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C H A P T E R

1
Graphs, Trees, and Hierarchies

Let's start with a little mathematical background. Graph theory is a branch of 
mathematics that deals with abstract structures known as graphs. These are 
not the presentation charts that you get out of a spreadsheet package.

Very loosely speaking, a graph is a diagram of “dots” (called nodes or 
vertices) and “lines” (edges or arcs) that model some kind of “flow” or 
relationship. The edges can be undirected or directed. The edges might 
have values (the distance of a road on a map), as can the nodes (the weight 
of packages in the city of the map). Graphs are very general models. In 
circuit diagrams, edges are the wires and nodes are the components. On 
a road map, nodes are the towns and edges are the roads. Flowcharts, 
organizational charts, and a hundred other common abstract models you 
see every day are all shown as graphs.

A directed graph allows a “flow” along the edges in one direction only 
as shown by the arrowheads, while an undirected graph allows the flow to 
travel in both directions. Exactly what is flowing depends on what you are 
modeling with the graph.

The convention is that an edge must join two and only two nodes. 
This lets us show an edge as an ordered pair of nodes, such as (“Atlanta,” 
“Boston”) if we are dealing with a map or (a, b) in a more abstract notation. 
There is an implication in a directed graph that the direction is shown by 
the ordering. In an undirected graph, we know that (a, b) = (b, a), however.
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A node can sit alone or have any number of edges associated with it. 
A node can also be self-referencing, as in (a, a).

The terminology used in graph theory will vary, depending on which book 
you had in your finite math class. Here, in informal language, are the terms 
used in this book.

Order of a graph: number of nodes in the graph.

Degree: number of edges at a node, without regard to whether the graph is 
directed or undirected.

Indegree: number of edges coming into a node in a directed graph.

Outdegree: number of edges leaving a node in a directed graph.

Subgraph: a graph that is a subset of another graph's edges and nodes.

Walk: a subgraph of alternating edges and nodes connected to each other 
in such a way that you can trace around it without lifting your finger.

Path: a subgraph that does not cross over itself—there is a starting node 
with degree one, an ending node with degree one, and all other nodes have 
degree two. It is a special case of a walk. It is a “connect the dots” puzzle.

Cycle: a subgraph that “makes a loop” so that all nodes have degree two. 
In a directed graph, all nodes of a cycle have outdegree one and indegree 
one. See Figure 1.1.

Connected graph: a graph in which all pairs of nodes are connected by a 
path. Informally, the graph is all in one piece.

A B

C

E

D

F

Figure 1.1 
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Forest: a collection of separate trees. Yes, I am defining this term before we 
finally get to discussing trees. There are many equivalent ways to define a 
tree, and I want to spend some time with them. For now, let's say that it is 
a graph without any cycles.

There are many more terms to describe special kinds of graphs, but 
frankly, we will not use them in this book. We are supposed to be doing SQL 
programming, not learning graph theory.

The strength of graphs as problem-solving tools is that nodes and edges 
can be given extra attributes that adapt this general model to a particular 
problem. Edges can be assigned “weights,” such as expected travel time for 
roads on a highway map. Nodes can be assigned “colors” that put them into 
groups, such as men and women. Look around and you will see how they 
are used.

1.1 Defining Tree and Hierarchies

There is an important difference between a tree and a hierarchy, which has 
to do with inheritance and subordination. Trees are a special case of graphs; 
hierarchies are a special case of trees. Let's start by defining trees.

1.1.1 Trees

Trees are graphs that have the following properties:

	 1.	 A tree is a connected graph that has no cycles. A connected graph is 
one in which there is a path between any two nodes. No node sits by 
itself, disconnected from the rest of the graph.

	 2.	 Every node is the root of a subtree. The most trivial case is a subtree 
of only one node.

	 3.	 Every two nodes in the tree are connected by one and only one path.

	 4.	 A tree is a connected graph that has one less edge than it has nodes.

In a tree, when an edge (a, b) is deleted, the result is a forest of two disjoint 
trees. One tree contains node (a) and the other contains node (b).

There are other properties, but this list gives us enough information 
for writing constraints in SQL. Remember, this is a book about 
programming, not graph theory, so you will get just enough to help you 
write code, but not enough to be a mathematician.
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1.1.2 Properties of Hierarchies

A hierarchy is a directed tree with extra properties: subordination and 
inheritance.

A hierarchy is a common way to organize a great many things, but the 
examples in this book will be organizational charts and parts explosions. 
These are two common business applications and can be understood easily 
by anyone without any special subject area knowledge. And they demonstrate 
that the relationship represented by the edges of the graph can run from the 
root or up to the root.

In an organizational chart, authority starts at the root, with 
the president of the enterprise, head of the Army, or whatever the 
organization is and it flows downward. Look at a military chain of 
command. If you are a private and your sergeant is killed, you still have 
to take orders from your captain; subordination is inherited from the root 
downward.

In a parts explosion, the relationship we are modeling runs “up the tree” 
to the root, or final assembly. If you are missing any subassembly, you cannot 
get a final assembly.

Inheritance, either to or from the root, is the most important property of a 
hierarchy. This property does not exist in an ordinary tree. If I delete an edge 
in a tree, I now have two separate trees, not one.

Another property of a hierarchy is that the same node can play many 
different roles. In an organizational chart, one person might hold several 
different jobs; in a parts explosion, the same kind of screw, nut, or washer 
will appear in many different subassemblies. And the same subassembly 
can appear in many places. To make this more concrete, imagine a 
restaurant with a menu. The menu disassembles into dishes, and each 
dish disassembles into ingredients, and each ingredient is either simple 
(salt, pepper, flour, etc.) or it is a recipe itself, such as Béarnaise sauce 
and Hollandaise sauce. These recipes might include further recipes. For 
example, Béarnaise sauce is Hollandaise with vinegar for the water and 
adds shallots, tarragon, chervil, and (sometimes) parsley, thyme, bay leaf, 
and cayenne pepper.

Hierarchies have roles that are filled by entities. This role property 
does not exist in a tree; each node appears once in a tree and it is  
unique.
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1.1.3 Types of Hierarchies

Getting away from looking at the world from the viewpoint of a casual 
mathematician, let's look at it from the viewpoint of a casual database sys-
tems designer. What kinds of data situations will I want to model? Looking 
at the world from a very high level, I can see four kinds of modeling 
problems.

	 1.	 Static nodes and static edges. For example, a chart of accounts in an 
accounting system will probably not change much over time. This is 
probably best done with a hierarchical encoding scheme rather than 
a table. We will talk about such encoding schemes later.

	 2.	 Static nodes and dynamic edges, for example, an Internet Newsgroup 
message board. Obviously, you cannot add a node to a tree without 
adding an edge, but the content of the messages (nodes) never 
changes once they are posted, but new replies can be posted as 
subordinates to any existing message (edge).

	 3.	 Dynamic nodes and static edges. This is the classic organizational 
chart in which organization stays the same, but the people 
holding the offices rotate frequently. This is assuming that your 
company does not reorganize more often than its personnel 
turnover.

	 4.	 Dynamic nodes and dynamic edges. Imagine that you have a graph 
model of a communications or transportation network. The traffic 
on the network is changing constantly. You want to find a minimal 
spanning tree based on the current traffic and update that tree 
as the nodes and edges come on and off the network. To make 
this a little less abstract, the fastest path from the fire station to a 
particular home address will not necessarily be the same route at 
05:00 hours as it will be at 17:00 hours. Once the fire is put out, 
the node that represented the burning house node can disappear 
from the tree and the next fire location becomes a node to which 
we must find a path.

Looking at the world from another viewpoint, we might classify 
hierarchies by usage—as either searching or reporting. An example of a 
searching hierarchy is the Dewey Decimal system in a library. You move from 
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the general classifications to a particular book—down the hierarchy. An 
example of a reporting hierarchy is an accounting system. You move from 
particular transactions to summaries by general categories (assets, liabilities, 
equity)—up the hierarchy.

You might pick a different tree model for a table in each of these situations 
to get better performance. It can be a very hard call to make and it is hard to 
give even general advice. But it is hoped that I can show you the trade-offs 
and you can make an informed decision.

1.2 Network Databases

Conference on Data Systems Languages (CODASYL) was a consortium 
formed in 1959 to develop portable programming languages for commer-
cial use. Their best effort was COBOL, which still dominates commercial 
programming today, but they also had a database standard. This project was 
assigned to the Data Base Task Group, and its first report in January 1968 
was entitled COBOL Extensions to Handle Data Bases.

In 1969 the DBTG published a language specification for the network 
database model, which became generally known as the CODASYL Data 
Model. It is based on directed graphs that were traversed by an imaginary 
cursor.

Like SQL, there were sublanguages. It had a data definition language 
(DDL) that defined a schema, much like the DDL in SQL. Then there was a 
data manipulation language (DML), which defined new verbs for COBOL. 
Back in those days, nobody thought about other languages.

ANSI and ISO adopted CODASYL database specifications under the 
name Network Database Language (NDL), with work taking place within 
the same working group (X3H2) as SQL standardization. An ISO standard 
for NDL was ratified as ISO 8907:1987. It never went anywhere and finally 
expired in 1998.

Several commercial products were based on the network model. Some of 
the implementations were:

	 1.	 Integrated Data Store (IDS/2) from Honeywell

	 2.	 Integrated Database Management System IDMS from Cullinet (nee 
Cullinane Database Systems)

	 3.	 IDS (Integrated Database System). This was the very first DBMS. 
It was designed by Charles Bachman in 1960.
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	 4.	 DMS-1100 from Univac

	 5.	 DBMS32 from DEC (Digital Equipment Corporation)

	 6.	 IMAGE/3000 from Hewlett-Packard (a port of TOTAL from the 
mainframes to HP3000 computers)

	 7.	 IMS from IBM. This hierarchic DBMS is still a dominate database 
product that uses a tree data model. It may well have as much or 
more data in its files than SQL. I have given it Chapter 15 by itself.

1.3 Modeling a Graph in a Program

Long before there was SQL, programmers represented graphs in the pro-
gramming language that they had. People used pointer chains in assembly 
language or system development languages such as ‘C’ to build very direct 
representations of graphs. However, the later, higher level languages, such 
as Pascal, LISP, and PL/I, did not expose the hardware to the programmer 
like the system development languages. Pointers in these languages were 
abstracted to hide references to physical storage and often required that 
the pointers point to variables or structures of a particular type (see PL/I's 
ADDR() function, pointers' data types, and based variables as an example of 
this kind of language construct).

Traditional application development languages do not have pointers, but 
often have arrays. In particular, because FORTRAN only had arrays for a 
data structure, a good FORTRAN programmer could use them for just about 
anything. Early versions of FORTRAN did not have character string data 
types—everything was either an integer or a floating point number.

This meant that the model of a graph had to start by numbering the nodes 
and using the node numbers as subscripts to index into the arrays.

Once the array techniques for graphs were developed, they became part of 
the “programmer's folklore” and were implemented in other languages.

1.4 The Great Debate

The Great Debate was a debate between proponents of the relational and 
network approaches. It was held at the ACM SIGMOD Workshop on Data 
Description, Access, and Control in 1974. Dr. E. F. Codd spoke for the rela-
tional approach and Charles W. Bachman for the network, or CODASYL, 
approach.
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Part of the debate was a moderately complicated business problem. 
Dr. Codd solved it correctly in a small number of steps. Mr. Bachman gave 
an elaborate solution that was wrong. This was the point at which RDBMS 
began to replace CODASYL models. ANSI X3H2 was formed, SQL became 
the standard, and you know the rest.

However, one of the objections to RDBMS was that it could not represent 
hierarchies easily. Because almost all commercial programming and Western 
thought is based on hierarchies, set-oriented RDBMS tools would only be good 
for ad hoc queries and never for serious, large databases. Well, that was wrong.

Ironically, object-oriented (OO) programming picked up hierarchies for 
classes.

1.5 Note on Recursion

I am going to take a little time to explain it because trees are a recursive data 
structure and can be accessed by recursive algorithms. Many commercial 
programmers are not familiar with the concept of recursion. Recursion does 
not appear in early programming languages. Even when it did or was added 
later, as was the case in IBM's MVS COBOL product in 1999, most program-
mers do not use it.

There is an old geek joke that gives the dictionary definition: Recursion = 
(REE-kur-shun) self-referencing procedure or data structure; also see recursion.

This is really pretty accurate, if not all that funny. A recursive structure is 
made up of smaller structures of the same kind. Thus, a tree is made up of 
subtrees. You finally arrive at the smallest possible subtrees, the leaf nodes—a 
subtree of size one.

A recursive function is also like that. Part of its work is done by invoking 
itself until it arrives at the smallest unit of work for which it can return an 
answer. Once it gets the lowest level answer, it passes it back to the copy 
of the function that called it so that copy can finish its computations. And 
so forth until we have gotten back up the chain to the first invocation that 
started it all. It is very important to have a halting condition in a recursive 
function for obvious reasons.

Perhaps the idea will be easier to see with a simple example. Let's Reverse 
a string with this SQL/PSM function:

CREATE FUNCTION Reverse (IN instring VARCHAR(20))

RETURNS VARCHAR(20)

LANGUAGE SQL
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DETERMINISTIC

BEGIN -- recursive function

IF CHAR_LENGTH(instring) IN (0, 1) -- halt condition

THEN RETURN (instring);

ELSE RETURN -- flip the two halves around, recursively

(Reverse(SUBSTRING (instring FROM (CHAR_LENGTH(instring)/2+1))

|| Reverse(SUBSTRING (instring FROM 1 FOR CHAR_LENGTH(instring)/2))));

END IF;

END;

Given the string 'abcde', the first call becomes:

Reverse('de') || Reverse('abc')

this becomes

(Reverse(Reverse('e') || Reverse('d'))

|| (Reverse((Reverse('c') || Reverse('ab)))

this becomes:

(('e'||'d')

|| (('c') || Reverse((Reverse('b') || Reverse('a'))))

this becomes:

(('e'||'d') || ('c' || ('b' || 'a')))

this finally becomes:

'edcba'

In the case of trees, we will test to see if a node is either the root or a leaf node 
as our halting conditions. The rest of the time, we are dealing with a subtree, 
which is just another tree. This is why a tree is called a recursive structure.

Graph Theory References

If you do not have graph theory in your mathematical background. Here is a short list of good 
introductory books.

Balakrishna, V., 1997. Schaum's Outline of Graph Theory. McGraw-Hill. ISBN 978-0070054899.

Berge, C., 2001. The Theory of Graphs. ISBN 978-0486419756.

Chartrand, G., Introductory Graph Theory. ISBN 978-0486247755. Fun and easy Dover reprint.



10	 C H A P T E R  1 :  G R A P H S ,  T R E E S ,  A N D  H I E R A R C H I E S

Cormen, T.H., Leiserson, C.E., Rivest, R.L., 1990. Introduction to Algorithms. McGraw-Hill 
Companies. ISBN 978-0262033848.

Even, S., 1979. Graph Algorithms. Computer Science Press, Rockville, MD. ISBN 978-0914894216.

Harary, F., 1994. Graph Theory. Addison-Wesley, Boston. ISBN 978-0201410334. Look for 
this author as he is a big name in the field.

Hartsfield, N., Ringel, G., 2003. Pearls in Graph Theory: A Comprehensive Introduction.  
ISBN 0-486432328.

McHugh, J.A., 1990. Algorithmic Graph Theory. Prentice-Hall, Englewood Cliffs, NJ. ISBN 
978-013236159.

Ore, O. (revised by Robin J. Wilson), 1990. Graphs and Their Uses. American Mathematical 
Association. ISBN 978-0883586352. This is a classic book written at the high school level.

Trudeau, R.J., 1994. Introduction to Graph Theory. ISBN 978-0486678702.



C H A P T E R

2
Adjacency List Model

In the early days of System “R” at IBM, one of the arguments against a relational 
database was that SQL could not handle hierarchies like IMS could 
and would therefore not be practical for large databases. It might have a 
future as an ad hoc query language, but that was the best that could be 
expected of it.

In a short paper, Dr. E. F. Codd described a method for showing 
hierarchies in SQL that consisted of a column for the boss_emp_name 
and another column for the employee in the relationship. It was a direct 
implementation in a table of the adjacency list model of a graph. Oracle 
was the first commercial database to use SQL, and the sample database 
that comes with their product, nicknamed the “Scott/Tiger” database 
in the trade because of its default user and password codes, uses an 
adjacency list model in a combination Personnel/Organizational chart 
table. The organizational structure and personnel data are mixed together 
in the same row.

This model stuck for several reasons other than just Dr. Codd and 
Oracle's seeming endorsements. It is probably the most natural way 
to convert from an IMS database or from a procedural language with 
pointer chains to SQL if you have been a procedural programmer all of 
your life.
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2.1 The Simple Adjacency List Model

In Oracle's “Scott/Tiger” Personnel table, the “linking column” is the employee 
identification number of the immediate boss_emp_name of each employee. 
The president of the company has a NULL for his boss_emp_name. Here is an 
abbreviated version of such a Personnel/Organizational chart table (Figure 2.1).

CREATE TABLE Personnel_OrgChart

(emp_name VARCHAR(10) NOT NULL PRIMARY KEY,

boss_emp_name VARCHAR(10), -- null means root

salary_amt DECIMAL(6,2) NOT NULL,

...);

Personnel_OrgChart

emp_name boss_emp_name salary_amt

‘Albert’ NULL 1000.00

‘Bert’ ‘Albert’ 900.00

‘Chuck’ ‘Albert’ 900.00

‘Donna’ ‘Chuck’ 800.00

‘Eddie’ ‘Chuck’ 700.00

‘Fred ’ ‘Chuck’ 600.00

Use of a person's name for a key is not a good programming practice, 
but we will ignore that for now; it will make the discussion easier. The table 
also needs a UNIQUE constraint to enforce the hierarchical relationships 

Albert

Chuck

Eddie FredDonna

Bert

Figure 2.1 
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among nodes. This is not a flaw in the adjacency list model per se, but this 
is how most programmers I have seen actually program the adjacency list 
model. In fairness, one reason for not having all of the needed constraints is 
that most SQL products did not have such features until their later releases. 
The constraints that should be used are complicated and we will get to them 
after this history lesson.

I am first going to attack a “straw man,” which shows up more than it 
should in actual SQL programming, and then make corrections to that initial 
adjacency list model schema. Finally, I want to show some actual flaws in the 
adjacency list model after it has been corrected.

2.2 The Simple Adjacency List Model Is Not Normalized

There is a horrible truth about the simple adjacency list model that nobody 
noticed. It is not a normalized schema. A boss is not an attribute of an 
employee any more than a book is an attribute of an author; subordination 
and authorship are relationships.

The classic normal forms are only part of normalization. The short 
definition of normalization is that all data redundancy has been removed 
and it is safe from data anomalies. Tom Johnston coined the phrase  
“non-normal form redundancies” for this particular kind of thing. 
I coined the phrase that a normalized database has “one simple fact, in 
one place, one time” as a mnemonic for three characteristics we want in a 
data model.

We will go into details shortly, but for now consider that the typical 
adjacency list model table includes information about the node (the 
salary_amt of the employee in this example), as well as who its superior 
(boss_emp_name) is in each row. This means that you have a mixed  
table of entities (Personnel) and relationships (organization) and  
thus its rows are not properly formed facts. So much for the 
characteristic one.

The second characteristic of a normalized table is that each fact appears 
“in one place” in the schema, that is, it belongs in one row of one table, 
but the subtree of each node can be in more than one row. The third 
characteristic of a normalized table is that each fact appears “one time” 
in the schema, that is, you want to avoid data redundancy. Both of these 
conditions are violated and we can have anomalies.
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2.2.1 UPDATE Anomalies

Let's say that “Chuck” decides to change his name to “Charles,” so we have 
to update the Personnel_OrgChart table:

UPDATE Personnel_OrgChart

SET emp_name = 'Charles'

WHERE emp_name = 'Chuck';

But that does not work. We want the table to look like this:

Personnel_OrgChart

emp_name boss_emp_name salary_amt

‘Albert’ NULL 1000.00

‘Bert’ ‘Albert’ 900.00

‘Charles’ ‘Albert’ 900.00  change as employee

‘Donna’ ‘Charles’ 800.00  change as boss_emp_name #1

‘Eddie’ ‘Charles’ 700.00  change as boss_emp_name #2

‘Fred ’ ‘Charles’ 600.00  change as boss_emp_name #3

Four rows are affected by this UPDATE statement. If a Declarative Referential 
Integrity REFERENCES clause was used, then an ON UPDATE CASCADE 
clause with a self-reference could make the three “boss_emp_name” role 
changes automatically. Otherwise, the programmer has to write two UPDATE 
statements.

BEGIN ATOMIC

UPDATE Personnel_OrgChart

SET emp_name = 'Charles'

WHERE emp_name = 'Chuck';

UPDATE Personnel_OrgChart

SET boss_emp_name = 'Charles'

WHERE boss_emp_name = 'Chuck';

END;

or, if you prefer, one UPDATE statement, which hides the logic in a faster, 
but convoluted, CASE expression.
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UPDATE Personnel_OrgChart

SET emp_name

= CASE WHEN emp_name = 'Chuck'

THEN 'Charles',

ELSE emp_name END,

boss_emp_name

= CASE WHEN boss_emp_name = 'Chuck'

    THEN 'Charles',

    ELSE boss_emp_name END

WHERE 'Chuck' IN (boss_emp_name, emp_name);

However, as you can see, this is not a simple change of just one fact.

2.2.2 INSERT Anomalies

The simple adjacency list model has no constraints to preserve subordina-
tion. Therefore, you can easily corrupt the Personnel_OrgChart with a few 
simple insertions, thus

-- make a cycle in the graph

INSERT INTO Personnel_OrgChart VALUES ('Albert', 'Fred', 100.00);

Obviously, you can create cycles by inserting an edge between any two exist-
ing nodes.

2.2.3 DELETE Anomalies

The simple adjacency list model does not support inheritance of subordination. 
Deleting a row will split the tree into several smaller trees, as for example

 DELETE FROM Personnel_OrgChart WHERE emp_name = 'Chuck';

Suddenly, ‘Donna’, ‘Eddie’, and ‘Fred’ find themselves disconnected from 
the organization and no longer reporting indirectly to ‘Albert’ anymore. In 
fact, they are still reporting to ‘Chuck’, who does not exist anymore! Using 
an ON DELETE CASCADE referential action or a TRIGGER could cause 
the entire subtree to disappear—probably a bad surprise for Chuck's former 
subordinates. 
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2.2.4 Structural Anomalies

Finally, we need to preserve the tree structure in the table. We need to be 
sure that there is only one NULL in the structure, but the simple adjacency 
list model does not protect against multiple NULLs or from cycles.

-- self-reference

INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (a, a);

-- simple cycle

INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (c, b);

INSERT INTO Personnel_OrgChart (boss_emp_name, emp_name) VALUES (b, c);

The problem is that the adjacency list model is actually a general 
model for any graph. Because a tree is a special case of a graph, you need 
to restrict the adjacency list model a bit to be sure that you do have only 
a tree.

Albert

Albert

Chuck

Eddie

Eddie

Fred

Fred

Donna

Donna

Bert

Bert

Figure 2.2 
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2.3 Fixing the Adjacency List Model

In fairness, I have been kicking a straw man. These flaws in the simple 
adjacency list model can be overcome with a redesign of the schema.

First, the Personnel list and the Organizational chart could and should 
be modeled as separate tables. The Personnel table contains facts about the 
people (entities) who we have as our Personnel, and the Organizational 
chart tells us how the job positions within the company are organized 
(relationships), regardless of who—if anyone—holds what position. It is 
the difference between the office and the person who holds that office.

CREATE TABLE Personnel

(emp_nbr INTEGER DEFAULT 0 NOT NULL PRIMARY KEY,

 emp_name VARCHAR(10) DEFAULT '{{vacant}}' NOT NULL,

 emp_address VARCHAR(35) NOT NULL,

 birth_date DATE NOT NULL,

 ...);

I am assuming that we have a dummy employee named ‘{{vacant}}’ with a 
dummy employee number of zero. It makes reports look nicer, but you have 
to add more constraints to handle this missing value marker.

Information about the positions within the company goes into a second 
table, thus

CREATE TABLE OrgChart

(job_title VARCHAR(30) NOT NULL PRIMARY KEY,

 emp_nbr INTEGER DEFAULT 0 -- zero is vacant position

  NOT NULL

  REFERENCES Personnel(emp_nbr)

  ON DELETE SET DEFAULT

  ON UPDATE CASCADE,

 boss_emp_nbr INTEGER -- null means root node

 REFERENCES Personnel(emp_nbr),

 salary_amt DECIMAL (12,4) NOT NULL CHECK (salary_amt >= 0.00),
 ...);

Note that you still need constraints between and within the tables to 
enforce the tree properties and to make sure that a position is not held by 
someone who is not an employee of the company.
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The most obvious constraint is to prohibit a single node cycle in the graph.

 CHECK (boss_emp_nbr <  > emp_nbr) –- cannot be your own boss!

But that does not work because of the dummy employee number of zero 
for all vacant positions.

CHECK ((boss_emp_nbr <  > emp_nbr) OR (boss_emp_nbr = 0 AND emp_nbr = 0))

If we want to prevent longer cycles, we cannot use the UNIQUE(emp_
name, boss_emp_name) constraint, which limits an employee to one and 
only one boss. Again, multiple vacancies will mess up this model.

We know that the number of edges in a tree is the number of nodes 
minus one so this is a connected graph. That constraint looks like this in the 
original simple adjacency list table.

CHECK ((SELECT COUNT(*) FROM Personnel_OrgChart) —1 –- count of edges

  = (SELECT COUNT(boss_emp_name) FROM Personnel_OrgChart)) -– count of

nodes

The COUNT(boss_emp_nbr) will drop the NULL in the root row, which 
gives us the effect of having a constraint to check for one NULL:

CHECK((SELECT COUNT(*) FROM Personnel_OrgChart WHERE boss_emp_name IS 

NULL) = 1)

This is a necessary condition, but it is not a sufficient condition. Consider 
these data, in which ‘Donna’ and ‘Eddie’ are in a cycle and that cycle is not in 
the tree structure.

emp_name boss_emp_name

‘Albert’ NULL

‘Bert’ ‘Albert’

‘Chuck’ ‘Albert’

‘Donna’ ‘Eddie’

‘Eddie’ ‘Donna’

One approach would be to remove all the leaf nodes and repeat this 
procedure until the tree is reduced to an empty set. If the tree does not reduce 
to an empty set, then there is a disconnected cycle.
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CREATE FUNCTION TreeTest() RETURNS CHAR(6)

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

-- put a copy in a temporary table

INSERT INTO TempTree

SELECT emp_nbr, boss_emp_nbr

 FROM Personnel_OrgChart;

--prune the leaves

WHILE (SELECT COUNT(*) FROM TempTree) —1

= (SELECT COUNT(boss_emp_nbr) FROM TempTree)

 DO DELETE FROM TempTree

WHERE TempTree.emp_name

NOT IN (SELECT T2.boss_emp_nbr

FROM TempTree AS T2

WHERE T2.boss_emp_nbr IS NOT NULL);

IF NOT EXISTS (SELECT * FROM TempTree)

THEN RETURN ('Tree ');

ELSE RETURN ('Cycles');

END IF;

END WHILE;

END;

Checking for errors once they are in the tree with a function gives the 
result that there are errors, but to find the place is very hard in a large tree 
then. An alternative is to add a CREATE ASSERTION statement to the 
schema that will catch and prevent cycles when someone attempts to insert 
them. The general skeleton looks like this:

CREATE ASSERTION Valid_Tree

CHECK ((SELECT COUNT(*) FROM Tree)

= (SELECT COUNT(*)

FROM (SELECT parent_node FROM Tree)

UNION

(SELECT child_node FROM Tree)));

This solution is better because it prevents errors from the beginning. SQL 
Server and other SQL products do not have ASSERTIONs; however, this was 
ported easily to a VIEW, an INSERT trigger, and an UPDATE trigger.
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These constraints will need to be deferred in some situations; in particular, 
if we reorganize a position out of existence, we need to remove it from the 
Organization Chart table and make a decision about its subordinates. We will 
deal with that problem in another section. The original Personnel_OrgChart 
is easy to reconstruct with a VIEW like this for reporting purposes.

CREATE VIEW Personnel_OrgChart (emp_nbr, emp_name, boss_emp_nbr,  

boss_emp_name)

AS

SELECT E1.emp_nbr, E1.emp_name, E1.boss_emp_nbr, B1.emp_name

 FROM Personnel AS E1, Personnel AS B1, OrgChart AS O1

 WHERE B1.emp_nbr = P1.boss_emp_nbr

AND E1.emp_nbr = P1.emp_nbr;

2.3.1 Concerning the Use of NULLs

I have shown a NULL-able boss_emp_name column in my examples in 
which NULL means that this row is the root of the tree; that is, that it has no 
boss_emp_name above it in the hierarchy. While this is the most common 
representation, it is not the only way to model a tree.

Alternatives are:

	 1.	 Use NULLs for the subordinates of leaf nodes. This leads to slightly 
different logic in many of the queries, reversing the “flow” of NULL 
checking.

	 2.	 Disallow NULLs altogether. This will record only the edges of the graph 
in the table. Again the logic would change. The root would have to be 
detected by looking for the one node, which is only a boss who reports 
to a dummy value of some kind and is never an employee, thus:

 SELECT DISTINCT boss_emp_nbr

 FROM OrgChart

 WHERE boss_emp_nbr NOT IN (SELECT emp_nbr FROM OrgChart);

In many ways I would prefer the second option, but using the (NULL, 
<root>) convention guarantees that all employees show up in the emp_nbr 
column, which makes many queries much easier to write.

This convention was not done for that reason; historically, the boss_emp_
name was considered an attribute of the employee in the data model. This is 
a violation of the second normal form (2nf).



2 . 4  N a v i g a t i o n  i n  A d j a c e n c y  L i s t  M o d e l 	 21

2.4 Navigation in Adjacency List Model

The fundamental problem with the adjacency list model is that it requires 
navigation. There is no general way to extract a complete subtree.

2.4.1 Cursors and Procedural Code

The practical problem is that despite existing SQL standards, every SQL 
product has a slightly different proprietary cursor syntax. The general for-
mat is to follow the chain of (emp_nbr, boss_emp_nbr) values in a loop. 
This makes going down the tree fairly simple, but aggregation of subtrees for 
reporting is very slow for large trees.

This approach is fairly simple if you start at leaf nodes and travel to the 
root node of the tree structure.

CREATE PROCEDURE UpTreeTraversal (IN current_emp_nbr INTEGER)

LANGUAGE SQL

DETERMINISTIC

WHILE EXISTS

  (SELECT *

    FROM OrgChart AS T1

WHERE current_emp_nbr = T1.emp_nbr)

DO BEGIN

 -- take some action on the current node of the traversal

 CALL SomeProc (current_emp_nbr);

 -- go up the tree toward the root

 SET current_emp_nbr

= (SELECT T1.boss_emp_nbr

FROM OrgChart AS T1

WHERE current_emp_nbr = T1.emp_nbr);

 END;

END WHILE;

2.4.2 Self-joins

The other method of doing a tree traversal is to do multiple self-joins, with 
each copy of the tree representing a level in the Personnel_OrgChart.

 SELECT O1.emp_name AS e1, O2.emp_name AS e2, O3.emp_name AS e3

 FROM Personnel_OrgChart AS O1, Personnel_OrgChart AS O2,

        Personnel_OrgChart AS O3
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 WHERE O1.emp_name = O2.boss_emp_name

    AND O2.emp_name = O3.boss_emp_name

    AND O1.emp_name = 'Albert';

This code is limited to a known depth of traversal, which is not always 
possible. This sample query produces this result table. The paths shown are 
those that are exactly three levels deep.

e1 e2 e3

‘Albert’ ‘Chuck’ ‘Donna’

‘Albert’ ‘Chuck’ ‘Eddie’

‘Albert’ ‘Chuck’ ‘Fred’

You can improve this query with the use of LEFT OUTER JOINs.

 SELECT O1.emp_name AS e1, O2.emp_name AS e2, O3.emp_name AS e3,  

O4.emp_name AS e4

 FROM Personnel_OrgChart AS O1

  LEFT OUTER JOIN

  Personnel_OrgChart AS O2

  ON O1.emp_name = O2.boss_emp_name

  LEFT OUTER JOIN

  Personnel_OrgChart AS O3

  ON O2.emp_name = O3.boss_emp_name

LEFT OUTER JOIN

Personnel_OrgChart AS O4

ON O3.emp_name = O4.boss_emp_name

 WHERE O1.emp_name = 'Albert';

Because any paths at a particular level not in the table will be displayed as 
NULLs, this query can be put into a VIEW and invoked.

Note that it produces:

e1 e2 e3 e4

‘Albert’ ‘Bert’ NULL NULL

‘Albert’ ‘Chuck’ ‘Donna’ NULL

‘Albert’ ‘Chuck’ ‘Eddie’ NULL

‘Albert’ ‘Chuck’ ‘Fred’ NULL
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This actually gives you all the subtree paths under ‘Albert’ to a fixed depth 
of three. The pattern can be extended, but performance will also go down. 
Most SQL products have a point at which the optimizer chokes either on 
the number of tables in a FROM clause or on the levels of self-reference in a 
query.

Aggregation based on self-joins is a nightmare. You have to build a table 
with one column that has the unique keys of the subtree and use it to find 
the rows to be used in aggregate calculations. One way to “flatten” the table 
is to use an auxiliary table called Series, which contains the single column 
seq of integers from 1 to (n), where (n) is a sufficiently large number.

 SELECT MAX(CASE

WHEN seq = 1 THEN e1

WHEN seq = 2 THEN e2

WHEN seq = 3 THEN e3

WHEN seq = 4 THEN e4

ELSE NULL END)

 FROM (Series AS S1

CROSS JOIN

<< Personnel_OrgChart query as above>>
) AS X(e1, e2, e3, e4)

 WHERE seq BETWEEN 1 AND 4;

As you can see, this approach becomes insanely convoluted very fast and you 
do not gain generality.

2.4.3 Finding a Subtree with Recursive CTE

Standard SQL supports recursive CTEs, which can be used with the 
adjacency list model. You start the anchor or fixed point at the root and 
then attach each level. It is a good idea to track the depth of the recursion.

WITH RECURSIVE Traversal (emp_name, boss_emp_name, recurse_depth)

AS

(-- recursion starts at the anchor or fixed point query

SELECT P0.emp_name, P0.boss_emp_name, 0 AS recurse_depth,

FROM Personnel_OrgChart AS P0

WHERE boss_emp_name IS NULL

UNION ALL
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SELECT P1.emp_name, P1.boss_emp_name, (T.recurse_depth +1) AS recurse_

depth

FROM Personnel_OrgChart AS P1, Traversal AS T

WHERE T.emp_name = P1.boss_emp_name

)

SELECT emp_name, boss_emp_name, recurse_depth

FROM Traversal;

This is actually implemented as a loop and cursors inside most SQL 
products. However, this declarative from has some chance of being optimized 
in the future, whereas loops and cursors do not.

2.4.4 Finding a Subtree with Iterations

This procedure will find the subtree rooted at the manager emp_nbr of your 
PersonnelOrg table. The idea is simple. Create a local working table and load 
it with the immediate subordinate emp_nbrs. Using the leaf nodes in a loop, 
find their subordinates. When you can add no more levels to the working 
tree, you have the whole subtree in the working table.

CREATE PROCEDURE GetSubtree(IN in_boss_emp_nbr INTEGER)

LANGUAGE SQL

DETERMINISTIC

CREATE LOCAL TEMPORARY TABLE WorkingTree

(LIKE PersonnelOrg)

ON COMMIT DELETE ROWS;

BEGIN ATOMIC

DECLARE local_prior_size INTEGER;

DECLARE local_curr_size INTEGER;

DELETE FROM WorkingTree; –- redundant unless table is external

INSERT INTO WorkingTree

SELECT *

 FROM Personnel_OrgChart

 WHERE in_boss_emp_nbr = boss_emp_nbr;

SET local_curr_size = (SELECT COUNT(*) FROM WorkingTree);

SET local_prior_size = 0;

WHILE local_prior_size < local_curr_size
 DO SET local_prior_size = (SELECT COUNT(*) FROM WorkingTree);

INSERT INTO WorkingTree
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SELECT *

    FROM PersonnelOrg

WHERE boss_emp_nbr

IN (SELECT W1.emp_nbr

FROM WorkingTree AS W1

WHERE W1.emp_nbr

NOT IN (SELECT W2.boss_emp_nbr

FROM WorkingTree AS W2));

  SET local_curr_size = (SELECT COUNT(*) FROM WorkingTree);

END WHILE;

-- SELECT * FROM WorkingTree;

END;

I chose to use COUNT(*) for the loop control because it is usually 
fast and can be obtained from schema information tables. You can 
rewrite this as a recursive function, but it is probably not as effective.

This procedure involves some features you might not have in your SQL 
product.

Creating a temporary table inside the procedure is part of SQL:2003, but 
is not in the core standard. You can create a working table outside of the 
procedure body and insert into it.

The LIKE clause in the table definition copies table declarations and has 
some other options in SQL:2003. This can be done with a cut and paste instead.

2.4.5 Finding Ancestors

If you want to go up the tree for a known number of levels from a known 
employee, you can use this procedure:

CREATE FUNCTION GetAncestor_1

(IN in_emp_nbr INTEGER,

 IN in_lvl INTEGER) -- levels above employee

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

 DECLARE local_boss_emp_nbr INTEGER;

 SET local_boss_emp_nbr = in_emp_nbr;

IF in_lvl IS NULL

 OR in_emp_nbr IS NULL
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 OR in_lvl < 0
THEN RETURN CAST (NULL AS INTEGER);

END IF;

WHILE in_lvl > 0
AND local_boss_emp_nbr IS NOT NULL

 DO SET (local_boss_emp_nbr, in_lvl)

= (SELECT boss_emp_nbr, in_lvl — 1

FROM Personnel_OrgChart

WHERE emp_nbr = local_boss_emp_nbr);

END WHILE;

If you prefer recursion over iteration, then you can use this version:

CREATE FUNCTION GetAncestor_2

(IN in_emp_nbr INTEGER,

 IN in_lvl INTEGER) -- levels above employee

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN

(CASE

 WHEN in_lvl IS NULL

  OR in_emp_nbr IS NULL

  OR in_lvl < 0
 THEN CAST (NULL AS INTEGER)

 WHEN in_lvl = 0

 THEN in_emp_nbr

ELSE GetAncestor

  ((SELECT boss_emp_nbr

    FROM Personnel_OrgChart

    WHERE emp_nbr = in_emp_nbr),

in_lvl —1)

END);

The CASE expression first looks to see if the parameters make sense. If the 
level is zero, then you wanted this node. For greater levels, we traverse the 
tree recursively. The scalar subquery parameter might have to be written as 
(SELECT MAX(boss_emp_nbr) FROM Personnel_OrgChart WHERE emp_
nbr = in_emp_nbr) to assure the compiler that it is a scalar value.
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2.5 Inserting Nodes in the Adjacency List Model

This is the strong point of the adjacency list model. You just insert the 
(emp_nbr, boss_emp_nbr) pairs into the table and you are done. Assuming 
that they are valid, you are finished.

2.6 Deleting Nodes in the Adjacency List Model

Removing a leaf node is easy; just remove the row from the tree structure table. 
All of the tree properties are preserved and no constraints will be violated.

The code for deleting nodes inside the tree is much more complex. First 
you must make a decision about how to handle the surviving subordinates. 
There are three basic approaches.

	 1.	 The ancient Egyptian school of management: when a node is 
removed, all of his subordinates are removed. When Pharaoh dies, 
you bury all his slaves with him.

	 2.	 Send the orphans to grandmother: subordinates of the deleted node 
became immediate subordinates of their boss_emp_name's boss_
emp_name.

	 3.	 The oldest son takes over the shop: one of the subordinates assumes 
the position held previously by the deleted node. This promotion 
can cause a cascade of other promotions down the tree until a root 
node is left vacant and removed, or be stopped with other rules.

Because the adjacency list model cannot return a subtree in a single query, the 
constraints will have to be deferred while a traversal of some kind is performed.

2.6.1 Deleting an Entire Subtree

The simplest approach is to do a tree traversal down from the deleted node 
in which you mark all of the subordinates and then go back and delete the 
subset of marked nodes. Let's use −99999 as the marker for a deleted node 
and defer the constraint that forbids (boss_emp_nbr = emp_nbr).

CREATE LOCAL TEMPORARY TABLE Workingtable

(boss_emp_nbr INTEGER,

 emp_nbr INTEGER NOT NULL)

ON COMMIT DELETE ROWS;

CREATE PROCEDURE DeleteSubtree (IN dead_guy INTEGER)

LANGUAGE SQL
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DETERMINISTIC

BEGIN ATOMIC

SET CONSTRAINTS <<constraint list>> DEFERRED;
-- mark root of subtree and immediate subordinates

UPDATE OrgChart

 SET emp_nbr

= CASE WHEN emp_nbr = dead_guy

THEN −99999 ELSE emp_nbr END,

boss_emp_nbr

= CASE WHEN boss_emp_nbr = dead_guy

THEN −99999 ELSE boss_emp_nbr END

WHERE dead_guy IN (emp_nbr, boss_emp_nbr);

WHILE EXISTS -- mark leaf nodes

  (SELECT *

FROM OrgChart

WHERE boss_emp_nbr = — 99999

AND emp_nbr > — 99999)
DO -- get list of next level subordinates DELETE FROM WorkingTable;

INSERT INTO WorkingTable

SELECT emp_nbr FROM OrgChart WHERE boss_emp_nbr = — 99999;

-- mark next level of subordinates

UPDATE OrgChart

 SET emp_nbr = — 99999

 WHERE boss_emp_nbr IN (SELECT emp_nbr FROM WorkingTable);

END WHILE;

-- delete all marked nodes

DELETE FROM OrgChart

 WHERE emp_nbr = — 99999;

SET CONSTRAINTS ALL IMMEDIATE;

END;

2.6.2 Promoting a Subordinate after Deletion

This is tricky and depends on the particular business rules. One of the more 
common rules is that the senior subordinate moves the position of her 
deleted superior. This creates a vacancy in her old position, which might be 
filled by a sibling or by a subordinate.
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I am leaving the node to the reader, but the general idea is to rearrange 
the tree structure so that the dummy employee number used earlier is finally 
moved to a leaf node where it is a degenerate case of removing a subtree. 
For example, we could remove “Chuck” and then promote “Donna” to his 
position. Her position is left vacant and can be removed, leaving “Eddie” as 
the senior subordinate.

2.6.3 Promoting an Entire Subtree after Deletion

You cannot delete the root or the tree unravels into a forest of dis-
joint subtrees. The constraints will prevent this from happening, but 
you can also test for the root in the insertion statement. Let's use the 
WorkingTable to hold intermediate traversal results again (Figure 2.2).

CREATE PROCEDURE DeleteAndPromoteSubtree (IN dead_guy INTEGER)

LANGUAGE SQL

DETERMINISTIC

SET CONSTRAINTS <<list of constraints>> DEFERRED;
BEGIN ATOMIC

DECLARE my_emp_nbr INTEGER;

DECLARE my_boss_emp_nbr INTEGER;

INSERT INTO Workingtable (emp_nbr, boss_emp_nbr)

SELECT T1.emp_nbr, T2.boss_emp_nbr

 FROM OrgChart AS O1, OrgChart AS O2

 WHERE dead_guy IN (O1.boss_emp_nbr, O2.emp_nbr)

  AND dead_guy

* (SELECT emp_name FROM OrgChart WHERE boss_emp_nbr IS

NULL);

UPDATE Personnel_OrgChart

 SET boss_emp_name = CASE WHEN OrgChart.boss_emp_nbr = dead_guy

THEN WorkingTable.emp_nbr

ELSE OrgChart.boss_emp_nbr END,

  emp_name = CASE WHEN OrgChart.emp_nbr = dead_guy

THEN WorkingTable.boss_emp_nbr

ELSE OrgChart.emp_nbr END

 WHERE dead_guy IN (emp_nbr, boss_emp_nbr)

 AND dead_guy <  > (SELECT emp_nbr
FROM OrgChart



30	 C H A P T E R  2 :  A D J A C E N C Y  L I S T  M O D E L

WHERE boss_emp_nbr IS NULL);

DELETE FROM OrgChart

 WHERE boss_emp_nbr = emp_nbr;

END;

SET CONSTRAINTS ALL IMMEDIATE;

2.7 Leveled Adjacency List Model

This next approach is credited to Dr. David Rozenshtein in an article he wrote 
in the now defunct Sybase user's SQL FORUM magazine (Vol. 3, No. 4, 1995). 
The approach he took was to do a breadth-first search instead of a depth-first 
search of the tree.

His objection was that processing a single node at a time leads to 
algorithms of complexity O(n), whereas processing nodes by levels leads to 
algorithms of complexity O(log2(n)) instead.

His model is a modified adjacency list mode, with an extra column for the 
level of the node in the tree. Here is a sample tree, with levels filled in. Note 
that LEVEL is a reserved word in Standard SQL as well as some SQL products.

