The MySQL
Workshop

A practical guide to working with data and managing
databases with MySQL

Thomas Pettit | Scott Cosentino

The MySQL
Workshop

A practical guide to working with data and managing
databases with MySQL

Thomas Pettit

Scott Cosentino

Packh

BIRMINGHAM—MUMBAI

The MySQL Workshop

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Heramb Bhavsar
Senior Editor: David Sugarman

Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Project Coordinator: Aparna Nair
Proofreader: Safis Editing

Indexer: Sejal Dsilva

Production Designer: Aparna Bhagat
Marketing Coordinator: Nivedita Singh

First published: April 2022
Production reference: 1130422

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-490-5

www . packt .com

http://www.packt.com

To my girlfriend, Emma, and my cats, Jazz and Noodle, who have
helped me stay motivated. And to my family and friends who
have helped me to achieve my goals.

- Scott Cosentino

Contributors

About the authors

Thomas Pettit began developing software as a hobby. He changed tracks from being

a truck driver to being a software developer by earning a graduate degree in software
development at the age of 35. He taught basic computing skills at a community adult
education center in Melbourne for 2 years before commencing his software development
career. Tom has worked for several government agencies, including defense, law
enforcement, and transport, as well as large and small private businesses. Tom has
mentored several up-and-coming software developers during his career and takes great
joy in assisting others in improving their skills and furthering their career prospects.

Scott Cosentino is a software developer and teacher currently working in computer
security. Scott has worked extensively with both low- and high-level languages, working
on operating system- and enterprise-level applications. Scott has a passion for teaching
and currently writes and creates videos on computer security and other programming
topics. He has developed an extensive library of courses and has taught over 45,000
students through courses with Udemy, Packt, and CodeRed. He maintains a blog on
Medium, and is active on YouTube and LinkedIn, where he enjoys creating content and
interacting with students.

About the reviewer

Vlad Sebastian Ionescu is a university lecturer with a Ph.D. in machine learning as well
as being a freelance software engineer. He has over 10 years of computer science teaching
experience in a variety of roles: schoolteacher, private tutor, internship mentor, university
TA, and lecturer. Over the years, Vlad has worked with many cutting-edge technologies
in areas such as frontend development, database design and administration, backend
programming, and machine learning.

Table of Contents

Preface

Section 1: Creating Your Database

1

Background Concepts

Introducing databases 4 The MysQL layers 13
Database architecture 5 Storage engines (InnoDB and
MS Access as a database 6 MyRocks) 16
Database management system 7 ,
ACID compliance 16
RDBMS 8
Exploring MySQL 9 Data m?de!lng 17
Normalization 19
Data types 10 o .
Activity 1.01: Creating an
Exercise 1.01: Organizing data optimized table for an
in a relational format 11 employee project 21
Exploring MySQL architecture 12 Summary 22
Creating a Database
Developing databases 24 Accessing MySQL through the
The MySQL Workbench GUI 24 command-line interface 32
Connecting the Workbench GUI to Creating a database 32
MySQL 27 Exercise 2.02 - creating the autoclub
Exercise 2.01 - creating a connection database 33
with the MySQL Workbench GUI 27

viii Table of Contents

Using Workbench to add a table 34 Reverse engineering a database 58
Importing objects from a SQL script file 40 Exercise 2.06 - creating an EER model
Exercise 2.03 - importing tables from from the autoclub database 61
an SQL script file 41 Exercise 2.07 - using the EER diagram
. and forward engineering to manage
MySQL table indexes and the database model 67
foreign keys 45 Exercise 2.08 - committing model
Indexes 45 changes to the production database
Exercise 2.04 - creating an index 46 with Synchronize Model 77
Ind Itipl | 49 - -
Indexes on multipe columns “ Activity 2.01 - modifying the
: & 23(;5 tine a foreien k o3 EER diagram, the model, and
xercise 2.05 - creating a foreign key the database 81
Summary 82
Using SQL to Work with a Database
An introduction to working SQL queries to create indexes
with databases using SQL 84 and foreign keys 929
Working with data 85 Exercise 3.05 - creating tables with
Types of SQL statements 85 indexes and foreign keys 100
Backing up databases 86 Agtivity 3.1 - creating a table
Exercise 3.01 - Backing up the autoclub with _mdexes and fc?relgn keys 105
database gg Altering table queries 106
. Exercise 3.06 - modifying an existin
Restoring databases 89 iaple yine & 107
Exercise 3.02 - restoring the autoclub .
database 91 Adding data to a table 110
) . Exercise 3.07 - adding a single record
Wofk'"g with SQL code to to a members table 110
maintain a database 92
Creating a new database g2 Updating datain a record 113
Exercise 3.03 - creating a new database 93 Exercise 3.08 - updating a record 113
Creating and modifying tables 95 Deleting data from tables 116
Drop queries 117

Exercise 3.04 - creating a new table 95

Table of Contents ix

Blobs, files, and file paths 118 Activity 3.2 - adding image file
Exercise 3.09 - files and blobs 119 paths to the database 126
Files and file paths 121 Summary 127
4

Selecting, Aggregating, and Applying Functions

An introduction to querying Exercise 4.03 - using functions 144
data 130 Aggregating data 147
Querying tables in MySQL 130 Exercise 4.04 - aggregating

Exercise 4.01 - working with data 150
simple queries 132 Case statements 152
Filtering results 133 Exercise 4.05 - writing case

Exercise 4.02 - filtering results 136 statements 153
Using functions on data 138 Activity 4.01 - collecting

Math functions 138 information for a travel article 154
String functions 140 Summary 155
Date and time functions 142

Section 2: Managing Your Database

5

Correlating Data across Tables

Introduction to processing data Exercise 5.03: Using a CTE 178
across tables 160 .

- Analyzing query performance
Joining two tables 160 \vith EXPLAIN 182
Accidental cross joins 163 Exercise 5.04: Using EXPLAIN 189
LEFT JOIN versus INNER JOIN 164
Exercise 5.01: Joining two tables 168 Activity 5.01: The Sakila video

. . store 195
Analyzing subqugrles 169 Activity 5.02: Generating a list
Depehdent subq'uerles 170 of years 197
Exercise 5.02: Using a subquery 171 Summary 198
Common table expressions 173
Recursive CTE 174

x Table of Contents

6

Stored Procedures and Other Objects

Introduction to database

Exercise 6.04 - stored procedures

objects 200 and parameters 213
Exploring various database Working with IN, OUT, and
objects 200 |NnOUT 215
Working with views 201 Exercise 6.05 - IN and INOUT 216
Exercise 6.01 - creating a mailing list . .
with a view 201 Exploring triggers 221
Updatable views 204 Advantages of triggers 221
. . Disadvantages of triggers 222
ACt'V'.ty 6'91 - updating the Restrictions with triggers 222
datain a view 206 Exercise 6.06 - triggers to enforce
Working with user-defined business rules 222
functions 207 s . 298
Exercise 6.02 - creating a function 208 sing transactions
Exercise 6.07 - implementing
Working with stored a transaction 229
procedures 211
mmar 231
Exercise 6.03 - creating a stored Su ary 3
procedure 212
Creating Database Clients in Node.js
Introduction to database Recovering from accidental
management with Node.js 234 datadeletion 240
Best practices for SQL Exercise 7.01 - safely deleting records 241
client development 235 javaScript using Node.js 243
Installing a development , Setting up Node.js 244
MVSQL ser\;er | 35 Getting started with Node.js 248
Creating a development Basics of Node.js 251
MySQL server 236 . . .
Backi bef Ki h 237 Exercise 7.02 - basic output in the
ac mg up before making changes console 253
Restoring a database 239

Table of Contents xi

Exercise 7.03 - testing outputs Creating databases in Node.js 270
in a browser 254 Exercise 7.07 - creating a new
Writing outputs to files 256 database 271
Exercise 7.04 - writing to a disk file 257 Creating tables in Node.js 273
. Exercise 7.08 - creating a table in a

Connecting to MySQL 259 itabase 274
Exercise 7.05 - connecting to the o o
MySQL server 261 Activity 7.01 - building a
Troubleshooting connection errors 263 database application with
Modularizing the MySQL connection 267 Node.js 276
Exercise 7.06 - modularizing the Summary 279
MySQL connection 268
Working with Data Using Node.js
Interacting with databases 282 ODBC connections 312
Inserting records in Node.js 282 Types of DSNs 313
Exercise 8.01 - inserting a record Determining whether ODBC drivers
into a table 284 have been installed 315
Inserting multiple records 288 Local, LAN, and remote ODBC
Exercise 8.02 - inserting multiple connections 318
records into a table 288 Exercise 8.06 - creating a LAN or
Inserting with multiple fields 202 remote DSN/ODBC connection to the

. . world_statistics database 319
Exercise 8.03 - populating records - .
from the existing tables 203 Creating file DSN/ODBC connections 322
Updating the records of a table 296 Activity 8-%2 - dbe5|gn|ng a 326
Exercise 8.04 - updating a single record 298 customer database

Summary 328

Activity 8.01 - multiple updates 302

Displaying data in browsers 304
Exercise 8.05 - formatting data to the
web browser 307

xii Table of Contents

Section 3: Querying Your Database

9

Microsoft Access - Part 1

Introduction to MS Access 332
MS Access database application
configurations 333

Upsizing an MS Access database

Migrating with wizards 348

Exercise 9.04 - using the Workbench
Migration Wizard to upsize the table 349

Linking to your tables and

to MySQL 335 views 361
Exercise 9.01 - preparing your MySQL Exercise 9.05 - linking a good MySQL
database and ODBC 338 table to Access 362
Manually exporting MS Exercise 9.07 - linking a problematic
Access tables 340 MySQL table to Access 366
Exercise 9.02 - manually upsizing Refreshing linked MySQL
a table 341 tables 368
Adjusting field properties 344 Activity 9.01 - linking the

. N remaining MySQL tables to
Exercise 9.03 - manually migrating d b
tables and adjusting their field your MS Access database 369
properties 345 Summary 370
Microsoft Access - Part 2
Introduction to MS Access 372 Activity 10.02 - Creating a
Migrating an MS Access function and Ca”ing it 380
application to MySQL 372 Calling MySQL stored
Passthrough queries 372 procedures 382
Exercise 10.01 - Passthrough (simple Exercise 10.03 - Calling a MySQL
SQL conversion) 373 stored procedure 382
Activity 10.01 - Converting Activity 10.03 - Creating MySQL
gender and job statistics 377 stored procedures and using
Calling MySQL functions 379 theminVBA 386
Exercise 10.02 - Passthrough (calling Using parameters 387
MySQL functions) 379 Parameterized stored procedures 388

Table of Contents xiii

Exercise 10.04 - Parameterized stored
procedure (series list) 388

Activity 10.04 - Parameterized

stored procedure (series list) 390
Exercise 10.05 - Multiple parameters
stored procedure (country list) 391
Activity 10.05 - Multiple
parameters stored procedure

(date list) 395

Exercise 10.06 - Multiple parameters
stored procedure (crosstab queries) 396

11

The Bad Bits form 401
Exercise 10.07 - Bad Bits

demonstration 402
Unbound forms 404
Another way to unbind a form from

a linked table 410
Exercise 10.08 - Removing all

linked tables 410
Summary 412

MS Excel VBA and MySQL - Part 1

Introduction to Excel 414
Exercise 11.01 - Setting up a sample
MySQL database 415

Exploring the ODBC connection 417

The Developer menu 417
Exercise 11.02 - Activating the

Developer tab and the VBA IDE 417
Exploring the Excel VBA

structure 421
Preparing your Excel project 421
Exercise 11.03 - Creating a

code module 422

Learning about VBA libraries 426

Exercise 11.04 - Referencing a library 426
Exercise 11.05 - Inserting worksheets 429

Connecting to the MySQL

database using VBA 431
Setting the scene 431
Exercise 11.06 - The connection

variable 432

Connection functions in VBA 434

Exercise 11.07 - Creating a connection
function 435

Reading data from MySQL

using VBA 440
Exercise 11.08 - ReadGenreSales 440
Exercise 11.09 - Genre dropdown 447
Auto-running functions when opening

a workbook 450

Exercise 11.10 - Auto-running
functions when opening a workbook 451

Populating charts 452
Populating a chart - Genre sales 452
Exercise 11.11 - Loading Genre Sales

chart data 453
Running code on changes to

a document 456
Exercise 11.12 - Detecting and working
with worksheet changes 456
Activity 11.01 - Creating a chart
(artist track sales) 461
Summary 464

xiv Table of Contents

12

Working With Microsoft Excel VBA - Part 2

An introduction to MySQL

Inserting data using MySQL

connections 466 for Excel 484
Connecting to the MySQL Exercise 12.04 - inserting the top 25
database using ODBC 466 selling artists 484
Exercise.12.?1 - c.reating a DSN . Updating data using MySQL
connection function for Excel 488
Exploring generic data read Exercise 12.05 - updating MySQL
functions 475 data-employees 489
Exercise 12.02 - a generic data reader 476 Pushing data from Excel 494
Creating connections to Exercise 12.06 - pushing data from
MySQL in Excel 480 Excel to a new MySQL table 494
Exercise 12.03 - creating a connection Pivot tables 498
to MysQL 480 Exercise 12.07 - album sales 498
Activity 12.01 - building a
MySQL-based Excel document 511
Summary 511
Section 4: Protecting Your Database
Getting Data into MySQL
An introduction to data Inserting documents 523
preparation 516 Exercise 13.02 - inserting documents
Working with the X DevAPI 516 intoatable 525
An example of the X DevAPI 220 |oading data from a SQL file 527
Usmg. MysQL Sh?” Wlth the X DEVAPI >20 Exercise 13.03 - loading data from a
Eﬂxesmfesfi?"l —énserdtlng values with 51 SQL file and viewing tables 528
ysQ ellin S mode Exercise 13.04 - importing a SQL file
using MySQL Workbench 530

Table of Contents xv

Loading data from a CSV file 533 Searching and filtering JSON
The SELECT...INTO OUTFILE Format 533 documents 545
The LOAD DATA INFILE...INTO format 534 Exercise 13.09 - Searching collections
Exercise 13.05 - loading data from a and filtering documents 553
CsV fil 534 . .
e Using JSON functions and

Loading data from a JSON file 536 operators to query JSON
Exercise 13.06 - loading data from a columns 556
JSON file 537 Exercise 13.10 - querying JSON data

) . with SQL 561
Using the CSV storage engine to
export data 539 Using generated columns to
Exercise 13.07 - utilizing the CSV query and index JSON data 563
storage engine to export data 540 Activity 13.01 - Exporting report

. . data to CSV for Excel 565
Using the CSV storage engine to
import data 542 ~Summary 566
Exercise 13.08 - utilizing the CSV
storage engine to import data 543
Manipulating User Permissions
Introduction to user Changing permissions 578
permissions 568 Exercise 14.02 - modifying
Exploring users and accounts 569 users and revoking
How to connect to MySQL with a set permissions 579
of credentials 569 Using roles 581
Creating, modifying, and dropping Exercise 14.03 - using roles
auser o 70" to manage permissions 582
Granting permissions 571 .
Inspecting users 572 Troubleshooting access

problems 583

Exercise 14.01 - creating users Activity 14.01 - creating
and granting permissions 575 users for managing the
Changing users 577 world schema 585
Flush privileges 578 Summary 585

xvi Table of Contents

15

Logical Backups

An introduction to backups 588 Partial restore 599
Understanding the basics Exercise 13.03 - restore a single
of backups 588 schema backup 600
Logical and physical backup 590 Using point-in-time recovery
Types of restore 590 with binlog files 601
Performing backups 591 GTID format 603
Using mysqldump 591 Using mysqlbinlog to inspect binlog
Exercise 15.01 - backup using contents 605
Bwsqldumpl 2:2 Activity 15.01 - backing up and

SINg mysqipump - -) restoring a single schema 606
Exercise 15.02 - backing up using . .
mysqlpump 596 Ac'F|V|t_y 15.02 - performing a

point-in-time restore 607

Scheduling backups 596 Summary 608
Full restore 599
Appendix
Index

Other Books You May Enjoy

Preface

Do you want to learn how to create and maintain databases effectively? Are you looking
for simple answers to basic MySQL questions, as well as straightforward examples that
you can use at work? If so, this workshop is the right choice for you.

Designed to build your confidence through hands-on practice, this book uses a simple
approach that focuses on the practical, so you can get straight down to business without
having to wade through pages and pages of dull, dry theory.

As you work through bite-sized exercises and activities, you'll learn how to use different
MySQL tools to create a database and manage the data within it. You'll see how to
transfer data between a MySQL database and other sources and use real-world datasets
to gain valuable experience in manipulating and gaining insights from data. As you
progress, you'll discover how to protect your database by managing user permissions
and performing logical backups and restores.

If you've already tried to teach yourself SQL but haven't been able to make the leap
from understanding simple queries to working on live projects with a real database
management system, The MySQL Workshop will get you on the right track.

By the end of this book, you'll have the knowledge, skills, and confidence to advance your
career and tackle your own ambitious projects with MySQL.

Who this book is for

This book is for anyone who wants to learn how to use MySQL in a productive, efficient
way. If you are totally new to MySQL, it'll help you get started, while if you've used MySQL
before, it'll fill in any gaps, consolidate key concepts, and offer valuable hands-on practice.
Prior knowledge of simple SQL or basic programming techniques would be beneficial to
help you quickly grasp the concepts covered, but are not strictly necessary.

xviii Preface

What this book covers

Chapter 1, Background Concepts, introduces the concepts of databases, database
management systems, relational databases, and the general structure of MySQL.

Chapter 2, Creating a Database, discusses how a database is created in MySQL. We will
look at how to create a database and a table, how to set up indices and keys, and how to
model database systems using ER and EER diagrams.

Chapter 3, Using SQL to Work with Databases, shows how SQL can be used to work with
MySQL databases. We will look at ways to back up and restore databases. We will also look
at ways to create databases and tables, as well as inserinserting data, updating data, altering
table structures, truncating tables, deleting data, and dropping tables.

Chapter 4, Selecting, Aggregating, and Applying Functions, discusses methods of selecting
and analyzing data from databases. We will look at selecting and filtering data, as well as
methods to apply functions and aggregations to data.

Chapter 5, Correlating Data across Tables, discusses methods of joining tables together.
We will also look at subqueries and common table expressions.

Chapter 6, Stored Procedures and other Objects, discusses the various types of database
objects that exist in MySQL. This includes views, functions, store procedures, triggers,
and transactions.

Chapter 7, Creating Database Clients with Node.js, discusses the methods of using Node.js
with a MySQL database. We will look at setting up development MySQL servers, the basics
of Node.js, and the methods of connecting to MySQL to create databases and tables.

Chapter 8, Working with Data Using Node.js, expands our knowledge of using Node.js to
interface with MySQL. We will see how we can insert, update, and display data through
Node.js. We will also learn how to set up and use ODBC connections.

Chapter 9, MS Access Part 1, shows how to interface with MySQL through MS Access. We
will look at methods for configuring MS Access, adjusting field properties, and migrating
data to link with MySQL.

Chapter 10, MS Access Part 2,1ooks at advanced topics of MS Access interactions with
MySQL. This will include working with passthrough queries, calling MySQL objects, and
working with MS Access forms.

Chapter 11, MS Excel VBA and MySQL Part 1, works with MS Excel, using VBA to connect
with MySQL databases to retrieve and alter data.

Preface xix

Chapter 12, MS Excel VBA and MySQL Part 2, expands our knowledge of MS Excel to
discuss methods of reading, inserting, updating, and pushing data from Excel to MySQL.

Chapter 13, Further Applications of MySQL, looks at various applications we can use to
further our MySQL skills and abilities. We will learn how to use X DevAPI and examine
concepts such as inserting documents, loading data from CSVs, and exporting/importing
various file formats.

Chapter 14, User Permissions, shows how user permissions are used to provide secure
access to MySQL databases. We will look at how users are created, how permissions are
granted, and how users can be used with a MySQL database.

Chapter 15, Logical Backups, shows how to create logical backups in MySQL. We will learn
about different types of restores and methods for scheduling backups on a MySQL server.

To get the most out of this book

Software/hardware covered in the book Operating system requirements
MySQL Community Server 8.0.28 Windows, macOS, or Linux
MySQL Workbench 8.0.28

Node.js 16.14.2

MS Office 2016

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://
github.com/PacktWorkshops/The-MySQL-Workshop/.If there's an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/

xx Preface

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839214905 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We used WHERE to filter out the rows we were interested in."

A block of code is set as follows:

SQL = "SELECT Count (capacityindicatorsstats.ID) AS RecCount
FROM capacityindicatorsstats;"

Call CreatePassThrough (SQL, "CISCount", True, False)
Set RS = CurrentDb.OpenRecordset ("CISCount", dbOpenDynaset)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

RS.MoveFirst
Me.cntSeries = RS.Fields ("SeriesCount")
RS.Close

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "If not,
right-click on it in the Navigation Panel and select Design View."

Tips or important notes

Appear like this.

Preface xxi

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub. com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub.com/support/errata and fill in

the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts

Once you've read The MySQL Workshop, we'd love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Section 1:
Creating Your
Database

This section covers the basics of MySQL, relational databases, and database management
systems. We will discuss the ways you can create databases and insert, modify, query, and
delete data contained within them.

This section consists of the following chapters:
o Chapter 1, Background Concepts
o Chapter 2, Creating a Database
o Chapter 3, Using SQL to Work with a Database
o Chapter 4, Selecting, Aggregating, and Applying Functions

1

Background
Concepts

In this chapter, you will gain an understanding of the basic types of databases and how
people tend to use them. You will learn how MySQL implements specific concepts such
as database structures, layers, organization, and what its architecture looks like. You will
explore what a relational database management system such as MySQL is, and how it
differs from a standard database management system. You will also learn about data
normalization and data modeling.

By the end of this chapter, you will have a good overview of what a database is and its
different components. You will also learn what makes MySQL special and how it fits into
this ecosystem.

This chapter covers the following topics:

Introducing databases

Exploring MySQL

Exercise 1.01: Organizing data in a relational format
Exploring MySQL architecture

Storage engines (InnoDB and MyRocks)

4 Background Concepts

« Data modeling
« Normalization

o Activity 1.01: Creating an optimized table for an employee project

Introducing databases

Information is abundant, an ever-growing pile of little bits of data that drives every

aspect of your life, and the bigger that pile of data grows, the more valuable it becomes to
yourself or others. For example, consider a situation where you need to search the internet
for a specific piece of information, such as how to create a MySQL database. To do this,
you would send a query to a search engine, which then parses large sets of data to find the
relevant results. Putting all that data into some form of useful context manually, such as
inputting it into spreadsheet software, is time-consuming.

Using databases, it is easier to automate the input and processing of data. Now you can
store all that data into ever-growing databases and push, pull, squeeze, and tug on the

data to get information from it that you could never dream of getting before, and in the
blink of an eye. A database is an organized collection of structured data. The data becomes
information once it is processed. For example, you have a database to store servers and
their information, such as processor count, memory, storage, and location. Alone, this

data is not immediately useable for business decisions and analysis. However, detailed
reports about the utilization of servers at specific locations contain the information that
can be fetched from the database.

To ensure fast and accurate access and to protect all the valuable data, the database is
usually housed in an external application specifically designed to efficiently store and
manage large volumes of data. MySQL is one such application. In almost all cases, the
database management system or database server is installed on a dedicated computer.
This way, many users can connect to a centralized database server at the same time.
Irrespective of the number of users, both the data and the database are important—as
sensitive data and useful insights are stored in it—and must be suitably protected and
efficiently used. For example, a database can be used to store log information or the
revenue of a company.

In this book, you will build up your knowledge to manage your database. You will also
learn how to deploy, manage, and query the database as you progress in the book.

The following section will describe databases in greater depth.

Introducing databases 5

Database architecture

A database is a collection of related data that has been gathered and stored for easy access
and management. Each discrete item of data in a database is, in itself, not very useful or
valuable, but the entire collection of data as a whole (when coupled with ease of use and
fast access) provides an exceptionally powerful tool for business and personal use. For
example, if you have a set of data that shows how much time a user spends on a specific
page, you can track user experience on your application. As the volume of data grows

and its historical content stretches further back in time, the data becomes more useful

in identifying and predicting past and future trends, and the value of the data to its
owner increases. Databases allow the user to logically separate data and store it in

a well-structured format that allows them to create reports and identify trends.

To understand the advantage of databases, consider a telephone book that is used to

store people's names, addresses, and phone numbers. A phone book is a good example

of a manual data store, in which data is organized alphabetically to find the information
easily (albeit, manually). With a phone book, storing large sets of data creates a bulky
physical object, which must be manually searched to find the data we want. The process of
searching the data is time-consuming, and we can only search the data by name since this
is how it is organized.

To help improve this process, you can utilize computer-based information systems to store
the data either in tables or flat files. Flat files store data in a plain text format. Files with the
extensions .csv or . txt are usually flat files.

test, passwordl
test2, password2
test3,password3

Figure 1.1 - An example of a flat file
Tables store data in rows and columns, allowing you to logically separate data and

store them.

username [JﬂESWDrd

test password
test? password?
test3 password3

Figure 1.2 - An example of a table

6 Background Concepts

You use databases in almost everything you do in your life. Whenever you connect to a
website, the screen layout and the information displayed in front of the screen are fetched
from the database. The cell phone you use in your day-to-day life stores the contact
numbers in a database. When you watch a show on a streaming service, your login details,
the information about the show, and the show itself are stored in a database.

There are many different types of database systems out there. Most are quite similar in
some ways, though quite different in others. Some are geared toward a specific type of
activity, and others are more general in their application. You will look at the two most
common database management systems used by businesses today, DBMS and RDBMS,
in the upcoming sections.

A centralized database is one that is located, stored, and maintained at a single site. The
simplest example of a centralized database is an MS Access file stored on SharePoint that is
used by multiple people. A distributed database is more complex as the data is not stored
in a single place, but rather at multiple locations. A distributed database helps users to
fetch the information quickly as the data is stored closer to the end users.

For example, if you have a database that is distributed across America, Europe, and Asia,
American users will access the database stored in America, European users will access
the one stored in Europe, and so on. However, this does not mean that Americans cannot
access data in Europe or Asia. It's just that accessing data closer to them is faster.

Relational and object-based databases are ideas as to how the data is stored behind the
scenes. Relational databases include databases such as MySQL and MSSQL, whereas
object databases include databases such as PostgreSQL. Relational databases use the
concept of the relational database model explained in this chapter, while object-based
databases use the concept of intelligent objects and object-oriented programming, where
the elements know what their purpose is and what they are intended to be used for.

In the next section, you will look at a few examples of common database management
solutions used by developers.

MS Access as a database

MS Access is a database application from Microsoft. It is one of the simplest examples of
a database. It allows users to manipulate data with macro functions, queries, and reports,
to be able to share it via different visualization techniques, such as graphs and Venn
diagrams. It is a number cruncher and is excellent for analyzing numbers, forecasting,
and performing what-if scenarios.

Introducing databases 7

Username < | Password
1 user password
2 user2 password2

Figure 1.3 — MS Access file

However, MS Access is not the best database available, due to certain limitations in terms
of functionality. For example, if offices of your company are present at multiple locations,
it is possible to share an Access database. However, there is a limit to the number of users
who can connect at a single time. In addition, there are limitations on the size of Access
database files, making it only possible to store limited datasets. Access works best in
situations where the groups accessing the database are small, and also the dataset is small,
within the range of 1 million records or less.

Take, for example, a situation where an insurance company is creating a database for
customer service to access customer data for insurance policies. If the team starts small,
with 3 customer service agents and 300 records, MS Access works well, since the scope of
usage is limited. However, as the company grows, more customer service agents may be
added, and more records may be created. As the database grows, MS Access becomes less
practical and eventually, Access will no longer work for the application.

Because of these limitations, alternative database management systems are preferred.

Database management system

A database management systems (DBMSs) aim to provide its end users with fine-tuned
access to data based in a controlled environment. These systems allow you to define and
manage data in a more structured manner. There are many different types of DBMSs used
in applications, each with distinct pros and cons. When selecting a DBMS, it is important
to determine the best choice for a given problem.

Take the previous example of an insurance company creating a database for customer
service agents. If the developers wanted to transition away from MS Access, they could
store data within a generic DBMS. These systems can help to organize data in a similar
fashion to the Access database, while removing the size and connection caps created by
Access. This solves the problem of the database system being limited; however, there are
still limitations in terms of the data's structure based on the generic DBMS solution.
Some DBMS solutions will simply organize data in tabular formats without any structural
advantages. These situations are less ideal for large sets of data. These issues can be
eliminated by relational database management systems (RDBMSs).

8 Background Concepts

Examples of DBMS include your computer's filesystem, FoxPro, and the Windows Registry.

B Registry Editor
File Edit Wiew Favorites Help

ComputersHKEY_USERS

v [Computer
' HKEY_CLASSES_ROCT
HKEY_CURREMT_USER
HKEY_LOCAL_MACHIME
HKEY_USERS
HKEY_CURRENT_COMFIG

Figure 1.4 - Windows Registry is an example of a basic DBMS

RDBMS

A relational database stores data in a well-structured format of rows, columns, and tables.
A row contains a set of data related to a single entity. A column contains data about a
single field or descriptor of the data point. Take, for example, a table that contains user
data. Each row will contain data about a single user. Each column will describe the user,
storing data points such as their username, password, and similar information. Different
types of relationships can be defined between tables, and specific rules enforced on
columns. This is an improved version of the DBMS concept and was introduced in 1970. It
was designed to support client-server hierarchy, multiple concurrent users or application
access, security features, transactions, and other facilities that make working with data
from these systems not just safe but efficient as well.

An RDBMS is more robust than a general DBMS or MS Access database. With the insurance
database example, you can now create a structure around the data being stored for the
customer service representatives. This structure represents the relationships between
different datasets, making it easier to draw conclusions from related data. Additionally,

you still get all the advantages of a DBMS, giving you the best system to fit your needs.

The following figure is an example of a database in MySQL. As you can see, the database
has multiple tables (countrylanguage, country, and city), and these tables are
linked to each other. You will learn how to link different tables later in Chapter 10, MS
Access, Part 2.

Exploring MySQL 9

o O O
m countrylanguage ¥ m country ¥
CountryCode CHAR{3) Code CHAR{3)
Language CHAR(30) #Mame CHAR(52)
IsDfficial EMUMT', 'F") » Continent EMUM{, ..}
Percentage DECIMAL(4,1) * Region CHAR{28)
> H- “ Surfacefrea DECIMAL{10,2)
o o o IndepY ear SMALLINT
» Population INT
LifeExpectancy DECIMAL(3,1)
| city v GNP DECIMAL(10,2)
ID INT GMPOId DECIMAL{10,2)
»Mame CHAR{3S5) [— —1H “ LocadName CHAR{45)
¥ CountryCode (HAR(3) Bp— — J » GovernmentForm CHAR{45)
* District CHAR{20) HeadOf5tate CHAR(BD)
* Population INT Capitd INT
> » Code2 CHAR(2)

Figure 1.5 - RDBMS entity relationship diagram

Some popular RDBMS systems are MySQL, Microsoft SQL Server, and MariaDB. You will
learn about MySQL in the following section.

Exploring MySQL

MySQL is an open source RDBMS that uses intuitive keywords such as SELECT, INSERT
INTO, and DELETE to communicate with the database. These keywords are used in
queries that instruct the server on how to handle data, how to read and write the data, or
to perform operations on the database objects or the server, such as creating or modifying
tables, stored procedures, functions, and views. The database objects are defined and
manipulated using SQL commands and all communication and instructions issued

to the database by the client applications are done using SQL code.

MySQL has a wide range of applications in business. This includes data warehousing,
inventory management, logging user sessions on web pages, and storing employee records.

10 Background Concepts

MySQL is based on the client-server model. The client-server model makes it possible for
MySQL to handle concurrent connections from multiple users and host a great number
of databases, each with their own tables and fine-tuned security permissions to ensure the
data is only accessed by the appropriate users.

In the next section, you will explore some of the data types that are used in MySQL for
storing data.

Data types

Each column in a database table requires a data type to identify the type of data that will be
stored in it. MySQL uses the assigned data type to determine how it will work with the data.

In MySQL version 8.0, there are three main data types. These data types are known as
string, numeric, and date and time. The following table describes these types in more detail.

o string: Strings are text-based representations of data. There are various types of
string data types, including CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT,
ENUM, and SET. These data types can represent data from single text characters in
CHAR types to full strings of text in VARCHAR types. The size of string variables can
vary from 1 byte to 4 GB, depending on the type and size of the data being stored.
To learn more about these data types, you can visit https: //dev.mysqgl . com/
doc/refman/8.0/en/string-types.html.

« numeric: Numeric data types store numeric values only. There are various types
of numeric data, including INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT, DECIMAL,NUMERIC, FLOAT, DOUBLE, and BIT. These data types
can represent numbers of various formats. Types such as DECIMAL and FLOAT
represent decimal values, whereas INTEGER types can only represent integer values.
The size range stored is dependent on the numeric data type assigned to the field
and can range from 1 to 8 bytes, depending on whether the data is signed, and
whether the type supports decimal values. To learn more about these data types,
you can visit https://dev.mysgl.com/doc/refman/8.0/en/numeric-
types.html.

« date and time: There are five date and time data types: Date, Time, Year,
DateTime,and TimeStamp. Date, Time, and Year store different components
of date in separate columns, DateTime will record a combined date and time, and
Timestamp will indicate how many seconds have passed from a fixed point in
time. Date-based data types typically take up around 8 bytes in size, depending on
whether they store the time as well as the date. Visit the following link for further
details: https://dev.mysqgl.com/doc/refman/8.0/en/date-and-
time-types.html.

https://dev.mysql.com/doc/refman/8.0/en/string-types.html
https://dev.mysql.com/doc/refman/8.0/en/string-types.html
https://dev.mysql.com/doc/refman/8.0/en/numeric-types.html
https://dev.mysql.com/doc/refman/8.0/en/numeric-types.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html

Exercise 1.01: Organizing data in a relational format 11

As the developer, it is your responsibility to select the appropriate data type and size for
the information you will be storing in the column. If you know a field is only going to use
5 characters, define its size as 5.

In the next exercise, you will learn how to organize a set of data in a relational format,
with proper data types for each field.

Exercise 1.01: Organizing data in a relational
format

Suppose you are working for a company, ABC Corp. Your manager would like to develop
a database that stores clients' contact information, as well as the orders a client has made.
You have been asked to determine how to organize the data in a relational format. In
addition, the company would like you to define the data types that are appropriate for
each field. The following is a list of properties that are to be stored in the relational model:

o Customer Data:

= Customer ID
= Customer Name
= Customer Address

= Customer Phone Number
e Order Data:

= Customer ID
= Order ID
= Order Price

Perform the following steps to create a relational database structure:

1. First, determine the data types that are appropriate for the data. The ID fields should
be int data type, since IDs are typically numeric. For fields containing names,
addresses, and phone numbers, a varchar data type is appropriate since it can
store general text. Finally, a price can be defined as double, since it needs to be
able to store decimal values.

2. Determine how many tables you should have. In this case, you have two sets of data,
which means you should have two tables - CustomerData and OrderData.

12 Background Concepts

3. Consider how tables are related to each other. Since a customer can have an
order in the order data, you can conclude that customers and orders are related
to one another.

4. Next, look at what columns are the same between the two sets of data. In this case,
both tables contain the CustomerID column.

Finally, combine all the information. You have two tables, CustomerData and
OrderData. You can relate them by using the column they share, which is Cust omerID.
The relational model would look like the following:

CustomerlD int CustomerID int
CustomerName varchar OrderID int
CustomerAddress varchar OrderPrice double
CustomerPhoneNumber varchar

Figure 1.6 - The data for customers and orders organized in a relational format

With this, you now have a fully defined relational structure for your data. This structure
with data types can be used to construct a proper relational database.

Now, you will delve into the architecture of MySQL in the following section.

Exploring MySQL architecture

Under the hood, all computer systems consist of several layers. Each layer has a specific
role to play within the system's overall design. A layer is responsible for one or more tasks.
The tasks are broken down into smaller modules dedicated to one aspect of the layer's
role. An operation needs to get through all the layers to succeed. If it fails at one, it cannot
proceed to the next and an error occurs.

MySQL server also has several layers. The physical layer is responsible for storing the
actual data in an optimized format. The physical layer is then accessed through the logical
layer. The logical layer is responsible for structuring data in a sensible format, with all
required permissions and structures applied. The highest layer is the application layer,
which provides an interface for web applications, scripts, or any kind of applications that
have the API to talk to the database.

As discussed before, an RDBMS system typically has a client-server architecture. You and
your application are the client, and MySQL is the server.

Exploring MySQL architecture 13

The MySQL layers

There are three layers in the MySQL server:

 Application layer
« Storage layer
« Physical layer
These layers are essential for understanding which part is responsible for how your data is

treated. The following is a graphical representation of the basic architecture of a MySQL
server. It shows how the different components within the MySQL system relate to each other.

My5QL Connectors

NET, ODBC, JDBC, Node js, Python

r
h 4

Connection Pool
Connection Handling

Application Layer

Authentication
Security
A
My5GQL Sendces and
Utilties SQL Interface - Caches and Buffer s
Parser Optimizer Global and storage
Baciup and recoves, DML, DDL, stored . ;
o - L Query trans laticn Query access paths, engine caches and
5 ecurity, replication, procedures | views, s s .
. - . Object Privilege s tatis tics buffers
clustering, portioning, riggers
‘Work bench

Logical Layer
A

A
| InncDB \ | hd SAM | |NDEI Clusn:—r\ Memory

Storage Engines (Physical Layers)

Nemory index, relatiocnal and document s forage management

A
A
File System
Files and logs, data index, redo, undo, binary, error, general query, slow query DDL

Figure 1.7 - MySQL architecture

14 Background Concepts

Application layer - Client connection

The application layer accepts a connection using any one of the client technologies (JDBC,
ODBC, .NET, PHP). It has a connection pool that represents the API for the application
layer that handles communication with different consumers of the data, including
applications and web servers. It performs the following tasks:

« Connection handling: The client is allocated a thread while creating a connection;
think of it as a pipeline into the server. Everything the client does will be over this
thread. The thread is cached so the client does not need to log in each time they
send a request. The thread is destroyed when the client breaks the connection.

All clients have their own threads. When a client wants to connect to a database,
they will start by sending a request to the database server using their credentials.
Typically, the requests will also include details about which database they
specifically wish to connect to on the server. The server will then validate their
request, establish a session with the server, and return a connection to the user.

o Authentication: When the connection is established, the server will then authenticate
the client using the username and password details sent with the request. If the login
details are incorrect, the client will not be allowed to proceed any further. If the login
details are correct, the client will move to the security checks.

« Security: When the client has successfully connected, MySQL will check what the
user account is permitted to do in it. It will check their read/write/update/delete
status, and the security level for the thread will be set for all requests performed
on this connection and thread.

When a client connects to the server, several services activate in the connection pool of
the server layer.

MySQL server layer (logical layer)

This layer has all the logic and functionality of the MySQL RDBMS. Its first layer is the
connection pool, which accepts and authenticates client connections. If the client connects
successfully, the rest of the MySQL server layers will be available to them within the
constraints. It has the following components:

« MySQL services and utilities: This layer provides services and utilities to
administer and maintain the MySQL system. Additional services and utilities can
be added as required; this is one of the main reasons why MySQL is so popular.
Some of the services and utilities include backup and recovery, security, replication,
clustering, portioning, and MySQL Workbench.

Exploring MySQL architecture 15

« SQL interface: SQL is a tool to provide interaction between the MySQL client and
the MySQL server. The SQL tools provided by the SQL interface layer include,
but are not limited to, Data Manipulation Language (DML), Data Definition
Language (DDL), stored procedures, views, and triggers. These concepts will be
taught thoroughly throughout the course of this book.

« Parser: MySQL has its own internal language to process data requests. When a SQL
statement is passed into the MySQL server, it will first check the cache. If it finds
that an identical statement has previously been run by any client, it will simply
return the cached results. If it does not find the query that has been previously run,
MySQL parses the statement and compiles it into the MySQL internal language.

The parser has three main operations it will perform on the SQL statement:

» A lexical analysis takes the stream of characters (SQL statement) and builds
a word list making up the statement.

A syntactic analysis takes the words and creates a structured representation of the
syntax, verifying that the syntax is correctly defined.

= Code generation converts the syntax generated in Step 2 into the internal language
of MySQL, which is a translation from syntactically correct queries to the internal
language of MySQL.

« Optimizer: The internal code from the parser is then passed into the optimizer
layer, which will work out to be the best and most efficient way to execute the code.
It may rewrite the query, determine the order of scanning the tables, and select the
correct indexes that should be used.

« Caches: MySQL will then cache the complete result set for the SELECT statements.
The cached results are kept in case any client, including yourself, runs the same
query. If they do so, the parsing is skipped, and the cached results are returned. You
will notice this in action if you run a query twice. The first time will take longer for
the results to be returned; subsequent runs will be faster.

Storage engine layer (physical layer)

The storage engine layer handles all the insert, read, and update operations with the data.
MySQL uses pluggable storage engines technology. This means that you can add storage
engines to better suit your needs. Storage engines are often optimized for certain tasks or
types of storage and will perform better than others at their "specialty.”

Now, you will look into different types of storage engines in the following section.

16 Background Concepts

Storage engines (InnoDB and MyRocks)

MySQL storage engines are software modules that MySQL server uses to write, read, and
update data in the database. There are two types of storage engines — transactional and
non-transactional:

« Transactional storage engines permit write operations to be rolled back if it fails;
thus, the original data remains unchanged. A transaction may encompass several
write operations. Imagine the transfer of funds from one account to another in
the company accounting system; debiting funds from one account and crediting
them to another is a single transaction. If the failure happens near the end of
the transaction, all preceding operations will be rolled back, and nothing in the
transaction will be committed. If all write tasks were successful, the transaction
would be committed, and all changes will be made permanent. Most storage engines
are transactional, like InnoDB.

« Non-Transactional storage engines commit the data immediately on execution. If
a write operation fails toward the end of a series of write operations, the preceding
operations will need to be rolled back manually by code. To do so, the user will likely
need to have recorded the old values elsewhere to know what they were. With the
accounting example, imagine that the funds were debited from the first account but
failed to be credited to the second, and the initial debit was not reversed. In this case,
the funds would simply disappear. An example of this type of engine is MyISAM.

Another consideration when selecting a storage engine is if it is ACID-compliant.

ACID compliance

ACID compliance ensures data integrity in case of intermittent failures on different layers,
such as broken connectivity, storage failure, and server process crash:

« Atomicity ensures all distinct operations within a transaction are treated as a
single unit, meaning that if one fails, they all fail. This ensures no transaction is left
partially done. If the transaction is successful, the changes are committed to the
storage layer, and data is guaranteed to be correct.

« Consistency ensures a transaction cannot bring the database to an invalid state. Any
data written must comply with all defined rules in the database, including constraints,
cascades, triggers, and the referential integrity of the primary and foreign keys. This
will prevent the corruption of data caused by an illegal transaction.

« Isolation ensures that no part of the transaction is visible to other users or processes
until the entire transaction is completed.

Data modeling 17

+ Durability ensures that once the transaction is committed, it will remain committed
even in the event of a system failure, or power failure. The transaction is recorded in
a logon store that is non-volatile.

The default storage engine of MySQL is InnoDB, and it is ACID-compliant. There are
other types of storage engines as well that store and manipulate the data differently. If
you are interested in learning more about what type of storage engines are available
for MySQL, you can refer to the following link: https://dev.mysgql.com/doc/
refman/8.0/en/storage-engines.html.

In the next section, you will take a look at how different applications can connect to your
database through the application layer

Data modeling

Data modeling is the conceptual and logical representation of the proposed physical
database provided in a visual format using entity relationship (ER) diagrams. An ER
diagram represents all the database entities in a way that defines their relationships and
properties. The goal of the ER diagram is to lay out the structure of the entities such that
they are easy to understand and are implemented later in the database system.

To understand data modeling, there are two crucial concepts you need to be aware of.
The first is the primary key. Primary keys are used to uniquely identify a specific record
or row in your database. For now, you should know that it enforces the table to have no
duplicate rows with the same key. The other concept is the foreign key. The foreign key
allows you to link tables together with a field or collection of fields that refer to a primary
key of another table.

"] rental ¥ | category v | country ¥
rentd _id INT category_id TINYINT country_id SMALLINT

rentd _date DATETIME *name YV ARCHAR(25) —_——— * country VARCHAR(50)

Finventory_id MEDIUMINT L A o A *lest_update TIMEST AMP *last_update TIMEST AMP

@ customer_jd SMALLINT > >
return_date DATETIME
@ staff_id TINYINT

*last_update TIMEST AMP |
< |
|

>

4

¥ ¥] city v] store v] film_text ¥
city_j store_j m_j
| | ity_id SMALLINT , i id TINYINT , film _jd SMALLINT
> ity V ARCHAR(50) ' | % manager_staff id TINYINT [— > title VARCHAR({255)
: : @ country_id SMALLINT “ address_jd SMALLINT description TEXT
H - B — —
| | *last_update TIMEST AMP "N ¥ last_update TIMESTAMP >
i |
|
1

: : |||
| ES

Figure 1.8 — Data model of the sakila database

https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

18 Background Concepts

The preceding screenshot shows you parts of the data model for the sakila database. It
shows how different tables are connected and what their relationships are. You can read
the relationships through the fields shared between the connected tables. For example,
the rental table and category table are connected by the last update field. The
category table is then connected to the country table through the same last
update field. This demonstrates the general structure of the table relationships.

The data model ensures that all the required data objects (including tables, primary
keys, foreign keys, and stored procedures) are represented and that the relationships
between them are correctly defined. The data model also helps to identify missing or
redundant data.

MySQL offers an Enhanced Entity Relationship Diagram for data modeling with which
you can interact directly to add, modify, and remove the database objects and set the
relationships and indexes. This can be accessed through the Workbench (this is explained
in detail in the next chapter). When the model is completed, it can then be used to create
the physical database if it does not exist or update an existing physical database.

The following steps describe the process by which a database comes into existence:

1. Someone gets an idea for a database and application creation.

2. A database analyst or developer is hired to create the database.

Nt

An analysis is performed to determine what data must be stored. This source
information could come from another system, documents, or verbal requirements.

The analyst then normalizes the data to define the tables.
The database is modeled using the normalized tables.

The database is created.

NSy e

Applications that use the database for reporting, processing, and computation
are developed.

8. The database goes live.

For example, suppose that you are working on a system that stores videos for users. First,
you need to determine how the database will be structured. This includes determining
what data needs to be stored, what fields are relevant, what data types the fields should
have, and the relationships between the data. For your video database example, you may
want to store the video's location on the server, the name of the video, and a description
of the video. This might link into a database table that contains ratings and comments
for the video. Once this is produced, you can create a database that matches the proposed
structure. Finally, you can place the database on a server so that it is live and accessible
for users.

Normalization 19

In the next section, you will learn about database normalization, which is the act of
creating an optimized database schema with as few redundancies as possible with the
help of constraints and removing functional dependency by breaking up the database
into smaller tables.

Normalization

Normalization is one of the most crucial skills for anyone planning to design and maintain
databases. It's a design technique that helps eliminate undesirable characteristics such as
insert, update, and delete anomalies and reduces data redundancy. Insert anomalies can
come from the lack of primary keys, or the presence of functional dependency. Simply
put, you will have duplicate records when there should be none.

If you have a big table with millions of records, the lookup, update, and deletion
operations are very time-consuming. The first thing you can do is to give more resources
to the server, but that does not scale well. The next thing to do is to normalize the table.
This means you try to break up the big table you have into smaller ones and link the
smaller tables by relationships using the primary and foreign keys.

This technique was first invented by Edgar Codd, and it has seven distinct forms called
normal forms. The list goes from First Normal Form (1NF) to Sixth Normal Form
(6NF), and one extra one, which is Boyce-Codd Normal Form (BCNF).

The first normal form states that each cell should contain a single value and each record
should be unique. For example, suppose you have a database that stores information about
employees. The first normal form implies that each column in your table contains a single
piece of information, as shown here.

EmployeeName | Designation EmployeeLocation
Jeft Database Administrator Canada

Sarah Programmer United States

Bob Accounting Europe

Jane Operations Canada

Figure 1.9 - Example of a table in INF

20 Background Concepts

The second normal form means the database is in first normal, and it must also have a
single-column primary key. With the previous example, you don't currently have a single
unique column, since the employee name could duplicate, as well as the title and location.
To convert it into a second normal form, you can add an ID as a unique identifier.

EmployeelD | EmployeeName | Designation EmployeeLocation
1 Jeft Database Administrator | Canada

2 Sarah Programmer United States

3 Bob Accounting Europe

4 Jane Operations Canada

Figure 1.10 - Example of a table in 2NF

The third normal form requires the database to be in the second normal form and it is
forbidden to have transitive functional dependencies. A transitive functional dependency
is when a column in one table is dependent on a different column that is not a primary
key. This means that every relationship in the database is between primary keys only. A
database is considered normalized if it reaches the third normal form. The table here is in
the third normal form, as it has a primary key that can be used to relate to any other tables,
without the need for a non-key field:

EmployeeID | EmployeeName | Designation EmployeeLocation
1 Jeft Database Administrator Canada

2 Sarah Programmer United States

3 Bob Accounting Europe

4 Jane Operations Canada

Figure 1.11 - Example of a table in 3NF

For further details, you can visit the following site: https://docs.microsoft.
com/en-us/office/troubleshoot/access/database-normalization-
description.

Now that you have learned all about working with datasets, let's perform an activity to
recap everything we have learned so far in this chapter.

Activity 1.01: Creating an optimized table for an employee project

21

Activity 1.01: Creating an optimized table for

an employee project

Your manager asked you to create a database that holds information about network
devices in your corporate network site. You may have multiple devices with the same
name in the same location. You are required to make the tables conform to the 3NF to
make them as efficient as possible. In addition to this, you need to determine the proper
data types for each column in the table. Finally, you are required to determine which

columns should be primary keys, such that 3NF is satisfied. You have decided to perform

the following steps.

1. Analyze the following table:

Hostname Location OperatingSystem | Layerlevel
PINKY Ground Floor A 10S L2
PINKY Ground Floor A NXOS L2
HERETIC First Floor A JUNOS L3
HERETIC First Floor A NXOS L3
HERETIC Ground Floor B I0S L3

2. Identify patterns to determine the data types and possible primary keys. You may
need to add a column to the table if an appropriate primary key does not already

exist. Next, bring the table to INF
3. Bring it to 2NF, break down the table, and try to bring it to the 2NF form according

to the rule.

4. Bring it to 3NE break it down even further, and bring it to 3NF so the table is in
2NF with the appropriate constraints.

Figure 1.12 - A table of devices on the network

Note

The solution to this activity can be found in the Appendix.

Now you have an optimized table set up, you will be able to use this technique to
efficiently optimize your database before you start filling it up with data and deploying

it in production.

22 Background Concepts

Summary

In this chapter, you have learned what a relational database is and what the differences are
between a DBMS database and an RDBMS database. You learned about the client-server
model used by MySQL and had a brief introduction to the MySQL architecture to see how
MySQL works.

You then explored what layers make up MySQL, how to define different data models, and
added tables to those data models. You also went through the basic concepts of ACID and
how to initialize your database.

In the next chapter, you will further improve your knowledge of data modeling, entity
relationships, and how to use the MySQL Workbench to set up/configure databases.

2
Creating a Database

In this chapter, you will learn about data modeling and the differences between a physical
database and a conceptual database. Additionally, you will learn about Entity-Relationship
(ER) diagrams and Enhanced Entity-Relationship (EER) diagrams and how they assist
with data modeling. Following this, you will create indexes and foreign keys and learn how
to generate them using the Workbench Graphical User Interface (GUI).

By the end of the chapter, you will have gained an understanding of how you can interact
with a MySQL server. This will include building new databases, creating tables, structuring
tables, building, and visualizing relationships, and creating indices.

In this chapter, we will cover the following main topics:

» Developing databases

» The MySQL Workbench GUI

+ Creating a database

+ Using Workbench to add a table

« MySQL table indexes and foreign keys

 Reverse engineering a database

24 Creating a Database

Developing databases

Chapter 1, Background Concepts, defined databases and their types. You learned how to
create data models and add tables to those models.

During database development, you will be expected to work with or upgrade existing
databases. There are chances that these databases would have been developed without
modeling or proper planning. To understand how you can cope in such situations, in this
chapter, you will create the physical database and use reverse engineering to generate an
EER diagram and model. Often, reverse engineering is used when you are required to
work on an existing database that is not documented.

However, when you develop a new system, you should take a bottom-up approach,
beginning with the analysis and modeling. Then, you should design EERD and the
database after which you should develop your applications.

In this chapter, you will begin using the MySQL Workbench GUI to create a new database.
Additionally, you will create and populate a database using a . sq1 script. Then, you will
focus on creating an EER diagram and a database model, which you will use to update the
live database.

The MySQL Workbench GUI

MySQL Workbench is a GUI from Oracle. It allows users to interact with multiple instances
of the MySQL databases. This interaction can be user management, database management,
and essentially, anything that a person wants to interact against the MySQL instance. This
makes it easier than having to perform the same steps via the command line.

The MySQL Workbench GUI =~ 25

There are two versions of the MySQL Workbench GUI: 8.0 (32-bit) and 8.0 (64-bit). The
version you have will depend on the bit version of MySQL that you have installed on your
system. Both versions look and work the same across all Windows, Mac, and Linux OSs:

MySQL.

Workbench 8.0

£.0.21 build 16448441 CE (&4 bits) Commwnity

ORACLE

Figure 2.1: MySQL Workbench 8.0

Note

You can download the relevant version of MySQL Workbench at https: //
dev.mysqgl.com/downloads/workbench/.

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/workbench/

26 Creating a Database

When you open the MySQL Workbench GUI, a screen similar to the following screenshot
should be visible:

& mysaL Workbench - O ®
®

File Edit View Databsse Tools Scripting Help

Welcome to MySQL Workbench

MySQL Workbench is the official graphical user interface (GUI) tool for MySQL. It allows you to design,
create and browse your database schemas, work with database objects and insert data as well as
design and run SQL queries to work with stored data. You can also migrate schemas and data from other

database vendors to your MySQL database.
Browse Documentation > Read the Blog > Discuss on the Forums >

MySQL Connections ®@® 2 Filter connections

Local instance MySQL80

root
localhost:3306

Figure 2.2: The MySQL Workbench GUI opening screen

You can find the connections to any databases you have set up in the central area of the
screen. In the preceding screenshot, there is only one connection, which is the local
instance of the MySQL server. This local instance runs on port 3306 and is authenticated
to the root user on the database server. You can also connect to multiple servers on your
LAN, or even remotely, at the same time.

To the left-hand side of the screen, in the gray bar, there is a series of commonly used
utilities and websites that you might find useful. Any database models that have been
created will be displayed at the bottom of the screen.

As you work through the chapters of this book, you will be introduced to several options
and tools that are available to you in Workbench. For now, let's look at how to connect the
Workbench GUI to the MySQL server.

The MySQL Workbench GUI 27

Connecting the Workbench GUI to MySQL

Before you work with the MySQL server and the databases stored on it, you need to
connect to it. Whenever you connect to the MySQL server, whether it be with Workbench,
MS Access, Excel, or a third-party GUI, all of the applications will require some necessary
information to initiate the connection. Please ensure you have the following details
available before attempting the next exercise:

o The IP address of the MySQL Server instance: If MySQL is installed on your
system, you can use localhost or 127.0.0.1.

 Port number: The port number should be 3306 unless you changed it during
the installation.

« The account name and password of the SQL server account connecting to
the database.

Note

You will need these details as you progress through the book, so keep them
handy.

In the following exercise, you will set up a connection to the MySQL server. This process
will allow you to access your SQL server to be able to start creating databases for your
projects. With this connection, we will start to learn about the fundamental ways of
interacting with MySQL databases through the MySQL Workbench GUI.

Exercise 2.01 - creating a connection with the MySQL
Workbench GUI

So, you have installed a copy of the MySQL server, and in order to interact with it, you will
need to connect with it. In this exercise, you will set up a connection to the MySQL server
through MySQL Workbench. Once you have set up a connection in Workbench, you can
save the profile so that you don't have to enter all the details again the next time. Note that
you need to change the IP address and use the username and password of the MySQL
account you are connecting with.

28 Creating a Database

To create a connection to the MySQL server, perform the following steps:

1. Open MySQL Workbench. Click on the + button to the right-hand side of the
MySQL Connections, as shown in the following screenshot:

MySQL Connections ®®

Local instance MySQL80

root
localhost:3306

Figure 2.3: Plus (+) for creating a new connection
This will open the Setup New Connection screen.

2. Fill in the connection details, as shown in Figure 2.4. Fill in Connection Name
asMy First Connection, Connection Method as Standard (TCP/IP),
Hostname as <your server IP>, Port as <your port number>, and Username
as <your username>:

Setup New Connection - d X

Connection Name: |I'~"|y First Connection | Type a name for the connection

Connection Method: | Standard (TCP/TP) ™ | Method to use to connect to the RDBMS

Parameters 55 Advanced

Mame or IP address of the server host - and

Hostniame: |192.168.D.3 |P°rt’ |3306 TCP/IP port.
port.

Mame of the user to connect with,

Username: |Tom|

The user's password. Will be requested later if it's

FessnaE Store in Vault ... Clear
not set,
Default Schema: | | The schema to use as default schema. Leave
blank to select it later.
Configure Server Management. .. Test Connection Cancel

Figure 2.4: The Setup New Connection screen

The MySQL Workbench GUI 29

Note

The information for Hostname, Port, and Username, as shown in the
preceding screenshot, are for demonstration purposes only. Your specific
details are likely to be different, so be sure to use your own details. Additionally,
your Port value should be 3306 unless you changed it during your server
installation.

Please note that you can also set up multiple connections to the same MySQL server
using different account names or set up connections to several MySQL servers, as
shown in Figure 2.3.

Note

While you could now test and save the connection, you have not yet entered

a password. This is because every time you connect, you will be prompted to
enter the password. You might want this for security reasons if other people use
your computer.

3. To save the password for the account being used with this connection, click on
Store in Vault..., as shown in Figure 2.4. This will open the Store Password For
Connection screen:

Store Password For Connection x

Please enter password for the
following service:

o= r N
\h\ 1AL Service: Mysgl@192. 168.0.3:3306
0 User: Tom
Wurktx:n::hl
Password: ||

Cancel

Figure 2.5: Entering the password for the displayed account

4. Enter the password, click on OK, and the screen will simply close.

30 Creating a Database

5. To test the connection, click on the Test Connection button at the bottom of
the setup screen. If all the details are correct, a screen similar to the following
should appear:

MySCL Workbench

o Successfully made the MySQL connection

Information related to this connection:

Host: 192 168.0.3

Port: 3306

User: Tom

55L: enabled with TLS_AES 256 GCM_SHA3E4

A successful MySCL connection was made with
the pararmeters defined for this connection.

Figure 2.6: The connection was successful

If the test fails, check your details and try again, as you might have mistyped your
credentials or the IP address.

6. Leave the Default Schema option in Figure 2.4 blank. Click on the OK button to
save the connection, and a new connection button will appear on the Workbench
screen, as you can see in the following screenshot:

MySQL Connections @®

Local instance MySQL80 i My First Connection
root Tom
localhost:3306 192.168.0.3:3306

Figure 2.7: The new connection will appear on the Workbench screen

The MySQL Workbench GUI 31

7. Click on My First Connection. A new tab will open displaying the interface and

displaying information about the database, as shown here:

& rysaL workbench

) My First Connection %
File Edit \iew
S e EEEEHNE

atabose Server Tools Scripting Help

SCHEMAS ! @mH T & 7] % | Dot it sl lealE

TYYYYVYVYYYY P

<

[T Adlion Cutpet

Tims acven Maszage

Management ~ Schemas

Figure 2.8: The interface to the MySQL server

1elp Snippels

All databases on the server will display in the SCHEMAS panel on the left-hand
side. Initially, you might only have the sys database. Don't modify anything in the
sys database; it is maintained by the server and messing around in there could

damage the MySQL server.

Creating a connection to the database will enable you to open the database with a simple
mouse click. Once you have gained access to the database, you can then add, modify, or

remove databases at will.

In the next section, you will learn how to connect to a database using the command line.

32 Creating a Database

Accessing MySQL through the
command-line interface

MySQL is also accessible through your computer's command-line interface (CLI). This
interface will allow you to quickly and easily run SQL queries against a database. The
MySQL command line requires you to provide a username and password when you
launch it. The -u argument specifies the username, and the -p argument specifies the
password. So, for example,mysgl -u root -p 123456 will sign into MySQL using
the username, root, and the password, 123456. By default, MySQL will have an account
with a username, root, and no password. So, the mysgl -u root command will allow
you to enter the default installation of MySQL.

Once you have successfully launched the MySQL command line, you will see an interface
that is similar to the following screenshot:

Commands end with ; or \g

Figure 2.9: The command line for MySQL

When you will start learning the SQL syntax, you will understand how the code works in
both MySQL Workbench and the CLI. For now, you will use the Workbench GUI, starting
with learning how to create a database to work with.

Creating a database

A MySQL server requires a database to store and organize data. Your MySQL server can
hold many databases and will efficiently work with all of the databases and multiple client
connections simultaneously. In fact, each client will seemingly have exclusive access to
the server and database; however, often, they will be sharing it with many or perhaps even
hundreds of other people.

Creating a database 33

Databases are logical containers that group tables together to achieve a goal by providing
special access rights, user management, and many other useful features.

A database schema is the collection of data tables, views, stored procedures, and functions
that make up the database. To make the MySQL server useful, you need to have created at
least one database.

In the following exercise, you will create the autoclub database.

Exercise 2.02 - creating the autoclub database

In this scenario, you are the database administrator of an automobile club. Every database
system starts with the simple task of creating a new and empty database. You are asked to
create a membership database to store the details of the members of the club.

To achieve the aim of this exercise, perform the following steps:

1. Open MySQL Workbench, and click on My First Connection.

2. Click on the Create new schema in the connected server option to open a new
database window.

You could also right-click on the white space of the Schema panel and select Create
Schema. This brings you to the following screen:

Query 1 autoclub - Schema ¢

Mame: |ElLItEIC|LItI

-
- o Rename References
~

Charset/Collation: |utfémb4 ~ | | Default Collation

Figure 2.10: The new_schema tab
Name the database autoclub, as shown in Figure 2.10.
Select the utf8mb4 collation, as shown in Figure 2.10.
Click on Apply at the bottom of the screen.

SANER L

Click on Apply to run the script to create the database. The Apply button will
execute the SQL commands that are required to create the database.

34 Creating a Database

7. Click on Finish.

Once the database has been created, you can see it in the schema panel, as shown in
the following screenshot:

Mawigator

SCHEMAS B

Q, |Filter objects

= autoclub

Figure 2.11: The autoclub database in the schema list

In this exercise, you learned how to create a database in a MySQL Server using
MySQL Workbench.

Now, you will use MySQL Workbench to add tables to the database.

Using Workbench to add a table

Now, you will use MySQL Workbench to create a table in the autoclub database. You
will learn how to add different columns with different datatypes. Additionally, in this
section, you will learn the screen layout of the table creation screen.

To create a table, perform the following steps:

1. If you do not already have them opened and connected, open MySQL Workbench
and click on My First Connection.

2. Open the autoclub database. Right-click on Tables and then select Create Table:

v _* autoclub

77 Tables
B Views Create Table...
B stored Proc Create Table Like. .. b
?‘Tl Functions
> sakila Search Table Data...
> sys Table Data Import Wizard
> test
> testt Refresh All

Figure 2.12: Insert a new table in the autoclub database

Using Workbench to add a table 35

A new tab will open, displaying the table design screen, as shown in the following

screenshot:
Query 1 new_table - Table ¢
— Table Name: IR
L—j a Charset/Collation: |Default Charset ~ | | Default Collation v

Figure 2.13: The table design screen

This screen is where you will design your tables. It consists of four main areas,
which you will look at before you continue with creating a table:

Query 1
|l e Table Name: |"EWJE‘HE ‘ Schema: autoclub Section1
— T Charset/Collation: | Default Charset ~| | efault Colation | Engne: [Imnope -
Comments:
olumn Name atatype ETaUIT/CXpression Section 2
ection
Oooooooad
Column Name: Data Type:
Fharset/Collation: Default:
Comments: Storage: Wirtual Stored
Primary Key Mot Null Unique
Binary Unsigned Zero Fill
Auto Increment Generated Section 3
olumns Indexes ForeignKeys Triggers Partitioning Options Section & I
Apply Revert

Figure 2.14: The creating a table window section
The following list showcases the various sections of the window:
= Section 1: This section of the screen allows you to set the name of the table, the

collation, and add comments about the table. Additionally, if required, you can
change the engine that the table uses:

[Table Name: ‘new_tab\e ‘ Schema: autoclub
¢
L__:‘:r Charset/Callation: Default Charset | Default Collation ~| Engine: |InnoDB v
Comments;

Figure 2.15: Section 1 showing the table details

36 Creating a Database

» Section 2: This section contains all of the columns in the table, along with their
datatypes, default values, and properties:

Column Name Datatype PK MM UQ B UM ZF Al G Default/Expression

ooooooadad

Figure 2.16: Section 2 showing the grouped column details
This section is where you define the columns. The columns will be listed vertically,
and in the order that they will appear in the table. You can set the name and
datatype along with several options for the column. Additionally, you can provide a
default value to the column.
» Section 3: This section contains the column or column details for the selected

table, including the column names, the collation, and the comments, along with
an expanded view of the datatype and the properties of the columns:

Colurn Name: Data Type:
Charset/Collation: Default:
Comments: Storage: Virtual Stored
Primary Key Mot Null Unique
Binary Unsigned Zero Fill
Auto Increment Generated

Figure 2.17: Section 3 showing the single column details
Note that this section contains the same details as Section 2 but with an expanded
set of details. Other information here includes Collation, Comments, which you
can edit for the selected column, and also the Storage type, which is used when the
Generated option is selected for the column.

» Section 4: This section contains the tabs to view the columns, indexes, foreign
keys, and more for the table:
Columns Indexes ForeignkKeys Triggers Partitioning Options

Apply Revert

Figure 2.18: Section 4 showing access to the Columns, Indexes,
Foreign Keys, Triggers, Partitioning, and Options tabs

Using Workbench to add a table 37

Note

We will explain the indexes and foreign keys in more detail later.

The Columns tab is the default screen, as shown in Figure 2.18. You can use the
other tabs to display the screens to allow you to set the other features of the table.
We will be using some of these tabs in later exercises and activities.

Now that you have had a quick run-through of the screen layout, let's continue
with creating a table.

3. The table needs a name in Table Name, which is located in Section 1. Type in
Members as the table name.

4. Now you need to enter the columns. Click on the first row of Column Name in
Section 2. As this is the first column of the table, MySQL will expect you to enter
an ID column, so it will insert the name idMembers and set the datatype to INT,
by default. If you choose to keep this name, just press Enter; otherwise, rename it.
When you press Enter in the first column, MySQL will also set the PK (Primary
Key) and NN (Not Null) options for you. Additionally, you will need to set the AI
(Auto-Increment) option, as shown in the following screenshot:

Column Mame Datatype PK MW UQ B UM ZF Al &

idMembers INT O O 0O d L]
O 0O 00000 4d

Figure 2.19: The first column has the Primary Key, Not Null, and Auto-Increment options

5. To add another column, click inside the next row of the Column Name column. This
time, MySQL will name the column Memberscol. Change it to FirstName. The
default datatype that is set by MySQL is VARCHAR (45) . VARCHAR is correct, but
45 characters might be a little long. You can shorten it by clicking on the column's
datatype and adjusting the number. You will probably not want the column to be
empty. So, to ensure data is entered, tick NN, as shown in the following screenshot:

Column Mame Datatype PE. MM
idMembers INT
> [FirstName [varCHAR(2D) |1

Figure 2.20: The FirstName column with a shortened size limit, and Not Null set to ensure it contains data

38 Creating a Database

Note

The value indicated in the VARCHAR () datatype is the only maximum size
of the data. It does not indicate how much storage space the column will take.
Had it been left at 45, a five-character name would only take up five characters
of storage space. However, the column could have accepted a name with

45 characters.

6. Now, add a Bit column. Click on the next row and name the column Active. Select
BIT() from the datatype drop-down menu, click on the column, and add 1 inside
the brackets. The datatype should now be Bit (1).The Bit datatype will hold one
of the three values: Nul1, 0 (false), or 1 (true). Since you do not want the field to
be blank, tick the NN option. Add 1 (true) as the default value to indicate that the
member is active. Your new column should look similar to the following screenshot:

Column Mame Datatype PK NN UQ B UM ZF Al G Default/Expression
idMembers INT OO0 d Ol
> FirstName VARCHAR(20) O O oOooodd
[Active [erm) O O00O00o0Ongadoan |

Figure 2.21: The Active column with the BIT(##1) datatype, Not Null set, and a default value of 1 (true)

7. Add the TIMESTAMP columns. The WhenAdded column will record the date
and time the record was added to the database. Its default value is CURRENT _
TIMESTAMP. The LastModified column will record the date and time when the
record was last modified in any way. Its default value is CURRENT TIMESTAMP ON

UPDATE CURRENT_TIMESTAMP:

Column Mame Datatype PK NN UQ B UN ZF Al G Default/Expression
idMembers T O 00O O
> FirstName VARCHAR{20) O OoOoooaoadd
Active BIT(1) O O000:0a00agand er
Whenadded TIMESTAMP O 0O O O O O O O CURRENT_TIMESTAMP
LastModified TIMESTAMP O O O O O O O O CcURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

Figure 2.22: Adding the WhenAdded and LastModified columns

Using Workbench to add a table 39

8. Click on Apply to save the table. MySQL will open the Apply SQL Script to
Database window, which looks similar to the following screenshot:

Apply SQL Script to Database =|

Review SQL Script

Review the SQL Script to be Applied on the Database

Cnline DOL

Algorithm: Default ~ Lock Type: Default ~

1 CREATE TABLE “autoclub™.” new_table” (

2 “idMembers® INT NOT NULL AUTO_INCREMENT,

3 “FirstName ™ VARCHAR({20) NOT NULL,

4 “Active” BIT(1) NULL DEFAULT 1,

5 “Whenadded” TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP,

5 " LastModified” TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURI
7 PRIMARY KEY (" idMembers"));

g

sack | peoty | [Cancdl]

Figure 2.23: Reviewing the SQL script generated by MySQL to create a table based on your selections

9. Click on Apply to execute the script and apply the changes. When the screen
returns a success message, click on Finish.

40 Creating a Database

10. If the table is not displayed in the Schema panel, refresh the panel. The created table

will be displayed, as shown in the following screenshot:

SCHEMAS

Q |FiItE|' objects

¥ 5 autoclub
T@ Tables

¥ = members
¥ [#] Columns

&

* ¢+ e

idMembers
FirstMame
Active
Whenadded
LastModified

Figure 2.24: The members table in the autoclub database

Note

If you need to modify a table after it has been created, right-click on the table in
the schema panel and select Alter Table to open the design tab.

Importing objects from a SQL script file

SQL script files (. sql) are a series of SQL statements that can be executed in a MySQL
server. The file can be generated from different sources (including a MySQL server) and
can be used to create a database that includes all of its objects and data. They are used
to back up the database, copy a database into another server, add objects to an existing

database, or modify the design of database objects.

Note

the remainder of this chapter.

You will learn about SQL script files in greater detail in Chapter 3. Here, we
have introduced it to ensure the aut oclub database is in a complete state for

In the next exercise, you will import tables from an SQL script file.

Using Workbench to add a table 41

Exercise 2.03 - importing tables from an SQL script file

In this exercise, you will run a . sql script file to add the ancillary tables to the
autoclub database. The tables were created in another database, populated with data,
and then exported to a single . sq1 file. Now, you need to bring those tables and their
data to the autoclub database.

To run the SQL script file, perform the following steps:

1. Download the SQL script file, Chapter2 Ancilliary Tables.sql,
from https://github.com/PacktWorkshops/The-MySQL-Workshop/
blob/master/Chapter02/Excercise%202.03/Chapter2%20
Ancilliary%20Tables.sql.

2. Select the autoclub database using Workbench Schema Panel, and open the Tables
list. Note the current tables in the list, as shown in the following screenshot:

¥ | autoclub

T@ Tables
b E identificationtype
> make
> states
SCHEMAS o » E vehicleshape
[vehicleuse
2 |Fi|tEII objects | [vehiclevariant
¥ 5 autodub b = years
> @ Tables @ Views
@ Views B9 Stored Procedures
@ Stared Procedures) @ Functions

Figure 2.25: The current table in the autoclub database

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql

42 Creating a Database

3. From the top menu, select Server and then select the Data Import option, as shown
in the following screenshot:

B MysaL Workbench

@& Local instance MySQLBD x
File Edit View Query Datsbase Server Tools Scripting Help

S e &EEE&E] Svetew
Client Connections

Users and Privileges
SCHEMAS

Status and System Variables

Q |Filter objects

- Data BExport
¥ (2 autodub
T@ Tables | Data Import
[members Startup/Shutdown

Figure 2.26: Select Server and then Data Import
This will open the Data Import tab, which looks similar to the following:

Query 1 new_table - Table members - Table Administration - Data ImportRes...

Local instance MySQLED

Data Import

Import from Disk Import Progress

Import Options

(®) Import from Dump Project Folder Ci\Users‘dszabo'Documentsidumps

Select the Dump Project Folder to import. You can do a selective restaore,
Load Folder Contents

() Import from Self-Contained File C:\Users\dszabo\Documentsidumpsiexport.sql

Default Schema to be Imported To

Default Target Schema: d

Mew...

Figure 2.26: The Data Import tab

Using Workbench to add a table 43

Note

This book is written using the Windows OS. So, all local file paths use the
Windows filesystem naming convention. If you are using Mac or Linux, you
will need to replace any file paths using the naming convention of your OS.

The file path references can appear in the images, system resource files, or the
text of the chapters.

4. Click on the Import from Self-Contained File option, as shown in Figure 2.29,
and select the ellipses (...) at the end of the file path box.

Set the path of the . sql file.

6. Select autoclub for the Default Target Schema option. Then, click

on Start Import. The file will be imported. You can see its progress in the
following screenshot:

Local instance MySQLS0
Data Import
Import from Disk Import Progress

Import Completed

Status:
1of limported.

Log:

C:\WUsers\dszabo\Documents'\GitReposThe - MySQL-Workshop\Chapter02\Exerdse 3\Exercise 3 — Create a new database.sgl does not contain schema/table information

14:11:31 Restoring C:Ysers\dszabo'\Documents\GitRepos {The-MySQL-Workshop\Chapter02\Exercise 3\Exercise 3 — Create a new database.sql

Running: mysgl.exe —defaults-file ="c: \users\dszabo \appdataYocal\temp\tmp4rhb 2f. cnf* --protocol=tcp --host=localhost --user =root --port=3306 --default-character-set=utfs —
comments < "C:\\Usersi\dszabol\Documents\\GitReposiThe-MySQL-Workshop\Chapter02\\Exercise 3\\Exercise 3 - Create a new database.sql”

14:11:32 Import of C:\Wsers\dszabo\Documents\GitReposThe MySQL-Workshop\Chapter02\Exercise 3\Exercise 3 — Create a new database.sql has finished

Figure 2.27: The progress screen showing Import Completed

44 Creating a Database

7. Now, select the autoclub database, and then right-click on the Tables tab. Select
the Refresh All option, which will refresh the list of tables. The updated list of tables
can be seen here:

SCHEMAS L
Q |Filter objects |

v 5 autoclub
Tﬁl Tables
[2 make
» E| identificationtype
[2 members
> states
[2 vehiclemodel
[2 vehicleshape
= vehicleuse
[2 vehiclevariant
» years
[— =

Figure 2.28: The new tables are displayed when Tables is refreshed
As you can see in the preceding screenshot, new tables such as make, states,
vehicle,vehiclemodel,vehicleshape,vehicleuse,vehiclevariant,
and years were added to our autoclub database.

Close the Data Import tab.

9. Finally, check each of the imported tables and ensure that the Primary Key option
has been set and that the ID columns are set to Auto Increment. If they are not set,
be sure to set them and save each table.

You have now successfully imported the ancillary tables, along with their data, to the
autoclub database.

Note

SQL files for complete databases and sample databases are available on the
internet. Sometimes, if you find one that is close to your final requirements, you
can download that script to generate the database and modify the tables and
objects to suit your needs. This can save you quite a bit of development time.

MySQL table indexes and foreign keys 45

In this section, you learned how to save a lot of time by importing a prepared SQL script
file. This topic will be discussed in greater detail when you progress to Chapter 3.

Now that you have a complete set of tables, in the next section, you will learn how to set
table indexes and foreign keys in Workbench.

MySQL table indexes and foreign keys

In this section, you will learn about table indexes and foreign keys and how to set them
up in your database using MySQL Workbench. Most importantly, you will learn why you
should use them. The following section begins with indexes.

Indexes

Do you remember the last time you looked up information in a large book (the old style
one that is made of paper)? Perhaps it was a directory and you needed to look up a single
person. Note that you didn't start on page one and read through every entry until you
finally found them. Instead, you went to the index and scanned an alphabetized list until
you found their name and the relevant page number. Then, you went directly to the page
and found the person's details there.

An index of a database table is the same. The MySQL server can maintain an index on a
column, and when you look for a record in that column, MySQL will find it for you more
quickly. You can set up multiple indexes on most columns in your tables. However, don't
set up too many as that could even slow things down. You can set indexes on the columns
that you are most likely going to search or filter on. Additionally, an index can control what
data is stored inside the column. For example, you could set a unique index in a Drivers'
License Number column. If an attempt was made to enter a record with a duplicate
license number, MySQL would reject it, thus maintaining the integrity of your data.

Here is a list of some index types:

« Index: This is also known as a simple, regular, or normal index. The values do not
need to be unique, and they can be NULL.

o Unigque: The values in the column MUST be unique.

o Fulltext: This is used for columns containing text. It will index individual words
within the text and aid in searching large volumes of text for words, groups of
words, or phrases.

46 Creating a Database

o Spatial: This is used for geometric and geographical data.

o Primary: All columns involved in a primary index must contain data and cannot

be null.

Now, in the upcoming exercise, you'll create an index to get more hands-on experience.

Exercise 2.04 - creating an index

In this exercise, you will future-proof your autoclub database to allow rapid customer
lookups based on their first name. You will create an index inside the members table
using MySQL Workbench. Additionally, you will learn to understand the Workbench
tab as you go through the process.

To create an index, perform the following steps:

1. Open MySQL Workbench and log in if you need to.
2. Open the Tables list in the SCHEMAS panel for the aut oclub database:

SCHEMAS L
Q, |Filter objects |

¥ 5 autoclub
T@ Tables

[make
» E identificationtype
[members
> states
[3 vehiclemodel
[vehicleshape
[vehicleuse
> vehiclevariant
[years

Figure 2.29: The Tables list for autoclub

MySQL table indexes and foreign keys 47

Right-click on the members table and select Alter Table. The Columns Design tab
will be displayed:

Query 1 members - Table

[Table Mame: |[members Schema: auteclub
17, -

5" Charset/Collation: utfm ~ | |utfém -~ Engine: |InnoDB -

Comments:

Column Mame Datatype PK NN UQ B UM ZF Al
idmembers INT I I I I
> FirstName VARCHAR(45) O OO0 dgdd
2 Active INT D D D D D D D
> Whenadded DATETIME OO0 00 004d0:04d
> LastModified DATETIME OO 0O 0O 0O 0 0

I I I A B A N IO
£ >
Column Mame: Data Type:
Charset/Collation: Default:
Comments: Storage: Virtual Stored
Primary Key Mot Mull Unique
Binary Unsigned Zera Fill
Auto Increment Generated
Columns Indexes ForeignKeys Triggers Partitioning Options
Apply Revert

Figure 2.30: The Columns Design tab of the members table

48 Creating a Database

4. Click on the Indexes tab at the bottom of the screen to open the Indexes tab,
as shown in the following screenshot:

Query 1 new_table - Table members - Table Administration - Data Import/Res_. members - Table

[— Table Name: |members Schema:

T ¢
L'.f/u'{ Charset/Collation: utf8mb4 | |utf8mb4_0900_ai_d | Engine:
Comments:
Index Name Type Index Columns
PRIMARY FPRIMARY
Column # Order Length

Figure 2.31: The Indexes tab for the members table
Notice that there is already an index named PRIMARY in the list. This has been
automatically generated by MySQL when you set the column as the Primary Key
type. This index will already be in all of your tables.

5. Click on the Primary Index type to view it, and you will see the following details:

Index Columns

Index Name Type
PRIMARY PRIMARY
Column # Crder Length
idMembers 1 ASC
[FirstName A5C
[active ASC
[whenadded ASC
[LastModified ASC

Figure 2.32: The MySQL-generated primary key index
The panel on the right-hand side displays the columns used in the index. As you can
see, only the IidMembers column is involved in this index.

6. Double-click on the next row (under PRIMARY) and enter a name for the new
index; the FirstName type. The first column defines the name of the index you are
creating, and the second column, Type, displays the types of indexes you can use:

Index Name Type Inc

PRIMARY PRIMARY
FirstMame

Figure 2.33: A list of index types, and the list of columns available for the index

MySQL table indexes and foreign keys 49

7. Select the default INDEX type as the new index type. In the Index Columns section
of the window, you can now select the columns you wish to index. Since this index
is defined to index the FirstName column, select the FirstName column from the
column list:

Index Name Type Index Columnns

PRIMARY PRIMARY

FirstName INDEX Column & Order
[] idMembers ASC
FirsthName 1 ASC
L] Active ASC
[whenadded ASC
[LastModified ASC

Figure 2.34: Selecting INDEX for the type and SURNAME for the column

8. Click on Apply in the lower-right corner of the screen. The Apply Script popup will
display. Click on Apply and then Finish.

In this exercise, you have learned how to successfully create an index. As the automobile
club grows and the member table holds more and more members, searching for a member
by their first name will be faster and more efficient within the index.

In the next section, you will learn how to apply indexes to multiple columns.

Indexes on multiple columns

Indexes can also be set in multiple columns. When an index is applied to multiple
columns, it will follow the same principles as a single-column index. However, they will
be applied to the combination of all the columns that make up the index. For example,
let's say that you create an index of the Unique type on a single column name, called
IDNumber. You might have the following data in the column:

ID IDNumber
1 Al123
2 Al24
3 A125
4 Al126

Figure 2.35: Multiple column indexing

50 Creating a Database

However, if you tried to enter another record with an IDNumber column name of A125,
the record would be rejected, as it does not meet the Unique index requirement.

Note

For the purposes of identification, the database will be able to accept any
number of identification types such as a driver's license, passport, ID card, and
more. Additionally, there is always a possibility that two different types of ID
might have the same ID number.

Now, let's imagine that you had another column in the table, called IDType, and you
created a Unique index using both the IDType column and the IDNumber column:

ID IDType IDNumber
1 Drivers License | A123
2 Drivers License | A124
3 Drivers License | A125
4 ID Card Al123
5 ID Card Al24

Figure 2.36: Additional column indexing

All of these records are valid because the combination of the IDType column and the
IDNumber column is unique. However, if you try to add another record with Drivers
License and A124, it would be rejected because there is already a record with that
specific combination. However, you can add ID Cardand A125.

Such an index can be used for the following purposes:

o To speed up searching

+ To maintain data integrity

It is possible that any two different types of identification documents might have the
same number. So, a unique index in the IDNumber column might only result in a valid
identification document being rejected. However, you can be confident that a single type
of identification will not have a duplicate number. So, setting the index on both columns
is unlikely to reject valid records.

MySQL table indexes and foreign keys 51

Foreign keys

Foreign keys are the links between your data tables. A value in a column that is defined
as a foreign key refers to the primary key in another table. A column that is defined as a
foreign key will hold the primary key value of the parent table. The table with the foreign
key defined is considered the child of the parent table. Examine the following screenshot,
which contains several tables in the autoclub database:

Note

The following screenshot is for demonstration purposes only. The

MemberID foreign key column is not yet in the identification,
memberaddress,and vehicle tables and will be added in the upcoming
exercise and activity.

members vehicle

) 0
Surname ~ MemberiD
RegoExpires

FirstName
MiddleNames RegNumb
Use

DOB
Signature
Photo
Active
JainDate
InactiveDate o
‘WhenAdded
LastModified

Year

memberaddre:

Make
Model \ Make
o T

Variant
Member|D shape Make
- StreetAddresst
MemberlD StreetAddress2
IDType Town
StateOflssue State
IDNumber Postcade
ExpiryDate WhenAdded
Class LastModified
Conditions
WhenAdded

identification

EngCap
VIN

Tare

GVM

GCM
Passengers
EngNumb
AxleCode

- Conditions
WhenAdded
LastModified

Figure 2.37: Tables with linking columns

The identification, memberaddress,and vehicle tables contain the MemberID
columns of the members table. So, each of them is considered to be a child table of the
members table.

Also, the vehicle table contains a column, named Make, which contains a value that
matches the ID column in the Make table. So, it is also a child of the Make table.

52 Creating a Database

When defined, foreign keys can help maintain data integrity by setting constraints; this

is called referential integrity. In the preceding diagram, you might have several hundred
members, all with their personal and vehicle details inside the database. Let's imagine that,
for whatever reason, you remove the record of one member from the members table.

If you did not also remove the matching records for each member of the child tables,
identification, memberaddress,and vehicle, then those records will remain

in the database and be orphaned, and they will be of no benefit to the database. Imagine
that this has happened to many members. You created a report to find the average number
of vehicles per member. A count of the total number of vehicles divided by a count of
members would yield incorrect results. That's because if the records are removed to create
orphaned vehicles, those vehicles will have no matching members, creating inaccurate
results. Orphaned records can cause incorrect reporting, thereby impacting the integrity
of the database.

Now, let's consider a few options of foreign keys that can be used for maintaining
data integrity:

e SET NULL: This sets the column value to NULL when you delete the parent
table row. If you were to delete the member record from the members table,
the memberaddress record in the memberaddress table would remain,
but the MemberID column would be set to NULL. The child tables would then
be orphaned.

o CASCADE: This propagates the change throughout the database when the parent
changes. If you delete a row, then the rows in the constrained tables that reference
that row will also be deleted, and so on.

Additionally, if you were to delete a member record, then ALL records in the
memberaddress table that are linked to the member will also be deleted. You
need to be very careful with this one.

On the flip side, imagine that you had a Cascade on Update constraint set.

You had a list of States in the States table, and the primary key was in the

text column holding the state field. Let's suppose that this table has a foreign key
relationship with a number of other tables, based on the States field. If we were to
update the States table to change the States field from a value such as NSW to
New South Wales,all tables with a foreign key relationship would also see NSW
updated to New South Wales.

o RESTRICT: You cannot delete a given parent row if a child row exists that
references the value for that parent row.

MySQL table indexes and foreign keys 53

If you tried to delete a member record and there was a memberaddress record for
that member, that is, the members . ID value was in memberaddress .MemberID
in one or more records, the member record would not be deleted. The child records

must all be deleted before the parent can be deleted (no orphans).

NO ACTION (default):NO ACTION is a keyword in standard SQL. In MySQL,

it is the equivalent of RESTRICT. This is the default value. The behavior will be the
same as RESTRICT.

Now that you have got a gist of the various options of foreign keys, you can get started by
creating one in the next exercise.

Exercise 2.05 - creating a foreign key

Now you have been asked to link the memberaddress table to the member table. Both of
these tables have a field to represent the member ID, meaning they share a similar unique
identifier. In this exercise, you will create a foreign key to link the memberaddress table
to the members table by linking the memberaddress.MemberID column to the
member . ID column. To implement this exercise, perform the following steps:

1
2
3.
4
5

Open MySQL Workbench and log in if required.

Open the tables list in the autoclub database.

Right-click on the memberaddress table, and select Alter Table.

Add a new column named MemberID with a datatype of INT, and save the table.

Select Foreign Keys from the tabs at the bottom of the table design screen. You will
be presented with the foreign keys screen layout, as follows:

Query 1 members - Table memberaddress - Table
— Table Mame: [memberaddress
q T
L:/J' Charset/Callation: |utf@mb4 | jutfémb4 09
Comments:
Colurmnn Mame Datatype P MM
[MemberlD [INT |1

Figure 2.38: The foreign key screen

54 Creating a Database

The upper section of the screen is standard across all of these tabs. The left-hand
panel is where you enter the name of the foreign key and define the table a key

it will be referencing. The middle panel is where you define the column that will
be the foreign key and also what column in the parent table it will be referencing;
usually, this is the primary key column. The right-hand panel is where you can set
the options.

6. Starting from the left-hand panel, enter a name for the foreign key in the
next available row in the Foreign Key Name column. Give it the name
FK MemberAddress Members.
7. Select the 'autoclub'."members' table in the Referenced Table column, as shown in
the following screenshot:
Foreign Key Name Referenced Table
FK_Memberaddress_Members "autoclub®." members”
Figure 2.39: Foreign Key Name and Referenced Table
8. In the middle panel, MySQL might have selected the primary key for you in
Column and Referenced Column. If not, select MemberID and ID, as shown
in the following screenshot:
_r Table Name: |memheraddress Schema: autoclub
L—;’: Charset/Collation: |utf8mb4 ~ | utf8mb4_0900_ai_d * | Engine: |InnoDB ~
Comments:
Foreign Key Name Referenced Table Column Referenced Column Foreign Key Options
MemberlD “autoclub’. members” is] id On Update: |NO ACTION ~
g:l‘;::gms . idMembers On Delete: |NO ACTION ~
[streetAddress2
E -Srtoavtl: [skipin 5QL generation

Columns

[postcode
[whenadded
[Lastmodified

Foreign Key Comment

Indexes ForeignKeys Triggers Partitioning Options

Apply Revert

Figure 2.40: Column and Referenced Column for the FK_Member foreign key

MySQL table indexes and foreign keys 55

9. In the right-hand panel, leave On Update as No Action. However, set On Delete
to Restrict:

Query 1 members - Table memberaddress - Table
Table Mame: ‘memberaddress Schema: autoclub
L}
' Charset/Collation: |“tﬁ’""'b4 bl | |Utﬁ5""'b4_09 ~| Engine: |InnoDB w
Comments:
Foreign Key Name Referenced Table Column Foreign Key Options
MemberID “autodub”.” members” [MemberlD On Update: |ND ACTION V|
On Delete: |RESTR_ICT ~ |

Figure 2.41: The foreign key options — On Update = No Action and On Delete = Restrict
10. Click on Apply to view the SQL script that the MySQL server generates:

Apply SQL Script to Database

Review SQL Script

Review the SQL Script to be Applied on the Database

Online DOL

Algorithm: Default ~ Lock Type: Default ~

1 ALTER TABLE 'autoclub’.” memberaddress’

2 ADD CONSTRAINT “MemberID®

3 FOREIGN KEY (*MemberID")

4 REFERENCES ~autoclub’™. members” (" idMembers’)
3 ON DELETE RESTRICT

4] ON UPDATE NO ACTION;

7

Back | Apply | | Cancel

Figure 2.42: The generated SQL statement to apply the foreign key

56 Creating a Database

Note

MySQL will also create an index in the new foreign key.

11. Select Apply and Finish to save the changes.

12. And, finally, just to prove that No Action and Restrict are the same in MySQL,
change the On Update option to RESTRICT and click on Apply. The bottom line
of the output panel will say No Changes Detected, as you can see in the following
screenshot:

1] 7 15:44:05 Apply changes to memberaddress Mo changes detected

Figure 2.43: No changes detected when changing a foreign key option from No Action to Restrict

You have now created your first foreign key. You cannot test this until you insert
some data into the tables. We will test this in the next chapter.

The Cascade option should be used with caution. If you wish to delete a parent record,
first, you must delete all of the related child records and then remove the parent. This
could be done by the code present in the application or by using a stored procedure in
the database. The cascade option, if used on On Delete, will remove the child records
automatically. This might be undesirable if the parents' deletion is accidental.

You can create foreign keys in several tables of the autoclub database. The following
diagram will indicate which table should be joined with a foreign key. Go ahead and create
the foreign key for the tables using the following diagram as your guide. Set all foreign key
options to RESTRICTED:

MySQL table indexes and foreign keys 57

wvehicle
members vehicleuse
o _
Surname RegoExpires Use
Firsthame Reghumb
MiddleNames Use Years
pos Year —_— %
Photo Model
Active memberaddress Variant ke
JoinDate D Shape _
InactiveDate MemberlD EngCop 7o
Whendded StreetAddress1 Vi Make
LastModified StreetAddress2 Tare
Town GVM
state Gem vehiclemodel
Postcode Passengers _
WhenAdded EngNumb ¥
LastModified AxieCode MakelD
Conditions Model
‘WhenAdded
LastModified
vehiclevariant
¥ o
identification ModellD
D - Wariant
MemberlD

identificationtype

IDType .—"‘_"*—_‘___‘
7D vehicleshape

StateOflssue

IDMumber identificationtype 7 D
ExpiryDate shape

Class

Conditions
WhenAdded

Figure 2.44: The ER diagram for the autoclub database; only tables required for this activity are included

Foreign keys are a handy way to help you keep your data in order and maintain the
integrity of the database. When you are confident with the data stored in the database, you
can be confident that the reports are accurate. The default value of No Action or Restrict
for the options will be the most common constraint you will use. If you do use them, test
them thoroughly.

Note

If you get an error when saving, check whether the primary key has been set in
the referenced table. If one or more has not been set, set them and try. Ensure
that you also set the auto-increment feature if required.

58 Creating a Database

If you take the time to set the indexes and foreign keys where appropriate in your
database, you will reap great benefits. Your database will become faster because of the
indexing and more accurate with the foreign keys and constraints maintaining the data
integrity for you.

Now, let's take a small detour to see how you can reverse engineer a database based on
ER and EER.

Reverse engineering a database

You now have a small database complete with tables, indexes, and foreign keys. Let's
imagine that you have a database with over a hundred tables. You will have to try and
comprehend the data present if you do not have a database model to hand.

You can reverse engineer a database using MySQL Workbench so that you can create
both the database model and the EER diagram, which, in return, will assist you greatly
in coming to terms with the database.

An ER diagram is a snapshot of the database. It is an image of the tables in the database
with lines connecting the tables to show the relationships as set by the foreign keys. There
are a number of open source and proprietary software options that allow you to generate
ER diagrams. Depending on the software used to create the diagram, you might be able
to display information regarding indexes and foreign key columns. The lines connecting
the tables might start and end at the actual connecting columns in the relationship, or
they might just go from one table to the other without identifying the actual columns. ER
diagrams provide a visual representation of the database. However, you cannot interact
with the diagram:

Reverse engineering a database

59

members

o]

Surname
Firsthame
MiddleMNames
DOB
Signature
Photo

Active
JoinDate
InactiveDate
‘WhenAdded
LastModified

wvehicle

memberaddress

D

MemberlD
StreetAddress1
StreetAddress2
Town

State

Postcode
WhenAdded
LastModified

o]
MemberlD
RegoExpires
Reghumb
Use

Year

Make
Model
Variant
Shape
EngCap
VIN

Tare

GVM

GCM
Passengers
EngNumb
AxleCode
Conditions
‘WhenAdded
LastModified

vehicleuse

¥ D
Use

Years

/|\

Make

o
Make

vehiclemodel

%o
MakelD
Madel

identification

[} -
MemberlD
IDType
StateOflssue
IDNumber
ExpiryDate
Class
Conditions
WhenAdded

identificationtype

Vo
identificationtype

vehiclevariant

¥ o
ModellD
Variant

wvehicleshape

D
Shape

Figure 2.45: An ER diagram created in MS Access that limits interaction in the application

Note

For better viewing, you can find the preceding screenshot in full resolution
athttps://github.com/PacktWorkshops/The-MySQL-
Workshop/blob/master/Chapter02/Images/Imagel.png.

An EER diagram, as we find in MySQL servers, has all of the same features as an ER
diagram, but you can interact with it. EER diagrams are software-based. This means

that they are implemented through software tools such as SQL Workbench, and they are

directly linked to the underlying conceptual model of the database so that you can select
any object in the diagram and edit its properties. The changed properties are then saved to
the model and retained. When the EER diagram is printed or exported to a PDF or other

document type, it is no longer interactive while on paper or in the exported file format.

Therefore, it becomes an ER diagram.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Images/Image1.png
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Images/Image1.png

60 Creating a Database

A database model is a conceptual model that accurately depicts the database. It contains
all of the database objects and their properties precisely as they are set in the underlying
database. The model can be modified by adding, removing, and changing the properties

of various objects. Then, the changes can be pushed to the database:

v
_] members : = — |
D INT(11) Pt dentificati |
s Surname VARCHAR(50) | \\ T D INT{11) =" —
s | ra
Firsthame V ARCHAR(S0) l \\ i Mem berID INT(11) e
IDType INT(11 —_
Middiehames VARCHAR(S0) | | \ # IDType INT(11)
£ | N StateOffssue INT(11)
»DOB DATE N
Signature BLOB | N IDMumber VARCHAR(15)
- | 2 ExpiryDate DATE
 Photo BLOB | \
Active BIT(1) | \\ Class ¥ ARCHAR(10)
A
JoinD ate DATE |1 ™ # Canditions ¥ ARCHAR(50)
2 \WhenAdded TIMEST AMP
InactiveDate DATE [\\
LastModified TIMESTAMP
When Added TIMEST AP iI ' astMiodifes
\ »
LastModified TIMESTAMP | N
. |
| \\
'. "1 memberaddress ¥ \\
L | (DI : \ _| vehicle v
| A\
ke & Mem berID INT(11) N | [TRINT(LL)

StreetAddress1 VARCHAR(S0) |
StrestAddress2 VARCH AR (50) I
Town VARCHAR(0)
¢ State VARCH AR(10)
Postende VARCHARY 10)
WhenAdded TIMEST AMP
LastModified TIMESTAMP
| 3

S & MemberID INT(11)

< RegoExpires DATE
Reghumb VARCHAR{ 10)

@ Use INT(11)

@ Year INT(11)

»Make INT(11)

#Modd INT(11)

#Varlant INT(11)

~ identificationtype v'l

ID INT(11) |
identficatontype VARCHAR(255) |
>

] vehicleuse ¥
D INT(11) |
/ Use VARCHAR(255) |

! >

/ , dyears ¥
— ¥ Year INT(11) |
v -

| make v
= T D INT(11)

-~ Make VARCHAR{40)

»>

Figure 2.46: An EER diagram from Workbench with full interaction with the database

In the following exercise, you will create an EER diagram of the autoclub database.

Reverse engineering a database 61

Exercise 2.06 - creating an EER model from the
autoclub database

Your boss needs you to verify a database's integrity as the documentation has been lost
for the autoclub database. After some time has passed and you have moved on to
developing other databases, your intimate knowledge of the autoclub database has
waned a little. You are required to create an EER diagram from the autoclub database

to visualize it.

Note

The model sits between the database and the EER diagram and is created for
you when you create the EER diagram or reverse engineer the database. All
changes made to the EER diagram will only affect the model. They will not
modify the database until you forward engineer or synchronize the model to
the database.

To create an EER diagram of the autoclub database, perform the following steps:

1. Open MySQL Workbench using My First Connection.

2. From the top-level tabs, select Database and click on Reverse Engineer:

MySOL Workbench
#% MyFistConnection > MySQL Model

File Edit “iew @ Datsbase Tools Scripting Help
Connect to Database. .. Ctrl+l

Manage Connections...

Reverse Engineer... Ctrl+R

Figure 2.47: The Reverse Engineer menu

62 Creating a Database

3. In the wizard, select the connection, and click on Next at the bottom of the screen:

Reverse Engineer Database

Connection Options

Set Parameters for Connecting to a DBMS

Stored Connection: | Lacal instance MySQL&0 ~ | Select from saved connection settings

Connection Method: | Standard (TCR/IF) e | Method to use to connect to the RDBMS

Parameters 55| Advanced

Hostname: |\omlhost | Port: |3305 | :ﬁ_l?;\ﬁpo(]Ptaddrem of the server host - and
port.

Username: |roct Mame of the user to connect with,

The user's password. Will be requested later ifit's

Password [soreinVault.. || COear | The use

-

Figure 2.48: Connecting to reverse engineer

Reverse engineering a database 63

Upon successful connection, click on Next:

Reverse Engineer Database

Connection Options

Connect to DBMS and Fetch Information
Connect to DBMS

The following tasks will now be executed. Please maonitor the execution.
Press Show Logs to see the execution logs.,

(¥} Connect to DEMS

i) Retrieve Schema List from Database

¥ Check Common Server Configuration Issues

Execution Completed Successfully
Fetch finished.

Figure 2.49: The connection is a success

4. Now, select the database and click on Next:

Reverse Engineer Database

Connection ¢ ons

Select Schemas to Reverse Engineer
Connect to DBMS

Select Schemas

g select the schemas you want to include:

autodub

Figure 2.50: Schema selection

64 Creating a Database

5. On the screen that follows, you can finalize the operation. To do this, select Retrieve
Objects from Selected Schemas, along with Check Results, to retrieve all of the

available data using the utility:

Reverse Engineer Database

Connection Options
o i SREE Retrieve and Reverse Engineer Schema Objects

Connect to DBEMS

The following tasks will now be executed. Please monitor the execution,
Press Show Logs to see the execution logs.

(¥ Retrieve Objects from Selected Schemas
(i Chedk Results

Figure 2.51: A successful connection to the server

6. Click on Next, and the schema list will be presented as follows:

Reverse Engineer Database

Select Objects to Reverse Engineer

Import MySQL Table Objects
Show Filter

10 Total Objects, 10 Selected

Select Objects

se Engineer

Figure 2.52: The list of schemas on the server, select autoclub

After completion, you will see the following window:
Reverse Engineer Database

Connection Options " .
- Reverse Engineering Progress
Connect to DBMS
lect Schemas The following tasks will now be executed. Please monitor the execution.
Press Show Logs to see the execution logs.
ieve Objects
i) Reverse Engineer Selected Objects

Select Objects

(v} Place Objects on Diagram
Reverse Engineer

Figure 2.53: The successful retrieval of schema objects

Reverse engineering a database

65

In the ER diagram generated by the reverse engineering process, you should see
the following:

'jmembels v

ID INT{11)
»Surname VARCHAR(50)
* Firsthlame VARCHAR(50)
» Middlelames v ARCHAR(50)
+DOB DATE
2 Signature BLCE
Phota BLOB
2 Active BIT{1)
JoinDate DATE
InactiveDate DATE
2 WhenAdded TIMEST AMP

LastModified TIMESTAMP
>

N ——

e
I
/

1
—_
|
[
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|

| '7) memberaddress ¥

L D INT(11)

b & Mem berID INT(11)

» StreetAddress1 VARCHAR(S0)
StreetAddress2 VARCHAR(50)

»Town VARCHAR(50)

» State VARCHAR (10)

 Postcode VARCHAR(10)

»WhenAdded TIMEST AMP

LastModified TIMESTAMP

| states v
D INT(11)

> State VARCH AR(255)

»

' "l identification ¥
ID INT{11)

@ Mem berID INT(11)

@ IDType INT(11)

2 StateOfissue INT(11)

> IDMumber YARCHAR(15)

2+ ExpiryDate DATE

> Class W ARCHAR(10)

2 Conditions W ARCHAR{50)

" identificationtype v
D INT{11)

identificationtype VARCHAR(255)
>

] vehicleuse ¥

WhenAdded TIMEST AMP 1 P
’ LastModified TIMESTAMP ,rl-‘ Use VARCHAR(255)
| " .ijr >
\\\ / /
N ,ff ; T years ¥
\\ :] TETEE v / /l—| ‘Year INT{11)
N D INT(11) ! / "
S o ! /
e & Mem berID INT{11) / /
+# RegoExpires DATE ‘rf ,f/
> Reghumb VARCHAR(10) | s / m o v
 Use INT(11) _,i// 1 D INTD
#vear INT(L1) = L i ’—‘ Make ¥ ARCHAR(40) ‘
@ Make INT(11) ot >
Modd INT{11) o
 Variant INT{11) EERN
& Shape INT{11) —\\\ \\ j D]
» EngCap DOUBLE \\ \ 1 1 INT(LD)
VI VARCHAR(L7) \ \\ MakeID INT(11)
Tare INT(11) \“ \\ Model V ARCHAR{40)
> GYM INT(11) VoY =
5 GEM INT(11) -y .
 Passengers INT(11) \\ \\ :] T —
EngMumb YARCHAR(12) A\ W1
AxieCode VARCHAR(10) "\ 1D T (L1)
> Conditions VARCHAR(S0) \ MecdlID INT(L1)
> WhenAdded TIMEST AMP \ * Variant VARCHAR(75)
> LastModi fied TIVESTAMP \\ "
»> \

\1 _] vehicleshape ¥
AL

Figure 2.54: An ER diagram generated by reverse engineering

66 Creating a Database

Note

For better viewing, you can find the preceding screenshot in full resolution
athttps://github.com/PacktWorkshops/The-MySQL-
Workshop/blob/master/Chapter02/Images/Image2.png.

At this point, you can move the objects around to get a nice layout. However, it
would probably be wise to rename and save it.

7. Click on the MySQL Model tab, and you will see the new EER diagram displayed:

Model Owversiew

gn
Add Diagram EER Diagram

Figure 2.55: The MySQL Model window with the autoclub database
This contains the details of the autoclub database and its tables.

8. Right-click on the EER Diagram icon and select Rename Diagram. Enter the new
name autoclub, and then click on OK:

Rename Diagram X

I Enter new name for the diagram

Figure 2.56: Rename the EER diagram

autoclub

Cancel

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Images/Image2.png
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Images/Image2.png

Reverse engineering a database 67

9. The name will be changed, and you can see it in the following screenshot:

iAdd Diagrami autoclub

Figure 2.57: The EER Model icon in the Model Overview panel

So, you have created your EER diagram for the autoclub database. It is now much
easier to visualize the database.

You can also interact with your database. As you hover over the tables, columns, lines, and
more, an information window will pop up with all of the details about the item. The lines
will highlight to see what they are linking, and the indexes can be displayed by clicking on
the arrowhead at the bottom of the tables.

Some issues will really stand out, such as the states table, which is not linked to
anything, as you never created the foreign key for it. In the upcoming exercise, you will
fix it using the EER diagram.

Exercise 2.07 - using the EER diagram and forward
engineering to manage the database model

Forward engineering will only add objects to an existing database; it will not remove
them. If you change a table name, the table will be created with the new name, but the
existing table will remain. If you delete a table from the model, it will not be deleted in
the database. Usually, you will only use forward engineering to create a database from
an EER diagram.

In this exercise, you will create a foreign key linking the State column of the
memberaddress table with the ID column of the states table. This is needed because
members can have multiple addresses in different states or even within the state:

1. Open the autoclub.mwb file from https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/
Excercise%202.07/autoclub.mwb.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.07/autoclub.mwb
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.07/autoclub.mwb
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.07/autoclub.mwb

68 Creating a Database

2. Double-click on the memberaddress table. The table design screen will open in the
lower section of the screen, as shown in the following screenshot:

) v
—| members 4 - — 1
1D INT(11) T P identificati 23
» Surname YARCHAR(50) b el L | YR me
My -~
Firsthame VARCHAR(50) { \\ == ¥ MemberlD INT(11) -
' @ IDType INT(11 -_—
» MiddieNames VARCHAR(S0) | | N\ yoe INT(11)
| 5\ StateOftssue INT{11)
»DOB DATE \
- I 5 » IDMumber VARCHAR(15)
o l N » ExpiryDate DATE
* Photo BLOB | \
» Aciive BIT(1) I \\ Class VARCHAR(10)
JninDate DATE |! N Conditions ¥ ARCHAR(50)
N \WhenAdded TIMEST AMP
InactiveDate DATE | \ <
LastMadified TIMESTAMP
s WhenAdded TIMEST AMP il 5 e
N >
LastModifed TIMESTAMP | | v
» |]
| \\
! Y
l | memberaddress ¥ \
| \
L | 7D \ _ vehicle v
5
b @ Mem berlD INT(11) Neo | IRINT(D)
) StrestAddress 1 VARCH AR(50) Vo Mem berID INT(11)
StreetAddress2 VARCH MR(50) #RegoExpires DATE |
Town VARCHAR(50) /Reghumb VARCHAR(10) |
Stale VARCHAR(10) & Use INT(11) =t
Postcode VARCHARY 10) @ Year INT{11) —"m
WhenAdded TIMEST AMP #Make INT(11) p—
LastModified TIMESTAMP @ Modd INT(11) -

Figure 2.58: The table design screen for the memberaddress table

After examining the State column in the memberaddress table, you will
observe that the column is of the VARCHAR (10) datatype:

Column Mame Datatype PK. NN

MemberlD INT
 StreetAddressi VARCHAR(50) L]
 StreetAddress2 VARCHAR(50)]
% Town VARCHAR(50)]
» State VARCHAR{10)]
 PostCode VARCHAR{10)]

Figure 2.59: The state is VARCHAR(10)

Reverse engineering a database

69

To make the foreign key, it needs to be an INT datatype in order to match the
datatype of the State table. You will need to fix this first.

