The LCM(a,b), least common multiple, function is the other side of the
GCD(). Again, its name explains the function. The easy way to compute is to
use the formula:

LCM(a,b) = ABS(a*b) / GCD(a,b);



&>

Proprietary Extensions for Trees

As YOU caN see from the examples given earlier in this book, you very quickly get
into recursive or procedural code to handle trees. Because the single-table
adjacency list model is popular, several vendors have added extensions
and academics have proposals to handle tree traversal in SELECT
statements.

9.1 Oracle Tree Extensions

Oracle has CONNECT BY PRIOR and START WITH clauses in the SELECT
statement to provide partial support for reachability and path enumeration
queries. The START WITH clause tells the engine which value the root of
the tree has. The CONNECT BY PRIOR clause establishes the edges of the
graph. The function LEVEL gives the distance from the root to the current
node, starting at 1 for the root. Let us use a list of parts and subcompo-
nents as the example database table. The query “Show all subcomponents
of part Al, including the substructure” can be handled by the following
Oracle PLSQL statement:

SELECT LEVEL AS path_length, assembly_nbr, subassembly_nbr
FROM Blueprint
START WITH assembly_nbr = "Al"'
CONNECT BY PRIOR subassembly_nbr = assembly_nbr;

VTN A VTN /N VTN /N



188

CHAPTER 9: PROPRIETARY EXTENSIONS FOR TREES @

The query produces the following result:

Result1

path_length assembly_nbr subassembly_nbr
1 ‘A1’ ‘A2’
2 ‘A2’ ‘A5’
2 ‘A2’ ‘A6’
3 ‘A6’ ‘A8’
3 ‘A6’ ‘A9’
1 ‘Al ‘A3’
2 ‘A3’ ‘A6’
3 ‘A6’ ‘A8’
3 ‘A6’ ‘A9’
2 ‘A3’ ‘A7’
1 ‘Al ‘A4’

The output is an adequate representation of the query result because
it is possible to construct the path enumeration tree of Figure 9.1 from it.
The CONNECT BY ... PRIOR clause provides traversal but not support for
recursive functions before version 9.0 (check the status of the product at the
time you are reading this chapter). For example, it is not possible to sum the
weights of all subcomponents of part Al to find the weight of A1. The only
recursive function supported by the CONNECT BY ... PRIOR clause is the
LEVEL function. Another limitation of the CONNECT BY ... PRIOR clause
is that it does not permit the use of joins. The reason for disallowing joins

Figure 9.1 Depth-first search.



e 9.1 Oracle Tree Extensions 189

is that the order in which the rows are returned in the result is important.
Because parent nodes appear before their children, you know that if the path
length increases, these are children; if it does not, they are new nodes at a
higher level.

This also means that an ORDER BY can destroy any meaning in the results.
This means, moreover, that the CONNECT BY... PRIOR result is not a true
table, as a table by definition does not have an internal ordering. In addition,
this means that it is not always possible to use the result of a CONNECT BY
query in another query. A trick for working around this limitation, which
makes indirect use of the CONNECT BY ... PRIOR clause, is to hide itin a
subquery that is used to make a JOIN at the higher level. For example, to attach
a product category description, form another table to the parts explosion.

SELECT part_nbr, category_name
FROM Parts, ProductCategories
WHERE Parts.category_id = ProductCategories.category_id
AND part_nbr IN (SELECT subassembly_nbr
FROM Blueprint
START WITH assembly_nbr = 'Al'
CONNECT BY PRIOR subassembly_nbr = assembly_nbr);

The main query involves a JOIN of two tables, which would not be
possible with direct use of the CONNECT BY ... PRIOR clause. Another
query that cannot be processed by direct use of the CONNECT BY ... PRIOR
clause is one that displays all parent—child relationships at all levels. A
technique to process this query is illustrated by the following SQL:

SELECT DISTINCT PX.part_nbr, PX.pname, PY.part_nbr, PY.pname
FROM Parts AS PX, Parts AS PY
WHERE PY.part_nbr
IN (SELECT Blueprint.subassembly_nbr
FROM Blueprint
START WITH assembly_nbr = PX.part_nbr
CONNECT BY PRIOR subassembly_nbr = assembly_nbr)
ORDER BY PX.part_nbr, PY.part_nbr;

Again, the outer query includes a JOIN, which is not allowed with
the CONNECT BY ... PRIOR clause in the inner query used in the IN()
predicate. Note that the correlated subquery references PX.part_nbr.



190 CHAPTER 9: PROPRIETARY EXTENSIONS FOR TREES @\"

9.1.1 Related Tree Extensions

Other vendors have done things similar to the Oracle approach to things, all
based on establishing a root and a relationship to JOIN the original table to
a correlated copy of itself. Indexing can help, but such queries are still very
expensive.

XD was a SQL product that runs on PC platforms and was fully
compatible with DB2. The company, XDB Systems, was founded by
Dr. S. Bing Yao, who was known for his research in query optimization. Micro
Focus bought XDB in 1998 and made it part of tehir COBOL Product line
as the DB2 Optrion. The product had a set of extensions similar to those
in Oracle, but this product uses functions instead of clauses to hide the
recursion. The PREVIOUS (<column>) function finds rent node value of the
child column for the row being currently processed by a query. The keyword
LEVEL is a system value computed for each row, which gives its path length
from the root; the root is at LEVEL = 0. There is a special value for the
path length of a leaf node, called BOTTOM. For example, to find all of the
subcomponents of Al, you would write this query:

SELECT assembly_nbr
FROM Blueprint
WHERE PREVIOUS (subassembly_nbr) = assembly_nbr
AND assembly_nbr="'Al"
AND LEVEL <= BOTTOM:

9.2 DB2 and the WITH Operator

IBM added the WITH operator from the SQL-99 Standard to their DB2
product line to handle the need to factor out common subquery expressions
and give them a name for the duration of the query. Other alternatives have
been to repeat the code (hoping that the optimizer would do the factoring)
or to create a VIEW and use it. However, the VIEW will be persistent in the
schema after the query is done unless you drop it explicitly.

However, instead of being a simple temporary VIEW mechanism, IBM
made the WITH clause handle recursive queries by allowing self-references.
This is useful for tree structures in particular. You define a special form of the
temporary hidden table that has an initial subquery and a recursive subquery.
These two parts have to be connected by a UNION ALL operator—no other



e 9.3 Date's EXPLODE Operator 191

set operation will do. The hidden table is initialized with results of the initial
subquery and then the result of the recursive subquery is added to the hidden
table over and over as it is used.

This might be easier to explain with an example taken from the usual
adjacency list model OrgChart table. To find the immediate subordinates of
Boss 'Albert' you would write:

SELECT *
FROM OrgChart
WHERE boss = "Albert';

To find all of his subordinates, you add this WITH clause to the query:

WITH Subordinates (emp, salary)
AS (SELECT emp, salary
FROM OrgChart AS PO
WHERE boss = 'Albert') -- initial set
UNION ALL
(SELECT emp, salary
FROM OrgChart AS P1, Subordinates AS S1
WHERE P1l.boss = Sl.emp) -- recursive set
SELECT emp
FROM Subordinates;

Each time you fetch a row from Subordinates, the WITH clause is
executed using the current rows of the temporary hidden table. First you
fetch 'Albert’ and his immediate subordinates. You then do a UNION ALL
for personnel who have those subordinates as bosses and so forth until the
subquery is empty. Then the hidden table is passed to the main SELECT
clause to which the WITH clause is attached.

9.3 Date's EXPLODE Operator

In his book Relational Database: Selected Writings, Chris Date proposed an
EXPLODE(<table-name>) table-valued function that would take an input
table in the adjacency list model and return another table with four columns:
level number, current node, subordinate node, and sequence number. The
sequence number was included to get around the problem of the ordering
having meaning in the hierarchy. EXPLODE results are derived from simple
tree-traversal rules.



192

CHAPTER 9: PROPRIETARY EXTENSIONS FOR TREES @\"

It is possible to write such a function in the current version of products
that have a table-valued function feature. You can also write a procedure that
will write the result set to a global or local temporary table that the rest of the
session can use.

9.4 Tillquist and Kuo's Proposals

(John Tillquist and Feng-Yang Kuo, 1989) proposed an extension wherein
a tree in an adjacency list model is viewed as a special kind of GROUP BY
clause. They would add a GROUP BY LEAVES (major, minor) that can be
approximated with the query:

SELECT *
FROM Tree AS T1
WHERE NOT EXISTS (SELECT *
FROM Tree AS T2
WHERE Tl.major = T2.minor)
GROUP BY Tl.major;

The idea is that you get groups of leaf nodes, with their immediate parent
as the single grouping column. Other extensions in Tillquist and Kuo's paper
include a GROUP BY NODES (<parent node>, <child node>), which would
use each node only once to prevent problems with cycles in the graph and
would find all of the descendants of a given parent node. They then extend
the aggregate functions with a COMPOUND function modifier (along the
lines of DISTINCT) that carries the aggregation up the tree.

9.5 Microsoft Extensions

Microsoft added the HIERARCHYID data type in the SQL Server 2008 release
as a proprietary version of a variable length, encoded path enumeration data
type. Columns of this type are supposed to represent the position of its row
in a hierarchy, but they do not have to represent a tree automatically. It is up
to the application to generate and assign HIERARCHYID values in such a
way that the desired relationship between rows is reflected in the values.
Given two HIERARCHYID values a and b, (a <b) means a comes before
b in a depth-first traversal of the tree—a simple string search. The encoding
used in the HIERARCHYID type is limited to 892 bytes. Consequently, nodes
that have too many levels in their representation to fit into 892 bytes cannot
be represented by the HIERARCHYID type.



e 9.6 Other Methods 193

In total violation of the SQL data integrity principles, the application has
to manage concurrency in generating and assigning HIERARCHYID values.
There is no guarantee that HIERARCHYID values in a column are unique
unless the application uses a UNIQUE constraint. Hierarchical relationships
represented by HIERARCHYID values are not enforced like a foreign key
relationship. It is possible A has a subordinate B, and then A is deleted
leaving B orphaned, that is, with a relationship to a nonexistent row.

This is a proprietary OO implementation that uses Methods rather than an SQL
extension. They can be called by external programs. Here is a quick list of them.

1.  ToString() method converts the HIERARCHYID value to the logical
representation as a NVARCHAR(4000) data type.
2. Read () and Write () convert HIERARCHYID to VARBINARY.
3. Conversion from HIERARCHYID to XML is not supported. To transmit
HIERARCHYID parameters through SOAP, first cast them as strings.
A query with the FOR XML clause will fail on a table with HITERARCHYID
unless the column is first converted to a character data type.
4. GetAncestor
5.  GetDescendant
6. GetLevel
7.  GetRoot
8.  IsDescendantOf
9. Parse
10. Read
11.  GetReparentedValue
12.  ToString
13.  Write
9.6 Other Methods

Looking at the literature, most of the attempts to add a tree structure
operation to SQL have been based on the assumption that adjacency list
representation was the only possible way to model a tree structure. But as
we can see in this book, that simply is not true.



194 CHAPTER 9: PROPRIETARY EXTENSIONS FOR TREES @\"

Perhaps the influence of decades of procedural languages is hard to
overcome or it might be all of those “Boxes and Arrows” charts we have seen
on the walls even before there were computers.

References

Date, CJ., 1986. Relational Database: Selected Writings. Addison Wesley. ISBN 978-0201141962.

Tillquist, J., Kuo, E-Y., 1989. An approach to the recursive retrieval problem in the relational
database. CACM 32 (2), 239-245.



Hierarchies in Data Modeling

l YPE HIERARCHIES ARE useful when trying to model entities for a database. How this

hierarchy is mapped into SQL DDL is another issue. Many years ago, at an
ANSI X3H2 Database Standards Committee meeting in Rapid City, South
Dakota, Bjarne Stroustrup gave a lecture on C++ and object-oriented (OO)
programming research at Bell Labs. When asked about using OO concepts
in databases, he replied that the people at Bell Labs had experimented
with it, tried several approaches, and came to the conclusion that while
OO was good for programming, it was a bad idea for data. The most recent
model of OO also seems to have gone back to a separation of data and
procedures.

However, programmers who come into SQL from OO languages and
models insist on trying to model class or type hierarchies in SQL. This is
not a new phenomenon. When SQL first came out, COBOL programmers
tried to force their mental model on SQL. Old files were converted directly
into tables, each field became a column, and each record became a row.
Then the application program could simply replace the file reads with a
cursor and the programmer never had to learn the relational model. The
performance stank, of course.

The usual attempts by OO programmers to force their model into
SQL involve building a metadata model in SQL, where tables use a
proprietary, nonrelational autoincrementing feature of some kind to

VTN A VTN /N VTN /N



196

CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

replace a global OID (object identifier) and have columns that contain
the names of attributes, their values, and something to establish class
hierarchy.

Vendors such as SQL Server and DB2 have had this ?feature? for years, in
slightly different versions.

The SQL:2011 draft standard now has an IDENTITY which is based on a
table level SEQUENCE generator column. As expected, it has to be an exact
numeric with scale zero only one such column is allowed per table. The basic
BNF is:

<IDENTITY column specification> ::=

GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY

AS <data type>

START WITH <signed numeric literal>

INCREMENT BY <signed numeric literal>

MAXVALUE <signed numeric literal> | NO MAXVALUE
MINVALUE <signed numeric literal> | NO MINVALUE
CYCLE | NO CYCLE

However, physically contiguous storage is only one way of building a
relational database and is not always the best one. One of the basic ideas of
a relational database is that the user is not supposed to know how things are
stored at all, much less write code that depends on the particular physical
representation in a particular release of a particular product. Because every
underlying file system was different and there was no standard, every vendor
came with a proprietary and nonportable scheme for autonumbering.

Let's look at the logical problems. First try to create a table with two
columns and try to make them both autonumbered. This makes no sense;
because the autonumber has to be at the row level within a table. Many
products, such as the Sybase/SQL Server family and DB2, have an optional
IDENTITY column on each table in the schema. Technically, it is a table
property and not a column at all. It is a count of the physical insertion
attempts (not necessarily successful) and has nothing to do with a logical
data model.

As proof that this is a nonrelational feature, create a table with one
column and declare it as autonumbered. Now try to insert, update, and delete
different numbers from it. If you cannot insert, update, and delete rows from
a table, then it is not a table by definition.



e Hierarchies in Data Modeling 197

It gets worse; create a simple table with one autonumbered column and a
few other columns. Insert a few rows into the table, thus letting the autonumber
column, which is not shown in the list, default to its automatic values.

INSERT INTO Foobar (a, b, c) VALUES ('al', 'bl', 'cl');
INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');
INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');

You will note that the autonumbering is sequential and in the order the
INSERT INTO statements were presented. If you delete a row, the gap in the
sequence is not filled in and the sequence continues from the highest number
that has ever been used in that column in that particular table.

Now use an INSERT INTO statement with a query expression in it,
like this:

INSERT INTO Foobar (a, b, c)
SELECT x, y, z
FROM Floob;

Because a query result is a table, and a table is a set which has no ordering,
what should the autonumbers be? The entire, whole completed set is
presented to Foobar all at once, not a row at a time. There are (n!) ways to
number (n) rows, so which one do you pick? The answer has been to use
whatever the physical order of the result set happened to be. But it is actually
worse than that. If the same query is executed again, but with new statistics
or after an index has been dropped or added, the new execution plan could
bring the result set back in a different physical order. Can you explain from
a logical modeling viewpoint why the same rows in the second query get
different autonumbers?

Using autonumbered as a PRIMARY KEY is a sign that there is no data
model, only an imitation of a sequential file system. Because this number
exists only as a result of the state of a particular piece of hardware at a
particular time in a particular release of a particular version of an SQL
product, how do you verify such a number in the reality you are modeling?

To quote from Dr. Codd: “... Database users may cause the system to
generate or delete a surrogate, but they have no control over its value, nor
is its value ever displayed to them ...” (Dr. Codd in ACM Transactions on
Database Systems, pp. 409—410 and Codd, E. (1979). Extending the database
relational model to capture more meaning. ACM Transactions on Database



198 CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

Systems, 4(4), pp. 397-434). This means that a surrogate should act like an
index, hash, or other access method; created by the user; managed by the
system; and never seen by a user. Dr. Codd also wrote the following:

There are three difficulties in employing user-controlled keys as permanent
surrogates for entities.