CREATE TABLE Tree

(boss_emp_name CHAR(1), -- null means root

 emp_name CHAR(1) NOT NULL,

 lvl INTEGER DEFAULT 0 NOT NULL);

Tree

boss_emp_name emp_name lvl

NULL ‘a’ 1

‘a’ ‘b’ 2

‘a’ ‘c’ 2

‘b’ ‘d’ 3

‘b’ ‘e’ 3

‘b’ ‘f’ 3

‘e’ ‘g’ 4

‘e’ ‘h’ 4

‘f’ ‘i’ 4

‘g’ ‘j’ 5

‘i’ ‘k’ 5

‘i’ ‘l’ 5
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2.7.1 Numbering Levels

Assigning level numbers is a simple loop, done one level at a time. Let's 
assume that all level numbers start as zeros.

CREATE PROCEDURE RenumberLevels()

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE lvl_counter INTEGER;

SET lvl_counter = 1;

-- set root to 1, others to zero

UPDATE Tree

 SET lvl

  = CASE WHEN boss_emp_name IS NULL THEN 1 ELSE 0 END;

-- loop thru lvls of the tree

WHILE EXISTS (SELECT * FROM Tree WHERE lvl = 0)

DO

UPDATE Tree

 SET lvl = lvl_counter + 1

 WHERE (SELECT T2.lvl

FROM Tree AS T2

          WHERE T2.emp_name = Tree.boss_emp_name) > 0
   AND lvl = 0;

SET lvl = lvl_counter + 1;

END WHILE;

END;

The level number can be used for displaying the tree as an indented list 
in a host language via a cursor, but it also lets us traverse the tree by levels 
instead of one node at a time.

2.7.2 Aggregation in the Hierarchy

Aggregation up a hierarchy is a common form of report. Imagine that the tree 
is a simple parts explosion and the weight of each assembly (root node of a 
subtree) is the sum of its subassemblies (all the subordinates in the subtree). 
The table now has an extra column for the weight and we have information 
on only the leaf nodes when we start.
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CREATE TABLE PartsExplosion

(assembly CHAR(1), -- null means root

 subassembly CHAR(1) NOT NULL,

 weight INTEGER DEFAULT 0 NOT NULL,

 lvl INTEGER DEFAULT 0 NOT NULL);

I am going to create a temporary table to hold the results and then use this 
table in the SET clause of an UPDATE statement to change the original table. 
You can actually combine these statements into a more compact form, but the 
code would be a bit harder to understand.

CREATE LOCAL TEMPORARY TABLE Summary

(node CHAR(1) NOT NULL PRIMARY KEY,

 weight INTEGER DEFAULT 0 NOT NULL

) ON COMMIT DELETE ROWS;

CREATE PROCEDURE SummarizeWeights()

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE max_lvl INTEGER;

SET max_lvl = (SELECT MAX(lvl) FROM PartsExplosion);

--start with leaf nodes

INSERT INTO Summary (node, total)

SELECT emp_name, weight

 FROM PartsExplosion

 WHERE emp_name NOT IN (SELECT assembly FROM PartsExplosion);

-- loop up the tree, accumulating totals

WHILE max_lvl > 1
DO INSERT INTO Summary (node, total)

   SELECT T1.assembly, SUM(S1.weight)

    FROM PartsExplosion AS T1, Summary AS S1

  WHERE T1.assembly = S1.node

AND T1.lvl = max_lvl

  GROUP BY T1.assembly;

 SET max_lvl = max_lvl — 1;

END WHILE;
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--transfer calculations to PartsExplosion table

UPDATE PartsExplosion

   SET weight

= (SELECT weight

FROM Summary AS S1

WHERE S1.node = PartsExplosion.emp_name)

 WHERE subassembly IN (SELECT assembly FROM PartsExplosion);

END;

The adjacency model leaves little choice about using procedural code, as 
the edges of the graph are shown in single rows without any relationship to 
the tree as a whole.



C H A P T E R

3
Path Enumeration Models

One of the properties of trees is that there is one and only path from the root to 
every node in the tree. The path enumeration model stores that path as 
a string by concatenating either the edges or the keys of the nodes in the 
path. Searches are done with string functions and predicates on those path 
strings. For other references, you should consult Advanced Transact-SQL 
for SQL Server 2000 (Chapter 16) by Itzak Be-Gan and Tom Moreau (ISBN 
978-1893115828). They made the path enumeration model popular with 
this book. The code in this book is product specific, but easily generalized.

There are two methods for enumerating the paths: edge enumeration 
and node enumeration. Node enumeration is the most commonly used of 
the two, and there is little difference in the basic string operations on either 
model. However, the edge enumeration model has some numeric properties 
that can be useful.

It is probably a good idea to give the nodes a CHAR(n) identifier of a 
known size and format to make the path concatenations easier to handle. 
The other alternative is to use VARCHAR(n) strings, but put a separator 
character between each node identifier in the concatenation—a character 
that does not appear in the identifier itself.

To keep the examples as simple as possible, let's use my five-person 
Personnel_OrgChart table and a CHAR(1) identifier column to build a path 
enumeration model.
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-- path is a reserved word in SQL–99

-- CHECK() constraint prevents separator in the column.

CREATE TABLE Personnel_OrgChart

(emp_name CHAR(10) NOT NULL,

 emp_id CHAR(1) NOT NULL PRIMARY KEY

 CHECK(REPLACE (emp_id, ‘/’, ‘’) = emp_id),

 path_string VARCHAR(500) NOT NULL);

Personnel_OrgChart

emp_name emp_id path_string

‘Albert’ ‘A’ ‘A’

‘Bert’ ‘B’ ‘AB’

‘Chuck’ ‘C’ ‘AC’

‘Donna’ ‘D’ ‘ACD’

‘Eddie’ ‘E’ ‘ACE’

‘Fred’ ‘F’ ‘ACF’

Note that I have not broken the sample table into Personnel (emp_id, 
path_string) and OrgChart (emp_id, emp_name) tables. This would 
be a better design, but allow me this bit of sloppiness to make the code 
simpler to read. REPLACE (<str_exp_1>, <str_exp_2>, <str_exp_3>) is a 
common vendor string function. The first string expression is searched for 
all occurrences of the second string expression; if it is found, the second 
string expression is replaced by the third string expression. The third string 
expression can be the empty string as in the CHECK () constraint just given.

Another problem is how to prevent cycles in the graph. A cycle would 
be represented as a path string in which at least one emp_id string appears 
twice, such as ‘ABCA’ in my sample table. This can be done with a constraint 
that uses a subquery, thus.

 CHECK (NOT EXISTS

  (SELECT *

FROM Personnel_OrgChart AS D1,

Personnel_OrgChart AS P1

  WHERE CHAR_LENGTH (REPLACE (D1.emp_id, P1.path_string, ‘’))

    < (CHAR_LENGTH(P1.path_string)
− 1) -- size of one emp_id string

  ))
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Another fact about such a tree is that no path can be longer than the 
number of nodes in the tree.

 CHECK ((SELECT MAX(CHAR_LENGTH(path_string))

FROM Personnel_OrgChart AS P1)

  <= (SELECT COUNT(emp_id) * CHAR_LENGTH(emp_id)
FROM Personnel_OrgChart AS P2))

This assumes that the emp_id is of fixed length and that no separators 
were used between them in the path_string. Unfortunately, the SQL-92 
feature of a subquery in a constraint is not widely implemented yet.

3.1 Finding the Depth of the Tree

If you have used the fixed length emp_id string, then the depth is 
the length of the path divided by the length of the emp_id string, 
CHAR_LENGTH(emp_id).

 CHAR_LENGTH(path_string)/ CHAR_LENGTH(emp_id)

I have made it easy to compute by using a single character emp_id code. 
This is not usually possible in a real tree, with several hundred nodes.

If you used a varying length emp_id, then the depth is

 CHAR_LENGTH(path_string) — CHAR_LENGTH (REPLACE (path_string, ‘/’, ‘’)) +1

As explained earlier, the REPLACE() function is not a Standard SQL string 
function, but is quite common in actual SQL products. This approach counts 
the separators.

3.2 Searching for Subordinates

Given a parent, find all of the subtrees under it. The immediate solution is 
this.

 SELECT *

 FROM Personnel_OrgChart

 WHERE path_string LIKE ‘%’ | | :parent_emp_id | | ‘%’;

The problem is that searches with LIKE predicates whose pattern 
begin with a ‘%’ wildcard are slow. This is because they usually generate 
a table scan. Also, note that using ‘_%’ in front of the LIKE predicate 
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pattern will exclude the root of the subtree from the answer. Another 
approach is this query.

 SELECT *

 FROM Personnel_OrgChart

 WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart

WHERE emp_id = :parent_emp_id) | | ‘%’;

The subquery will use the indexing on the emp_id column to find the 
“front part” of the path string from the root to the parent with whom we are 
concerned.

Traveling down the tree is easy. Instead of a ‘%’ wildcard, use a string of 
underscore (‘_’) wildcards of the right length. For example, this will find the 
immediate children of a given parent emp_id.

 SELECT *

 FROM Personnel_OrgChart

 WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart

WHERE emp_id = :parent_emp_id) | |‘_’;

Many SQL products have a function that will pad a string with 
repeated copies of an input string or return a string of repeated copies of 
an input string. For example, SQL Server has a REPLICATE (<character 
exp>, <integer exp>), Oracle has LPAD() and RPAD(), and  DB2 
uses REPEAT(). This can be useful for generating a search pattern of 
underscores on the fly.

 SELECT *

 FROM Personnel_OrgChart

 WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart

WHERE emp_id = :parent_emp_id)

| | REPLICATE (‘_’, :n);

To find the immediate subordinates, assuming a numeric path string using 
periods, like the structure of this book:

SELECT *

 FROM Personnel_OrgChart

 WHERE path_string LIKE ‘01.02.01.%’

 AND path_string NOT LIKE ‘01.02.01.%.%’;
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The second search condition is there to prevent a table scan and to restrict 
the results to the immediate subordinates.

3.3 Searching for Superiors

Given a node, find all of its superiors. This requires disassembling the path 
back into the identifiers that constructed it. We can use a table of sequential 
integers to find the required substrings:

SELECT SUBSTRING (P1.path_string

FROM (seq * CHAR_LENGTH(P1.emp_id))

FOR CHAR_LENGTH(P1.emp_id)) AS emp_id

 FROM Personnel_OrgChart AS P1,

  Series AS S1

 WHERE P1.emp_id = :search_emp_id

 AND S1.seq <= CHAR_LENGTH(path_string)/CHAR_LENGTH(emp_id);

The problem is that this does not tell you the relationships among the 
superiors, only who they are. Those relationships are actually easier to report.

 SELECT P2.*

 FROM Personnel_OrgChart AS P1,

  Personnel_OrgChart AS P2

 WHERE P1.emp_id = :search_emp_id

 AND POSITION (P2.path_string IN P1.path_string) = 1;

3.4 Deleting a Subtree

Given a node, delete the subtree rooted at that node. This can be done with 
the same predicate as finding the subordinates:

DELETE FROM Personnel_OrgChart

 WHERE path_string LIKE (SELECT path_string FROM Personnel_OrgChart

WHERE emp_id = :dead_guy) | | ‘%’;

3.5 Deleting a Single Node

Once more we have to face the problem that when a nonleaf node is removed 
from a tree, it is no longer a tree and we need to have rules for changing the 
structure.
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Assuming that we simply move everyone up a level in the tree, we can 
first remove that node emp_id from the Personnel_OrgChart table and then 
remove that emp_id from the paths of the other nodes.

BEGIN ATOMIC

DELETE FROM Personnel_OrgChart

 WHERE emp_id = :dead_guy;

UPDATE Personnel_OrgChart

 SET path_string = REPLACE (path_string, :dead_guy, ‘’);

END;

There are other methods of rebuilding the tree structure after a node 
is deleted, as discussed earlier. Promoting a subordinate based on some 
criteria to the newly vacant position, leaving a vacancy in the organizational 
chart, and so forth are all options. They are usually implemented with some 
combination of node deletions and insertions.

3.6 Inserting a New Node

The enumeration model has the same insertion properties as the adjacency 
list model. The new emp_id is simply concatenated to the end of the path of 
the parent node to which it is subordinated.

INSERT INTO Personnel_OrgChart

VALUES (:new_guy, :new_emp_id,

  (SELECT path_string FROM Personnel_OrgChart WHERE emp_id = :new_guy_boss)

  | | :new_emp_id);

This basic statement design can be modified to work for insertion of a 
subtree, thus.

INSERT INTO Personnel_OrgChart

SELECT N1.emp, N1.emp_id,

  (SELECT path_string FROM Personnel_OrgChart WHERE emp_id = :new_tree_boss)

  | | N1.emp_id

 FROM NewTree AS N1;

3.7 Splitting up a Path String

Because the path string contains information about the nodes in the path it 
represents, you will often want to split it back into the nodes that created. This 
is easier to do if the path string was built with a separator character such as a 
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comma or slash; I use a slash so this will look like a directory path in UNIX. 
You will also need a table called Series, which is a set of integers from 1 to (n).

CharIndex(<search string>, <target string>, <starting position>) is a 
vendor version of the Standard SQL function POSITION(<search string> IN 
<target string>). It begins the search at a position in the target string, thus 
when the <starting position> = 1, the two are equivalent. It can be defined as

CREATE FUNCTION CharIndex (IN search_str VARCHAR(1000), IN target 

VARCHAR(1000), IN start_point INTEGER) RETURNS INTEGER

RETURN

 (POSITION (search_str

IN SUBSTRING (target FROM start_point)) + start_point −1);

Version 1:

SELECT CASE WHEN SUBSTRING(‘/’ | | P1.path_string | | ‘/’ FROM S1.seq FOR 1) = 

‘/’

THEN SUBSTRING(‘/’ | | P1.path_string | | ‘/’ FROM (S1.seq +1)

FOR CharIndex(‘/’, ‘/’ | | P1.path_string | | ‘/’, S1.seq +1)

— S1.seq − 1)

ELSE NULL END AS emp_id

FROM Series AS S1, Personnel_OrgChart AS P1

 WHERE S1.seq BETWEEN 1 AND CHAR_LENGTH(‘/’ | | P1.path_string | | ‘/’) − 1

AND SUBSTRING(‘/’ | | P1.path_string | | ‘/’ FROM S1.seq FOR 1) = ‘/’

Version 2: This uses the same idea, but with two sequence numbers to 
bracket the emp_id embedded in the path string. It also returns the position 
of the subordinate emp_id in the path.

CREATE VIEW Breakdown (emp_id, step_nbr, subordinate_emp_id)

AS

SELECT emp_id,

COUNT(S2.seq),

SUBSTRING (‘/’ | | P1.path_string | | ‘/’, MAX(S1.seq | | 1)

FROM (S2.seq - MAX(S1.seq | | 1))

 FROM Personnel_OrgChart AS P1, Series AS S1, Series AS S2

 WHERE SUBSTRING (‘/’ | | P1.path_string | | ‘/’, S1.seq, 1) = ‘/’

 AND SUBSTRING (‘/’ | | P1.path_string | | ‘/’, S2.seq, 1) = ‘/’

 AND S1.seq < S2.seq
 AND S2.seq <= CHAR_LENGTH(P1.path_string) +1
 GROUP BY P1.emp_id, P1.path_string, S2.seq;
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The S1 and S2 copies of Series are used to locate bracketing pairs of 
separators, and the entire set of substrings located between them is extracted in 
one step. The trick is to be sure that the left-hand separator of the bracketing 
pair is the closest one to the second separator. The step_nbr column tells you 
the relative position of the subordinate employee to the employee in the path.

Version 3: This version is the same as version 2, but is more concise and 
easy to comprehend.

 SELECT SUBSTRING(‘/’ | | P1.path_string | | ‘/’

FROM S1.seq +1

FOR CharIndex(‘/’,

‘/’ | | P1.path_string | | ‘/’,

S1.seq +1)— S1.seq − 1) AS node

 FROM Series AS S1, Personnel_OrgChart AS P1

 WHERE SUBSTRING(‘/’ | | P1.path_string | | ‘/’

FROM S1.seq FOR 1) = ‘/’

 AND seq < CHAR_LENGTH(‘/’ | | P1.path_string | | ‘/’);

Version 4: another way using the LIKE predicate:

SELECT SUBSTRING(P1.path_string

FROM seq +1

FOR CharIndex(‘/’, P1.path_string, S1.seq +1) — (S1.seq +1))

 FROM Series AS S1

  INNER JOIN

  (SELECT ‘/’ | | path_string | | ‘/’

FROM Personnel_OrgChart) AS P1.(path_string)

  ON S1.seq <= CHAR_LENGTH(P1.path_string)
AND SUBSTRING(P1.path_string

FROM S1.seq

FOR CHAR_LENGTH(P1.path_string))

LIKE ‘/_%’;

3.8 Microsoft SQL Server's HIERARCHYID

Microsoft added a HIERARCHYID data type to their MS SQL Server 2008 
product. It is a path enumeration put into a VARBINARY(892) column. It is 
manipulated by methods in an OO format instead of with SQL statements. 
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This allows other languages to also invoke these methods and leave you with 
mixed system maintenance problems.

The representation uses a slash to separate the levels of the tree; the root is 
represented by a single slash. Nodes can be inserted anywhere using decimal 
numberings. Nodes inserted after /1/2/ but before /1/3/ can be represented as 
/1/2.5/. Nodes inserted before 0 have the logical representation as a negative 
number. For example, a node that comes before /1/1/ can be represented as 
/1/−1/. Nodes cannot have leading zeros. For example, /1/1.1/ is valid, but 
/1/1.01/ is not valid.

So, you're probably wondering how we know how to order nodes in the 
same level. This is accomplished by comparing node labels, like versioning 
in software. 0.5.1 comes after 0.5 and before 0.6. If we wished to insert a new 
node between 0.5 and 0.5.1, we could use 0.5.0.1 or 0.5.0.2, and so forth. 
Here is a list of the basic methods available to you.

GetAncestor(n): Returns a HIERARCHYID representing the nth ancestor 
of the affected node.

GetLevel: Returns an integer that represents the depth of the affected node 
in the tree.

GetRoot: Static method. Returns the root of the hierarchy tree.

IsDescendantOf(parent_node): Returns TRUE if the affected node is 
a descendant of the parent.

GetDescendant(child_node_1, child_node_2): Returns a child of the 
affected node, depending on child 1 and 2.

1.	 If affected node IS NULL, return NULL.
2.	 If affected node IS NOT NULL and both child_node_1 and 

child_node_2 are NULL, return a child of the affected node.
3.	 If affected node IS NOT NULL, child_node_1 IS NOT NULL, 

and child_node_2 IS NULL, return a child of the affected node 
greater than child_node_1.

4.	 If affected node IS NOT NULL, child_node_2 IS NOT NULL, and 
child_node_1 IS NULL, return a child of the affected node less 
than child_node_2.

5.	 If affected node, child_node_1, and child_node_2 are not NULL, 
return a child of the affected node greater than child_node_1 and 
less than child_node_2.



44	 C H A P T E R  3 :  P A T H  E N U M E R A T I O N  M O D E L S

6.	 If child_node_1 IS NOT NULL and not a child of the affected 
node, an exception is raised.

7.	 If child_node_2 IS NOT NULL and not a child of the affected 
node, an exception is raised.

8.	 If child_node_1 >= child_node_2, an exception is raised.

Parse(input_string): Static method. Converts the canonical string 
representation of a HIERARCHYID to a HIERARCHYID value. Parse is 
called implicitly when a conversion from a string type to HIERARCHYID 
occurs. Acts as the opposite of ToString.

ToString: Returns a string with the logical representation of the affected 
node. ToString is called implicitly when a conversion from HIERARCHYID 
to a string type occurs. Acts as the inverse of Parse.

GetReparentedValue(old_root_node, new_root_node): Returns a node 
whose path from the root is the path to new_root_node, followed by the 
path from old_root_node to the affected node.

Here is how to modify the usual Personnel_OrgChart with an extra column.

CREATE TABLE Personnel_OrgChart

(emp_id INTEGER NOT NULL PRIMARY KEY,

 emp_name VARCHAR(25) NOT NULL),

 h_id HIERARCHYID NOT NULL UNIQUE,

 lvl AS h_id.GetLevel() PERSISTED,

 UNIQUE (lvl, h_id));

3.9 Edge Enumeration Model

So far, we have seen the node enumeration version of the path enumeration 
model. In the edge enumeration model, the “driving directions” for following 
the path from the root to each node are given as integers. You will also rec-
ognize it as the way that the book you are reading is organized. The path col-
umn contains a string of the edges that make up a path from the root (‘King’) 
to each node, numbering them from left to right at each level in the tree.

Personnel_OrgChart

emp_name edge_path

‘Albert’ ‘1.’

‘Bert’ ‘1.1.’
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emp_name edge_path

‘Chuck’ ‘1.2.’

‘Donna’ ‘1.2.1.’

‘Eddie’ ‘1.2.2.’

‘Fred’ ‘1.2.3.’

For example, ‘Donna’ is the second child of the first child (‘Chuck’) 
of the root (‘Albert’). This assigns a partial ordering to the nodes of the 
trees. The main advantage of this notation is that you do not have to worry 
about long strings, but there is no real difference in the manipulations. The 
numbering does give an implied ordering to siblings that might have meaning.

3.10 XPath and XML

I have avoided mentioning XML, as this is a book on SQL, but I cannot avoid 
it forever because the two are becoming more and more linked. XML is a 
mark-up language that shows a data element hierarchy by inserting tags into 
the text file that holds the data elements.

XML is becoming the “Esperanto” for moving data from one source to 
another, and there are many tools that are de jure or de facto standards for 
doing queries on data while they are in XML. One of these tools is XPath, 
which is based on a fairly simple notation to describe paths to nodes in an 
XML document in a notation that resembles a path enumeration but with 
wildcards and other higher level features.

The nodes on the path can then be sent as input to functions. Older 
programmers can think of XPath as a nonprocedural version of IMS or other 
hierarchical database query languages.

There are tutorials on XPath available on the Internet. At the time of this 
writing (2011), there is http://www.w3schools.com/xpath/.

XPath includes over 100 built-in functions. There are functions for 
string values, numeric values, date and time comparison, node and QName 
manipulation, sequence manipulation, Booleans, and temporal comparisons 
as you have programming languages. However, there are navigational 
functions for finding and manipulating nodes and sequences.

The XML document is a combination of schema and data. Here is an 
example taken from http://www.w3schools.com/xpath/xpath_examples.asp. 
The <> and </> pairs indicate the nesting of the hierarchical structure and 
what would be the data type and domain in RDBMS.
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<?xml version="1.0" encoding="ISO–8859–1"?>

<bookstore>

<book category="COOKING">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year>
 <price>30.00</price>
</book>

<book category="CHILDREN">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
</book>

<book category="WEB">
 <title lang="en">XQuery Kick Start</title>
 <author>James McGovern</author>
 <author>Per Bothner</author>
 <author>Kurt Cagle</author>
 <author>James Linn</author>
 <author>Vaidyanathan Nagarajan</author>
 <year>2003</year>
 <price>49.99</price>
</book>

<book category="WEB">
 <title lang="en">Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year>
 <price>39.95</price>
</book>

</bookstore>

The syntax for XPath is also hierarchical. This embeds both hierarchical 
structure and program logic into one syntactic unit. XPath includes over 



3 . 1 0  X P a t h  a n d  X M L 	 47

100 built-in functions for strings, numerics, and temporal data comparisons. 
However, there are navigational functions for finding and manipulating 
nodes and sequences.

Here are some simple examples using our bookstore document. Slashes 
look like the directory trees in Linux and Windows, and square brackets hold 
functions that are applied at that level in the nesting.

/bookstore/book[last()] Selects the last book element that is the 

child of the bookstore element

/bookstore/book[last()–1] Selects the last but one book element that  

is the child of the bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are  

children of the bookstore element

//title[@lang] Selects all the title elements that have an 

attribute named lang

//title[@lang=‘eng’] Selects all the title elements that have an 

attribute named lang with a value of ‘eng’

/bookstore/book[price>35.00] Selects all the book elements of the 

bookstore element that have a price 

element with a value greater than 35.00

/bookstore/book[price>35.00]/title Selects all the title elements of the book 

elements of the bookstore element that have a 

price element with a value greater than 35.00
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4
Nested Sets Model of Hierarchies

Trees are often drawn as “boxes-and-arrows” charts and that graphic tends to 
lock your mental image of a tree into a graph structure. Another way of 
representing trees is to show them as nested sets. It is strange that this 
approach was overlooked for so long among SQL programmers. Many 
of us are old enough to have used The Art of Computer Programming 
(Donald Knuth, 978-0321751041) in college as our textbook and we 
should remember this representation of trees in a chapter of his book. 
Younger programmers think of it as “counting tags” in XML, HTML, and 
other mark-up languages. Mathematical programmers can think of it as 
parentheses or as, well, nested sets. 

Because SQL is a set-oriented language, this is a better model for 
the approach discussed here. Let us define an Organizational chart 
table to represent the hierarchy and people in our sample organization. 
The first column is the name of the member of this organization. I will 
explain the (lft, rgt) columns shortly, but for now, note that their names 
are abbreviations for “left” and “right,” which are reserved words in 
Standard SQL.

CREATE TABLE OrgChart

(member CHAR(10) NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL);
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INSERT INTO OrgChart (member, lft, rgt)

VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 11),

('Donna', 5, 6),

('Eddie', 7, 10);

To show a tree as nested sets, replace the boxes with ovals and then 
nest subordinate ovals inside their parents. Containment represents 
subordination. The root will be the largest oval and will contain every other 
node. Leaf nodes will be the innermost ovals, with nothing else inside them, 
and nesting will show the hierarchical relationship. This is a natural way to 
model a parts explosion, since a final assembly is made of physically nested 
assemblies that finally break down into separate parts. This tree (Figure 4.1) 
translates into this nesting of sets (Figure 4.2).

Using this approach, we can model a tree with (lft, rgt) nested sets with 
number pairs. These number pairs will always contain the pairs of their 
subordinates so that a child node is within the bounds of its parent. This is a 
version of the nested sets, flattened onto a number line (Figure 4.3).

If that mental model does not work for you, then visualize the nested 
sets model as a little worm with a Bates automatic numbering stamp 
crawling along the “boxes-and-arrows” version of the tree. The worm 

Albert
1 12

Bert
2 3

Chuck
4 11

Donna
5 6

Eddie
7 8

Fred
9 10

Figure 4.1 
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starts at the top, the root, and makes a complete trip around the tree. 
When he comes to a node, he puts a number in the cell on the side that 
he is visiting and his numbering stamp increments itself. Each node will 
get two numbers: one for the right (rgt) side and one for the left (lft) side. 
Computer science majors will recognize this as a preorder (or depth-first) 
tree traversal algorithm with a modification for numbering the nodes. 
This numbering has some predictable results that can be used for building 
queries (Figure 4.4).

4.1 Finding Root and Leaf Nodes

The root will always have a 1 in its lft column and twice the number of nodes 
in its rgt column. This is easy to understand; because the worm has to visit 
each node twice, once for the left side and once for the right side, the final 

Chuck

As nested circles

EddieDonna
Fred

Bert

Albert

Figure 4.2 
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Figure 4.3 
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count has to be twice the number of nodes in the whole tree. The root of the 
tree is found with the query

SELECT *

FROM Orgchart

WHERE lft = 1;

This query will take advantage of an index on the left value. A leaf node is 
one that has no children under it. In an adjacency matrix model, it is not that 
easy to find all the leaf nodes because you have to use a correlated subquery:

SELECT *

FROM OrgChart AS O1

WHERE NOT EXISTS

(SELECT *

FROM OrgChart AS O2

WHERE O1.member = O2.boss);

In the nested sets table, the difference between (lft, rgt) values of leaf 
nodes is always 1. Think of the little worm turning the corner as he crawls 
along the tree. That means you can find all leaf nodes with the extremely 
simple query

SELECT *

FROM Orgchart

WHERE (rgt - lft) = 1;

There is a further trick, to speed up queries. Build a unique index on either 
the left column or on the pair of columns (lft, rgt) and then you can rewrite 
the query to take advantage of the index. The previous query will also benefit.

Figure 4.4  Bates numbering stamp
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SELECT *

FROM Orgchart

WHERE lft = (rgt - 1);

The reason this improves performance is that the SQL engine can use an 
index on the lft column when it does not appear in an expression. Do not use 
(rgt − lft) = 1, as it might prevent the index from being used unless your SQL 
allows indexing on expressions

4.2 Finding Subtrees

Trees have many special properties and those properties are very useful to us. 
A tree is a graph that has no cycles in it. That is, no path folds back on itself 
to catch you in an endless loop when you follow it. Another defining prop-
erty is that there is always a path from the root to any other node in the tree.

Another useful property is that any node in the tree is the root of a subtree 
and certain properties of that subtree are immediately available from the (lft, 
rgt) pair. In the nested sets table, all the descendants of a node can be found 
by looking for nodes whose (lft, rgt) numbers are between the (lft, rgt) values 
of their parent node. This is the nesting expressed in number ranges instead 
of in a drawing of circles within circles.

Finally, a tree has exactly one node without a superior, the root. All 
other nodes can be reached by paths from the root. In the case of the nested 
sets model, it is the node where (rgt − lft + 1) = 2 * (SELECT COUNT(*) 
FROM TREE).

For example, to find out all subordinates of each boss in the organizational 
hierarchy, you would write:

SELECT Mgrs.member AS boss, Workers.member AS worker

FROM Orgchart AS Mgrs, Orgchart AS Workers

WHERE Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt

AND Workers.rgt BETWEEN Mgrs.lft AND Mgrs.rgt;

Look at the way the numbering was done and you can convince yourself 
that this search condition is too strict. We can drop the last predicate and 
simply use:

SELECT Mgrs.member AS boss, Workers.member AS worker

FROM Orgchart AS Mgrs, Orgchart AS Workers

WHERE Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt;



5 4 	 C H A P T E R  4 :  N E S T E D  S E T S  M O D E L  O F  H I E R A R C H I E S

This would tell you that everyone is also his own superior, so in some 
situations you would also add the predicate

.. AND Workers.lft < > Mgrs.lft

or change it to

WHERE Workers.lft > Mgrs.lft
AND Workers.lft < Mgrs.rgt;

This simple self-join query is the basis for almost everything that follows 
in the nested sets model.

4.3 Finding Levels and Paths in a Tree

The level of a node in a tree is the number of edges between the node 
and the root, where the larger the depth number, the farther away the 
node is from the root. A path is a set of edges that connect two nodes 
directly.

The nested sets model uses the fact that each containing set is “wider” 
(where width = (rgt − lft)) than the sets it contains. Obviously, the root will 
always be the widest row in the table. The level function is the number of 
edges between two given nodes; it is fairly easy to calculate. For example, to 
find the level of each worker, you would use

SELECT 02.member, COUNT(01.member) AS lvl

FROM OrgChart AS 01, OrgChart AS 02

WHERE 02.lft BETWEEN 01.lft AND 01.rgt

GROUP BY 02.member;

The expression COUNT(01.member) will count the node itself; if you 
prefer to start at zero, use (COUNT(01.member) − 1). You will see it done 
both ways in the literature.

4.3.1 Finding the Height of a Tree

The height of a tree is the length of the longest path in the tree. Because we 
know that this path runs from the root to a leaf node, we can write a query to 
find like this:
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SELECT MAX(level) AS height

FROM (SELECT 02.member, (COUNT(01.member) - 1)

FROM OrgChart AS 01, OrgChart AS 02

WHERE 02.lft BETWEEN 01.lft AND 01.rgt

GROUP BY 02.member) AS L1(member, level);

Other queries can be built from this tabular subquery expression of the 
nodes and their level numbers. If you find yourself using this subquery 
expression often, you might consider creating a VIEW from this expression.

4.3.2 Finding Levels of Subordinates

The adjacency model allows you to find immediate subordinates of a node 
immediately; you simply look in the columns that give the parent of each 
child of each node in the tree. The real problem is finding a given generation 
or level in the tree.

This becomes complicated in the nested sets model. Immediate 
subordinates are defined as personnel who have no other employee between 
themselves and their boss.

CREATE VIEW Immediate_Subordinates (boss, worker, lft, rgt)

AS SELECT Mgrs.member, Workers.member, Workers.lft, Workers.rgt

FROM OrgChart AS Mgrs, OrgChart AS Workers

WHERE Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt

AND NOT EXISTS -- no middle manager between the boss and us!

(SELECT *

FROM OrgChart AS MidMgr

WHERE MidMgr.lft BETWEEN Mgrs.lft AND Mgrs.rgt

AND Workers.lft BETWEEN MidMgr.lft AND MidMgr.rgt

AND MidMgr.member NOT IN (Workers.member, Mgrs.member));

You also need to look at Section 4.9 (Converting Nested Sets Model to 
Adjacency List) for better answers for immediate subordinates. I am simply 
giving an elaborate query here to show a pattern. Likewise, Mgrs.member 
could be replaced with Workers.boss in the SELECT statement.

There is a reason for setting this up as a VIEW and including the (lft, rgt) 
numbers of the children. The (lft, rgt) numbers for the parent of each node 
can be reconstructed by
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 SELECT boss, MIN(lft) - 1, MAX(rgt) + 1

 FROM Immediate_Subordinates

 GROUP BY boss;

This query can be generalized to any distance (:n) in the hierarchy, 
thus:

SELECT Workers.member, ' is ', :n, ' levels down from ', :my_member

FROM OrgChart AS Mgrs, OrgChart AS Workers

 WHERE Mgrs.member = :my_member

 AND Workers.lft BETWEEN Mgrs.lft

 AND Mgrs.rgt

 AND :n = (SELECT COUNT(MidMgr.member) + 1

FROM OrgChart AS MidMgr

WHERE MidMgr.lft BETWEEN Mgrs.lft

AND Mgrs.rgt

AND Workers.lft BETWEEN MidMgr.lft

AND MidMgr.rgt

AND MidMgr.member

NOT IN (Workers.member, Mgrs.member));

This query can be flattened out and probably runs faster without the 
subquery:

SELECT Workers.member, ' is ', :n, ' levels down from ', :my_member

 FROM OrgChart AS Mgrs, OrgChart AS Workers,

OrgChart AS MidMgr

WHERE Mgrs.member = :my_member

 AND Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt

 AND MidMgr.lft BETWEEN Mgrs.lft AND Mgrs.rgt

 AND Workers.lft BETWEEN MidMgr.lft AND MidMgr.rgt

 AND MidMgr.member NOT IN (Workers.member, Mgrs.member)

GROUP BY Workers.member

HAVING :n = COUNT(MidMgr.member);

In the nested sets model, queries based on subtrees are usually easier to 
write than those for individual nodes or other subsets of the tree.

Switching to another hierarchy, let's look at a simple parts explosion 
(Figure 4.5). This table will be modified in later examples to include more 
information, but for now, just assume that it looks like this.
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CREATE TABLE Assemblies

(part CHAR(2) NOT NULL

REFERENCES Inventory(part) -- assume an inventory

ON UPDATE CASCADE,

lft INTEGER NOT NULL,

rgt INTEGER NOT NULL,

 . . .);

INSERT INTO Assemblies

VALUES ('A', 1, 28),

('B', 2, 5),

('C', 6, 19),

('D', 20, 27),

('E', 3, 4),

('F', 7, 16),

('G', 17, 18),

('H', 21, 26),

A
1,28

B
2,5

C
6,19

D
20,27

E
3,4

I
8,9

F
7,16

G
17,18

J
10,15

M
11,12

N
13,14

K
22,23

L
24,25

H
21,26

Figure 4.5 
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('I', 8, 9),

('J', 10, 15),

('K', 22, 23),

('L', 24, 25),

('M', 11, 12),

('N', 13, 14);

If you want, show levels as a single row, where NULLs are used to show 
that there is no part at that level:

CREATE VIEW Flat_Parts(part, level_0, level_1, level_2, level_3)

AS

SELECT A1.part,

CASE WHEN COUNT(A3.part) = 2

THEN A2.node

ELSE NULL END AS lvl_0,

CASE WHEN COUNT(A3.part) = 3

THEN A2.node

ELSE NULL END AS lvl_1,

CASE WHEN COUNT(A3.part) = 4

THEN A2.part

ELSE NULL END AS lvl_2,

CASE WHEN COUNT(A3.part) = 5

THEN A2.part

ELSE NULL END AS lvl_3

 FROM Assemblies AS A1, -- subordinates

Assemblies AS A2, -- superiors

Assemblies AS A3 -- items in between them

 WHERE A1.lft BETWEEN A2.lft AND A2.rgt

 AND A3.lft BETWEEN A2.lft AND A2.rgt

 AND A1.lft BETWEEN A3.lft AND A3.rgt

 GROUP BY A1.part, A2.part;

Now you can write a query to show the path from a node to the root of the 
tree horizontally:

SELECT part, MAX(level_0), MAX(level_1),

MAX(level_2), MAX(level_3)

 FROM Flat_Parts

 GROUP BY part;
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You could also fold all of this into one query, but the VIEW is useful for 
other reports. Another way to flatten the tree is credited to Richard Romley of 
Smith-Barney in New York City. He claims that the following query runs with 
half the I/O of the VIEW-based solution in SQL Server:

SELECT A1.part,

(SELECT part

FROM Assemblies

    WHERE lft = MAX(A2.lft)) AS lvl_0,

(SELECT part

FROM Assemblies

    WHERE lft = MAX(A3.lft)) AS lvl_1,

(SELECT part

FROM Assemblies

    WHERE lft = MAX(A4.lft)) AS lvl_2,

(SELECT part

FROM Assemblies

    WHERE lft = MAX(A5.lft)) AS lvl_3

 FROM Assemblies AS A1

LEFT OUTER JOIN

Assemblies AS A2

ON A1.lft > A2.lft AND A1.rgt < A2.rgt
LEFT OUTER JOIN

Assemblies AS A3

ON A2.lft > A3.lft AND A2.rgt < A3.rgt
LEFT OUTER JOIN

Assemblies AS A4

ON A3.lft > A4.lft AND A3.rgt < A4.rgt
LEFT OUTER JOIN

Assemblies AS A5

ON A4.lft > A5.lft AND A4.rgt < A5.rgt
 GROUP BY A1.part;

This is a little tricky on two points. The use of an aggregate in a WHERE 
clause is generally not allowed, but because the MAX() is an outer reference 
in the scalar subqueries, it is valid Standard SQL. The nested LEFT OUTER 
JOINs reflect nesting of the (lft, rgt) ranges, but they will return NULLs when 
there is nothing at a particular level.

The result is as follows.
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Result
part level_0 level_1 level_2 level_3

‘A’ NULL NULL NULL NULL

‘B’ ‘A’ NULL NULL NULL

‘C’ ‘A’ NULL NULL NULL

‘D’ ‘A’ NULL NULL NULL

‘E’ ‘B’ ‘A’ NULL NULL

‘F’ ‘C’ ‘A’ NULL NULL

‘G’ ‘C’ ‘A’ NULL NULL

‘H’ ‘D’ ‘A’ NULL NULL

‘I’ ‘F’ ‘C’ ‘A’ NULL

‘J’ ‘F’ ‘C’ ‘A’ NULL

‘K’ ‘H’ ‘D’ ‘A’ NULL

‘L’ ‘H’ ‘D’ ‘A’ NULL

‘M’ ‘J’ ‘F’ ‘C’ ‘A’

‘N’ ‘J’ ‘F’ ‘C’ ‘A’

Both approaches are compact, easy to follow, and easy to expand to as 
many levels as desired.

4.3.3 Finding Oldest and Youngest Subordinates

The nested sets model usually assumes that subordinates are ranked by age, 
seniority, or in some way from left to right among the immediate subordi-
nates of a node. Because the adjacency model does not have a concept of 
such rankings, the following queries are not possible without extra columns 
to hold the rankings in the adjacency list model.

Most senior subordinates are found by this query:

SELECT Workers.member, ' is the most senior subordinate of ', :my_member

 FROM OrgChart AS Mgrs, OrgChart AS Workers

 WHERE Mgrs.member = :my_member

 AND Workers.lft = Mgrs.lft + 1; -- leftmost child

Most junior subordinates are found by this query:

SELECT Workers.member, ' is the least senior subordinate of ', :my_member

 FROM OrgChart AS Mgrs, OrgChart AS Workers

 WHERE Mgrs.member = :my_member

 AND Workers.rgt = Mgrs.rgt - 1; -- rightmost child
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The real trick is to find the nth sibling of a parent in a tree. If you remember the 
old Charlie Chan movies, Detective Chan always referred to his sons by number, 
such as “Number One son,” “Number Two son,” and so forth. This becomes a 
self-join on the set of immediate subordinates of the parent under consideration, 
which is why I created a VIEW for telling us the immediate subordinates before 
introducing this problem. The query is much easier to read using the VIEW.

SELECT S1.worker, ' is the ', :n, '-th subordinate of ', S1.boss

 FROM Immediate_Subordinates AS S1

 WHERE S1.boss = :my_member

 AND :n = (SELECT COUNT(S2.lft) - 1

FROM Immediate_Subordinates AS S2

WHERE S2.boss = S1.boss

AND S2.boss < > S1.worker
AND S2.lft BETWEEN 1 AND S1.lft);

Note that you have to subtract one to avoid counting the parent as his own 
child. Here is another way to do this and get a complete ordered listing of siblings:

SELECT O1.member AS boss, S1.worker,

COUNT(S2.lft) AS sibling_order

 FROM Immediate_Subordinates AS S1,

Immediate_Subordinates AS S2,

OrgChart AS O1

 WHERE S1.boss = O1.member

 AND S2.boss = S1.boss

 AND S1.worker < > S2.worker
 AND S2.lft <= S1.lft

 GROUP BY O1.member, S1.worker;

The siblings of a given node can be found by looking for a common parent 
and rows on the same level. Using the assemblies parts explosion tree, we can 
define a view with the level number in it as

CREATE VIEW Siblings (lvl, part, lft, rgt)

AS SELECT COUNT(A2.lft), A1.part, A1.lft, A1.rgt

  FROM Assemblies AS A1, Assemblies AS A2

  WHERE A1.lft BETWEEN A2.lft AND A2.rgt

 GROUP BY A1.part, A1.lft, A1.rgt;

This VIEW can then be used for
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SELECT DISTINCT S2.part

 FROM Siblings AS S1, Siblings AS S2

 WHERE S1.part = :my_sibling_part

 AND EXISTS

(SELECT *

FROM Siblings AS S0

    WHERE S1.lft BETWEEN S0.lft AND S0.rgt

AND S2.lft BETWEEN S0.lft AND S0.rgt

AND S0.lvl = S1.lvl - 1

AND A1.lvl = A2.lvl);

This says look at the parent of your current node (part) and then find all 
the immediate children of the parent node and they are your siblings.

4.3.4 Finding a Path

To find and number nodes in the path from a :start_node to a :finish_node, 
you can repeat the nested set “BETWEEN predicate trick” twice to form an 
upper and a lower boundary on the set.

 SELECT A2.part,

    (SELECT COUNT(*)

FROM Assemblies AS A4

WHERE A4.lft BETWEEN A1.lft AND A1.rgt

AND A2.lft BETWEEN A4.lft AND A4.rgt) AS path_nbr

  FROM Assemblies AS A1, Assemblies AS A2, Assemblies AS A3

 WHERE A1.part = :start_node

  AND A3.part = :finish_node

  AND A2.lft BETWEEN A1.lft AND A1.rgt

  AND A3.lft BETWEEN A2.lft AND A2.rgt;

Using the assemblies parts explosion tree, this query would return the 
following table for the path from ‘C’ to ‘N’, with 1 being the highest starting 
node and the other nodes numbered in the order they must be traversed.

node path_nbr

C 1

F 2

J 3

N 4
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However, if you just need a column to use in a sort for output to a host 
language, then replace the subquery expression with “(A2.rgt - A2.lft) AS 
sort_col” and use an “ORDER BY sort_col” clause in a cursor.

4.3.5 Finding Relative Position

Given two nodes, can you find their relative position in the hierarchy; that 
is, who is the subordinate of whom or are they in different subtrees of the 
hierarchy?

SELECT CASE WHEN :first_member = :second_member

THEN :first_member || ' is ' || :second_member

WHEN O1.lft BETWEEN O2.lft AND O2.rgt

THEN :first_member || ' subordinate to ' || :second_member

WHEN O2.lft BETWEEN O1.lft AND O1.rgt

THEN :second_member || ' subordinate to ' || :first_member

ELSE :first_member || 'no relation to ' || :second_member

    END

 FROM OrgChart AS O1, OrgChart AS O2

 WHERE O1.member = :first_member

 AND O2.member = :second_member;

Because this query will report all cases, if the same member holds 
various positions in the organizational chart, several rows can be returned. 
It also will report no relationship if one or both of the parameters is not in 
the table at all. 