Note

If the table already contains data in the State column, you will not be able
to change from the VarChar datatype to Int because an integer will not

accept non-numeric characters. Fortunately, the table is still empty, so you can
change it.

Select a datatype of INT for the State column, and you will notice this change
taking immediate effect in the EER diagram:

o o

i "] memberaddress v
ID INT

& MemberID INT
StreetAddress1 VARCHAR(50)
StreetAddress2 VARCHAR(50)
Town VARCHAR(50)
State INT
Postcode VARCHAR(10)
WhenAdded TIMESTAMP
LastModified TIMESTAMP

Figure 2.60: The type of State set to INT

Click on the Foreign Keys tab to view the work screen, as shown in the following
screenshot:

Query 1 memberaddress - Table

—— Table Name: |memberaddress

1'
1"5/”’ Charset/Collation: | utfémb4 ~ | |utfémb4_0900_:

Comments:

Foreign Key Name Referenced Table
MemberID “autoclub™." members”

Figure 2.61: The Foreign Keys work screen

70 Creating a Database

5. Enter the foreign key details just as you did in the earlier exercises. Enter Foreign
Key Name as FK_MemberAddress State and provide Referenced Table as
'autoclub' . 'states'. Check the State type in the Column section and ID in
the Referenced Column section. Also, set the foreign key options of On Update and
On Delete to RESTRICT. As soon as these changes are applied, notice that the EER
diagram is automatically changed. Please refer to the following screenshot:

] members v
(1D INT{11) '-l»\ ___________ i g
#8Surname VARCHAR(S0) | \ .
Firstilame WV ARCHAR.(50) [NN
¥

> Middleames VARCHAR(SD) | | _\ " 7] memberaddress

o INT(11)
Y| 3 Mem berID INT(11)
» StreetAddress 1 VARCHAR(50)

+DOB DATE f
Signature BLOB

Photo BLOB
Active BIT(1) StrectAddress2 VARCHAR(S0)
JoinDate DATE al® Town VARCHAR(5D)
InactiveDate DATE | < State INT
WhenAdded TIMEST AMP | * Postcode VARCHAR(10)
WhenAdded TIMEST AMP

LastModified TIMESTAMP

> LastModified TIMESTAMP

|
!

Figure 2.62: After the foreign key details are entered, the EER diagram changes immediately
6. Save the diagram by clicking on File and then Save Model. Use the Save Model
As... if you wish to save it under a different name:

|
|
|
J'f'[
| M,
|
|
I
!

Reverse engineering a database 71
B mysoL Workbench
ﬁ My First Connection MySt
File Edit View Amrange Model
New Model Ctrl+N
Open Model.. Ctrl+0
Include Model. ..
Open Recent 3
Close Tab Ctrl+/f
Save Model Cirl+5
Save Model As... Ctrl+Shift+S
Imiport 1
Export 3
Page Setup...
Frint Preview. ..
Print... Cirl+P
Print to File...
Document Properties...
Excit Alt+F4
Figure 2.63: Using File and Save Model to save the EER diagram
7. The changes you have made in the EER diagram are not yet reflected in the
database. To save the changes back to the database, select Database and then
Forward Engineer from the top-level menu, as shown in the following screenshot:
ﬁ My First Connection MySQL Model (autoclub mwh) % autoclub x
File FEdit View Armrange Model = Database Tools Scripting Help
L] = m R B Connect to Database. .. Ctrl+U
) Manage Connections...
Bird's Eye -t
pwes a a Reverse Engineer... Ctrl+R
Zoom: hll Forward Engineer... Ctrl+G - Signature BLOB ll'l
Schema Transfer Wizard... # Photo BLOB |
Migration Wizard... > Active BIT (1) 1.1
Edit Type Mappings for Generic Migration. .. +# JoinDate DATE \
Synchronize Model... Cirl+Shift+Z # InactiveDate DATE
Synchronize with Any Source... Ctrl+Shift+Y # Whendded TIMEST AMP
2 LastModified TIMESTAMP
Compare Schemas...

Catalog Tree -

>

Figure 2.64: Selecting Database and Forward Engineer

72 Creating a Database

This will open the Forward Engineer to Database screen, as shown in the following

screenshot:

Forward Engineer to Database

Connection Options

Stored Connection

Connection Method

Parameters sgL

Hostname

Password

Username:

Default Schema:

Set Parameters for Connecting to a DBMS

: | my First connection

~ | Select from saved connection settings

. | standard (Tcpj1R)

~ | Method to use to connect to the RDBMS

Advanced

: |Ioalhost

| Port: | 3306

|root

“ | storein vault... ||

Clear |

Mame or IP address of the server host - and
TCP/IP port.

MName of the user to connect with,

The user's password. Will be requested later if it's
not set.

The schema to use as default schema, Leave
blank to select it later.

Figure 2.65: The Forward Engineer to Database screen
Your connection and details should be already on the screen. If not, select your
connection and fill in any required details.

Reverse engineering a database 73

8. Click on Next, and the Options screen will open. Keep the screen options at their
default settings, as shown in the following screenshot:
Forward Engineer to Database E

on Optons
ANECASn SREa Set Options for Database to be Created

Options

Tables
[] skip creation of FOREIGM KEYS
Skip creation of FK Indexes as well
|:| Generate separate CREATE INDEX statements
[] Generate INSERT statements for tables

[] Disable FK checks for INSERTS

Other Objects
[[] Don't create view placeholder tables

[] Do not create users. Only create privileges (GRANTS)

Code Generation
"] DROP objects before each CREATE object
[] Generate DROP SCHEMA
[omit schema qualifier in object names
Generate USE statements
[add SHOW WARNINGS after every DDL statement

[+] Indude model attached scripts

Figure 2.66: The Options screen

74 Creating a Database

9. Click on Next, and the Select Objects screen will open. Click on the Show Filter
button to view all of the objects. You have only changed the memberaddress
table, so move all of the other objects to the right-hand panel, as shown in the

following screenshot:

Forward Engineer to Database

Select Objects to Forward Engineer

Opti

Select Objects To excdude objects of a spedfic type from the SQL Export, disable the corresponding checkbox. Press Show Filter and add objects or

[~] Export MySQL Table Objects

10 Total Objects, 10 Selected

- [] Export MySQL View Objects

0 Total Objects, 0 Selected

[] Export MySGQL Routine Objects
ol

0 Total Objects, 0 Selected

[[] Export MysQL Trigger Objects

0 Total Objects, 0 Selected

] Export User Objects

0 Total Objects, 0 Selected

patterns to the ignare list to excdude them from the export.

Show Filter

Show Filter

Show Filter

g g
= =
Ei I
T T

| Cancel

Figure 2.67: The Select Objects screen; changes were only made to the memberaddress table

Reverse engineering a database 75

10. Click on Next and the Review SQL Script screen will open, displaying the MySQL
script that was generated to apply the changes. Review the script before executing it:

Forward Engineer to Database n

Review the SQL Script to be Executed

Options
ct Objects This script will now be executed on the DB server to create your databases.
You may make changes before executing.
Review SQL Script
1 -- MySQL Workbench Forward Engineering -~
2
3 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
4 SET @OLD_FOREIGN_KEY_CHECKS=@@FORFIGN_KEY CHECKS, FOREIGN_KEY_CHECKS=0;
5 SET @OLD_SQL_MODE=@@30QL_MODE, SQL_MODE='0NLY_FULL_GROUP_BEY,STRICT_TRANS_TAELE!
6
7 .
g -- Schema mydb
g _—
10 --
11 -- Schema autoclub
1z -
13
14 --
15 -- Schema autoclub
16 -
17 CREATE SCHEMA IF NOT EXISTS "autoclub’ DEFAULT CHARACTER SET utfémb4 COLLATE utfdmba_t(
18 USE "autoclub™ ;
19
20 -
21 -- Table "autoclub’ .’ identificationtype’
22 -
23 CREATE TABLE IF NOT EXISTS ~“autoclub’. identificationtype ™ (
24 (T ID" INT NULL DEFAULT NULL, w
< >
‘ Save to File... | | Copy to Clipboard

Figure 2.68: MySQL generates a script for review

76 Creating a Database

11. Click on Next to execute the script. The progress screen will be displayed, and the
script will run as follows:

Forward Engineer to Database n

Connection Options _ N
Forward Engineering Progress
Options

Select Objects

The following tasks will now be executed. Please monitor the execution.
Review SQL Seript Press Show Logs to see the execution logs.

Commit Progress 4 Connect to DEMS

(¥ Execute Forward Engineered Script
) Read Back Changes Made by Server
) Save Synchronization State

Forward Engineer Finished Successfully

o] o] o]

Figure 2.69: The progress screen showing that the script was successfully executed

12. Click on Close and the screen will close. Now, to check that the changes were
applied, return to the MySQL Model (autoclub.mwb) tab. Double-click on the
memberaddress table under autoclub. The memberaddress table definition will
show that the State column is now an INT datatype:

Colurmn Name Datatype
! MemberIlD INT
< State INT

Figure 2.70: The State column is now an INT datatype
13. Click on the Foreign Keys tab at the bottom, and you will see new foreign keys:

Foreign Key Mame Referenced Table

MemberID “autoclub™.” members”
FK_MemberAddress_State “autoclub’™.” states”

Figure 2.71: The foreign key for the State column exists

Reverse engineering a database 77

You have now successfully ensured that members with multiple addresses in
different states can be registered.

During the course of development, changes could have been made either directly to the
database or to the model. Due to this, they can become unsynchronized. You will need to
use Synchronize Model to get everything in order or to apply your recent model changes
to the database itself. In the following exercise, you will work through a synchronization
task. You will take a look at how you can commit changes to the production database.

Exercise 2.08 - committing model changes to the
production database with Synchronize Model

To be able to effectively use EER diagrams, it is important to understand how to
synchronize them with a production database. In this exercise, you will update the
autoclub database by committing the model through the synchronize model utility. This
process will examine the provided EER model, process the relationships, and apply them
to the existing autoclub database:

1. Inthe MySQL Model (that is,autoclub.mwb from https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/
Excercise%202.08/autoclub.mwb) window, select Database and then select
Synchronize Model... to open the Synchronize Model with Database wizard:

B MysoL Workbench
b My First Connection (autoclub) = MySQL Model® EER Diagram
File Edit View Armange Model Database Tools Scriping Help

L] .ru m e~ g @ Connect to Database... Cirl+l
Manage Connections...
. Reverse Enginesr. . Ctrl+R
- @\ 'EL [Forward Engineer... Ctrl+G
Schema Transfer Wizard...
Migration \Wizard...

Edit Type Mappings for Generic Migration...

Synchronize Model. .. Ctrl+Shift+Z
Synchronize with Any Source. . Ctrl+Shift+Y

Figure 2.72: Selecting Database and Synchronize Model...

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.08/autoclub.mwb
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.08/autoclub.mwb
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.08/autoclub.mwb

78 Creating a Database

2. The initial screen is the same connection screen as shown in the previous exercises.
Ensure the connection settings are correct as before. Then, click on Next to open the

Options screen:

Synchronize Model with Database n

Connection Options
Sriifen i Set Options for Synchronization Script

Sync Options

Compare Options

[] skip synchronization of Triggers

[skip synchronization of Stored Procedures and Functions
es to Apply [skip checking of Routine Definer

Review DB Changes

. Generation Options
onize Progress

] omit Schema Qualifier in Object Names

Indude SQL Scripts Attached to Model

Figure 2.73: The options screen

3. Leave all options in their default settings, as shown in the preceding screenshot,
and then click on Next to connect to the database.

4. As before, the wizard will connect to the database and collect the schema details.
Click on Next when you are done to open the Select Schemas screen. The screen
will open with autoclub already selected, as follows:

Synchronize Model with Database
Connection Options =
Salect the Schemas to be Synchronized
Sync Options

Connect to DEMS o
lt_—j Select the Sschemata to be Synchronized:

Select Schemas

Retrieve Objects ru!udel Schema RDEMS Schema
O] =] mydb mydb

Select Changes to Apply :} autoclub autoclub

Figure 2.74: The schemata screen showing autoclub is already selected

Reverse engineering a database 79

5. Ensure autoclub is selected and click on Next to retrieve the database objects.

6. If the retrieval of objects was successful, click on Next to open the selection screen.
When the screen opens, all arrows will be green. Double-click on the arrow of the
object you do not want to update. You only modified the memberaddress table,
so double-click on all the other table arrows. Your screen should now look similar
to the following screenshot:

Synchronize Model with Database

Connection Options

Model and Database Differences

Sync Options

Connect to DBMS Double dick arrows in the list to choose whether to ignore changes, update the mo
apply an action to multiple selected rows.
Select Schemas
. . Model Updste Source
Retrieve Objects -
v ;:] autoclub autoclub
select Changes to Apply || identificationtype identificationtype
| make make
Review DB Changes || memberaddress = memberaddress
Synchronize Progress = members members
|| states states
|| vehiclemodel wehiclemodel
|| vehicleshape vehicleshape
|| vehicleuse vehicleuse
|| wehiclevariant wehiclevariant
|1} years years

Figure 2.75: The object selection screen
You can click on the update arrow for each object to see what operation will be
performed and decide whether to update the model, source, or ignore. In the
preceding screenshot, you are ignoring all except the memberaddress table,
and you are going to update the source from the model.

7. Click on Next to review the MySQL-generated SQL script to make the changes.
8. Click on Execute to run the script, and when finished, click on Close.

9. Return to the My First Connection tab. Right-click on the autoclub database and
select Refresh All to refresh the list.

80 Creating a Database

10. Right-click on the memberaddress table and select Alter Table to view the tables
settings. You will notice that the datatype of the State column in the database has

now changed to INT:
Column MName Datatype
MemberID INT
State INT

Figure 2.76: The memberaddress.state column is now an INT datatype

11. Select the Foreign Keys tab, and you will see that two foreign keys have been created:

Foreign Key Mame Referenced Table

MemberlD "autoclub™." members’
FK_MemberAddress_State " autoclub’.” states’

Figure 2.77: The foreign key has been created
You have successfully made the changes defined in the model to the live database.

When you are developing a new database, after the initial analysis has been completed,
take the approach of developing the model and EER diagram from your analysis
documents first. Make sure everything is correct, and when done, forward engineer the
model to the database. The database will be created for you.

When you are developing with an existing, undocumented system or migrating from MS
Access, take the approach that you worked with here. For an MS Access migration, first,
migrate the database into MySQL. Once the database is in MySQL (or you are working
on an existing MySQL database), you can then reverse engineer to create the model and
EER diagram. Then, you can make any changes to the EER diagram and model, and
synchronize the model with the live database.

And now, for the final activity in this chapter, you will be modifying the EER diagram, the
model, and the database as you add more objects when the business requirements change.

Activity 2.01 - modifying the EER diagram, the model, and the database 81

Activity 2.01 - modifying the EER diagram, the
model, and the database

Your manager has asked you to include the ability to track Membership Fees in the
autoclub database. Take a good long look at the EER diagram to see how you can insert
this request into the database. You have decided to perform the following steps in order to
implement this:

1. Insert a new table named membershipfees.

The table will have the following columns and datatypes:

Column Datatype Options Foreign key | Constraints
ID Primary Key | Auto
Increment
MemberID INT Not Null FK to update Restricted
members.ID | delete Restricted
FeeAmount Double Not Null
DatePaid Date

WhenAdded | TimeStamp
LastModified | TimeStamp

Figure 2.78: The membership fees table description
2. Save the EER diagram with the changes.
3. Synchronize the model with the database.

Note

The solution to this activity can be found in the Appendix section.

You have worked through updating the database via the EER diagram and model. This
method is useful for situations where you want to plan a database structure and apply it
directly to the SQL database. Often, EER diagrams are an easier way to visualize structures,
so being able to directly apply them makes building databases easier.

Note

The CLI is another popular method that you can use to work with your
database. The CLI will be covered in great detail in Chapter 3.

82 Creating a Database

Summary

In this chapter, you learned how to work with the Workbench GUI to create a complete
database with tables and columns, import new tables from an SQL file, create indexes and
foreign keys, and create an EER model and diagram by reverse engineering the database.
The ability to reverse engineer a database to create the model will make working with
existing databases easier. Following this, you learned how to modify the EER diagram
and forward engineer the changes to the model. Additionally, you explored how to
synchronize the model with the production database.

In the next chapter, you will be using SQL statements to work with the database. You will
learn how to back up and restore the database using MySQL Workbench and perform
different operations using SQL statements.

3

Using SQL to Work
with a Database

In this chapter and the next, you will be learning to use the SQL language to work with
the database. There is much to learn, so the topic has been split into two chapters, with
Chapter 3, Using SQL to Work with a Database (this chapter), concentrating on database
creation, tables, fields, indexes, and foreign keys, the same topics that were covered in
Chapter 2, Creating a Database (excluding EER) but using SQL statements and not a GUI
such as Workbench. You will still be using the Query tabs in Workbench in which to write
SQL. Learning to perform these functions in pure SQL will enhance your knowledge and
skills. We will also cover some new topics, such as adding, modifying, and deleting data
and records.

This chapter covers the following topics:

Working with data

Backing up databases

Restoring databases

Working with SQL code to maintain a database
Creating a new database

Creating and modifying tables

84 Using SQL to Work with a Database

« SQL queries to create indexes and foreign keys

o Activity 3.1 - creating a table with indexes and foreign keys
o Altering table queries

o Adding data to a table

« Updating data in a record

o Deleting data from tables

« Drop queries

 Blobs, files, and file paths

o Files and file paths

An introduction to working with databases
using SQL

In the last chapter, you learned about MySQL Workbench, and how to create a database,
tables, and fields. You then learned how to import tables using an SQL script file and
then set indexes and foreign keys. You learned how to create a database EER model and
diagram by reverse engineering an existing database. You also learned how to modify the
database structure using the EER diagram and forward engineering, the changes to the
model, and finally, you learned how to synchronize the model with the live database.

In this chapter, you will learn the fundamentals of SQL queries, as well as the basics

of creating backups for databases. Backups are valuable when you need to save data to
prevent it from getting deleted or lost. It is important to keep backups of data; otherwise,
data may become unrecoverable, creating a large amount of work to reconstruct a dataset.

To effectively work with MySQL, you will need to understand the fundamentals of SQL
queries. If you want to use MySQL within an application, or query from anything external
to MySQL Workbench, you will need to use SQL queries. These queries will not only
allow you to query from outside MySQL Workbench but also build more complex queries,
which MySQL Workbench is not able to do.

Before we start running queries, we will need to do a quick backup of the autoclub
database. We will do this to ensure that there is always a copy of the data before any
modifications occur. This way, if a modification causes issues in the data, we can recover
to a previous copy, without any issues.

Working with data 85

Working with data

The single most valuable component of any computerized system is data; without it, the
system is meaningless. Over time, as the system is used, the data will build up to a point
where it can provide valuable insights into a business and enable forecasting based on
past trends, upon which business decisions will be made.

We will now start working with data, beginning with some simple additions, updating and
removing records, through to more complex reading of the data from several joined tables
for reporting purposes.

Types of SQL statements
SQL statements come under several main categories when working with MySQL:
« System: The statements will interact directly with the server to perform

system-related tasks.

« Database maintenance: Statements that will work with the database, such as table
and foreign key creation.

« Data manipulation: Statements that work directly with data, such as Insert and
Update. We will be working with these, as these are the statement types you will be
using more than any other.

o Destructive: A statement that removes database items such as records, tables,
and entire databases. Always be careful of these as once something is gone, it may
not be easy to recover it, if at all.

You will work with all of these types throughout this course; for now, we will work with
a data manipulation language.

You will begin with adding data to the table in the following section.

Note

Before we start working with data, we are going to reset the database to

ensure that it is in the proper state, with all the settings in place precisely as
expected for the rest of the chapter to avoid possible issues. We will run a SQL
script to do this. This script will remove the current aut oclub database

and then rebuild it. You can get the script at the following link: https: //
github.com/PacktWorkshops/The-MySQL-Workshop/blob/
master/Chapter02/Excercise%202.03/Chapter2%20
Ancilliary%20Tables.sql.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter02/Excercise%202.03/Chapter2%20Ancilliary%20Tables.sql

86 Using SQL to Work with a Database

Backing up databases

Perhaps the most crucial task while working with data is that you should get into the
practice of making regular backups of your database. Consideration should be given to
the importance of the data and the problems it would cause if it became corrupt, hacked,
or deleted. Most businesses demand daily backups at the very least. The backups can be
created using a script scheduled to run overnight or at times when there is little demand
for the database.

As a developer, backing up your database or even individual tables is essential because,
while using SQL statements, you can easily mess up your database. A backup gives you
a reset point.

You can create database backups in two different ways. The first way is through MySQL
Workbench, and the second is through the command line. In MySQL Workbench, you
can use the Data Export tool to create a backup of the data. Let's create a backup of our
autoclub database using the Data Export tool.

To back up the autoclub database, we can use the following steps:

1. Open Workbench and My First Connection. Log in if required.

2. Open the Server menu from the top menu bar and select Data Export:

'ﬁ My First Connection x
File Edit View Query Database Server Tools Scripting Help

6] (E} @ J Server Status

- Chent Connections
Mavigator Users and Privileges
SCHEMAS Status and System Variables

Q |Filter objects

vehiclemodel
[|:| vehicleshape
[D vehicleuse

» = vehiclevariant

- Data Export
¥ || autoclub
‘!’@ Tables Data Import
[|:| identification Startup'Shutdown
[dentificationtype Server Logs
B = make
» = memberaddress Optiens File
members Dashboard
membershipfees
» B states Performance Reports
vehicle Performance Schema Setup

Management Access Settings. ..

Reset Saved Passwords for Connection

Figure 3.1 - Server | Data Export

Backing up databases 87

3. Select autoclub from the database list and then ensure the following are set, as

shown in the following screenshot:

* Dump Structure and Data are selected.
* Export to Self-Contained File is selected.
* The filename and path for the backup are entered.

* Create Dump in a Single Transaction (self-contained file only) is selected.

* Include Create Schema is selected:

Local instance MySQLED

Data Export

Chject Selection Export Progress

Tables to Export

Schema

autoclub
backuppractice
chat
coffee_data

| contactdb
lagin
ms_access_migration
phpmyadmin
shop

test

O00000000R§

Objects to Export
Dump Stored Procedures and Functions Dump Events

Export Options

Dump Triggers

(®) Export to Dump Project Folder C:\Users\scott\Documents\dumps\Dump20220310

Each table will be exported into a separate file. This allows a selective restore, but may be slower,
() Export to Self-Contained File C:\Users\scott\Documentsdumps\Dump20220310.sq|
All selected database objects will be exported into a single, self-contained file.

Create Dump in a Single Transaction (self-contained file only) Indude Create Schema

Press [Start Export] to start...

Figure 3.2 — The Data Export screen

Start Export

88 Using SQL to Work with a Database

4. Click Start Export, and the database will be exported to a SQL file:

Local instance MySQLBO y o
vance ons...
Data Export p
Ohject Selection Export Progress

Export Completed

Status:
Starting

Log:

21:41:51 Dumping autodub views and/or routines andfor events
Error executing task free variable indude_schema' referenced before assignment in endosing scope
21:41:51 Export of C:\Users\scott\Documents\dumps\Dump20220310 has finished

Figure 3.3 - Successful database export to a SQL file

The autoclub database has now been exported.

To back up a database through the command line, you can use the mysgldump
command. This command will take in a username and password, as well as the databases
that you wish to backup. The general format of the command will be mysgldump
--user [username] --p [database name] > [outputfile].This process
will create a SQL file that can be used to recover the database. Let's try using this
command on the autoclub database to create a backup.

Exercise 3.01 - Backing up the autoclub database

You have been asked by your manager to create a backup of the autoclub database. They
would like the output to be a single file named autoclub. sql. To make the backup
quickly, you have decided to use the mysgldump command-line tool. To create the
backup successfully, take the following steps:

1. Launch the command line on your computer.

2. Run the following command:

mysgldump --user yourusernamehere --p autoclub >
autoclub.sqgl

Restoring databases 89

Once the command is completed, you will have a single file named autoclub. sqgl that
contains the backup of the database.

Of course, if something goes wrong, you will need to restore the database. In the next
section, we will learn about restoring database backups.

Restoring databases

If you need to restore the autoclub database at any point during Chapter 3 and Chapter
4, return to this section.

You are able to restore database backups using two different methods. The first is through
MySQL Workbench, using the Data Import tool. To see how this works, let's try to restore
our autoclub database.

To restore the aut oclub database, follow the following steps:

1. Open Workbench and My First Connection. Log in if required.

2. From the top menu of the Workbench menu tab, select Server and then Data Import:

'ﬁ My First Connection
File Edit View Query Databaze Server Tools Scripting Help

RS Server Status
| o SE&EE!
Client Connections
MNavigati
Sl Users and Privileges -
SCHEMAS
Status and System Varizbles
Q |Ij||ter objects Data Export 1
¥ [autoclub
= Data | rt
Y@ Tables =i mee
[2 identification Startup'Shutdown
» = identificationtype Server Logs
» make]]
I memberaddress Opticns File
g members Dashboard
[2 membershipfees
> states Performance Reports
[2 vehicle Performance Schema Setup
[2 vehiclemodel . .
> vehideshape Management Access Sethings ..
» vehicleuse Reset Saved Passwords for Connection

> vehiclevariant

Figure 3.4 - Server | Data Import to restore the autoclub database

90 Using SQL to Work with a Database

The following screen will appear:

Query 1 vehiclemodel Administration - Data Import/Res

My First Connection

Data Import

Import from Disk Import Progress
Import Options

(O Impart from Dump Project Folder C:\Users{Tom'\Documents\dumps

Load Folder Contents

(® Import from Self-Contained File C:\Users\Tom\Documents'dumps\autodub 20200117.sq]|

Select the SQL/dump file to import. Please note that the whole file will be imported.

Default Schema to be Imported To

autaclub - The default schema to import the dump into.
Default Target Schema: New... MOTE: this is only used if the dump file doesn't contain its schema,
otherwize it is ignored.

Select Database Objects to Import {only available for Project Folders)

Imp... Schema Imp... Schema Objects

Dump Structure and Dat ~ Select Views Select Tables Unselect Al

Press [Start Import] to start... Start Import

Figure 3.5 — The Data Import screen

3. Select Import from Self-Contained File and then locate the backup file you created
in Exercise 3.01 for the autoclub database.

4. Select autoclub from the Default Target Schema drop-down menu.

Restoring databases 91

5. Click Start Import. The following screen will display, and the database will be
imported:

Impert from Dk Import Frogress
Import Completed

Status:
10f Limported.
Log:

Rurring: myed eve defaits He="c: ters\tomappdataoc I\mu\mwds: .anf® oetee ol =tcp —host=192. 168.0.3 —user=Tom —port=3306 -~default-characterset=utf3 -—comments < 20200117.5ql"
1212857 Inporto fc\u r<\om Documents\dumpeiautodab 2020117, sdl has Mshed

Figure 3.6 — A successful import

6. Now, close the screen.
The autoclub database is now restored to the last backup point.

To use the command line for restores, you can use the mysgl command to run the SQL
file created by the backup. The syntax for this command ismysgl -u [username]

-p [database name] < [filename].Let's try this command to recover our
autoclub database.

Exercise 3.02 - restoring the autoclub database

A coworker has accidentally deleted one of the tables in the autoclub database! You

need to recover the database to the latest backup so that the data is useable again. To do
this, take the following steps:

1. Launch the command line on your computer.

2. Runthemysgl --u yourusernamehere --p autoclub < autoclub.
sgl command.

Now that you have restored your previous work, we can continue working with SQL
statements to modify the database.

92 Using SQL to Work with a Database

Working with SQL code to maintain a database

Working with the MySQL server and SQL code provides flexibility, as you can construct
complex queries that MySQL Workbench cannot easily create. You can not only run the
SQL directly from Workbench but also send SQL statements to control the server and read
data from external systems such as Node.js, Microsoft Access, and Excel. We will be doing
a lot of work with these systems in the upcoming chapters. SQL is the main way you will
work with the MySQL server from external applications.

This chapter will get you started with raw SQL to perform the most common tasks you
will be required to perform on the server.

Note

The SQL statements can be created differently and sent to the server for
execution. For instance, you will learn about how to run SQL statements in
JavaScript in Chapter 7 and Chapter 8.

In the next section, we will create a new database using SQL queries.

Creating a new database

The creation of an actual database is the first thing we are asked to do. Creating the
database is, in itself, very simple in its most basic form. It can be done with a single line
of code. The database in Workbench can be created using the following command:

CREATE SCHEMA '<database name>';

In addition, you can use the same syntax in the command line for MySQL to create
a database.

Note

Some SQL statements have synonyms, which contain different syntax but have
the same functionality. To create a database, you can use CREATE SCHEMA
'<database name>'; or CREATE DATABASE '<database
name>' ;.Both will create a database in the same way.

In the following exercises, we will create two new databases, just to go through the
process. We will not use them any further, and all other work in the chapter will be
with the autoclub database.

Creating a new database ~ 93

Exercise 3.03 - creating a new database

Your company is creating a new MySQL database in order to track shop orders. To do this,
your manager has asked you to create a database called shoporder. To do so, follow the
following steps:

1. Open Workbench and My First Connection. Log in if required.

2. Click the Create a new SQL tab for executing queries icon, as shown in Figure 3.7:

Figure 3.7 - Create a new SQL tab for executing queries

A new tab will be created.

3. Create a new database using the following command:

CREATE SCHEMA 'shoporder';

Note

The characters around the database name are backticks ('), which are located
at the left of your keyboard. They are NOT single quotation marks.

4. Click Execute the selected portion of the script or everything, if there is no
selection (the lightning bolt icon), to execute the preceding query. This will
execute the statement and create the database.

Note

You can have multiple and distinct SQL statements in a single query tab. If you
want to run only part of it, you can highlight the statement you wish to run
and then click the lightning bolt icon. Only the highlighted section will execute
then. If there is nothing highlighted, all of the statements will execute.

5. Right-click anywhere in the SCHEMA panel and select Refresh All. The list will be
refreshed, and the new database will be displayed.

94 Using SQL to Work with a Database

To complete this task through the command line instead of MySQL Workbench, follow
the following steps:

1. Connect to your MySQL database by launching the command line and running
mysgl -u [username] -p [password].

2. Once connected, run the command to create the database, CREATE SCHEMA
'shoporder! ;.

3. To verify that the database was created, run the show databases command,
which shows all the databases in your current MySQL instance:

Figure 3.8 - The result of the show databases query

Well, you can't get much simpler than that. The database has been created with a one-line
statement and is ready to be filled with tables, data, and other objects.

In most databases, you will use the default collation as defined in the server during
installation. However, in some circumstances, you may need to define a specific collation
for the database. For instance, if you plan to connect to the database using Microsoft
Access, it has a specific requirement regarding MySQL and collation. This will be discussed
in further detail in Chapter 6, Stored Procedures and Other Objects. For now, we will use the
default collation.

That completes creating a database using SQL statements. We will continue working with
the autoclub database for the remainder of this chapter.

In the next section, we will learn how to create and modify a table using SQL statements.

Creating and modifying tables 95

Creating and modifying tables

Once the database is created, you want to start adding tables to it. You can, at any time,
add new tables to the database and even add new fields to the tables. However, once
applications are using your database, you should be very careful about removing or
renaming procedures, views, tables, and fields because applications or MySQL views
and procedures using these objects will stop working.

You can create a new table using the following command:

CREATE TABLE [IF NOT EXISTS] tableName (FieldNamel Datatype,
FieldName2 Datatype, ..)

There are a number of properties we can set when we add a field to a table. Before we
move on to an example, let's briefly discuss the properties available for our fields. The first
common type of property is to set controls for whether a field can be null or not. If a field
should never be null, you can add NOT NULL after the field data type. Otherwise, you can
place NULL after the data type to allow for null values.

AUTO_INCREMENT is another common property that is set in table creations. This
property can be set for integer values and allows for a field to automatically increment
each time a record is added. So, for example, when you add your first record, the
AUTO_INCREMENT field will be set to 1. The next record will get 2, then 3, and so on.

With the DEFAULT property, we can specify the default value for a field if one is not
provided. Finally, we can set ON UPDATE to change a field to a specific value when the
record is updated. This is typically used for timestamps to keep track of when a record
was last changed.

In the next exercise, you will create a new table using the SQL statements.

Exercise 3.04 - creating a new table

The Automobile Club has several staff members who access a database. It is important to
ensure that each user has their own user ID and password to gain access to the database.
You have to create a user table to control who has access to the database. This table will
contain the following fields and properties:

Field name Data type Properties

ID INT NOT NULL,AUTO INCREMENT
Username VARCHAR (16) NOT NULL

Email VARCHAR (255) NULL

96 Using SQL to Work with a Database

Field name Data type Properties

Password VARCHAR (32) NOT NULL

Active Bit NOT NULL,DEFAULT 1

WhenAdded TIMESTAMP NOT NULL, DEFAULT CURRENT _
TIMESTAMP

LastModified TIMESTAMP NULL, DEFAULT, CURRENT _
TIMESTAMP,ON UPDATE
CURRENT TIMESTAMP

Figure 3.9 - The user table with values

To create the user table, perform the following steps:

1. Open Workbench and select My First Connection. Log in if required.

2. Click the Create a new SQL tab for executing queries icon:

$EDFENE S

Figure 3.10 - Create a new SQL tab for executing queries

3. Enter the following SQL statement to create a new table, user, in the autoclub
database:

-- Table 'autoclub'.'user'
CREATE TABLE IF NOT EXISTS 'autoclub'.'user' (
'ID' INT NOT NULL AUTO_INCREMENT,
'username' VARCHAR (16) NOT NULL,
'email' VARCHAR (255) NULL,
'password' VARCHAR (32) NOT NULL,
'Active' BIT NOT NULL DEFAULT 1,
'WhenAdded' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP,

'LastModified' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP
ON UPDATE CURRENT TIMESTAMP,

PRIMARY KEY ('ID')) ;

The first line of this query defines the name of the table and specifies that it should
be created only if it does not currently exist. The next set of lines defines the fields in
the table, their data types, and any properties that are required for them.

Creating and modifying tables

97

4. Execute the SQL query by clicking the Execute SQL (lightning bolt) icon.

5. Right-click anywhere in the SCHEMA panel and select Refresh All. The list will be

refreshed, and the new user table will be visible in the autoclub table list:

design mode:

v _E] autoclub

T@ Tahles

| . user
@ Views

@ Stored Procedures

@ Functions

Figure 3.11 — The new user table

6. Right-click on the table in the schema list and select Alter Table to view the table in

¥ 5 autoclub

yYY¥ Y Y Y Y Y IYIYyIYIYYyY Ty TyFr

T@ Tables

> . user
@ Views
@ Stored Proce
@ Functions
backuppractice
customerdataba
employee
hellen

hermes
import_test
motdatabase
nvdanalysis

olm
openscience
packt_online_sh
packttest
phpmyadmin
test
world_statistis

Figure 3.12 - Right-click the table and select Alter Table

Select Rows

Table Inspector

Copy to Clipboard

Table Data Export Wizard
Table Data Import Wwizard
Send to SAL Editer
Create Table...

Create Table Like...

Alter Table...

Table Maintenance...
Drop Table. ..

Truncate Table...

Search Table Data...
Refresh All

98 Using SQL to Work with a Database

You will get the following screen:

r— Table Name: |2 Schema: awtoclub
L:/ﬁ‘r Collation: | Schema Default ~| Engine: |InnoDB
Comments:
Column Mame Datatype PK NM UQ B N ZF Al G Default/Expression
D INT(11) O 0O O O [l
username varcHar(1s) [I I I I B O I
email varcHar(zss) O O O O O O O O wow
password vARCHAR(3Z) [OO 0O0gdgdood
Active BIT(1) O O O O 0O O O vr
WhenAdded TIMESTAMP O O O O O O O O CcurRENT_TIMESTAMP
LastModified TIMESTAMP O O O O O O O O CURRENT_TIMESTAMP ON...
O 000000 no

Figure 3.13 — The user table in design view, with the settings as defined in SQL

This shows us that each of the fields was added as expected. The output also shows the
data type, as well as any properties that were set at the time of creating the table.

If you want to complete these steps using the command line, the same syntax applies. The
steps are as follows:

1. Connect to MySQL using mysgl -u [user] -p [password].
2. Once connected, type or copy the query we used for MySQL Workbench:

CREATE TABLE IF NOT EXISTS 'autoclub'.'user' (
'ID' INT NOT NULL AUTO_INCREMENT,
'username' VARCHAR (16) NOT NULL,
'email' VARCHAR (255) NULL,
'password' VARCHAR (32) NOT NULL,
'Active' BIT NOT NULL DEFAULT 1,
'WhenAdded' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP,

'LastModified' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP
ON UPDATE CURRENT TIMESTAMP,

PRIMARY KEY ('ID'));

SQL queries to create indexes and foreign keys 99

3. Once the query has been executed, you can verify it was successful using the
following queries:

= Use autoclub to set the database to the autoclub database.

* Run the show tables; query to display all of the tables in the autoclub
database:

Figure 3.14 — The result of the show tables query showing the user table

In this exercise, you have created a simple table with several fields, a primary key, and
a few default values; you also enforced that some value must be entered into the required
fields by setting the NOT NULL field.

Note

You may have noticed that there is nothing to ensure that the value entered
in the username field is unique while creating the table. This is done
intentionally so that you can correct it in Exercise 3.05.

In the next exercise, you will create a new table with an index and a foreign key included.
Primary keys aside, indexes and foreign keys are likely to be the most common settings
you should include when creating a new table. Assuming you have already worked
through the initial analysis and design stage of the database, you will know what fields
these are to be applied to.

SQL queries to create indexes and foreign keys

When working in MySQL, we will often have multiple tables, containing multiple datasets.
These datasets are often related to each other in some way, typically with a common field
between them. For example, if we had a table of customers, each customer might have a
customer ID. From here, we may have a table of orders that contains the customer ID of
the person who ordered it. We can relate these two tables using the customer ID field that
they both share.

100 Using SQL to Work with a Database

This type of relationship is called a foreign key relationship. To help to define these
relationships, MySQL allows us to specify them at the time of creating a table. This creates

a relationship between the two tables. The main advantage of this is that we can enforce
policies for the foreign keys. For example, suppose we wanted to change a customer ID in
our customer table. It will, in turn, make sense that we want to update the same customer ID
in every other table that it appears in. To achieve this, we can set a property for our foreign
key so that if the customer ID in the customer table changes, it will also change in the other
tables that have it as a foreign key. This allows for our data integrity to be easily maintained.

To define a foreign key in a create query, we will use the following syntax:

CONSTRAINT ' [NameOfForeignKey] '
FOREIGN KEY ('FieldName')
REFERENCES 'OtherTable' ('FieldName')
[Additional Properties])

In addition to defining foreign keys, we can also define indices on our database tables.
Indices define how data is stored in a database system. When we index a table, we order
the data within it in a way that is easier to search through. For example, if you index a
field that contains customer IDs, they will typically be sorted, allowing for faster searching
through the values.

We will define an index using the following syntax:
[UNIQUE] INDEX 'IndexName' ('FieldName' [ASC|DESC])

We use the UNIQUE keyword when the field being indexed does not contain duplicates.
With this understanding, we can now look at how these queries work in an example.

Exercise 3.05 - creating tables with indexes and
foreign keys

The Automobile Club holds regular events for its members and their families. You need
to include tables to hold the data of the events. In this exercise, you will create three new
tables in the autoclub database for the events and assign the indexes and foreign keys
at the time of creation.

SQL queries to create indexes and foreign keys 101

To add the new tables, perform the following steps:

1. Open Workbench and click My First Connection. Log in if required.

2. Click the Create a new SQL tab for executing queries icon:

ol dl o & & &E & s [&

Figure 3.15 - Create a new SQL tab for executing queries

3. In the tab, create the first table with the following query:

-- Table 'autoclub'.'eventvenues'
CREATE TABLE IF NOT EXISTS 'autoclub'.'eventvenues' (
'ID' INT NOT NULL AUTO INCREMENT,
'VenueName' VARCHAR (100) NOT NULL,
'VenueAddressl' VARCHAR (255) NULL,
'VenueAddress2' VARCHAR (255) NULL,
'VenueTown' VARCHAR (30) NULL,
'VenueState' INT NULL,
'VenuePostcode' VARCHAR (10) NULL,
'VenueContactName' VARCHAR (20) NULL,
'VenuePhone' VARCHAR (15) NULL,
'VenueEmail' VARCHAR (255) NULL,
'VenueWebsite' VARCHAR (255) NULL,
PRIMARY KEY ('ID'),
INDEX 'FK EventVenue States idx' ('VenueState' ASC),
UNIQUE INDEX 'Idx VenueName' ('VenueName' ASC),
CONSTRAINT 'FK EventVenue States'
FOREIGN KEY ('VenueState')
REFERENCES 'autoclub'.'states' ('ID')
ON DELETE RESTRICT
ON UPDATE RESTRICT)
ENGINE = InnoDB;

102

Using SQL to Work with a Database

4.

This will create the eventvenues table, which will contain details about the event
venues that exist for the autoclub. This table contains an index on the venue state,

as well as a unique index on the venue name. There is additionally a foreign key,
linking the venue state field to the states ID table. This foreign key restricts update
and delete, meaning that these operations cannot be completed on the table, in
order to keep the integrity of the key. Next, we can create the second table. The code
to create this table can be found at https://github.com/PacktWorkshops/
The-MySQL-Workshop/blob/master/Chapter03/Exercise05/
Exercise%205%20%E2%80%93%20Creating%20a%20news20table%20
with%20Indexes%20and%20Foreign%20Keys. txt.

This query creates the club events table, which contains all the events for the
autoclub. This table has an index on the venue start,venue end,and event
date fields. This table also contains two foreign keys, one for the venue start
field and one for the venue end field. Finally, we can create the last table:

-- Table 'autoclub'.'eventtype'

CREATE TABLE IF NOT EXISTS 'autoclub'.'eventtype' (
'ID' INT NOT NULL AUTO_ INCREMENT,
'EventType' VARCHAR (45) NULL,
PRIMARY KEY ('ID'))

ENGINE = InnoDB;

This query creates the eventtype table, which stores the event types that exist for
the autoclub.

Execute the SQL code by clicking the Execute SQL (lightning bolt) icon:

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise05/Exercise%205%20%E2%80%93%20Creating%20a%20new%20table%20with%20Indexes%20and%20Foreign%20Keys.txt
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise05/Exercise%205%20%E2%80%93%20Creating%20a%20new%20table%20with%20Indexes%20and%20Foreign%20Keys.txt
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise05/Exercise%205%20%E2%80%93%20Creating%20a%20new%20table%20with%20Indexes%20and%20Foreign%20Keys.txt
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise05/Exercise%205%20%E2%80%93%20Creating%20a%20new%20table%20with%20Indexes%20and%20Foreign%20Keys.txt

SQL queries to create indexes and foreign keys

103

e ¥ F¥aed 2 © O @I oontum

L= = IR R R R WV N]

R Rl el el =l el el el el
0O Sl O LT B WM @ W00 Wb W= ®

Table "autoclub” . eventwenues”

® [C]CREATE TABLE IF NOT EXISTS ~autoclub’ . eventvenues™ (

TIDT INT MOT NULL AUTO INCREMENT,
“VenueName™ WARCHAR(128) NOT NULL,
“VenueAddressl® VARCHAR(255) NULL,
“VenueAddress2® VARCHAR(255) NULL,
“VenueTown™ WARCHAR(38) NULL,
“VenueState™ INT NULL,
“VenuePostcode™ VARCHAR(18} NULL,
“VenueContactName™ VARCHAR(28) NULL,
“VenuePhone™ VARCHAR(1S5) MNULL,
“VenueEmail® WARCHAR(255) NULL,
“Venuelebsite® WARCHAR(255) NULLJ
PRIMARY KEY (ID),
INDEX ~FK_EventVWenue States idx™ (VenueState® ASC}),
UNIQUE INDEX ~Idx VWenueName™ (VenueName ™ ASC}),
CONSTRAINT ~FK_EventWenue States”

FOREIGN KEY (VenueState)

REFERENCES “autoclub™.” states™ (TID")

ON DELETE RESTRICT

ON UPDATE RESTRICT)

ENGINE = InncDBj;

Figure 3.16 — The SQL code and the lightning bolt icon to run it

"l € Q1 2

5. Right-click anywhere in the SCHEMA panel and select Refresh All. The list will be

refreshed, and the new tables should be visible in the autoclub table list:

Figure 3.17 - New eventvenues, eventtype, and clubevents tables are visible

Mavigator:--
SCHEMAS 0
Q |Fi|1:er objects

v @ autoclub ’
w i Tahbles
> % eventvenues
| % eventtype
[3 % clubevents
» = identification
» = identificationtype
> % make

104 Using SQL to Work with a Database

6. Right-click on each table in turn in the schema list and select Alter Table to view
each table in design mode:

SCHEMAS B |'=__|
Q, |Fi|ter ohjects |

v Eé} autoclub o
Y@ Tables
> eve
» . Bve Select Rows
> club Table Inspactor
> . eve
> ide Copy to Clipboard »
> E ide TeHIE D e Expra]
» = mak
> men Table Data Import Wizard
» = men Sendto QL Editor)
> men
[stat Create Table. .
¥ E use Create Table Like... ,
>
> @ | Alter Table... |
[% Table Maintznance. .

Figure 3.18 - Right-click the tables in turn and select Alter Table
The eventvenues table in design mode should look like the following:

SQL File 3 eventvenues - Table

B Table Mame: |E“E"‘t“'e"“-'ES | Schema: autoclub
1%
LMJ Collation: |Schema Default ~ | Engine: | InnoDB
Comments:
Column Name Datatype PK. NN UQ B UN ZF Al G Default/Expression
i [N |EA OO0 0O O O |
VenueName VARCHAR{100) O O 0O 00 0d
VenueAddressl VARCHAR(255) O 0O 0O 000 0 0 ww
VenueAddress2 VARCHAR(255) O 0000000 wnw
VenueTown VARCHAR(30) O O 0O 0000 0O wow
VenueState INT(11) OO00O00000 wnow
VenuePostcods VARCHAR(10) O O 0O 0000 0O wow
VenueContactName VARCHAR(20) O O 00000 O wu
VenuePhone VARCHAR(15) O O 0O 0000 0O wow
VenueEmail VARCHAR(255) O 0O 0O 000 0 0 ww
VenueWebsite VARCHAR(255) O 0000000 wnw
O 0O000o0nbnO

Figure 3.19 - The eventvenues table in design view with settings as defined in SQL

Activity 3.1 - creating a table with indexes and foreign keys 105

In this exercise, you have created three new tables with foreign keys and indexes. You will
have noticed that when you start creating indexes and foreign keys, it can get a little more
complicated, but certainly, with some practice, you will master the concept of creating
foreign keys and indexes.

In the upcoming activity, you will add one more table to the autoclub database along
with indexes and foreign keys.

Activity 3.1 - creating a table with indexes and
foreign keys

The autoclub now wants members to be able to register for events. To do this, they would
like you to create a table named EventMemberRegistration. This table will contain
details about the members registered for particular events.

In this activity, perform the following steps:

1. Add a new table to the autoclub database and name it
EventMemberRegistration.

2. Add the following fields to the table:

= 'ID' INT NOT NULL AUTO INCREMENT,

* 'ClubEventID' INT NOT NULL,

* 'MemberID' INT NOT NULL,

* 'ExpectedGuestCount' INT NOT NULL DEFAULT O,
* 'RegistrationDate' DATE NOT NULL,

* 'FeesPaid' BIT NOT NULL DEFAULT O,

* 'TotalFees' DOUBLE NOT NULL DEFAULT O,

* 'MemberAttended' BIT NOT NULL DEFAULT O,

* 'ActualGuestCount' INT NOT NULL DEFAULT O,

* 'Notes' MEDIUMTEXT NULL,

* 'WhenAdded' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP,

* 'LastModified' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP
ON UPDATE CURRENT TIMESTAMP,

106 Using SQL to Work with a Database

Set the ID field as the primary key.

4. Create a standard INDEX named ' Idx EventID' onthe ClubEventID field;
set its sort order to descending.

5. Create a standard INDEX named 'FK EventReg Members idx' on the
MemberID field; set its sort order to ascending.

6. Create a foreign key named FK_EventReg_ClubEvents for the ClubEventID
field that references the ID field in 'autoclub' . 'clubevents'; both UPDATE
and DELETE constraints should be NO ACTION.

7. Create a foreign key named FK_EventReg Members for the MemberID field that
references the ID field in 'autoclub' . 'members';both UPDATE and DELETE
constraints should be NO ACTION.

8. Set the table to use the InnoDB database engine.

Note
The solution to this activity can be found in the Appendix.

Altering table queries

In addition to creating tables, it is also possible to modify existing tables. This can be done
using an ALTER query. An ALTER query uses the following syntax:

ALTER TABLE [table name] [alter options]

ALTER queries can be used for a number of purposes. One common reason is to change
how a field in a table is defined. For example, suppose we have a customer table that
contains a field for username. Currently, it allows for a VARCHAR value of size 15, but we
want to extend this to be size 30. To do this, we can use an ALTER query, as follows:

ALTER TABLE customer MODIFY username VARCHAR (30) ;

We can also use the ALTER query to add an index to our table. To do this, we first need to
create the index using a CREATE query. So, for example, suppose we now wanted to add
an index to the username of our customer table. First, we create the index for username:

CREATE UNIQUE INDEX 'idx username' ON customer ('username')

The next exercise will show further applications of modifying tables with an index.

Altering table queries

107

Exercise 3.06 - modifying an existing table

In most database applications, usernames are unique. Although they do have a unique
numerical user ID, the text name should be unique as well. You are required to make the

username field unique in the user table by creating a unique index. Also, you are asked to
add a foreign key named (‘'Event Type') that references the 'Event Type' tables ('ID') field.

Perform the following steps:
1. Open a new SQL panel in Workbench and enter the following command:

CREATE UNIQUE INDEX 'idx username' ON 'autoclub'. 'user'
('username')

2. Execute the SQL to create the index.

A new index will be created on the username field by making it a unique index,

which means that no two records can have the same name.

Note

The preceding query will work fine on an empty table. If you already have data
in the table and any names are the same, the index will not be created, and the

corresponding SQL statement will fail.

3. Enter the following SQL statement into the query tab to add a foreign key on the

EventType field that references the ID field of the EventType table:

ALTER TABLE 'clubevents'
ADD CONSTRAINT 'FT{_ClLﬂDeVEﬂltS_jiverltT}q)e'
FOREIGN KEY ('EventType') REFERENCES 'EventType' ('ID') ;

4. Execute the SQL query by clicking the lightning bolt icon:

clubevents - Table

Enl;.ﬁﬁ |@| [Z] | Dont Limit '|';.:5|@®\|E|EJ

1® ALTER TABLE "clubevents®
ADD CONSTRAINT “FK_Clubevents EventType”
FOREIGN KEY (EventType™) REFERENCES ~EwventType™ (TID");

ol pa

Figure 3.20 — The SQL code and the lightning bolt icon to run it

5. Refresh the SCHEMA panel, and you will see that the table now has a foreign key

added to it.

108 Using SQL to Work with a Database

6. Open the clubevents table in design view to examine the table design, indexes, and

foreign keys:

SCHEMAS

Q |Filter objects

Al E} autoclub
‘F@ Tables
vE du

>

> B

viE

» B
E e
b.ev
b'e'\.'
» El ide
Pide
bma
> E me
> E me
brne
I'st
=R
> E ve
b\.'e
. =

Select Rows 1
Table Inspector

Copy to Clipboard .
Tahle Data Export Wizard
Tahle Data Import \Wizard

Send to SQL Editer 3
Create Table...

Create Table Like... [
Alter Table...

Table Maintenance...

Drop Table..
Truncate Table. ..

Search Table Data...
Refresh All

Figure 3.21 - Right-click the clubevents table and select Alter Table
The new foreign key will be visible, and the default values for the UPDATE and
DELETE options of RESTRICT have been included automatically:

_— Table Name: |dubevems

| Schema: autoclub

Lﬁ"

Collation: | Schema Default ~| Engine: |InnoDB w
Comments:
Fareign Key Name Referenced Table Column Referenced Column Foreign Key Options
F¥_ClubEvents_EventVen... "autoclub’.” eventvenues® Om On Update: | RESTRICT
FK_ClubEvents_EventVen... "autoclub™.” eventvenues’ EventType D

FK_Clubevents_EventType "autoclub®.’ eventtype’

[EventDate On Delete: |RESTRICT

[EventstartTime
[EventendTime
D RegistrationTime
[venuestart

[venuend

[EntriesClose

D EntryFee

[eventTitle

[EventBlurb

[clubeventscol

[skipin 5QL generation

Figure 3.22 - The design view of the clubevents table

Altering table queries 109

You will also see that the index is automatically created on the new foreign key field:

—r Table Name: |E|L'b'3““3"'tS | Schema: autoclub
]_f"r Collation: |Schema Default ~| Engine: | InnoDE
Comments:

Index Name Type Index Columns
PRIMARY PRIMARY
FK_ClubEvents_EventVenue_idx INDEX Column # Order Length
FK_ClubEvents_EventVenue End_idx INDEX (R ASC
Idx_EventDate INDEX EventType 1 A5C
FK_Clubevents_EventType INDEX (] EventDate ASC

(] EventStartTime ASC

[] EventEndTime ASC

|:| RegistrationTime ASC

O] venuestart ASC

(] venuEnd ASC

[EntriesClose ASC

[EntryFee ASC

O] EventTitle ASC

(] EventBlurh ASC

[clubeventscol ASC

Figure 3.23 - An index is created automatically on the new foreign key field

This exercise demonstrates how we can add indices and alter existing tables. This allows us
to change tables if we ever need to accommodate different datasets.

Creating a database can be a large undertaking, and mistakes or omissions in the design
can creep in. In some cases, you may not find them until you are much further into
development or the database has gone live. Approaching the task carefully and systemically
during the initial design and creation can allow you to identify issues early in development
when it is simplest to correct them. However, when database objects, applications, or
websites are developed using the database, fixing them may prove far more complex, as
alterations can quickly stop applications from working or render database objects (such as
views and stored procedures) inoperative.

The two issues we fixed here will be among the most common changes you need to
make in your database or when migrating an existing one. However, always thoroughly
investigate the possible effects of any change. Sometimes, changes can cause more issues,
so don't just dive in and change something; investigate it first.

So far in this chapter, we have backed up our database due to impending changes, added
some tables and fields, and corrected some issues, all with SQL commands only.

Now, we get to work with some data; after all, that's what tables are for, right? In the next
section, we will be adding, modifying, and removing records from the database tables.

110 Using SQL to Work with a Database

Adding data to a table

When adding data to a database through an application, you will usually add one record
at a time, although you may string several additions together in a single script. The data
can come from a system user, sensors on a production line, be scraped from a webpage,
another computer, or any other method where it is possible to extract data for recording,
and the computer applications behind all of these possible data entry sources will record
it in a similar way.

You can add a record in the table using the following command:

INSERT INTO [TableName] ([fieldl], [field2],.., [fieldn]) VALUES
(Valuel,Value2,...,Valuen)

It is also possible to insert data from another table into the current target. These types of
queries will use a SELECT statement and work as shown here:

INSERT INTO [TableName] ([fieldl], [field2],.., [fieldn]) SELECT
[fieldl, field2,..,fieldn] FROM [tablename]

In the next exercise, you will add a record to a database table.

Exercise 3.07 - adding a single record to a members
table

The autoclub table has its first official member and would like to add them to the
database! In order to add the member, you will need to run an insert query into the
members table. The following steps show how this can be done:

1. Open Workbench and click My First Connection. Log in if required.

2. Click the Create a new SQL tab for executing queries icon:

$EEEEERE

Figure 3.24 - Create a new SQL tab for executing queries

Adding data to a table 111

3. In the tab, enter the following SQL statement to add a record:
INSERT INTO members

('Surname', 'FirstName', 'DOB', 'JoinDate')
SELECT "Bloggs", "Frederick","1990/06/15","2020/01/15";

Let's break down the preceding SQL command:
INSERT INTO members

It tells the server that you want to insert record/s into the members table:

('Surname', 'FirstName', 'DOB', 'JoinDate')

This is a list of the fields to enter data into. The field names are enclosed in backticks
and are separated by commas. Also, the entire field name list is enclosed in brackets:

SELECT "Bloggs", "Frederick","1990/06/15","2020/01/15";

The SELECT commands tell the server to use the following data; each data item
in this sample is passed in as a string, so they are enclosed in quotes. They are also
separated by commas, and they are in the exact same order as the field names

are listed.

4. Execute the SQL query by clicking the Execute SQL (lightning bolt) icon. You
should get the following output:

Output
[Action Output

Time Action Message Duration / Fetch
[-] 1 20:02:30 INSERT INTO members (‘Sumame’. FirstName". DOB". JoinDate’) SELECT "Bloggs"."Frederick"."1590/06/15"."2020/01/15" 1 row(s) affected Records: 1 Duplicates: 0 Wamings: 0 0.034sec

Figure 3.25 - The Output pane at the bottom of the screen will display the query result

112 Using SQL to Work with a Database

5. To view the data in the table, right-click on the members table and click
Select Rows:

MNavigator
SCHEMAS B

Q |Filter objects

v é} autoclub ”
T@ Tables
[clubevents
[eventmemberreqistration
[eventtype
[eventvenues
b = identification
b E identificationtype
[make
[memhberaddress
| 3 mem
> mer Select Rows

> stat Table Inspectaor

Figure 3.26 — Right-click on members and click Select Rows
You should get the following screen:

<

| Result Grid | TH 43 Fiter Rows: | edt: &) Bk | eport/import: B £y | wrep Call Content: T&

jin] Surname FirstName MiddleNames DOB Signature Photo Active JoinDate InactiveDate WhenaAdded LastModified
» Bloggs Frederick 1990-06-15 1 2020-01-15 2020-01-21 20:02:30 2020-01-21 20:02:30

Figure 3.27 - The record has been added to the table
In the preceding figure, note that there are some fields that we have not included in
our SQL statement. This is because they are either set to default or can accept null
values or are incremented by default:

* ID: This is the primary key field. The Auto Increment option we have set will
cause this number to increase every time a record is inserted.

* MiddleNames: Not everyone has a middle name, so this field is set to allow nulls.

* Signature and Photo: We may not have these immediately when the records
are added, so they can accept a null value too.

Updating data in a record 113

* Active: Thisis 1 (True) by default. We expect that when a member is initially
added to the database, they will be active.

* InactiveDate: This can accept a null value because this field may be used at a
later date.

* WhenAdded and LastModified: When the record is first added, they will have
the same date/time value set by their respective defaults. WhenAdded will never
change from this value; however, LastModified will change each and every
time the record is modified in any way.

Note that this same syntax can be used in exactly the same way when working with the
MySQL command line.

Now it is your turn; in the next activity, you will insert a record into the members table.

Records in a database are often updated, as information often needs to be added or
updated. In the next section, we will learn how to update a record.

Updating data in a record

A database is not meant to be totally static, unless, of course, it is an archive. Some
information in the database will need to be changed at times or perhaps added to.

You can update a record using the following command:

UPDATE [tablename] SET [fieldl] = [Valuell], .. , [fieldn] =
[Valuen] ;

For example, if you had a table named customers and you wanted to set the active field
to 0, you could use the following:

UPDATE customers SET active = 0;

In the next exercise, we will update a single record of a table.

Exercise 3.08 - updating a record

Fred Bloggs has informed the Automobile Club that he will no longer be retaining his
membership. You are required to make him inactive in the database so that he doesn't
receive invitations to club events.

114 Using SQL to Work with a Database

To make Fred inactive in the database, perform the following steps:

1. Open Workbench and click My First Connection.

2. Click the Create a new SQL tab for executing queries icon:

#EDPEHE S

Figure 3.28 - Create a new SQL tab for executing queries

A new tab will be created.

3. In the tab, enter the following SQL statement to make Fred inactive:

UPDATE members
SET

active = 0,

InactiveDate = CURRENT_DATE()
WHERE

ID=1;

Let's break down the preceding SQL command:
* UPDATE members instructs the server to modify the members table.

* SET updates the following fields to the indicated values:

+ active= 0 sets the active field to 0.

* InactiveDate = CURRENT DATE () sets the InactiveDate field to
the current date, and CURRENT DATE () is a MySQL function that returns
the current date.

* Multiple fields are separated by commas.

* WHERE ID=1; sets the preceding values only to records whose ID field has a
value of 1.

The WHERE clause in an SQL statement allows us to filter the records to specific
criteria so that the actions will only affect those/that record(s). In this case, Fred's ID
value is 1, so only that record was affected. If WHERE was left out, all records would
have been changed.

Updating data in arecord 115

4. Execute the SQL query by clicking the Execute SQL (lightning bolt) icon:

EME Y ¥e0 R IO O @I oonwnt % ¥ Q 1 (=

1@ UPDATE members

2 SET

3 active = @,

4 InactiveDate = CURRENT_DATE()
5 WHERE

& ID=1;]

Figure 3.29 - The SQL code and the lightning bolt icon to run it

5. To view the data in the table, right-click on the members table and click Select Rows:

SCHEMAS B -
Q |Filter ohjects

¥ = autoclub P
T@ Tables
[2 clubevents
[eventmemberregistration
> eventtype
> eventvenues
» = identification
b = identificationtype
[make
[memberaddress
[men L
> rI1F_.,1| Select Rows |
stat Table Inspector
(=

=l naad

Figure 3.30 - Right-click on members and click Select Rows
You should get the following screen:

| Result Grid | TH 4% Fiter Rows: | edt: g Eb B | export/import: Bl H& | wrep Coll Content: 1A

jin] Surname FirstMame ~ MiddleNames DOB Signature Fhoto Active JoinDate InactiveDate WhenAdded LastModified

» Bogas Frederick 1990-06-16 0 2020-01-15 2020-01-21 2020-01-2120:02:30 2020-01-21 21:41:03
2 Petit Thomas Wiliam 1960-10-15 1 2020-01-20 20200121 2L:01:56 2020-01-21 2L:01:56

Figure 3.31 - Fred's record has been marked inactive and the inactive date has been updated

Note that the update query syntax is the same for the MySQL command line and can be
used exactly as demonstrated in the exercise.

116 Using SQL to Work with a Database

The most important part of updating data is to know which specific record or set of
records you want to update, so you use the WHERE clause to limit the records to only those
you need to perform the action on. The rest of the command is straightforward in that you
specify the table to perform the action on, the fields, their new values, and the commas

to separate them if there are more than one, and then you include the WHERE statement

to filter. Using the ID field is often the safest approach, as it identifies a single record;
however, you can use any other field or combination of fields you like in the WHERE
statement, as long as you separate those commas. We will use multiple fields in the WHERE
statement when we get to remove records from the database.

In the next section, we will learn about queries for deleting data from tables.

Deleting data from tables

As mentioned earlier, the DELETE statement removes rows from a table. This looks similar
to the SELECT statement, but you don't specify a list of columns to return.

Consider the following example in which you first create a table named fruits using the
following query:

CREATE TABLE fruits (id int primary key, fruit varchar (255));
Then, you insert 4 records into it:

INSERT INTO fruits VALUES (1, 'Apple'), (2, 'Pear'), (3,
'Orange'), (4, 'Carrot');

In order to check the total number of records inserted into the table, use the SELECT
command:

SELECT * FROM fruits;

This will produce the following output:

Orange
Carrot

in set (0.01 sec)

Figure 3.32 - Records stored in the fruits table

Deleting data from tables 117

Now, in order to delete a single record from a table, use the following command:
DELETE FROM fruits WHERE fruit='Carrot';

Here, you are deleting the record containing the Carrot fruit. To check whether the
record has been successfully removed from the table, you use the SELECT command
once again:

SELECT * FROM fruits;

This produces the following output:

3 | orange |
+--- - - - - +
3 rows in set (0.00 sec)

Figure 3.33 — The updated fruits table after deleting a single record

In the preceding example, you created a table called fruits and populated it with 4 items.
Then, you used DELETE to remove one item.

Another very useful statement related to deleting data is TRUNCATE, which allows you
to remove all data from a table. This is a very powerful command and should be used
carefully. The statement looks like this:

TRUNCATE <table name>;
TRUNCATE will always delete all of the data from a table, so when using it, make sure

to verify that all data should be deleted.

Drop queries

In addition to deleting data, it is also possible to delete tables and databases using the
DROP query. The DROP query syntax is shown here:

DROP [database|table] [name]

118 Using SQL to Work with a Database

It is important to note that this query will delete all data associated with the table
or database it is targeted at. Only use this query if you are absolutely sure you want
to delete the data.

In the next section, we will continue with updating records, but this time, we will be
working with images.

Blobs, files, and file paths

When it comes to storing images and files in databases, there are two ways you can
achieve this:

1. MySQL offers four blob data types of varying sizes that will store files and images
in the database.

This method is okay if you have small files and not too many records. Too many or
large images can impact database performance, and developers often tend to avoid
this method. Just because you can store an image in the database doesn't mean that
you should.

2. You can set up a VARCHAR (255) field, in which you can store a file path and name
pointing to a file or image stored somewhere on your network.

This is the preferred method, especially for many or large files, and requires no
messing around with the server settings. The application can read the path and
name from the database and then load the file and do what it needs to with it -
display it, transfer it, or whatever. However, it does require that the file storage
should be organized. Losing the links or changing a file server's address can be
challenging to recover from, so keep the backups happening, regularly.

Note

MySQL cannot display the image or file. It can only serve the image or file path
to the client application.

In order to load files into MySQL, we will use a function called LoadFile. This function
takes in the directory of a file, parses it, and uploads it for use as a blob.

In the next exercise, we will attempt to load a file into a blob field; the success will depend on
your access to the upload folder and your specific server settings in relation to file access.

Blobs, files, and file paths 119

Note

If you find you cannot access the file, then simply move to Exercise 3.11 where
we will use the VARCHAR file path method.

Exercise 3.09 - files and blobs

Fred Bloggs has changed his mind and wishes to retain his membership and has had his
photo taken and his signature digitized. Both are now image files to be put on file.

His photograph can be found at https://github.com/PacktWorkshops/
The-MySQL-Workshop/blob/master/Chapter03/Exercise09/
FredBloggs_ Phtoto. jpg and his signature can be found at https://github.
com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/
Exercise09/FredBloggs Signature.JPG.

You are required to update the members table with Fred's details. In this exercise, you will
add an image to a blob field and also reinstate Fred's active status.

Perform the following steps:

1. Opena SQL tab.

2. Enter the following code to determine your file upload directory:
SHOW VARIABLES LIKE "secure file priv";

The server will return the secure file path if it is activated:

| Result Grid | _rj Filter Rows: I:“ Export: =] |W'rap Cell Content: A

Variable_name Value

p |secure_file_priv C:'\ProgramData\MySQLWMyS0L Server 8,0\ploadsy

Figure 3.34 — The Value column is the MySQL server's secure file path

3. Remember, this location is on the computer where the MySQL server is installed.
Test whether you have access to it by navigating to it in Windows Explorer.

4. Copy both the image files to the folder path found in secure _file priv.

Now that you have determined you can access the folder and have saved the files,
let's get on with it. Open an SQL tab and enter the following SQL statements. If the
file path you received in step 1 is different from that shown here, enter your path:

UPDATE 'members'
SET

active = 1,

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Phtoto.jpg
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Phtoto.jpg
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Phtoto.jpg
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Signature.JPG
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Signature.JPG
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise09/FredBloggs_Signature.JPG

120 Using SQL to Work with a Database

InactiveDate = NULL,
Signature = LOAD File('C:/ProgramData/MySQL/
MySQL Server 8.0/Uploads/Fred Bloggs Signature.JPG'),
Photo = LOAD File ('C:\\ProgramData\\MySQL\\
MySQL Server 8.0\\Uploads\\Fred Bloggs Photo.JPG')
WHERE 'ID'=1;

This updates the members table to set the signature of the user Fred equal to the
image uploaded for their signature.

Note

MySQL will not accept a file path delimiter of \ as used in Windows. You
need to change it to either \ \ or /. Both are used in the preceding script for
demonstration.

6. Execute the script using the lightning bolt icon:

EEIYTFA0IR OO @I onum e le @ @ @
1e UPDATE “members”
2 SET
3 active =1,
4 InactiveDate = NULL,
5 Signature = LOAD File('C:/ProgramData/MySQL/MySQL Server 8.8/Uploads/Fred Bloggs_Signature.JPG'),
6 Photo = LOAD _File('C:\\ProgramData\\MySQL\\MySQL Server 8.@\\Uploads\\Fred Bloggs_Photo.JPG")
7 WHERE TIDT=1;

Figure 3.35 - Execute the script

7. 'To view the data in the table, right-click on the members table and click Select Rows.

You should get the following output:

Result Grid | T] 4% Fier Rm-.s::“Edd: 4 B Ee | eporiimport: B H& | wrep cell content: IE

D Suname Firstbame MiddeNames DOB Signature Photo PhotoPath SigPath Active ToinDate InactveDate WhenAdded LastModified
» B Bloggs Frederick 1990-08-15 L] 1 2020-01-15 2020-01-2120:02:30 2020-01-22 16:39:54
2 Petit Thomas Wiliam 1960-10-15 7 =y 1 2020-01-20 2020-01-21 21:01:56 2020-01-22 16:40:42
. [riou] o] [] [] [] [riou] []

Figure 3.36 - View the results

You should see the word BLOB in the Signature and Photo fields, indicating

that there is a file stored in the field. Fred has been reactivated, and there is no

inactive date.
The goal of this exercise was to introduce you to the blob and images or files. There are
several things that make this method a little challenging to use, starting with the server
setting, MySQL's access to folders, and more. If you do not have access to the server
settings and your database administrator won't change them for security reasons, then
you may not be able to use blobs to store files.

Blobs, files, and file paths 121

In the next section, we will look at a better method for file uploads, which is working with
file paths directly in the MySQL database. This method will allow us to customize where a
file is uploaded, which allows for better success and fewer permission-based issues.

Files and file paths

You can store an entire file path and name in a field; however, if the file repository's drive
mappings or IP address changes, all files will need to be updated to reflect the new address.
A popular method is to store the root address of the file repository in a lookup table in the
database, which an application can look up and concatenate the path with the value stored
in the table. A considerable advantage of this method is that the files can be as large as you
like; you will only be limited by the capacity of your storage media.

The lookup table looks like the following:

Key Value

ImageRepository D:\FileRepository\

Figure 3.37 — The lookup table

The key indicates what type of data is stored in the folder. In this case, the directory is used
to store images. The value is the location of the image store, which in this case is the D : \
FileRepository)\ path.

And within the FileRepository folder, the files can be separated into folders, as shown
in the following screenshot:

DATA (D) » FileRepository » Members

Fat

2 Mame

Photos

Signatures

Figure 3.38 - FileRepository with the Members folder and subfolders

122 Using SQL to Work with a Database

The images can then be stored in the subfolders, using a generic name with the relevant ID:

DATA(D:) » FileRepository » Members » Photos

]

MemberPhoto_1.
irg

Figure 3.39 — A photo for member ID #1

And in the members table, you can store the value as shown here:

ID PhotoPath
1 Members\Photos\MemberPhoto 1.Jjpg

Figure 3.40 — The members table

The application or an SQL query will then join the root with the stored path and name to
get the full D: \FileRepository\Members\Photos\MemberPhoto 1.jpg file
path, and should the repository ever need to move, maybe to a faster and bigger computer,
the entire repository structure can be copied across. The ImageRepository value in the
lookup table will then change to the new location.

To be able to use this path, we will need to take advantage of concatenation. This can be
done using the CONCAT function in MySQL.

CONCAT is the MySQL command to concatenate or join two or more character strings,
and the strings can be typed in directly to the SQL or retrieved from the database. The
basic syntax is as follows:

CONCAT (Stringl, String2, String3,..)

You can include multiple strings. In the examples, we included two.

In our sample, Stringl was extracted from the 1ookups table with an embedded
SQL statement:

(SELECT 'Value' FROM 'lookups' WHERE 'Key'="ImageRepository")

Blobs, files, and file paths 123

When you embed an SQL statement within another, the embedded SQL must be enclosed
in brackets; it will be executed separately and the result passed back to the primary SQL to
be used in whatever the context is (based on its position in the primary SQL). In this case,
the embedded SQL extracted the image root folder, and the primary SQL took that as
Stringl in the CONCAT command.

In our sample, String?2 is the 'members' . 'PhotoPath' field; the value is extracted
as part of the main query and used as String2.

At the end of the CONCAT command, we assigned it a field name to display the results
with, so our command was as follows:

CONCAT (String 1,String 2) AS FullPhotoPath

In the next exercise, you will work with the file path method.

Exercise 3.10 - files and file paths

You are now asked to update Fred's details using the file path method. His photograph can
be found at https://github. com/PacktWorkshops/The-MySQL-Workshop/
blob/master/Chapter03/Exercisel0/MemberPhoto 1.jpg,and his

signature can be found at https: //github. com/PacktWorkshops/The-MySQL-
Workshop/blob/master/Chapter03/Exercisel0/MemberSignature 1.JPG

You will first set up the file repository and then store the root path. Once the root path is
stored, you will store the image path of Fred. The full path will then be extracted at the end
of this exercise:

Note

You are dealing with images in this exercise. The files could easily be any other
type of document.

1. Create the following file structure on your computer. You can place this on any disk
drive on your computer. You will need to adjust the path accordingly in these steps:
FileRepository
Club Event Photos
Members
Photos

Signatures

Figure 3.41 - The file repository structure

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise10/MemberPhoto_1.jpg
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise10/MemberPhoto_1.jpg
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise10/MemberSignature_1.JPG
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter03/Exercise10/MemberSignature_1.JPG

124 Using SQL to Work with a Database

Note

Under the FileRepository folder, you can set up any number of
subfolders to group your images and files accordingly.

Download the images from GitHub and copy MemberPhoto_1.jpg into the
Photos folder and MemberSignature 1.JPG into the Signatures folder.

We are now set up to write SQL code to insert the files into the database table.

Note

In the real world, your application will deal with copying and renaming the
images appropriately and generating the SQL to store the images, or calling a
stored procedure that will store them.

2. Open an SQL tab to run the following query. If your FileRepository folder is in
a different location to that shown here, enter your location:

INSERT INTO lookups

('Key', 'Value', 'Descriptions')
SELECT

"ImageRepository",
"D:\\FileRepository\\",
"Automobile Club images";

Note

The backslash (\) is an escape character in MySQL that tells it to ignore the
meaning of the next character. So, if you want to include the backslash in the
text, you need to enter it twice, as shown in the preceding query. If you want
to include a double quote in the text, you will need to precede each quotation
mark that is part of the text with a backslash in the SQL statement.

Alternatively, you can replace the backslash (\) with a single forward slash (/).

This query has created a lookup that stores the image repository location. We can
then use this to store and retrieve images.

Blobs, files, and file paths 125

3. Execute the SQL statement with the lightning bolt icon:

MEI7FA0 B O O @I oot s € & 1 2
1 INSERT INTO lookups

(" Key™ ,"Value™ ,"Descriptions™)

SELECT

"ImageRepository™,

"D:\\FileRepository\\"™,

"Automobile Club images™;

O W1 s pa

Figure 3.42 - Execute the code
4. Then, view the results in the 1ookups table. You should get the following output:

Result Grid | :Ili 43 Fiter Rows: | || Edit: |E_£| E B
Key Value Descriptions
b PUELEEE T O \FileRepository, AutomobileClubimages

Figure 3.43 - The key, value, and description for the repository root folder
This shows that the values were successfully inserted into the 1ookups table.

5. Now, open an SQL tab to run a query and type the following SQL command to
update the members table with Fred's details:

UPDATE 'members'

SET

SigPath = "Members\\Signatures\\MemberSignature 1.jpg",
PhotoPath = "Members\\Photos\\MemberPhoto 1.jpg"

WHERE 11D V=1l g

6. Execute the SQL query and view the results. You should get the following screen:

| ResultGrid | E 4% Fiter Rows: | edt: @) B Bk | eport/import: B {8 | wrep Coll Content: IR

i) Surname FirstName MiddleNames DOB Signature Photo ~ PhotoPath SigPath Active JoinDate InactiveDate

» B Bloggs Frederick L 1990-06-16 Members\Photos\MemberPhoto_1.jpg ~ Members\Signatures\MemberSignature_1.jpg 1 2020-01-15
E3 Pettit Thomas William 1950-10-15 1 20200120
. []

Figure 3.44 — The Photo and Signature text fields hold the path and image name
within the repository root folder
This shows that we now have values for the photo and signature path in the
members table.

126 Using SQL to Work with a Database

7. Now, extract the details from the database for Fred, including the image paths. Open
a SQL tab to run the following query:

SELECT 'FirstName', 'Surname’',

CONCAT ((SELECT 'Value' FROM 'lookups' WHERE

'Key'="ImageRepository") , 'PhotoPath') AS FullPhotoPath,
CONCAT ((SELECT 'Value' FROM 'lookups' WHERE
'Key'="ImageRepository") , 'SigPath') AS
FullSignaturePath

FROM 'members' WHERE 'members'.'ID'=1

8. Execute the SQL query, and the results should be as follows:
Result Grid | J ¥ Filter Rows: l:l Export: Wrap Cell Content: IA

FirstName Surname FulPhotoPath FullsignaturePath
» Bloggs D:'\FileRepositoryMembers'PhotosMemberPhoto_1.jpg D:\FileRepository Members\SignaturesMemberSignature _1.jpg

Figure 3.45 - Fred's names and both image paths

The application using this data can now access Fred's images and display them
where it needs to.

Working with files, images, and your MySQL database can be a little tricky and requires
some thought in setting up - that is, what approach you should take, and whether you
should store them in the database or use file path pointers. That decision will be yours as
the developer, although you may be required to choose one method over another due to
business infrastructure and rules.

Where possible, try to avoid storing files in a database if you suspect they will be large or
plentiful. If you elect to use the file pointer method used in Exercise 3.11, then put some
thought into how you want to structure your repository.

In the next activity, you will add an image to your repository and update the database
with the image path.

Activity 3.2 - adding image file paths to the
database

One of the members with the surname Pettit has added himself as a member of the
Automobile Club. You are asked to add the image of the new member in the members
table using the file path method. You are also asked to fetch the full file path of the new
image that is added.

Summary 127

Perform the following steps to achieve the goal of this activity:

1. Determine the ID of the member with the surname Pettit.

2. Download the image from https://github.com/PacktWorkshops/
The-MySQL-Workshop/tree/master/Chapter03/Activity02 and save
it in the Member/Photos folder.

3. Now that you have your image in place, open another SQL tab and create a script
to place the path and photo name in your member record.

4. Create and run another SQL query to extract the full file path for your image.

On successful completion of the activity, you should get the following output:

| Result Grid | :rj 4% Filter Rows: | || Export: S

FullPhotoPath
W O \FileRepositoryiMembers \PhotosiMemberPhoto_2.jpg

Figure 3.46 - The full file path for the image

Note
The solution to this activity can be found in the Appendix.

In this section, you learned about blobs, updating records with images, and file path
pointers. You learned how to organize image and file storage and how to work with them
with SQL statements; you also learned about embedded SQL statements and the CONCAT
command to join strings together.

Dealing with images and files with a database is a widespread practice and a valuable skill
to get your head around. It isn't difficult, and a little practice will serve you well.

summary

In this chapter, you have learned how to back up your database and run an SQL script to
restore the database. You have learned how to use SQL statements and scripts to create a

database and tables, as well as how to modify tables, create indexes and foreign keys, and
insert, update, and delete data. You also worked with images and files with your database.

In the next chapter, you will continue working with SQL statements. You will learn some
more about SQL queries and how to create and use SQL queries with stored procedures,
functions, and views.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter03/Activity02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter03/Activity02

4

Selecting,
Aggregating, and
Applying Functions

In this chapter, we cover different ways to get the information we need out of MySQL data.
We will learn how to filter out the records and apply functions on the data - for example,
to only return the first 15 characters of a field. We will then start to use GROUP BY to
group rows and calculate results built on the groups. This is often used to sum all the
values in a group or count how many items they are in one.

This chapter covers the following topics:

+ An introduction to querying data
 Querying tables in MySQL

» Exercise 4.01 - simple queries

« Filtering results

« Exercise 4.02 - filtering results

130 Selecting, Aggregating, and Applying Functions

« Using functions on data

« Exercise 4.03 - using functions

« Aggregating data

o Exercise 4.04 - aggregating data

o Case statements

o Exercise 4.05 — writing case statements

o Activity 4.01 - collecting information for a travel article

An introduction to querying data

In the previous chapter, we covered multiple ways of getting data into MySQL. We
imported data in CSV, JSON, and SQL formats into tables and collections. Now, we want
to use MySQL to get information out of the data. The main benefit of having data in a
MySQL database is that you can query it, combine multiple tables, and aggregate and filter
results. This makes it easy to create reports on the data. This is not limited to data stored in
tables; it is still possible to do this if the data resides in a collection of JSON documents.

An example of this is having a database that stores an inventory of the laptops that the
company has and then producing reports based on the different types of laptops and the
different warranty periods.

In this chapter, you will learn how to filter the results - for example, filtering for only one
brand of laptop. Then, you will learn how to use functions - for example, to calculate

the days remaining in a warranty. Then, you will learn to summarize data by aggregating
multiple rows.

Querying tables in MySQL

To get data out of MySQL, we use a SELECT query. A basic SELECT query has the
following format:

SELECT <items> FROM <table>

Querying tables in MySQL 131

Here, <items> can be many different kinds of things. It can be a wildcard (*) character,
which returns all columns from a table, a list of columns, or even something that's not
in the table at all but should still be in resultset - for example, a constant such

as production or number. The FROM <table> part is optional, but it is there in
most cases.

The SQL language is a declarative language, which means that the focus is more on the
results that are obtained rather than how they are obtained. This is why we describe in

a SELECT statement what the returned data should look like (for example, what fields it
should have). We don't instruct the database to open the data file and navigate through
the data structures. Based on the instructions we give for what the results should look
like, the database server will figure out the best way to get this data to you.

Consider the following query:
SELECT * FROM city;

This query returns all the rows and columns from the city table.

Now, consider the following query:
SELECT * FROM city LIMIT 5;

This query limits the result set to 5 records from the city table. Note that the results
will not be in any order because we did not specify one. This can return any 5 or fewer
records from the cities table. If you test this out, you might notice that the records come
up ordered by their primary key, but this can easily change with bigger tables and more
complex tables, so we cannot rely on it.

A SELECT query with all columns and only a few rows is often a good way to see what
data looks like if you are not familiar with a table. Consider the following query:

SELECT Name, Capital FROM country;

This query returns the Name and Capital columns from the country table.

Now, you will complete an exercise with some simple queries before continuing to practice
filtering out rows in which you are interested.

132 Selecting, Aggregating, and Applying Functions

Exercise 4.01 - working with simple queries

In this exercise, you will be using the wor1d database. As a developer, you will often
need to use languages in your applications. You can download the world database here:
https://downloads.mysqgl.com/docs/world-db.zip/.You are told that
languages are stored in the countrylanguage table of the database, but you are not
aware whether the language is stored as a name or in the form of code. You will first
inspect the table definition and then get a sample of the table. You need to make sure that
you have the world database available; refer to the Loading data from a SQL file section
in Chapter 11, MS Excel VBA and MySQL if you have questions. Follow these steps to
complete this exercise:

1. Connect to MySQL with the CLI and the appropriate user.

2. Select the world database to be used:
USE world;

The current database will be changed to the wor1d database, as you can see in the

following figure:
mysql> USE world
Database changed

Figure 4.1 - The USE output
3. Inspect the countrylanguage table definition by using the DESCRIBE command:

DESCRIBE countrylanguage;

This query returns the following table definition:

mysql> DESCRIBE countrylanguage;

CountryCode | char(3)

Language | char(3@)

Isofficial | enum('T','F')

Percentage | decimal(4,1)
oo o m -
4 rows in set (0.01 sec)

—_r— +

Figure 4.2 - The DESCRIBE output

https://downloads.mysql.com/docs/world-db.zip/

Filtering results 133

The DESCRIBE command will display the available columns. To get languages,
you need the Language column. However, this does not specify whether this is a
language code or the name of the language, nor does it specify whether the name
is in English or the native language (for example Spanish versus Espafiol).

4. Obtain a sample of the table by writing the following query:
SELECT Language FROM countrylanguage LIMIT 5;
This produces the following output:

mysql> SELECT Language FROM countrylanguage LIMIT 5;

English
Papiamento
Spanish
Balochi

5 rows in set (0.01 sec)

Figure 4.3 — The SELECT output, limited to five records and the Language column

With this output, you now know that the languages are stored in name form
(in English).

In this exercise, we inspected the countrylanguage table and used a sample of the
Language column to learn what the data in this column looks like. In the next section,
we will explore how to filter out the fetched results.

Filtering results

Often, the table or tables you are querying have many more rows than you are interested
in. Filtering is done in two ways; the first way is only selecting the columns we need. This
is what we did in the previous section. The second way is to filter out the rows; this is
done with a WHERE clause in the SELECT statement. Besides only returning the data you
need, this also allows the database server to use a more efficient way of retrieving the data,
which translates to faster queries.

134 Selecting, Aggregating, and Applying Functions

Consider the following query:

SELECT * FROM city WHERE CountryCode='CHE';

This query will return the following results:

SELECT * FROM city WHERE CountryCode='CHE';

Geneve Geneve 173500
Basel Basel-Stadt 166700
Bern Bern 122700

+

I

+

Zirich Zirich | 336800

I

I

I

Lausanne | 114500
+

Figure 4.4 — The SELECT output, filtered by CountryCode CHE for Switzerland

Here, you return all columns for rows that have CHE as CountryCode. Every row is a city
in Switzerland. Now, consider the following example:

SELECT Name, Population FROM country
WHERE Continent='Oceania' AND Population > 1000000;

Here, you filter out countries in the continent of Oceania that have a population of
more than 1000000. The > operator checks whether the value on the left is bigger than
the value on the right. Other similar operators are inequalities, such as < for less than, >
for greater than, <= for less than or equal, and >= for greater than or equal. We also have
operations such as = for equality, * for multiply, and / for divide.

This query produces the following output:

mysql> SELECT Name, Population FROM country WHERE Continent='Oceania'
-> AND Population > 1000000,

| Australia 18886000 |
| New Zealand | 3862000 |
| Papua New Guinea | 4807000 |

3 rows in set (0.01 sec)

Figure 4.5 - The SELECT output, filtered on Oceania and > 1000000 population

Filtering results 135

As you can see in the preceding screenshot, the query returns only the name and
population columns from the country table that are both in the Oceania continent and
have a population of more than 1000000. Here, you can see that we combine two filters
with the AND keyword. It is also possible to use the OR keyword to match multiple filters
- for example, Continent="'0Oceania' OR Continent='Europe'.Consider the
following query:

SELECT Name FROM country WHERE Name LIKE 'United %';

This query will return the following results:

mysql> SELECT Name FROM country WHERE Name LIKE 'United %';

United Arab Emirates

United Kingdom

United States

United States Minor Qutlying Islands

rows in set (0.01 sec)

Figure 4.6 — The SELECT output for countries that start with United

The result set from this query will have only one column. It returns all countries from the
country table that start with the word United. In SQL, % is a wildcard for one or more
characters and _ is a wildcard for a single character. Other languages often use * and .
for this.

Note

MySQL also has a whole range of features and syntax for more advanced text
matching and full-text indexing, but we won't cover that here.

If you are combining OR and the WHERE clause of the query, then you might need to group
operations. Consider the following examples:

SELECT * FROM city WHERE District='New York' OR District='New
Jersey'

AND Population>100000;

SELECT * FROM city WHERE (District='New York' OR District='New
Jersey')

AND Population>100000;

136 Selecting, Aggregating, and Applying Functions

The preceding queries will return the following results:

SELECT * FROM city WHERE District='New York' OR District='New Jersey'
AND Population>100000;
____________ +
Population
____________ +
8008278
292648
273546

New York
Buffalo
Newark
Jersey City
Rochester
Yonkers York

I I

I I

| | Jersey
I I

I I

I I

| Paterson | Jersey
I I

I I

I I

+ +

York 219773
196086
149222
147306
120568

Syracuse York
Elizabeth Jersey

+
I
+
|
|
|
Jersey | 246055
|
|
|
|
|
I
+

10 rows in set (0.01 sec)

SELECT * FROM city WHERE (District='New York' OR District='New Jersey')
AND Population>100000;
____________ +
Population
____________ +
8008278
292648

+
I
+
New York |
I
Jersey | 273546
|
I
I
|
I
I
+

I

| Buffalo

| Newark

| Jersey City Jersey 246055
| Rochester 219773
| 196086
| 149222
|

147306

I
I
I
I
| York
Yonkers | York
Paterson | Jersey
Syracuse | York
I
+

Elizabeth

in set (0.01 sec)

Figure 4.7 — The SELECT output, demonstrating group filters

Note the parenthesis in the preceding figure. Without this, you would return all cities in
New York and all cities in New Jersey that have a population of more than 100000.
With the parenthesis, you return cities in both New York and New Jersey that have a
population of more than 100000. In the next section, you will solve an exercise in which
you will be filtering the results.

Exercise 4.02 - filtering results

Imagine that you are working for a TV station. For an item about Western Europe, you
need to get the surface area from the database. In this exercise, you will connect to the
world database, get the table definition, and filter on the Western Europe region. Follow
these steps to complete this exercise:

1. Connect to MySQL with the CLI and the appropriate user.

Exercise 4.02 - filtering results 137

2. Select the world database to work with:
USE world;

The preceding query connects to the world database:

mysql> USE world
Database changed

Figure 4.8 — The USE output
3. Inspect the table definition with the following query:

DESCRIBE country;

The preceding query produces the following output:

--------- ot
| Field | Null | Key |
Default | Extra

char(3)
char(52)

| Continent enum('Asia’, 'Europe’, 'North America’, 'Africa’,'Oceania’, 'Antarctica’, 'South America')
Asia |
| Region char(26)
|
| SurfaceArea decimal(10,2)
0.00 |

| IndepYear

NULL |

| Population

e |

| LifeExpectancy

NULL |

| GNP

NULL |

| GNPOld

NULL |

| LocalName
|

| GovernmentForm
|

| Headofstate

smallint

int
decimal(3,1)
decimal(10,2)
decimal(1@,2)
char(45)
char(45)
char(60)

int

char(2)

Figure 4.9 - The DESCRIBE output for the country table

Note

The output is very wide because of the definition of the Continent column.
You can use \G instead of ; at the end of the statement to return output in a
vertical format.

138 Selecting, Aggregating, and Applying Functions

4. Filter on the Western Europe region with the following query:

SELECT Name, SurfaceArea FROM country WHERE
Region='Western Europe';

The preceding query produces the following results:

mysql> SELECT Name, SurfaceArea FROM country WHERE Region='Western Europe';
+

I

+

Austria |

Belgium |

Switzerland |
Germany | 357022.

|

I

I

I

+

551500.
160.
2586.

France
Liechtenstein
Luxembourg
Monaco
Netherlands

rows in set (0.00 sec)

Figure 4.10 - The SELECT output for countries in Western Europe

In this exercise, you filtered out two columns of the country table and only returned
records that match the Western Europe region. In the next section, we will explore
functions.

Using functions on data

MySQL comes with a big list of functions to work with all the common data types. In
addition to this, it also allows you to create your own functions in SQL, C, or C++. This
can help you to filter data based on specific conditions and format it. The following
sections will detail some of these functions.

Math functions

These are +, -, and / to add, subtract, and divide. In addition to that, there are also
functions such as FLOOR (), CEILING (), POWER (), ROUND (), and quite a few more to
help you do calculations on numerical data that you have in the database. Consider the
following query:

SELECT 1 + 2, 10 - 11, 1 / 3, POW(2, 3), ROUND(1/3, 1),
CEILING(0.9);

Using functions on data 139

This query produces the following results:

mysql> SELECT 1 + 2, 16 - 11, 1 / 3, POW(2, 3), ROUND(1/3, 1), CEILING(0.9);

row in set (0.02 sec)

Figure 4.11 - The SELECT output with a demonstration of mathematical functions in MySQL

In the figure, we see the following observations:

e 1 + 2isan addition and will return 3.
e 10 - 11 isasubtraction and returns -1.
e POW(2, 3) is 2 tothe power of 3, which will return 8.

e ROUND(1/3, 1) is0.333333 butrounded down to one number after the
period(.).

e CEILING(0.9) rounds up to the next integer, which is 1.

This query doesn't use any table or collections and returns a single row with all the results
of the calculations. Now, let's look at another query:

SELECT

Name,

ROUND (Population/1000000,1) AS 'Population (Million)'
FROM city
WHERE CountryCode='MEX' AND Population>1000000;

140 Selecting, Aggregating, and Applying Functions

This query returns the following results:

mysql> SELECT
-> Name,
-> ROUND(Population/10006000,1) AS 'Population (Million)'
-> FROM city
-> WHERE CountryCode='MEX' AND Population>1000000;
______________________ +
Population (Million)

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
]
'
'
'
:
'

+

Ciudad de México
Guadalajara
Ecatepec de Morelos
Puebla
Nezahualcéyotl
Juarez

Leon
Monterrey
Zapopan

el el)
ORRKEFNMNNMNNWOOO

I
I
I
I
I
I
| Tijuana
I
I
I
+

10 rows in set (0.01 sec)
Figure 4.12 - The SELECT output with a demonstration of using a function on data from a table

Here, you are listing big cities in Mexico and showing the population number in millions,
formatted to only show one digit after the decimal point. Here, the calculation is done for
every row returned by the query. Let's now look at string functions.

String functions

To cut a string at a specific character, you can use the LEFT () function. Consider the
following query:

use world;
SELECT Name FROM city WHERE LEFT (Name, 3) = 'New';

Using functions on data 141

This returns all the cities that have New as the first three letters of their name:

mysql> SELECT Name FROM city WHERE LEFT(Name, 3) = 'New';

Newcastle
Newcastle upon Tyne
Newport
Newcastle
New Bombay
New Delhi
New York
New Orleans
Newark
Newport News
New Haven
New Bedford

Figure 4.13 - The SELECT output with LEFT()

Another way of splitting a string is by using the SUBSTRING INDEX () function, which
you can see in the next example:

use sakila;
SELECT
email,
SUBSTRING INDEX (email, "@", 1),
SUBSTRING INDEX (email, "@", -1)
FROM customer
WHERE store id=1 AND active=0;

This splits the email address on @ and returns the user and domain parts in different
columns:

mysql> SELECT
-> email,
-> SUBSTRING INDEX(email, "@", 1),
-> SUBSTRING INDEX(email, "@", -1)
-> FROM customer
-> WHERE store id=1 AND active=0;

SUBSTRING INDEX(email,

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
,

H

sakilacustomer.

sakilacustomer.org
sakilacustomer.org
sakilacustomer.org
sakilacustomer.org
sakilacustomer.org
sakilacustomer.org
sakilacustomer.

SHEILA.WELLS@sakilacustomer.org
PENNY .NEAL@sakilacustomer.org
HARRY . ARCE@sakilacustomer.org
NATHAN.RUNYON@sakilacustomer.org
MAURICE.CRAWLEY@sakilacustomer.org
CHRISTIAN.JUNG@sakilacustomer.org
JIMMIE.EGGLESTON@sakilacustomer.org
TERRANCE .ROUSH@sakilacustomer.org
o e e e meeeaos
8 rows in set (0.00 sec)

SHETLA.WELLS
PENNY . NEAL
HARRY . ARCE
NATHAN.RUNYON
MAURICE. CRAWLEY
CHRISTIAN.JUNG
JIMMIE.EGGLESTON
TERRANCE.ROUSH

———— — +

f——— + —+

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
,

H

Figure 4.14 — The SELECT output with SUBSTRING_INDEX()

142 Selecting, Aggregating, and Applying Functions

To determine the length of a string, you can use either LENGTH () or CHAR LENGTH ().
They often return the same value, as LENGTH returns the length in bytes and CHAR
LENGTH () returns the length in characters. Characters can vary in length based on
encoding. For example, characters such as English alphabet characters are 1 byte long,
and Unicode characters are 2 bytes long.

Consider another query:
SELECT LENGTH('Café'), CHAR LENGTH('Café');

This will return 5 for the length in bytes and 4 for the length in characters. This is because
é is two bytes:

mysql> SELECT LENGTH('Café'), CHAR LENGTH('Café');
oo oo +
| LENGTH('Café') | CHAR_LENGTH('Café')

1 row in set (0.00 sec)

Figure 4.15 - The SELECT output with LENGTH() and CHAR_LENGTH()

Other useful functions are UPPER () and LOWER () , which make a string uppercase or
lowercase respectively, and CONCAT () , which concatenates strings together. In other
databases, you might have used | | to concatenate data, but that doesn't work in MySQL
because, by default, it is a synonym for OR. In the next section, we will explore date and
time functions.

Date and time functions

The first set of functions gets the current time, date, or timestamp:

e CURRENT TIME

e CURRENT_ DATE

e CURRENT_ TIMESTAMP

¢« NOW ()
For NOW () , parentheses are required; for the other functions, this is optional. The functions
that deal with time accept fractional seconds part (FSP) as an argument. This

allows you to specify the precision of the time. By default, FSP is 0, which means precision
in seconds. The maximum is 6, which means microsecond precision with 6 digits.

Using functions on data 143

Consider the following examples:

SELECT CURRENT TIME (), CURRENT DATE (), CURRENT TIMESTAMP (),
NOW () ;

SELECT CURRENT TIME (6), CURRENT DATE(), CURRENT TIMESTAMP (6),
NOW (6) ;

These queries return the following results:

mysql> SELECT CURRENT TIME(), CURRENT DATE(), CURRENT TIMESTAMP(), NOW();
oo e oo oo +
| CURRENT TIME() | CURRENT DATE() | CURRENT TIMESTAMP() | NOW()

o [e [- s s +
| 15:30:03 | 2020-02-01 | 2020-02-01 15:30:03 | 2020-02-01 15:30:03
oo e oo oo +
1 row in set (0.00 sec)

| 15:30:04.506387 | 2020-02-01 | 2020-02-01 15:30:04.506387 | 2020-02-01 15:30:04.506387
oo e oo o e +
1 row in set (0.00 sec)

Figure 4.16 — The SELECT output with date/time functions

The second set of functions is for adding and subtracting dates and times. To do this,

you use DATE_ADD () and DATE SUB (). Both take a date as the first argument and
INTERVAL as the second argument. An interval looks like INTERVAL <numbers>
<unit>. The unit is always singular, even when the number is more than 1 - for example,
INTERVAL 5 DAY.

Consider the following query:
SELECT DATE ADD('2010-01-01', INTERVAL 1 YEAR);
This returns 2011-01-01 because that's one year after 2010-01-01:

mysql> SELECT DATE ADD('2010-01-01', INTERVAL 1 YEAR);

1 row in set (0.00 sec)

Figure 4.17 — The SELECT output with a calculated date field

144 Selecting, Aggregating, and Applying Functions

Some systems use Unix timestamps (the number of seconds since January 1, 1970). This
is often done to prevent timezone-related issues, as the Unix timestamp is always stored
in the same timezone. With FROM UNIXTIME (), you can convert a Unix timestamp

to a timestamp, and with UNIX TIMESTAMP (), you can do the opposite.

Consider the following example:

SELECT UNIX TIMESTAMP ('2030-01-01 00:00:00'), FROM
UNIXTIME (1573846979) ;

This query outputs the following results:

mysql> SELECT UNIX TIMESTAMP('2030-01-01 00:00:00'), FROM UNIXTIME(1573846979);

| UNIX TIMESTAMP('2030-01-01 00:00:00') FROM_UNIXTIME(1573846979)

e e e e e e e eeeeeeo e +
| 1893452400 | 2019-11-15 20:42:59 |
e e e e e e e eeeeeio e +
1 row in set (0.00 sec)

Figure 4.18 — The SELECT output with the Unix timestamp conversion

We use various functions to modify the data returned from tables or things such as the
current time. For example, you can convert timestamps to a human-readable format if
they are stored as Unix timestamps, which then also allows you to calculate how far in the
future or past that timestamp is. In the next section, you will complete an exercise based
on these functions.

Exercise 4.03 - using functions

In this exercise, you will use the wor1d database again. For a news article related
to countries' independence, you want to compile a list of countries that have been
independent for more than 1,000 years. For this, you need the following:

o The independence year
« The number of years since independence
+ The population in millions

o The average population per square km (rounded to integers)

Exercise 4.03 - using functions 145

You will connect to the wor1d database, select the columns you need, and apply a
condition to find countries that are more than 1,000 years old. Then, you will add
calculated columns and convert values where needed. Follow these steps to complete
this exercise:

1. Connect to MySQL with Workbench and the appropriate user.

2. Make sure that you are using the wor1d database:
USE world;
This query provides the following results:
mysgl> USE world
Database changed
Figure 4.19 - The USE output

3. Select the columns we need and apply the condition for countries that have been
independent for more than 1,000 years by writing the following query:

SELECT Name, IndepYear, Population, SurfaceArea FROM
country

WHERE YEAR(NOW()) - IndepYear > 1000;

This outputs the following results:

mysql> SELECT Name, IndepYear, Population, SurfaceArea FROM country
-> WHERE YEAR(NOW()) - IndepYear > 1000,

| 1277558000 9572900.
Denmark | 5330000 43094,
Ethiopia | 62565000 1104300.
France | 59225700 551500.
Japan | 126714000 377829.
San Marino | 27000 61.
Sweden | 8861400 449964.

rows in set (0.00 sec)

Figure 4.20 — The SELECT output with countries that have been independent for more than 1,000 years

You now have the data, but you need to do some calculations and transformations.

146 Selecting, Aggregating, and Applying Functions

4. Add calculated columns. A calculated column is a column where you take the
raw data from MySQL and transform it by using a function. Here, you divide
Population by SurfaceArea and then use the ROUND () function to round it
down to 0 numbers after period (.). You also use the YEAR () function on the
value returned from NOW () to get the year out of the current timestamp, and then
you subtract the independence year of the country to reach the value you need.
Write the following query to achieve this:

SELECT
Name,
IndepYear,
YEAR (NOW ()) - IndepYear,
Population,
ROUND (Population/SurfaceArea, 0)
FROM country
WHERE YEAR(NOW()) - IndepYear > 1000;

This outputs the following results:

IndepYear
YEAR(NOW()) - IndepYear,
Population,
ROUND (Population/SurfaceArea,0)
FROM country
WHERE YEAR(NOW()) - IndepYear > 1000;
_________________________________ +

1277558000
5330000
62565000
59225700
126714000
27000
8861400

Denmark
Ethiopia
France
BELED]

San Marino
Sweden

+
|
+
|
|
|
|
|
|
|
+

rows in set (0.00 sec)

Figure 4.21 - The SELECT output with calculated columns
You now have the number of years since independence and the average population
per square km, but you need to convert the population to millions.

5. Convert the values where needed. Divide Population by 1000000 and round it
down to 0 decimals:

SELECT
Name,
IndepYear,

Aggregating data 147

YEAR(NOW ()) - IndepYear,
ROUND (Population / 1000000, 0),
ROUND (Population/SurfaceArea, 0)
FROM country
WHERE YEAR(NOW()) - IndepYear > 1000;

This outputs the following results:

mysql> SELECT
> Name,
IndepYear,
YEAR(NOW()) - IndepYear
ROUND (Population / 1000000, 0),

>
>
->
>

ROUND (Population/SurfaceArea,0)
-> FROM country
-> WHERE YEAR(NOW()) - IndepYear > 1000;

Denmark
Ethiopia
France
Japan

San Marino
Sweden

rows in set (0.01 sec)

Figure 4.22 — The SELECT output with the final result

In this exercise, you performed calculations and transformations on MySQL data and
filtered rows based on this. The exercise used YEAR (), NOW (), ROUND (), and / to do this.
In the next section, you will learn about aggregating data.

Aggregating data

This is one of the most powerful aspects of the SQL language. To do this, we use the
GROUP BY clause in a SELECT statement. This groups one or more rows together and
reports values based on this group. MySQL has many functions that operate on a group
of rows, one of which is MAX () , which gets the maximum value from the group. It is
important to only ever use the columns on which you are grouping by and/or other
columns with an aggregate function.

Consider this data in the following table:

employee id region city sales
1 EMEA London 300,000
2 EMEA Milan 250,000
3 APAC Singapore 350,000
4 APAC Jakarta 100,000

Figure 4.23 — The sales table

148 Selecting, Aggregating, and Applying Functions

Consider the following query:
SELECT region, SUM(sales) FROM sales GROUP BY region;

This outputs the following results:

mysql> SELECT region, SUM(sales) FROM sales GROUP BY region;

550000 |
450000 |

2 rows in set (0.00 sec)

Figure 4.24 - The SELECT output, demonstrating GROUP BY

This groups the rows by region, creating two groups, and then it sums the rows in
each group.

Now, consider this query:
SELECT city, SUM(sales) FROM sales GROUP BY region;

This outputs the following results:

mysql> SELECT city, SUM(sales) FROM sales GROUP BY region;
ERROR 1055 (42000): Expression #1 of SELECT list is not in GROUP BY clause and c

ontains nonaggregated column 'test.sales.city' which is not functionally depende
nt on columns in GROUP BY clause; this is incompatible with sql mode=only full g
roup by

Figure 4.25 - The SELECT output, demonstrating GROUP BY with ERROR 1055

This is similar to the previous query, but here, we select the city column, while grouping
on the region. Older versions of MySQL will be performing this by default, thereby
allowing you to do this. The result is two groups, one for each region. Then, it picks a more
or less random city from the group to give you a result for the region column you asked
for. Newer versions of MySQL, by default, set ONLY FULL GROUP_BY, and this will
cause the query to end with this error:

ERROR: 1055: Expression #1 of SELECT list is not in GROUP BY
clause and contains nonaggregated column 'test.sales.city'
which is not functionally dependent on columns in GROUP BY
clause; this is incompatible with sql mode=only full group by

Aggregating data 149

Almost always, this is done by accident. Here, you probably wanted to group by city
instead of region, like this:

SELECT city, SUM(sales) FROM sales GROUP BY city;

This outputs the following results:

mysql> SELECT city, SUM(sales) FROM sales GROUP BY city;

300000

Singapore | 350000
Jakarta 100000

rows in set (0.00 sec)

Figure 4.26 — The SELECT output, GROUP BY with SUM()

This creates four groups with one record in each group for this data. But if the table was
bigger, it might have had groups of multiple records.

Now, let's go over a few commonly used functions' aggregations:

e SUM():Sum all rows in the group.

o MAX () and MIN (): Pick the highest or lowest value.

e COUNT () : Return how many records we have in the group.
» AVG () : Return the average of the values in the group.

+ GROUP_CONCAT (): Concatenate (join) all values from the group together.