(1) The actual values of user-controlled keys are determined by users and
must therefore be subject to change by them (e.g., if two companies merge,
the two employee databases might be combined with the result that some or
all of the serial numbers might be changed).

(2) Two relations may have user-controlled keys defined on distinct
domains (e.g., one uses social security, while the other uses employee serial
numbers) and yet the entities denoted are the same.

(3) It may be necessary to carry information about an entity either before it
has been assigned a user-controlled key value or after it has ceased to have
one (e.g., an applicant for a job and a retiree).

These difficulties have the important consequence that an equi-join on
common key values may not yield the same result as a join on common
entities. A solution—proposed in part [4] and more fully in [14]—is
to introduce entity domains which contain system-assigned surrogates.
Database users may cause the system to generate or delete a surrogate,
but they have no control over its value, nor is its value ever displayed
to them.... (Codd in ACM Transactions on Database Systems, pp.
409-410; Codd, E. (1979). Extending the database relational model to
capture more meaning. ACM Transactions on Database Systems 4(4),
pp. 397-434).

Such schemas usually fail in a short time in actual use in an organization
and then become unmanageable. To make this more concrete, let's model
“vehicles” and the subclasses “automobiles,” “SUV,” and so forth in a table
like this:

CREATE TABLE VehicleClass
(id INTEGER NOT NULL AUTO_INCREMENT, -- not standard SQL
attribute VARCHAR(255) NOT NULL,
value VARCHAR(255) NOT NULL,
subclass VARCHAR(255) NOT NULL,
2



4@ Hierarchies in Data Modeling 199

You will see this design referred to as an EAV model (“entity-
attribute-value”) in some of the literature. All the columns tend to be
declared as the same long VARCHAR(n) or NVARCHAR(n) for a large
value of (n) so that they can support strings that contain any numeric
value, any temporal value, or any string that might hold the value of the
entity's attribute. This now gives you overhead and possible errors of
perpetual data type conversions. You need to be sure that everyone uses
the same formats for all data types. Just think of all the ways that people
enter date and time information and you have a rough idea how bad this
is going to be.

To find an entity, you must assemble it from the pieces in the class table.
Because some members of a class might not have exactly the same attributes
as other members, you will tend to use a lot of expensive self OUTER JOINs
in the queries.

Any typographical error becomes a new attribute. Consider adding a color
attribute to the data model for a class of objects. The American programmer
types in “color,” the British programmer types in “colour,” and the guy
who is in a hurry types in “cloor” instead. Nobody dares remove any of the
attributes, even if they can find them all, because those attributes might
belong to someone's object. A data dictionary and careful data modeling
can mitigate some of these data integrity problems, but performance will
continue to degrade as the database size increases.

Perhaps even worse, the names of such columns tend to become attempts
to pass along class hierarchy, physical storage, and usage information. The
“color” attribute might be put into a table with column names such as
“color_code_id,” “color_code_id_value,” or worse. Likewise, you will see
“i_color_code” if the code is an INTEGER. A data dictionary becomes almost
impossible. (For details on how to name a data element, consult the ISO-
11179.6 Metadata Standards naming conventions.)

The use of NVARCHAR(n) has all these problems and the possibility that
an entire Buddhist sutra in Chinese Unicode characters or a weird collation
can be inserted as the value of an attribute.

It is extremely difficult to put constraints on such tables. Just consider
the simple requirement that an employee be over 18 years of age. The
birth date and hire date of each employee has to be found, converted from
VARCHAR(n) to a temporal data type, math performed, and the candidate
rejected with a useful error code. You then need to decide what to do if one
or both of those attributes are missing.



200 CHAPTER 10: HIERARCHIES IN DATA MODELING @\\’

In short, you are using a high-level tool to try to build an OO database
from the ground up and it is an insane waste of time and resources. Does
this mean that the idea of classes and relationships have no place in an
SQL database? No, but they need to be implemented properly. There
are some OO extensions in the SQL-99 Standard, but they are still not
common in products and might not match the OO host language you are
using.

In class hierarchies, we are looking for sets of entities defined by
common attributes, and then within that set we look for subsets with unique
attributes. For example, personnel within a company all have job titles, tax
identification numbers, and salaries. Within the personnel set, the subset of
salesmen also have a commission, the subset of executives also have stock
options, and so forth.

The idea is to move from the general to the particular. This lets you handle
the sets of entities at the appropriate level, based on the shared common
attributes at that level.

10.1 Types of Hierarchies

A generalization hierarchy can be either overlapping or disjoint. In an
overlapping hierarchy, an entity can be a member of several subclasses.
For example, people at a university could be broken into three subclasses:
faculty, staff, and students. But there is nothing to prevent the same person
from belonging to two or more of these subclasses. A student could be on
staff as part of a co-op program, a professor can take a class as a student,
and so forth.

In a disjoint hierarchy, an entity can be in one and only one subclass.
For example, students at a university could be broken into three subclasses:
foreign, in state, and out of state.

For the OO-minded reader, disjoint hierarchies are rather like single-
inheritance type hierarchies, whereas overlapping hierarchies are like
multiple-inheritance type hierarchies.

10.2 Data Definition Language Constraints

This is a nice set of definitions, but how do we code it in SQL? Here the
hierarchy is not in one table, but it is in the relationships among several
tables.



e 10.2 Data Definition Language Constraints 201

10.2.1 Uniqueness Constraints

One of the basic tricks in SQL is representing a one-to-many relationship by
creating a third table that references the two tables involved by their primary
keys. This third table has quite a few popular names, such as “junction table”
or “join table,” but I know that it is a relationship. People tell you this and
then leave you on your own to figure out the rest.

For example, here are two entity tables and a relationship table (assume
single-parent households)

CREATE TABLE Mothers
(mother_name VARCHAR(30) NOT NULL PRIMARY KEY
L)

CREATE TABLE Children
(child_name VARCHAR(30) NOT NULL PRIMARY KEY,
L)

CREATE TABLE Families - wrong!
(mother_name VARCHAR(30) NOT NULL
REFERENCES Mothers (mother_name),
child_name VARCHAR(30) NOT NULL,
REFERENCES Children (child_name));

The “Families” does not have its own key, so I can have redundant
duplicate rows. This mistake is easy to make. What is worse is that too often
a new programmer will try to correct the error by adding a key column to
the table, often with some kind of proprietary autonumbering feature. This
actually makes the problem worse because redundant duplicates can hide
behind the autonumber and look like they are different instances of an entity.

There is a natural key in the form of PRIMARY KEY (mother_name, child_
name) that needs to be enforced.

However, the only restriction on the Families that these constraints give
us is that each (mother_name, child_name) pair appears only once. Every
mother can be paired with every child, which is not what we wanted. Now,

I want to make a rule that Mothers can have as many children as they want,
but the children have to stick to one mother, the biological rule.

The way I do this is to use a NOT NULL UNIQUE constraint on the
child_name column, which makes it a key. It's a simple key because it is only



202

CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

one column, but it is also a nested key because it appears as a subset of the
compound PRIMARY KEY.

“Families” is a proper table, without duplicated (mother_name, child_
name) pairs, but it also enforces the condition that a child has a unique
parent.

CREATE TABLE Families
(mother_name VARCHAR(30) NOT NULL
REFERENCES Mothers (mother_name),

child_name VARCHAR(30) NOT NULL UNIQUE, -- nested key
REFERENCES Children (child_name),
PRIMARY KEY (mother_name, child_name)); -- compound key

Note that (mother_name, child_name) is actually a super-key since child_
name is a key. You usually like to avoid such redundancies, but because SQL
can only reference columns in UNIQUE() and PRIMARY KEY() constraints
in the referencing table, let me leave the code this way to help explain the
purpose of the table.

Generalizing this schema is a bit complicated. Let's add a pet to the family
and say that a pet belongs to one and only one child, but kids can have
several pets. Another rule is that orphans cannot have pets. If orphans were
allowed to have pets, then we would model the mother—children relationship
with one table (Families) and model the child—pets relationship with a
second table. They would be distinct relationships, described by separate
relationship tables.

Clearly I need to start with a Pets table.

CREATE TABLE Pets
(pet_name VARCHAR(30) NOT NULL PRIMARY KEY,
.

My primary key is the full length of the type hierarchy and the lowest
subclass has to be unique.

CREATE TABLE Families -- wrong!
(mother_name VARCHAR(30) NOT NULL
REFERENCES Mothers (mother_name),
child_name VARCHAR(30) NOT NULL,
REFERENCES Children (child_name),
pet_name VARCHAR(30) NOT NULL



10.2 Data Definition Language Constraints 203

REFERENCES Pets(pet_name),
PRIMARY KEY (mother_name, child_name, pet_name));

However, this has a serious problem. Consider these data:

('Daddy', 'Billy', 'Rover")
('George', 'Billy', 'Rover')
('George', 'Billy', 'Fluffy")

We do not have a constraint to keep Billy from having two different
Mothers, which leads to duplicates of “Rover” in the table. Let's try adding
some UNIQUE constraints.

CREATE TABLE Families -- wrong but better!
(mother_name VARCHAR(30) NOT NULL
REFERENCES Mothers (mother_name),
child_name VARCHAR(30) NOT NULL,
REFERENCES Children(child_name),
pet_name VARCHAR(30) NOT NULL UNIQUE
REFERENCES Pets(pet_name),
PRIMARY KEY (mother_name, child_name, pet_name));

Well, you have solved only part of the problem. I can get around this set of
constraints by changing my table to:

('Daddy', 'Billy', 'Rover')
('George', 'Billy', 'Fluffy")

Billy still has two Mothers. We cannot use a UNIQUE(mother_name,
child _name) constraint because this would not allow the child to have more
than one pet. Change “George” to “Daddy” to see what I mean. Likewise
a UNIQUE (child_name, pet_name) constraint is redundant since the
pet_name is unique. We are hitting the limits of Standard SQL uniqueness
constraints.

One way around this is with a table level CHECK() constraint or a
CREATE ASSERTION statement, thus

CREATE ASSERTION Only_One_Mother_per_Kid
CHECK (NOT EXISTS
(SELECT *
FROM Family AS F1



204 CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

GROUP BY child_name
HAVING COUNT (mother_name)) > 1));

The logical question at this point is why not use this type of constraint to
enforce the “child and pet” rule, thus

CREATE ASSERTION Only_One_Kid_per_Pet
CHECK (NOT EXISTS
(SELECT *
FROM Family AS F1
GROUP BY pet_name
HAVING COUNT (child_name)) > 1));

These table level CHECK() constraints obviously generalize up the
hierarchy. However, because they have to be tested every time the table
changes, they can be quite expensive to execute, they do not improve access
to data, and they are not widely implemented yet. You would have to use a
TRIGGER in most SQL products.

10.2.2 Disjoint Hierarchies

A simple way to enforce a disjoint hierarchy is with a matrix design. The
relationship is stored in a table that connects each parent node to their
proper child.

CREATE TABLE StudentTypes
(student_id INTEGER NOT NULL PRIMARY KEY
REFERENCES Students (student_id)
ON UPDATE CASCADE
ON DELETE CASCADE,
in_state_flg INTEGER DEFAULT 0 NOT NULL
CHECK (in_state IN (0, 1),
out_of_state_flg INTEGER DEFAULT 0 NOT NULL
CHECK (out_of_state IN (0, 1),
foreign_f1lg INTEGER DEFAULT 0 NOT NULL
CHECK (foreign IN (0,1),
CHECK ((in_state_flg + out_of_state_flg + foreign_flg) = 1));

To get to the particular attributes that belong to each subclass, you will
need a table for that subclass. For example,



10.2 Data Definition Language Constraints 205

CREATE TABLE OutOfStateStudents
(student_id INTEGER NOT NULL PRIMARY KEY
REFERENCES StudentTypes (student_id)
ON UPDATE CASCADE
ON DELETE CASCADE,
state_code CHAR(2) NOT NULL, -- USPS standard codes
R I
CREATE TABLE ForeignStudents
(student_id INTEGER NOT NULL PRIMARY KEY
REFERENCES StudentTypes (student_id)
ON UPDATE CASCADE
ON DELETE CASCADE,
country_code CHAR(3) NOT NULL, -- ISO standard codes
2

CREATE TABLE InStateStudents
(student_id INTEGER NOT NULL PRIMARY KEY
REFERENCES StudentTypes (student_id)
ON UPDATE CASCADE
ON DELETE CASCADE,
county_code INTEGER NOT NULL, -- ANSI standard codes
high_school_district INTEGER NOT NULL,
)

A more complex set of relationships among the subclass can also be
enforced by making the CHECK() constraint more complex. The constant
in the StudentTypes table can be changed from 1 to (n), the equality can be
replaced with a less than, and so forth.

CHECK (subclass_1 + subclass_2 + .. + subclass_n) <= (k))

Another trick is to use powers of 2 so that each combination has a unique
total; you can also use elaborate CASE expressions with many business rules
embedded in them.

Another version of the same approach uses a two-part key in the subclass
tables where one column is a constant that tells you what the table contains.

Let's use abbreviation codes for “in state”, “out of state”, and “foreign”
students.



206 CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

CREATE TABLE StudentTypes
(student_id INTEGER NOT NULL PRIMARY KEY
REFERENCES Students (student_id)
ON UPDATE CASCADE
ON DELETE CASCADE,
residence_type CHAR(3) DEFAULT 'ins' NOT NULL
CHECK (residence:type IN ('ins', 'out', 'for'));

Note that if the key had been (student_id, residence:type), then a student
could appear in more than one subclass and we could add check constraints
to enforce various combinations of those subclasses.

To get to the particular attributes that belong to each subclass, you will
need a table for that subclass. For example,

CREATE TABLE OutOfStateStudents
(student_id INTEGER NOT NULL PRIMARY KEY
residence_type CHAR(3) DEFAULT 'out' NOT NULL
CHECK (residence_type = 'out'),
FOREIGN KEY (student_id, residence_type)
REFERENCES StudentTypes (student_id, residence_type)
ON UPDATE CASCADE
ON DELETE CASCADE,
state CHAR(2) NOT NULL, -- USPS standard codes

PRIMARY KEY (student_id, residence_type));

CREATE TABLE ForeignStudents
(student_id INTEGER NOT NULL
residence_type CHAR(3) NOT NULL
CHECK (residence_type 'for'),
FOREIGN KEY (student_id, residence_type)
REFERENCES StudentTypes (student_id, residence_type)
ON UPDATE CASCADE
ON DELETE CASCADE,
country_code CHAR(3) NOT NULL, -- ISO standard codes

.

PRIMARY KEY (student_id, residence_type));

CREATE TABLE InStateStudents
(student_id INTEGER NOT NULL



e 10.2 Data Definition Language Constraints 207

residence_type CHAR(3) NOT NULL
CHECK (residence_type 'ins'),
FOREIGN KEY (student_id, residence_type)
REFERENCES StudentTypes (student_id, residence_type)
ON UPDATE CASCADE
ON DELETE CASCADE,
county_code INTEGER NOT NULL, -- ANSI standard codes
high_school_district INTEGER NOT NULL,

.

PRIMARY KEY (student_id, residence_type));

The DRI actions will enforce the class membership rules for us, but at the
cost of redundant columns.

10.2.3 Representing 1:1, 1:m, and n:m Relationships

One of the basic tricks in SQL is representing a one-to-one or many-to-
many relationship with a table that references the two (or more) entity tables
involved by their primary keys. This third table has several popular names,
such as “junction table” or “join table,” but we know that it is a relationship.
This type of table needs to have constraints to assure that the relationships
work properly.

For example, given two tables,

CREATE TABLE Boys
(boy_name VARCHAR(30) NOT NULL PRIMARY KEY
L)

CREATE TABLE Girls
(girl_name VARCHAR(30) NOT NULL PRIMARY KEY,
L)

Yes, I know using names for a key is a bad practice, but it will make my
examples easier to read. There are many different relationships that we can
make between these two tables. If you do not believe me, just watch an old
Jerry Springer show sometime. The simplest relationship table looks like this:

CREATE TABLE Pairs
(boy_name VARCHAR(30) NOT NULL
REFERENCES Boys (boy_name)



208 CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

ON UPDATE CASCADE

ON DELETE CASCADE,
girl_name VARCHAR(30) NOT NULL,

REFERENCES Girls(girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE);

The Pairs table allows us to insert rows like this:

('Joe Celko', 'lLady GaGa')

('Joe Celko', 'Kate Middleton")
('"William Windsor', 'Kate Middleton')
('Joe Celko', 'lLady GaGa')

Oops! I am shown twice with “Lady GaGa” because the Pairs table does
not have its own key. This is an easy mistake to make, but fixing it so that
you enforce the proper rules is not obvious to a beginner.