4.4 Functions in the Nested Sets Model

The level of a given node is a matter of counting how many (lft, rgt) group-
ings (superiors) this node's lft or rgt is within. You can get this by modifying 
the sense of the BETWEEN predicate in the query for subtrees:

SELECT :my_member, COUNT(Mgrs.member) AS lvl

 FROM OrgChart AS Mgrs, OrgChart AS Workers

 WHERE Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt

 AND Workers.member = :my_member;

Let's assume that this organization is involved in a pyramid sales 
operation and that a supervising member gets credit for the total sales of 
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himself and all his subordinates. First, we need to have a table for the sales 
that each member made

CREATE TABLE Sales

(member CHAR(10) NOT NULL PRIMARY KEY,

 sale_amt DECIMAL(12,4) NOT NULL);

SELECT :my_member, SUM(S1.sale_amt) AS total_sales

 FROM OrgChart AS Mgrs, OrgChart AS Workers,

Sales AS S1

 WHERE Workers.lft BETWEEN Mgrs.lft AND Mgrs.rgt

 AND P1.job_title = Workers.job_title

 AND Mgrs.member = :my_member;

A slightly trickier function involves using quantity columns in the nodes 
to compute an accumulated total. This usually occurs in parts explosions, 
where one assembly may contain several occurrences of subassemblies. Let's 
assume we have a table called “Blueprint” with the price and quantity for 
each part required for each subassembly; for example, an assembly might 
require 10 Number 5 machine screws at $0.07 each. The total cost of any 
given part would be:

SELECT :this_part, SUM(Subassem.qty * Subassem.price) AS totalcost

 FROM Blueprint AS Assembly, Blueprint AS Subassem

 WHERE Subassem.lft

BETWEEN Assembly.lft AND Assembly.rgt

 AND Assembly.part = :this_part;

The use of AVG(), MIN(), and MAX() aggregate functions is possible, but 
you have to watch out for the meaning of the results in the context of your 
data model.

4.5 Deleting Nodes and Subtrees

Another interesting property of the nested sets model is that subtrees must 
fill from lft to rgt. In other tree representations, it is possible for a parent 
node to have a right child and no left child, but this can make traversals 
more complicated in exchange for being able to assign significance to the 
position of a node within a group of siblings.
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Deleting a single node in the middle of the tree is conceptually harder than 
removing whole subtrees in the nested sets model. When you remove a node 
in the middle of the tree, you have to decide how to fill the hole. There are 
several basic ways. The first method is to connect the children to the parent of 
the original node—Mom dies and the kids are adopted by Grandma. In effect, 
the position itself is removed. This is a vertical promotion of an entire subtree.

Another vertical promotion is to move only a single child node to the 
deleted node's position—give the business to the oldest son. The problem is 
that when the son is promoted, this leaves a vacancy in his former position.

The second method is horizontal promotion. The sibling to the deleted 
node's right (i.e., Next most senior) moves over to the vacant position—Dad 
dies and his oldest brother takes over the business. This assumes that there is 
such a brother to take the vacant position.

In practice, you will find a mixture of these methods as vacancies are 
created in the hierarchy and have to be handled. As I said, single node 
deletion is not easy.

A Website with a demonstration program for the nested sets model in 
PHP written by Arne Klempert (arne@klempert.de) can be found at http://
www.klempert.de/php/nested_sets/demo/. It is under the terms of the GNU 
Lesser General Public License. The demo allows you to add or delete nodes 
or subtrees with a simple interface.

4.5.1 Deleting Subtrees

This query will take the downsized employee as a parameter and remove 
the subtree rooted under him. The trick in this query is that we are using 
the node value, but we need to get the (lft, rgt) values to do the work. One 
answer is scalar subqueries:

DELETE FROM OrgChart

 WHERE lft BETWEEN

 (SELECT lft FROM OrgChart WHERE member = :downsized_guy)

  AND

 (SELECT rgt FROM OrgChart WHERE member = :downsized_guy);

The problem is that this will result in gaps in the sequence of nested set 
numbers. You can still do most tree queries on a table with such gaps, but 
you will lose the algebraic properties that let you easily find leaf nodes, the 
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size of the subtrees, and other structural properties. Let's put the query and 
“housekeeping” into a single procedure instead:

CREATE PROCEDURE DropTree (IN downsized CHAR(10))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE drop_member CHAR(10);

DECLARE drop_lft INTEGER;

DECLARE drop_rgt INTEGER;

-- save the dropped subtree data with a singleton SELECT

SELECT member, lft, rgt

 INTO drop_member, drop_lft, drop_rgt

 FROM OrgChart

 WHERE member = downsized;

-- subtree deletion is easy

DELETE FROM OrgChart

 WHERE lft BETWEEN drop_lft and drop_rgt;

-- close up the gap left by the subtree

UPDATE OrgChart

 SET lft = CASE

WHEN lft > drop_lft
THEN lft - (drop_rgt - drop_lft + 1)

ELSE lft END,

rgt = CASE

WHEN rgt > drop_lft
THEN rgt - (drop_rgt - drop_lft + 1)

ELSE rgt END

 WHERE lft > drop_lft
  OR rgt > drop_lft;

END;

A complete procedure should have some error handling, but I am leaving 
that as an exercise for the reader. The expression (drop_rgt − drop_lft + 1) 
is the size of the gap and we renumber every node to the right of the gap by 
that amount. The WHERE clause makes the two ELSE clauses redundant, but 
because they make me feel safer, I write them anyway.
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If you used only the original DELETE FROM statement instead of the 
procedure just given or build a table from several different sources, you could 
get multiple gaps that you wish to close. This requires a complete renumbering:

UPDATE OrgChart

 SET lft = (SELECT COUNT(*)

FROM (SELECT lft FROM OrgChart

UNION ALL

SELECT rgt FROM OrgChart) AS LftRgt (seq)

WHERE seq <= lft),
rgt = (SELECT COUNT(*)

FROM (SELECT lft FROM OrgChart

UNION ALL

SELECT rgt FROM OrgChart) AS LftRgt (seq)

WHERE seq <= rgt);

Alternately, if the derived table LftRgt is a bit slow, you can use a VIEW, 
which has the actual replacement numbers for the whole table.

CREATE VIEW SeqLftRgt (old_seq, new_seq)

AS

SELECT old_seq, ROW_NUMBER() OVER (ORDER BY seq) AS new_seq

 FROM(SELECT lft FROM OrgChart

UNION ALL

SELECT rgt FROM OrgChart)

AS X(old_seq, new_seq)

 WHERE old_seq < > new_seq;

Now the update can only be done if the VIEW is not empty.

IF EXISTS (SELECT * FROM SeqLftRgt)

THEN UPDATE

    SET lft

= COALESCE ((SELECT new_seq

FROM SeqLftRgt AS S

WHERE lft = old_seq), lft),

rgt

= COALESCE ((SELECT new_seq

FROM SeqLftRgt AS S

WHERE rgt = old_seq), rgt);

END IF;
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But you can now use a MERGE statement.

MERGE INTO OrgChart

USING (SELECT lft_rgt, ROW_NUMBER() OVER()ORDER BY lft_rgt AC)

    FROM (SELECT lft FROM Orgchart

UNION ALL

SELECT rgt FROM Orgchart)

AS X(lft_rgt)

 )AS X(old_seq, new_seq)

 ON X2.old_seq IN (OrgChart.lft, OrgChart.rgt)

 WHEN MATCHED

 THEN UPDATE OrgChart

    SET lft = CASE WHEN lft = old_seq THEN new_seq ELSE lft END,

rgt = CASE WHEN rgt = old_seq THEN new_seq ELSE rgt END;

As the optimizers get better, this single statement should be the best 
choice.

4.5.2 Deleting a Single Node

Deleting a single node in the middle of the tree is harder than removing 
whole subtrees. When you remove a node in the middle of the tree, you have 
to decide how to fill the hole. One approach is to put a “vacant position” 
marker in the organizational chart so that the structure does not change. 
This might be followed by moving existing personnel into the vacancies as 
they are created.

There are two basic ways to change the structure when a node is removed. 
One method is to connect the children to the parent of the original node—
Mom dies and the kids are adopted by Grandma, as shown in Figure 4.6.

This happens automatically in the nested sets model; you just delete the 
node and its children are already contained in their ancestor nodes. Now you 
need to renumber nodes to the left of the deletion.

The second method is to promote one of the children to the original 
node's position—Dad dies and the oldest son takes over the business, as 
shown in Figure 4.7. The oldest child is always shown as the leftmost child 
node under its parent.

There is a problem with this operation, however. If the older child has 
children of his own, then you have to decide how to handle them and so on 
down the tree until you get to a leaf node.
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Let's use a ‘{vacant}’ as a marker for the vacancy. That way we can promote 
the oldest subordinate to the vacant job and then decide if we want to fill his 
previous position with his oldest subordinate.

CREATE PROCEDURE Downsize(IN downsized_guy CHAR(10))

LANGUAGE SQL

DETERMINISTIC

UPDATE OrgChart

 SET member

= CASE WHEN OrgChart.member = downsized_guy

AND OrgChart.lft +1 = OrgChart.rgt -- leaf node

THEN '{vacant}'

Bert

Bert

Albert

Albert

Donna

Donna

Eddie

Eddie

Chuck

Fred

Fred

Figure 4.6 
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WHEN OrgChart.member = downsized_guy

AND OrgChart.lft +1 < > OrgChart.rgt -- promote subordinate
THEN (SELECT O1.member

FROM OrgChart AS O1

WHERE OrgChart.lft + 1 = O1.lft)

WHEN OrgChart.member -- vacate subordinate position

= (SELECT O1.member

FROM OrgChart AS O1

WHERE OrgChart.lft + 1 = O1.lft)

THEN '{vacant}'

ELSE member END;

Bert

Albert

Donna Eddie

Chuck

Fred

Bert

Donna

Eddie Fred

Albert

Figure 4.7 
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This leads to cases:

	 1.	 A leaf node has no subordinates to promote, so the node becomes 
vacant.

	 2.	 If there are subordinates, then we have two steps:
a.	 promote a subordinate
b.	 vacate the subordinate's current position 

4.5.3 Pruning a Set of Nodes from a Tree

An interesting version of this problem is displaying the tree with some of the 
subtrees pruned from the tree. This is usually a dynamic process used for 
displaying the tree structure in the front end. The most common example is 
clicking on the “+” and “−” boxes of a Windows directory display to open 
and close nested files.

First, build a table for the root nodes of the subtrees you wish to hide:

CREATE TABLE Cuts (node CHAR(5) NOT NULL PRIMARY KEY);

Next, use a VIEW to drop subtrees rooted at cut nodes:

CREATE VIEW PrunedTree (node, lft, rgt)

AS

SELECT T1.T1.part, T1.lft, T1.rgt

 FROM Tree AS T1, Tree AS T2, Cuts AS C1

 WHERE T1.lft

NOT BETWEEN T2.lft +1

AND T2.rgt -1

 AND C1.part = T2.part

 GROUP BY T1.part, T1.lft, T1.rgt

HAVING COUNT(*) = (SELECT COUNT(*) FROM Cuts);

These actions will not renumber the (lft, rgt) pairs, but we can do that if 
you need it. Otherwise, the “between” predicates for nesting are still valid 
and are all that is required for displaying the tree.

4.6 Closing Gaps in the Tree

The important thing is to preserve the nested subsets based on (lft, rgt) num-
bers. As you remove nodes from a tree, you create gaps in the nested sets 
numbers. These gaps do not destroy the subset property, but can present 
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other problems and should be closed. This is like garbage collection in other 
languages. The easiest way to understand the code is to break it up into a 
series of meaningful VIEWs and then use VIEWs to UPDATE the tree table. 
This VIEW “flattens out” the whole tree into a list of nested sets numbers, 
regardless of whether they are lft or rgt numbers.

Let's start with a table of assemblies and add some constraints to it.

CREATE TABLE Assemblies

(part CHAR(2) PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE,

 rgt INTEGER NOT NULL UNIQUE,

 CONSTRAINT valid_lft CHECK (lft > 0),
 CONSTRAINT valid_rgt CHECK (rgt > 1),
 CONSTRAINT valid_range_pair CHECK (lft < rgt));

INSERT INTO Assemblies

VALUES ('A', 1, 28),

('B', 2, 5),

('C', 6, 19),

('D', 20, 27),

('E', 3, 4),

('F', 7, 16),

('G', 17, 18),

('H', 21, 26),

('I', 8, 9),

('J', 10, 15),

('K', 22, 23),

('L', 24, 25),

('M', 11, 12),

('N', 13, 14);

First, we can use a view with all the (lft, rgt) numbers in a single 
column.

CREATE VIEW LftRgt (visit)

AS SELECT lft FROM Assemblies

 UNION

 SELECT rgt FROM Assemblies;

This VIEW finds left numbers in gaps instead of in the tree.
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CREATE VIEW Firstvisit (visit)

AS SELECT (visit + 1)

  FROM  LftRgt

  WHERE (visit + 1) NOT IN (SELECT visit FROM LftRgt)

AND (visit + 1) > 0;

The final predicate is to keep you from going past the leftmost limit of the 
root node, which is always 1. Likewise, this VIEW finds the right nested sets 
numbers in gaps instead of in the tree.

CREATE VIEW LastVisit (visit)

AS SELECT (visit - 1)

  FROM LftRgt

  WHERE (visit - 1) NOT IN (SELECT visit FROM LftRgt)

AND (visit - 1) < 2 * (SELECT COUNT(*) FROM LftRgt);

The final predicate is to keep you from going past the rightmost limit 
of the root node, which is twice the number of nodes in the tree. You 
then use these two VIEWs to build a table of the gaps that have to be 
closed.

CREATE VIEW Gaps (commence, finish, spread)

AS SELECT A1.visit, L1.visit, ((L1.visit - A1.visit) + 1)

  FROM Firstvisit AS A1, LastVisit AS L1

  WHERE L1.visit = (SELECT MIN(L2.visit)

FROM LastVisit AS L2

WHERE A1.visit <= L2.visit);
CREATE PROCEDURE X1()

LANGUAGE SQL

DETERMINISTIC

WHILE EXISTS (SELECT * FROM Gaps)

 DO UPDATE Assemblies

    SET rgt = CASE

WHEN rgt > (SELECT MIN(commence) FROM Gaps)
THEN rgt - 1 ELSE rgt END,

lft = CASE

WHEN lft > (SELECT MIN(commence) FROM Gaps)
THEN lft - 1 ELSE lft END;

END WHILE;
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CREATE VIEW Gaps (commence, finish, spread)

AS SELECT A1.visit, L1.visit, ((L1.visit - A1.visit) + 1)

  FROM Firstvisit AS A1, LastVisit AS L1

  WHERE L1.visit = (SELECT MIN(L2.visit)

FROM LastVisit AS L2

WHERE A1.visit <= L2.visit);

This query will tell you the start and finish nested sets numbers of the 
gaps, as well as their spread. It makes a handy report in itself, which is why I 
have shown it with the redundant finish and spread columns. But that is not 
why we created it. It can be used to “slide” everything over to the left, thus:

CREATE PROCEDURE X2()

LANGUAGE SQL

DETERMINISTIC

-- This will have to be repeated until gaps disappear

WHILE EXISTS (SELECT * FROM Gaps)

DO UPDATE Assemblies

    SET rgt = CASE

WHEN rgt > (SELECT MIN(commence) FROM Gaps)
THEN rgt - 1 ELSE rgt END,

lft = CASE

WHEN lft > (SELECT MIN(commence) FROM Gaps)
THEN lft - 1 ELSE lft END;

END WHILE;

The actual number of iterations is given by comparing the size of the 
original table and the final size after the gaps are closed. This method keeps 
the code fairly simple at this level, but the VIEWs under it are pretty tricky 
and could take a lot of execution time. It would seem reasonable to use the 
gap size to speed up the closure process, but that can get tricky when more 
than one node has been dropped.

4.7 Summary Functions on Trees

There are tree queries that deal strictly with the nodes themselves and have 
nothing to do with the tree structure at all. For example, what is the name 
of the president of the company? How many people are in the company? Are 
there two people with the same name working here? These queries are han-
dled with the usual SQL queries and there are no surprises.
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Other types of queries do depend on the tree structure. For example, what 
is the total weight of a finished assembly (i.e., the total of all of its subassembly 
weights)? Do Harry and John report to the same boss? And so forth.

Use of the BETWEEN predicate with a GROUP BY and aggregate 
functions lets us do basic hierarchical summaries, such as finding the total 
salaries of the subordinates of each employee.

SELECT O2.member, SUM(O1.salary) AS total_salary_budget

FROM OrgChart AS O1, Personnel AS O2

WHERE O1.lft BETWEEN O2.lft AND O2.rgt

GROUP BY O2.member;

Any other aggregate function, such as MIN(), MAX(), AVG(), and 
COUNT(), can be used along with CASE expressions and function calls. You 
can be pretty creative here, but there is one serious problem to watch out for. 
This query format assumes that the structure within the subtree rooted at 
each node does not matter.

4.7.1 Iterative Parts Update

Let's consider a sample database that shows a parts explosion for a Frammis 
in a nested sets representation. A Frammis is the imaginary device that holds 
those widgets MBA students are always marketing in their textbooks. This is 
built from the assemblies table we have been using, with extra columns for the 
quantity and weights of the various assemblies. As an aside, constraint names 
in Standard SQL must be unique at the schema level, not the table level.

CREATE TABLE Frammis

(part CHAR(2) PRIMARY KEY,

 qty INTEGER NOT NULL

CONSTRAINT positive_qty CHECK (qty > 0),
 wgt INTEGER DEFAULT 0 NOT NULL,

 CONSTRAINT non_negative_wgt

  CHECK ((wgt = 0 AND rgt-lft > 1) OR (wgt > 0 AND rgt-lft = 1)),
 lft INTEGER NOT NULL UNIQUE

  CONSTRAINT valid_lft CHECK (lft > 0),
 rgt INTEGER NOT NULL UNIQUE

  CONSTRAINT valid_rgt CHECK (rgt > 1),
 CONSTRAINT valid_range_pair CHECK (lft < rgt));

We initially load it with these data:
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Frammis
part qty wgt lft rgt

‘A’ 1 0 1 28

‘B’ 1 0 2 5

‘C’ 2 0 6 19

‘D’ 2 0 20 27

‘E’ 2 12 3 4

‘F’ 5 0 7 16

‘G’ 2 6 17 18

‘H’ 3 0 21 26

‘I’ 4 8 8 9

‘J’ 1 0 10 15

‘K’ 5 3 22 23

‘L’ 1 4 24 25

‘M’ 2 7 11 12

‘N’ 3 2 13 14

Leaf nodes are the most basic parts, the root node is the final assembly, 
and the nodes in between are subassemblies. Each part or assembly has a 
unique catalog number (in this case one or two letters), a weight, and the 
quantity of this unit that is required to make the next unit above it.

The Frammis table is a convenient fiction to keep examples simple. In 
a real schema for a parts explosion, there should be other tables. One such 
table would be an Assembly table to describe the structural relationship of 
the assemblies. Another would be an Inventory or Parts table to describe each 
indivisible part of the assemblies. There would also be tables for suppliers, 
for estimated assembly times, and so forth. For example, parts data in the 
Frammis table might be split out and put into a table like this:

CREATE TABLE Parts

(part_id CHAR(2) NOT NULL PRIMARY KEY,

 part_name VARCHAR(15) NOT NULL,

 wgt INTEGER NOT NULL

  CHECK (wgt >= 0),
 supplier_nbr INTEGER NOT NULL

REFERENCES Suppliers (supplier_nbr),

 ..);

The quantity has no meaning in the Parts table. If a part is an undividable 
piece of raw material it will have a weight and other physical attributes. 
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Thus we might have a wheel made from steel that we buy from an outside 
supplier that we later replace with a wheel made from aluminum that we buy 
from a different supplier and substitute into the assemblies that use wheels. It 
is a different wheel, but the same function and quantity as the old wheel.

Likewise, we might stop making our own motors and start buying them 
from a supplier. The motor assembly would still be in the tree and it would 
still be referred to by an assembly code, but its subordinates would disappear. 
In effect, the “blueprint” for the assemblies is shown in the nesting of the 
nodes of the assemblies table with quantities added.

The iterative procedure for calculating the weight of any part is fairly 
straightforward. If the part has no children, just use its own weight. For 
each of its children, if they have no children, then their contribution is their 
weight times their quantity. If they do have children, their contribution is the 
total of the quantity times the weight of all the children.

CREATE PROCEDURE WgtCalc_1 ()

LANGUAGE SQL

DETERMINISTIC

BEGIN

UPDATE Frammis -- clear out the weights

 SET wgt = 0

 WHERE lft < (rgt - 1);
WHILE EXISTS (SELECT * FROM Frammis WHERE wgt = 0)

DO UPDATE Frammis

SET wgt =

CASE -- all the children have a weight computed

WHEN 0 < ALL (SELECT C.wgt
FROM Frammis AS C

LEFT OUTER JOIN

Frammis AS B

ON B.lft

= (SELECT MAX(S.lft)

FROM Frammis AS S

WHERE C.lft > S.lft
AND C.lft < S.rgt)

WHERE B.part = Frammis.part)

THEN (SELECT COALESCE (SUM(C.wgt * C.qty), Frammis.wgt)

FROM Frammis AS C

LEFT OUTER JOIN
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Frammis AS B

ON B.lft

= (SELECT MAX(S.lft)

FROM Frammis AS S

WHERE C.lft > S.lft
AND C.lft < S.rgt)

WHERE B.part = Frammis.part)

ELSE Frammis.wgt END;

END WHILE;

END;

This will give us this result, after moving up the tree, one level at a time, 
as shown in Figures 4.8 thru 4.12.

F
qty=5, wgt= ?

E
qty=2, wgt=12

B
qty=1, wgt=24

C
qty=2, wgt= ?

A
qty=1, wgt= ?

D
qty=2, wgt= ?

G
qty=2, wgt=6

I
qty=4, wgt=8

K
qty=5, wgt=3

L
qty=1, wgt=4

M
qty=2, wgt=7

Iteration one, leaf  nodes only

N
qty=3, wgt=2

J
qty=1, wgt= ?

H
qty=3, wgt= ?

Figure 4.8 
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Frammis
part qty wgt lft rgt

A 1 682 1 28

B 1 24 2 5

C 2 272 6 19

D 2 57 20 27

E 2 12 3 4

F 5 52 7 16

G 2 6 17 18

H 3 19 21 26

I 4 8 8 9

J 1 20 10 15

K 5 3 22 23

L 1 4 24 25

M 2 7 11 12

N 3 2 13 14
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qty=1, wgt= ?

C
qty=2, wgt= ?
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qty=1, wgt=24

E
qty=2, wgt=12

F
qty=5, wgt= ?
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M
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Iteration two

N
qty=3, wgt=2
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qty=1, wgt=20

K
qty=5, wgt=3

L
qty=1, wgt=4

D
qty=2, wgt= ?

Figure 4.9 
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The weight of an assembly will be calculated as the total weight of all 
its subassemblies. Look at the M and N leaf nodes; the table says that we 
need two M units weighing 7 kilograms each, plus three N units weighing 
2 kilograms each, to make one J Assembly. Therefore, a J assembly weighs 
((2 * 7) + (3 * 2)) = 20 kilograms. This process is iterated from the leaf 
nodes up the tree, one level at a time until the total weight appears in the 
root node.

4.7.2 Recursive Parts Update

Let's define a recursive function WgtCalc() that takes part as an input and 
returns the weight of that part. To compute the weight, the function assumes 
that the input is a parent node in the tree and sums the quantity times the 
weight for all the children.

A
qty=1, wgt= ?

C
qty=2, wgt= ?

D
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E
qty=2, wgt=12

F
qty=5, wgt=52
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qty=1, wgt=20

K
qty=5, wgt=3

L
qty=1, wgt=4

M
qty=2, wgt=7

Iteration three

N
qty=3, wgt=2

G
qty=2, wgt=6

H
qty=3, wgt=19

I
qty=4, wgt=8

B
qty=1, wgt=24

Figure 4.10 
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If there are no children, it returns just the parent's weight, which means 
the node was a leaf node. If any child is itself a parent, the function calls itself 
recursively to resolve that part's weight.

CREATE FUNCTION WgtCalc2 (IN my_part CHAR(2))

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

-- recursive function

RETURN

(SELECT COALESCE(SUM(Subassemblies.qty

* CASE WHEN Subassemblies.lft + 1 = Subassemblies.rgt

THEN Subassemblies.wgt

ELSE WgtCalc (Subassemblies.part)

END), MAX(Assemblies.wgt))

A
qty=1, wgt= ?

B
qty=1, wgt=24

C
qty=2, wgt=272

D
qty=2, wgt=57

E
qty=2, wgt=12

F
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G
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H
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I
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J
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Iteration four
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L
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M
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N
qty=3, wgt=2

Figure 4.11 
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 FROM Frammis AS Assemblies

LEFT OUTER JOIN

Frammis AS Subassemblies

ON Assemblies.lft < Subassemblies.lft
AND Assemblies.rgt > Subassemblies.rgt
AND NOT EXISTS

(SELECT *

FROM Frammis

WHERE lft < Subassemblies.lft
AND lft > Assemblies.lft
AND rgt > Subassemblies.rgt
AND rgt < Assemblies.rgt)

 WHERE Assemblies.part = my_part);

We can use the function in a VIEW to get the total weight.
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qty=1, wgt=24

Iteration five, the root

Figure 4.12 
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CREATE VIEW TotalWeight (part, qty, wgt, lft, rgt)

AS

SELECT part, qty, WgtCalc(part, lft, rgt)

FROM Frammis;

Of course, the UPDATE is now trivial …

UPDATE Frammis SET wgt = WgtCalc(part);

4.8 Inserting and Updating Trees

Updates to nodes are done by searching for the key of each node; there 
is nothing special about them. However, rearranging the structure of 
the tree is tricky because figuring out the (lft, rgt) nested sets numbers 
requires a good bit of algebra in a large tree. As a programming project, 
you might want to build a tool that takes a “boxes-and-arrows” graphic 
and converts it into a series of UPDATE and INSERT statements. Inserting 
a subtree or a new node involves finding a place in the tree for the new 
nodes, spreading the other nodes apart by incrementing their nested 
sets numbers, and then renumbering the subtree to fit into the gap cre-
ated. This is basically the deletion procedure in reverse. First determine 
the parent for the node and then spread the nested sets numbers out two 
positions to the right.

CREATE PROCEDURE InsertNewNode

(IN new_part CHAR(2), IN parent_part CHAR(2),

 IN new_qty INTEGER, IN new_wgt INTEGER)

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE parent INTEGER;

SET parent = (SELECT rgt

FROM Frammis

WHERE part = parent_part);

UPDATE Frammis

 SET lft = CASE WHEN lft > parent
THEN lft + 2

ELSE lft END,
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rgt = CASE WHEN rgt >= parent
THEN rgt + 2

ELSE rgt END

 WHERE rgt >= parent;

INSERT INTO Frammis (part, qty, wgt, lft, rgt)

VALUES (new_part, new_qty, new_wgt, parent, (parent + 1));

END;

This code is credited to Mark E. Barney. The idea is to spread the (lft, rgt) 
numbers after the youngest child of the parent, G in this case, over by two to 
make room for the new addition, G1. This procedure will add the new node 
to the rightmost child position, which helps preserve the idea of an age order 
among siblings.

A slightly different version of the same code will let you add a sibling to 
the right of a given sibling.

CREATE PROCEDURE InsertNewNode

(IN new_part CHAR(2), IN lft_sibling_part CHAR(2),

 IN new_qty INTEGER, IN new_wgt INTEGER)

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

IF (SELECT lft -- the root has no siblings

FROM Frammis

  WHERE part = lft_sibling_part) = 1

THEN LEAVE insert_on_lft;

ELSE BEGIN

  DECLARE lft_sibling INTEGER;

  SET lft_sibling

= (SELECT rgt

FROM Frammis

WHERE part = lft_sibling_part);

  UPDATE Frammis

    SET lft = CASE WHEN lft < lft_sibling
THEN lft ELSE lft + 2 END,

rgt = CASE WHEN rgt < lft_sibling
THEN rgt ELSE rgt + 2 END

WHERE rgt > lft_sibling;
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  INSERT INTO Frammis

  VALUES (new_part, new_qty, new_wgt, (lft_sibling + 1), (lft_sibling 

+ 2));

  END;

END IF;

END;

The reason for giving both blocks of code is a note from Morgan Kelsey 
about some problems he found using a nested set model for a multithreaded 
message board. They were doing strange things with replies to posted 
messages.

For example, one would assume this was correct behavior, when there are 
multiple children:

--1 message 1

----2 - reply to 1

----3 - reply to 1

------ 5 - reply to 3

----4 - reply to 1

However, there are boards around doing this:

--1 message 1

----4 - reply to 1

----3 - reply to 1

------ 5 - reply to 3

----2 - reply to 1

Here's an example: http://boards.gamers.com/messages/overview.asp 
?name=scstratboard.

When the tree structure is displayed, you have to go down to the right, 
but then up to read the new messages. Apparently, people had taken the first 
method (i.e., insert new guy as the rightmost sibling) as the way to do any 
insertions and implemented it blindly.

4.8.1 Moving a Subtree within a Tree

Yes, it is possible to move subtrees inside the nested sets model for hierar-
chies. But we need to get some preliminary things out of the way first. The 
nested sets model needs a few auxiliary tables to help it. The first is the usual 
LftRgt view.
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CREATE VIEW LftRgt (seq)

AS SELECT lft FROM Tree

 UNION ALL

 SELECT rgt FROM Tree;

Yes, LftRgt can be written as a derived table inside queries, but there are 
advantages to using a VIEW. Self-joins are much easier to construct. Code is 
easier to read. If more than one user needs this table, it can be materialized 
only once by the SQL engine. The next table is a working table to hold 
subtrees that we extract from the original tree. This could be declared as a 
local temporary table.

CREATE LOCAL TEMPORARY TABLE WorkingTree

(root CHAR(2) NOT NULL,

 node CHAR(2) NOT NULL,

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL,

 PRIMARY KEY (root, node))

ON COMMIT DELETE ROWS;

The root column is going to be the value of the root node of the extracted 
subtree. This gives us a fast way to find an entire subtree via part of the 
primary key. While this is not important for the stored procedure discussed 
here, it is useful for other operations that involve multiple extracted 
subtrees.

Let me move right to the commented code. Input parameters are the root 
node of the subtree being moved and the node that is to become its new 
parent. In this procedure, there is an assumption that new siblings are added 
on the right side of the existing siblings, in effect ordering them by their age.

CREATE PROCEDURE MoveSubtree

(IN my_root CHAR(2),

IN new_parent CHAR(2))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE right_most_sibling INTEGER;

DECLARE subtree_size INTEGER;
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-- Cannot move a subtree under itself

DECLARE Self_reference CONDITION;

-- No such subtree root node

DECLARE No_such_subtree CONDITION;

-- No such parent node in the tree

DECLARE No_such_parent_node CONDITION;

body_of_proc:

BEGIN

IF my_root = new_parent

 OR new_parent

  IN (SELECT T1.node

FROM Tree AS T1, Tree AS T2

    WHERE T2.node = my_root

AND T1.lft BETWEEN T2.lft AND T2.rgt)

THEN SIGNAL Self_reference; -- error handler invoked here

  LEAVE body_of_proc; -- or leave the block

END IF;

IF NOT EXISTS

 (SELECT *

FROM Tree

  WHERE node = my_root)

THEN SIGNAL No_such_subtree; -- error handler invoked here

  LEAVE body_of_proc; -- or leave the block

END IF;

IF NOT EXISTS

 (SELECT *

FROM Tree

  WHERE node = new_parent)

THEN SIGNAL No_such_parent_node; -- error handler invoked here

  LEAVE body_of_proc; -- or leave the block

END IF;

-- put subtree into working table

INSERT INTO WorkingTree (root, node, lft, rgt)

SELECT my_root, T1.node,
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T1.lft - (SELECT MIN(lft)

FROM Tree

WHERE node = my_root),

T1.rgt - (SELECT MIN(lft)

FROM Tree

WHERE node = my_root)

 FROM Tree AS T1, Tree AS T2

 WHERE T1.lft BETWEEN T2.lft AND T2.rgt

 AND T2.node = my_root;

-- remove the subtree from original tree

DELETE FROM Tree

 WHERE node IN (SELECT node FROM WorkingTree);

-- get the spread and location for inserting working tree into tree

SET right_most_sibling

  = (SELECT rgt

    FROM Tree

    WHERE node = new_parent);

SET subtree_size = (SELECT (MAX(rgt) +1) FROM WorkingTree);

-- make a gap in the tree

UPDATE Tree

 SET lft = CASE WHEN lft > right_most_sibling
THEN lft + subtree_size

ELSE lft END,

rgt = CASE WHEN rgt >= right_most_sibling
THEN rgt + subtree_size

ELSE rgt END

 WHERE rgt >= right_most_sibling;

-- insert the subtree and renumber its rows

INSERT INTO Tree (node, lft, rgt)

SELECT node,

lft + right_most_sibling,

rgt + right_most_sibling

 FROM WorkingTree;

-- close gaps in tree

UPDATE Tree
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 SET lft = (SELECT COUNT(*)

FROM LftRgt

WHERE LftRgt.i <= Tree.lft),
rgt = (SELECT COUNT(*)

FROM LftRgt

WHERE LftRgt.i <= Tree.rgt);

-- clean out working tree table

DELETE FROM WorkingTree;

END body_of_proc;

END; -- of MoveSubtree

As a minor note, the variables right_most_sibling and subtree_size could 
have been replaced with their scalar subqueries in the UPDATE and INSERT 
INTO statements that follow their assignments, but that would make the 
code much harder to read at the cost of only a slight boost in performance.

The final UPDATE statement is a version of the standard self-join trick 
used to find the ordinal position of a value in a column.

I also used this code to show how error handling is done in the SQL/
PSM Standard language. You can declare error conditions and then use the 
SIGNAL statement to put their names into the diagnostics area when they are 
detected by a handler and some action is taken. The LEAVE command voids 
out the actions of the labeled block of code in which it appears and jumps 
control to the end of the block. In this sample code, LEAVE is never executed 
because the SIGNAL terminates execution immediately, and a SIGNAL that 
was caught and handled would determine whether the block's actions are 
“voided” or not.

This is one of the few times I will show you possible error handling or even 
the deferring of constraints. Each vendor's procedural language will be different 
and you will have to adjust this code to your product in the real world.

4.8.2 MoveSubtree Second Version

Another version of the MoveSubtree procedure that does not use the 
WorkingTree table looks like this:

CREATE PROCEDURE MoveSubtree

(IN my_root CHAR(2), IN new_parent CHAR(2))
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LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE origlft INTEGER;

DECLARE origrgt INTEGER;

DECLARE new_parent_rgt INTEGER;

SELECT lft, rgt

 INTO origlft, origrgt

 FROM Tree

 WHERE node = my_root;

SET new_parent_rgt

  = (SELECT rgt

    FROM Tree

    WHERE node = new_parent);

UPDATE Tree

 SET lft

= lft

    + CASE

WHEN new_parent_rgt < origlft
THEN CASE

WHEN lft BETWEEN origlft AND origrgt

THEN new_parent_rgt - origlft

WHEN lft BETWEEN new_parent_rgt

 AND origlft -1

THEN origrgt - origlft + 1

ELSE 0 END

WHEN new_parent_rgt > origrgt
THEN CASE

WHEN lft BETWEEN origlft

AND origrgt

THEN new_parent_rgt - origrgt -1

WHEN lft BETWEEN origrgt + 1

AND new_parent_rgt -1

THEN origlft - origrgt -1

ELSE 0 END

ELSE 0 END,
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rgt

= rgt

    + CASE

WHEN new_parent_rgt < origlft
THEN CASE

WHEN rgt BETWEEN origlft

AND origrgt

THEN new_parent_rgt - origlft

WHEN rgt BETWEEN new_parent_rgt AND origlft -1

THEN origrgt - origlft + 1

ELSE 0 END

WHEN new_parent_rgt > origrgt
THEN CASE

WHEN rgt BETWEEN origlft

AND origrgt

THEN new_parent_rgt - origrgt -1

WHEN rgt BETWEEN origrgt + 1

AND new_parent_rgt -1

THEN origlft - origrgt -1

ELSE 0 END

ELSE 0 END;

END; -- Movesubtree

This code is credited to Alejandro Izaguirre. It does not set a warning if 
the subtree is moved under itself, but leaves the tree unchanged. Again, the 
calculations for origlft, origrgt, and new_parent_rgt could be put into the 
UPDATE statement as scalar subquery expressions, but the code would be 
more difficult to read.

4.8.3 Insertion of an Immediate Subtree

Inserting a subtree can be done with a simple procedure in which we start 
with a subtree parent node and a varying number of mediate subordinates. 
Let's use a generic Tree table skeleton that can have up to 10 children under 
a parent node.

CREATE TABLE Tree

(node_name VARCHAR(15) NOT NULL,

lft INTEGER NOT NULL CHECK (lft > 0) UNIQUE,
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rgt INTEGER NOT NULL CHECK (rgt > 1) UNIQUE,
CHECK (lft < rgt));

You will need a single node to start the tree.

INSERT INTO Tree VALUES ('Global', 1, 2);

The procedure uses a technique known as the long parameter list. While 
the SQL/PSM Standard is silent on the issue, most SQL procedural language 
implementations allow a large number of parameters. SQL Server 2008 allows 
2K and IBM DB2 allows 32K parameters in the list.

CREATE PROCEDURE InsertChildrenIntoTree

(IN root_node VARCHAR(15),

IN child_01 VARCHAR(15),

IN child_02 VARCHAR(15),

IN child_03 VARCHAR(15),

IN child_04 VARCHAR(15),

IN child_05 VARCHAR(15),

IN child_06 VARCHAR(15),

IN child_07 VARCHAR(15),

IN child_08 VARCHAR(15),

IN child_09 VARCHAR(15),

IN child_10 VARCHAR(15) )

BEGIN

-- Find the parent node of the new subtree

DECLARE local_parent_rgt INTEGER;

SET local_parent_rgt

= (SELECT rgt

FROM Tree

WHERE node_name = root_node);

-- put the children into Kindergarten;

-- it is a local temporary table that clears on COMMIT

INSERT INTO Kindergarten

SELECT node_name,

(lft + local_parent_rgt -1) AS lft,

(rgt + local_parent_rgt -1) AS rgt

FROM (VALUES (child_01, 1, 2),
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(child_02, 3, 4),

(child_03, 5, 6),

(child_04, 7, 8),

(child_05, 9, 10),

(child_06, 11, 12),

(child_07, 13, 14),

(child_08, 15, 16),

(child_09, 17, 18),

(child_10, 19, 20))

AS Kids (node_name, lft, rgt)

WHERE node_name IS NOT NULL;

--use the size of the Kindergarten to make a gap

UPDATE Tree

SET lft = CASE WHEN lft > local_parent_rgt
THEN lft + (2 * (SELECT COUNT(*) FROM Kindergarten))

ELSE lft END,

rgt = CASE WHEN rgt >= local_parent_rgt
THEN rgt + (2 * (SELECT COUNT(*) FROM Kindergarten))

ELSE lft END

WHERE lft > local_parent_rgt
OR rgt >= local_parent_rgt;
INSERT INTO Tree (node_name, lft, rgt)

SELECT node_name, lft, rgt

FROM Kindergarten;

END;

As examples, let me do a simple geographical hierarchy:

CALL InsertChildrenIntoTree ('Global', 'USA','Canada','Europe', 'Asia');

CALL InsertChildrenIntoTree ('USA', 'Texas', 'Georgia', 'Utah', 'New 

York', 'Maine', 'Alabama');

4.8.4 Subtree Duplication

In many hierarchies, subtrees are repeated in different parts of the structure. 
The same subassembly might appear under many different assemblies. In the 
military, squads, platoons, divisions, and so forth are defined by a known col-
lection of soldiers, each with particular military occupational skills. It would 
be nice to be able to copy the structure of a subtree under a different root node.
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Consider a simple tree where we are going to duplicate node values in 
each copy of the structure. Obviously, duplicated nodes cannot be keys, so we 
have to use the (lft, rgt) pairs instead.

CREATE TABLE Tree

(node VARCHAR(5) NOT NULL,

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL,

 PRIMARY KEY (lft, rgt));

Let's do this problem in steps with the calculations explained and then 
consolidate everything into one procedure.

	 1.	 We need to find the rightmost position of the node that will be the 
new parent of the copy of the subtree.

	 2.	 Find out how big the subtree is so that we can make a gap for it in 
the new parent's (lft, rgt) range.

	 3.	 Insert the copy, renumbering the (lft, rgt) pairs to fill the gap you just 
made. This is like moving a subtree, but the original subtree is not 
deleted in the process, nor do we need a working table to hold the 
subtree.

CREATE PROCEDURE CopyTree

(IN new_parent VARCHAR(5),

IN subtree_root VARCHAR(5))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

-- create the gap

UPDATE Tree

SET lft = CASE WHEN lft > (SELECT rgt
FROM Tree

WHERE node = new_parent)

THEN lft + (SELECT (rgt - lft + 1)

FROM Tree

WHERE node = subtree_root)

ELSE lft END,

rgt = CASE WHEN rgt >= (SELECT rgt
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FROM Tree

WHERE node = new_parent)

THEN rgt + (SELECT (rgt - lft + 1)

FROM Tree

WHERE node = subtree_root)

ELSE rgt END

 WHERE rgt >= (SELECT rgt
FROM Tree

WHERE node = new_parent);

-- insert the copy

INSERT INTO Tree (node, lft, rgt)

SELECT T1.node || '2',

T1.lft

+ (SELECT rgt - lft + 2

FROM Tree

WHERE node = subtree_root),

T1.rgt

+ (SELECT rgt - lft + 2

FROM Tree

WHERE node = subtree_root)

FROM Tree AS T1, Tree AS T2

 WHERE T2.node = subtree_root

 AND T1.lft BETWEEN T2.lft AND T2.rgt;

END;

I gave the new nodes a name with a digit ‘2’ appended to them, but that is 
to make the results easier to read and is not required.

This little renaming trick also solved another problem you have to 
consider. If I try to copy a subtree under itself, I may have a recursive 
relationship that is infinite or impossible. Consider a parts explosion that has 
a subassembly ‘X’ in which one of the components is another ‘X’, in which 
this second ‘X’ in turn has to contain a third ‘X’ to work, and so forth.

You might want to add the predicate to assure that this does not happen.

CONSTRAINT new_parent

NOT BETWEEN (SELECT lft FROM Tree WERE node = subtree_root)

AND (SELECT rgt FROM Tree WERE node = subtree_root)
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4.8.5 Swapping Siblings

The following solution for swapping the positions of two siblings under the 
same parent node is due to Mr. Vanderghast and originally appeared in a 
posting on the MS-SQL Server Newsgroup.

If the leftmost sibling has its (lft, rgt) = (i0, i1) and the other subtree, the 
rightmost sibling, has (i2, i3), implicitly, we know that (i0 < i1 < i2 < i3).

With a little algebra, we can figure out that if (I) is a lft or rgt value in the 
table between i0 and i3, then

	 1.	 If (i BETWEEN i0 AND i1) then (i) should be updated to (i + i3 − i1).

	 2.	 If (i BETWEEN i2 AND i3) then (i) should be updated to (i + i0 − i2).

	 3.	 If (i BETWEEN i1 + 1 AND i2 − 1), then (i) should be updated to  
(i0 + i3 + i − i2 − i1).

All of this becomes a single update statement, but we will put the (lft, rgt) 
pairs of the two siblings into local variables so that a human being can read 
the code.

CREATE PROCEDURE SwapSiblings

(IN lft_sibling CHAR(2), IN rgt_sibling CHAR(2))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE i0 INTEGER;

DECLARE i1 INTEGER;

DECLARE i2 INTEGER;

DECLARE i3 INTEGER;

SET i0 = (SELECT lft FROM Tree WHERE node = lft_sibling);

SET i1 = (SELECT rgt FROM Tree WHERE node = lft_sibling);

SET i2 = (SELECT lft FROM Tree WHERE node = rgt_sibling);

SET i3 = (SELECT rgt FROM Tree WHERE node = rgt_sibling);

UPDATE Tree

SET lft = CASE WHEN lft BETWEEN i0 AND i1

THEN i3 + lft - i1

WHEN lft BETWEEN i2 AND i3

THEN i0 + lft - i2

ELSE i0 + i3 + lft - i1 - i2 END,
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rgt = CASE WHEN rgt BETWEEN i0 AND i1

THEN i3 + rgt - i1

WHEN rgt BETWEEN i2 AND i3

THEN i0 + rgt - i2

ELSE i0 + i3 + rgt - i1 - i2 END

 WHERE lft BETWEEN i0 AND i3

AND i0 < i1
AND i1 < i2
AND i2 < i3;

END;

4.9 Converting Nested Sets Model to Adjacency List Model

Most SQL databases have used the adjacency list model for two reasons. 
The first reason is that in the early days of the relational model, Dr. Codd 
published a paper using the adjacency list and he was the final authority. 
The second reason is that the adjacency list is a way of “faking” pointer 
chains, the traditional programming method in procedural languages for 
handling trees.

To convert a nested sets model into an adjacency list model, use this 
query:

SELECT B.member AS boss, P.member

 FROM OrgChart AS P

LEFT OUTER JOIN

Personnel AS B

ON B.lft = (SELECT MAX(S.lft)

FROM OrgChart AS S

WHERE P.lft > S.lft
AND P.lft < S.rgt);

This single statement, originally written by Alejandro Izaguirre, replaces 
my own previous attempt that was based on a pushdown stack algorithm. 
Once more, we see that the best way to program SQL is to think in terms of 
sets and not procedures.