It is also possible to filter which groups you want in your result with the HAVING keyword.
Consider the following query:

SELECT region, AVG(sales)
FROM sales

GROUP BY region

HAVING AVG(sales) > 230000;

150 Selecting, Aggregating, and Applying Functions

This outputs the following results:

SELECT region, AVG(sales)

FROM sales

GROUP BY region

HAVING AVG(sales) > 230000;
£ IR Fommemm - +

| region | AVG(sales)
- - -- R +
| EMEA 275000.0000 |
+-------- e +
1 row in set (0.00 sec)

Figure 4.27 — The SELECT output, showing GROUP BY with a HAVING clause

Here, you again have two groups for the two regions, but only one region matches the filter
on the average sales numbers, resulting in only one result from this query. In this case, you
need to use WHERE to filter on non-aggregated data and use HAVING to filter on data that
is aggregated.

The COUNT function is usually used with * as an argument to work on the whole group.
Another common thing to do is to use the optional DISTINCT keyword, such as
COUNT (DISTINCT city).This will return the number of unique cities in the group.
In the next section, you will solve an exercise based on aggregating data.

Exercise 4.04 - aggregating data

In this exercise, you will utilize the wor1d database once again. You need some data about
continents and regions for another news article, including the following information for
each continent:

o The surface area for all the countries in that continent combined
o The average GNP per continent

« The total surface area per region for Asia

You will first connect to the wor1d database, get the per continent data, and then get the
per region data. Perform the following steps to complete this exercise:

1. Connect to the MySQL shell with Workbench and the appropriate user.

2. Make sure that you are using the wor1d database:

USE world;

Exercise 4.04 - aggregating data

151

This outputs the following results:

mysql> USE world
Database changed
Figure 4.28 — The USE output

3. Obtain the data about each continent by writing the following query:

SELECT Continent, AVG(GNP), SUM(SurfaceArea)
FROM country GROUP BY Continent;

This outputs the following results:

mysgl> SELECT Continent, AVG(GNP), SUM(SurfaceArea)
-> FROM country GROUP BY Continent;

North America 261854.789189 24214470,
Asia 150105.725490 31881005.
Africa 10149.322034 29010887.
Europe 206497.065217 23049133.
South America 107991.000000 17864926.
Oceania 953571 8564294,
Antarctica .000000 13132101.

rows in set (0.01 sec)

Figure 4.29 - The SELECT output, grouped by continent

Here, you use GROUP BY on the Continent column. Then, use AVG () on GNP

to calculate the average GNP for that continent and use SUM () on SurfaceArea

to sum the surface areas of all the countries in that continent.

Get the per region data by writing the following query:

SELECT Region, SUM(SurfaceArea) FROM country
WHERE Continent='Asia' GROUP BY Region;

152 Selecting, Aggregating, and Applying Functions

This outputs the following results:

mysql> SELECT Region, SUM(SurfaceArea) FROM country
-> WHERE Continent='Asia' GROUP BY Region;

| Southern and Central Asia 10791130.00
| Middle East 4820592.00
| Southeast Asia 4494801.00
| Eastern Asia 11774482.00

4 rows in set (0.00 sec)
Figure 4.30 - The SELECT output grouped by region

In this exercise, you filtered by the continent of Asia and then used GROUP BY on region.
For each group, you summed SurfaceArea. You did not need to use HAVING, as the
filter is not on aggregated data. In the next section, we will explore how to write output
directly to a file.

Case statements

Often, we want to display data based on some sort of condition. In these situations, a case
statement can be used to display data relative to a condition. The case statement syntax is
shown here:

CASE WHEN [condition 1] THEN [resultl]
WHEN [condition 2] THEN [result2]

[ELSE] [resultn]
END

For example, suppose that you had a table of users named userTable, which contained
users of varying ages. If a user is age 18 or older, you want to show them as an adult. If a
user is younger than age 18, you want to show them as a youth. To achieve this, you can
use a case statement, like so:

SELECT CASE WHEN age >= 18 THEN ‘adult’
ELSE ‘youth’ END AS isadult FROM user;

The next exercise demonstrates a practical example of case statements.

Exercise 4.05 — writing case statements 153

Exercise 4.05 - writing case statements

Your company wants to run analysis on the country data of the world database to
determine the size of the countries. They have asked you to create a query that categorizes

countries based on the following criteria:

o Ifacountry has a population under 100,000, it is small.

« Ifacountry has a population between 100,000 and 500,000, it is medium.
o In all other cases, the country is large.
To achieve this, we can use a case statement. Here are the steps to write the query:
1. Open MySQL Workbench and create a new query window.

2. First, it is helpful to determine the cases that our query has. There are three cases

to consider:

* WHEN population < 100,000, THEN 'small'
* WHEN population < 500,000, THEN 'medium’
= ELSE 'large’
3. Next, we will put these cases into a formal case statement. This will give us the
following query:

SELECT Name, CASE WHEN population < 100000 THEN 'small'
WHEN population < 500000 then 'medium'

ELSE 'large' END AS countrySize

FROM world.country;

154 Selecting, Aggregating, and Applying Functions

4.

Run the query to get the following result:

£

Result Grid _Fj ¥ Fil‘terRm‘.‘s:l:I Export: Wrap Cell Content: TA

Name countrySize
» | Aruba medium
Afghanistan large
Angola large
Anguilla small
Albania large
Andorra small

Netherlands Antilles medium
United Arab Emirates large

Argentina large
Armenia large
American Samoa small
Antarctica small

Figure 4.31 - The result of the case statement query

With this, you now have a query that successfully categorizes the sizes of the countries.

Activity 4.01 - collecting information for a
travel article

For a travel magazine, you need to collect some information from the world schema to
add bits of trivia to some of the articles in next month's edition. The information that is
requested is this:

What is the population size of the smallest city in the database?

How many languages are spoken in India?

Which languages are spoken in more than 20 countries?

What are the five biggest cities in the "Southern and Central Asia" region?

How many cities have a name that ends with "ester"?

Summary 155

Follow these steps to complete this activity:

1. Connect to the world schema with a MySQL client.

2. For each question, follow a few basic steps:
* Select the tables that we need.
* Filter out the rows that we need.
* Aggregate the rows if needed.
= Select the fields that we need.

Note
The solution for this activity can be found in the Appendix.

In this activity, you collected the required information from the world schema that can be
used to add bits of trivia to some of the articles in next month's edition of a travel magazine.

Summary

In this chapter, you learned how to select databases and query their tables. You also
learned how to apply different filters to the results using WHERE. You got hands-on
practice with popular built-in functions that help you manipulate data, such as ROUND (),
POW (), and CEILING (), string functions to slice and dice output, and used date and time
functions to enable you to capture different points in time when a record was inserted or
manipulated. Finally, you got to practice aggregating data, which is a must-have skill for
any database admin.

In the next chapter, we will continue our journey and cover using joins to correlate
related data.

Section 2;
Managing Your
Database

This section covers the various ways that you can manage and analyze your MySQL data.
We will discuss different ways of joining tables, creating objects to analyze data, and
creating basic database clients through Node.js.

This section consists of the following chapters:
o Chapter 5, Correlating Data across Tables
o Chapter 6, Stored Procedures and Other Objects
o Chapter 7, Creating Database Clients in Node.js
o Chapter 8, Working with Data using Node.js

5

Correlating Data

across Tables

In this chapter, you will learn multiple ways to query data that is spread over more than
one table. You will then use Common Table Expressions (CTEs) to build easy-to-follow
queries where parts of the main query are abstracted out into separate parts. In addition,
you will see how to work with a CTE to query for hierarchical data and generate ranges of
numbers, dates, and more. Finally, you will learn how to use EXPLAIN to see how MySQL
would execute a query.

This chapter covers the following topics:

Introduction to processing data across tables
Joining two tables

Analyzing subqueries

Common table expressions

Analyzing query performance with EXPLAIN
Activity 5.01: The Sakila video store

Activity 5.02: Generating a list of years

160 Correlating Data across Tables

Introduction to processing data across tables

In the previous chapter, we covered querying a single table. We used WHERE to filter out
the rows we were interested in, and we used GROUP BY to aggregate rows into groups of
rows to then use aggregate functions such as COUNT () and SUM () . We also learned about
working with JSON data.

In a relational database such as MySQL, data is stored across multiple tables. The reason
for doing this is that it avoids storing the same piece of information multiple times.

An example of this is a database for a simple website with comments. It probably has a
table of users consisting of values such as username, display name, and password hash.
Then it has a table named posts that stores all the posts, and then there is a table with
comments. The comment table stores a reference to the post the comment is linked to
and a reference to the user commenting.

If the user changes their password, then only one table has to be updated. And if a comment
gets edited, then one table also gets updated. If you want to get a list of display names that
commented on a post, you now have to use multiple tables to get this information.

In the next section, we will learn the basics of joining tables together. This allows us to
query a set of tables with one statement and get one coherent result set.

Joining two tables

If there is related data in two tables, you often need to query both to get the information
you want. You can do this with two queries, but often it is easier and more efficient to
query the two tables with a single query. An example of related data is the city and
country tables in the world database.

Let's use a simplified version of the city and country tables to learn how to join two
tables. Here is the city table, consisting of ID, Name, and CountryCode columns:

ID Name CountryCode
539 Sofija BGR

540 Plovdiv BGR

3018 Bucuresti ROM

3019 Tasi ROM

Figure 5.1 - The city table

Joining two tables 161

Here is the country table, consisting of Code and Name columns:

Code Name
BGR Bulgaria
ROM Romania

Figure 5.2 - The country table

As you can see, the values in the CountryCode column in the city table match the
values in the Code column in the country table. Now, let's see what happens if we join
the two tables:

1. First, write the following query to join both tables:
SELECT * FROM city JOIN country;

This query produces the following output in the compiler:

ELECT * FROM city JOIN country;
L e LT +
Name
—————————— +
Bulgaria
Romania
Bulgaria
Romania
Bulgaria
Romania
Bulgaria
Romania
Bulgaria
Romania

Countr

+

I

+

I

| sofija
8 | Plovdiv

I

I

I

I

I

I

I

+

+

I

+

I

I

I
Plovdiv |
Bucuresti |
Bucuresti |
Iasi |
Iasi |
Skopje |
Skopje |
+

1

N ——

18 rows in set (0.0

Figure 5.3 - SELECT output with JOIN
This is probably not the output you expected as it doesn't contain information.
MySQL combined all the rows in the country table with all the records in the
city table. As there are 4 records in the first table and 2 in the latter, this resulted
in 2 x 4 = 8 records. In this case, you should tell MySQL how the tables are related
to each other.

162 Correlating Data across Tables

2. To tell MySQL how the tables are related to each other, use the query shown here:

SELECT * FROM city JOIN country ON city.
CountryCode=country.Code;

This query produces the following output:

SELECT * FROM city JOIN country ON city.CountryCode=country.Code;
e i +

| Name

e i e e +
|
|
|
[
+

Bulgaria |
Bulgaria |
Bucuresti - - Romania |
Romania |
—————————— +
in set (0.80 sec)

Figure 5.4 - SELECT output for a join describing the relation between the two tables
This looks much better. Now the information makes sense, and we no longer see
rows where city and country don't match. But we do see two columns that have
the same information: the CountryCode column, which comes from the city
table, and the Code column, which comes from the count ry table. For now, we are
not interested in the ID column.

3. To specify the columns we want to see, we can write a query that modifies the field
list in the select:

SELECT city.Name, country.Code, country.Name FROM city
JOIN country ON city.CountryCode=country.Code;

This results in the following output:

mysgl> SELECT city.MName, country.Code, country.Name FROM city
-> JOIN country ON city.CountryCode=country.Code;

| Bulgaria |

Plovdiv | BGR | Bulgaria |
Bucuresti | ROM | Romania |
| ROM | Romania

rows in set (0.00 sec)

Figure 5.5 - SELECT output, joined with a specified set of columns

Joining two tables 163

There is, once again, some improvement. We only see the three columns we want to
see,and city and country are still combined correctly. However, it is not without
problems. There are two columns called Name, which is confusing, and we have to
specify the table names quite often.

4. To fix the duplicate naming, we can use aliases for the table names and the column
names:

SELECT ci.Name, co.Code AS CountryCode, co.Name AS
CountryName

FROM city ci JOIN country co ON ci.CountryCode=co.Code;
This query produces the following output:
mysql> SELECT ci.Name, co.Code AS CountryCode, co.Name AS CountryName

-= FROM city ci JOIN country co ON ci.CountryCode=co.Code;
P

Name CountryCod
+ ___________

Sofija B Bulgaria

Plovdiv BGR Bulgaria
Bucuresti | ROM Romania
Romania

(8.01 sec)

Figure 5.6 - SELECT output with table and column aliases

The column names are now unique, and we aliased the city table as ci and the country
table as co. Aliasing table names is especially useful if the table names are long.

Joins and Collections

While data in tables is usually spread out over multiple tables, this is not
common for collections. In the case of cities and countries, this would be
combined in a single collection, probably with nested data. In X DevAP], there
is no support for joining tables or collections. In SQL mode, you can join
collections with other collections or with tables.

Accidental cross joins

If you don't specify the relation between two tables, then the database server will join
every record in the first table with every record in the second table. This is often not
what you want and can produce very big result sets.

164 Correlating Data across Tables

A regular query will look like the following:

SELECT ci.name, co.name
FROM city ci
JOIN country co ON ci.CountryCode=co.Code;

The same query, but with the ON part forgotten, might look like this:

SELECT ci.name, co.name
FROM city ci
JOIN country co

The first query returns 4,079 rows and the second returns 978,960 rows.

The city table has 4,079 rows, while the country table has 240 rows, and 4,079 x 240
= 978,960. So, you can see that it matches every record in the country table with every
record in the city table. Therefore, be careful to not forget the ON part of the join.

LEFT JOIN versus INNER JOIN

Now, add a new city to the table with the insert query:
INSERT INTO city VALUES (2460, 'Skopje', 'MKD');

And run the same query again:

SELECT ci.Name, co.Code AS CountryCode, co.Name AS CountryName
FROM city ci JOIN country co ON ci.CountryCode=co.Code;

This produces the following output:

mysgl> INSERT INTO city VALUES(2460, 'Skopje’, 'MKD');
Query 0K, 1 row affected (0.81 sec)

mysql> SELECT ci.Name, co.Code AS CountryCode, co.Name AS CountryName
-> FROM city ci JOIN country co ON ci.CountryCode=co.Code;
AR R ik LR L EEEEERER) +
CountryCode | CountryName |

Bulgaria

Bucuresti | ROM Romania
Romania
_____________ .'.

+

: _ |
Plovdiv BGR Bulgaria |
|

I

rows in set (0.00 sec)

Figure 5.7 - SELECT output after adding a city

Joining two tables 165

This is not showing the new city. This is because there are multiple types of joins. JOIN in
MySQL means INNER JOIN.With INNER JOIN, MySQL will only show results if there
is a matching record in both tables. In this example, there is no country with the code MKD
in the country table, so it is not showing the new city. One of the other options is LEFT
JOIN.With LEFT JOIN, all the records from the first table are shown even if there is no
matching record in the second table. In that case, the columns from that table will have
NULL as a value.

Now, trya LEFT JOIN:

SELECT ci.Name, co.Code AS CountryCode, co.Name AS CountryName
FROM city ci LEFT JOIN country co ON ci.CountryCode=co.Code;

This produces the following output:

mysql> SELECT ci.Name, co.Code AS CountryCode, co.Name AS CountryName
-» FROM city ci LEFT JOIN country co ON ci.CountryCode=co.Code;
R e e T T +
Name CountryName |
R b e +
Sofija Bulgaria
Plovdiv Bulgaria

Iasi Romania

I

+
I I
N _ I
Bucuresti | R Romania |
I I
I I

+

R e +

5 rows in set (9.00 sec)

Figure 5.8 - SELECT with LEFT JOIN

It now shows all five records from the city table and shows code and name from the
country table if there is a matching record.

Say you have a city table with the following values:

ID Name CountryCode
539 Sofija BGR

540 Plovdiv BGR

2460 Skopje MKD

3018 Bucuresti ROM

3019 Tasi ROM

Figure 5.9 - The city table

166 Correlating Data across Tables

And you have a country table with the following values:

Code Name
BGR Bulgaria
ROM Romania

Figure 5.10 — The country table

Then, an INNER JOIN looks like this:

ID Name CountryCode | Code Name
539 Sofija BGR BGR Bulgaria
540 Plovdiv BGR BGR Bulgaria
3018 Bucuresti ROM ROM Romania
3019 Tasi ROM ROM Romania

Figure 5.11 - INNER JOIN of the city and country tables

And a LEFT JOIN looks like this:

ID Name CountryCode | Code Name
539 Sofija BGR BGR Bulgaria
540 Plovdiv BGR BGR Bulgaria
2460 Skopje MKD NULL NULL
3018 Bucuresti ROM ROM Romania
3019 Tasi ROM ROM Romania

So, the difference is that INNER JOIN requires matching rows in both tables, whereas
LEFT JOIN will show rows that have a match only in the left table.

You can combine joining tables with aggregations, which you learned about in the

Figure 5.12 - LEFT JOIN of the city and country tables

previous chapter, by writing the following query:

SELECT co.Name,

GROUP BY co.Name;

COUNT (*) FROM country co
LEFT JOIN city ci ON ci.CountryCode=co.Code

Joining two tables 167

This produces the following output:

SELECT co.Name, COUNT(#*) FROM country co
LEFT JOIN city ci ON ci.CountryCode=co.Code
= GROUP BY co.Name;
R D +
| Name | COUNT(*) |

+-----mmm - D +
| Bulgaria |
| Romania |
e Fo-mmmome -
2 rows in set (0.08 sec)

Figure 5.13 — SELECT with JOIN and GROUP BY
So, you can see that, for every record in the country table, there are two matches in the

city table. This is the number of cities per country.

But what happened to the city we just added? It is not shown, as the base of this query

is the country table, and with that information, it goes to look for matching cities.
However, we can change that by starting with the city table and then looking for matching
countries. In this case, we can use RIGHT JOIN, which does the same as LEFT JOIN,
but with the order of the tables reversed.

Consider the following query:

SELECT co.Name, COUNT (*) FROM country co
RIGHT JOIN city ci ON ci.CountryCode=co.Code GROUP BY co.Name;

This produces the following output:

mysql= SELECT co.Name, COUNT(*) FROM country co

-> RIGHT JOIN city ci ON ci.CountryCode=co.Code GROUP BY co.Name;
T Fommmmmmm- - +
| Name | COUNT(*) |

| Bulgaria |
| Romania |

Figure 5.14 - SELECT with RIGHT JOIN

168 Correlating Data across Tables

So, it now starts with the five cities and then, for each of them, looks for a matching
country and uses NULL if there is no match. The preceding output shows that Bulgaria
and Romania both have two cities and that there is one city for which we don't know
the country.

Now that you have learned about the joins, the next section will take you through an
exercise wherein you will be joining two tables.

Exercise 5.01: Joining two tables

This exercise assumes you have the wor1d database available from the previous chapter. In
the country table in the wor1d database, you have the Region column to store the region
that country is in. In the city table, you store the population of the cities. You now want to
get the five biggest cities in the Middle East region. For this, you need to query both tables.
In this exercise, you will try to join the tables by selecting the fields you need, and then apply
filtering, sorting, and limit options. Follow these steps to complete this exercise:

1. Connect to the MySQL client with Workbench and the appropriate user.

2. Select the wor1d database for the execution:
USE world;

This produces the following output:

mysql> USE world

Database changed
Figure 5.15 — USE output

3. Join the two tables. Here, you, know that the CountryCode column of the city
table stores a reference to the Code column of the country table. So, the JOIN
part of your query will be this:

FROM city ci JOIN country co ON ci.CountryCode=co.Code

4. Select the fields you need. You want the city name and population, so the SELECT
part of your query will be the following:

SELECT ci.Name, ci.Population

5. Add filtering, sorting, and the limit. You want to filter Region to get the top five
cities by population. So, the last part of your query will be as follows:

WHERE co.Region='Middle East' ORDER BY ci.Population DESC
LIMIT 5

Analyzing subqueries 169

6. Now, combine and execute the query:

SELECT ci.Name, ci.Population
FROM city ci JOIN country co ON ci.CountryCode=co.Code

WHERE co.Region='Middle East' ORDER BY ci.Population DESC
LIMIT 5;

The preceding query produces the following output:

mysql> SELECT ci.Name, ci.Population
-> FROM city ci JOIN country co ON ci.CountryCode=co.Code
-> WHERE co.Region="Middle East' ORDER BY ci.Population DESC LIMIT 5;
=== +-========== +
Mame | Population

Istanbul |

Baghdad
Riyadh
Ankara
Izmir

rows in set (0.00 sec)

Figure 5.16 — SELECT output with the top five cities in the Middle East region

Finally, you joined two tables and got the five biggest cities in the Middle East region
(namely, Istanbul, Baghdad, Riyadh, Ankara,and Izmir). You also applied filtering,
sorting, and limit options to get the desired result. In the next section, we will learn about
subqueries.

Analyzing subqueries

Another way of joining the tables is available in MySQL. It consists of using the output of
a query directly in another query.

Use the world simple table as an example again and look at the following query:

SELECT Name FROM city WHERE CountryCode= (
SELECT Code FROM country WHERE Name='Romania'
)i

170 Correlating Data across Tables

This query produces the following output:

mysql= SELECT Name FROM city WHERE CountryCode=(
SELECT Code FROM country WHERE Name='Romania’

Figure 5.17 - SELECT with a subquery

The preceding query is essentially running this command:
SELECT Code FROM country WHERE Name='Romania';
It then saves the result and runs the following query:
SELECT Name FROM city WHERE CountryCode=<saved result>

So, to use a subquery, you place the query inside (and) and place it where you want to
see the output. This can be in the WHERE part of the query, but also the SELECT part and
most other places.

Dependent subqueries

In the previous example, the two queries were independent, but in some cases, you can
make the subquery depend on the main query. That looks like this:

SELECT
Name,
CountryCode,

(SELECT Name FROM country WHERE Code=city.CountryCode) AS
CountryName

FROM city;

Analyzing subqueries

171

This query produces the following output:

mysql= SELECT
-> Name,
-= CountryCode,
(SELECT Name FROM country WHERE Code=city.CountryCode) AS CountryName
> FROM city;
e R
CountryCode

_____________ .'.
CountryName |
_____________ +
Bulgaria

+
Name |
+
| _
| Bulgaria
|
|
I
+

- -

Plovdiv
Bucuresti
Iasi
Skopje
+ ___________
5 rows in set (0.08@ sec)

|
|
Romania |
Romania |

|

|
+
|
|
|
|
I
D +

Figure 5.18 — SELECT with a dependent subquery

Here, the subquery refers to city.CountryCode. In MySQL, this is run like this: it
runs the subquery for every row in the city table. Now that we have gained a good
understanding of subqueries, let's do an exercise on them.

Exercise 5.02: Using a subquery

In the countrylanguage table, you have a list of languages. You want to get a list of
countries where Portuguese is the official language. To do this, you will first be filtering
out the rows you need from the countrylanguage table. Later, you will be adding a
subquery to look up the name of the country. Follow these steps to accomplish this:

1. Connect to the MySQL client with Workbench and the appropriate user.
2. Select the world database to be used:

USE world;
This produces the following output:

mysql= USE world

Database changed

Figure 5.19 — USE output

172 Correlating Data across Tables

3

4.

Filter out the rows you need from the countrylanguage table by writing the
following query:

SELECT * FROM countrylanguage
WHERE Language='Portuguese' AND IsOfficial='T';

This produces the following output:

mysql= SELECT * FROM countrylanguage
-> WHERE Language='Portuguese' AND IsOfficial='T"';
+ +

Portuguese
Portuguese

Portuguese
Portuguese
Portuguese

o ——— — — — . —

|
+
|
|
| Portuguese
|
|
|
+

6 rows in set (0.80 sec)

Figure 5.20 - SELECT output for countries with Portuguese as the official language
So, you now have a list of CountryCodes for countries that have Portuguese
as one of the official languages. This is close to what you need, but you need to
look up those CountryCodes in the country table to get the actual names
of those countries.

Add a subquery to look up the name of the country:

SELECT (
SELECT Name FROM country
WHERE Code=CountryCode
) AS CountryName FROM countrylanguage
WHERE Language='Portuguese' AND IsOfficial='T';

Common table expressions 173

This produces the following output:

mysql= SELECT |
-= SELECT Name FROM country
> WHERE Code=CountryCode
->) AS CountryMame FROM countrylanguage
-> WHERE Language='Portuguese' AND IsOfficial='T"';

Cape Verde
Guinea-Bissau |
Macao

Portugal

East Timor

6 rows in set (0.00 sec)

Figure 5.21 - SELECT output with a subquery for countries that have Portuguese as an official language

You now have the list you wanted; the names of the countries that have Portuguese as
one of their official languages. You did this in two steps, where you first filtered the right

entries from the countrylanguage table and verified the result. Later, you added the

subquery to look up the names of the countries. In the next section, you will learn about
common table expressions.

Common table expressions

If a query is joining multiple tables and also has subqueries, then things might start to
look a little complex. But luckily, there is a way to do this that's easier to understand. This
is called Common Table Expressions (CTEs). This is also known as WITH because that's
the keyword we have to use for this. Consider the following expression:

WITH city in romania AS (
SELECT ci.Name, ci.CountryCode, co.Name AS CountryName

FROM city ci INNER JOIN country co ON ci.CountryCode=co.Code
AND co.Name='Romania'

)
SELECT * FROM city in romania;

174 Correlating Data across Tables

This produces the following output:

> WITH city in romania AS {
SELECT ci.Name, ci.CountryCode, co.Name AS CountryName
FROM city ci INNER JOIN country co ON ci.CountryCode=co.Code AND co.Name='Romania'

)
SELECT * FROM city in romania;

| Bucuresti | ROM | Romania

| ROM | Romania
+----------- et R T +
2 rows in set (0.00 sec)

Figure 5.22 - SELECT with CTE
In the first few lines, we define city in romania asa new table that's only available for
this query. It is made by a join of the country and city tables and then filtered on the
country name. Then we can use this new table in the second part of the query. We can
define multiple virtual tables in this way.

Without the CTE, the query would look like this:

SELECT * FROM (
SELECT ci.Name, ci.CountryCode, co.Name AS CountryName
FROM city ci INNER JOIN country co ON ci.CountryCode=co.Code
AND co.Name='Romania'

) AS city in romania;

In this example, the query that uses the city in romania table is very simple. If that
part of the query becomes more complex, the usefulness of the CTE is more obvious.
Let's look at recursive CTE in the next section.

Recursive CTE

There is a variation of normal CTE called recursive CTE. It can be useful in quite a few
situations. One example is an employee table wherein the direct manager for every
employee is recorded. Then, a recursive CTE can find out which employees are under
the same manager even if there are multiple levels between them. Another category of
problems in which recursive CTEs are useful is when generating ranges of data.

To understand CTEs, we first need to cover UNION. UNION combines the output of
multiple queries into a single result set. This requires the queries to have exactly the
same column order and types. Consider the following query:

SELECT Name FROM country WHERE Code='ROM!'
UNION
SELECT Name FROM country WHERE Code='BGR';

Common table expressions 175

This produces the following output:

mysql= SELECT Name FROM country WHERE Code='ROM'
UNION
SELECT Mame FROM country WHERE Code="BGR';

| Romania |
| Bulgaria |

2 rows in set (0.80 sec)

Figure 5.23 — SELECT output with UNION

This output is combining the results of the two cases, the first case is where the code

is equal to ROM, and the second case is where the code is equal to BGR. Note that the
duplicates that exist in the output of both queries are not shown. If you want all rows from
both queries to show even if there are duplicates, we then need to use UNION ALL, which
would look something like this:

SELECT Name FROM country WHERE Code='ROM!'
UNION ALL
SELECT Name FROM country WHERE Code='BGR';

In our country table, there are no duplicate records, so the result of UNION and UNION
ALL are the same. There are many cases where the results of these queries will be different.
One such case is recursive CTEs, which will potentially have duplicate results in their
recursive calls.

As an example of a recursive CTE, consider a simple example of recursively counting from
1 to 12. To do this, we start with the number 1, and on each recursive call, we add 1 to the
previous number, until we reach our target value. To achieve this in a CTE, we start with
our initial condition in a SELECT operation. We then union that initial condition with a
recursive call, using a WHERE operation. clause to determine when the recursive call ends.
The resulting query is shown here:

WITH RECURSIVE numbers AS (

SELECT 1 AS n

UNION ALL

SELECT n+l1l FROM numbers WHERE n<12
)
SELECT

176 Correlating Data across Tables

n,
monthname (CONCAT ("2019-",n,"-01"))
FROM numbers;

This produces the following output:

mysql= WITH RECURSIVE numbers AS |
- SELECT 1 AS n
UNION ALL
SELECT n+1 FROM numbers WHERE n<12
)
SELECT
nr
monthname (CONCAT("2019-",n,"-81"))
FROM numbers;

+

|

+

| January
| February
| March

| April

| May
|
|
|
|
|
|
I
+

-

LT i FF)

June

July
August
September
October
November
December

.'. ______
12 rows in set (0.81 sec)

Figure 5.24 - SELECT query with recursive CTE

On the first line, we see the RECURSIVE keyword, which is needed if you want to use a
recursive CTE. Then, on the next line, we have SELECT 1 AS n, which generates the
first result and is used to initialize the recursion. Then, on the next line, we have UNION
ALL, which is required in order for the CTE to work. It combines the first result with
every next result.

Then, on the next line, we have a SELECT query that returns the value of n+1 but refers

to the numbers table, which is the recursive CTE. This is the second part of the CTE that
is called for every recursion and uses the data from the previous recursion. This also has
the WHERE condition, n<12, to stop the recursion. If the query after the union is no longer
returning results, then the recursion is done.

Common table expressions

177

With CTE, we have created a virtual table that has numbers from 1 to 12. Then we use
these numbers to get the names of the 12 months. As monthname () requires data, we

create some data that has this month.

We could also move the monthname query to a CTE by writing the following query:

WITH RECURSIVE numbers AS (

SELECT 1 AS n
UNION ALL

SELECT n+1 FROM numbers WHERE n<1l2

),

months AS (
SELECT n,
FROM numbers

)

monthname (CONCAT ("2019-",n,"-01"))

SELECT * FROM months;

This produces the following output:

mysql> WITH RECURSIVE numbers AS |

->

+------

5
+
|
+
|
|
|
4 |
|
|
|
|
|
|
|
|
+

)

SELECT 1 AS n
UNION ALL
SELECT n+1 FROM numbers WHERE n<12

r

months AS (

SELECT n, monthname{CONCAT("2619-",n,"-81"))
FROM numbers

ELECT *= FROM months;

____________________________________ .|.
monthname (CONCAT("2019-",n,"-081")) |
____________________________________ .|.
January

February

March

April

May

June

July

August

September

October

November

December

12 rows in set (8.01 sec)

Figure 5.25 - SELECT output with recursive CTE and regular CTE combined

178 Correlating Data across Tables

Here, you can see that you can combine recursive CTEs with regular CTEs. Having a way
to generate a range of numbers or months can be very useful, for example, for a report of
sales per day of the week. There might be a holiday or some other reason why there are
no sales on a particular day. Then, the report will only have the days on which there are
sales. If you join against a virtual table with days of the week, you can ensure that the days
for which there were no sales are still in the result. In the next section, we will solve an
exercise based on CTE.

Exercise 5.03: Using a CTE

In the previous exercise, you got a list of countries that have Portuguese as an official
language. Now you will go a step further. You want to get the total list of languages spoken
in each of the countries that have Portuguese as an official language. To do this, you will
create a CTE with the list of CountryCodes that have Portuguese as an official language.
Next, you will join with the countrylanguage table to get the other languages spoken
in that list of countries. Finally, you will join with the country table to get the names of
each of the countries. Follow these steps to complete this exercise:

1. Connect to the MySQL client with Workbench and the appropriate user.
2. Select the world database to be used:

USE world;

This produces the following output:

mysql= USE world

Database changed

Figure 5.26 — USE output

3. Create a CTE with the list of CountryCodes that have Portuguese as an
official language:

WITH country portuguese AS (

SELECT CountryCode FROM countrylanguage

WHERE Language='Portuguese' AND IsOfficial='T'
)
SELECT * FROM country portuguese;

Common table expressions 179

This produces the following output:

WITH country portuguese AS |
SELECT CountryCode FROM countrylanguage
WHERE Language='Portuguese' AND IsOfficial="T'

CRV
GNB
MAC
PRT

rows in set (8.00 sec)

Figure 5.27 — SELECT output with CTE
This might not look like much, but you can now use this as a table to join in the
next step.

Join the CTE from the previous step with the countrylanguage table to get the
other languages spoken in that list of countries:

WITH country portuguese AS (
SELECT CountryCode FROM countrylanguage
WHERE Language='Portuguese' AND IsOfficial='T'
)
SELECT
*
FROM country portuguese col pt
JOIN countrylanguage col
ON col pt.CountryCode=col.CountryCode;

180 Correlating Data across Tables

This produces the following output:

mysql> WITH country portuguese AS |
SELECT CountryCode FROM countrylanguage
WHERE Language='Portuguese’ AND IsOfficial='T"

ELECT

FROM country portuguese col pt
JOIN countrylanguage col
ON col_pt.CountryCode=col.CountryCode;
+

|

+

| German

| BRA Indian Languages
| BRA Italian

| BRA Japanese

| BRA Portuguese

| CPV Crioulo

| CPV Portuguese

| GNB Balante

| GNB Crioulo

| Gue Ful

| GNB Malinke

| GNB Mandyako

| GNB Portuguese

| MAC Canton Chinese
| MAC English

| MAC Mandarin Chinese
| MAC Portuguese

| PRT Portuguese

| TP Portuguese

I
+

e —— —————— — — ———(——— — — —— i —

20 rows in set (0.00 sec)

Figure 5.28 - SELECT output with CTE and join
Here, you joined the CTE (country portuguese) you created in the previous
step with the countrylanguage table. This results in rows that have a match in
both tables. You can already see CountryCode and Language. The part that is
missing is the name of the countries.

5. Join with the country table to get the name of each country:
WITH country portuguese AS (

SELECT CountryCode FROM countrylanguage
WHERE Language='Portuguese' AND IsOfficial='T'

Common table expressions 181

SELECT

co.Name,

GROUP_CONCAT (Language) AS Languages
FROM country portuguese col pt
JOIN countrylanguage col

ON col pt.CountryCode=col.CountryCode
JOIN country co

ON co.Code=col.CountryCode
GROUP BY co.Name;

This produces the following output:

WITH country portuguese AS |
SELECT CountryCode FROM countrylanguage
WHERE Language='Portuguese® AND IsOfficial='T'

)
SELECT

co.Name,

GROUP CONCAT(Language) AS Languages
FROM country portuguese col pt
JOIN countrylanguage col

OM col pt.CountryCode=col.CountryCode
JOIN country co

ON co.Code=col.CountryCode
GROUP BY co.MName;

+

|

+

| Indian Languages,Italian,Japanese,Portuguese,German |
Cape Verde | Crioulo,Portuguese
East Timor | sunda,Portuguese
Guinea-Bissau | Ful,Malinke,Mandyako,Portuguese,Crioulo,Balante
Macao |
Portugal |
+

Canton Chinese,English,Mandarin Chinese,Portuguese
Portuguese
___ +
6 rows in set (8.80 sec)

Figure 5.29 — SELECT output with CTE and multiple joins

So, we have the end product. We joined against the country table to get the list of
countries. We could have used a subquery as we did in the previous exercise. Both are
valid ways to get the same result. We also used GROUP BY to group the rows by country
name. Then, we used GROUP_CONCAT () to list all the languages in each group and then
named this column Languages.

182 Correlating Data across Tables

In this exercise, we have combined CTEs with JOINS, GROUP BY, and function calls,
which we covered in the previous chapter. In the next section, we will explore the
EXPLAIN keyword.

Analyzing query performance with EXPLAIN

EXPLAIN is a very useful tool when it comes to performance. The SQL query is used to
tell the database what you want, but EXPLAIN asks the database how it thinks it is going
to do it.

Let's use the city table in the world simple database as an example:

SELECT * FROM city WHERE ID=2460;
EXPLAIN SELECT * FROM city WHERE ID=2460;

This produces the following output:

> SELECT * FROM city WHERE ID=2460;
B R +--- ---+
Name

LL
,,,,,, oo

1 row in set, 1 warning (@.00 sec)

Figure 5.30 - SELECT and EXPLAIN

Note that it says 1 warning. You can see the actual message by running SHOW
WARNINGS ;. This is expected for EXPLAIN as there will be a note with a rewritten
version of the statement. You can ignore this for now.

We select a single city (Skop3je) and are using an ID (2460) to do this lookup.

Let's go over the EXPLAIN output to see what each field means:

Column Value Meaning

id 1 The identifier for this part of the query.

select_type SIMPLE | This means this is a simple query without the complexities
of UNION or subqueries.

table city The name of the table. This shows the alias if the table is
aliased.

Analyzing query performance with EXPLAIN 183

Column Value Meaning

partitions NULL This shows which partitions are needed if the table
consists of multiple partitions.

type ALL This is an important field. ALL means that it is scanning
the whole table.

possible_keys |NULL This is the list of indexes (or keys) being considered for
this query.

key NULL This is the index that is used for this query.

key_len NULL This is the length in bytes that is being used for the query.

If the index is over two 4-byte columns (meaning 8 bytes
in total), then 4 bytes would indicate that only 1 column is

used.

ref NULL This is the column that is used for comparison.

rows 5 This is the number of rows it expects to scan to get the
result.

filtered 20.00 The query returns 1 row, but the database scans 5 rows. So,
it filters out 20% of the rows it scans.

Extra Using Additional information about how it executes this query.

where

Figure 5.31 — Meaning of each field
Now let's add a primary key to this table and run EXPLAIN again:

ALTER TABLE city ADD PRIMARY KEY (ID);
EXPLAIN SELECT * FROM city WHERE ID=2460;

This produces the following output:

> ALTER TABLE city ADD PRIMARY KEY (ID);
, B rows affected (0.21 sec)
ates: @ Warnings: 0

_______________ fommmmmman

+
| possible

Figure 5.32 - ALTER and EXPLAIN output showing the primary key

184 Correlating Data across Tables

So, what changed? It now says const in the type column instead of ALL. This means

it is doing an efficient lookup. In the possible keys and key columns, it now says
PRIMARY, which means it is using the primary key. The key len of 4 is because an
integer in MySQL is 4 bytes. It now also shows that it only scans 1 row and returns 100%
of the rows it scanned. The most important columns are type and rows.

If you are requesting the whole table (for example, a query without WHERE), then having
ALL in the type column is not a problem. But if you are using WHERE, then it should not
show ALL. If it does, you probably need to add an index.

The number of rows should be roughly the same as the number of rows your query
returns. Note that aggregations (GROUP BY) might use many more rows than it returns
because of the aggregation.

For the next example, we are going to look at the EXPLAIN plan of a SELECT query with
ajoin:
EXPLAIN SELECT * FROM country co LEFT JOIN city ci

ON ci.CountryCode=co.Code WHERE ci.ID=540\G

This produces the following output:

mysql= EXPLAIN SELECT * FROM country co LEFT JOIN city ci

select type: SIMPLE
table: ci
partitions: NULL
type: const

' keys: PRIMARY
key: PRIMARY
key len: 4
ref: const
rows: 1
: 100.00
: NULL

1
: SIMPLE
table: co
partitions: NULL
: ALL
¢ NULL
: NULL
t NULL
ref: NULL
rows: 2
filtered: 50.00
Extra: Using where
2 rows in set, 1 warning (0.00 sec)

Figure 5.33 - EXPLAIN output for a SELECT query with a join

Analyzing query performance with EXPLAIN 185

We use \G instead of ; to get vertical output as we did in the previous chapters.
Otherwise, the output format is identical to the previous example.

Here, we see that it is using the primary key we added to the city table (here aliased as
ci). However, it is still scanning the whole country table (here aliased as co).

ALTER TABLE country ADD PRIMARY KEY (Code) ;
EXPLAIN SELECT * FROM country co LEFT JOIN city ci
ON ci.CountryCode=co.Code WHERE ci.ID=540\G

This produces the following output:

Imysql> ALTER TABLE country ADD PRIMARY KEY (Code);
fQuery 0K, © rows affected (.21 sec)
IRecords: @ Duplicates: @ Warnings: @

mysql> EXPLAIN SELECT * FROM country co LEFT JOIN city ci
ON ci.Cou

id:
select type: SIMPLE
table: ci
partitions: NULL
. const
keys: PRIMARY
key: PRIMARY
key len: 4
ref: const
rows: 1
filtered: 100.00
Extra: MNULL

id: 1
select type: SIMPLE
table: co
partitions: NULL
: const
: PRIMARY
y: PRIMARY
key len: 3
ref: const
rows: 1
filtered: 100.00
Extra: MNULL
2 rows in set, 1 warning (0.00 sec)

Figure 5.34 - EXPLAIN output with a join and a primary key on the Code column

You can now see that it is using the primary key on both tables. The speed difference
between scanning 5 rows and 1 row is very small. But if you query a table with billions
of rows, then it makes a huge difference to the runtime of the query.

186 Correlating Data across Tables

Besides the format we used in these examples, which is called the traditional format,
there are also other formats. The first of these is JSON. To set the EXPLAIN output format,
use EXPLAIN FORMAT=<format> <query>.Consider the following example:

EXPLAIN FORMAT=JSON SELECT * FROM country co
LEFT JOIN city ci ON ci.CountryCode=co.Code WHERE ci.ID=540\G

This returns the following JSON structure:

{

"query block": {
"select id": 1,
"cost info": {
"query cost": "1.00"
3
"nested loop": [
{
"table": {
"table name": "ci",
"access type": "const",
"possible keys": [
"PRIMARY"
1,

}

This is not just the same data as the traditional format, but then in a JSON format, it has
more detailed information.

Another available format is called TREE. Here is an example:

EXPLAIN FORMAT=TREE SELECT Name, CountryCode,

(SELECT Name FROM country WHERE Code=city.CountryCode) AS
CountryName

FROM city\G
And it returns the following output:

-> Table scan on city
-> Select #2 (subquery in projection; dependent)

Analyzing query performance with EXPLAIN

187

-> Single-row index lookup on country using PRIMARY
(Code=city.CountryCode)

The benefit of this format is that the indentation helps you to see the order in which
the steps are executed. Note that this format only supports a subset of the possible SQL

queries, and MySQL Workbench has a special feature: Visual Explain.

You get this by going to Query-Explain Current Statement, by clicking the lightning
bolt icon with the magnifying glass icon, or by clicking on Execution Plan on the right-

hand side, as shown in the following screenshot:

MySQL Workbench

& 8.0.17Sandbox 3
File Edit View Query Database Server Tools Scripting Help

& & e o E & E B @ 0DdaO
Query 2
B B ¥ ¥ B8 ol Don't Limit v 9% ¢ Q

1 e SELECT * FROM country co

2 LEFT JOIN city ci ON ci.CountryCode=co.Code WHERE ci.ID=540

3

Visual Explain = Displayinfo: Read + Evalcost = H Overview: (@, View Source: E

Query cost: 1.00

query_block #1

Single Row Single Row
(constant) (constant)

ci co
PRIMARY PRIMARY

Result 8 3 Explain ¥

Query Completed

Figure 5.35 - MySQL Workbench with Visual Explain

188 Correlating Data across Tables

Depending on how optimal something is, the boxes for each table will be blue, green, or
red. Here is an example showing what the same query looks like if we drop the primary

key of the city column:

Query cost: 1.10

query_block #1

11 1 row

nested
b

0.75 5 rows 0.35 1 row

Full Table Scan Unique Key Lookup

o
PRIMARY

Figure 5.36 - Visual Explain from MySQL Workbench with a full scan and unique key lookup

A new feature introduced in MySQL 8.0.18 is EXPLAIN ANALYZE. It allows us to see
what the database actually did to execute the query, as opposed to what it thinks it would

do to execute your query.

Consider the following example:

EXPLAIN FORMAT=TREE SELECT * FROM country co
LEFT JOIN city ci ON ci.CountryCode=co.Code
WHERE ci.ID=540\G

EXPLAIN ANALYZE SELECT * FROM country co
LEFT JOIN city ci ON ci.CountryCode=co.Code
WHERE ci.ID=540\G

Analyzing query performance with EXPLAIN 189

This produces the following output:

mysql> EXPLAIN FORMAT=TREE SELECT * FROM country co
LEFT JOIN ci ci ON ci.Coun ode=co. Code
WHERE ci.ID

(PLAIN: -> Inner hash join (co = ci.CountryCode) (cost=1.208 rows=1)
-> Table scan on co (cost=0.35 rows=2)
-> Hash
-> Filter: (ci.ID = 540) (cost=0.75 rows=1)
-> Table scan on ci (cost=0.75 rows=5)

1 row in set (0.00 sec)

SELECT * FROM country co
ci ON ci.CountryCode=co.Code

Inner hash join (co > y 05t=1.28 rows=1) (actual time=0.137..0.151 rows=1 loops=1)
-> Table scan on co (cost=0.35 rows=2) (actual time=0.011..0.018 rows=2 loops=1)
-> Hash
-> Filter: (ci.ID = 540) (cost=0.75 rows=1) (actual time 64 0 rows=1 loops=1)
-> Table scan on ci (cost=0.75 rows=5) (actual time=0.045..0.066 rows=5 loops=1)

1 row in set (0.00 sec)

Figure 5.37 - EXPLAIN and EXPLAIN ANALYZE output

As you can see in the preceding screenshot, the output looks very similar to the EXPLAIN
FORMAT=TREE output, but has some more information for the actual runtimes and the
actual number of rows.

The reason that the number of rows it thinks it needs to scan and the actual number of
rows that it did scan may differ is because this is based on the statistics it has on the table.
In the next section, you will perform an exercise using EXPLAIN.

Exercise 5.04: Using EXPLAIN

In this exercise, you will start with a query and a set of indexes you want to add. You will
then execute the following query to reduce the amount of work the database has to do.

Here is the query:

SELECT cl.Language, cl.Percentage
FROM city ci JOIN country co ON ci.CountryCode=co.Code
JOIN countrylanguage cl ON cl.CountryCode=co.Code
WHERE

ci.Name='San Francisco'

AND co.Name='United States'

AND cl.Percentage>1;

190 Correlating Data across Tables

And these are the statements for the indexes we want to add:

ALTER TABLE country ADD INDEX (Name) ;
ALTER TABLE city ADD INDEX (Name) ;

First, run EXPLAIN on the query, then add the first index, and run EXPLAIN again.
Finally, you will add the second index and run EXPLAIN again. Follow these steps to
complete this exercise:

1. Connect to the MySQL client with Workbench and the appropriate user.
2. Select the world database to be used:

USE world;

mysql= USE world

Database changed

Figure 5.38 — USE output
3. Run EXPLAIN on the query:

EXPLAIN SELECT cl.Language, cl.Percentage
FROM city ci JOIN country co ON ci.CountryCode=co.Code
JOIN countrylanguage cl ON cl.CountryCode=co.Code
WHERE

ci.Name='San Francisco'

AND co.Name='United States'

AND cl.Percentage>1\G

The preceding code produces the following output:

Analyzing query performance with EXPLAIN

191

mysgl= EXPLAIN SELECT cl.Language, cl.Percentage
> FROM city ci JOIN country co ON ci.CountryCode=co.Code
= JOIN countrylanguage cl ON cl.CountryCode=co.Code

> WHERE

ci.Name='San Francisco’
AND co.Name='United States'
AND cl.Percentage=1\G

1
: SIMPLE

HE]

: NULL

1 ALL

key len:
ref:
: 239
: 10.00
: Using where

: PRIMARY

NULL
NULL
NULL

: 1

SIMPLE

: ¢l

partitions:

t

T
possible k

key len:

ref:

rows:
filtered:
Extra:

3 rows in set, 1 warning (.80 sec)

Figure 5.39 - EXPLAIN output for the original query
What you can see in the output is that it scans 239 rows in the country table,

e:

NULL

ref
CountryCode
CountryCode

3

: world.co.Code
: 18

: 10.00

: Using where

: 1

SIMPLE

:cl
partitions:
ype:

NULL

ref
PRIMARY , Coun
PRIMARY

3

world.co.Code
4

33.

u

sing where

and then uses the CountryCode index to look up rows in the city table. Finally,

it uses the primary key of the countrylanguage table to look up rows in that
table. The primary key of the countrylanguage table is on (CountryCode,
Language). So, it can use the code it got earlier on to do this.

Add the first index and run EXPLAIN again:
ALTER TABLE country ADD INDEX (Name) ;

EXPLAIN SELECT cl.Language,
FROM city ci JOIN country co ON ci.CountryCode=co.Code

cl.Percentage

192 Correlating Data across Tables

JOIN countrylanguage cl ON cl.CountryCode=co.Code
WHERE

ci.Name='San Francisco'

AND co.Name='United States'

AND cl.Percentage>1\G

The preceding code produces the following output:

mysql> ALTER TABLE country ADD INDEX(Name);
y 0K, 0 rows affected (0.07 sec)
lRecords: @ Duplicates: @ Warnings: @

mysql> EXPLAIN SELECT cl.Language, cl.Percentage
-> FROM city ci JOIN country co ON ci.CountryCode=co.Code
> JOIN countrylanguage cl ON cl.CountryCode=co.Code
WHERE
ci.Name="5an Francisco'
AND co.Name='United States'
AND cl.Percentage

1

: SIMPLE

H]

: NULL

H
PRIMARY , Name
Name
52

: const

rows:
filtered:

select type:
table:
partitions:
type:

: CountryCode

filtered:

Extra

1
lee.00
Using ind

1
SIMPLE
ci
NULL
ref

CountryCode
3

: world.co.Code
: 18

10.00
Using where

id: 1

select_type:
table:
partitions:
type:
: PRIMARY, CountryCode
cey: PRIMARY

key len: 3
ref:

SIMPLE
cl
NULL
ref

3

world.co.Code

rows: 4

filtered:
Extra:
3 rows in set,

Using where
1 warning (.80 sec)

Figure 5.40 - EXPLAIN output after adding the first index
Here, things have changed. It now starts with the country table and uses the newly
added index to find entries in the country table that match Name="'United
States'. Then, from there, it uses CountryCode to look up entries in the other
two tables. This is a lot better.

Analyzing query performance with EXPLAIN

193

Now, add the second index and run EXPLAIN again:

ALTER TABLE city ADD INDEX (Name) ;
EXPLAIN SELECT cl.Language, cl.Percentage
FROM city ci JOIN country co ON ci.CountryCode=co.Code
JOIN countrylanguage cl ON cl.CountryCode=co.Code
WHERE

ci.Name='San Francisco'

AND co.Name='United States'

AND cl.Percentage>1\G

The preceding code produces the following output:

mysql> ALTER TABLE city ADD INDEX (Name);
Query OK, 8 rows affected (0.89 sec)
Records: ® Duplicates: ©@ Warnings: @

mysql> EXPLAIN SELECT cl.Language, cl.Percentage
-> FROM city ci JOIN country co ON ci.CountryCode=co.Code
-> JOIN countrylanguage cl ON cl.CountryCode=co.Code
-> WHERE
-> ¢i.Name="San Francisco"'
-> AND co.Name='United States'
-> AND cl.Percentage>1\G
1. row
id: 1
select type: SIMPLE
able: ci
partitions: NULL
type: ref
CountryCode, Name
Name
1 35
: const
01
: 100.00
NULL

id: 1
select_type:
table:
partitions:
type:
possible |

: Using where

id
select type: SIMPLE
table: cl
partitions: NULL
2: ref
PRIMARY, CountryCode
PRIMARY
3

world.ci.CountryCode

Figure 5.41 - EXPLAIN output after adding the second index

194 Correlating Data across Tables

It starts again with the city table and filters out San Francisco. Then it uses
CountryCode to do a lookup into the other two tables.

6. To improve this even more, get rid of the country table as you don't strictly need
this in this query. And also, you know there is only one San Francisco:

EXPLAIN SELECT cl.Language,
FROM city ci

JOIN countrylanguage cl ON cl.CountryCode=ci.CountryCode
WHERE

cl.Percentage

ci.Name='San Francisco'
AND cl.Percentage>1\G

The preceding code produces the following output:

> EXPLAIN SELECT cl.Language, cl.Percentage

> FROM city ci

> JOIN countrylanguage cl ON cl.CountryCode=ci.CountryCode

= WHERE

> cl.Name='San Francisco’
AND cl.Per

id:

select type:
table:
partitions:

id

select type:
table:
partitions:
type:
: PRIMARY, CountryCode

y: PRIMARY
key len: 3
ref:
rows:
filtered:
Extra:
2 rows in set,

possible

ntage=1\G
1. row
1
SIMPLE
ci
NULL
ref

: CountryCode,Name

¢ Name
key len:
ref:
rows:
filtered:
Extra:

35
const
1
160.00
NULL

1
SIMPLE
cl
NULL
ref

3

world.ci.CountryCode
_.f\[

EENEE

Using where
1 warning (8.01 sec)

Figure 5.42 - EXPLAIN output with the country table removed

Activity 5.01: The Sakila video store 195

Note that the database will never do this as it doesn't know whether it's safe to do. In this
case, it is safe, but for many other cities, it is not.

Activity 5.01: The Sakila video store

You are the database administrator of the Sakila video store. As there is a lot of
competition, the manager wants to do some marketing and reduce costs. The manager
asks your help in obtaining the following information from the database:

Finding the total number of films the store has with a PG rating. This is needed for
advertisements.

Finding films in which Emily Dee performed as an actor. This is also needed
for advertisements.

Finding the customers who rented the most items. The manager needs this to see
what the impact of a loyalty program would be.

Finding the film that resulted in the biggest income. This is so the manager knows
what films should be bought next year.

Finding the email address of the customer living in Turkmenistan. This is so they
can be sent a questionnaire to get some feedback from a customer who doesn't live
close to the store. The manager is thinking of increasing shipping costs.

Note

The Sakila database can be downloaded from https://downloads.
mysqgl.com/docs/sakila-db.zip.

Follow these steps to complete this activity:

1.
2.
3.

For each question, find the tables you need and join them.
Aggregate the data if needed.

Select the fields you need to answer the questions.

https://downloads.mysql.com/docs/sakila-db.zip
https://downloads.mysql.com/docs/sakila-db.zip

196 Correlating Data across Tables

The following diagram created using MySQL Workbench will help you understand how
the tables are related:

¥ city_id SMALLINT(S)

ety VARCHAR(50)

@ country_id SMALLINT(S)
© st_update TIMESTAMP

¥ address_id SMALUNT(S)
 address VARCHAR(50)

2 address2 VARCHAR(50)
 @isirict VARCHAR(20)

@ city_id SMALLINT(5)
 postal_code VARCHAR(10)
& phone VARCHAR(20)

¥ location GEOMETRY

¥ customer_id SMALLINT(S)
@ store_id TINYINT(3)
 first_name VARCHAR(45)
¥ last_name VARCHAR(45)
2 email VARCHAR(50)

@ aodress_id SMALLINT(S)
& active TINYINT(1)
 create_date DATETIME
2 last_update TIMESTAMP

¥ payment_id SMALLINT(S)
@ customar_id SMALLINT(S)
@ statt_id TINYINT(3)

© rental_d INT(11)

» amount DECIMAL(S.2)
 payment_date DATETIME
 last_update TAESTAMP

¥ rental_KINT(11)
 rental_date DATETIME

@ inventory_i3 MEDIUMINT 8)
@ customer_id SMALLINT(S)
 return_date DATETIME

@ staft_id TINYINT(3)
 last_update TIMESTAMP

7 last_update TIMESTAMP

1 inventory_id MEDIUMINT(8)
@ film_id SMALLINT(S)

@ store_id TINYINT(3)

> lagt_update TIMESTAMP

¥ staff_id TINYINT(3)

 first_name VARCHAR(45)

& last_name VARCHAR4S)

@ address_id SMALLINT(S)
 picture BLOB

@ store_id TINYINT(3)

& active TINYINT(1)

& usemame VARCHAR(16)
2 password VARCHAR(40)
& lagt_update TIMESTAMP

¥ language_id TINYINT(3)
2 name CHAR20)
2 last_update TIMESTAMP

1 film_id SMALUNT(5)

2 tite VARCHAR(255)
 description TEXT
 reloase_year YEAR()
 mnguage_id TINYINT(3)

© original_language_id TINYINT(3)
@ rental_duration TINYINT(3)

0 rental_rate DECIMAL(4,2)

2 length SMALLINT(5)

¥ actor_id SMALUNT(5)
@ fist_name VARCHAR(45)
2 last_name VARCHAR(45)
last_update TIMESTAMP

2 special_features SET(..)
1 actor_ii SMALLINT(S) st update TIMESTAMP
1 fim_id SMALLINT(S)

© last_update TIMESTAMP

Figure 5.43 — Relationship between the tables

Activity 5.02: Generating a list of years 197

Note
The solution to this activity can be found in the Appendix.

In this exercise, you were able to help the manager with the data he needed for
promotional campaigns, possible cost savings, and so on. Even if this data is not stored
in a single table, you can answer the questions by combining multiple tables and then
filtering and aggregating the results. In the upcoming activity, you will generate a list
of years, which will display the total videos rented per year. This report will allow the
manager to decide what videos to purchase.

Activity 5.02: Generating a list of years

The manager of the Sakila video store wants to buy some new videos to rent out. He wants
a weekly report that shows how many videos per year of release there are in the database.
This helps him to decide what videos to buy. For this activity, you will again use the
Sakila database. You want a list of the number of films per year of release for the

period between 2005 and 2010. Follow these steps to implement this activity:

1. Create a CTE to generate a range of years.

2. Join against the list of years we have generated.

After following these steps, the expected output should look like the following:

+
I
+
|
|
|
|
|
|
+

in set (0.01 sec)

Figure 5.44 — SELECT output with film release dates between 2005 and 2010

Note
The solution to this activity can be found in the Appendix.

198 Correlating Data across Tables

Summary

In this chapter, you learned how to combine the information in multiple tables to get the
results you want. In addition to that, you learned how to use the WITH statement to create
virtual tables that are only valid for the duration of the query, but can make the queries
easier to read. And by using WITH RECURSIVE, you now know how to generate ranges of
data that can be used for joining or for generating data for testing. With EXPLAIN, we can
now start to understand what the database needs to do to get our results and how indexes
can help to improve that.

In the next chapter, we will cover making changes to the data stored in tables and/or
collections and how to remove data from tables and collections that are no longer needed.
For this, we will use UPDATE and DELETE statements to work with tables and modify ()
and remove () to work with JSON documents inside collections.

6

Stored Procedures
and Other Objects

In this chapter, we will continue exploring SQL coding and working with our database. We
will create objects that can be reused and flexible enough to accept parameters. By doing
this, you will learn how to create views, functions, stored procedures, and transactions to
allow users to interact with a MySQL database easily.

This chapter covers the following topics:

« Introduction to database objects

« Exploring various database objects

» Working with views

o Activity 6.01 — updating the data in a view
» Working with user-defined functions

« Working with stored procedures

« Working with IN, OUT, and INOUT

« Exploring triggers

» Using transactions

200 Stored Procedures and Other Objects

Introduction to database objects

In the previous chapter, you learned how to back up and restore a database, create a
database and tables with SQL commands, and set their properties. You also learned how
to add, read, write, modify, and delete records using SQL commands before learning about
foreign keys and indexes, and why they are essential. Finally, you learned about multi-table
queries and various table joins. You will be using your knowledge of these subjects in this
chapter to work with stored procedures, views, and functions.

Views are database objects that allow you to save a particular query as a table. This allows
you to save results so that they can be used later. Views allow people with little SQL
experience to access complex datasets that have been constructed from SQL queries.
Functions can be used to create custom programming logic for your database. This is
helpful in situations where you have code repeated in multiple areas and you want to
avoid copying code multiple times.

Stored procedures allow you to store a set of SQL queries, to be executed when required.
This is useful for completing tasks such as loading data into a database. Typically, you
should use stored procedures when a query or set of queries must be repeated regularly.
Triggers allow you to complete a query when another query or event occurs. For example,
you can create a trigger that runs when a table is updated or when a new record is added
to the table.

Exploring various database objects

There are several database objects you will work with consistently as your database
portfolio expands during your career of creating and working with databases. These
objects are as follows:

o Tables: Tables are the base objects in databases and are used to store static data.
Tables contain records, which have one or more fields that display properties of the
data. These tables should be designed around the Third Normal Form to ensure
efficient data storage. All foreign keys, along with their constraints and indexes,
should be created to ensure data integrity and speed of use.

o Views: Views are SQL queries that are stored in a permanent state in the database
and can be used by other objects or external applications. They can consist of one
or more tables with criteria filtering; however, they do not accept parameters. In
certain conditions, they can be updated, though usually, they are read-only.

Now, let's learn how to work with views.

Working with views 201

Working with views

Views are queries that are saved in a database. They are mostly used in read-only format;
only under some circumstances can they be used to update data in a table. Once a view
has been created, it can be used in MySQL as if it were a table or linked to an external
application, such as MS Access, as a table.

Views have multiple uses. Typically, you use a view when a query may be accessed more
than once. For example, let's say we had a database of customers and their orders. The
sales team may want to create a query that shows the total sales for each customer for a
given year. We can save this query as a view to allow the sales team to access it whenever
they need to. This also allows users who are not experienced with SQL to access data that
is created using SQL queries, which ensures that the databases are as simple as possible
for all users.

A view can be created using the following query:

CREATE VIEW “<View Name>~ AS
<Your query SQL here>

The structure is simple; just enter a name for the view and enter the respective SQL
statement after AS. For example, if you wanted to create a view that contains all the
data from a table named customers, the following query would work:

CREATE VIEW “customerData” AS
SELECT * FROM customers

In the next exercise, you will create a view from a single table.

Exercise 6.01 - creating a mailing list with a view

The event organizer of the Automobile Club needs you to create a list of active club
members and include their names and address details. The members table contains all of
the members' names, while the memberaddress table contains the members' addresses.
This list will be used for the c1ubs mailing list. You are required to create a view to
extract this information. Follow these steps:

1. Open anew SQL tab.

2. Create a SQL statement that will extract the data for the mailing list. Enter the
following text in the SQL tab:

SELECT

members.Surname,

202 Stored Procedures and Other Objects

members.FirstName,
memberaddress.StreetAddressl,
memberaddress.StreetAddress?2,
memberaddress.Town,
memberaddress.Postcode,
states.State

FROM
members

INNER JOIN memberaddress ON memberaddress.MemberID =
members . ID

INNER JOIN states ON memberaddress.State = states.ID
WHERE
members.Active <> 0

ORDER BY members.Surname, members.FirstName

This query joins the members and memberaddress tables to display the
members' names, as well as their addresses.

3. Execute the query and examine the results, as follows:

Result Grid | _I'j 4% Filter Rows: I:l | Export: =]

wrap Cell Content: 12

Surname Firsthame StreetAddressi StreetAddress2 Town Postcode State
. Summer 851 Bins Spring (] Cheyenneshire 7700 MSW
Balistreri Hugh 8633 Vandervort Common Rileyfort 3296 MSW
Baumbach Hunter 497 Leffler Cliff L] Kunzeside 7325 MSW
Baumbach Jeremie 302 Rodriguez Trail Kreigerhaven 7435 MSW
Bechtelar Annette 458 Bashirian Rest L] Port Earnestview 9450 MT
Bechtelar Davana 576 Cordelia Dale Morth Malachichester 2631 MSW
Bednar Adelle 93107 Arielle Walk L] West Obieview 5580 MSW
Bergnaum Felix 74139 Hirthe Roads Eddieview 5177 SA

Figure 6.1 - Members mailing list
These results show a list of all the members in the autoclub database, along with
their addresses.

Working with views 203

4. Turn the SQL statement into a Create View statement by including the following
line at the top of the preceding code snippet:

CREATE VIEW “vw_MembersMailingList Active™ AS

The SQL statement should now look as follows:

CREATE WIEW “ww _MembersMailinglist Active™ AS
SELECT
members.Surname,
members.FirstName,
memberaddress.StreetAddressl,
memberaddress. StreetAddress2,
memberaddress. Town,
memberaddress.Postcode,
states.5tate
FROM
members
IMNER JOINMN memberaddress ON memberaddress.MemberID = members.ID
IMNER JOINM states ON memberaddress.State = states.ID
WHERE
members.Active <> O
ORDER BY members.Surname, members.FirstMName

Figure 6.2 - The CREATE VIEW line inserted at the top of SQL

5. Create the view by running the SQL statement (click the lightning bolt icon). The
new view will appear in the Views list:

SCHEMAS B A
Q, |Fi|ter objects |

v éﬁ] autoclub i I
» B Tables
T@ Views
[3 vw_members_all
> vw_membersmailinglist_active
I stored Procedures
@ Functions

Figure 6.3 - The new vw_membersmailinglist_active view in the list

204 Stored Procedures and Other Objects

6. Test the view by right-clicking the view and choosing Select Rows. You should get
the following result:

EH';'&EQ\ |@| [| Dont Limit '|1E|@Q|E|EJ

1 ® SELECT * FROM autoclub.ww membersmailinglist actiwve;

Result Grid | EE 4% Filter Rows: I:ll Expart: % |Wrap Cell Content: T&

Surname FirsthName StreetAddress1 StreetAddress2 Town Postcode State
Summer 851 Bins Spring LA Cheyenneshire 7700 MNSW

[riuLL |
Balistreri Hugh 8633 Vandervart Comman Rileyfort 329 MSW
Baumbach Hunter 497 Leffler Cliff Kunzeside 7325 MSW
Baumbach Jeremie 802 Rodriguez Trail Kreigerhaven 7435 MW
Bechtelar Annette 458 Bashirian Rest Port Earnestview 9450 NT
Bechtelar Dayana 576 Cordelia Dale Morth Malachichester 2681 MSW
Bednar Adelle 93107 Arielle Walk West Obieview 5590 MSW
Bergnaum Felix 74139 Hirthe Roads Eddieview 5177 SA
Blanda Megane 637 Winifred Mission Lake Edenbury 430 MSW
Bloggs Frederick 314 Hyatt Wells Bodehaven 501 MSW
Bogan Mikita 04082 Hahn Hallow Coleport 4514 NT
Boyle Daron 6264 Holden Centers Daphneburgh 355 MSW

Figure 6.4 - The result of the vw_membersmailinglist_active view

With that, you are done. Since you have included a filter for active members only, the
list will change as new members are added and existing members are made inactive.

To create a view, you will need to create the SQL for your requirements, add a single
CREATE VIEW “ViewName™ AS line as the first line in the script, and run it.

In the next section, we will look at more complex views that can be updated or changed
based on the base query's content.

Updatable views

Views in MySQL are queryable, which means you can include them in another query,
much like a table in MySQL. Views can also be updated as you can INSERT, UPDATE,
and DELETE rows in the underlying table. There are specific circumstances where a view
can and cannot be updatable. For a view to be updatable, the SELECT statement that's
defining the view cannot contain the following:

 Any of the aggregate functions, including MIN, MAX, SUM, AVG, and COUNT
o The DISTINCT clause

Working with views 205

The GROUP BY clause

The HAVING clause

A UNION or UNION ALL clause
Left joins or outer joins

A subquery in the SELECT clause or the WHERE clause of the main query that refers
to the table appearing in the FROM clause in the main query

A reference to a view that is non-updatable in the FROM clause
A reference to only literal values

Multiple references to any column in the base table

So, if the select statement does not contain any of these elements, you can update the
query and treat it just like a table. Fortunately, there is an easier way to determine if a view
can be updated - by querying the information schema; that is, information_ schema.
views. This table contains columns such as the name of the view and whether it can be
updated in the field. The following query shows how to see information about views via
information_ schema:

SELECT
table name,

is updatable
FROM

information schema.views
ORDER BY table name;

The following output shows an example of what this query looks like when it's run with
updatable views:

Result Grid | _rj 4} Filter Rows: |

table_name is_updatable
ww_members_no_fees MO

ww_membersmailinglist_active YES

ww_updatable views MO

Figure 6.5 - The database views are listed with is_updatable statuses

206 Stored Procedures and Other Objects

Asyou can see, the vw_members all and vw_membersmailinglist active
views can be updated. You can use these views in update queries to modify the data and
insert or delete records. Any changes you make to these views will be relayed to the base
table, members. These two views can't be updated and can only be used to read data.

In the next activity, you will confirm that you know how to update data in a view.

Activity 6.01 - updating the data in a view

One of the Automobile Clubs members, Darby Mariella Collins (member ID 7), has
noticed that his DOB is incorrect in the system and has asked for it to be adjusted; it
should be January 11, 1990. Since we have a view that shows information about every
member, the best way to update this is by using the vw_members_all view function.

In this activity, you will adjust Darby Mariella Collins' date of birth in the system by doing
the following:

« Confirming the date is incorrect by examining the DOB for member ID 7 in the
members table directly. Remember that MySQL stores dates in the YYYY-MM-DD
format.

+ Creating an update query to adjust the date while using the vw members_all
view as the base record source for your query.

« Confirming the date was adjusted by examining the record again in the
members table.

Views are a simple way of saving commonly used SQL queries and are reusable, resulting
in less code redundancy and quicker development time. This is because the results can be
saved and accessed without the query having to be rewritten to generate them. Views are
usually used as read-only record sets; however, they can be updated too. If you find that
you are creating the same SQL several times in your application, it is a prime candidate to
be turned into a view. If the view needs to be changed, all the code or objects using that
view will pick up the changes. However, be careful when you change established views or
any other object that is referenced by other objects or applications. These changes could
have undesirable effects, so it is better to test them in a test environment thoroughly first.

In the next section, we will learn how to create functions and explore how they can be
used in the autoclub database.

Note
The solution to this activity can be found in the Appendix.

Working with user-defined functions 207

Working with user-defined functions

MySQL has many built-in functions that you can call to return values or perform tasks
on data, including CURRENT DATE (),AVG (), SUM(),ABS (),and CONCAT (). These
functions can be used in SQL statements, views, and stored procedures. MySQL also

has another type of function, known as the user-defined function (UDF), that you can
create to add new functionality to the database that is not already provided by MySQL.
For example, you may want a function that can calculate and return the GST or sales tax
or maybe calculate the income tax for your weekly earnings. A UDF is active when it is
loaded into the database with CREATE FUNCTION and hasn't been removed with DROP
FUNCTION. A function can be used while it is active.

The basic syntax for creating a UDF is as follows:

USE database name;

DROP FUNCTION IF EXISTS function name;

CREATE FUNCTION function name ([parameter(s)])
RETURNS data type

DETERMINISTIC

STATEMENTS

Let's look at each of the components of a basic UDF:

« USE database name;: This ensures that the function is created in the correct
database.

o DROP FUNCTION IF EXISTS function name;: This will drop the function
if it already exists to avoid an error stating that it already exists. Note that you may
need to recreate the function several times during development.

o DELIMITER $$:The default delimiter is the semi-colon, ;. However, when you're
defining functions, stored procedures, and triggers, you will often run multiple
statements. Defining a different delimiter allows you to run all the statements
as a single unit rather than individually.

o CREATE FUNCTION function name ([parameter(s)]):Thisis
mandatory and tells MySQL server to create a function named function name.
Parameters are optional and are defined in round brackets; multiple parameters can
be separated by commas. Each parameter is declared with its name and data type.

+ RETURNS data type: This is also mandatory and specifies the data type of the
data that the function returns.

208 Stored Procedures and Other Objects

Several informative statements tell MySQL what the function does. By default, at least
one of the following must be included:

DETERMINISTIC: The function will return the same values if the same arguments
are supplied to it, meaning that you always know the output, given the input.

READS SQL DATA: This specifies if the function will read data from the database
but does not modify data.

MODIFIES SQL DATA: This specifies if the function will modify data in
the database.

CONTAINS SQL: This specifies if the function will have SQL statements but they
do not read or modity data, such as SELECT CURRENT DATE ().

<STATEMENTS>: This is the SQL code you create for the function to execute.

We will go through several exercises to demonstrate various UDFs. In the next exercise,
you will create a function to look up a value from the lookups table.

Exercise 6.02 - creating a function

You have included a 1ookups table in your database to store values you will need in your
database or the application that will be using it. You realize that you will be using this table
a lot, so rather than creating and executing a query each time, you have decided to create

a function to look up values, thus reducing your coding.

Follow these steps to create the function:

1.

Open a new SQL tab and type in the following statements:

USE autoclub;

DROP FUNCTION IF EXISTS fn Lookup;
DELIMITER $$

CREATE FUNCTION fn Lookup (LookupKey VARCHAR (50)) RETURNS
VARCHAR (200)

READS SQL DATA
BEGIN

DECLARE TheValue VARCHAR (200) ;

SET TheValue = (SELECT ~Value ™ FROM ~lookups™ WHERE “Key~
= LookupKey) ;

Working with user-defined functions 209

RETURN (RTRIM(LTRIM (TheValue))) ;

END $$
DELIMITER ;

With our function defined, let's break down each component to understand what
their role is in the function's definition:

= USE autoclub will instruct the server to use the autoclub database for
all the following commands. This ensures that the function is created in the
correct database.

*» DROP FUNCTION IF EXISTS fn Lookup will remove the function if it
already exists; otherwise, you will get an error when you try to create it.

= DELIMITER $S setsthe delimiter to $$.This enables us to run all the statements
to the point that we can reset them as a single block of statements.

= CREATE FUNCTION fn Lookup (LookupKey VARCHAR (50)) instructs
the server to create a function named fn_Lookup with a single parameter named
LookupKey. This will be a VARCHAR data type that's up to 50 characters in length.

* RETURNS VARCHAR (200) indicates that the function will return a VARCHAR
data type that's up to 200 characters in length.

* READS SQL DATA is an instruction that tells MySQL that the function will read
data from the database but not modity it. The function will look up a value in the
database using a SQL statement, but it will not modify the data.

* BEGIN specifies when the code that defines the function will begin after this
statement; it will end when we get to END.

= DECLARE TheValue VARCHAR (200) declares a variable named TheValue to
use in the function. The type and size match the RETURNS declaration. The value
that's returned from the SQL statement will be stored in this variable and then
returned from the function.

* SET TheValue = (SELECT “Value™ FROM ~lookups™ WHERE “Key~
= LookupKey runs the SQL statement in brackets and passes the result to the
TheValue variable. The WHERE clause of the SQL statement uses the passed-in
parameter's LookupKey to filter the SQL. Since we are using a parameter, we do
not need to include it in quotes like we would for a fixed string filter.

210 Stored Procedures and Other Objects

* RETURN (RTRIM (LTRIM (TheValue))) returns TheValue. The RTRIM
and LTRIM functions will trim any leading and trailing spaces from TheValue
if there are any. This is a precautionary measure to ensure clean data is returned
from the function.

* END $S signifies the end of the function's definition code. $$ is the custom
delimiter and signifies the end of the code block as a unit.

» DELIMITER resets the delimiter back to the default semi-colon before exiting.

2. Execute the SQL query with the lightning bolt icon. The new function will appear
in the Functions list:

SCHEMAS

Q, |Filter ohjects

v @ autoclub
» B Tables
> @ Views
@ Stored Procedures
T@ Functions
f{) fn_Lookup

Figure 6.6 — The new fn_Lookup function
3. Test the function by executing the following query in another SQL tab:
SELECT fn Lookup ("autoclub") ;

As a result, you will see the root directory for the image repository:

| Result Grid | HH 4% Fiter Rows:

fn_Lookup{"ImageR epasitory™)
'S O 'FileR.epository',

Figure 6.7 — The result of using fn_Lookup()
You can use this function to pass in the key you want to look up; the function will
return the corresponding value. If an incorrect key is passed in the function, it
will return NULL. The function can now be used in any of your SQL code in all the
objects in the database and can also be called from external applications.

Working with stored procedures 211

Setting up a UDF can be complicated, but there are many advantages of reducing code.
Let's say that the name of the lookups table has changed. You would need to locate all the
references to it for all the lookups in your database objects, as well as in all the applications
using the database, to change them. However, if they all used the £n_TLookup function, you
would only need to change the function; the rest of the code/applications would still get
their values.

In the next exercise, you will create a function that will accept two parameters, read a value
from the database, and call another function.

Now that we have learned about UDFs, let's learn about stored procedures.

Working with stored procedures

Stored procedures are the workhorses of your MySQL database. Similar to UDFs, they

can run multiple SQL statements, contain the logic flow, and return the results. Stored
procedures are used for situations where you want to store queries that will need to be run
multiple times. For example, if a set of queries need to be run daily, they can be created

as stored procedures. Where UDFs return a single result, stored procedures can return

a single result, or they can return entire record sets. They are ideal for moving extensive
processing tasks to a MySQL server. Imagine that you are working in a sales application
that's connected to a MySQL database and you need to record a sale. Your application
would record a sale by doing the following:

+ Determining the total payment amount to confirm payment:

= Calculating the sale value (sales cost * item value)

» Calculating the sales tax that applies to the sale

« Subtracting the item from the inventory table
o Checking the item's minimum stock value

o Generating a receipt

That is a lot of work for the application to do. All these tasks can be placed in a stored
procedure, or a function with a single stored procedure that coordinates the logic
involved, to update all of the relevant tables to complete the sale. This would result in the
application only needing to call the stored procedure and pass in the relevant details.

212 Stored Procedures and Other Objects

To create a stored procedure, you can use the following syntax:

CREATE PROCEDURE ~procedure name ()
BEGIN

SQL code for procedure goes here
ENDSS

In the next exercise, we'll create a simple stored procedure that returns some records from
the autoclub database.

Exercise 6.03 - creating a stored procedure

The Automobile Club wants to be able to list all the members in their club using a stored
procedure. This will allow them to easily run a query to display the data as required. To do
this, you have been asked to create a stored procedure in the autoclub database. Follow
these steps:

1. Open anew SQL tab and enter the following SQL statements:

USE “autoclub™;
DROP procedure IF EXISTS ~“sp ListMembers;
DELIMITER $$

CREATE PROCEDURE “sp ListMembers™ ()
BEGIN

SELECT * FROM members;

ENDS$SS

DELIMITER ;

This query will start by dropping any procedures named sp_ListMembers since we
can't have two procedures with the same name. After this, the query creates a new
stored procedure, which selects all of the data from the members table.

2. Run the SQL query. The new procedure, sp_ListMembers, will appear in the Stored
Procedures list:

Working with stored procedures

213

Mavigator

SCHEMAS B

Q, |Filter objects

¥ [autoclub
» B Tables
> @ Views
v B stored Procedures
[7 sp_ListMembers
> '-I-ﬂ Functions

Figure 6.8 - sp_ListMembers in the Stored Procedures list

3. Open a new SQL tab and run the following command to test the stored procedure:

call sp ListMembers

The stored procedure will run and the following output will appear in the Result

Grid area:

| ResuitGrid | B Fterows ||| Esort G |Wrep ool Contents IR
I Surname Frstame Mddeames DB Sgnature Photo PhotoPath Sigpath Active JonDate InactveDate WhenAdded

» Blogas Frederick 00 1990-06-16 _Lipg 1jpg 1 202001-15 2020-01-21 20:02:30
2 pettt Thomas Wiliam 1960-10-15 bers\Photos\MemberPhoto_2.ipg 1 20200120 2020-01-21 21:01:56
5 West Ansis Avery 1984-08-06 1 2009-07-11 2020-01-24 17:48: 10
6 Sweniawsd Wayon Rita 2007-10-08 1 20200124 2020-01-24 17:48: 10
7 Colins Darby Marielle 1990-01-11 1 2015-10-12 2020-01-24 17:48: 10
8 Schamberger Dexter Dangel 1993-1007 1 20200801 2020-01-24 17:48: 10
S wntheser Tenia Toy 20200124 1 1993-10-01 20200124 17:48: 10
10 GuA%m Makus Leths 20200124 1 20200124 2020-01-24 17:48:10
1 wekh Kenya Shanel wn0124 T 1

0200124 2020-01-24 17:48: 10

Figure 6.9 - The output of running the stored procedure

Creating a basic stored procedure is very similar to creating a UDE. We did not include
any parameters or results so, by default, the stored procedure returns the results of the

L
LastMod
2020-01-
2020-01-
2020-01-
2020-01-
2020-01-
2020-01-
2020-01-
2020-01-
2020-01-

SQL statement. This is useful for getting a list or a dataset. However, note that the dataset

will be read-only, so you cannot update the record set.

In the next exercise, you will learn how to pass parameters in a stored procedure.

Exercise 6.04 - stored procedures and parameters

The Automobile Club now wants to be able to list all the data in a specific table using a
stored procedure. To achieve this, you will need to create a stored procedure that takes
in a table's name and outputs the data for that table. Follow these steps:

1. Open anew SQL tab and enter the following script:

USE “autoclub™;
DROP procedure IF EXISTS “sp ListTableData;

214 Stored Procedures and Other Objects

DELIMITER $%

CREATE PROCEDURE “sp ListTableData™ (IN TableName
VARCHAR (100))
BEGIN

SET @sqgl =CONCAT ('SELECT * FROM ',6 TableName) ;
PREPARE statement FROM @sql;
EXECUTE statement;

DEALLOCATE PREPARE statement;

END$$

DELIMITER ;

This query starts by creating the sp_ListTableData procedure, which takes in
a single argument named TableName. This argument is text, which specifies the
table where the data will be selected. Next, a variable called @sq1 is created that
stores the SELECT query for the provided table. Finally, the query is executed, and
the results as displayed on the screen.

2. Run the preceding SQL query to build a stored procedure that will appear in the
Stored Procedures list:

SCHEMAS a
Q |Filter objects

v é] autoclub
5 @ Tables
D-Eﬂ\ﬁews
v @ Stored Procedures
[] sp_ListMembers
[sp_ListTableData

> @ Functions
Figure 6.10 - sp_ListTableData in the Stored Procedures list

3. Open a new SQL tab. Enter the following test script and run it:

call sp ListTableData ("members") ;

Working with IN, OUT, and INOUT 215

This results in the following output:
Resultarid | A8 Fermovs| || ewens G |wrep cal Conent: T2 [

D Sumame Frstame MiddeNames DOB Signature Photo PhotoPath SigPath Acive JonDate InactiveDate WhenAdded LastMoc
N Eloggs Frederick 1990-06-16 ¥ Vv _1jpg _ljpg 1 2020-01-15 2020-01-2120:02:30 2020-01-
2 Pettit Thomas Wiliam 1960-10-15 Members\Photos\MemberPhoto_2.pg 1 2020-01-20 2020-01-21 24:01:56 2020-01-
5 West Anais Avery 1984-08-05 L =) 1 2008-07-11 2020-01-24 17:48:10 2020-01-
3 Swariawsk Waylon Rita 2007-10-08 1 2020-01-24 2020-01-24 17:48:10 2020-01-
7 Calins Darby Marielle 1990-01-11 1 2015-10-12 2020-01-24 17:48:10 2020-01-

Figure 6.11 — Members table data
4. Open a new SQL tab. Enter the following test script and run it:

call sp ListTableData ("memberaddress") ;

Result Grid _'—J Filter Ror.s:|:| Export: B | Wrap Cell Content: ia

s MemberID StreetAddressi StreetAddress2 Town State Postcode WhenAdded LastModified

» 1 314 Hyatt Wells Bodehaven 2 501 2020-01-24 17:52:40 2020-01-24 23:03:26
2 2 010 Schaefer Brook West Calista 2 5476 2020-01-24 17:52:40 2020-01-24 23:03:26
3 77 590 Kuhn Ports Yasmeenchester 1 5584 2020-01-24 17:52:40 2020-01-24 23:03:35
4 73 320 Vivien Cliffs Jacksonbury 2 2836 2020-01-24 17:52:40 2020-01-24 23:03:35
5 5 651589 Crona Squares Port Otto 2 2065 2020-01-24 17:52:40 2020-01-24 23:03:26

Figure 6.12 - MembersAddress table data
Here, you can see that the table outputted matches that the variable provided to
the procedure.
In this exercise, you learned how to pass in a string value and use it as part of a SQL
statement, as well as how to use the PREPARE statement to create some SQL from it and
execute it. You also learned how to pass in table names and get the stored procedure to
create a query using the table name to list its records.

In the next section, you will learn about the IN, OUT, and INOUT keywords and how you
can customize your function parameter's functionality.

Working with IN, OUT, and INOUT

MySQL stored procedures have three directions that a parameter can be defined in. This is
mandatory, which means that a parameter must be set to one of the following:

« IN: The value is only being passed to the stored procedure. It is used within the
procedure. This is the same as providing input to the stored procedure.

 OUT: The value is only passed out of the stored procedure; any external variables
that have been assigned to this position will take on the value that's passed out.
This is similar to returning values from a stored procedure.

« INOUT, A variable and its value (ExtVal) are passed to the stored procedure
(IntVval) and can be modified within it. When the stored procedure is completed,
the external value (ExtVal) will equal the modified value (Intval).

216 Stored Procedures and Other Objects

In the next exercise, you will learn how to use the IN and INOUT parameters in a MySQL
stored procedure.

Exercise 6.05 - IN and INOUT

The Publicity Department of the Automobile Club wants to know how many Holden,
Ford, Mazda, and Toyota cars belong to the club's members. They would like the stored
procedure to be able to display the total number of vehicles that are of these makes.
Follow these steps:

1. Open anew SQL tab and enter the following stored procedure definition. Note that
there are lots of comments, so ensure that you take them into account:

USE “autoclub™;
DROP procedure IF EXISTS ~sp CountCars MembersMakes™;

BEGIN
SELECT
Count (vehicle.Make) INTO @TotalInMake
FROM
vehicle
INNER JOIN members ON vehicle.MemberID = members.
ID

INNER JOIN make ON vehicle.Make = make.ID

INNER JOIN vehiclemodel ON vehicle.Model =
vehiclemodel.ID

WHERE
members.Active <> 0 AND
make.Make = CarMake;

SET CarString = CONCAT (CarString, CarMake,"=",@
TotalInMake, " ");

ENDSSS

DELIMITER ;

Working with IN, OUT, and INOUT 217

2. Run the preceding SQL query to create the stored procedure. It should appear in the
Stored Procedures list:

SCHEMAS 4
Q, |Fi|ter objects

v @ autoclub

> I-|-ﬁ| Tables

> @ Views

v I-T'_T.l Stored Procedures
sp_CountCars_MembersMakes
sp_ListMembers
sp_ListTableData

> I-|-ﬁ| Functions

Figure 6.13 - sp_CountCars_MembersMakes in the Stored Procedures list

3. Open a new SQL tab and run the following test script:

-- Declare the variables
SET @TotalCars = O0;

SET @MakeString = "Car Make/Count :- ";

@MakeString

call sp CountCars MembersMakes ("Holden",@TotalCars, @
MakeString) ;

call sp CountCars MembersMakes ("Ford",@TotalCars, @
MakeString) ;

call sp CountCars MembersMakes ("Mazda",@TotalCars, @
MakeString) ;

call sp_CountCars_MembersMakes ("Toyota",@TotalCars, @
MakeString) ;

SELECT @MakeString, @TotalCars

218

Stored Procedures and Other Objects

Your output should look as follows:

Result Grid | d}i 43 Fitter Rows: | || Export: B[] |Wrap Cell Content: &

@TotalCars

@MakeString
unt :- Holden=4 Ford:

Mazda=4 Toyota=1

Figure 6.14 — Output of the test script

Let's look at what happened here:

» The stored procedure: The comments in the stored procedure explain what each
line is doing. The main point is that three parameters have been passed in - one
IN and two INOUT. The IN parameter is a string that will be used to filter the
internal query. The two INOUT parameters will pass in values — a numeric value
and a string value. Both of these values will be modified and added to each time
sp_CountCars_MembersMakes is called. The external variables that are
passed into the INOUT parameters will take on these new values.

» The test script:

SET @TotalCars = 0; -- Declare and initialise @TotalCars

SET @MakeString = "Car Make/Count :- "; -- Declare and
initialise @MakeString

The two SET lines at the start initialize the variables. These variables will be passed
into the two INOUT parameters. Once they have been passed through the stored
procedure, they will be modified and the new values will be passed into the next
call of the stored procedure:
call sp_CountCars_MembersMakes ("Holden",@TotalCars, @
MakeString) ;

call sp CountCars MembersMakes ("Ford",@TotalCars, @
MakeString) ;

call sp CountCars_ MembersMakes ("Mazda",@TotalCars, @
MakeString) ;

call sp CountCars MembersMakes ("Toyota",@TotalCars, @
MakeString) ;

The stored procedure is called four times, each time with a different car make. The
procedure will then count the car make and update both the INOUT variables with
details of the current car make.

Working with IN, OUT, and INOUT 219

The following table shows the value once it's been passed through the procedure:

Stage @MakeString @TotalCars
Initialized values Car Make/Count :- 0

Holden Car Make/Count :- Holden=4 4

Ford Car Make/Count :- Holden=4 Ford=6 10

Mazda Car Make/Count :- Holden=4 Ford=6 Mazda=4 14

Toyota Car Make/Count :- Holden=4 Ford=6 Mazda=4 Toyota=1 |15

Figure 6.15 — The result of each of the values after each pass through the procedure
SELECT @MakeString, @TotalCars

Finally, we get to the last line, which selects the two variables, causing them to be
passed as the final output of the script. The results are shown in the preceding table:

= The stored procedure:

Now; let's break down the stored procedure:

USE “autoclub™;
DROP procedure IF EXISTS ~sp CountCars MembersMakes;
DELIMITER $$

These are the standard USE, DROP, and user-defined DELIMITER functions we
have been using. This is standard for all our object definitions - only the database
and object name will change as required:

CREATE PROCEDURE “sp_ CountCars_MembersMakes™ (IN CarMake

VARCHAR (20) , INOUT TotalCars INT, INOUT CarString
VARCHAR (255))

Here, we created the stored procedure by providing its name. Three parameters have
been defined - IN, a string value up to 20 characters in length that accepts the car's
make; our first INOUT parameter, which is an integer value that specifies the total
car count that will be added by the procedure; and our second INOUT parameter,
which is a string that can be up to 255 characters in length. This displays the car's
make, which will also be added to the procedure:

BEGIN

220 Stored Procedures and Other Objects

The beginning of the procedure's code is as follows:

SELECT

Count (vehicle.Make) INTO @TotalInMake
FROM

vehicle

INNER JOIN members ON vehicle.MemberID = members.ID
INNER JOIN make ON vehicle.Make = make.ID

INNER JOIN vehiclemodel ON vehicle.Model =
vehiclemodel.ID

WHERE
members.Active <> 0 AND

make.Make = CarMake;

Let's prepare a standard select statement to count how many makes of a vehicle
have been passed into the database. The value of the count will be placed in the
@TotalInMake variable, while the filters will be placed in the WHERE clause. Note
that CarMake is not surrounded by quotes; it is a variable, so this isn't necessary. If
we were to add quotes, then it would look for a make named CarMake and return
zero records:

SET TotalCars = TotalCars + @TotalInMake;

SET CarString = CONCAT (CarString, CarMake,"=",@
TotalInMake, " ");

These two lines add the new values to the existing values of the INOUT variables
that have been passed in. The first will add the current @TotalInMake to the
passed-in TotalCars and the new value will be the sum of both. The second
appends the current vehicle's CarMake (this is the passed-in IN parameter) and
the value in @TotalMake to the passed-in string, thereby building on the string.
At the end of the procedure, these two values are passed back through the INOUT
parameters. Here, the external values will change to the values that have been set in
the procedure:

END$$
DELIMITER ;

At this point, we can reset DELIMITER to its default state.

In this exercise, you learned how to use the IN and INOUT parameters in a stored procedure.

Exploring triggers 221

Stored procedures offer a lot of flexibility when it comes to using parameters and you can
design them to perform otherwise tedious tasks with a simple call. A stored procedure can
return a complete record set, but it cannot be updated. If you need an updatable record
set, you will need to use a view. However, stored procedures can be programmed to add,
modify, and delete records and data using parameters that have been passed in to filter
the database and ensure the correct output.

In the next section, we will learn about triggers.

Exploring triggers

A trigger runs automatically when a predefined action is performed on the table. You
should use triggers when data has changed in a database and you want to take action.
There are two types of triggers in MySQL. The first is called a row-level trigger, which
executes once for each row in the transaction. The second is called a statement-level
trigger, which executes only once for each transaction.

There are three possible EVENTS a trigger can be assigned to - INSERT, UPDATE, and
DELETE. A trigger can be run at a specific time concerning the event. The time can be
either before or after the event occurs. A trigger can be used to validate data, log the old
and new values in an audit trail, or ensure business rules are adhered to.

You can create a trigger using the following syntax:

CREATE TRIGGER trigger name
(AFTER | BEFORE) (INSERT |UPDATE |DELETE)
ON table name FOR EACH ROW BEGIN

SQL to execute

END

Let's look at various aspects of triggers.

Advantages of triggers

Triggers assist with data integrity, catching errors, and tasks that can be run automatically
when the trigger fires rather than being scheduled. They are good for auditing data
changes, logging events, and assisting in preventing invalid transactions.

222 Stored Procedures and Other Objects

Disadvantages of triggers

Triggers cannot replace all data validation procedures. They can only provide additional
data validation. They cannot be seen by the client applications and their actions can be
confusing to developers as they cannot see what is happening in the database layer. They
use a large number of resources on the database server and do not provide any benefits
when there are a lot of data events per second. This is because the triggers will be firing
all the time and drain the database server's resources.

Restrictions with triggers

Triggers come with their own set of restrictions. For example, there can only be one
trigger per event; you can only have one BEFORE UPDATE trigger on any given table but
you can run several statements in them. Triggers do not return values. They cannot use
the CALL statement and they cannot create temporary tables or views.

Often, we may want to use programming logic to enforce conditions with triggers. To
achieve this, we can use several different statements. The first is called FOR EACH, which
can be used to iterate the rows in a table. Specifically, FOR EACH ROW can be used to
iterate through every row of a given table. The second statement that can be used is an
IF statement, which will execute a command when a specific condition is true.

In the next exercise, you will create a trigger to enforce a business rule.

Note

Triggers can result in inconsistent results based on several factors, including
the type of database engine that's being used with the table the trigger has been
assigned to. In the following exercises, we will be setting up some triggers and
also testing them with the InnoDB and MyISAM engines. Various issues will
be pointed out and tested. The results will be compiled at the end so that you
can decide if you wish to go down the trigger path with future databases.

Exercise 6.06 - triggers to enforce business rules

The Automobile Club wants to establish a minimum age requirement for its members.
To do this, they want to ensure that every record that's inserted into the members table
has an age field of over 18. To achieve this, you must write a trigger that runs when a new
record is inserted and verify the specified age.

Exploring triggers 223

Follow these steps to complete this exercise:

1. Add a rule that sets the minimum age of a member to 18 as a new entry in the
Lookups table. Open a new SQL query tab and run the following command:

INSERT INTO ~autoclub™. lookups™ ("Key , ~Value",
“Descriptions™) VALUES ('MinMemberAge', '18', 'Minimum age
in years for members') ;

You should get the following result:

Result Grid | HH 4% Fiter Rows: | || Edit: |‘|;'_£| En | Export/Import: B H&] |
Key Value Descriptions
G5TRate A G5T Rate, currently 10%
ImageRepository D:'\FileRepository, AutomobileClubimages

1 15 Minimum age in years for members
.

Figure 6.16 — The new NewMemberAge business rule

2. Check the current age of the test member so that we know what our value for
comparison is. To do this, open a new SQL query tab, enter the following script,
and run it. Keep this tab at hand so that you can check it later:

SELECT Firstname, Surname, DOB FROM members WHERE ID=2

You should get an output similar to the following:

| Result Grid | J_:’I 4% Filter Rows: |

Firstname Surmname DOB
p | Thomas Pettit 1960-10-15

Figure 6.17 — The test member's current DOB value

3. Now, open a new SQL query tab and enter the following script:

DELIMITER $$

DROP TRIGGER IF EXISTS autoclub.CheckMemberAge$s
USE “autoclub”s$s

CREATE TRIGGER \CheckMemberAge\ BEFORE UPDATE ON
“members” FOR EACH ROW BEGIN

224 Stored Procedures and Other Objects

declare msg varchar (128) ;

SET @MinAge = (SELECT “Value~ FROM LOOKUPS WHERE
“KEY ='MinMemberAge') ;

if NEW.dob > (SELECT DATE SUB(curdate(), interval @
MinAge year)) THEN
set msg = concat ('MyTriggerError: Minimum member age
is: ', @MinAge) ;
signal sglstate '45000' set message text = msg;

end if;

END$$
DELIMITER ;

The first time you run the script, line 1 may be different because the trigger does
not exist yet, but lines 2 and 3 should be the same. Any subsequent runs will be

as shown:
|:—|T| Action Output -
Time Action Meszage
(] 1 18:51:25 DROP TRIGGER IF EXISTS autoclub Check MemberAge 0 row(z) affected
0 row(s) affected

(] 2 18:51:23 USE “autoclub®
(] 3 1851:2% CREATE TRIGGER TheckMemberfge” BEFORE UPDATE Q... Drow(s) affected

Figure 6.18 — Trigger creation messages after executing the script

4. Open anew SQL query tab and enter the following script to update the date of birth
to October 15, 2006:
update “autoclub”. members® SET "DOB™~ = '2006-10-15'
WHERE ID = 2;

You should get the following output:

Output

[Action Output -

Tirme Acticn
1 17:39:58 update ‘autoclub’. 'members’ SET 'DOB’ ="2006-10-15 WHERE ID = 2

Meszzge
Q Emror Code: 1644, My TriggerEmor: Minimum member age is: 18

Figure 6.19 - The script failed to execute because the member is under 18

Exploring triggers 225

Error Code: 1644 is generated when there is an unhandled user-defined exception
condition.

5. Run the script again to check the current DOB:

| Result Grid | _rj 3 Filter Fl{:ur.‘ﬁ:|

Firstname Surmame DOB
p | Thomas Pettit 1960-10-15

Figure 6.20 — The test member's DOB has not changed
Note that the DOB has not changed because the trigger detected an invalid age.

6. Now, open a new SQL query tab and execute the following script:

update Tautoclub”. members~ SET "DOB~ = '2000-10-15"'
WHERE ID = 2;

The following will be displayed in the output window, indicating that the script

was successful:

Output

[Action Output -
Time Action Meszzage
[] 1 17:41:17 update ‘autoclub’. 'members” SET '‘DOB" = "2001-10-1¥ WHERE ID =2 1 rows) affected Rows matched: 1 Changed: 1 Wamings: 0

Figure 6.21 - The update script was successful in changing the test member's DOB
Quickly checking the members table confirms that the DOB was changed since the
business rule was satisfied and the update was allowed to proceed:

| Result Grid | _rj %3 Fiter Rows:

Firsmame Surname DOB

p |Thomas Pettit 2000-10-15

Figure 6.22 — The test member's DOB has indeed been changed
First, we added a business rule to the lookup table. We did this because rules
change. So, if the membership age is ever lowered to 18 or raised, it only needs to be
changed in the lookup table. Then, any code, SQL, triggers, or applications that use
this age limit will always pick up the current age limit.

Then, we created the rule. Let's break the following SQL down:
DELIMITER $$

DROP TRIGGER IF EXISTS autoclub.CheckMemberAges$s
USE “autoclub~S$$

226

Stored Procedures and Other Objects

These are the standard user-defined DELIMITER and DROP objects we have been
using. We are also adding the USE ~autoclub”~$$ command to ensure we

are putting the trigger in the right database. Notice that the DROP and USE lines
are terminated with the $$ delimiter instead of the usual ;. This is because we
changed it so that these lines will each run their commands. Note that the CREATE
TRIGGER code does not use $$ until END$ S, which means that this entire block
will run as a single command.

CREATE TRIGGER ~CheckMemberAge™ BEFORE UPDATE ON
“members” FOR EACH ROW BEGIN

A few things are going on here:

* CREATE TRIGGER 'CheckMemberAge " is creating the trigger. Notice that
the name of the trigger is enclosed in backticks. These can be removed, so long as
there are no spaces in the. Note that you shouldn't use spaces as these will annoy
you later.

* BEFORE UPDATE states that we want this trigger to run before the record is
updated. Run validation triggers on the BEFORE event so that you can cancel
them if they fail the validation procedure.

* ON “members" is telling us to create the trigger for the members table.

* FOR EACH ROW is saying that the trigger should run for each row or record
that's been updated (not the entire table). So, if you updated 100 records in
bulk, the trigger would run for each record update. If one of those 100 records
were underaged, then only that one would be rejected; the others would be
updated. MySQL only supports FOR EACH ROW; it does not support FOR EACH
STATEMENT.

» BEGIN signifies that the statements are in the body of the trigger.
In the trigger logic, we start by declaring a new variable:

declare msg varchar (128) ;

The following statement declares a string variable that will store the error message
we may need to return if the age test fails. It can hold a string that's up to 128
characters in length:

SET @MinAge = (SELECT “Value~ FROM LOOKUPS WHERE
“KEY ='MinMemberAge') ;

Exploring triggers 227

10.

The following statement looks up the MinMembersAge value in the Lookups
table and stores it in a variable named MinAge so that it can be used later in
the script:

if NEW.dob > (SELECT DATE SUB (curdate(), interval @
MinAge year)) THEN

This is where the NEW DOB value is tested against the @MinAge value. We use
the NEW command to reference the value we are trying to insert. The existing
value is referred to as OLD. We will use this later in this chapter. SELECT DATE _
SUB (curdate (), interval @MinAge year) isa separate SQL statement,
so it is enclosed in brackets, (). It subtracts 18 years from the current data to find
the comparison date. If NEW. DOB is greater, then the prospective member is too
young and the command in the IF-THEN block will execute.

The DATE_SUB (date, INTERVAL value interval) function subtractsa
time or date interval from a date and then returns the date:

set msg = concat ('MyTriggerError: Minimum member age is:
', @MinAge) ;
signal sqglstate '45000' set message text = msg;

If the age test results in the member being under 18, then the following two lines
will be executed:

set msg sets the message to be returned. Here, we are concatenating a text
message and the minimum age.

signal sqglstate returns an error state. A large list of error values can be used
that can be located on the internet. Here, 45000 means unhandled user-defined
exception. When it's returned, MySQL specifies ErrorCode 1644, which means
unhandled user-defined exception.

set message text assigns the error message that was defined in the previous
line to be returned.

signal sqglstate effectively cancels the update attempt, returns the error code
and message, and then drops out of the trigger; the data is not updated:

end if;

228 Stored Procedures and Other Objects

11. The following code shows the end of the IF END IF block. If the age test results
in an age of 18 or over, then the code within the block will not be executed and an
update will occur:

ENDSS
DELIMITER ;

These lines end the CREATE TRIGGER block and reset the DELIMITER back to its
default — that is, ;.

In short, when a record is updated, this trigger will check the age that's been provided. If
it's under 18, then code will be run to cancel the update; otherwise, it will allow the update
to occur.

In the next section, we will learn about transactions.

Using transactions

Depending on the application you use to connect to MySQL, you may have to execute
a COMMIT statement to save the data. By default, the MySQL client is set to use
autocommit, so you don't have to do this. If you want to have the option to undo the
INSERT statement, then you need to use a transaction. This can be done either with a
BEGIN statement or a START TRANSACTION statement. Once you have run one or
more statements to modify the data, you need to use COMMIT or ROLLBACK.

The following code shows how to use a transaction:

BEGIN; -- This indicates the begin of the transaction
INSERT INTO mytable VALUES (1, 'foo', 'bar', 'baz');
SELECT * FROM mytable;

COMMIT; -- Use ROLLBACK instead of COMMIT if you don't want to
save your work

Note

In the preceding statements, the two dashes followed by a space (--)
indicates a comment in MySQL. These comments can also use C style
comments; for example, /* some comment */.

Using transactions 229

If you get disconnected from the MySQL server, then the database will automatically

roll back your transaction. If you insert, delete, and/or update multiple rows in the same
transaction, then either all the changes will be applied to the database or none at all. Only
after running the COMMIT statement will the other users of the database be able to view
your changes.

Note

You can ask the database to show data from other sessions that haven't been
committed yet, but that's not common.

Another very useful statement is TRUNCATE, which allows you to remove all the data
from a table. This is a very powerful command and should be used with care. The
statement looks as follows:

TRUNCATE <table name>;

In the next exercise, you will implement a transaction.

Exercise 6.07 - implementing a transaction

In this exercise, you will use a transaction to undo changes you made to the database in
the previous exercises. Follow these steps:

1. Connect to the MySQL client with Workbench and the appropriate user.
2. Create the test database:

CREATE DATABASE test;
3. Select the test database:
USE test;

4. Create the animals table:

CREATE TABLE animals (id int primary key, name
varchar (255)) ;

5. Use the DESCRIBE command to remind yourself of the layout of the
animals table:

DESCRIBE animals;

230 Stored Procedures and Other Objects

This will produce the following output:

| name | varchar(255)

2 rows in set (0.23 sec

Figure 6.23 — The DESCRIBE command's output

6. Empty the animals table by using the TRUNCATE command, as follows:
TRUNCATE TABLE animals;

7. Use the BEGIN statement to start a transaction, as follows:
BEGIN;

8. Now, add a record to the animals table using INSERT:
INSERT INTO animals VALUES (1, 'dolphin') ;

9. Check that the record has been added to the table using the SELECT command:
SELECT * FROM animals;

This will produce the following output:

1 row in set (8.80 sec)

Figure 6.24 — The SELECT command's output

10. Use ROLLBACK to undo all the changes to the point where you started the transaction:

ROLLBACK;

Summary 231

11. Check the contents of the table using a SELECT query:
SELECT * FROM animals;

This will produce the following output:

Empty set (0.00 sec)

Figure 6.25 - The SELECT command's output after ROLLBACK

Now, the table is back in its original state. This approach not only works for adding records
but also for undoing the changes that have been made to existing records or stopping
records from being deleted.

Summary

In this chapter, we covered a lot of information and learned many new skills, as well as
about views, stored procedures, functions, and triggers. You learned how to create views
and how to determine which views are updatable and which are read-only, and why. You
also learned how to create and use functions. Finally, you learned how to create stored
procedures to perform some pretty amazing tricks while using the INOUT parameters
before learning about the good, the bad, and the ugly of triggers.

In the next chapter, we will start applying MySQL queries to web applications through
Node.js. This will allow you to develop a dynamic application using data from MySQL
databases.

7

Creating Database
Clients in Node.js

In this chapter, you will learn how to set up your development environment to make
development easier, as well as to protect your production database, by creating a
development database for you to work on. You will also learn about best practices
for developing client applications that work with MySQL databases.

After that, you will learn how to install Node.js modules, generate scripts to output to
the console, and connect to the database to create a simple web application. You will also
create a table in the database with Node.js.

This chapter covers the following topics:

Introduction to database management with Node.js

Best practices for SQL client development

JavaScript using Node.js

Connecting to MySQL

Activity 5.01 - building a database application with Node.js

234 Creating Database Clients in Node.js

Introduction to database management
with Node.js

One of the goals of databases is to provide users with a convenient way to serve data

to clients and consumers. Let's say that your company creates a database containing
customers. It would be valuable for employees to access this database to view data relevant
to the customers they work with. For instance, they may wish to provide their customer
service team with a list of products that a customer owns.

To achieve this, you need to be able to provide the customer service team with an
interface that accesses your database. These clients can be developed in many ways. In
this chapter, you will learn how to interface with databases through Node.js, a popular
JavaScript-based service.

When you develop applications for databases, they will often retrieve, modify, and delete
data from the database tables. Due to the possible data changes, you must learn how to
set up a proper development environment for your application. This will allow you to
test applications that potentially modify data without worrying about modifying the data
that's currently in use by other users.

Once you have an appropriate development environment in place, you can start working
with Node.js to create applications that interface with MySQL databases. You will start by
understanding the basics of Node.js, including how to set up an application and how to
output data through the terminal, browser, and user filesystem. Once you have working
outputs, you must learn how Node.js interfaces with MySQL. Specifically, you must learn
how to set up connections with the database, create databases and tables, and select data
from a database.