CREATE TABLE Orgy

(boy_name VARCHAR(30) NOT NULL
REFERENCES Boys (boy_name)
ON DELETE CASCADE
ON UPDATE CASCADE,

girl_name VARCHAR(30) NOT NULL,
REFERENCES Girls(girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); -- compound key

The Orgy table gets rid of duplicated rows and makes this a proper table.
The primary key for the table is made up of two or more columns and is
called a compound key because of that fact.

('"Joe Celko', 'Lady GaGa')
("Joe Celko', 'Kate Middleton')
("William Windsor', 'Kate Middleton')

However, the only restriction on the pairs is that they appear only once.
Every boy can be paired with every girl, much to the dismay of the Moral



10.2 Data Definition Language Constraints 209

Majority. I think I want to make a rule that guys can have as many gals as
they want, but the gals have to stick to one guy.

The way I do this is to use a NOT NULL UNIQUE constraint on the
girl_name column, which makes it a key. It is a simple key because it is only
one column, but it is also a nested key because it appears as a subset of the
compound PRIMARY KEY.

CREATE TABLE Polygamy
(boy_name VARCHAR(30) NOT NULL
REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,
girl_name VARCHAR(30) NOT NULL UNIQUE, -- nested key
REFERENCES Girls (girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,
PRIMARY KEY (boy_name, girl_name)); -- compound key

The Polygamy is a proper table, without duplicated rows, but it
also enforces the condition that I get to play around with one or more
ladies, thus

('Joe Celko', 'Lady GaGa')
("Joe Celko', 'Kate Middleton')

The ladies might want to go the other way and keep company with a series
of men.

CREATE TABLE Polyandry

(boy_name VARCHAR(30) NOT NULL UNIQUE -- nested key
REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

girl_name VARCHAR(30) NOT NULL,
REFERENCES Girls (girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); -- compound key



210

CHAPTER 10: HIERARCHIES IN DATA MODELING @\"

The Polyandry table would permit these rows from our original set.

("Joe Celko', 'Kate Middleton')
("William Windsor', 'Kate Middleton')

The Moral Majority is pretty upset about this Hollywood scandal and
would love for us to stop running around and settle down in nice stable
marriages.

CREATE TABLE Marriage

(boy_name VARCHAR(30) NOT NULL UNIQUE -- nested key
REFERENCES Boys (boy_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

girl_name VARCHAR(30) NOT NULL UNIQUE -- nested key,

REFERENCES Girls (girl_name)
ON UPDATE CASCADE
ON DELETE CASCADE,

PRIMARY KEY (boy_name, girl_name)); -- compound key
The Marriage table allows us to insert these rows from the original set.

("Joe Celko', 'Lady GaGa')
("William Windsor', 'Kate Middleton')

Think about this table for a minute. The PRIMARY KEY is now redundant.
If each boy appears only once in the table and each girl appears only once in
the table, then each (boy_name, girl_name) pair can appear only once.

From a theoretical viewpoint, I could drop the compound key and make
either boy_name or girl_name the new primary key or I could just leave them
as candidate keys. However, SQL products and theory do not always match.
Many products make the assumption that the PRIMARY KEY is in some way
special in the data model and will be the way that they should access the
table most of the time.

In fairness, making special provision for the primary key is not a bad
assumption because the REFERENCES clause uses the PRIMARY KEY of the
referenced table as a default. In many SQL products, this can also give you a
covering index for the query optimizer.



Hierarchical Encoding Schemes

A HIERARCHY 1S A useful concept for classifying data as well as retrieving them. The
encoding schemes used to represent data are often hierarchical. Tree structures
are a natural way to model encoding schemes that have a natural hierarchy.
They organize data for searching and reporting along that natural hierarchy
and make it very easy for a human being to understand. But what do you use
for this natural organizational principle? Physical, temporal, or procedural
options often exist, but many hierarchical encoding schemes are more
circumstantial, traditional, and just plain arbitrary.

11.1 ZIP Codes

The most common example of a hierarchical encoding scheme is the ZIP
code, which partitions the United States geographically. Each digit, as
you read from left to right, further isolates the location of the address
first by postal region, then by state, then by city, and finally by the post
office that has to make the delivery. For example, given the ZIP code
30310, we know that the 30000 to 39999 range means the southeastern
United States. Within the southeastern codes, we know that the 30000
to 30399 range is the state of Georgia and that 30300 to 30399 is

VTN A VTN /N VTN /N



212

CHAPTER 11: HIERARCHICAL ENCODING SCHEMES @\"

metropolitan Atlanta. Finally, the whole code, 30310, identifies substation
‘Al in the west end section of the city. The ZIP code can be parsed by
reading it from left to right, reading first one digit, then two, and then

the last two digits.

Many Websites will look up cities in the United States by their ZIP
codes, compute the distance between two ZIP codes, and so forth (http://
zip.langenberg.com/). Each ZIP code has a preferred city, but a suburb
or sister town might fall under the same code if they are small enough
or are served by the same post office. Likewise, an address in a town
that goes over a state border might have a ZIP code that actually belongs
to the other state. In short, it is not a perfect locator for (city, state)
combinations, but it is close enough for making contacts by mail or
physical location.

In 1983, the postal service began using an expanded ZIP code called
Z1P+4, which consists of the original five-digit ZIP code plus a four-digit
add-on code. The four-digit add-on number identifies a geographic segment
within the five-digit delivery area, such as a city block, office building,
individual high-volume receiver of mail, or any other physical unit that
would aid sorting and delivery. ZIP+4 codes are not required for first class
mail, but must be used with certain classes of bulk mail to aid machine
presorting.

11.2 Dewey Decimal Classification

Melville Louis Kossuth Dewey (1851-12-10 to 1931-12-26) had two manias
in his life. One was spelling reform and the other was libraries.

As an aside, spelling reform was a hot topic in the United States at that
time, and most of the differences between British and American English were
established then. Dewey even used “reformed spelling” in several editions
of the Dewey Decimal Classification (DDC) system. He changed his name
to “Melvil Dui,” dropping his middle names, but finally changed the family
name back to the original spelling.

He invented the DDC when he was a 21-year-old student assistant in
the Amherst college library. What is hard for us to imagine is that before
the DDC, every library made up its own classification system without
recourse to any standard model. It sounds a lot like IT shops today,
doesn't it?



e 11.3 Strength and Weaknesses 213

He helped establish the American Library Association in 1876 while he
was the librarian of Columbia College (now Columbia University) in New
York City; he founded the first library school in 1887 and raised librarianship
to a profession.

The Dewey Decimal Classification system had its 23rd revision in 2011.
Copies in hardcopy and electronic format can be had from the Online
Computer Library Center, Inc. (OCLC) at

OCLC Headquarters
6565 Kilgour Place
Dublin, OH 43017-3395
USA

Website: www.oclc.org

The 500 number series covers “Natural Sciences & Mathematics”; within
that, the 510s cover “Mathematics”; finally, 512 deals with “Algebra &
Number Theory” in particular. The scheme could be carried further, with
decimal fractions for various kinds of algebra.

11.3 Strength and Weaknesses

Hierarchical encoding schemes are great for large data domains that

have a natural hierarchy. However, there can be problems in designing
these schemes. First of all, because the tree structure does not have to

be neatly balanced, some Shop_Categories may need more codes than
others and hence more breakdowns. Eastern and ancient religions are
shortchanged in the DDC, reflecting a prejudice toward Christian
writings. Asian religions were pushed into a very small set of codes.
Today, the Library of Congress has more books on Buddhism than on any
other religion on Earth.

Second, you might not have made the right choices as to where to place
certain values in the tree. For example, in the DDC, books on logic are encoded
as 160, in the philosophy section, and not under the 510s, mathematics.

In the 19th century, there was no mathematical logic. Today, there is no
philosophical logic. Dewey was simply following the conventions of his
day. Also, like today's programmers, he found that the system specifications
changed while he was working.



214

CHAPTER 11: HIERARCHICAL ENCODING SCHEMES

Dewey Decimal Table Search for “Logic”

The Hundreds Level (Overview)

000 Computer science, information, and general works
100 Philosophy and psychology

200 Religion

300 Social sciences

400 Language

500 Natural sciences and mathematics

600 Technology (applied sciences)

700 Arts and recreation

800 Literature and rhetoric

900 Geography and history

The Tens Level

160 Logic
The Units Level

161 Induction

162 Deduction

163 Not assigned or no longer used
164 Not assigned or no longer used
165 Fallacies and sources of error
166 Syllogisms

167 Hypotheses

168 Argument and persuasion

169 Analogy

Why this particular breakdown of human knowledge? Well, why not?
And it could be much worse. Before the DDC, every library invented its
own classifications. Some of the systems were highly personal. Let me give
you a quote, which was meant as a joke, but close to the truth. It is from
the essay “The Analytical Language of John Wilkins” by Jorge Luis Borges:

These ambiguities, redundancies, and deficiencies recall those attributed
by Dr. Franz Kuhn to a certain Chinese encyclopedia entitled Celestial
Emporium of Benevolent Knowledge. On those remote pages it is written
that animals are divided into (a) those that belong to the Emperot; (b)
embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids,

(P fabulous ones, (g) stray dogs, (h) those that are included in this



6 11.4 Shop Categories 215

classification, (i) those that tremble as if they were mad, (j) innumerable
ones, (k) those drawn with a very fine camel's hair brush, (1) others, (m)
those that have just broken a flower vase, (n) those that resemble flies from
a distance.

11.4 Shop Categories

In the retail industry, stores will often set up their own shop Shop_Categories
to classify their merchandise. For example, if you go to a larger book-
store you will see a separate “Juvenile” section, a section for “Romances,”
for “Westerns,” and so forth. Within these sections, you might find books
grouped alphabetically by authors or by further subclassifications.

These shop category tables are hard for beginning SQL programmers
to design because they have a hard time conceptually divorcing Shop_
Categories from the merchandise. This will be easier to see with an example,
which was taken from an actual posting on a Usenet Newsgroup.

First set up a simplified Inventory table that uses the UPC code to identify
the merchandise.

CREATE TABLE Inventory
(upc CHAR(13) NOT NULL PRIMARY KEY
CHECK (upc SIMILAR TO '[0-91{13}"),
shop_category CHAR(3) NOT NULL
REFERENCES Shop_Categories (shop_category),
onhand_qty INTEGER NOT NULL);

Each product has a category, but here is what the first attempt at a
Shop_Categories table:

CREATE TABLE Shop_Categories
(shop_category CHAR(3) NOT NULL PRIMARY KEY
CHECK (product_cat SIMILAR TO '[0-9][0-9][0-9]"),
parent_shop_category CHAR(3), -- null means root
shop_category_name VARCHAR(25) NOT NULL,
category_count INTEGER DEFAULT 1 NOT NULL
CHECK (category_count > 0));

As you can see, each category has a parent_shop_category, which
symbolizes the higher category in a hierarchy. The original poster wanted
to know if he could do “some kind of a loop” for each product_cat and tally



216

CHAPTER 11: HIERARCHICAL ENCODING SCHEMES @\"

the quantity on hand into the category_count, with the proper nesting of the
Shop_Categories beneath.

There are several design problems in this schema. A better approach is
shown later. First, check to see that the product_cat is within the boundaries
of the category classification system.

CREATE TABLE Inventory
(upc CHAR(13) NOT NULL PRIMARY KEY
CHECK (upc SIMILAR TO '[0-91{13}"),
product_name CHAR(20) DEFAULT 'unknown' NOT NULL ,
shop_category CHAR(3) NOT NULL
CHECK (shop_category BETWEEN '000' AND '999'),
onhand_qty INTEGER NOT NULL);

However, the real problem is that the Shop_Categories table is wrong.
Using the basic idea of the nested sets model we can set up ranges, such as
the Dewey Decimal Classification system, and add more constraints to the
table:

CREATE TABLE Shop_Categories
(shop_category_name CHAR(20) DEFAULT 'unknown' NOT NULL
PRIMARY KEY,
low_shop_category CHAR(3) NOT NULL UNIQUE,
high_shop_category CHAR(3) NOT NULL UNIQUE,
CHECK (Tow_shop_category <= high_shop_category));

INSERT INTO Shop_Categories

VALUES ('Printers (all)', 500, 599),
('Inkdet Printers', 510, 519),
('Laser Printers', 520, 529);

Instead of doing a loop and trying to keep the total in a column in the
Shop_Categories table, use this VIEW, which will always be right, always up
to date, and show all Shop_Categories.

CREATE VIEW CategoryReport (shop_category_name, total_qty)
AS SELECT Cl.shop_category_name, COALESCE (SUM(onhand_qty), 0)
FROM Shop_Categories AS C1
LEFT OUTER JOIN
Inventory AS P1



e 11.5 Statistical Tools for Decision Trees 217

ON Pl.product_cat
BETWEEN Cl.Tow_shop_category AND Cl.high_shop_category
GROUP BY Cl.shop_category_name;

If you wanted the Category hierarchy to end with an actual inventory
entity, you can enforce this with a declarative referential integrity constraint.
In the case of a rare book store with unique items, Shop_Categories would
probably not go down to individual titles, but a retail computer store would
like to go to the make and model of their equipment, with an entry such
as this:

INSERT INTO Shop_Categories
VALUES ('Fonebone X-7 Laser Printer', 521, 521);

You then use two REFERENCES clauses on the same column to make sure
that each inventory item is represented in the Shop_Categories table, thus

CREATE TABLE Inventory

(product_name VARCHAR(25) NOT NULL,

product_cat CHAR(3) NOT NULL UNIQUE
REFERENCES Shop_Categories(range_start)
ON UPDATE CASCADE
ON DELETE CASCADE,
REFERENCES Shop_Categories(range_end)
ON UPDATE CASCADE
ON DELETE CASCADE,

onhand_qty INTEGER NOT NULL);

A good rule of thumb is that you need to use a range of numbers that is
larger than what you need now. Data have a way of growing.

11.5 Statistical Tools for Decision Trees

You can buy statistical tools that look at raw data and cluster them by
attribute values into a hierarchy based on those data. These are generally
used for data mining, so I will only mention them in passing and give a
simple example.

Using a sample database from KnowledgeSeeker (Angoss Software), you
start with a series of records about the lifestyles of people and their blood
pressure—how much they drink, how much they smoke, how much they



218

CHAPTER 11: HIERARCHICAL ENCODING SCHEMES @\"

exercise, what foods they eat, and so forth. The KnowledgeSeeker engine
takes these data and produces a tree diagram and a set of rules for predicting
blood pressure (the dependent variable) from the other information
(independent variables).

At the first level of the tree, we find that age is the most important
factor, and we have three subgroups. Within the younger age group (32 to
50 years), you need to stop heavy drinking; within the middle-aged age
group (51 to 62 years), you need to stop smoking; and within the oldest
age group (63 to 72 years), if you have survived a lifetime of smoking and
drinking, you need to watch your diet now. Using this information and a
questionnaire, I can predict the likelihood of a new patient having high
blood pressure.

However, as my sample size changes or as I add more attributes (say
family medical history in the example), my tree might need to be recomputed
and decisions reevaluated based on more current and/or complete data
available to me.



Graphs in SQL

THE FOLLOWING SECTION stresses other useful kinds of generalized directed graphs.
Generalized directed graphs are classified into nonreconvergent and
reconvergent. In a reconvergent graph, multiple paths exist between at least
one pair of nodes. Reconvergent graphs are either cyclic or acyclic.

12.1 Adjacency List Model Graphs

The most common way to model a graph in SQL is with an adjacency list
model. Each edge of the graph is shown as a pair of nodes in which order-
ing matters and then any values associated with that edge are shown in
another column.

Here is the skeleton of the basic adjacency list model of a graph, with
nodes in a separate table. This is the most common method for modeling
graphs in SQL. Before we had recursive common table expressions
(CTEs), you had to use cursors and procedural code for the interesting
algorithms.