Another version of the same query is credited to Ben-Nes Michael of 
Italy.

SELECT B.member AS boss, P.member

 FROM OrgChart AS B, Personnel AS P
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 WHERE P.lft BETWEEN B.lft AND B.rgt

AND B.member

= (SELECT MAX(S.member)

FROM OrgChart AS S

WHERE S.lft < P.lft
AND S.rgt > P.rgt);

He found that this was faster and simpler according to the EXPLAIN 
results in PostgreSQL. However, the Ben-Nes version does not produce a 
(NULL, <root>) row in the result set, only the edges of the graph.

4.10 Converting Adjacency List Model to Nested Sets Model

Because the adjacency list model is still more common, you can expect 
to have to convert it into a nested sets model. There are a few ways to 
do this.

4.10.1 Stack Algorithm

To convert an adjacency list model to a nested sets model, use this bit of 
SQL/PSM code. It is a simple pushdown stack algorithm and is shown with-
out any error handling. The first step is to create tables for adjacency list data 
and one for the nested sets model.

-- Tree holds the adjacency model

CREATE TABLE Tree

(node CHAR(10) NOT NULL,

 parent CHAR(10));

-- Stack starts empty, will hold the nested set model

CREATE TABLE Stack

(stack_top INTEGER NOT NULL,

 node CHAR(10) NOT NULL,

 lft INTEGER,

 rgt INTEGER);

The Stack table will be used as a pushdown stack and will hold the final 
results. The extra column “stack_top” holds an integer that tells you what the 
current top of the stack is.
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CREATE PROCEDURE AdjToNested()

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

DECLARE lft_rgt INTEGER;

DECLARE max_lft_rgt INTEGER;

DECLARE current_top INTEGER;

SET lft_rgt = 2;

SET max_lft_rgt = 2 * (SELECT COUNT(*) FROM Tree);

SET current_top = 1;

--clear the stack

DELETE FROM Stack;

-- push the root

INSERT INTO Stack

SELECT 1, node, 1, max_lft_rgt

FROM Tree

 WHERE parent IS NULL;

-- delete rows from tree as they are used

DELETE FROM Tree WHERE parent IS NULL;

WHILE lft_rgt <= max_lft_rgt - 1
DO IF EXISTS (SELECT *

FROM Stack AS S1, Tree AS T1

WHERE S1.node = T1.parent

AND S1.stack_top = current_top)

THEN BEGIN -- push when top has subordinates and set lft value

INSERT INTO Stack

SELECT (current_top + 1), MIN(T1.node), lft_rgt, NULL

FROM Stack AS S1, Tree AS T1

WHERE S1.node = T1.parent

AND S1.stack_top = current_top;

-- delete rows from tree as they are used

DELETE FROM Tree

WHERE node = (SELECT node
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FROM Stack

WHERE stack_top = current_top + 1);

-- housekeeping of stack pointers and lft_rgt

SET lft_rgt = lft_rgt + 1;

SET current_top = current_top + 1;

END;

ELSE

BEGIN -- pop the stack and set rgt value

UPDATE Stack

SET rgt = lft_rgt,

stack_top = stack_top -- pops the stack

WHERE stack_top = current_top;

SET lft_rgt = lft_rgt + 1;

SET current_top = current_top - 1;

END;

END IF;

END WHILE;

 -- stack top is not needed in final answer

IF EXISTS (SELECT * FROM Tree)

THEN << error handling for orphans in original tree >>
END IF;

END;

4.10.2 Ben-Gan's Recursive Common Table Expression (CTE)

This solution is credited to Itzak Ben-Gan. It uses a rather complicated recur-
sive CTE to find the (lft, rgt) pairs and the level number, starting at a given 
root node.

CREATE TABLE Personnel_Orgchart

(emp_id INTEGER NOT NULL PRIMARY KEY,

 mgr_emp_id INTEGER NULL

REFERENCES Personnel_OrgChart,

 UNIQUE (mgr_emp_id, emp_id),

 emp_name VARCHAR(25) NOT NULL,

 salary_amt DECIMAL (10,2) NOT NULL);



4 . 1 0  C o n v e r t i n g  A d j a c e n c y  L i s t  M o d e l  t o  N e s t e d  S e t s  M o d e l 	 101

INSERT INTO Personnel_OrgChart(emp_id, mgr_emp_id, emp_name,  

salary_amt)

VALUES(1, NULL, 'David', 10000.00);

(2, 1, 'Eitan', 7000.00),

(3, 1, 'Ina', 7500.00),

(4, 2, 'Seraph', 5000.00),

(5, 2, 'Jiru', 5500.00),

(6, 2, 'Steve', 4500.00),

(7, 3, 'Aaron', 5000.00),

(8, 5, 'Lilach', 3500.00),

(9, 7, 'Rita', 3000.00),

(10, 5, 'Sean', 3000.00),

(11, 7, 'Gabriel', 3000.00),

(12, 9, 'Emilia', 2000.00),

(13, 9, 'Michael', 2000.00),

(14, 9, 'Didi', 1500.00);

BEGIN

DECLARE root_emp_id INTEGER;

SET root_emp_id = 1;

-- CTE with two numbers: 1 and 2

WITH TwoNumsCTE (n)

AS

(VALUES (1), (2))

--CTE with two binary sort paths for each node:

-- One smaller than descendants sort paths

-- One greater than descendants sort paths

Sort_pathCTE

AS

(SELECT emp_id, 0 AS lvl, n,

CAST(n AS VARBINARY(MAX)) AS sort_path

FROM Personnel_OrgChart

CROSS JOIN

TwoNumsCTE

WHERE emp_id = root_emp_id

UNION ALL
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SELECT C.emp_id, P.lvl + 1, TN.n,

P.sort_path

+ CAST(ROW_NUMBER()

OVER(PARTITION BY C.mgr_emp_id -- order of siblings

ORDER BY C.emp_name, C.emp_id, TN.n)

AS BINARY(4))

FROM Sort_pathCTE AS P, Personnel_OrgChart AS C

 WHERE P.n = 1

AND C.mgr_emp_id = P.emp_id

CROSS JOIN

TwoNumsCTE AS TN),

-- CTE with row numbers representing sort_path order

SortCTE

AS

(SELECT emp_id, lvl,

    ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval

 FROM Sort_pathCTE),

-- CTE with lft and rgt values

NestedSetsCTE

AS

(SELECT emp_id, lvl,

MIN(sortval) AS lft,

MAX(sortval) AS rgt

FROM SortCTE

 GROUP BY emp_id, lvl)

SELECT emp_id, lvl, lft, rgt

 FROM NestedSetsCTE;

This was written for the Microsoft SQL Server, so be careful when 
porting it.

4.11 Separation of Edges and Nodes

One of the most important features of a model for hierarchies is the separation 
of edges and nodes. The personnel of a company are entities, and the organi-
zational chart for the company is a relationship among those entities. Because 
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they are different kinds of things, they need to be in separate tables. Not only 
is this just good data modeling, but it has some very practical advantages.

4.11.1 Multiple Structures

As an example, a shoe company had two reporting hierarchies: one for the 
manufacturing side of the company, which was based on the physical con-
struction of the footwear, and another volatile hierarchy for the marketing 
department. The marketing hierarchy was based on where and to whom the 
shoes were sold.

For example, steel-toed work boots were one category in the 
manufacturing reports. But at that time, there were two distinct groups of 
buyers of steel-toed work boots: construction workers with really big feet and 
teenaged girls into punk rock with really small feet. People with average-sized 
feet did not wear these things. For marketing, size was a vital factor, and for 
manufacturing, it was a few switches on a shoe-making machine.

CREATE TABLE Shoes

(shoe_nbr INTEGER NOT NULL PRIMARY KEY,

. . .);

CREATE TABLE ManufacturingReports

(shoe_nbr INTEGER NOT NULL

REFERENCES Shoes(shoe_nbr),

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL,

. . .);

CREATE TABLE MarketingReports

(shoe_nbr INTEGER NOT NULL

REFERENCES Shoes(shoe_nbr),

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL,

. . .);

4.11.2 Multiple Nodes

Aaron J. Mackey pointed out that you can attach a variable number of attri-
butes to a node and then make queries based on searching for them. For 
example, given this general structure
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CREATE TABLE Tree

(node INTEGER NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE,

 rgt INTEGER NOT NULL UNIQUE,

. . .);

Now attach various attributes to each node.

CREATE TABLE NodeProperty_1

(node INTEGER NOT NULL

REFERENCES Tree (node)

ON DELETE CASCADE

ON UPDATE CASCADE,

 value CHAR(15) NOT NULL);

CREATE TABLE NodeProperty_2

(node INTEGER NOT NULL

REFERENCES Tree (node)

ON DELETE CASCADE

ON UPDATE CASCADE,

 value CHAR(15) NOT NULL);

Each node may have 0 to (n) related properties, each of which has a 
value. This query gives all the parents of the set defined by nodes that have a 
particular property.

4.12 Comparing Nodes and Structure

There are really several kinds of equality comparisons when dealing with a 
hierarchy:

	 1.	 Same nodes in both tables.

	 2.	 Same structure in both tables, without regard to nodes.

	 3.	 Same nodes in the same positions in the structure in both tables—
they are identical

Let me once more invoke my organization chart in the nested sets 
model.
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 CREATE TABLE OrgChart

 (member CHAR(10) NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE CHECK (lft > 0),
 rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
 CONSTRAINT order_okay CHECK (lft < rgt));

and insert the usual sample data:

INSERT INTO OrgChart (member, lft, rgt)

VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 11),

('Donna', 5, 6),

('Eddie', 7, 8),

('Fred', 9, 10);

The organizational chart would look like this as a directed graph:

Let's create a second table with the same nodes, but with a different structure:

 CREATE TABLE OrgChart_2

 (member CHAR(10) NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE CHECK (lft > 0),

Albert
1, 12

Bert
2, 3

Chuck
4, 11

Donna
5, 6

Eddie
7, 8

Fred
9, 10

Figure 4.13 
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 rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
 CONSTRAINT order_okay CHECK (lft < rgt));

Insert this table's sample data:

INSERT INTO OrgChart_2 (member, lft, rgt)

VALUES ('Albert', 1, 12),

('Bert', 2, 3),

('Chuck', 4, 5),

('Donna', 6, 7),

('Eddie', 8, 9),

('Fred', 10, 11);

Now we can do queries based on the set of nodes and on the structure. 
Let's make a list of variations on such queries.

	 1.	 Do we have the same nodes, but in a different structure? One way to 
do this is with this query.

SELECT DISTINCT 'They have different sets of nodes'

FROM (SELECT * FROM OrgChart

    UNION ALL

    SELECT * FROM OrgChart_2) AS P0 (member, lft, rgt)

 GROUP BY P0.member

HAVING COUNT(*) < > 2;

But do they have to occur the same number of times? That is, if we were to 
put ‘Albert’ under ‘Donna’ in the first organizational chart, how do we count 
him—once or twice? This is the classic sets versus multisets argument that 
pops up in SQL all the time. The code given previously will reject duplicate 
multisets. If you want to accept them, then use this:

Albert
1, 12

Bert
2, 3

Chuck
4, 5

Donna
6, 7

Eddie
8, 9

Fred
10, 11

Figure 4.14 
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 SELECT DISTINCT 'They have different multi-sets of nodes'

FROM (SELECT DISTINCT *

FROM OrgChart)

UNION ALL

    (SELECT DISTINCT *

FROM OrgChart_2) AS P0 (member, lft, rgt)

 GROUP BY P0.member

 HAVING COUNT(*) < > 2;

	 2.	 Do they have the same structure, but with different nodes? Let's 
present a table with sample data that has different people inside the 
same structure as the original personnel table.

 INSERTN INT OrgChart_3(member, lft, rgt)

VALUES ('Amber', 1, 12),

('Bobby', 2, 3),

('Charles', 4, 11),

('Donald', 5, 6),

('Edward', 7, 8),

('Frank', 9, 10);

The structure is held in the (lft, rgt) pairs, so if they have identical 
structures, the (lft, rgt) pairs will exactly match each.

 SELECT DISTINCT 'They have different structures'

 FROM (SELECT * FROM OrgChart)

UNION ALL

(SELECT * FROM OrgChart_3) AS P0 (member, lft, rgt)

 GROUP BY P0.lft, P0.rgt

 HAVING COUNT(*) < > 2;

	 3.	 Do they have the same nodes and same structure? That is, are the 
trees identical? The logical extension of the other two tests is simply:

 SELECT DISTINCT 'They are not identical'

 FROM (SELECT * FROM OrgChart)

UNION ALL

(SELECT * FROM OrgChart_3) AS P0 (member, lft, rgt)

 GROUP BY P0.lft, P0.rgt, P0.member

 HAVING COUNT(*) < > 2;
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More often than not, you will be comparing subtrees within the same tree. 
This is best handled by putting the two subtrees into a canonical form. First 
you need the root node and then you can renumber the (lft, rgt) pairs with a 
derived table of this form:

 (SELECT O1.member,

O1.lft - (SELECT MIN(lft)

FROM OrgChart

WHERE member = :my_member_1) +1,

O1.rgt - (SELECT MIN(lft)

FROM OrgChart

WHERE member = :my_member_1) +1

FROM OrgChart AS O1, OrgChart AS O2

WHERE O1.lft BETWEEN O2.lft AND O2.rgt

AND O2.member = :my_member_1) AS P0 (member, lft, rgt);

4.13 Nested Sets Code in Other Languages

Flavio Botelho (nuncanadaig.com.br) wrote code in MySQL for extracting an 
adjacency list model from a nested sets model. While the code depends on the 
fact that MySQL is not really a relational database, but does sequential process-
ing behind a “near-SQL dialect” language, it is worth passing along. Mr. Botelho 
had seen the outer join query for the conversion (Section 4.9) and wanted to 
find a faster solution without subqueries, which were not supported in MySQL.

SELECT parent_lft = 33; //Change these to fit your needs

SELECT parent_rgt = 102;

SELECT next_brother := parent_lft;

SELECT next_brother :=

CASE WHEN lft >= next_brother
THEN rgt + 1

ELSE next_brother END AS next_brother,

name, rgt

FROM Categories

 WHERE lft >= parent_lft
AND rgt <= parent_rgt

HAVING next_brother = rgt + 1

 ORDER BY left;
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Because the next_brother stores the right value from the last direct child, 
whatever is left comes immediately after this right value and is the next 
direct child.

So you update the next_brother to this new child and then the HAVING 
clause will filter to only those children that have the next_brother equal to 
their right-side sibling. It works in MySQL, but it requires that you are able 
to change next_brother's value inside the SELECT statement. Because that 
is impossible in Standard SQL, you would have to do this with cursors and a 
loop construct of some kind.

Those who like the nested sets model and work with MySQL and PHP 
may want to look at a PHP library Mr. Botelho made to handle nested sets 
tables in MySQL at http://dev.e-taller.net/dbtree/.

Although it is good to add, update, and delete records, he recommends 
writing your own queries to get data from a table instead of using the library 
function.

There is also a thread or two in the PostgreSQL newsgroups that give 
code for manipulating the nested sets model. You can start with this link and 
then explore on your own: http://archives.postgresql.org/pgsql-sql/2002-11/
msg00397.php.

Look for the names “Robert Treat” (xzillausers.sourceforge.net) and 
“Martin Crundall” (pgsqlac6rm.net) on postings. I do not know what will be 
out there by the time you read this book.

For a Java library, go to http://www.codebits.com/ntm/java.htm. This 
library was written by David Medinets, who cautions you that you might 
want to improve it for production work.

For ACCESS code, go to http://www.mvps.org/access/queries/qry0023.htm.
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5
Frequent Insertion Trees

The problem in a nested sets tree with frequent insertions is that the (lft, rgt) pairs 
have to be adjusted so often that locking the table, changing the rows, 
and unlocking the table again become a major overhead. The nested 
sets model does not require that the union of rgt and lft numbers be an 
unbroken sequence to show nesting. All you need is the condition that 
(lft < rgt), uniqueness of lft and rgt numbers, and that subordination is 
represented by containment of one (lft, rgt) pair within the ranges of the 
other (lft, rgt) pairs.

This means that we can put gaps into the initial design of the table and 
fill them without having to reorganize the table each time. The size of the 
gaps depends on the available physical implementation of exact numeric 
types and the expected depth of the tree. The other related factor is how 
much fill factor (free space) was allocated for the data pages so that new 
rows can be added without reorganizing the physical storage.

The most common example for computer people is trees in the forest 
of messages that make up a Newsgroup thread (Figure 5.1). A reply to a 
posting can be inserted anywhere and to almost any depth. The number of 
messages posting to a newsgroup can also be huge.
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As a first attempt at this approach, let's renumber my little organizational 
chart by multiplying all the lft and rgt numbers by 100.

CREATE TABLE Personnel_Orgchart

(emp_id CHAR(10) NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE CHECK (lft > 0),
 rgt INTEGER NOT,

 CONSTRAINT order_okay CHECK (lft < rgt));

Figure 5.1 
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Personnel_Orgchart
emp_id lft rgt

‘Albert’ 100 1200

‘Bert’ 200 300

‘Chuck’ 400 1100

‘Donna’ 500 600

‘Eddie’ 700 800

‘Fred’ 900 1000

The term spread will mean the value of (rgt − lft) for one node, and the term 
gap will mean the distance between adjacent siblings under the same Parent 
node. To insert someone under ‘Bert’, say ‘Betty’, you look at the size of Bert's 
range (300 − 200 = 100) and pack the newcomer to the leftmost position, while 
leaving her node wide enough for more subordinates. One way of doing this is:

 INSERT INTO Personnel_Orgchart VALUES ('Betty', 201, 210); -- spread of 9

To insert someone under ‘Betty’, you look at the size of Betty's range (210 −  
201) and pack from the left:

 INSERT INTO Personnel_Orgchart VALUES ('Bobby', 202, 203); --spread of 1

The new rows should be inserted in the table without locking the table for 
an update on multiple rows. Assuming you have a 32-bit integer, you can have 
a depth of 9 or 10 levels before you have to reorganize the tree. There are two 
tricks in this approach. First you must decide on the data type to use for the (lft, 
rgt) pairs and then get a formula for the spread size you want to use. You will see 
shortly that my simple multiplication is not the best way to achieve the goal.

5.1 The Data Type of (lft, rgt)

The (lft, rgt) pairs will obviously be an exact numeric data type. Because the 
goal is to get as wide a numeric range as you can, SMALLINT or TINYINT is 
obviously not going to be considered. Here are your three choices.

5.1.1 Exploiting the Full Range of Integers

If you do not mind negative numbers, you can use the full range of the 
integers, something like this on a typical 32-bit machine:

INSERT INTO Tree VALUES ('root', -4294967295, 4294967296);
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I am obviously skipping some of the algebra for computing the spread size, 
but you get the basic idea. There are some other tricks that involve powers of 
two and binary trees, but that is another topic. If this is not enough, there is also 
a BIGINT data type in Standard SQL. The standards are deliberately vague on 
physical implementation details. The choice of binary versus decimal precision 
is implementation defined, but the same radix shall be chosen for all exact 
numeric data types. The precision of SMALLINT is less than or equal to the 
precision of INTEGER, and the precision of BIGINT is greater than or equal to 
the precision of INTEGER. Currently, this usually means an INTEGER is 32 
bits, a BIGINT is 64 bits, and a SMALLINT is 16 bits. As a bit of history, some 
Algol implementations used the keywords LONG and SHORT to double or halve 
the number of bits as many times as physically possible on the hardware. That 
meant that if INTEGER was 16 bits, then SHORT INTEGER was 8 bits, SHORT  
SHORT INTEGER was 4 bits, LONG INTEGER was 32 bits, LONG LONG 
INTEGER was 64 bits, and LONG LONG LONG INTEGER was 128 bits.

5.1.2 FLOAT, REAL, or Double Precision Numbers

Floating point numbers just give the illusion that the spread can be almost infinite 
while truncation and rounding errors will, de facto, impose their own limitations. 
Two floating point numbers will be considered to be equal, if they are within an 
epsilon—a small quantity that allows for rounding error in computations.

I strongly recommend that you do not use FLOAT or REAL because they 
will fail when your tree is very deep because the math they use is not precise. 
Double precision has the same problems, but they will not show up as soon. 
This is the worst situation—failure occurs when the database is large and 
errors are harder to detect.

There is also the problem that many machines used for database 
applications do not have floating point hardware. Floating point math is 
seldom used in commercial applications on mainframes. This means that 
floating point math has to be done in software, which takes longer.

5.1.3 NUMERIC(p,s) or DECIMAL(p,s) Numbers

The DECIMAL(p,s) data type gives you a greater range than INTEGER in 
most database products and does not have the rounding problems of FLOAT. 
Precision of over 30 digits is typical, but consult your particular product.

The bad news is that math on DECIMAL(p,s) numbers is often slower than 
on either INTEGER or FLOAT. The reason is that most machines do not have 
hardware support for this data type like they do for INTEGER and FLOAT.
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5.2 Computing the Spread to Use

There are any numbers of ways to compute the size of the spread that you 
want to use when you initialize the tree. In the nested sets model, sibling 
nodes have an order from left to right under their parent node. Given a 
parent node (‘Parent’, x, z), we can assume that the oldest (leftmost) child 
is of the form (‘child_1’, (x + 1), y), where (x < (x + 1) < y < z). Likewise, in 
a fully packed nested sets model, we would also know the youngest (right-
most) child is of the form (‘child_n’, w, (z − 1)), where (x < w < (z − 1) < z).

When we have to insert a new sibling and there is no room in the right 
gap under his parent, we want to push the existing siblings to the left and 
leave a gap on the right for the new sibling (Figures 5.2 and 5.3).

First let's construct a VIEW that will show us what numbers we have for 
the spread under each parent node.

CREATE VIEW Spreads (emp_id, commence, finish)

AS

SELECT O1.emp_id, MAX(O2.rgt), (O1.rgt-1)

    FROM Personnel_Orgchart AS O1, Personnel_Orgchart AS O2

 WHERE O2.lft BETWEEN O1.lft AND O1.rgt

    AND O1.emp_id < > O2.emp_id
 GROUP BY O1.emp_id, O1.rgt

Chuck

Bert

Figure 5.2 
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UNION ALL

SELECT O1.emp_id, (O1.lft +1), (O1.rgt-1)

    FROM Personnel_Orgchart AS O1

 WHERE NOT EXISTS

      (SELECT *

        FROM Personnel_Orgchart AS O2

       WHERE O2.lft BETWEEN O1.lft AND O1.rgt

         AND O1.emp_id < > O2.emp_id)

The reason for using a UNION-ed query is that the leaf nodes have no 
children and will not show up in the SELECT statement of the UNION. We 
do not need this VIEW, but it makes the code much easier to read than if we 
folded it into a single statement. Now, the real work.

CREATE PROCEDURE InsertNewGuy (IN parent CHAR(10), IN new_guy CHAR(10))

BEGIN ATOMIC

DECLARE commence INTEGER;

DECLARE finish INTEGER;

SET commence = (SELECT commence + 1 FROM Spreads WHERE emp_id = parent);

SET finish = (SELECT finish - 1 FROM Spreads WHERE emp_id = parent);

IF (finish - commence) <= 0 THEN LEAVE; -- error handling needed

-- give the new guy 1/10 of the remaining spread

INSERT INTO Personnel_Orgchart

VALUES (new_guy, commence,

     commence + CAST (((finish - commence)/ 10.0) AS INTEGER));

END;

Chuck Dave

Bert

Figure 5.3 
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What this procedure does is allocate a tenth of the remaining available 
spread space to each sibling. Perhaps a demonstration will make this easier to 
see. Using my organizational chart again:

DELETE FROM Personnel_Orgchart;

INSERT INTO Personnel_Orgchart VALUES ('Albert', 1, 10000000);

The maximum depth that a path in this tree can have is 7 because 10^7 = 
10,000,000. A different choice of initial width and spread size would give 
different results. This series of calls will rebuild the original sample tree 
structure with different (lft, rgt) pairs.

CALL InsertNewGuy ('Albert', 'Bert');

CALL InsertNewGuy ('Albert', 'Chuck');

CALL InsertNewGuy ('Chuck', 'Donna');

CALL InsertNewGuy ('Chuck', 'Eddie');

CALL InsertNewGuy ('Chuck', 'Fred');

Here are some new rows

CALL InsertNewGuy ('Albert', 'Allen'); -- under the root

CALL InsertNewGuy ('Fred', 'George');

CALL InsertNewGuy ('George', 'Herman');

CALL InsertNewGuy ('Herman', 'Irving');

CALL InsertNewGuy ('Irving', 'Joseph');

CALL InsertNewGuy ('Joseph', 'Kirby'); -- failure!

The attempt to insert ‘Kirby’ fails because the maximum depth is exceeded 
and the “order_okay” constraint is violated. This is easier to see if we show 
the spread at each level size as (rgt − lft).

emp_id lft rgt spread

Albert 1 10000000 9999999

Allen 1900003 2710002 809999

Bert 3 1000002 999999

Chuck 1000003 1900002 899999

Donna 1000005 1090004 89999

Eddie 1090005 1171004 80999

Fred 1171005 1243904 72899

George 1171007 1178296 7289

Herman 1171009 1171737 728

Irving 1171011 1171083 72

Joseph 1171013 1171019 6
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When we insert ‘Joseph’, this node only has a range of seven positions, 
and attempting to divide that range into tenths causes a failure.

We need to consider other ways of determining the divisors and what to do 
if we need to reorganize the tree because we have nodes where (rgt − lft) = 1 
and we wish to insert a new node under them.

5.2.1 Varying the Spread

If you know something about the general shape of the tree—if it is shal-
low and wide or deep and narrow—you can replace the constant divisor 
with a parameter in the procedure, a formula, or a table lookup subquery 
expression.

5.2.2 Divisor Parameter

This is a trivial change to the original procedure:

CREATE PROCEDURE InsertNewGuy

(IN parent CHAR(10), IN new_guy CHAR(10),

IN divisor INTEGER)

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE commence INTEGER;

DECLARE finish INTEGER;

DECLARE divisor INTEGER;

SET commence

  = (SELECT commence FROM Spreads WHERE emp_id = parent);

SET finish

  = (SELECT finish FROM Spreads WHERE emp_id = parent);

INSERT INTO Personnel_Orgchart

VALUES (new_guy, commence,

    commence + ((finish - commence)/ divisor));

END;

Note that the computation in the last INSERT INTO statement depends 
on the truncation and rounding rules of your particular product, as they are 
implementation defined in Standard SQL; you might want to use an explicit 
CAST() expression and perhaps truncation and rounding functions.
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The actual procedure might want to call itself recursively with smaller 
and smaller spread sizes when it finds a failure due to an absurdly large 
spread size. Then, if we reach a spread size of one, call a reorganization 
procedure.

5.2.3 Divisor via Formula

The depth of a node in the tree is given by

CREATE VIEW DepthFormula (emp_id, depth)

AS

SELECT O1.emp_id, COUNT(O2.emp_id)

   FROM Personnel_Orgchart AS O1, Personnel_Orgchart AS O2

  WHERE O1.lft BETWEEN O2.lft AND O2.rgt

  GROUP BY O1.emp_id, O1.lft;

The root will be at (depth = 1), and the depth will increase as you 
traverse to the leaf nodes. The depth column in the VIEW can be used as 
part of a more complex formula to determine the divisors at each level 
in the tree. I have shown just the depth itself, but one possible example 
might be (10^COUNT(*)), or a CASE expression driven by the depth, 
such as

 CASE depth

 WHEN 1 THEN 5

 WHEN 2 THEN 10

 WHEN 3 THEN 25

 ELSE 5 END;

I do not have any suggestions for the proper formula to use. That would 
require knowledge of the particular tree's shape.

5.2.4 Divisor via Table Lookup

You can also construct a table of the form:

CREATE TABLE DepthDivisors

(depth INTEGER NOT NULL PRIMARY KEY,

 divisor INTEGER NOT NULL);
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or a table of the form:

CREATE TABLE EmpDivisors

(emp_id CHAR(10) NOT NULL PRIMARY KEY,

 divisor INTEGER NOT NULL);

The first version uses the depth to determine the divisor, so there is an 
assumption that all nodes at the same level behave approximately the same in 
regard to subordinates.

The second version uses the employee to determine the divisor, so there 
is an assumption that some nodes are expected to have more or fewer 
subordinates than other nodes.

5.2.5 Partial Reorganization

The traditional approach to return the table to the original nested sets model 
uses a simple UNION-ed VIEW that puts the lft and rgt values in a single 
column.

CREATE VIEW LftRgt (seq)

AS SELECT lft FROM Personnel_Orgchart

 UNION ALL

 SELECT rgt FROM Personnel_Orgchart;

Then we use that to update the table.

UPDATE Personnel_Orgchart

 SET lft = (SELECT COUNT(*)

FROM LftRgt AS LR

WHERE LR.seq <= lft),
rgt = (SELECT COUNT(*)

FROM LftRgt AS LR

WHERE LR.seq <= rgt);

There is no need for a WHERE clause because all of the nodes will be 
changed. Unfortunately, we have also destroyed the “big spread” property. 
A better version uses the ordinal ROW_COUNT() function. This version 
will do sequential numbering once in the VIEW instead of repeating the 
COUNT(*) over and over.

CREATE VIEW LftRgt2(lr, seq)

AS
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SELECT lr, ROW_COUNT() OVER (ORDER BY lr)

 FROM (SELECT lft FROM (Personnel_Orgchart

UNION ALL

SELECT rgt FROM Personnel_Orgchart)

AS LR(lr));

Note that we could also write this as “<spread value or formula> * ROW_
COUNT() OVER (ORDER BY lr)” in the VIEW.

UPDATE Personnel_Orgchart

 SET lft = (SELECT seq

FROM LftRgt2 AS LR

WHERE LR.lr = lft),

rgt = (SELECT seq

FROM LftRgt2 AS LR

WHERE LR.lr = rgt);

There are several approaches to spreading the (lft, rgt) pairs apart in the 
usual nested sets model. We can write a query that converts the nested sets 
model into the adjacency list model, puts it into a temporary table, and then 
passes each (emp_id, boss) node pair to the InsertNewGuy() procedure, one 
pair one at a time. This is a lot of work, but you get complete control over the 
reorganization.

The most obvious method is simply to multiply each (lft, rgt) by a 
constant in the aforementioned UPDATE statement. There are trade-offs 
in this approach. The code is easy and will close up some of the gaps left 
by deletions. However, it creates new gaps between siblings. Consider the 
original Personnel_Orgchart table with a constant of 100 as the spread used 
at the start of this chapter.

Personnel_Orgchart

emp_id lft rgt

‘Albert’ 100 1200

‘Bert’ 200   300

‘Chuck’ 400 1100

‘Donna’ 500   600

‘Eddie’ 700   800

‘Fred’ 900 1000
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We have lost the ranges 1 to 99, 101 to 199, 301 to 399, and so forth to 
give every node a larger spread of the same proportions. If the insertions are 
made randomly in the table, this is not a big problem. However, if insertions 
are made at the leaf nodes, or into one particular subtree, then we will be 
doing this again sooner than if we had planned better.

You will notice that there is a pattern to the gaps that we created. Because 
the gaps are all of size (spread constant −1), we can shift all of the nodes left 
by that amount, as long as we do not shift a node's (lft, rgt) pair outside the 
range of its parent or change the size of the node. This leads us to the next 
topic.

5.2.6 Rightward Spread Growth

A simpler approach is to increase the spread only to the right of the point 
where the failure occurred. This can be done by either “stretching” the tree 
to the right or “squeezing” some of the nodes to the left at the point of fail-
ure. Let's assume that we have captured the node where we failed to insert a 
new node.

UPDATE Personnel_Orgchart

 SET lft = lft + 100,

rgt = rgt + 100

 WHERE lft > (SELECT rgt
FROM Personnel_Orgchart

WHERE emp_id = :failure_emp_id)

    OR rgt >= (SELECT rgt
FROM Personnel_Orgchart

WHERE emp_id = :failure_emp_id);

Use of a step of 100 is arbitrary and could be replaced by a computation of 
some sort. The constant is simply easier to code and I am assuming that the 
tree will not need reorganization very often.

The other approach is to pack subordinate nodes to the left to create a 
larger spread on the right side of the node where the insertion failed.

CREATE PROCEDURE ShiftLeft()

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC
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DECLARE squeeze INTEGER;

SET squeeze

  = (SELECT CASE WHEN MIN(O2.lft - O1.rgt) - 1 > 1
  THEN MIN(O2.lft - O1.rgt) - 1

  ELSE 1 END

FROM Personnel_Orgchart AS O1,

Personnel_Orgchart AS O2

WHERE O1.rgt < O2.lft
  AND O1.emp_id < > O2.emp_id);

UPDATE Personnel_Orgchart

 SET lft = (lft - squeeze),

rgt = (rgt - squeeze)

 WHERE (lft - squeeze) > 0
 AND NOT EXISTS

(SELECT *

FROM Personnel_Orgchart AS O1

WHERE O1.emp_id < > Personnel_Orgchart.emp_id
  AND (O1.lft

BETWEEN (Personnel_Orgchart.lft - squeeze)

  AND (Personnel_Orgchart.rgt - squeeze)

OR O1.rgt

BETWEEN (Personnel_Orgchart.lft - squeeze)

  AND (Personnel_Orgchart.rgt - squeeze)));

END;

This routine can be  executed over and over until all of the children of 
each node are packed to the left and the largest possible gap is on the right. 
The problem is that it “slows down” rather quickly and depends on the value 
of the squeeze parameter.

First call:

emp_id lft rgt

Albert 100 1200

Bert 101   201

Chuck 400 1100

Donna 401   501

Eddie 601   701

Fred 801   901
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Second call:

emp_id lft rgt

Albert 100 1200

Bert 101 201

Chuck 400 1100

Donna 401 501

Eddie 502 602

Fred 702 802

Third call:

emp_id lft rgt

Albert 100 1200

Bert 101   201

Chuck 400 1100

Donna 401   501

Eddie 502   602

Fred 701   801

The rightmost node, ‘Fred’, will continue to shift to the left, but only one 
step at a time. Albert never gets to (1, 1101), Bert never gets to (2, 102), and 
so forth.

5.3 Total Reorganization

There may come a time when you need to reorganize the entire table rather 
than simply shifting part of the table structure. The goal will be to shift all 
of the nodes over to the left without changing their spread so as to give the 
largest possible gap on the right side of the siblings of every parent in the 
tree. If you need a physical analogy, think of a collection of various sized 
boxes nested inside each other. Pick up the outermost box and turn it on its 
left side so that all the boxes shift to the left.

5.3.1 Reorganization with Lookup Table

The following solution is credited to Heinz Huber. Let's start with the origi-
nal table given in Section 5 and decide what we want it to look like after 
reorganization.
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Personnel_Orgchart—reorganized

emp_id lft rgt

Albert 1 1101

Bert 2   102

Chuck 103   803

Donna 104   204

Eddie 205   305

Fred 306  406

The structure and the spreads have remained the same, but the gaps 
between the employees have been closed by shifting them to the right. 
This leaves larger gaps on the right side of each row of siblings, for 
example, ‘Fred’ has a gap of (803 − 406) = 397 to his right, which is 
room for three more additions to his family, as the spread is 100 at  
this level.

The problem is that there is no “universal” shift factor. Instead, the 
shift is different for each employee, based on the gaps at their level in the 
tree. Let's assume that we do not want to implement a cursor solution, 
we can add another column to the table to hold the shift factor for each 
node and fourth column for the preorder traversal order. The problem 
with a cursor solution is that you need a stack for the rgt column values 
of all the parents so that you can traverse the tree. This is expensive and 
not very portable because every product has slightly different cursor 
implementations.

CREATE TABLE Personnel_Orgchart

(emp_id CHAR(10) NOT NULL PRIMARY KEY,

 lft INTEGER NOT NULL UNIQUE CHECK (lft > 0),
 rgt INTEGER NOT NULL UNIQUE CHECK (rgt > 1),
 CONSTRAINT order_okay CHECK (lft < rgt));
 shift INTEGER, -- null means not yet computed

 traversal_nbr INTEGER -- null means not yet computed);

Yes, this could all be done with a temporary table or a second table that 
joins to the original Personnel_Orgchart. However, these attributes are part of 
the tree structure and having them all in one place makes sense. Let's begin 
by initializing the table.
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UPDATE Personnel_Orgchart

 SET shift = NULL,

  traversal_nbr = NULL;

The NULLs act as markers for the computations.

-- Calculate shift factor within a parent node.

-- Leftmost siblings are computed later.

UPDATE Personnel_Orgchart

 SET shift

= lft - 1

  - (SELECT MAX(Siblings.rgt)

FROM Personnel_Orgchart AS Siblings

WHERE Siblings.rgt < Personnel_Orgchart.lft)
 WHERE shift IS NULL

 AND EXISTS -- has sibling on left side

(SELECT *

  FROM Personnel_Orgchart AS Siblings

WHERE Siblings.rgt < Personnel_Orgchart.lft);

That gives us this result at the leaf nodes.

Personnel_Orgchart—step 1

emp_id lft rgt shift traversal_nbr

Albert 100 1200 NULL NULL

Bert 101   201 NULL NULL

Chuck 400 1100 198 NULL

Donna 401   501 199 NULL

Eddie 601   701   99 NULL

Fred 801   901   99 NULL

Now it is time to look at the parents and shift them and their family.

UPDATE Personnel_Orgchart

 SET shift

= lft - 1

  - (SELECT MAX(Parents.lft)

FROM Personnel_Orgchart AS Parents

WHERE Parents.lft < Personnel_Orgchart.lft
AND Parents.rgt > Personnel_Orgchart.rgt)
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 WHERE shift IS NULL

  OR (lft - shift)

  < (SELECT MAX(Parents.lft)
FROM Personnel_Orgchart AS Parents

WHERE Parents.lft < Personnel_Orgchart.lft
AND Parents.rgt > Personnel_Orgchart.rgt);

Personnel_Orgchart—step 2

emp_id lft rgt shift traversal_nbr

Albert 100 1200 NULL NULL

Bert 101   201     0 NULL

Chuck 400 1100 198 NULL

Donna 401   501     0 NULL

Eddie 601   701   99 NULL

Fred 801   901   99 NULL

At this point, only the root is still NULL. Shifting it will shift every node 
in the tree leftward.

UPDATE Personnel_Orgchart

 SET shift = lft - 1

 WHERE shift IS NULL;

Personnel_Orgchart—step 3

emp_id ft rgt shift traversal_nbr

Albert 100 1200   99 NULL

Bert 101   201     0 NULL

Chuck 400 1100 198 NULL

Donna 401   501     0 NULL

Eddie 601   701   99 NULL

Fred 801   901   99 NULL

Processing each level of the tree still does not give us the final results. 
We have not yet applied the shift values. For the shift itself, you need 
another additional column that contains the preorder traversal  
sequence.
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UPDATE Personnel_Orgchart

 SET traversal_nbr

= (SELECT COUNT(*)

FROM Personnel_Orgchart AS Original_Personnel_Orgchart

WHERE Original_Personnel_Orgchart.lft <= Personnel_Orgchart.lft);

Personnel_Orgchart—step 4

emp_id lft rgt shift traversal_nbr

Albert 100 1200   99 1

Bert 101   201     0 2

Chuck 400 1100 198 3

Donna 401   501     0 4

Eddie 601   701   99 5

Fred 801   901   99 6

Now it is time to do the big shift. Each node is moved leftward by the sum 
of the gaps to its left, and the order of execution is governed by the preorder 
traversal. 

UPDATE Personnel_Orgchart

 SET lft

  = lft

- (SELECT SUM(shift)

FROM Personnel_Orgchart AS Original_Personnel_Orgchart

  WHERE Original_Personnel_Orgchart.traversal_nbr

  <= Personnel_Orgchart.traversal_nbr),
  rgt

  = rgt

- (SELECT SUM(shift)

FROM Personnel_Orgchart AS Original_Personnel_Orgchart

  WHERE Original_Personnel_Orgchart.traversal_nbr

<= Personnel_Orgchart.traversal_nbr);

You are now ready to reset the shift and traversal_nbr columns to NULLs. 
The final answer is what we wanted.

UPDATE Personnel_Orgchart

 SET shift = NULL,

  traversal_nbr = NULL;
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Personnel_Orgchart—step 5

emp_id lft rgt shift traversal_nbr

Albert     1 1101 NULL NULL

Bert     2   102 NULL NULL

Chuck 103  803 NULL NULL

Donna 104  204 NULL NULL

Eddie 205  305 NULL NULL

Fred 306  406 NULL NULL

It is hoped that this procedure will not be called very often. It will be 
expensive to run on a large deep tree and will probably lock the table 
while it is running. If you have a tree that is being dynamically altered this 
much, you might try using the quick but inadequate shift by a constant 
method first and then call this routine when you can take the application 
off line.

5.3.2 Reorganization with Recursion

This solution is credited to Richard Romley. Instead of using a table to hold 
the shifts, they are computed recursively inside a user-defined function.

CREATE FUNCTION LeftShift (IN my_emp_id CHAR(10))

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

--recursive

RETURN

 (SELECT CASE WHEN MAX(Par.emp_id) IS NULL

THEN 0

ELSE LeftShift (MAX(Par.emp_id)) END

+ COALESCE (SUM(Sib.rgt - Sib.lft), 0)

+ COUNT(Sib.emp_id) + 1

  FROM Personnel_Orgchart AS E1

INNER JOIN

Personnel_Orgchart AS Par

ON E1.lft > Par.lft
AND E1.rgt < Par.rgt
AND NOT EXISTS
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(SELECT *

FROM Personnel_Orgchart

WHERE lft < E1.lft
AND lft > Par.lft
AND rgt > E1.rgt
AND rgt < Par.rgt)

LEFT OUTER JOIN

Personnel_Orgchart AS Sib

ON Par.lft < Sib.lft
AND Par.rgt > Sib.rgt
AND Sib.lft < E1.lft

  WHERE E1.emp_id = my_emp_id);

A node can have only zero or one parent. The only node without a parent 
is the root. There can be many siblings to the left of a node, but all result 
rows will always have the same value for their parent. The MAX(Par.emp_id) 
in the SELECT list returns the value for parent and eliminates the need to do 
a GROUP BY.

The algorithm says that the new lft value for each employee node 
equals its parent's new lft value plus the sum of the spreads of all its older 
siblings (Sib.rgt − Sib.lft + 1)(which is the same as SUM(Sib.rgt − Sib.lft) + 
COUNT(Sib)) plus one. Because the spreads will be the same for the new 
values as they were for the old values, they can be calculated from the old 
values. But the parent's new lft value must be determined, which is done with 
a recursive function call.

So if a parent exists, the function calls itself to get the parent's new lft 
value, and this process will continue all the way up the tree until the root is 
found. Tree navigation takes place via recursive function calls.

5.4 Rational Numbers and Nested Intervals Model

Vadim Tropashko showed that it is possible to use rational numbers [for those 
of you who have forgotten your math, these are numbers of the form (a/b), 
where a and b are both integers]. This would avoid problems of floating point 
rounding errors, but it would require a library of functions for this new data 
type. Although nearly every programming language today implements IEEE 
floating point numbers, there are some—notably, computational algebra sys-
tems, such as Maple and Mathematica—that have internal formats for rational 
or even algebraic and irrational numbers, such as the square root of 2 and e.
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Rational numbers and the use of half-open intervals, which are the basis 
for the temporal model in SQL, are all we would need. Suppose we want to 
insert a new child of the root node [0, 1)(or if you prefer [0/5, 5/5) to make 
the math cleaner) between the children bracketed by [1/5, 2/5) and [3/5, 
4/5). You can insert new intervals with the gaps on each side. New members 
can be fit at any position there. For example, looking at 4/5 and 5/5, I can 
fit in a node at [21/25, 23/25) and still have plenty of room for more nodes. 
Given that my integers in most SQL products can go into the billions, I 
have a pretty big range of values to use before I would have to reorganize. 
The algebra for rational numbers is well known. You can find greatest 
common divisor (GCD) algorithms in any textbook and use them to keep the 
numerators and denominators as small as possible.

CREATE FUNCTION gcd(IN x INTEGER, IN y INTEGER) RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

WHILE x < > y
 DO IF x > y THEN SET x = x − y; END IF;

IF y > x THEN SET y = y − x; END IF;

END WHILE;

RETURN (x);

END;

This is known as the nested intervals model and it generalizes nested sets.  
A child node [clft, crgt] is a (indirect) descendant of a parent node [plft, prgt] if

((plft <= clft) AND (crgt <= prgt))

Now adding a child node is never a problem. You use an unoccupied 
segment [lft1, rgt1] within a parent interval [plft, prgt] and insert the new 
child node at [(2 * lft1 + rgt1)/3, (lft1 + 2 * rgt1)/3](Figure 5.4).

plft lft 1 (2 * lft 1 + rgt 1)/3 (lft1 + 2 * rgt 1)/3 rgt 1 prgt

Figure 5.4 
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After insertion, we still have two more unoccupied segments [lft1, (2 * lft1 +  
rgt1)/3] and [(rgt1 + 2 * lft1)/3, rgt1] to add more children to the parent node.