By the end of this chapter, you will be able to write basic Node.js applications and work
with MySQL databases within Node.js. These skills will help you develop dynamic
applications that act as clients for databases. Although you will be working primarily with
Node.js, many of these skills can be transitioned to other programming languages and
technologies. MySQL modules are implemented in a fairly consistent way, so once you've
learned the basics of querying and connecting to databases, you will be able to apply this
knowledge anywhere.

Now, let's look at some of the best practices for SQL client development, including
development databases and backing up data. After that, we will start working on
our database.

Best practices for SQL client development 235

Best practices for SQL client development

Suppose your client has asked you to alter an existing table and change the format of the
field that tracks the age of the client from an integer to a float. After making this change,
you find that the reports and programs that use the data are now producing errors. It turns
out that many other dependencies were relying on the data to be formatted in a specific
way, and now it has been changed.

To avoid these types of issues, you should follow several best practices while developing
robust SQL databases. First, you should install a development MySQL server, which
allows you to change and test your data without it negatively influencing the clients who
use the data.

Installing a development MySQL server

When you develop an application that interacts with a database, you separate your
instances into two separate databases — a production database and a development
database. A production database is a database that contains live data that is accessed

by clients and users, while a development database is a database where developers can
change and test data, without impacting any data that is currently being used by other
database users. In the real world, the production server and production database should
not be used for development purposes. Development, in this context, refers to any changes
that are made to the data or the format of the data in the database.

Code can go wrong while you are testing and experimenting. For instance, suppose a
report expects a field named age, which is formatted as an integer. Changing the field's
format to a f£1oat can cause the report to stop working completely since the operations

it completes assumes an integer format for the field. It is also possible to accidentally
delete or modify important data that could be lost without proper backups. So, it is good
practice to create and maintain a development server and database. These are usually
copies of the production server and database, without any connections to clients, reports,
or any other data users. This creates an environment that can be modified without the risk
of data loss or functionality breaking.

When your development is complete, you can copy your development objects and

make the same changes to the production database. You can also release a new frontend
application to your users if required. By working through a development database, you
can do all your testing separately from the production database. This means that you can
verify that everything is working correctly before making changes that impact the other
users. This prevents situations where you may accidentally break or delete data that is
important to users of the database.

236 Creating Database Clients in Node.js

The following are a few reasons why you should not use production servers and databases
for development:

« You don't directly alter the production data while working on the development
database, so you avoid losing or damaging the data that is currently in use.

« Software development could slow down the production database due to
an increased number of queries being sent to the server for testing and
quality assurance.

o Itis easier to recover the development database if your coding causes the data to be
removed or modified unintentionally. Since the development database is usually a
direct copy of the production database, you can transition the data without needing
to find a proper daily backup.

With a development database, you don't need an active internet connection. It is possible
to use a development database as a local instance; however, a production database needs
to be internet-enabled so that external clients can access it.

Overall, a development database is a valuable tool for ensuring that your database can be
worked on safely without it impacting other users. With this in mind, let's learn how to
create a development database.

Creating a development MySQL server

Once you have installed MySQL server on your development computer, you can begin
setting up the development database. If the production database already exists, then there
are several things you need to think about - all of which will be covered in this section.

One of the factors to consider is whether you can make a complete copy of the production
database for development purposes. This is dependent on the following factors:

« Size of the database: If the database is too big, you may not be able to take a
complete copy of the database. However, you may succeed in getting a subset
of the data - for example, 10,000 records plus the ancillary tables.

« Sensitivity of the data: You may need to desensitize the data by changing sensitive
information such as names, addresses, phone numbers, and any other information
that could identify the people or businesses in the database. In most countries, it
is a legal requirement to desensitize the test data. This process typically involves
partially censoring the data by replacing the last few characters with asterisks,
for example.

Best practices for SQL client development 237

These factors will need to be discussed with the database owners or your manager so that
you know what their preferences are. You need to ensure that you get the complete set of
objects from the production database - tables, stored procedures, functions, views, and
triggers. If you are developing a new database, this is not an issue; you can create your
own dataset for development purposes.

Another thing you need to do is set up your development database so that it mirrors the
production database as much as possible. You do so by ensuring the following:

The development database has the same name as the production database.

The ODBC connections are named the same. However, the IP addresses will most
likely be different.

The user access and rights are the same as they are for the production database you
are mirroring.

If the production server accepts remote connections from users, you need to set
up your development environment to imitate this by opening the server for remote
access and setting up an ODBC connection to use with it. Then, you can test the
remote user's experience. If you are developing a database and application on your
system, the server may be on the same machine you are developing the database
on. In this case, the data retrieval process will be lightning-fast, but this may not
reflect the user's experience. In such cases, you may want to consider testing your
program's database queries using the remote connection as well.

The database should be identical in structure to the production database, which
means that they must have the same tables, fields, and schemas.

Before you start making changes related to your database, you will need to have some
way to preserve the previous data in case you accidentally change or delete the wrong
data. To achieve this, you will have to back it up.

Backing up before making changes

Things can go wrong in development, no matter how skilled you are. So, when they do,
it is better to rebuild your development environment and recover the data that's stored
in the database from a recent backup.

238 Creating Database Clients in Node.js

Consider the following situation. One of your company's clients has dabbled in coding
and structuring databases. An issue was reported to the database engineer regarding

an application feature that was no longer working. The company's database engineer
referred to older copies of the application and the database to investigate the issue. Later,
the engineer realized that the client had removed a field and modified the code 6 months
earlier, which the engineer was not aware of. The client had done that as they thought it
was no longer required. However, the engineer was able to fix the code and recover the
field because they had a backup of the application and the database.

Fortunately, MySQL provides a simple, fast, and effective way to back up and recover
when things do go wrong. The preferred method to back up when developing is using the
Data Export tool in MySQL Workbench, which allows you to back up the entire database
or just part of it in a single SQL file that you can execute to recover the database if and
when it is required. It is a fast, efficient, and easy method. To determine when to back up
a development database, you can follow a few simple criteria.

First, before you start making changes to the database, you should make a backup of

the current database's state. Then, you should create a backup when you have made a
significant change that you wish to preserve in case the data is changed or deleted. Finally,
once you are done making changes for the day, you should make a final backup of the
current changes. In addition to daily backups, it is ideal to take a backup once a change or
feature has been fully completed as this can be useful for future reference, in case an issue
in the data is found.

In other words, back up often. Most of the time, you never refer to the backup files. But
when you need to and they are there, you'll be thankful that your efforts were saved.

Of course, with all these backups happening, your backup folder will quickly become
crowded. Ensure that you adopt a good and easy-to-follow naming convention for the
files. The following are a couple of examples:

e DatabaseName Full 20191015a.sql

e DatabaseName country 20191015b.sgl
In the preceding examples, you have the following:

o DatabaseName: The name of the database.

o Full: This indicates a full backup of all database objects. If you have a single object
such as a stored procedure or a table named country, then the name of the object
is the obvious choice to provide.

Best practices for SQL client development 239

e 20191015: This specifies the date of the backup in reverse order, YYYYMMDD. This
assists in sorting for quick retrieval.

« a,b:ais specified for the first version, b for the second, and so on when you're
creating multiple backups on the same day.

Of course, you can adopt any naming convention you like that makes sense to you. When
the backup file count starts to become too big, archive or delete some of the older ones. It
is a good idea to keep a copy of a backup for specific periods for future reference.

Now that you have a better understanding of why backups are important, let's learn how
to restore a backed-up database.

Note

For more information on how to take backups, please refer to Chapter 3,
Modifying a Database.

Restoring a database

Often, you must restore a database when something has gone wrong during development,
and you need to revert to a recent backup. For example, if your client has raised an issue
that data is missing or incorrect in the database, you may need to take a backup of the
production database and restore it to your development environment so that you can
work on the problem away from the production server. If this happens, do the following:

1. Connect to the production server.

2. Back up the data to a single . sql file, as described in Chapter 3, Modifying
a Database.

Connect to the development server.
4. Back up the development database to a single . sq1l file.
Run the production . sql file on the development server.
These steps place the current production data on your development server. After resolving
this issue, you can take the necessary steps to fix the problem in production. If you have
been working on the database in development before this, when you have resolved the

production issue, you can restore the development database; otherwise, you can keep the
production version as your current one.

240 Creating Database Clients in Node.js

One of the main reasons for restoring a database backup is in the case of accidental data
deletion. If you accidentally modify or delete important data, you need some way to
recreate it. One of the ways you can do this is by recovering the data from a backup.

Note

For more information on how to restore the database, please refer to Chapter 3,
Modifying a Database.

If data were to be deleted from a production database, you must be able to recover it
in some way. Now, let's learn how data can be recovered from accidental data deletion
using backups.

Recovering from accidental data deletion

You are deep in development, and you have written a small delete query for the country
table and executed it. The server diligently runs your query, and your prompt silently
comes back. You look in the output window and the last row tells you that 263 rows
have been affected.Youimmediately get that sinking feeling as you realize that you
forgot to add the filter. You check the contents of the table, and there it is — only one row
with NULL in all fields. It is all gone. You panic for a moment and then you remember that
you have a backup and, more importantly, you are working on the development server.
Imagine the chaos if you had been working in the production database.

Before you learn how to recover, let's talk about some simple ways to help prevent this
situation from occurring in the first place. Remember the adage, "An ounce (gram) of
prevention is better than a pound (kilogram) of cure."

There are four types of queries you should be familiar with when working with databases.
Some queries are responsible for creating SQL objects such as databases and tables, which
are referred to as creation queries. Other queries read data, such as select queries, which
are referred to as read queries. These two types of queries are non-destructive since they
do not change the data in the database; instead, they read or create new data. The other
two types of queries are alter and delete queries. An alter query is used to change data,
while a delete query is used to delete data. Both queries can be destructive since they
change or remove data. You need to take care when implementing destructive queries;
otherwise, you could accidentally alter and delete more data than expected.

A simple way to avoid the preceding scenario is to test the filters using a read query
and then change the query to an action or destructive query (DELETE or UPDATE)
before committing.

In the next exercise, you will learn how to safely delete records from a table.

Best practices for SQL client development 241

Exercise 7.01 - safely deleting records

You have a web page that asks users to specify the country they live in. The data is stored
in the country table. A user whose Country Code is AUS wishes to delete their
account from the web page you have created. You are asked to delete their data from the
database. To do this safely, you need to perform a non-destructive query to verify that the
correct data is being targeted. To do this, you must modify the data query and then delete
the required record.

First, you will have to import the database where the data is stored. Follow these steps
to do this:

Note

The SQL script for creating the database for this exercise can be found
athttps://github.com/PacktWorkshops/The-MySQL-
Workshop/blob/master/Chapter07/Databases/GP_
PracticeDatabase.sqgl.

1. Open MySQL Workbench.
2. In the Schemas panel, right-click on the backuppractice database and select Set as

Default Schema:
backuppract =i
E e Load Spatial Data
> employee
= import_test Set as Default Schema
» motdatabase Filter to This Schema
> nvdanalysis
> openscience Schema Inspector
[2 packt_online_shop Table Data Impaort \Wizard
> packttest .
> phpmyadmin Copy to Clipboard 4
[2 test Send to SGL Editor 9
» - world_statistics Creste Schema,
Alter Schema. ..
Drop Schema. ..
Search Table Data. .
Refresh All

Figure 7.1 - The Set as Default Schema option for backuppractice

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/GP_PracticeDatabase.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/GP_PracticeDatabase.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/GP_PracticeDatabase.sql

242 Creating Database Clients in Node.js

3. Add anew Query tab by clicking on the Create new SQL tab for executing queries
icon.

4. Inthe new Query tab, type in the following SQL statement to select all the records
of the country table:

SELECT * FROM backuppractice.country;

5. Execute the query by clicking the Execute query icon - that is, the lightning bolt.
The data will be displayed, and the output panel will tell you that 263 rows have
been returned:

SELECT * FROM backuppractice .courntry 263 row(s) retumed

Figure 7.2 - The Output panel displaying the executed query and its results
6. Add your filter to fetch the details of the user whose county code is AUS:

SELECT * FROM backuppractice.country
WHERE ~Country Code ="AUS"

7. Rerun the query with the Execute query icon. This time, one row will be displayed.
Check the output panel and verify that the country is Australia:

Country Country .
CountryID Code Name ContinentID
p |12 AUS Australia 5
L o |

Figure 7.3 - A single-record result from a filtered query

8. Once you are satisfied that the only records that are being returned are the targeted
records, you can delete them with confidence. Replace SELECT * in your SQL
query with DELETE so that it reads as follows:

DELETE FROM backuppractice.country
WHERE ~Country Code ="AUS";

9. Execute the query and check your Output panel. Look at the record count in the
country table to ensure you have deleted only one record and that the final record
countis 262:

DELETE FROM backuppractice country WHERE Country Code'="ALS" 1 row(s) affected
SELECT * FROM backuppractice country 262 row(s) retumed

Figure 7.4 — The Output panel showing the results of the DELETE query following the SELECT query

JavaScript using Node.js 243

10. Check this by rerunning the following SQL query:

SELECT * FROM backuppractice.country
WHERE ~Country Code ="AUS";

You will observe that no records are returned:

SELECT * FROM backuppractice courtry WHERE Country Code"="ALIS" 0 row(s) retumed

Figure 7.5 - The results when checking whether DELETE worked

In this exercise, you learned how to safely delete records. When you are deleting or
otherwise modifying data, always take the time to check what records are going to be
affected by performing a SELECT query before committing to a DELETE or UPDATE query.

Now that you have a better understanding of how to prepare your database for data
changes, let's learn how to create clients that allow users to read and write data to your
databases. With your development databases, you will be able to safely build and deploy
clients that use this data. Specifically, you will learn how Node.js can be used to interact
with a database.

JavaScript using Node.js

Node.js is a JavaScript runtime environment that can be run on your computer as a
standalone application. You can develop scripts to create applications that do not use the
web browser as an engine to execute code. Instead, the applications are compiled and run
from a server on a computer. Then, you can access and execute the applications directly
on your web browser by navigating to the server that is running the code or by using your
computer's command prompt. Node.js uses a runtime engine called V8, which is open
source and written by Google. The purpose of V8 is to compile JavaScript code so that it
can be run more efficiently. Traditional JavaScript is interpretive, which means that each
line is translated into code that the browser can understand before it is run. However,
when the program is compiled beforehand, the line-by-line translation does not need to
happen, so the application can run directly with less time spent on translation. Node.js
acts similar to a server in terms of functionality. This means it allows us to implement a
variety of features that can be used to construct robust web applications.

244 Creating Database Clients in Node.js

A majority of Node.js's functionality will exist on the backend of a web application. The
backend includes features such as REST and JSON API integration. This will allow
users to send REST-based HT TP requests to the server to retrieve or alter data. This is
often used in conjunction with databases to send a request to retrieve or alter datain a
database. You can also use data to upload files and data to your server. An operation such
as uploading a profile picture is a good example of this type of functionality.

Among other tasks, retrieving and updating data is one of the primary reasons why
JavaScript is used in websites, although it offers so much more. For this reason, Node.js
has been included in this book in a targeted way that shows you how to work with

a MySQL server and data.

Note

This chapter explains the basics of getting started with Node.js and MySQL
only. It does not teach you all the aspects of Node.js and has been included to
introduce you to different methods of working with a MySQL database.

Packt Publishing offers several excellent books such as Node.js Web Development
- Fourth Edition, which can be found at https: //www.packtpub.
com/web-development /nodejs-web-development -fourth-
edition,and Server Side Development with Node.js and Koa.js Quick

Start Guide, which can be found at https: //www.packtpub.com/
application-development/server-side-development-
nodejs-and-koajs-quick-start-guide, which provide you with
deeper knowledge about Node.js and web development.

Before you start creating Node.js applications, you must set up Node.js on your computer.
In the next section, you will learn how to install Node.js on your system and how to create
a project in Node.js.

Setting up Node.js

To start, visit ht tps: //nodejs.org/en/ to access the most recent release of Node.js.
On this page, you will get a link to a recommended and current version of your operating
system. Either of these versions will be sufficient for completing the exercises in this book.

https://www.packtpub.com/web-development/nodejs-web-development-fourth-edition
https://www.packtpub.com/web-development/nodejs-web-development-fourth-edition
https://www.packtpub.com/web-development/nodejs-web-development-fourth-edition
https://www.packtpub.com/application-development/server-side-development-nodejs-and-koajs-quick-start-guide
https://www.packtpub.com/application-development/server-side-development-nodejs-and-koajs-quick-start-guide
https://www.packtpub.com/application-development/server-side-development-nodejs-and-koajs-quick-start-guide
https://nodejs.org/en/

JavaScript using Node.js

245

New security releases now available for 15.x, 14.x, 12.x and 10.x
release lines

Download for Windows (x64)

14.16.1 LTS 16.0.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APl Docs Other Downloads | Changelog | APl Docs

Or have a look at the Long Term Support (LTS) schedule.

Figure 7.6 — The download page for Node.js

Once you click on the respective download button, an installer will be downloaded onto
your PC that you can run to install Node.js. To configure the installer, follow these steps:

1. Once the Node.js installer launches, you will see a screen similar to the following:

ﬁ Mode.js Setup — x

Welcome to the Node.js Setup Wizard

n ‘ d e The Setup Wizard will install Mode. js on your computer.
(8

Figure 7.7 - The main starting screen of the installer

246 Creating Database Clients in Node.js

2.

Press Next. You will need to accept the terms and conditions mentioned on the
End-User License Agreement page:

j_@ MNode.js Setup — *

End-User License Agreament

Flease read the following license agreement carefully n ‘ d c

Nede.js is licensed for use as follows: “
Copyright Mode.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject o

[11 accept the terms in the License Agreement

Print Back Cancel

Figure 7.8 - The license agreement screen

Next, the installer will ask where you want to install Node.js. You can install it at
any location. For this book, leave the default location as-is - that is, in the Program
Files directory. Click Next:

15 Nodejs Setup - X

Destination Folder

Choose a custom location or dick Next to install. n . d e
®

Inzstall Mode.js to:

|C:‘|Program Files\nodejs\,

Change...

Figure 7.9 - Choosing where to install the Node.js directory

JavaScript using Node.js 247

3. Node.js will provide some custom setup options. Leave everything as-is and
click Next:

15 Nodejs Setup - X

Custom Setup

Select the way you want features to be installed. n . d e
@©

Click the icons in the tree below to change the way features will be installed.

Mode. js runtime Install the core Node.js runtime
npm package manager (node.exe).
Online documentation shortcuts
Add to PATH

This feature requires 53MB on your
hard drive. Ithas 1of 1
subfeatures selected. The
subfeatures require 12KE on your
hard drive.

Browse...

Reset Disk Usage Back Cancel

Figure 7.10 - The custom installation screen

4. Next, Node.js will give you an option for native modules. None of this is required
for this book, so leave the checkbox unchecked and press Next:

15 Nedejs Setup - *

Tools for Native Modules

Optionally install the tools necessary to compile native modules. n .ng e

Some npm modules need to be compiled from C/C++ when instaling. If you want to be able
to install such modules, some tools (Python and Visual Studio Build Tools) need to be
installed.

N Automatically install the necessary tools. Note that this will also install Chocolatey. The
script will pop-up in & new window after the installation completes.

Alternatively, follow the instructions at https: /faithub. com /nodeis node-gypFon-windows
to install the dependendes yourself,

Figure 7.11 - The Native Modules screen

248 Creating Database Clients in Node.js

5. Finally, click Install; the installation will complete.

Once the installer has finished running, you can verify that the installation was
completed successfully by running the node -v command on your command line.

You should see various details about your version of Node.js:

EX Windows PowerShell

Figure 7.12 - The output of the node -v command
In the preceding screenshot, you can see that version 14 .16 . 0 is currently
installed on my system. If the output you get matches the version number you
have installed, then you have successfully installed Node.js.

Now that you have installed Node.js on your computer, you can set up a basic project
and learn how to create Node.js applications.

Getting started with Node.js

Before you begin, please set up Node.js. If you have not already set up Node.js and your
work folder, please return to the Setting up Node.js section of this book and set them up;
otherwise, you will not be able to work through this section.

Note

In this chapter, the work folder is D: \MySQL Training\Nodejs and all
the references are for this folder. You can set your work folder to anything you

like, but we suggest that you use the aforementioned folder drive and path for
this book.

Two components come installed with Node.js by default. The first is node, which is a
command-line utility that's used to run JavaScript code. This sets up and executes the
program. The second is npm, a package manager that's used to install third-party modules
you may need for your application. For example, you will need mysqgl to work with your
database, so this is a component you will need to install.

When you first start a Node.js project, you must run the npm init command from the
console. When you do this, Node.js will prompt you with several questions so that you can
initialize your Node.js project. The following screenshot shows an example of running the
npm init command:

JavaScript using Node.js 249

EN Windows PowerShell

PS D:\MySQL Training\Nodejs> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

see npm help init for definitive documentation on these fields
and exactly what they do.

Use npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.

package name: (nodejs) helloworld
version: (1.0.0) 1]

description: A simple hello world app
entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to D:\MySQL Training\Nodejs\package. json:

{

"name": "helloworld",

"wversion': "1.0.0",

"description™: "A simple hello world app”,
"main™: "index.js",

"scripts": {

"test": "echo \"Error: no test specified\” && exit 1"
1

-
uthor":
"license":

Is this 0K? (yes) yes
PS D:\MySQL Training\Nodejs>

Figure 7.13 - The output of the npm init command
Here is a summary of the values that were inputted during initialization:
» Package name: This is a unique identifier for the program you are creating. In the
preceding screenshot, this is denoted as helloworld.

 Version: This is the current version number of the program. In the preceding
screenshot, this is denoted as 1. 0. 0.

 Description: This is a brief description of what the program does. In the preceding
screenshot, this is denoted as A simple hello world app.

+ Entry point: This is the file that contains the start of your application's code. It
defaults to index. j s if nothing is inputted.

 Test command: This command is used to test the program. In the preceding
screenshot, this is blank since there is no test command for the project.

250 Creating Database Clients in Node.js

« Git repository: This is the location of the GitHub repository for the program.
In the preceding screenshot, this is blank since there is no GitHub repository for
the project.

« Keywords: These are keywords that can be used to identify the program. In the
preceding screenshot, this is also blank.

 Author: This refers to the name of the program author. In the preceding screenshot,
this is also blank.

+ License: This is the license of the program. In the preceding screenshot, it is
denoted as ISC. The ISC license indicates that a project can be used in any way;,
so long as it is attributed to the author.

Once the init command has finished running, Node.js will create a Node project in the
current directory that the command prompt window is set to. Now, you are ready to start
adding dependencies to the project and write code.

Your programs will require mysgl to query your database. To install mysgl, you can
simply use the npm install mysgl command,as shown in the following screenshot:

PS D:\MySQL Training\Nodejs> npm install mysql
npm created a lockfile as package-lock.json. You should commit this file.
npm hellowor1d@l.0.0 No repository field.

+ mysql@2.18.1
added 11 packages from 15 contributors and audited 11 packages in 2.369s
found vulnerabilities

Figure 7.14 — The result of installing the mysqgl module

Once you've done this, your project folder should look as follows:

node_modules 2021-04-14 745 PM File folder
| | package.json 2021-04-14 T:45 PM JSOM File 1KB
| | package-lockjson 2021-04-14 T:45 PM JSOM File 4KE

Figure 7.15 - The directory of the project after installing npm init and mysql

The initialization process creates two files and a directory. The node_modules directory
contains any third-party modules that have been installed for the project. The package.
json file contains a copy of the project information that was supplied when the npm
init command was run. The package-1lock. json file stores the version numbers

of all the modules that have been used in the project.

JavaScript using Node.js 251

For this section's exercises and activities and to avoid repetition, take note of
the following:

o When asked to create a file, you should use your text editor to create and maintain
the file. All files should have a . § s extension.

« When you're asked to run a file, you should run the file from your command-line
interface (CLI) or console.

« When you're asked to check the results of the script's execution, you will be
informed of what application to check this with - that is, Workbench, Text Editor,
the browser, or Excel.

Note

All of this must be done in your work folder, Drive : Path/Nodejs,and
your CLI should display the work folder path in its prompt.

Using the project you created in this section, you can now learn more about Node.js and
how it can be used to create web applications. Now, let's start using Node.js.

Basics of Node.js

To learn the basic structure of Node.js applications, you must know about the different
ways to output the data. In this section, you will write three programs that output text

to three different locations — one to the console, one to a web browser, and one to a file.
When you output text to the console, you print data to the same console window that the
node command is run from. When you output the result to the web browser, you display
the result in a browser window when a user navigates to the URL associated with the
program. Finally, when you output the result to a file, you write the data to a file on the
user's computer, which can be read with any traditional text editor.

You can run a program with node using the node Filename.js command, where
Filename. js can be replaced with any file you want to run. You should use this
command any time you want to run the code using Node.js.

When you work in Node.js, you may want to log data in your console. This is common
for error and debugging messages, which are used to troubleshoot applications. To log
data to the console, use the console . log method. This method takes in any text as
an argument, and the text that's provided is displayed to the console when the code is
run. For example, console.log ("Hello!") ; will write the text Hello! to the
console window.

252 Creating Database Clients in Node.js

One of the important features of Node.js is the ability for users to access your application
through a web browser. The user must enter the respective URL to access the Node.js
application, which processes their request. With this, you can do things such as display
text on the browser window. To achieve this, you need to set up an HTTP server

through Node.js.

To set up an HTTP server, you must import the ht tp module from Node.js. You can do
this using the following code:

var http = require('http');

Once you have imported the ht tp module, you can use it to create a server. You can do
this using the createServer method:

http.createServer (function (req, res) {

}) .listen(82) ;

The preceding code creates an HTTP server that can take in requests and send responses
back. The 1isten keyword tells Node.js what port the server should listen on - in this
case, port 82. To access this server, you would need to navigate to localhost : 82,
which is the local IP of your computer, through port 82.

Your server can send responses to whoever accesses it using the res variable. The idea is
that you construct an HT'TP response so that it has a header and any data that is to be sent
back. For example, the following line would write a header to your response:

res.writeHead (200, {'Content-Type': 'text/html'});

This header can be broken down into a few main pieces. 200 is the HTTP code for a
successful request. It tells the user that the HTTP request was successfully received. The
second portion, ' Content -Type', describes what type of data you are sending in the
response. Many different types of content can be returned with the Content -Type
header. The most common types are text /html, json,and text /plain. In this
case, you are sending back some text or HTML data to the person who requested your
web page. Then, you can write the actual content using res . end, which appends data
to the end of the response. For example, using res.end ('Hello! ') ; would add the
text Hello! to the HTTP response. The result of this would be the text Hello! being
displayed on the user's screen.

JavaScript using Node.js 253

When data is returned through the browser, it is expected to be of a certain type. For
example, suppose you declared a result variable that stores the result of the sum of
two numbers:

var result = 4+4;

If you want to represent this value as text, it needs to be converted into a St ring variable
type. A String is a sequence of letters that is used to represent text in Node.js. To
convert a variable into a String, you can use the toString () method, as shown here:

result.toString ()

With these fundamentals in mind, let's learn how to apply them.

Exercise 7.02 - basic output in the console

Suppose that you just installed Node.js on a work computer, and you want to quickly test
whether everything is working correctly. One easy way to verify this is by outputting data
to the console. You are required to add two numbers (3 and 4) and display the result on
the console.

Follow these steps:

1. Open a new file in your text editor.

2. Enter the following text to add two numbers (3 and 4) and display the result in
the console:

console.log(3+4);

3. Save the file as Add-OutToConsole. js in your working folder (D: \MySQL
Training\Nodejs).

4. Invyour CLI, type the following command and press Enter:
node HelloWorld-Console.js

The output will be as follows:

EN Windows PowerShell
PS D:\MySQL Training\Nedejs> node HelloWorld-Console. js

PS D:\MySQL Training\Nodejs>

Figure 7.16 — Expected output for the HelloWorld-Console.js script

254 Creating Database Clients in Node.js

The text that is outputted is what was written in the console. log method
arguments (that is, the sum of 3 and 4). In general, you can change what is between
the brackets of the console.log method to anything you wish. This will be
printed to the console, as shown in the preceding screenshot.

Note

The code for this exercise can be found at https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.02/Add-OutToConsole. js.

In this exercise, you created your first Node.js script. Outputting to the console is easy to
implement since it only requires a single line of code. As you have learned, you can use the
console to output messages that indicate the status of your programs as they execute and
indicate when they have finished. You can also output messages with variable values while
developing so that you can monitor what your scripts are doing, check the values of the
variables, and more. This will assist you with debugging.

In the next exercise, you will use a browser to get the output of the Node.js script.

Exercise 7.03 - testing outputs in a browser

Now, you must test the output of a Node.js script in a web browser. You have been tasked
with adding two numbers (4 and 4) and displaying the result to the user who accesses
the web page on the web browser on port 82 of their machine.

Follow these steps:

1. Create a new file and enter the following text. Since you are outputting text to the
web browser, you need to include the ht tp module:

var http = require('http');

2. Create a server to monitor the request from a browser and instruct it to send
a response back. Add the following lines of code after the require statement
for http:

http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'}) ;

var result = 4+4;

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.02/Add-OutToConsole.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.02/Add-OutToConsole.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.02/Add-OutToConsole.js

JavaScript using Node.js 255

Once a request has been received from the browser, you must send a response back
to be displayed on the browser. Add the following code:

res.end (result.toString()) ;

Finally, tell the server what port to monitor for a request. Use port 82 for the web
server for all the exercises in this chapter so that you do not clash with anything you
may already have by using the standard port number 80. Add the following line:

}).listen(82); //The brackets close off the createServer
block

Save and name the file Add-OutToBrowser . js. The content of this file should
look as follows:

var http = require('http');

http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'});

var result = 4+4;

res.end (result.toString()) ;

}) .listen(82) ;

In your CLI, type the following command to run the code you have written and
press Enter:

node HelloWorld-Browser.js

This time, your cursor will not come back and no output will be sent to the console.
The Node.js script is running in the background and monitoring port 82 for a
request from a browser.

To test this, open a web browser.

In the address bar, enter the following address and press Enter:

localhost:82

256 Creating Database Clients in Node.js

Note

localhost and 127.0.0. 1 both refer to your computer and are
interchangeable.

The server will respond, and the browser will display the sum of two numbers
(4 and 4):

localhost:a2) o X, i"I'

- G'ﬁ} © [localhost:82

Figure 7.17 — The expected browser output for the HelloWorld-Browser.js script
To exit the script, press Ctrl + C (hold down the Ctrl key and press C) in the CLI
window, and wait for your command prompt to return. You may need to do this
a few times.

Note

The code for this exercise can be found at https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.03/Add-0OutToBrowser. js.

The techniques shown in this exercise are used often in Node.js when a dynamically built
web page is required.

In the next section, you will learn how the output can be written to the files on your system.

Writing outputs to files

Node.js can be used to monitor a designated port for a web request and respond with
whatever you have programmed it to. Another location you can write to is a file on the
computer that the server is running from. Let's take a look at a few important details
that are required to achieve this.

To work with the filesystem in Node.js, you need to import the £s module. This can be
done in a similar way to importing the ht tp module, as follows:

var fs = require('fs');

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.03/Add-OutToBrowser.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.03/Add-OutToBrowser.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.03/Add-OutToBrowser.js

JavaScript using Node.js 257

From here, you must create a new file stream that can be used to write data to a file. A

file stream is a connection from Node.js to the computer's filesystem to transfer data
between the Node.js application and the filesystem. To create a file stream, you can use the
createWriteStream method. This method takes in a filename, which is the name of
the file you want to write to. The following code shows how to create a file stream for a file
named Hello. txt:

var stream = fs.createWriteStream("Hello.txt"):;

Once you've created a stream, you can start writing data to the file. To do so, you can use
the write method. The write method takes in some data, and that data will be written
into the target file. For example, the following code writes the text Hel1lo World to

the file:

stream.write ("Hello\n") ;

Note that \n simply indicates a new line. We've added it here to indicate that anything
that's added to the file after this write will be on a separate line.

Finally, you should always close the stream once you are done with it. To do this, you just
need to use the end method:

stream.end () ;

With that, you have the tools you need to write data to files on your system.

In the next exercise, you will learn how file output can be implemented in an application.

Exercise 7.04 - writing to a disk file

Your manager wants you to create a Log . txt file that stores a log of the application
that's running. You have been asked to create a Node.js file that writes Application
Started Successfully! tothe Log. txt file. Follow these steps:

1. Create a new file in your text editor.

2. To work with a file, the script requires a reference to the filesystem. Add the
following line to tell the script that you want to use the filesystem module and
assign it to a variable named £ s for ease of reference:

var fs = require('fs');

258 Creating Database Clients in Node.js

3. Create a new file with the filesystem variable (£s) for writing purposes and assign
the file to a variable named st ream using the following command:

var stream = fs.createWriteStream("Log.txt") ;

To write to the file, refer to the st ream variable. Note that \n forces a new line in
the output:

stream.write ("Application Started Successfully!\n");

4. Finally, close the file:

stream.end () ;

5. Save the file as Log-ToDiskFile. js. Run the file in your CLI with the following
command:

node HelloWorld-DiskFile.js

This time, your cursor will come back when the program has finished, as shown in
the following screenshot:

Figure 7.18 — Console output for the Helloworld-Diskfile.js script

6. Locate the Log. txt filein D: \MySQL Training\Nodejs and open it. You will
see that Application Started Successfully! is written in the file:

Name Date modified Type Size

HelloWerld-DiskFile.js 2021-04-30 10:01 PM JavaScript File 1 KB
- Logtt 2021-04-30 1001 PM Text Document 1 KB

File Edit Format View Help

Application Started Successfully!

Figure 7.19 - The expected output for HelloWorld.txt in the folder and its contents
The preceding output shows that the Log . txt file has been successfully created
and that the content that's been written through stream. write has been written
to the file.

Connecting to MySQL 259

Note

The code for this exercise can be found at https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.04/Log-ToDiskFile.js.

Generating files with Node.js is easy to do and is useful for reporting on data or generating
log files. You have now created three separate scripts to test the three main outputs. You
will use these in the upcoming exercises.

Now that you have tested your main outputs and have written your first Node.js scripts,
you are ready to start writing scripts to work with a MySQL database.

Connecting to MySQL

Many web applications will dynamically generate content based on the user who is
currently accessing them. Many companies desire dynamic web applications so that

clients can view data specific to themselves. This is important from a usability and privacy
perspective. The application is generally easier to use if it has been personalized to you. If
you want to display data for a user, it should be data for that user only rather than all users.

To accomplish this, you must use databases to store the dynamic data you wish to display.
Specifically, MySQL integrates well with Node.js, with specific modules written just to
work with MySQL. In this section, you will learn how to connect to MySQL databases
using Node.js and use these connections to query the databases. This will allow you to
write dynamic applications using databases.

You should already have the required connection information from the Prerequisites
section in the Preface. The information you will need includes the IP address of the
MySQL server, the port number of the MySQL server, and the username and password
for the MySQL user. If not, go back to the Prerequisites section, collect the necessary
information, and come back here.

To connect to a MySQL database through Node.js, you will need to learn a few new Node.
js methods. First, you must import the mysgl module, as you did for the http and £s
modules previously:

var mysqgl = require('mysqgl');

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.04/Log-ToDiskFile.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.04/Log-ToDiskFile.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.04/Log-ToDiskFile.js

260 Creating Database Clients in Node.js

Once you have imported the mysgl module, you need to establish a connection with
your MySQL server. To do this, you will need to provide node with a few pieces of
information. The first is the host, which is the IP address of the MySQL server. If you are
working locally, this will be Localhost. Next, you need to provide the port that MySQL
is listening on, which is set to 3306 by default. Once you've done this, you must provide
the username and password of the account you wish to use to connect to the MySQL
server. The full code for creating a MySQL connection for Node.js looks as follows:

var mysqglconnection = mysqgl.createConnection ({
host: "<Server's IP>",

port: "3306",

user: "<UserName>",

password: "<Password>"

F

Once you have created the connection, you can tell Node.js to attempt to connect to the
specified MySQL server. This connection could succeed or fail, depending on the server's
availability and the accuracy of the credentials that have been supplied. Therefore, you
should ensure that you handle any errors that occur during the connection. You can do
this by looking at the err variable when a connection attempt is made:

mysqglconnection.connect (function (err) {
if (err) {

throw err;

}

Once you have set up your connection, you should exit the process to ensure you do not
tie up your database with connections that are no longer in use. To do this, you can simply
add process.exit () ; to the end of your connect function:

mysqlconnection.connect (function (err) {
if (err) {

throw err;

}

process.exit () ;

Now, you can start connecting to a MySQL database using Node.js.

Connecting to MySQL 261

Exercise 7.05 - connecting to the MySQL server

Your manager has asked you to create a Node.js application that can connect to a MySQL
database. The goal is to eventually use this connection to get data from the server.
However, for now, you just want to get the connection working. To do so, your manager
has asked you to check that the application connects to the database and prints a message
when the connection is successfully made.

Follow these steps:

1.
2.

Create a file named MySQLConnection. js inD:\MySQL Training\Nodeijs.
Since you are using the MySQL database, you will need a reference to MySQL to use
it. Enter the following command:

var mysqgl = require('mysqgl') ;

Set up the connection details to make the connection to the database. Fill in the
server IP and the account details to log in to the server:

var mysglconnection = mysqgl.createConnection ({
host: "<Server IP Address>",

port: "3306",

user: "<UserName>",

password: "<Passwords>"

1) i
Now, make the connection and set up error handling using the following command:

mysglconnection.connect (function (err)

Test for errors and throw an error message, including the server's error code if
one occurs:

if (err)

throw err;

err is used to display the error code and information about the error that was
found while trying to connect to the server.

262 Creating Database Clients in Node.js
6. Enter the following code to confirm whether the connection succeeded in
the console:
lelse{
console.log ("Connected to MySQL!") ;
}
7. Now, stop the script so that the cursor comes back to the CLI by using the following
command:
process.exit () ;
8. Close off the connection block:

1) 5

//End the Connection Block

The complete script should look as follows:

var mysgl = require('mysqgl') ;

var mysglconnection = mysgl.createConnection ({
host: "<Servers IP>",

port: "3306",

user: "<UserName>",

password: "<Passwords>"

1) 5

mysglconnection.connect (function (err)
if (err) {
throw err;
}else(
console.log("Connected to MySQL!") ;

}

process.exit () ;

1) 5

//End the Connection Block

Connecting to MySQL 263

9. Run the file in the CLI. A single response will be returned:

EN Windows PowerShell

PS5 D:WMySQL TrainingiMode]ls> node MySQLConnection.]s
onnected to MySQL!

Figure 7.20 — Console verification that a MySQL connection has been made
As shown in the preceding screenshot, you have successfully connected to the
MySQL server and verified the connection.

If an error occurs while you're executing the script, you will get an error message.
If this happens, check your connection details and try again.

Note

The script file for this exercise can be found at https: //github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.05/MySQLConnection. js.

When you're establishing connections with database servers, you will often encounter
errors if the connection has been set up incorrectly or if there are server issues. In the
next section, you will learn about common errors that occur in connections and how
to troubleshoot them.

Troubleshooting connection errors

In some cases, you may encounter errors while attempting to connect to a MySQL
database through Node.js. It is helpful to have some knowledge of common connection
problems so that you understand how to troubleshoot these issues when they occur. Let's
look at two common errors that occur when setting up MySQL connections.

Note

To demonstrate any connection issues you may get, you must use the

same MySQLConnection. js file you created in the previous

exercise to introduce the errors. There are two resource files named
MySQLConnection 1.jsandMySQLConnection 2.3js on GitHub
athttps://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapter07/Databases. These files
have already been changed to demonstrate these errors. You can use these or
modify your existing MySQLConnection. js file.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.05/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.05/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.05/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter07/Databases
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter07/Databases

264 Creating Database Clients in Node.js

The first type of error is called a timeout error. A timeout error occurs when it takes too
long for Node.js to establish a connection to a target server. This typically happens for one
of two reasons - either the server IP has been set incorrectly or the MySQL server is not
available on the target IP address or port. To see what this error looks like, you can alter
the previous exercise's code to try to connect to an IP that does not exist:

var mysqgl = require('mysqgl') ;

var mysglconnection = mysgl.createConnection ({
host: "192.0.0.2",

port: "3306",

user: "root",

password: ""

1)

mysglconnection.connect (function (err) {
if (err) {
throw err;
Jelse{
console.log ("Connected to MySQL!") ;

}

process.exit () ;

1)

//End the Connection Block

In the preceding code, we have changed the IP address to 192.0. 0. 2, which does not
exist. When you try to run this code, you will get an error, as shown here:

Connecting to MySQL 265

MySQOL Trawnwng\Nod > node index.js
\MySOL Traini Nodejs\index. js:12
throw err;
A

: connect ETIMEDOUT))
Connection._handleConnectTimeout (D:\MySOL Training\Nodejs\node_modules\mysgl\1lib\Connection.js:409:13)

Protocol._enqueue (;QL Tra1n1ng\Nodejs\node modu]es\nysg1\11b rotocol\Protocol. js:144:48)

Protocol.handshake (| r \Nod \nod d A rotocoT\ProtocoT
Connection.connect (D QL Training\Nodej odules wysg1\11b\Connectwon js:116
Object. <anonymous> ySOL Training\Nodejs\ind js:10:17)

errorno:
code:
syscall:
fatal: true

Figure 7.21 - The timeout error that's received due to an invalid IP address

Here, you can see that the error is Error: connect ETIMEDOUT. This error statement
is used when a timeout error occurs. This tells you that either your IP address or port is
incorrect. One additional thing to check with this type of error is if the MySQL instance is
active and running on the target server. Resolving these three issues will typically resolve
any ETIMEDOUT error you may encounter.

The second common type of connection error is an access denied error. This most
commonly occurs when the username or password that's been supplied to the MySQL
server is incorrect. The following code shows an example of trying to authenticate with
a user who does not exist:

var mysgl = require('mysqgl') ;

var mysglconnection = mysgl.createConnection ({
host: "127.0.0.1",

port: "3306",

user: "root2",

password: ""

1)

mysglconnection.connect (function (err) {
if (err) {
throw err;
telsef
console.log ("Connected to MySQL!") ;

266 Creating Database Clients in Node.js

}

process.exit () ;

1)

//End the Connection Block

When you attempt to run this code, you will get an error, as follows:

MysQL Training\Nodej node index.js

Training\Nodejs _modules\mysql\lib\protocol\Parser. js:437
throw err / Rethrow non-MySQL errors
A

ENIED_ERROR: ACCESS
Handshake . Sequence . _pac Ql \O
Handshake ErrorPacket (D js\node_ Mol ey i focol \sequences\ o
Protocol g js\nede_mod 1‘ o 24m\ rotoco'\ \Plotoco'\

Parser.write (D:\My!
Protocol.write (D - odejs\node_modules\0 [4mmysq10[24m\1
ode_modul [4mmysqlo[24m
\node_modules\0[4mmysq10[24m\1ib

j5:309:12)0[39m

[4mmysq10[24m
\O [4mmysq10[24m\1

object. < \M
Module._compile (mternaT /m
object.Module._extensions.
Module.load (internal/ /modues/
Function.Module._load (interr / d 9
Function cutellserEntrment [as i (int un_main.js:72:12)0[39m
mtema'l /main/run_main_module. js [3!

DENIED_ERROR'0[39m,

‘Access denied for user 'root2'@'localhost' (using password: NO)"O[39m,
[32m'28000"0[39m,
0[39m

Figure 7.22 - The error that's received when an invalid username is supplied

This error is ER_ACCESS_DENIED ERROR, which indicates that your credentials were
not correct. With this type of error, you simply need to adjust the username and password
so that they are valid credentials for the server.

Note

Make sure that you put the correct details in your script and save it for the
next section.

As you work through the Node.js exercises in this book and your future development,
you will create many scripts that connect to a MySQL server. You can add the connection
details to each script. However, if the IP address of the server changes or the user account
changes, you will have to change these details in every script. In the next section, you will
learn how to tackle such issues.

Connecting to MySQL 267

Modularizing the MySQL connection

Modularizing involves placing your MySQL connection code in a separate file from your
actual program logic. When you want to make a database connection, you simply import
your MySQL connection module, just as you would import any other module.

To start, create a new file in D: \MySQL Training\Nodejs called
MySQLConnection. js. In this file, place your current MySQL connection logic and
make some minor changes:

var mysql = require('mysql') ;

var mysqlconnection = mysqgl.createConnection ({
host: "<Servers IP>",

port: "3306",

user: "<UserName>",

password: "<Password>"

b
mysglconnection.connect (function (err) {
if (err) {
throw err;
lelse{
console.log("Connected to MySQL!") ;
}
R E;

module.exports = mysglconnection;
//End the Connection Block

268 Creating Database Clients in Node.js

The main changes here are that you have removed process.exit () ; and added the
modules.export = mysglconnection; line to the end of the file. process.
exit () ; has been removed to keep the connection to the database active. This means
that when this module is run, a database connection is created that can be used in other
files. Once you are done with it, you can end the process in the file that uses it last.
modules.export is used to export this file as mysglconnect ion, which means that
when you want to connect to the database, you can import the file using the require
method, as shown in the following code snippet:

var mysqglconnection = require("./mysglconnection.js");

On the topic of using your database connection, one idea you should discuss is how to
query your database. You can do this using the query method of your connection. The
following code shows how this can be done:

mysglconnection.query ("SELECT * FROM backuppractice.country;",

function (err, SQLresult) {

}

When this query is run, the results are stored inside the SQLresult variable, and any
errors will be stored in the err variable. The SQLresult variable acts as an array of
objects. Each entry in the array has attributes equal to the fields of the table the data is
queried from. For example, if you want to get the value of Country for the first record of
the result, you can use SQLresult [0] . Country. The item at index 0 is the first record
of the set of results the query returns. In this query, the Count ry attribute from this
record is fetched.

In the next exercise, you will learn how to use your modularized SQL connection logic
to query a database.

Exercise 7.06 - modularizing the MySQL connection

You have been asked to determine the number of records that are present in the country
table of the backuppractice database. In addition to this, your manager has asked you
to modularize the MySQL connection so that the script can be run in multiple locations
without the code having to be repeated. Follow these steps:

1. Open the MySQLConnection. js file that you created in Exercise 5.05, Connecting
to the MySQL server, in your text editor.

Connecting to MySQL 269

You don't want to exit the script as you did previously, so remove the following line:

process.exit () ;

Add the following line to the end of the script to modularize the MySQL connection:

module.exports = mysglconnection;

Save the script and keep the same name.

Note

You can find the revised MySQLConnection. js fileathttps://
github.com/PacktWorkshops/The-MySQL-Workshop/blob/
master/Chapter07/Exercise7.06/MySQLConnection.js.

To test the new module, create another file named TestModule. js.

Add a call to the MySQLConnection. js file to make the connection and assign
the connection to a variable using the following command:

var mysglconnection = require("./mysglconnection.js") ;

Execute a query to count the records in the country table in the backuppractice
database with the connection module. Include error handling and put the results in a
results object named SQLresult:

mysglconnection.query ("SELECT Count (*) AS CountryCount \

FROM backuppractice.country;", function (err,
SQLresult) {

Test for errors and print a message with an error code to the console if there is one:

if (err) throw "Problem counting Countries:- " + err.
code;

If no error occurs, print the result of the query. With a count query, there will only
be one result, so you can simply access the first entry of sglResult and get the
countryCount field from it. This will return the result of the count query, which
can be displayed on the screen using the console . log method:

console.log ("Country count :- " + SQLresult[0].
CountryCount) ;

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js

270 Creating Database Clients in Node.js

10. Exit the script:

process.exit () ;

11. Close off the query bracketing:
1) i

Note

The complete script can be found at https: //github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.06/TestModule. js.

12. Save and run the script using the node TestModule.js command. You should
get the following result:

WMySOL Training,

onnected to My SOL !

Figure 7.23 - The script's output for connection verification and country count
As you can see, the first result line (Connected to MySQL!) was generated
in the MySQLConnection. js module, while the second result line (Country
count :- 263) was generated in the TestModule. js script.

By modularizing the connection script, you reduce the need to enter the connection details
in all your scripts to access the MySQL server. More importantly, if the details change in
the future, you only need to update them in one script. You will be using this modularized
script in all the upcoming exercises. You can modularize scripts to handle tasks you may
perform in many of your programs, such as generating files, reports, and printing.

Now that you have simplified the connection process, let's start working with the MySQL
server. The first thing you must do is create a new database in MySQL.

Creating databases in Node.js

Often, when an application is run by a user for the first time, all the databases that are
required by the application need to be constructed. This initialization routine can be
implemented through Node.js.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/TestModule.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/TestModule.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/TestModule.js

Connecting to MySQL 271

The process of creating a database is similar to the process of running a SELECT query
in Node.js. First, you will need to establish a connection to the database using the
modularized code you created in the previous exercise:

var mysqlconnection = require("./mysqglconnection.js");

Once you've done this, you can use the query method to run the desired queries. If you
want to create a database, you can simply run a CREATE query, as shown here:

mysqglconnection.query ("CREATE DATABASE “DATABASE NAME ",

function (err) {

One note about this query is the presence of backtick characters (). These characters are
not generally required in SQL queries unless there is a space in the name of the database.
For example, if your database was named A11 Countries, the query would look

as follows:

mysqglconnection.query ("CREATE DATABASE “All Countries™ ",

function (err) {

However, if you were to remove the space and use the name A11Countries, the query
would not need backticks:

mysqglconnection.query ("CREATE DATABASE AllCountries",

function (err) {

Generally, most programmers will prefer to always include backticks, regardless of
whether there is a space present.

Now that you know how to create a database with Node.js, let's look at a full example
of an application that uses the CREATE query.

Exercise 7.07 - creating a new database

You have been asked to create an application that can track statistics about different
countries. This application requires a database that can track statistics data about various
countries, including the name of the country, its population, and its location. You have
been asked to name the database world statistics.

272 Creating Database Clients in Node.js

Follow these steps to create the required database:

1. Create a new file and name it MySQL.CreateDatabase. js.

2. Add the MySQLConnection. js module you created in Exercise 5.06, Modularizing
the MySQL connection.

Note

You can find the MySQLConnection. jsfilehttps://github.
com/PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.06/MySQLConnection.js.

var mysglconnection = require ("./mysglconnection.js") ;

3. Use the following command to create a new database named world statistics
and include error handling:

mysglconnection.query ("CREATE DATABASE “world
statistics™",

function (err) {

4. Test for an error and generate an error message if one occurs:

if (err) throw "Problem creating the database:- " +

err.code;
5. Print a message to the console that indicates that the database was created:
console.log ("Database created") ;

6. Exit the script and close off the query bracketing:

process.exit () ;

0

Note

The complete script can be found at https://github. com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.07/MySQLCreateDatabase.js.

7. Run the script. You should see the result of the query displayed in your
command prompt:

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.07/MySQLCreateDatabase.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.07/MySQLCreateDatabase.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.07/MySQLCreateDatabase.js

Connecting to MySQL 273

EN Windows PowerShell

S0L Training'Noc
Connected to MySQL!

Datab created
PS D: SOL Training'Mode]

Figure 7.24 - The console's output verifying that the connection and database were created

8. In the Workbench window, refresh the schemas. The new database will appear in
the list:

Mavigator

SCHEMAS B

Q |FiItE|' objects |

backuppractice
import_test
maxim back end

; original_world_statistics
Zys
world_statistis

Y YyYYy¥wywyvwy

Figure 7.25 - The SCHEMAS list showing the new database

The ability to issue MySQL commands to the server using SQL from your scripts gives
you a lot of control over the server and databases it contains. You can create programs
to automatically set up the database for the users.

Now, let's learn how to create tables using Node.js.

Creating tables in Node.js

Now that you have created a database, you will need to add tables to it. Node.js can run
queries to create tables, similar to how you created the database in the previous exercise.
Start by creating a connection to the database you are working with:

var mysqglconnection = require("./mysqglconnection.js");
Now, you can define a query to create a table in your database:

var sql = "CREATE TABLE “world statistics™. test™ (
“ID” int(11l) NOT NULL AUTO_ INCREMENT,
“Name~ wvarchar (13) DEFAULT NULL, \
PRIMARY KEY ("ID”) \

)i";

274 Creating Database Clients in Node.js

As we mentioned previously, backticks can be added to the table name and field names if
they contain spaces. They are not necessary if no spaces are present, but we will continue
to include them in the queries so that we have consistent formatting. Once the query has
been defined, it needs to be executed against the database:

mysglconnection.query(sql, function (err) {

}

Now, let's create a table using a Node.js script.

Exercise 7.08 - creating a table in a database

In the previous exercise, you created a database to store statistical data. Your manager would
now like you to create a table in the data that can store the name of the continents in the
world. Your manager has specified that the table should be named continents and that it
should have two fields. The first field will be a unique identifier called Cont inent ID. The
second field will be the continent's name and will be called Cont inent. You must specify
ContinentID as the primary key of your table. Follow these steps to create a table in

the database:

1. Create a new file and name it MySQL.CreateTable. js.
2. Addthe MySQLConnection. js module:

var mysglconnection = require("../mysglconnection.js") ;

Note

You can find the MySQLConnection. js fileathttps://github.
com/PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.06/MySQLConnection.js.

3. Create a variable named sql and set the value of the variable equal to the following
query, which will create a new table named continents and define its fields
and properties:

var sgl = "CREATE TABLE “world statistics™. continents™ (
\
“ContinentID” int (11) NOT NULL AUTO_INCREMENT, \
“Continent™ wvarchar (13) DEFAULT NULL, \
PRIMARY KEY (ContinentID”) \

A

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js

Connecting to MySQL 275

4. Run the SQL query with the included error handling:
mysglconnection.query(sql, function (err) {
5. Test for errors and display a message and error code if there is one:

if (err) throw "Problem creating the table:- " + err.
code;

6. Display a message on the console indicating that the table was created using the
following command:

console.log("Table created") ;
7. Exit the script and close off the query bracketing:

process.exit () ;

1)

Note

The complete script can be found at https://github. com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Exercise7.08/MySQLCreateTable. js.

8. Save the file and run the script. You should see the following output:

E¥ Windows PowerShell

PS5 D:\MyS0L Traini
onnected to MySQL!

able created

Figure 7.26 — The console output for the MySQLCreateTable.js script
Here, you can see that the table was successfully created in the database.

9. Refresh the schema in Workbench. The new table will be visible:

¥ -] world_statistics
T@ Tables
[2 ':I continents
@ Views
@ Stored Procedures
@ Functions

Figure 7.27 — The schemas list showing a new table in world_statistics

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.08/MySQLCreateTable.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.08/MySQLCreateTable.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.08/MySQLCreateTable.js

276 Creating Database Clients in Node.js

10. Right-click the new table - that is, cont inents. Select Alter Table and
examine it. Your table should contain the fields and properties you defined in the

SQL statement:
[r— Table Name: | SaMRRERE | Schema: world_statistics
l'_i a Charset/Collation: |UtfBmb4 | |utfBmb4_0900_ai_c | Engine: |InnoDE ~
Comments:

Column Mame Datatype PK HMWN UQ B UM ZF Al G Default/Expression

CantinentID INT(11) O O oad Cl

Continent VARCHAR(13) O 0O 000000 N

Oooodoodaono

Figure 7.28 - The Alter Table view displaying table properties
When you define a table, not only can you define the field name, field type, and primary
key, but also any other property a table can have, such as indexes, collation, character sets,
and more in the script.

In the next section, you will put your learning to the test by employing what you have
learned in this chapter.

Activity 7.01 - building a database application
with Node.js

You work for a marketing company called Marketing Our Thing. You have been asked by
Fred, the Marketing Head, to create a small database with two tables to store the details

of its customers and the purchases they have made. Fred has provided you with details of
what he wants in a Requirements. txt document. You are been asked to create two
scripts that will run in Node.js — one to create the database and another to create the tables
and fields. Both scripts should take advantage of the mysglconnection. js file to
create a data connection.

The following are the requirements:

o Database Name: MOTdatabase

« Table Name: Customers

Activity 7.01 - building a database application with Node.js

277

o Table Definition:

Field Name Data Type Other
CUSTID Int Primary Key
CustName VarChar(50) NOT NULL
Figure 7.29 - The Customers table
« Table Name: CustomerPurchases
« Table Definition:
Field Name Data Type Other
CPID Int Primary Key
CustID Int NOT NULL
SKU VarChar(20) NOT NULL
SaleDateTime VarChar(25) NOT NULL
Quantity Int NOT NULL
Figure 7.30 — The CustomerPurchases table
Note

You can find the Requirements. txt fileathttps://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter05/Activity5.01/Requirements. txt.

Follow these steps to complete this activity:

1. Set up a database connection using the mysglconnection. js file that you
created in Exercise 5.06, Modularizing the MySQL connection.

2. Create a script called motdatabase. js and use the query method to create

MOTdatabase.

3. Runthe motdatabase. js script in your command prompt.

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter05/Activity5.01/Requirements.txt
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter05/Activity5.01/Requirements.txt
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter05/Activity5.01/Requirements.txt

278 Creating Database Clients in Node.js

4. Refresh the database schema in MySQL Workbench. You should see motdatabase
in the schema list:

Navigator

SCHEMAS o

| he name of the schams. 1t to use only alph e ch Spaces should be avoided and be replaced by _

Name: |mutda|abas&
@, [Fiter objects 9
Refactor model, changing il references found in view, riggers, store procedures and functions from the ald schema name to the new ane.

| arms

=] ﬂult"i'“b Collation: ~[utf - default collation] Speciies whih charsetfcoltions the schems's tabls wil use # they donot have an explict setting. Common choices a Latind cx LITFE,
) aulin

| backuppractice
| bookwriting
—| chinook
- ditest3
| elfc_loan_enquiries
| errorlog
| familytree
-] jimsdocumentsjobs
~| jobhunt
| maxim back end
| maximbuglist
¥ | motdatabase
» B Tables
B Views
B stored Procedures
B Functions

YYYYYYYYYYYYYY

Figure 7.31 - The schema of motdatabase in MySQL Workbench

5. Create another Node.js file named mottables. js to create two tables called
Customers and CusomterPurchases using the query method, as per the
requirements provided by the marketing head.

6. Runthemottables. js script via the console.

7. Refresh the schema to see the two new tables, Customer and
CustomerPurchases,in motdatabase:

|
= 1| motdatabase
}~_,:!, MNew
-Il-—_y'_ customerpurchases

+ - customers

Figure 7.32 - The tables that are currently in motdatabase

8. [Examine the fields and properties of the tables.

Note
The solution to this activity can be found in the Appendix.

With that, you have learned how to use Node.js to set up a database in MySQL. You now
know how to create client applications through Node.js while using MySQL as a database.

Summary 279

Ssummary

You have worked your way through a lot in this chapter, so let's recap what you have
learned. In the Best practices for SQL client development section, you learned about the
importance of creating a development server, including how to duplicate the production
database, the importance of creating regular backups during development and how to do
so easily and quickly, and how to recover from accidental loss or damage by restoring the
full database or just the tables that were lost or damaged.

You also learned how to install modules, connect to the database, and modularize the
connection script so that it can be reused in other scripts using Node.js. Finally, you
learned how to create a database and add tables using Node.js.

In the next chapter, you will learn how to modify the structure of tables and data within
tables. You will also learn how to output the data to the console and the browser by using
text and Excel files, including formatting outputs and creating dynamic outputs through
Excel formulas.

8

Working with Data
Using Node.js

In this chapter, you will continue working with Node.js by inserting, updating, and
reading records from the database. You will output data to the web browser through Node.
js and build data tables in HTML using Node.js. Additionally, you will learn about Open
Database Connectivity (ODBC) connections in detail, which allow connections to be
made to a database through programs such as MS Excel and MS Access.

In this chapter, we will cover the following main topics:

« Interacting with databases

« Inserting records in Node.js

« Updating the records of a table
+ Displaying data in browsers

« ODBC connections

282 Working with Data Using Node.js

Interacting with databases

Let's suppose that your company requires an application that can interact with databases
to insert, update, and display data in a user-friendly way. Currently, you have only learned
how to connect and view data in Node.js. To insert, update, and display data, first, you will
need to understand how Node.js handles queries that change data and outputs through
the browser.

In Chapter 5, Correlating Data Across Tables, you were introduced to Node.js and learned
how to set it up with libraries and some basic functionality. This chapter picks up where
you left off and will teach you how to work with data that is present in the MySQL server
using Node.js. As you work through this chapter, you will learn how to implement

some particularly useful SQL queries, such as insert and update, which will allow
you to work with data and Node.js. These methods will allow you to insert and update
data within a database. In addition to this, you will learn how blocking queries and
non-blocking queries work in Node.js to ensure queries run in the correct order.

Also, you will learn about outputting data in a way that is easy to read for any user. To
accomplish this task, you will learn about HTML tables, along with other HTML tags
that help structure web pages. Once you have a good understanding of the basic syntax
of HTML, you will learn how to build HTML outputs in Node.js. This will include
iterating database query results in order to add them into tables. The result will be
HTML-formatted outputs that are generated when a web page is visited.

You will finish off this chapter by looking at ODBC connections, the various types of
ODBC connections, how and when to use them, and how to create them.

By the end of this chapter, you should have full knowledge of how to work with MySQL
databases through Node.js. These skills will enable you to create dynamic web applications
that can read, update, and insert data into MySQL databases.

Now, let's start by investigating queries that insert and update the records within a database.

Inserting records in Node.js

When you first create a database for an application, it will not have any data contained
inside it. As the user interacts with the application, often, you will want to store data

from the interactions in the database, to be used later. For example, let's suppose that a
company wants you to create an application where a user can input their tasks for the
week. Each time they open the application, they see their current tasks. When a user adds
a new task, the application needs to add that task to the database. This is so that it is saved
and accessible each time the application is loaded. To achieve this, you will need to learn
how to insert data into your database.

Inserting records in Node.js 283

Inserting data into a database involves running queries against the database. In Exercise
5.06 - modularizing the MySQL connection of Chapter 5, Correlating Data Across Tables,
you learned how to query a database for data using a SELECT query. In this section,

you will use the same query method but with an insert query instead. Before you look
at how INSERT queries work with Node.js, let's discuss a new query concept known as

a parameterized query.

When you insert data into a database, you will add the data to the query method.
Typically, this data is provided by the user of the product. In the preceding example, the
data provided could be a new task that a user wishes to add to the application. The ideal
way to add this data is by using a parameterized query. A parameterized query puts

a placeholder (?) in the query for data that will be provided by the user. The following
code shows an example of a parameterized query:

var sgl = "INSERT INTO customers (customerName) VALUES ?";

The ? character indicates a placeholder for the values that will be inserted into the
customers table. When you want to run the query, you provide the values for the
query, and MySQL will replace the ? character with the provided values. The values are
provided as a two-dimensional array, where the outer array represents the set of records
being inserted, and the inner array represents the fields being inserted into the table. For
example, if you wanted to insert a single record into the customers table, first, you
would define the record:

var record = [[Joyl];

The preceding code represents a single record being inserted, with a single field, which
has the value of Joy. Now, when you run the query method, you provide the query
and the record being inserted. The results of the query will be written into the result
variable. If any errors occur during the execution of the query, they will be written into
the err variable:

mysglconnection.query(sql, [record], function (err, result)

When this query is run, the ? character that was written into the sg1 variable is replaced
with the record stored inside the record variable. So, the following query is what is
executed against the database:

INSERT INTO customers (customerName) VALUES 'Joy';

284 Working with Data Using Node.js

After executing the query, you can use the result object to verify that the query has
terminated successfully. There are two properties that are useful to verify the results. The
first is result . af fectedRows, which tells you how many rows were changed by the
query. For example, if one row is inserted into the database, the af fectedRows property
would be 1. The second property is insertID, which is the ID of the record that was
inserted by the query.

One additional note about parameterized queries is the representation of fields that
contain spaces. If you wish to query a field with spaces in the name, you must use the
' character to indicate that the name contains spaces. The following example shows
a parameterized query with this feature:

var sql = "INSERT INTO world statistics.continents ('continents
in world') VALUES ?";

With this understanding, in the following exercise, let's look at an example of how to apply
these concepts.

Exercise 8.01 - inserting a record into a table

Note

In this exercise, the database being used was created in Exercise 7.01. You can
find the database at https://github.com/PacktWorkshops/
The-MySQL-Workshop/tree/master/Chapter07/Databases.

The user, Roy, lives in Africa. Your manager has asked you to add Roy's continent, Africa,
into the continents table of the world statistics database. To verify that the
operation runs successfully, your manager has asked you to print the results of the query
and any errors to the console. To insert Roy's continent, Africa, into the continents
table, perform the following steps:

1. Create a script file and name it MySQLInsertOneRecord. js.

2. Add the mysglconnection module to the top of MySQLInsertOneRecord. js:

var mysqglconnection = require ("MySQLConnection.js") ;

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter07/Databases
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter07/Databases

Inserting records in Node.js 285

Note

Use the MySQLConnection. js file created in Exercise 5.06 — modularizing
the MySQL connection, to take advantage of modularization. The file is located
in GitHub at https://github.com/PacktWorkshops/The-
MySQL-Workshop/blob/master/Chapter07/Exercise7.06/
MySQLConnection.js.

Define the following SQL query to insert Roy's record into the table. Utilize the
concept of a parameterized query with a placeholder for the values being inserted:

var sgl = "INSERT INTO world statistics.continents
(continent) VALUES ?";

Next, define a record array, with a single field contained within it. This record array
will store the value you want to insert into the database, which is the continent that
Roy lives in, Africa:

var record = [['Africa'l]l;

Note

The quotation marks surrounding the data item (in this case, Africa) can be
either the standard double quotes or single quotes.

To execute the SQL query, use the mysglconnection.query method. Pass in
the SQL statement and the record array and set up error handling. Store the result
of the query being executed against the database in the object named result:

mysglconnection.query (sqgl, [record], function (err,
result) {

Test for an error using the following command. Print a message and the error code
if there is one:

if (err) throw "Problem inserting the data" + err.
code;

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Exercise7.06/MySQLConnection.js

286

Working with Data Using Node.js

Verify that the query has been completed successfully by printing the variable
result to the console using console. log. Print affectedrows and insertId
separately to verify that the data was inserted successfully:

console.log(result) ;

console.log ("Number of rows affected : " + result.
affectedRows) ;
console.log("New records ID : " + result.insertId) ;

Exit the script and close the bracketing for mysglconnection. query:

process.exit () ;

)i

Your complete script should look like the following:

var mysglconnection = require ("./mysglconnection.js") ;

var sgl = "INSERT INTO world statistics.continents
(continent) VALUES ?";

var record = [['Africa'l];
mysqglconnection.query(sqgl, [record], function (err,
result) {

if (err) throw "Problem inserting the data" + err.
code;

console.log(result) ;

console.log ("Number of rows affected : " + result.
affectedRows) ;
console.log("New records ID : " + result.insertId) ;

process.exit () ;

1)

Inserting records in Node.js 287

9. Save and run the script. You will get a response similar to the following screenshot
on your console:

EN Windows PowerShell

WMy SQL Traina

mnected to MySQL!
ResultSetHeader {

fieldCount:
affectedRows :
insertId: 1,
info:
SEerver!

warningstatus :

1
p
Mumber of rows affected
New records ID : 1
)" IL Training'Nodejs>

Figure 8.1: The console output showing detailed and selective results

Note

You can get different values for the fieldCount,affectedRows,and
insertID fields. These values depend on the number of records in the
continents table. The values might appear larger due to more records
being present or smaller if there are fewer records present.

10. To see the newly inserted record, go to Workbench, and click on Select Rows in the
continents table. You should see the following result:

ContinentID Continent

P11 Africa

Figure 8.2: The table contents after running the script

From this result, you can see that the Cont inent record with the value of Africa
has now been added to the database table.

288 Working with Data Using Node.js

Inserting data into a table is not difficult and takes little coding. It is made easier with the
ability to replace the values in the SQL statement with a single question mark (?) and
define the data in another variable or from some other source, such as a file or an API call.

Often, you will want to insert multiple records at the same time. In the next section, we
will look at how multiple records can be inserted into a MySQL database using Node.js.

Inserting multiple records

In some cases, you might need to insert multiple records at a single point in time. For
example, if you had an application that kept track of a user's daily tasks, you might want to
add a feature for the user to add multiple tasks at once. In this scenario, your first thought
would be that you might need to run multiple insert queries against your database.
However, there is a more efficient option, which takes advantage of parameterized queries.

Recall that when you wanted to insert data into a table, you needed to use

a two-dimensional array to store the values to be inserted. Using this object, you can
also insert multiple records with your INSERT statement. For example, in the preceding
exercise, you were inserting customers inside a database table. If you had two customers
to insert, you would simply add another array into the record array, as follows:

var record = [['Joy']l, ['James']];

This will allow you to insert two records—one with the value of Joy and the other with
the value of James. Each array within the record array represents an individual record.
When MySQL runs the query, it will insert each record that is present in the array.

In the next exercise, we will look at how to insert multiple records into a table.

Exercise 8.02 - inserting multiple records into a table

User James has lived on multiple continents: Asia, Europe, North America, and
Oceania. Your manager has asked you to enter his continents into a new table, called
userContinents,inthe world statistics database. This table will contain
the user's name and the continents they have lived on. To insert James' details into the
userContinents table, perform the following steps:

1. Create a script file and name it M\ySQLInsertMultipleRecordsContinents.
js.
2. [Insert the connection module using the following command:

var mysglconnection = require ("MySQLConnection.js") ;

Inserting records in Node.js 289

3. First,set up a SQL query to create our new userContinents table. This table will
contain a continent ID, the user's name, and the continent name:

var sgl = "CREATE TABLE 'world
statistics'.'userContinents' (\
'ContinentID' int (11) NOT NULL AUTO_INCREMENT, \
'Continent' varchar (13) DEFAULT NULL, \
PRIMARY KEY ('ContinentID')\
)5

4. Next, run the create table query to add the table to your database:

//Execute the SQL, include error checking

mysglconnection.query(sql, function (err) {

//Handle any errors

if (err) throw "Problem creating the table:- " + err.
code;

//Otherwise tell user that the table was created
console.log("Table created") ;

//And leave

process.exit () ;

//Close off the block bracketing

K

5. Next, set up the SQL query to insert multiple records into the database:

sgl = "INSERT INTO world statistics.userContinents
(continent) VALUES ?";

6. Since you have been asked to insert multiple values, enter the following code
to define multiple records for the userContinents table:

var record = [['Asia']l, ['Europe'l, ['North
America'], ['Oceania'] ;

290

Working with Data Using Node.js

Enter the following code. It will start by executing the query using the query
method. Once this has been completed, the result, the number of rows inserted,
and the ID of the inserted rows are outputted to the console through the
console.log method:

mysqglconnection.query(sqgl, [record], function (err,
result) {

if (err) throw "Problem inserting the data" + err.

code;

console.log(result) ;

console.log ("Number of rows affected : " + result.
affectedRows) ;

console.log("New records ID : " + result.insertId);

process.exit () ;
b s
The complete script should look like the following:

var mysglconnection = require ("MySQLConnection.js") ;

var sgl = "CREATE TABLE 'world
statistics'.'userContinents' (\

'ContinentID' int(11) NOT NULL AUTO_INCREMENT, \
'Continent' varchar (13) DEFAULT NULL, \
PRIMARY KEY ('ContinentID')\
)it
//Execute the SQL, include error checking
mysglconnection.query(sgl, function (err) {
//Handle any errors

if (err) throw "Problem creating the table:- " + err.
code;

//Otherwise tell user that the table was created
console.log("Table created") ;
//Close off the block bracketing

)

sgl = "INSERT INTO world statistics.usercontinents
(Continent) VALUES ?";

var record = [['Asia'l, ['Europe'l, ['North
America']l, ['Oceania'l];

mysglconnection.query(sqgl, [record], function (err,

result) ({

Inserting records in Node.js 291

if (err) throw "Problem inserting the data" + err.
code;

console.log(result) ;

console.log ("Number of rows affected : " + result.
affectedRows) ;
console.log("New records ID : " + result.insertId);

process.exit () ;

1)

Save and run the file. The results in the console will appear as follows:

PS D:\MySOL Training\Nodejs> node .\MySQLCreateTable. js
Connected to MysqQL!
Table created
OkPacket {
fieldCount: 0,
affectedRows: 4,
insertId: 1,
serverstatus: 2,

warningCount: 0,
message:
protocol4l: true,
changedRows: 0

Number of rows affected : 4
New records ID :

Figure 8.3: Detailed and selective logging of the script results

This output shows that the query was successfully executed, and four rows were
inserted. Note that the number of rows affected will match the number of records
provided to the parameterized query.

Now, view the table's contents in Workbench:

ContinentID Continent

P |1 Africa
2 Asia
3 Europe
4 Morth America
5 Oceania
& South America
7 Antarctica

=

Figure 8.4: The table's contents after the script has been executed

292 Working with Data Using Node.js

Note that the record count is now 7, which implies six more records have been
successfully added to the table.

Inserting multiple records is no more difficult than inserting one record. The only
difference is the number of records you define in the record variable and the way
they are constructed.

Now, in the following section, you will extend your skills by inserting multiple field
records into a table.

Inserting with multiple fields

In the previous section, you learned how to insert multiple records into a database
through Node.js. You might have noticed that each of the records that you inserted only
had a single field—in this case, the name of the continent. However, most of the databases
you work with will have many different fields within them, which means you will
eventually need to run insert queries with multiple fields.

The code changes required to accommodate multiple fields are small. You simply need to
add each field into the array for the parameterized function. For example, let's suppose
you are working on an application that keeps track of the date and location a user has
logged in from. In this case, there are two fields that you need to insert into the database:
the date of the login and the location of the user. The following code shows how a record
can be set up for this scenario:

var record = [['02/03/2021', 'North
America'l, ['01/05/2020"', 'Europe']]

Next, when you write your query, you will need to add in every field that you want to
insert data into. For example, the following code shows how a query can be written to
insert the record data:

var mysglconnection = require("./mysqglconnection.js");

var sqgl = "INSERT INTO loginRecord(loginDate,loginContinent)
VALUES ?";

From here, you will simply need to run the query method, which is the same process as
any other Node.js MySQL query:

mysqlconnection.query(sql, [record], function (err, result) {

}

Inserting records in Node.js 293

Since the query is parameterized, the ? character can be replaced with any variable. In the
preceding code, you are replacing the ? character with a set of records with multiple fields.
It all comes down to how you format the data variable and the fields you include within
the SQL query. The structure is as follows:

Fields in SQL ('Field name 1','Field name 2')

Data records [['data 1','data 2'],['data 1',6'data 2'], ['data
1','data 2'], .. 1;

Here are a few points to remember:

o+ Field names with spaces must be enclosed in backticks (').

« Data points must use either single (') or double (") quotes and be separated
by a single comma (,).

» Records must be enclosed in square brackets ([]) and be separated by
a single comma (,).

o The entire record/data definition must be enclosed in square brackets.

o The fields that we are inserting our records into must be enclosed in round brackets.

Using these points, in the following exercise, you will insert multiple field records.

Exercise 8.03 - populating records from the
existing tables

Let's suppose the travel agency wants to get a list of all of the countries with

a countryID value of less than 10. You are told that this would represent a single region
of countries and should be stored in a table named Region1. The table should contain
the countryID and Country Code values of all the respective countries.

In this exercise, you are asked to create a table, named Regionl,in the world
statistics database and store the data of the countries with a countryID value
of less than 1 0. To achieve the goal of this exercise, perform the following steps:

1. Create a script file and name it MySQLInsertRecordsFromAnotherTable. js.
2. Add the MySQL connection module to the top of the code file:

var mysglconnection = require ("MySQLConnection.js") ;

294 Working with Data Using Node.js
3. Next, write a query to create the new Regionl table:
var sql = "CREATE TABLE world_statistics.
Regionl (CountryID INT, 'Country Code' VARCHAR (45));";
4. Execute the query, print the number of rows affected, and use insertID to verify
that the query was completed successfully:
mysglconnection.query(sgl, function (err, result) {
if (err) throw "Problem creatings the data" + err.
code;
console.log(result) ;
console.log ("Number of rows affected : " + result.
affectedRows)
console.log("New records ID : " + result.insertId) ;
1)
5. Define a variable, named records, to store a select query to display the required
data for the table:
var records = "SELECT 'ContinentID', 'Country Code' FROM
world statistics.countries WHERE 'CountryID' < 10 ORDER
BY 'CountryID'";
6. Define a variable, named sql, and set it equal to an INSERT query for the
country table:
var sgl = "INSERT INTO world statistics.country
('CountryID', 'Country Code')";
7. Next, concatenate the SQL queries together to insert the results of the records inside

the definition that was written for the sgl variable:
sgql = sgql + " " + records;

The fully constructed query is now stored in the sqgl variable, and it can be
executed using the query method:

mysglconnection.query(sgl, function (err, result) {

Inserting records in Node.js 295

8. 'The next set of lines will be run once the INSERT query has been completed. The
result of the query, the number of rows inserted, and the last ID inserted will
be displayed in the console through the console. log method. Enter the
following commands:

if (err) throw "Problem inserting the data" + err.
code;

console.log (result) ;

console.log ("Number of rows affected : " + result.
affectedRows) ;
console.log("New records ID : " + result.insertId);

process.exit () ;

1) ;

9. Save and run the script. Your results in the console should appear similar to
the following:

EX Windows PowerShell

PS5 D:\My50L TrainingiMNode]s= node MySQLInsertRecordsFromAnotherTab
onnected to MySQL!
ResultSetHeader {

TieldCount:

affected

insertId:

info

serverstatus:
warningstatus:
¥
J - -
Mumber of z affected
Mew records ID : 1 _
PS D:“MySQL Training'Nodejs=

Figure 8.5: The console output indicating that nine records have been inserted
The preceding output shows that nine rows were inserted into the database
table. The rows that were inserted into the database table correspond to all of the
countries that have a CountryID value of less than 10. To further verify this,
you can query the table through MySQL Workbench to see the inserted records.

296 Working with Data Using Node.js

The results in Workbench should appear as follows:

Country
Code

ABW
AFG
AGO
ALB
AND
ARB
ARE
ARG
ARM

CountryID

-

Ny N Ewwn—nm-h

Figure 8.6: The contents of the table after the script has been executed
The preceding result shows that the values are the same as the ones expected from
the country table—that is, all the countries with a Count ryID value of less than
10. Note that there is also an ID that is NULL in the results. When SQL attempts to
filter the table, it will always allow NULL values in the results, unless you specify the
CountryID IS NOT NULL condition. Since we have not specified this option in
the WHERE clause, the NULL values are displayed.

With this, you now understand how to build data from existing tables. These situations
happen frequently in order to create subsets of data. These smaller sets of data are often
favorable to allow for more efficient querying, due to less data being present.

In the next section, you will learn how to make updates and modifications to the data
that has been inserted into the tables. This will allow you to write applications that can
dynamically update data as it is being used.

Updating the records of a table

Often, you will want to update the data stored within a database table. For example,
consider the task list from the Inserting records in Node.js section. When a user adds

a task to their database, it is initially marked as incomplete. Rather than having a
separate table to store completed tasks, you could, instead, have a field for the task
record that keeps track of its status—that is, if the task has been completed or not.

Once the task is complete, you can simply modify the record to set the completed field
to yes. Often, updating an existing record is faster than inserting a new record, so this is
a more efficient option.

Updating the records of a table 297

One important concept to bear in mind before looking at UPDATE queries is the idea of
blocking queries and non-blocking queries in MySQL. A blocking query is a query that
needs to be completed in full before the next action can be executed. For example, setting
the database using a USE query would be blocking, as the database needs to be set before
any queries can be executed.

In Node.js, you can execute a blocking query by embedding the query directly into
the connection query method. The following code runs a query to use the world
statistics database, printing that the database is being used when the query

is successful:

mysqglconnection.query ("USE world statistics", function (err,
result) {

if (err) throw err;

console.log ("Using world statistics database");

This query type should be used whenever you wish to wait for a query to finish before
continuing to the next section of code.

Non-blocking queries can be used in situations where a query's completion is not essential
to the code that follows. For example, if you wanted to insert a record in to two different
tables, each insert could be done without blocking, since both queries are independent

of each other. The following code shows an example of this:

var sqgl = "INSERT INTO world statistics.country
('CountryID', 'Country Code') VALUES ('l','CAD')";

mysglconneciton.query(sql, function(err,result)
{
if (err) throw err;

console.log("inserting country") ;

}

Now, we'll take a look at how to update records in a table through Node.js. Updating
records can be done using an update query in SQL. The update query has the
following format:

UPDATE table name SET fieldl = new-valuel, field2 = new-value2
[WHERE Clause]

298 Working with Data Using Node.js

The fields in the table name table can be updated to any values required. The WHERE
clause can be used to specify updating records that only meet a specific condition.

In the next exercise, you will look at how update queries can be executed through Node.js.

Exercise 8.04 - updating a single record

Facts change and databases need to be updated to stay current and useful. In Exercise 8.02
- inserting multiple records into a table, you created a table that contained the names of
continents. You have been informed that some countries consider Oceania as a continent,
while others call this continent Australia. In the world statistics.continents
table, currently, you only have Oceania, whose value of continentID is 5. The
customers of your company have asked for this to be updated to Australia/Oceania,
which is a more appropriate name for the continent. Additionally, you have noticed that
the field size is too small to contain the full text of Australia/Oceania. To solve

this problem, first, you must make the field size larger, then update the field to have

a continent value of Australia/Oceania.

To complete this exercise, perform the following steps:

1. Create a new script file and name it UpdateOneRecord. js.

2. Include the mysglconnection module at the top of the JavaScript file:

var mysglconnection = require ("MySQLConnection.js") ;

3. Issue your first blocking query. Instruct the server to use the world statistics
database, include error handling, and notify the users on the console when done:

mysglconnection.query ("USE world statistics", function
(err, result) {

if (err) throw err;

console.log("Using world statistics database") ;

4. In MySQL Workbench, right-click on the cont inents table, and select the
Alter table option. From the results, you can see that the Continent field
is VARCHAR (13),so it is 13 characters in size:

Updating the records of a table 299

— Table Mame: [continents
Io‘
H«ﬁ Charset/Collation: utfémb4 ~ | | utfmb4_0900_ai_c ~
Comments:
Column MName Datatype PK MM UQ B UN ZF Al G Default/Expression
ContinentiD INT(11) O 0O O d Cl
> Continent VARCHAR(13) OO0 00000 O wow
O 0Oo0odoogodgano

Figure 8.7: The field is too short to fit the data

5. Since the field is too small to contain the value of Australia/Oceania, adjust
the size using an ALTER query. Update it with 17 characters to fit the complete text
of Australia/Oceania. Enter the following commands to change the column
size, add error checking, and log to the console when done:

n

var ChangeCol = "ALTER TABLE 'continents'
ChangeCol = ChangeCol + "CHANGE COLUMN 'Continent'
'Continent' VARCHAR (17) NULL DEFAULT NULL;"
mysglconnection.query (ChangeCol, function
if (err) throw err;
console.log("Column Continent has been

(err) {

resized") ;

You will notice in ChangeCol that ' Continent ' appears twice. The first
occurrence tells the server what field to change, while the second is the field's new
name. Since you are not changing its name, it remains as ' Continent '. Now you
have changed the column size to 17.

6. Update the record and enter the following command to build the variable
containing the new value and the ID of the record you want to update:

var updateValues = ["Australia/Oceana",5];

300 Working with Data Using Node.js

7. Build the SQL query to update the continent field. There are two ? symbols. Both
of them will be replaced by the values in the updateValues record in the order

that they appear:
var sql = "UPDATE continents SET Continent = ? WHERE
ContinentID = ? ";

Execute the SQL query to update the record. Include error handling and inform
the user:

mysqglconnection.query(sgl, updateValues,
function (err, result) {

if (err) throw err;

console.log ("Record has been updated") ;
process.exit () ;

9. Finally, close the brackets for the three query executions that you made:

The entire script will appear as follows:

var mysglconnection = require ("MySQLConnection.js") ;

mysglconnection.query ("USE world statistics", function
(err) {

if (err) throw err;

console.log("Using world statistics database") ;

var ChangeCol = "ALTER TABLE 'continents' "

ChangeCol = ChangeCol + "CHANGE COLUMN 'Continent'
'Continent' VARCHAR (20) NULL DEFAULT NULL;"

mysglconnection.query (ChangeCol, function (err) {

if (err) throw err;

console.log("Column Continent has been
resized") ;

Updating the records of a table 301

var updateValues = ["Australia/Oceana',5];

var sqgql = "UPDATE continents SET Continent = ?
WHERE ContinentID = ? ";

mysglconnection.query(sqgl, updateValues,
function (err, result)

if (err) throw err;
console.log("Record has been updated") ;

process.exit () ;

1)
1)
1) ;

10. Save and run the file.

Once the program has been run, the command line will verify that the record has
been updated:

PS D:\MySQL Training\Nodejs> node index.js
onnected to MySQL!

Using world_statistics database
olumn Continent has been resized
Record has been updated

Figure 8.8: The output of the program when successfully completed

11. Navigate to MySQL Workbench, right-click on the cont inents table, and pick
the Select Rows option. You should see that the record has now been updated
to Australia/Oceania:

ContinentID Continent
P |5 Australia/Oceania

Figure 8.9: The new continent value, Australia/Oceania, in the continents table

Hence, by using update queries in Node.js, you were able to successfully update
the incorrect entry in the cont inents table.

The next activity will challenge and bring many of the skills that you have learned so far
together into a common real-life scenario working with databases.

302 Working with Data Using Node.js

Activity 8.01 - multiple updates

The manager of the ABC company wants to add new details to the existing country
table in the wor1ld statistics database, that is, the capital city of each country, the
independence status of each country, and their currency types. You have been tasked
with making these changes and updating the database. This new information has been
provided through SQL scripts so that you can create and populate a temporary table and
create the new countryalldetails table. To implement this activity, perform the
following steps:

1.
2.

Create a database connection to the world statistics database.

Create the countryalldetails table with the following columns: CountryID,
ContinentID, CountryCode, CountryName, Is_independent, Currency,
and Capital.

Load the data found at https://github.com/PacktWorkshops/
The-MySQL-Workshop/blob/master/Chapter08/Activity8.01/
CountryDetails.sql into the countryalldetails table.

Using the new temporary table, populate the countryalldetails table with the
new values. This can be done using an UPDATE query, where the country codes in
the temp table are joined to the countryalldetails table.

After performing the preceding steps, the expected output on the console should be
similar to the following:

EN Windows PowerShell

ode Activity-Mu

Column Capital created

Column Is_Independent created
Column Currency created
Capital 1s updated

Mumber of rows affected : 263
Is_Independent is updated
Mumber of : affected : 263
Currency 1s updated

Wumber of : affected : 263
PS D:"MySQL Training'Nodejs:>

Figure 8.10: Console messages indicating the progress of the script

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Activity8.01/CountryDetails.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Activity8.01/CountryDetails.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Activity8.01/CountryDetails.sql

Activity 8.01 — multiple updates 303

The Capital,Is_Independent,and Currency columns should be visible on
the Workbench GUI:

¥ | world_statistics
T@ Tables

[3 continents

[3 country

¥ = countryalldetails

¥ [&] Columns
¥ CountryID

ContinentID
Country Code
Country Name
Capital
Is_Indepent
& Currency

* e

Figure 8.11: A schema displaying the country table with its new fields
The country table should look similar to the following screenshot:

CountryID ContinentID gﬁsgh"f Country Name Capital Is_Independent Currency
1 4 ABW Aruba Oranjestad Part of NL AWG
2 2 AFG Afghanistan Kabul Yes AFM
3 1 AGO Angola Luanda Yes ADA
4 3 ALB Albania Tirana Yes ALL
5 3 AMD Andorra Andorra la vella Yes EUR
6 ARB Arab World Hucn) Hocn
7 2 ARE United Arab Emirates Abu Dhabi Yes AED
8 <] ARG Argentina Buenos Aires Yes ARS
Figure 8.12: The Select Rows view, showing the new fields populated with data
The countryalldetails table should have a structure similar to the
following screenshot. From this, you can see that three new fields, Capital, Is
Independent,and Currency have been added:
_— Table Name: |C0unﬁva"detal‘s Schema: world_statistics
o
1-"‘:/“/ CharsetfCollation: |utfSmb4 | |utfdmb4_0300_ai_di ~| Engne: | InnoDB ~
Comments:
Column MName Datatype PK MM UQ B uN ZF Al G Default/Expression
CountryID INT(11) Ooooag O
> ContinentID INT(11) O 0O OO0 00 0 wsow
> Country Code VARCHAR(S) O0O0O00000 nuw
> Country Name VARCHAR(50) O 000000 O wow
> Capital VARCHAR(50) O0O0O00000 nuw
> Is_Indepent VARCHAR(2S) OO0 000000 wnow
> Currency VARCHAR(S) O 0000000 sw

Figure 8.13: The new fields in the Alter Table view

304 Working with Data Using Node.js

Note

The solution for this activity can be found in the Appendix section.

In this activity, you inserted multiple details into the table. With this, you have now
updated the country table to provide valuable information related to the capital, the
independence status, and the currency of the country.

In the next section, you will learn how to format the data before viewing it on the
web browser.

Displaying data in browsers

So far, you have learned how to execute various queries through Node.js. One of the
common uses of Node.js is to display data to the user through a web browser. Since
Node.js is built through JavaScript, it can naturally build web pages that the user of the
application can view and interact with.

You have already learned how to interact with the MySQL server through Node.js, so this
section will spend some time discussing how the data can be formatted and displayed. To
begin, you will need to install a new Node.js module called numeral. To install numeral
for a given project, you need to run the following command in your command line:

npm install numeral

The numeral module can be used to format numeric values. For example, let's suppose
that you have a set of decimal numbers, and you wish to display them with two decimal
places (so, a number such as 1.231 becomes 1.23). The numeral module provides a
formatting method to allow you to do this, as follows:

numeral (Field) . format ('0.00")

The preceding code will take the value of Field, and format it with two decimals. This
allows you to have a consistent display for any numeric fields you get from a database.
There are many other formats available through the numeral module that might be useful.
For instance, the 0. 00a format is commonly used to condense large numbers. When

a number is formatted as 0. 00a, it will condense the number down to two decimals, and
add either m for million or b for billion. For example, 1,240,000 would become 1.24 m.

Displaying data in browsers 305

To display the data on a web browser, you will need to understand some basic HTML
code, too. Let's suppose that you have collected data from a table, and you wish to display
it in a tabular format on the web browser. For this example, let's assume that you have
collected some data from a SQL query and stored it in an object named results. You
can iterate the results object to get all the records contained within it using a for-each
loop. The for-each loop will repeat a given instruction for every item contained within
an array. For example, suppose your result has a field called Continent Region. The
following code would print each record's Continent Region field to the console:

result. forEach (function (Statistics) {

console.log(Statistics.Continent Region);

}

On each iteration, the current record is placed in the Statistics object. When you
want to refer to the current record, you can use the Statistics object. For example, if
you want to log the Continent Region field of the current record, you would write
Statistics.Continent Region. This gets the current record, which is stored in
Statistics,and retrieves the ContinentRegion field from the record.

Now, suppose you wanted to create a table of all the Continent Region fields. To
begin, you would need to create an HTTP server, as discussed in the previous chapter:

var http = require('http');
http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'});

From here, you just need to construct your HTML table. An HTML table starts with

a <table> tag, which indicates where the table starts. Next, there is a <tbody > tag,
which indicates where the table data is. Following this, you add the rows of the table using
the <t r> tag, which indicates a row of the table. Finally, you can use either <td> or <th>
to indicate the table data in the row or the table headers in the row, respectively.

The following code shows a full table construction:

var http = require('http');
http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'});

string = "<table><tbody>":;
result.forEach (function (Statistics) {
string = string + "<tr>";

string = string + "<td>" + Statistics.Continent Region

306 Working with Data Using Node.js

+ "</td></tr>";

1K
string = string + "</tbody></table>";
res.end (string) ;

}) .listen(82);

In the preceding code, you are constructing an HTML table. The code starts by telling

the browser that a table using the <table><tbody> tags needs to be built. From here,
the result object is reiterated to add data to the table. Then, you start by opening a new
table row with <t r> and adding in some table data using <t d>. Finally, you close the </
td></tr> tags to complete the table data. Once the iteration is complete, you add the
closing tags for the <tbody> tags, along with the <table> tags, and send it as a result to
the requester. This creates a table that is displayed on the browser through HTML.

One additional note regarding HTML tags that you might want to know is how to adjust
the actual content that is displayed in the table. This can be done by adding style code to
the tags. For example, if you want your font to be green, you can add color="green'
to the tag. If you want your font to be size 5, you can add font size='5" to the tag.
The following example shows how this is formatted:

There are a variety of formats that are available for HTML tags, which can help you to
customize the style of the output. In this section, you will primarily work with font size
and color adjustments. However, you might find it valuable to read further into the
options that are available for formatting.

Note

To learn more about the specific HTML syntax for tables, check out the Mozilla
HTML documentation at ht tps://developer.mozilla.org/en-
US/docs/Web/HTML/Element /table.

In the next exercise, you will look at a full example of how to build an HTML table
through SQL data.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

Displaying data in browsers 307

Exercise 8.05 - formatting data to the web browser

Now your company would like to create a report that shows information about the
population of different areas of the world in the browser. Specifically, you have been
asked to display the continent, the total population, and the total number of countries in
each continent. This data is currently stored in the wor1ld statistics database. The
population should be formatted in 0. 00a using the numeral module. Additionally, the
company would like the user to be able to filter the query for a specific year. Currently,
they would like to see historical data for the year 2011, so this should be set as the filter
for the query. To do this, you decide to create an HTML table to display the results, as this
would be easy for users to access and read.

The data for this exercise will come from the cont inents table, which is joined with the
countryalldetails table. The cont inents table can be loaded from https://
github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Databases/PracticeDatabaseNoSchema%2020190926a.sql.
Additionally, the countryalldetails table was created in Activity 6.01 - multiple
updates. You will be required to add the population and count the countries in the table.

To complete this exercise, perform the following steps:

1. Create a new Node.js file named TotalPopulationByContinents.js.

2. Add the numeral module to the current project. You can do this by using the
following commands, which are run through the command line:

npm install numeral

3. Connect to the database, import the required ht tp and numeral modules,
and instruct the server to use the world statistics database:
var http = require('http');
var mysglconnection = require ("./mysglconnection.js") ;
var numeral = require ('numeral') ;

mysglconnection.query ("USE world statistics") ;

4. Prepare the variables that you are required to use in the exercise. Note that
FilterYear will allow you to change the year of the output, while the remaining
variables will be keeping track of the HTML code that is being created and the SQL
queries that are being run:

var FilterYear = ""; //Filter for year
var string = ""; //To write the output to
var banner = ""; //Page banner

var headings = ""; //Column headings

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/PracticeDatabaseNoSchema%2020190926a.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/PracticeDatabaseNoSchema%2020190926a.sql
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Databases/PracticeDatabaseNoSchema%2020190926a.sql

308 Working with Data Using Node.js
var temp = ""; //for building output banner
var sql = ""; //For the SQL statement
var tablestyle = ""; //styling for the table
5. Build the SQL query to extract the data from the database. To get the population
data with continents, add the population from the countrypopulation
table, and join it with the cont inents table:
var sgl = "SELECT \
continents.Continent AS Continent Region, \
Sum (countrypopulation.StatisticValue) AS 'Total
Population', \
countrypopulation.Year, \
Count (country.CountryID) AS 'Total Countries' \
FROM continents \
INNER JOIN country \
ON country.ContinentID = continents.ContinentID \
INNER JOIN countrypopulation \
ON countrypopulation.'Country Code' = country.'Country
Code' \
WHERE \
countrypopulation.Year = ? \
GROUP BY continents.Continent, countrypopulation.Year \
ORDER BY 'Total_Population‘ DESC ";
This code will find the total population and number of countries in a continent
for a given year, sorted by the total population.
6. Create the server to monitor the request. Include the request and
response functions:
http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/html'}) ;
7. From here, the code will be run when the server gets a request from a browser.

Set the year for which the report is being generated using the FilterYear
variable. To format the data, use the table column headings. Each heading is
enclosed in table heading tags, <th> ... </th>:

FilterYear = 2011;

banner = "Continent Population " + FilterYear;

Displaying data in browsers 309

10.

11.

12.

13.

headings = "<th>Continent Region</th><th>Total
Population</th><th>Total Countries</th>";

Execute the SQL query with error handling using the following command:

mysglconnection.query(sqgl, FilterYear, function (err,
result) {

if (err) throw err;

Loop through the records in the result variable, and in each loop through, move
the record into an object named statistics. The output string will be built on
each pass:

result.forEach (function (Statistics) {

In each loop through, start by adding a table row tag, <tr>:

string = string + "<tr>" //Start table row

Add the three fields, where each field includes formatting tags and heading tags. Use
the numeral module to format Total Population for easier reading as the
numbers are quite large:

string = string + "<th>" +
Statistics.Continent Region + "</th>"

string = string + "<th>" +
numeral (Statistics.Total Population) .format ('0.00a') +
"</th>"

string = string + "<th>" +
Statistics.Total Countries + "</th>"

Close the table row tag and close the loop bracketing:

string = string + "</tr>" //End table row
1) ;

The code will loop to the next record and add it to the string. When all of the
records have been read, it will move out of the loop.

You are now out of the loop, and all your data is stored in the st ring variable,
which also contains the HTML formatting. To improve the output, add some
formatting to the tablestyle variable:

tablestyle = "<style>table, th, td {border: 1px solid
black; }</style>"

310 Working with Data Using Node.js

14. Add the banner with some formatting tags and a start tag for the table, set the width
of the table to 30% of the screen's width, and add the headings string, which is
now enclosed in table row tags:

temp = "" + banner + " </
font></br>"

temp = temp + "<table style='width:30%'>"

temp = temp + "<tr>" + headings + "</tr>"

15. Now, put them together. First, use tablestyle, which starts your table, then the
data rows, and, finally, the closing table tag:

string = tablestyle + temp + string + "</
table>";

16. Send the entire string to the browser in response to the request:
res.end (string) ;

17. Close the switch bracketing. This is the end of the response code:
1)

18. Close the createserver bracketing, and tell the server to listen on port 82:

}) .listen(82) ;

Note

You can find the entire script at https://github. com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter08/Exercise8.05/TotalPopulationByContinent.
js.

19. Save and run the script. Your console will respond with the following output.
However, your prompt won't come back since the code is monitoring port 82
for a request:

EXN Windows PowerShell

PS5 D:WMw5QL TraininghMNoc s> node TotalPopulationByContinent. s

Connected to MySQL!

Figure 8.14: A connection validation but no cursor since the server is monitoring port 82

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Exercise8.05/TotalPopulationByContinent.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Exercise8.05/TotalPopulationByContinent.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Exercise8.05/TotalPopulationByContinent.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter08/Exercise8.05/TotalPopulationByContinent.js

Displaying data in browsers 311

20. Enter localhost : 82 in your browser's navigation bar. The browser will send
a request to the page, and the code will respond with the following output:

Continent Population 2011

Continent_Region		Total Population		Total Countries
Asia	4.20b	49		
Africa	1.06b	53		
Europe	706.53m	42		
North America	546.51m	31		
South America	396.27m	12		
Australia/Oceana		37.23m		19

Figure 8.15: The server responds with the formatted browser output

This output shows that your data has been successfully outputted to the browser
when you navigated to Localhost : 82.

21. Finally, remember to press Ctrl + C in the CLI to stop the script.

You can create some impressive browser output from Node.js and MySQL with little code.
Additionally, including HTML tags for formatting improves the appearance. This exercise
demonstrated how data can be reported through users and served through an HTML
page. This allows any user to type in the address of the web page and instantly receive the
data they require. Often, this type of formatting is also used in applications to generate
dynamic web pages for a user. For instance, if a user logs into a web application, it might
display their name on the page. This name would be added from a database, in the same
way that you have done in the exercise.

Aside from showing data through HTML, there are several different options you can take
advantage of to display data. Tools such as Microsoft Excel and Access are popular for
managing data and databases. To connect to these external programs, you will need to
learn more about the connection types they use.

In the next section, we will explore ODBC connections in detail. They are used to provide
database connections to applications.

312 Working with Data Using Node.js

ODBC connections

When you worked with Node.js, you learned that it was possible to connect to

a database using a module called mysgl. Some applications utilize a different method

of connection—known as ODBC. An ODBC connection allows a user to connect to

a database through a program such as Excel, without needing to create a program to
connect to the database. ODBC is the primary method of almost all application/data store
connections. ODBC allows many different applications to connect to and use a data store
such as MySQL databases. For this reason, you must have a good understanding of ODBC
and how to use it. Some applications do not require an ODBC driver to be installed. They
either install it themselves as a part of the installation or can communicate with the data
store directly. Node.js does not require you to install an ODBC driver. However, Node.

js still requires you to provide the connection details at some point before using the data
store. With Node.js, you provide these details within the scripts.

ODBC is a method of connecting applications to a database or another data source.
Think of them as translators, translating commands from your application language into
the database language and back. They are available for all databases and programming
languages and are present in all database-orientated applications.

A Data Source Name (DSN) is a data structure that holds the information required
by the ODBC driver to connect to the target database or data source.

An ODBC can connect an application to many types of data sources, including
the following:

« A MySQL database

o SQL Server, that is, dBase (. dbf), Paradox (. db), and FoxPro (.dbf)
o MS Access files, with the . mdb and . accdb extensions

o MS Excel files, that is, .x1s, .x1sx, .x1sm,and .x1sb

o Text data sources, that is, . txt and .csv

o Unicode and ANSI

You can store DSNs in several ways, each of which will be addressed in this chapter.

Once the ODBC and the DSN have been set up, you rarely need to do anything more
with them unless something changes—for example, if the database moves to another IP
address or a user account or password changes. You can think of the DSN as an object
that specifies what database it needs to be connected to. The ODBC takes the DSN
information and establishes the connection to the database. The ODBC will handle all
communications, while the DSN tells it what to communicate with.

Now, in the following section, let's look at the different types of DSN structures.

ODBC connections 313

Types of DSNs

There are several types of DSN structures available to the developer, and which one you
use depends on several factors. Ideally, the application developer puts some thought into
the use of the application—who would be using it, their location, and the data source's
location before development commences. This is so that the appropriate DSN and ODBC
can be set up.

There are three types of DSN structures:

» A system DSN
e A user DSN
o A file DSN

A system DSN and a user DSN are both examples of computer DSN types. These DSN
types are defined on a computer system, with different levels of accessibility. A system
DSN can be accessed by any user on a system, whereas a user DSN can only be accessed
by a single user on a system.

A file DSN is defined within a file either on a computer system or on a network drive
shared by multiple systems. This allows for an ODBC connection that can be used by
multiple users that are distributed.

Now, let's take a more detailed look at DSN types to understand how they can be defined:

o Computer DSN: An application will use a DSN to define the connection details
of the data store that the application wants to connect to. The DSN is then used to
establish an ODBC connection. The ODBC connection handles any data requests
between the application and the data store. The following diagram shows the
general way in which DSN interfaces are used to connect to a data store:

ODBC
Application (Data SD[:JS;:;IE Name) (Open Database Df?’?ﬁit:;f
Connectivity)

Figure 8.16: A diagram that shows how a DSN is used
A computer DSN is permanently available on the user's computer. There are
different ways of setting it up. A system DSN is available to any user that logs
into a computer. A user DSN is available to the user who sets up the DSN on the
computer. You cannot set up a user DSN for MySQL in Windows. A computer DSN
needs to be set up on each computer running your application and can be used by
other applications. It is secure and usually created using an ODBC manager. It can
be created with the application's code when it's initially run.

314 Working with Data Using Node.js

Typically, a computer DSN is defined in the computer's ODBC data sources. The
ODBC data source keeps track of all DSN objects that are available to connect

to. A connection can be added to the ODBC data source, which involves the user
providing the database type and connection information. Once this information has
been provided, a user can select any DSN object they wish to connect to. The ODBC
will take the stored information and use it to establish a connection for the user.

« File DSN: In the following diagram, the typical usage of a file DSN is outlined.
The application reads in the file DSN, then establishes an ODBC connection.
The ODBC connection helps to facilitate any requests between the data store and
the application:

ODBC Data Store
File DSN Application (Open Database [various)
Connectivity)

Figure 8.17: A diagram of how a file DSN works
A file-based DSN stores the required connection information for the ODBC. It is
saved as a text file and is portable. It can be stored in a shared folder for several
users and can be distributed with the application when no shared folder is available.
It is not as secure as a DSN.

A file DSN is similar to a computer DSN in terms of functionality; the only
difference is how it is stored. Typically, a file DSN is used for companies where

a shared drive exists, so a user can read the text file from the shared drive. Once the
DSN has been read, it is provided to OBDC, which establishes the connection.

o DSN-less: The following diagram demonstrates how DNS-less connections typically
work. In this scenario, the application interfaces directly with the ODBC, providing
connection details itself without the need for the DSN:

Application 0 eg[D)gtEa base Data Store
(provides connection details) P . {various)
Connectivity)

Figure 8.18: A diagram of DSN-less connections

ODBC connections 315

A DSN-less connection is portable in that it does not exist until the application creates it.
It is created by the application code on installation or first run and does not require
a separate setup.

What do they all have in common?

Regardless of the type of DSN employed, all of them need the relevant ODBC driver to be
installed on the client's PC to work. Computer OSs such as Windows come with several of
the more common ODBC drivers already installed, but not all. As a developer, you need
to determine whether your required driver is installed on the user machine and install it.
You might need to do this manually or install it as part of an installation package or MSI.

Determining whether ODBC drivers have been
installed

This section demonstrates how to set up ODBC drivers for Windows. For Linux
instructions, please refer to https://docs.microsoft.com/en-us/sqgl/
connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-
for-sgl-server?view=sqgl-server-verl5. For macOS instructions, please
refer to https://docs.microsoft.com/en-us/sqgl/connect/odbc/linux-
mac/install-microsoft-odbc-driver-sgl-server-macos?view=sqgl-
server-verlbs.

Often, you will need to install an ODBC driver to access ODBC connections. Many
workplaces use ODBC to allow people to establish connections to databases. In these
cases, ODBC will already be available on your device. Windows does not provide them
as part of the OS, so you need to check whether they have been installed on your system.

To check for ODBC drivers, you need administration rights to use the ODBC connection
manager. To accomplish this, perform the following steps:

1. Press the Windows Start button on your keyboard and type in ODBC.
2. Select ODBC Data Sources (32 bit). Right-click and select Run as administrator.

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos?view=sql-server-ver15

316 Working with Data Using Node.js

3. Click on Yes when prompted to allow this application to make changes. The ODBC
Data Source Administrator (32-bit) window will open:

iz ODEC Data Source Administrator (32-bit)

lUser DSN System DSN File DSN Drivers Tracing Connection Pooling About

ODBC Drivers that are installed on your system:

MName Version Comparry File N
Microsoft Texd-Treiber (" bt * cav) 10.00.18362.01 Microsoft Corporation QDBCIT3Z.
Micrasoft Visual FoxPro Driver 6.00.3167.00 Microsoft Corporation VFPODBC [
MySQLODBC 5.3 ANSI Driver 5.03.10.00 Cracle Corporation MYODBCEA
MySCGL ODBC 5.3 Unicode Driver 5.03.10.00 Cracle Corporation MYODBCSV
MySQL ODBC 8.0 ANSI Driver 8.00.12.00 Cracle Corporation MYODBCE#A
MySCGL ODBC 8.0 Unicode Driver 8.00.12.00 Cracle Corporation MYODBCEV
ODBC Driver 13 for SGL Server 2017.140.1000.165 Microsoft Corporation MSODBCSC
SCIL Server 10.00.18362.01 Microsoft Corporation SQLSRW3Z.
SaL Server Native Client 11.0 2011.110.6540.00 Microsoft Comoration SQLMCLITT ¥
£ >

An QODBC driver allows ODBC-enabled programs to get information from ODBC data sources. To install
0| new drivers, use the driver's setup program.

QK Cancel Apply Help

Figure 8.19: The ODBC drivers and the versions that are available on your computer

4. Select the Drivers tab, as shown in the preceding screenshot, and scroll through to
locate the MySQL ODBC 5.3 drivers, preferably 5.3 or better.