CREATE TABLE Nodes
(node_id INTEGER NOT NULL PRIMARY KEY,
<< other attributes of the node >>);

CREATE TABLE AdjacencylListGraph
(begin_node_id INTEGER NOT NULL

VTN A VTN /N VTN /N



220 CHAPTER 12: GRAPHS IN SQL @

REFERENCES Nodes (node_id),

end_node_id INTEGER NOT NULL
REFERENCES Nodes (node_id),

<< other attributes of the edge >>,
PRIMARY KEY (begin_node_id, end_node_id));

Technically, the begin_node_id can be the same as the end_node_id,
and we can have a node without any edges. They are easy to diagram (see
Figure 12.1).

“Other attributes of the edge” are usually called a weight. These
attributes model distance or travel time for maps, electrical resistance for
circuits, cost of a process in workflow networks, and so forth. They are
usually expressed as a numeric value on some scale and we want to do
computations with them.

Likewise, “other attributes of the node” are usually a name (say, “5-ohm
resistor” in a circuit diagram) or where the weight (travel distance in a road
map) is kept in the schema.

12.1.1 SQL and the Adjacency List Model

There are only two approaches with an adjacency list model of a graph.
You can use procedural code, which has two more options—a procedure
or a cursor—or you can use a recursive CTE, but it is not recommended.
Recursion is usually slow, and most SQL products choke at a certain depth,
usually some power of two.

Procedural approaches are usually direct translations of known algorithms
from your favorite procedural programming languages into SQL/PSM. You
replace the arrays with tables that mimic arrays.

®)

Figure 12.1



12.1 Adjacency List Model Graphs 221

While still procedural under the covers, you can use recursive CTEs
instead of loops and perhaps gain advantages from the query optimizer and
parallelism. The very general skeleton of such queries is

WITH RECURSIVE
SolutionGraph (source_node, dest_node, <wgt>, ..)
AS
(SELECT source_node, dest_node, <wgt>,
<other attributes>, <possible counts>
FROM AdjacencylListGraph
UNION ALL
SELECT Gl.source_node, G2.dest_node,
<computation on wgt>,
<computation on other attributes>,
<increment counts>
FROM SolutionGraph AS Gl1, Graph AS G2
WHERE G2.source_node = Gl.dest_node
AND G2.dest_node <> Gl.source_node
AND NOT EXISTS
(SELECT *
FROM Graph AS G3
WHERE G3.source_node = Gl.source_node
AND G3.dest_node = G2.dest_node
AND <special conditions>))

SELECT source_node, dest_node,
<aggregate computation on wgt>,
<aggregate computation on other attributes>,
<final counts>

FROM SolutionGraph

WHERE <special conditions>

GROUP BY source_node, dest_node

HAVING <special conditions>;

In English, you start with an initial set of nodes and see if they are what
you wanted; if not, then add more nodes recursively. This is not the only way
to build graph algorithms, but it is a common design pattern. The bad news
is that an iterative program can stop at the first right answer; recursive CTEs
(and SQL in general) tend to find all valid answers, no matter what the cost.



222 CHAPTER 12: GRAPHS IN SQL @

12.1.2 Paths with CTE

The following queries with CTEs are credited to Frédéric Brouard of France.
Sample data and the narrative are so delightful that I am using his material
directly.

Perhaps you never go to France. So you may be interested by the
fact that in Paris, there are beautiful girls, and in Toulouse a famous
dish called Cassoulet, and a small plane constructor call Airbus. So
the problem is to go by car from Paris to Toulouse using the speedway
network. I will just simplify for you (if you are lost and you do not know
the pronunciation to ask people your way to Toulouse, it is simple. Just
say “to loose”):

CREATE TABLE Journeys
(depart_town VARCHAR(32) NOT NULL,
arrival_town VARCHAR(32) NOT NULL,
CHECK (depart_town < > arrival_town),
PRIMARY KEY (depart_town, arrival_town),
jny_distance INTEGER NOT NULL
CHECK (jny_distance > 0));

INSERT INTO Journeys

VALUES ('Paris', 'Nantes', 385),
('Paris', 'Clermont-Ferrand', 420),
('Paris', 'Lyon', 470),
('Clermont-Ferrand', 'Montpellier', 335),
('Clermont-Ferrand', 'Toulouse', 375),
('Lyon', 'Montpellier', 305),
('Lyon', 'Marseille', 320),
("Montpellier', 'Toulouse', 240),
('Marseille', 'Nice', 205);

Now we will try a very simple query, giving all the journeys between
towns (Figure 12.2):

WITH Trips (arrival_town)
AS
(SELECT DISTINCT depart_town
FROM Journeys
UNION ALL



e 12.1 Adjacency List Model Graphs 223

Clermont Ferrand

375
Monpelller

Figure 12.2

SELECT arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT DISTINCT arrival_town FROM Trips;

arrival_town

Clermont-Ferrand
Lyon
Marseille
Montpellier
Paris
Nantes
Toulouse
Nice
This query is not very interesting because we do not know from which
town we came. We just know the towns where we can go and the fact that
we have probably different ways to go to the same place. Let us see if we can
have some more information.



224

CHAPTER 12: GRAPHS IN SQL @\"

First, we want to start from Paris:

WITH Trips (arrival_town)
AS
(SELECT DISTINCT depart_town
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town
FROM Journeys AS Arrivals
INNER Journeys AS Departures
ON Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town FROM Journeys;

arrival_town

Paris

Nantes
Clermont-Ferrand
Lyon

Montpellier
Marseille

Nice

Toulouse « goal
Montpellier
Toulouse < goal

Toulouse <« goal

We have probably three ways to go to Toulouse because we see three
occurrences of our goal in this list. Can we filter the destination? Sure!

WITH Journeys (arrival_town)
AS
(SELECT DISTINCT depart_town
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town



e 12.1 Adjacency List Model Graphs 225

FROM Journeys
WHERE arrival_town = 'Toulouse"';

arrival_town

Toulouse
Toulouse
Toulouse

We can refine this query by calculating the number of steps involved in
the different ways:

WITH Trips (arrival_town, steps)
AS
(SELECT DISTINCT depart_town, 0
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town, Departures.steps + 1
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps

FROM Trips
WHERE arrival_town = 'Toulouse';
arrival_town steps
Toulouse 3
Toulouse 2
Toulouse 3

The cherry on the cake will be to know the distances of the different ways:

WITH Trips (arrival_town, steps, total_distance)
AS
(SELECT DISTINCT depart_town, 0, O
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town, Departures.steps + 1,
Departures.total_distance + Arrivals.jny_distance
FROM Journeys AS Arrivals,
Journeys AS Departures



226

CHAPTER 12: GRAPHS IN SQL

WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps, total_distance

FROM Trips

WHERE arrival_town = 'Toulouse';
arrival_town steps total_distance
Toulouse 3 1015
Toulouse 2 795
Toulouse 3 995

The girl in the cake will want to know the different towns we visit by

those different ways:

WITH Trips (arrival_town, steps, total_distance, way)
AS
(SELECT DISTINCT depart_town, 0, O,
CAST('Paris' AS VARCHAR(MAX))
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town, Departures.steps + 1,
Departures.total_distance + Arrivals.jny_distance,
Departures.way ||, °

|[Arrivals.arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town, steps, total_distance, way

FROM Trips

WHERE arrival_town = 'Toulouse';
arrival_town steps total_distance way
Toulouse 3 1015 Paris, Lyon, Montpellier, Toulouse
Toulouse 2 795 Paris, Clermont-Ferrand, Toulouse
Toulouse 3 995 Paris, Clermont-Ferrand,

Montpellier, Toulouse

And now, ladies and gentleman, the recursive query is proud to present
to you how to solve a very complex problem, called the traveling salesman
problem. This is one of the operational research problems for which Edsger



12.1 Adjacency List Model Graphs 227

Wybe Dijkstra found the first efficient algorithm and received the Turing
Award in 1972.

WITH Trips (arrival_town, steps, total_distance, way)
AS
(SELECT DISTINCT depart_town, 0, 0, CAST('Paris' AS VARCHAR(MAX))
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town, Departures.steps + 1,
Departures.total_distance + Arrivals.jny_distance,
Departures.way ||’, ‘||Arrivals.arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town),

ShortestDistance (total_distance)
AS
(SELECT MIN(total_distance)
FROM Journeys
WHERE arrival_town = 'Toulouse')
SELECT arrival_town, steps, total_distance, way
FROM Trips AS T
ShortestDistance AS S
WHERE T.total_distance = S.total_distance
AND arrival_town = 'Toulouse';

12.1.3 Nonacyclic Graphs

In fact, one thing that is limiting the process in our network of speedways is
that we have made routes with a single sense. I mean, we can go from Paris
to Lyon, but we are not allowed to go from Lyon to Paris. For that, we need
to add the reverse ways in the table, such as:

depart_town arrival_town jny_distance

Lyon Paris 470
This can be done by a very simple query:
INSERT INTO Journeys

SELECT arrival_town, depart_town, jny_distance
FROM Journeys;



228

CHAPTER 12: GRAPHS IN SQL @\"

The only problem is that previous queries will not work properly:

WITH Journeys (arrival_town)
AS
(SELECT DISTINCT depart_town
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town)
SELECT arrival_town
FROM Journeys;

This query will give you an error message about the maximum depth of
recursion being violated. What happened? Simply, you are trying all ways,
including cycling ways such as Paris, Lyon, Paris, Lyon, Paris—ad infinitum.
Is there a way to avoid cycling routes? Maybe. In one of our previous queries,
we have a column that gives the complete list of stepped towns. Why not use
it to avoid cycling? The condition will be: do not pass through a town that is
already in the way. This can be written as

WITH Trips (arrival_town, steps, total_distance, way)
AS
(SELECT DISTINCT depart_town, 0, 0, CAST('Paris' AS VARCHAR(255))
FROM Journeys
WHERE depart_town = 'Paris’
UNION ALL
SELECT arrival_town, Departures.steps + 1,
Departures.total_distance + Arrivals.jny_distance,
Departures.way ||', '||Arrivals.arrival_town
FROM Journeys AS Arrivals,
Journeys AS Departures
WHERE Departures.arrival_town = Arrivals.depart_town

AND Departures.way NOT LIKE '%' || Arrivals.arrival_town || '%")
SELECT arrival_town, steps, total_distance, way
FROM Trips

WHERE arrival_town = 'Toulouse"';



12.1 Adjacency List Model Graphs 229

arrival_town  steps total_distance ~ way

Toulouse 3 1015 Paris, Lyon, Montpellier, Toulouse

Toulouse 4 1485 Paris, Lyon, Montpellier, Clermont-Ferrand,
Toulouse

Toulouse 2 795 Paris, Clermont-Ferrand, Toulouse

Toulouse 3 995 Paris, Clermont-Ferrand, Montpellier, Toulouse

As you see, a new route occurs. The worst in distance, but perhaps the
most beautiful!

A CTE can simplify the expression of complex queries. Recursive queries
must be employed where recursion is needed. Trust your SQL product to
terminate a bad query. There is usually an option to set the depth of recursion
either in the SQL engine or as an OPTION clause at the end of the CTE
clause.

12.1.4 Adjacency Matrix Model

An adjacency matrix is a square array whose rows are out-node and col-
umns are in-nodes of a graph. A one in a cell means that there is edge
between the two nodes. Using the following graph, we would have an
array like this:

A B C D E F G H
A 1 1 1 0 0 0 0 0
B 0 1 0 1 0 0 0 0
C 0 0 1 1 0 0 1 0
D 0 0 0 1 1 1 0 0
E 0 0 0 0 1 0 0 1
F 0 0 0 0 0 1 0 0
G 0 0 0 0 0 0 1 1
H 0 0 0 0 0 0 0 1

Many graph algorithms are based on the adjacency matrix model and
can be translated into SQL. Go to the appropriate chapter for the details of
modeling matrices in SQL and, in particular, look at the section on matrix
multiplication in SQL. For example, Dijkstra's algorithm for shortest



230

CHAPTER 12: GRAPHS IN SQL @\"

distances between each pair of nodes in a graph looks like this in this array
pseudo-code.

FOR k =1 TO n

DO FOR i 1 70n

DO FOR j 1 T0On

IF ali,k] + alk,j] < ali,J]
THEN a[i,j] = ali,k] + alk,j]
END IF;

END FOR;

END FOR;

END FOR;

You need to be warned that for a graph of (n) nodes, the table will be of
size (n"2). The algorithms often run in (n"3) time. The advantage it has is
that once you have completed a table, it can be used for lookups rather than
recomputing distances over and over.

Running the query against the data set ...

INSERT INTO AdjacencylistGraph
VALUES ('a', 'd', 1),

('d', 'e', 1),
('e', 'c', 1),
("c', 'b', 1),
('b', 'd', 1),
('a', 'e', 5);

Gives the result SET ...

source_node dest_node min_wgt

4
3
1
2
3
1
2
1
2

o 60 T T o v o0 o o
o o o o 0o o0 o O o



12.2 Split Node Nested Sets Models for Graphs 231

source_node  dest_node min_wgt

® ®© O O o QO O
o 0o T o o T o

3
3
2
1
2
1
3

Doing the Dijkstra algorithm would probably execute significantly faster
in a language with arrays than in SQL.

12.2 Split Node Nested Sets Models for Graphs

It is also possible to load an acyclic-directed graph into a nested sets model
by splitting the nodes. It is a specialized trick for a certain class of graphs,
not a general method such as adjacency list model graphs. Here is a skeleton
table with minimal constrains for a nested sets model of a tree.

CREATE TABLE NestedSetsGraph
(node_id INTEGER NOT NULL REFERENCES Nodes (node_id),
1ft INTEGER NOT NULL CHECK (1ft >= 1) PRIMARY KEY,
rgt INTEGER NOT NULL UNIQUE,

CHECK (rgt > 1ft),

UNIQUE (node_id, 1ft));

You split nodes by starting at sink nodes and moving up the tree. When
you come to a node of (indegree > 1), replace it with that many copies of the
node under each of its superiors. Continue to do this until you get to the root
(Figure 12.3). The acyclic graph will become a tree, but with duplicated node
values. There are advantages to this model when you want to avoid recursion.
You are trading speed for storage space, however.

12.2.1 All Nodes in the Graph

Nodes in the Nodes table might not all be used in the graph, and those that
are used can be repeated. It is safer to find nodes in the graph with a simple
view instead.



232 CHAPTER 12: GRAPHS IN SQL @

:

CREATE VIEW GraphNodes (node_id)
AS
SELECT DISTINCT node_id FROM NestedSetsGraph;

O

Figure 12.3

This is worth its own subsection because of double counting problems in
this model.

12.2.2 Path End Points

A path through a graph is a traversal of consecutive nodes along a sequence
of edges. Clearly, the node at the end of one edge in the sequence must also
be the node at the beginning of the next edge in the sequence. The length of
the path is the number of edges that are traversed along the path.

Path end points are the first and last nodes of each path in the graph. For a
path of length zero, path end points are the same node. Yes, it is legal to have
an edge that loops back around to the same node. Also, it is legal to have a
node without any edges, but you cannot model that with an adjacency list;
thank goodness nobody usually cares about those isolated nodes.



12.2 Split Node Nested Sets Models for Graphs 233

If there is more than one path between two nodes, then each path will
be distinguished by its own distinct set of number pairs for the nested set
representation.

If there is only one path (p) between two nodes but this path is a subpath
of more than one distinct path, then the end points of (p) will have number
pairs for each of these greater paths. As a canonical form, least numbered
pairs are returned for these end points.

CREATE VIEW PathEndpoints
(begin_node_id, end_node_id,

begin_1ft, begin_rgt,

end_1ft, end_rgt)

AS

SELECT Gl.node_id, G2.node_id,

Gl.1ft, Gl.rgt, G2.1ft, G2.rgt

FROM (SELECT node_id, MIN(1ft), MIN(rgt)
FROM NestedSetsGraph

GROUP BY node_id) AS Gl (node_id, 1ft, rgt)
INNER JOIN

NestedSetsGraph AS G2

ON G2.1ft >= Gl1.1ft

AND G2.1ft < Gl.rgt;

12.2.3 Reachable Nodes

If a node is reachable from another node, then a path exists from the one
node to the other. It is assumed that every node is reachable from itself.

CREATE VIEW ReachableNodes (begin_node_id, end_node_id)
AS

SELECT DISTINCT begin_node_id, end_node_id

FROM PathEndpoints;

12.2.4 Edges

Edges are pairs of adjacent connected nodes in a graph. If edge E is repre-
sented by the pair of nodes (n0, nl), then (nl) is reachable from (n0) in a
single traversal.