The problem is that SQL would have to represent rational (lft, rgt) pairs 
as pairs of pairs, and the user will have to provide a complete math library 
for them. If your product supports SQL-99 style user-defined data types and 
functions, this is much easier.

Now we can easily see why nested sets cannot model arbitrary directed acyclic  
graphs; two dimensions are just not enough for representing any partial order.

IBM provides DECFLOAT in DB2. It is a floating point number without 
the precision issues of floating point. DECFLOAT is compliant with the 
industry standard IEEE754r specification. SQL Standards do not prohibit 
their use as implementation for REAL numerics.

Still, users may want to avoid using DECFLOAT because they are not 
widely supported in programming languages yet (e.g. there is no support for 
it in COBOL and other programming languages).

5.4.1 Partial Order Mappings

Let's introduce a path enumeration model of a tree (see Chapter 8). You will 
also recognize it as the way that the book you are reading is organized. The 
path column contains a string of the edges that make up a path from the root 
(‘King’) to each node, numbering them from left to right at each level in the 
tree. This sample organizational chart is from Tropashko and we are using it 
because it is a bit larger and deeper than the examples we have used before; 
this will help explain the calculations more easily.

Personnel_Orgchart

emp_id_name path

‘King’ ‘1’

‘Jones’ ‘1.1’

‘Scott’ ‘1.1.1’

‘Adams’ ‘1.1.1.1’

‘Ford’ ‘1.1.2’

‘Smith’ ‘1.1.2.1’

‘Blake’ ‘1.2’

‘Allen’ ‘1.2.1’

‘Ward’ ‘1.2.2’

‘Clark’ ‘1.3’

‘Miller’ ‘1.3.1’
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For example, ‘Ford’ is the second child of the first child (‘Jones’) of the 
root (‘King’). We are going to turn these directions into numbers shortly, so 
please be patient.

Let's look at the two-dimensional picture of nested intervals and assume 
that rgt is a horizontal axis x, and lft is a vertical axis y. Then, the nested 
intervals tree looks like Figure 5.5.

Each node [lft, rgt] has its descendants bounded within the two-
dimensional cone ((y >= lft) AND (x <= rgt)). Because the right interval 
boundary is always less than the left one, none of the nodes are allowed 
above the main diagonal, x = y.

The other way to look at Figure 5.5 is to note that a child node is a 
descendant of the parent node whenever a set of all points defined by the 
child cone ((y >= clft) AND (x <= crgt)) is a subset of the parent cone (y >= 
plft) AND (x <= prgt). A subset relationship between the cones on the plane 
is a partial order (Figure 5.6).

We now need to assign pairs of points in the x–y plane that conform to 
these two constraints.

Y

X

1

1.1

1.1.1

1.2.1

1.2.2

Figure 5.5 
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Because the choice of a root for the tree is arbitrary, let's start with the 
interval [0, 1]. In our geometrical interpretation, all tree nodes belong to the 
lower triangle of the unit square on the x–y plane.

For each node of the tree, let's first define two important points at the 
x–y plane. The depth-first convergence point is an intersection between the 
diagonal and the vertical line through the node. For example, the depth-
first convergence point for (x = 1, y = 1/2) is (x = 1, y = 1). The breadth-first 
convergence point is an intersection between the diagonal (x = y) and the 
horizontal line through the point. For example, the breadth-first convergence 
point for (x = 1, y = 1/2) is (x = 1/2, y = 1/2). Refer to Figure 5.2 if this is hard 
to see in your head.

1.1.1.1

1.1.1

1.11.2.1

1.3.1

1.2

1.3

2.1

2.1.1

2.2.1

3.1
2.2

2

3

4

1

Figure 5.6 
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For each parent node, we define the position of the first child as a midpoint 
halfway between the parent point and depth-first convergence point. You draw 
a straight line from the parent's point and the depth-first convergence point and 
then find the midpoint of that line. Each sibling is defined as a midpoint halfway 
between the previous sibling point and breadth-first convergence point:

For example, node 2.1 of the Personnel_Orgchart tree is positioned at the 
point (x = 1/2, y = 3/8).

Now that the transformation is defined, it is clear which dense domain we 
are using: it's not rational or real numbers, but binary fractions. As an aside, 
the descendant subtree for the parent node “1.2” is a scaled-down replica of 
the subtree at node “1.1” and the subtree at node 1.1 is a scaled-down replica 
of the tree at node “1” so we have a little fractal.

5.4.2 Summation of Coordinates

Note that x and y are not completely independent; we can find both x and y if we 
know their sum. We will store two INTEGER numbers—numerator and denomi-
nator of the sum of the coordinates x and y—as an encoded node path. Given the 
numerator and denominator of the rational number representing the sum of the 
node coordinates, we can calculate (x, y) coordinates back with this function.

CREATE FUNCTION Find_x_numer (IN numer INTEGER, IN denom INTEGER)

RETURNS INTEGER

BEGIN

DECLARE ret_num INTEGER;

DECLARE ret_den INTEGER;

 SET ret_num = numer + 1;

 SET ret_den = 2 * denom;

 WHILE FLOOR(ret_num/2) = ret_num/2

DO SET ret_num = ret_num/2;

  SET ret_den = ret_den/2;

 END WHILE;

 RETURN ret_num;

END;

Likewise, there is a function for the denominator of x.

CREATE FUNCTION Find_x_denom (IN numer INTEGER, IN denom INTEGER)

RETURNS INTEGER

BEGIN

DECLARE ret_num INTEGER;
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DECLARE ret_den INTEGER;

 SET ret_num = numer + 1;

 SET ret_den = 2 * denom;

 WHILE FLOOR(ret_num/2) = ret_num/2

DO SET ret_num = ret_num/2;

  SET ret_den = ret_den/2;

 END WHILE;

 RETURN ret_den;

END;

The two functions differ from each other by which variable is in the 
final RETURN statement. Informally, numer + 1 increment would move the 
ret_num/ret_den point vertically up to the diagonal; the x coordinate is half 
of the value, so we just multiplied the denominator by two. Next, we reduce 
both numerator and denominator by the common power of two.

Naturally, the y coordinate is defined as a complement to the sum:

CREATE FUNCTION y_numer (IN numer INTEGER, IN denom INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

 SET num = x_numer(numer, denom);

 SET den = x_denom(numer, denom);

 WHILE den < denom
  DO SET num = 2 * num;

   SET den = 2 * den;

 END WHILE;

 SET num = numer - num;

 WHILE FLOOR(num/2) = num/2

  DO SET num = num/2;

    SET den = den/2;

 END WHILE;

 RETURN num;

END;

CREATE FUNCTION y_denom(IN numer INTEGER, IN denom INTEGER)

LANGUAGE SQL
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DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

 SET num = x_numer(numer, denom);

 SET den = x_denom(numer, denom);

 WHILE den < denom
  DO SET num = 2 * num;

   SET den = 2 * den;

 END WHILE;

 SET num = numer - num;

 WHILE FLOOR(num/2) = num/2

  DO SET num = num/2;

    SET den = den/2;

 END WHILE;

 RETURN (den);

END;

Now, the test (where 39/32 is the node 1.3.1), using a dummy table for now.

SELECT x_numer(39, 32)||'/'||x_denom(39, 32),

y_numer(39, 32)||'/'||y_denom(39, 32)

 FROM Dummy;

Results

5/8 19/32

SELECT 5/8 + 19/32, 39/32

 FROM Dummy;

Results

1.21875 1.21875

Note that we did not use floating points to represent rational numbers and 
wrote all the functions with INTEGER arithmetic instead. In the last test, 
however, we used a floating point just to verify that 5/8 and 19/32, returned 
by the previous query, do indeed add to 39/32.
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We'll store two INTEGER numbers—numerator and denominator of the 
sum of the coordinates x and y—as an encoded node path. Unlike the pair of 
integers in the nested sets model, this mapping is stable. The nested intervals 
model is essentially an enumerated path encoded as a rational number. This 
is why the Personnel_Orgchart table was shown as an enumerated path 
model.

5.4.3 Finding Parent Encoding and Sibling Number

Given the (numer, denom) pair of a child node, we can find the node's 
parent with these functions.

CREATE FUNCTION parent_numer (IN numer INTEGER, IN denom INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE ret_num INTEGER;

DECLARE ret_den INTEGER;

 IF numer = 3

 THEN RETURN CAST(NULL AS INTEGER);

 END IF;

 SET ret_num = (numer-1)/2;

 SET ret_den = denom/2;

 WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4

DO SET ret_num = (ret_num + 1)/2;

SET ret_den = ret_den/2;

 END WHILE;

 RETURN ret_num;

END;

CREATE FUNCTION parent_denom (IN numer INTEGER, IN denom INTEGER)

LANGUAGE SQL

DETERMINISTIC

BEGIN

BEGIN

DECLARE ret_num INTEGER;

DECLARE ret_den INTEGER;

 IF numer = 3
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 THEN RETURN CAST(NULL AS INTEGER);

 END IF;

 SET ret_num = (numer-1)/2;

 SET ret_den = denom/2;

 WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4

  DO SET ret_num = (ret_num + 1)/2;

SET ret_den = ret_den/2;

 END WHILE;

 RETURN ret_den;

END;

If the node is the root node, then it has a numerator of 3 and has no 
parent. Otherwise, we must move vertically down the x–y plane at a distance 
equal to the distance from the depth-first convergence point. If the node 
happens to be the first child, then that is the answer.

Otherwise, we must move horizontally at a distance equal to the distance 
from the breadth-first convergence point until we meet the parent node. Here 
is the test of the method in which (27/32) is the node ‘2.1.2’ and (7/8) is ‘2.1’.

SELECT parent_numer(27, 32)||'/'||parent_denom(27, 32)

 FROM Dummy;

Results

7/8

In the previous method, counting the steps when navigating horizontally 
would give the sibling number with this function.

CREATE FUNCTION sibling_number (IN numer INTEGER, IN denom INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE ret_num INTEGER;

DECLARE ret_den INTEGER;

DECLARE ret INTEGER;

 IF numer = 3

 THEN RETURN CAST(NULL AS INTEGER);

 END IF;
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 SET ret_num = (numer - 1)/2;

 SET ret_den = denom/2;

 SET ret = 1;

 WHILE FLOOR((ret_num-1)/4) = (ret_num-1)/4

   DO IF ret_num = 1

 AND ret_den = 1

    THEN RETURN ret;

    END IF;

 SET ret_num = (ret_num + 1)/2;

 SET ret_den = ret_den/2;

 SET ret = ret + 1;

 END WHILE;

 RETURN ret;

END;

The root node is a special stop condition, ret_num = 1 and ret_den = 1, 
which we can test with:

SELECT sibling_number(7, 8) FROM Dummy;

Results

1

5.4.4 Calculating the Enumerated Path and Distance between 
Nodes

Strictly speaking, we do not have to use an enumerated path, as our encod-
ing is an alternative. However, because an enumerated path provides a much 
more intuitive visualization of the node position in the hierarchy, we can use 
the materialized path for input and output of data if we provide mapping to 
our model.

Implementation is a simple application of the methods from the previous 
sections. We print the sibling number, jump to the parent, and then repeat 
these two steps until we reach the root:

CREATE FUNCTION Path (IN numer INTEGER, IN denom INTEGER)

RETURNS VARCHAR (30)

LANGUAGE SQL

DETERMINISTIC
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 IF numer IS NULL

 THEN RETURN ('?');

 ELSE

 RETURN Path(parent_numer(numer, denom),

parent_denom(numer, denom))

  || '.' || sibling_number(numer, denom);

 END IF;

Now we are ready to write a function that takes two nodes, P and C, 
and tells us when P is the parent of C. A more general query would return 
the number of levels between P and C, if C is reachable from P, and some 
exception indicator.

CREATE FUNCTION Distance (IN num1 INTEGER, IN den1 INTEGER,

IN num2 INTEGER, IN den2 INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN CASE

WHEN num1 = num2 AND den1 = den2 -- same node

THEN 0

WHEN num1 IS NULL -- missing data

THEN CAST (NULL AS INTEGER)

ELSE (1 + Distance(parent_numer(num1, den1),

parent_denom(num1, den1), num2, den2))

END;

Test it.

SELECT Distance (27, 32, 3, 4) FROM Dummy;

Results

2

Negative numbers are interpreted as exceptions. If the (num1/den1) node 
is not reachable from (num2/den2), then the navigation converges to the 
root. The alternative way to answer whether two nodes are connected is by 
simply calculating the (x, y) coordinates and checking if the parent interval 
encloses the child. A more thorough implementation of the method would 
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involve a domain of integers and rational numbers with an unlimited range, 
such as those kinds of numbers supported by computer algebra systems, so 
that a comparison operation would be part of the compiler.

Our system would not be complete without a function inverse to the path, 
which returns a node's (numer/denom) value once the path is provided. Let's 
introduce two auxiliary functions, first:

CREATE FUNCTION Child_Numerator

(IN num INTEGER, IN den INTEGER, IN child INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN (num * (child * child) + 3 - (child * child));

and likewise, the matching function:

CREATE FUNCTION Child_Denominator

(IN num INTEGER, IN den INTEGER, IN child INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

RETURN den * (child * child);

For example, the third child of the node ‘1’ (encoded as 3/2) is the node 
‘1.3’ (encoded as 19/16). The path encoding function is:

CREATE FUNCTION Path_Numer(path VARCHAR)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

DECLARE postfix VARCHAR(1000);

DECLARE sibling VARCHAR(100);

 SET num = 1;

 SET den = 1;

 SET postfix = '.' || path || '.';

 WHILE CHAR_LENGTH(postfix) > 1
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DO SET sibling = SUBSTRING(postfix FROM 2 FOR INSTR(postfix, '.', 

2)-2);

SET postfix = SUBSTRING(postfix FROM INSTR(postfix, '.', 2) FOR 

CHAR_LENGTH(postfix) - INSTR(postfix, '.', 2) + 1);

    SET num = Child_Numer(num, den, CAST(sibling AS INTEGER));

    SET den = Child_Denom(num, den, CAST(sibling AS INTEGER));

END WHILE;

RETURN num;

END;

The function INSTR() is a version of the POSITION() function that 
returns the nth occurrence of the second parameter string within the first 
parameter string. Again, the corresponding function for the denominator is

CREATE FUNCTION Path_Denom(path VARCHAR)

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE num INTEGER;

DECLARE den INTEGER;

DECLARE postfix VARCHAR(1000);

DECLARE sibling VARCHAR(100);

 SET num = 1;

 SET den = 1;

 SET postfix = '.' || path || '.';

 WHILE CHAR_LENGTH(postfix) > 1
 DO SET sibling = SUBSTRING(postfix FROM 2 FOR INSTR(postfix, '.', 

2)-2);

SET postfix = SUBSTRING(postfix FROM INSTR(postfix, '.', 2) FOR  

CHAR_LENGTH(postfix) - INSTR(postfix, '.', 2) + 1);

    SET num = Child_Numer(num, den, CAST(sibling AS INTEGER));

    SET den = Child_Denom(num, den, CAST(sibling AS INTEGER));

END WHILE;

RETURN den;

END;

SELECT Path_Numer('2.1.3') || '/' ||

Path_Denom('2.1.3')

 FROM Dummy;
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Results

51/64

5.4.5 Building a Hierarchy

Let's create the Personnel_Orgchart hierarchy in this table.

CREATE TABLE Personnel_Orgchart

(name VARCHAR(30) NOT NULL UNIQUE,

 numer INTEGER NOT NULL,

 denom INTEGER NOT NULL,

 UNIQUE (numer, denom));

INSERT INTO Personnel_Orgchart

VALUES ('King', Path_Numer('1'), Path_Denom('1')),

('Jones', Path_Numer('1.1'), Path_Denom('1.1')),

('Scott', Path_Numer('1.1.1'), Path_Denom('1.1.1')),

('Adams', Path_Numer('1.1.1.1'), Path_Denom('1.1.1.1')),

('Ford', Path_Numer('1.1.2'), Path_Denom('1.1.2')),

('Smith', Path_Numer('1.1.2.1'), Path_Denom('1.1.2.1')),

('Blake', Path_Numer('1.2'), Path_Denom('1.2')),

('Allen', Path_Numer('1.2.1'), Path_Denom('1.2.1')),

('Ward', Path_Numer('1.2.2'), Path_Denom('1.2.2')),

('Martin', Path_Numer('1.2.3'), Path_Denom('1.2.3')),

('Turner', Path_Numer('1.2.4'), Path_Denom('1.2.4')),

('Clark', Path_Numer('1.3'), Path_Denom('1.3')),

('Miller', Path_Numer('1.3.1'), Path_Denom('1.3.1'));

All the functions written in the previous sections are combined 
conveniently in a single view:

CREATE VIEW Hierarchy (name, numer, denom,

numer_lft, denom_lft,

numer_rgt, denom_rgt,

path, depth)

AS SELECT name, numer, denom,

y_numer(numer, denom),

y_denom(numer, denom),

x_numer(numer, denom),
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x_denom(numer, denom),

path (numer, denom),

Distance(numer, denom, 3, 2)

  FROM Personnel_Orgchart;

Finally, we can create the hierarchical reports.

5.4.6 Depth-first Enumeration by Left Interval Boundary

This is a depth-first enumeration by the left interval boundary.

SELECT depth, name, (numer_lft/denom_lft) AS indentation

 FROM Hierarchy

 ORDER BY indentation;

Results

depth name

0 ‘King’

1 ‘Clark’

2 ‘Miller’

1 ‘Blake’

2 ‘Turner’

2 ‘Martin’

2 ‘Ward’

2 ‘Allen’

1 ‘Jones’

2 ‘Ford’

3 ‘Smith’

2 ‘Scott’

3 ‘Adams’

5.4.7 Depth-first Enumeration by Right Interval boundary

Depth-first enumeration, ordering by right interval boundary:

SELECT depth, name,

(numer_rgt/denom_rgt) AS indentation

 FROM Hierarchy

 ORDER BY indentation DESC;
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Results

depth name

0 ‘King’

1 ‘Jones’

2 ‘Scott’

3 ‘Adams’

2 ‘Ford’

3 ‘Smith’

1 ‘Blake’

2 ‘Allen’

2 ‘Ward’

2 ‘Martin’

2 ‘Turner’

1 ‘Clark’

2 ‘Miller’

You can get the same results by ordering by path.

SELECT depth, name, path

 FROM Hierarchy

 ORDER BY path;

5.4.8 All Descendants of a Node

Using ‘Ford’ as the ancestor in question and excluding him, the query is

SELECT H2.name

 FROM Hierarchy AS H1, Hierarchy AS H2

 WHERE H1.name = 'Ford'

 AND Distance (H1.numer, H1.denom, H2.numer, H2.denom) > 0;

Results

name

‘King’

‘Jones’

You can change the “> 0” to “>= 0” in the predicate if you wish to get the 
entire subtree rooted at the ‘Ford’ node.
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5.5 Egyptian Fractions

As an aside, before modern notation for fractions, the Egyptians and 
early Europeans used a sum of positive (usually) distinct unit fractions 
(i.e., fractions of the form 1/n). An Egyptian fraction is a sum of positive 
(usually) distinct unit fractions. Instead of writing 2/5, they wrote 1/3 +  
1/15. For 2/7, they wrote 1/4 + 1/28. Some of the fractions were very 
complicated. For 2/29, they wrote 1/24 + 1/58 + 1/174 + 1/232.

The math is hard enough that you have to use lookup tables for them. The 
Rhind papyrus (circa 1650 BCE) is the first such lookup table for fractions of 
the form 2/n for odd values of n between 5 and 101. The Egyptians also had a 
special symbol for 2/3.

Any rational number has an Egyptian fraction representation with 
arbitrarily many terms and with arbitrarily large denominators. An infinite 
chain of unit fractions can be constructed using the identity

1/n = 1/(n + 1)+ 1/(n(n + 1)).

There are algorithms such as the binary remainder method, continued 
fraction unit fraction algorithm, generalized remainder method, greedy 
algorithm, reverse greedy algorithm, small multiple method, and splitting 
algorithm for decomposing an arbitrary fraction into unit fractions. However, 
we have no algorithm for finding unit fraction representations having either a 
minimum number of terms or smallest possible denominator.

In short, it is a nice math problem but of no practical use for representing 
rational numbers in a computer.



C H A P T E R

6
Linear Version of the Nested Sets 

Model

If you look at the diagram that shows the left and right numbers on a number line, 
you will realize that this diagram can be used directly to represent a tree in 
a nested sets model. The (lft, rgt) numbers each appear once, but the nodes 
of the tree appear exactly twice—once with the lft number and once with 
their rgt number. The table can be defined like this:

CREATE TABLE Personnel_Orgchart

(emp_id CHAR(10) NOT NULL,

 emp_seq INTEGER NOT NULL UNIQUE,

 CONSTRAINT natural_numbers

CHECK(emp_seq > 0),
 CONSTRAINT got_all_numbers

 CHECK ((SELECT COUNT(*) FROM Personnel_Orgchart)

     = (SELECT MAX(emp_seq) FROM Personnel_Orgchart)),

 CONSTRAINT exactly_twice

 CHECK (NOT EXISTS

(SELECT *

FROM Personnel_Orgchart

GROUP BY emp_id

HAVING COUNT(*) <  > 2)),
 PRIMARY KEY (emp_id, emp_seq));
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In fairness, the “got_all_numbers” and “exactly_twice” constraints will 
be hard to implement in most SQL products today, but they are legal in full 
Standard SQL. Our Personnel_Orgchart tree is represented by these data.

Personnel_Orgchart

emp_id mp_ seq

‘Albert’ 1

‘Bert’ 2

‘Bert’ 3

‘Chuck’ 4

‘Donna’ 5

‘Donna’ 6

‘Eddie’ 7

‘Eddie’ 8

‘Fred’ 9

‘Fred’ 10

‘Chuck’ 11

‘Albert’ 12

The standard nested sets model can be constructed using this 
nonupdatable VIEW for queries:

CREATE VIEW Personnel_Orgchart_NS (emp_id, lft, rgt)

AS

SELECT emp_id, MIN(emp_seq), MAX(emp_seq)

FROM Personnel_Orgchart

 GROUP BY emp_id;

Why bother with this approach? It can be handy for parsing markup 
language data into a relational table. You add a row for every begin tag and 

9 10

2

As intervals on a number line

Bert Chuck

Albert

Eddie FredDonna

1 3 4 5 6 7 8 9 10 11 12

Figure 6.1 
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every end tag that you find as you read the text from left to right. It is also 
handy for groupings whose data are gathered in a linear fashion; more on 
that later.

6.1 Insertion and Deletion

Insertion and deletion are just modifications of the routines used in the stan-
dard nested sets model. For example, to remove a subtree rooted at :my_
employee, you would use:

CREATE PROCEDURE RemoveSubtree (IN my_employee CHAR(10))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

 DECLARE leftmost INTEGER;

 DECLARE rightmost INTEGER;

 -- remember where the subtree root was

 SET leftmost = (SELECT MIN(emp_seq)

FROM Personnel_Orgchart

WHERE emp_id = my_employee);

 SET rightmost = (SELECT MAX(emp_seq)

FROM Personnel_Orgchart

WHERE emp_id = my_employee);

 -- remove the subtree

 DELETE FROM Personnel_Orgchart

 WHERE emp_seq BETWEEN leftmost AND rightmost;

 -- compute the size of the subtree & close the gap

 UPDATE Personnel_Orgchart

SET emp_seq = emp_seq - (rightmost - leftmost + 1) / 2

 WHERE emp_seq > leftmost;
END;

Insertion is the reverse of this operation. You must create a gap and then 
add the new subtree to the table.

CREATE PROCEDURE InsertSubtree (IN my_boss CHAR(10))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC
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-- assume that the new subtree is held in NewTree

-- and is in linear nested set format

 DECLARE tree_size INTEGER;

 DECLARE boss_right INTEGER;

 -- get size of the subtree

 SET tree_size = (SELECT COUNT(*) FROM NewTree);

 -- place new tree to right of siblings

 SET boss_right = (SELECT MAX(emp_seq)

FROM Personnel_Orgchart

WHERE emp_id = my_boss);

 -- move everyone over to the right

 UPDATE Personnel_Orgchart

SET emp_seq = emp_seq + tree_size

 WHERE emp_seq >  = boss_right;
 -- re-number the subtree and insert it

 INSERT INTO Personnel_Orgchart

 SELECT emp_id, (emp_seq + boss_right) FROM NewTree;

 -- clear out subtree table

 DELETE FROM Subtrees;

END;

6.2 Finding Paths

The path from anode to root can be found by first looking for the emp_
seq number, which would represent the lft number of the node in the 
nested sets model, and then returning emp_seq numbers lower than that 
value.

 SELECT P1.emp_id

 FROM Personnel_Orgchart AS P1

 WHERE P1.emp_seq <  = (SELECT MIN(P2.emp_seq) -- left parentheses
FROM Personnel_Orgchart AS P2

WHERE P2.emp_id = :my_guy)

 GROUP BY emp_id

HAVING COUNT(*) = 1;

This is a “flatten” version of the BETWEEN predicate in the nested 
sets model. The HAVING clause will remove pairs of siblings, leaving only 
the path.
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6.3 Finding Levels

Getting the level is a little trickier. You count the “parentheses” (i.e., emp_
seq) and then count the number of distinct things inside the parentheses 
(emp_id); every pair of parentheses moves you up a level. Then you do some 
algebra and come up with this answer.

SELECT :my_guy,

2 * COUNT(DISTINCT P2.emp_id)

    − COUNT(DISTINCT P2.emp_seq) AS lvl

 FROM Personnel_Orgchart AS P1, Personnel_Orgchart AS P2

 WHERE P1.emp_id = :my_guy

 AND P2.emp_seq <  = (SELECT MIN(emp_seq)
FROM Personnel_Orgchart

WHERE emp_id = :my_guy);

6.4 Cash Register Tape Problem

Data collected by cash registers and other devices will often produce 
a file that has a sequential number, an item type, and the item. For 
example,

CREATE TABLE Meals

(register_emp_seq INTEGER NOT NULL PRIMARY KEY

 item_type CHAR(5) NOT NULL

CHECK (item_type IN ('MEAL', 'FOOD', 'DRINK')),

 item_name VARCHAR(15) NOT NULL);

with data such as

INSERT INTO Meals

VALUES

(1, 'MEAL', 'Fat Boy Box'),

(2, 'FOOD', 'Fat Burger'),

(3, 'FOOD', 'Fries'),

(4, 'DRINK', 'Coke'),

(5, 'MEAL', 'fountain item'),

(6, 'DRINK', 'Diet Coke'),

(7, 'MEAL', 'a la carte'),

(8, 'FOOD', 'Fat Burger'),
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(9, 'FOOD', 'Burger'),

(10, 'MEAL', 'Fish Sandwich')

 etc

The hierarchy is that food and drink are subordinates of a meal. The first step 
is to find the bracketing MEAL register sequence numbers. In this example, the 
first meal includes all items between (1, 4), the second meal is (5, 6), and the 
third meal is (7, 9); we do not have enough data for the fourth meal, which is 
incomplete in this table (hence the use of the OUTER LEFT JOIN).

CREATE TABLE Meal_tree

(item_name VARCHAR(15) NOT NULL,

 rgt INTEGER NOTN NULL,

 lft INTEGER NOT NULL

 PRIMARY KEY (rgt, lft));

Is first loaded with query:

INSERT INTO Meal_Tree

SELECT M1.item_name,

M1.register_seq AS rgt, MAX(M2.register_seq)−1 AS lft

 FROM Meals AS M1

LEFT OUTER JOIN

Meals AS M2

ON M1.item_type = 'MEAL'

AND M2.item_type = 'MEAL'

AND M1.register_seq < M2.register_seq
 GROUP BY M1.item_name, M1.register_seq;

You can then insert the food and drinks with

INSERT INTO Meal_Tree

SELECT m1.item_name, M1.register_seq, M1.register_seq

 FROM Meals AS M1;

which gives us:

('Fat Boy Box', 1, 4),

('Fat Burger', 2, 2),

('Fries', 3, 3),

('Coke', 4, 4),
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('fountain item', 5, 6),

('Diet Coke', 6, 6),

('a la carte', 7, 9),

('Fat Burger', 8, 8),

('Burger', 9, 9),

('Fish Sandwich', 10, NULL)

 Etc.

This is a “crunched” version of a nested sets model that can produce a meal 
with the usual BETWEEN lft AND rgt search conditions. If you wished to have 
the item type at the second level of the hierarchy and the item_name at the third 
level, then first create leaf nodes with the same (rgt, lft) values, create a ‘DRINK’ 
node and a ‘FOOD’ node, and finally subordinate them to a ‘MEAL’ node.
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7
Binary Trees

Binary trees are a special case of trees in which each parent can have at most only 
two children that are ordered. There are no children, a left child, a right 
child, or both a left and a right child at each node. Binary trees are the 
subject of many chapters in data structures books because they have such 
nice mathematical properties. For example, the number of distinct binary 
trees with (n) nodes is called a Catalan number and is given by the formula 
((2n)!/((n + 1)!n!)). Let's stop and define some terms before we go any 
further.

Complete binary tree: a binary tree in which all leaf nodes are at level 
(n) or (n − 1), and all leaves at level (n) are toward the left, with 
“holes” on the right. There are between (2^(n − 1)) and ((2^n) − 1) 
nodes, inclusively, in a complete binary tree. A complete binary tree 
is efficiently implemented as an array, where a node at location (i) has 
children at indexes (2*i) and ((2*i) + 1) and a parent at location (i/2). 
This is also known as heap and is used in the HeapSort algorithm; we 
will get to that in a little while.

Perfect binary tree: a binary tree in which each node has exactly zero or 
two children and all leaf nodes are at the same level. A perfect binary 
tree has exactly ((2^h) − 1) nodes, where (h) is the height. Every perfect 
binary tree is a full binary tree and a complete binary tree.
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Balanced binary tree: a binary tree where no leaf is more than a certain 
amount farther from the root than any other leaf. See also AVL tree, red-
black tree, height-balanced tree, weight-balanced tree, and B-tree.

Balanced binary search tree: a binary tree used for searching for values in 
nodes. It is usually an index structure. Nodes in the right subtree are all less 
than or equal to the value at the root node. Nodes in the left subtree are all 
greater than or equal to the value at the root node. This is usually done with 
pointer chains so that a search for a value is a simple navigation algorithm.

AVL tree: a balanced binary tree where the heights of the two subtrees 
rooted at a node differ from each other by at most one. The structure is 
named for the inventors, Adelson-Velskii and Landis (1962).

Height-balanced tree: a tree whose subtrees differ in height by no more 
than one and the subtrees are height balanced, too. An empty tree is 
height balanced. A binary tree can be skewed to one side or the other. As 
an extreme example, imagine a binary tree with only left children, all in 
a straight line. The ideal situation is to have a balanced binary tree—one 
that is as shallow as possible because at each subtree the left and right 
children are the same size or no more than one node different. This will 
give us a worst search time of LOG2(n) tries for a set of (n) nodes.

Fibonacci tree: a variant of a binary tree where a tree of order (n) where (n > 1) 
has a left subtree of order n − 1 and a right subtree of order (n − 2). An order 
0 Fibonacci tree has no nodes, and an order 1 tree has one node. A Fibonacci 
tree of order (n) has (F(n + 2) − 1) nodes, where F(n) is the nth Fibonacci 
number. A Fibonacci tree is the most unbalanced AVL tree possible.

In this example, ‘b’ is the left son of ‘a’ and ‘c’ is the right son of ‘a’. Because all 
the locations have a value, this is called a complete binary tree (Figure 7.1).

In procedural programming languages, binary trees are usually represented 
with pointer chains or in a one-dimensional array, where the array subscript 
determines the relationship the node holds within the tree structure. The 
array location is determined by the rule that if a node has an array location of 
(n), then its left child has an array location of (2*n) and its right child has an 
array location of ((2*n) + 1). With a little algebra, you can see that the parent 
of a node is FLOOR(n/2).

A binary tree is used for searching by placing data in the nodes in such a 
way that for every node in the tree, all nodes in its left subtree are less than 
the parent node's value and all nodes in its right are greater than the parent 
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node's value. You locate a value by starting at the root of the tree and turning 
left or right as required until you find the value or that the value is not in the 
tree. All tree indexing schemes, such as B-trees and B+-trees, generalize this 
idea to a traversal in a multiway tree.

7.1 Binary Tree Traversals

One of the standard programs you have to write in freshman computer sci-
ence is a traversal for a binary tree. A traversal is an orderly way of visiting 
every node so that you can perform some operation on it. There are three 
ways to traverse a binary tree, starting at the root.

	 1.	 Postorder traversal
a.	 Recursively traverse the left son's subtree
b.	 Recursively traverse the right son's subtree
c.	 Visit the root of the current subtree

In this sample tree, you would get the list (‘B’, ‘E’, ‘D’, ‘F’, ‘G’, ‘C’, ‘A’). This 
algorithm can be generalized to nonbinary trees and is called a depth-first 
search. If you were given the parse tree for an infixed arithmetic expression, 
as shown in Figure 7.2, the postorder traversal would give you the reverse 
Polish notation equivalent of the expression.

This algorithm can be generalized to nonbinary trees and is called a 
breadth-first search.

	 2.	 Preorder traversal
a.	 Visit the root of the current subtree
b.	 Recursively traverse the left son's subtree
c.	 Recursively traverse the right son's subtree

g h

d
5

b
2

a
1
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7

e
6

8 9 10 11 12 13 14 15

Figure 7.1 
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In this sample tree, you would get the list (‘A’, ‘B’, ‘D’, ‘E’, ‘C’, ‘F’, ‘G’). This 
algorithm can be generalized to nonbinary trees and is called a depth-first 
search. If you were given the parse tree for an infixed arithmetic expression, 
as Figure 7.2 shows, the preorder traversal would give you the Polish notation 
equivalent of the expression. 

This algorithm can be generalized to nonbinary trees and is called a 
breadth-first search.

	 3.	 Inorder traversal:
a.	 Recursively traverse the left son's subtree
b.	 Visit the root of the current subtree
c.	 Recursively traverse the right son's subtree

In this sample tree, you would get the list (‘D’, ‘B’, ‘E’, ‘A’, ‘F’, ‘C’, ‘G’). 
If you were given the parse tree for an arithmetic expression, as shown in 
Figure 7.2, the inorder traversal would give you the standard infixed notation 
equivalent of the expression. 

This algorithm does not generalize to nonbinary trees. Damjan S. Vujnovic 
points out that preorder and postorder representations work because at 
most one tree exists that matches a given set of values. The inorder traversal 
situation is somewhat different. Consider the following two trees (nodes ‘b’ 
and ‘c’ are left children of node ‘a’; node d is the right child of node ‘a’, and 
so on. Nodes having a “/” above are left children, and nodes having a “\” are 
right children:

MultiTree A (Figure 7.3):
MultiTree B (Figure 7.4):
If we try to represent these trees using an inorder traversal, we find that 

they share the same representation; note node ‘X’ in the diagrams. Inorder 
traversal works only with binary trees.

+

2 3

(2 3 +)

Figure 7.2 
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7.2 Binary Tree Queries

Damjan S. Vujnovic (damjan@galeb.etf.bg.ac.yu) worked out the details of 
the following queries against a binary tree. Let's construct a binary tree and 
load it with some sample data from (Figure 7.1).

a

b c

Left node

Right node

d

hgfeX

Figure 7.3 

a

b c

Right node

d

hgfeX

Figure 7.4 
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CREATE TABLE BinTree

(node CHAR(10) NOT NULL,

 location INTEGER NOT NULL PRIMARY KEY);

INSERT INTO BinTree(node, location)

VALUES ('a', 1), ('b', 2), ('c', 3), ('d', 5),

  ('e', 6), ('f', 7), ('g', 14), ('h', 15);

The following table is useful for doing queries on the Heap table.

CREATE TABLE PowersOfTwo

(exponent INTEGER NOT NULL PRIMARY KEY

CHECK(exponent >= 0),
 pwr_two INTEGER NOT NULL UNIQUE

    CHECK(pwr_two >= 1)
 --, CHECK(2^exponent = pwr_two), but this is not standard SQL

);

INSERT INTO PowersOfTwo

VALUES (0, 1), (1, 2), (2, 4), (3, 8),

(4, 16), (5, 32), (6, 64), (7, 128),

(8, 256);

Most SQL implementations have base 10 or natural logarithm 
functions, and LOG2() can be expressed using either of them. The 
general formulas, carried to more precision than most computers can 
handle, are:

LOG10(x)/LOG10(2) = LOG10(x)/0.30102999566398119521373889472449

LN(x)/LN(2) = LN(x)/0.69314718055994530941723212145818

7.2.1 Find Parent of a Node

Getting the parent of a given child is trivial:

SELECT BinTree.*, :my_child

 FROM BinTree

 WHERE location

 =(SELECT FLOOR(location/2) AS parent

    FROM BinTree T1

WHERE T1.node = :my_child)

Likewise, we know that the root of the whole tree is always at location one.
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7.2.2 Find Subtree at a Node—Recursive Common Table 
Expression (CTE)

The recursive definition of a binary tree can be put directly into a recursive CTE:

WITH RECURSIVE Subtree(node_nbr)

AS

(SELECT T1.node_nbr

 FROM Binary_Tree AS T1

 WHERE T1.node_nbr = :in_root_nbr

 UNION

 SELECT T2.node_nbr

 FROM Binary_Tree AS T2, Subtree AS S1

 WHERE T2.node_nbr IN ((2*S1.node_nbr), (2*S1.node_nbr +1))

SELECT ..

 FROM Subtree AS S2

 WHERE ..;

This is a simple enough CTE, but recursion is always expensive. You need to 
compare it to the next version.

7.2.3 Find Subtree at a Node—Data Driven

Finding a subtree rooted at a particular node is a little bit complicated. Note 
that the locations of the children of a node with location (n) are:

(2*n), (2*n) + 1

(4*n), ..., (4*n) + 3

(8*n), ..., (8*n) + 7

(16*n), ..., (16*n) + 15

 ...

The node with location (s) is a subordinate of a node with location (n) if 
and only if (k) exists such that:

(2^k) * n <= s < (2^k) * (n + 1)

We know that (k) exists, therefore k = FLOOR (LOG2(s/n))
In other words, if

s < (2^FLOOR(LOG2(s/n))) *(n + 1)

then the node with location (s) is a subordinate of a node with location (n). 
This is easier to see with an example:
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Example one:

n = 3, s = 13

13 < (2^2)* 4
13 < 16
TRUE

Example two:

n = 2, s = 12

12 < (2^2)* 3
12 < 12
FALSE

Thus we have the subordinates query:

SELECT :my_root, T1.*

 FROM BinTree AS T1, BinTree AS T2

 WHERE T2.node = :my_root

 AND T1.location

    <(FLOOR(LOG2(T1.location/T2.location))^2) *(n + 1);

This predicate lets you test a location number, (j), and see if it is a descen-
dant of the node with location number (k) at level (i).

 j BETWEEN((2^i) * k) AND((2^i) * k + i)

To get all of the descendants, you could use a table of sequential integers 
that includes an integer from one to at least the depth of the tree.

This method can be generalized for n-ary tree with a bit of algebra. If 
the value of (n) is known in advance, we could improve its performance by 
adding the node level as another column.

7.3 Deletion from a Binary Tree

Deletion of a leaf node from the binary tree is easy. Remove the row with the 
target node and leave the rest of the tree alone. Deleting a subtree requires 
using the subordinates query, thus

DELETE FROM BinTree

 WHERE node = :my_root

 AND location

IN (SELECT T1.location

FROM BinTree AS T1

WHERE T1.location

< (FLOOR (LOG2(T1.location/BinTree.location))^2) *(n + 1));
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Deleting a node with subordinates requires a business rule about promotion 
of the subordinates, as every node must have a parent. This depends on the 
individual case and I cannot give a general statement about it.

7.4 Insertion into a Binary Tree

Insertion into the binary tree is easy if there is a vacant position in the tree. 
In general, new nodes are added as the left child and then the right child of 
the target parent node. If all child positions are full, then the tree must be 
reorganized according to some business rule.

7.5 Heaps

One of the nice things about a binary tree is that its predictable growth pat-
tern allows you to assign a single number to locate each node. Sequentially 
number the nodes across the levels in the tree from left to right. This struc-
ture is also known as a heap when it is presented in an array and is the basis 
for the HeapSort algorithm.

Therefore, given a root node located at location (1), you know that its 
sons are at locations (2) and (3). Likewise, using integer division, the parent 
of a node is at location (n/2), and therefore the grandparent is at ((n/2)/2) = 
(n/4). This leads to a recurrence relation based on powers of two.

CREATE TABLE Heap

(node CHAR(10) NOT NULL,

 location INTEGER NOT NULL PRIMARY KEY);

INSERT INTO Heap

VALUES ('A', 1),

('B', 2),

('C', 3),

('D', 4),

('E', 5),

('F', 6),

('G', 7),

('H', 8);

The following table is useful for doing queries on the Heap table.

CREATE TABLE PowersOfTwo

(exponent INTEGER NOT NULL PRIMARY KEY

CHECK(exponent >= 0),
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 pwr_two INTEGER NOT NULL UNIQUE

    CHECK (pwr_two >= 1)
 --, CHECK (2^exponent = pwr_two), but this is not standard SQL

);

INSERT INTO PowersOfTwo

VALUES (0, 1), (1, 2), (2, 4), (3, 8),

(4, 16), (5, 32), (6, 64), (7, 128),

(8, 256);

In actual SQL products, you might want to use base two logarithms (LOG2(n) = 
LOG(n)/LOG(2.0) = LOG(n)/0.69314718055994529) or user-defined functions to 
check that the PowersOfTwo rows are correct. The LOG() and FLOOR() functions 
are not actually part of Standard SQL, but are common enough to be portable.

Given a table with powers of two, we can find all the ancestors of a node 
with this query, which depends on integer division.

SELECT H1.node, H1.location

 FROM Heap AS H1

 WHERE H1.location

 IN (SELECT :in_node/pwr_two

  FROM PowersOfTwo

  WHERE pwr_two <= :my_location);

The level of a node is easy, as each level starts with a power of two on the 
left side (remember that “Level” is a reserved word in SQL-99).

SELECT location,

CAST (FLOOR(LOG(location)/LOG(2.0)) AS INTEGER) AS lvl

 FROM Heap;

The depth of the heap is much the same, but because it must include the 
incomplete level, it is the maximum level or the maximum level plus one.

(SELECT CAST (FLOOR(LOG(MAX(location))/LOG(2.0)) + 1.0 AS INTEGER)

 FROM Heap) AS depth;

Finding the descendants is much harder. Here is a solution from John 
Gilson, who also provided the two previous queries.

CREATE VIEW HeapDescendants

(node, location, descendant, dscnt_loc)

AS

SELECT H1.node, H1.location,
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H2.node AS dscnt,

H2.location AS dscnt_loc

 FROM (SELECT FLOOR(LOG(MAX(location))/LOG(2.0)) + 1.0

FROM Heap) AS D(depth)

    CROSS JOIN

(SELECT location, FLOOR(LOG(location)/LOG(2.0))

    FROM Heap) AS L(location, lvl)

INNER JOIN

Heap AS H1

ON H1.location = L.location

INNER JOIN

PowersOfTwo AS T

ON T.exponent >= 0
AND T.exponent < D.depth - L.lvl

INNER JOIN

Heap AS H2

ON H2.location >= H1.location * pwr_two
  AND H2.location < H1.location * pwr_two + pwr_two;

Given the sample table, we would get this result.

Results

node location dscnt dscnt_loc

‘A’ 1 ‘A’ 1

‘A’ 1 ‘B’ 2

‘A’ 1 ‘C’ 3

‘A’ 1 ‘D’ 4

‘A’ 1 ‘E’ 5

‘A’ 1 ‘F’ 6

‘A’ 1 ‘G’ 7

‘A’ 1 ‘H’ 8

‘B’ 2 ‘B’ 2

‘B’ 2 ‘D’ 4

‘B’ 2 ‘E’ 5

‘B’ 2 ‘H’ 8

‘C’ 3 ‘C’ 3

‘C’ 3 ‘F’ 6

‘C’ 3 ‘G’ 7

‘D’ 4 ‘D’ 4
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node location dscnt dscnt_loc

‘D’ 4 ‘H’ 8

‘E’ 5 ‘E’ 5

‘F’ 6 ‘F’ 6

‘G’ 7 ‘G’ 7

‘H’ 8 ‘H’ 8

7.6 Binary Tree Representation of Multiway Trees

There is a simple way to represent a multiway tree as a binary tree. The algo-
rithm is given in Knuth's Art of Programming (Vol. 1, Section 2.3.2, Page 234, 
ISBN 978-0201485417). Binary tree representation of a multiway tree is based 
on first child–next sibling representation of the tree. In this representation, 
every node is linked with its leftmost child and its next (right nearest) sibling.

Informally, you take the original tree and traverse the nodes by going down a 
level and then across siblings. The leftmost sibling (if any) becomes the left child 
in the binary tree. The sibling in the second position (if any) becomes the right 
child in the binary, and the third and younger siblings become right children 
under the second child. The algorithm is applied recursively down the tree.