5. If they are not there, refer to the Preface section and follow the instructions to
install them. If the drivers are there, you should also check whether MySQL ODBC
Connection Manager has been installed.

6. Click on the System DSN tab, scroll through, and select any MySQL ODBC driver
instance. Then, click on Finish:

ODBC connections

317

Create New Data Source

e}

b4

Select a driver for which you want to set up a data source.
Name Vers ™
Microsoft Access Text Driver (" i, *.csv) 160
Microsoft Ewcel Driver (*xls, “xlsx, *xlsm, *xlsb) 16.0
MySQL ODBC 8.0 ANSI Driver 8.00
MySGL ODBC 8.0 Unicode Driver 8.00
QDBC Driver 17 for SQL Server 2017
S0L Server 10.0
SGL Server Native Client RDA 11.0 2017 Z
< >

< Back Cancel

Figure 8.20: The data source selection screen

Check for MySQL Connector. If the window that opens has a title reading MySQL
Connector/ODBC and the dolphin logo, as shown in the following screenshot, then
it has been installed and you are good to go. Otherwise, please refer to the Preface

section of this book to install

MySQL Connector:

AN
MysoL”

My5QL Connector/ODBC Data Source Configuration hed

Connector/ODBC T

Details =»>

Connection Parameters

Data Source Mame:
Description:

(®) TCPfIP Server:
() Mamed Fipe:
User:

Password:

Database:

| | Port: |3305 |

oK Cancel Help

Figure 8.21: The data source configuration screen

318 Working with Data Using Node.js

8. You can click on Cancel to close the window and back out. That's all you need
to check.

In the next section, you will explore local, LAN, and remote ODBC connections.

Local, LAN, and remote ODBC connections

You are now ready to create some ODBC connections. However, first, you'll need to
consider some of the different types of ODBC connections and when to use them. You
have several options and will need to decide what type of ODBC to use. As a developer,
you can create connections that are suitable for your development and testing. A user
might need to use a different type of connection to access the server and data. Your
options, and when to use them, are detailed next.

Local ODBC (the server is on your computer)

Often, these types of ODBCs are used by developers in situations where a server only
exists on the computer establishing the connection. In these cases, the address of the
server being connected will be localhost or 127.0.0. 1. These connections allow
for faster connections to be established, as they are not done over the network but are,
instead, local to the computer. As such, this connection type should be used in cases
where only you need to connect to the database, not anyone else.

LAN ODBC

Often, these types of connections are used in situations where a database is on the same
network as your computer. Typically, the IP address will look similar to 192.168 . #. #.
These are servers that are used internally by the users, not externally by people outside
of the network. Common examples include development servers and internal servers
containing customer information. These connections tend to be a bit slower than local
servers, but they allow more users to connect since they are available to anyone on

the network.

Remote ODBC

A remote ODBC is used for connections that are outside of your current network.
Typically, you can access these through the IP address of the server, using either port 3306
or another port specified by the administrator of the server. In this format, any user from
any location can connect to the server. This is useful for applications that are distributed
over many networks, such as a database of clients used by salespeople in different
countries. The speed of this connection is mostly reliant on the internet connection

that is being used. This type of connection is mostly used for production databases.

ODBC connections 319

Now that you have a good understanding of the different types of ODBC connections,
in the following exercise, you can take a look at how to set up an ODBC connection on
your computer.

Exercise 8.06 - creating a LAN or remote DSN/ODBC
connection to the world_statistics database

In this exercise, you will create a LAN ODBC connection to the world statistics
database that you created in Exercise 5.07 - creating a new database. The only difference
between a LAN and remote ODBC is the IP address and the port number. The user
accounts must be set as either the local network for a LAN connection or everywhere for
a remote connection. You need to have administrative rights to use the ODBC connection
manager. To accomplish this, perform the following steps:

Press the Windows Start button on your keyboard and type in ODBC.

2. Select ODBC Data Sources (32 bit), and click on Yes when prompted to allow this
application to make changes. Now, the ODBC Data Source Administrator (32-bit)
window will open.

3. Select the System DSN tab and click on Add:

'-; ODBC Data Source Administrator (64-bit) x

User DSM System DSN | Fle DSN Drivers Tracing Connection Pooling About

System Data Sources:

Name Platform Driver Add...
scprogramming 64-bit MySGQL ODBC 8.0 ANS| Driver
Remove
Configure. ..

An ODBC System data source stores information about how to connect to the indicated data provider.
A System data source is visible to all users of this computer, including NT services.

Concal | [IIBIN] [

Figure 8.22: The system DSN list

320 Working with Data Using Node.js

Note

The options you will see in this window will depend on what ODBC
connections have already been created on your computer. On a fresh
installation, it is likely to be empty.

4. 'The driver selection window will open. Select the MySQL driver you wish to use
and click on Finish. For this exercise, use MySQL ODBC 5.3 ANSI Driver:

Create Mew Data Source >

Select a driver for which you want to set up a data source.

Name Wers ™

_t_l Microsoft Access Text Driver (", *.cav) 16.0

Microsoft Excel Driver ("xls, *xlsx, “xlsm, “xlsb) 16.0
i

MySQL QDBC 8.0 ANSI Driver 8.00
MySQL ODBC 8.0 Unicode Driver 3.00
ODBC Driver 17 for SQAL Server 2010
SQL Server 10.0
SQL Server Mative Client RDA 11.0 201° v
£ >

< Back Cancel

Figure 8.23: The data source selection screen

5. For the configuration windows, enter your connection details. The list of options
you can use is as follows:

* Data Source Name: Give it a name that is meaningful to your application.
Once you start to develop with it, it could be challenging to change it, so give it
some thought.

» Description: This is an optional field that can be used to provide information
about what the connection is used for.

» TCP/IP Server: The address of the server. If the server is on your local
computer, use localhost or 127.0. 0. 1.If the server is on your LAN, use its
internal IP address. The sample shows an internal LAN IP address. If the server is
located somewhere on the internet, use the IP address.

ODBC connections 321

» Port: This is already set at 3306. If the server is local to your computer or on
the LAN, leave it at 3306. If you changed it during installation, you need to use
the port number that you set. If the server is on the internet somewhere, use the
port number you have been instructed to use or that you set when you opened
the database to the web and mapped the port numbers.

Note

This book does not use named pipes. Oracle states that they can be problematic
when shutting down the server with some Windows configurations, and they
are slower than TCP/IP. They are not on by default. If you want to read more
about named pipes, you can do so athttps://docs.microsoft.com/
en-us/windows/win32/ipc/named-pipes.

» User: Enter the username of the account used to connect to the database. By
default, the username is root and will be the same username you use to connect
to your database through Node.js and MySQL Workbench.

» Password: This is the password of the account used to connect to the database.
This is the same password used in Node.js and MySQL Workbench when
connecting to your database.

» Database: If the IP and port addresses are valid, a list of databases on the server
will be listed. Select the database you want the connection to use, and select the
world statistics database, as shown in the following screenshot:

WySCL Connecter/ODBC Data Source Configuration x

™
My : (EES i
Connector/ODBC

Connection Parameters

Data Source Name: | My New Connection Mame |

Description: | For Demonstration Purposes |

(@) TCP/IP Server: |192. 168.0.3 | Port: |33DG |
() Named Pipe:
User: | Tom
Password:
Database: |w0r|d_staﬁstics v| E Test i
Details == O Cancel Help

Figure 8.24: Completed details (make sure that you use your own)

https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes

322 Working with Data Using Node.js

6. Test the connection by clicking on Test. The manager attempts to connect and, if
successful, displays the following result:

Test Result >

Connection Successful

Figure 8.25: A successful connection

7. If you get a Connection Successful result, click on OK to close the test message.
Then, click on OK again to close the new ODBC window. If the connection has
failed, check your values for TCP/IP Server, Port, User, and Password and try again.

In this exercise, you created a LAN or remote DSN/ODBC connection to the

world statistics database.In addition to a computer DSN, you can also create a file
DSN to connect to databases. In the next section, you will learn more about file DSNs, and
learn how to create these connections on your systems.

Creating file DSN/ODBC connections

In the previous exercise, you saw how a computer DSN is created. A file DSN will allow
you to create a file that contains information about the DSN you are connecting to.
This section will discuss how the file DSN is formatted and how one can be written

for an ODBC.

When you create a DSN file, it will have the . dsn file extension. This file will follow
a specific format and contain the following information:

o DRIVER: This is the driver that handles the database connection you are
attempting to make.

o UID: This is the username that you are authenticating with.
o PORT: This is the port number that the server is listening on.
o DATABASE: This is the name of the database that you are connecting to.

o SERVER: This is the IP address of the server you are connecting to.

ODBC connections 323

For example, if you wanted to connect to a world statistics MySQL database that
was at IP address 127.0.0. 1, port 3306, and with the root username, you would have
the following DSN file:

[ODBC]

DRIVER=MySQL ODBC 5.3 ANSI Driver

UID=root

PORT=3306

DATABASE=world_statistics

SERVER=127.6.0.1

Figure 8.26: The file ODBC structure for our connection

When you want to connect to this DSN, you will direct your ODBC toward this file. The
ODBC will read the file, set each of the properties provided, and establish the connection
to the server.

In the next exercise, you will create a file DSN/ODBC connection to the
world statistics database.

Exercise 8.07 - creating a file DSN/ODBC connection to the
world_statistics database

A file DSN is a simple text file that holds the connection information of the data store. The
process is very similar to the standard DSN setup. You need to have administrative rights
to use the ODBC connection manager. To accomplish this, perform the following steps:

1. Press the Windows Start button on your keyboard and type in ODBC.

2. Select ODBC Data Sources (32 bit) and click on Yes when prompted to allow this
application to make changes. The ODBC Data Source Administrator (32-bit)
window will open.

324 Working with Data Using Node.js

3. Select the File DSN tab. Using Look in:, navigate to the folder you want to store the
file in. Then, click on Add:

; QDBC Data Source Administrator (B4-bit) >

User DSM System DSM File DSMN Drvers Tracing Connection Pooling About

Look in: File DSN v | (@ Add...

Remove

Corfigure. .

Set Directory

An ODBC File data source allows you to connect to a data provider. File DSNs can be shared by users
m; who have the same drivers installed.

Cancel Apphy Help

Figure 8.27: The File DSN tab

4. Select the driver you wish to use, just like you did with the LAN and remote
connections. When prompted, enter the name you want to give the file DSN—that
is,world_statistics. The following window will be displayed. Click on Finish:

ODBC connections

325

Create Mew Data Source *

When you click Finish, you will create the data source
which you have just configured. The driver may prompt you
for more information.

File Data Source
Filename: world_statistics
Driver: MySQL ODBC 5.3 Unicode Driver

< Back Cancel

Figure 8.28: Displaying your selections

The following window will open so that you can finish entering your options.
As you can see, it is very similar to the LAN and remote windows. Enter your
details as before, and use the world statistics database:

MySCQL Connector/ODBC Data Source Configuration X

—
Connector/ODBC

Connection Parameters

Data Source Name:

Description:
(®) TCP/IP Server: |192-153-U-3 | Port: |33[16 |
() Named Pipe:

Database: Test

Figure 8.29: The connection details have been completed

326 Working with Data Using Node.js

6. Test the connection. If the test is successful, click on OK. If it is not successful,
check your details and try again.

7. If you cannot find the file for some reason, look inside your Documents folder—it
is named world statistics.dsn.

8. Open the file with your text editor. The file should look similar to the following:

[ODBC]

DRIVER=MySQL ODBC 5.3 ANSI Driver
UID=Tom

PORT=3306
DATABASE=world_statistics
SERVER=192.168.0.3

Figure 8.30: The contents of the file ODBC

From opening the DSN file, you can see that it matches the format we discussed. The
ODBC Data Source Administrator has automatically created the file, and now you
can use it as required.

An ODBC connection is your primary method of accessing the database, and once it
has been set up, you won't have to change it unless the server is moved or the account
details are changed. Usually, you will have one account set up for all your users so that
the connection can be standardized. While there are three distinct types of ODBC
connections, you will usually use the fixed system or user types and set them up on
each machine.

Now, in the following activity, let's test your knowledge of the skills that you have learned
so far in this chapter.

Activity 8.02 - designing a customer database

In Activity 5.01 - building a database application with Node.js, you created

a database named MOTDatabase, which contained a Customer table and

a CustomerPurchases table. The company has since started to acquire customers
and sales, and as such, they require data to be added to these existing tables.

Additionally, the company would like an ODBC connection available for the database. You
can assume that the database exists on localhost, so the ODBC IP willbe 127.0.0.1.

Activity 8.02 - designing a customer database 327

Currently, the company has the following customers that they would like inserted into the
customers table:

Customer ID Customer Name
1 Big Company

2 Little Company
3 Old Company

4 New Company

Figure 8.31: The data to be inserted into the customers table

The company currently has the following purchases that it would like inserted into the
CustomerPurchases table:

CPID CustID SKU SalesDateTime Quantity
1 1 SKU001 01-JAN-2020 09:10am |3

2 2 SKU001 01-Jan-2020 9:10am 2

3 3 SKU002 02-Feb-2020 9:15am 5

4 4 SKU005 05-May-2020 12:21pm |10

Figure 8.32: The items to be inserted into the CustomerPurchases table

To do this, you will need to complete the following steps:

1. Create a script named Activity 6 02 Solution Populate Tables.js.

2. IntheActivity 6 02 Solution Populate Tables.js script,add code
that will insert the customer data into the customer table of MOTDatabase.

3. IntheActivity 6 02 Solution Populate Tables.js script,add
code that will insert the customer purchases data into the customer table of
MOTDatabase.

4. Open the ODBC Data Sources interface on your computer.

328 Working with Data Using Node.js

5. Using the ODBC Data Sources interface, create a system ODBC connection to
MOTDatabase.

Note

The solution scripts can be found at https://github. com/
PacktWorkshops/The-MySQL-Workshop/tree/master/
Chapter08/Activity8. 02. The solution to this activity can be found in
the Appendix.

Summary

In this chapter, you worked your way through a lot, so take a moment to recap what you
have learned so far. Using Node.js, you learned how to insert, read, modify, and delete
data from the tables; how to output the data to the console and the browser; and how

to format the data to make it easier and more pleasant to read for the user.

With these skills, you should now be able to construct complex applications that work
with MySQL databases. Queries to modify and read data are common for applications
using MySQL databases, so these skills are essential not only for Node.js but any other
programming language that you might use with MySQL databases. Output formatting is
an important aspect of working with MySQL databases. When you want to show a user
a set of data, it is essential for it to be easily readable. Formats such as HTML tables are
a great way in which to display database data to a user, and they are commonly used in
the industry.

In the ODBC connections section, you learned what an ODBC connection is and what
types of connections are available to you, along with how to create each of the connection
types. ODBC connections are common in the industry, as they allow for a simple and
convenient way to connect many users to a database. These skills are especially useful

for programmers and system administrators, as they will allow you to set up clients for
database connections.

In the next chapter, you will learn how to use ODBC connections in real-life situations,
how to migrate an MS Access database to MySQL, important tips when migrating
from MS Access to MySQL, how to convert MS Access SQL into MySQL, how to use
pass-through queries to move the processing to the MySQL server and speed up the
application, and how to create an unbound data form.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08/Activity8.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08/Activity8.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08/Activity8.02

Section 3:
Querying Your
Database

This section covers the various ways you can query data through applications. We will
discuss how MS Access and MS Excel can be used to interact with MySQL databases,
allowing you to efficiently and effectively work with data.

This section consists of the following chapters:

o Chapter 9, MS Access Part 1

o Chapter 10, MS Access Part 2

o Chapter 11, MS Excel VBA and MySQL

o Chapter 12, MS Excel VBA and MySQL Part 2

9

Microsoft Access -
Part 1

Microsoft (MS) Access is still a very popular database application that has a lot of
components. Due to this, we will cover it over two chapters. In this chapter, you will learn
about the MS Access application and its database architecture, the problems associated with
the architecture, and how and why to improve on the architecture by migrating to a MySQL
backend. You'll also learn how to provide more stability and longer life to the MS Access
database application. You will start by upsizing an MS Access database to MySQL and setting
up the ODBC connections to the database. After that, you will learn about some of the issues
you may face when migrating databases to MySQL and how to fix or avoid them.

Finally, you will convert a sample application to use MySQL data using passthrough
queries before learning how to convert an MS Access table-reliant form into an unbound
form that doesn't rely on local or linked tables. By the end of this chapter, you will be able
to remove all linked tables and check that the application still works.

In this chapter, we will cover the following topics:
« Introduction to MS Access

o MS Access database application configurations

« Upsizing an MS Access database to MySQL

332 Microsoft Access — Part 1

o Manually exporting MS Access tables
 Adjusting field properties
 Migrating with wizards

« Linking to your tables and views

« Refreshing linked MySQL tables

Introduction to MS Access

In the previous chapter, we learned how to use MySQL with Node.js to manipulate a
database and read and output data to several common data destinations. Now, we will
learn about MS Access.

Before we begin, let's discuss what MS Access is all about. It is a Relational Database
Management System (RDBMS) that was released by Microsoft in late 1992. It provides a
Graphical User Interface (GUI) so that you can easily and interactively develop queries,
forms, and reports. It provides the Visual Basic for Applications (VBA) programming
language, which was specifically designed for database development, as well as a host of
libraries that add programming features that aren't included in the basic installation. These
libraries are provided by Microsoft as well as third-party applications, and they can be
integrated into MS Access applications. MS Access has had 11 version releases since 1992,
with the current version being MS Access 2019. Unlike most RDBMSs, MS Access uses a
single file to hold the entire system, including its tables, data, forms, reports, queries, and
VBA code. MS Access also stores the temporary data it generates during its data query
operations in the same file. Since version 2000, the maximum file size has been increased
from 1 GB to 2 GB. The tables and data can be separated into a separate MS Access file
known as a backend, and the tables are linked back to the application file to share the
database with other users, as well as increasing the file size limitation as both files will have
the 2 GB size limit. The backend data file has no processing power and is only a container
for the data. The single-file architecture of MS Access permits entire database applications
to be easily transferred electronically to other users.

Due to the speed, ease, and cost-effectiveness of creating database applications in MS
Access, it has become widely popular for both personal and business use, with many
businesses relying heavily on these systems to function.

Most MS Access database applications start out working well; they are fast and responsive
and do their job well. The longer they are used, the more that businesses rely on them.
After a while, as they fill up with data and more users need access to them or need remote
access, they can become slow and unreliable. This often leads to crashing and can be very
frustrating for the users, the business, and those who maintain them.

MS Access database application configurations

In this chapter, we will be using the objects we learned about in Chapter 4, Database
Objects, to improve the MS Access experience for the users, businesses, and developers
maintaining the database. In the next section, we will explore several configurations of
the MS Access database application.

MS Access database application configurations

There are several configurations an MS Access database application can have, such as
the following:

« Single-file application/data: The application logic, forms, queries, reports, and data

are all contained in a single MS Access file. This works fine if there's only one user
and not a lot of data. Usually, we can access data quickly. If the file gets corrupted,
then you may lose both the application and your data permanently, especially if a
regular backup regime is not adhered to.

A small home-based company may use this configuration for the inventory and
sales data when they are a new start-up, often using ready-made database templates
that are available for free as part of the MS Access installation.

Multi-user/single-file application and data: A single MS Access file contains
both the application and data, as described earlier; however, there are two or more
concurrent users using it at the same time. It is never good to share a common
single-file database between users simultaneously because there is a high chance
of both the application and data becoming corrupted, especially if users do not
exit the application correctly.

The home-based start-up mentioned previously has now employed one or more
people to assist with sales and inventory updates and is still using the single-file
MS Access configuration.

Split access frontend/access backend: The data has been separated into a separate
MS Access file. This is a better option since the data is protected from corruption if
the application file gets corrupted. Each user should have a version of the frontend
on their computer. The backend needs to be in a LAN location that all users have
access to. As MS Access still does all the data processing work, the network resources
could get overloaded.

The home-based startup now has up to eight users on the system concurrently and
has split the data into a separate MS Access file due to corruption issues.

334 Microsoft Access — Part 1

Out of these three configurations, the split frontend/backend configuration is the best
option. Even for a single user, it offers more protection for the data; if the frontend
application gets corrupted, usually due to incorrect shutdown procedures by the users, the
backend data file will rarely get corrupted. Depending on several factors, however, even
the split configuration may struggle after some time, and moving the data to a more robust
backend needs to be considered. There are several good reasons you should move the
backend to a MySQL database. A few of them are as follows:

o The system now has multiple users, possibly at multiple sites.
 The business has grown and the system is not coping with the data growth.
o Inefficient data handling over networks often arises as the amount of data increases.

+ Once the backend data file starts to approach the MS Access file size limit, corruption
could occur and the application will stop working. MySQL does not have a limitation
on file size.

o The 2 GB size limit also includes all of the temporary data that Access generates
internally while processing queries. It is not cleaned up until a compact and repair
procedure is done. Even with the database split, the frontend can be affected by
this limit.

o Access backends are just containers and have no processing power, which means all
the data must be transferred over the network to the frontend for processing, which
makes it slower, especially when there is a lot of data. With MySQL, you can transfer
much of the processing requirements to the MySQL server and only transfer the
results back to Access.

o All that data transfer can slow the LAN down, especially for long-running and
complicated queries that are using several tables, whereas MySQL can only pass
back the results.

« Remote access via the internet is slow to unusable. MySQL will work well for local
or remote access when the MS Access application's data handling is designed to
use MySQL.

Let's look at what MySQL will do for an MS Access application:

o MySQL has the necessary processing power. So, moving to MySQL and modifying
the application's data handling means we can simply request some data; here,
MySQL will process the request and return only the results.

Upsizing an MS Access database to MySQL 335

« MySQL will protect the data from unauthorized access better than MS Access can,
especially over remote connections.

o MySQL will reduce network traffic when the application is tuned to use it properly.

Taking these points into consideration, we can put the data into MySQL and link the
tables. Unless you optimize your data handling to leverage MySQL's processing power,
you won't see any real difference; it may even be slower. This chapter will show you how to
leverage the power of MySQL. In the next section, we will explore migrating, also known
as upsizing, an MS Access database to MySQL.

Note

In this chapter, we assume that you are familiar with MySQL and Workbench,
so references to them will be high-level only.

Upsizing an MS Access database to MySQL

In this section, we are going to set up a database to work with, export its tables to MySQL,
and relink the tables back to MS Access. The training database for this chapter is a single-
file application/database. We will be migrating the data tables to MySQL and linking them
back, ensuring that the application will work with linked tables. By the end of this chapter,
all data access to MySQL will be in VBA code with no linked tables. In the next section,
we will complete an exercise where we will set up our training database.

First, we need an MS Access application and database to work with. One has been
provided with this book's resources. This is a database template that can be reused.
First, let's learn how to set up our Access database:

1. Create a work folder.

2. Double-click on the MySQL Training Database.accdt file in this book's
resources. The template will open.

Note

The MySQL Training Database.accdt file can be found here:
https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapter09/Exercise9.01.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.01
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.01

336 Microsoft Access — Part 1

3. When prompted, enter MySQL Training DB.accdb as the name for the
database and select your work folder to save it in. Then, click OK. The training
application will be copied into your work folder and will open:

[E File New Database d
« v 4 <« MyS0L Training .. *+ Sample Database v @ Search Sample Database pe
Organize = Mew folder SEEE ¢ 0
~ Name Date modified
#F Quick access
Backups 06-Oct-19 8:37 AM
[Desktop P))
Mew folder 25-5ep-19 &:51 PM
¥ Downloads Originals 29-Sep-18 7:34 PM
=] Documents B MySOL Training DBold.accdb 06-Oct-19 11:06 AM
22 Dropbox
= Pictures LU 4 >
File name: | MySOL Training DB.accdb v
Save as type: | Microsoft Access 2007 - 2013 Databases (*.accdb) ~

~ Hide Folders Tools - Cancel

Figure 9.1 - The template database will prompt you for a name and a location to save the database to

4. When the training application starts, you will be presented with a dialog for locating
the backend data file - that is, MS Access Training Data.mdb.

Note

The MS Access Training Data.mdb file can be found at
https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapter09/Exercise9.01.

5. Locate the file and select it. The file will then be copied into your work folder and

the frontend application will link to its tables. If you are asked whether to trust the
database, answer Yes.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.01
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.01

Upsizing an MS Access database to MySQL ~ 337

Your training database is now ready. Take a moment to look through it and try out the
main form. However, don't try Open Users yet as it has been set up for a later exercise
and you will get a prompt to select an ODBC connection. The training database has the
following features:

« Forms containing drop-down combo lists, text boxes, drop-down lists, and graphs.

o All the text box controls are populated with SQL statements by VBA code to access
the data tables.

The following screenshot shows these features:

Citations The Bad Bits

me [06-0ct-1911:26:00 AM

Populate Lists
e [06-0ct-19 112601 AM

8,695 15000000

Job tatistics < 3 10000000

g Population, total 5 5

263 |Australia < 263

ear 2004

endvear 2016

View Data

Country Name - Series Name S| 208 -] 2005 | 2006 | 2007 | 208 -| 2009 | 2010 | 20 -] 2012 | 2013 | 201 | 205 | 2016 -
Australia Population, total 20127400 20394800 20657900 20827600 21249200 21691700 22031750 22340024 22742475 23145901 23504138 23850784 24210809

Figure 9.2 - The opening screen after the training database has been linked

The forms and VBA have features that you can find in a typical application database. In
the upcoming sections, we will focus on migrating our training database. But before that,
we have to prepare a MySQL database along with the ODBC, which we will look at in the
next exercise.

The data we are using has been sourced from World Bank Open Data. It is a small subset
of statistical information from between 2004 and 2018 that represents three groups of
data - jobs, gender, and capacity indicators - for all countries worldwide. To reduce the
size of the database, we will cover three to five specific series of data for the three groups.
The database consists of one country table listing the world's countries, three group tables
holding the statistical data and the series and country links, and one series table listing the
series and the groups they belong to. There are also three other tables to use for various
exercises that are not related to the statistical data.

338 Microsoft Access — Part 1

Note

World Bank Open Data can be found here: https://data.
worldbank.org/.

To connect Access to MySQL, there are a few important steps we must take. First, we must
set the collation of the database to one that Access can parse. For this book, we will use
utf8 - utf8 unicode ci. This collation can be set in the MySQL database schema
when the database is created.

To be able to reach the database from Access, we will also need to create an ODBC for our
database. This process was discussed in Chapter 8, so we will follow the same process for
our Access ODBC.

Exercise 9.01 - preparing your MySQL database
and ODBC

In this exercise, we will create a MySQL database that can be accessed from Access. This
will allow external users to easily access the database. We will start by creating a database
with the appropriate collation, then create an ODBC for the database. Follow these steps:
1. Create a new MySQL database schema.
2. Nameitms access migration.

3. Ensure that you set Collation to utf8 - utf8_unicode_ci, as shown in the following

screenshot:
. . - : Tha name of the schema, It & recommendad to usz only zlphz-nemeric characters, Spaces should be
=) Nare: |ms—a°°ess—m'g'ah°” | 2vaided and ba replzced by _
—_— Refzctor model, changing 2l references found in view, triggers, stored procedures and functions from the old
-~ Rename References schema name to the new ana,
Collation: |utf8 -utfd unicode d o Specifies which charset/collations the schema's tzbles will us= if they do not have an explict s=tting,

‘Common choices are Latinl or UTFE.

Figure 9.3 - Entering a name for the MySQL database and the Collation type

Note

Collation is very important. If it is not set as described here, then you will not
be able to read data from the database with MS Access.

https://data.worldbank.org/
https://data.worldbank.org/

Upsizing an MS Access database to MySQL ~ 339

4. Once the database has been created, you can find it in the SCHEMAS section:

SCHEMAS 1

Q |FiItE|' objects

[2 backuppractice

| impart_test

b :] ms_access_migration
@ Tables

@ Views

@ Stored Procedures
@ Functions
original_world_statistis
gys

world_statistics

LA A

Figure 9.4 — The training database in the SCHEMAS section
5. Now, let's create an ODBC for the database.

Note

All MySQL ODBC drivers from version 5.3.11 and later have a well-known bug
that can cause the table fields to incorrectly display #DELETED under certain
circumstances when linked to MS Access. This is a well-documented bug and
there is no workaround at the time of writing. The MySQL ODBC 5.3.10
driver does not have this issue. When working with MS Access, you should use
the MySQL ODBC 5.3.10 driver. If required, download and install the MySQL
ODBC 5.3.10 driver and recreate the ODBC connection. Both the 32-bit and
64-bit versions can be found in this book's resources so that you can download
and install them.

340 Microsoft Access — Part 1

6. Nameitms access migration:

MySOL Connector/ODEC Data Source Configuration *

A

&

My
Connector/ODBC

Connection Parameters

Data Source Mame: | ms_access_migration |

Description: | M5 Access migration training |

(®) TCP/IP Server: |192- 168.0.3 | Part:

() Mamed Pipe:

User: | Tom |
Password: | (II T I TSI] |
Database: v| Test

Detailz == Cancel Help

Figure 9.5 - ODBC connection screen — use your details

Now, we are ready to begin the migration process. In this exercise, we created the database
and ODBC that are required for migration. In the next section, we will learn how to
manually export MS Access tables.

Manually exporting MS Access tables

Before we start, let's look at some information that will help us decide what tables to move
into MySQL and what tables to keep in MS Access. If you are thinking of migrating tables
to a MySQL database, then it depends on the application. You also need to consider where
your users are accessing the database, as well as the purpose of the tables. In the case of
remote users, we only need to list those tables that feed drop-down lists. It may be better
to keep these in the application as local tables. On the other hand, tables with MS Access-
specific field types such as multivalued fields and attachment fields cannot be migrated.
MySQL does not have a comparable field type, so it cannot use them.

Manually exporting MS Access tables

341

Please note that it is never a good idea to store files and images in any database as you
can with attachment fields or MySQL BLOB fields. They will make the database grow
very large very quickly. It is better to store the path names in the files and store the files
separately on a server. Other than these exceptions, all the tables should be migrated to a
MySQL database. In the next exercise, we will manually migrate (or upsize) a single table.

Exercise 9.02 - manually upsizing a table

Suppose that you have found that your Users table has now grown too large for MS
Access. To remedy this, you will need to upsize the table. In this exercise, we will manually
upsize a single table from an MS Access database into a MySQL database. We will start
with the Users table. Follow these steps to complete this exercise:

1. Inthe MS Access navigation bar, right-click on the Users table.
2. Select Export and then ODBC Database:

All Access Objects
Search.
Tables
*M BadBits
’E capacityindicatorsstats
’E country
*E errorlog
’E genderstats
’E jobstats
*E lookups
’E series
’E Users
Forms lacid Open
Bl sedsit g Design View
@ frmCit
@ frmDat] Import
B frmMai Export
5] frmUs¢ =] Rename
h_dacms Hide in this Group
2 AutoB
Modules Delete
¢ DBCon X cut
& Errorf By Copy
& Unbou
D'E Linked Table Manager

Refresh Link
Conyert to Local Table

Table Properties

® «
rel

"

= I R O O O

=g frmMain

»

Citations

Your current datak
C:\Users\bhavesh

Tab

Cap
Excel

SharePoint List
Word RTF File
PDF or XPS
Access

Text File

XML File

ODBC Databasze
HTML Docurment
dBASE File

Word Merge
|

Figure 9.6 — Locating the ODBC database to export a table

342 Microsoft Access — Part 1

3. Aninput box will appear that will allow you to set a name for the exported table; it
will display the table's name. Keep the original name.

Note

If you change the name of the table, any code, queries, or objects that are
using the table when it is linked back to Access later using the new name
will not work.

4. You can give a linked table an aliased name when linking it. Click OK to accept
the default name provided:

Export ? >

Export Users to:
Users
in ODBC Database

Cancel

Figure 9.7 - Changing the name of the table

5. After a while, the DSN data source window will open. Select the ms_access
migration ODBC you created in the preceding exercise and click OK:

Select Data Source *

File Data Source Machine Data Source

Data Source Name Type Descriptian 2

System M3 Access migration training

MS5aL12 System

ity New Connection Name System For demonstration purposes

MYOBImpart System

Iy SQL Training User

Iy SQILWorld Statistics System v

£ >
Mew...

A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a user on this machine. "System" data
sources can be used by all users on this machine, or by a system-wide service.

Cancel Help

Figure 9.8 - Selecting the named DSN for the destination database

Manually exporting MS Access tables 343

6. The table will now be exported to MySQL and the following window will open to
confirm the export. Click Close to close the window:

Export - ODBC Database

? X
Save Export Steps

Successfully exported ‘Users'.

Do you want to save these export steps? This will allow you to quickly repeat the operation without using the wizard.
[] save export steps

Close

Figure 9.9 - Screen indicating the success or failure of the table being exported

Note

present in the table.

The time it takes to export any given table will depend on how much data is

7. Open Workbench. Refresh the schema; you should see the users table present inside
the ms_access_migration database:

SCHEMAS B

Q |Fi|ter objects

[backuppractice
> import_test

¥ =] ms_access_migration

T@ Tables
> . users
Views
@ Stored Procedures
@ Functions

original_waorld_statistics
> 5YS

[world_statistics

Figure 9.10 — The exported table in the MySQL database

344 Microsoft Access — Part 1

With that, your table has been migrated to MySQL. That was easy! Exporting manually
like this will copy the fields and data, but there are several things it does not do or change
that you need to know about and rectify before you can start using the table.

Adjusting field properties

Before you use the upsized table, you must make a few manual adjustments:

Set the primary key: You need to set the primary key. Select the ID field and check
the Primary Key box.

Set Auto Increment for the ID field: You need to tick the Auto Increment (AI)
option for the primary key ID field. The Access ID values will have been exported.
The AI numbering will start from the next available number.

Set the indexes: You will need to set any indexes that were in the Access table.

Yes/no fields become bitfields: Access will work well with this; however, you must
set a default value of either 0 or 1, and usually, it will be 0 (false). Access has a quirky
bug where it will generate an error — usually a write conflict error if the record has a
bitfield with a NULL value. You will also need to ensure there are no NULL values in
any bitfields in MySQL, which is what causes the error. Access does not like NULL
values in bitfields. You can check whether there are any NULL values in a large
number of records by checking Not Null for the bitfield and clicking Apply if there
are any; then, it will not permit the change. Setting a default value for bitfields will
ensure there will never be a NULL value.

Set default values in MS Access: You need to reset any default values Access had.
Generally, it will not cause any issues unless the field is a bitfield, as mentioned
previously.

Hyperlink fields: Hyperlink fields are changed to MEDIUMTEXT if a URL is going
to be longer than 255 characters. It will not behave as hyperlinks do in MS Access;
however, this can be fixed in the controls for MS Access by setting the IsHyperlink
property to True. The link is encased in #.

Field description/comments: They are not migrated in Access. You will need to
reset these if required.

Adjusting field properties 345

Once you've made these field adjustments, the tables will be migrated. These adjustments
will look as follows:

Lﬁ‘/

Table Name: |users

| Schema:

ms_access_migration

Collation: |utf8 - utfd_unicode_d ~| Engine: | InnoDB ~
Comments:
Column Name Datatype PK NN UQ B U ZF Al G Default/Expression
D INT(11) o o0ooag O
Email VARCHAR(255) O 0000000 n
FullName VARCHAR(50) O 0000000 nu
Login VARCHAR(255) O0O000000 0 ww
Active BIT(1) OO0000000 v
Password VARCHAR(50) O0O0000000 ww
DateActivated DATETIME OO0O0000ao0o0nOnd nw
DateDeactivated DATETIME O 0O0O00000O O o
Bioaraphy MEDIUMTEXT O0O0000000 ww
AnnualFes DOUBLE OO0O0000ao0o0nOnd nw
Website MEDIUMTEXT O O0O0O0000 O wnow
OooOoo0OooOooanoOoano
Column Name: |ID DataType: |[INT(11) |
Collation: |Table Default Default: | |
Comments: Storage: Virtual Stored

Not Null
[unsianed

|:| Unigque
[zeroFill

Primary Key
|:| Binary

Auto Increment [Generated

Figure 9.11 — The Alter Table view of the new table. The highlighted areas

will need reviewing as described

Now that you have clarity on how to make adjustments to the field properties, in the next
exercise, we will migrate more tables and adjust their field properties.

Exercise 9.03 - manually migrating tables and
adjusting their field properties
There are several additional Access tables that we would like to upsize. While doing this,

we have found that certain field properties haven't been exported properly. In this exercise,
we will be migrating series, errorlog, and badbits tables and adjusting their field properties.

346 Microsoft Access — Part 1

Follow these steps to complete this exercise:

1. To migrate the series, errorlog, and badbits tables, you must complete Exercise 9.02,
where we migrated the users table. Once you've done this, the three migrated tables
will appear under the ms_access_migration schema in Workbench:

SCHEMAS 1

Q |Filter objects

[3 backuppractice
> import_test
v _-] ms_access_migration
‘l’@ Tables
» E badbi=
[errarlog
> . SEries
> . USErs
@ Views
@ Stored Procedures
@ Functions

Figure 9.12 - The SCHEMAS panel displaying the new tables

2. Using Workbench, alter the series and errorlog tables and fix the primary key,
AlJ, and any bitfields.

The changes in the series table must look as follows:

series - Table =
__:‘ Table Name: |series
'_ Charset/Collation: |UtFme4 V| |utF8mb4_0900_ai_ci
Comments:
Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression
' D INT(11) M OO0O0O0® O
& Group VARCHAR(255) OO 00000 O wuw
< Series Name VARCHAR(255) OO 00000 O nue
& Series Code VARCHAR(255) OO 00000 O wnue
< Active BIT(1) O O0O00O0d0doQod e
OO0odoOoo0onOononoaa

Figure 9.13 - Setting adjustments for the series table

Adjusting field properties 347

The changes in the errorlog table must look as follows:

errorlog - Table =

_".', Table Name: |E"°"|°Q
LFJ Charset/Collation: utfémb4 w | |utfémb4_0900_ai_d
Commenits:

Column Name Datatype PK NM UQ B U ZF Al G Default/Expression
! 5QLID INT(11) MM ODOOQOM O

& ErrNumber VARCHAR(25) O 0O00000 0 wnue
& ErtDescription MEDIUMTEXT O O0O00O000 0 d wnow
% callingProc VARCHAR(100) O 0O00000 0 nue
& ErrDate VARCHAR(40) O 0O00000 0 nue
< UserName VARCHAR{25) O O 00000 0 N
< ShowUser INT(11) O O 00000 0 N
< Parameters MED IUMTEXT O O 0000 0O O ~Nuw

OO0d00gagagad

Figure 9.14 - Setting adjustments for the errorlog table

3. 'The field properties of the badbits table must remain unchanged because we need
this table to remain migrated for a later exercise. It looks like this:

_‘,:r Table Mame: |badbits
L?/ Charset/Collation: utfémb4 ~ | |utfémb4_0900_ai_ci
Comments:
Column Name Datatype PK MM UQ B UM ZF Al G Default/Expression
& ID INT(11) O 0O 0O00000 wu
& TextData VARCHAR(255) O 0O 0O0000 0O wu
& BitFieldl BIT(1) OO0 000000 ww
& BitField2 BIT(1) OO 00000 0O nu
O0O0O0O00OauC0gadao

Figure 9.15 - Don't make any changes to the badbits table

Manually migrating tables using the single-table ODBC method is fine for a few tables.
It is fast and easy, although having to reset the table properties can be a little frustrating.
If you need to migrate many tables, you will need a more automated approach that will
also migrate as many of the properties as possible, if not all of them. In the next section,
we will learn how to use wizards that are designed to migrate tables.

348

Microsoft Access — Part 1

Migrating with wizards

Using wizards to migrate your tables has the following advantages:

They let you select some or all tables to migrate to MySQL.

They will set most properties on the tables, as described in the Adjusting field
properties section, while migrating so that you don't have to adjust them.

There are dedicated applications available to migrate from MS Access to MySQL.
However, all the ones I have tried are slower than the Workbench wizard.

However, this is where things may get a little tricky. MS Access versions 95 to 2010
included the Upsizing Wizard, which always handled upsizing well, but Microsoft
removed it in version 2013.

How you approach the data migration process will depend on your specific MS Access
version and MySQL setup. Let's see what we can do with a variety of setups:

MS Access 2010 or earlier: You can use the Upsizing Wizard on the ribbon to access
Database Tools, Move Data, and SQL.

MS Access 2013 or later: Other than the single-table export ODBC we just covered,
there is no longer any mechanism in MS Access to migrate more than one table
at a time.

MS Access 32-bit and Workbench 32-bit: You can use the Workbench
Migration Wizard.

MS Access 64-bit and Workbench 64-bit: You can use the Workbench
Migration Wizard.

MS Access 32-bit and Workbench 64-bit (or vice versa): You cannot use the
Workbench Migration Wizard. They both must have the same bit architecture.
If this is your setup, your options are as follows:

Access 32-bit:

I. Download mysql -workbench-community-6.3.8-win32.msi.
II. Uninstall Workbench 8.0.xx from your computer.

III. Run and install Workbench from mysqgl -workbench-community-
6.3.8-win32.msi.

Migrating with wizards 349

o Access 64-bit:

I. Download mysqgl-installer-web-community-8.0.17.0.ms1i.

II. Uninstall Workbench from your computer.

III. Run and install Workbench from mysgl-installer-web-community-
8.0.17.0.msi.

Obtain a third-party application such as Bullzip MS Access to MySQL and use it to
migrate. Now that we have sorted that out, let's continue. Regardless of which wizard or
application you use, the process will be similar, and by this stage, you have attained all the
knowledge you need to work your wizard out. The basic steps for all wizards are as follows:

Select the source database (MS Access Training Data.mdb).

Select the target ODBC or enter the necessary connection details.

1

2

3. Select the tables to migrate.

4. (Optionally) Select some options related to the tables.
5

Start the migration and have a break while it runs — you deserve it.

In the next exercise, we will use the Workbench Migration Wizard to upsize the table.

Exercise 9.04 - using the Workbench Migration Wizard

to upsize the table

We will be using Workbench 6.3.8 (32-bit) for this exercise since Workbench 6.3.8 will
only upgrade from an MS Access . mdb file. Follow these steps to complete this exercise:

Note

In this exercise, we will be using the MS Access Training Data.mdb
database that's linked to the frontend sample application.

1. Start Workbench and connect to your MySQL server.

350 Microsoft Access — Part 1

2. From the Database tab, select Migration Wizard. The wizard will open:

MySOL Werkbench
& TomOracle 3
File Edit \iew Datsbase Tools Scripting Help

Migration Task List Overview

OVERVIEW

SOURCE & TARGET

Migration

Welcome to the MySQL Workbench Migration Wizard

This wizard will assist you in migrating tables and data from a supported database system to MySQL.

‘fou can also use this wizard to copy databases from one MySQL instance to another.
Source Selection

Target Selection
Fetch Schemas List
Schemas Selection

Reverse Engineer Source

OBJECT MIGRATION
Source Objects
Migration

Prerequisites

Before starting, check the following preparation steps:

- The Migration Wizard uses ODBC to connect to the source database. You must have an ODBC driver for
the source database installed and configured, as Workbench does not bundle any such drivers.

For MySQL connections, the native dient library is used.

- Ensure you can connect to both source and target RDBMS servers.

- Make sure you have privileges to read schema information and data from the source database and

create objects and insert data in the target MySGL server.

Manual Editing

. . - The max_allowed_packet option in the target MySQL server must be large enough to fit
Target Creation Options the largest field value to be copied from source (espedially BLOBs and large TEXT fields).
Create Schemas
Create Target Results The wizard supports migrating from specific database systems, but a "generic” RDBMS support is also provided,
The generic support is capable of migrating tables from many RDEMS that can be connected to using ODBC,
although certain type mappings may not be performed correctly, A manual mapping step is provided for
reviewing and fixing any migration problems that could occur.

DATA MIGRATION
Data Transfer Setup
Bulk Data Transfer

REPORT
Migration Report

Start Migration Open ODBC Administrator View Documentation

Figure 9.16 — The Workbench Migration Wizard welcome screen

3. Now, we need to check whether we can import the database by checking whether
the relevant drivers are available. Click the Open ODBC Administrator button -
that is, the center button at the bottom of the screen. You will be prompted to allow
the program to make changes. Click Yes.

4. Click on the Drivers tab and locate Microsoft Access Driver (*.mdb, *.accdb) or
Microsoft Access Driver (*.mdb), as shown in the following screenshot. If you
only see three SQL drivers, then you are using the wrong version of Workbench and
cannot continue. If you found the driver that's shown in the following screenshot,
you can continue. Stay in ODBC Administrator:

Migrating with wizards 351

'-; QODBC Data Source Administrator (32-hit) X

User DSM System DSM File DSMN Drivers Tracing Connection Pooling About

QDBC Drivers that are installed on your system:

Mame Version Company File 2
Driver do Microsoft Excel(” xls) 10.00.18362.01 Microsoft Corporation QDBCJT32.
Driver do Microsoft Paradox {*.db) 10.00.18362.01 Microsoft Corporation ODBCJT32.
Microscft Access dBASE Driver (*.dbf, “ndx, *mdx) 12.00.6650.5000 Microsoft Corporation ACEQDBC.
Microsoft Access Driver ("mdb) 10.00.18362.01 Microsoft Corporation ODBCJT32.
Microsoft Access Driver (*mdb, * accdb) 12.00.6650.5000 Microsoft Corporation ACECDBC.
Microsoft Access Paradox Driver (" db) 12.00.6650.5000 Microsoft Corporation ACECDBC.
Microsoft Access Text Driver (", “.cav) 12.00.6650.5000 Microgoft Corporation ACEQDBC.
Microsoft Access-Treiber (" mdb) 10.00.18362.01 Microsoft Corporation QDBCJT32.
Microsoft dBase Driver (*.dbf) 10.00.18362.01 Microsoft Comporation ODBCJT32. ¥
£ >

An QDBC driver allows QDBC-enabled programs to get information from QDBC data sources. To install
Ej; new drivers, use the driver's setup program.

Cancel Apply Help

Figure 9.17 — Check that the .mdb drivers are installed

5. Create a system DSN ODBC connection to the MS Access Training
Data .mdb source in your work folder using the MS Access driver. Name it
MSAccessForUpsize and click Test Connection to make sure it connects
successfully. Close the ODBC connection window if successful.

6. Click Start Migration; the Source Selection screen will appear. Select Microsoft
Access for Database System. If Microsoft Access is not available in the list, close
and restart Workbench. Select ODBC Data Source for Connection Method and
MSAccessForUpsize for DSN:

ce Selection

Source RDBMS Connection Parameters

Database System: | Microsoft Access ~ | Select a RDBMS from the list of supported systems
Stored Connection: | e | Select from saved connection settings
Connection Method: | 0ODBC Data Source w | Method to use to connect to the RDBMS
Parameters

DSM: | MSAccessForUpsize (Microsoft Access Driver (*.mdb, *.accdb)) ~ | Pre-configured ODBC data source.

Default Character Set |q:|l?.52] | The character set used in the source database.

Figure 9.18 — Parameters for the source database

352 Microsoft Access — Part 1

7. Click Next. The Target Selection screen will show the following:

= Hostname: Enter the server's IP address and port.
* Username: Enter the MySQL user's account name.

= Password: Click Store in Vault.... You will be prompted to enter the password. The
wizard will use this later when migrating the data. If you do not enter it now, it will
not be able to connect.

* Default Schema: Type ms_access migration, although the wizard still won't
use it, as we will see later.

8. Click Test Connection to test it:

Target RDBEMS Connection Parameters

Stored Connection: | w | Select from saved connection settings

Connection Method: | Standard (TCP/IF) w | Method to use to connect to the RDBMS

Parameters 55 Advanced

MName or IP address of the server host - and

Hostname: |192|153|g.3 |P°"t: |5'*5"':JE TCP{IP port.

Username: |Ton'| Mame of the user to connect with,

Password: | Store in Vault... | | Clear | The user's password. Will be requested later ifit's
not set.
Default Schema The schema to use as default schema. Leave

' |ms_aocess_migrah’on

blank to select it later.

Figure 9.19 — Parameters for the target database. Use your host and login details

9. Click Next. The Fetch Schema List window will open with the following results:

Fetch Schema List =

The following tasks will now be performed. Flease monitor the execution.
The names of available schemas will be retrieved from the source RDBMS. The account used for

the connection will need to have appropriate privileges for listing and reading the schemas you
want to migrate. Target RDBMS connection settings will also be checked for validity.

& Connect to source DBMS
& Chedk target DBMS connection

& Retrieve schema list from source

Finished performing tasks.
Click [Mext =] to continue.

Figure 9.20 — Ensure all three options are checked

Migrating with wizards 353

10. Before we continue, in the next step, the wizard will attempt to read from the Access
MSysRelationships table to retrieve the foreign keys. This is a system table that is
usually hidden, and Access will not permit the wizard to read it. At this point, you
will need to grant permission.

11. If you have the frontend MySQL Training DB.accdb file open, close it.

12. Open the MS Access database we are importing - that is,MS Access Training
Data.mdb.

13. Open a module so that you can access the VBA development screens. If there is no
module, then create one.

14. Open the Immediate pane and select View | Inmediate Window from the ribbon.
15. Test that you have admin rights by typing ? CurrentUser and pressing Enter.
If the response is Admin, then type the following:
CurrentProject.Connection.Execute "GRANT SELECT ON
MSysRelationships TO Admin"

16. Press Enter; there will be no response, as shown in the following screenshot:

E Microsoft Visual Basic for Applications - M5 Access Training Data - [Modulel (Code]] - O *
% File Edit View Insert Debug Run Tools Add-Ins Window Help -8 X
[# - d rn d W EEY @ : -
Project - Database28 x| LT] |
Watches %
| Expression |Value Type Context c
Immediate &
? CurrentUser [

Admin
CurrentProject.Connection.Execute "GEANT SELECT ON MSysEelationships TO Admin™

£ >

Figure 9.21 - Testing that the user is Admin and granting permission
to read the system table for the wizard

354 Microsoft Access — Part 1

17. Close the Access database so that you can continue in the wizard. Click Next. The
Reverse Engineer Source screen will be displayed. It will look as follows:

Reverse Engineer Source

Selected schema metadata will now be fetched from the source RDBMS and reverse engineered
so that its structure can be determined.

& Connect to source DEMS
¥ Reverse engineer selected schemas

& Post-processing of reverse engineered schemas

Finished performing tasks.,
Click [Next =] to continue.

Message Log

Reverse engineering views from MS Access Training Data ~
- Reverse engineering of views for schema M3 Access Training Data completed!

Reverse engineering routines from M3 Access Training Data

- Reverse engineering of routines for schema MS Access Training Data completed!

Rewverse engineering triggers from MS Access Training Data

- Reverse engineering of triggers for schema M5 Access Training Data completed!

Reverse engineering foreign keys for tables in schema MS Access Training Data

- Reverse engineering of foreign keys in table MS Access Training Data. lookups completed

- Reverse engineering of foreign keys in table MS Access Training Data. capacityindicatorsstats completed
- Reverse engineering of foreign keys in table MS Access Training Data, Users completed

- Reverse engineering of foreign keys in table MS Access Training Data. genderstats completed
- Reverse engineering of foreign keys in table MS Access Training Data. country completed

- Reverse engineering of foreign keys in table MS Access Training Data. errorlog completed

- Reverse engineering of foreign keys in table MS Access Training Data. jobstats completed

- Reverse engineering of foreign keys in table MS Access Training Data. series completed

- Reverse engineering of foreign keys in table MS Access Training Data. BadBits completed

- Second pass of table reverse engineering for schema MS Access Training Data completed!

- Reverse engineering completed!

Reverse engineer selected schemas finished

Post-processing of reverse engineered schemas...

Post-processing of reverse engineered schemas done

Finished performing tasks.

Figure 9.22 - Output after connecting and performing reverse engineering

18. Click Next; the Source Objects screen will appear. Click Show Selection. All the
tables will be displayed on the right pane. Using the arrowheads, select and move
the objects we have already migrated back to the left pane. Your screen should look
as follows:

Migrating with wizards 355

Source Objects

You may select the objects to be migrated in the lists below.
All tables will be migrated by default.

B4 Mgrate Tatde abgects [Fide Sekection |
Hide Selection
9 total, 5 selected

|Fi|ter objects (wildcards chars * and ? are allowed) |

Available Objects Objects to Migrate
||l MSAccess Training Data.BadBits
| M5 Access Training Data.Users
\ll| MS Access Training Data.errorlog
| M5 Access Training Data.series

MSAccess Training Data.capacityindicatorsstats
MS Access Training Data.country

M3 Access Training Data.genderstats

MS Access Training Datajobstats

MS Access Training Data.ookups

M W

Figure 9.23 - Selecting the tables to migrate; only the tables in the right pane will be migrated

19. Click Next; the Migration screen will appear. The wizard will have generated scripts
to create the objects:

Migration -

Reverse engineered objects from the source RDBMS will now be automatically
converted into MySOL compatible objects. Default datatype and default column value
mappings will be used. You will be able to review and edit generated objects and column
definitions in the Manual Editing step.

Migrate Selected Objects
] Generate SQL CREATE Statements

Finished performing tasks.
Click [Mext] to continue.

Figure 9.24 - The Migration screen indicating that the selected tables have been generated successfully

356 Microsoft Access — Part 1

20. Click Next; the Manual Editing screen will appear. It will report any issues and will
also allow you to manually edit the proposed settings using the View dropdown.

21. In the View dropdown, select All Objects; you will see the following output. You
may notice that the Target Object column contains MS Access Data Training. If it
does, change it toms_access _migration,as follows:

Manual Editing

Review and edit migrated objects. You can manually edit the generated SQL before applying them to the target database.

Migrated Objects view: | All Objects ~

Source Object Target Object Migration Message
nfa O Preamble
¥ = MSAccess Training Data =
p Tables Tables
nfa O Postamble

Figure 9.25 - The initial Manual Editing screen

22. Select Column Mappings from the View dropdown. All the tables and columns to
be migrated will be listed. The Target Schema column still says MS Access Training
Data. We need to check whether the table is going to go to the database we changed
it to in Step 15:

Manual Editing

Review and edit migrated objects. You can manually edit the generated SQL before applying them to the target database.

Migrated Objects View: | Column Mappings +

urce Table Source Column Source Type SourceFlags NN Source Default... Source Collation Target Schema Target Table Target Column Target Type ~
; capacityindic. & Series Code VARCHAR(25) O MS Access Training Data : capacityindic.. < Series Code VARCHAR(25)

u capacityindic.. < Year COUNTER O MS Access Training Data L capadityindic.. < Year INT(10)

[| cepacityindic.. & Statisticvalue DOUBLE O MS Access Training Data [cepacityindic.. & Statisticvalue DOUBLE

[| capacityindic. & Active BIT MS Access Training Data [capacityindic . < Active TINYINT{1)

[l genderstas & D COUNTER O M5 Access Training Data [genderstas & D INT(10)

[| genderstas & Country Code VARCHAR(255) O MS Access Training Data [1] genderstas & Country Code VARCHAR(25S)

[| genderstais & Series Code VARCHAR(255) O MS Access Training Data [genderstas & Series Code VARCHAR(25S)

[| genderstats & Year COUNTER O M5 Access Training Data [genderstas & Year INT(10)

u genderstats < Statisticvalue DOUBLE O MS Access Training Data L genderstats < Statisticvalue DOUBLE

|| genderstats < Active BIT MS Access Training Data | genderstats & Active TINYINT(1)

| country / CountryID COUNTER &) MS Access Training Data | country / CountryID INT(10) |
[l country & Country Code VARCHAR(S) O MS Access Training Data [country < Country Code VARCHAR(S)

[country % Country Name VARCHAR(25) O MS Access Training Data [country < Country Name VARCHAR(25)

!l country % ContinentlD COUNTER O MS Access Training Data 7 country < ContinentlD INT(10) v

Figure 9.26 — Making adjustments to the columns and their mappings. The target schema
may not match the new name that we changed it to in Step 15

23. Select the CountryID row,as shown in the preceding screenshot, and click Show
Code and Messages (at the bottom left). The following script will be displayed:

Migrating with wizards 357

You can rename target schemas and tables, and change column definitions by dicking them once selected.

SQL CREATE Script for Selected Object

CREATE TABLE IF NOT EXISTS "ms_access_migration’ . country™ (
*CountryID® INT(10) NOT NULL,
"Country Code” VARCHAR(S) NULL,
" Country Name™ VARCHAR(ZS) NULL,
" ContinentID” INT(10) NULL,
*Active” TINYINT(1) NOT NULL,
INDEX " CountryID™ (" CountryID™ ASC),
PRIMARY KEY (" CountryID'),
INDEX "ContinentCode” (" ContinentID™ ASC),
INDEX " Country Code’ (" Country Code”™ ASC))

[=JV=Ryec Rt = T R T I

[ury

Figure 9.27 - The SQL that will run to create the selected table. Check that the database name

(highlighted) in line 1 matches the new name we entered in Step 15

24. Take note of what database the code will create the table in. Also, note that the
primary key and indexes will be set. Check the other tables to make sure. At this
point, you can make changes to the structure of the table that will be created if
you feel it is necessary. Let's move on.

25. Click Next; the Target Creation Options screen will appear. There are three
checkboxes. Create schema in target RDBMS is already checked; we want this,
so leave it as is. Create a SQL script file also needs to be selected so that a script
file is created. You can select a folder and name for the file.

Keep schemas if they exist should be checked; otherwise, the existing schema will
be dropped. You will get a warning before this happens:

Target Creation Options

Select options for the creation of the migrated schema in the target
MySQL server and dids [Next =] to execute.

Schema Creation

[+ create schema in target RDBMS

[] Create a 5QL script file

Script File: | Cr\Jsers\Tom\migration_script.sql

Options

[keep schemas if they already exist. Objects that already exist will not be recreated or updated.

Figure 9.28 - Schema and SQL creation options

358 Microsoft Access — Part 1

26. Click Next. The scripts will be run to create the schema tables. The result will be
as follows:

Create Schemas -

The SQL scripts generated for the migrated schema objects will now be executed
in the target database. You can monitor execution in the logs. If there are errors
you may correct them in the next step, Table data will be migrated at a later step.

o) Create Script File

& Connect to Target Database
& Perform Checks in Target

& Create Schemas and Cbjects

Finished performing tasks.
Click [Mext =] to continue.

Message Log

PRIMARY KEY ("ID"), S
INDEX "ID" ("ID" ASC))
- Creating table ms_access_migration.BadBits
Execute statement:
CREATE TABLE IF NOT EXISTS “ms_access_migration” . "BadBits™
“ID” INT{10) NOT NULL,
“TextData™ VARCHAR(255) MULL,
"BitField 1™ TINYINT(1) NOT MULL,
“BitField2” TINYINT{1) NOT NULL,
PRIMARY KEY ('ID"))
Sripts for 9 tables, 0 views and 0 routines were executed for schema ms_access_migration
- Executing postamble script...
Execute statement: SET FOREIGN_KEY _CHECKS =1
- Schema areated

Create Schemas and Objects finished
Finished performing tasks.

Figure 9.29 — Output after the database schema is created in the target

27. Click Next; the Create Targets Results screen will appear. If there were any
errors, they will be displayed. Here, you can click on the object, view the script,
and correct it:

Migrating with wizards

359

Scripts to areate the target schema were executed. No data has been migrated yet. Review the creation report below
for errors or warnings. If there are any errors, you can manually fix the scripts and dick [Recreate Objects] to retry
the schema creation or return to the Manual Editing page to correct them there and retry the target creation.

Object

0 Preamble

Eé def.ms_access_migration

llll| ms_access_migration.]ookups
ms_access_migration.capadtyi

Result

(@ Script executed successfully
(& Script executed successfully
(@ Script executed successfully
(@ Script executed successfully

1

|| ms_access_migration.genderst.

Ll ms_access_migration.country

L] ms_access_migration.jobstats
Postamble

<

Script executed successfully
(@ Script executed successfully
(@ Script executed successfully
(& Script executed successfully

Output Messages

SQL CREATE Seript

(=R T TR

-

<

[] Comment out

for Selected Object

CREATE TABLE IF NOT EXISTS “ms_access_migration’ . genderstats”

ID" INT(10) NULL,

" Country Code” VARCHAR(255) NULL,

" Series Code’ VARCHAR(255) NULL,

“Year” INT(10) NULL,

" StatisticValue” DOUBLE NULL,

*Active’ TINYINT(1) NOT NULL,

INDEX " Series Code™ (Series Code’ ASC),
INDEX " Country Code” (" Country Code’ ASC),
INDEX "ID° ('ID” ASC))

-

Figure 9.30 — The results of creating the target schema

28. Click Next. We are now ready to set up the data transfer. You can choose to do an

online transfer (transfer now), which is the default, or create a script to transfer the
data later. We want to copy the data now:

Data Transfer Setup

Select options for the copy of the migrated schema tables in the target MySQL server and didk [Next >] to execute.

Data Copy

(@ Online copy of table data to target RDBMS

(O Create a batch file to copy the data at another time

Batch File: |C=¥JSEFS\TMV365H0P\ODW_migrated_EHES-md

You should edit this file to add the source and target server passwords before running it.

(") Create a shell script to use native server dump and load abilities for fast migration

Bulk Data Copy Soript: |

Edit the generated file and change passwords at the top of the generated script.
Run it on the source server to create a zip package containing a data dump as well as a load script.
Copy this to the target server, extractit, and run the import script. See the script output for further details.

Options

[Truncate target tables {i.e. delete contents) before copying data

Worker tasks (1]

] Enable debug output for table copy

[Driver sends data already encoded as UTF-8.

Figure 9.31 - Options for the data transfer

360 Microsoft Access — Part 1

29.

30.

31.

32.
33.
34.

Bulk Data Transfer

Click Next to start the transfer. You will see a progress bar. At the end, you will see
the following screen:

The following tasks will now be performed. Please monitor the execution.

&) Prepare information for data copy
& Determine number of rows to copy
&) Copy data to target RDEMS

Finished performing tasks.
Click [Next =] to continue.

Message Log

Copy helper has finished

Data copy results:

- “ms_access_migration” . genderstats ™ has succeeded (8695 of 8595 rows copied)

- “ms_access_migration” . " capadtyindicatorsstats * has succeeded (5136 of 5136 rows copied)
- "ms_access_migration” . " country” has succeeded (263 of 263 rows copied)

- “ms_access_migration” . “jobstats " has succeeded (17046 of 17046 rows copied)

- "ms_access_migration” . "lookups” has succeeded (5 of 5 rows copied)

5 tables of 5 were fully copied

Copy data to target RDBMS finished

Finished performing tasks.

Figure 9.32 - Results displayed after the data transfer is completed

After clicking the Next button, you will be presented with a report of the whole
operation. Finally, click Finish.

Remember when we granted SELECT access to Admin on one of the system tables
back in Step 10? We need to revoke this to tidy things up.

Workbench will retain a connection to the source database, so close Workbench.
Open the source Access database.
Create a module if required. In the Immediate panel in the source database, type in

the following; again, there will be no response:

CurrentProject.Connection.Execute "REVOKE SELECT ON
MSysRelationships FROM Admin"

Linking to your tables and views 361

35. Close the Access database.

36. Now, we are done with the migration. With that, the table has been migrated to
MySQL. Examine the tables and data in Workbench.

Note

The badbits, jobstats,genderstats,and
capacityindicatorsstats tables do not have primary keys; this is by
design for the upcoming exercises. Please don't add them or modify the tables
at this stage.

There are a lot of steps involved, and when you are more comfortable with the process,
it doesn't take that long. Using the wizard will save you a lot of time and ensure the data
is migrated correctly. The Workbench Migration Wizard is also the fastest in terms of
performing the data transfer compared to the third-party applications we have tested to
date. Here are a few things you should keep in mind for smoother migration:

 Try to ensure that your data is in good order before you attempt to migrate it.
Embedded characters such as backticks can cause problems because they are
used in MySQL as delimiters for tables and fields.

« MySQL has difficulties importing from MS Access accdb files. If your source data
is in an accdb file, create an Access mdb file and export your data from accdb to
mdb first (you cannot import from accdb to mdb) and then migrate the mdb file
into MySQL.

« Commercial or other third-party migration tools may deal with these issues better,
but they may be slower in the actual data transfer, which isn't a problem for smaller
databases. Larger databases may take a long time.

There is still one more step. Before we can use our shiny new MySQL database, we need
to link the tables to the Access frontend, which we will explore in the next section.

Linking to your tables and views

Some things can cause issues when you're linking tables to MS Access. Some of the tables
you just migrated have been set up to highlight these problematic situations, and we will
show you how to get around them. It is not difficult, but first, we will start with a table
with no problems so that you can see how it should happen.

362 Microsoft Access — Part 1

Exercise 9.05 - linking a good MySQL table to Access

Previously, you exported the User table from Access into MySQL. Although it is no longer
in Access, your company's business analysts would still like to be able to view it in Access.
To achieve this, you will need to link the table in Access. Follow these steps to complete
this exercise:

1. Open the frontend MySQL Training DB.accdb application; we no longer need the
old backend database.

2. If any forms are open, close them.

3. Rename the Users table in MS Access to zUsers. This way, we can have both tables
available for comparison before we remove the old table.

4. 1In Access, click External Data | ODBC Database. The following window will open:

Get External Data - ODBC Database ? *

Select the source and destination of the data

Specify how and where you want to store the data in the current database,

t:jl Import the source data into a new table in the current database.

If the specified object does not exist, Access will create it. If the specified object already exists, Access will append a
number to the name of the imported object. Changes made to source objects (induding data in tables) will not be
reflected in the current database,

@ Link to the data source by creating a linked table.
Access will create a table that will maintain a link to the source data,

Figure 9.33 — Choosing to import or link the table
5. Select the Link to the data source by creating a linked table option.

Linking to your tables and views 363

6. Click OK; the Select Data Source window will open. Select the ms_access_
migration data source you created earlier:

Select Data Source X

File Data Source Machine Data Source

Data Source Name Type Description ~

Maxim Visio System For reverse engineering in Visio

System M5 Access migration training

MSAccessForllpsize System

Ms5aL12 System

My New Connection Name System For demonstration purposes

MYOBImport System v

£ >
Memw...

A Machine Data Source is specific to this machine. and cannat be shared.
"User" data sources are specific to a user on this machine. "System” data
sources can be used by all users on this maching, or by a system-wide service,

Cancel Help

Figure 9.34 - Selecting the named DSNss for the data source
7. Click OK; the list of tables in MySQL will be displayed:

Link Tables ?
Tables
badbits 0K
capadityindicatorsstats
country
errarlog IETE
genderstats
jobstats Select Al
lookups
series Deselect all
users
[Jsave password

Figure 9.35 - Selecting tables to import or link

364 Microsoft Access — Part 1

8. For now, just select users and click OK. The table will be linked and displayed in the
table list in Access:

All Access Objects © «
Search. el
Tables -3
*@ users

"'j capacityindicatorsstats
*E country
Figure 9.36 — Users table linked to Access

9. Notice that it has a globe icon next to it. This indicates that it's an ODBC linked
table. If you hover your cursor over the table, you will see its source:

All Access Objects © «
Segrch. yo
Tables ~
"’{‘ Users
*
ODBC;D5M=ms_access_migration;; TABLE=users
*H country |

Figure 9.37 - The table's source is displayed when you hover your cursor over it

10. Double-click on the new users table. It should open and display its data.

This is good:
T users)
(] - Email - | FullName -~ Login - Active - | Password - DateActivat - DateDeactiv - | Biography - AnnualFee - | Website ~
1 John@somewl John Doe JohnD -1 Jdoe 01-Jun-19 30-Sep-19 Video provide: 10 #http://somev
*
Figure 9.38 — A perfect link; the data is displayed
This is not so good:
=R users

] - Email - FullName -~ Login k3 Active ~| Password - DateActivat - DateDeactiv ~ Biography -~ | AnnualFee - | Website -
ALY #Name? #Name? #Name? #Name? #Name? #Name? #Name? #Name? #Name? #Name?

Figure 9.39 - The data not appearing indicates a problem
We know that the ODBC works because the table is linked. The issue here is if your
data looks like it does in Figure 9.39 and the collation is incorrect. The following
steps will show you how to correct this.

Linking to your tables and views 365

11. Examine the table in Workbench and check the collation that the tables and text
fields have been set at. They should be ut £8-ut£8 unicode_ci.If any other
collation is set, correct it now. Don't worry — you won't have to import the database
again. By following these steps, we can ensure the schema, tables, and fields are all
set correctly.

Note

Collation is only used for text field types such as VarChar and MediumText.
Date and numeric fields do not use collation, but all fields will show $Name? in
MS Access if the incorrect collation is set.

12. Open the Convert ms_access _migration to UTF8.sql filein a new
Query tab in Workbench:

Note

The Convert ms_access migration to UTF8.sql file can
be found here: https://github.com/PacktWorkshops/The-
MySQL-Workshop/tree/master/Chapter09/Exercise9.06.

SQL File
BEHZFREO R OGO MBI Dontm Y€ Q [=
1B /*set the default collation on the database schema*/

2 ® AITER DATABASE “ms_access migration™ CHARACTER SET utf8 COLLATE = utf8 unicode ci ;

4B /*set the default collation on the tables, using convert will also set it for the fields in each table*/
5 ® ALTER TABLE ms_access_migration.badbits CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci ;

6 ® ALTER TABLE ms_access_migration.capacityindicatorsstats CONVERT TO CHARACTER SET utfd COLLATE utfs_unicode_ci ;
7 ® ALTER TABLE ms_access_migration.country CONVERT TO CHARACTER SET utf8 COLLATE uwtfd_unicode ci ;

& ® ALTER TAELE ms_access_migration.errorlog CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci ;

9 ® ALTER TABLE ms_access_migration.genderstats CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci ;

18 ® ALTER TABLE ms_access_migration.jobstats COMVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci ;

11 ® ALTER TABLE ms_access_migration.lookups CONVERT TO CHARACTER SET utfs COLLATE utfd unicode ci ;

12 ® ALTER TABLE ms_access_migration.series CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode_ci ;

13 ® ALTER TABLE ms_access_migration.users CONVERT TO CHARACTER SET utf8 COLLATE utf8_unicode ci ;

14

Figure 9.40 - The script will set all the tables to the correct collation for use with MS Access
13. Execute the query.
14. Delete the users table you just linked so that we can relink it.

15. Go back to Step I and try again. This time, the data should appear, all fixed. That
little trick will save you a lot of time and frustration trying to figure out what went
wrong. There is another script named Create Collation Conversion
commands . sql that will create the commands to fix each table in the schema,
and you can run this against any future database you create or migrate. Should
you forget about the collation, just change the schema name as appropriate.

16. If you are happy that the data has been migrated correctly and matches the original
users table, you can delete the zUsers table from the frontend.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.06
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter09/Exercise9.06

366 Microsoft Access — Part 1

Linking the tables back to MS Access is not difficult, and if their properties have been set
correctly, it will not cause many issues. Even a successful migration may cause issues, as
you will have found out if you got #Name? in Step 10, but most issues can be fixed easily.

Exercise 9.07 - linking a problematic MySQL table

to Access

The only issue you may find when linking a table from a MySQL database to MS Access is
usually because the primary key has not been set. We have some of them in our database,
so let's try and link one. Follow these steps to complete this exercise:

1. Rename the capacityindicatorsstats table in MS Access to
zcapacityindicatorsstats.

2. Click External Data | ODBC Database and select the link to the data source by
creating a linked table option.

3. When you're presented with the table list, select capacityindicatorsstats.
This time, you will get the following window:

Select Unique Record Identifier ? >

Fields in table 'capadtyindicatorsstats’:
]

Country Code

Series Code

Year

StatisticValue

Active

To ensure data integrity and to update records, you must
choose a field or fields that uniquely identify each record.
Select up to ten fields.,

Cancel

Figure 9.41 - This window only appears if no primary key is set in the table

Linking to your tables and views 367

4. When this happens, this means that the primary key hasn't been set for the table.
You have three options to fix this.

If you do not make a selection and click Cancel, the table will be linked but will be
read-only. This may or may not be a problem, depending on the table and how it is
being used - that is, if it is just populating drop-down lists and is not expected to be
updated, then there will be no problems.

5. Select up to 10 fields to ensure the uniqueness of the record. You will usually pick
one or two. Select the fields and click OK; the table will be linked and can be
updated. It is better to fix it in the backend immediately so that you don't get the
message because it will pop up every time you refresh the links and can get tedious.
If you are linking tables by VBA code, this message will not appear, and the table
will be linked as read-only.

6. Click Cancel and delete the linked table. Go to Workbench and fix the issue by
setting the primary key and auto-incrementing. Then, retry linking. This is the
best option.

7. To check whether the table has been linked correctly and is writable, open it to view
the records and move to the last record. If the bottom line is blank with an * at the
start, then it is writable, and all is well:

57689 ZWE 5.51.01.09.wat 2017 1 0
57690 ZWE 5.51.01.09.wat 2018
i |

Figure 9.42 — A linked table that can be edited

Tables that have no primary keys are the only possible issue you will have when linking
tables from MySQL, and that is more of a nuisance than anything else. In the next exercise,
we will refresh linked MySQL tables.

368 Microsoft Access — Part 1

Refreshing linked MySQL tables

Often, during migration and even into further development, you must make adjustments
to the tables and fields in the database. MS Access will not pick up these changes until
you refresh the links. Access provides you with a tool to do this easily, without having to
remove the table and relink it. To be able to refresh tables, follow these steps:

1. Inthe MS Access frontend application, select External Data | Linked Table
Manager from the ribbon. You will be presented with the following screen, which
displays all the linked tables and their data sources:

=5] Linked Table Manager >
Select the linked tables to be updated:
=) cacEits (L\Development\MyS0L Training Manual\Sample Database\\Waork Folder\M5 Ac|

[g;.a capacityindicatorsstats (DSM=ms_access_migration;)
v -] country (L\DevelopmentyMySOL Training ManualSample Database'\Work Folder\Ms Ac Cancel
v] errorlog (L'\Development\MySCL Training Manual\Sample Database\Work Folder\Ms A
[] genderstats [L\Development\MySQL Training Manual\Sample Database\Waork Folder\M
v %] jobstats [LhDevelopment\MySQL Training Manual\Sample Database\Work FolderMS A
v] lookups (L'\Development\MySQL Training Manual\Sample Database'\Work Folder\MSs A
[¥ 5[] series (L'\Development\My5CL Training Manual\Sample Database\Work Folder\M5 Acce Deselect Al
[g;.a users [DSM=ms_access_migration;)
v] zeapadityindicatorsstats [L\Development'\MySQL Training Manual\Sample Database\Wa

Select all

£ >

[] Always prompt for new location

Figure 9.43 — Selecting tables and options to refresh the links

2. Select the tables you want to refresh the links of. You can select any or all of them
as required.

3. Always prompt for new location, if checked, will ask for the table's source. If it's not
checked, the existing source will be used. Use this if the backend database has been
moved or changes IP.

4. Click OK; the tables will be refreshed and any field changes will now be available.

Note

You can have tables linked from multiple sources. If you're refreshing from only
one of the data sources, only select the source tables you wish to refresh.

Activity 9.01 - linking the remaining MySQL tables to your MS Access database 369

Refreshing table links is a very fast process and will update the internal MS Access data
that's related to the tables. This should be done whenever you're making changes to

the data source's structure or moving the backend data location or IP address. All data
sources, including MySQL, Access, and Excel, need to be refreshed if changes are made.

We're almost there! Let's complete another exercise and wind this data migration
process down.

Activity 9.01 - linking the remaining MySQL
tables to your MS Access database

We need to link the remaining tables from MySQL to the MS Access frontend so that we
can continue with the conversion process. In this activity, we will complete the linking
process for the remaining MySQL tables. The steps to complete the table links should be
followed in order. Please refer to Exercise 9.04 and Exercise 9.05 if required. Follow these
steps to complete this activity:

1. Rename all of the remaining original local tables in MS Access.

2. Check and set the primary keys of all the remaining MySQL tables in Workbench if
necessary.

Set the Al property of all the primary key fields in the remaining tables in MySQL.
4. Link all the remaining tables to MS Access.

Validate that the data is correct in all the MySQL linked tables compared to the MS
Access tables.

6. Finally, remove all of the old MS Access linked tables.

370 Microsoft Access — Part 1

After performing these steps, you should see the following output:

All Access Objects ® «

Search. yo
Tables #
*@ badbits

"1‘ capacityindicatorsstats
*@ country
*@ errorlog
*@ oenderstats
*@ iobstats
*@ lookups
*@ series
*@ users
Forms FS
Figure 9.44 - The linked tables once all the tables have been linked

Now, we get to start with the fun stuff. In the next chapter, we are going to transform the
MS Access application to leverage the power of MySQL. Come with us and we shall work
some magic that will mystify you!

Note

The solution to this activity can be found in the Appendix.

Summary

In this chapter, we migrated a backend database to MySQL using manual techniques.
We learned when we can and cannot use automated methods directly from MS Access,
depending on the versions and bit versions of MS Access and MySQL. Then, we learned
how to migrate an MS Access database to MySQL using MySQL Workbench. Finally, we
linked the MS Access application to the new MySQL server tables and proved that the
application still works.

Now that we have migrated our test database to MySQL, in the next chapter, we will
migrate the MS Access application to MySQL to leverage the power of MySQL.

10

Microsoft Access -
Part 2

In this chapter, you will convert a sample application to use MySQL data using passthrough
queries, and then you will learn how to convert a Microsoft Access (MS Access) table-reliant
form to be an unbound form that doesn't rely on local or linked tables. By the end of this
chapter, you will be able to remove all linked tables and check that the application still works.

This chapter covers the following topics:

Introduction to MS Access

Migrating an MS Access application to MySQL
Activity 10.01—Converting gender and job statistics
Calling MySQL functions

Activity 10.02—Creating a function and calling it
Calling MySQL stored procedures

Activity 10.03—Creating MySQL stored procedures and using them in Visual Basic
for Applications (VBA)

Using parameters

Activity 10.04—Parameterized stored procedure (series list)
Activity 10.05—Multiple parameters stored procedure (date lists)
The Bad Bits form

372 Microsoft Access — Part 2

Introduction to MS Access

In Chapter 9, you learned how to convert VBA Structured Query Language (SQL)
statements designed to work with linked tables. Using MySQL functions will simplify
retrieving results from the data while keeping the processing on the MySQL server and
therefore speeding up the MS Access application. In this chapter, you will migrate the MS
Access data processing over to the MySQL server to speed up the application. You will do
this using passthrough queries. You will learn how to integrate MySQL-based functions,
procedures, and views with MS Access VBA code and passthrough queries. You will learn
how to create parameterized procedures, how to pass parameters into them for filtering,
and how to use the returned data.

Migrating an MS Access application to MySQL

Migrating an MS Access database to MySQL is only half the job. A lot of people think
that if you put the data into MySQL, everything is going to be super-fast. But no; you will
usually see some improvement in data access speed in some areas, but in others, it may
even be slower than before.

Unless you modify the application to properly leverage the data processing power of the
MySQL server, you still only have a container for the data, and MS Access is still processing
the data. In this section, we are going to move the processing of data to the server by sending
requests for data and getting the results only, which we will then use in the application.

You do not have to completely migrate an application before it can be used. You can do
parts of it as required, so you will usually concentrate on specific areas that are slow;
maybe a report is taking too long to run, a screen is slow, or updating records on a specific
form is frustrating the users. Let the application's users direct you to areas that they would
like to see improved immediately and concentrate your efforts there for a quick win, and
work on other aspects as required or as time permits.

The assumption in this section is that you are comfortable with using the MS Access VBA
integrated development environment (IDE), you can create queries and SQL statements
for MS Access, and you have some understanding of the VBA programming language for
Access. Let's get started.

Passthrough queries

What is a passthrough query? A passthrough query will pass SQL statements directly to
the server for execution, totally bypassing the MS Access data processing engine. They
can be used for the following actions:

« Running MySQL console commands

 Running stored procedures and functions

Migrating an MS Access application to MySQL 373

« Running SQL statements

+ Retrieving and modifying data

How do we use a passthrough query? Depending on its specific function, it can be used
like any other query in Access to populate lists, provide recordsets, update data, and so on.
In several of the upcoming exercises, we want to populate several drop-down lists with
data based on the options selected in other drop-down lists. We will be designing a SQL
statement in VBA (using the users' selections) to be run on the server and generating a
passthrough query to pass the statement to the server, which will then run it and pass
back the filtered list via the passthrough query so that we can use the data to populate the
drop-down list. Passthrough queries can be designed in the Query Designer (text only—
not with the graphical user interface (GUI)) and saved; however, they are not dynamic
as the connection details are fixed, and if the server changes name or Internet Protocol
(IP) address, then they all need to be updated. Instead, we will be generating queries
dynamically using VBA code provided as a callable function. This will allow us to pass
parameters and will also deal with any server IP changes. You are welcome to use this
code in any of your future development.

Exercise 10.01 - Passthrough (simple SQL conversion)

In this exercise, we are going to start with a simple query to count records. The code is
behind the Populate Lists button, and the result will go into the Capacity Indicators
textbox, as you can see in the following screenshot. This is on the main form, and there are
seven database calls in total that we will be converting on this form. At the moment, they
are all processed by Access. Each piece of SQL code is numbered. The following screenshot
shows number 1, where we will start. The highlighted code is what we are going to replace,
and the new code will go into the blank space. Explanations will come after this exercise:

Private

Populatelists_Click()

m
Finish Tim

Seconds Take

Table Record Count Di

Capacity Indicators 5,136

- Stats 8,695

b Stats 17,046

Figure 10.1 - Location of code and structure of code blocks

374 Microsoft Access — Part 2

Follow these steps to complete this exercise:

1. If frmMain is open, right-click on its tab and select Design View. If not, right-click
on it in the Navigation Pane and select Design View. The form should open in the
design view, as illustrated in the following screenshot:

x
S e me e m e aa] PrOperty Sheet

Figure 10.2 - Main form in design view showing the property sheet and
activated events for the Populate Lists button

2. If the properties panel is not visible, right-click on the Populate Lists button and
select Properties.

3. Whereitreads [Event Procedurel], click the button with the three dots. The
code window will open at the code shown in the preceding screenshot.

Note

Unless instructed otherwise, this is how you get to the code we will be working
with. The SQL code is numbered and will be referred to by the number.

4. Comment out the two lines of code indicated in Figure 10.1 by placing an
apostrophe at the start of each line.

5. Enter the following code between the two lines:

SQL = "SELECT Count (capacityindicatorsstats.ID) AS
RecCount FROM capacityindicatorsstats;"

Call CreatePassThrough (SQL, "CISCount", True, False)

Set RS = CurrentDb.OpenRecordset ("CISCount",
dbOpenDynaset)

Migrating an MS Access application to MySQL 375

Your code for SQL. 1 should now look like this. If not, correct it:

'SQL 1

'When converting, comment out the code lines below (between the lines)

"5QL = "SELECT Count (capacityindicatorsstats.ID) AS RecCount FRCOM capacityindicatorsstats;"™
"Set R5 = CurrentDb.OpenRecordset (5QL, dbCpenDynaszet)

'Enter your new code between the lines below

' __ __ _ __ -
S5QL = "SELECT Count (capacityindicatorsstats.ID) AS RecCount FRCOM capacityindicatorsstats;"™
Call CreatePassThrough (SQL, "CISCount™, True, False)
Set R5 = CurrentDb.CpenRecordset ("CISCount"™, dbOpenDynaset)

R5.MoveFirst
Me.cntCIS = R5.Fields ("RecCount™)
R5.Close

Figure 10.3 - SQL 1 code block with old code commented out and new code added
Click Save.

7. Return to the form. Right-click on its tab and select Form View. The form will open
in the form view.

8. Click Populate Lists, and the data will be populated. Capacity Indicators should
hold a value of 5136, as illustrated in the following screenshot:

Start Ti
Populate Lists
Finish Ti
SecondsTa
Table Record Count

Capacity Indicators 5136
Gender Stats 8,695

Figure 10.4 — Onscreen results after the SQL 1 code is converted
Let's do a quick analysis of what we just did in the preceding exercise by stepping
through the code, as follows:

* The SQL statement is identical to the original and will run in MySQL without
modification.

376

Microsoft Access — Part 2

10.

* SQL is passed into a function that creates a passthrough query. The following
parameters are passed into the function:

+ SQL statement
+ Name of the passthrough query to create or change
* True or False to indicate if the passthrough query returns values or not

* True or False to indicate if the passthrough query is to be deleted before
being recreated

Because we are returning values, the query is assigned to a recordset. If this were
an action query, we would have executed it.

The CreatePassThrough function is well documented in code comments, and
the code is compact. You can view it in detail at your leisure, but to be brief, it will
create a passthrough query with a connection to the MySQL server to execute the
SQL statement on it.

As this is a small database and a small query, the improvement is not as immediately
noticeable here as it would be in a larger database and a more complex query. The
key thing here is that the MySQL server received a command in the form of a

single passthrough query, executed it, and returned the value only. We did not pass
thousands of records across the network and Access did not process it. Let's look at
the passthrough query that was created.

Go back to the main Access window.

In the Navigation Pane, select Queries from the drop-down list. You will see one
query named CISCount. Double-click on it to run it (this one is safe, but always
check what a passthrough query is doing before you run it). You will get the
following result:

Queries - |E frmMain |=F ClsCount
RecCount -
5136

Search..

@ ClsCount

Figure 10.5 - Passthrough query (the globe icon indicates a passthrough query) and its result

Activity 10.01 - Converting gender and job statistics 377

11. Right-click on the CISCount query and select Design View. The design view will
open. It is not the graphical view that you may be used to as it will be opened in a
SQL view, as illustrated in the following screenshot:

Queries ¥ « Efrml-.]ain ﬁ CIsCount x
SELECT Countlapadyindicatorsstats D] A Reccount rRoM . I roperty Sheet

Searci. yel capacityindicatorsstats;| Selection type: Query Properties
e CI5Count General
Description
ODBC Connect Str ODBC;DSM=ms_access_migration;
Returns Records Yes
Log Messages Mo
ODBC Timeout 60

Figure 10.6 - The SELECT statement to be passed to the server, the connection details,
and the indicator that it will return records
The main panel has the SQL statement we passed in. ODBC Connect Str has
a Data Source Name (DSN) reference to the Open Database Connectivity
(ODBC) connection that we use to connect to the server. This was assigned in the
CreatePassthrough function and has been preset for you in the lookup table

(LUT). Returns Records is set to Yes, indicating that the query will return results
in the form of one or more records.

The rest of the code for the code tagged as SQL 1 ensures that we are positioned to the
first record. It assigns the value to the cnt CIS textbox for display and closes the recordset.

Note

Before modifying any SQL code you are about to convert, run it in a
Workbench query tab first. If it works, great—one less thing to do. Otherwise,
you will need to convert it to the MySQL syntax.

Activity 10.01 - Converting gender and job
statistics

Your manager would like to convert the remaining GenderStats and JobStats

queries to passthrough queries to allow them to be processed more efficiently. In summary,
the following tasks will need to be completed:

1. Convert the SQL for GenderStats (SQL 2) and name the passthrough
query GENCount.

2. Convert the SQL for JobStats (SQL 3) and name the passthrough
query JOBCount.

378 Microsoft Access — Part 2

3. Convert the SQL for Country (SQL 4) and name the passthrough query
CTRYCount.

After implementing these steps, the expected output should look like this:

| 5 frmMain | 78 CTRYCount

Queries B«
Search.. Fel
@ Ciscount Citations
@ CTRYCount
@ GENCount
@ N DSN=ms_access_m
Populate Lists
FSRESI
Seconds Tak
Table Record Count
5136
8695
17046
3
13
263.
Figure 10.7 - Changes to the code and the affected onscreen controls
Hint

If a field name has spaces, Access encloses the field name in square brackets,
whereas MySQL encloses them in backticks. Backticks are located in the top-
left corner of your main keyboard, next to the I key.

We did not modify or move two of the original SQL statements. We tested them in
Workbench, and they worked, so there was no need to modify them. Count ry, however,
had a space in the field name, and the brackets Access uses had to be changed to
backticks—our first SQL modification. Always try to make as few changes as possible

to achieve the conversion.

So far, we have reduced the dependencies on the linked tables by four queries. We have
reduced MS Access from counting 31,140 records to reading only 4 with minimal
changes—a good start.

Note
The solution to this activity can be found in the Appendix.

Calling MySQL functions 379

Calling MySQL functions

It is possible to call MySQL functions using passthrough queries. This can help to generate
results without having to write additional code. To do this, you simply need to create a
passthrough query and use it to call functions as you would in MySQL.

Exercise 10.02 - Passthrough (calling MySQL functions)

You would like to be able to count the values in the series table in order to use the values
in analytics for reporting purposes. You currently have a function to do this, called
fnCountSeries. To be able to count the values, you can call this function from Access.
The following steps will demonstrate how this is done:

1. We are working on SQL 5, the Series count. Locate the code in MS Access.

2. Loadthe Create Function fnCountSeries.sql fileinto a query tab in
Workbench and run it. This will create a function to count and return the records
in the series table, as illustrated in the following screenshot. Verify the function
that was created:

SCHEMAS ® -

=1 |FiItE|' objects |

[backuppractice
> import_test
L _3 ms_access_migration
‘F@ Tables
» E badbis
['j capacityindicators
» = country
b = errorlog
b 'j genderstats
» E jobstats
['j lookups
> D series
b D users
@ Views
@ Stored Procedures
Y@ Functions
f{) fnCountSeries

Figure 10.8 — New function in the schema panel

Note
The Create Function fnCountSeries.sql file can be found here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterl0/Exercisel0.02

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter10/Exercise10.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter10/Exercise10.02

380 Microsoft Access — Part 2
3. Calling a function simplifies our SQL statement. We no longer need the original
SQL statement in the code, so comment it out.
4. Our new SQL statement is shown in the following code snippet; the value the
function returns is stored in a derived field named SeriesCount:
SQL = "SELECT fnCountSeries()as SeriesCount"
5. Add the call to the CreatePassThrough function, as follows:
Call CreatePassThrough (SQL, "CntSeries", True, False)
6. Open the query in a recordset, like this:
Set RS = CurrentDb.OpenRecordset ("CntSeries",
dbOpenDynaset)
7. Position the first record. Assign the value to the textbox for display. Note in the
following code snippet that the field name has changed:
RS.MoveFirst
Me.cntSeries = RS.Fields ("SeriesCount")
RS.Close
8. Save and view the results on the form.

Functions are handy when you need to return a single value such as a record count or a
calculation result. Calling them from VBA is not difficult. All the previous exercises could
have used functions instead of SQL statements to achieve the same results; however, we
are demonstrating various ways to achieve results and get the bulk of the processing away
from MS Access and onto the MySQL server. In the next section, we will do an activity
wherein we will create a function and then call it.

Activity 10.02 - Creating a function and

calling it

As part of your project to convert the MS Access application to MySQL, you have reviewed
the SQL 6 SQL statement and have determined that the statement should be converted to
a MySQL function to force the processing to the MySQL server, simplify the VBA code, and
ensure there is only a single value returned.

Activity 10.02 - Creating a function and calling it ~ 381

You will be working with the code tagged as SQL 6. In this activity, you will create a
function to count and assign the total groups to the cntGroups textbox. Follow these
steps to complete this activity:

1. Copythe Create Function fnCountSeries.sql file used in the previous
exercise and name the new file Create Function fnCountGroups.sql.

Note
The Create Function fnCountSeries.sql file can be found here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterl0/Exercisel0.02

2. Modify the new file to create a function named fnCountGroups.

3. Use the original SQL statement from VBA. Make a slight adjustment to the SQL
for it to work as a MySQL SQL statement.

4. Run it in a Workbench query tab to create this new function.
5. Call the function from VBA.

After implementing the preceding steps, the expected output should look like this:

Start Time [09-Oct-19 6:14:28PM |
Populate Lists
Finish Time [09-Oct-196:14:29PM |

Seconds Taken | 1 |

Table Record Count Drop Down Combo Count

Capacity Indicators
Gender Stats
Jobstats [17046 |
croups 3] | I
series| 13 || M |
Country[263 || ~[23 |

Figure 10.9 - The final output for Groups

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter10/Exercise10.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter10/Exercise10.02

382 Microsoft Access — Part 2

Converting the application's SQL code to a function will remove the processing from
Access to the MySQL server and reduce the VBA code to a minimum. It will also speed

up execution, and if the function's processing needs to be changed in the future, no VBA
using the function will need to be changed. In this activity, we created a function using a
SQL script file, but we could easily have created it using Workbench. Another advantage of
functions and the upcoming stored procedures is that they can be used by any application
capable of using them, including MS Excel.

Note
The solution to this activity can be found in the Appendix.

Calling MySQL stored procedures

Stored procedures are similar to functions, except they can return a recordset. You cannot
modify the returned records, but they are ideal for populating ListBoxes, ComboBoxes,
and VBA read-only recordsets. Let's populate some dropdowns using stored procedures
in the next exercise.

Exercise 10.03 - Calling a MySQL stored procedure

We are working on SQL 7 for the next exercise and activity. SQL. 7 comprises three
separate queries populating the three dropdowns on the main form. This exercise will work
through one of them, the Series dropdown. Follow these steps to complete this exercise:

1. Locate the VBA code for SQL 7.
2. Create a SQL file and name it Create Procedure spSeriesList.sqgl.

3. Type the following code to use a target database:

USE ms_access migration;

4. Delete the stored procedure if it exists, as follows:

DROP PROCEDURE IF EXISTS spSeriesList;

5. Set up a custom delimiter. This tells MySQL that everything between the custom
delimiter is to be treated as one procedure. The code is illustrated in the following
snippet:

DELIMITER //

Calling MySQL stored procedures 383

6. Create and name the stored procedure, like so:

CREATE PROCEDURE spSeriesList ()

7. Add BEGIN to indicate where our procedure code starts, like this:

BEGIN

8. Add procedure statements. These are the same SQL statements from VBA, so you
might just want to copy that. The bracketing on the field names is changed to suit
MySQL's requirements. The code is illustrated in the following snippet:

SELECT DISTINCT ms_access _migration.series.'Series Code',
ms_access _migration.series.'series Name'

FROM ms_access_migration.series ORDER BY ms_access_
migration.series. 'series Name';

9. Indicate the end of the code and also the delimiter, as follows:

END//

10. Reset the delimiter back to its default, like so:

DELIMITER ;

11. Save the script.

12. Load the script into a Workbench query tab and run it. You should now have a new
stored procedure in the schema list, as illustrated in the following screenshot. Don't
forget to refresh the list:

B views
v [stored Procedures
[spSeriesList
¥ B Functions
Figure 10.10 - New stored procedure in the schema panel

13. To test the stored procedure, type the following code into a new query tab:

call spSeriesList

384 Microsoft Access — Part 2

You should get the following result:

[__lgl}?'j/ﬁ ||E;b| I:'T':'.'h'||3'|:un'tIJm'rt
1 B8 call spSerieslList
2
. -
| Result Grid | J_J Filter Riows: |:|| Export: Bl | Wrap Cel
Series Code series Mame

S 5.51.01.09.water Access to water

14.

SP.DYM.CBRT.IM
5.51.01.04.immun
FP.CPL.TOTL
MY.GDP.MKETP.CD
3.02.01.02.fscov
IT.MET.USER.Z5
SP.DYM,LEDOD.FE.IM
SP.DYM.LEDO.MA,IN
SP.POP.TOTL
SL.EMP.TOTL
5P.URE.TOTL.FE.Z5
SP.URE.TOTL.MA.ZS

Birth rate, crude {per 1,000 people)
Child immunization

Consumer price index (2010 = 100)
GDP (current USE)

Government finance accounting
Individuals using the Internet (% of population)
Life expectancy at birth, female (years)
Life expectancy at birth, male {years)
Population, total

Total employment, total (ages 15+)
Urban population, female (% of total)
Urban population, male (% of total)

Figure 10.11 - Calling the stored procedure and the output

Now, for VBA, go to the VBA window. Insert some blank lines to separate

Me.cmbSeries.RowSource from the other two lines to give yourself some room
to work.

15. Working above the original line of code, add the following line to prepare the SQL
statement for the passthrough query:

SQL = "call spSeriesList;"

16. Add the following line to call the function to create a passthrough query:

Call CreatePassThrough (SQL, "spSeriesList", True, False)

17. And finally, modify the assignment to cmbSeries.RowSource, as follows:

Me.cmbSeries.RowSource = "spSeriesList"

Calling MySQL stored procedures 385

18. Click Save, and we are done. Click the Populate Lists button on the main form in
Access, and the list should be populated, as shown here:

Start Time 09=Ct= 19 B 00eAS P
Populate Lists
Tinish Time 09-Coct- 19 3: 000405 PR

Seconos Takan 1

able Hecord Count Urop Dowen Loanb Count
apiarity Innkzators a212b
Gencer Stats gaas
1 5l 17046
S 3 = 3

Serees 13 - 13

ADcess towater

Birtky rale, crude {per LM peaple)

ChHik Immunizafion

Lt Yea Cansumar price index {2014 - 100}

GOP {current UEs)

Goreerremant Mirgnee scpounling
Indiiduals using the Intermet (% ot poadation)
Life eupectancy at birth, femsle (years]
Lifs sapectaney at burth, male (years)
Population, Watal

ime - Saries Nam Total employment, total jages 154
Urken population, fernale {9 of total)
Urban population, male (% of total]

ULy 63

Figure 10.12 - Drop-down list after the passthrough query using the stored procedure is assigned

Simple stored procedures are no more difficult to create than functions but return a lot
more. Having a stored procedure return a list makes it very easy to populate a listbox
control, and we can assign the passthrough query directly to the list as the row source.
Stored procedures or functions can, of course, be much more complex than we have
shown here. They can run multiple SQL statements and can have their own built-in logic
flow. So, learning more about them will greatly enhance your employability as they are a
much sought-after skill in the job market.

386 Microsoft Access — Part 2

Activity 10.03 - Creating MySQL stored
procedures and using them in VBA

Continuing with your conversion project, you have noticed two dropdowns using lists
provided by the VBA code. You also noticed the lists are not filtered, so you have decided
the best way to handle these two lists is to convert them to stored procedures because they
can return a recordset. In this activity, we will be creating MySQL stored procedures and
using them in VBA. Follow these steps to complete this activity:

1. Create two new stored procedures named cmbGroups and cmbCountry.

2. Refer to Exercise 8.11 for the specific steps, if required. Be sure to change the names
and SQL as required for each list.

3. Take note of field names with a space. Remember to change the square brackets []
to backticks ' '.

4. Modify the VBA code to use the new stored procedures with a passthrough query.

After performing the steps, the expected output should look like this:

Table Record Count Drop Down Combo Count
Capacity Indicators 5136
Gender Stats 8695
Job Stats 17046
Groups 3 3

Series 13

Country 263 Job Statistics 263

Using parameters 387

3 Gandar Statistics w 3
13 13
o] w 63
afghanistan -
Yea Albania
Algeria
American Samoa
Andorra
Angola

Antigua and Barbuda
Arab Warld
Series Mamd ATEEMTING 006 . N
Armenia
Aruba
Australia
Austria
Arerbaijan
Bahamas, The
Bahrain W

Figure 10.13 - Dropdowns displaying the lists

Stored procedures can return a recordset of data. They can be a single column of data or
multiple columns. They can also be assigned directly to data-consuming controls such as
drop-down boxes—as we have done here using passthrough queries, lists, or even a single
field. As with functions, they can be used by applications such as Excel, so they are ideal
when you wish to use the same data across multiple applications.

Note
The solution to this activity can be found in the Appendix.

Using parameters

Up to now, we have only been dealing with extracting results from the database as either
single values or as complete, unfiltered lists as defined by the SQL statements, functions,
and stored procedures. However, we often need to filter the data to get the results required
for processing in VBA or to populate controls such as drop-down lists. We filter the

data by passing in parameters to the SQL statements, stored procedures, or functions.

The following exercise will step through creating a stored procedure to accept a single
parameter—the group that the user has selected. The stored procedure will then query
the database using the filter to return a list of series relating to the group and pass back
the results to VBA to display the list in the Series dropdown.

388 Microsoft Access — Part 2

Parameterized stored procedures

Most SQL statements in MS Access that you are converting to MySQL have parameters
that make them flexible. You can use the same parameters in your stored procedures when
you convert them, and most will be of the IN type. The following exercise concentrates on
the IN type.

Exercise 10.04 - Parameterized stored procedure
(series list)

You have found code generating a list for another dropdown that uses the selections from
other dropdowns as a filter to make the data relevant to the user's selection. You have
decided to use a parameterized stored procedure to get the relevant list.

We will be working with the code tagged as SQL 8 for this exercise. You can find it in the
After Update event of cmbGroups. The purpose of this SQL is to provide a Series
list for the cmbSeries dropdown filtered to the selected group that is used as a
parameter. Follow these steps to complete this exercise:

1. Create a new file named Create Procedure spSeriesList par.sqgl.

2. Enter the following code. This is similar to what we used earlier to create a stored
procedure, except for the name:

USE ms_access migration;
DROP PROCEDURE IF EXISTS spSeriesList par;
DELIMITER //

3. Enter the following code to create a procedure named sp_SeriesList par:

CREATE PROCEDURE spSeriesList par(IN GroupName
VARCHAR (25))

BEGIN

The IN parameter declaration is within brackets. Here, we are declaring an IN
parameter with a GroupName variable name of type VARCHAR (25) . With this
declaration, the calling program will be required to pass in a parameter. BEGIN
indicates the stored procedure code is to follow.

4. Our SQL statement is separated into four lines for readability. Type the following code:

SELECT DISTINCT ms_access migration.series.'Series Code',
ms_access_migration.series.'series Name'

FROM ms_access_migration.series

Using parameters 389

This is the first part of the SQL statement used in VBA, with [] replaced by ' '.

In VBA, the filter was inserted by referencing the value in cmbGroups; here, it is
passed in. Enter the following line of code. Notice we use GroupName for the filter,
and we do not need to wrap it in backticks or quotes:

WHERE series.'Group' = GroupName

Finish off the code with ORDER BY, as it was defined in VBA, the END parameter (of
our BEGIN parameter). // is the end of the modified delimiter,and DELIMITER;

is to set MySQL back to the default delimiter character. The code is illustrated in the
following snippet:

ORDER BY ms_access migration.series.'series Name';
END//
DELIMITER ;

Save and run the SQL in a query tab in Workbench.

Test it by typing the following command into a query tab to get the results,
as shown here:

eIy raosl [@ | Dont Limi
1w kall spSeriesList par('Job Statistics')
2

< -
| Result Grid | ﬁ Filter Riowis: I:H Export: % |Wrap Cell

Series Code series Name
9 Consumer price index (2010 = 100)

IT.MET.USER.Z5 Individuals using the Internet (3% of population)
SP.OYM.LEOQ.FE.IN Life expectancy at birth, female (years)
SP.OYM.LEOQ.MA.IN Life expectancy at hirth, male (years)
SP.POP.TOTL Population, total

SL.EMP.TOTL Total employment, total (ages 15+)

Figure 10.14 - Testing the parameterized stored procedure and its results

Now you have created a stored procedure, we will use it in the next activity to move
processing over to the MySQL server.

390 Microsoft Access — Part 2

Activity 10.04 - Parameterized stored
procedure (series list)

You have been asked to modify the code tagged as SQL 8 to call spSeriesList
par () from a passthrough query and assign it to the cmbSeries row source. Perform
the following steps to implement this activity:

1. Locate the SQL code in VBA marked SQL 8.

2. Comment out the existing SQL statement. Hint: When you are modifying code,
always comment out the original lines of code before creating a new line. This gives
you a) a reference to the original code and b) an easy way to reinstate the original
code if required. You can remove the line after you have tested and confirmed the
new code is working.

3. Create a SQL statement for the passthrough query. This time, pass the filter value
to the stored procedure in the brackets and, as we are passing in a string, ensure
it is enclosed in single quotes.

4. Assign the resulting passthrough to the dropdown.

After implementing these steps, the expected output should look like this:

Groups 3 Capacity Indicators w 3
Series 13
~ Access to water
~ountry 263 Child immunization
Government finance accounting
Start Year -

Figure 10.15 - Changing the group will change the series list values

The key to this exercise and activity is the ability to pass parameters into stored procedures.
Building the SQL requires a call to the procedure, and passing in the parameters is no
different from VBA's original SQL version, so in a lot of cases, you may be able to simply
copy parameters from VBA's existing statement. The inclusion of parameters makes the
code much more flexible.

Activity 10.04 - Parameterized stored procedure (series list) 391

The original SQL statement was executed by Access. This means Access pulled all the
series data from the server and then applied a filter to get the rows we wanted, whereas the
new SQL statement encoded the parameter values into a MySQL-styled SQL statement to
call the stored procedure and, by sending it to the server as a passthrough query, MySQL
executed the stored procedure, filtered the list based on the parameter value, and returned
the results only.

Note
The solution to this activity can be found in the Appendix.

Exercise 10.05 - Multiple parameters stored procedure
(country list)

In this exercise, we will be working with multiple input parameters to get a country list for
the cmbCountry dropdown. We will be working with the code tagged as SQL. 9, which is
located in the cmbSeries AfterUpdate () event.

The purpose of the code is to provide a list of valid countries that have a statistic for the
chosen group/series combination. The group data comes from different tables, so we need
to pass in two parameters: the table we are looking at and the series. We have some VBA
to determine which table we need to include in the SQL based on the selection in the
group combo.

Here is the code at the start of the cmbSeries AfterUpdate () event:

Select Case Me.cmbGroups
Case "Capacity Indicators"
TableName = '"capacityindicatorsstats"
Case "Gender Statistics"
TableName = "genderstats"
Case "Job Statistics"
TableName = "jobstats"
End Select

This will store the table name in the TableName string variable. The series value can be
read directly from the cmbSeries dropdown.

We cannot use the TableName value as we did for the normal filtering values in the
last exercise. We have to prepare the SQL for the stored procedure differently. We will be
dynamically building the SQL based on the TableName value passed in.

392 Microsoft Access — Part 2

The CONCAT () command will help us piece together the SQL statement. Type or cut
and paste the following line of code into a query tab in Workbench and run it to see
what CONCAT () does:

SELECT CONCAT ('This ','is ','an ', 'example ', 'of ', 'string
', '"CONCATenation')

When you run it, the result will be all the text joined into one string, as shown here:
1 B SELECT CONCAT('This ','is ','an ', 'example ','of ','string ', 'CONCATenation')

£

| Result Grid | _I'j 4% Filter Rows: l:“ Export: B[] |Wrap Cell Content: A

COMCAT(This ','is ','an ', 'example ','of ', 'string

[l This is an example of string CONCATenation

Figure 10.16 — Sample of a concatenated string in SQL and its output

Let's get started with building the stored procedure, as follows:

1. Create a new text file named Create Procedure spCountryList par.sql.

2. Enter the following code, which is the same as in the last exercise, except for the
stored procedure name:

USE ms_access migration;
DROP PROCEDURE IF EXISTS spCountryList par;
DELIMITER //

3. Add a CREATE PROCEDURE command. This time, we have two IN parameters
separated by a comma, as we can see in the following code snippet:

CREATE PROCEDURE spCountryList par (IN TableName
VARCHAR (25) , IN TheSeries VARCHAR (25))

BEGIN

4. Start the concatenation, and the resulting string will be stored in the @t 1 variable,
which we will use later. The code is illustrated in the following snippet:

SET @tl = CONCAT (

Activity 10.04 - Parameterized stored procedure (series list) 393

Start building the SQL. This is the same SQL as the VBA code. with a few points to
note: [] is replaced by ' ', of course. Each text block is enclosed in single quotes.
Where TableName is included, the preceding text block's quote is terminated, a
comma is included, and then the TableName variable, another comma, and the next
text block's opening quote are included. Spaces are included at the end of each line
so that the command starting on the next line does not end up hard against the text
and cause a SQL error. Build a string, and as we include the actual value of series, it is
enclosed in double quotes. The code is illustrated in the following snippet:

'SELECT DISTINCT Country.'Country Code', Country.'Country

Name', ' , TableName , '.'Series Code' ',

'"FROM Country INNER JOIN ' , TableName , ' ON

Country. 'Country Code' = ' , TableName , '.'Country Code'
! I

'"WHERE ' , TableName , '.'Series Code' = "' , TheSeries ,

rn 1
12

'ORDER BY Country.'Country Name''
) 5

This code is not all that different from the VBA method of joining strings with
an ampersand.