234

CHAPTER 12: GRAPHS IN SQL G\"

CREATE VIEW Edges (begin_node_id, end_node_id)
AS

SELECT begin_node_id, end_node_id
FROM PathEndpoints AS PE

WHERE begin_node_id < > end_node_id
AND NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G

WHERE G.1ft > PE.begin_1ft

AND G.1ft < PE.end_1ft

AND G.rgt > PE.end_rgt);

12.2.5 Indegree and Outdegree

The indegree of a node (n) is the number of distinct edges ending at (n).
Nodes that have zero indegree are not returned. Indegree of all nodes in the
graph:

CREATE VIEW Indegree (node_id, node_indegree)
AS

SELECT N.node_id, COUNT(E.begin_node_id)

FROM GraphNodes AS N

LEFT OUTER JOIN

Edges AS E

ON N.node_id = E.end_node_id

GROUP BY N.node_id;

Outdegree of a node (n) is the number of distinct edges beginning at (n).
Nodes that have zero outdegree are not returned. Outdegree of all nodes in
the graph:

CREATE VIEW Outdegree (node_id, node_outdegree)
AS

SELECT N.node_id, COUNT(E.end_node_id)

FROM GraphNodes AS N

LEFT OUTER JOIN

Edges AS E

ON N.node_id = E.begin_node_id

GROUP BY N.node_id;



12.2 Split Node Nested Sets Models for Graphs 235

12.2.6 Source, Sink, Isolated, and Internal Nodes

A source node of a graph has a positive outdegree but zero indegree, that is,
it has edges leading from, but not to, the node. This assumes that there are
no isolated nodes (nodes belonging to no edges).

CREATE VIEW SourceNodes (node_id, 1ft, rgt)
AS

SELECT node_id, 1ft, rgt

FROM NestedSetsGraph AS G1

WHERE NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G

WHERE G1.1ft > G2.1ft

AND G1.1ft < G2.rgt);

Likewise, a sink node of a graph has positive indegree but zero outdegree.
It has edges leading to, but not from, the node. This assumes that there are no
isolated nodes.

CREATE VIEW SinkNodes (node_id)
AS

SELECT node_id

FROM NestedSetsGraph AS G1
WHERE 1ft = rgt - 1

AND NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G2
WHERE Gl.node_id = G2.node_id
AND G2.1ft < G1.1ft);

An isolated node belongs to no edges, that is, it has zero indegree and zero
outdegree, but we have agreed to leave them out of the model.

CREATE VIEW IsolatedNodes (node_id, 1ft, rgt)
AS

SELECT node_id, 1ft, rgt

FROM NestedSetsGraph AS Gl

WHERE 1ft = rgt - 1

AND NOT EXISTS



236

CHAPTER 12: GRAPHS IN SQL G\"

(SELECT *

FROM NestedSetsGraph AS G2
WHERE G1.1ft > G2.1ft

AND G1.1ft < G2.rgt);

An internal node of a graph has an (indegree > 0) and an (outdegree > 0),
that is, it acts as both a source and a sink.

CREATE VIEW InternalNodes (node_id)
AS

SELECT node_id

FROM (SELECT node_id, MIN(1ft) AS 1ft, MIN(rgt) AS rgt
FROM NestedSetsGraph

WHERE Tft < rgt - 1

GROUP BY node_id) AS Gl

WHERE EXISTS

(SELECT *

FROM NestedSetsGraph AS G2

WHERE G1.1ft > G2.1ft

AND G1.1ft < G2.rgt)

12.2.7 Converting Acyclic Graphs to Nested Sets

Let's start with a simple graph in an adjacency list model.

INSERT INTO Nodes (node_id)
VALUES ('a'), ('b"), ('c"), ('d"),
('e|)’ (lf'), ('g')’ ('h‘);

INSERT INTO AdjacencylListGraph (begin_node_id, end_node_id)
VALUES ('a', 'b"), ('a', 'c"), ('b", 'd"), ('c", 'd"),
(‘c', "g"), ('d", 'e"), ('d", 'f"), ('e', 'h"),

('g', "h");

We can convert this adjacency list model to the nested sets model with a
simple stack algorithm. You might want to try to rewrite this with a recursive
CTE.

-- Stack to keep track of nodes being traversed in depth-first fashion
CREATE TABLE NodeStack
(node_id INTEGER NOT NULL PRIMARY KEY



12.2 Split Node Nested Sets Models for Graphs

237

REFERENCES Nodes (node_id),

distance INTEGER NOT NULL CHECK (distance >= 0),
1ft INTEGER CHECK (1ft >= 1),

rgt INTEGER,

CHECK (rgt > 1ft));

CREATE PROCEDURE AdjacencylListsToNestedSetsGraph ()
LANGUAGE SQL

READS SQL DATA

BEGIN

DECLARE path_length INTEGER;

DECLARE current_number INTEGER;

SET path_length = 0;

SET current_number = 0;

-- Clear the table that will hold the result

DELETE FROM NestedSetsGraph;

-- Initialize stack by inserting all source nodes of graph
INSERT INTO NodeStack (node_id, distance)

SELECT DISTINCT Gl.begin_node_id, path_length

FROM AdjacencylListGraph AS G1

WHERE NOT EXISTS

(SELECT *

FROM AdjacencylListGraph AS G2

WHERE G2.end_node_id = Gl.begin_node_id);

WHILE EXISTS (SELECT * FROM NodeStack)

DO

SET current_number = current_number + 1;
IF EXISTS (SELECT * FROM NodeStack WHERE distance = path_length)
THEN UPDATE NodeStack

SET 1ft = current_number

WHERE distance = path_length

AND NOT EXISTS

(SELECT *

FROM NodeStack AS S2

WHERE distance = path_length

AND S2.node_id < NodeStack.node_id);
INSERT INTO NodeStack (node_id, distance)
SELECT G.end_node_id, (S.distance + 1)



238

CHAPTER 12: GRAPHS IN SQL

FROM NodeStack AS S,
AdjacencylListGraph AS G

WHERE S.distance = path_length

AND S.1ft IS NOT NULL

AND G.begin_node_id = S.node_id;

SET path_length = (path_length + 1);
ELSE SET path_length = (path_length - 1);
UPDATE NodeStack

SET rgt = current_number

WHERE T1ft IS NOT NULL

AND distance = path_length;

INSERT INTO NestedSetsGraph (node_id, 1ft,
SELECT node_id, 1ft, rgt

FROM NodeStack

WHERE 1ft IS NOT NULL

AND distance = path_length;

DELETE FROM NodeStack

WHERE 1ft IS NOT NULL

AND distance = path_length;

END IF;

END WHILE;

END;

rgt)



Petri Nets

PETRI NETS ARE abstract graphic models invented in 1962 by Carl Adam Petri for his

doctoral thesis. Originally, he used them for chemical processes, but they
became popular with computer scientists for modeling concurrency in
computer hardware, such as the CDC 6600.

Petri nets are minimal and very general, but also very rich in
mathematical properties. Do not worry, I will not get into the math—I
write for working programmers. The major use of Petri nets has been
the modeling of systems of events in which it is possible for some events
to occur concurrently, but there are constraints on the concurrence,
precedence, or frequency of these occurrences. They are like a cross
between a state transition diagram (static model) and a board game
(dynamic model). If you want to play with them, get some scratch paper
and a handful of small chips or go to http://www.informatik.uni-hamburg
.de/TGI/PetriNets/introductions/aalst/ where you will find several simple
interactive programs and you can watch the Petri nets for some basic
problems' working.

The diagrams have four parts.

1. Circles called places. Places do not move and they hold tokens.

2. Bars called transitions. Transitions do not move and they fire (I will
explain that shortly).

VTN A VTN /N VTN /N



240 CHAPTER 13: PETRI NETS @

3.  Directed arcs that run out of a bar into a place (outputs of the
transition) or out of a place and into a bar (inputs of the transition).

4.  Tokens represented as little black dots. These guys do move, like
game pieces. They move along the arcs from place to place, as
allowed by the transitions.

There are fancy versions of Petri nets with colored tokens, multiple tokens
in a place, and rules about how transitions work. This chapter is concerned
with the simplest set of rules. A place can hold only one token, tokens are all
alike, and a transition can fire only if all of its input places have a token. Petri
nets with these rules are called safe nets.

When a transition fires, it looks at all of its input places. If and only if
they all have a token, then the input places are emptied and all the output
places get a token if they do not already have one. There is an initial marking
of tokens in the diagram, which may or may not be important. The order of
transition firing may or may not be important. The diagram may or may not
arrive at a marking from which it cannot change and it locks. There are ways
to test for these properties and do formal proofs.

Figure 13.1 is a simple diagram that locks. Places P1 and P2 start with
tokens, which enable transition T1. T1 fires and sends a token to P3. The

P1 P2 P1 P2
T T
T2 T2
I I
P3 P3
P1 P2
1
T2
P3

Figure 13.1



e 13.1 PETRI NETS 241

token in P2 enables transition T2. T2 fires and P2 gets a token, but P1 stays
empty and no more moves are possible in this game.

Figure 13.2 shows two transitions in conflict, which means that the order
of transition firings matters. If T1 fires, then P5 gets a token, but not P6. If T2
fires, then P6 gets a token, be changed to but not P5.

e
S O

Transition rules can be changed to allow parallelism, which would mean
that both T1 and T2 fire at the same time so that both P5 and P6 get tokens at
the same time. A better approach, however, is to design the Petri net to avoid
conflicts so that transitions can be fired in any order and still produce the
same final marking

Figure 13.3 is a traffic light that recycles in a fixed pattern. Place P1 is a
red light, P2 is green, and P3 is amber.

Figure 13.2

P1 Red

T1 T2 T3

X

P2 Green P3 Amber

Figure 13.3

Petri nets can be nested inside each other to build complex systems from
smaller units. Look at the traffic light example. In the real world, traffic lights
come in configurations of several lights at an intersection.



242

CHAPTER 13: PETRI NETS @\"

13.1 Data Definition Language for Petri Nets

Tables modeling Petri nets are simple. Because the tokens are entities, they
get their own table. The graph is a relationship, so it is in a second table.
Here is the initial code.

CREATE TABLE Petri_Places
(place_name CHAR(5)NOT NULL PRIMARY KEY,
place_token SMALLINT DEFAULT 0 NOT NULL,

CHECK (place_token IN (0, 1))

CREATE TABLE Petri_Transitions

(transition_name CHAR(3) NOT NULL,

input_place_name CHAR(5) NOT NULL

REFERENCES Petri_Places (place_name),

output_place_name CHAR(5) NOT NULL

REFERENCES Petri_Places (place_name),

PRIMARY KEY (transition_name, input_place_name, output_place_name));

Looking at the simple traffic 1ight example, we can load the tables, thus:

INSERT INTO Petri_Places (place_name, place_token)
VALUES ('Red', 0), ('Green', 0), ('Amber', 1);

INSERT INTO Petri_Transitions
VALUES ('T1', 'Red', 'Green'),
('T2', 'Green', 'Amber'),
("T3", "Amber', 'Red');

I recommend setting up two very short procedures to clear out the places
and one to restore the initial marking. They are very simple. The initialization
procedure requires a table with the names of the marked places as shown
here. But you could use a row constructor expression in the update statement
if you want to make it completely self-contained.

CREATE PROCEDURE FireTransition(@in_transition_name CHAR(5))
LANGUAGE SQL
DETERMINISTIC
BEGIN
UPDATE Petri_Places
SET place_token
= CASE
WHEN place_name
IN (SELECT input_place_name



6 13.1 PETRI NETS 243

FROM Petri_Transitions
WHERE transition_name = @in_transition_name)
THEN 0
WHEN place_name
IN (SELECT output_place_name
FROM Petri_Transitions
WHERE transition_name = @in_transition_name)
THEN 1
ELSE place_token END
WHERE 1 = ALL(SELECT P.place_token)
FROM Petri_Places AS P
WHERE P.pTace_name
IN (SELECT T.input_place_name
ROM Petri_Transitions AS T
WHERE T.transition_name = @in_transition_name))
--display new state of places
--SELECT place_name, place_token FROM Petri_Places;
END.

For fun, mark every place and then start firing transitions. In T-SQL, you
can get an error message that the procedure has been executed the maximum
number of times because of a looping effect in this simple example.

Let's complicate the example a bit. We have a pair of traffic lights hooked
together with the rule that they both cannot be green at the same time. Make two
copies of the basic traffic light shown in figure 13.3 and put them into a single net,
as shown in figure 13.4. The {G1, A1, R1} is one traffic light, and {G1, A2, R2} is
the other light. The XX state synchronized them. The SQL for this diagram is

INSERT INTO Petri_Places (place_name, place_token)
VALUES ('R1", 1), ('A1', 0), ('Gl', 0),

('R2', 1), ('A2', 0), ('G2', 0),

("XX', 1)

INSERT INTO Petri_Transitions (transition_name, input_place_name,
output_place_name)

VALUES

('T1A', 'R1', 'G1l"),

('T1A", "XX', 'Gl"),

('T1B', 'GLl', 'Al"),

('TiC', 'Al', 'XX'"),

('T1C', 'Al', 'R1"),



244 CHAPTER 13: PETRI NETS @

('T2A", 'R2", 'G2"),
("T2A", "XX', 'G2"),
('T2B", 'G2', 'A2'),
('T2C", 'A2', "XX'"),
('T12C", 'A2', 'R2');

T2A

T1A

Figure 13.4

References

Celko, J., 1982. Software Practice and Experience 12 (10), 889-895.
Celko, J., 1984. Abacus 2 (1), 40-45.

Peterson, J.L., 1977. Petri nets. ACM Comput. Surv. 9 (3), 223-252.
doi:10.1145/356698.356702.

Peterson, J.L., 1981. Petri Net Theory and the Modeling of Systems. Prentice Hall. ISBN
0-13-661983-5.

Petri, C.A., 1962. Kommunikation mit Automaten. Ph.D. Thesis. University of Bonn.



State Transition Graphs

DATA VALIDATION IN a database is much more complex than seeing if a string parameter
really is an integer. A commercial world is full of complex rules for sequences
of procedures, of fixed or variable life spans, warranties, commercial offers,
and bids. All this requires considerable subtlety to prevent bad data getting
from in and, if they do, locating and fixing the problem.

Ideally we want to use a declarative data definition language (DDL) to
enforce the business rules about this state changes. The tool used by data
architects is a state transition diagram. There is an initial state, flow lines
that show what are the next legal states, and one or more termination
states. Figure 14.1 is a simple state change diagram of possible marital
states.

This state transition diagram was deliberately simplified, but it is good
enough to explain principles. To keep the discussion as simple as possible,
my table is for only one person's marital status over his life. Here is a
skeleton DDL with the needed FOREIGN KEY reference to valid state
changes and the date that the current state started.

CREATE TABLE MylLife

(previous_state VARCHAR(10) NOT NULL,
current_state VARCHAR(10) NOT NULL,
CONSTRAINT Improper_State_Change
FOREIGN KEY (previous_state, current_state)

VTN A VTN /N VTN /N



246 CHAPTER 14: STATE TRANSITION GRAPHS @\"

-

Divorced

Figure 14.1

REFERENCES StateChanges (previous_state, current_state),
start_date DATE NOT NULL PRIMARY KEY, --DateTime for SQL Server 2005
etc.);

What is not shown on it are which nodes are initial states (in this case
“Born”) and which are terminal or final states (in this case “Dead,” a very
terminal state of being). A terminal node can be the current state of a middle
node, but not a prior state. Likewise, an initial node can be the prior state of a
middle node, but not the current state. I did not write any CHECK() constraints
for those conditions. It is easy enough to write a quick query with an EXISTS()
predicate to do this, which I will leave as an exercise for the reader. Let's load the
diagram into an auxiliary table with some more constraints.