If you see one example, you will understand the idea. Let's start with this 
multiway tree (Figure 7.5).

a

b
c d

h

gfe

i

Figure 7.5 

Results—Cont'd
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This tree can be represented in the first child–next sibling manner as 
shown in Figure 7.6.

Now grab this graph and pull it up a little so that things flop down 45° 
(Figure 7.7). Yes, that is not a very scientific description but it makes good 
visual sense, doesn't it?

Behold! A binary tree! [This example is credited to Paul E. Black (paul 
.black@nist.gov) and is part of the dictionary of algorithms from NIST http://
www.nist.gov/dads/HTML/binaryBinTreeRepofBinTree.html.]

The left child of a node is its immediate oldest subordinate, and the chain 
of right children from this root node are other subordinates in order by age 
(i.e., left to right).

7.7 Stern–Brocot Numbers

This is a method for constructing the set of all nonnegative fractions, (m/n), 
where m and n are relatively prime. It also represents any binary tree by 
assigning a unique fraction to each node.

The process begins with a pair of fractions (0/1, 1/0)(Figure 7.8)  
and then the fraction (m1 + m2)/(n1 + n2) is inserted between each pair  
of fractions (m1/n1, m2/n2). For example, the first steps in the process  
give us:

(0/1, 1/0)

(0/1, 1/1, 1/0)

(0/1, 1/2, 1/1, 2/1, 1/0)

(0/1, 1/3, 1/2, 2/3, 1/1, 3/2, 2/1, 3/1, 1/0)

NIST, the National Institute of Standards and Technology, was known 
between 1901 and 1988 as the National Bureau of Standards (NBS) and 
was the “Office of Weights and Measures” under John Quincy Adams. It 
is a federal government agency in charges of maintaining measurement 
standards laboratories. It does not have regulatory powers, however, it sets 
up tests for enforcement agencies.

Most Americans are effected in daily life by Handbook 44 that provides 
the “Specifications, Tolerances, and Other Technical Requirements for 
Weighing and Measuring Devices” used in the United States. We computer 
people care about Information Technology Laboratory (ITL). NIST are also 
active in ANSI (American National Standards Institute) ISO (International 
Organization for Standards), and other organizations that deal with IT.
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Figure 7.7 
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Remove (0/1) (i.e., zero) and (1/0) (i.e., infinity) and leave (1/1) (i.e., one) 
as the root of a binary tree. This maps every rational number into a set of left–
right paths. For example, we can arrive at (5/7) by traversing the tree (left, 
right, right, left). It is a bit of algebra and programming, but you can map 
any tree into a binary tree and then use Stern–Brocot numbering to identify 
the nodes. Unfortunately, finding relationships in such a representation also 
requires bit of algebra and programming.

1/1,

1/1,

1/1, 2/1,1/2,

1/2,

1/3, 2/3, 3/2, 3/1,

2/1,

1/0)

1/0)

(0/1,

(0/1,

(0/1,

(0/1,

1/0)

1/0)

Figure 7.8 



C H A P T E R

8
Other Models for Trees

The models for trees and hierarchies discussed so far are not the only ones. Others 
use different approaches and properties of trees, some of which are hybrids 
of other models.

8.1 Adjacency List with Self-References

A slight modification of the usual adjacency list model is to include an 
edge that loops back to the same node.

CREATE TABLE Personnel_OrgChart

(boss_emp_name VARCHAR(20) NOT NULL,

 emp_name VARCHAR(20) NOT NULL,

 PRIMARY KEY (boss_emp_name, emp_name));
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Personnel_OrgChart

boss_emp_name emp_name

‘Albert’ ‘Albert’

‘Albert’ ‘Bert’

‘Albert’ ‘Chuck’

‘Bert’ ‘Bert’

‘Chuck’ ‘Chuck’

‘Chuck’ ‘Donna’

‘Chuck’ ‘Eddie’

‘Chuck’ ‘Fred’

‘Donna’ ‘Donna’

‘Eddie’ ‘Eddie’

‘Fred’ ‘Fred’

This makes the table longer, but avoids a NULL in the boss_emp_name 
column of the root. The query for finding the leaf nodes is

 SELECT boss_emp_name

FROM Personnel_OrgChart

GROUP BY boss_emp_name

 HAVING COUNT (boss_emp_name) = 1;

Other queries for the adjacency list still work in a modified form, but 
produce slightly different results.

8.2 Subordinate Adjacency List

Another modification of the usual adjacency list model is to show edges of 
the graph as oriented from the superior to the subordinate. Nodes without a 
subordinate are leaf nodes and have a NULL.

CREATE TABLE Personnel_OrgChart

(boss_emp_name VARCHAR(20) NOT NULL,

 emp_name VARCHAR(20), -- null means leaf node

 PRIMARY KEY (boss_emp_name, emp_name));
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Personnel_OrgChart

boss_emp_name emp_name

‘Albert’ ‘Bert’

‘Bert’ NULL

‘Albert’ ‘Chuck’

‘Chuck’ ‘Donna’

‘Chuck’ ‘Eddie’

‘Chuck’ ‘Fred’

‘Donna’ NULL

‘Eddie’ NULL

‘Fred’ NULL

This avoids a NULL in the root, but gives you more NULLs in the table. 
Finding all the leaf nodes is easy:

 SELECT P1.emp_name

FROM Personnel_OrgChart AS P1

 WHERE P1.subordinate_emp_name IS NULL;

Queries for the adjacency list model still work, but they need 
modifications.

8.3 Hybrid Models

It is possible to mix the models we have discussed. The idea is to gain the 
advantages of each in one table, but the price can be increased for overhead 
and storage.

8.3.1 Adjacency and Nested Sets Model

This approach retains the parent node column in each row of a nested sets 
model. The problem is that you cannot include the constraints on the (lft, 
rgt) pairs that assure the tree structure, thus:

CREATE TABLE Tree

(node CHAR(5) NOT NULL,

 parent_node CHAR(5),
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 lft INTEGER DEFAULT 0 NOT NULL,

 rgt INTEGER DEFAULT 0 NOT NULL);

INSERT INTO Tree

VALUES ('A', NULL, 1, 18),

('B', 'A', 2, 3),

('C', 'A', 4, 11),

('D', 'C', 5, 6),

('E', 'C', 7, 8),

('F', 'C', 9, 10),

('G', 'A', 12, 17),

('H', 'G', 13, 14),

('I', 'G', 15, 16);

The advantage of this model is that you can insert nodes using this 
statement and let the default values take effect.

 INSERT INTO Tree (node, parent)

 VALUES (:my_node, :my_parent);

The clean-up procedure has to detect any (0, 0) pairs in the tree table. 
If there is at least one such pair, we know nodes have been added, so the 
procedure needs to perform a complete rebuild of the tree from the (child, 
parent) columns. If there is no such pair we know that nodes might have 
been deleted, so the procedure needs to rerenumber the (lft, rgt) columns.

8.3.2 Nested Sets with Depth Model

This approach retains the level or depth in each row of a nested sets model, 
disregarding constraints, thus:

CREATE TABLE Tree

(node CHAR(5) NOT NULL,

 "depth" INTEGER NOT NULL, -- depth is reserved in Standard SQL

 lft INTEGER NOT NULL,

 rgt INTEGER NOT NULL);

INSERT INTO Tree

VALUES ('A', 1, 1, 18),

('B', 2, 2, 3),

('C', 2, 4, 11),
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('D', 3, 5, 6),

('E', 3, 7, 8),

('F', 3, 9, 10),

('G', 2, 12, 17),

('H', 3, 13, 14),

('I', 3, 15, 16);

While the level number can be generated from the nested sets model in a 
VIEW, the query involves an expensive self-join. The advantage is in bill of 
materials (“B.O.M.” or BOM) problems where subassembly data have to be 
computed up the tree from the leaf nodes (parts).

8.3.3 Adjacency and Depth Model

This model adds a column for the depth of the node to the adjacency 
list, thus:

CREATE TABLE Tree

(node CHAR(5) NOT NULL PRIMARY KEY,

 parent CHAR(5),

 "depth" INTEGER NOT NULL, -- depth is reserved in Standard SQL

 CHECK (. . .), -- constraints for tree structure

);

Adding a node is easy:

CREATE PROCEDURE AddChildNode (IN c INTEGER, IN p INTEGER)

DETERMINISTIC

LANGUAGE SQL

INSERT INTO Tree

SELECT c, p, ("depth" + 1)

FROM Tree

 WHERE node = p;

However, this is a bad hybrid if you need to change the tree structure. 
When you delete a node, the elements of its subtree all have to be raised one 
level. Likewise, the depth has to be recalculated if a node is moved to a new 
parent. Tracing the path down the tree can be expensive in the adjacency list 
model because you need procedural code.
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8.3.4 Computed Hybrid Models

John Gilson (jag@acm.org) came up with this set of VIEWs. For a given 
node N and a depth-first (preorder) traversal, each ancestor's sequence 
number is the greatest number on that level that is less than N's sequence 
number. For a given node N and breadth-first (postorder) traversal, each 
ancestor's sequence number is the least number on that level that is greater 
than N's sequence number. We can use these relationships directly to 
define the following views:

CREATE TABLE PreorderTree

(node VARCHAR(10) NOT NULL PRIMARY KEY,

 postorder_nbr INTEGER NOT NULL CHECK (postorder_nbr > 0),
 lvl INTEGER NOT NULL CHECK (lvl > 0),
UNIQUE (lvl, postorder_nbr));

-- Preorder

INSERT INTO PreorderTree

VALUES ('A', 1, 1),

('B', 2, 2),

('C', 3, 2),

('D', 4, 3),

('E', 5, 3),

('F', 6, 3),

('G', 7, 2),

('H', 8, 3),

('I', 9, 3);

CREATE VIEW PreorderRelationships

AS

SELECT T1.node AS descendant,

T1.lvl AS descendant_lvl,

T1.postorder_nbr AS descendant_postorder_nbr,

T2.node AS ancestor,

T2.lvl AS ancestor_lvl,

T2.postorder_nbr AS ancestor_postorder_nbr

FROM PreorderTree AS T1

INNER JOIN

PreorderTree AS T2

  ON T2.lvl < T1.lvl
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    AND T2.postorder_nbr < T1.postorder_nbr
LEFT OUTER JOIN

PreorderTree AS T3

ON T3.lvl = T2.lvl

    AND T3.postorder_nbr > T2.postorder_nbr
    AND T3.postorder_nbr < T1.postorder_nbr

 WHERE T3.postorder_nbr IS NULL;

And likewise for a postorder traversal.

CREATE TABLE PostorderTree

(node VARCHAR(10) NOT NULL PRIMARY KEY,

 postorder_nbr INTEGER NOT NULL CHECK (postorder_nbr > 0),
 lvl INTEGER NOT NULL CHECK (lvl > 0),
 UNIQUE (lvl, postorder_nbr));

-- Postorder

INSERT INTO PostorderTree

VALUES ('A', 9, 1),

('B', 1, 2),

('C', 5, 2),

('D', 2, 3),

('E', 3, 3),

('F', 4, 3),

('G', 8, 2),

('H', 6, 3),

('I', 7, 3);

CREATE VIEW PostorderRelationships

AS

SELECT T1.node AS descendant,

T1.lvl AS descendant_lvl,

T1.postorder_nbr AS descendant_postorder_nbr,

T2.node AS ancestor,

T2.lvl AS ancestor_lvl,

T2.postorder_nbr AS ancestor_postorder_nbr

 FROM PostorderTree AS T1

INNER JOIN

PostorderTree AS T2

ON T2.lvl < T1.lvl
AND T2.postorder_nbr > T1.postorder_nbr
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     LEFT OUTER JOIN

     PostorderTree AS T3

     ON T3.lvl = T2.lvl

AND T3.postorder_nbr < T2.postorder_nbr
AND T3.postorder_nbr > T1.postorder_nbr

 WHERE T3.postorder_nbr IS NULL;

We can then write some of the standard queries easily. Using the preorder 
tree, get all ancestors of a given node.

SELECT *

 FROM PreorderRelationships

 WHERE descendant = :my_guy;

Using postorder, get all descendants of C

SELECT *

 FROM PostorderRelationships

 WHERE ancestor = :my_ancestor;

8.4 Path Enumeration Using Prime Number Products

This model is credited to P. Thomas Roji. It uses a prime number table and 
basic mathematical operations to do basic hierarchy operations. Having said 
that, the disadvantage is that the product of prime numbers gets big very fast.

This model depends on two mathematical properties.

	 1.	 There is a unique path to every node in a tree from the root node.
	 2.	 The prime numbers that can be a divisor of the product of a set of 

prime numbers are only the prime numbers in the set.

That is, let the product of prime numbers be Π(p(n)), then the factors of 
Π(p(n)) can only be the prime numbers, p(n) that participated in the multi-
plication, or the subproducts. Maple and other mathematical software tools 
have a built-in function for finding the ith prime. We are not so lucky in SQL 
and will use a one column table of primes, PrimeNumbers(prime).

The following is the table used in the examples.

CREATE TABLE Personnel_Orgchart

(emp_name VARCHAR(15) NOT NULL PRIMARY KEY,

 node_prime BIGINT NOT NULL

 REFERENCES PrimeNumbers(prime,

 path_product BIGINT NOT NULL);
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Here are sample data for my five-node organizational chart.

INSERT INTO Personnel_Orgchart (emp_name, node_prime, path_product)

VALUES

('Albert', 2, 2),

('Bert', 3, 6),

('Chuck', 5, 10),

('Donna', 7, 70),

('Eddie', 11, 110),

('Fred', 13, 130);

The column node_prime is a unique prime number assigned to each 
employee. The column path_product holds the product of the node_prime 
values from the root to the current node.

We can also create a VIEW or CTE of the next available prime number with

REATE VIEW NextPrime(prime)

AS

SELECT MIN(prime)

FROM (SELECT prime FROM PrimeNumbers

EXCEPT

SELECT FROM node_prime FROM Personnel_Orgchart);

8.4.1 Find the Subordinates of a Node

The logic is simple. We get the prime number of the parameter node and find 
all the multiples of it.

CREATE PROCEDURE Find_Subordinates(IN in_emp_name VARCHAR(15))

LANGUAGE SQL

DETERMINISTIC

SELECT P1.emp_name, P2.emp_name AS manager_emp_name

FROM Personnel_Orgchart AS P1,

Personnel_Orgchart AS P2

WHERE in_emp_name = P1.emp_name

AND MOD(P2.path_product, P1.path_product) = 0;

8.4.2 Find the Superiors of a Node

The logic is simple. We get the path product of the parameter node and find 
all the divisors of it.
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CREATE PROCEDURE Find_Superiors(IN in_emp_name VARCHAR(15))

LANGUAGE SQL

DETERMINISTIC

SELECT P1.emp_name, P2.emp_name AS manager_emp_name

FROM Personnel_Orgchart AS P1,

Personnel_Orgchart AS P2

WHERE in_emp_name = P1.emp_name

AND MOD(P1.path_product, P2.path_product) = 0

8.4.3 Hierarchy with Levels

This requires a table of prime numbers and the assumption that prime 
numbers are assigned to nodes in ascending order

CREATE PROCEDURE Find_Level(IN in_emp_name VARCHAR(15))

LANGUAGE SQL

DETERMINISTIC

SELECT P1.emp_name,

SUM (CASE WHEN MOD(P1.path_product, N.prime) = 0

THEN 1 ELSE 0 END) AS lvl

 FROM Personnel_Orgchart AS P1,

PrimeNumbers AS N

 WHERE in_emp_name = P1.emp_name

 AND N.prime < = MAX(P1.node_prime) OVER()
 GROUP BY P1.emp_name;

The CASE expression counts the divisors at the parameter. The root is at 
level one, and then we count down to the leaf nodes.

8.4.4 Insert New Employee under a Boss

This is done in one statement in full SQLs that support the use of scalar 
subquery expression in a VALUES() list.

CREATE PROCEDURE Insert_New_Employee

     (IN in_new_emp_name VARCHAR(15),

     IN in_boss_emp_id VARCHAR(15))
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LANGUAGE SQL

DETERMINISTIC

INSERT INTO Personnel_Orgchart (emp_name, node_prime, path_product)

VALUES (in_new_emp_name,

(SELECT prime FROM NextPrime),

(SELECT prime FROM NextPrime)

* (SELECT P1.path_product

FROM Personnel_Orgchart AS P1

WHERE P1.emp_name = in_boss_emp_id));

If your SQL has problems with this, then declare local variables and load 
them with the node_prime and path_product computation.

8.4.5 Delete an Employee

The first rule is that you cannot ever delete the root node. The tree would fall 
apart without a root. The next problem is what to do with the subordinates. 
In this case, we have opted to move the subordinates to the immediate 
superior.

The approach is simple. Given an employee, find the node_prime, and we 
are done with that row, so we delete it. We then factor out the delete_prime 
from all the subordinates.

CREATE PROCEDURE Delete_Employee

     (IN in_emp_name VARCHAR(15))

LANGUAGE SQL

DETERMINISTIC

BEGIN ATOMIC

--- find the prime of the deletion node

DECLARE delete_prime INTEGER;

SET delete_prime

= (SELECT P1.node_prime

FROM Personnel_Orgchart AS P1

WHERE P1.emp_name = in_emp_name);

--- delete the node

DELETE FROM Personnel_Orgchart

 WHERE emp_name = in_emp_name;
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--- delete the prime from the products

UPDATE Personnel_Orgchart

SET path_product

= CASE WHEN MOD(path_product, delete_prime) = 0

THEN (path_product / delete_prime)

ELSE path_product END

 WHERE node_prime > 2;
END;

8.4.6 Decomposing a Path

The product paths in this model are made up of single occurrences of primes. 
We assume that there is a table of primes, but we don't want to test all of 
them if we can help it. The WHERE clause tells us that the root is always at 2 
and that the product we are testing could itself be a prime at the second level 
of the tree.

CREATE PROCEDURE Prime_Path_List(IN @in_path_product INTEGER)

LANGUAGE SQL

DETERMINISTIC

SELECT N.prime

 FROM PrimeNumbers AS N

 WHERE MOD(@in_path_product, N.prime) = 0

 AND N.prime BETWEEN 2 AND @in_path_product;

8.4.7 Helpful Functions

Because this method is based on factoring and products, it can be handy to 
have a small library of useful integer math functions.

8.4.7.1 Greatest Common Divisor

The greatest common divisor or GCD(a, b) is a classic algorithm in procedural 
programming language. The name describes the results. Because it has been 
around for millennia, there are several ways to do it. Here are three. The first is 
iterative and relatively fast.

CREATE FUNCTION GCD(IN a INTEGER, IN b INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN
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DECLARE tINTEGER;

 WHILE b < > 0
DO SET t = b;

SET b = MOD (a, b);

SET a = t;

 END WHILE;

RETURN a;

END;

The next iterative version comes from Euclid, the remainder calculation 
(b = MOD (a, b)) is replaced by repeated subtraction.

CREATE FUNCTION GCD(IN a INTEGER, IN b INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

BEGIN

IF a = 0

THEN RETURN b;

ELSE WHILE b <  > 0
    DO IF a > b

THEN SET a = a - b;

ELSE SET b = b - a;

END IF;

  END WHILE;

RETURN a;

END IF;

END;

The recursive version is based on the equality of the GCDs of successive 
remainders and the halting condition GCD(n, 0) = n.

CREATE FUNCTION GCD(IN a INTEGER, IN b INTEGER)

RETURNS INTEGER

LANGUAGE SQL

DETERMINISTIC

IF b = 0

THEN RETURN a;

ELSE RETURN GCD(b, MOD (a, b));

END IF;
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8.4.7.2 Least Common Multiple

The LCM(a,b), least common multiple, function is the other side of the 
GCD(). Again, its name explains the function. The easy way to compute is to 
use the formula:

 LCM(a,b) = ABS(a*b) / GCD(a,b);



C H A P T E R

9
Proprietary Extensions for Trees

As you can see from the examples given earlier in this book, you very quickly get 
into recursive or procedural code to handle trees. Because the single-table 
adjacency list model is popular, several vendors have added extensions 
and academics have proposals to handle tree traversal in SELECT 
statements.

9.1 Oracle Tree Extensions

Oracle has CONNECT BY PRIOR and START WITH clauses in the SELECT 
statement to provide partial support for reachability and path enumeration 
queries. The START WITH clause tells the engine which value the root of 
the tree has. The CONNECT BY PRIOR clause establishes the edges of the 
graph. The function LEVEL gives the distance from the root to the current 
node, starting at 1 for the root. Let us use a list of parts and subcompo-
nents as the example database table. The query “Show all subcomponents 
of part A1, including the substructure” can be handled by the following 
Oracle PLSQL statement:

 SELECT LEVEL AS path_length, assembly_nbr, subassembly_nbr

 FROM Blueprint

 START WITH assembly_nbr = 'A1'

CONNECT BY PRIOR subassembly_nbr = assembly_nbr;
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The query produces the following result:

Result1

path_length assembly_nbr subassembly_nbr

1 ‘A1’ ‘A2’

2 ‘A2’ ‘A5’

2 ‘A2’ ‘A6’

3 ‘A6’ ‘A8’

3 ‘A6’ ‘A9’

1 ‘A1’ ‘A3’

2 ‘A3’ ‘A6’

3 ‘A6’ ‘A8’

3 ‘A6’ ‘A9’

2 ‘A3’ ‘A7’

1 ‘A1’ ‘A4’

The output is an adequate representation of the query result because 
it is possible to construct the path enumeration tree of Figure 9.1 from it. 
The CONNECT BY … PRIOR clause provides traversal but not support for 
recursive functions before version 9.0 (check the status of the product at the 
time you are reading this chapter). For example, it is not possible to sum the 
weights of all subcomponents of part A1 to find the weight of A1. The only 
recursive function supported by the CONNECT BY … PRIOR clause is the 
LEVEL function. Another limitation of the CONNECT BY … PRIOR clause 
is that it does not permit the use of joins. The reason for disallowing joins 

Figure 9.1  Depth-first search.
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is that the order in which the rows are returned in the result is important. 
Because parent nodes appear before their children, you know that if the path 
length increases, these are children; if it does not, they are new nodes at a 
higher level.

This also means that an ORDER BY can destroy any meaning in the results. 
This means, moreover, that the CONNECT BY… PRIOR result is not a true 
table, as a table by definition does not have an internal ordering. In addition, 
this means that it is not always possible to use the result of a CONNECT BY 
query in another query. A trick for working around this limitation, which 
makes indirect use of the CONNECT BY … PRIOR clause, is to hide it in a 
subquery that is used to make a JOIN at the higher level. For example, to attach 
a product category description, form another table to the parts explosion.

SELECT part_nbr, category_name

 FROM Parts, ProductCategories

 WHERE Parts.category_id = ProductCategories.category_id

AND part_nbr IN (SELECT subassembly_nbr

FROM Blueprint

START WITH assembly_nbr = 'A1'

CONNECT BY PRIOR subassembly_nbr = assembly_nbr);

The main query involves a JOIN of two tables, which would not be 
possible with direct use of the CONNECT BY … PRIOR clause. Another 
query that cannot be processed by direct use of the CONNECT BY … PRIOR 
clause is one that displays all parent–child relationships at all levels. A 
technique to process this query is illustrated by the following SQL:

SELECT DISTINCT PX.part_nbr, PX.pname, PY.part_nbr, PY.pname

 FROM Parts AS PX, Parts AS PY

 WHERE PY.part_nbr

IN (SELECT Blueprint.subassembly_nbr

FROM Blueprint

START WITH assembly_nbr = PX.part_nbr

CONNECT BY PRIOR subassembly_nbr = assembly_nbr)

 ORDER BY PX.part_nbr, PY.part_nbr;

Again, the outer query includes a JOIN, which is not allowed with 
the CONNECT BY … PRIOR clause in the inner query used in the IN() 
predicate. Note that the correlated subquery references PX.part_nbr.
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9.1.1 Related Tree Extensions

Other vendors have done things similar to the Oracle approach to things, all 
based on establishing a root and a relationship to JOIN the original table to 
a correlated copy of itself. Indexing can help, but such queries are still very 
expensive.

XD was a SQL product that runs on PC platforms and was fully 
compatible with DB2. The company, XDB Systems, was founded by  
Dr. S. Bing Yao, who was known for his research in query optimization. Micro 
Focus bought XDB in 1998 and made it part of tehir COBOL Product line 
as the DB2 Optrion. The product had a set of extensions similar to those 
in Oracle, but this product uses functions instead of clauses to hide the 
recursion. The PREVIOUS (<column>) function finds rent node value of the 
child column for the row being currently processed by a query. The keyword 
LEVEL is a system value computed for each row, which gives its path length 
from the root; the root is at LEVEL = 0. There is a special value for the 
path length of a leaf node, called BOTTOM. For example, to find all of the 
subcomponents of A1, you would write this query:

SELECT assembly_nbr

  FROM Blueprint

WHERE PREVIOUS (subassembly_nbr) = assembly_nbr

 AND assembly_nbr='A1'

AND LEVEL  <= BOTTOM:

9.2 DB2 and the WITH Operator

IBM added the WITH operator from the SQL-99 Standard to their DB2  
product line to handle the need to factor out common subquery expressions 
and give them a name for the duration of the query. Other alternatives have 
been to repeat the code (hoping that the optimizer would do the factoring) 
or to create a VIEW and use it. However, the VIEW will be persistent in the 
schema after the query is done unless you drop it explicitly.

However, instead of being a simple temporary VIEW mechanism, IBM 
made the WITH clause handle recursive queries by allowing self-references. 
This is useful for tree structures in particular. You define a special form of the 
temporary hidden table that has an initial subquery and a recursive subquery. 
These two parts have to be connected by a UNION ALL operator—no other 
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set operation will do. The hidden table is initialized with results of the initial 
subquery and then the result of the recursive subquery is added to the hidden 
table over and over as it is used.

This might be easier to explain with an example taken from the usual 
adjacency list model OrgChart table. To find the immediate subordinates of 
Boss 'Albert' you would write:

 SELECT *

FROM OrgChart

 WHERE boss = 'Albert';

To find all of his subordinates, you add this WITH clause to the query:

WITH Subordinates (emp, salary)

 AS (SELECT emp, salary

FROM OrgChart AS P0

WHERE boss = 'Albert') -- initial set

UNION ALL

  (SELECT emp, salary

FROM OrgChart AS P1, Subordinates AS S1

WHERE P1.boss = S1.emp) -- recursive set

SELECT emp

 FROM Subordinates;

Each time you fetch a row from Subordinates, the WITH clause is 
executed using the current rows of the temporary hidden table. First you 
fetch 'Albert' and his immediate subordinates. You then do a UNION ALL 
for personnel who have those subordinates as bosses and so forth until the 
subquery is empty. Then the hidden table is passed to the main SELECT 
clause to which the WITH clause is attached.

9.3 Date's EXPLODE Operator

In his book Relational Database: Selected Writings, Chris Date proposed an 
EXPLODE(<table-name>) table-valued function that would take an input 
table in the adjacency list model and return another table with four columns: 
level number, current node, subordinate node, and sequence number. The 
sequence number was included to get around the problem of the ordering 
having meaning in the hierarchy. EXPLODE results are derived from simple 
tree-traversal rules.
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It is possible to write such a function in the current version of products 
that have a table-valued function feature. You can also write a procedure that 
will write the result set to a global or local temporary table that the rest of the 
session can use.

9.4 Tillquist and Kuo's Proposals

(John Tillquist and Feng-Yang Kuo, 1989) proposed an extension wherein 
a tree in an adjacency list model is viewed as a special kind of GROUP BY 
clause. They would add a GROUP BY LEAVES (major, minor) that can be 
approximated with the query:

SELECT *

 FROM Tree AS T1

 WHERE NOT EXISTS (SELECT *

FROM Tree AS T2

WHERE T1.major = T2.minor)

 GROUP BY T1.major;

The idea is that you get groups of leaf nodes, with their immediate parent 
as the single grouping column. Other extensions in Tillquist and Kuo's paper 
include a GROUP BY NODES (<parent node>, <child node>), which would 
use each node only once to prevent problems with cycles in the graph and 
would find all of the descendants of a given parent node. They then extend 
the aggregate functions with a COMPOUND function modifier (along the 
lines of DISTINCT) that carries the aggregation up the tree.

9.5 Microsoft Extensions

Microsoft added the HIERARCHYID data type in the SQL Server 2008 release 
as a proprietary version of a variable length, encoded path enumeration data 
type. Columns of this type are supposed to represent the position of its row 
in a hierarchy, but they do not have to represent a tree automatically. It is up 
to the application to generate and assign HIERARCHYID values in such a 
way that the desired relationship between rows is reflected in the values.

Given two HIERARCHYID values a and b, (a < b) means a comes before 
b in a depth-first traversal of the tree—a simple string search. The encoding 
used in the HIERARCHYID type is limited to 892 bytes. Consequently, nodes 
that have too many levels in their representation to fit into 892 bytes cannot 
be represented by the HIERARCHYID type.
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In total violation of the SQL data integrity principles, the application has 
to manage concurrency in generating and assigning HIERARCHYID values. 
There is no guarantee that HIERARCHYID values in a column are unique 
unless the application uses a UNIQUE constraint. Hierarchical relationships 
represented by HIERARCHYID values are not enforced like a foreign key 
relationship. It is possible A has a subordinate B, and then A is deleted 
leaving B orphaned, that is, with a relationship to a nonexistent row.

This is a proprietary OO implementation that uses Methods rather than an SQL 
extension. They can be called by external programs. Here is a quick list of them.

	 1.	 ToString() method converts the HIERARCHYID value to the logical 
representation as a NVARCHAR(4000) data type.

	 2.	 Read () and Write () convert HIERARCHYID to VARBINARY.

	 3.	 Conversion from HIERARCHYID to XML is not supported. To transmit 
HIERARCHYID parameters through SOAP, first cast them as strings.  
A query with the FOR XML clause will fail on a table with HIERARCHYID 
unless the column is first converted to a character data type.

	 4.	 GetAncestor

	 5.	 GetDescendant

	 6.	 GetLevel

	 7.	 GetRoot

	 8.	 IsDescendantOf

	 9.	 Parse

	 10.	 Read

	 11.	 GetReparentedValue

	 12.	 ToString

	 13.	 Write

9.6 Other Methods

Looking at the literature, most of the attempts to add a tree structure 
operation to SQL have been based on the assumption that adjacency list 
representation was the only possible way to model a tree structure. But as 
we can see in this book, that simply is not true.
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Perhaps the influence of decades of procedural languages is hard to 
overcome or it might be all of those “Boxes and Arrows” charts we have seen 
on the walls even before there were computers.
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10
Hierarchies in Data Modeling

Type hierarchies are useful when trying to model entities for a database. How this 
hierarchy is mapped into SQL DDL is another issue. Many years ago, at an 
ANSI X3H2 Database Standards Committee meeting in Rapid City, South 
Dakota, Bjarne Stroustrup gave a lecture on C++ and object-oriented (OO) 
programming research at Bell Labs. When asked about using OO concepts 
in databases, he replied that the people at Bell Labs had experimented 
with it, tried several approaches, and came to the conclusion that while 
OO was good for programming, it was a bad idea for data. The most recent 
model of OO also seems to have gone back to a separation of data and 
procedures.

However, programmers who come into SQL from OO languages and 
models insist on trying to model class or type hierarchies in SQL. This is 
not a new phenomenon. When SQL first came out, COBOL programmers 
tried to force their mental model on SQL. Old files were converted directly 
into tables, each field became a column, and each record became a row. 
Then the application program could simply replace the file reads with a 
cursor and the programmer never had to learn the relational model. The 
performance stank, of course.

The usual attempts by OO programmers to force their model into 
SQL involve building a metadata model in SQL, where tables use a 
proprietary, nonrelational autoincrementing feature of some kind to 
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replace a global OID (object identifier) and have columns that contain 
the names of attributes, their values, and something to establish class 
hierarchy.

Vendors such as SQL Server and DB2 have had this ?feature? for years, in 
slightly different versions. 

The SQL:2011 draft standard now has an IDENTITY which is based on a 
table level SEQUENCE generator column. As expected, it has to be an exact 
numeric with scale zero only one such column is allowed per table. The basic 
BNF is:

<IDENTITY column specification> ::=

GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY

AS <data type>

START WITH <signed numeric literal>

INCREMENT BY <signed numeric literal>

MAXVALUE <signed numeric literal> | NO MAXVALUE

MINVALUE <signed numeric literal> | NO MINVALUE

CYCLE | NO CYCLE

However, physically contiguous storage is only one way of building a 
relational database and is not always the best one. One of the basic ideas of 
a relational database is that the user is not supposed to know how things are 
stored at all, much less write code that depends on the particular physical 
representation in a particular release of a particular product. Because every 
underlying file system was different and there was no standard, every vendor 
came with a proprietary and nonportable scheme for autonumbering.

Let's look at the logical problems. First try to create a table with two 
columns and try to make them both autonumbered. This makes no sense; 
because the autonumber has to be at the row level within a table. Many 
products, such as the Sybase/SQL Server family and DB2, have an optional 
IDENTITY column on each table in the schema. Technically, it is a table 
property and not a column at all. It is a count of the physical insertion 
attempts (not necessarily successful) and has nothing to do with a logical 
data model.

As proof that this is a nonrelational feature, create a table with one 
column and declare it as autonumbered. Now try to insert, update, and delete 
different numbers from it. If you cannot insert, update, and delete rows from 
a table, then it is not a table by definition.
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It gets worse; create a simple table with one autonumbered column and a 
few other columns. Insert a few rows into the table, thus letting the autonumber 
column, which is not shown in the list, default to its automatic values.

INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');

INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');

INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');

You will note that the autonumbering is sequential and in the order the 
INSERT INTO statements were presented. If you delete a row, the gap in the 
sequence is not filled in and the sequence continues from the highest number 
that has ever been used in that column in that particular table.

Now use an INSERT INTO statement with a query expression in it, 
like this:

INSERT INTO Foobar (a, b, c)

SELECT x, y, z

FROM Floob;

Because a query result is a table, and a table is a set which has no ordering, 
what should the autonumbers be? The entire, whole completed set is 
presented to Foobar all at once, not a row at a time. There are (n!) ways to 
number (n) rows, so which one do you pick? The answer has been to use 
whatever the physical order of the result set happened to be. But it is actually 
worse than that. If the same query is executed again, but with new statistics 
or after an index has been dropped or added, the new execution plan could 
bring the result set back in a different physical order. Can you explain from 
a logical modeling viewpoint why the same rows in the second query get 
different autonumbers?

Using autonumbered as a PRIMARY KEY is a sign that there is no data 
model, only an imitation of a sequential file system. Because this number 
exists only as a result of the state of a particular piece of hardware at a 
particular time in a particular release of a particular version of an SQL 
product, how do you verify such a number in the reality you are modeling?

To quote from Dr. Codd: “… Database users may cause the system to 
generate or delete a surrogate, but they have no control over its value, nor 
is its value ever displayed to them …” (Dr. Codd in ACM Transactions on 
Database Systems, pp. 409–410 and Codd, E. (1979). Extending the database 
relational model to capture more meaning. ACM Transactions on Database 
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Systems, 4(4), pp. 397–434). This means that a surrogate should act like an 
index, hash, or other access method; created by the user; managed by the 
system; and never seen by a user. Dr. Codd also wrote the following:

There are three difficulties in employing user-controlled keys as permanent 
surrogates for entities.

(1) The actual values of user-controlled keys are determined by users and 
must therefore be subject to change by them (e.g., if two companies merge, 
the two employee databases might be combined with the result that some or 
all of the serial numbers might be changed).

(2) Two relations may have user-controlled keys defined on distinct 
domains (e.g., one uses social security, while the other uses employee serial 
numbers) and yet the entities denoted are the same.

(3) It may be necessary to carry information about an entity either before it 
has been assigned a user-controlled key value or after it has ceased to have 
one (e.g., an applicant for a job and a retiree).

These difficulties have the important consequence that an equi-join on 
common key values may not yield the same result as a join on common 
entities. A solution—proposed in part [4] and more fully in [14]—is 
to introduce entity domains which contain system-assigned surrogates. 
Database users may cause the system to generate or delete a surrogate, 
but they have no control over its value, nor is its value ever displayed 
to them . . . . (Codd in ACM Transactions on Database Systems, pp. 
409–410; Codd, E. (1979). Extending the database relational model to 
capture more meaning. ACM Transactions on Database Systems 4(4), 
pp. 397–434).

Such schemas usually fail in a short time in actual use in an organization 
and then become unmanageable. To make this more concrete, let's model 
“vehicles” and the subclasses “automobiles,” “SUV,” and so forth in a table 
like this:

CREATE TABLE VehicleClass

(id INTEGER NOT NULL AUTO_INCREMENT, -- not standard SQL

attribute VARCHAR(255) NOT NULL,

value VARCHAR(255) NOT NULL,

subclass VARCHAR(255) NOT NULL,

..);
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You will see this design referred to as an EAV model (“entity-
attribute-value”) in some of the literature. All the columns tend to be 
declared as the same long VARCHAR(n) or NVARCHAR(n) for a large 
value of (n) so that they can support strings that contain any numeric 
value, any temporal value, or any string that might hold the value of the 
entity's attribute. This now gives you overhead and possible errors of 
perpetual data type conversions. You need to be sure that everyone uses 
the same formats for all data types. Just think of all the ways that people 
enter date and time information and you have a rough idea how bad this 
is going to be.

To find an entity, you must assemble it from the pieces in the class table. 
Because some members of a class might not have exactly the same attributes 
as other members, you will tend to use a lot of expensive self OUTER JOINs 
in the queries.

Any typographical error becomes a new attribute. Consider adding a color 
attribute to the data model for a class of objects. The American programmer 
types in “color,” the British programmer types in “colour,” and the guy 
who is in a hurry types in “cloor” instead. Nobody dares remove any of the 
attributes, even if they can find them all, because those attributes might 
belong to someone's object. A data dictionary and careful data modeling 
can mitigate some of these data integrity problems, but performance will 
continue to degrade as the database size increases.

Perhaps even worse, the names of such columns tend to become attempts 
to pass along class hierarchy, physical storage, and usage information. The 
“color” attribute might be put into a table with column names such as 
“color_code_id,” “color_code_id_value,” or worse. Likewise, you will see 
“i_color_code” if the code is an INTEGER. A data dictionary becomes almost 
impossible. (For details on how to name a data element, consult the ISO-
11179.6 Metadata Standards naming conventions.)

The use of NVARCHAR(n) has all these problems and the possibility that 
an entire Buddhist sutra in Chinese Unicode characters or a weird collation 
can be inserted as the value of an attribute.

It is extremely difficult to put constraints on such tables. Just consider 
the simple requirement that an employee be over 18 years of age. The 
birth date and hire date of each employee has to be found, converted from 
VARCHAR(n) to a temporal data type, math performed, and the candidate 
rejected with a useful error code. You then need to decide what to do if one 
or both of those attributes are missing.
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In short, you are using a high-level tool to try to build an OO database 
from the ground up and it is an insane waste of time and resources. Does 
this mean that the idea of classes and relationships have no place in an 
SQL database? No, but they need to be implemented properly. There 
are some OO extensions in the SQL-99 Standard, but they are still not 
common in products and might not match the OO host language you are 
using.

In class hierarchies, we are looking for sets of entities defined by 
common attributes, and then within that set we look for subsets with unique 
attributes. For example, personnel within a company all have job titles, tax 
identification numbers, and salaries. Within the personnel set, the subset of 
salesmen also have a commission, the subset of executives also have stock 
options, and so forth.

The idea is to move from the general to the particular. This lets you handle 
the sets of entities at the appropriate level, based on the shared common 
attributes at that level.

10.1 Types of Hierarchies

A generalization hierarchy can be either overlapping or disjoint. In an 
overlapping hierarchy, an entity can be a member of several subclasses. 
For example, people at a university could be broken into three subclasses: 
faculty, staff, and students. But there is nothing to prevent the same person 
from belonging to two or more of these subclasses. A student could be on 
staff as part of a co-op program, a professor can take a class as a student, 
and so forth.

In a disjoint hierarchy, an entity can be in one and only one subclass. 
For example, students at a university could be broken into three subclasses: 
foreign, in state, and out of state.

For the OO-minded reader, disjoint hierarchies are rather like single-
inheritance type hierarchies, whereas overlapping hierarchies are like 
multiple-inheritance type hierarchies.

10.2 Data Definition Language Constraints

This is a nice set of definitions, but how do we code it in SQL? Here the 
hierarchy is not in one table, but it is in the relationships among several 
tables.
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10.2.1 Uniqueness Constraints

One of the basic tricks in SQL is representing a one-to-many relationship by 
creating a third table that references the two tables involved by their primary 
keys. This third table has quite a few popular names, such as “junction table” 
or “join table,” but I know that it is a relationship. People tell you this and 
then leave you on your own to figure out the rest.

For example, here are two entity tables and a relationship table (assume 
single-parent households)

CREATE TABLE Mothers

(mother_name VARCHAR(30) NOT NULL PRIMARY KEY

 ...);

CREATE TABLE Children

(child_name VARCHAR(30) NOT NULL PRIMARY KEY,

 ...);

CREATE TABLE Families - wrong!

(mother_name VARCHAR(30) NOT NULL

REFERENCES Mothers (mother_name),

child_name VARCHAR(30) NOT NULL,

REFERENCES Children (child_name));

The “Families” does not have its own key, so I can have redundant 
duplicate rows. This mistake is easy to make. What is worse is that too often 
a new programmer will try to correct the error by adding a key column to 
the table, often with some kind of proprietary autonumbering feature. This 
actually makes the problem worse because redundant duplicates can hide 
behind the autonumber and look like they are different instances of an entity.

There is a natural key in the form of PRIMARY KEY (mother_name, child_
name) that needs to be enforced.

However, the only restriction on the Families that these constraints give 
us is that each (mother_name, child_name) pair appears only once. Every 
mother can be paired with every child, which is not what we wanted. Now, 
I want to make a rule that Mothers can have as many children as they want, 
but the children have to stick to one mother, the biological rule.

The way I do this is to use a NOT NULL UNIQUE constraint on the 
child_name column, which makes it a key. It's a simple key because it is only 
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one column, but it is also a nested key because it appears as a subset of the 
compound PRIMARY KEY.

“Families” is a proper table, without duplicated (mother_name, child_
name) pairs, but it also enforces the condition that a child has a unique 
parent.

CREATE TABLE Families

(mother_name VARCHAR(30) NOT NULL

REFERENCES Mothers (mother_name),

child_name VARCHAR(30) NOT NULL UNIQUE, -- nested key

REFERENCES Children (child_name),

PRIMARY KEY (mother_name, child_name)); -- compound key

Note that (mother_name, child_name) is actually a super-key since child_
name is a key. You usually like to avoid such redundancies, but because SQL 
can only reference columns in UNIQUE() and PRIMARY KEY() constraints 
in the referencing table, let me leave the code this way to help explain the 
purpose of the table.

Generalizing this schema is a bit complicated. Let's add a pet to the family 
and say that a pet belongs to one and only one child, but kids can have 
several pets. Another rule is that orphans cannot have pets. If orphans were 
allowed to have pets, then we would model the mother–children relationship 
with one table (Families) and model the child–pets relationship with a 
second table. They would be distinct relationships, described by separate 
relationship tables.

Clearly I need to start with a Pets table.

CREATE TABLE Pets

(pet_name VARCHAR(30) NOT NULL PRIMARY KEY,

 ...);

My primary key is the full length of the type hierarchy and the lowest 
subclass has to be unique.

CREATE TABLE Families -- wrong!

(mother_name VARCHAR(30) NOT NULL

REFERENCES Mothers (mother_name),

child_name VARCHAR(30) NOT NULL,

REFERENCES Children (child_name),

pet_name VARCHAR(30) NOT NULL
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REFERENCES Pets(pet_name),

PRIMARY KEY (mother_name, child_name, pet_name));

However, this has a serious problem. Consider these data:

('Daddy', 'Billy', 'Rover')

('George', 'Billy', 'Rover')

('George', 'Billy', 'Fluffy')

We do not have a constraint to keep Billy from having two different 
Mothers, which leads to duplicates of “Rover” in the table. Let's try adding 
some UNIQUE constraints.

CREATE TABLE Families -- wrong but better!

(mother_name VARCHAR(30) NOT NULL

REFERENCES Mothers (mother_name),

 child_name VARCHAR(30) NOT NULL,

REFERENCES Children(child_name),

 pet_name VARCHAR(30) NOT NULL UNIQUE

REFERENCES Pets(pet_name),

 PRIMARY KEY (mother_name, child_name, pet_name));

Well, you have solved only part of the problem. I can get around this set of 
constraints by changing my table to:

('Daddy', 'Billy', 'Rover')

('George', 'Billy', 'Fluffy')

Billy still has two Mothers. We cannot use a UNIQUE(mother_name, 
child_name) constraint because this would not allow the child to have more 
than one pet. Change “George” to “Daddy” to see what I mean. Likewise 
a UNIQUE (child_name, pet_name) constraint is redundant since the 
pet_name is unique. We are hitting the limits of Standard SQL uniqueness 
constraints.