We treat this a little differently. The following line prepares a statement using the
text we just put together:

PREPARE stmtl FROM @tl;

Execute the statement, clean things up, and finish as before, like so:

EXECUTE stmtl;
DEALLOCATE PREPARE stmtl;

Save and run the script. Test the new stored procedure with the following call to get
the results shown:

call spCountryList par ("Jobstats","FP.CPI.TOTL")

394 Microsoft Access — Part 2

This results in the following output:

WEe¥yTFraosl % | Dont Limi -
1 B8 ca3ll spCountrylist par("jobstats","FP.CPI.TOTL")
I 2
Result Grid | :rj Filter Rows: I:l | Export: B[] | Wrap Cell Content
Country Code Country Mame Series Code
b Afghanistan FP.CPL.TOTL
ALB Albania FP.CPL.TOTL
DZA Algeria FP.CPLTOTL
AGO Angola FP.CPL.TOTL
ATG Antigua and Barbuda FP.CPL.TCOTL
ARM Armenia FP.OPL.TOTL
ABW Aruba FP.CPL.TOTL
ALS Australia FP.CPL.TOTL
AuT Austria FP.CPL.TOTL
AZE Azerbaijan FP.CPI.TQTL
BHS Bahamas, The FP.CPLTOTL
BHR. Bahrain FP.CPL.TOTL
BGD Bangladesh FP.CPL.TOTL
BRE Barbados FP.CPL.TOTL
BEL Belgium FP.CPL.TOTL
BLZ Belize FP.CPL.TOTL

Figure 10.17 - Testing the stored procedure and the expected output

9. For the VBA code to run and assign the stored procedure, we are passing in the
TableName variable and the value in cmbSeries, as illustrated in the following
code snippet. When you change series, you will notice the country counter change.
Since not all countries have statistics for the various series, you might get a zero.
Try other combinations:

SQL = "Call spCountryList par('" & TableName & "', '" &
Me.cmbSeries & "')"

Call CreatePassThrough (SQL, "spCountryList par", True,
False)

Me.cmbCountry.RowSource = "spCountryList par"

Activity 10.05 - Multiple parameters stored procedure (date list) 395

Adding multiple parameters is no more difficult than adding parameters to a VBA
function. Parameters make our stored procedures and functions very useful, and once
they are created, they do not need to be changed until the logic built into them requires
changing. We will constantly be changing the passthrough queries to get our different
variables passed in, but with the CreatePassThrough function, this is simple.

Note

All the passthrough queries we have created were deleted and recreated for this
book. In the real world, some of these will be created and remain fixed, such

as counters with no parameters. You will figure out the best approach as you
develop them and as your needs dictate.

Activity 10.05 - Multiple parameters stored
procedure (date list)

Working through the migration project, you have identified two date controls used to filter
data. The existing code uses VBA to generate SQL statements for the date dropdowns.

The generated SQL is filtered by the users' selections to extract a specific date range for

the statistics and put the date lists in the dropdowns. You want to convert these queries

to parameterized stored procedures.

In this activity, you will create a stored procedure to determine dates, generate a
passthrough query, and assign it to both date dropdowns.

The code tagged as SQL. 10 currently determines the range of dates and assigns them to
both the Start Year and End Year dropdowns.

Note

Both the Start Year and End Year dropdowns will use the same passthrough, so
it only needs to be generated once and assigned to both of them. Name the SQL
file Create Procedure spDateRange par.sql.

Perform the following steps to complete this activity:
1. Create a new SQL file named Create Procedure spDateRange par.sqgl
to generate a stored procedure.

2. Copy and paste the code from the spCountryList par.sqgl SQL file you
created in the previous exercise into the new file. You will modify this code.

396 Microsoft Access — Part 2

3. Refer to Exercise 8.13 for the steps, if required.

4. 'The parameters are the same. The SELECT statement will only return one value,
Year; the Order field will be Year; everything else will remain the same.

After implementing the steps, the expected output should look like this:

Groups 3 Gender Statistics ~ 3 Groups | 3 | Dob statistics [3 |

~ a Series Consumer price index (2010 = 100)

ountry 263 [algeria v 256 country[263 || V[7

EndYear [2018 v EndYear 2016 ~

Figure 10.18 - Both date comboboxes will change based on the series selected

There is no real difference between this activity and the previous activity, except that we
are reading data with a single stored procedure and assigning it to two date comboboxes to
provide a start and end date option for filtering the user's selections. The stored procedure
returns a valid date range for the series selection, and VBA assigns it to the controls and
then sets the default displayed date accordingly. A passthrough query, as with any normal
MS Access query, can be assigned to multiple controls and used in code.

Note
The solution to this activity can be found in the Appendix.

Exercise 10.06 - Multiple parameters stored procedure
(crosstab queries)

Up to now, we have been working with standard SQL statements; however, we have one
more query to convert on the main form. You can find it behind the View Data button. It
is designated as SQL 11, and it is a pivot query, commonly referred to in MS Access as a
crosstab query. We have a problem; MySQL does not have a pivot function and cannot run
such a query. You can imitate them in MySQL, but it is a complex process and well out of
the scope of this book. This query is important in this demonstration application because
it provides data for both the statistics table and the chart.

In this exercise, we will break this query down and get MySQL to retrieve the data, then
get Access to do some of the work performing the final crosstab functions. Let's get started
by first examining the query, as follows:

Activity 10.05 - Multiple parameters stored procedure (date list) 397

S5QL
5QL
SQL
S5QL
SQL
SQL
SQL
S5QL
5QL
SQL
S5QL
S50L
SQL

SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
SQL
S0L
SQL

BB RO R R R R R R W R

"TRANSFORM Sum (™ & TableName & ".StatisticValue) AS SumODfStatisticValue "
"SELECT country. [Country HName], series.[Series Name] "

"FECM ("™ & TableName & " "

"INNER JOIN country ON "™ & TableName & ".[Country Code] = country.[Country Code]) "
"INNER JOIN series ON " & TableName & ".[S5eries Code] = series. [Series Code] "
"WHERE ({(country.[Country Code]) = "" & Me.cmkCountry & "'} "

"And ((series.[Series Code]) = '™ & Me.cmbSeries & "")"

"And (("™ & TableName & ".Year) >= " & Me.StartYear &£ ™ "

"ind (" & TableName & ".Y¥ear) <= " & Me.End¥Year & ") "

"and ((series.Group) = "" & Me.cmbGroups & ""))"

"GROUP BY country. [Country Name], series.[Series Name] "
"ORDER BY " & TableName & ".Year "
"PIVOT " & TabkleName & ".Year;"

Figure 10.19 - The existing crosstab query with the SELECT part between the highlighted lines

Notice the SQL between the SELECT and ORDER BY lines is one complete query. We can
migrate this part to a stored procedure, but we need to make a couple of minor changes,
which we will point out when needed. Let's start on the stored procedure, as follows:

1.
2.

Create a file and name it Create Procedure spCTSource par.sql.

Add the following lines of code:

USE ms_access _migration;
DROP PROCEDURE IF EXISTS spCTSource par;
DELIMITER //

This query requires a lot of parameters. Add the following lines. Each parameter is
on its own line for readability:

CREATE PROCEDURE spCTSource par

(

IN
IN
IN
IN
IN
IN
)

TableName VARCHAR (25),
TheSeries VARCHAR (25),
TheGroup VARCHAR (25),
TheCountry VARCHAR (100),
StartYear VARCHAR (20),
EndYear VARCHAR (20)

4. Start the BEGIN process and set up CONCAT, as follows:

BEGIN
SET @tl = CONCAT (

398 Microsoft Access — Part 2

5.

Here is a MySQL-formatted query to match the VBA statement shown in
Figure 8.72:

'SELECT country.'Country Name',K series.'Series Name',K ',

TableName ,'.'Year', ', TableName ,'.'StatisticValue' '
'FROM (', TableName ,' '
'INNER JOIN country ON ', TableName ,'.'Country Code' =
country. 'Country Code') '
'INNER JOIN series ON ', TableName ,'.'Series Code' =
series.'Series Code' '
'"WHERE (((country.'Country Code') = "' , TheCountry , '")
!
'And ((series.'Series Code') = "' , TheSeries , '") !
'And ((', TableName ,'.Year) >= "' , StartYear , '" '
'And (', TableName ,'.Year) <= "' , EndYear , '") '
'And ((series.Group) = "' , TheGroup , '"))'
'"GROUP BY country.'Country Name', series.'Series
Name', ', TableName ,'.'Year' '
'ORDER BY ', TableName ,'.Year '

The Year and StatisticValue fields have been added to the SELECT statement,

and the Year field has been added to the GROUP BY statement. TableName is
included, as names will come from different tables depending on the parameters
passed in.

The rest is the same as we covered previously, as indicated in the following code
snippet:

) 5

PREPARE stmtl FROM @tl;
EXECUTE stmtl;

DEALLOCATE PREPARE stmtl;
END//

DELIMITER ;

Activity 10.05 - Multiple parameters stored procedure (date list) 399

7. Save the file, then load and run it in Workbench to create a stored procedure.

Now, for VBA, to make it work with Access, locate SQI. 11 in VBA and comment
out the entire SQL block of code.

9. As there are a lot of parameters to pass in, build a string of parameters only,
as illustrated in the following code snippet. This will create a single string of
parameters—that is, ' jobstats', 'FP.CPI.TOTL', 'Job Statistics',
'DZA', '2004',and '2016':

Dim txtPars As String
txtPars = "'" & TableName & "', "
txtPars = txtPars & "'" & Me.cmbSeries & "', 6"

txtPars = txtPars nin

Me.cmbGroups & "',"
.cmbCountry & "', "
Me.StartYear & "', "

Me.EndYear & "'"

mirn

&
txtPars = txtPars & "'"
txtPars = txtPars &

&

R R R R
=
0]

nmrmn

txtPars txtPars

10. Now, create a passthrough, as follows:

SQL = "Call spCTSource par (" & txtPars & ")"
Call CreatePassThrough(SQL, "spCTSource par", True,
False)

11. Recreate the crosstab query but use our new data source, like this:

SQL = "TRANSFORM Sum(spCTSource par.StatisticValue) AS
SumOfStatisticvValue "

SQL = SQL & "SELECT spCTSource par. [Country Name],
spCTSource par. [Series Name] "
SQL SQL & "FROM spCTSource par "

SQL = SQL & "GROUP BY spCTSource par. [Country Name],
spCTSource par. [Series Name] "

SQL = SQL & "PIVOT spCTSource_par.Year; "

400 Microsoft Access — Part 2

Your final SQL. 11 code should look like this:

'Dynamically build the S50QL statement using the wvalues selected
'50L 11

'"When converting, comment out the code lines below (between the lines)
'

Enter your new code between the lines below

' SQL = mw
' S5QL = 5QL & "TRANSFCEM Sum("™ & TableName & ".S5tatisticValue) AS SumOfStatisticValue "

' 5QL = S5QL & "SELECT country.[Country Name], series.[Series Name] "

' S5QL = SQL & "FRCM (™ & TableName & " ™

' 5QL = S5QL & "INNER JOIN country CON " & TableName & ".[Country Code] = country.[Country Code]) ™
' S5QL = SQL & "INNER JOIN series CN " & TableNames & ".[Series Code] = series.[Series Code] "

' S5QL = 5QL & "WHEEE (((country.[Country Code]) = '" & Me.cmbCountry & "'} "

' S5QL = S5QL & "And ((series.[Series Code]) = '" & Me.cmbSeries & "')"

' S5Q0L = 5QL & "And ((™ & TableName & ".Year) >= " & Me.Start¥Year & " "

' S5Q0L = S5QL & "And (" & TableName & ".Year) <= " & Me.End¥Year & ") "

' S5Q0L = 5QL & "And ((series.Group) = '" & Me.cmbGroups & "'))"

' 5QL = 5QL & "GROUP BY country. [Country Name], series.[Series Name] "

' S5QL = 5QL & "CRDER BY " & TableName & ".Year "

' S5QL = SQL & "PIVOT "™ & TableName & ".Year;"

'

'

'

Dim txtPars As String

'Create formatted string of parameters

txtPars = "!'"™ g TableName £ "', "

txtPars = txtPars & "'" & Me.cmbSeries &£ "', "
txtPars = txtPars & & Me.cmbGroups & "', "
txtPars = txtPars & "'" & Me.cmbCountry & "', "
txtPars = txtPars & "'" & Me.S5tart¥Year & "', "
txtPars = txtPars & "'" & Me.EndYear & "'"

mim

'Set new 50L and create the passthrough
5QL = "Call spCTSource par (" & txtPars & ")"
Call CreatePassThrough (5QL, "spCTSource_par", True, False)

'Create the new Transform SQq

S5QL = "TRANSFOEM Sum(spCTSource par.StatisticValue) AS SumOfStatisticValue "

5QL 5QL & "SELECT spCTSource_par. [Country Name], spCTSource_par. [Series Name] "
5QL = 5QL & "FROM spCTSource _par "

S5QL = SQL & "GROUP BY spCTSource_par. [Country Name], spCTSource par.[Series Name] ™
5QL = 5QL & "PIVOT spCTSource par.Year; "

Figure 10.20 - The new Transform code in SQL should look like this

12. We are done. The rest of the code uses the SQL variable to assign the recordset
and also to show or hide columns and other housekeeping stuff. The data changes
are complete. The main data collection is now moved to MySQL; however, the
TRANSFORM processing remains in Access. The Transform SQL is much simpler.

13. Run the Access form and ensure both the display list and the chart work.

The Bad Bits form 401

Crosstab queries are among the most difficult to work with, and MySQL's inability to
process them natively can cause major problems when converting to MySQL. But as you
can see, with a little thought, it can be done relatively easily. Here, we moved the main data
collection to MySQL, and we got Access to finish off by creating a new crosstab based on
the MySQL sourced data, and it is still fast.

In the samples in this training course, we had one function (Populate Lists) running
multiple SQL statements to perform its task to update the screen values. We converted
each one individually to various methods using passthrough queries, functions, stored
procedures, and SQL statements. This was for training purposes, and as we were updating
various form controls, each had to be a separate entity.

Often in business, you will have a function performing several tasks on the database— for
instance, a sales system in filling an order will perform several tasks for each sale, such as
creating a sales record, reducing the inventory for each item purchased, generating a reorder
if stock levels get below a threshold, generating a picking list, generating a consignment
record, and updating a customer's purchase history in a single function from VBA.

If you are running multiple SQL statements in your VBA code to update multiple tables
(as in the preceding example), you can embed all the statements into a single stored
procedure (such as spProcessSale (OrderList, CustomerID)),passin the
required parameters (Items purchased, CustomerID), and call it once. This approach
could reduce your VBA code from hundreds of lines to only a few, reduce MS Access
processing to almost nothing, and make your code much simpler.

The Bad Bits form

In the previous sections, we have not worked with bit fields except to set the default values.
Bit fields are known as Yes/No fields in MS Access. When migrated to MySQL, they will
become either a Bit or a TinyInt type, depending on how you migrated the table. Both
types have some very peculiar properties when linked back to MS Access, which you need
to know about. Let's have a further look here:

e Bit

* Will only accept -1 or 0 (True/False)

* Will accept NULL but then will no longer work with Access
e TinyInt

* Will accept -128 to 127

* Will accept NULL and continue to work with Access

402 Microsoft Access — Part 2

A TinyInt type may be the best choice for an MS Access Yes/No field. It will take NULL,
0 is False, and any other value is True. Access will put -1 if selected in a CheckBox
control. However, if you do have a bit field, you will get an interesting and baffling issue. If
you are not aware of what to look for, this section is an informational exercise only; there

will be no activity. Let's get started with the demonstration.

Exercise 10.07 - Bad Bits demonstration

As mentioned earlier, bit fields can cause unique and perplexing issues with MS Access
and MySQL. The purpose of this demonstration is to show you these issues in a controlled
manner so that if and when you do come across them in the real world, you will be able to

identify the issue and fix it. Follow the next steps:

1. From the main form in the application, click the The Bad Bits button. The following

form will open:

MySQL for Beginners
Citations MS Access nv on The Bad Bits 5
= A Close Form
Sample Database
Bad B|tS This form will demonstrate Bad Bit fields and what will happen ifthe default value is not set on a bit field. CIearBltDefauIt
It will cause errors on some fields, this is by design soyou are aware what maybe causing these errors in you — Close Form
future migrations. Set Bit Default
Add Record
ID Text Data Bit Field 1 Bit Field 2
| 1|| Don't edit until instructed |D | Save Record
| 2 || Don't edit until instructed | U Save Record
» | 3 || Don't edit until instructed |D Save Record
| 4” Don't edit until instructed | Save Record
* | || |E‘ = Save Record

Figure 10.21 - The Bad Bits form

2. Ifyou set the defaults earlier, click the Clear Bit Default button. This will set the
defaults on the two bit fields back to NULL for this exercise. You have learned
enough about passthrough queries, so we will not step through the code behind

both of these buttons; they are commented.

3. You have four records on the screen. Edit the Text Data and Bit Field values on

these records only. You can edit them as expected.

4. Now, add two more records, but only enter data in the Text Data field. A single
character will do; you'll notice the records have been added.

The Bad Bits form 403

5. Just to be sure, edit record 1 again; it still works.

6. Now, edit one of the new records and try to leave the field. You will receive the
following pop-up message from Access:

Write Conflict ? >

This record has been changed by another user since you started editing it.
If you save the record, you will overwrite the changes the other user
made.

Copying the changes to the dipboard will let you look at the values the
ather user entered, and then paste your chanages badk in if you decide to
make changes.

G

]

Record | Copy to Clipboard | Drop Changes

Figure 10.22 — Write conflict error

7. 'This is a most curious message, as it gives no clue as to what happened. There are
no other users or code trying to modify the record. This is a perplexing issue and
has had many programmers in despair. The issue is caused because there are NULL
values in one or more of the bit fields in this record. You cannot fix this issue just
by selecting the checkboxes or by running a query in Access to update them.

8. Click the Set Bit Default button, and this will set the defaults on the bit fields.
You can check this in Workbench.

9. Now, try to edit one of the new records. It still didn't work. If there is NULL in
the field of an existing record, you will have the same issue even after setting
the defaults.

10. To properly fix this, it needs to be fixed in Workbench, as you cannot fix it in Access.
Open a query tab in Workbench and run the following code. You can paste it all in
and run it in one step. The code will update all records to the default of zero if the
field value is NULL:

UPDATE ms_access _migration.badbits SET badbits.BitFieldl
=0
WHERE badbits.BitFieldl Is Null;

UPDATE ms_access migration.badbits SET badbits.BitField2
=0
WHERE badbits.BitField2 Is Null;

11. Now, try to edit one of the new records. It works! Problem solved. And that
completes this exercise.

404 Microsoft Access — Part 2

To avoid this situation, do the following:
o Always check for NULL values in MS Access Yes/No fields and set them to zero in
Access before migrating a table.
o Always set the bit-field defaults in MySQL immediately after migrating a table.

« If you get this message, check your bit-field settings and values on the table as your
first check. If you still get the message, then you may have a real write conflict.

Hint

Access considers a form or code module as a user. If you have an unsaved
record on the form or open in a code module and you call another module
and try to edit the same record, you will get a write conflict. Before calling the
second module, ensure you save the record first. If the unsaved record is on a
form,a simple Me .Dirty = False in your VBA code will force-save the
record of the form, then call the second code module.

If you forget any of the preceding points, you will run into issues, but you can fix these
with a simple query in MySQL.

Unbound forms

Unbound forms are in a class of their own. They are lightweight when it comes to data,
and fast because they only ever display the values of one record. The record is not bound
to the form. However, they do have one drawback: you need to program all the data
handling. But once this is done, they are fast. The main reasons to use unbound forms
are outlined here:

« Slow networks

» Remote users

o Large recordset and database

+ Record selection is performed on the server, and only one record is transferred

across the network to the application

The Users form in the sample database is an unbound form. Did you notice that when
you opened it, the data was just there? This section is not an exercise or activity but a
walk-through of the main points of setting up an unbound form, concentrating on two
main functions: LoadForm and SaveData. All code is documented to help you work
through it. Follow these next steps:

1. The form has no record source; however, when initially designing the form, assign
a recordset temporarily so that you can get the fields on easier.

The Bad Bits form 405

The fields on the form have no data source. Using the temporary record source, drag
and drop the fields in place. When this is done, remove the form's record source
and all field data sources. It is important that each field has the same name as the
table field that will eventually provide data to it. Dragging them from the temporary
record source will give them the right name.

Put on the buttons for record navigation and so on, as in the Users form. The
code behind all the buttons on the Users form is similar to the code we have been
working with in this section, so you will be familiar with it. The comments will
explain what each bit of code is doing.

We will now step through the important area—the code in the
UnboundFormRout ines module. There are two functions we will step through.

The top of the module has the following declaration. This is to store the form's
original fields and data when we load it, and it will then be used when saving to
check if anything on the form has changed:

Option Compare Database

Private OriginalData (20, 1) As Variant

The LoadForm declaration is shown here. It accepts a Form, an SQL statement
to load the form, and the TableName. It will be called with LoadForm (Me,
"Select * FROM Users WHERE ID = 1", "Users"):

Public Function LoadForm(TheForm As Form, SQL As String,
TableName As String) As Boolean

Next, we load the SQL and assign it to a recordset. We check the recordset to ensure
we have data and only one record, and we message the user if there are no records
or too many records. The code is illustrated in the following snippet:

Call CreatePassThrough (SQL, "tmpLoadForm", True, True)

Set RS = CurrentDb.OpenRecordset ("tmpLoadForm",
dbReadOnly)

If RS.EOF And RS.BOF Then

MsgBox "No record to load the form with", vbOKOnly +
vbCritical, "Cannot load form, no record"

LoadForm = False

GoTo ExitFunction
Else

RS .MoveLast

RS .MoveFirst

406 Microsoft Access — Part 2

If RS.RecordCount > 1 Then

MsgBox "Too many records, There should only be
one, please check the filters", vbOKOnly + vbCritical,
"Cannot load form, too many records"

LoadForm = False
GoTo ExitFunction
Else
End If
End If

8. Next, we initiate the array and assign the SQL and table to the first element of the
array (0); as this was declared at the top of the module, it will be available later when
we need it. We also assign the Pos position counter to 1 where we will start storing
the fields and data. The code is illustrated in the following snippet:

For Countl = LBound(OriginalData) To UBound (OriginalData)
OriginalData (Countl, 0) = Empty
OriginalData (Countl, 1)
Next

Empty

OriginalData (0, 0) SQL
OriginalData (0, 1) = TableName
Pos = 1

9. Next, we instruct to ignore errors, and if a field is not on the form then we can
simply ignore it. The For/Next loop will cycle through all the recordset fields and
store the value in the matching form control. It also records the field and data in
the array and increments the position counter by 1. The code is illustrated in the
following snippet:

On Error Resume Next
For Each Fld In RS.Fields

TheForm.Controls (Fld.Name) .Value = Fld.Value
Fld.Name
OriginalData(Pos, 1) = Fld.Value

OriginalData (Pos, 0)

Pos = Pos + 1
Next

The Bad Bits form 407

10. Finally, we remove the temporary passthrough and close the recordset, and we are

done. Here's the code we execute:

CurrentDb.QueryDefs.Delete "tmpLoadForm"
ExitFunction:

RS.Close

Set RS = Nothing

The preceding code can be used on any form that is set up, so you can reuse this as
you like.

Of course, we need to save the data later. The function for this is SaveFormData. The
function simply accepts a form and is called with Call SaveFormData (Me) from
behind the Save Data button. It can be called from anywhere appropriate in your code.
Follow these next steps:

1.

We start by clearing a string that will be used to build our insert data (if any) and
initiating a loop through the array elements starting at position 1, as follows:

UpdateFields = ""
For Countl = 1 To UBound(OriginalData)

On each loop-through, we check if the element is empty, which will indicate the
end of the data loaded when the form was opened. If it is, we will exit the For loop;
otherwise, we'll continue. The code is illustrated in the following snippet:

If IsEmpty(OriginalData (Countl, 1)) Then
Exit For
Else

Next, we compare the value in the array with the value in the matching form control.
We use the array elements’ field name and value, and if they are different, then we
will move into the piece of code to add it to the string. The code is illustrated in the
following snippet:

If Nz (OriginalData (Countl, 1), "") <> Nz (TheForm.
Controls (OriginalData (Countl, 0)) .Value, "") Then

408 Microsoft Access — Part 2
4. Next, check if anything has already been added to the update values. If it does have
a value, then we put a comma at the end of the string, as illustrated in the following
code snippet:
If UpdateFields <> "" Then
UpdateFields = UpdateFields & ","
End If
5. Check if the value stored is actually a date (or can be converted to one). If it is,
reformat it to ensure it is in the correct format for MySQL, like so:
If IsDate (TheForm.Controls (OriginalData (Countl, 0)) .
Value) Then
TheForm.Controls (OriginalData (Countl, 0)) .Value =
Format (TheForm.Controls (OriginalData (Countl, 0)) .Value,
"YYYY-MM-DD")
End If
6. Now, we check if the value is a numeric value. If it is, we don't want quotes included
when adding to the string. We also check if the control is a checkbox. If it is, we use
the Absolute (ABS) function to ensure the value is positive and not -1, 'Active' = 1,
as illustrated in the following code snippet:
If IsNumeric (TheForm.Controls (OriginalData (Countl, 0)) .
Value) Then
If TheForm.Controls (OriginalData (Countl, 0)) .ControlType
= 106 Then
UpdateFields = UpdateFields & "'" & OriginalData (Countl,
0) & "' = " & Abs (TheForm.Controls (OriginalData (Countl,
0)) .Value)
Else
UpdateFields = UpdateFields & "'" & OriginalData (Countl,
0) & "' = " & TheForm.Controls (OriginalData (Countl, 0)).
Value
End If
7. If it was not a numeric value, then it will be added to the string with enclosing

quotes—that is, 'Name' = 'Bob',as illustrated in the following code snippet:
UpdateFields = UpdateFields & "'" &
OriginalData (Countl, 0) & "' = " & "'" & Nz (TheForm.
Controls (OriginalData (Countl, 0)) .Value, "") & "'"

End If

The Bad Bits form 409

8. Now, we check if anything actually changed by checking the string. If not, we exit.
The code is illustrated in the following snippet:

If UpdateFields = "" Then
GoTo ExitFunction
Else

9. Here, we put the updated SQL together into one SQL statement. We have built the
main part. First, we get the WHERE clause out of the original SQL, and then we
create SQL from the parts, as follows:

startpos = InStr(l, OriginalData (0, 0), "WHERE")
endpos = InStr(l, OriginalData (0, 0), "ORDER BY")
If endpos = 0 Then
Tmp = Right (OriginalData (0, 0), Len(OriginalData (O,

0)) - (startpos - 1))
Else
Tmp = Mid(OriginalData (0, 0), startpos, endpos -
startpos)
End If
SQL = "UPDATE '" & OriginalData(0, 1) & "' SET " &

UpdateFields & " "
SQL = SQL & Tmp

10. Finally, we create a passthrough query and call it, and we then delete the
passthrough, like so:

Call CreatePassThrough (SQL, "ptTemp", False, False)
DoCmd.SetWarnings False

DoCmd.OpenQuery ("pttemp")

DoCmd.SetWarnings True

CurrentDb.QueryDefs.Delete "ptTemp"
11. We then leave the function.

Using these two functions will help you make an unbound form work. These are basic
operations, and we are sure that you will be able to expand and improve them.

410 Microsoft Access — Part 2

Another way to unbind a form from a linked table

Unbound forms are great for supercharging forms that have a lot of records if linked,
and are very good for remote-access users. However, if a form only ever has a few records,
it may not be worth going to all that effort. Here is a nice trick:

1. Open the Bad Bits form in design mode. Bad Bits has a recordset using the linked
table. It is the last object actually bound to a linked table in the application.
2. If youdon't see Record Source under Data, check for Form in the dropdown.
3. Paste the following line into the Record Source property of the form, replacing the
existing SQL statement:
SELECT * FROM [ODBC;DSN=ms_access migration] .BadBits;

This allows us to locate the record source, as indicated in the following screenshot:

4 [2] FTUpEILY Shieel
Selection type: Form

Clear Bit Default

lose Form 2 Event Other Al

I Tl ati - } } — -]| setBitDefauit |
. SELECT * FROM [ODBC;DSN=ms_aceess_migration).BadBits;
maset
d

Figure 10.23 - Bad Bits form properties with the record source
4. Run the form. It works and is fully editable, and is not attached to a linked table.
This is a barely documented trick to connect directly to a database.

In the next section, we will solve an exercise wherein we will be removing linked tables.

Exercise 10.08 - Removing all linked tables

We have done a lot to the database—we have changed every single query to use
passthrough queries and made a huge difference to the speed, even on this small database/
application. We have also completely liberated the application from all linked tables, and
they are no longer needed. In this exercise, we will remove all references to the linked table
and then remove the linked table. Perform the following steps to implement this:

1. Open the main form in Design View.

2. Remove the row source for all five dropdowns. We were changing these in code and
not saving the form, so the original row source is still there.

The Bad Bits form

411

3. Ensure there is no record source in the main form, as illustrated in the following
screenshot:

A B BT B A e R R B B

x
W iR @A @ me B ad e e e e s i]s] POperty Sheet
Seleciontpe: Form

[T citations

Close Form

OpenUsers | TheBadBits |

o e ' ' -

iion
21| [unbound [

Figure 10.24 - Clicking the top-left square dot to view the form properties

4. Set the Record Source property in the 1stDisplayData subform to
spCTSource_par,as illustrated in the following screenshot:

View Data

N N T I T T I I I - I IR I S IO IR AR A IRE - SIS - SRR A

Detail

- |C ouniry Naine | Eountry Name

| | |
1 -

[Serieg Namg | Series Name

X
S33 034 0035 0 134 I Pr'operty Sheet x

Selection type: Form

Form v

Format Data Event Other Al

Record Source spCTSource_par
Recordset Type Dynaset

Fetch Defaults Yes

Filter

Filter On Load No

Ardar P

Figure 10.25 - Clicking the top-left square dot to view the form properties

412 Microsoft Access — Part 2

5. Set the Row Source property for the graph to spCTSource_par, as illustrated in
the following screenshot:

| \ | | | | | | | | | | | | | Link Child Fields

| L I L 1 L r L T I L T I L I L Row Source spCTSource_par

Row Source Type Table/Query
Life expectancy at birth, male (years) Column Count 0
OLE Type Embedded
63 OLE Type Allowed Either
T OLE Class Microsoft Graph Chart
2016 Class MSGraph.Chart.8

Update Options Automatic

2058 Display Type Content
66 2012 Enabled Yes
Locked No

2010

64
2008

Figure 10.26 - Clicking chart to display the properties

6. Run the form. Does it still work? If so, then delete all linked tables from the Access
database, except the Lookups table.
7. We need the Lookups table locally because it holds the connection information.

This is easy to do. Right-click the Lookups table in the navigation bar and then
select Convert to Local Table. Access will pull the table and its contents locally.

8. Close and open the form again; it still works.

The form and application are now free of all linked tables, and there are no linked tables
in the application. Thus, we have removed all linked tables.

Summary

We converted several VBA SQL statements to statements to be run on the MySQL server
and called them with passthrough queries. Some were simply passed to the server, while
others were changed to functions or stored procedures, and the program still works.

We looked at several possible issues that can arise when migrating a database to an
application, and we worked through solutions; and finally, we removed the application's
reliance on linked tables completely. In the next chapter, we will continue working with
MS Access, deploying more advanced methods of using passthrough queries.

In Chapter 11, MS Excel VBA and MySQL - Part 1, we will be working with Excel and
the MySQL database. Topics will include setting up connection functions with DSN and
DSN-less capabilities; reading data from MySQL and setting ranges; populating data
sheets, charts, and individual worksheet cells with MySQL data; and finally, we will be
working with MySQL for Excel to create pivot tables and charts, and updating MySQL
data directly from Excel.

11

MS Excel VBA and
MySQL - Part 1

Setting up and properly demonstrating the use of Excel with MySQL is quite involved, so
the topic is split over two chapters. In this chapter, we will begin by setting up a sample
MySQL database using a . sql script file and learn how to activate the Developer tab and
the Visual Basic for Applications (VBA) integrated development environment (IDE) so
that you can develop in VBA. We will then connect to the MySQL server and retrieve data
using Excel VBA, create a dashboard with the data from MySQL, and populate drop-down
lists and individual cells with VBA and MySQL data. By the end of the chapter, you will be
able to create pivot tables and charts from MySQL data and you will have learned how to
use MySQL for Excel to load, modify, and update MySQL records directly in the database,
and we'll finish off by learning how to push worksheets from Excel into a new MySQL table.

This chapter consists of the following topics:
« Introduction to Excel
 Exploring the Open Database Connectivity (ODBC) connection
+ Exploring the Excel VBA structure
 Learning about VBA libraries

414 MS Excel VBA and MySQL - Part 1

« Connecting to the MySQL database using VBA

« Reading data from MySQL using VBA

« Populating charts

o Activity 11.01—Creating a chart artist (artist track sales)

Introduction to Excel

Excel is the most popular data-consuming application in today's business world. It is used
to analyze data and present it in a graphical manner, making it easy to understand at a
glance. In fact, most businesses and personal users would not be able to function properly
in today's data-centric world without Excel; so, people with advanced Excel skills are
highly sought after.

In Chapter 9, MS Access — Part 1,and Chapter 10, MS Access - Part 2, you learned how to
migrate an MS Access database to MySQL and retrieve and use the data using VBA code
and ODBC connections.

For Chapters 11 and 12, the assumption is that you are now familiar with MySQL and
Workbench, having worked through the previous chapters, so references to them will be
high-level only. We also assume that you have basic Excel skills. We will be connecting to
the MySQL server in three ways: through Data Source Name (DSN)-less connections
using VBA, an ODBC connection, and MySQL for Excel. Using these different methods,
we will be creating functions to connect to the database, creating functions to read from
the database, converting the data to pivot tables, populating a data validation drop-down
list, creating a permanent connection to the database where you can update the data
directly, and then creating a dashboard, which is very popular now in business.

Excel is great for analyzing and displaying large amounts of data in order to obtain
valuable information for business and personal purposes. However, only a small
percentage of people have the skills to dynamically access data to provide real-time
information. Often, the data is collated and copied into Excel on a periodic basis, whether
weekly or monthly, and this is often a labor-intensive task. Integrating Excel directly with
the data source or sources using VBA provides real-time data analysis with the latest
available data for those important business decisions. Dynamic data access is perfect for
Excel dashboards, which are all the rage among managers in today's business environment.

Note

Exercise and activity files and solutions for this chapter can be found here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterll

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11

Introduction to Excel 415

To demonstrate the concepts in this chapter, we will use a simple sample MySQL database.
We will need to first import this database into our MySQL instance so that it is accessible
by our Excel file. The next exercise will demonstrate how this can be done.

Exercise 11.01 - Setting up a sample MySQL database

We will be using a database called chinook. The database is a sample database
representing an online media sales site. This database was created by Luis Rocha, who

has kindly made it freely available. This version has reduced data to save time. The full
version is freely available on GitHub at https://github.com/lerocha/chinook-
database. The chinook database includes the following tables:

¥ 5 chinook
T@ Tables

[3 'j album
» E artist
> 'j customer
> 'j employee
> 'j genre
> 'j invoice
[':l invoiceline
> 'j mediatype
» E playlist
> ':l playlisttrad:
[':l track

Figure 11.1 - chinook database tables

As we progress through this chapter, you will be asked to run . sql script files that will
add several prepared views and stored procedures that we will be using.

To install the database using MySQL Workbench, follow these steps:

1
2
3.
4

Open Workbench and log in to your MySQL server.
From the top menu, select Server and then Data Import.
Select Import from Self-Contained File.

Click the ellipsis (three dots) and locate the file named Chinook . sql in the course
resources folder.

https://github.com/lerocha/chinook-database
https://github.com/lerocha/chinook-database

416 MS Excel VBA and MySQL - Part 1

Note
The Chinook. sql file can be found here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterll

5. Click Start Import to import the database. The database will be created and
populated with data. After the Chinook . sql script has finished running, the
database will be visible in the Workbench Schema panel.

6. Open the Workbench Schemas panel.

7. Click Refresh.

8. The chinook database will be visible. Click on chinook and then Tables. The

table list should look like this:

¥ [chinook
v [Tables

» E album

b £ artist

> customer
> employee
> genre

» invoice

> invaiceline
> mediatype
[playlist

[3 playlisttrad:
> track

Figure 11.2 - chinook database tables

This chapter is concentrating entirely on working with data from MySQL and Excel. You
will be creating Structured Query Language (SQL) in VBA to use database tables, views,

and stored procedures.

Note

You are not expected to create views and stored procedure objects in this
chapter as they have already been created for you.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11

Exploring the ODBC connection 417

Exploring the ODBC connection

Be sure you have the Excel sample database installed before attempting to create an ODBC
DSN connection.

Important Note

We need to create an ODBC connection to the new database named chinook
and name the connection chinook (the same name as the database). Several
exercises in this chapter will require this connection. If you need to jog your
memory about how to create an ODBC connection, refer to ODBC connections
in Chapter 6, Exercise 6.11.

Now that the database is installed and an ODBC DSN has been created, we can start. As
we will be working with VBA, we will start with the Developer menu.

The Developer menu

This section will introduce you to the Developer menu and the VBA IDE and explain
how an Excel VBA program works within the Excel environment. It is very similar to
the Microsoft Access (MS Access) environment, but of course, there are differences you
need to be aware of to work in the environment. There are also some differences in the
VBA language as well. Some MS Access commands are not available in Excel, and Excel
has some commands that are not available in MS Access. This section is primarily an
information section to get you started. We will only be covering options regarding the
Developer menu that you will need to complete this chapter.

Exercise 11.02 - Activating the Developer tab and the
VBA IDE

To get access to the VBA IDE and other developers' tools in Excel, you need to have the
Developer tab visible. The Developer tab is not activated by default when you install MS
Office; however, once you activate it, it will remain activated until you deactivate it.

To activate the Developer tab, proceed as follows:

1. Open a new Excel document. The Developer menu is located in the top menu bar
of Excel, as illustrated in the following screenshot:

FILE HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER = ADD-INS FoxitPDOF TEAM DESIGN FORMAT
D #7 Record Macra [« O e I~ l\/ [=] Properties I:H
= & 5 o

Use Relative References &7 View Code
Visual Macros Add-Ins COM Insert Design Document
Basic & Macro Security Add-lns = Mode |3)RunDialog Panel

Code Add-Ins Contrals XML Modify

Figure 11.3 - Activated Developer tab

418 MS Excel VBA and MySQL - Part 1

2. If you cannot see it, then you need to activate it. If you can see it, you can go directly
to Step 7.

3. Click the File menu, as indicated in green in the previous screenshot, and then
select Options. This will open the Excel Options window, as illustrated in the
following screenshot:

Excel Options ? X
_ :e® General options for working with Excel.
-
Formulas
Proofing User Interface options
Save 1 Show Mini Toolbar on selection
Language 1 Show Quick Analysis options on selection
Advanced [Enable Live Preview @
ScreenTip style: |Show feature descriptions in ScreenTips
Customize Ribbon
Quick Access Toolbar O ED EES I TR TS
Add-Ins Use this as the default font: |Body Font
Trust Center Font size: .

Default view for new sheets: |Norma| View
Include this many sheets:

Personalize your copy of Microsoft Office

User name: |Tom Pettit

] Always use these values regardless of sign in to Office.

Office Background: |No Background
Office Theme:

Start up options

Choose the extensions you want Excel to open by default: Default Programs...

[~ Tell me if Microsoft Excel isn't the default progam for viewing and editing spreadsheets.
1 Show the Start screen when this application starts

ok || Cancel

Figure 11.4 - Excel Options screen

Exploring the ODBC connection 419
4. Select Customize Ribbon. The screen will change to the following:
Excel Options ? X
General o . .
=] Customize the Ribbon.
Formulas
) Choose commands from: () Customize the Ribbon: (&)
Proofing |Popu|ar Commands |Main Tabs
Save
Language 11 All Chart Types... Main Tabs
Borders |> M Home
Advanced Calculate Now B Insert
| B conenroms o Dren
% gondltlc(:.nal Formatting L4 [Formulas
Quick Access Toolbar R Conne ons] Data
= opy)
Add-Ins Custom Sort.. [Review
& Cut [View
Trust Center E,gv Decrease Font Size B [#] Developer
' Delete Cells...
3 Cod
* Delete Sheet Columns A:del
- -ins
52 Delete Sheet Rows
g - Add >> Controls
[Email XML
g ricom i e
Y E"tet' 7 & Add-Ins
on = .
A Font Color 4 £ Foxit PDF
Font Size L= M TEAM
Format Cells... [A Background Removal
¥ Format Painter
@ Freeze Panes 4
A" Increase Font Size
Insert Cells...
x Insert Function...

=
3
c

Insert Sheet Columns
Insert Sheet Rows
Macros

Merge & Center

MName Mananer

TR

Mew Tab | | ﬂmﬁmup| | Rename... |

Customizations: (i)
Import/Export = |1

Figure 11.5 — Developer tab checked

5. Tick the Developer checkbox as shown in the preceding screenshot.

6. Click OK, and you will be returned to the Excel main screen.

420 MS Excel VBA and MySQL - Part 1

7. 'The Developer menu will now be visible. Click it, and you will see the following
options:

FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER ADD-INS Foxit PDF TEAM DESIGN FORMAT

] D 27 Record Macro #ﬁ = = /- Properties Map Pr Impaort

- 5] Use Relative References =l — &1 View Code Expansion Packs Export

Visual Macros Add-Ins COM Insert Design Source Document

Basic 1. Macro Security Add-Ins - Mode Run Dialog Refresh Data Panel
Code Add-Ins Controls EML Maodify

Figure 11.6 — The Developer tab is visible when activated
Congratulations—you have now activated the Developer menu!

8. Open the VBA IDE by clicking Visual Basic in the Developer menu, as shown here:

FILE HOME INSERT PAGE LAYOUT FORMULAS

] D ﬂ Record Macro {:}ﬁ B ﬁ
e . kit =/}
] Use Relative References g
Visual Macros Add-Ins COM Inser
Basic ! Macro Security Add-Ins -
Code Add-Ins
Figure 11.7 - Visual Basic button on the Developer tab
The IDE will open, as shown here:
o . .
@ Ble Edd Yiew jeset Foomat Debug PBun Jeels Addins Wiedow Help -5 ¥
EE-d pouakd HFY @ mcn] = i : | B
Preject - VBAProject | | [1zenerir -] [imectarstions) -]
o= a = |
Shwet] (Shewtl)
] Thiswribock
bl E K _.|Z
Watches x
Expressen Ve | Type | Contexs -
Imrsediate

vl 14l

Figure 11.8 - Visual Basic IDE

The Developer tab offers a host of new options to assist you with your development. These
include access to the VBA IDE, macro development and recording, and data access. We
are mainly interested in the VBA IDE for this chapter.

The Excel VBA IDE looks and feels just like the MS Access IDE. The center of your screen
may be gray. You need to double-click on Sheet1 to open the code window shown in the
preceding screenshot. In the next section, we will explore the Excel VBA structure.

Exploring the Excel VBA structure 421

Exploring the Excel VBA structure

When you first create a workbook, there will be two entries in the VBAProject Project
panel, and they will be Sheet1 (Sheet1) and ThisWorkBook, as explained in more
detail here:

o Worksheets

As you add more sheets to your workbook, they will appear in the panel. They can
have private subroutines (private subs) that work within the worksheet only and
public subs that can be called from other worksheets or functions. They can have

private and public functions to return values. Public routines must be called
with a fully qualified worksheet name, as illustrated here:

myResult = worksheets ("Sheetl") .<function names>

It has several events available relating to the worksheet. The name of the sheet in
this example is Sheet1. This is the name inside the brackets and will change if you
assign a new name to the tab. Sheet1 outside the brackets is the Excel name for the
sheet, and this will not change. You can refer to the sheet in your VBA code using
either of these names.

¢ ThisWorkBook

The Excel equivalent to the AutoRun macro in MS Access is the Private Sub
Workbook Open () event. Any code in this event will automatically run when

the workbook is opened. You will usually use this to call functions to secure the
workbook, run code or functions to set up your application and data connections,
open user forms, create and test data connections, and for other tasks you may

want to be done before the first worksheet opens for the user. Alternatively, the
Workbook BeforeClose () sub can be used to do tasks prior to the workbook
being closed, such as saving data, saving the workbook, and closing data connections.
There are several other events in ThisWorkbook that can be used as required.

In the next section, we will check how to prepare an Excel project.

Preparing your Excel project

When you start a new Excel project, you will have a good idea of some of the basic
requirements you want to include in the project, such as VBA code, where you will be
sourcing the data, approximately how many worksheets you need, and their names. If you
plan ahead, you can set up the Excel project with your basic requirements from the start,
which will help you stay focused and reduce distractions. In the next few exercises, we are
going to work through what we need to do to prepare for our project.

422 MS Excel VBA and MySQL - Part 1

Modules are where you place your VBA code. You create modules to group

related functions together, and you should name them accordingly—for example,
MySQLDatabase for MySQL-related functions such as connecting to the database,
reading data, and writing data. You can then copy and paste the entire module from
one project to another to avoid recoding them and to standardize your code.

Exercise 11.03 - Creating a code module

In this exercise, we will create our first code module. As we progress through this chapter,
this will be where we will place the VBA functions and subs we will be developing.

To add a new code module, follow these steps:

1. Open the VBA IDE screen by clicking the Developer tab and then Visual Basic.
The VBA IDE screen will open, as illustrated in the following screenshot:

FILE HOME IMSERT PAGE LAYOUT FORMULAS

d D 9 Record Macro 3 :;:_ .

i . Z 1)

] lUse Relative References i} i

Visual Macros Add-lns COM Inser

Basic ! Macro Security Add-lns -
Code Add-Ins

Figure 11.9 - Opening the VBA IDE screen

2. Working in the VBA IDE screen, click Insert and then Module, as illustrated in the
following screenshot. A module will be added to the list as Module#, starting at
one. Functions in modules can be called from anywhere:

B File Edit View | Insert | Format Debug Bun Jools Add-lns Window Help

- #. Procedure.. e w Y @ Ln4 Calt
Project - VBAProject | &2 UserForm [Workbook

= = i Modul

EE G |v& i | Private Sub Workbook Open()

]
E‘ﬁ VBAProject (Book 1 Class Medule
i-EH] Sheetl (Sheet1) File... End Sub
.38 ThisWorkbook |

Figure 11.10 - Inserting a module

Exploring the Excel VBA structure 423

3. To rename the module, press F4 to open the Properties panel, as illustrated in the
following screenshot:
Properties - Modulel E Project - VBAProject E

[Module1 Module =l = [s
Alphabetic l Categorized I =8 VBAProject (MySQL Excel Training Completed for Scree...)

||{Name} Module1 || ‘ ‘%

Figure 11.11 - The Properties and Project panels displaying Modulel

4. Rename the module MySQLDatabase, replacing the default name with a
descriptive name that will indicate which functions will be in the module, as
illustrated in the following screenshot. As with Access, the module name has no
relevance to the application, and the name is there so that you know which routines
it contains. When you create other workbooks, you can copy the code to the new
workbook and save yourself a lot of development time:

Properties - MySQLDatabase & Project - VBAProject &
|MySQLDatabase Module = | 7 | -
Alphabetic] Categorized | %3 VBAProject (MySQL Excel Training Completed for Scree...)

”{Name} MySQLDatabase H ‘ \‘5‘;

Figure 11.12 - Modulel renamed MySQLDatabase

We have learned how to create a new module. In the upcoming exercise, we will be
focusing on saving the Excel file as a . x1sm file type.

When you create a new workbook in Excel, it will default to the . x1sx file type. This file
type cannot run macros or VBA code. Since we will be using VBA code, we need to save
the file as a . x1sm file by completing the following steps:

1. Select File from the top menu and then Save As, as illustrated in the following
screenshot:

= :

FILE HOME IMSERT PAGE LAYOUT

Figure 11.13 - File tab

424 MS Excel VBA and MySQL - Part 1

You will see this menu when you click on the File option:

Account

Options

Figure 11.14 - Save As option

2. From the Save As menu, select Computer. Select Browse and locate your
work folder.

Name the file MySQL Excel Training.

4. Select Excel Macro-Enabled Workbench (*.xlsm) inthe Save as type:
dropdown.

5. Click Save. You should see the following result:

Exploring the Excel VBA structure 425

Fra f - 1
=2 OneDrive - Personal L] Computer | @ sevess ®
Current Folder €« - T » ThisPC » DATA(D:) » Excel Work Folder w|@ | Search Excel Work Folder P
ﬁ:l Computer Chapter 7 Organize v New folder - .
=5 . velop
L: » Development » M & Dounloads N e Dt e e .
Music
= AddaPlace Recent Folders) No items match your search
! = Pictures
Chapter 7 .
L+ » Developrment » M B videos
Back ‘i Windows (C:)
ackups

L: = Development » M [=] AR (0)

s Recovery Image (E:
Resources 7y Image (E)

L+ » Development » M DVD RW Drive (F:) AV DVR

schedule B SAMSUNG (G)

L+ = Development M 2 €D Drive (H) VISUAL BASIC_6

Chapter 7 - Excel sm Scanned Doc (1)

D: » MySQL Training » s MyPassport (L) v € >

Documents File name: | MySQL Excel Training.xlsm -

Desktop Save as type: | Excel Macro-Enabled Workbook (xlsm) -
Authors: Tom Pettit Tags: Add atag Title: Add a title

[5ave Thumbnail

Browse
A Hide Folders Tools ~ Save Cancel

Figure 11.15 - Browsing to location and options to save the file as a .xlsm file

Your file will now be saved in the selected folder and will be macro-enabled, ready for
the upcoming exercises. Depending on your macro security settings and macro-enabled
documents in MS Office, when you first open the file, you may be prompted to allow
macros and trust the file. Be sure to answer Yes.

Note

When you download files from the internet from unknown sources, always
be careful. If you do not trust the source 100%, answer No and check the VBA
before allowing the macros to run. Unscrupulous people can insert malicious
code into workbooks. If the VBA is locked and inaccessible, or if it is running
or installing unknown application programming interface (API) references,
be extra vigilant.

Excel offers many different file types. The default is . x1sx, which can hold formulas but
not macros or VBA code. If you intend to include macros or VBA code, then you must
use the . x1sm file type. Some of the more common file types are outlined here:

+ A comma-separated values (CSV) file is a comma-delimited text file. It cannot
contain macros or formulas. It is the most common file type for sharing data
between other applications and Excel.

426 MS Excel VBA and MySQL - Part 1

o XLSB is a binary file type. It can contain macros and VBA. Beware of running
these files from unknown sources as they bypass MS Office security. You will
not be prompted to allow the macros to run.

 There are many other file types (too many to discuss here), and each has specific
features and uses. You may want to do some research on what they are and how
they should be used.

Learning about VBA libraries

VBA in its native format in all of the MS Office suite of applications provides the most
common functionality you will use in your applications, but it does not provide everything;
otherwise, it would be large and unwieldy. For this reason, specific functionality is available
in library files that can be shared and used by VBA. You add a reference when you require
the library, which then makes its functions available to your code. These library packs are
offered by Microsoft and third-party vendors, or you can create your own library files of
functions you want to share with your application. Library files are created in languages
such as C# and Visual Basic 6 (VB6) and are compiled so that their code is not available

to view or edit, thus protecting the logic built into them.

The most common library file extensions are listed here:
o Dynamic-linked library (DLL)
« Object Linking and Embedding Type Library (OLE TLB)
o Active X controls (OCX)

In the next exercise, we will learn how to reference a library.

Exercise 11.04 - Referencing a library

In this exercise, we will be setting our first reference to a DLL library. We will be using
ActiveX Data Objects (ADO) to read the database, so we will need to reference the
library before we can use its functionality.

To set a reference to the library, follow these steps:

1. You can only reference a library from a VBA code window. From the VBA IDE
screen, open the MySQLDatabase module. Note: You can use ANY code module.

2. Select Tools and then select References..., as shown in the following screenshot:

Learning about VBA libraries 427

#

Microsoft Visual Basic for Applications - My50L Excel Training.xlsm - [My5S0LDatabase (Code)]

%Eile Edit View [Insert Format Debug Run | Tools | Add-Ins Window Help

&-d BAI9 oy u @ kE References. ||L
Project - VBAProject & (Ger
= Ca _ Macros... B
=-&% VBAProject (MySQL Excel Training.xlsm) | Opticns...
. &} MySQLDatabase VBAProject Properties..,
BH] Sheetl {Dashboard) L
Sheet2 (Pivot Tables) D
Sheet3 (Data Sheet)

.@ ThisWorkbook

Figure 11.16 — Going to Tools and then References... to open References

The References window will open. There will be several libraries already selected;
these are the default libraries used by Excel VBA. You can see an illustration of this
in the following screenshot:

References - VBAProject >
Available References:
Visual Basic For Applications Py Cancel
Microsoft Excel 15.0 Object Library —_—
OLE Automation
Microsoft Office 15.0 Object Librar Browse...
[Microsoft ActiveX Data Obijects 6.1 Library
[IMicrosoft Forms 2.0 Object Library ﬂ
[1vBAProject
[] AccessibilityCplAdmin 1.0 Type Library Pricrity
[] Acrobat Access 3.0 Type Library Help
[] AcroBrokerLib ﬂ

[] ActiveMavie control type library
[] ActiveX DLL to perform Migration of MS Repository W
[] AddinLoaderLib v

i >

—Microsoft Office 15.0 Object Library

Location: C:\Program Files (x86)\Common Files\Microsoft SharedWOFFIC
Language: Standard

Figure 11.17 - References view for VBA

428 MS Excel VBA and MySQL - Part 1

4. Locate and select Microsoft ActiveX Data Objects x.x Library. The libraries are in
alphabetical order. x.x refers to the version number. Select the latest, which will be
6.1. The following screenshot provides an illustration of this:

References - VBAProject >
Available References: K
Visual Basic For Applications A Cancel
Microsoft Excel 15.0 Object Library
OLE Automation
Microsoft Office 15.0 Cbject Library Browse...

Microsoft Graph 15.0 Object Librar
Microsoft ActiveX Data Obijects 6. 1 Librar
[] AccessibilityCpladmin 1.0 Type Library

+

[Acrobat Access 3.0 Type Library Priarity

[] AcroBrokerLib Help |
[] ActiveMovie contraol type library ﬂ

[] ActiveX, DLL to perform Migration of M5 Repasitary V-

[AddinLoaderLib

[] Adobe Acrobat 7.0 Browser Control Type Library 1.0 ¥

£ >

—Microsoft ActiveX Data Objects 6.1 Library

Location: C:\Program Files (x86)\Common Files\Systemadomsado 15.d|
Language: Standard

Figure 11.18 - ADO library selected

5. Click OK to close the window. Quickly check that the reference was added by
opening the References window again. You should see the new reference, along
with the default references.

You have now included the reference to the library, and we can now start using the
functions it offers. This one will allow us to use the ADO recordset and the connection
features we need.

The ADO data type is one of several methods of communicating with external databases
that can be used by Excel. ADO was selected for this project because it works well with
MySQL. The library provides methods we can use with MySQL to connect, open and
close tables, and read and write data.

Learning about VBA libraries 429

Library references can also allow you to use other applications from within your code,
and most business-related applications will provide a library to allow you to use the
application from your VBA code. Here are just a few applications that provide libraries
that can be used from Excel VBA; there are many more:

« MS Outlook—to send and receive emails and set calendar events

o MS Word—to create, open, and read Word documents

« MS Visio—to create and work with Visio files

« Adobe Acrobat—to open and modify Portable Document Format (PDF) files
Worksheets are the primary interface your application will have with its users. They will
also store data for the application and can be hidden and locked to protect data. It is useful
to know which worksheets you will require before starting development and to add these

worksheets. Renaming them and placing them in the correct order will help you keep
focused. Of course, you can add or remove them at any time.

In the upcoming exercise, we will learn how to insert worksheets.

Exercise 11.05 - Inserting worksheets

You can insert worksheets using the + button to the right of the tab names at the bottom
of the screen. We are going to need several worksheets, so let's add and name them now.

We are going to need three initial worksheets within this project. Proceed as follows:

1. When you open the workbook, one worksheet has already been created. Click on
Sheet1 to make it active.

2. You can insert new worksheets using the + button to the right of the tab names at
the bottom of the screen. Click the + symbol twice to add another two worksheets
to the book, as illustrated in the following screenshot:

45

Sheetl | Sheet2 | Sheet3 o)

READY %3

Figure 11.19 — How to insert a new worksheet

430 MS Excel VBA and MySQL - Part 1

3. Right-click on Sheet1 and select Rename, as illustrated in the following screenshot.

The Sheet1 tab will go gray, and your cursor will flash:

36 |
37 . Insert...

38 B Delete

39 - Bename

40] Move ar Copy...

4 | &7 View Code

42

43 1[EZ Protect Sheet...

44 ' Tab Color b
45 | Hide

46 Unhide...

47 .

— Select All Sheets
Sh | i3

Figure 11.20 - Renaming a worksheet from the right-click menu
4. Rename Sheet1 Dashboard.
Repeat for Sheet2 and Sheet3. Rename them as follows:
Sheet2 to Pivot Tables

Sheet3 to Data Sheet

6. Select Visual Basic from the Developer menu and see the changes in the Project

panel, as illustrated in the following screenshot:

Project - VBAProject
e ==l

41

£-%% VBAProject (Book1)
- 43 MySQLDatabase

.. Sheetl (Dashboard)
Sheet2 (Pivot Tables)
::) sheet3 (Data Sheet)
@ ThisWaorkbook

Figure 11.21 - Users' worksheet names

Connecting to the MySQL database using VBA 431

Some of your applications may have many worksheets in them to display charts and
graphs, interact with the user, and store data. Follow these guidelines when working
with worksheets:

+ Be sure you rename each sheet as you create them with a meaningful name.
« Try not to keep the default Sheet# name provided by Excel.
« Refer to sheets in your code with the name you have provided.

« Do not rename a sheet after you have referenced it in your code or elsewhere. This
will stop your application from working correctly.

In the next section, we will look at connecting to the MySQL database using VBA.

Connecting to the MySQL database using VBA

We are starting with VBA because, while there are tools to automate the retrieval of data,
you won't necessarily learn the finer details of data handling as you will with VBA. Here
is an analogy: if you learn how to drive a manual car, driving an automatic is easy, and
you can always drive a manual again if required. However, if you only learn to drive in
an automatic car, you will struggle with a manual.

All variable names in this section will be fully descriptive (therefore, long) to make it clear
what their purpose is. During your own development, you may opt to shorten them.

Setting the scene

The manager of Chinook Music Downloads wants an Excel dashboard showing
information about music sales and other information at a glance and has given you

an Excel sheet with some blank charts and other information that you need to get
operational. You need to extract the required information from the MySQL sales database
and populate the dashboard. You have also been asked to provide a method in Excel to
view and update customer and employee details directly in the database from Excel.

Note

The file you are to work with is located in the course resources and is named
MySQL Excel Training Template.xlsm.Itcan be found

here: https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterll.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11

432 MS Excel VBA and MySQL - Part 1

This file is already set up the same as the file you created in the previous exercise, with
the addition of a dashboard layout and some preloaded data for upcoming exercises.
All upcoming exercises will work with this file. You can copy the file you just created to
another location if you wish; you will not need it.

We need to copy the MySQL Excel Training Template.xlsm file to your work
folder and rename it as you wish. Do not work on the template file; you may need to reset
it later.

In this section, we are going to create a global connection variable (a reusable function
to connect to the database using a DSN-less connection), read some data, and place it
on a worksheet.

When we connect to the database, we assign the connection to a variable so that we

can use it. We can theoretically declare this variable in functions and subs. However,

we can only use them within a function or sub. Most of the time, we will want to reuse
the connection variable from many pieces of code. So, instead of declaring it each time,
we will be declaring it as a global variable to make it available from all functions, subs,
and event code. Global variables are declared in modules and must appear before any
functions or subs—in other words, at the top of the module. They will be given a Public
identifier (ID), which indicates that they should be accessible in a global context.

Our connection variable will be of type ADODB . Connect ion, which is a built-in variable
type used to specify a database connection in VBA.

Exercise 11.06 - The connection variable

In this exercise, we will create a global variable to store the connection to the MySQL
database so that when it's set, we can use the variable to work with the database from
any code, function, or sub.

Follow these steps to complete this exercise:
1. From the Developer tab, select Visual Basic.

2. Double-click on MySQLDatabase to open the code window.

3. In the code window, enter the following text:

'Global Connection Variables
Public g Conn DSNless As ADODB.Connection

Connecting to the MySQL database using VBA 433

Line 1 is a comment, so don't forget the comma. g_is to signify this is a global
variable. Conn means connection, and DSN1ess signifies the connection will be a
DSN-less connection. It is worth noting that devising a meaningful variable-naming
system will help you immensely in your development, and it will also help you
remember the names of your variables and what their intended use is. It will also be of
great help to future developers maintaining your application, or even when you have
to revisit the code at some future date. Try to stay away from single-letter variables.

4. That's it—our variable is declared. You can test if it is acceptable by compiling
the code.

5. Select Debug from the VBA IDE's top menu and click on Compile VBAProject,
as illustrated in the following screenshot:

E Microsoft Visual Basic for Applications - My5SQOL Excel Training.xlsm - [MySQLDatabase (Code]]

% File Edit View Inset Format | Debug ' Run Teols Add-lns Window Help
@ ~H X Ea@EAY | Compile VBAProject |L1 Col 1 -
Project - VBAProject ¥E StepInto 2]
= Ca Step Qwer Shift+F2
E‘E VBAProject (MySQL Excel Training. Step Out Ctrl+Shift+F8 riable i
w2 MySQLDatabase = Run Te Cursor Ctrl+F8 25 LIOWE. CoRmEEiEe
Sheet1 (Dashboard)
Sheet? (Fivot Tables) Add Watch..
Sheet3 (Data Sheet) Edit Watch... Ctrl+W
ThisWorkbook

Figure 11.22 - Compiling the VBA project

The VBA language is an interpreted language, which means that as each line of code is
processed when the application is run, the VBA system will check the syntax is correct,
and then interpret it to machine language and execute it. This process takes a little time,
but it is useful because you can run the code immediately after typing it or run it in the
Immediate window for testing. Compiling the code regularly during development will
check the syntax of the code is correct and ensure any libraries the code requires are
correctly referenced. It will then store the code internally in a compiled state that is closer
to the final machine language and speeds up program execution. Of course, as soon as you
modify any of the code, you need to compile the application again. Compiling will not
check for logical errors. It is recommended you compile the application regularly as you
enter or change VBA code to identify possible problem code.

If all is good with the compile, nothing will happen; however, if there is a problem,

a message will be displayed. If you get an error at this point, refer to library references
in the previous section and check the library has been referenced (ticked), as shown in
Figure 11.18.

434 MS Excel VBA and MySQL - Part 1

That's it—too easy. We cannot test this connection at this stage, but if you have compiled
without errors, then we are off to a good start. As we work through the upcoming
exercises, you will see the advantages of using a global variable in action.

The advantages of using a global variable are listed here:

« We only need to declare it once.

It can be opened and closed and then reused as required.

» We can assign different data sources to the same variable as required.
o We ensure consistency throughout the code.

o The value of the variable (in this example, the connection) can be accessed or set
from any code throughout the application.

Note

We will require another global connection variable for the upcoming exercises.
Following the preceding steps, please create another global connection variable
named g Conn_ODBC.

Now that we have connection variables declared and verified the syntax is correct,
we need to create a function to make an actual connection to the MySQL database.
We will start with the DSNless connection.

Connection functions in VBA

To create a connection with our ADODB . Connection variable, we will need to provide
a few important pieces of information. This information primarily corresponds to the
ODBC connection information. This information is specified in a String variable, in the
following format:

'Prepare the connection string

str = "DRIVER={<ODBC Drivers>};"

str = str & "SERVER=<Server IP Address>;"
"PORT=3306;"

"DATABASE=<Database name>;"
"UID=<User ID or Account Name>;"

str = str
str = str
str = str

str = str "PWD=<Password>;"

R R R R R

str = str "Option=3"

Connecting to the MySQL database using VBA 435

Option=3 is a special portion of ADODB that configures our MySQL connection. It sets
it so that column width is not optimized, and only found rows are returned by MySQL.
These are simply modifications that allow VBA to interact more consistently with MySQL.
This option is not required; however, it does help to create a more stable experience for
our book examples. To see a full list of options, you can visit the following web page:
http://web.archive.org/web/20120120203736/http://dev.mysqgl.
com/doc/refman/5.0/en/connector-odbc-configuration-connection-
parameters.html.

Once our string is specified, we can open it as a connection using the Open method of
the ADODB. Connection object. If this is successful, we have a fully functional MySQL
connection. The next exercise shows how to apply this code to our database.

Exercise 11.07 - Creating a connection function

We need to be able to make a connection to the MySQL server when required. In this
exercise, we will create a routine that you can call to make a MySQL database connection
when required.

A function can return a value to the calling code, whereas a sub cannot; for this reason,
we will create a function to make a MySQL connection so that we can tell the calling code
if we successfully created a connection or not, for the calling code to be able to deal with
any errors appropriately. Proceed as follows:

1. Continuing in the MySQLDatabase module, enter the following line of code after
the variable declarations:

Public Function ConnectDB DSNless (oConn As ADODB.
Connection) As Boolean

VBA will add the End Function statement. Be sure to add all of the following
commands between the function's declaration and End Function. It will also add
a line immediately under variable declarations. These lines will be added between
functions and subs; they provide an easy way to see where the functions begin and
end—especially when you scroll up and down the code.

2. Add some comments on what the function does. This is to jog your memory and
for other developers who may need to modify the code at a later stage. You can see
some example comments in the following screenshot:

'"This Function will create a DSNless connection and
assign it to the

'input wvariable.

http://web.archive.org/web/20120120203736/http://dev.mysql.com/doc/refman/5.0/en/connector-odbc-configuration-connection-parameters.html
http://web.archive.org/web/20120120203736/http://dev.mysql.com/doc/refman/5.0/en/connector-odbc-configuration-connection-parameters.html
http://web.archive.org/web/20120120203736/http://dev.mysql.com/doc/refman/5.0/en/connector-odbc-configuration-connection-parameters.html

436 MS Excel VBA and MySQL - Part 1

'Input: oConn, ADODB.Connection variable to assign the
connection to

'Output: Boolean, Success (True) or Failure (False)

3. Add an error-handler instruction and declare some variables to use, as follows:

On Error GoTo HandleError

'Declare the variable we will use
Dim Msg As String
Dim str As String

4. Set the connection variable to a new variable. Up to now, it has just been a
declaration; the following code will set it as an actual connection type:

'Set the passed in connection variable to a new
connection

Set oConn = New ADODB.Connection

'Use the Client cursor so we can read the number of
records returned

oConn.CursorLocation = adUseClient

5. Enter the following lines of code. Fill in your specific details for ODBC Driver,
Server IP,User,and Password.Be sure to remove the < > arrowheads as
well. Note that each of the parameters is separated by semicolons and that there
are no spaces in the final string:

'Prepare the connection string

str "DRIVER={<ODBC Drivers>};"

str = str & "SERVER=<Server IP Address>;"
str = str & "PORT=3306;"
"DATABASE=<Database name>;"

"UID=<User ID or Account Name>;"

str = str
str = str

str = str "PWD=<Password>;"

R R R R

str = str "Option=3"

Connecting to the MySQL database using VBA 437

6. Now, open the connection. If there is an error, the code will jump to the error
handler, as defined earlier in the code; otherwise, it will continue with the next
statement, as follows:

'Open the connection, i1f there is a problem, it will
happen here

oConn.Open str

7. If the connection to MySQL was successful, then the program execution will
continue with the next line of code. We then pass back True to indicate the
connection was successful, as follows:

'No problem, good, pass back a True to signify
connection was successful

ConnectDB_DSNless = True

8. Declare a sub to exit the function, and the error handler will then have a point to
resume to exit the function, immediately followed by an actual Exit Function
statement. At this point, the function will terminate. The code is illustrated in the
following snippet:

LeaveFunction:
'and leave

Exit Function

9. Declare an errorHandler sub to handle any errors. Here, we are displaying a
message to the user with the error number and description included:

HandleError:

'There was a problem, tell the user and include the
error number and message

Msg = "There was an error - " & Err & " - " &
Error (Err)

MsgBox Msg, vbOKOnly + vbCritical, "Problem
Connecting to server"

10. After the user has clicked OK, pass back False to the calling routine to indicate
failure to connect, then resume the code at the LeaveFunction sub to exit. The
End Function statement will already be there; don't put it in twice. The code is
illustrated in the following snippet:

'Pass back a False to signify there was an issue to
the calling code

438 MS Excel VBA and MySQL - Part 1

ConnectDB DSNless = False

'Leave the function

Resume LeaveFunction

End Function

To test the function, type the following in the Immediate window. You should
receive True to indicate a successful connection was made, as illustrated in the
following screenshot:

Immediate

? ConnectDB DSNless (g Conn DSNless)
True

Figure 11.23 - Testing function and result from the Immediate window

Note

Ctrl + G will open the Immediate window, or you can select it from the View
menu. Once you open it, it will open by default until you hide it.

If you receive a message and a False value, check your connection values and try
again. The message should indicate what the problem was.

11. Close the connection by typing g_Conn_DSNless.Close into the Immediate
window, and press Enter. There will be no response; however, to test that it was in fact
opened and then closed, try to close it again. You will get the following error message:

Microsoft Visual Basic for Applications >

Run-time error '3704":
"
Operation is not allowed when the object is closed,

Help

Figure 11.24 - Error when trying to close an already closed connection

Connecting to the MySQL database using VBA 439

This also indicates that the global connection is available to all functions and subs
as well as the Immediate window; a private function cannot be accessed from the
Immediate window.

Creating a reusable function to make a connection will reduce the amount of coding
throughout the application. By allowing the connection variable to be passed in, we can
use the same function for many connections, if required. We leave it up to the calling
routines to close them when they are no longer required.

To make the function even more flexible, we could have included connection parameters as
input to the function, passed them in, and built the connection string using the parameters.

While you can leave a connection open all the time, good practice dictates connections
should only be opened when required and closed when they are no longer required. This
will reduce the load on the server.

A DSN-less connection has its pros and cons, as outlined here:

Pros

» Does not require an ODBC connection to be set up on the user's machine. This is
useful if a lot of people will be using the workbook.

« Slightly faster when there are many concurrent connections.
Cons

 Connection details are stored in the workbook—either in a worksheet or directly in
the VBA.

The correct ODBC drivers will still need to be installed on the user's machine regardless
of the type of connection you choose to use.

Note
The VBA file for this exercise can be located here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterll/Exercisell.08

Let's move on and read some data using our new connection and VBA.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11/Exercise11.08
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11/Exercise11.08

440 MS Excel VBA and MySQL - Part 1

Reading data from MySQL using VBA

To read data, we will need a database query, as well as to store the results. To create a
database query, we simply write it in as a string variable in VBA. To execute the query, we
use the open method of a special object called Recordset, specifying the query, as well
as the connection we wish to execute it against. This Recordset object can store the
results of a query and make each field accessible by name. For example, suppose we run
the following query:

Dim SQL as String

Dim RS as Recordset

SQL = "SELECT username, password FROM Login"
Set RS = New ADODB.Recordset

RS.Open SQL, g Conn DSNless

If our query is successful, the RS variable will contain all of the username and password
fields from the Login table. To access these fields, we use the RS . Fields method. The next
exercise shows a full example of a query that retrieves data through a Recordset object.

Exercise 11.08 - ReadGenreSales

In this exercise, we are going to read data from two database tables and place it in the
worksheet named Data Sheet. There are a lot of comments included in the code to
explain each step. Be sure to enter comments as well, as comments will assist you and
other developers later. Follow these steps to complete the exercise:

1. Continue with the MySQLDatabase function.

2. Declare a ReadGenreSales function and enter comments about what the
function is doing, as follows:

Public Function ReadGenreSales () as Boolean

'This function will read Genre Sales data from the MySQL
database

'It will place the data in the worksheet named 'Data
Sheet'

'It will cycle through the Field headings and use them
for column headings in Row 1

'It will then place the data starting at Row 2

Reading data from MySQL using VBA

441

3. Declare variables and set up error handling, like so:

'Declare the variables to use

Dim
Dim
Dim
Dim

Dim

SQL As String

'"To store the SQL statement

RS As Recordset 'The Recordset variable

Msg As String

'To display messages

Counter As Integer 'A counter

MyNamedRng As Range ' A range variable

'Setup error handling

On Error GoTo HandleError

4. Build a SQL statement to read the data, as follows:

databases
0L = WO
SQL = SQL &
SQL = SQL &
SQL = SQL &
Solel’
SQL = SQL &
SQL = SQL &
SQL = SQL &
genre.GenreId "
SQL = SQL &
TrackId = track.
SQL = SQL &
SQL = SQL &
SQL = SQL &
SQL = SQL &

'Build the SQL statement to read from the two

"SELECT "
"genre.Name, "

"Sum(invoiceline.Quantity) AS 'Units

n FROM n
n genre n

"INNER JOIN track ON track.Genreld =

"LEFT JOIN invoiceline ON invoiceline.
TrackId "

"Group BY "
"genre.Name "
"Order BY "

"genre .Name"

5. Connect to the server and test if it is working, as follows:

'Make the connection to the server, test if it was
successful

If ConnectDB DSNless (g Conn DSNless) = True Then

'Connection succeeded so we can continue
processing

442 MS Excel VBA and MySQL - Part 1

6. Once the connection works, set up the recordset variable, like so:

'Set the recordset variable
Set RS = New ADODB.Recordset

7. Load the recordset variable using the SQL and the connection, like so:

'Load the recordset, pass in the SQL and the
connection to use

RS.Open SQL, g Conn DSNless

8. Test if there are records to work with, as follows:

'Test there are records.

'A recordset can only be at End Of File and
Beginning Of File at the same time when the recordset is
empty

If RS.EOF And RS.BOF Then

9. [If execution gets in here, then there are no records. Tell the user, close the
recordset, and leave the function, as follows:

'No data, close the recordset
RS.Close
Set RS = Nothing

'tell user and then leave the function
Msg = "There is no data"

MsgBox Msg, vbOKOnly + vbInformation, "No
data to display"

GoTo leavefunction

10. Once we get to this part, we have got the data. Now, process it, as follows:

Else

'We have data

11. Add headings for data on the worksheet. Use the field names for this purpose, as
illustrated in the following code snippet:

'Insert Field headings for column headings
'We cycle through the field collection
For Counter = 0 To RS.Fields.Count - 1

Reading data from MySQL using VBA 443

'Put the fieldname in the cell on row 1

'When cycling through objects or data,
it is easier to refer to the worksheet cells by their
numeric values

Cells (1, 1 + Counter) =
RS.Fields (Counter) .Name

Next

12. We are done adding the headings. Now, we need to add the data in Excel. Use
the CopyFromRecordset command to copy the entire dataset with one
command, as follows:

'Starting at cell in Row 2, Column 1, copy
the entire recordset into the worksheet

Worksheets ("Data Sheet") .Cells (2,
1) .CopyFromRecordset RS

13. Set a named range for the data. We use the RS . RecordCount value to calculate
how many rows the range should cover, as illustrated in the following code snippet:

'Set and create a named range covering the
column with the Genre name, data only

Set MyNamedRng = Worksheets ("Data Sheet").
Range ("A2:A" & RS.RecordCount + 1)

ActiveWorkbook .Names.Add Name:="Genre",
RefersTo:=MyNamedRng

14. Now, we have our data in place. Start closing everything down, like this:

'Close the recordset
RS.Close
Set RS = Nothing

'Close the connection
g Conn DSNless.Close
Set g Conn DSNless = Nothing

15. Pass back success, as follows:

'Pass back success
ReadGenreSales = True
End If

444 MS Excel VBA and MySQL - Part 1

16. If we get in here after the connection test, then the connection failed. So, leave the
function, as illustrated in the following code snippet:

Else

'Connection failed if gets in here, just drop
through to leave

'The connection routine will have displayed a
message so nothing to do but leave

ReadGenreSales = False
GoTo leavefunction
End If

17. Leave the function, like so:

LeaveFunction:
'Leave the function

Exit Function

18. Add error-handling code to deal with any errors that may occur, as follows:

HandleError:

'In this sample we are just going to display the
error and leave the function

'you may want to log the error or do something else
'depending on your requirements

MsgBox Err & "-" & Error (Err), vbOKOnly + vbCritical,
"There was an error"

19. Pass back a fail and leave the function, as follows:

'Pass back Failed
ReadGenreSales = False

Resume LeaveFunction

20. An End Function statement will have already been created when you declared
the function. Ensure that it is present as the very last statement of the function code
block, as shown here:

End Function

Reading data from MySQL using VBA 445

21. Test the function by typing ? ReadGenreSales into the Immediate panel.
You should get True returned to indicate it was successful, as illustrated in the
following screenshot:

Immediate

? ReadGenreSales
True

Figure 11.25 - Testing the function and seeing the result in the Immediate window

And the data sheet should be displaying the data, as we can see here:

A B
Mame Units Sold

2 | Alternative 14
3 Alternative & Punk 244
4 |Blues 61
5 |Bossa Mova 15
& Classical 41
7 |Comedy 9
8 Drama 29
9 |Easy Listening 10
10 |Electronica/Dance 12
11 |Heavy Metal 12
12 |Hip Hop/Rap 17
13 |Jazz 20
14 |Latin 380
15 Metal 264
16 |Opera

17 |Pop 28
18 |R&B/Soul 41
19 [Reggae 30
20 |Rack 835
21 |Rock And Roll 5}
22 |5ci Fi & Fantasy 20
23 |5Science Fiction 5]
24 |Soundtrack 20
25 | TV Shows a7
26 'World 13

Figure 11.26 - Output from the ReadGenreSales function test

446 MS Excel VBA and MySQL - Part 1

22. Select the new named range, Genre, from the dropdown, as indicated in the
following screenshot. The Name genre (column A) should be selected:

Genre | X ﬁ Alte
A B

1 Name Units Sold

2 |Alternative 14
3 244
4 61
5 15
6 41
7 9
8 29
9 10
10 12
1 12
12 17
13 80
14 386
15 264
16
17 23
18 41
19 30
20 835
21 [
22 20
23 (3]
24 20
25 a7
26 13

F

Figure 11.27 - Shaded area indicating the cells the named range refers to

Reading data from MySQL using VBA 447

The majority of the code you will write will be to set up reading data, handling

errors, and—of course—commenting. The actual retrieval and displaying of data in a
worksheet is very simple. How you use the data after it is displayed is up to your specific
requirements for the task at hand.

Note
The VBA file for this exercise can be located here:

https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterll/Exercisell.09

When a list of data is required, it needs to be stored in a worksheet, which is usually
hidden from the user. When using VBA, we can calculate the coordinates of data and
assign a name to the coordinates. Using a named range simplifies assigning data to graphs,
charts, and other controls by allowing us to use the name rather than the actual cell
coordinates. In the next section, we will do an exercise based on the Genre dropdown.

Exercise 11.09 - Genre dropdown

The first chart on the dashboard is the Genre Sales chart. We need to provide a drop-
down list of genres for the user to make a selection so that we can populate the chart. In
Exercise 11.08 — ReadGenreSales, we read a list from the MySQL database, placed the data
on the data sheet, and named it Genre. We are now going to assign the genre data to a
drop-down list.

In this exercise, we will assign a Genre-named range to the dashboard cell B5. We will
populate a list using the Data Validation method, which will create a dropdown for us.
By using the Data Validation method for the dropdown, we stop the user from entering
invalid data and provide a list of appropriate values for the user to select from. By setting
this up, we can then confidently use the selection in VBA code to display the correct data
and display it in charts, which we will be doing later.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11/Exercise11.09
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter11/Exercise11.09

448 MS Excel VBA and MySQL - Part 1

To create a Data Validation drop-down list, follow these steps:

1. Start by testing that the Genre-named range is pointing to the correct data by
selecting the named range. The worksheet should change to Data Sheet with
the cells A2 to A26 selected, as illustrated in the following screenshot:

Genre - f-._ Alte
A B
MName Units Sold

2 |Alternative 14
3 |Alternative & Punk 244
4 |Blues 61
5 |Bossa Nova 15
6 |Classical 41
7 |Comedy 9
& |Drama 29
9 |Easy Listening 10
10 | Electronica/Dance 12
11 |Heavy Metal 12
12 |Hip Hop/Rap 17
13 [Jazz 80
14 | Latin 386
15 |Metal 264
16 |Opera

17 |Pop 28
18 |R&B/Soul 11
19 |Reggae 30
20 |Rock 835
21 |Rock And Roll 6
22 |5ci Fi & Fantasy 20
23 |Science Fiction 6
24 |Soundtrack 20
25 |TV Shows a7
26 |World 13

Figure 11.28 - Genre list

2. Return to the Dashboard worksheet and click on cell B5.

Reading data from MySQL using VBA 449

3. From the top menu, click DATA, select the Data Validation option, and select Data
Validation... from the small menu, as illustrated in the following screenshot:

DATA REVIEW VIEW DEVELOPER ADD-IM5 Foxit PDF TEAM

ections Al Y :E::p E’E E‘ E-}a ?,@ E-}D E‘?

erties by

] El Sort Filter ! Textto Flash Remove Data Consolidate What-If
inks Yo Advanced columns Fil Duplicates Validation ~ Analysis ~
ns Sort & Filter ¢ Data Validation..,

E= Circle Invalid Data
@ Clear Validation Circles

Figure 11.29 - Location of the Data Validation button

4. 'The Data Validation form will open. Select List in the Allow: dropdown and type
=Genre for Source:, as illustrated in the following screenshot, then click OK:

Data Validation 7 #

settings | Input Message — Error Alert

Validation criteria

Alloan

|Li5t Ignore blank
. In-cell dropdown
Data:

‘hetween e |

Source:

|=Genre| s

|:I Apply these changes to all other cells with the same settings

o] [ane

Figure 11.30 — Data Validation properties window

450 MS Excel VBA and MySQL - Part 1

5. The Data Validation form will close. Return to the Dashboard worksheet. Cell
B5 should now have a small down arrowhead. When this is selected, the list should
open, as illustrated in the following screenshot:

5 |Genres Blues -

& Elues LS

7 Classical nre
‘— Comedy I

& Drama

Easy Listening
Electronica/Dance
Heawy Metal b

[f=]

10

L}

Figure 11.31 - Genre drop-down list

The Genre list is now ready. When we loaded the Genre list data onto the data sheet, we
knew which row and column the data started at by determining the number of records
returned from SQL when we loaded it into the recordset variable. We could then
calculate in VBA exactly which rows the Genre list covered and assign this range to a
named range we called Genre. By calculating the coordinates and setting the named
range in VBA, if Genre categories are added or removed later, the named range will be set
accordingly, and the Data Validation list will always show the correct values.

Placing your data on other sheets is a good practice; you can hide sheets and even lock
them away from prying eyes. When placing data on data sheets, keep in mind that the data
may grow either vertically or horizontally, so ensure you leave space between groups of
data to make room for potential expansion. You can also use as many sheets as you like,
but be sure to name them appropriately. Don't rely on the Sheet1, Sheet2, Sheet3...
names assigned by Excel; your data may be difficult to find.

In addition to populating data, we may want to keep data updated from the source. One
way to achieve this is by using auto-running functions. In the next section, we will learn
how these work in VBA.

Auto-running functions when opening a workbook

In many cases, we want to load data immediately when a workbook is opened. This
allows us to refresh data when the workbook is viewed, allowing us to ensure data is
always up to date. To auto-run functions in VBA, we can use a special function called
ThisWorkbook Open (), which executes code when a workbook has been opened.

In the next exercise, we will prepare the ReadArtistSales function to run when a
workbook is opened.

Reading data from MySQL using VBA 451

Exercise 11.10 - Auto-running functions when opening
a workbook

During the last few exercises and activities, we created two new functions to load and
store data, we created named ranges to identify data (or parts of it), and then we used the
named ranges to populate data validation drop-down lists. We will now prepare calls to
the functions so that they will run when a workbook is opened.

In this exercise, we will use the ThisWorkbook object to achieve this. ThisWorkbook
is located in the VBA/IDE window and provides several useful events related to the
workbook. We will use the Open event. Any VBA code in the ThisWorkbook Open ()
event will be executed when a workbook is opened, before any other code is run,
effectively providing an auto-run feature.

To auto-run functions, proceed as follows:

1. Open the VBA IDE, as illustrated in the following screenshot:

FILE HOME IMSERT PAGE LAYOUT FORMULAS
] D ®3 Record Macro {? — =
] Use Relative References -i
Yisual Macros Add-lns COM Inser
Basic ! Macro Security Add-Ins -

Code Add-Ins

Figure 11.32 - Opening the VBA IDE screen

2. Locate the ThisWorkbook module and double-click on it to open the VBA
window, as illustrated in the following screenshot:

Project - VBAProject ﬁ |wOrkbook j |ODEI'I j
EE D : Private Sub Workbook_Open() E
E@ VBAProject (MySQL Excel Training Completed for Scree...)
3% MySQLDatabase
heetl {Dashboard) Fnd Sub

heet2 {Contact Register)
heet3 (Data Sheet)
heet4 (Pivot Tables)

3% ThisWorkbook

Figure 11.33 - The ThisWorkbook module showing the Workbook_Open() event sub

3. Select Workbook and Open from two dropdowns. You will then see the Private
Sub Workbook Open () sub.It will be empty at this stage.

452 MS Excel VBA and MySQL - Part 1

4. Enter the following code:

Private Sub Workbook Open ()
'Load the intial data
ReadGenreSales
ReadArtistSales

End Sub

5. Click the Save button.

6. Close and restart the workbook to test that both the Genre and Artist
dropdowns will be correctly populated with their lists.

The Private Sub Workbook Open () event is Excel's auto-run method. By placing
calls to the ReadGenreSales and ReadArtistSales functions in this event, we
ensure they will be executed when an Excel file is opened. You can enter any amount

of code in this event; however, it is usually better to keep it simple and limit its code to
call functions designed to perform any complex operations. In the next section, we will
populate our first chart.

Populating charts

Dashboards are very popular, and managers love them, but why? Because they provide
important information at a glance about the current status of the business without the
need to sift through large sets of numbers to retrieve statistics, and help managers make
important business decisions. Charts play an important role in business by displaying
comparisons or changes in data over time in a simple-to-understand graphical way.
Managers use charts in meetings with upper management, stakeholders, and external
clients when presenting information. These people know little or nothing about the finer
details of the business and will not relate to numbers alone, but they will relate to a
well-presented chart.

Populating a chart - Genre sales

When you were assigned to create a dashboard, your manager said that the information
was to be displayed graphically so that they could use the charts in their meetings with
the board of directors (BOD).

Populating charts 453

The Genre Sales chart will display all sales for the selected genre from the dropdown

in Dashboard cell B5. To do this, we need to be able to determine when a value has
changed in cell B5. We cannot directly determine when a cell has changed, but we can
detect when a cell has changed in a worksheet because any change will fire a Worksheet
Change (byVal Target as Range) event. We can read the Target parameter,
which will tell us which cell caused the event to fire—that is, which cell was changed.

We need to do this task in two parts: first, we need a function to load the required data
from MySQL, and then we need a function to determine if the changed cell is in fact B5
and call the load routine. The next two exercises will deal with each part individually.

Exercise 11.11 - Loading Genre Sales chart data

In this exercise, we will prepare a sub that will accept a single string parameter (the
selected genre), load the filtered data from MySQL, and create a named range for the data.
This sub will be called when the user selects a genre and will be the subject of the next
exercise. Proceed as follows:

1. Open the VBA IDE, as illustrated in the following screenshot:

FILE HOME INSERT PAGE LAYOUT FORMULAS

] D ®7 Record Macro ﬁ} : -
] Use Relative References -i
Visual Macros Add-Ins COM Inser
Basic ! Macro Security Add-Ins -

Code Add-Ins
Figure 11.34 - Opening the VBA IDE screen

2. In the Project panel, locate and double-click on the Dashboard worksheet to open
the worksheet's VBA window, as illustrated in the following screenshot:

% File Edit View |nset Format Debug Run Tools Add-ns Window Help & x
EE-d Bal9 o a W EEE 2@ e BIEM R |EEEE2 o - [&] » 5 - | [100% -
‘roject - VBAProject X| [tGeneran | [weciarations) |

5] Sheet1 (Dashboard)

H] Sheet3 (Data Sheet)
sheet4 (Pivot Tables)
EH] Sheet5 (employee)

Sheets (customer)

E=2 O = | =
E-&# VBAProject (MySQL Excel Training Completed for Scree..)
& MySQLDatabase
Sheet2 (Contact Register)
3] ThisWorkbook

Figure 11.35 - The Dashboard VBA IDE

454

MS Excel VBA and MySQL - Part 1

Declare a private sub. We are going to pass in the selected genre name as a string, so
declare a parameter as well. This is a sub, so it will not be returning any values. The
code is illustrated in the following snippet:

Private Sub GenreSales (ByVal pGenre As String)

Declare the variables we will be using, as follows:

Dim RS As Recordset
Dim SQL As String
Dim MyNamedRng As Range

Start by clearing the existing range data from the location in which we are going to

insert the data. The first time this sub is run, the range does not exist and will cause
an error, so before attempting to clear the range, we ignore errors. After the range is
cleared, we start checking for errors. The code is illustrated in the following snippet:

On Error Resume Next

Worksheets ("Data Sheet") .Range ("GenreSales") .
ClearContents

On Error GoTo HandleError

Connect to the database. If the connection was successful, start processing,
as follows:

If ConnectDB DSNless (g Conn DSNless) = True
Then

Prepare the SQL statement. We have a view in the database compiling the data, so
we only need to filter to the genre passed in and select the fields we want to display.
The code is illustrated in the following snippet:

SQL = nn

SQL = SQL & "SELECT SaleMonth, 'Units
Sold' "

SQL = SQL & "FROM vw_genresales "
SQL = SQL & "WHERE Name = '" & pGenre &

SQL = SQL & "ORDER BY SaleMonth ASC"

Populating charts 455

8. Setthe recordset variable and open the recordset with the connection, as follows:

Set RS = New ADODB.Recordset
RS.Open SQL, g Conn DSNless

'Test there are records.
If RS.EOF And RS.BOF Then
'No data
GoTo Leavesub
Else

9. Load the data into the Data Sheet worksheet, starting at row 2, column 5,
as follows:

Worksheets ("Data Sheet") .Cells (2,
5) .CopyFromRecordset RS

10. Define and set a named range and add it to the Names collection, as follows:

'Set and create a named range covering new data

Set MyNamedRng = Worksheets ("Data
Sheet") .Range ("E2:F" & RS.RecordCount + 1)

ActiveWorkbook.Names .Add
Name:="GenreSales", RefersTo:=MyNamedRng

11. The rest of the code finalizes the routine, including error handling. You can view it
in the following snippet:

End If
Else
End If

Leavesub:
'Close recordset
RS.Close
Set RS = Nothing
Exit Sub

HandleError:

456 MS Excel VBA and MySQL - Part 1

MsgBox Err & " " & Error (Err)
Resume Leavesub
End Sub

12. Click Save.

And we are done. This is a sub, and we cannot call it from the Immediate panel to test it,
so we will move on to the next exercise and test it when it is called from the next routine.

Running code on changes to a document

As with running at Open, we can also run code when a worksheet changes. This is useful
for situations where you want to recalculate or reconstruct objects in your worksheet. For
example, you can have a cell that allows a user to input different scenarios. When the value
changes, you can generate new charts based on the scenario selected.

To run code on change, you can use the Worksheet Change function. This function
runs if anything changes in a worksheet. The following exercise demonstrates an example
of using this function.

Exercise 11.12 - Detecting and working with worksheet
changes

To detect when a user has changed a drop-down value by selecting a genre from the list,
we need to use a Worksheet Change event on the Dashboard worksheet. The code
will need to be able to detect which cell was changed and then direct the program flow
accordingly. Proceed as follows:

1. Continuing in the Dashboard worksheet's VBA window, select Worksheet and
then select the Change event from the top dropdowns. You will be presented with a
Worksheet Change code construct, as shown in the following screenshot. Enter
the following code inside this construct:

Project - VBAProject X| [[workshest =] [change |
EE = .
=& VBAProject (MySQL Excel Training Completed for Scree..) Private Sub Worksheet_Change(Byval Target As Range) ™

MySQLDatabase
Sheet1 (Dashboard) End Sub
Sheet2 (Contact Register)
Sheet3 (Data Sheet)
Sheet4 (Fivot Tables)
Sheet5 (employes)
Sheets {customer)

@ ThisWorkbook

Figure 11.36 — The Dashboard worksheet's Worksheet_Change event sub

Populating charts 457

To test what cell was changed, we test the Target parameter. This is a range object
and, among other things, contains the address and the value of Target. We are
interested in both. Test the address of Target usinga Select Case statement
to test if the changed cell is B5, as follows:

'Test the active cell (the one that changed)
Select Case Target.Address

Case "SBS5"

If Target is referring to B5, then we need to process it. Start by calling the data
load routine we created in the previous exercise. Target will contain the selected
genre's text. This is very convenient, as we only need to pass in Target. The code
is illustrated in the following snippet:

'The change was in the dropdown, target has
the value

Call GenreSales (Target)

Activate the Dashboard worksheet so that we can use the With/End construct,
as follows:

'Set the chart details Population

Worksheets ("Dashboard") .
ChartObjects ("chrtPopulation") .Activate

Set the parameters for the chart, including datasource, title,and series
name, like so:

With ActiveChart

.SetSourceData Source:=Sheets ("Data
Sheet") .Range ("GenreSales"), PlotBy:=x1Columns

.HasTitle = True

.ChartTitle.Text = "Genre Sales - " &
Target

.SeriesCollection(1l) .Name = "Saleg"
End With

458 MS Excel VBA and MySQL - Part 1

6. We are finished with B5. Include E1se to ignore cell changes we are not interested
in, as illustrated in the following code snippet. If you want to include other cells,
just add a case test and code (remember that for the upcoming activity):

Case Else
'Nothing to work with so leave
GoTo Leavesub
End Select

Leavesub:
Exit Sub

Test the code by selecting a genre from the Dashboard's Genre dropdown.
The data will be in the Data Sheet tab, and the chart should change with
your selections, as illustrated in the following screenshot:

E F
2015 01 01 _I 1.00
2015 04 01 1.00
201509 01 2.00
2016 04 01 2.00
2016 07 01 2.00
201612 01 3.00
2017 0701 1.00
201710 01 1.00
2018 03 01 2.00
2018 10 01 2.00
2019 01 01 1.00
2019 07 01 2.00

Figure 11.37 - Data output in the Data Sheet tab of the selected genre

The data values indicate the year/month and the total sales in the month for the selected
genre. The view in MySQL compiling the data calculates the sales and also modifies the
output date to show the first of the month because the chart as defined in this exercise
expects a valid date format in order to it sort correctly.

Populating charts

459

The following two charts are displaying data for two separate selections graphically. Here's

the first one, showing data for the Rock genre:

Genres Rock
Sales of tracks within selected Genre
¥ ™y
Genre Sales - Rock
30.0
5.0
20.0
15.0
10.0 a
5.0
0.0
v gy gy gr oy dr ar gy d" t:?' gy v d‘ ﬁ'\' o dr dr_gr v o
h'»'*@@' & @h@%@’h@ & x,\a d",\@’ N c} d“ @%{‘@@'q@ &
gty 'ﬂs\b’é@'@wf@r\' N'LQ’N”ES\'"P °'y & ,5»,55»@\- & '59"159
GENre «-eeeeee- Limear (Genre)
M. A

Figure 11.38 — Genre Sales chart displaying the Rock genre

460 MS Excel VBA and MySQL - Part 1

The following chart shows data for the Alternative & Punk genre:

Genres Alternative & Punk E|
Sales of tracks within selected Genre |
i =
Genre Sales - Alternative & Punk
18.0
16.0
140
12.0
10.0
5.0
6.0
an
20
0.0
ar oy dr dr ar gy d" d" d" o u'*' ar oy dr or &r dr dr o
w{b & P P {*hﬁ’h@ d" {“%(:'P‘ d"%'\? g o F P
oY 37 4P P »@@@@ PP P 0 P P P
P AP AP AR AR AR AP SR
Genre seeceeres Linear (Genre)
e v

Figure 11.39 — Genre Sales chart displaying the Alternative & Punk genre

Reading MySQL data and populating charts requires only a few basic steps: query the
database, place the data somewhere, assign the data to a named range, and assign the
named range to a chart. Most of the coding will relate to error checking and formatting the
chart. The order in which you read and place columns of data on a worksheet is important.
If the data is not in the order the chart expects, it will not be displayed correctly.

Activity 11.01 - Creating a chart (artist track sales) 461

Activity 11.01 - Creating a chart (artist track
sales)

The manager has changed their requirements for artists' tracklists. They now want a bar
chart with artists' tracks and their sales. Fortunately, we can still use the dropdown to
select an artist, and there is a view in the chinook database that will provide data,
named vw_artist track sales.

Your task is to do the following:

1. Create a new function and name it ArtistTrackSales.

2. The function is to read the data from the MySQL view named vw_artist
track sales, filter the data to the selected artist in the dropdown in P5, and
place the data in the workbook named Data Sheet in columns L and M.

3. You need to then modify the existing worksheet change event to call your
new function to load the data.

4. Then, create a bar chart and place it beneath the dropdown, display the data generated
from the function, name the chart chrtArtistTrackSales, and format the area
around the chart on the dashboard to fit in with the rest of the sheet.

Hint

This will be very similar to the genre dropdown/chart process.

After following the steps, the data in Data Sheet in columns L and M should look
like this:

L I

Save The Children

Abraham, Martin And John

Seek And You Shall Find

Heavy Love Affair

You Sure Love To Ball

Praise

You've Been A Long Time Coming
When | Had Your Love

R R R R L]

Figure 11.40 - ArtistTrackSales output in the Data Sheet tab

462 MS Excel VBA and MySQL - Part 1

You should have a new named range, as illustrated in the following screenshot:

ArtistTrackSales hd

A
1 Name

2 |Alternative
3 |Alternative & Punk

Figure 11.41 - ArtistTrackSales named range in range list

This is what happens when you select the named range:

L M

Save The Children

Abraham, Martin And John

Seek And You Shall Find

Heavy Love Affair

You Sure Love To Ball

Praise

You've Been A Long Time Coming
When | Had Your Love

e e R = =

Figure 11.42 - ArtistTrackSales highlighted when the named range is selected

Activity 11.01 - Creating a chart (artist track sales)

463

And finally, a new chart and formatting appear on the dashboard, as follows:

o

=l

Q R |

Artist Marvin Gaye

Artist Track Sales

Artist Track Sales - Marvin Gaye

When | Had Your Love

You've Been A Long Time Coming

Praize

You Sure Love To Ball

Heavy Love Affair

Seek And You Shall Find

Abraham, Martin And lohn

Save The Children

=

05

[
=
L
P

25

Figure 11.43 — New chart to display ArtistTrackSales

464 MS Excel VBA and MySQL - Part 1

Once you have developed data load functions and charts, implementing new requirements
is often simply duplicating what you have already developed and modifying it to suit the
new requirements. The first charts and data reads are often the longest to create, with
subsequent charts and functions being quicker to implement.

Up to now, we have been using a DSN-less connection to the database. We will now move
on to using a DSN we have called chinook.

Note
The solution to this activity can be found in the Appendix.

Ssummary

In this chapter, you learned how to create a named DSN to the chinook database, add
and use the DEVELOPER tab, and start the VBA IDE. We then created reusable functions
to connect to MySQL using two different types of ODBC connections. We also learned
how to read and import data from MySQL into a worksheet, define named ranges for the
imported data, and assign the named ranges to charts using VBA. We set chart labels and
categories using VBA and created and used drop-down lists to load filtered data, display
data, and use it in charts. We then set data collections from MySQL that will run when

a workbook is opened.

In Chapter 12, we will continue working with MySQL and Excel.

12

Working With
Microsoft Excel VBA
- Part 2

To set up and properly demonstrate using Excel with MySQL is quite involved, so the topic is
split over two chapters. In this chapter, we will begin by setting up a sample MySQL database
using a . sql script file and learn how to activate the Developers tab and the VBA IDE so
that you can develop in VBA. We will then connect to a MySQL server and retrieve data
using Excel VBA, create a dashboard with the data from MySQL, and populate drop-down
lists and individual cells with VBA and MySQL data. By the end of the chapter, you will be
able to create pivot tables and charts from MySQL data, and you'll know how to use MySQL
for Excel to load, modify, and update MySQL records directly in the database. You'll finish
off by learning how to push worksheets from Excel into a new MySQL table.

This chapter covers the following concepts:
+ An introduction to MySQL connections
« Connecting to the MySQL database using ODBC
» Exploring generic data read functions

« Creating connections to MySQL in Excel

466 Working With Microsoft Excel VBA - Part 2

o Inserting data using MySQL for Excel

« Updating data using MySQL for Excel

« Pushing data from Excel

« Pivot tables

o Activity 12.01 - building a MySQL-based Excel document

An introduction to MySQL connections

You will now continue working with Excel and MySQL by generating several VBA functions
to read from MySQL using DSN and DSN-less connections to display the results. You will
generate graphs and charts to analyze the data and learn how to autorun a macro so that the
spreadsheet will automatically read the latest data and update the information, chart, and
graphs. Sometimes, you just want to read specific data from a database but not create MySQL
functions, procedures, or views to do it, so you will also be creating a generic data reader.
This is a VBA function that you can pass in a SQL statement, which will be executed on the
server and the results passed back; you will also learn how to use the returned data. These
tasks will move you on to an advanced level of Excel programming.

Note

All exercise and activity solution files for this chapter can be located here:
https://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterl?

Connecting to the MySQL database using ODBC

DSN-less connections are great for portability; however, as mentioned earlier, the
connection's login details are in the Excel workbook. This can be a security risk if your
data is sensitive. Another issue is that they will work for anyone who happens to get hold
of the spreadsheet. As long as the relevant driver is on their computer, the driver details
are also in the connection routine, so someone with a little ODBC and VBA knowledge
will figure that out quickly.

In the next exercise, we will create a new function to connect to the database using a DSN.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12

Connecting to the MySQL database using ODBC 467

Exercise 12.01 - creating a DSN connection function

A DSN offers more security; you need to set up the connection on the user's computer
before they can use the spreadsheet. When using a DSN, the login details are not visible
in the workbook. Also, as a bonus for you, the developer, it requires less coding to use in
your application.

In this exercise, we will create a DSN connection based on a named ODBC connection:

1. Double-click the MySQLDatabase module in the VBAProject panel to open the

VBA code window:
Project - VBAProject E
= | -

agﬁ VBAProject (MySQL Excel Training Completed for Scree...)
" 2 [

B3] Sheetl (Dashboard)

A Sheet? {Contact Register)

Sheet3 (Data Sheet)

~EH] Sheet4 (Pivot Tables)

Sheets (employee]

B Sheetd (customer)

--3%"] ThisWorkbook

Figure 12.1 - The VBA code window

2. Move to the end of the code window after the code that you created in previous
exercises and activities.

3. Start a new function with two parameters (a connection variable and a string to pass
in the name of the named ODBC). The function will return a Boolean value:

Public Function ConnectDB_ODBC (oConn As ADODB.Connection,
ODBCName As String) As Boolean

4. Set up error handling and declare the variables that we will use:

On Error GoTo HandleError

Dim Msg As String
Dim str As String

468 Working With Microsoft Excel VBA - Part 2

5. Set up the connection variable. With the named ODBC, it is important to tell
the connection which cursor to use. We need to use the client cursor; otherwise,
we will not get the data back as we expect to:

'Set the passed in connection variable to a new
connection

Set oConn = New ADODB.Connection

oConn.CursorLocation = adUseClient

6. Now, prepare the connection string. This is simple — we use the string we passed in
that represents the name of the named DSN. An advantage of this method is that
we can pass in any DSN we have available, so it is very flexible. This method is very
simple compared to a DSN-less connection:

'Prepare the connection string
str = "DSN=" & ODBCName & ";"

7. Now, open the connection, passing in the connection string that we just built:

'Open the connection, if there is a problem, it will
happen here

oConn.Open str

8. Pass back True to indicate success and leave the function:

ConnectDB_ODBC = True

LeaveFunction:
'and leave

Exit Function

9. Include error handling as follows:

HandleError:

'There was a problem, tell the user and include
the error number and message

Msg = "There was an error - " & Err & " - " &
Error (Err)

MsgBox Msg, vbOKOnly + vbCritical, "Problem
Connecting to server"

Connecting to the MySQL database using ODBC 469

'Pass back a False to signify there was an issue to
the calling code

ConnectDB_ODBC = False

'Leave the function

Resume LeaveFunction
10. Finally, close off the function block:
End Function

And we are done. We cannot test this until we create a routine to use it; we will do that

in the next exercise. Using the DSN is much simpler to set up from a programming
perspective; there are no sensitive connection details in the code, just the DSN. We do not
need to use login names or passwords because they are set up and stored in the DSN.

Note

The VBA code for this exercise can be found here: ht tps: //github.
com/PacktWorkshops/The-MySQL-Workshop/tree/master/
Chapterl2/Exercisel2.01.

To use the ConnectDB_ODBC function, we will create a new function to read data to
populate the Genre Tracks Sales vs Tracks with No Sales chart,named
TracksStats.

The Genre Tracks Sales vs Tracks with No Sales chart, for each genre, will display how many
tracks in the genre have at least one sale and how many have no sales. It will also display
the number of tracks in each category.