CREATE TABLE StateChanges
(previous_state VARCHAR(10) NOT NULL,
current_state VARCHAR(10) NOT NULL,
PRIMARY KEY (previous_state, current_state),
state_type CHAR(1) DEFAULT 'M' NOT NULL
CHECK (state_type IN ('I', 'T', 'M")), /*initial, terminal, middle*/
CONSTRAINT Node_type_violations
CHECK (CASE WHEN state_type IN ('I', 'T")
AND previous_state = current_state
THEN 'T"
WHEN state_type = 'M’'
AND previous_state < > current_state
THEN 'T'" ELSE 'F" END = 'T")
)s

INSERT INTO StateChanges
VALUES ('Born', 'Born', 'I'), -- initial state



State Transition Graphs 247

('Born', 'Married', 'M"),
('Born', 'Dead', 'M"),
('Married', 'Divorced', 'M'),
('Married', 'Dead', 'M"),
('Divorced', 'Married', 'M'),
('Divorced', 'Dead', 'M'),

('Dead', 'Dead', 'T'); -- terminal state

An aspect of this problem that I have not considered is the time dimension.
We want to see a temporal path from an initial state to a terminal state.

State changes do not happen all at once, but are spread over time. An acorn
becomes an oak tree before it becomes lumber and finally my chest of drawers.
The acorn does not jump immediately to being a chest of drawers. Some of the
changes are controlled by time. I cannot get married immediately after being
born, but have to wait to be of legal age. A business offer can expire in a set
number of days. You can fill in any number of examples of your own.

For a production system, you would need a more complete set of temporal
columns to guarantee that we have no gaps in the history, but this will do for
now. We now need a stored procedure to add data to the MyLife table. Here is
one solution that is broken deliberately into clear steps for clarity.

CREATE PROCEDURE Change_State
(IN in_change_date DATE,
IN in_change_state VARCHAR(10))
LANGUAGE SsQL
DETERMINISTIC
BEGIN
DECLARE most_recent_state VARCHAR(10);
SET most_recent_state
= (SELECT current_state
FROM MyLife
WHERE start_date
= (SELECT MAX(start_date) FROM MyLife));
/* insert initial state if empty */
IF NOT EXISTS (SELECT * FROM MyLife)
AND in_change_state
IN (SELECT previous_state
FROM StateChanges
WHERE state_type = 'I")



248

CHAPTER 14: STATE TRANSITION GRAPHS @\"

THEN
INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES (in_change_state, in_change_state, in_change_date);
END IF;
/* must be a real state change & advance forward in time */
IF in_change_state < > most_recent_state

AND in_change_date

> (SELECT MAX(start_date) FROM MyLife)

THEN
INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES (most_recent_state, in_change_state, in_change_date);
END IF;
END;

The first block of code locates the most recent state of my life, based
on the date. The second block of code will insert an initial state if the
table is empty. This is a safety feature but there probably should be a
separate procedure to create the set of initial states. Because the new
state has to be an actual change, there is a block of code to be sure.

The changes have to move forward in time. Finally, we build a row using
the most recent state as the new previous state, the input change state,
and the date. If the state change is illegal, the FOREIGN KEY is violated
and we get an error.

If you had other business rules, you could also add them to the code in the
same way. You should have noted that if someone makes changes directly to
the MyLife Table, he or she can destroy all the data integrity. It is a good idea
to have a procedure that checks to see that MyLife is in order. Let's load the
table with bad data:

INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES ('Born', 'Married', '1990-09-05"),

('Married', 'Divorced', '1999-09-05'),

('Married', 'Dead', '2010-09-05'),

('Dead', 'Dead', '2011-05-10'"),

('Dead', 'Dead', '2012-05-10");

This poor guy popped into existence without being born properly,
committed bigamy, and died twice. And you think your life is tough! Here is
a simple validation procedure to catch those errors.



State Transition Graphs 249

WITH Sequenced_State_History

AS

(SELECT previous_state, current_state,
ROW_NUMBER () OVER (ORDER BY start_date)

AS change_seq

FROM MyLife)

/* There is chain of links from the initial state to the current state */
SELECT 'Missing 1ink(s) in History'

FROM Sequenced_State_History AS H1, Sequenced_State_History AS H2
WHERE Hl.change_seq + 1 = H2.change_seq

AND Hl.current_state <> H2.previous_state

UNION ALL /* has one and only one initial state */
SELECT 'No unique initial state.’

FROM MyLife AS M, StateChanges AS C

WHERE C.state_type = 'I'

AND M.previous_state = C.previous_state

AND M.current_state = C.previous_state

HAVING COUNT(*) <> 1

UNION ALL /* has zero or one terminal state */
SELECT 'Too many terminal states.'

FROM MyLife AS M, StateChanges AS C

WHERE C.state_type = 'T’

AND M.previous_state = C.previous_state

AND M.current_state = C.previous_state

HAVING COUNT(*) > 1;

The CTE numbers the steps of the temporal path from an initial node to a
middle or terminal node. This chain has to be unbroken, which means going
from step (n) to step (n+1) has to be a legal change in the StateChanges table.
This chain can have only one initial node, so let's check for that next. Finally,
the chain is either still in progress or has reached a single terminal node.

A little note on the programming technique used. The union of separate
queries to do one validation at a time can often be made faster by combining
some of the queries. However, there are trade-offs; this code is easy to read
and maintain and (hopefully) will not be run often. It is also hard to get error
messages from a single statement. Look back at the ChangeState() procedure;
the two IF and SIGNAL() blocks of code could have been converted into
CASE expressions that will generate NULLs, folded into the INSERT INTO
statement, and cause the insertion to fail.



250

CHAPTER 14: STATE TRANSITION GRAPHS @\"

INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES

(NULLIF (in_change_state, most_recent_state),
in_change_state,

CASE WHEN in_change_date
<= (SELECT MAX(start_date) FROM MyLife)

THEN NULL ELSE in_change_date END);

This is not easy to read or to get error messages that tell you if the in_
change_date is invalid in that it violates the time sequence.

14.1 The Temporal Side of Changes

What is still missing is the temporal aspect of state changes. In this
example, the (‘Born’, ‘Married’) change would have to deal with the
minimum age of consent. The (‘Married’, ‘Divorced’) change often has a
legal waiting period. While technically a business rule, you know that no
human being has lived over 150 years, so a gap that size is a data error.
The terminal and initial states are instantaneous, however. Let's add more
flesh to the skeleton table:

CREATE TABLE StateChanges

(previous_state VARCHAR(10) NOT NULL,

current_state VARCHAR(10) NOT NULL,

PRIMARY KEY (previous_state, current_state),

state_type CHAR(1) DEFAULT 'M' NOT NULL

CHECK (state_type IN ('I', 'T', 'M")), /*initial, terminal, middle*/
state_duration INTEGER NOT NULL -- unit of measure is months
CHECK (state_duration >= 0),

CONSTRAINT Node_type_violations

CHECK (CASE WHEN state_type IN ('I', 'T")

AND previous_state = current_state

THEN 'T"

WHEN state_type = 'M'

AND previous_state <> current_state

THEN 'T" ELSE '"F" END = 'T")

)s

To make up some data, let's assume that the age of consent is 18 (12
months * 18 years = 216), that you have to wait 3 months into your marriage



14.1 The Temporal Side of Changes 251

before getting a divorce, and that you have to be divorced 2 months before
you can remarry. Of course, you can die instantly.

INSERT INTO StateChanges

VALUES ('Born', 'Born', 'I', 0), -- initial state
('Born', 'Married', 'M', 216),

('Born', 'Dead', 'M', 0),

('Married', 'Divorced', 'M', 3),

('Married', 'Dead', 'M', 0),

('Divorced', 'Married', 'M', 2),

('Divorced', 'Dead', 'M', 0),

('Dead', 'Dead', 'T', 0); -- terminal state

The first question is where to check for temporal violations—during
insertion or with validation procedures? My answer is both. Whenever
possible, do not knowingly put bad data into a schema; this should
be done in the ChangeState() procedure. But someone or something
will subvert the schema and you have to be able to find and repair the
damage.

Here is a procedure that will tell you what state change in the chain has an
improper duration and what the disagreement is.

WITH Sequenced_State_History
AS
(SELECT previous_state, current_state, start_date,
ROW_NUMBER() OVER (ORDER BY start_date) AS change_seq
FROM MyLife)
/* There is chain of links from the initial state to the current state */
SELECT H2.change_seq, H2.previous_state, H2.current_state,
CAST ((H2.start_date - Hl.start_date) AS INTERVAL YEAR TO SECOND)
AS actual_state_duration,
C.state_duration AS expected_state_duration
FROM Sequenced_State_History AS H1,
Sequenced_State_History AS H2,
StateChanges AS C
WHERE Hl.change_seq + 1 = H2.change_seq
AND DATEDIFF (MM, Hl.start_date, H2.start_date) <= C.state_duration
AND C.previous_state = H2.previous_state
AND C.current_state = H2.current_state;



252

CHAPTER 14: STATE TRANSITION GRAPHS @\"

Inserting a new life change is not a simple matter of putting a (previous_
state, current_state, start_date) row into the table. To do it right, you can put
conditions into the INSERT INTO statement to cause errors when there are
bad data.

CREATE PROCEDURE Life_Status_Change
(IN in_change_state VARCHAR(10),
IN in_most_recent_state VARCHAR(10),
IN in_change_date DATE)
LANGUAGE SQL
DETERMINISTIC
INSERT INTO MyLife (previous_state, current_state, start_date)
VALUES
(NULLIF (in_change_state, in_most_recent_state),
in_change_state,
CASE WHEN in_change_date
<= (SELECT MAX(start_date) FROM MyLife)
THEN NULL ELSE in_change_date END);

A slightly different model will keep a (start_date, expiry_date) pair
in the history table. In the case of the MyLife example, durations were
minimums for certain changes. You can get married when you are older
than 18 years of age and probably should. But a lot of commercial situations
have a fixed life span. Warranties, commercial offers, and bids expire
in a known number of days. This means adding another column to the
StateChanges table that tells the insertion program if the expiration date
is optional (shown with a NULL) or mandatory (computed from the
duration).

Here is some skeleton DDL for a bid application to explain this better.

CREATE TABLE MyBids
(bid_nbr INTEGER NOT NULL,
previous_state VARCHAR(10) NOT NULL,
current_state VARCHAR(10) NOT NULL,
CONSTRAINT Improper_State_Change
FOREIGN KEY (previous_state, current_state)
REFERENCES StateChanges (previous_state, current_state),
start_date DATE NOT NULL PRIMARY KEY,
expiry_date DATE, -- null means still open.



14.1 The Temporal Side of Changes 253

CHECK (start_date <= expiry_date),
PRIMARY KEY (bid_nbr, start_date),
etc.
)s

The DDL has a bid number as the primary key and a new column for the
expiration date. Obviously the bid has to exist for a while, so add a constraint
to keep the date order right.

CREATE TABLE StateChanges
(previous_state VARCHAR(10) NOT NULL,
current_state VARCHAR(10) NOT NULL,
PRIMARY KEY (previous_state, current_state),
state_duration INTEGER NOT NULL,
duration_type CHAR(1) DEFAULT "O' NOT NULL
CHECK ('0"', 'M")), -- optional, mandatory
etc.
)s

The DDL for state changes gets a new column to tell us if the duration
is optional or mandatory. The insertion procedure is a bit trickier. The
VALUES clause has more power than most programmers use. The list
can be more than just constants or simple scalar variables, but using
CASE expressions lets you avoid if-then-else procedural logic in the
procedure body.

All it needs is the bid number and what state you want to use. If you don't
give me a previous state, I assume that this is an initial row and repeat the
current state you just gave me. If you don't give me a start date, I assume you
want the current date. If you don't give me an expiration date, I construct one
from the State Changes table with a scalar subquery. Here is the skeleton DDL
for an insertion procedure.

CREATE PROCEDURE Bid_Status_Change
(IN in_bid_nbr INTEGER,
IN in_previous_state VARCHAR(10),
IN in_current_state VARCHAR(10),
IN in_start_date DATE,
IN in_expiry_date DATE)
LANGUAGE SQL
DETERMINISTIC



254 CHAPTER 14: STATE TRANSITION GRAPHS @\"

INSERT INTO MyBids (bid_nbr, previous_state, current_state, start_date,
expiry_date)
VALUES (in_bid_nbr, -- required
COALESCE (in_previous_state, in_current_state),
in_current_state, -- required
COALESCE (in_start_date, CAST (CURRENT_TIMESTAMP AS DATE),
(SELECT COALESCE (in_expiry_date,
in_start_date + S.state_duration YEAR TO SECOND)
FROM StateChanges AS S
WHERE S.previous_state = COALESCE (in_previous_state, in_current_state)
AND S.current_state = in_current_state
AND S.duration_type 'M"))

)



Hierarchical Database Systems (IMS)

IAM GOING TO assume that most of the readers of this book have only worked with
SQL. If you have heard of a Hierarchical Database System, it was mentioned
in a database course in college and then forgotten. In some ways, that is
too bad. It helps to know how earlier tools worked so that you can see how
new tools evolved from old ones.

The following material is taken from a series on IMS that appeared in
www.DBAzine.com. This is not going to make you an IMS programmer, but
should help give you an overview.

Why IMS? It is the most important prerelational technology that is still
in wide use today. In fact, there is a good chance that IMS databases still
hold more data than SQL databases.

15.1 Types of Databases

The classic types of database structures are network, relational, and
hierarchical. Network and hierarchical models are called network or
“navigational” databases because the mental model of data access is that
of a reader moving along paths to pick up data. In fact, when Bachman
received the ACM Turing Award that is how he described it.

IMS was not the only navigational database, just the most popular. TOTAL
from Cincom was based on a Master record that had pointer chains to one or
more sets of slave records. Later, IDMS and other products generalized this
navigational model.

VTN A VTN /N VTN /N



256

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

CODASYL, the committee that defined COBOL, came up with a standard
for the navigational model. Finally, the ANSI X3H2 Database Standards
Committee took the CODASYL model, formalized it a bit, and produced the
NDL language specification. However, at that point, SQL had become the
main work of the ANSI X3H2 Database Standards Committee and nobody
really cared about NDL and the standard simply expired.

Because this is a book on hierarchies and relational databases, I am going
to ignore the network model on the assumption that it is too old and the
products too varied to be of interest. I am also going to ignore object-oriented
and other “postrelational” databases on the assumption that they are too
young, too varied, and uncommon to be of interest.

IMS from IBM is the one hierarchical database management system still in
wide use today. It is stable, well defined, scalable, and very fast for what it does.

The IMS software environment can be divided into five main parts:

1. Database

2 Data Language I (DL/1)

3. DL/ control blocks

4. Data communications component (IMS TM)
5

Application programs

Figure 15.1 is a diagram of the relationships of IMS components. We
discuss some of these components in more detail, but not in great detail.

15.2 Database History

Before the development of DBMSs, data were stored in individual files. With
this system, each file was stored in a separate data set in a sequential or
indexed format. To retrieve data from the file, an application had to open the
file and read through it to the location of desired data. If data were scattered
through a large number of files, data access required a lot of opening and
closing of files, creating additional I/O and processing overhead.

To reduce the number of files accessed by an application, programmers
often stored the same data in many files. This practice created redundant
data and the related problems of ensuring update consistency across multiple
files. To ensure data consistency, special cross-file update programs had to be
scheduled following the original file update.



e 15.2 Database History 257

>

|
s

!

Figure 15.1 IMS environment components.

The concept of a database system resolved many data integrity and data
duplication issues encountered in a file system. A properly designed database
stores data only once in one place and makes it available to all application
programs and users. At the same time, databases provide security by limiting
access to data. The user's ability to read, write, update, insert, or delete data
can be restricted. Data can also be backed up and recovered more easily in a
single database than in a collection of flat files.

Database structures offer multiple strategies for data retrieval. Application
programs can retrieve data sequentially or (with certain access methods) go
directly to desired data, reducing I/O and speeding data retrieval. Finally, an
update performed on part of the database is immediately available to other
applications. Because data exist in only one place, data integrity is ensured
more easily.



258

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

The IMS database management system as it exists today represents the
evolution of the hierarchical database over many years of development and
improvement. IMS is in use at a large number of business and government
installations throughout the world. IMS is recognized for providing excellent
performance for a wide variety of applications and for performing well with
databases of moderate to very large volumes of data and transactions.

15.2.1 Data Language |

Because they are implemented and accessed through the use of DL/I, IMS
databases are sometimes referred to as DL/I databases. D1/I is a command-
level language, not a database management system. DI/I is used in batch and
online programs to access data stored in databases.

Application programs use DL/I calls to request data. DL/I then uses system
access methods, such as the Virtual Storage Access Method, to handle the
physical transfer of data to and from the database.