One way around this is with a table level CHECK() constraint or a 
CREATE ASSERTION statement, thus

CREATE ASSERTION Only_One_Mother_per_Kid

CHECK (NOT EXISTS

(SELECT *

FROM Family AS F1



204	 C H A P T E R  1 0 :  H I E R A R C H I E S  I N  D A T A  M O D E L I N G

GROUP BY child_name

HAVING COUNT (mother_name)) > 1));

The logical question at this point is why not use this type of constraint to 
enforce the “child and pet” rule, thus

CREATE ASSERTION Only_One_Kid_per_Pet

CHECK (NOT EXISTS

(SELECT *

FROM Family AS F1

GROUP BY pet_name

HAVING COUNT (child_name)) > 1));

These table level CHECK() constraints obviously generalize up the 
hierarchy. However, because they have to be tested every time the table 
changes, they can be quite expensive to execute, they do not improve access 
to data, and they are not widely implemented yet. You would have to use a 
TRIGGER in most SQL products.

10.2.2 Disjoint Hierarchies

A simple way to enforce a disjoint hierarchy is with a matrix design. The 
relationship is stored in a table that connects each parent node to their 
proper child.

CREATE TABLE StudentTypes

(student_id INTEGER NOT NULL PRIMARY KEY

REFERENCES Students (student_id)

ON UPDATE CASCADE

ON DELETE CASCADE,

 in_state_flg INTEGER DEFAULT 0 NOT NULL

CHECK (in_state IN (0, 1),

 out_of_state_flg INTEGER DEFAULT 0 NOT NULL

CHECK (out_of_state IN (0, 1),

 foreign_flg INTEGER DEFAULT 0 NOT NULL

CHECK (foreign IN (0,1),

 CHECK ((in_state_flg + out_of_state_flg + foreign_flg) = 1));

To get to the particular attributes that belong to each subclass, you will 
need a table for that subclass. For example,
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CREATE TABLE OutOfStateStudents

(student_id INTEGER NOT NULL PRIMARY KEY

REFERENCES StudentTypes (student_id)

ON UPDATE CASCADE

ON DELETE CASCADE,

 state_code CHAR(2) NOT NULL, -- USPS standard codes

 ...);

CREATE TABLE ForeignStudents

(student_id INTEGER NOT NULL PRIMARY KEY

REFERENCES StudentTypes (student_id)

ON UPDATE CASCADE

ON DELETE CASCADE,

 country_code CHAR(3) NOT NULL, -- ISO standard codes

 ...);

CREATE TABLE InStateStudents

(student_id INTEGER NOT NULL PRIMARY KEY

REFERENCES StudentTypes (student_id)

ON UPDATE CASCADE

ON DELETE CASCADE,

 county_code INTEGER NOT NULL, -- ANSI standard codes

 high_school_district INTEGER NOT NULL,

 ...);

A more complex set of relationships among the subclass can also be 
enforced by making the CHECK() constraint more complex. The constant 
in the StudentTypes table can be changed from 1 to (n), the equality can be 
replaced with a less than, and so forth.

 CHECK (subclass_1 + subclass_2 + .. + subclass_n) <= (k))

Another trick is to use powers of 2 so that each combination has a unique 
total; you can also use elaborate CASE expressions with many business rules 
embedded in them.

Another version of the same approach uses a two-part key in the subclass 
tables where one column is a constant that tells you what the table contains. 
Let's use abbreviation codes for “in state”, “out of state”, and “foreign” 
students.
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CREATE TABLE StudentTypes

(student_id INTEGER NOT NULL PRIMARY KEY

REFERENCES Students (student_id)

ON UPDATE CASCADE

ON DELETE CASCADE,

 residence_type CHAR(3) DEFAULT 'ins' NOT NULL

CHECK (residence:type IN ('ins', 'out', 'for'));

Note that if the key had been (student_id, residence:type), then a student 
could appear in more than one subclass and we could add check constraints 
to enforce various combinations of those subclasses.

To get to the particular attributes that belong to each subclass, you will 
need a table for that subclass. For example,

CREATE TABLE OutOfStateStudents

(student_id INTEGER NOT NULL PRIMARY KEY

 residence_type CHAR(3) DEFAULT 'out' NOT NULL

CHECK (residence_type = 'out'),

 FOREIGN KEY (student_id, residence_type)

 REFERENCES StudentTypes (student_id, residence_type)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 state CHAR(2) NOT NULL, -- USPS standard codes

 ...,

PRIMARY KEY (student_id, residence_type));

CREATE TABLE ForeignStudents

(student_id INTEGER NOT NULL

 residence_type CHAR(3) NOT NULL

CHECK (residence_type 'for'),

 FOREIGN KEY (student_id, residence_type)

 REFERENCES StudentTypes (student_id, residence_type)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

country_code CHAR(3) NOT NULL, -- ISO standard codes

 ...,

PRIMARY KEY (student_id, residence_type));

CREATE TABLE InStateStudents

(student_id INTEGER NOT NULL
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 residence_type CHAR(3) NOT NULL

CHECK (residence_type 'ins'),

 FOREIGN KEY (student_id, residence_type)

 REFERENCES StudentTypes (student_id, residence_type)

 ON UPDATE CASCADE

 ON DELETE CASCADE,

 county_code INTEGER NOT NULL, -- ANSI standard codes

 high_school_district INTEGER NOT NULL,

 ...,

 PRIMARY KEY (student_id, residence_type));

The DRI actions will enforce the class membership rules for us, but at the 
cost of redundant columns.

10.2.3 Representing 1:1, 1:m, and n:m Relationships

One of the basic tricks in SQL is representing a one-to-one or many-to-
many relationship with a table that references the two (or more) entity tables 
involved by their primary keys. This third table has several popular names, 
such as “junction table” or “join table,” but we know that it is a relationship. 
This type of table needs to have constraints to assure that the relationships 
work properly.

For example, given two tables,

CREATE TABLE Boys

(boy_name VARCHAR(30) NOT NULL PRIMARY KEY

 ...);

CREATE TABLE Girls

(girl_name VARCHAR(30) NOT NULL PRIMARY KEY,

 ...);

Yes, I know using names for a key is a bad practice, but it will make my 
examples easier to read. There are many different relationships that we can 
make between these two tables. If you do not believe me, just watch an old 
Jerry Springer show sometime. The simplest relationship table looks like this:

CREATE TABLE Pairs

(boy_name VARCHAR(30) NOT NULL

REFERENCES Boys (boy_name)
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ON UPDATE CASCADE

ON DELETE CASCADE,

 girl_name VARCHAR(30) NOT NULL,

REFERENCES Girls(girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE);

The Pairs table allows us to insert rows like this:

('Joe Celko', 'Lady GaGa')

('Joe Celko', 'Kate Middleton')

('William Windsor', 'Kate Middleton')

('Joe Celko', 'Lady GaGa')

Oops! I am shown twice with “Lady GaGa” because the Pairs table does 
not have its own key. This is an easy mistake to make, but fixing it so that 
you enforce the proper rules is not obvious to a beginner.

CREATE TABLE Orgy

(boy_name VARCHAR(30) NOT NULL

REFERENCES Boys (boy_name)

ON DELETE CASCADE

ON UPDATE CASCADE,

 girl_name VARCHAR(30) NOT NULL,

REFERENCES Girls(girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 PRIMARY KEY (boy_name, girl_name)); -- compound key

The Orgy table gets rid of duplicated rows and makes this a proper table. 
The primary key for the table is made up of two or more columns and is 
called a compound key because of that fact.

('Joe Celko', 'Lady GaGa')

('Joe Celko', 'Kate Middleton')

('William Windsor', 'Kate Middleton')

However, the only restriction on the pairs is that they appear only once. 
Every boy can be paired with every girl, much to the dismay of the Moral 
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Majority. I think I want to make a rule that guys can have as many gals as 
they want, but the gals have to stick to one guy. 

The way I do this is to use a NOT NULL UNIQUE constraint on the 
girl_name column, which makes it a key. It is a simple key because it is only 
one column, but it is also a nested key because it appears as a subset of the 
compound PRIMARY KEY.

CREATE TABLE Polygamy

(boy_name VARCHAR(30) NOT NULL

REFERENCES Boys (boy_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 girl_name VARCHAR(30) NOT NULL UNIQUE, -- nested key

REFERENCES Girls (girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 PRIMARY KEY (boy_name, girl_name)); -- compound key

The Polygamy is a proper table, without duplicated rows, but it 
also enforces the condition that I get to play around with one or more 
ladies, thus

('Joe Celko', 'Lady GaGa')

('Joe Celko', 'Kate Middleton')

The ladies might want to go the other way and keep company with a series 
of men.

CREATE TABLE Polyandry

(boy_name VARCHAR(30) NOT NULL UNIQUE -- nested key

REFERENCES Boys (boy_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 girl_name VARCHAR(30) NOT NULL,

REFERENCES Girls (girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 PRIMARY KEY (boy_name, girl_name)); -- compound key
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The Polyandry table would permit these rows from our original set.

('Joe Celko', 'Kate Middleton')

('William Windsor', 'Kate Middleton')

The Moral Majority is pretty upset about this Hollywood scandal and 
would love for us to stop running around and settle down in nice stable 
marriages.

CREATE TABLE Marriage

(boy_name VARCHAR(30) NOT NULL UNIQUE -- nested key

REFERENCES Boys (boy_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 girl_name VARCHAR(30) NOT NULL UNIQUE -- nested key,

REFERENCES Girls (girl_name)

ON UPDATE CASCADE

ON DELETE CASCADE,

 PRIMARY KEY (boy_name, girl_name)); -- compound key

The Marriage table allows us to insert these rows from the original set.

('Joe Celko', 'Lady GaGa')

('William Windsor', 'Kate Middleton')

Think about this table for a minute. The PRIMARY KEY is now redundant. 
If each boy appears only once in the table and each girl appears only once in 
the table, then each (boy_name, girl_name) pair can appear only once.

From a theoretical viewpoint, I could drop the compound key and make 
either boy_name or girl_name the new primary key or I could just leave them 
as candidate keys. However, SQL products and theory do not always match. 
Many products make the assumption that the PRIMARY KEY is in some way 
special in the data model and will be the way that they should access the 
table most of the time.

In fairness, making special provision for the primary key is not a bad 
assumption because the REFERENCES clause uses the PRIMARY KEY of the 
referenced table as a default. In many SQL products, this can also give you a 
covering index for the query optimizer.
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11
Hierarchical Encoding Schemes

A  hierarchy is a useful concept for classifying data as well as retrieving them. The 
encoding schemes used to represent data are often hierarchical. Tree structures 
are a natural way to model encoding schemes that have a natural hierarchy. 
They organize data for searching and reporting along that natural hierarchy 
and make it very easy for a human being to understand. But what do you use 
for this natural organizational principle? Physical, temporal, or procedural 
options often exist, but many hierarchical encoding schemes are more 
circumstantial, traditional, and just plain arbitrary.

11.1 ZIP Codes

The most common example of a hierarchical encoding scheme is the ZIP 
code, which partitions the United States geographically. Each digit, as 
you read from left to right, further isolates the location of the address 
first by postal region, then by state, then by city, and finally by the post 
office that has to make the delivery. For example, given the ZIP code 
30310, we know that the 30000 to 39999 range means the southeastern  
United States. Within the southeastern codes, we know that the 30000 
to 30399 range is the state of Georgia and that 30300 to 30399 is 
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metropolitan Atlanta. Finally, the whole code, 30310, identifies substation  
‘A’ in the west end section of the city. The ZIP code can be parsed by 
reading it from left to right, reading first one digit, then two, and then  
the last two digits.

Many Websites will look up cities in the United States by their ZIP 
codes, compute the distance between two ZIP codes, and so forth (http://
zip.langenberg.com/). Each ZIP code has a preferred city, but a suburb 
or sister town might fall under the same code if they are small enough 
or are served by the same post office. Likewise, an address in a town 
that goes over a state border might have a ZIP code that actually belongs 
to the other state. In short, it is not a perfect locator for (city, state) 
combinations, but it is close enough for making contacts by mail or 
physical location.

In 1983, the postal service began using an expanded ZIP code called 
ZIP+4, which consists of the original five-digit ZIP code plus a four-digit 
add-on code. The four-digit add-on number identifies a geographic segment 
within the five-digit delivery area, such as a city block, office building, 
individual high-volume receiver of mail, or any other physical unit that 
would aid sorting and delivery. ZIP+4 codes are not required for first class 
mail, but must be used with certain classes of bulk mail to aid machine 
presorting.

11.2 Dewey Decimal Classification

Melville Louis Kossuth Dewey (1851-12-10 to 1931-12-26) had two manias 
in his life. One was spelling reform and the other was libraries.

As an aside, spelling reform was a hot topic in the United States at that 
time, and most of the differences between British and American English were 
established then. Dewey even used “reformed spelling” in several editions 
of the Dewey Decimal Classification (DDC) system. He changed his name 
to “Melvil Dui,” dropping his middle names, but finally changed the family 
name back to the original spelling.

He invented the DDC when he was a 21-year-old student assistant in 
the Amherst college library. What is hard for us to imagine is that before 
the DDC, every library made up its own classification system without 
recourse to any standard model. It sounds a lot like IT shops today, 
doesn't it?
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He helped establish the American Library Association in 1876 while he 
was the librarian of Columbia College (now Columbia University) in New 
York City; he founded the first library school in 1887 and raised librarianship 
to a profession.

The Dewey Decimal Classification system had its 23rd revision in 2011. 
Copies in hardcopy and electronic format can be had from the Online 
Computer Library Center, Inc. (OCLC) at

OCLC Headquarters

6565 Kilgour Place

Dublin, OH 43017-3395

USA

Website: www.oclc.org

The 500 number series covers “Natural Sciences & Mathematics”; within 
that, the 510s cover “Mathematics”; finally, 512 deals with “Algebra & 
Number Theory” in particular. The scheme could be carried further, with 
decimal fractions for various kinds of algebra.

11.3 Strength and Weaknesses

Hierarchical encoding schemes are great for large data domains that  
have a natural hierarchy. However, there can be problems in designing 
these schemes. First of all, because the tree structure does not have to  
be neatly balanced, some Shop_Categories may need more codes than 
others and hence more breakdowns. Eastern and ancient religions are 
shortchanged in the DDC, reflecting a prejudice toward Christian  
writings. Asian religions were pushed into a very small set of codes. 
Today, the Library of Congress has more books on Buddhism than on any 
other religion on Earth.

Second, you might not have made the right choices as to where to place 
certain values in the tree. For example, in the DDC, books on logic are encoded 
as 160, in the philosophy section, and not under the 510s, mathematics. 
In the 19th century, there was no mathematical logic. Today, there is no 
philosophical logic. Dewey was simply following the conventions of his 
day. Also, like today's programmers, he found that the system specifications 
changed while he was working.
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Why this particular breakdown of human knowledge? Well, why not? 
And it could be much worse. Before the DDC, every library invented its 
own classifications. Some of the systems were highly personal. Let me give 
you a quote, which was meant as a joke, but close to the truth. It is from 
the essay “The Analytical Language of John Wilkins” by Jorge Luis Borges:

These ambiguities, redundancies, and deficiencies recall those attributed 
by Dr. Franz Kuhn to a certain Chinese encyclopedia entitled Celestial 
Emporium of Benevolent Knowledge. On those remote pages it is written 
that animals are divided into (a) those that belong to the Emperor, (b) 
embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, 
(f) fabulous ones, (g) stray dogs, (h) those that are included in this 

Dewey Decimal Table Search for “Logic”

The Hundreds Level (Overview)

000 Computer science, information, and general works 

100 Philosophy and psychology

200 Religion

300 Social sciences

400 Language

500 Natural sciences and mathematics

600 Technology (applied sciences)

700 Arts and recreation

800 Literature and rhetoric

900 Geography and history

The Tens Level

160 Logic

The Units Level

161 Induction

162 Deduction

163 Not assigned or no longer used

164 Not assigned or no longer used

165 Fallacies and sources of error

166 Syllogisms

167 Hypotheses

168 Argument and persuasion

169 Analogy
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classification, (i) those that tremble as if they were mad, (j) innumerable 
ones, (k) those drawn with a very fine camel's hair brush, (l) others, (m) 
those that have just broken a flower vase, (n) those that resemble flies from 
a distance.

11.4 Shop Categories

In the retail industry, stores will often set up their own shop Shop_Categories 
to classify their merchandise. For example, if you go to a larger book-
store you will see a separate “Juvenile” section, a section for “Romances,” 
for “Westerns,” and so forth. Within these sections, you might find books 
grouped alphabetically by authors or by further subclassifications.

These shop category tables are hard for beginning SQL programmers 
to design because they have a hard time conceptually divorcing Shop_
Categories from the merchandise. This will be easier to see with an example, 
which was taken from an actual posting on a Usenet Newsgroup.

First set up a simplified Inventory table that uses the UPC code to identify 
the merchandise.

CREATE TABLE Inventory

(upc CHAR (13) NOT NULL PRIMARY KEY

CHECK (upc SIMILAR TO '[0-9]{13}'),

 shop_category CHAR (3) NOT NULL

 REFERENCES Shop_Categories (shop_category),

 onhand_qty INTEGER NOT NULL);

Each product has a category, but here is what the first attempt at a 

Shop_Categories table:

CREATE TABLE Shop_Categories

(shop_category CHAR (3) NOT NULL PRIMARY KEY

CHECK (product_cat SIMILAR TO '[0-9][0-9][0-9]'),

 parent_shop_category CHAR (3), -- null means root

 shop_category_name VARCHAR (25) NOT NULL,

 category_count INTEGER DEFAULT 1 NOT NULL

 CHECK (category_count > 0));

As you can see, each category has a parent_shop_category, which 
symbolizes the higher category in a hierarchy. The original poster wanted 
to know if he could do “some kind of a loop” for each product_cat and tally 
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the quantity on hand into the category_count, with the proper nesting of the 
Shop_Categories beneath.

There are several design problems in this schema. A better approach is 
shown later. First, check to see that the product_cat is within the boundaries 
of the category classification system.

CREATE TABLE Inventory

(upc CHAR(13) NOT NULL PRIMARY KEY

CHECK (upc SIMILAR TO '[0-9]{13}'),

 product_name CHAR(20) DEFAULT 'unknown' NOT NULL ,

 shop_category CHAR(3) NOT NULL

CHECK (shop_category BETWEEN '000' AND '999'),

 onhand_qty INTEGER NOT NULL);

However, the real problem is that the Shop_Categories table is wrong. 
Using the basic idea of the nested sets model we can set up ranges, such as 
the Dewey Decimal Classification system, and add more constraints to the 
table:

CREATE TABLE Shop_Categories

(shop_category_name CHAR(20) DEFAULT 'unknown' NOT NULL

PRIMARY KEY,

 low_shop_category CHAR(3) NOT NULL UNIQUE,

 high_shop_category CHAR(3) NOT NULL UNIQUE,

 CHECK (low_shop_category <= high_shop_category));

INSERT INTO Shop_Categories

VALUES ('Printers (all)', 500, 599),

('InkJet Printers', 510, 519),

('Laser Printers', 520, 529);

Instead of doing a loop and trying to keep the total in a column in the 
Shop_Categories table, use this VIEW, which will always be right, always up 
to date, and show all Shop_Categories.

CREATE VIEW CategoryReport (shop_category_name, total_qty)

AS SELECT C1.shop_category_name, COALESCE (SUM(onhand_qty), 0)

FROM Shop_Categories AS C1

LEFT OUTER JOIN

Inventory AS P1
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ON P1.product_cat

BETWEEN C1.low_shop_category AND C1.high_shop_category

  GROUP BY C1.shop_category_name;

If you wanted the Category hierarchy to end with an actual inventory 
entity, you can enforce this with a declarative referential integrity constraint. 
In the case of a rare book store with unique items, Shop_Categories would 
probably not go down to individual titles, but a retail computer store would 
like to go to the make and model of their equipment, with an entry such 
as this:

INSERT INTO Shop_Categories

VALUES ('Fonebone X-7 Laser Printer', 521, 521);

You then use two REFERENCES clauses on the same column to make sure 
that each inventory item is represented in the Shop_Categories table, thus

CREATE TABLE Inventory

(product_name VARCHAR (25) NOT NULL,

 product_cat CHAR (3) NOT NULL UNIQUE

REFERENCES Shop_Categories(range_start)

ON UPDATE CASCADE

ON DELETE CASCADE,

REFERENCES Shop_Categories(range_end)

ON UPDATE CASCADE

ON DELETE CASCADE,

 onhand_qty INTEGER NOT NULL);

A good rule of thumb is that you need to use a range of numbers that is 
larger than what you need now. Data have a way of growing.

11.5 Statistical Tools for Decision Trees

You can buy statistical tools that look at raw data and cluster them by 
attribute values into a hierarchy based on those data. These are generally 
used for data mining, so I will only mention them in passing and give a 
simple example.

Using a sample database from KnowledgeSeeker (Angoss Software), you 
start with a series of records about the lifestyles of people and their blood 
pressure—how much they drink, how much they smoke, how much they 



218	 C H A P T E R  1 1 :  H I E R A R C H I C A L  E N C O D I N G  S C H E M E S

exercise, what foods they eat, and so forth. The KnowledgeSeeker engine 
takes these data and produces a tree diagram and a set of rules for predicting 
blood pressure (the dependent variable) from the other information 
(independent variables).

At the first level of the tree, we find that age is the most important 
factor, and we have three subgroups. Within the younger age group (32 to 
50 years), you need to stop heavy drinking; within the middle-aged age 
group (51 to 62 years), you need to stop smoking; and within the oldest 
age group (63 to 72 years), if you have survived a lifetime of smoking and 
drinking, you need to watch your diet now. Using this information and a 
questionnaire, I can predict the likelihood of a new patient having high 
blood pressure.

However, as my sample size changes or as I add more attributes (say 
family medical history in the example), my tree might need to be recomputed 
and decisions reevaluated based on more current and/or complete data 
available to me.



C H A P T E R

12
Graphs in SQL

The following section stresses other useful kinds of generalized directed graphs. 
Generalized directed graphs are classified into nonreconvergent and 
reconvergent. In a reconvergent graph, multiple paths exist between at least 
one pair of nodes. Reconvergent graphs are either cyclic or acyclic.

12.1 Adjacency List Model Graphs

The most common way to model a graph in SQL is with an adjacency list 
model. Each edge of the graph is shown as a pair of nodes in which order-
ing matters and then any values associated with that edge are shown in 
another column.

Here is the skeleton of the basic adjacency list model of a graph, with 
nodes in a separate table. This is the most common method for modeling 
graphs in SQL. Before we had recursive common table expressions 
(CTEs), you had to use cursors and procedural code for the interesting 
algorithms.

CREATE TABLE Nodes

(node_id INTEGER NOT NULL PRIMARY KEY,

<< other attributes of the node >>);

CREATE TABLE AdjacencyListGraph

(begin_node_id INTEGER NOT NULL
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REFERENCES Nodes (node_id),

end_node_id INTEGER NOT NULL

REFERENCES Nodes (node_id),

<< other attributes of the edge >>,
PRIMARY KEY (begin_node_id, end_node_id));

Technically, the begin_node_id can be the same as the end_node_id, 
and we can have a node without any edges. They are easy to diagram (see 
Figure 12.1).

“Other attributes of the edge” are usually called a weight. These 
attributes model distance or travel time for maps, electrical resistance for 
circuits, cost of a process in workflow networks, and so forth. They are 
usually expressed as a numeric value on some scale and we want to do 
computations with them.

Likewise, “other attributes of the node” are usually a name (say, “5-ohm 
resistor” in a circuit diagram) or where the weight (travel distance in a road 
map) is kept in the schema.

12.1.1 SQL and the Adjacency List Model

There are only two approaches with an adjacency list model of a graph. 
You can use procedural code, which has two more options—a procedure 
or a cursor—or you can use a recursive CTE, but it is not recommended. 
Recursion is usually slow, and most SQL products choke at a certain depth, 
usually some power of two.

Procedural approaches are usually direct translations of known algorithms 
from your favorite procedural programming languages into SQL/PSM. You 
replace the arrays with tables that mimic arrays.

A

A

Figure 12.1 
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While still procedural under the covers, you can use recursive CTEs 
instead of loops and perhaps gain advantages from the query optimizer and 
parallelism. The very general skeleton of such queries is

WITH RECURSIVE

SolutionGraph (source_node, dest_node, <wgt>, ..)
AS

(SELECT source_node, dest_node, <wgt>,
<other attributes>, <possible counts>

FROM AdjacencyListGraph

UNION ALL

SELECT G1.source_node, G2.dest_node,

<computation on wgt>,
<computation on other attributes>,
<increment counts>

FROM SolutionGraph AS G1, Graph AS G2

WHERE G2.source_node = G1.dest_node

AND G2.dest_node <  > G1.source_node
AND NOT EXISTS

(SELECT *

FROM Graph AS G3

WHERE G3.source_node = G1.source_node

AND G3.dest_node = G2.dest_node

AND <special conditions>))

SELECT source_node, dest_node,

<aggregate computation on wgt>,
<aggregate computation on other attributes>,
<final counts>

FROM SolutionGraph

WHERE <special conditions>
GROUP BY source_node, dest_node

HAVING <special conditions>;

In English, you start with an initial set of nodes and see if they are what 
you wanted; if not, then add more nodes recursively. This is not the only way 
to build graph algorithms, but it is a common design pattern. The bad news 
is that an iterative program can stop at the first right answer; recursive CTEs 
(and SQL in general) tend to find all valid answers, no matter what the cost.
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12.1.2 Paths with CTE

The following queries with CTEs are credited to Frédéric Brouard of France. 
Sample data and the narrative are so delightful that I am using his material 
directly.

Perhaps you never go to France. So you may be interested by the 
fact that in Paris, there are beautiful girls, and in Toulouse a famous 
dish called Cassoulet, and a small plane constructor call Airbus. So 
the problem is to go by car from Paris to Toulouse using the speedway 
network. I will just simplify for you (if you are lost and you do not know 
the pronunciation to ask people your way to Toulouse, it is simple. Just 
say “to loose”):

CREATE TABLE Journeys

(depart_town VARCHAR(32) NOT NULL,

arrival_town VARCHAR(32) NOT NULL,

CHECK (depart_town < > arrival_town),
PRIMARY KEY (depart_town, arrival_town),

jny_distance INTEGER NOT NULL

CHECK (jny_distance > 0));

INSERT INTO Journeys

VALUES ('Paris', 'Nantes', 385),

('Paris', 'Clermont-Ferrand', 420),

('Paris', 'Lyon', 470),

('Clermont-Ferrand', 'Montpellier', 335),

('Clermont-Ferrand', 'Toulouse', 375),

('Lyon', 'Montpellier', 305),

('Lyon', 'Marseille', 320),

('Montpellier', 'Toulouse', 240),

('Marseille', 'Nice', 205);

Now we will try a very simple query, giving all the journeys between 
towns (Figure 12.2):

WITH Trips (arrival_town)

AS

(SELECT DISTINCT depart_town

FROM Journeys

UNION ALL
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SELECT arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT DISTINCT arrival_town FROM Trips;

arrival_town

Clermont-Ferrand

Lyon

Marseille

Montpellier

Paris

Nantes

Toulouse

Nice

This query is not very interesting because we do not know from which 
town we came. We just know the towns where we can go and the fact that 
we have probably different ways to go to the same place. Let us see if we can 
have some more information.

Paris

Clermont-FerrandNantes Lyon

Marseille

Nice

Monpellier

Toulouse

385
420

470

375

335 305 320

205240

Figure 12.2 
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First, we want to start from Paris:

WITH Trips (arrival_town)

AS

(SELECT DISTINCT depart_town

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town

FROM Journeys AS Arrivals

INNER Journeys AS Departures

ON Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town FROM Journeys;

arrival_town

Paris

Nantes

Clermont-Ferrand

Lyon

Montpellier

Marseille

Nice

Toulouse  goal

Montpellier

Toulouse  goal

Toulouse  goal

We have probably three ways to go to Toulouse because we see three 
occurrences of our goal in this list. Can we filter the destination? Sure!

WITH Journeys (arrival_town)

AS

(SELECT DISTINCT depart_town

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town
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FROM Journeys

WHERE arrival_town = 'Toulouse';

arrival_town

Toulouse

Toulouse

Toulouse

We can refine this query by calculating the number of steps involved in 
the different ways:

WITH Trips (arrival_town, steps)

AS

(SELECT DISTINCT depart_town, 0

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town, Departures.steps + 1

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town, steps

FROM Trips

WHERE arrival_town = 'Toulouse';

arrival_town steps

Toulouse 3

Toulouse 2

Toulouse 3

The cherry on the cake will be to know the distances of the different ways:

WITH Trips (arrival_town, steps, total_distance)

AS

(SELECT DISTINCT depart_town, 0, 0

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town, Departures.steps + 1,

Departures.total_distance + Arrivals.jny_distance

FROM Journeys AS Arrivals,

Journeys AS Departures
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WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town, steps, total_distance

FROM Trips

WHERE arrival_town = 'Toulouse';

arrival_town steps total_distance

Toulouse 3 1015

Toulouse 2   795

Toulouse 3   995

The girl in the cake will want to know the different towns we visit by 
those different ways:

WITH Trips (arrival_town, steps, total_distance, way)

AS

(SELECT DISTINCT depart_town, 0, 0,

CAST('Paris' AS VARCHAR(MAX))

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town, Departures.steps + 1,

Departures.total_distance + Arrivals.jny_distance,

Departures.way ||’, ‘||Arrivals.arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town, steps, total_distance, way

FROM Trips

WHERE arrival_town = 'Toulouse';

arrival_town steps total_distance way

Toulouse 3 1015 Paris, Lyon, Montpellier, Toulouse

Toulouse 2 795 Paris, Clermont-Ferrand, Toulouse

Toulouse 3 995 Paris, Clermont-Ferrand, 

Montpellier, Toulouse

And now, ladies and gentleman, the recursive query is proud to present 
to you how to solve a very complex problem, called the traveling salesman 
problem. This is one of the operational research problems for which Edsger 
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Wybe Dijkstra found the first efficient algorithm and received the Turing 
Award in 1972.

WITH Trips (arrival_town, steps, total_distance, way)

AS

(SELECT DISTINCT depart_town, 0, 0, CAST('Paris' AS VARCHAR(MAX))

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town, Departures.steps + 1,

Departures.total_distance + Arrivals.jny_distance,

Departures.way ||’, ‘||Arrivals.arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town),

ShortestDistance (total_distance)

AS

(SELECT MIN(total_distance)

FROM Journeys

WHERE arrival_town = 'Toulouse')

SELECT arrival_town, steps, total_distance, way

FROM Trips AS T

ShortestDistance AS S

WHERE T.total_distance = S.total_distance

AND arrival_town = 'Toulouse';

12.1.3 Nonacyclic Graphs

In fact, one thing that is limiting the process in our network of speedways is 
that we have made routes with a single sense. I mean, we can go from Paris 
to Lyon, but we are not allowed to go from Lyon to Paris. For that, we need 
to add the reverse ways in the table, such as:

depart_town arrival_town jny_distance

Lyon Paris 470

This can be done by a very simple query:

INSERT INTO Journeys

SELECT arrival_town, depart_town, jny_distance

FROM Journeys;
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The only problem is that previous queries will not work properly:

WITH Journeys (arrival_town)

AS

(SELECT DISTINCT depart_town

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town)

SELECT arrival_town

FROM Journeys;

This query will give you an error message about the maximum depth of 
recursion being violated. What happened? Simply, you are trying all ways, 
including cycling ways such as Paris, Lyon, Paris, Lyon, Paris—ad infinitum. 
Is there a way to avoid cycling routes? Maybe. In one of our previous queries, 
we have a column that gives the complete list of stepped towns. Why not use 
it to avoid cycling? The condition will be: do not pass through a town that is 
already in the way. This can be written as

WITH Trips (arrival_town, steps, total_distance, way)

AS

(SELECT DISTINCT depart_town, 0, 0, CAST('Paris' AS VARCHAR(255))

FROM Journeys

WHERE depart_town = 'Paris'

UNION ALL

SELECT arrival_town, Departures.steps + 1,

Departures.total_distance + Arrivals.jny_distance,

Departures.way ||', '||Arrivals.arrival_town

FROM Journeys AS Arrivals,

Journeys AS Departures

WHERE Departures.arrival_town = Arrivals.depart_town

AND Departures.way NOT LIKE '%' || Arrivals.arrival_town || '%')

SELECT arrival_town, steps, total_distance, way

FROM Trips

WHERE arrival_town = 'Toulouse';
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arrival_town steps total_distance way

Toulouse 3 1015 Paris, Lyon, Montpellier, Toulouse

Toulouse 4 1485 Paris, Lyon, Montpellier, Clermont-Ferrand, 

Toulouse

Toulouse 2 795 Paris, Clermont-Ferrand, Toulouse

Toulouse 3 995 Paris, Clermont-Ferrand, Montpellier, Toulouse

As you see, a new route occurs. The worst in distance, but perhaps the 
most beautiful!

A CTE can simplify the expression of complex queries. Recursive queries 
must be employed where recursion is needed. Trust your SQL product to 
terminate a bad query. There is usually an option to set the depth of recursion 
either in the SQL engine or as an OPTION clause at the end of the CTE 
clause.

12.1.4 Adjacency Matrix Model

An adjacency matrix is a square array whose rows are out-node and col-
umns are in-nodes of a graph. A one in a cell means that there is edge 
between the two nodes. Using the following graph, we would have an 
array like this:

A B C D E F G H

A 1 1 1 0 0 0 0 0

B 0 1 0 1 0 0 0 0

C 0 0 1 1 0 0 1 0

D 0 0 0 1 1 1 0 0

E 0 0 0 0 1 0 0 1

F 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 1 1

H 0 0 0 0 0 0 0 1

Many graph algorithms are based on the adjacency matrix model and 
can be translated into SQL. Go to the appropriate chapter for the details of 
modeling matrices in SQL and, in particular, look at the section on matrix 
multiplication in SQL. For example, Dijkstra's algorithm for shortest 
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distances between each pair of nodes in a graph looks like this in this array 
pseudo-code.

FOR k = 1 TO n

DO FOR i = 1 TO n

DO FOR j = 1 TO n

IF a[i,k] + a[k,j] < a[i,j]
THEN a[i,j] = a[i,k] + a[k,j]

END IF;

END FOR;

END FOR;

END FOR;

You need to be warned that for a graph of (n) nodes, the table will be of 
size (n^2). The algorithms often run in (n^3) time. The advantage it has is 
that once you have completed a table, it can be used for lookups rather than 
recomputing distances over and over.

Running the query against the data set …

INSERT INTO AdjacencyListGraph

VALUES ('a', 'd', 1),

('d', 'e', 1),

('e', 'c', 1),

('c', 'b', 1),

('b', 'd', 1),

('a', 'e', 5);

Gives the result SET …

source_node dest_node min_wgt

a b 4

a c 3

a d 1

a e 2

b c 3

b d 1

b e 2

c b 1

c d 2
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source_node dest_node min_wgt

c e 3

d b 3

d c 2

d e 1

e b 2

e c 1

e d 3

Doing the Dijkstra algorithm would probably execute significantly faster 
in a language with arrays than in SQL.

12.2 Split Node Nested Sets Models for Graphs

It is also possible to load an acyclic-directed graph into a nested sets model 
by splitting the nodes. It is a specialized trick for a certain class of graphs, 
not a general method such as adjacency list model graphs. Here is a skeleton 
table with minimal constrains for a nested sets model of a tree.

CREATE  TABLE NestedSetsGraph

(node_id INTEGER NOT NULL REFERENCES Nodes (node_id),

lft INTEGER NOT NULL CHECK (lft >= 1) PRIMARY KEY,
rgt INTEGER NOT NULL UNIQUE,

CHECK (rgt > lft),
UNIQUE (node_id, lft));

You split nodes by starting at sink nodes and moving up the tree. When 
you come to a node of (indegree > 1), replace it with that many copies of the 
node under each of its superiors. Continue to do this until you get to the root 
(Figure 12.3). The acyclic graph will become a tree, but with duplicated node 
values. There are advantages to this model when you want to avoid recursion. 
You are trading speed for storage space, however.

12.2.1 All Nodes in the Graph

Nodes in the Nodes table might not all be used in the graph, and those that 
are used can be repeated. It is safer to find nodes in the graph with a simple 
view instead.
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CREATE VIEW GraphNodes (node_id)

AS

SELECT DISTINCT node_id FROM NestedSetsGraph;

This is worth its own subsection because of double counting problems in 
this model.

12.2.2 Path End Points

A path through a graph is a traversal of consecutive nodes along a sequence 
of edges. Clearly, the node at the end of one edge in the sequence must also 
be the node at the beginning of the next edge in the sequence. The length of 
the path is the number of edges that are traversed along the path.

Path end points are the first and last nodes of each path in the graph. For a 
path of length zero, path end points are the same node. Yes, it is legal to have 
an edge that loops back around to the same node. Also, it is legal to have a 
node without any edges, but you cannot model that with an adjacency list; 
thank goodness nobody usually cares about those isolated nodes.

A

C

B

A

C2

B

C1

Figure 12.3 
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If there is more than one path between two nodes, then each path will 
be distinguished by its own distinct set of number pairs for the nested set 
representation.

If there is only one path (p) between two nodes but this path is a subpath 
of more than one distinct path, then the end points of (p) will have number 
pairs for each of these greater paths. As a canonical form, least numbered 
pairs are returned for these end points.

CREATE VIEW PathEndpoints

(begin_node_id, end_node_id,

begin_lft, begin_rgt,

end_lft, end_rgt)

AS

SELECT G1.node_id, G2.node_id,

G1.lft, G1.rgt, G2.lft, G2.rgt

FROM (SELECT node_id, MIN(lft), MIN(rgt)

FROM NestedSetsGraph

GROUP BY node_id) AS G1 (node_id, lft, rgt)

INNER JOIN

NestedSetsGraph AS G2

ON G2.lft >= G1.lft
AND G2.lft < G1.rgt;

12.2.3 Reachable Nodes

If a node is reachable from another node, then a path exists from the one 
node to the other. It is assumed that every node is reachable from itself.

CREATE VIEW ReachableNodes (begin_node_id, end_node_id)

AS

SELECT DISTINCT begin_node_id, end_node_id

FROM PathEndpoints;

12.2.4 Edges

Edges are pairs of adjacent connected nodes in a graph. If edge E is repre-
sented by the pair of nodes (n0, n1), then (n1) is reachable from (n0) in a 
single traversal.
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CREATE VIEW Edges (begin_node_id, end_node_id)

AS

SELECT begin_node_id, end_node_id

FROM PathEndpoints AS PE

WHERE begin_node_id < > end_node_id
AND NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G

WHERE G.lft > PE.begin_lft
AND G.lft < PE.end_lft
AND G.rgt > PE.end_rgt);

12.2.5 Indegree and Outdegree

The indegree of a node (n) is the number of distinct edges ending at (n). 
Nodes that have zero indegree are not returned. Indegree of all nodes in the 
graph:

CREATE VIEW Indegree (node_id, node_indegree)

AS

SELECT N.node_id, COUNT(E.begin_node_id)

FROM GraphNodes AS N

LEFT OUTER JOIN

Edges AS E

ON N.node_id = E.end_node_id

GROUP BY N.node_id;

Outdegree of a node (n) is the number of distinct edges beginning at (n). 
Nodes that have zero outdegree are not returned. Outdegree of all nodes in 
the graph:

CREATE VIEW Outdegree (node_id, node_outdegree)

AS

SELECT N.node_id, COUNT(E.end_node_id)

FROM GraphNodes AS N

LEFT OUTER JOIN

Edges AS E

ON N.node_id = E.begin_node_id

GROUP BY N.node_id;
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12.2.6 Source, Sink, Isolated, and Internal Nodes

A source node of a graph has a positive outdegree but zero indegree, that is, 
it has edges leading from, but not to, the node. This assumes that there are 
no isolated nodes (nodes belonging to no edges).

CREATE VIEW SourceNodes (node_id, lft, rgt)

AS

SELECT node_id, lft, rgt

FROM NestedSetsGraph AS G1

WHERE NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G

WHERE G1.lft > G2.lft
AND G1.lft < G2.rgt);

Likewise, a sink node of a graph has positive indegree but zero outdegree. 
It has edges leading to, but not from, the node. This assumes that there are no 
isolated nodes.

CREATE VIEW SinkNodes (node_id)

AS

SELECT node_id

FROM NestedSetsGraph AS G1

WHERE lft = rgt - 1

AND NOT EXISTS

(SELECT *

FROM NestedSetsGraph AS G2

WHERE G1.node_id = G2.node_id

AND G2.lft < G1.lft);

An isolated node belongs to no edges, that is, it has zero indegree and zero 
outdegree, but we have agreed to leave them out of the model.

CREATE VIEW IsolatedNodes (node_id, lft, rgt)

AS

SELECT node_id, lft, rgt

FROM NestedSetsGraph AS G1

WHERE lft = rgt - 1

AND NOT EXISTS
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(SELECT *

FROM NestedSetsGraph AS G2

WHERE G1.lft > G2.lft
AND G1.lft < G2.rgt);

An internal node of a graph has an (indegree > 0) and an (outdegree > 0), 
that is, it acts as both a source and a sink.

CREATE VIEW InternalNodes (node_id)

AS

SELECT node_id

FROM (SELECT node_id, MIN(lft) AS lft, MIN(rgt) AS rgt

FROM NestedSetsGraph

WHERE lft < rgt - 1
GROUP BY node_id) AS G1

WHERE EXISTS

(SELECT *

FROM NestedSetsGraph AS G2

WHERE G1.lft > G2.lft
AND G1.lft < G2.rgt)

12.2.7 Converting Acyclic Graphs to Nested Sets

Let's start with a simple graph in an adjacency list model.

INSERT INTO Nodes (node_id)

VALUES ('a'), ('b'), ('c'), ('d'),

('e'), ('f'), ('g'), ('h');

INSERT INTO AdjacencyListGraph (begin_node_id, end_node_id)

VALUES ('a', 'b'), ('a', 'c'), ('b', 'd'), ('c', 'd'),

('c', 'g'), ('d', 'e'), ('d', 'f'), ('e', 'h'),

('g', 'h');

We can convert this adjacency list model to the nested sets model with a 
simple stack algorithm. You might want to try to rewrite this with a recursive 
CTE.

-- Stack to keep track of nodes being traversed in depth-first fashion

CREATE TABLE NodeStack

(node_id INTEGER NOT NULL PRIMARY KEY
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REFERENCES Nodes (node_id),

distance INTEGER NOT NULL CHECK (distance >= 0),
lft INTEGER CHECK (lft >= 1),
rgt INTEGER,

CHECK (rgt > lft));

CREATE PROCEDURE AdjacencyListsToNestedSetsGraph ()

LANGUAGE SQL

READS SQL DATA

BEGIN

DECLARE path_length INTEGER;

DECLARE current_number INTEGER;

SET path_length = 0;

SET current_number = 0;

-- Clear the table that will hold the result

DELETE FROM NestedSetsGraph;

-- Initialize stack by inserting all source nodes of graph

INSERT INTO NodeStack (node_id, distance)

SELECT DISTINCT G1.begin_node_id, path_length

FROM AdjacencyListGraph AS G1

WHERE NOT EXISTS

(SELECT *

FROM AdjacencyListGraph AS G2

WHERE G2.end_node_id = G1.begin_node_id);

WHILE EXISTS (SELECT * FROM NodeStack)

DO

SET current_number = current_number + 1;

IF EXISTS (SELECT * FROM NodeStack WHERE distance = path_length)

THEN UPDATE NodeStack

SET lft = current_number

WHERE distance = path_length

AND NOT EXISTS

(SELECT *

FROM NodeStack AS S2

WHERE distance = path_length

AND S2.node_id < NodeStack.node_id);
INSERT INTO NodeStack (node_id, distance)

SELECT G.end_node_id, (S.distance + 1)
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FROM NodeStack AS S,

AdjacencyListGraph AS G

WHERE S.distance = path_length

AND S.lft IS NOT NULL

AND G.begin_node_id = S.node_id;

SET path_length = (path_length + 1);

ELSE SET path_length = (path_length - 1);

UPDATE NodeStack

SET rgt = current_number

WHERE lft IS NOT NULL

AND distance = path_length;

INSERT INTO NestedSetsGraph (node_id, lft, rgt)

SELECT node_id, lft, rgt

FROM NodeStack

WHERE lft IS NOT NULL

AND distance = path_length;

DELETE FROM NodeStack

WHERE lft IS NOT NULL

AND distance = path_length;

END IF;

END WHILE;

END;
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13
Petri Nets

Petri nets are abstract graphic models invented in 1962 by Carl Adam Petri for his 
doctoral thesis. Originally, he used them for chemical processes, but they 
became popular with computer scientists for modeling concurrency in 
computer hardware, such as the CDC 6600.

Petri nets are minimal and very general, but also very rich in 
mathematical properties. Do not worry, I will not get into the math—I 
write for working programmers. The major use of Petri nets has been 
the modeling of systems of events in which it is possible for some events 
to occur concurrently, but there are constraints on the concurrence, 
precedence, or frequency of these occurrences. They are like a cross 
between a state transition diagram (static model) and a board game 
(dynamic model). If you want to play with them, get some scratch paper 
and a handful of small chips or go to http://www.informatik.uni-hamburg 
.de/TGI/PetriNets/introductions/aalst/ where you will find several simple 
interactive programs and you can watch the Petri nets for some basic 
problems'  working.
The diagrams have four parts.