To create a function, we can use the following steps:

1. Inthe MySQLDatabase module, create a new function. The function will return a
Boolean value to indicate success or failure:

Public Function GenreTrackSalesStats () As Boolean

2. Declare the variables we will use, as well as error handling:

Dim SQL As String 'To store the SQL statement
Dim RS As Recordset 'The Recordset variable

Dim Msg As String 'To display messages

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.01
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.01
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.01

470 Working With Microsoft Excel VBA - Part 2

Dim Counter As Integer 'A counter

Dim MyNamedRng As Range ' A range variable

On Error GoTo HandleError

3. Prepare the SQL statement. The SQL combines two views to retrieve our data. The
MySQL view, vw_genre count, returns the total number of tracks in each genre,
and vw_genre count no_sales returns the count of racks with no sales. Both
have a common field name called count. By combining the two views in SQL and
subtracting the no sales count from the total count, we can determine the number
of sales in each genre:

SQL = nn
SQL = SQL & "SELECT "
SQL = SQL & "vw_genre count.Count - vw _genre count

no_sales.Count AS Sales, "

SQL = SQL & " vw_genre count no_sales.Count AS

NoSales, "
SQL = SQL & "vw_genre count.Genre "
SQL = SQL & "FROM "
SQL = SQL & "vw_genre count "
SQL = SQL & "LEFT JOIN vw_genre count no sales ON vw_

genre count no sales.Genre = vw_genre count.Genre "
SQL = SQL & "Order BY "
SQL = SQL & "vw_genre_ count.Genre'

4. Now, call the new ConnectDB_ODBC function. The difference between this and the
DSN-less connection is that here, we are using the global ODBC variable and also
passing in the DSN that we want to use. You can use this function with any DSN:

If ConnectDB ODBC (g Conn ODBC, "chinook") = True Then

5. Setthe recordset variable and open recordset, passing in the SQL and the
global ODBC variable:

Set RS = New ADODB.Recordset
RS.Open SQL, g Conn ODBC

Connecting to the MySQL database using ODBC 471

Test whether we have data and deal with a situation in which we have no data:

If RS.EOF And RS.BOF Then
RS.Close
Set RS = Nothing
Msg = "There is no data"

MsgBox Msg, vbOKOnly + vbInformation, "No
data to display"

GoTo LeaveFunction

Include E1se to handle when we have data and enter code to process the data. Start
by setting the column headings. Place the data in the H, I, and J columns:

Else
For Counter = 0 To RS.Fields.Count - 1

Worksheets ("Data Sheet") .Cells (1, 8 +
Counter) = RS.Fields (Counter) .Name

Next

Worksheets ("Data Sheet") .Cells(2,8).
CopyFromRecordset RS

Create the named range for the data. The H and I columns contain the data for the
two series in the chart:

Set MyNamedRng = Worksheets ("Data Sheet").
Range ("H2:I" & RS.RecordCount + 1)

ActiveWorkbook.Names.Add Name:="Sales",
RefersTo:=MyNamedRng

Set MyNamedRng = Worksheets ("Data Sheet") .
Range ("J2:J" & RS.RecordCount + 1)

ActiveWorkbook.Names .Add
Name:="TrackStatGenre", RefersTo:=MyNamedRng

Close the recordset and connection:

RS.Close

Set RS = Nothing

g Conn ODBC.Close

Set g Conn ODBC = Nothing

472 Working With Microsoft Excel VBA - Part 2

10. Now, set some options in the chart and activate it:

Worksheets ("Dashboard") .
ChartObjects ("TrackStats") .Activate

With ActiveChart
.HasTitle = True

.ChartTitle.Text = "Genre Tracks Sales
vs. No Sales"

11. Set the chart's data source and category to the named ranges we defined and also set
the series names:

.SetSourceData Source:=Worksheets ("Data
Sheet") .Range ("Sales"), PlotBy:=x1Columns

.Axes (x1Category) .CategoryNames =
Worksheets ("Data Sheet") .Range ("TrackStatGenre")

.SeriesCollection(1l) .Name = "Sales"
.SeriesCollection(2) .Name = "No Sales"
End With
GenreTrackSalesStats = True

End If

12. From here, handle failed connections and exit the function:

Else

'Connection failed if gets in here, just drop
through to leave

End If

LeaveFunction:
'Leave the function

Exit Function
HandleError:
GenreTrackSalesStats = False

Resume LeaveFunction

End Function

Connecting to the MySQL database using ODBC 473

13. Test the function by typing the function name in the Immediate window, and your
result should be as follows:

? GenreTrackSalesStats
True

Figure 12.2 - The test and result for GenreTrackSalesStat in the Immediate panel

Typing ? GenreTrackSalesStats and pressing Enter will run the function to
retrieve the data. If it was successful, it will return True; if not, it will return False.
The returned value can be tested by your code to decide on the next action.

The output is as follows:

Sales MoSales Genre

]

Figure 12.3 — The GenreTrackSalesStats named range in the data sheet workbook

474 Working With Microsoft Excel VBA - Part 2

The data is presented in the data sheet. Sales (H) indicates how many tracks had sales in
Genre (J), and NoSales (I) indicates how many tracks had no sales in the genre. The data
is presented in a specific order (Sales, NoSales, and Genre) to meet the requirements of
the chart that will display it:

Genre Tracks with Sales vs. Tracks with No Sales
e ™
Genre Tracks Sales vs. No Sales

World 7 &

TV Shows o 3P

Soundtrack o &
Science Fiction :
n

Sci Fi & Fantasy mm 2o
Rock And Roll |

552
Rock EEE—— 745

REEEDE o 38

R&B/Soul M2

. 23
Pop mm 35
Opera é
——— 45
Metal 231
Latin L — 344

e L
lazz ——— 5

]
(=]

Hip Hop/Rap

-
m A

Heavy Metal

e
=

Electronica/Dance

=y my =g Nj
- -
5 s

-
=]

Easy Listening
Drama
Comedy
Classical m 3%
Bossa Nova .1 14
BlUES o 53
Alternative & Punk S ——mm—ecm 103

Alternative 3%

o 100 200 300 400 500 600 700 BDO

B No 5ales W Sales

Figure 12.4 — The chart displaying Sales and No Sales for GenreTrackSalesStats

Exploring generic data read functions 475

Using a DSN connection in your code is no different from using a DSN-less connection,
but as you can see, there are no login details stored in the workbook. We can have both
connection types in the same workbook (although we will usually settle on one type and
use it). By setting up the connection function for DSN with a parameter to pass in the
name of the DSN, any database can be accessed that we have set up a DSN for. This means
that we can extract data from any number of databases — even on different servers and in
different locations - in one workbook.

Note

The VBA for this exercise can be found here: https://github.com/
PacktWorkshops/The-MySQL-Workshop/tree/master/
Chapterl2/Exercisel2.02.

In this section, we learned how to create a function to use a DSN connection, called and
used the function, and explored the differences between a DSN-less and a named ODBC
connection. We also prepared a third function to autorun on startup to update data.

In the next section, we will create a generic data reader function to which we can pass
a SQL statement to be executed on the MySQL server and have the result passed back
from the function to use in our application.

Exploring generic data read functions

Throughout the execution of your programs, you will often want to query the database
and return a single value only. Writing individual functions for this can result in a lot of
code, making the application bloated and causing future maintenance to be problematic
due to duplicated code. As a developer, your main goal is to create small and efficient
code to generate accurate results. Developing small and flexible functions that are callable
from any other code will help you to achieve this goal. For example, we can create a read
function that is designed to read data from our MySQL database. This will allow you

to call a single function every time you need to read data, reducing code repetition and
improving development efficiency. This process can be applied with other functions, such
as read, update,and insert, allowing us to complete these operations in multiple
areas without repeating code.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02

476 'Working With Microsoft Excel VBA - Part 2

Exercise 12.02 - a generic data reader

In this exercise, you will create a single function that you can use to query the database
and return a single value only. You will pass into the function a SQL statement to be
executed, and the result will be returned, which you can then use in your VBA code.
Learning how to create this type of function will enable you to modularize your VBA
code to simplify development and improve the readability of your logic.

We will then demonstrate its use by populating the N8, N9, and N12 cells in the
dashboard worksheet:

1.

In the MySQLDatabase module, add a new function. The function will have one
parameter, SQL, as a string, and it will return a variant-type value. We do not know
what type of value will be returned by the SQL statement. It can be numeric, a date,
a long string, or any of the data types that MySQL can return, so a variant data type
will allow any data type to be returned, and it will be the responsibility of the VBA
code to handle the data type appropriately:

Public Function runSQL SingleResult (SQL As String) As
Variant

Declare the variables to use and set up error handling:
Dim RS As Recordset 'The Recordset variable

Dim Msg As String 'To display messages

On Error GoTo HandleError

Make the connection to the database. We will be using the DSN connector and
passing in the DSN name to use:

If ConnectDB ODBC(g Conn ODBC, "chinook") = True Then

Prepare and open the recordset variable, RS. Pass in the SQL statement that was
passed into the function using the ODBC connection:

Set RS = New ADODB.Recordset
RS.Open SQL, g Conn ODBC

Exploring generic data read functions 477

5. Test whether a record was returned. If not, then close the recordset and connection,
and return 0 before leaving the function:

If RS.EOF And RS.BOF Then
RS.Close
Set RS = Nothing

Msg = "There is no data"

MsgBox Msg, vbOKOnly + vbInformation, "No
data to display"

runSQL SingleResult = 0

GoTo LeaveFunction

6. If there was a record returned, set the cursor position to the first record, read the
value, and pass it back by assigning it to the function. This function will accept any
SQL statement that you care to pass into it. We have no way of knowing in advance
what the name of the return field is. As we are expecting only a single value to be
returned, we can simply read the first (and only) field's value by referring to it,
using its numeric value of 0:

Else
RS.MoveFirst
runSQL SingleResult = RS.Fields(0)

7. Close the recordset connection and exit the function. In the error routine, we pass
back 0:

RS.Close
Set RS = Nothing
End If

g Conn_ ODBC.Close
Set g Conn ODBC = Nothing

Else
End If

LeaveFunction:

Exit Function

478 Working With Microsoft Excel VBA - Part 2

HandleError:
runSQL SingleResult = 0
Resume LeaveFunction

End Function

8. Save the function.

9. Test it by typing the following in the Immediate panel:

? runSQL SingleResult ("SELECT Count (TrackID) FROM
Track")

The returned value will be 3503.

Now, let's populate the customer purchase details in N8, N9, and N12. For this
exercise, we will do this in the Workbook Open subroutine so that they are read
and populated when the workbook is opened.

10. Add the following code in the Workbook Open () subroutine:

* Call the runSQL SingleResult function, pass in a query to read data from the
vw_customer count view, and assign the returned value to N8:

'Populate Customer Purchase Details

Worksheets ("Dashboard") .Cells (8, 14) = runSQL
SingleResult ("SELECT * FROM vw_customer count")

* Call the runSQL _SingleResult function, pass in a query to call the
spTotalSales stored procedure, and assign the returned value to N9:

Worksheets ("Dashboard") .Cells (9, 14) = runSQL
SingleResult ("call spTotalSales()")

* Call the runSQL SingleResult function, pass in a query to find the last
invoice date, and assign the returned value to N12:

Worksheets ("Dashboard") .Cells (12, 14) = runSQL
SingleResult ("SELECT MAX (InvoiceDate) FROM Invoice")

Exploring generic data read functions 479

11. Test it by placing your cursor anywhere in the WorkbookOpen () function and
pressing F5 to run it. The results on the dashboard will be as follows:

W N

Customer Purchase Details
Total Customers 55
Total Sales $ 2,238.62
Highest Customer Sales
Avg Customer Sales
Last Sale date 12-11-19

Figure 12.5 - The dashboard results from three single-result queries

In this exercise, we created a single function to run a SQL statement and pass back a single
result of any data type. The code in step 9 called it three times by running a standard SQL
statement and returning an integer value, calling a MySQL stored procedure and returning
a currency value, and running an aggregate query to return a date value. These three types
were chosen to demonstrate the flexibility of this type of function and the variant data
type that it returns.

Note

The VBA for this exercise can be found here: https://github.com/
PacktWorkshops/The-MySQL-Workshop/tree/master/
Chapterl2/Exercisel2.02.

In the next activity, you will add two lines of code to complete the Customer Purchase
Details section of the dashboard.

In this section, we learned how to create a flexible function to read data and return results
and how to use the function to retrieve varied results, based on the SQL statement passed
into it.

In the next section, we will learn how to work with MySQL for Excel to load data, create
pivot tables, and update data in the MySQL database directly from an Excel worksheet.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Exercise12.02

480 Working With Microsoft Excel VBA - Part 2

Creating connections to MySQL in Excel

Oracle has released a plugin for Excel called MySQL for Excel. This plugin gives you a
simple-to-use window in the MySQL database using a DSN connection, which makes
reading the data from tables simple and even provides a direct connection to the tables,
allowing you to edit and update, delete records, and add new records. In this section, we
will briefly look at these features to finish off our dashboard and to permit direct data
editing on key tables. MySQL for Excel should have been installed when you installed
MySQL; if not, return to the MySQL installation pages in the Preface for installation
instructions. We will be concentrating only on importing data for display and editing.
There are many more interesting features in MySQL for Excel that are not addressed in
this book that may be worth following up.

Exercise 12.03 - creating a connection to MySQL

In this exercise, we are going to start MySQL for Excel and describe the opening panel.

To start MySQL for Excel, follow these steps:

1. Click the DATA tab on the ribbon. If the MySQL for Excel plugin is installed, there
will be a button for it on the right of the tab:

FORMULAS DATA REVIEW VIEW DEVELOPER ADD-INS Foxit PDF TEAM DESIGN

=t, [£] Cannections Clear) [=V4 3 €0E Show Detail | [T

2 2 e 5 BE =X B B o=§ i [

- E Properties Reapply = Hide Detail

fresh . %l Sort Filter Textto Flash Remove Data Consolidate What-If Relationships Group Ungroup Subtotal MySQL

- Edit Links ToAdvanced | Colymns Fill Duplicates Validation = Analysis - - - for Bxcel
Connections Sort & Filter Data Tools Outline MysSaL

Figure 12.6 - The location of the MySQL button in the ribbon

2. Click the MySQL for Excel button, and the MySQL panel will open on the right
side of the screen. The screen will display any local and remote connections you
may have set up. It also has two options, New Connection for setting up new
connections and Manage Connections for managing any existing ones:

Creating connections to MySQL in Excel

481

MySQL For Excel v
n Welcome to
w3 MySQL for Excel

MyS0L for Excel allows you to work with the
MyS0L Database right from within the MS
Office Excel application. Excel is a powerful
tool for data analysis and editing.

= Open a MySQL Connection
Double-Click a Connection to Start

» Local Connections
» Remote Connections

New Connection
Add a new Database Connection

~ = Manage Connections
= = Launch MySQL Warkbench

About MyS0L For Excel

Figure 12.7 - The MySQL panel

Once installed, MySQL for Excel is easy to start and use. If other people are going to use
your workbook, they will also need to have MySQL for Excel installed on their computer

to use the plugin. The plugin can be installed independently of MySQL, and it is free

to use.

Next, we are going to create a connection to the MySQL server using the methods
provided by MySQL for Excel.

482 Working With Microsoft Excel VBA - Part 2

To create a new connection, do the following:

1. Click New Connection. The MySQL Server Connection window will open. Enter
your connection details. Name the connection Chinook and set Default Schema

as the chinook database:

MySOL Server Connection X
Connection Name: |Chinook | @ Type a name for the connection
Connection Method: |Standald (TCP/1P) w | Method to use to connect to the RDEMS

Connection Status: a Accepting Connections

Parameters | S5 Advanced

Hostname: |'|92.'|63.0.3 | |33ﬁ6 Name or [P address of the server host - TCP/IP port.

Password: |uuuuuuo The user's password, stored in a secured vault.

Username: |Tom | MName of the user on the connection.
| The default schema, leave blank to select it later.

Default Schemna: | w

NG [o |

Figure 12.8 — The MySQL Server Connection window

2. Click Test Connection to test that the connection was successful. If it was, then you
will see the confirmation screen. If not, check your connection details and try again.
If successful, click OK:

MySCQL For Excel *

3 | Connection Success

Vo Excal " MySgl Server connection to Mysgl@192.168.0,3:3306 with user Tom was successful.

Figure 12.9 — The successful connection notification

3. Click OK on the MySQL Server Connection screen. The new connection will
appear in either Local Connections or Remote Connections on the panel,
depending on your specific setup:

Creating connections to MySQL in Excel 483

Open a MySQL Connection
Double-Click a Connection to Start

¥ Local Connections
¥ Remote Connections
Chinook

User: Tom, Host: 192.168.0.3:3306
Figure 12.10 - The connection panel displaying the new connection

4. To ensure that the password is set on the server as well, click Manage Connections.
Workbench will open, as well as a connection screen:

B Manage DB Connections - m} X
Stored Connections Connection Name: |Chincok | Type a name for the connection
| I('::_EEI In:tance MySQLS7 Connection Method: | Standard (TCP/IP) ~ | Methed to use to connect to the RDBMS
inoo

Parameters g5 Advanced

Name or IP address of the server host -and

Hostname: [197.168.0.3 | Port: [3306 ety

Username: |Torr| Name of the user to connect with.

Password: The user's password. Will be requested later if it's

: ‘ Store in Vault ... | | Clear | ot set.
Default Schema: |d1incok E;E%asnélaag iI:T:tZ:dEfBUIt schema. Leave
New | ‘ Delete ‘ | Duplicate ‘ | Move Up | | Move Down ‘ | Test Connection | I Close

Figure 12.11 - Adding a password to the Workbench vault
5. Select the new connection in the Stored Connections panel and click Store in
Vault. Another password window will open. Enter the password and click OK:

B Store Password For Connection »

Please enter password for the
following service:
Service: Mysgl@192.168.0.3:3306
User: Tom

Password: |m |

[ok || cancel |

Figure 12.12 - The password entry screen

6. Click Test Connection to make sure all is okay, and if successful, click Close to
close the window. This step ensures that the password is also stored on the server,
so you will not need to enter it again later.

484 Working With Microsoft Excel VBA - Part 2

We have now made our connection to the server. You can create as many as you need for
different databases and servers.

In this section, we learned how to get connected to a MySQL database through Excel.
In the next section, we will begin to use our connection to manipulate data in our
MySQL database.

Inserting data using MySQL for Excel

Using the connection that we have created, it is now possible to work with data between
Excel and MySQL. One of the first things we will look at is how to get data from MySQL
into an Excel workbook.

To be able to send data from MySQL to Excel, we will use the Import MySQL Data
option in the MySQL for Excel plugin. This tool will allow us to move any relevant data
we require from the database.

In the next exercise, we will see an example of inserting data.

Exercise 12.04 - inserting the top 25 selling artists

Your manager has asked you to include a list of the top 25 selling artists and their total
sales in the dashboard. He wants to be able to see at a glance who the best-sellers are
and feels that this will complete the dashboard.

In this exercise, we are going to include this list:
1. In the dashboard worksheet, click on the M15 cell to make it active. This will be the
insert point of the data.

2. Double-click on the chinook connection in the MySQL For Excel panel. A list of
available database schemas will be displayed:

Inserting data using MySQL for Excel 485

MySQL For Excel ~ %

m Welcome to
" MySQL for Excel

P Bl

MyS0L for Excel allows you to work with the
MySQOL Database right from within the M5
Office Excel application. Excel is a powerful
tool for data analysis and editing.

-

Open a MySQL Connection
Double-Click a Connection to Start

¥ Local Connections

chinook
User: root, Host: localhost:3306

Local instance MySQL80
User: root, Host: localhost:3306

» Remote Connections

Figure 12.13 - The chinook connection in MySQL For Excel
This shows the following display:

(= Select a Database Schema
X Then click the [Next=] button below

|Q, Filter Schemas

¥ Schemas
@ original_world_statistics

world_statistics
ms_access_migration
chinook
backuppractice

import_test

[@ @ @ @@ @@

packt_online_shop

P System Schemas

Figure 12.14 - The chinook database listed in the list of database schemas

486 Working With Microsoft Excel VBA - Part 2

3. Double-click on the chinook schema. The panel will then display a list of tables,
views, and procedures that are available:
@ Select Database Objects
Use CTRL or SHIFT for multiple selection.
|Cl. Filter Database Objects

w Tables "

225 artist

track
playlistirack

playlist
mediatype
invoiceling
invoice
genre
customer

alburmn

B £ £ E & &

i3 employee

¥ Views
wvw_alltimesales
vw_sales_by_month
wvw_artist_sales
vw_genre_count
vw_customer_count

& vw largest customer sales ¥
=== Import MySQL Data
BES add object's data at the current cell

E Edit MySQL Data
Open a new sheet to edit table data

~ Append Excel Data to Table
Add data to an existing MySQL Table

| Options | = <Back || Close

Figure 12.15 - Views and inactive options

Inserting data using MySQL for Excel 487

4. Click on the vw_artist_sales view. This view provides the top 25 selling artists data
that we want to insert into the dashboard. This view consists of two columns of data.
Note that when you clicked, the top option, Import MySQL Data, was activated.

5. Click the Import MySQL Data option. A window will open, displaying 10 sample
records and several options. For now, just click Import. Then, 2 columns of data
consisting of headings and 25 data rows will appear, starting at the M16 cell. There
will also be a new named range added to the range list:

Top 25 Selling Artists
Artist_Group [~ | Total Sales| ~ |
Iron Maiden 5 139.81
u2 5 106.60
Metallica 5 91.32
Led Zeppelin 5 87.01
Os Paralamas Do Sucesso 5 44.75
Deep Purple 5 43.83
Faith No More S 42.19
Lost 5 41.04
Eric Clapton 5 40.36
R.E.M. 5 38.94
Queen 5 37.06
Creedence Clearwater Revival | § 37.05
Guns N' Roses 5 36.11
Titds 5 33.73
Green Day 3 32.80
Pearl Jam S 31.79
Kiss 5 30.80
Van Halen 5 29.26
Various Artists 5 28.90
Chico Buarque 5 27.30
Red Hot Chili Peppers 5 26.81
Lenny Kravitz 5 26.10
Chico Science & Nagdo Zumbi | § 25.08
The Office S 24.96
Tim Maia 5 2411 ,

s 1,127.71

Figure 12.16 - The top 25 selling artists with the total

6. When displaying a list of values, it is often desirable to have a sum of the values
below the list so that the user can see at a glance what the total value is; add the
following cell-based formula to the N42 cell, =SUM (N16 :N41), if not already there.

488 Working With Microsoft Excel VBA - Part 2

This data will be updated when you select DATA and Refresh All on the ribbon:

FORMULAS DATA RE

|r [2] Connections A E

Refr . 22| Properties
resh i
e D Editlinks | A

Connections

Figure 12.17 - Location of Refresh All on the ribbon

The first time you refresh the data, a new column may be inserted, and everything to the
right of the insert point moves by one column. This appears to be a bug in the plugin. If
this does happen, select the data and move it to the proper position. It does not do this
on subsequent refreshes.

Once you have MySQL for Excel set up, inserting data is very easy. Once the data is on
the sheet, you can access and refer to it as you would with any other data. The cell-based
sum () function you included in the N42 cell demonstrates this.

In this section, we learned how to insert data into MySQL using Excel. In the next section,
we will learn how to update data in MySQL using Excel.

Updating data using MySQL for Excel

Once data is inserted into an Excel workbook, we may want to update the MySQL
database based on changes made to the data. To help with this, MySQL for Excel
implements functionality for editing data. This allows us to edit data in Excel and
save the changes back to MySQL.

In the next exercise, we will bring in data from MySQL and place it on a new worksheet.
This data can be edited, and the updated data can be written back to the MySQL database.
The ability to edit MySQL data and save it back to the database helps you to maintain your
data without the need to develop complicated forms.

Updating data using MySQL for Excel 489

Exercise 12.05 - updating MySQL data - employees

MySQL for Excel will insert the data into a new worksheet if you select the editing option.
In this exercise, we will add the employee data:

1. Activate the MySQL panel by clicking DATA and MySQL for Excel:

1

5 |
i =
II

i

Figure 12.18: Location of the MySQL for Excel button in the ribbon

2. Select the Chinook connection:

MySQL For Excel v
n Welcome to
et 3 MySQL for Excel

MySCOL for Excel allows you to work with the
MySOL Database right from within the MS
Office Excel application. Excel is a powerful
tool for data analysis and editing.

Open a MySQL Connection
Double-Click a Connection to Start

¥ Local Connections
@ Local instance MySQL57

Usern root, Host: localhost:3306

¥ Remote Connections

% Chinook
User Tom, Host: 192.168.0.3:3306

Figure 12.19 - The available connections

490 Working With Microsoft Excel VBA - Part 2

3. Select the chinook database:

=" Select a Database Schema
=F Then dick the [Mext=] button below

|Q,: ter Schemas

¥ Schemas

Lg original_world_stafistics
[;} world_statistics

Lg ms_access_migration
L; backuppractice

[9 import_test
[;} packt_online_shop
P System Schemas

Figure 12.20 - The available databases
4. Click on the employee table:

@ Select Database Objects
Use CTRL or SHIFT for multiple selection.

|0. Filter Database Objects

¥ Tables o)
artist
track
playlistirack
playlist
mediatype
invoiceline
invoice
genre
customer
album

v Views

Figure 12.21 - The available tables in the selected database

Updating data using MySQL for Excel

491

5. Click the Edit MySQL Data option. The preview window will open:

j album

<
=

ews

5| vw_alltimesales
ww_sales_by_month
v _artist_sales
vw_genre_count

ww_customer_count

| RIS T) T

vw_largest_customer_sales ¥

= Import MySQL Data
HE2 Add object’s data at the current cell

@ Edit MySQL Data

Open a new sheet to edit table data

. Append Excel Data to Table
k Add data to an existing MySQL Table

Options < Back Close

Figure 12.22 - The available options when a table is selected

6. We can preview the data in the employee table as seen here:

Preview MySQL Data

employee

Table Mame
Row Count: 10

This is a subset of the data for preview purposes only.

Employee... LastMame FirstName Title ReportsTo BirthDate HireDate Address

1 Adams Andrew General Manager 18-Feb-62 | 14-Aug-02 | 11120 Jasper Ave NW
2 Edwards | Mancy Sales Manager 1 08-Dec-58 |01-May-02 | 825 8 Ave SW

3 Peacock Jane Sales Support Agent | 2 20-Aug-73 | 01-Apr-02 | 1111 6 Ave SW
4 Park Margaret | Sales Support Agent | 2 19-Sep-47 | 03-May-03 | 683 10 Street SW

5 Johnson | Steve Sales Support Agent | 2 03-Mar-65 | 17-0ct-03 | 7727641 Ave

& Mitchell Michael IT Manager 1 01-Jul-73 | 17-0ct-03 | 5827 Bowness Road NW
T King Robert IT Staff & 29-May-70 | 02-Jan-04 | 590 Columbia Boulevard West
8 Johnston | Laura IT Staff 6 09-Jan-68 | 04-Mar-04 | 923 7 5T NW
9 Bloggs Fred IT Staff 6 [HuLL |

10 frrd frrrd frrd 6

< 3
Preview |10 E TOwWs. Refresh

[ox]| cance

Figure 12.23 - The employee table preview window

492 Working With Microsoft Excel VBA - Part 2

7. Click OK. A new worksheet will be added and populated with the contents of the
employee table:

Employeeld LastName FirstName Title ReportsTo BirthDate HireDate Address city State Country PostalCode Phone Fax Email

1Adams Andrew General Manager 18-02-620:00 14-08-020:00 11120 Jasper Ave NW Edmonton AB Canada TSK2N1 -+ (780) 428-5482 +1(780) 428-3457 andrew@chinookcorp.com

2 Edwards Nancy Sales Manager 1 08-12-580:00 01-05-020:00 825 8 Ave SW Calgary |AB Canada T2P2T2 +1(403)262-3443 +1(403) 262-3322 nancy@chinookeorp.com

3 Peacock Jane Sales Support Agent 2 29-08-720:00 01-04-020:00 1111 6 Ave SW Calgary |AB Canada T2PSMS5 +1(403)262-3443 +1(403) 262-6712 jane@chinookcorp.com

4 park Margaret _ Sales Support Agent 2 19-03-47 0:00 03-05-03 0:00 683 10 Street SW. Calgary | AB Canada T2P5G3 +1(403)263-4423 +1(403) 263-4289 margaret@chinookcorp.com
5Johnson Steve sales Support Agent 2 03-03-650:00 17-10-03 0:00 7727841 Ave Calgary |AB Canada T3B1v7 1(780)836-9367 1(780)836-9543 steve@chinookcorp.com

6 Mitchell Michael T Manager 1 01-07-730:00 17-10-03 0:00 5827 Bowness Road NW. Calgary |AB Canada T3BOCS +1(403) 246-9887 +1(403) 246-9899 michael @chinookcarp.com
7 King Robert |ITStaff 6 29-05-700:00 02-01-04 0:00 590 Columbia Boulevard West Lethbridge AB Canada TIKSNS +1(403)456-9986 +1(403) 456-8485 robert@chinookcorp.com

8 Callahan Laura IT staff 6 09-01-680:00 04-03-040:00 923 75T NW Lethbridge AB Canada TIH1VE +1(403)467-3251 +1(403) 467-8772 laura@chinookcorp.com

Figure 12.24 — The new tab with data and insert record line

Note the following on screen:

My5QL for Excel H Auto

Conpnit Changed

Figure 12.25 - The commit and revert edit options

Note

The Options window will be displayed on the tab whenever you have the
MySQL for Excel panel activated and you click in the data area.

8. Select Auto-Commit to write changes to the data back to the database as soon as a
change is made.

9. Clicking Revert Data will undo any changes you have made that are not committed.
10. Clicking Commit Changes will commit any changes to the database.
11. Make a change to any of the displayed data. The cell will turn blue.

12. The yellow line is where you can add a new line of data. Add some new data in the
yellow line. When you're done, it will turn blue, and a new yellow line will appear
below it:

A B C D 3 F G H I J K L M N o
Employeeld LastName FirstName Title ReportsTo BirthDate HireDate Address City State Country PostalCode Phone Fax Email
1Adams Andrew General Manager 18-02-62 0:00 14-08-020:00 11120 Jasper Ave NW Edmonton AB Canada TSK2NL +1(780)428-3482 +1(780) 428-3457 andrew@chinockcorp.com
2 Edwards Nancy Sales Manager 1 08-12-58 0:00 01-05-02 0:00 8258 Ave SW Calgary AB Canada T2P2T3 +1(403)262-3443 +1(403) 262-3322 nancy@chinooksorp.com
3 Peacock Jane Sales Support Agent 2 29-08-73 0:00 01-04-020:00 1111 6 Ave SW Calgary AB Canada T2P5MS +1(403) 262-3443 +1(403) 262-6712 jane@chinookcorp.com
4 park Margaret _ Sales Support Agent 2 19-03-47 0:00 03-05-03 0:00 683 10 Street SW. Calgary AB Canada T2P5G3 +1(403)263-4423 +1(403) 263-4289 margaret@chinockcorp.com
5 Johnson Steve Sales Support Agent 2 03-03-65 0:00 17-10-02 0:00 7727841 Ave Calgary AB Canada T3B1Y7 1(780) 836-9987 1(780) 836-9543 steve@chinookcorp.com
6 Mitchell Michael ITManager 1 01-07-73 0:00 17-10-03 0:00 5827 Bowness Road NW. Calgary AB Canada T3BOCS +1(403)26-9887 +1(403) 246-9899 michael@chinookcorp.com
7 King Robert T staff 6 29-05-70 0:00 02-01-04 0:00 530 Columbia Boulevard West Lethbridge AB Canada TIKSNS +1(403) +1 (403) robert@chi .com
8lohnston Laura ITStaff 6 09-01-68 0:00 04-03-040:00 9237 STNW Lethbridge AB Canada TIH1V8 +1(403)467-3351 +1(403) 467-8772 laura@chinookcorp.com
Bloggs Fred IT staff 6|

Figure 12.26 — The edited data and new records are displayed in blue

13. Click Revert. This will undo any blue cells. You will be given the option to reload
from the database or undo the changes.

Updating data using MySQL for Excel 493

14. Make some more changes to the data. The cells will again turn blue.

15. Click Commit. This will commit the changes. This time, the changes will be written
to the database and the cells will turn green:

A B c o E F G H i J K L M N o
1 |Employeeld LastName FirstName Title ReportsTo BirthDate HireDate Address. city State Country PostalCode Phone Fax Email
2 1Adams Andrew General Manager 18-02-620:00 14-08-020:00 11120 Jasper Ave NW Edmonton AB Canada TSK2N1 +1(780)428-9482 +1(780) 428-2457 andrew@chinookcorp.com

2 Edwards Nancy Sales Manager 1 08-12-58.0:00 01-05-020:00 825 8 Ave SW Calgary ~ AB Canada T2P2T3 +1(403)262-3443 +1(403) 262-3322 nancy@chinookcorp.com

4 3 Peacock Jane sales Support Agent 2 25-08-730:00 01-04-02 0:00 11116 Ave SW Calgary ~ AB Canada T2PSMS5 +1(403)262-3443 +1(403) 262-6712 jane@chinookcorp.com
5 4 park Margaret sales Support Agent 2 19-03-470:00 03-05-03 0:00 683 10 Street SW Calgary AB Canada T2PSG3 +1(403)263-4423 +1(403) 263-4283 margaret@chinookcorp.com
6 5Johnson Steve SalesSupport Agent 2 03-03-650:00 17-10-03 0:00 7727841 Ave Calgary ~ AB Canada T3B1v7 1(780)836-9987 1(780)836-9543 steve@chinookcorp.com
7 6 Mitchell Michael IT Manager 1 01-07-73.0:00 17-10-03 0:00 5527 Bowness Road NW Calgary AB Canada T3BOCS +1(403) 246-9887 +L(403) 246-9899 michael @chinackcorp.com
8 7 King Robert __ITstaff 6 25-05-700:00 02-01-040:00 590 Columbia Boulevard West Lethbridge AB Canada TIKSNS +1(403)456-9986 +1(403) 456-8485 robert@chinookcorp.com
9 sllohnston [Laura 7 staff 6 0-01-680:00 04-03-04 0:00 923 7 STNW Lethbridge AB Canada TIH1VE +1(403)467-3351 +1(403) 467-8772 laura@chinookcorp.com
10 9 Bloggs Fred T Staff 6

Figure 12.27 - The committed changes are shown in green

If Primary Key is set to Auto Increment in the table, then you do not need to enter the
EmployeelD value. This will be added automatically when the update is committed.

The ability to update or add to the table data directly from Excel is very convenient,
but with this convenience comes responsibility. Updating the wrong data can break the
linking of records between tables. If other people use this feature, ensure that they have
proper training and try to limit what they can update. Having said that, this is very easy
and quick to implement.

You cannot add formulas for other objects to the worksheet where editable data has been
placed in this method; the worksheet is protected. You can, however, refer to the data from
another worksheet, using VBA or a cell formula - for example, type the following formula
into Dashboard A40:

=SUM (employee!E3:E9)

The result will be 20, assuming that you did not change the existing values during the
exercise. Delete the formula when you are done. This is a demonstration only.

In the next activity, you will create a new worksheet with editable data using the
Customers table.

When you have mastered the process of importing MySQL data into worksheets using
this method, you will be able to edit your MySQL data very quickly and efficiently without
the need to develop an application, which is very useful for those quick edits that are often
required when you are maintaining a database. Because this method opens up an entire
table of data to free and unchecked editing, don't provide this to untrained users. It is

not recommended to allow other people unfettered access to the data. You can save the
sheets with the workbook, and you will be prompted to refresh the data when you open
the workbook.

In the next exercise, we will be pushing some data from Excel into a new MySQL table.

494 Working With Microsoft Excel VBA - Part 2

Pushing data from Excel

Often, data is first stored in Excel before it is transferred to a database. This can happen
for many reasons; most commonly, it is because the data is exported from a tool that can
interface with Excel but not directly with a database.

In situations where you want to move data from Excel to MySQL, you can utilize the
Export Excel Data to New Table functionality. This will create a new table in MySQL and
load the Excel data into it. This functionality allows for the quick and easy loading of data.

Exercise 12.06 - pushing data from Excel to a new
MySQL table

Excel is often used in business as a database and can hold a lot of organized data. When
the data requirements have outgrown Excel, often the decision is made to migrate the data
to a proper RDBMS such as MySQL. Without a doubt, at some time in your career, you
will need to migrate data from Excel to a new table in MySQL. This exercise will show
you how to do that with ease using MySQL for Excel.

Chinook Music Downloads has been maintaining an Excel contacts register.
Management would like this data to be transferred to the primary chinook database,
and as the primary developer, you have been assigned the task:

Open the MySQL For Excel panel using DATA and MySQL for Excel.
Open the Contact Register worksheet where the data is located.

1
2
3. Select the Chinook connection and the chinook database.
4. Click and open the Contact Register tab in Excel.

5

Select the data to be migrated. Select all cells in the A3-G12 range:

Pushing data from Excel 495

C D E

Contact Register

Figure 12.28 - Selected Excel data for exporting to MySQL
6. When the data is selected, the Export Excel Data to New Table option will activate:

MySQL For Excel v X

) Chinook
R 2 Tom
L

forExcel | 3 192.168.0.3:3306

& chinook

3% Export Excel Data to New Table
520 Create a new table and fill it with data

®

E Select Database Objects
Use CTRL or SHIFT for multiple selection.

|Cl. Filter Database Objects |

Figure 12.29 - The option to export data to a MySQL database

496 Working With Microsoft Excel VBA - Part 2

7. Click Export Excel Data to New Table to open the Export Data window:

Export Data to MySQL

1. Set a Table Name &= 2. Pick a Primary Key

The selected data will be stored in a MySOL table. 2] Each row of data needs to hold a unique number that is

Please specify a unique name for the table. used as the Primary Key.

Mame: |conta:t_reg\;ter ‘ ® Add a Primary Key column: | contact_register_id
Collation: |Scl\ema Default V‘ O Use existing column: w

.g 3. Specify Column Options
Click the header of a column to specify options like column name and a datatype.

A First Row Contains Column Names This is a small subset of the data for preview purposes only.

contact_register_, Contact_Date Contact_Name Contact_Comments Action [ad
01-Jun-19 12:00:00 AM | Anonymous | am using a 2400bd dial up modem... | Issue is with users technolc
02-Jun-19 12:00:00 AM | Mary Meenow There are not enough wedding so... |Emailed customer stating w
03-Jun-19 12:00:00 AM | Fred Bloggs | am having problems downloading... | Emailed customer suggestir
04-Jun-19 12:00:00 AM | Johny Doe | downloaded 3 songs last night b... | Investigated the claim, cust
05-Jun-19 12:00:00 AM | Anonymous People are quick to complain, | just ... | Can’t respond, due to anor
v
< >
Column Options
Column Mame: | contact_register_id ~| Primary Key Create Index Exclude Column
Data Type: Integer ~ Unique Index Allow Empty & Auto Increment

Default Value:

Advanced Option: Export Data_+| | Cancel

Export Data - Contact Register [A%:612] x
Export Data to MySQL
1. Set a Table Name 2. Pick a Primary Key
The selected data will be stored in a MySQL table. g Each row of data needs to hold a unique number that is
Please specify a unique name for the table. used as the Primary Key.

Name: [contact register | @ Add a Primary Key column:
Collation: ‘Sch:ma Default v| O Use existing column: _

3. Specify Column Optiens
Click the header of a column to specify options like column name and a datatype.

[First Row Contains Column Names

contact register_... Contact_Date Contact_Name Contact_Comments Adion A

01-Jun-19 12:00:00 AM | Anonymous | am using a 2400bd dial up modem... | Issue is with users technolc

02-Jun-19 12:00:00 AM | Mary Meenow There are not enough wedding so... | Emailed customer statingw

03-Jun-19 1200:00 AM | Fred Bloggs | am having problems downloading... | Emailed customer suggestir

04-Jun-19 12.00:00 AM | Johny Doe | downloaded 3 songs last night b... | Investigated the claim, cust

05-Jun-19 12:00:00 AM | Anenymous People are quick to complain, | just .. | Can't respond, due to anor

>

Column Options

Column Name: [Primary Key [Create Index [Exclude Column
Data Type: [Unique Index [Allow Empty [Auto Increment

Figure 12.30 - The Excel Export Data screen

Pushing data from Excel 497

The default table name is taken from the worksheet name, but you can change this.
It was detected that there is no primary key in the data; one is added and set to
Auto Increment.You can change individual column details by clicking on the
column in the display, and you can set default values for each column if required.
The data type for each column is set, based on the data. You can change this if
required for each column.

8. Examine each column and check the data types and values, and set any default

values. Closed is set as a Boolean data type. This is appropriate for the column,
but be sure to set a default value of 0.

9. Click Export Data. After a few seconds, you should get a notification on the
successful status of the operation:
MySQOL For Excel x

Operation Completed Successfully

Created the MySOL Table “contact_register” with data.
Press OK to continue,

Figure 12.31 - Export to table confirmation
10. Click OK. The notification window will close.

11. Open Workbench and refresh the chinook database. Check that the new table is
there and view the data:

Navigator v genvesales _ mediatype
SCHEMAS *f @EHIFFAOCIBI [| Dont Limt sl le @ @&

 [Fiter objects 1% * FROM chinook.contact_register;

* contact_registerid
© Contact_Date

¢ Contact_Name

¢ Contact_Comments
© Action

¢ Follovup_Required
* suaus

sed

>
>
>
»E <
B
> | Resutorid | B % Fterfows| ||eaw gl B R | exporfimport B 81 | wren ool contents T [
: - contact register id Contact Date Contact Name Contact_Comments Action Folonup Regured Status Closed
» B mediatype N 2019-06-0100:00:00 Anonymous. Tam using a 2400bd dial dem and I find v. ay, there is nothing ... No. Closed 1
» 5 playlst 2 2019-06-0200:00:00 Mary Meenow There are songs on your site g we will look for my son... Yes Open 0
: g t“‘“K“s'”“‘ 3 019-06:0300:00:00 Fred Bloges Tam having problems downloading since my cre... - Emaied customer suggesting that he should con... Mo Closed 1
rac
+ 2019-050400:00:00 Johny Doe 1downicaded 3 ... Investigated the daim, custamer was correct. A... Yes, in ane week to ensure custome... Under Investigation 0
altimesales 5 2019-06-0500:00:00 Anonymous People are quick to complan, I just wanted to 5... Cartrespond, due to anorimity. T wauld be ric... No Cosed 1
rtist_sakes .
igte i s 2019-05-0600:00:00 Constance Complainer Tt wort stop raining A standerd thark you for yo n.. Mo Closed 1
7 2019.05:0700:00:00 Ima Complainer Can you supply snacks in theListening Lounge ... Issued reply indeatng that whie we wouldike t... No Closed 1
s 2015-06:0800:00:00 Anomymous Some of your music has too much snearing Issued a response thanking customer for the ... Yes Under Investigaton 0
s 2019-06:0900:00:00 Tom Pettt Great st of song ttes Issued a thark you response o Cosed 1
. s i s o

Figure 12.32 - The Workbench view of the new table, fields, and data

498 Working With Microsoft Excel VBA - Part 2

The ability to push Excel data into a new MySQL table will make data migrations very
easy and quick. There are a lot of options to handle most of the situations that you may
encounter. Some will migrate easily; others will require data validation and manipulation
to ensure that the data is in a suitable state before you get a successful export.

In this section, we learned how to update data in MySQL through Excel. In the next
section, we will look at how we can visualize and analyze data using pivot tables.

Pivot tables
Finally, we have reached the final topic of MySQL for Excel - pivot tables.

Pivot tables allow you to analyze your data by providing options to add different fields and
values to a table, perform a multitude of mathematical operations on the data, and filter
the data, both horizontally and vertically. Pivot tables are a powerful tool for analyzing
data and preparing charts and graphs.

In this exercise, we will be importing data related to album sales and preparing it for
display in a chart.

Exercise 12.07 - album sales

In this exercise, we will import some data from MySQL and create a pivot table with it.
We will then add a chart to visualize the data:

1. Click on the Pivot Tables worksheet tab. A blank sheet will be displayed:

Dashboard customer employee Data Sheet Contact Register Pivot Tables)

Figure 12.33 - Click on the Pivot Tables worksheet tab

2. Click on the A1 cell and type Album Sales - Pivot Data,change the font
size for the cell to 18 points, and make the text bold to identify the data. You can do
this by right-clicking on the A1 cell and selecting the Format Cells option, which
will open the Format Cells window. Select Font to change the font styling:

Pivot tables 499

Al v ‘)(.1‘ Album Sales - Pivot Data
A
1 |Album Sales - Pivot Data
2
3
4 Format Cells ? x
6 Mumber Alignment Barder Fill Protection
7 Eont: Fant style: Size:
8 Arial Bold 18
g T AR ESSENCE A Regular 12 ~
10 H AR HERMANN Italic 14
ﬁ AR JULIAN 16
1 Bold Italic
H Arial Black 20
12 T Arial Marrow A 22 v
13 Underline: Color:
14 MNaone ~ Automatic ~ | [Normal font
13 Effects Preview
16 [strikethrough
7 [superscript _ AaBbCcYyZz _
13 |:| Subscript
19
20
21 This is a TrueType font. The same font will be used on both your printer and your screen.
22
23
24
25
26

27

Figure 12.34 — The Format Cells window with Font selected
3. Click on the A2 cell. This is where we are going to insert our data.

4. Open the MySQL for Excel panel via DATA | MySQL for Excel:

b e .-.. e T i} - E-." ¥ _ B S ' -y

Figure 12.35 - Opening the MySQL for Excel panel

500 Working With Microsoft Excel VBA - Part 2

5. Select the Chinook connection:

Open a MySQL Connection
Double-Click a Connection to Start

¥ Local Connections

Local instance MySQL57
User: root, Host: localhost:3306

¥ Remote Connections
Chinook
User: Tom, Host: 192.168.0.3:3306

Figure 12.36 — Double-click the Chinook connection

6. Once connected, select the chinook database from the schema list:

= Select a Database Schema
L Then click the [Mext=] button below

|CI. Filter Schemas

¥ Schemas
@ original_world_statistics

@ world_statistics

B ms_access_migration
@ backuppractice
E‘j import_test

@ packt_online_shop

Figure 12.37 - Double-click the chinook database

Pivot tables

501

7. We have a view in the database named vw_albumsales. Select the view and click
Import MySQL Data:

¥ Views
@ ww_alltimesales
@ vw_sales_by month
@ vw_artist_sales
@ VW_genre_count
@ vw_customer_count
@ ww_largest_customer_sales
@ ww_artist_unit_sales
=] vw_genresales
@ ww_artist_track_sales
@ vWw_genre_count_no_sales

¥ Procedures
E spTotalSales

Import MySQL Data
ﬁ Add object's data at the current cell

= Edit MySQL Data
2t Jpen a new sheet to edit table data

3¢ Append Excel Data to Table
"' Add data to an existing MySQL Table

Options | | <Back || Close |

Figure 12.38 — Select vw_album sales and click Import MySQL Data

502 Working With Microsoft Excel VBA - Part 2

The Import Data - Pivot Tables screen will open, displaying 10 rows of
sample data:

Import Data from MySQL

%? Choose Columns to Import
Click on column headers to exclude/include them when importing the MySQL view data in Excel.

View Name wvw_albumszales
Row Count: 10 This is a small subset of the data for preview purposes only.
Title Name Quantity Country BillingCity UnitPrice Total
Balls to the Wall Balls to the Wall 1 Germany | Stuttgart |1.08 21
Restless and Wild Restless and Wild 1 Germany | Stuttgart |1.05 211
For Those About To Rock We Salut... |Put The Finger On You |1 Morway |Oslo 1.00 4,00
For Those About To Rock We Salut... |Inject The Venom 1 Morway |Oslo 1.00 4.00
For Those About To Rock We Salut... | Evil Walks 1 Morway |Oslo 1.00 4,00
For Those About To Rock We Salut... |Breaking The Rules 1 Morway |Oslo 1.00 4.00
Let There B2 Raock Dog Eat Dog 1 Eelgium | Brussels 0.96 602
Let There Be Rock Overdose 1 Belgium | Brussels 1.05 6.02
Eig Ones Love In An Elevator 1 Eelgium | Brussels 1.00 6.02
Big Ones Janie's Got A Gun 1 Belgium | Brussels 0.98 6.02
Options
[Include Column Mames as Headers [Limitto |1 + | Rows and Start with Row
[Create a PivotTable with the imported data. [Add Summary Fields

Advanced Options... Import || Cancel

Figure 12.39 - The Import Data options screen
8. Tick both Create a PivotTable with the imported data and Add Summary Fields.
9. Click Import. The data will be imported, starting at the A2 cell:

Pivot tables 503

A2 - Je | Title

A
 /Album Sales - Pivot Data
2 Title - Mame
3 |Balls to the wall Balls to the wall
4 |Restless and Wild Restless and Wild
5 |For Those About To Rock We Salute You Put The Finger On You
& |For Those About To Rock We Salute You Inject The Venom
7 |For Those About To Rock We Salute You Evil Walks
8 |For Those About To Rock We Salute You Breaking The Rules
5 |Let There Be Rock Dog Eat Dog

Figure 12.40 - Album sales data imported from MySQL

10. At first glance, it doesn't look all that different from previous imports; however,
scroll to the right of the data and you will see the following box:

chincok.vw_albumsales |

Click in this area to work with the PivotTable
report

Figure 12.41 - The PivotTable placeholder
Note that it has the name of the view you imported. This is the pivot table
placeholder and will be changed to display the table data when you have set it up.
This box will provide a screen where you can adjust and manipulate the data, and
once you have made the changes you want, it will display the pivot table from
its location.

504 Working With Microsoft Excel VBA - Part 2

11. Click in the box; a new panel will open next to the MySQL panel. Note that
the panel displays the field names. Select the fields that you want to include
by ticking them:

PivotChart Fields v X

Choose fields to add to report: % v

Search Jo

[Title

] Mame

[Quantity
O Country
[BillingCity
] UnitPrice
] Total

Drag fields between areas below:

Filters Legend (Series)

Axis (Categories) Z Values

Figure 12.42 - The PivotTable panel

12. Let's experiment with this a bit, starting with all the field boxes unticked. Position
the screen so that the PivotTable box is in view.

13. Tick Country. Note that the box has now changed to display the data - specifically,
the countries. This is the actual pivot table. Also, note that Country is displayed in
the ROWS box at the bottom of the PivotTable Fields panel.

Pivot tables 505

14.

15.

16.

17.

18.
19.

Tick Title. The titles are now grouped under the countries where they were sold. The
title is also shown in the ROWS box.

Now, drag and drop the Quantity field into the VALUES box. The data will now
have a new column and Count of Quantity, and the country line will have the total.
These are the number of sales of the album in the country.

Note

Depending on your settings in Excel, you may get some other aggregate
function other than Count - for example, you may get Sum. You can change
the aggregate function to use on the field by clicking the down arrowhead
to the right of the field name in the Value box and selecting the Value Field
setting to change the option to perform on the field.

In the ROWS box, drag Title so that it is above Country. The pivot table now shows
how many albums were sold and the countries in which they were sold.

Drag Country to the COLUMNS box. Now, the albums are listed on the left, the
countries are listed across the top, and the units sold are totaled where the columns
and rows intersect. You can see how useful a pivot table is at analyzing data.

We want to create a chart, so before we move on, untick Title.

Drag Country back to the ROWS box. You will now have two columns of data on
the screen:

Drag fields between areas below:

T FILTERS Il COLUMNS

= ROWS X VALUES

Country - | | Count of Country -
[] Defer Layout Update UPDATE

Figure 12.43 - The fields set up for the next step

506 Working With Microsoft Excel VBA - Part 2

After dragging country back to the ROWS box, you will see that the countries are
displayed in the rows of the table:

Row Labels n Count of Quantity

Argentina 38
Australia 38
Austria 38
Belgium 38
Brazil 150
Canada 304
Chile 38
Czech Republic 76
Denmark 38
Finland 38
France 190
Germany 152
Hungary 38
India 74
Ireland 38
Italy 38
Metherlands 38
MNorway 38
Poland 38
Portugal 76
Spain 38
Sweden 38
United Kingdom 114
Usa 434
(blank)

Grand Total 2240

Figure 12.44 - The corresponding data
We are currently showing a count of sales; it just so happens in this database that
each sale is for one unit only, so count and sum return the same value. You can
change how the data is summarized by performing the following steps.

20. Right-click on the Value column in the pivot table.

Pivot tables

507

21. Select Summarize Values By. You will be presented with several options to

summarize the values, such as Count, Sum, and Average.

22. To create a chart, click anywhere in the pivot table data area, and then click the
INSERT tab and Recommended Charts:

FILE HOME

PivotTable Recommended Table

PivotTables
Tables

IMSERT PAGE LAYOUT FORMULAS DATA REVIEW

’j‘g |z>|_‘ rl:' o aStore

Pictures Online Shapes SmartArt Screenshot .’MyApps . Bing People Recommended

Pictures - -
lllustrations

Figure 12.45 — The Recommended Charts location in the ribbon

Foxit PDF TEAM
- =k
AN I

[|
U]

PivotChart

Charts

[F]

23. The Insert Chart window will open. It will be displaying the data in a chart. You can

select the various charts. For now, select Pie and then 3-D Pie:

Insert Chart

All Charts

IEEls

=
iy

e M

1

B X ®

Recent
Templates
Column

Line

Bar

Area

XY (Scatter)
Stock
Surface
Radar

Combo

Figure 12.46 - The Insert Chart window

| | Cancel

508 Working With Microsoft Excel VBA - Part 2

24. Click OK, and the chart will be placed on the worksheet:

Argentina 38

Australia 38

Austria 38

Belgium 38 Count of Quantity

Brazil 150

Canada 304 Total

Chile 38

Czech Republic 76 Country -
Denmark 33 = Argentina
Finland 38 = Australia
France 190 . Austria
Germany 152 « Belgium
Hungary 38 .
India 7 - ezl
Ireland 38 * Canada
Italy kL = Chile
Netherlands 38 = Czech Republic
Norway 38 = Denmark
Poland 38 « Finland
Portugal 76

Spain 38

Sweden 38

United Kingdom 114

Usa 454

(blank)

Grand Total 2240

Figure 12.47 - The new chart placed on the worksheet

25. We want the chart on the dashboard. Right-click the white area of the chart near the
border and select the Move Chart option, located about halfway down the options.
The following box will open:

Count of Quantity

Total

Maove Chart ? X

Choose where you want the chart to be placed:

MTJA () New sheet | Chart1

I (® Objectin: [T v

5

Figure 12.48 - The options for moving the chart

Pivot tables

509

26. Select Dashboard from the dropdown shown in the preceding screenshot and click
OK. The chart will then be moved to the Dashboard worksheet. Excel will place the

chart in a blank area on the Dashboard worksheet. This is likely to be to the right of

the existing dashboard objects, but it could be below; you will need to find it:

Artists Velvet Revolver E‘

Artist Track Sales

Artist Track Sales - Velvet Revolver

Big Machine

Count of Quantity
Headspace

Total

Country -
= Argentina
Slither = Australia
= Austria
= Belgium
= Brazil
Do it For The Kids = Canada

= Chile

L5

Figure 12.49 - Excel places the chart to the right of the existing objects on the target worksheet

27. Locate the chart on the Dashboard worksheet and drag it to where you want
it placed:

Genres ‘Soundtrack Artist Velvet Revolver
Sales of tracks withi Genre Tracks with Sales vs. Tracks with No Sales Customer Purchase Details Artist Track Sales
Genre Sales - Soundtrack Genre Tracks Sales vs. No Sales Total Customers — Artist Track Sales - Velvet Revolver
Totalsales $ 2262
2 world Highest Customer Sales. $ 3836
Avg CustomerSales s w798
Last ale date [ERTRT IR, _
Top 25 Selling Artists
Artist_Group [~ Total sales - |
Iron Maiden $ 13981
Metallica $ 91.32
Led Zeppelin s 801
Os Paralamas Do Sucesso $ 2475
Deep Purple s s
Faith No More s an suver _
s am
" s o
s s
s a0
Guns N'Roses. $ 36.11
Sois 2015 2015 2016 2016 016 2017 2017 218 2018 2019 2019 n
0101 0401 0301 0401 0701 1201 0701 1001 0301 1001 0101 G701 Titds s Bm
‘Green Day s 2280
[— et C oum
— s
Total Various Artsts s 290
Chico Buarque $ 27.30
Red Hot Chili Peppers s 2681
s § o e [
Chico Science & Nagio Zumbi $ 25.08
[100 200 300 400 500 600 700 800 | The Office $ 24.96
oS mse Tim Maia s 2, e e e e
s v

o
Dashboard | Data Sheet | Contact Register | Pivot Tables | employee | customer | @ o

Figure 12.50 - The chart placed in position in Dashboard

510 Working With Microsoft Excel VBA - Part 2

28. Charts created with a pivot table have a dropdown on the category (in this chart,
this is Country). This allows you to filter and change the chart. You also have
options to format the chart, add labels, and so on:

Count of Quantity BE . ‘ STYLE COLOR

Total

Altern
Cuuni__ly -

W Argentina

m Australia

B Austria

W Belgium I —
W Brazil

® Canada

W Chile

Total

| Dashboard | customer | employee i Data Sheet i Contact Regig

Figure 12.51 - The filtered chart with formatting

Pivot tables are amazing, and the power they provide to analyze your data in different
ways is incredible. When used with MySQL for Excel, you can make your data tell a story.
You can generate pivot tables from any suitable data in Excel; they are not limited to
MySQL for Excel.

In this section, we learned how to start MySQL for Excel, create a connection to a MySQL
database, import data from a view, import data in a form that can be edited or added to
with the changes directly updating a database, export data to a new table in a MySQL
database, and create pivot tables and generate flexible charts from them.

MySQL for Excel offers a unique, no-nonsense, and no-programming interface to a
database. As you learn more about this plugin and its features, it will most likely become
a staple and an important tool for creating impressive and easy-to-use applications. The
ability to easily update data directly in MySQL is invaluable. However, great care should
be taken if an application is to be released to other non-technical users who do not have
the required knowledge or understanding of the effects of changing data - especially in
foreign key fields that can adversely affect the integrity of a database.

Activity 12.01 - building a MySQL-based Excel document 511

Activity 12.01 - building a MySQL-based Excel
document

Note

The Excel document used in this project, Cof feeProducts . x1sx, can be
found athttps://github.com/PacktWorkshops/The-MySQL-
Workshop/tree/master/Chapterl2/Activity01l.

You are working for a coffee shop, and currently, all the data for the shop products are
stored in an Excel file. Your manager would like you to create a MySQL database that
contains the Excel data, as well as setting up Excel connections so that they can continue
to manage the data through Excel. Perform the following steps to implement this activity:

1. Create a new MySQL database named coffee_data.

2. Push the current data in Cof feeProducts.x1sx to the MySQL database.

3. Add anew product named Americano with a price of $3.50 and a size
of medium.

Note
The solution for this activity can be found in the Appendix.

With this completed, you now have a fully functional Excel sheet that interacts with
a MySQL database!

Summary

In this chapter, we created reusable functions to connect to MySQL using two different
types of ODBC connections. We also learned how to read and import data from MySQL
into a worksheet, define named ranges for the imported data, and assign the named ranges
to charts using VBA. We set chart labels and categories using VBA and created and used
drop-down lists to load filtered data, display data, and use it in charts. We then set some
data collections from MySQL that will run when a workbook is opened.

We learned about the advantages of creating generic data readers that can run various
SQL statements and return results for use in Excel. We imported data for editing or adding
records and wrote the changes back to MySQL. We exported Excel data to MySQL as a
new table and created pivot tables with attached charts.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Activity01
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter12/Activity01

512 Working With Microsoft Excel VBA - Part 2

The purpose of including Chapter 9 and Chapter 10 was to introduce you to several
methods of using MySQL with Excel by using DSN connections, VBA, and MySQL for
Excel. You have worked through several techniques and have developed a basic knowledge
of these techniques. With Excel being so popular and a lot of companies looking for
people with advanced knowledge of Excel programming and data manipulation,
practicing and improving your skills with the techniques covered in this book will
improve your employability profile. Consider undertaking a more advanced training
course in Excel programming to further expand your skillset.

In the next chapter, we are going to cover different ways to get data into MySQL and
export data from MySQL. Using various tools and processes, we will be able to efficiently
manipulate MySQL data, allowing us to easily load external data sources.

Section 4:
Protecting Your
Database

This section covers the methods of backing up and securing your database data. You will
learn how these methods can help to keep your data secure and safe.

This section consists of the following chapters:
o Chapter 13, Further Applications of MySQL

o Chapter 14, User Permissions

o Chapter 15, Logical Backups

13

Getting Data into
MySQL

In this chapter, we will cover different ways to get data into MySQL and export it from
inside the MySQL server to various formats. We will begin with adding data to tables and
collections, and then move on to exporting data from MySQL to CSV files, and importing
data from CSV, SQL, and JSON files. By the end of this chapter, you will be able to utilize
the CSV storage engine to export and import data.

This chapter will cover the following topics:

» An introduction to data preparation

» Working with the X DevAPI

o+ Inserting documents

» Loading data from a SQL file

» Loading data from a CSV file

+ Loading data from a JSON file

+ Using the CSV storage engine to export data
+ Using the CSV storage engine to import data
« Searching and filtering JSON documents

516 Getting Data into MySQL

« Using JSON functions and operators to query JSON data
« Using generated columns to query and index JSON data
o Activity 13.01 - exporting report data to CSV for Excel

An introduction to data preparation

In the previous chapters, we covered using MySQL Shell in JavaScript mode, which we
will use again in this chapter. We also covered connecting Microsoft Excel and Microsoft
Access to the MySQL database directly. In this chapter, we will use CSV files to import
and export data. Excel can be used to create and read these files.

When working with databases, it is essential to be able to import and export data. This

can be when you are working on a new application and need some test data that you
manually insert, when you are exporting data to a spreadsheet application that can be

sent via email, or when importing data that is collected by something else such as a
hardware device to then allow you to create reports. When working with multiple database
instances, it may be necessary to copy data from a development setup to a production
instance or vice versa.

In this chapter, we will see how to insert a single record, multiple records, and documents
into a database. We will also learn how to load data from various file formats such as SQL,
CSV, and JSON. Finally, we will make use of the CSV storage engine to import and

export data.

We are going to use MySQL Workbench to demonstrate the examples unless mentioned
otherwise.

Working with the X DevAPI

The X DevAPI is available in MySQL Shell and the official MySQL connectors for various
programming languages. The X DevAPI is what provides the NoSQL interface for MySQL.
A NoSQL interface is a way to work with a database without having to use SQL. This
allows you to work with a database without using or learning SQL.

Note

NoSQL is a term used to classify database interfaces that are not SQL; in most
cases, the interface that is provided is based on JSON and tries to let a database
behave in a way that's more similar to the APIs that most web services provide.
Also, most NoSQL interfaces don't require you to have a pre-defined format of
your data (known as a schema); this is called schema-less.

Working with the X DevAPI 517

The main benefit of this is that it feels more natural to developers. The drawback is that
a lot of the flexibility that SQL provides is not available in the X DevAPI, making it
more difficult to do things such as reporting. On the other hand, having to have a table
definition for every table and then getting all the rows to conform to this is sometimes
seen as a pain point when working with a SQL database. One of the selling points of
MySQL is that it works with both SQL and NoSQL and allows you to use tables and
collections of JSON-formatted documents. The X DevAPI uses the X protocol, which
was introduced in MySQL in the 5.7 release. Besides the X DevAPI, there is also an X
AdminAPI that is used for administrative operations.

The X DevAPI allows you to work with tables and with collections. You will need to have
Python 3.6 or any older version installed. The reason for this is that mysgl -connector
is a dependency module that allows us to talk to the mysqgl instance. In Python 3.7, the

verbose argument was removed and will throw an error if it is imported into the script.

First, you need to use the pip module to install the mysgl - connector module:
pip install mysqgl-connector

The script for this can be found at ch08_02 X DevApi.py.

The following example illustrates how the script looks in SQL and again in the X DevAPI:

#!/usr/bin/python3
import mysql.connector
import mysqglx

def sqgl example():
con = mysql.connector.connect (
host="'localhost’',
user="'msandbox',
password='"'msandbox',
database='test',
)
c = con.cursor ()
c.execute ("SELECT name FROM animals")
output = "Animals in the animals table\n"
for row in c:
output += "SQL Animal: {0}\n".format (row[0])
c.close()

con.close()

518 Getting Data into MySQL

return output

def nosql example():
session = mysglx.get session(
host="'localhost',
user='msandbox',
password="msandbox',
)
schema = session.get schema('test')
animals = schema.get collection('animals collection')
output = "Animals in the animals collection\n"

for doc in animals.find() .fields('name') .execute() .fetch
all():

output += "NoSQL Animal: {0}\n".format (doc['name'])
session.close()

return output

def test sqgl example():
assert sql example() == """Animals in the animals table
SQL Animal: dog
SQL Animal: Camel
SQL Animal: None

def test nosqgl example():

assert nosqgl example() == """Animals in the animals
collection

NoSQL Animal: monkey
NoSQL Animal: zebra
NoSQL Animal: lion

if name == " main ":

print (sqgl example())

Working with the X DevAPI 519

print (nosql example())
print (test sql example())
print (test nosgl example())

In order to demonstrate the script, you will create a table called animals and a collection
called animals collection:
1. Connect to the MySQL client with Workbench and the appropriate user.

2. Select the test database for execution:

USE test;

3. Since you already have a table called animals, you will drop it and recreate it:

DROP TABLE animals;

4. Create the table called animals:

CREATE TABLE animals (
id int (11) NOT NULL,
name varchar (255) DEFAULT NULL,
PRIMARY KEY (id)

) 5

5. Create the collection called animals collection:

CREATE TABLE animals collection (
doc json DEFAULT NULL,

_id varbinary(32) GENERATED ALWAYS AS (json
unquote (json extract ('doc', utf8mb4's. id'))) STORED NOT
NULL,

PRIMARY KEY (' id')
) g

6. Insert datainto animals:

INSERT INTO animals VALUES (1,'dog'), (2, 'Camel'), (3,NULL) ;

7. Insert documents into animals collection:

INSERT INTO animals collection ('doc') VALUES ('{\" id\":
1, \"name\": \"monkey\"}'), ("{\" _ id\": 2, \"name\":
\llzebra\ll} 1) , (l{\ll_id\lI: 3, \llname\": \lllion\ll} 1) ;

520 Getting Data into MySQL

8. Execute the script using the command line, making sure you navigate to the
right folder:

python ch08 02 X DevApi.py
The output should be as follows:
Animals in the animals table
Animal: dog
Animal: Camel

Animal: None

Animals in the animals collection

MoSQL Animal: monkey
NoSQL Animal: zebra
MoSQL Animal: lion

None
None

Figure 13.01 - Output of the script

The two None means that the assertion was successful and the records in the database
match our expectations.

An example of the X DevAPI

You are in a company that rents out electric scooters. Every time a scooter is picked up by
an employee of the company, some data is downloaded from the scooter. This data is in
JSON format and depends on the firmware version and the brand of the scooter.

If you store this in tables, then you will have to have a column for every piece of information
that may be in every JSON file. And for every new brand and firmware version, you have to
change the table definition to allow for new pieces of information to be stored.

Using a NoSQL interface to store the information as JSON documents allows you to store
data for every piece of firmware and every model without making any changes to the
database for new models and/or firmware versions.

Using MySQL Shell with the X DevAPI

We will use MySQL Shell to use both the SQL and X DevAPI interfaces. Let's look at a few
of the commands that will help us in the upcoming exercises and activities.

To connect to the server, use the following command:

\connect mysqlx://root@localhost:33060

Working with the X DevAPI 521

To create a classic session, use the following command:
\connect mysql://root@localhost:3306

To connect to the database, use the following command:
\use (Database Name)

There is no equivalent for the DESCRIBE command in the X DevAPI. So, you can either
switch to SQL mode with \ sq1, run the DESCRIBE command and switch back to JS
mode with \ js, or you can use \sql <commands> to run the DESCRIBE SQL command
but stay in JS mode. To describe any table in the database, use the following command:

\sgl DESCRIBE (Table Name)

To insert any values to the table, use the following command:
db.<Table Name>.insert () .values(<values>)

To check what was inserted into the table, use the following command:
db.<Table Name>.select ()

In the upcoming exercise, you will be using MySQL Shell in JS mode to insert values to
the table.

Exercise 13.01 - inserting values with MySQL Shell
in JS mode

In this exercise, you will insert values to a table using MySQL Shell in JS mode. It also
has Python mode and SQL mode. The mode is shown in the prompt by default. Follow
the following steps to accomplish this:

1. Open MySQL Shell.

2. Connect to the MySQL server using the \ connect command. Provide the
appropriate localhost and port number to connect. In this case, the localhost is
127.0.0.1 or localhost,and the portis 33060.

522 Getting Data into MySQL

An example of a connection to the server looks like this:

alhost:
Creating a session to "rootf@localhos
Please provide the password for 'root@localhost:33068°:
Save password for ‘root@localhost:33868°?2 [Y]es/[N]o/Ne[v]er (default No): Y

chema names for autocompletion... Press *“C to stop.
ction id is]
8.21 MySQL mmun i
Mo default schema selected; type ‘\use

Figure 13.02 - A connection to the server

Note

Refer to the commands before the exercise to make a connection to the server.

3. Switch to the right database if you were not connected to it yet. Connect to the
test database with the following command:

\use test

This produces the following message:

Default schema test accessible through db.

Figure 13.03 - MySQL Shell connected to the test database

4. Describe the animals table using the following command:
\sgl DESCRIBE animals

This produces the following output:

Fetching table and column names from “test™ for auto-completion... Press ~C to stop.
L R TR R oo R Ho-m- - +
| Field | Type | Null | Key | Default | Extra |
----- - Fommmm e +---- - +----- oo Hommm - +
PRI | NULL

| varchar(255) | YES

2 rows in set (0.0012 sec)

Figure 13.04 - MySQL Shell - the DESCRIBE output

5. Insert data to a table called animals using the following commands:

db.animals.insert () .values (4, 'Cheetah')

db.animals.insert () .values (5, 'Leopard')

Inserting documents 523

6. Check what was inserted into the table and return the data:
db.animals.select ()

This produces the following output:

1

LA s

Figure 13.05 - MySQL Shell - using SELECT()

In this exercise, the insert () function is used with one or two values () functions to
add records to a table called animals. You can also use \sql DESCRIBE animals or
\sql to switch to SQL mode and then later user \ j s to switch back to JavaScript mode.
Here, we are already connected to the test database. If you need to switch to a different
database, you can use \use <databases> to switch. In the next section, we will explore
inserting documents.

Inserting documents

You may want to add some test data into a database while developing an application.
Inserting documents can be done with MySQL Shell. A document is a JSON data structure
that's similar to a record in SQL.

JSON stands for JavaScript Object Notation. It is a method to describe a data structure
in text format. As most programming languages and databases support this, it is a good
format for data exchange.

A collection of documents is similar to a table with records. A table has a structure to
describe what each record should look like. But this is not the case for documents. You
can define some additional requirements for collections, but this is not the default.

A document is also more flexible, as it can have nested data.

Here is an example of nested data in a JSON document:
{

n type n : llbookll ,
"title": "Harry Potter and the Philosopher's Stone",

524 Getting Data into MySQL

"translations": {
"Afrikaans": "Harry Potter en die Towenaar se Steen",

"German": "Harry Potter und der Stein der Weisen",

}

Here, "type","title",and "translations" are all top-level elements, and
"Afrikaans” and "German" are nested. A good example of when documents are useful
is web shops, where there are different kinds of properties to be stored for each item - a
T-shirt has a size and a color, a TV has a number of HDMI connections, an RC car has a
battery type, and so on. Some of the properties might be nested.

Not having a strict structure and having everything in a single document instead of data
spread out across multiple related tables can also be problematic. The good thing, however,
is that MySQL allows you to combine NoSQL and SQL. You can use SQL to query a
collection, and then the X DevAPI interface allows you to query tables in a similar way

to how you would query collections.

You can either use an existing collection, or you can create a new one with the following
command:

db.createCollection (<collection>)

To add the documents, use the following command:
db.<collection>.add()

To search the documents stored in the table, use the following command:
db.<collection>.find ()

To search any particular document stored in the table, use the following command:
db.<collection>.find('<collection attribute> = "<value>"')

An index in a database is similar to an index in a book. Whereas a book index helps you
to find the right page without having to check every one, a database index allows the
server to quickly find the right records. This won't affect the output of any queries, but it
does speed them up, especially when larger quantities of data are stored. Use the following
command to create an index for a collection:

db.<collection>.createIndex (name, IndexDefinition)

Inserting documents 525

Let's say you want to provide an index to the code field in the countries collection.
Your query to create it should look like the following:

db.countries.createIndex('code',
{"fields":
{"field": "$.code"}
)

The way to specify a part of the document is done with JSONPath, which will be explained
in the next chapter in more detail.

In the next exercise, you will insert documents into a table.

Exercise 13.02 - inserting documents into a table

In this exercise, you will create a collection, insert records into it, and display the
information. Ensure that you are connected to the test database. Follow the following steps
to accomplish the exercise:

1. Create a collection named countries by writing the following command:

db.createCollection ('countries')

2. Add three records to the collection:

db.countries.add ({"code": "FR", "name": "France"})
db.countries.add ({"code": "DE", "name": "Germany"})
db.countries.add ({"code": "IT", "name": "Italy"})

3. Find the inserted records in the collection:

db.countries.find()

526 Getting Data into MySQL

This produces the following output:

" id": "00005e3bf4f20000000000000001"
Ilcodell: IIFRIIJ
"name": "France"

" id": "00005e3bf4f20000000000000002"
Ilcode": "DE",
"name™: "Germany"

" _id": "00005e3bf4f20000000000000003",
Ilcodell: IIITIIJ
"name": "Italy"

}
3 documents in set (0.0006 sec)

Figure 13.06 - MySQL Shell - using find()

Note

It is also possible to insert multiple records at once by specifying a list of JSON
documents to the add () function.

4. Add two documents for Belgium and Poland in a single statement:

db.countries.add (
{"code": "BE", "name": "Belgium"},
{"code": "PL", "name": "Poland"}

)

5. Find a record in the collection where code is equal to PL. Use the £ind method
to implement this:

db.countries.find('code = "PL"')

Loading data from a SQL file 527

This produces the following output:

" id": "©0005e3bT4f20000000000000005",
Ilcodell: IIPLII’
"name": "Poland"

}
1 document in set (0.0079 sec)

Figure 13.07 - MySQL - using find() with a filter

6. Create an index on the newly created collection using the createIndex () method:
db.countries.createIndex('code',
{"fields":
{rfield": "$.code"}

)

The statement here creates an index called code, and the index indexes one single
field, the code in the document.

In this exercise, you created a new collection, inserted a few records into it, viewed the
records, and finally, created the index. In the next section, you will explore loading data
from a SQL file.

Loading data from a SQL file

A SQL file is usually generated with the mysgldump command so that we can export
from one database system and later import into a new one. The mysgldump utility comes
with MySQL. One file can hold data and definitions for multiple tables and schemas.
Another source of the SQL file is when installing or upgrading third-party software. It is a
file that contains all the changes needed to make the database ready for the new version.

Let's say you want to load the wor1d. sql file. First, create a database using the following
command:

CREATE DATABASE world;
Ensure that you are using the wor1ld database by writing the following command:

USE world;

528 Getting Data into MySQL

Use the following query to load the world. sql file:
source /path/to/world.sql

You will be able to access the content inside the wor1d database. Ensure that you have
given the correct path of the world. sql file (which is stored in your local system).

In order to access all the tables present in the loaded database, write the following command:
SHOW TABLES FROM world;

In the next section, you will complete an exercise where you will load data from a SQL file
and view its details.

Exercise 13.03 - loading data from a SQL file and
viewing tables

In this exercise, you will load the data from the wor1d database and access table
information present inside it. Follow the following steps to accomplish this:

Note

The wor1d database used in this exercise can be found here: https://
github.com/PacktWorkshops/The-MySQL-Workshop/tree/
master/Chapter08.

This database is provided by Oracle MySQL as a sample database. The data
comes from Statistics Finland. More details can be found at https://dev.
mysqgl.com/doc/world-setup/en/. This database contains three
tables — a table with cities, a table with countries, and a table with languages. A
country can have multiple cities and multiple languages.

1. Open the MySQL client and import the world. sql file with the following
command:

source /path/to/world.sqgl

This should result in many lines, like these:

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter08
https://dev.mysql.com/doc/world-setup/en/
https://dev.mysql.com/doc/world-setup/en/

Loading data from a SQL file 529

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Note

Please make sure that you provide the correct path to the world. sql file.

Now, you should be able to list the tables you just imported.

Write the following command to view all the tables present in the wor1d database:
SHOW TABLES FROM world;

This produces the following output:

country
countrylanguage |

3 rows in set (0.07 sec)
Figure 13.08 - Tables in the world database after importing
View the details of the city table using the describe command:

DESCRIBE world.city;

This produces the following output:

char(35)
CountryCode | char(3)
District char(20)
Population

——F — +

rows in set (©.00 sec)

Figure 13.09 - The city table definition

530

Getting Data into MySQL

Thus, you have imported a SQL file and viewed its information. Note that depending
on how a SQL file is created, it may have only data or the definition of tables. The
world. sql file had both. You should only import SQL files from sources you trust,
especially when importing as the root user. This is because any kind of statement
can be put in such a file, including statements to change a configuration, add users,
or change passwords.

Another way of importing a SQL file is by using the following command:
mysqgl < /path/to/world.sql

The result is similar, but there are a few slight differences. There is less output by
default and the process will halt when there is an error in the file. To get more
output about what statements are being run, you can invoke mysqgl with the
verbose option.

There is another way of importing a SQL file using MySQL Workbench. In the next
exercise, you will see how you can use Workbench to import the SQL file.

Exercise 13.04 - importing a SQL file using MySQL
Workbench

In this exercise, you will make use of MySQL Workbench to import the world. sql file.
In order for this example to work, you need to get rid of the previously imported world
database. Perform the following steps to accomplish this:

1.
2.

Note

The wor1ld database used in this exercise can be found here: https://
github.com/PacktWorkshops/The-MySQL-Workshop/tree/
master/Chapterl3.

Start MySQL Workbench.

Connect to your database.

https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter13
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter13
https://github.com/PacktWorkshops/The-MySQL-Workshop/tree/master/Chapter13

Loading data from a SQL file 531

3. Issue the following command:

DROP DATABASE world;

4. Now, select Data Import/Restore in the Administration tab.

Specify the world. sql file and click Start Import. The following screenshot shows
the output that is generated after implementing the preceding steps:

MySQL Workbench [x]

&® 8.0.17Sandbox 3¢
File Edit View Query Database Server Tools Scripting Help

PR SEFEIE S o= o

Administration P Administration - Data Import/Restore 3 @ Query2 3¢

MANAGEMENT
B.0.175andbox
° Server Status
@ Client Connections Data Import

j_ Users and Privileges
B Status and System Vari | Import from Disk | Import Progress
& Data Export

Import Options
é Data Import/Restore

] Import from Dump Project Folder fhome/dvaneeden/dumps

INSTANCE

E Startup / Shutdown Select the Dump Project Folder to import. You can do a selective restore.

& server Logs Load Folder Contents

#~ Options File

© Import from Self-Contained File ftmp/world.sql

PERFORMANCE

@ Dashboard Select the SQL/dump file to import. Please note that the whole file will be imported.

ﬁ Performance Reports

Default Schema to be Imported To
é'\ Performance Schema S

The default schema to import the dump into.

Default Target Schema: - MNew... NOTE: this is anly used if the dump file doesn't contain its schema,
otherwise it is ignored.

Select Database Objects to Import (only available for Project Folders)

Impoi Schema Impol Schema Objects
Object Info | Session
Mo object selected
Dump Structure and Data + Select Views Select Tables Unselect All
Press [Start Import] to start... Start Import

Added new scratch query editor

Figure 13.10 - MySQL Workbench - Data Import

532 Getting Data into MySQL

6. Once the import is complete, you will see the Import Completed status in the
Administration window:

MySQL Workbench [x]
&® 8.0.17Sandbox 3
File Edit View Guery Database Server Tools Scripting Help

SSRGS Y = [FE
Administration P | Administration - Data Import/Restore 3 | Query2 ¥
MANAGEMENT
B.0.175andbox
°S€r\rer5tatus
g Client Connections Data |mP0|’t

1 Users and Privileges
B3 status and System Vari Import from Disk | Import Progress
& Data Export

Import Completed
é Data Import/Restore

Status:
INSTANCE 1 of Limported.
B startup 7 Shutdown Log:
A Server Logs
#~ Options File 15:24:30 Restoring ftmp/world.sql
Running: Jusrflibexec/mysql-workbench/mysql --defaults-file="ftmp/tmp3Zs9sU/extraparams.cnf"’ --
PERFORMANCE protocol=socket --user=msandbox --socket=/tmp/mysql_sandbox8017.sock --default-character-set=utf8 --
& Dasnboard comments < "ftmpfworld.sgl"

& Performance: Reparts 15:24:32 Import of ftmp/world.sql has finished

é'\ Performance Schema S

Object Info | Session
Mo object selected

Stop Import Again
Added new scratch query editor

Figure 13.11 - MySQL Workbench - Data Import output

As you can see in the preceding screenshot, we are basically doing the same thing as we
did before. The world. sql file was successfully imported. Now, let's explore loading
data from a CSV file.

Loading data from a CSV file 533

Loading data from a CSV file

CSV files are often used to exchange data between different systems. This can be between
database systems from different vendors or between a database and a spreadsheet
application such as Microsoft Excel. The biggest problem with CSV (which stands for
Comma Separated Values) is that there is not a single standard. This leads to a plethora
of sub-formats. The differences are mostly in which character is really used for separating
values. It is not always a comma; it can be a semicolon or something else entirely. And the
other points on which these files differ are how the values, which contain the separator
character, escape and how newlines are handled. You might also come across TSV files,
which are very similar to CSV but separated by tabs. These files can mostly be handled
like CSV files and are quite common with MySQL.

In order to read and save these files, you need to first check the directory where they can
be saved. In order to do that, we use the following command:

SHOW VARIABLES LIKE 'secure file priv';

This variable contains the value (path) where you can save your CSV file. The preceding
code when used in a Windows OS will return the following path:

C:\ProgramData\MySQL\MySQL Server 8.0\Uploads

The SELECT...INTO OUTFILE Format

This format allows you to write selected rows of a table to a file. Let's say you want to
export the data of the city table to a city.csv file and store it in the preceding path.
Use the following query:

SELECT * FROM city INTO OUTFILE 'C:/ProgramData/MySQL/MySQL
Server 8.0/Uploads/city.csv!

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n';

In the preceding query, the terms FIELDS TERMINATED BY ', ',OPTIONALLY
ENCLOSED BY '"',and LINES TERMINATED BY '\n'are column and line
terminators.

They can be specified in the command to produce a certain format of output.

Once you have exported the table data to a CSV file, view it using the following command:

\! type "C:\ProgramData\MySQL\MySQL Server 8.0\Uploads\city.
csv" | more

534 Getting Data into MySQL

The \ ! command on the MySQL prompt allows you to call system commands. type
helps to display all the data of the file. Please note that type is used on the Windows OS.
more helps to display the contents of this file one screen at a time.

The LOAD DATA INFILE...INTO format

In order to load data from a CSV file into a table, we use this format. Let's say we have
created a copy of the city table named copy of city and want to load the data of
city.csv into this table. In this case, we will use the following command:

LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/
Uploads/city.csv' INTO TABLE copy of city CHARACTER SET latinl
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"!'

LINES TERMINATED BY '\n';

Now, you have learned how to write data from a table to a CSV file and read data from
a CSV file to a table. In the next exercise, you will load data from a CSV file.

Exercise 13.05 - loading data from a CSV file

In this exercise, you will first export the city table of the world database into a CSV
file, import it, and check whether everything works fine. Follow the following steps to
accomplish this:

1. Open the MySQL client.
2. Connect to the world database:

USE world;

3. To check which directories you can save files in, write the following command:
SHOW VARIABLES LIKE 'secure file priv';

This produces the following output:

- mmmmmmm i m i m e m e +
| Variable name | value |
o - e o f m . +

| secure_file priv | C:\ProgramData\MySQL\MySQL Server 8.@\Uploads\ |
R T R e +

Figure 13.12 - Checking directories

Loading data from a CSV file 535

Now, you can use the preceding path in order to export the data of the city table
and save it in a CSV file.

Export the city table into the city. csv file by writing the following command:

SELECT * FROM city INTO OUTFILE 'C:/ProgramData/MySQL/
MySQL Server 8.0/Uploads/city.csv'

FIELDS TERMINATED BY ', ' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n';

This produces the following output:
Query OK, 4079 rows affected (©.01 sec)

Figure 13.13 - Data exported to the CSV file

To check the results of the city . csv file, write the following command:

\! type "C:\ProgramData\MySQL\MySQL Server 8.0\Uploads\
city.csv" | more

The output will look like the following:

1,"Kabul","AFG","Kabol",b 1780000

2, "Qandahar", "AFG", "Qandahar", 237500

3, "Herat", "AFG", "Herat", 186800
4,"Mazar-e-Sharif","AFG","Balkh",127800

5, "Amsterdam", "NLD", "Noord-Holland",731268
6, "Rotterdam"”, "NLD", "Zuid-Holland",593321

7,"Haag","NLD","Zuid-Holland", 440900
8,"Utrecht","NLD","Utrecht",234323

9, "Eindhoven"”, "NLD", "Noord-Brabant", 2081843
10, "Tilburg","NLD", "Noord-Brabant",193238
11, "Groningen","NLD","Groningen",172701

Figure 13.14 - Inspecting the contents of the city.csv file
This is done with the INTO OUTFILE part of a SELECT statement.

Note

Depending on how MySQL is configured, there may be limitations to where
a file can be placed. You can run SELECT @@global.secure file
priv, which should give you the path where you can write to. If this returns
NULL, then you first need to change the configuration of the MySQL server.

536 Getting Data into MySQL

7. Now, create a table called copy of city with the same structure as city using
the following command:

CREATE TABLE copy of city LIKE city;

8. To import, use the LOAD DATA statement, as follows:

LOAD DATA INFILE 'C:/ProgramData/MySQL/MySQL Server 8.0/
Uploads/city.csv' INTO TABLE copy of city

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' LINES
TERMINATED BY '\n';

This produces the following output:
Query OK, 4079 rows affected (1.79 sec)

Records: 4079 Deleted: © Skipped: @ Warnings: @

Figure 13.15 - Loading the contents of city.csv into the copy_of_city table with LOAD DATA INFILE

In this exercise, you loaded data from the CSV file. In case of any errors, you can
troubleshoot. You need to verify whether the table and the CSV file have the same number
of columns and in the same order. You also need to verify whether the character set of the
files is what you expect it to be. When in doubt, you can convert the file to UTF-8 first.

Besides the LOAD DATA options used to describe the format of the CSV, you can also
specify which values go into which columns and even use expressions for this (for
example, to add and to multiply two fields). To see the built-in help from the server, you
can use \help LOAD DATA.

The mysglimport utility that comes with MySQL can also help you to load data. In the
end, this uses the same LOAD DATA command and has most of the same options.

In the next section, we will explore loading data from a JSON file.

Loading data from a JSON file

MySQL uses a format of a file with one JSON document per line to allow quick and easy
import of documents into a database. To import JSON documents into collections in
MySQL, we can use MySQL Shell with the util.importJson () function.

For example, if you need to import a JSON file named languages . json, then you write
the following command:

util.importJdson('/path/to/languages.json')

Ensure that you give the correct path to the JSON file.

Loading data from a JSON file 537

In order to update the schema names, use the \ rehash command. Once you have updated
the schema names, you can view the data of the collection using the following command:

db.languages. find ()

You can also sort the details of a collection using the sort () method. Here, you need to
specify the column name inside the method. Consider a scenario where you need to sort
the passenger details in the airports file, and then find the airport having the highest
number of passengers. In this case, you write the following command:

db.airports.find () .sort ('passengers DESC')

You can also use JSONPath syntax to extract fields from the JSON stored in the doc
column and make it available as a column. The - >> operator is a shorthand for extracting
and unquoting. The - >> operator is also available to only do the extraction but not the
unquote operation. Let's say you want to fetch columnl and column2 from mytable.
You can write the following command to achieve this:

SELECT
doc->>'$.columnl' AS columnl,
doc->>'$.column2' AS column2,
FROM mytable;

Thus, you have learned to import a JSON file and view its details. Now, solve an exercise
based on it to practice them.

Exercise 13.06 - loading data from a JSON file

In this exercise, you will create the beatles. json file, input values, import the file
using the importJson () function, and view the details in MySQL Shell. Follow the
following steps to implement this exercise:

1. Create a JSON file named the beatles. json and add the following contents
within it:

"name": "Rubber Soul"}

"name": "Revolver"}

{
{
{"name": "Sgt. Pepper's Lonely Hearts Club Band"}
{"name": "Magical Mystery Tour"}

{

"name": "Yellow Submarine"}

538 Getting Data into MySQL

2. Open MySQL shell and connect to the test database with the help of the following
command:
\use test
3.

Use the importJson () function to import the preceding JSON file:

util.importdson('/path/to/the beatles.json')

Note

Ensure that you provide the correct path of the JSON file in the preceding
command.

The JSON file gets imported, and you can see the progress in the shell:
5

Processed 156 bytes in 5 documents in ©.2406 sec (20.78 documents/s)
Total successfully imported documents 5 (20.78 documents/s)

Figure 13.16 - Loading documents into a collection
4. Call rehash:

\rehash

This produces the following output:

Fetching schema names for autocompletion... Press ~C to stop.

Figure 13.17 - Fetching schema names for autocompletion

5. Show the contents of the collection in the shell:

db.the beatles.find()

Using the CSV storage engine to export data 539

This produces the following output:

" id": "00005e3bf4120000000000000006" ,
"name": "Rubber Soul"

" id": "00005e3bf4120000000000000007",
"name": "Revolver"

" id": "00005e3bf4120000000000000008" ,
"name": "Sgt. Pepper's Lonely Hearts Club Band"

"_id": "00005e3bT4{20000000000000009",
"name": "Magical Mystery Tour"

" id": "00005e3bt4+2000000000000000a" ,
"name": "Yellow Submarine"

5 documents in set (0.0213 sec)

Figure 13.18 - Using find() to inspect a collection
As you can see in the preceding screenshot, id is automatically generated. As
\h importJson will tell you, there are many options - for example, to set the
name and schema of the collection to which the data will be imported.

In the next sections, we will explore the CSV storage engine and how it can be used to
export as well as import data.

Using the CSV storage engine to export data

MySQL supports multiple storage engines. The default storage engine is InnoDB, but
there are a few more shipped with the server. There are also third-party storage engines
available, an example of which is the MyRocks storage engine from Facebook, which
allows MySQL to use RocksDB to store data. The job of a storage engine is to store and
retrieve data, while the server knows how to parse and execute SQL queries. The CSV
storage engine that comes with MySQL allows you to store data in a CSV file and query
it via SQL. This can be used to export and import data. The server knows how to copy or
move data from one storage engine to another, so this also works for data that is stored in
any other storage engine. The main limitation of this is that you require direct access to
the filesystem of the server.

540 Getting Data into MySQL

You can also make your tables use a particular storage engine. Consider the following code
where you modify your languages table to use the CSV storage engine:

ALTER TABLE languages ENGINE=CSV;

Let's say you want to fetch data from a source table and copy it into a destination
table and then later use this destination table so that you can export its data to a CSV
file. In order to do this, you need to first copy all columns from the source table to the
destination table. This can be done with the help of the following command:

INSERT INTO <destination table> SELECT * FROM <source table>
WHERE Column=<value>;

Now, you can export the data of the destination table to MySQL's datadir folder. To
check the path of this directory, type the following command:

SELECT e@edatadir;
If you are using Windows, then you will get the following path in the response:
C:\ProgramData\MySQL\MySQL Server 8.0\Data\

Now, you will practice what you have learned so far and make use of the CSV storage
engine to export data in the next exercise.

Exercise 13.07 - utilizing the CSV storage engine to
export data

In this exercise, you will make use of the CSV storage engine to export the data of the
city table into a CSV file. Follow the following steps to implement this:

1. Open MySQL Shell and connect to the wor1d database with the help of the
following command:

USE world

2. Createacity export table with the same structure as the city table using the
following command:

CREATE TABLE city export LIKE city;

Using the CSV storage engine to export data

541

3.

Inspect the structure of the new table with the help of the following command:
SHOW CREATE TABLE city export\G

This produces the following output:

ok ok kokokok ok Rk olok kR Rk Kokk ok] | poy R R Rk skokok ok sk stk skok ok ok ok sk ok

Table: city_export
Create Table: CREATE TABLE ~city_export™ (
“"ID” int NOT NULL AUTO_INCREMENT,
“Name™ char(35) NOT NULL DEFAULT '',
“CountryCode™ char(3) NOT NULL DEFAULT "',

“District™ char(20) NOT NULL DEFAULT "',
"Population™ int NOT NULL DEFAULT '@°',
PRIMARY KEY (TID),
KEY ~CountryCode™ (CountryCode’)

) ENGINE=InnoDB DEFAULT CHARSET=latinl

1 row in set (0.05 sec)

Figure 13.19 - Inspecting the structure of the new table

Remove auto-increments, secondary indexes, and primary keys from the new
table. This is necessary, as the CSV storage engine doesn't support these. Write
the following commands to implement this:

ALTER TABLE city export MODIFY COLUMN 'ID' int NOT NULL;
ALTER TABLE city export DROP KEY CountryCode;

ALTER TABLE city export DROP PRIMARY KEY;

Change the table to use the CSV storage engine:

ALTER TABLE city export ENGINE=CSV;

Copy all rows with CountryCode=RUS into the newly created city export
table:

INSERT INTO city export SELECT * FROM city WHERE
CountryCode='RUS' ;

This produces the following output:
Query OK, 189 rows affected (0.14 sec)

Records: 189 Duplicates: © Warnings: ©

Figure 13.20 - Copying data from the city table to the city_export table
using INSERT INTO...SELECT...FROM

542 Getting Data into MySQL

6. The result is placed in the MySQL datadir in a folder with the same name as the
database. Write the following command to check the directory:

SELECT @@datadir;

This produces the following output:

1 row in set (©.00 sec)

Figure 13.21 - Checking the directory
7. Now, write the following command to check the results of the CSV file:

\! type "C:\ProgramData\MySQL\MySQL Server 8.0\Data\
world\city export.csv" | more

This produces the following output:

3580, "Moscow", "RUS", "Moscow (City)",8389200

3581, "St Petersburg","RUS","Pietari", 4694000

3582, "Novosibirsk","RUS", "Novosibirsk",1398800

3583, "Nizni Novgorod","RUS","Nizni Novgorod",1357000
3584, "Jekaterinburg", "RUS", "Sverdlovsk",1266300

3585, "Samara", "RUS", "Samara",1156100
3586, "Omsk™, "RUS™, "Omsk™,1148900

3587, "Kazan","RUS","Tatarstan",1101000
3588, "Ufa", "RUS", "BaUkortostan", 1091200

Figure 13.22 - Inspecting the contents of the new CSV file
Thus, we exported the data into a CSV file with the help of the CSV storage engine.

In the next section, we will learn to use the CSV storage engine to import data.

Using the CSV storage engine to import data

After defining a CSV table, you can replace the CSV file. For that, you need to run the
FLUSH TABLE <table> command to ensure that the server rereads this and then the
data is available. Having the data in a CSV table, however, is probably not the endpoint you
want to get to, as it doesn't support indexing or primary keys. So, the next step would be to
use the following:

"INSERT INTO <new table> SELECT * FROM <csv_table>"

Using the CSV storage engine to import data 543

Alternatively, you can run the following:
'ALTER TABLE <csv_table> ENGINE=InnoDB'

Either of the options can be used to convert the table to InnoDB. Once this is done, you
should define a primary key and add indexes if needed. Let's see an exercise where we
will make use of the CSV storage engine to import data.

Note

On Windows, always start the MySQL command-line client via the MySQL
Command Line Client - Unicode entry. Non-Unicode causes text to not be
displayed correctly in some cases. To verify that you are using the correct
strings, run the status command in the MySQL client, which should return
ut £8mb4 for all the four lines that show the character set.

Exercise 13.08 - utilizing the CSV storage engine to
import data

In this exercise, you will be making use of the CSV storage engine to import data from
the table created in the preceding exercise and display the results in MySQL Shell. Follow
the following steps to implement the exercise:

1. Open MySQL Shell.

2. Connect to the world database:
USE world

3. Check the contents from the city export table:

SELECT * FROM city export WHERE District='Moskova';

544 Getting Data into MySQL

This produces the following output:

____________ +

Population

____________ +
| Podolsk Moskova 194300
| Ljubertsy Moskova 163900
| Mytidtsi Moskova 155700
| Kolomna Moskova 150700
| Elektrostal Moskova 147000
| Himki Moskova 133700
| Balasiha Moskova 132900
| Korolev Moskova 132400
| Serpuhov Moskova 132000
| Odintsovo Moskova 127400
| Orehovo-Zujevo Moskova 124900
| Noginsk Moskova 117200
| Sergijev Posad Moskova 111100
| Stsolkovo Moskova 104900
| Zeleznodoroznyi Moskova 100100
| Zukovski Moskova 96500
| Krasnogorsk Moskova 91000
| Moskova
+

18 rows in set (0.00 sec)

Figure 13.23 - Inspecting the contents of the city_export table
The preceding command returns the rows that have Moskova as a district. Another
way of getting a subset is to use LIMIT 10.

4. Modify the city export.csv file. Change some numbers in city export.csv
or add a record; just ensure you use the exact same CSV format.

5. Check the database table again:

FLUSH TABLE city export;
SELECT * FROM city export WHERE District='Moskova';

Searching and filtering JSON documents 545

This produces the following output:

____________ +

Population

____________ +
| Podolsk Moskova 194300
| Ljubertsy Moskova 163900
| Mytistsi Moskova 155700
| Kolomna Moskova 150700
| Elektrostal Moskova 147000
| Himki Moskova 133700
| Balasiha Moskova 132900
| Korolev Moskova 132400
| Serpuhov Moskova 132000
| Odintsovo Moskova 127400
| Orehovo-Zujevo Moskova 124900
| Noginsk Moskova 117200
| Sergijev Posad Moskova 111100
| Stsolkovo Moskova 104900
| Zeleznodoroznyi Moskova 100100
| Zukovski Moskova 965600
| Krasnogorsk Moskova 91000
| Moskova
+ ______
18 rows in set (0.00 sec)

Figure 13.24 - The city_export table after directly modifying the city_export.csv file
This will reflect the changes you made to the file directly. This shows that creating
a CSV table and then replacing the data allows you to use the CSV storage engine
to import data into MySQL.

In the next section, we will solve an activity based on inserting airport records using SQL.

Searching and filtering JSON documents

To do this, we use the worldcol collection, which is a collection of JSON documents
generated from the tables in the wor1d database. Unless otherwise specified, we will use
MySQL Shell in JavaScript mode.

To create this collection, we need to first run the statements in the worldcol. js file by
writing the following query:

\connect —mx root@l27.0.0.1:33060

\source worldcol.js

546 Getting Data into MySQL

This outputs the following results:

127.0.0.1:18018+ ssl JEEl> \source worldcol.js
Default schema ‘world' accessible through db.
<Collection:worldcol>

Fetching table and column names from ‘world® for auto-completion... Press ~C to stop.
Query OK, 4079 rows affected (0.6339 sec)

Records: 4079 Duplicates: @ Warnings: 0
Figure 13.25 - Output of sourcing worldcol.js

To explore, you first need to get a single document from the collection:
db.worldcol.find () .1imit (1)

This returns the first document of the worldcol collection:

"country": {
"GNP": 5976,
"code": "AFG",
"name" Afghanistan",
"code2": "AF",
"region": "Southern and Central Asia"
"continent": "Asia",
"local name": "Afganistan/Afqanestan”
"population": 22720000,
"surface area"
"head of state
"government form "Islamic Emirate",
"independence year": 1919
1,
"district": "Kabol",
"language": {
"Dari": {
"percentage": 32.1,

"is official": true

T,

"Uzbek": {
"percentag 8.8,
"is official": false

52.4,
': true

"Balochi": {
"percentage": 0.9,
"is official":

1

"Turkmenian": {
"percentage":
"is official":

}
I
"is_capital": true,
"population": 1780000

1 document in set (0.0012 sec)

Figure 13.26 - The find() output with limit(1)

Searching and filtering JSON documents 547

The £ind function accepts an argument to filter rows:
db.worldcol.find ('name="Paris""')

This returns the following results:

127.0.0.1:18018+ ssl [world B> db.worldcol.find('name="Paris""')
{
" id": 2974,
"name": "Paris",
"country": {
"GNP": 1424285,
"code": "FRA",
"name": "France",
"code2": "FR",
"region": "Western Europe",
"continent": "Europe",
"local name": "France",
"population": 59225700,
"surface area": 551500,
"head of state": "Jacques Chirac",
"government_form": "Republic"
"independence year": 843
I
"district": "ile-de-France",
"language": {
"Arabic": {
"percentage": 2.5,
"is official": false
}
"French": {
"percentage": 93.6,
"is official": true
}l
"Italian": {
"percentage": 0.4,
"is official":
H
"Spanish": {
"percentage":
"is official":
1
"Turkish": {
"percentage":
"is official":
H
"Portuguese": {
"percentage":
"is official":
}
},
"is capital": true,
"population": 2125246
}
1 document in set (0.0120 sec)

Figure 13.27 - The find() output for name="Paris"

548 Getting Data into MySQL

You might not need the whole document, so try to restrict what fields you return from
the document:

db.worldcol.find('is capital=true').
fields('name').
limit (5)

This returns five cities that are capitals of their country:

127.0.0.1:18018+ ssl ' world gEER> db.worldcol.find('is capital=true').
-> fields('name').
-> limit(5)
=5

"name": "Kabul"

"name": "New Delhi"

"name": "Yerevan"

"Oranjestad"

"name": "Canberra"

documents in set (0.0007 sec)
Figure 13.28 - The find() output for the names of capitals (limited to five results)

Now, we want to see how many cities we have in total:
db.worldcol.count ()

This returns 4079 cities:

127.0.0.1:18018+ ssl ‘wWorld B> db.worldcol.count()

Figure 13.29 - The count() output for woldcol

Searching and filtering JSON documents 549

If you want, you can retrieve multiple fields from the document:

db.worldcol.find('is capital=true').
fields('name', 'country.name').
limit (5)

This will produce the following output:

127.0.0.1:18018+ ssl [world gEER> db.worldcol.find('is capital=true').
-> fields('name', 'country.name').
-> limit(5)

=
"name": "Kabul",

"country.name": "Afghanistan"

"name": "New Delhi",
"country.name": "India"

"name": "Yerevan",
"country.name": "Armenia"

"name": "Oranjestad",
"country.name": "Aruba"

"name": "Canberra",
"country.name": "Australia"

5 documents in set (0.0008 sec)
Figure 13.30 - The find() output with a filter, field selection, and a limit
You can also aggregate results with groupBy () :
db.worldcol.find('language.Kazakh').

fields('country.name').

groupBy ('country.name')

550 Getting Data into MySQL

This finds the country name for cities that have 1anguage . Kazakh. Then, the results are
grouped by country . name:

127.0.0.1:18018+ ssl ' world gEEN> db.worldcol.find('language.Kazakh').
-> fields('country.name').
-> groupBy('country.name')
->

"country.name": "Kazakstan"
"country.name": "Kyrgyzstan"

"country.name": "Mongolia"

"country.name": "Turkmenistan"

"country.name": "Uzbekistan"

"country.name": "Russian Federation"

documents in set (0.0036 sec)

Figure 13.31 - Countries that use the Kazakh language

To get the top five cities in Russia by population, you can use sort () and 1imit ()
together:

db.worldcol.find ('country.name="Russian Federation"').
fields('name', 'population').

sort ('population desc').

limit (5)

Searching and filtering JSON documents 551

This produces the following output:

127.0.0.1:18018+ ssl [world EEl> db.worldcol.find('country.name="Russian Federation"')
fields('name', 'population').
sort('population desc').
1imit(5)

"name": "Moscow",
"population": 8389200

"name": "St Petersburg",
"population": 4694000

"name": "Novosibirsk",
"population": 1398800

"name": "Nizni Novgorod",
"population": 1357000

"name": "Jekaterinburg",
"population": 1266300

}

5 documents in set (0.0152 sec)

Figure 13.32 - The find() output with the top five Russian cities by population

You can also do calculations inside the query:

db.worldcol.find ('country.name="Romania"') .
fields(

'name’',
'population’',
'country.population’',
'100*population/country.population as pct of country'
)
.sort ('population desc')
.limit (5)

552 Getting Data into MySQL

Here, you calculate the percentage of the country's population that lives in a city in
Romania, which only returns the five biggest cities:

127.0.0.1:18018+ ssl [world EEEl> db.worldcol.find('country.name="Romania""').
-> fields(
'name’,
'population’
"country.population’,
'100*population/country.population as pct_of_country’

)
.sort('population desc')
.limit(5)

"name": "Bucuresti",

"population": 2016131,

"pct of country": 8.97833938233395,
"country.population": 22455500

"name": "Iasi",

"population": 348070,

"pct of country": 1.5500434192068755,
"country.population": 22455500

"name": "Constanta",

"population": 342264,

"pct of country": 1.5241878381688228,
"country.population": 22455500

"name": "Cluj-Napoca",

"population™: 332498,

"pct of country": 1.4806973792612057,
"country.population": 22455500

"name": "Galati",
"population": 330276,
"pct of country": 1.4708022533455056,
"country.population": 22455500
}

5 documents in set (0.0048 sec)

Figure 13.33 - The find() output with a calculation

In the next section, you will complete an exercise based on searching the collections and
filtering the documents.

Searching and filtering JSON documents 553

Exercise 13.09 - Searching collections and filtering
documents

To expand your food palette in the Punjab region of India, you are looking to see which
cities are the biggest and thus could have the biggest customer base. In this exercise, you
will use the worldcol collection to find the biggest city in the Punjab region of India.
You will start by connecting MySQL Shell in JavaScript mode to the wor1d database, then
loading the worldcol collection, filtering rows based on district and country name, and
ordering the results by city population. Follow these steps to complete this exercise:

1. Connect MySQL Shell in JavaScript mode to the wor1d database:

\js
\use world

This produces the following output:

127.0.0.1:18018+ ssl SER> \js
127.0.0.1:18018+ ssl EER> \use world

Default schema "world' accessible throug

Figure 13.34 - MySQL Shell - connecting to the world schema in JavaScript mode

2. Load the worldcol collection if you have not done so already:
\source worldcol.js

This produces the following output:

127.0.0.1:18018+ ssl [world §EW> \source /tmp/worldcol.js
Default schema ‘world' accessible through db.

<Collection:worldcol>
Fetching table and column names from ‘world® for auto-completion... Press ~“C to stop|

Query OK, 4079 rows affected (0.5080 sec)

Records: 4079 Duplicates: @ Warnings: 0
Figure 13.35 - MySQL Shell - importing worldcol.js

3. Filter the rows based on the district and country names:

db.worldcol.find('district="Punjab" and country.
name="India""') .

fields ('name', 'population')

554 Getting Data into MySQL

This produces the following output:

127.0.0.1:18018+ ssl [World EEl> db.worldcol.find('district="Punjab" and country.name="India"').
-> fields('name', 'population')
->

"population": 1042740

“name": "Amritsar",
"population": 708835

“name": "Jalandhar (Jullundur)",
"population": 509510

"name": "Patiala",
"population": 238368

“name": "Bhatinda (Bathinda)",
"population": 159042

"name": "Pathankot",
"population": 123930

“name": "Hoshiarpur",
"population": 122705

"name": "Moga",
"population": 108304

“name": "Abohar",
"population": 107163

9 documents in set (0.,003]1 sec)

Figure 13.36 — MySQL Shell - filtering out cities in the Punjab district in India
Here, for £ind (), you filter on district="Punjab" and then country.
name="India".If you don't know what fields are available, you can run £ind () .
limit (1) to see what the first document in the collection looks like. After filtering,
you select the name and population fields by using fields ().

4. Order the results by population with the help of the following query:

db.worldcol.find ('district="Punjab" and country.
name="India"') .

fields ('name', 'population') .

sort ('population desc')

Searching and filtering JSON documents 555

This produces the following output:

IS 127.0.0.1:18018+ ssl | world db.worldcol.find('district="Punjab" and country.name="India"').
-> fields('name', 'population’).
-> sort('population desc')
-

"name": "Ludhiana"

"population": 1042740

"name": "Amritsar"
"population": 708835

"name": "Jalandhar (Jullundur)",
"population": 509510

"name": "Patiala",
"population": 238368

"name”: "Bhatinda (Bathinda)",
"population": 159042

"name": "Pathankot",
"population": 123930

"name": "Hoshiarpur",
"population": 122705

"name": "Moga",
"population": 108304

"name": "Abohar",
"population”: 107163

9 documents in set (0.0082 sec)

Figure 13.37 - MySQL Shell - cities in the Punjab district of India, sorted by population

This is mostly the same as the previous step, but we add sort ('population desc')
to sort by population in descending order.

In this exercise, you used a condition with £ind () to filter the documents you wanted.
Then, you filtered out the fields you were interested in with £ields () . Finally, you used
sort () to order the documents based on one of the fields.

In the next section, we will switch back to using SQL but use it to query JSON data. You
can use collections in SQL mode. This looks like a table with an ID column and a DOC
column that holds JSON data. Regular tables can have JSON columns. In both cases, we
can use JSON functions and operators in SQL mode to work with this data.

556 Getting Data into MySQL

Using JSON functions and operators to query

JSON columns

For this, we use the MySQL client. You can also use MySQL Shell in SQL mode; just issue
\'sql after connecting with MySQL Shell.