IMS databases are often referred to by the access method they are
designed for, such as HDAM (Hierarchical Direct Access Method), HIDAM
(Hierarchical Indexed Direct Access Method), PHDAM (Partitioned HDAM),
PHIDAM (Partitioned HIDAM), HISAM (Hierarchical Indexed Sequential
Access Method), and SHISAM (Simple HISAM).

These are all IBM terms from their mainframe database products and I will
not discuss them here.

IMS makes provisions for nine types of access methods, and you can
design a database for any one of them. However, SQL programmers are
generally isolated from the access methods that their database engine uses.
We will not worry about the details of the access methods that are called at
this level.

15.2.2 Control Blocks

When you create an IMS database, you must define the database structure
and how data can be accessed and used by application programs. These
specifications are defined within the parameters provided in two control
blocks, also called DL/I control blocks:

1.  Database description (DBD)

2. Program specification block (PSB)



e 15.2 Database History 259

In general, the DBD describes the physical structure of the database, and
the PSB describes the database as it will be seen by a particular application
program. The PSB tells the application which parts of the database it can access
and the functions it can perform on data. Information from the DBD and PSB
is merged into a third control block, the application control block (ACB). The
ACB is required for online processing but is optional for batch processing.

15.2.3 Data Communications

The IMS Transaction Manager (IMS TM) is a separate set of licensed
programs that provide access to the database in an online, real-time
environment. Without the TM component, you would be able to process
data in the IMS database in a batch mode only.

15.2.4 Application Programs

Data in a database is of no practical use to you if it sits in the database
untouched. Its value comes in its use by application programs in the
performance of business or organizational functions. With IMS databases,
application programs use DL/I calls embedded in the host language to access
the database. IMS supports batch and online application programs. IMS
supports programs written in ADA, assembler, C, C++, COBOL, PL/I, Pascal,
REXX, and WebSphere Studio Site Developer version 5.0.

15.2.5 Hierarchical Databases

In a hierarchical database, data are grouped in records, which are subdivided
into a series of segments. Consider a department database for a school in
which a record consists of the segments Dept, Course, and Enroll. In a
hierarchical database, the structure of the database is designed to reflect logical
dependencies—certain data are dependent on the existence of certain other
data. Enrollment is dependent on the existence of a course and, in this case, a
course is dependent on the existence of a department to offer that course.

The terminology changes from the SQL world to the IMS world. IMS uses
records and fields and calls each hierarchy a database. In the SQL world, a
row and column are similar to record and field, but are much smarter and
more general. In SQL, a schema or database is a collection of related tables,
which might map into several different IMS hierarchies in the same data
model. In other words, an IMS database is more like a table in SQL.



260

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

15.2.6 Strengths and Weaknesses

In a hierarchical database, data relationships are defined by the storage
structure. The rules for queries are highly structured. It is these fixed
relationships that give IMS extremely fast access to data when compared to
an SQL database when the queries have not been highly optimized.

Hierarchical and relational systems have their strengths and weaknesses.
The relational structure makes it relatively easy to code ad hoc queries.
However, an SQL query often makes the engine read through an entire table
or series of tables to retrieve data. This makes searches slower and more
processing intensive. In addition, because the row and column structure
must be maintained throughout the database, an entry must be made under
each column for every row in every table, even if the entry is only a place
holder (i.e., NULL) entry.

With the hierarchical structure, data requests or segment search
arguments may be more complex to construct. Once written, however, they
can be very efficient, allowing direct retrieval of data requested. The result
is an extremely fast database system that can handle huge volumes of data
transactions and large numbers of simultaneous users. Likewise, there is no
need to enter place holders where data are not being stored. If a segment
occurrence isn't needed, it isn't created or inserted.

There are always trade-offs. SQL gives you portability and flexibility. IMS
and other network DB systems give you speed, low overhead (i.e no statistics,
no DRI actions or triggers and minimal meta data). Essentially you tune an
IMS database for one and only one set of applications and SQL is generic, so
it is not surprised by a changing world.

15.3 Sample Hierarchical Database

To illustrate how the hierarchical structure looks, I'll design two very simple

databases to store information for the courses and students in a college. One

database will store information on each department in the college, and the

second will contain information on each college student. In a hierarchical

database, an attempt is made to group data in a one-to-many relationship.
An attempt is also made to design the database so that data that

are logically dependent on other data are stored in segments that are

hierarchically dependent on data. For that reason, we have designated

Dept as the key, or root, segment for our record because other data would

not exist without the existence of a department. Each department is listed



261

6 15.3 Sample Hierarchical Database

Departmental Database

Dept

Course

Student Database

P4 Student

Billing

Enroll s

Figure 15.2 Sample hierarchical databases for department and student.

only once. We provide data on each course in each department. We have
a segment type Course, with an occurrence of that type of segment for
each course in the department. Data on the course title, description, and
instructor are stored as fields within the Course segment. Finally, we have
added another segment type, Enroll, which will include student IDs of the
students enrolled in each course.

In Figure 15.2, we also created a second database called Student. This database
contains information on all the students enrolled in the college. This database
duplicates some data stored in the Enroll segment of the Department database.
Later, we will construct a larger database that eliminates duplicated data. The
design we choose for our database depends on a number of factors; in this case,
we will focus on which data we will need to access most frequently,

The two sample databases, Department and Student, are shown in
Figure 15.2. The two databases are shown as they might be structured in
relational form in three tables.

CREATE SCHEMA College;

CREATE TABLE Courses

(course_nbr CHAR(9) NOT NULL PRIMARY KEY,
course_title VARCHAR(20) NOT NULL,
description VARCHAR(200) NOT NULL,



262

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS)

dept_id CHAR(7) NOT NULL
REFERENCES Departments (dept_id)
ON UPDATE CASCADE);
CREATE TABLE Students
(student_id CHAR(9) NOT NULL PRIMARY KEY,
student_name CHAR(35) NOT NULL,
address CHAR(35) NOT NULL,
major CHAR(10));

CREATE TABLE Departments

(dept_id CHAR(7) NOT NULL PRIMARY KEY,
dept_name CHAR(15) NOT NULL,
chairman_name CHAR(35) NOT NULL,
budget_code CHAR(3) NOT NULL);

15.3.1 Department Database

Segments in the Department database are as follow.

Dept: Information on each department. This segment includes fields
for the department ID (the key field), department name, chairman_
name's name, number of faculty, and number of students registered in

departmental courses.

Course: This segment includes fields for the course number (a unique
identifier), course title, course description, and instructor's name.

Enroll: Students enrolled in the course. This segment includes fields for

student ID (the key field), student name, and grade.

15.3.2 Student Database

Segments in the Student database are as follow.

Student: Student information. It includes fields for student ID (key field),

student name, address, major, and courses completed.

Billing: Billing information for courses taken. It includes fields

for semester, tuition due, tuition paid, and scholarship funds

applied.



e 15.3 Sample Hierarchical Database 263

The dotted line between the root (Student) segment of the Student
database and the Enroll segment of the Department database represents a
logical relationship based on data residing in one segment and needed in
the other.

15.3.3 Design Considerations

Before implementing a hierarchical structure for your database, you should
analyze the end user's processing requirements because they will determine
how you structure the database. In particular, you must consider how the
data elements are related and how they will be accessed.

For example, given Parts and Suppliers, the hierarchical structure could
subordinate parts under suppliers for the accounts receivable department or
subordinate suppliers under parts for the order department.

15.3.4 Example Database Expanded

At this point we have learned enough about database design to expand our
original example database. We decide that we can make better use of our
college data by combining the Department and Student databases. Our new
College database is shown in Figure 15.3.

The following segments are in the expanded College database.

College

| ]
DTpt Student
| |

Course

Billing Academic

Figure 15.3 College database (combining department and student databases).



264

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

College: The root segment. One record will exist for each college in
the university. The key field is the College ID, such as ARTS, ENGR,
BUSADM, and FINEARTS.

Dept: Information on each department within the college. It includes fields for
the department ID (the key field), department name, chairman_name's name,
number of faculty, and number of students registered in departmental courses.

Course: Includes fields for the course number (the key field), course title,
course description, and instructor's name.

Enroll: A list of students enrolled in the course. There are fields for student
ID (key field), student name, current grade, and number of absences.

Staff: A list of staff members, including professors, instructors, teaching
assistants, and clerical personnel. The key field is employee number.
There are fields for name, address, phone number, office number, and
work schedule.

Student: Student information. It includes fields for student ID (key field),
student name, address, major, and courses being taken currently.

Billing: Billing and payment information. It includes fields for billing
date (key field), semester, amount billed, amount paid, scholarship funds
applied, and scholarship funds available.

Academic: The key field is a combination of the year and the semester.
Fields include grade point average (GPA) per semester, cumulative GPA,
and enough fields to list courses completed and grades per semester.

15.3.5 Data Relationships

The process of data normalization helps you break data into naturally
associated groupings that can be stored collectively in segments in a
hierarchical database. In designing your database, break the individual data
elements into groups based on the processing functions they will serve. At
the same time, group data based on inherent relationships between data
elements.

For example, the College database (Figure 15.3) contains a segment
called Student. Certain data are naturally associated with a student, such as
student ID number, student name, address, and courses taken. Other data
that we will want in our College database, such as a list of courses taught or



15.3 Sample Hierarchical Database 265

administrative information on faculty members, would not work well in the
Student segment.

Two important data relationship concepts are one to many and many
to many. In the College database, there are many departments for each
college (Figure 15.3 shows only one example), but only one college for each
department. Likewise, many courses are taught by each department, but a
specific course (in this case) can be offered by only one department.

The relationship between courses and students is many to many, as there
are many students in any course and each student will take several courses.
Let's ignore the many-to-many relationship for now—this is the hardest
relationship to model in a hierarchical database.

A one-to-many relationship is structured as a dependent relationship in
a hierarchical database: the many are dependent upon the one. Without a
department, there would be no courses taught: without a college, there would
be no departments.

Parent and child relationships are based solely on the relative positions
of the segments in the hierarchy, and a segment can be a parent of other
segments while serving as the child of a segment above it. In Figure 15.3,
Enroll is a child of Course, and Course, although the parent of Enroll, is also
the child of department. Billing and Academic are both children of Student,
which is a child of College. (Technically, all of the segments except College
are dependents.)

When you have analyzed the data elements, grouped them into
segments, selected a key field for each segment, and designed a database
structure, you have completed most of your database design. You may
find, however, that the design you have chosen does not work well for
every application program. Some programs may need to access a segment
by a field other than the one you have chosen as the key or another
application may need to associate segments that are located in two different
databases or hierarchies. IMS has provided two very useful tools that you
can use to resolve these data requirements: secondary indexes and logical
relationships.

Secondary indexes let you create an index based on a field other than the
root segment key field. That field can be used as if it were the key to access
segments based on a data element other than the root key.

Logical relationships let you relate segments in separate hierarchies and,
in effect, create a hierarchic structure that does not actually exist in storage.



266

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\’ I‘

The logical structure can be processed as if it exists physically, allowing you
to create logical hierarchies without creating physical ones.

15.3.6 Hierarchical Sequence

Because segments are accessed according to their sequence in the hierarchy,
it is important to understand how the hierarchy is arranged. In IMS,
segments are stored in a top-down, left-to-right sequence (Figure 15.4).
The sequence flows from the top to the bottom of the leftmost path or leg.
When the bottom of that path is reached, the sequence continues at the top
of the next leg to the right.

Understanding the sequence of segments within a record is important to
understanding movement and position within the hierarchy. Movement can be
forward or backward and always follows the hierarchical sequence. Forward
means from top to bottom, and backward means bottom to top. Position within
the database means the current location at a specific segment. You are once
more doing depth-first tree traversals, but with a slightly different terminology.

15.3.7 Hierarchical Data Paths

In Figure 15.4, numbers inside the segments show the hierarchy as a search
path would follow it. Numbers to the left of each segment show the segment
types as they would be numbered by type, not occurrence, that is, there may

01

02 06

| I | 1
03 05 s 07 08 1

7 . .
04

Figure 15.4 Sequence and data paths in a hierarchy.



e 15.3 Sample Hierarchical Database 267

be any number of occurrences of segment type 04, but there will be only one
type of segment 04. The segment type is referred to as the segment code.

To retrieve a segment, count every occurrence of every segment type
in the path and proceed through the hierarchy according to the rules of
navigation:

1.  top to bottom
2. front to back (counting twin segments)

3. left to right

For example, if an application program issues a GET-UNIQUE (GU)
call for segment 6 in Figure 15.4, the current position in the hierarchy is
immediately following segment 06. If the program then issued a GET-NEXT
(GN) call, IMS would return segment 07. There is also the GNP (Get Next
within Parent) call, which explains itself.

As shown in Figure 15.4, the College database can be separated into four
search paths. The first path includes segment types 01, 02, 03, and 04. The
second path includes segment types 01, 02, and 05. The third path includes
segment types 01, 06, and 07. The fourth path includes segment types 01, 06,
and 08. The search path always starts at 01, the root segment.

15.3.8 Database Records

Whereas a database consists of one or more database records, a database
record consists of one or more segments. In the College database, a record
consists of the root segment College and its dependent segments. It is possible
to define a database record as only a root segment. A database can contain
only the record structure defined for it, and a database record can contain only
the types of segments defined for it.

The term record can also be used to refer to a data set record (or block),
which is not the same thing as a database record. IMS uses standard data
system management methods to store its databases in data sets. The smallest
entity of a data set is also referred to as a record (or block).

Two distinctions are important. A database record may be stored in several
data set blocks. A block may contain several whole records or pieces of
several records. In this chapter, we try to distinguish between database record
and data set record where the meaning may be ambiguous.



268

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

15.3.9 Segment Format

A segment is the smallest structure of the database in the sense that IMS
cannot retrieve data in an amount less than a segment. Segments can be
broken down into smaller increments called fields, which can be addressed
individually by application programs.

A database record can contain a maximum of 255 types of segments. The
number of segment occurrences of any type is limited only by the amount
of space allocated for the database. Segment types can be of fixed length or
variable length. You must define the size of each segment type.

It is important to distinguish the difference between segment types and
segment occurrences. Course is a type of segment defined in the DBD for the
College database. There can be any number of occurrences for the Course
segment type. Each occurrence of the Course segment type will be exactly as
defined in the DBD. The only difference in occurrences of segment types is data
contained in them (and the length, if the segment is defined as variable length).

Segments have several different possible structures, but from a logical
viewpoint, there is a prefix that has structural and control information for the
IMS system, and 3 is the prefix for the actual data fields.

In the data portion, you can define the following types of fields: a
sequence field and data fields.

Sequence (key) field: The sequence field is often referred to as a key field.

It can be used to keep occurrences of a segment type in sequence under

a common parent, based on data or value entered in this field. A key

field can be defined in the root segment of a HISAM, HDAM, or HIDAM
database to give an application program direct access to a specific root
segment. A key field can be used in HISAM and HIDAM databases to allow
database records to be retrieved sequentially. Key fields are used for logical
relationships and secondary indexes.

A key field not only can contain data but also can be used in special
ways that help in organizing your database. With a key field, you can keep
occurrences of a segment type in some kind of key sequence, which you
design. For instance, in our example database you might want to store
student records in ascending sequence based on student ID number. To do
this, you define the student ID field as a unique key field. IMS will store
the records in ascending numerical order. You could also store them in
alphabetical order by defining the name field as a unique key field. Three
factors of key fields are important to remember:



e 15.4 Summary 269

1. Data or value in the key field is called the key of the segment.
2. The key field can be defined as unique or nonunique.

3. You do not have to define a key field in every segment type

Data field: You define data fields to contain actual data being stored in the
database. (Remember that the sequence field is a data field.) Data fields,
including sequence fields, can be defined to IMS for use by applications
programs.

15.3.10 Segment Definitions

In IMS, segments are defined by the order in which they occur and by their
relationship with other segments:

Root segment: The first or highest segment in the record. There can be
only one root segment for each record. There can be many records in a
database.

Dependent segment: All segments in a database record except the root
segment.

Parent segment: A segment that has one or more dependent segments
beneath it in the hierarchy.

Child segment: A segment that is a dependent of another segment above it
in the hierarchy.

Twin segment: A segment occurrence that exists with one or more
segments of the same type under a single parent.

Functions that edit, encrypt, or compress segments are not considered
here. The point is that you have a lot of control of data at the physical level
in IMS.