	 1.	 Circles called places. Places do not move and they hold tokens.

	 2.	 Bars called transitions. Transitions do not move and they fire (I will 
explain that shortly).
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	 3.	 Directed arcs that run out of a bar into a place (outputs of the 
transition) or out of a place and into a bar (inputs of the transition).

	 4.	 Tokens represented as little black dots. These guys do move, like 
game pieces. They move along the arcs from place to place, as 
allowed by the transitions.

There are fancy versions of Petri nets with colored tokens, multiple tokens 
in a place, and rules about how transitions work. This chapter is concerned 
with the simplest set of rules. A place can hold only one token, tokens are all 
alike, and a transition can fire only if all of its input places have a token. Petri 
nets with these rules are called safe nets.

When a transition fires, it looks at all of its input places. If and only if 
they all have a token, then the input places are emptied and all the output 
places get a token if they do not already have one. There is an initial marking 
of tokens in the diagram, which may or may not be important. The order of 
transition firing may or may not be important. The diagram may or may not 
arrive at a marking from which it cannot change and it locks. There are ways 
to test for these properties and do formal proofs.

Figure 13.1 is a simple diagram that locks. Places P1 and P2 start with 
tokens, which enable transition T1. T1 fires and sends a token to P3. The 

P1 P2P1 P2

T1 T1

T2 T2

P3 P3

P1 P2

P3

T2

T1

Figure 13.1 
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token in P2 enables transition T2. T2 fires and P2 gets a token, but P1 stays 
empty and no more moves are possible in this game.

Figure 13.2 shows two transitions in conflict, which means that the order 
of transition firings matters. If T1 fires, then P5 gets a token, but not P6. If T2 
fires, then P6 gets a token, be changed to but not P5. 

Transition rules can be changed to allow parallelism, which would mean 
that both T1 and T2 fire at the same time so that both P5 and P6 get tokens at 
the same time. A better approach, however, is to design the Petri net to avoid 
conflicts so that transitions can be fired in any order and still produce the 
same final marking

Figure 13.3 is a traffic light that recycles in a fixed pattern. Place P1 is a 
red light, P2 is green, and P3 is amber.

Petri nets can be nested inside each other to build complex systems from 
smaller units. Look at the traffic light example. In the real world, traffic lights 
come in configurations of several lights at an intersection.

P2 P3P1

T1 T2

P5 P6

Figure 13.2 

T1 T2

P1 Red

P2 Green P3 Amber

T3

Figure 13.3 
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13.1 Data Definition Language for Petri Nets

Tables modeling Petri nets are simple. Because the tokens are entities, they 
get their own table. The graph is a relationship, so it is in a second table. 
Here is the initial code.

CREATE TABLE Petri_Places

(place_name CHAR(5)NOT NULL PRIMARY KEY,

place_token SMALLINT DEFAULT 0 NOT NULL,

CHECK (place_token IN (0, 1))

CREATE TABLE Petri_Transitions

(transition_name CHAR(3) NOT NULL,

input_place_name CHAR(5) NOT NULL

REFERENCES Petri_Places (place_name),

output_place_name CHAR(5) NOT NULL

REFERENCES Petri_Places (place_name),

PRIMARY KEY (transition_name, input_place_name, output_place_name));

Looking at the simple traffic light example, we can load the tables, thus:

INSERT INTO Petri_Places (place_name, place_token)

VALUES ('Red', 0), ('Green', 0), ('Amber', 1);

INSERT INTO Petri_Transitions

VALUES ('T1', 'Red', 'Green'),

('T2', 'Green', 'Amber'),

('T3', 'Amber', 'Red');

I recommend setting up two very short procedures to clear out the places 
and one to restore the initial marking. They are very simple. The initialization 
procedure requires a table with the names of the marked places as shown 
here. But you could use a row constructor expression in the update statement 
if you want to make it completely self-contained.

CREATE PROCEDURE FireTransition(@in_transition_name CHAR(5))

LANGUAGE SQL

DETERMINISTIC

BEGIN

UPDATE Petri_Places

SET place_token  

= CASE

WHEN place_name

IN (SELECT input_place_name
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  FROM Petri_Transitions

  WHERE transition_name = @in_transition_name)

THEN 0

WHEN place_name 

IN (SELECT output_place_name

FROM Petri_Transitions 

WHERE transition_name = @in_transition_name)

THEN 1

ELSE place_token END

WHERE 1 = ALL(SELECT P.place_token)

FROM Petri_Places AS P

WHERE P.place_name

 IN (SELECT T.input_place_name

 ROM Petri_Transitions AS T

WHERE T.transition_name = @in_transition_name))

--display new state of places

--SELECT place_name, place_token FROM Petri_Places;

END.

For fun, mark every place and then start firing transitions. In T-SQL, you 
can get an error message that the procedure has been executed the maximum 
number of times because of a looping effect in this simple example.

Let's complicate the example a bit. We have a pair of traffic lights hooked 
together with the rule that they both cannot be green at the same time. Make two 
copies of the basic traffic light shown in figure 13.3 and put them into a single net, 
as shown in figure 13.4. The {G1, A1, R1} is one traffic light, and {G1, A2, R2} is 
the other light. The XX state synchronized them. The SQL for this diagram is

INSERT INTO Petri_Places (place_name, place_token)

VALUES ('R1', 1), ('A1', 0), ('G1', 0),

('R2', 1), ('A2', 0), ('G2', 0),

('XX', 1);

INSERT INTO Petri_Transitions (transition_name, input_place_name, 

output_place_name)

VALUES

('T1A', 'R1', 'G1'),

('T1A', 'XX', 'G1'),

('T1B', 'G1', 'A1'),

('T1C', 'A1', 'XX'),

('T1C', 'A1', 'R1'),
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('T2A', 'R2', 'G2'),

('T2A', 'XX', 'G2'),

('T2B', 'G2', 'A2'),

('T2C', 'A2', 'XX'),

('T2C', 'A2', 'R2');
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14
State Transition Graphs

Data validation in a database is much more complex than seeing if a string parameter 
really is an integer. A commercial world is full of complex rules for sequences 
of procedures, of fixed or variable life spans, warranties, commercial offers, 
and bids. All this requires considerable subtlety to prevent bad data getting 
from in and, if they do, locating and fixing the problem.

Ideally we want to use a declarative data definition language (DDL) to 
enforce the business rules about this state changes. The tool used by data 
architects is a state transition diagram. There is an initial state, flow lines 
that show what are the next legal states, and one or more termination 
states. Figure 14.1 is a simple state change diagram of possible marital 
states.

This state transition diagram was deliberately simplified, but it is good 
enough to explain principles. To keep the discussion as simple as possible, 
my table is for only one person's marital status over his life. Here is a 
skeleton DDL with the needed FOREIGN KEY reference to valid state 
changes and the date that the current state started.

CREATE TABLE MyLife

(previous_state VARCHAR(10) NOT NULL,

 current_state VARCHAR(10) NOT NULL,

 CONSTRAINT Improper_State_Change

 FOREIGN KEY (previous_state, current_state)
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 REFERENCES StateChanges (previous_state, current_state),

 start_date DATE NOT NULL PRIMARY KEY, --DateTime for SQL Server 2005

 etc.);

What is not shown on it are which nodes are initial states (in this case 
“Born”) and which are terminal or final states (in this case “Dead,” a very 
terminal state of being). A terminal node can be the current state of a middle 
node, but not a prior state. Likewise, an initial node can be the prior state of a 
middle node, but not the current state. I did not write any CHECK() constraints 
for those conditions. It is easy enough to write a quick query with an EXISTS() 
predicate to do this, which I will leave as an exercise for the reader. Let's load the 
diagram into an auxiliary table with some more constraints.

CREATE TABLE StateChanges

(previous_state VARCHAR(10) NOT NULL,

 current_state VARCHAR(10) NOT NULL,

 PRIMARY KEY (previous_state, current_state),

 state_type CHAR(1) DEFAULT 'M' NOT NULL

 CHECK (state_type IN ('I', 'T', 'M')), /*initial, terminal, middle*/

 CONSTRAINT Node_type_violations

CHECK (CASE WHEN state_type IN ('I', 'T')

AND previous_state = current_state

THEN 'T'

WHEN state_type = 'M'

AND previous_state < > current_state
THEN 'T' ELSE 'F' END = 'T')

);

INSERT INTO StateChanges

VALUES ('Born', 'Born', 'I'), -- initial state

Born

Married

Born

Dead

Married

Divorced

Figure 14.1 
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('Born', 'Married', 'M'),

('Born', 'Dead', 'M'),

('Married', 'Divorced', 'M'),

('Married', 'Dead', 'M'),

('Divorced', 'Married', 'M'),

('Divorced', 'Dead', 'M'),

('Dead', 'Dead', 'T'); -- terminal state

An aspect of this problem that I have not considered is the time dimension. 
We want to see a temporal path from an initial state to a terminal state. 
State changes do not happen all at once, but are spread over time. An acorn 
becomes an oak tree before it becomes lumber and finally my chest of drawers. 
The acorn does not jump immediately to being a chest of drawers. Some of the 
changes are controlled by time. I cannot get married immediately after being 
born, but have to wait to be of legal age. A business offer can expire in a set 
number of days. You can fill in any number of examples of your own.

For a production system, you would need a more complete set of temporal 
columns to guarantee that we have no gaps in the history, but this will do for 
now. We now need a stored procedure to add data to the MyLife table. Here is 
one solution that is broken deliberately into clear steps for clarity.

CREATE PROCEDURE Change_State

(IN in_change_date DATE,

IN in_change_state VARCHAR(10))

LANGUAGE SQL

DETERMINISTIC

BEGIN

DECLARE most_recent_state VARCHAR(10);

SET most_recent_state

= (SELECT current_state

FROM MyLife

WHERE start_date

= (SELECT MAX(start_date) FROM MyLife));

/* insert initial state if empty */

IF NOT EXISTS (SELECT * FROM MyLife)

AND in_change_state

IN (SELECT previous_state

FROM StateChanges

WHERE state_type = 'I')
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THEN

INSERT INTO MyLife (previous_state, current_state, start_date)

VALUES (in_change_state, in_change_state, in_change_date);

END IF;

/* must be a real state change & advance forward in time */

IF in_change_state < > most_recent_state
AND in_change_date

> (SELECT MAX(start_date) FROM MyLife)
THEN

INSERT INTO MyLife (previous_state, current_state, start_date)

VALUES (most_recent_state, in_change_state, in_change_date);

END IF;

END;

The first block of code locates the most recent state of my life, based 
on the date. The second block of code will insert an initial state if the 
table is empty. This is a safety feature but there probably should be a 
separate procedure to create the set of initial states. Because the new 
state has to be an actual change, there is a block of code to be sure. 
The changes have to move forward in time. Finally, we build a row using 
the most recent state as the new previous state, the input change state, 
and the date. If the state change is illegal, the FOREIGN KEY is violated 
and we get an error.

If you had other business rules, you could also add them to the code in the 
same way. You should have noted that if someone makes changes directly to 
the MyLife Table, he or she can destroy all the data integrity. It is a good idea 
to have a procedure that checks to see that MyLife is in order. Let's load the 
table with bad data:

INSERT INTO MyLife (previous_state, current_state, start_date)

VALUES ('Born', 'Married', '1990-09-05'),

('Married', 'Divorced', '1999-09-05'),

('Married', 'Dead', '2010-09-05'),

('Dead', 'Dead', '2011-05-10'),

('Dead', 'Dead', '2012-05-10');

This poor guy popped into existence without being born properly, 
committed bigamy, and died twice. And you think your life is tough! Here is 
a simple validation procedure to catch those errors.
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WITH Sequenced_State_History

AS

(SELECT previous_state, current_state,

ROW_NUMBER () OVER (ORDER BY start_date)

AS change_seq

FROM MyLife)

/* There is chain of links from the initial state to the current state */

SELECT 'Missing link(s) in History'

FROM Sequenced_State_History AS H1, Sequenced_State_History AS H2

WHERE H1.change_seq + 1 = H2.change_seq

AND H1.current_state <  > H2.previous_state
UNION ALL /* has one and only one initial state */

SELECT 'No unique initial state.'

FROM MyLife AS M, StateChanges AS C

WHERE C.state_type = 'I'

AND M.previous_state = C.previous_state

AND M.current_state = C.previous_state

HAVING COUNT(*) <  > 1
UNION ALL /* has zero or one terminal state */

SELECT 'Too many terminal states.'

FROM MyLife AS M, StateChanges AS C

WHERE C.state_type = 'T'

AND M.previous_state = C.previous_state

AND M.current_state = C.previous_state

HAVING COUNT(*) > 1;

The CTE numbers the steps of the temporal path from an initial node to a 
middle or terminal node. This chain has to be unbroken, which means going 
from step (n) to step (n+1) has to be a legal change in the StateChanges table. 
This chain can have only one initial node, so let's check for that next. Finally, 
the chain is either still in progress or has reached a single terminal node.

A little note on the programming technique used. The union of separate 
queries to do one validation at a time can often be made faster by combining 
some of the queries. However, there are trade-offs; this code is easy to read 
and maintain and (hopefully) will not be run often. It is also hard to get error 
messages from a single statement. Look back at the ChangeState() procedure; 
the two IF and SIGNAL() blocks of code could have been converted into 
CASE expressions that will generate NULLs, folded into the INSERT INTO 
statement, and cause the insertion to fail.
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INSERT INTO MyLife (previous_state, current_state, start_date)

VALUES

(NULLIF (in_change_state, most_recent_state),

in_change_state,

CASE WHEN in_change_date

<= (SELECT MAX(start_date) FROM MyLife)
THEN NULL ELSE in_change_date END);

This is not easy to read or to get error messages that tell you if the in_
change_date is invalid in that it violates the time sequence.

14.1 The Temporal Side of Changes

What is still missing is the temporal aspect of state changes. In this 
example, the (‘Born’, ‘Married’) change would have to deal with the 
minimum age of consent. The (‘Married’, ‘Divorced’) change often has a 
legal waiting period. While technically a business rule, you know that no 
human being has lived over 150 years, so a gap that size is a data error. 
The terminal and initial states are instantaneous, however. Let's add more 
flesh to the skeleton table:

CREATE TABLE StateChanges

(previous_state VARCHAR (10) NOT NULL,

current_state VARCHAR (10) NOT NULL,

PRIMARY KEY (previous_state, current_state),

state_type CHAR (1) DEFAULT 'M' NOT NULL

CHECK (state_type IN ('I', 'T', 'M')), /*initial, terminal, middle*/

state_duration INTEGER NOT NULL -- unit of measure is months

CHECK (state_duration >= 0),
CONSTRAINT Node_type_violations

CHECK (CASE WHEN state_type IN ('I', 'T')

AND previous_state = current_state

THEN 'T'

WHEN state_type = 'M'

AND previous_state <  > current_state
THEN 'T' ELSE 'F' END = 'T')

);

To make up some data, let's assume that the age of consent is 18 (12 
months * 18 years = 216), that you have to wait 3 months into your marriage 



before getting a divorce, and that you have to be divorced 2 months before 
you can remarry. Of course, you can die instantly.

INSERT INTO StateChanges

VALUES ('Born', 'Born', 'I', 0), -- initial state

('Born', 'Married', 'M', 216),

('Born', 'Dead', 'M', 0),

('Married', 'Divorced', 'M', 3),

('Married', 'Dead', 'M', 0),

('Divorced', 'Married', 'M', 2),

('Divorced', 'Dead', 'M', 0),

('Dead', 'Dead', 'T', 0); -- terminal state

The first question is where to check for temporal violations—during 
insertion or with validation procedures? My answer is both. Whenever 
possible, do not knowingly put bad data into a schema; this should 
be done in the ChangeState() procedure. But someone or something 
will subvert the schema and you have to be able to find and repair the 
damage.

Here is a procedure that will tell you what state change in the chain has an 
improper duration and what the disagreement is.

WITH Sequenced_State_History

AS

(SELECT previous_state, current_state, start_date,

ROW_NUMBER() OVER (ORDER BY start_date) AS change_seq

FROM MyLife)

/* There is chain of links from the initial state to the current state */

SELECT H2.change_seq, H2.previous_state, H2.current_state,

CAST ((H2.start_date - H1.start_date) AS INTERVAL YEAR TO SECOND)  

AS actual_state_duration,

C.state_duration AS expected_state_duration

FROM Sequenced_State_History AS H1,

Sequenced_State_History AS H2,

StateChanges AS C

 WHERE H1.change_seq + 1 = H2.change_seq

 AND DATEDIFF (MM, H1.start_date, H2.start_date) <= C.state_duration
 AND C.previous_state = H2.previous_state

 AND C.current_state = H2.current_state;
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Inserting a new life change is not a simple matter of putting a (previous_
state, current_state, start_date) row into the table. To do it right, you can put 
conditions into the INSERT INTO statement to cause errors when there are 
bad data.

CREATE PROCEDURE Life_Status_Change

(IN in_change_state VARCHAR (10),

IN in_most_recent_state VARCHAR (10),

IN in_change_date DATE)

LANGUAGE SQL

DETERMINISTIC

INSERT INTO MyLife (previous_state, current_state, start_date)

VALUES

(NULLIF (in_change_state, in_most_recent_state),

 in_change_state,

 CASE WHEN in_change_date

<= (SELECT MAX(start_date) FROM MyLife)
THEN NULL ELSE in_change_date END);

A slightly different model will keep a (start_date, expiry_date) pair 
in the history table. In the case of the MyLife example, durations were 
minimums for certain changes. You can get married when you are older 
than 18 years of age and probably should. But a lot of commercial situations 
have a fixed life span. Warranties, commercial offers, and bids expire 
in a known number of days. This means adding another column to the 
StateChanges table that tells the insertion program if the expiration date 
is optional (shown with a NULL) or mandatory (computed from the 
duration).

Here is some skeleton DDL for a bid application to explain this better.

CREATE TABLE MyBids

(bid_nbr INTEGER NOT NULL,

 previous_state VARCHAR (10) NOT NULL,

 current_state VARCHAR (10) NOT NULL,

 CONSTRAINT Improper_State_Change

 FOREIGN KEY (previous_state, current_state)

 REFERENCES StateChanges (previous_state, current_state),

 start_date DATE NOT NULL PRIMARY KEY,

 expiry_date DATE, -- null means still open.



CHECK (start_date <= expiry_date),
PRIMARY KEY (bid_nbr, start_date),

etc.

);

The DDL has a bid number as the primary key and a new column for the 
expiration date. Obviously the bid has to exist for a while, so add a constraint 
to keep the date order right.

CREATE TABLE StateChanges

(previous_state VARCHAR(10) NOT NULL,

 current_state VARCHAR(10) NOT NULL,

 PRIMARY KEY (previous_state, current_state),

 state_duration INTEGER NOT NULL,

  duration_type CHAR(1) DEFAULT 'O' NOT NULL

CHECK ('O', 'M')), -- optional, mandatory

etc.

);

The DDL for state changes gets a new column to tell us if the duration 
is optional or mandatory. The insertion procedure is a bit trickier. The 
VALUES clause has more power than most programmers use. The list 
can be more than just constants or simple scalar variables, but using 
CASE expressions lets you avoid if-then-else procedural logic in the 
procedure body.

All it needs is the bid number and what state you want to use. If you don't 
give me a previous state, I assume that this is an initial row and repeat the 
current state you just gave me. If you don't give me a start date, I assume you 
want the current date. If you don't give me an expiration date, I construct one 
from the State Changes table with a scalar subquery. Here is the skeleton DDL 
for an insertion procedure.

CREATE PROCEDURE Bid_Status_Change

(IN in_bid_nbr INTEGER,

 IN in_previous_state VARCHAR(10),

 IN in_current_state VARCHAR(10),

 IN in_start_date DATE,

 IN in_expiry_date DATE)

LANGUAGE SQL

DETERMINISTIC
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INSERT INTO MyBids (bid_nbr, previous_state, current_state, start_date, 

expiry_date)

VALUES (in_bid_nbr, -- required

COALESCE (in_previous_state, in_current_state),

in_current_state, -- required

COALESCE (in_start_date, CAST (CURRENT_TIMESTAMP AS DATE),

(SELECT COALESCE (in_expiry_date,

in_start_date + S.state_duration YEAR TO SECOND)

FROM StateChanges AS S

WHERE S.previous_state = COALESCE (in_previous_state, in_current_state)

AND S.current_state = in_current_state

AND S.duration_type = 'M'))

);



C H A P T E R

15
Hierarchical Database Systems (IMS)

I am going to assume that most of the readers of this book have only worked with 
SQL. If you have heard of a Hierarchical Database System, it was mentioned 
in a database course in college and then forgotten. In some ways, that is 
too bad. It helps to know how earlier tools worked so that you can see how 
new tools evolved from old ones.

The following material is taken from a series on IMS that appeared in 
www.DBAzine.com. This is not going to make you an IMS programmer, but 
should help give you an overview.

Why IMS? It is the most important prerelational technology that is still 
in wide use today. In fact, there is a good chance that IMS databases still 
hold more data than SQL databases.

15.1 Types of Databases

The classic types of database structures are network, relational, and 
hierarchical. Network and hierarchical models are called network or 
“navigational” databases because the mental model of data access is that 
of a reader moving along paths to pick up data. In fact, when Bachman 
received the ACM Turing Award that is how he described it.

IMS was not the only navigational database, just the most popular. TOTAL 
from Cincom was based on a Master record that had pointer chains to one or 
more sets of slave records. Later, IDMS and other products generalized this 
navigational model.
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CODASYL, the committee that defined COBOL, came up with a standard 
for the navigational model. Finally, the ANSI X3H2 Database Standards 
Committee took the CODASYL model, formalized it a bit, and produced the 
NDL language specification. However, at that point, SQL had become the 
main work of the ANSI X3H2 Database Standards Committee and nobody 
really cared about NDL and the standard simply expired.

Because this is a book on hierarchies and relational databases, I am going 
to ignore the network model on the assumption that it is too old and the 
products too varied to be of interest. I am also going to ignore object-oriented 
and other “postrelational” databases on the assumption that they are too 
young, too varied, and uncommon to be of interest.

IMS from IBM is the one hierarchical database management system still in 
wide use today. It is stable, well defined, scalable, and very fast for what it does.

The IMS software environment can be divided into five main parts:

	 1.	 Database

	 2.	 Data Language I (DL/I)

	 3.	 DL/I control blocks

	 4.	 Data communications component (IMS TM)

	 5.	 Application programs

Figure 15.1 is a diagram of the relationships of IMS components. We 
discuss some of these components in more detail, but not in great detail.

15.2 Database History

Before the development of DBMSs, data were stored in individual files. With 
this system, each file was stored in a separate data set in a sequential or 
indexed format. To retrieve data from the file, an application had to open the 
file and read through it to the location of desired data. If data were scattered 
through a large number of files, data access required a lot of opening and 
closing of files, creating additional I/O and processing overhead.

To reduce the number of files accessed by an application, programmers 
often stored the same data in many files. This practice created redundant 
data and the related problems of ensuring update consistency across multiple 
files. To ensure data consistency, special cross-file update programs had to be 
scheduled following the original file update.
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The concept of a database system resolved many data integrity and data 
duplication issues encountered in a file system. A properly designed database 
stores data only once in one place and makes it available to all application 
programs and users. At the same time, databases provide security by limiting 
access to data. The user's ability to read, write, update, insert, or delete data 
can be restricted. Data can also be backed up and recovered more easily in a 
single database than in a collection of flat files.

Database structures offer multiple strategies for data retrieval. Application 
programs can retrieve data sequentially or (with certain access methods) go 
directly to desired data, reducing I/O and speeding data retrieval. Finally, an 
update performed on part of the database is immediately available to other 
applications. Because data exist in only one place, data integrity is ensured 
more easily.

application
program

operating
system

IMS
database

DL/I control
blocks

DL/I 

IMS TM

Figure 15.1  IMS environment components.
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The IMS database management system as it exists today represents the 
evolution of the hierarchical database over many years of development and 
improvement. IMS is in use at a large number of business and government 
installations throughout the world. IMS is recognized for providing excellent 
performance for a wide variety of applications and for performing well with 
databases of moderate to very large volumes of data and transactions.

15.2.1 Data Language I

Because they are implemented and accessed through the use of DL/I, IMS 
databases are sometimes referred to as DL/I databases. DL/I is a command-
level language, not a database management system. DL/I is used in batch and 
online programs to access data stored in databases.

Application programs use DL/I calls to request data. DL/I then uses system 
access methods, such as the Virtual Storage Access Method, to handle the 
physical transfer of data to and from the database.

IMS databases are often referred to by the access method they are 
designed for, such as HDAM (Hierarchical Direct Access Method), HIDAM 
(Hierarchical Indexed Direct Access Method), PHDAM (Partitioned HDAM), 
PHIDAM (Partitioned HIDAM), HISAM (Hierarchical Indexed Sequential 
Access Method), and SHISAM (Simple HISAM).

These are all IBM terms from their mainframe database products and I will 
not discuss them here.

IMS makes provisions for nine types of access methods, and you can 
design a database for any one of them. However, SQL programmers are 
generally isolated from the access methods that their database engine uses. 
We will not worry about the details of the access methods that are called at 
this level.

15.2.2 Control Blocks

When you create an IMS database, you must define the database structure 
and how data can be accessed and used by application programs. These 
specifications are defined within the parameters provided in two control 
blocks, also called DL/I control blocks:

	 1.	 Database description (DBD)

	 2.	 Program specification block (PSB)
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In general, the DBD describes the physical structure of the database, and 
the PSB describes the database as it will be seen by a particular application 
program. The PSB tells the application which parts of the database it can access 
and the functions it can perform on data. Information from the DBD and PSB 
is merged into a third control block, the application control block (ACB). The 
ACB is required for online processing but is optional for batch processing.

15.2.3 Data Communications

The IMS Transaction Manager (IMS TM) is a separate set of licensed 
programs that provide access to the database in an online, real-time 
environment. Without the TM component, you would be able to process  
data in the IMS database in a batch mode only.

15.2.4 Application Programs

Data in a database is of no practical use to you if it sits in the database 
untouched. Its value comes in its use by application programs in the 
performance of business or organizational functions. With IMS databases, 
application programs use DL/I calls embedded in the host language to access 
the database. IMS supports batch and online application programs. IMS 
supports programs written in ADA, assembler, C, C++, COBOL, PL/I, Pascal, 
REXX, and WebSphere Studio Site Developer version 5.0.

15.2.5 Hierarchical Databases

In a hierarchical database, data are grouped in records, which are subdivided 
into a series of segments. Consider a department database for a school in 
which a record consists of the segments Dept, Course, and Enroll. In a 
hierarchical database, the structure of the database is designed to reflect logical 
dependencies—certain data are dependent on the existence of certain other 
data. Enrollment is dependent on the existence of a course and, in this case, a 
course is dependent on the existence of a department to offer that course.

The terminology changes from the SQL world to the IMS world. IMS uses 
records and fields and calls each hierarchy a database. In the SQL world, a 
row and column are similar to record and field, but are much smarter and 
more general. In SQL, a schema or database is a collection of related tables, 
which might map into several different IMS hierarchies in the same data 
model. In other words, an IMS database is more like a table in SQL.
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15.2.6 Strengths and Weaknesses

In a hierarchical database, data relationships are defined by the storage 
structure. The rules for queries are highly structured. It is these fixed 
relationships that give IMS extremely fast access to data when compared to 
an SQL database when the queries have not been highly optimized.

Hierarchical and relational systems have their strengths and weaknesses. 
The relational structure makes it relatively easy to code ad hoc queries. 
However, an SQL query often makes the engine read through an entire table 
or series of tables to retrieve data. This makes searches slower and more 
processing intensive. In addition, because the row and column structure 
must be maintained throughout the database, an entry must be made under 
each column for every row in every table, even if the entry is only a place 
holder (i.e., NULL) entry.

With the hierarchical structure, data requests or segment search 
arguments may be more complex to construct. Once written, however, they 
can be very efficient, allowing direct retrieval of data requested. The result 
is an extremely fast database system that can handle huge volumes of data 
transactions and large numbers of simultaneous users. Likewise, there is no 
need to enter place holders where data are not being stored. If a segment 
occurrence isn't needed, it isn't created or inserted.

There are always trade-offs. SQL gives you portability and flexibility. IMS 
and other network DB systems give you speed, low overhead (i.e no statistics, 
no DRI actions or triggers and minimal meta data). Essentially you tune an 
IMS database for one and only one set of applications and SQL is generic, so 
it is not surprised by a changing world. 

15.3 Sample Hierarchical Database

To illustrate how the hierarchical structure looks, I'll design two very simple 
databases to store information for the courses and students in a college. One 
database will store information on each department in the college, and the 
second will contain information on each college student. In a hierarchical 
database, an attempt is made to group data in a one-to-many relationship.

An attempt is also made to design the database so that data that 
are logically dependent on other data are stored in segments that are 
hierarchically dependent on data. For that reason, we have designated 
Dept as the key, or root, segment for our record because other data would 
not exist without the existence of a department. Each department is listed 
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only once. We provide data on each course in each department. We have 
a segment type Course, with an occurrence of that type of segment for 
each course in the department. Data on the course title, description, and 
instructor are stored as fields within the Course segment. Finally, we have 
added another segment type, Enroll, which will include student IDs of the 
students enrolled in each course.

In Figure 15.2, we also created a second database called Student. This database 
contains information on all the students enrolled in the college. This database 
duplicates some data stored in the Enroll segment of the Department database. 
Later, we will construct a larger database that eliminates duplicated data. The 
design we choose for our database depends on a number of factors; in this case, 
we will focus on which data we will need to access most frequently,

The two sample databases, Department and Student, are shown in 
Figure 15.2. The two databases are shown as they might be structured in 
relational form in three tables.

CREATE SCHEMA College;

CREATE TABLE Courses

(course_nbr CHAR(9) NOT NULL PRIMARY KEY,

  course_title VARCHAR(20) NOT NULL,

  description VARCHAR(200) NOT NULL,

Departmental Database
Student Database

Dept

Course

Enroll

Billing

Student

Figure 15.2  Sample hierarchical databases for department and student.
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  dept_id CHAR(7) NOT NULL

         REFERENCES Departments (dept_id)

       ON UPDATE CASCADE);

CREATE TABLE Students

(student_id CHAR(9) NOT NULL PRIMARY KEY,

  student_name CHAR(35) NOT NULL,

  address CHAR(35) NOT NULL,

  major CHAR(10));

CREATE TABLE Departments

(dept_id CHAR(7) NOT NULL PRIMARY KEY,

  dept_name CHAR(15) NOT NULL,

  chairman_name CHAR(35) NOT NULL,

  budget_code CHAR(3) NOT NULL);

15.3.1 Department Database

Segments in the Department database are as follow.

Dept: Information on each department. This segment includes fields 
for the department ID (the key field), department name, chairman_
name's name, number of faculty, and number of students registered in 
departmental courses.

Course: This segment includes fields for the course number (a unique 
identifier), course title, course description, and instructor's name.

Enroll: Students enrolled in the course. This segment includes fields for 
student ID (the key field), student name, and grade.

15.3.2 Student Database

Segments in the Student database are as follow.

Student: Student information. It includes fields for student ID (key field), 
student name, address, major, and courses completed.

Billing: Billing information for courses taken. It includes fields  
for semester, tuition due, tuition paid, and scholarship funds  
applied.
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The dotted line between the root (Student) segment of the Student 
database and the Enroll segment of the Department database represents a 
logical relationship based on data residing in one segment and needed in 
the other.

15.3.3 Design Considerations

Before implementing a hierarchical structure for your database, you should 
analyze the end user's processing requirements because they will determine 
how you structure the database. In particular, you must consider how the 
data elements are related and how they will be accessed.

For example, given Parts and Suppliers, the hierarchical structure could 
subordinate parts under suppliers for the accounts receivable department or 
subordinate suppliers under parts for the order department.

15.3.4 Example Database Expanded

At this point we have learned enough about database design to expand our 
original example database. We decide that we can make better use of our 
college data by combining the Department and Student databases. Our new 
College database is shown in Figure 15.3.

The following segments are in the expanded College database.

Dept

Course BillingStaff

Student

Academic

College

Figure 15.3  College database (combining department and student databases).
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College: The root segment. One record will exist for each college in 
the university. The key field is the College ID, such as ARTS, ENGR, 
BUSADM, and FINEARTS.

Dept: Information on each department within the college. It includes fields for 
the department ID (the key field), department name, chairman_name's name, 
number of faculty, and number of students registered in departmental courses.

Course: Includes fields for the course number (the key field), course title, 
course description, and instructor's name.

Enroll: A list of students enrolled in the course. There are fields for student 
ID (key field), student name, current grade, and number of absences.

Staff: A list of staff members, including professors, instructors, teaching 
assistants, and clerical personnel. The key field is employee number. 
There are fields for name, address, phone number, office number, and 
work schedule.

Student: Student information. It includes fields for student ID (key field), 
student name, address, major, and courses being taken currently.

Billing: Billing and payment information. It includes fields for billing 
date (key field), semester, amount billed, amount paid, scholarship funds 
applied, and scholarship funds available.

Academic: The key field is a combination of the year and the semester. 
Fields include grade point average (GPA) per semester, cumulative GPA, 
and enough fields to list courses completed and grades per semester.

15.3.5 Data Relationships

The process of data normalization helps you break data into naturally 
associated groupings that can be stored collectively in segments in a 
hierarchical database. In designing your database, break the individual data 
elements into groups based on the processing functions they will serve. At 
the same time, group data based on inherent relationships between data 
elements.

For example, the College database (Figure 15.3) contains a segment 
called Student. Certain data are naturally associated with a student, such as 
student ID number, student name, address, and courses taken. Other data 
that we will want in our College database, such as a list of courses taught or 
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administrative information on faculty members, would not work well in the 
Student segment.

Two important data relationship concepts are one to many and many 
to many. In the College database, there are many departments for each 
college (Figure 15.3 shows only one example), but only one college for each 
department. Likewise, many courses are taught by each department, but a 
specific course (in this case) can be offered by only one department.

The relationship between courses and students is many to many, as there 
are many students in any course and each student will take several courses. 
Let's ignore the many-to-many relationship for now—this is the hardest 
relationship to model in a hierarchical database.

A one-to-many relationship is structured as a dependent relationship in 
a hierarchical database: the many are dependent upon the one. Without a 
department, there would be no courses taught: without a college, there would 
be no departments.

Parent and child relationships are based solely on the relative positions 
of the segments in the hierarchy, and a segment can be a parent of other 
segments while serving as the child of a segment above it. In Figure 15.3, 
Enroll is a child of Course, and Course, although the parent of Enroll, is also 
the child of department. Billing and Academic are both children of Student, 
which is a child of College. (Technically, all of the segments except College 
are dependents.)

When you have analyzed the data elements, grouped them into 
segments, selected a key field for each segment, and designed a database 
structure, you have completed most of your database design. You may 
find, however, that the design you have chosen does not work well for 
every application program. Some programs may need to access a segment 
by a field other than the one you have chosen as the key or another 
application may need to associate segments that are located in two different 
databases or hierarchies. IMS has provided two very useful tools that you 
can use to resolve these data requirements: secondary indexes and logical 
relationships.

Secondary indexes let you create an index based on a field other than the 
root segment key field. That field can be used as if it were the key to access 
segments based on a data element other than the root key.

Logical relationships let you relate segments in separate hierarchies and, 
in effect, create a hierarchic structure that does not actually exist in storage. 
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The logical structure can be processed as if it exists physically, allowing you 
to create logical hierarchies without creating physical ones.

15.3.6 Hierarchical Sequence

Because segments are accessed according to their sequence in the hierarchy, 
it is important to understand how the hierarchy is arranged. In IMS, 
segments are stored in a top-down, left-to-right sequence (Figure 15.4). 
The sequence flows from the top to the bottom of the leftmost path or leg. 
When the bottom of that path is reached, the sequence continues at the top 
of the next leg to the right.

Understanding the sequence of segments within a record is important to 
understanding movement and position within the hierarchy. Movement can be 
forward or backward and always follows the hierarchical sequence. Forward 
means from top to bottom, and backward means bottom to top. Position within 
the database means the current location at a specific segment. You are once 
more doing depth-first tree traversals, but with a slightly different terminology.

15.3.7 Hierarchical Data Paths

In Figure 15.4, numbers inside the segments show the hierarchy as a search 
path would follow it. Numbers to the left of each segment show the segment 
types as they would be numbered by type, not occurrence, that is, there may 
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Figure 15.4  Sequence and data paths in a hierarchy.
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be any number of occurrences of segment type 04, but there will be only one 
type of segment 04. The segment type is referred to as the segment code.

To retrieve a segment, count every occurrence of every segment type 
in the path and proceed through the hierarchy according to the rules of 
navigation:

	 1.	 top to bottom

	 2.	 front to back (counting twin segments)

	 3.	 left to right

For example, if an application program issues a GET-UNIQUE (GU) 
call for segment 6 in Figure 15.4, the current position in the hierarchy is 
immediately following segment 06. If the program then issued a GET-NEXT 
(GN) call, IMS would return segment 07. There is also the GNP (Get Next 
within Parent) call, which explains itself.

As shown in Figure 15.4, the College database can be separated into four 
search paths. The first path includes segment types 01, 02, 03, and 04. The 
second path includes segment types 01, 02, and 05. The third path includes 
segment types 01, 06, and 07. The fourth path includes segment types 01, 06, 
and 08. The search path always starts at 01, the root segment.

15.3.8 Database Records

Whereas a database consists of one or more database records, a database 
record consists of one or more segments. In the College database, a record 
consists of the root segment College and its dependent segments. It is possible 
to define a database record as only a root segment. A database can contain 
only the record structure defined for it, and a database record can contain only  
the types of segments defined for it.

The term record can also be used to refer to a data set record (or block), 
which is not the same thing as a database record. IMS uses standard data 
system management methods to store its databases in data sets. The smallest 
entity of a data set is also referred to as a record (or block).

Two distinctions are important. A database record may be stored in several 
data set blocks. A block may contain several whole records or pieces of 
several records. In this chapter, we try to distinguish between database record 
and data set record where the meaning may be ambiguous.
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15.3.9 Segment Format

A segment is the smallest structure of the database in the sense that IMS 
cannot retrieve data in an amount less than a segment. Segments can be 
broken down into smaller increments called fields, which can be addressed 
individually by application programs.

A database record can contain a maximum of 255 types of segments. The 
number of segment occurrences of any type is limited only by the amount 
of space allocated for the database. Segment types can be of fixed length or 
variable length. You must define the size of each segment type.

It is important to distinguish the difference between segment types and 
segment occurrences. Course is a type of segment defined in the DBD for the 
College database. There can be any number of occurrences for the Course 
segment type. Each occurrence of the Course segment type will be exactly as 
defined in the DBD. The only difference in occurrences of segment types is data 
contained in them (and the length, if the segment is defined as variable length).

Segments have several different possible structures, but from a logical 
viewpoint, there is a prefix that has structural and control information for the 
IMS system, and 3 is the prefix for the actual data fields.

In the data portion, you can define the following types of fields: a 
sequence field and data fields.

Sequence (key) field: The sequence field is often referred to as a key field. 
It can be used to keep occurrences of a segment type in sequence under 
a common parent, based on data or value entered in this field. A key 
field can be defined in the root segment of a HISAM, HDAM, or HIDAM 
database to give an application program direct access to a specific root 
segment. A key field can be used in HISAM and HIDAM databases to allow 
database records to be retrieved sequentially. Key fields are used for logical 
relationships and secondary indexes.

A key field not only can contain data but also can be used in special 
ways that help in organizing your database. With a key field, you can keep 
occurrences of a segment type in some kind of key sequence, which you 
design. For instance, in our example database you might want to store 
student records in ascending sequence based on student ID number. To do 
this, you define the student ID field as a unique key field. IMS will store 
the records in ascending numerical order. You could also store them in 
alphabetical order by defining the name field as a unique key field. Three 
factors of key fields are important to remember:
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	 1.	 Data or value in the key field is called the key of the segment.

	 2.	 The key field can be defined as unique or nonunique.

	 3.	 You do not have to define a key field in every segment type

Data field: You define data fields to contain actual data being stored in the 
database. (Remember that the sequence field is a data field.) Data fields, 
including sequence fields, can be defined to IMS for use by applications 
programs.

15.3.10 Segment Definitions

In IMS, segments are defined by the order in which they occur and by their 
relationship with other segments:

Root segment: The first or highest segment in the record. There can be 
only one root segment for each record. There can be many records in a 
database.

Dependent segment: All segments in a database record except the root 
segment.

Parent segment: A segment that has one or more dependent segments 
beneath it in the hierarchy.

Child segment: A segment that is a dependent of another segment above it 
in the hierarchy.

Twin segment: A segment occurrence that exists with one or more 
segments of the same type under a single parent.

Functions that edit, encrypt, or compress segments are not considered 
here. The point is that you have a lot of control of data at the physical level 
in IMS.

15.4 Summary

Those who cannot remember the past are condemned to repeat it.

George Santayana

There were databases before SQL, and they were all based on a graph 
theory model. What SQL programmers do not like to admit is that less 
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than 20% of all commercial information resides in SQL databases. The 
majority is still in simple files or older, navigational, nonrelational 
databases.

Even after the new tools have taken on their own characteristics to 
become a separate species, the mental models of the old systems still linger. 
The old patterns are repeated in the new technology.

Even the early SQL products fell into this trap. For example, how many 
SQL programmers today use IDENTITY or other autoincrement vendor 
extensions as keys on SQL tables today, unaware that they are imitating the 
sequence field (a.k.a. the “key field”) from IMS?

This is not to say that a hierarchy is not a good way to organize data; it is! 
But you need to see the abstraction apart from any particular implementation. 
SQL is a declarative language, while DL/I is a collection of procedure calls 
inside a host language. The temptation is to continue to write SQL code in 
the same style as you wrote procedural code in COBOL, PL/I, or whatever 
host language you had.

The bad news is that you can use cursors to imitate sequential file 
routines. Roughly, the READ() command becomes an embedded FETCH 
statement, OPEN and CLOSE file commands map to OPEN and CLOSE 
CURSOR statements, and every file becomes a simple table without any 
constraints and a “record number” of some sort. The conversion of legacy 
code is almost effortless with such a mapping. Also, it is also the worst way to 
program with a SQL database.

It is hoped that this book will show you a few tricks that will let you write 
SQL as SQL and not fake a previous language in it.

The www.DBAzine.com Website has a detailed three-part tutorial on IMS 
from which this material was brutally extracted and summarized.

The best source for IMS materials is at http://www.redbooks.ibm.com/ 
where you can download manuals directly from IBM.

Reference
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I N T R O D U C T I O N

An introduction should give a noble purpose for writing a book. I should 
say that the purpose of this book is to help real programmers who have 
real problems in the real world. But the “real” reason this short book is 
being published is to save me the trouble of writing any more emails and 
pasting more code on Internet forums, newsgroups, and blogs. This topic 
has been hot on all SQL-related Websites, and the solutions actually being 
used by most working programmers have been pretty bad. So I thought, 
why not collect everything I can find and put it in one place for the world 
to see.

In my book SQL for Smarties (Morgan-Kaufmann, 4th edition, 2010, 
ISBN 978-0123820228, Chapter 36), I wrote a chapter on a programming 
technique for representing trees and hierarchies in SQL as nested sets. This 
technique has become popular enough that I have spent almost every month 
since SQL for Smarties was released explaining the technique in Newsgroups 
and personal emails. Also, people who have used it have been sending me 
emails with their own programming tricks. Oh, I will still have a short 
chapter or two on trees in any future edition of SQL for Smarties, but this 
topic is worth this short book.

The first section of the book is a bit like an intro college textbook on 
graph theory so you might want to skip over it if you are current on the 
subject. If you are not, then the theory there will explain some of the 
constraints that appear in the SQL code later. The middle sections deal with 
programming techniques, and the end sections deal with related topics in 
computer programming.

The code in this book was checked using a SQL syntax validator program 
at the Mimer Website (http://developer.mimer.com/validator/index.htm).  
I have used as much standard SQL code as possible. When I needed 
procedural code in an example, I used SQL/PSM but tried to stay within a 
subset that can be translated easily into a vendor dialect (for details of this 
language, see Jim Melton's book Understanding SQL's Stored Procedures,  
ISBN 0-55860-461-8).



x i v 	 I N T R O D U C T I O N

There are two major examples (and some minor ones) in this book. One 
is an organizational chart for an unnamed organization and the other is a 
parts explosion for a Frammis. Before anyone asks what a Frammis is, let 
me tell you that it is what holds all those widgets that MBA students were 
manufacturing in the fictional companies in their textbooks.

These choices were made because a parts explosion will have the same 
part in many places (i.e., a #5 machine screw gets used a lot) and an 
employee usually holds only one position within the organization.

I invite corrections, additions, general thoughts, and new coding tricks at 
my email address or my publisher's snail mail address.

Joe Celko



JOE CELKO'S 

TREES AND 
HIERARCHIES  
IN SQL FOR SMARTIES


	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