15.4 Summary

Those who cannot remember the past are condemned to repeat it.
George Santayana

There were databases before SQL, and they were all based on a graph
theory model. What SQL programmers do not like to admit is that less



270

CHAPTER 15: HIERARCHICAL DATABASE SYSTEMS (IMS) @\"

than 20% of all commercial information resides in SQL databases. The
majority is still in simple files or older, navigational, nonrelational
databases.

Even after the new tools have taken on their own characteristics to
become a separate species, the mental models of the old systems still linger.
The old patterns are repeated in the new technology.

Even the early SQL products fell into this trap. For example, how many
SQL programmers today use IDENTITY or other autoincrement vendor
extensions as keys on SQL tables today, unaware that they are imitating the
sequence field (a.k.a. the “key field”) from IMS?

This is not to say that a hierarchy is not a good way to organize data; it is!
But you need to see the abstraction apart from any particular implementation.
SQL is a declarative language, while DL/1 is a collection of procedure calls
inside a host language. The temptation is to continue to write SQL code in
the same style as you wrote procedural code in COBOL, PL/I, or whatever
host language you had.

The bad news is that you can use cursors to imitate sequential file
routines. Roughly, the READ() command becomes an embedded FETCH
statement, OPEN and CLOSE file commands map to OPEN and CLOSE
CURSOR statements, and every file becomes a simple table without any
constraints and a “record number” of some sort. The conversion of legacy
code is almost effortless with such a mapping. Also, it is also the worst way to
program with a SQL database.

It is hoped that this book will show you a few tricks that will let you write
SQL as SQL and not fake a previous language in it.

The www.DBAzine.com Website has a detailed three-part tutorial on IMS
from which this material was brutally extracted and summarized.

The best source for IMS materials is at http://www.redbooks.ibm.com/
where you can download manuals directly from IBM.

Reference

Meltz, D., Long, R., Harrington, M., Hain, R., Nicholls, G. 2005. An Introduction to
IMS: Your Complete Guide to IBM's Information Management System. IBM Press. ISBN
0132659522.



INDEX

Note: Page numbers followed by f indicate figures and t indicate tables.

A Abstract graphic model. See Petri nets self-joins, 21-23
Adelson-Velskii and Landis (AVL) binary subtree with iterations, 24-25
tree, 158 subtree with recursive CTE, 23-24
self-references, 173-174
converting to nested sets model simple, 12-13
Ben-Gan's recursive CTE, 100-102 characteristics of normalized table,
stack algorithm, 98-100 13-16

Adjacency list model

deleting nodes
promoting subtree, 29-30
subordinate promotion, 28-29
subtree, 27-28

DELETE anomalies, 15
INSERT anomalies, 15
structural anomalies, 16
UPDATE anomalies, 14-15

fixing, 17-20 Aggregation, 31-33
use of NULL, 20

in graphs
cursors and procedural code, 219 B Balanced binary search tree, 158
matrix model, 229-231 Balanced binary tree, 158

nonacyclic graphs, 227-229
paths with CTE, 222-227 100-102
SQL, 220-221 Binary trees
inserting nodes, 27 AVL, 158
leveled, 30-33 balanced, 158
aggregation, 31-33 complete, 157
deletion, 164-165
Fibonacci, 158
heaps, 165-168
height-balanced, 158
insertion, 165

numbering levels, 31
navigation

ancestors, 25-26

cursors, 21

procedural code, 21

Ben-Gan's recursive common table expression,

LGP I IVA LGB Y/ANLORYIANLZSG




272 INDEX

Binary trees (Continued)
multiway tree representation, 168-169
perfect, 157
in procedural programming languages,
158
queries, 161-164
data driven subtree, 163-164
parent of node, 162
recursive CTE subtree, 163
Stern—-Brocot numbers, 169-171
traversals, 159-160

C CharlIndex, 41
Child segment, 269

CODASYL. See Conference on Data Systems
Languages

Common table expression (CTE), 23-24,
100-102, 222-227

Complete binary tree, 157

Computed hybrid models, 178-180

Conference on Data Systems Languages
(CODASYL), 6, 256

Connected graph, 2

Cycle, 2 E

D Database record, 267
Data communications, 259
Data definition language (DDL), 6, 245
constraints for data modeling
disjoint hierarchies, 204-207
1:1, 1:m, and n:m relationships,
207-210
uniqueness constraints,
201-204

Petri nets, 242-244 F

Data field, 269
Data Language 1 (DL/1), 258
Data modeling
autonumbering features, 196
data definition language constraints

disjoint hierarchies, 204-207
1:1, I:m, and n:m relationships,
207-210
uniqueness constraints, 201-204
types of hierarchies, 200
Data relationships, 264-266
Data validation, 245
Date's EXPLODE operator, 191-192
DB2, 190-191
DDC. See Dewey decimal classification
DDL. See Data definition language
DECIMAL(p,s) numbers, 114
Degree, 2
DELETE statement, 15
Department database, 262
Dependent segment, 269
Depth-first enumeration
left interval boundary, 145
right interval boundary, 145-146
Dewey decimal classification (DDC), 212-213
Disjoint hierarchy, 200, 204-207
Double precision numbers, 114

Edge enumeration model, 44—45

Egyptian fractions, 147

Encoding schemes, hierarchies
Dewey decimal classification, 212-213
shop categories, 215-217
statistical tools for decision trees,

217-218

strength and weaknesses, 213-215
ZIP codes, 211-212

EXPLODE operator, 191-192

Fibonacci binary tree, 158
Floating point numbers, 114
Frammis, 75, 76, 76t, 79t
Frequent insertion trees
computing spread, 115-124
divisor parameter, 118-119



INDEX

273

G

divisor via formula, 119
divisor via lookup table, 119-120
partial reorganization, 120-122
rightward spread growth, 122-124
variation, 118
data type
DECIMAL(p,s) numbers, 114
floating point numbers, 114
full range of integers, 113-114
Egyptian fractions, 147
rational numbers and nested intervals
model, 130-146
depth-first enumeration, 145-146
descendants of node, 146
hierarchy building, 144-145
parent encoding and sibling number,
138-140
partial order mappings, 132-135
path enumeration, 140-144
summation of coordinates, 135-138
total reorganization
lookup table, 124-129
recursion, 129-130

GCD. See Greatest common divisor
Generalized directed graphs, 219
GetAncestor, 43
GetDescendant, 43—44
GetlLevel, 43
GetReparentedValue, 44
GetRoot, 43
Graphs
adjacency list model graphs
cursors and procedural code, 219
matrix model, 229-231
nonacyclic graphs, 227-229
paths with CTE, 222-227
SQL and adjacency list model,
220-221
generalized directed graphs, 219
modeling in program, 7

H

split node nested sets models
all nodes, 231-232
converting acyclic graphs to nested
sets, 236-238
edges, 233-234
indegree, 234
internal node, 236
isolated node, 235
outdegree, 234
path end points, 232-233
reachable nodes, 233
sink node, 235
source node, 235
terminologies, 2
trees properties, 3
Greatest common divisor (GCD),
184-185

Heaps, 165-168
Height-balanced binary tree, 158
Hierarchical Database Systems (IMS)
database history, 256-260
application programs, 259
control blocks, 258-259
data communications, 259
Data Language I (DL/1), 258
hierarchical databases, 259
strengths and weaknesses, 260
sample hierarchical database, 260-269
database records, 267
data relationships, 264-266
department database, 262
design issues, 263
expanded database, 263-264
hierarchical data paths, 266-267
hierarchical sequence, 266
segment definitions, 269
segment format, 268-269
student database, 262-263
software environment, 256, 257f
types of databases, 255-256



274 INDEX

Hierarchies
aggregation, 31-33
data modeling
autonumbering features, 196
disjoint hierarchies, 204-207
1:1, I:m, and n:m relationships,
207-210
types of hierarchies, 200
uniqueness constraints, 201-204
definition, 4 I
encoding schemes
Dewey decimal classification, 212—
213
shop categories, 215-217
statistical tools for decision trees,
217-218
strength and weaknesses, 213-215
ZIP codes, 211-212
nested sets model
closing gaps in tree, 71-74
converting from adjacency list model L
to, 98-102
converting to adjacency list model,
97-98
deleting single node, 68-71
deleting subtrees, 65-68
finding subtrees, 53-54
functions, 63-64

M
N

inserting and updating trees, 83-97
levels and paths in tree, 54-63
nodes vs. structure, 104-108
in other languages, 108-109
pruning set of nodes, 71
root and leaf nodes, 51-53
separation of edges and nodes,
103-104
summary functions, 74-83
properties, 4
rational numbers and nested intervals
model, 144-145
types, 5-6

HIERARCHYID data type, 42-44, 192-193
Hybrid models
adjacency and depth model, 177
adjacency and nested sets model,
175-176
computed, 178-180
nested sets with depth model, 176-177

IMS. See Hierarchical Database Systems
Indegree, 2, 234

Inheritance, 4

Inorder binary tree traversal, 160
INSERT INTO statement, 197

INSERT statement, 15

Internal node, 236

IsDescendant, 43

Isolated node, 235

Least common multiple (LCM) function, 186
Leveled adjacency list model

aggregation, 31-33

numbering levels, 31

Microsoft proprietary extensions, 192-193
Multiway binary tree representation, 168-169

NDL. See Network database language
Nested intervals model, 130-146
depth-first enumeration
left interval boundary, 145
right interval boundary, 145-146
descendants of node, 146
hierarchies, 144-145
parent encoding and sibling number,
138-140
partial order mappings, 132-135
path enumeration, 140-144
summation of coordinates, 135-138



INDEX

275

Nested sets model
and adjacency model, 175-176
closing gaps in tree, 71-74
converting from adjacency list model to
Ben-Gan's recursive CTE, 100-102
stack algorithm, 98-100
converting to adjacency list model, 97-98
deleting single node, 68-71
deleting subtrees, 65-68
and depth model, 176-177
finding subtrees, 53-54
functions, 63-64
inserting and updating trees, 83-97
MoveSubtree procedure, 89-91
moving subtree within tree, 85-89
subtree duplication, 93-95
subtree insertion, 91-93
swapping siblings, 96-97
levels and paths in tree
oldest and youngest subordinates,
60-62
path finding, 62-63
relative position, 63
subordinates level, 55-60
linear version
cash register tape problem, 153-155
insertion and deletion, 151-152
levels finding, 153
path finding, 152
nodes vs. structures, 104-108
in other languages, 108-109
pruning set of nodes, 71
root and leaf nodes, 51-53
separation of edges and nodes
multiple nodes, 103-104
multiple structure, 103
summary functions, 74-83
iterative parts, 75-80
recursive parts, 80-83
Network database, implementations, 67
Network database language (NDL), 6

Node enumeration
definition, 35
deleting single node, 39—40
deleting subtree, 39
depth of tree, 37
HIERARCHYID data type, 4244
inserting new node, 40
splitting up of path string, 40—42
subordinates, 37-39
superiors, 39
Nonacyclic graphs, 227-229
Normalized table, 13-16

Oracle tree extensions, 187-190
Order of a graph, 2

Outdegree, 2, 234

Overlapping hierarchy, 200

Parent segment, 269
Parse(input_string), 44
Path, 2
Path end points, 232-233
Path enumeration models
edge enumeration, 44-45
node enumeration
deleting single node, 39—40
deleting subtree, 39
depth of tree, 37
HIERARCHYID data type, 42—44
inserting new node, 40
splitting up of path string, 40—42
subordinates, 37-39
superiors, 39
prime number products
decomposition, 184
deletion, 183-184
greatest common divisor, 184-185
hierarchy with levels, 182
insertion, 182-183

least common multiple function, 186



276

INDEX

R

Path enumeration models (Continued)
mathematical properties, 180
subordinates of node, 181
superiors of node, 181-182

Perfect binary tree, 157
Petri nets
data definition language, 242-244
diagram representation, 240f, 241f
parts of diagram, 239
Postorder binary tree traversal, 159
Preorder binary tree traversal, 159
Prime number products
decomposition, 184
deletion, 183-184
greatest common divisor, 184-185
hierarchy with levels, 182
insertion, 182-183
least common multiple function, 186
mathematical properties, 180
subordinates of node, 181
superiors of node, 181-182
Proprietary extensions
DB2, 190-191
EXPLODE operator, 191-192
Microsoft extensions, 192—-193
WITH operator, 190-191
Oracle tree extensions, 187-190
Tillquist and Kuo's proposals, 192

Rational numbers, 130-146. See also Nested
intervals mode

Reachable nodes, 233

Real precision numbers, 114

Reconvergent graphs, 219

Recursion, 8-9

1:1, 1:m, and n:m relationships, 207-210

Rightward spread growth approach, 122-124

Root segment, 269

S

Sample hierarchical database
database records, 267
data relationships, 264-266
department database, 262
design issues, 263
expanded database, 263-264
hierarchical data paths, 266-267
hierarchical sequence, 266
segment definitions, 269
segment format, 268-269
student database, 262-263

Segment format, 268-269

Self-joins, 21-23

Sequence field, 268

Simple adjacency list model
characteristics of normalized table

13-16

DELETE anomalies, 15
INSERT anomalies, 15
structural anomalies, 16
UPDATE anomalies, 14-15

Sink node, 235

Source node, 235

)

Split node nested sets models
all nodes, 231-232
converting acyclic graphs to nested sets,
236-238
edges, 233-234
indegree, 234
internal node, 236
isolated node, 235
outdegree, 234
path end points, 232-233
sink node, 235
source node, 235
Stack algorithm, 98-100
State transition diagram, 245
State transition graphs, 245-254
Statistical tools, decision trees, 217-218



INDEX

277

Stern—-Brocot numbers, 169-171
Student database, 262-263
Subgraph, 2
Subordinate adjacency list model, 174-175
Subordinates, node enumeration, 37-39
Summary functions, 74-83
iterative parts, 75-80
recursive parts, 80-83
Summation of coordinates, 135-138

ToString, 44
Traversal binary trees
inorder, 160

postorder, 159
preorder, 159
Twin segment, 269

N x =

Uniqueness constraints,
201-204
UPDATE statement, 14-15

Walk, 2
WITH operator, 190-191

XML, 45-47
XPath, 45-47

ZIP codes, 211-212



INTRODUCTION

N

An introduction should give a noble purpose for writing a book. I should
say that the purpose of this book is to help real programmers who have
real problems in the real world. But the “real” reason this short book is
being published is to save me the trouble of writing any more emails and
pasting more code on Internet forums, newsgroups, and blogs. This topic
has been hot on all SQL-related Websites, and the solutions actually being
used by most working programmers have been pretty bad. So I thought,
why not collect everything I can find and put it in one place for the world
to see.

In my book SQL for Smarties (Morgan-Kaufmann, 4th edition, 2010,
ISBN 978-0123820228, Chapter 36), I wrote a chapter on a programming
technique for representing trees and hierarchies in SQL as nested sets. This
technique has become popular enough that I have spent almost every month
since SQL for Smarties was released explaining the technique in Newsgroups
and personal emails. Also, people who have used it have been sending me
emails with their own programming tricks. Oh, I will still have a short
chapter or two on trees in any future edition of SQL for Smarties, but this
topic is worth this short book.

The first section of the book is a bit like an intro college textbook on
graph theory so you might want to skip over it if you are current on the
subject. If you are not, then the theory there will explain some of the
constraints that appear in the SQL code later. The middle sections deal with
programming techniques, and the end sections deal with related topics in
computer programming.

The code in this book was checked using a SQL syntax validator program
at the Mimer Website (http://developer.mimer.com/validator/index.htm).

I have used as much standard SQL code as possible. When I needed
procedural code in an example, I used SQL/PSM but tried to stay within a
subset that can be translated easily into a vendor dialect (for details of this
language, see Jim Melton's book Understanding SQL's Stored Procedures,
ISBN 0-55860-461-8).



INTRODUCTION

There are two major examples (and some minor ones) in this book. One
is an organizational chart for an unnamed organization and the other is a
parts explosion for a Frammis. Before anyone asks what a Frammis is, let
me tell you that it is what holds all those widgets that MBA students were
manufacturing in the fictional companies in their textbooks.

These choices were made because a parts explosion will have the same
part in many places (i.e., a #5 machine screw gets used a lot) and an
employee usually holds only one position within the organization.

I invite corrections, additions, general thoughts, and new coding tricks at
my email address or my publisher's snail mail address.

Joe Celko



JOE CELKO'S
TREES AND

HIERARCHIES
IN' SQL FOR SMARTIES

%




	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