There are many convenient functions to deal with JSON data when you are working with
collections in SQL mode or tables that use JSON fields.

The first thing to do is extract and unquote fields. This is something we did in the previous
chapter, so here is a quick reminder of it. The functions are JSON EXTRACT () and
JSON_UNQUOTE () . However, it is more convenient to use the operators that were created
to do this - - > to extract and - >> to extract and unquote. You have to specify a JSON
path expression to the extract function, which in its most basic form looks like $. name,
to extract the name field.

Consider the following example:
SELECT doc->>'$.name' FROM worldcol LIMIT 5;

This produces the following output:
mysql> SELECT doc->>'$.name' FROM worldcol LIMIT 5;

Tilburg

I
I
Parana |
Taman |

I

rows in set (0.00 sec)

Figure 13.38 — The SELECT output extracting the name FROM the JSON field of the worldcol collection

The same can also be written as follows:

SELECT JSON UNQUOTE (JSON EXTRACT (doc, '$.name')) FROM worldcol
LIMIT 5;

Using JSON functions and operators to query JSON columns 557

Other operations might be able to generate JSON structures from rows. This can be done
with JSON_OBJECT (), a function that takes pairs — the first value is the key and the
second one is the value.

Consider the following query:

SELECT JSON OBJECT ('name', Name, 'continent', Continent) FROM
country LIMIT 5;

This returns a JSON structure like the following:

mysql> SELECT JSON_OBJECT('name', Name, 'continent', Continent) FROM country LIMIT 5;

| JSON OBJECT('name', Name, 'continent', Continent)

+
|
|
|
|

{"name": "Aruba", "continent": "North America"}
{"name": "Afghanistan", "continent": "Asia"}
{"name": "Angola", "continent": "Africa"}
{"name": "Anguilla", "continent": "North America"}
| {"name": "Albania", "continent": "Europe"}

set (0.00 sec)

Figure 13.39 - The SELECT output showing the JSON_OBJECT() usage

So, we used the Name and Continent columns from the table and used those as values
where the keys are simply strings ("name" and "continent"). This can be very
useful for converting data from tables to documents. Refer to worldcol. js for a more
complete example.

We can also aggregate rows and combine results into an array. One of the functions to do
this is JSON_ARRAYAGG () :

SELECT Continent, JSON ARRAYAGG (name) AS countries
FROM country GROUP BY continent\G

558 Getting Data into MySQL

The result is a row for each of the seven continents and an array with the list of countries
in that continent:

mysql> SELECT Continent, JSON ARRAYAGG(name) AS countries
-> FROM country GROUP BY continent\G
; * 1. row *
Continent: Asia
countries: ["Afghanistan", "United Arab Emirates", "Armenia", "Azerbaijan", "Bangladesh", "Bahrain
", "Brunei", "Bhutan", "China", "Cyprus", "Georgia", "Hong Kong", "Indonesia", "India", "Iran", "I
raq", "Israel", "Jordan", "Japan", "Kazakstan", "Kyrgyzstan", "Cambodia", "South Korea", "Kuwait",
"Laos", "Lebanon", "Sri Lanka", "Macao", "Maldives", "Myanmar", "Mongolia", "Malaysia", "Nepal",
"Oman", "Pakistan", "Philippines", "North Korea", "Palestine", "Qatar", "Saudi Arabia",
", "Syria", "Thailand", "Tajikistan", "Turkmenistan", "East Timor", "Turkey", "Taiwan",
"Vietnam", "Yemen"]
A AR ARORORRKRR D Ol R FORRORRK R KRR AR AR RO R OKR KK
Continent: Europe
countries: ["Albania", "Andorra", "Austria", "Belgium", "Bulgaria", "Bosnia and Herzegovina", "Bel
arus", "Switzerland", "Czech Republic", "Germany", "Denmark", "Spain", "Estonia", "Finland", "Fran
ce", "Faroe Islands", "United Kingdom", "Gibraltar", "Greece", "Croatia", "Hungary", "Ireland", "I
celand", "Italy", "Liechtenstein", "Lithuania", "Luxembourg", "Latvia", "Monaco", "Moldova", "Mace
donia", "Malta", "Netherlands", "Norway", "Poland", "Portugal", "Romania", "Russian Federation", "
Svalbard and Jan Mayen", "San Marino", "Slovakia", "Slovenia", "Sweden", "Ukraine", "Holy See (Vat
ican City State)", "Yugoslavia"]
e e e ke ok e ok ok ook Ok R ROk ook ok ROk ROk 3. row ke e e ok ook ok ok ok ok s ORoROR oOROR ok ROR ROk
Continent: North America
countries: ["Aruba", "Anguilla", "Netherlands Antilles", "Antigua and Barbuda", "Bahamas", "Belize
", "Bermuda", "Barbados", "Canada", "Costa Rica", "Cuba", "Cayman Islands", "Dominica", "Dominican
Republic", "Guadeloupe", "Grenada", "Greenland", "Guatemala", "Honduras", "Haiti", "Jamaica", "Sa
int Kitts and Nevis", "Saint Lucia", "Mexico", "Montserrat", "Martinique", "Nicaragua", "Panama",
"Puerto Rico", "El Salvador", "Saint Pierre and Miquelon", "Turks and Caicos Islands", "Trinidad a
nd Tobago", "United States", "Saint Vincent and the Grenadines", "Virgin Islands, British", "Virgi
n Islands, U.S."]
E 3 3 4. row *
Continent: Africa
countries: ["Angola", "Burundi", "Benin", "Burkina Faso", "Botswana", "Central African Republic",
"Céte d’Ivoire", "Cameroon", "Congo, The Democratic Republic of the", "Congo", "Comoros", "Cape Ve
rde", "Djibouti", "Algeria", "Egypt", "Eritrea", "Western Sahara", "Ethiopia", "Gabon", "Ghana", "
Guinea", "Gambia", "Guinea-Bissau", "Equatorial Guinea", "British Indian Ocean Territory", "Kenya"
"Liberia", "Libyan Arab Jamahiriya", "Lesotho", "Morocco", "Madagascar", "Mali", "Mozambique", "
Mauritania", "Mauritius", "Malawi", "Mayotte", "Namibia", "Niger", "Nigeria", "Réunion", "Rwanda",
"Sudan", "Senegal", "Saint Helena", "Sierra Leone", "Somalia", "South Sudan", "Sao Tome and Princ
ipe", "Swaziland", "Seychelles", "Chad", "Togo", "Tunisia", "Tanzania", "Uganda", "South Africa",
"Zambia", "Zimbabwe"]
E 5. row * Kok kR ok kKoK *
Continent: Oceania
countries: ["American Samoa", "Australia", "Cocos (Keeling) Islands", "Cook Islands", "Christmas I
sland", "Fiji Islands", "Micronesia, Federated States of", "Guam", "Kiribati", "Marshall Islands",
"Northern Mariana Islands", "New Caledonia", "Norfolk Island", "Niue", "Nauru", "New Zealand", "P
itcairn", "Palau", "Papua New Guinea", "French Polynesia", "Solomon Islands", "Tokelau", "Tonga",
"Tuvalu", "United States Minor Outlying Islands", "Vanuatu", "Wallis and Futuna", "Samoa"]
e e e ke ok e ok ok ook ook kRO K ek ook ok kR Ok ok 6. row ke e e ok ook ok ok ok ok s ORoROR oOROR ok ROR ROk
Continent: Antarctica
countries: ["Antarctica", "French Southern territories", "Bouvet Island", "Heard Island and McDona
1d Islands", "Suuth Geongla and the South Sandwich Islands”]
*k 23 ¥k 7. pow FEEE ok kR Rk kK £33
Continent: South Amet o}
countries: ["Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Falkland Islands",
"French Guiana", "Guyana", "Peru", "Paraguay", "Suriname", "Uruguay", "Venezuela"]
7 rows in set (0.01 sec)

Figure 13.40 — The SELECT output with JSON_ARRAYAGG()

Using JSON functions and operators to query JSON columns 559

Note

Here, we end the query with \G. This is used in the MySQL client and in
MySQL Shell in SQL mode to display the results horizontally. Besides the
difference in output, this does exactly the same as ;, which is to send the query
to the server for execution. In MySQL, you can index JSON arrays to make
your queries faster. This needs a special kind of index known as a multi-valued
index, which is available in MySQL 8.0.17 and higher.

The last of the functions to handle now is JSON_PRETTY (), which is very handy if you
work with large documents. It displays JSON data in an easy-to-read format:

SELECT JSON PRETTY (doc) FROM worldcol LIMIT 1\G

This produces the following output:

mysql> SELECT JSON_PRETTY(doc) FROM worldcol LIMIT I\G
K 3K oK K KK K KK K K K K K K K K K KK R KK K KR K l . row 33K K KK K K R KKK KK K KK K K K K K R K KK KK
JSON_PRETTY(doc): {

"id': 1,

"hame": !

"GNP":

"name": "Afghanistan",
"code2 "AF",
"region" Southern and Central Asia",
"continent "Asia",
"local_nam Afganistan/Afganestan”,
"population": 22720000,
"surface_area": 652090.00,
"head_of_state": "Mohammad Omar"
"government_fori "Islamic Emirate",
"independence_year": 1919
I8
"district": "Kabol",
"language": {
"Dari": {
"percentage": 32.1,
"is official": true
I8
"Uzbek": {
"percentage": 8.8,
"is official": false
I8
"Pashto": {
"percentage": 52.4,
"is official": true
},
"Balochi": {
"percentage": 0.9,
"is official":
1,
"Turkmenian": {
"percentage": 1.9,
"is official":

}

is capital": true,
"population": 1780000

¥

1 row in set (0.00 sec)

Figure 13.41 — The SELECT output with JSON_PRETTY()

560 Getting Data into MySQL

While JSON functions are mostly used in SQL mode, it is also possible to use them in
JavaScript or Python mode:

\js

db.worldcol.find() .

fields ('country.name', 'json arrayagg(name) AS cities').
groupBy ('country.name') .

limit (3)

This produces the following output:

LElNy 127.0.0.1:18018+ ssl [world gEER> db.worldcol.find().
-> fields('country.name', 'json_arrayagg(name) AS cities').
-> groupBy('country.name').
-> limit(3)
->

"cities": [
"Kabul",
"Qandahar",
"Mazar-e-Sharif",
"Herat"
1,
"country.name": "Afghanistan"

"cities": [
"Tirana"

] 1
"country.name": "Albania"

"cities": [
"Sétif",
"Oran",
"Constantine",
"Batna",
"Ghardaia",
"Ech-Chleff (el-Asnam)",
"Tiaret",
"Béchar",
"Tlemcen (Tilimsen)",
"Tébessa",
"Mostaganem",
"Annaba",
"Béjaia",
"Sidi Bel Abbes",
"Skikda",
"Biskra",
"Alger",
"Blida (el-Boulaida)"

1,

"country.name": "Algeria"

}
3 documents in set (0.0196 sec)

Figure 13.42 - The find() output with json_arrayagg()

Using JSON functions and operators to query JSON columns 561

In the next section, you will complete an exercise based on querying JSON data with SQL.

Exercise 13.10 - querying JSON data with SQL

In this exercise, you will be using the worldcol collection, which you created in the
previous exercise. You are tasked with getting the names of the capitals of the five largest
countries by surface area. Start by connecting to the wor1d schema with the MySQL
client. Then, build a SQL query that filters out capitals, add order and limit to sort the
results, select the fields in which you are interested, and finally, run the query. Follow
these steps to complete this exercise:

1.

Connect to the wor1d schema with the MySQL client:
USE world;

This produces the following output:

mysql> USE world
Database changed

Figure 13.43 — Connecting to the world schema

Build a SQL query that filters out capitals:
FROM worldcol WHERE doc->'S$.is capital'=TRUE

You want to use the worldcol table. This is a collection that doubles as a table.
It has two columns, id with the ID of the document and doc with the JSON
document. You filter out the is_capital field from the collection and filter
out rows for which the column is TRUE.

Add ordering and limit to sort the results:
ORDER BY doc->'S$.country.surface area' DESC LIMIT 5

Sort the country.surface area field in descending order and limit it to five
results. Note that you use - > instead of ->>, as you only want to extract the field.
You don't want to unquote it, as that would cause the value to be a string, and
sorting is different for strings.

Select the fields that we are interested in:
SELECT

doc->>'$.name' AS city name,

doc->>'S$.country.name' AS country name

562 Getting Data into MySQL

Extract the names of the city and the country. Name the results columns to get a
name that is easier to work with.

5. Run the query:

SELECT
doc->>'$.name' AS city name,
doc->>'$.country.name' AS country name

FROM worldcol

WHERE doc->'$.1s capital'=TRUE

ORDER BY doc->'S$.country.surface area' DESC LIMIT 5;

This produces the following output:

mysql> SELECT
-> doc->>'$.name' AS city name,
-> doc->>'$.country.name' AS country name
-> FROM worldcol
-> WHERE doc->'$.1s capital'=TRUE
-> ORDER BY doc->'$.country.surface area' DESC LIMIT 5;

Russian Federation
Ottawa Canada
United States
Brazil

Washington
Brasilia

|

|
Peking | China

|

rows in set (0.01 sec)

Figure 13.44 - Getting the names of the capitals of the biggest countries

by surface area from the worldcol collection
Here, you used the - > and - >> operators to extract and, where needed, unquote data

that is stored in a JSON column. In the next section, we will learn how to use generated
columns to query and index JSON data.

Using generated columns to query and index JSON data 563

Using generated columns to query and index
JSON data

If you find yourself constantly extracting the same key from a JSON document in SQL
mode, then it might be time to create a so-called generated column. The generated column
looks like a normal column, but it has the data from whatever function you provide,
usually an extract and unquote on a JSON document. The data for the generated column
can either be virtual (generated on the go) or stored. The benefit of a fully virtual column
is that adding or removing it is instantaneous, and it doesn't take up any storage space.
With a generated column, the benefit is that it can be faster because it doesn't have to be
generated every time it is used.

Take the worldcol collection as an example:

ALTER TABLE worldcol

ADD COLUMN district VARCHAR (255) AS (doc->>'$.district') NOT
NULL;

This extracts the district from the JSON document and places it in a generated column:

mysql> ALTER TABLE worldcol
-> ADD COLUMN district VARCHAR(255) AS (doc->>'$.district') NOT NULL;

Query 0K, 0 rows affected (0.04 sec)
Records: @ Duplicates: @ Warnings: 0

Figure 13.45 - The ALTER TABLE output to add a generated column

Besides now having an easy-to-query column, we have also told the database that
the district can't be NULL, so if we try to add a new entry without a district, this fails.
So, this can be used to place validation on the documents:

MySQL> INSERT INTO worldcol (doc) VALUES ('{" id": 999999 }');
ERROR: 1048: Column 'district' cannot be null

One of the great features of generated columns is that they can be indexed. This is true
for both virtual and stored columns.

564 Getting Data into MySQL

Consider the following example:

MySQL

.name' FROM worldcel WHERE district LIKE 'Schleswig-Holstein'

leswig-Holst

| Extra

sec)
* / select json_unquote(json_extract(world . worldcol’ . doc’ .name')) AS ‘doc->>'§.name'" from ‘world . worldcol®
worldcol' . district’ like 'Schleswig-Holstein')
12700060 1118017+ 551 NGRS ALTER TABLE worldcol ADD INDEX (district);
, 0 rows affected (0.8697 sec)

0 Duplicates: 8 Warnings: @
narr+ ssl _> EXPLAIN JELECT do name' FROM w‘nrldcul \lHEPE district LIKE leswlq Holsts

+ +
| partitions | type | possible keys | ki | key len | ref | rows | filtered | Extra

strict” like 'Schleswig-Holstein')

R 157.5.6.1: 15617+ s\ ROFHMSON-

n_unquote(json_extract(world . werldcol®. doc’,'§. ' ->>'$.name’” from ‘world” . worldcol® I

Figure 13.46 — An example of adding INDEX on a generated column

Here, you add an index on the generated district column that you added before:
ALTER TABLE worldcol ADD INDEX (district);

This produces the following result:

mysql> ALTER TABLE worldcol ADD INDEX(district);
Query 0K, 0 rows affected (0.09 sec)

Records: @ Duplicates: @ Warnings: 0

Figure 13.47 — The ALTER TABLE output to add INDEX

This is what allows MySQL to have functional indexes. This is not limited to JSON data,
as you can use most functions for virtual columns.

The EXPLAIN output shows that MySQL only needs 2 rows instead of 3668 rows.
This makes the query return faster. We will dive deeper into using EXPLAIN in the
next chapter.

To create a generated column stored instead of a virtual one, just add the STORED keyword:

ALTER TABLE worldcol

ADD COLUMN name VARCHAR (255) AS (doc->>'$.name') STORED NOT
NULL;

Activity 13.01 - Exporting report data to CSV for Excel 565

This query produces the following output:

mysql> ALTER TABLE worldcol
-> ADD COLUMN name VARCHAR(255) AS (doc->>'$.name') STORED NOT NULL;

Query OK, 4079 rows affected (0.35 sec)
Records: 4079 Duplicates: ® Warnings: 0

Figure 13.48 - The ALTER TABLE output to add a stored column

In the next section, we will complete an activity based on the knowledge that we have
gained during this chapter. In the first, you will query the wor1d database; in the second,
you will export some data to the CSV format.

Activity 13.01 - Exporting report data to CSV
for Excel

You are working for a newspaper, and as part of an article related to the inauguration of a
new king, the reporter needs a list with the heads of state of all monarchies. The requested
format is CSV, as that can be loaded in Excel and later incorporated into the article.
Perform the following steps to implement the activity:

1. Connect to the wor1ld database.

2. Select the right columns and filter out monarchies.

3. Send the result to a file in the CSV format.

After implementing these steps, the expected output looks like the following:

mysql= SELECT GovernmentForm FROM country
-> WHERE GovernmentForm LIKE '%Monmarchy%'
->= GROUP BY GovernmentForm;

Constitutional Monarchy
Constitutional Monarchy, Federation |

Monarchy (Emirate)

Monarchy (Sultanate)

Monarchy

Constitutional Monarchy (Emirate)
Parlementary Monarchy

rows in set (0.00 sec)

Figure 13.49 - The SELECT output to show government forms that are monarchies

566 Getting Data into MySQL

Note
The solution for the activity can be found in the Appendix.

Summary

In this chapter, you learned how to insert records into tables and documents into
collections. You also imported files in the SQL, CSV, and JSON formats into the MySQL
server and combined data from tables and collections. You then used the CSV storage
engine to easily import and export data in the CSV format. With the CSV format, it is
easy to exchange data with other applications and spreadsheets.

In the next chapter, we will continue with querying data using MySQL. This includes using
some more advanced reporting capabilities such as aggregating data and using functions.
We will also continue to see what MySQL can do with JSON data.

14
Manipulating
User Permissions

This chapter deals with creating, modifying, and dropping user accounts in MySQL.
First, we will begin with creating users, and then we will move on to setting and changing
their passwords and other properties. This will be followed by granting and revoking
permissions. Additionally, we will troubleshoot any connection issues that might arise
when users try to connect to the database. By the end of this chapter, you will be able to
use roles to grant and manage the permissions for different groups of people.

In this chapter, we will cover the following main topics:

Introduction to user permissions

Exploring user and accounts

Exercise 14.01 - creating users and granting permissions
Changing users

Flush privileges

Changing permissions

Exercise 14.02 - modifying users and revoking permissions

Using roles

568 Manipulating User Permissions

 Exercise 14.03 - using roles to manage permissions
« Troubleshooting access problems

 Activity 14.01 - creating users for managing the word schema

Introduction to user permissions

In the previous chapter, we learned how to make modifications to the data stored in
MySQL tables and collections. Additionally, we learned how to use the DELETE statement
to delete rows and the UPDATE statement to change existing rows. For both statements,
we learned how to use them together when joining multiple tables to allow for more
complex changes. Additionally, we learned how to use the INSERT statement with an

ON DUPLICATE KEY UPDATE clause to add new records to the database or update an
existing record if it was already in the database. We learned how to use the modify ()
method to modify existing documents in a collection and the remove () method to
remove documents from a collection.

In this chapter, we will learn how to create users to segregate and restrict access to ensure
no accidental or fraudulent changes can be made to the data.

Good management of accounts and passwords is paramount to security. For example, let's
suppose your company allows its customers to subscribe to a newsletter using their email
addresses. These are stored in a MySQL database. The same database server also hosts an
internal application for employees to register the projects they are working on. The web
server and the internal application use the same account. If a bug is found in the software
that is used for internal projects or if the configuration file of that application isn't guarded
properly, then the internal employees can gain access not only to the database used for
internal projects but also the database with the customers' email addresses. Had we used
two separate accounts, the customers' email addresses would not have been accessible

to someone who gained access to the database credentials of the application for internal
projects. The same could happen the other way around. If there was a SQL injection found
in the code running the website, then external users might have been able to gain access to
the list of internal (and probably confidential) projects. Note that in a real-world situation,
these applications should have their own database server.

Another example would be a developer having access to the production database for
the website described earlier. The developer might need this to troubleshoot problems
with articles that are published on the website and are stored in the database. For this, they
don't need access to the customers table. If they are granted access to only the required
tables, then the Personally Identifiable Information (PII) data will be more secure. If the
account of this developer gets hacked or lost, then the customer data will remain safe.

Exploring users and accounts 569

The list of data breaches, which can be found at https://en.wikipedia.org/
wiki/List of data breaches, shows that this is a real problem. Each data breach
can cost a company a lot of money. Managing user accounts is one of the many things
you can do to reduce the chance of this happening to your company. It is reccommended
that you do not share accounts between users and/or applications and only grant access
to what's really needed.

In the first section, we will learn a few basics regarding what user accounts are and how to
connect with different user accounts. Additionally, we will learn why we should be using
multiple accounts in the first place.

Exploring users and accounts

Most applications define an account as a username and a password. Then, permissions
are assigned to this account. For MySQL, it is mostly the same, but there are some
important differences. The first difference is that, for MySQL, an account is written as
<user>@<host > instead of only the username. The permissions are assigned to such
user and host combinations. This is important and means that johndoe@127.0.0.1
and johndoe@192.168.0.1 are two different accounts that can have different
permissions. It also allows you to restrict access to specific hosts or IP ranges. In the next
section, we will explore how to connect to MySQL with a set of credentials.

How to connect to MySQL with a set of credentials

Essentially, this is similar to what you have already been using before, but we will refresh
your memory regarding this process.

To connect to the MySQL client, the code needs to be in the following format:
mysqgl -h <host> -u <user> -p <db>

To connect to MySQL Shell, the code needs to be in the following format:
mysqglsh <user>@<host>/<db>

As you can see here, in both cases, you are prompted to enter the password. Therefore,
this is advisable over having a password on the command line as that might end up in
the history of your shell.

The <db> part is not required, but without that, you have to use the USE <db> command
or the \use <db> command to connect to the right database. So, it is more convenient
to directly connect to the right schema.

https://en.wikipedia.org/wiki/List_of_data_breaches
https://en.wikipedia.org/wiki/List_of_data_breaches

570 Manipulating User Permissions

Besides this, there are various other options that you could use to connect to MySQL.
However, in most cases, these are not needed. We can use -p to connect to a non-standard
portand -ssl-ca, --ssl-cert,and -ssl-key to specify the client certificates.
Additionally, on Windows, you can use - - shared-memory-base-name to connect
over a shared memory connection. On Linux, you can use - S to connect over a UNIX
domain socket.

Note

For MySQL, localhost and 127.0. 0.1 are not the same. If
localhost is used, then MySQL uses a UNIX domain socket instead of
TCP to connect on Linux. The best practice is to use 127.0. 0. 1 instead of
localhost to connect over TCP.

Why use multiple user accounts?

If every person and/or application that connects to the database has their own account,
then you can grant different permissions to them. This reduces the chance of someone
accidentally dropping or changing the data. In addition, it helps with auditing. With
MySQL Enterprise Edition, or by using third-party audit plugins, you can create audit
trails. However, these are not useful if everyone uses the same account. In MySQL, an
account can have resource constraints in addition to permissions on schemas, tables, and
columns. These resource constraints are more useful if user accounts are only used by

a single application or person. And the same goes for locking and unlocking accounts,
which is only useful if accounts are not shared. In the next section, we will explore how
to create users.

Creating, modifying, and dropping a user
To create a user, called johndoe, who is allowed to log in from anywhere with the
password of 'teigsizkudefegdec', we will write the following query:

CREATE USER 'johndoe'@'%' IDENTIFIED BY 'teigsizkudefegdec';

In this example, % is used as a wildcard. Instead of %, you can use something such as
192.168.1.%,%.example.com,127.0.0.1,0r localhost to restrict where
the user can log on from.

Exploring users and accounts 571

Additionally, you can add PASSWORD EXPIRE to the statement to force the user to
change the password once they are logged in. We can modify the details of the user by
changing their password. In order to do that, we will have to use the following query:

ALTER USER USER() IDENTIFIED BY 'new secure passsword';

Let's say that you want to change the password of the previously created user, then in
order to implement it, we will write the following query:

ALTER USER 'johndoe'@'%' IDENTIFIED BY 'johndoe';

Another thing you can do is to add WITH MAX_ USER_CONNECTIONS 10 toseta
resource limit on the number of connections that are allowed for the user. This can help
you to prevent the user from consuming all of the connections available to the other
users from connecting to that database.

Finally, if we want to drop a user, we can use the following format:
DROP USER user name;

Let's say we want to delete the previously created user. Then, in that case, we write
the following:

DROP USER 'johndoe'@'%';
Now that we have learned how to create users, modify their details, and drop them, in the

next section, we will expand that knowledge by learning how to grant permissions to them.

Granting permissions

Now that we have a user, we need to grant permissions to it.

The query to grant permission looks like this:
GRANT SELECT ON world.* TO 'johndoe'@'%';

This grants the SELECT permission on all the tables of the world database to the
johndoe@$% account.

Note

To grant such permissions, ensure that you have the wor1d database in
your local system. You can follow the instructions mentioned at https: //
dev.mysql.com/doc/world-setup/en/world-setup-
installation.html to get the world database in your system.

https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html
https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html
https://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

572 Manipulating User Permissions

It is possible to grant permissions globally (* . *) on a schema (wor1d. *) or a specific
table (world. city). Also, it is possible to grant access to specific columns with the
following query:

GRANT SELECT (ID, Name) ON world.city TO 'johndoe'@'%';

However, this is not a very common thing to do. The most common permissions that you
can grant are listed as follows:

e SELECT, UPDATE, DELETE, and INSERT: These permissions allow you to retrieve
and modify data in tables.

o CREATE,ALTER, and DROP: These permissions allow you to create, modify, and
drop tables.

o CREATE USER: This allows you to work with user accounts.
« FILE: This allows you to work with data on the filesystem.

« PROCESS: This allows you to manage processes, such as kill processes, and see the
full process list.

o ALL: This allows you to grant all permissions.

Besides these permissions, there are more, less common, permissions that you can grant.

Consider that the GRANT statement returns the following error:
ERROR: 1410: You are not allowed to create a user with GRANT

Here, you are trying to GRANT permission to a user that doesn't exist. In such a scenario,
you need to check the username and use the CREATE USER query if needed. The
reason for this error message is that, in older versions, MySQL would create the user
automatically if it didn't exist and you tried to grant permissions to it. The problem with
this was that it often resulted in users who didn't have a password by accident, which is
very insecure. In the next section, we will learn about inspecting users.

Inspecting users
We can inspect the settings for a user and the list of grants that the user has by using the
following two statements:

SHOW CREATE USER <user>@<host>;
SHOW GRANTS FOR <user>@<host>;

Exploring users and accounts 573

The first query will return something similar to the following:

| CREATE USER 'johndoe'@'%' IDENTIFIED WITH 'caching_|
INTERVAL DEFAULT PASSWORD REQUIRE CURRENT DEFAULT |

1 row in set (0.06 sec)

Figure 14.1: Inspecting the settings of the user

The second query will return something similar to the following:

| GRANT USAGE ON *.* TO ~johndoe @ %

| GRANT SELECT ON “world™ .* TO ~johndoe @ %
| GRANT SELECT ("ID, “Name) ON “world . city’ TO ~johndoe @ % |

3 rows in set (0.02 sec)

Figure 14.2: Inspecting the list of grants the user has
If you want to know what grants the existing user has, then you need to write the
following query:

SHOW GRANTS;

Another way to get to this information is to query the information_ schema tables.
The list of tables to query is as follows:

+ information schema.USER PRIVILEGES: This holds global permissions.

« information schema.SCHEMA PRIVILEGES: This is used for per-schema
permissions.

o information schema.TABLE PRIVILEGES: This is used for per-table
permissions.

+ information schema.COLUMN PRIVILEGES: This is used for per-column
permissions.

574 Manipulating User Permissions

Consider the following query:

SELECT GRANTEE FROM information schema.USER PRIVILEGES GROUP BY
GRANTEE;

The preceding query produces the following output:

'mysql.infoschema'@'localhost"’
'mysql.session’'@'localhost’
'mysql.sys'@'localhost’

'root'@'localhost’
'bhavesh'@'%"
'johndoe'@"' %"

6 rows in set (0.13 sec)

Figure 14.3: Inspecting the USER_PRIVILEGES table

The preceding table has a row for every global permission for every user. So, for a user
with 10 permissions, it will have 10 rows. However, in this query, we are only interested in
the list of users that is known to the server. Therefore, we are grouping by GRANTEE.

To check the details of the SCHEMA PRIVILEGES table, we can write the following query:

SELECT GRANTEE FROM information schema.SCHEMA PRIVILEGES GROUP
BY GRANTEE;

The preceding query produces the following output:

'mysqgl.sys'@'localhost’

'mysql.session'@'localhost' |
'johndoe'@'%"'

3 rows in set (0.00 sec)

Figure 14.4: Inspecting the SCHEMA_PRIVILEGES table
To check the details of the TABLE PRIVILEGES table, we can write the following query:

SELECT GRANTEE FROM information schema.TABLE PRIVILEGES GROUP
BY GRANTEE;

Exercise 14.01 - creating users and granting permissions 575

This query produces the following output:

2 rows in set (0.00 sec)

Figure 14.5: Inspecting the TABLE_PRIVILEGES table
To check the details of the COLUMN _PRIVILEGES table, we can write the following query:

SELECT GRANTEE FROM information schema.COLUMN PRIVILEGES GROUP
BY GRANTEE;

This query produces the following output:

1 row in set (0.00 sec)

Figure 14.6: Inspecting the COLUMN_PRIVILEGES table

In the next section, you will be able to practice what you have learned so far.

Exercise 14.01 - creating users and granting
permissions

You are part of a new start-up that sells electric bikes on a web page and with a mobile
app. Besides you, there is the founder of the company (Patrick) and a single developer
(Mike) who develops the web page and mobile app. You have been tasked with setting
up accounts for the developer, the founder, and the web server.

On the database server, there are two databases: employees and ebike. The web server
should be limited to 300 connections to ensure the databases are still accessible even if
the website becomes overloaded.

In order to implement this exercise, first, open the MySQL client and connect to the
database server. Then, create accounts for Patrick, Mike, and the web server. You will grant
Patrick access to the employees and the ebike schemas, and grant Mike and the web
server access to the ebike schema.

576 Manipulating User Permissions

To complete this exercise, perform the following steps:

1.

Open the MySQL client and connect to the database server.

You don't need to connect to a specific database—just connecting to the server
is enough.
Create accounts for Patrick, Mike, and the web server by writing the following
queries:
CREATE USER 'patrick'@'%' IDENTIFIED BY
'NijTaseirpyocyea';
CREATE USER 'mike'@'%' IDENTIFIED BY 'MyhafDixByej';

CREATE USER 'webserver'@'$%' IDENTIFIED BY 'augdigFevni'
WITH MAX USER CONNECTIONS 300;

Here, you create three users and set a randomly generated password for each
of them. Additionally, for the webserver user, you set a resource limit of
300 connections.

Now, grant the patrick user access to the employees and the ebike schemas
by writing the following queries:

GRANT ALL ON employees.* TO 'patrick'@'%';
GRANT ALL ON ebike.* TO 'patrick'@'%';

Here, you grant full access to both schemas to user patrick.

Grant both users, mike and webserver, access to the ebike schema with the
help of the following queries:

GRANT ALL ON ebike.* TO 'mike'@'%';
GRANT SELECT, INSERT, UPDATE, DELETE ON ebike.* TO

[}

'webserver'@'%' ;

Here, you grant the mike user full access to the ebike schema, but you only give
out specific grants to the webserver user.

In this exercise, you have mastered the skills of creating and granting users. In the
upcoming section, we will focus on how to change users.

Changing users 577

Changing users

There can be many different reasons for changing users, and there are many different
things that we can change.

If a password was leaked, then the first thing you want to do is lock the account and/or
change the password of the account. If you have an application account that you suspect

is no longer being used, it might be smart to first lock the account before dropping it later.
This allows you to simply unlock the account if it turns out that something was still relying
on this account. Locking an account is also a good way to protect a shared database against
a single user who is overloading the system, for example, by writing too much data or
running too many heavy queries. Then, you can lock the account, ensure the application
abusing the database gets fixed, and unlock the account again.

Another thing you will often need to do is periodically change passwords. For applications,
you might want to create a new user with a new password but with the same permissions.
Then, we might want to restart the application to use this new account and lock and drop
the original account later. This allows you to change the credentials used by applications
with minimal disruption.

One of the benefits of locking an account over dropping it is that the error message the
clients receive is very clear:

ERROR 3118 (HY000): Access denied for user
'myuser'@'localhost'. Account is locked.

Locking and unlocking users can be done using the following queries:

ALTER USER <user>@<host> ACCOUNT LOCK;
ALTER USER <user>@<host> ACCOUNT UNLOCK;

For example, if you want to lock and unlock the ' johndoe'@'% "' user, write the
following queries:

ALTER USER 'johndoe'@'%' ACCOUNT LOCK;
ALTER USER 'johndoe'@'%' ACCOUNT UNLOCK;

Another thing you can do is to change the passwords. We can do this in the following way:
ALTER USER 'johndoe'@'%' IDENTIFIED BY 'foobar';

While it is possible to use SET PASSWORD. . ., the preferred way to do this is with
ALTER USER....

578 Manipulating User Permissions

Changing resource limits can be done as follows:
ALTER USER 'johndoe'@'$%' WITH MAX USER CONNECTIONS 5;

In the next section, let's explore flushing privileges.

Flush privileges

Many tutorials and instructions to set up applications tell the users to issue FLUSH
PRIVILEGES. So, what is this? And when do we need to use it?

The CREATE USER,ALTER USER, and GRANT permissions, along with many other

user and permission statements, indirectly modify the system tables that are stored in the
mysqgl schema. At startup, these tables are loaded into memory and, after every statement
that modifies the users and/or permissions, these are again loaded into memory.

However, if you directly modify the tables in the mysql schema with INSERT, UPDATE,
and DELETE statements, you need to force MySQL to refresh the copies of these tables it has
in memory. This is where the FLUSH PRIVILEGES statement comes in. It precisely does
that. Note that we do not recommend you modify these tables directly. So, as long as you
stick to the supported commands to modify users, you never need to use this command.

Changing permissions

So, we have already covered granting permissions. The only other thing that we can do is
to remove permissions from a user. This is done with the help of the REVOKE statement.

To remove the SELECT permission in the world. city table from the johndoe user,
write the following query:

REVOKE SELECT ON the world.city FROM 'johndoe'@'%';

The REVOKE and GRANT statements look very similar but do the exact opposite of
each other.

In the next section, you will solve an exercise based on what you have learned so far.

Exercise 14.02 - modifying users and revoking permissions 579

Exercise 14.02 - modifying users and revoking
permissions

The ebike start-up has been very successful, and there have been a few changes. A new
developer, called Sarah, was hired, and there is a new mobileapp schema for the mobile
app to manage the bikes. Both Sarah and Mike are working on the mobile app. In addition
to this, Patrick has asked you to change his password because he has forgotten what it was.
You need to change the password that is used for the account used by the web server.

In order to implement this, first, connect to the database and then create an account for
the new developer Sarah. Then, modify the accounts of Patrick, Mike, and the web server
so that they will be able to access the new schema. Finally, you can change the password
of Patrick.

To complete this exercise, follow the steps:

1. Connect to the database.

2. Create an account for the new developer Sarah and grant her permissions on the
ebike and mobileapp schemas with the help of the following queries:

CREATE USER 'sarah'@'$%' IDENTIFIED BY 'IkbyewUgJeuj8';
GRANT ALL ON ebike.* TO 'sarah'@'$';
GRANT ALL ON mobileapp.* TO 'sarah'@'%';

3. Modify the accounts of Patrick, Mike, and the web server by granting them access
to the mobileapp schema:

GRANT ALL ON mobileapp.* TO 'mike'@'%';
GRANT ALL ON mobileapp.* TO 'patrick'@'$';
GRANT ALL ON mobileapp.* TO 'webserver'@'%';

4. Revoke the access of mike to the ebike schema as he no longer needs its access:
REVOKE ALL ON ebike.* FROM 'mike'@'%';

5. Now, change the password for the patrick user:
ALTER USER 'patrick'@'%' IDENTIFIED BY 'WimgeudJa';

6. Inspect all of the permissions for the webserver user:

SHOW GRANTS FOR 'webserver'@'$%';

580 Manipulating User Permissions

This produces the following output:

| GRANT USAGE ON *.* TO “webserver @ %

| GRANT SELECT, INSERT, UPDATE, DELETE ON "ebike .* TO ‘webserver @ %’
| GRANT ALL PRIVILEGES ON “mobileapp .* TO "webserver @ %

3 rows in set (0.16 sec)

Figure 14.7: Inspecting the currently granted permissions for the webserver user

7. Change the account for the webserver user. You could do this in the same way
you did for Patrick, but that would likely cause some disruption between the time
you changed the password on the database and the moment we reconfigured the
webserver user to use the new password. So, create a new account, and then
after reconfiguring the web server, lock the old account:

CREATE USER 'webserver2'@'%' IDENTIFIED BY 'dutPyicloHi'
WITH MAX USER CONNECTIONS 300;

GRANT SELECT, INSERT, UPDATE, DELETE ON ebike.* TO
'webserver2'@'%';

GRANT ALL PRIVILEGES ON 'mobileapp'.* TO
'webserver2'@'%';

8. Reconfigure the webserver user:
ALTER USER 'webserver'@'%' ACCOUNT LOCK;

Now, if everything is fine, you can drop the old webserver user. If things are not
working fine, for example, the webserver user didn't start to use the new account,
we can simply unlock the account again.

In this exercise, you changed the password for one account directly and for another
account by creating a new account. Additionally, you reconfigured the application by
locking the old account, thereby minimizing the downtime of the application. You also
used the REVOKE statement to remove access from an account. In the next section, you
will learn about how to use roles.

Using roles 581

Using roles

Besides granting permissions to individual users, in MySQL, it is also possible to create
roles and grant permissions to roles and then assign roles to users. This makes handling
groups of users with similar permissions much easier.

To create a role for webdeveloper, we can provide the following query:
CREATE ROLE 'webdeveloper';

The next step is to assign some permissions to the role. This is done with GRANT, just like
how you did for the user permissions:

GRANT SELECT ON mysqgl.user TO 'webdeveloper';
To assign a role to a user, we need to use GRANT as follows:
GRANT 'webdeveloper' TO 'johndoe'@'%';

An account can have no roles, a single role, or multiple roles. If a role is granted to your
user, then you might need to tell MySQL which roles you want to use with the help of
the following query:

SET ROLE 'webdeveloper';

Instead of having to do this every time or having to modify an application to do this after
connecting to the database, you can configure a set of default roles for an account:

ALTER USER 'johndoe'@'%' DEFAULT ROLE 'webdeveloper';

Creating a user, granting it a role, and making that role the default can be done in a single
statement such as the following:

CREATE USER 'u2'@'%' IDENTIFIED BY 'foobar' DEFAULT ROLE
'webdeveloper';

To see what user and role you are using, you can run the following command:

SELECT CURRENT ROLE (), CURRENT USER() ;

582 Manipulating User Permissions

This will generate the following output:

D - T ——— +
| CURRENT_ROLE() | CURRENT_USER() |
e T Fomm e +

| root@localhost |
e e et +
1 row in set (0.07 sec)

Figure 14.8: Inspecting the current role and user

Now that you have learned how to use roles, in the next section, you will solve an exercise
based on this to hone your skills.

Exercise 14.03 - using roles to manage
permissions

The company keeps growing, and there has been another set of new hires:

Linda: Taking over HR responsibilities from Patrick
John: Will be taking care of finance
Vladimir: The mobile app developer

Victoria: The designer for the website

You have been asked to start using the following roles: manager, webdeveloper,
and appdeveloper.

Here, you will connect to the database, create three roles, and grant permissions to them.
Following this, you will create accounts for the new hires, and then grant roles to the
existing people. To implement this exercise, follow these steps:

1.
2.

Connect to the database.

Create three roles: manager, webdeveloper, and appdeveloper. Grant
permissions to them:

CREATE ROLE 'manager';

GRANT ALL ON employees.* TO 'manager';
CREATE ROLE 'webdeveloper';

GRANT ALL ON ebike.* TO 'webdeveloper';
CREATE ROLE 'appdeveloper';

GRANT ALL ON mobileapp.* TO 'appdeveloper';

Troubleshooting access problems 583

Each permission links a group of people to the role(s) they have in the company.

3. Now, create accounts for the new hires:

CREATE USER 'linda'@'%' IDENTIFIED BY 'AkFernyeisjegs'
DEFAULT ROLE manager;

CREATE USER 'john'@'%' IDENTIFIED BY 'owvurewdatkinyegod'
DEFAULT ROLE manager;

CREATE USER 'vladimir'@'%' IDENTIFIED BY 'rusvawfyoaw'
DEFAULT ROLE appdeveloper;

CREATE USER 'victoria'@'$' IDENTIFIED BY
'joigowInladdIc6' DEFAULT ROLE webdeveloper;

4. Grant the roles to the existing people:

GRANT manager, webdeveloper, appdeveloper TO

[)

'patrick'@'s!';

ALTER USER 'patrick'@'$%' DEFAULT ROLE manager;
GRANT webdeveloper, appdeveloper TO 'mike'@'%';
ALTER USER 'mike'@'%' DEFAULT ROLE webdeveloper,
appdeveloper;

GRANT webdeveloper, appdeveloper TO 'sarah'@'%';

ALTER USER 'sarah'@'%' DEFAULT ROLE webdeveloper,
appdeveloper;

We have granted roles to accounts and set the roles they will use by default. Note that,
for Patrick, only the manager role is set by default. If he wants to use the other roles,
he has to switch to them.

In the next section, we will explore various issues that might arise while connecting to
the database.

Troubleshooting access problems

Let's try to troubleshoot some connection issues.

We will encounter the following error if MySQL is not running or if it is running on any
another machine and you have forgotten to specify the host with -h:

$ mysql
ERROR 2002 (HY000): Can't connect to local MySQL server through
socket '/var/lib/mysql/mysql.sock' (2)

584 Manipulating User Permissions

The following error is similar to the one mentioned earlier as, in this case, the connection
goes over TCP. This can happen if MySQL runs on a non-standard port, and you didn't
specify the port with -p:

$ mysgl -h 127.0.0.1

ERROR 2003 (HY000): Can't connect to MySQL server on
'127.0.0.1" (111)

If we don't supply a password, we will encounter the following error:

$ mysqgl -h 127.0.0.1

ERROR 1045 (28000) : Access denied for user 'jdoe'@'localhost!’
(using password: NO)

Here, we can reach MySQL, but we are not allowed in.

The solution is to add -p and then let the client prompt you for the password. However,
we will still get an error if either the username or the password is wrong:

$ mysqgql -h 127.0.0.1 -p
Enter password:

ERROR 1045 (28000) : Access denied for user 'jdoe'@'localhost'
(using password: YES)

In the preceding scenario, we supplied the correct username and password. However, we
will get another error if a database doesn't exist or is not accessible by the user:

$ mysqgl -h 127.0.0.1 -u jdoe -p information schemas
Enter password:

ERROR 1044 (42000) : Access denied for user 'jdoe'@'%' to
database 'information schemas'

Note that supplying a database name is not required. In the next section, we will perform
an activity wherein we will create the users to manage our world schema.

Activity 14.01 - creating users for managing the world schema 585

Activity 14.01 - creating users for managing
the world schema

To manage the database with cities, languages, and countries, you need to set up some
accounts. The first account is for the web server user, which should be read-only. The
second account is for the intranet user, which is allowed to change and create entries. The
third account is for a manager, called Stewart, who is allowed to do everything. As more
managers will be hired soon, this should be implemented with roles. The last account is
for Sue, who is a language expert and can only change the countrylanguage table.

To complete this activity, perform the following steps:

Connect to the database server.

Create the roles.

Create an account for the web server user.
Create an account for the intranet user.

Create an account for Stewart.

AN L

Create an account for Sue.

Note
The solution for this activity can be found in the Appendix section.

In this activity, you have used roles to make it easier to add permissions and users later.
If there are more language experts, you simply grant them access to the role and you're
done. Additionally, if there are new tables to create, you don't have to grant them access
to multiple accounts, just the role.

summary

In this chapter, you learned how to create users and manage users, including locking and
unlocking accounts, setting passwords, and adding resource constraints. You learned how
to manage permissions by using the GRANT statement to grant specific permissions to a
user and the REVOKE statement to revoke those permissions. You learned how to use roles
to manage the permissions more easily for a group of people.

586 Manipulating User Permissions

This allows you to control who has access to the information stored inside the database.
This is a critical part of securing access to the database.

In the next chapter, you will learn how to create logical backups, which can be used to
restore data after a server has crashed or after data that has been deleted by accident.
Besides that, it can also be used in migrations, setting up replication, or for copying data
to a development or acceptance environment.

15
Logical Backups

In this chapter, you will learn to create a backup of all data in the MySQL server,

which will allow you to recover lost data, beginning with a comparative exploration of
mysgldump and mysglpump between logical and physical backups. You will make

a backup copy of a single schema before learning to restore a database from a full backup
or a schema from a single schema backup. We will use point-in-time restore to recover all
data up to a specific point in time to minimize data loss during restoration. By the end of
this chapter, you will be able to use the mysglbinlog utility to inspect the contents of
the binlog files.

This chapter covers the following concepts:

» An introduction to backups

 Understanding the basics of backups

+ Logical and physical backup

 Types of restore

o Scheduling backups

+ Using point-in-time recovery with binlog files

e Activity 15.01 - backing up and restoring a single schema

o Activity 15.02 - performing a point-in-time restore

588 Logical Backups

An introduction to backups

In the previous chapter, we learned to define users in MySQL and grant permissions to
restrict access to specific users and/or applications, using roles to make this task more
efficient, and troubleshooted various database connection issues.

In this chapter, we will learn how to use backups to safeguard against data loss in

a number of unfortunate situations, such as outages or even a software update. Besides
guarding against data loss, backups also help to validate data — for example, after someone
has gained unauthorized access or after a software bug has been discovered.

We will also review the basics of logical backups, before diving into mysgldump and
mysqglpump, their differences, and how to create full and partial backups with both.
We will then proceed with learning how to restore backups and touch upon using
binlog files to do point-in-time restores.

Understanding the basics of backups

Backups can be used for multiple purposes. The main purpose of backups is to reduce the
risk of losing data if your primary copy gets lost or damaged. Another use of backups is
to seed an acceptance environment with real-life data. Depending on how you develop,
you might have different setups for development, quality assurance, acceptance, and
production. Restoring a backup from production to acceptance can be done to allow

for performance tests and functional tests with real-life data.

This has to be done carefully, as this may or may not be allowed by regulations such

as the Health Insurance Portability and Accountability Act (HIPAA), the General
Data Protection Regulation (GDPR), and the Payment Card Industry Data Security
Standard (PCI-DSS). For example, if you are working with Personally Identifiable
Information (PII), then you may need to mask names, email addresses, and other
pieces of PII with dummy values.

Also, you must not send out emails to real users from your acceptance environment. If
you are dealing with data that falls under the GDPR, this can put additional constraints
on what you are allowed to do with backups and restores.

So far, we have seen two uses: recovering after losing data and acceptance tests with

real data. The third use is to set up replication, where you restore a backup on a second
server and then configure it to replicate all the changes from your main database server.
This server can then be used as a hot standby to take over if the primary server dies or
to serve read-only queries from reporting systems, for example.

Understanding the basics of backups 589

You want to store your backups in a safe location. This can be another disk, another server,
or the cloud. In general, the greater the physical separation, the safer the data. Having
multiple copies is another way of lowering the risk.

If, for example, the backup is stored on the same storage appliance as the main database,
then the failure of this storage appliance will leave you with neither your main database
nor the backup. If you store your backup on the storage of the same cloud provider where
you are hosting your database servers, then an outage of this cloud provider might also
lead to the same situation.

Unfortunately, it is not uncommon for backups to be outdated, incomplete, or completely
missing when people need them. The same goes for restore procedures. Even if everything
is in place, people are often not familiar with the procedures. This can cause the restore to
take more time than strictly needed or cause restore failures due to human errors, which
often means that the restore has to be done again or fails completely. The only way to
ensure your backups work is to test restores and really use them. It is not enough to check
whether the backup completed successfully. We need to ensure that we can restore the
backup and that our application is able to function with it.

Here are a few risks a backup can protect us against:

+ Someone accidentally drops a table or removes more rows than intended.
o There is a hardware failure of your database server and/or disks.

« Someone gains unauthorized access to your database. (Backups will only help in
this situation if they are not on the same server or otherwise can't be modified
from your database server.)

o There are MySQL bugs and/or OS bugs that result in data corruption.

Note that the InnoDB engine is crash-safe by default. So, if your database server suddenly
loses power, it should be able to recover from that. Using hardware RAID and other
redundant systems can reduce the risk, but these systems also add complexity, increasing
the risk of firmware bugs, and they won't protect you against accidentally dropping a table.
So, these should be used together with backups.

You should restrict access to backups in the same way you restrict access to your database
server to protect against unauthorized access.

In the next section, we will investigate different types of backups to learn and understand
the advantages and disadvantages of each of them.

590 Logical Backups

Logical and physical backup

One of the methods to create a backup is to stop a database completely and then copy all
of the files to a safe location. This is easy to do and doesn't require special tools. However,
while making the backup, your database is unavailable. This type of backup is called

a physical backup.

Another way to create a backup is to export the data for all the tables and other database
objects into a file that can be imported again. This is a logical backup as it doesn't copy
the physical files but extracts the logical objects from the database. The benefit of this is
that you don't have to shut down your server while taking the backup. The drawback is
that the restores generally take a lot longer than a physical backup.

There are two alternatives to taking physical backups. The first one is taking a snapshot.
You still need to stop the database server, but the time spent waiting for the copy is
generally a lot less, as is the storage space required compared to that of a full copy.

This does rely on a storage system and/or an OS that has snapshot capabilities.

MySQL Enterprise Backup and Percona XtraBackup are both tools that are smart
enough to create a copy of all data files without stopping your database and know how
to make the files consistent again. They can also restore a single table if desired.

Note

In this chapter, we only cover logical backups, but it is important to know that
there are other options available.

In the next section, we will learn about restores and their types.

Types of restore

There are multiple reasons why you might want to do a restore. The most obvious one

is if you lost your data - for example, after accidentally deleting the wrong data or after

a hardware failure. Many of the restores you do should be to test your backups, backup
procedures, and restore procedures. This means you restore the data on a temporary
location and then check whether the restore is working properly and if all the data you
expect to be there is there. And then there are restores you do to set up a new server. The
new server can then be configured to replicate from your main server, allowing you to

test a new version of MySQL before upgrading. It can also be used to test an upgrade
procedure for the software you are using before doing it on the actual production instance.

The simplest restore type is to just restore everything. This is a full restore. This is what
you would use if you lost all your data.

Types of restore 591

Another option is to restore a single table or database. This is a partial restore and is
generally useful if someone accidentally dropped a single table.

And then there is a point-in-time restore. This is where you do a full restore and then use
binlog files to fast-forward to just before the point where you lost something. We will
cover what binlog files are and what's needed for this in the Using point-in-time recovery
with binlog files section.

Performing backups

In this section, we will look at different tools to create logical backups. There are several
different methods that can be used for MySQL backups. In this section, we will look at
the following tools:

e mysqgldump
e mysqglpump

We will also look at various techniques designed to help schedule backups and run partial
or full backups when required. To start, we will look at our first backup tool, mysgldump.

Note

For collections, you use the exact same tools you would use for backups of
tables. There are no special tools needed to backup and restore collections. This
is because collections are stored as tables in MySQL. This allows you to query
collections not only with X DevAPI but also with SQL. This also means that
these collections will be picked up by all the backup tools that were designed to
work with tables.

Using mysqgldump
This tool has been part of MySQL from the early days. Often, you run this on the same

server as MySQL Server, but you can also run this over the network. You should be using
the same version as the MySQL server or a newer version.

The basic use of this looks like the following:
mysqldump --all-databases > backup.sqgl

This creates a backup of all the databases and saves it in the backup . sql file.

592 Logical Backups

Let's discuss some common options for mysqgldump:

The first set of options are the same options you might use for the MySQL client. This is
-h for host, -u to specify user, and -p to provide password. This might be needed
to get mysgldump to connect to the server with the right user. If your server runs on

a non-default port, you can use -p to specify port number. This is all identical to all

the MySQL clients.

If you specify - -single-transaction, then mysgldump won't lock the tables during
the backup but, instead, use a transaction to get a consistent backup. For this to work, you
need to use InnoDB or another transactional storage engine, which is the default. Another
option is to use - -skip-lock-tables,but then the tables in the backup are not
guaranteed to be consistent.

Another common thing to do is to back up a single database or table. Let's say we want
to back up the data of the animals table that is present inside the test database. In
order to do that, we must first execute the mysgldump . exe file that is present in the
C:\Program Files\MySQL\MySQL Server 8.0\bin path.This will produce
the following results:

[OPTIONS] DB1 [DBZ DB3...

3 S C PTI()N“ databases [OPTIONS]
For more llflrr s, use mysgldump ——hmlp

Figure 15.1 - The results of mysqldump.exe
To save the backup of the animals table inside the test animals.sql file, we need
to provide proper credentials and specify the path of the file in the following way:

mysgldump -u root -p test animals > "C:\Users\Desktop\test
animals.sqgl"

Note

The path in the preceding command depends on where you want to save the
backup file.

This will ask you to enter the password that you have used while installing MySQL. On
entering the correct password, you will be able to create the backup of the animals table.
If you want to backup multiple tables, you can list all tables separated by spaces.

If you are using PowerShell on Windows, then there is a caveat to be aware of. PowerShell
will convert the output to UTF-16 if you redirect it to a file. The problem with this is that
the MySQL client expects UTF-8, so this causes issues on restore.

Types of restore 593

This can be fixed in two ways. First, you can use Get -Content -Encoding UTF8 to
convert the file to UTF-8 before feeding it to the MySQL client. But the second (and best)
option is to invoke mysqgldump with the - -result-£file option, like this:

mysqldump --all-databases --result-file=backup.sqgl

This doesn't use output redirection. So, the output won't be converted to UTF-16.

To compress the backup to have it use less disk space, you can use various compression
utilities such as gzip,bzip2, or xz, like this:

mysqldump --all-databases | gzip > backup.sql.gz

This heavily depends on what utilities are available on your platform. On Windows,
you can use NTFS compression or use tools such as WinZip or 7-Zip to compress the
files after taking the backup.

In some instances, it can be useful to only backup the structure. One example is to create
a schema-only backup, which can be used on development systems where you don't have
the production data, either because the size is too big for the development systems or if
the regulations forbid you from doing this. To create a schema only backup,you
can use the - -no-data option.

Exercise 15.01 - backup using mysqgldump

In this exercise, you will create a database to store the coffee preferences of your colleagues.
As another department wants to do the same, you have promised to create a schema dump
so that they can set up the same thing for their department. You want to create a one-time
backup after you have saved all the preferences, just to be sure that you can restore to this
point in case the data gets lost somehow.

You will first create the cof feeprefs schema and table, and then insert data into the
table. Then, you will create a schema-only dump to give to the other department, create
the dump of a full schema as a backup, and inspect the files you created. Follow these
steps to complete this exercise:

1. Open the MySQL Client.
2. Create a new schema named cof feeprefs by writing the following code:

CREATE SCHEMA coffeeprefs;
USE coffeeprefs;

594 Logical Backups

3. Create a table named cof feeprefs with the name and preference columns.
Assign PRIMARY KEY to the name column:

CREATE TABLE coffeeprefs (
name VARCHAR (255),
preference VARCHAR (255),
PRIMARY KEY (name)

) 5

4. Insert three values into the table using the following queries:

INSERT INTO coffeeprefs VALUES

("John", "Capuchino"),
("Sue", "Cortado"),
("Peter", "Flat White") ;

5. Open Command Prompt and run the mysgldump . exe file.

6. Create a schema-only dump so that you can share it with the other department.
Do this by writing the following code in Command Prompt (once the
mysqgldump . exe file is executed):

mysgldump -u root -p --single-transaction --no-data
coffeeprefs > "C:\Users\BHAVESH\Desktop\coffeeprefs.sqgl"

Note

For these exercises, you will need to edit the file location so that it saves the
dump to wherever you want.

7. Press Enter and enter your password as prompted. The file will be saved in the
aforementioned link.

8. Create a dump of the full schema as a backup by writing the following code in
Command Prompt:

mysgldump -u root -p --single-transaction coffeeprefs >
"C:\Users\BHAVESH\Desktop\coffeeprefs backup.sgl"

9. Press Enter and enter your password when prompted. This will save the file at the
previously mentioned link.

Types of restore 595

Both files should be small and can be opened in a text editor such as Notepad. The
schema-only dump (coffeeprefs.sqgl) should not have any data in it. So, if you
look for John, Sue, and Peter, you shouldn't be able to find them. The backup file
(coffeeprefs backup.sqgl) should have the names in there, as it should include
all the data.

In the next section, we will learn about mysqglpump.

Using mysqglpump
The mysglpump application has been part of MySQL since version 5.7. So, it is a relatively
new tool. It was created to offer a more modern and extensible alternative to mysgldump.

The main difference is that mysglpump can create backups in parallel. This can help to
reduce the time needed to take a backup.

The basic options of mysglpump are identical to those of mysgldump. But one of the
differences is that if you don't specify any options, it will create a backup of all databases.
So, there is no need to use --all-databases.

One of the other differences is object selection. With mysglpump, it is easier to select
which tables to include and exclude from the backup.

With mysglpump, it is also possible to use - -compress-output to select native
compression. The supported algorithms are L.Z4 and ZLIB. This is a very new feature,
as it was added in 8.0.18.

Another difference to mention is that mysglpump does progress reporting. It shows the
progress in both the number of tables and rows.

One important thing to note is that mysglpump won't dump the grants tables in the
mysqgl schema by default. You need to add - -users instead to have it write the CREATE
USER statements to the backup. Let's solve an exercise in the next section to master the
skills of mysglpump.

596 Logical Backups

Exercise 15.02 - backing up using mysqlpump

In this exercise, you will create another backup of the cof feeprefs schema using
mysqglpump. This time, you are going to compress the backup. You will first create the
backup of the cof feeprefs schema and use z1ib compression, and then validate
the created backup file. Follow these steps to complete this exercise:

1. Open Command Prompt and write the following code to create a backup of the
coffeeprefs schema using mysqglpump:

mysglpump -u root -p --single-transaction --set-gtid-
purged=0FF --compress-output zlib coffeeprefs --result-
file="C:\Users\BHAVESH\Desktop\Coffee\coffeeprefs.sqgl.gz"

2. Press Enter and provide the password as prompted. The file will be saved in the
previously mentioned link.

3. Now, validate the created backup file using the following code:

zlib decompress "C:\Users\BHAVESH\Desktop\Coffee\
coffeeprefs.sgl.gz" ""C:\Users\BHAVESH\Desktop\Coffee\
coffeeprefs.sqgl"

You can use a text editor such as Notepad to open the resulting file and recognize the table
structure and data present in the table.

In the next section, we will learn about scheduling backups.

Scheduling backups

One thing that is not included in mysgldump or mysglpump is the scheduling of
backups. These tools know how to create a backup but not when to. So, this is something
where you must use the scheduling services provided by the platform you're using. This is
Cron on Linux and macOS, or Task Scheduler if you are on Windows.

Besides creating backups, you probably want to automate cleaning up the oldest backups.

It might be a good idea to put the actual mysgldump or mysglpump command into

a shell script or (on Windows) in a . bat file. Then, you can check returncode of the
process and send an email and/or monitoring alert if the backup fails. You can also use
the same script to copy the backup to the cloud or another server.

Scheduling backups 597

A very basic scheduled backup on Linux can be created using /etc/cron.d/
mysqgldump with the following contents:

0 4 * * * root /user/bin/mysqldump -A > /data/backups/mysql.sql

This creates a backup every day at 04:00AM of all databases (-2) and stores this in the
/data/backups/mysql . sql file. This overwrites the file every day. It is up to the
reader to extend this with monitoring, copying the file to the cloud or another safe location.

To allow the root user of the system to have access to the database, we need to create
/root/.my.cnf with the following content:

[client]
user=root

password=Biadojdogmipofilva

And then we have to replace Biadojdogmipofilva with the password you configured.

On Windows, you can use Task Scheduler. In the following screenshot, you can see the
configuration for a very basic daily backup at 04:00:

(%) Backup MySOL Properties (Local Computer) *

General Triggers Actions Conditions Settings History (disabled)

When you create a task, you can specify the conditions that will trigger the task.

Trigger Details Status
Daily At 04:00 every day Enabled
MNew... Edit... Delete

Figure 15.2 - Task Scheduler - the Trigger configuration for backing up MySQL

598 Logical Backups

You can see the action that will occur on being triggered in the following screenshot:

-

{® Backup MySOL Properties (Local Computer)

General Triggers Actions Conditions Settings History (disabled)

When you create a task, you must specify the action that will cccur when your task starts.

MySOLAMySOL Server 8.00bin\vmysgldump.exe” -A -r Chbackups\mysglhmysgl.sql

Mew... Edit... Delete

Figure 15.3 — Task Scheduler - the Action configuration for backing up MySQL

To allow the scheduled backup to work, it needs access to the root password of the
database. On Windows, this is stored in $APPDATA%\MySQL\ .mylogin.cnf.
To create this file, you need to use the mysql config editor utility.

mysqgl config editor.exe set --user root -p

Note

On Linux and Windows, you can specify the password in the configuration of
the backup schedule, but that information may be accessible to other users of
the system, which wouldn't be secure.

In the next few sections, we will cover three different kinds of restores - full restores,
where everything is restored; partial restores, where only a single schema is restored;
and point-in-time recovery, where we restore to a specific point in time.

Scheduling backups 599

Full restore

If you restore a full backup on a new server, you first need to install MySQL as usual and
make sure that MySQL Server is running.

Then, you can import the backup file like this:
mysql < backup.sql

If your restore contains the mysqgl schema, then you need to issue FLUSH PRIVILEGES
to load the restored system tables for authentication into memory. Alternatively, you can
add --flush-privileges to your mysgldump statement to have mysqgldump put
the command in the backup file. This is not needed with mysglpump because it won't
back up the system tables directly but, instead, generate CREATE USER statements, for
which FLUSH PRIVILEGES is not needed.

Partial restore

If you have a backup of a single schema created with mysglpump, then you can restore
the backup like this:

mysqgl < backup test.sql

If the backup was made with mysgldump, you have more options. If you have a backup

of a single schema, then you need to create the schema again before doing the restore. The
name of the schema doesn't have to be identical, so it is possible to restore the backup in

a different schema. This might be handy if you want to use a copy of the data to work on, if
you want to only restore a subset of the tables and/or rows, or if you want to compare the
current content of the database with the backup. Consider the following code:

CREATE SCHEMA test restore;
mysqgl test restore < backup test.sql

If you have a full backup and only want to restore a single database or a single table, then
your best option is to do a full restore on a temporary instance of MySQL, dump only the
information that you need, and then restore that on your server. The other option is to
extract the right set of lines from the backup and restore that, but that's error-prone.

In the next section, we will solve an exercise based on restoring a single schema backup.

600 Logical Backups

Exercise 13.03 - restore a single schema backup

You want to create a completely new version of the cof feeprefs application. To develop
the new application, you want to make a copy of the database. While the production version
of your database is on a central server, you might want to have the copy on a MySQL
instance on your laptop to allow you to work on the new version of the application, even
without network access.

In this exercise, you will create a backup of cof feeprefs schema, create a new schema
named coffeeprefs_dev,restore the backup, and verify the result.

Follow these steps to complete this exercise:

1. Open Command Prompt and create a backup of the cof feeprefs schema using
the following code:

mysgldump -u root -p --single-transaction coffeeprefs >
"C:\Users\BHAVESH\Desktop\coffeeprefs.sqgl"

2. Open the MySQL Client and create a new schema named coffeeprefs dev:
CREATE SCHEMA coffeeprefs dev;

This allows you to have two schemas on the same server. Even if they are not on
the same server, this makes it easier to recognize whether you are working on the
production database or the development one.

3. Restore the backup into a newly created schema:

USE coffeeprefs dev;
SOURCE C:\Users\BHAVESH\Desktop\coffeeprefs.sql

4. Verify the results by checking the tables present in the schema:
SHOW TABLES;

This will produce the following result:

1 row in set (2.93 sec)

Figure 15.4 — Tables present in coffeeprefs_dev

Using point-in-time recovery with binlog files 601

In this exercise, you used backup and restore to create a copy of a schema. Besides creating
a copy for development purposes, the same procedure works for other use cases, such as
verifying that you can restore a backup and that it has the data you expect.

In the next section, we will learn how to use point-in-time recovery with binlog files.

Using point-in-time recovery with binlog files

MySQL Server is able to write all the changes made to data inside a database to a binary
log file (binlog for short). A binary log (binlog) is a file written by the database server
that contains all the changes made to the data, which is stored inside the database server
in a specific timeframe. This is called a binary log because the changes are recorded in

a binary format as opposed to a text-based format. The logs with changes can be used for
multiple purposes. One of them is to stream them to a second server to keep it updated.
Then, the second server can be used as a standby in case the primary server fails, or

the second server can be used to offload heavy read-only queries such as reporting. But
these binlog files can also be used to replay changes made to the database between the
time of the last backup and the time of the restore point (the point just before something
disastrous such as a drop table command happened).

For this to work, the server must be configured to write these files. In MySQL 8.0, this is
done by default, and in earlier versions, you must set the 1og_bin variable to ON and
server id tonumber.

The binlog does take a bit of disk space and, by default, is kept for 30 days. You can set
binlog expire logs_seconds to a lower value to save disk space.

There are multiple formats available for the binlog file: ROW, STATEMENT, and MIXED.
The default and recommended option is ROW where, for every changed row, it puts a
before and/or after image into binlog, depending on the kind of operation (for example,
INSERT, UPDATE, or DELETE). The STATEMENT format instead puts the SQL statement
that made the change into binlog. While this works and can be more efficient than the
ROW format, it is not recommended. This is because the execution of the statement can be
dependent on many factors, such as the time of the day, server settings, and so on. While
these are included in binlog, there are still some operations that may result in different
outcomes on the primary and secondary servers.

602 Logical Backups

You also may want to configure MySQL to use Global Transaction Identifiers (GTIDs).
This is a system where every transaction gets a globally unique ID assigned. This makes it
easier to see which transactions have been processed by which server. To do this, you need
to set gtid_mode=ON and set enforce gtid consistency=0N. This can be seen in
the following sample code:

SET PERSIST ONLY gtid mode=ON;
SET PERSIST ONLY enforce gtid consistency=ON;
RESTART;

This is one of the ways to configure these settings. You can also put these settings in the
my . cnf configuration file and restart if you wish. The SET PERSIST ONLY sets the
setting in the persistent configuration but doesn't change the running configuration.
RESTART actually restarts the server to make the setting active. In this case, the restart
is not actually required, but it is the quickest way to do this.

Once this is configured, you then want to make sure you use - -master-data=2 with
mysqgldump if you are not using GTIDs.

If you use mysglpump, you need to have GTIDs configured and use - -set-gtid-
purged=ON. If you have GTIDs configured and use mysgldump, you also need to use
this setting.

These two settings cause mysgldump and mysglpump to write the location of the server
into the binlog files. This is crucial information for Point-in-Time Recovery (PITR).

Another important thing to keep in mind is where the binlog files are kept. If the server
fails, then the binlog files on that server are also likely to be unavailable. So, you may
want to archive them in a safe place. Also, be careful not to accidentally wipe them out
when restoring a backup. It might be a good idea to make a copy before doing the restore,
just in case.

To do a point-in-time restore, we need to follow these steps:

1. Find the position to which you want to restore.

2. Copy the binlog files to a temporary location and run RESET MASTER;.

3. Restore the most recent backup.

4. Apply the binlog files between the time of the backup and the restore point found
in Step 2.

To find the position, you can define a date and time, or find a GTID and/or a file and
a position of the time just before an incident happened.

Using point-in-time recovery with binlog files 603

To do this, use the following code:

SHOW MASTER LOGS;
SHOW BINLOG EVENTS IN '<file>';

This may look like this:

000001 4107759
| binlog.000002 199
binlog.000003 1006
binlog.000004 852
000005
.000006

6 rows in set (0.00 sec)

mysql> SHOW BINLOG EVENTS IN 'binlog.000006';
+

+e---- R LT +--
Pos | Event_type
Focmmmmemmm e e Focmmmmeemm -
binlog.000006 Server ve .0.18, Bi :
binlog.000006 | Previous_gtids 00008017-0000-0000-0000-000000008017:1-2
binlog.000006 195 | Gtid SET @@SESSION.GTID NEXT= '00008017-0000-0000-0000-000000008017:3"
binlog.000006 | 272 | Query use “test’; create table foobar (id int primary key) /* xid=47 */
binlog.000006 | 400 | Gtid SET @@SESSION.GTID NEXT= '00008017-0000-0000-0000-000000008017:4"
binlog.000006 | 479 | Query BEGIN
binlog.000006 | 554 | Table map table id: 124 (test.foobar)
binlog.000006 | 606 | Write_ rows table_id: 124 flags: STMT_END_F
binlog.000006 | 656 | Xid COMMIT /* xid=48 */
binlog.000006 | 687 | Gtid
binlog.000006 | 764 | Query

11 rows in set (0.00 sec)

Figure 15.5 - The SHOW BINLOG EVENTS output

Here, in the binlog. 000006 file on position 764, you can see drop schema test2.
In the line just above that, you can find the GTID for this statement, which in this case is
00008017-0000-0000-0000-000000008017:5.

GTID format

A GTID looks like <UUID> : <number>. Here, UUID is the universally unique ID assigned
to the server. You can use SELECT @@server uuid to see the UUID assigned to a server.
If you run the command in the MySQL client, then you will get the following output:

1 row in set (0.00 sec)

Figure 15.6 — The UUID assigned to the server

604 Logical Backups

The second part is the transaction number. These two together uniquely identify
a transaction. You can specify a range of transactions in this <UUID>:<start>-<end>
format. To see which transactions a server has executed, you can use the following code:

SELECT @@global.gtid executed;

You need to start at the position of the restored server. For this, there are the following
three options:

« Option 1: If you are not using a GTID and you created the backup with
mysgldump using the - -flush-1logs option, then MySQL switches to a new
binlog file when the backup was made. So, you don't have to specify a start
position, as you can start from the beginning of the first file that was created after
the backup was created. At the beginning of the backup, you can find a line that
looks like this:

CHANGE MASTER TO MASTER LOG FILE='binlog.000001', MASTER
LOG_POS=155;

This can be used to find out which binlog files have already been processed by
MySQL at the time of the backup.

« Option 2: If you didn't use - -f1ush-1logs when creating the backup, then you
have to specify both the start and end position.

« Option 3: If you are using GTIDs, then you can simply look at the set of executed
transactions after the restore and the last transaction you need to restore to and
calculate the set that is in between. Consider the following example:

Executed set of the server: 00008017-0000-0000-0000-
000000008017:1-23

Accidental drop table: 00008017-0000-0000-0000-
000000008017:29

Last transaction we want to restore: 00008017-0000-0000-
0000-000000008017:28

Then, we need transactions 24 to 28, which is specified as 00008017-0000-
0000-0000-000000008017:24-28.

Now, we can use the mysglbinlog utility to extract the commands from the set of
binlog files we copied away. If you have a date and time to which you want to restore,
then you need to write the following:

mysqglbinlog --stop-datetime="2010-01-01 01:00:00" binlog.*

Using point-in-time recovery with binlog files 605

Here, you read all the binlog files and stop at the specified date and time. You can
combine this with specifying a start position if needed.

If you are not using a GTID and have to specify start and end positions, then you need
to write the following code:

mysqglbinlog \
--start-position=155 \

--stop-position=357 binlog.* > to restore.sql

Here, we start in the first file at position 155 and then continue until position 357 in the
last file.

If you have a GTID, then things are easier, as you have to just specify the range that you
need to reapply:

mysqglbinlog \
--include-gtids=00008017-0000-0000-0000-000000008017:100-200 \
binlog.* > to restore.sql

Here, we include transactions 100 to 200.

Now, you can run the following code:
mysqgl < to restore.sql

This will actually apply the changes to the server. You can also inspect the contents of the
generated SQL file to make sure that it looks correct.

You should only allow applications to use the server after the full restore is done. Making
a change, especially while the restore is happening, can cause the restore to fail.

When restoring data from multiple binlog files with mysglbinlog, you have to do so
as a single operation. If you try to restore one binlodg file at a time, then transactions that
span multiple files may not be applied correctly. In the next section, we will learn how to
use mysglbinlog to inspect binlog contents.

Using mysqlbinlog to inspect binlog contents

The mysglbinlog utility we used to extract data from the binlog files can also be
used to inspect changes that were made to the database. Note that the binlog files only
contain changes to the database. So, SELECT statements won't appear there.

606 Logical Backups

To make the data changes in the ROW format human-readable, we need to use the
- -verbose option for mysglbinlog. This causes it to output this human-readable
data in addition to base64 data that can be used by MySQL to reapply the changes:

INSERT INTO 'test'.'mytable'
SET

H## @l=1

H### @2="foo'

@3='bar'

H### @4='baz'

Now, in the next activity, we will back up and restore a single schema.

Activity 15.01 - backing up and restoring
a single schema

In this activity, you will create a simulated disaster in the wor1d schema and recover
from this disaster. For this, you will be using mysgldump. Perform the following steps
to complete this activity:

1. Create the backup of the world schema.

2. Simulate the disaster. Here, delete all the rows of the city table.

3. Restore the backup.

4. Verify that the data has been restored.

The expected output is as follows:

1 row in set (0.20 sec)

Figure 15.7 — The total rows in the city table after restoring

Note
The solution for this activity can be found in the Appendix.

Activity 15.02 - performing a point-in-time restore 607

Here, we successfully restored the wor1d schema after wiping out the city table. As
there were no other changes made to the wor1d schema between the time of the backup
and the time of DELETE, we have restored all the data.

In the next activity, we will perform a point-in-time restore.

Activity 15.02 - performing a point-in-time
restore

In this activity, you will use the wor1d schema to perform a point-in-time restore.
The server you will use for this does not have GTIDs enabled. Follow the steps here
to implement this activity:

Reset MASTER LOGS.

Create a backup with mysgldump.

Change the population of Toulouse in the city table.

Simulate the disaster by wiping out the complete city table.

Restore the backup.

AL

Reapply the changes that occurred between backup creation and the time of
the disaster.

7. Validate that the data has been restored.

After implementing these steps, the expected output is as follows:

- Fmmmmm - Fmmm e - LT EEE———
| Name | CountryCode | District
- - e D e

| 2977 | Toulouse | FRA | Midi-Pyrénées
- - D e oo oo
1 row in set (0.03 sec)

Figure 15.8 - Inspecting the change that we made before

Note
The solution for this activity can be found in the Appendix.

Here, you can see that the special value we used has been restored correctly. Thus, in this
activity, you created a backup, then made some additional changes, and simulated an
accidental wipeout of the city table. Then, you restored the backup and reapplied the
additional changes that you made earlier.

608 Logical Backups

Summary

In this chapter, we learned why we need backups, what different options there are
for creating backups, how to create backups, and how to restore them. We used
mysgldump, mysglpump, and mysglbinlog in the process.

Using the tools provided by the OS, we practiced backup scheduling and performed full
restores, partial restores, and point-in-time restores, in which we covered binlog files
and GTIDs.

This helps us to keep our data safe and restore it when it is needed. It also taught us why
we should test our backups. This gives us a valuable tool to copy data between servers by
backing up and restoring it.

We have now covered all the fundamental concepts required to effectively use MySQL.
Using the tools provided in this book, you should now have a strong foundation for
working with MySQL as a database technology. Using this knowledge, you will be able to
build and use a MySQL database for various purposes, such as application development
and data analysis.

With this knowledge, you can now take several paths to further develop your database
skills. SQL is a widely used language, which is present in many database technologies
beyond MySQL. Technologies such as Microsoft SQL Server and PostgreSQL are widely
used in the industry, and they are great skills to develop with further database study. Aside
from learning new skills, I encourage you to try building some databases and applications
to apply your skills to real-life scenarios. This will allow you to expand your horizons and
become a MySQL expert!

Appendix

Solution to Activity 1.1

These are the steps to solve Activity 1.1:

1. Analyze the given table:

Hostname Location OperatingSystem | Layerlevel
PINKY Ground Floor A I0S L2
PINKY Ground Floor A NXOS L2
HERETIC First Floor A JUNOS L3
HERETIC First Floor A NXOS L3
HERETIC Ground Floor B I0S L3

Figure 16.1 - A table of devices on the network
You can see that, currently, there does not appear to be a unique field, so this is
something that needs to be added to create a 2NF table. In addition, observe that
Hostname, Location,OperatingSystem,and Layerlevel are all text

fields, giving you an idea of the proper data type.
2. Specify the data types for the data contained in this table:

Field Name Type

Hostname varchar
Location varchar
OperatingSystem varchar
Layerlevel varchar

Figure 16.2 — The data types that are used for the table fields

610 Appendix

Starting off, each column can be represented as varchar, since they are all text
fields. Also, observe that the preceding table is in INF because every column
contains a single value.

3. Create a key that uniquely identifies the table. You will have to create a composite
key of Hostname and Locat ion, since the table has common hostnames.

4. Once the composite key is made, bring the table into 2NF. The composite key creates
a set of pairs that are unique in the table. Since they are unique, they are able to
identify the records, giving us a 2NF table. The tables would look like the following:

OperatingSystemID | Hostname Location LayerLevel
1 PINKY Ground Floor A L2
2 HERETIC First Floor A L3
3 HERETIC Ground Floor B L3

Figure 16.3 — The 2NF of the network table
To make it easier to connect relationships between this table and other tables that
contain operating systems, it is best to create an OperatingSystemID field.
This gives us a simple ID field that can be used to create relationships without
needing to rely on the composite key. Adding this ID gives us a quick way to create
relationships in our database.

Note that the data type for OperatingSystemID is int, since it is numerical
without any decimals:

OperatingSystemID OperatingSystem
1 10S

2 NXOS

3 JUNOS

Figure 16.4 — The 2NF of the table operating systems

Solution to Activity 1.1~ 611

5. To achieve your goal, you need to bring the tables to 3NF - that is, ensure you have
no transitive functional dependencies. As a part of this process, you will also work
on decomposing the table into a few smaller tables so that each table contains a
single set of information. This is done to help reduce redundancies in the database.
Since many entities may have a layer level or operating system, you will give them
their own tables. These tables must have a primary key to preserve 3NE, so you will
give them a unique ID identifier.

You are now left with the following three tables:

OperatingSystemID | Hostname Location LayerLevelID
PINKY Ground Floor A 1
HERETIC First Floor A 2
HERETIC Ground Floor B 2

Figure 16.5 — The 3NF of the network devices table

This is the 3NF table for the operating systems table:

OperatingSystemID OperatingSystem
1 108

2 NXOS

3 JUNOS

Figure 16.6 — The 3NF of the operating systems table
This is the 3NF table for the layer levels table:

LayerLevelID LayerLevel
1 L2
2 L3

Figure 16.7 — The 3NF of the layer levels table

As with the other ID fields, LayerLevelID will also be an int data type, since it is
numeric without decimal.

612 Appendix

Solution to Activity 2.1

Perform the following steps to successfully execute this activity:
1. Open the EER diagram for the autoclub model.

2. Click on the EER diagram and press T to get the new table pointer. Click on the
diagram to place the new table, as shown here:

| LY
|

|

1|| | memberaddress
10 INT(11)

¥

& Mem berID INT{11)

» StreetAddress 1 VARCHAR(50)

StreetAddress2 VARCHAR(50)
~| states v

. .. | ¥ Town vaRCHAR(D)
ID INT(11) — — & State INT
State VARCHAR(255)

* Postcode VARCHAR(10)
>

WhenAdded TIMEST AMP

LastModified TIMESTAMP

| table2 ¥

Figure 16.8 — A new table added to the EERD

Solution to Activity 2.1 613

3. Double-click on the new table to open the table design. It will look something like

the following:
Column Name: Data Type:
Charset/Collation: Default:
Comments: Storage: Virtual Stored
Primary Key Mot Mull Unigue
Binary Unsigned Zero Fill
Auto Increment Generated

Figure 16.9 — The table design for the new table

4. Rename the table mnembershipfees and enter the ID, MemberID, FeeAmount,
DatePaid, WhenAdded, and LastModified fields, as shown here:

= 0 0 0
i :] membershipfees ¥
. ID INT
1:1
> MemberID INT
T 4° FeeAmount DOUBLE
_ DatePaid DATE
_'é WhenAdded TIMEST AMP
Ln LastModified TIMESTAMP
>—€ »>
e O O u|
1.2
3 Table Mame: [membershipfees
Column Mame Datatype PK NN UQ B UM ZF Al G Default/Expression
D INT O 0O O 4d [l
MemberID INT |:| D D |:| D D D
FeeAmount DOUBLE O O 0O 040dn0Od
DatePaid DATE O 0O000o0-gaog™
WhenAdded TIMESTAMP O O O O 0O O O O CcurreNT TIMESTAMP
LastModified TIMESTAMP O O O O O O O O CURRENT_TIMESTAMP ON...
O 0O000O00auog o

Figure 16.10 - The fields added to the new renamed table

614 Appendix

5. Click on the Foreign Keys tab and create a foreign key named FK
MembershipFees Members with 'autoclub' : 'members' under Referenced
Table. In the next panel, select MemberID under Column and ID under Referenced
Column. Also, set Foreign Key Options as RESTRICT for On Update and On
Delete, as shown in the following figure:

f > Passengers INT(11) \\ 1D INT(11)
o o > EngNumb VARCHAR(12) \ ModelID INT(11)
= j) membershipfees ¥ AsleCode VARCHAR(10) N Variant VARCHAR(TS)
o ID INT Canditions V ARCHAR{50) \\ >
1 L= @ MemberD INT WhenAdded TIVEST AVP A\
== # FeeAmount DOUBLE LastModified TIMESTAMP \\ .
DatePaid DATE > A\ "] vehicleshape ¥
11 WhenAdded TIMEST AMP D INT(11)
—< LastModified TIMESTAMP \-‘ Shape VARCHAR{40) ‘
> >
[o
i v
: Table Name: ‘membersh\pfees Schema: autoclub
Foreign Key Name Referenced Table Column Referenced Column Foreign Key Options
FK_MembershipFees_Members “autoclub”.” members” O On Update: | RESTRICT 2
:':e’:?neﬁt D On Delete: | RESTRICT v
[Datepaid
[whenadded [skip in 5QL generation

[LastModified

Figure 16.11 - The foreign key to members is added
6. Save the EERD using File and then Save Model.
7. Now, select Database and Forward Engineer and walk through the screen to save
the changes to the model.

8. Examine the model to view the new table, membershipfees, as shown here:

L} autoclub
MysQL Schema
Tables (14 tems|

o | Add Table [identification [identficationtype [make [memberaddress 1] members [states [table 1] membershipfees 1] vehicle
(1] vehiclemodel [vehicleshape [1] vehicleuse [vehiclevariant [1] years

Views (0 items
o Add View

Routines (0 items

Figure 16.12 — The new membershipfees table is in the model

9. Push the changes to the live database by selecting Database and Synchronize
Model. Work through the screens of the wizard.

Solution to Activity 3.1 615

10. Finally, return to the My First Connection tab, refresh the autoclub database, and
examine the membershipfees table, as shown here:

T T——
SCHEMAS L -
— Table Name: |member5hlufees | Schema: autoclub
=1 ‘Filter objects | ¥ U
¥ 5 autoclub Collation: |ut98—defaultoollation V| Engine: | InnoDB
¥ B Tables
> identification [i T &
> identificationtype Comments:
I' make
» E memberaddress Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression
> B membes D oy M EOODODO®EOC
¥ E membershipfees MemberD INT(1L) O O0Oooggao
» [#] Columns FeeAmount DOUBLE O Oo0Ooogdao
» B0 Indexes DatePaid DATE O0O0O00dododQO wwe
» B ForeignKeys Whenadded mesave O O O O O O O O curRENT_TIMESTAMP
» 5 Triggers LastModified TIMESTAMP OO OO O O O O CURRENT_TIMESTAMP ON...
> B states OOoOooooagao
P vehicle

> vehiclemodel
> vehicleshape
> vehicleuse

> wvehiclevariant
> years

=H Views

B Stored Procedures

Iﬁ Functions

Figure 16.13 - The new membershipfees table in the production database

Solution to Activity 3.1

The solution to this activity is as follows:

1. Open a new query tab.
2. Enter the following SQL statement into the query tab:

CREATE TABLE IF NOT EXISTS
'autoclub'. 'eventmemberregistration' (

'ID' INT NOT NULL AUTO INCREMENT,
'ClubEventID' INT NOT NULL,

'MemberID' INT NOT NULL,
'ExpectedGuestCount' INT NOT NULL DEFAULT O,
'RegistrationDate' DATE NOT NULL,

'FeesPaid' BIT NOT NULL DEFAULT O,
'TotalFees' DOUBLE NOT NULL DEFAULT O,

616 Appendix

'MemberAttended' BIT NOT NULL DEFAULT O,
'ActualGuestCount' INT NOT NULL DEFAULT O,

'Notes' MEDIUMTEXT NULL,

'WhenAdded' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP,

'LastModified' TIMESTAMP NULL DEFAULT CURRENT TIMESTAMP
ON UPDATE CURRENT TIMESTAMP,

PRIMARY KEY ('ID'),
INDEX 'Idx EventID' ('ClubEventID' DESC),
INDEX 'FK EventReg Members idx' ('MemberID' ASC),
CONSTRAINT 'FK EventReg ClubEvents'
FOREIGN KEY ('ClubEventID')
REFERENCES 'autoclub'.'clubevents' ('ID')
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT 'FK EventReg Members'
FOREIGN KEY ('MemberID')
REFERENCES 'autoclub'. 'members' ('ID')
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

3. Execute the SQL query by clicking the lightning bolt icon:

SOL File 5°
WE Y FAO K O ORI Dontm v le @ @@
1 g
2 -- Table “autoclub’ .’ eventmemberregistration”
3 e
4 ® [CREATE TABLE IF NOT EXISTS "autoclub” .’ eventmemberregistration™ (
5 TIDT INT MNOT MULL AUTO_IMCREMENT,
& "ClubEwventID™ INT NOT MULL,
Fi "MemberID” INT NOT NULL,
8 "ExpectedGuestCount”™ INT NOT MULL DEFAULT @,
9 "RegistrationDate” DATE MOT MNULL,
1a “FeesPaid™ BIT NOT NULL DEFAULT @,
11 “TotalFees™ DOUBLE NOT NULL DEFAULT @,

Figure 16.14 - The SQL code and the lightning bolt icon to run it

Solution to Activity 3.1 617

4. Refresh the SCHEMAS panel; you can see the new table, eventmemberregistration,
in the table list:

SCHEMAS o -
Q |Fi|ter obiects |

v @ autoclub S
v Tables
| > % eventmemberregistration |
> % eventvenues
> % eventtype
[3 % clubevents
| 3 % eventtype

Figure 16.15 — The new table, eventmemberregistration

5. Open the eventmemberregistration table in the design view to examine the table
design, indexes, and foreign keys:

SCHEMAS o - D H
Q |Filter objects | .
¥ @ autoclub ~ ;
"@ Tables S,

> eventmemb

[eventvenue Select Rows

> £ eventtype Table Inspector

> clubevents :

- eventtype Copy to Clipboard b

» = identificatio Table Data Export Wizard

» = identificatio

Table Data Import Wizard
> ke able miport Wizan
[2 memberadd Send to SAL Editor 1

[members

| membershi Create Table...

» & states Creste Table Like.. ,
> B user Alter Table...

» = vehide _

b =] vehicemod Table Maintenance. .

Figure 16.16 — Right-click on the eventmemberregistration table and select Alter Table...

618 Appendix

You will be able to see the design view as follows:

[r— Table Name: Schema: autoclub
l i
L""‘_/H’ Collation: |Schema Default ~ | Engine: |InnoDB
Comments:
Column Name Datatype PK NN UQ B uN ZF Al G Default/Expression
D INT(11) OO0 0O O O
ClubEventiD INT(11) O O 0Oo0O0o0gd
MemberlD INT(11) O O 0O 00 0 0O
ExpectedGuestCount INT(11) O O 0O000noowe
RegistrationDate DATE O O 0Oo0O0o0gd
FeesPaid BIT(1) O OO0 00 0 0 b
TotalFees DOUBLE O O o0on0n0onoagowe
Memberattended BIT(1) [O O0d000gd ee
ActualGuestCount INT(11) O O 0O000n0no e
Notes MEDIUMTEXT O 0O 0O00 00 0 s
Whenadded TIMESTAMP O 0O O O O O O O CcUrRENT TIMESTAMP
LastModified TIMESTAMP OO 0O OO O O O CURRENT_TIMESTAMP ON...
I I I O I O

Figure 16.17 - The eventmemberregistration table in the design view,

with settings as defined in your SQL
The indexes can be seen here:

_’ Table Mame: |Event|'nemberregist'aﬁnn Schema: autoclub
|
L-’“f Collation: |Schema Default L Engine: InnoDB
Comments:
Index Name Type Index Columns
PRIMARY PRIMARY
Idx_EventID INDEX Calurmn # Order Length
FK_EventReg_Members_idx INDEX Lo A3C
Fi_EventReg_ClubEvents INDEX ClubEventID 1 DESC
[MemberID ASC
O ExpectedGuestCou... ASC
[] RegistrationDate ASC
[] Feespaid ASC
[] TotalFees A5C
[J] Memberattended ASC
[] actualGuestCount ASC
[Notes ASC
[] whenadded ASC
[LastModified ASC

Figure 16.18 - The indexes

Solution to Activity 3.2 619

The foreign keys in the database can be seen here:

[Table Name: |evenimemberrag\shaton | Schema: autoclub
¢
l—'/‘r Collation: |Schema Default ~| Engine: |InnoDB ~
Comments:

Fareign Key Mame Referenced Table Column Referenced Column Foreign Key Options
FK_EventReg_ClubEvents ~autoclub™. clubevents” Om OnUpdate: | RESTRICT ~
FK_EventReg_Members “autoclub®.” members® ClubEventID D

- - On Delete: STR
[MemberIn nose =T ¥

O ExpectedGuestC

D RegistrationDate

[Feespaid

[TotalFees

[Memberattended

[Actual GuestCount
Notes

[whenadded

[LastModified

[skipin SQL generation

Figure 16.19 - The foreign keys

So far, you have learned how to create a table and set the indexes and foreign keys using
SQL code. We still need to add a unique index to the username field in the users table
and set a foreign key in the clubevents table to the eventtype table.

Solution to Activity 3.2

The solution for the activity is as follows:

1. Open a SQL tab and run the following command to fetch the ID of the new member:

SELECT ID FROM members where 'Surname' = "Pettit"

2. Execute the SQL statement by clicking the lightning bolt icon:

BB ¥ FBE O D QO @I oLt %€ Q 1 (3

1e SELECT ID FROM members where “Surname™ = "Pettit”

Figure 16.20 - SQL to extract the user ID of a member by surname

620 Appendix

You should get the following output:
| Result Grid | £H
ID

Figure 16.21 - The ID for the user Pettit

3. Download the image from GitHub and add it to the Members/Photos folder. Add
your member ID to the name of the image. The folder should look like the following:

DATA (D:) » FileRepository * Members # Photos

A Access N
MemberPhoto_1. | MemberPhoto_2.
jrg iprg

Figure 16.22 - The updated Photos folder

4. Create a script in a new SQL tab to update your record with the image and path:

UPDATE 'members'

SET
PhotoPath = "Members\\Photos\\MemberPhoto 2.jpg"
WHERE 1D 1 =2 ¢

5. Execute the SQL query. You should get the following result:

W EFFAEQO IR OO @I ovmtumt sl € @ [F

1 ® SELECT * FROM autoclub.members;

€

Result Grid | E:E ﬁ Filter Rows: |Ed'|t: ﬁ E} E:u |Export.|'1mpert: @ % |W|apCe||Ccnhent: I

i) Surmname FirstName MiddleNames DOB Signature Photo PhotoPath SigPath
» Bloggs Frederick 1990-06-16 Members\Photos\MemberPhoto_1.jpg Members\Signatures\MemberSignature_1.jpg
2 Pettit Thomas William 1960-10-15 Members\Photos\MemberPhoto_2.jpg

Figure 16.23 - The results with the second member showing the image path

Solution to Activity 4.1 621

6. Run the following query to fetch the full file path of the image:

SELECT CONCAT ((SELECT 'Value' FROM 'lookups' WHERE
'Key'="ImageRepository") , 'PhotoPath') AS FullPhotoPath

FROM 'members' WHERE 'members'.'ID'=2

You will get the full path of the image, as shown here:

| ResultGrid | f] 4% Fiter Rows: | || Export: Eigy

FulPhotoPath

"W [:\FileR.epository\Members\Photos\MemberPhoto_2.jpg

Figure 16.24 - The full file path for the image

Solution to Activity 4.1

In this activity, you will collect some information from the wor1d schema to add bits of
trivia to some of the articles in next month's edition of a travel magazine. Follow these

steps to complete this activity:
1. Connect to the world schema with the MySQL client:
USE world;
This query produces the following output:
Database changed
Figure 16.25 — Connecting to the world schema

2. Write the following query to check the size of the smallest city in the database:

SELECT Name, Population FROM city ORDER BY Population
LIMIT 1;

This query produces the following output:
mysql> SELECT Name, Population FROM city ORDER BY Population LIMIT 1;

1 row in set (0.00 sec)

Figure 16.26 - The city with the smallest population

622 Appendix

3.

Here, you used the city table, sorted by Population,and finally, selected the
name and population fields.

Write the following query to check the number of languages spoken in India:

SELECT Code FROM country WHERE name='India';
SELECT * FROM countrylanguage WHERE CountryCode='IND';

These queries produce the following output:

mysql> SELECT Code FROM country WHERE name='India';

1 row in set (0.00 sec)

mysql> SELECT
+
| CountryCode

FROM countrylanguage WHERE CountryCode='IND';
............ +
Percentage

o+

i
+
|
+
| .
IND | Bengali
IND | Gujarati
IND | Hindi

| Kannada

| Malajalam

| Marathi

| orija

| Punjabi

| Tamil

| Telugu

|

+

IND
IND
IND
IND
IND
IND

M~NONWSNWWWO A
HOOWoOoOWssAOhOWWOWOONWL

+
|
|
I
|
| IND
|
|
|
|
|
I
|

+
12 rows in set (0.00 sec)

Figure 16.27 - The languages spoken in India
The first query is only needed to get CountryCode for India, so you can use that
in the second query. You used * to get all fields. You could have selected only the
Language field, but now, you can also see some other interesting information about
the languages (namely, Percentage and whether they are official languages or not).

Write the following query to check the languages that are spoken in more than
20 countries:

SELECT Language FROM countrylanguage
GROUP BY Language HAVING COUNT (*) >20;

Solution to Activity 4.1 623

This query produces the following output:

mysql> SELECT Language FROM countrylanguage
-> GROUP BY Language HAVING COUNT(*)=>20;

| English

| Spanish
| French
| Arabic

4 rows in set (0.00 sec)

Figure 16.28 - The languages spoken in more than 20 countries
Here, you used aggregation on Language and filtered out rows that have more
than 20 items per group.

Write the following query to find the five biggest cities in the Southern and
Central Asiaregion

SELECT doc->>'S.name'
FROM worldcol

WHERE doc->>'S$.country.region' = "Southern and Central
Asia"

ORDER BY doc->'$.population' DESC

LIMIT 5;

This query produces the following output:

SELECT doc->>'$.name'

FROM worldcol

WHERE doc->>'$.country.region' = "Southern and Central Asia"
ORDER BY doc->'$.population' DESC

LIMIT 5;

Mumbai (Bombay)
Karachi

Delhi

Teheran

|
|
I
Lahore |
+

rows in set (0.02 sec)

Figure 16.29 - The biggest cities in Southern and Central Asia

624 Appendix

Here, you used the worldcol collection and filtered on the country.region
field that is in the JSON column. Then, you ordered by population and selected

the name column.

6. Write the following query to find cities that have a name ending with ester:

SELECT * FROM city WHERE Name LIKE

This query produces the following output:

mysql> SELECT * FROM city WHERE Name LIKE '%ester’;

Manchester
Leicester
Gloucester
Colchester
Worcester
Gloucester
Rochester
Worcester
Manchester

in set (0.01

Figure 16.30 - Cities with a name that ends in ester

This returns nine rows, and you get to see the information for every city. You could have
used SELECT COUNT * FROM city WHERE Name LIKE '%ester' toonly get

the number instead.

Solution to Activity 5.1

In this activity, you will execute a few queries to get data that can be used by a manager for
marketing and to reduce costs. Follow these steps to complete this activity:

1. Open the MySQL client and connect to the sakila database:

USE sakila;

England
England
England
England
England
Ontario

New York
Massachusetts
New Hampshire

'%$ester';

430000
294000
107000

96063

95000
107314
219773
172648
107006

Solution to Activity 5.1 625

2. Find the total number of films the store has with a PG rating. To do this, you need
both the £i1m table and the inventory table. For every item in the inventory
table, there is a reference to a record in the £i1m table. Then, filter on the rating,
which is stored in the £11m table. And finally, do SELECT COUNT (*) because all
you need is the total number aggregated over all rows:

SELECT COUNT (*)

FROM film £

JOIN inventory i ON f£.film id=i.film id
WHERE f.rating='PG';

The preceding query produces the following output:

mysgl> SELECT COUNT(*)
-> FROM film f
-» JOIN inventory i ON f.film id=i.film id
-> WHERE f.rating="PG';

1 row in set (0.081 sec)

Figure 16.31 - The SELECT output with the total number of PG-rated films in the inventory

3. Now, find films in which Emily Dee has performed as an actor. To do this, you
need the £i1lm table and the actor table. However, there is no direct relation
between them, so you need the film actor table, which stores links between
films and actors. This is because one film typically has multiple actors, and an actor
can be in multiple films. Then, filter by name, which is split over the first name
and last_ name columns and is stored in capitals. Finally, select the titles of the
matching films:

SELECT f.title

FROM film £

JOIN film actor fa ON f.film id=fa.film id

JOIN actor a ON a.actor id=fa.actor id

WHERE a.first name='EMILY' AND a.last name='DEE';

626 Appendix

The preceding code produces the following output:

SELECT f.title
> FROM film f
> JOIN film_actor fa ON f.film_id=fa.film_id
> JOIN actor a ON a.actor id=fa.actor id
> WHERE a.first name='EMILY' AND a.last name='DEE";

+

| ANONYMOUS HUMAN I
| BASIC EASY I
| CHAMBER ITALIAN I
| CHRISTMAS MOONSHINE |
| DESTINY SATURDAY |
| FUGITIVE MAGUIRE |
| GONE TROUBLE I
| HOLLOW JEOPARDY I
| INVASION CYCLONE |
| OCTOBER SUBMARINE |
| REBEL AIRPORT |
| SCARFACE BANG |
| SEA VIRGIN I
| SHREK LICENSE I
+ +

14 rows in set (0.80 sec)

Figure 16.32 - The SELECT output with films featuring Emily Dee

4. To find the customers who rented the most items, you need the rental table and
the customer table. These are related by customer id. You want to aggregate
the results per customer, so use GROUP BY c.customer_id.To get the top one,
use ORDER BY COUNT (*) DESC LIMIT 1:

SELECT c.first name, c.last name, COUNT(*) FROM rental r
JOIN customer c ON r.customer id=c.customer id
GROUP BY c.customer id ORDER BY COUNT (*) DESC LIMIT 1;

The preceding code produces the following output:

mysql> SELECT c.first name, c.last name, COUNT(*) FROM rental r
-> JOIN customer ¢ ON r.customer id=c.customer id
-> GROUP BY c.customer id ORDER BY COUNT(*) DESC LIMIT 1;

1 row in set (0.82 sec)

Figure 16.33 — The SELECT output with the top renter

Solution to Activity 5.1 627

Now, find the film that resulted in the biggest income. The payments that make the
income are stored in the payment table. The films are stored in the £i1m table.
These two tables are not directly related. So, you first have to join the payment
table with the rental table and then join them to the inventory table. And

from there, you can join it with the £11m table. Then, you have to aggregate by film
by adding GROUP BY £.film id.To get the top one by amount, you need to use
SUM on the amount per group and then use ORDER BY with LIMIT 1.As output
columns, select the £i1m table and the sum of the amount from the payment table:

SELECT f.title, SUM(p.amount)

FROM payment p

JOIN rental r ON p.rental id=r.rental id

JOIN inventory i ON i.inventory id=r.inventory id
JOIN film £ ON £.film id=i.film id

GROUP by f.film id

ORDER BY SUM (p.amount) DESC LIMIT 1;

The preceding code produces the following output:

> SELECT f.title, SUM{p.amount)

FROM payment p
> JOIN rental r ON p.rental id=r.rental id

JOIN inventory i ON i.inventory id=r.inventory id
> JOIN film f ON f.film id=i.film id

GROUP by f.film id

> ORDER BY SUM(p.amount) DESC LIMIT 1;

1 row in set (0.06 sec)

Figure 16.34 - The SELECT output for the film generating the biggest income

Now, find the email address of the customer living in Turkmenistan. For every
customer, store an address in the address table, which has a link to the city
table, which in turn has a link to the country table. When you join them, you can
filter out a specific country and then return the email address from the customer
table. This would return multiple results if there were multiple customers in
Turkmenistan, but there is only one. Write the following query to achieve this:

SELECT email
FROM customer cu
JOIN address a ON cu.address id=a.address id

628 Appendix

JOIN city ci ON ci.city id=a.city id
JOIN country co ON co.country id=ci.country id

WHERE country='Turkmenistan';

The preceding code produces the following output:

SELECT email

FROM customer cu

JOIN address a ON cu.address id=a.address id
JOIN city ci ON ci.city id=a.city id

JOIN country co ON co.country id=ci.country id

JEANNE . LAWSON@sakilacustomer.org
1 row in set (9.08 sec)

Figure 16.35 - The SELECT output with the email of the only customer in Turkmenistan

Solution to Activity 5.2

First, try to use a way of getting this data by querying the £1i1m table and using GROUP
BY on the release year; however, this will only return information for years in which films
have been released. In our database, all films are released in a single year. So, you want to
generate a range of years and then join this with the data you have to make sure that all
the years are included, even if there were no films released in that year according to our
database. Follow these steps to complete this activity:

1. Open the MySQL client and connect to the sakila database:
USE sakila

This produces the following output:

mysql=> USE sakila

Database changed
Figure 16.36 — The USE output

2. Inspect the result of the naive approach by writing the following query:

SELECT release year, COUNT(*) FROM film
WHERE release year BETWEEN 2005 AND 2010
GROUP BY release year;

Solution to Activity 5.2

629

This produces the following output:

mysql= SELECT release year, COUNT(*®) FROM film
-= WHERE release_year BETWEEN 20053 AND 2010
ROUP BY release year;
F====c========= F======= T---I-
| release year | COUNT(*) |

R o +

2006 | 1800 |
R R R R +
1 row in set (8.08 sec)

Figure 16.37 — The SELECT output for the naive approach

In the preceding screenshot, you can see matches only for the year 2006, but you

want to have results for all years between 2005 and 2010.

Create a CTE to generate a range of years by writing the following query:

WITH RECURSIVE years AS (

SELECT 2005 AS y

UNION ALL

SELECT y+1 FROM years WHERE y<2010
) SELECT * FROM years;

This produces the following output:

mysql> WITH RECURSIVE years AS (
-> SELECT 20885 AS vy
UNTON ALL
SELECT y+1 FROM years WHERE y<20810
SELECT * FROM years;

20086
20087
2008
2009
2010

5 rows in set (0.80 sec)

Figure 16.38 — The SELECT output for the CTE to generate the year range

Initialize the recursive CTE with 2005 as a value for y. Then, increase y by 1 until

you reach the year 2010.

630 Appendix

4. Now, join this against the list of years you have generated with the help of the
following query:

WITH RECURSIVE years AS (
SELECT 2005 AS y
UNION ALL
SELECT y+1 FROM years WHERE y<2010
)
SELECT y, COUNT (film.film id)
FROM years
LEFT JOIN film ON years.y=film.release year
GROUP BY years.y\G

This produces the following output:

| COUNT(film.film id)

l
l
|
|
l
I

in set (0.01 sec)

Figure 16.39 — The SELECT output with film release dates between 2005 and 2010

You now have the list you wanted. The list has all the years between 2005 and 2010 and
shows how many films were released that year. There are a few things that could have gone
wrong with this query. If you use JOIN instead of LEFT JOIN, then it will only match
records that have entries in both tables. This would only return 2006, which is not what
we wanted.

If you use COUNT (*) instead of COUNT (£ilm. £ilm id),then it would show 1 for
the years that should have a 0. This is because the group for that year has one record (as
there is a record in the years table). It has a NULL £i1lm_id value because there is no
matching film. Think of it like this:

Solution to Activity 6.1 631
Year film_id
2005 NULL
2006 1
2006 2

Figure 16.40 - The years table

In the table, each color is a group, as it is the same year. The first group has one record,
where £ilm_id is NULL as there is no matching film. But there is a record because the
year exists in the years table. The second group has two records, each with a year and
film_id. Now, if you use COUNT () on £ilm_id, it won't count the records where

film_id is NULL.

Solution to Activity 6.1

The solution to this activity is as follows:

1. Right-click on the members table in the Tables list to view all records:

| Result Grid | sll-i 43 Fiter Rows: |Ed'rt: |Eﬁ| B B |E:cpart-‘]mpnrt: == | @ |W'ra

1D Surname Firstame MiddleMames DOB Signature Photo PhotoPath
[Bloggs Frederick 1990-06-16 | | | | Members\Fhotos),
2 Pettit Thomas William 1960-10-15 Members\Photos),
5 West Anais Avery 1984-08-06
6 Swaniawski Waylon Rita 2007-10-08
mw
Schamberger Dexter D'angelo 1999-10-07
a Wintheiser Tania Toy 2020-01-24

Figure 16.41 - Records from the members table

Darby Marielle Collins.

January 11, 1990.

Locate the record with the ID number of 7 and confirm that the record belongs to

Examine the DOB column for the record and confirm that the date is NOT

632 Appendix

4. Create a new SQL tab to create your query; your SQL will be similar to the following
SQL code:

UPDATE vw_members_all
SET DOB = "1990-01-11"
WHERE ID=7;

5. After running the SQL, reload the members table to view the records:

| Result Grid | E ﬂ Filter Rows: I:“ Edit: |£| E} E:n |Export,|flmport: @ % |meCeIICon1:ent: s

] Surname FirstMame MiddleNames DOB Signature Photo PhotoPath

1 Bloggs Frederick 1990-06-15 L 6L | Members\Photos\MemberPhoto_1.jpg
2 Pettit Thomas William 1960-10-15 Members\Photos\MemberPhoto_2.jpg
5 West Anais Avery 1984-08-06
6 Swaniawski Waylon Rita 2007-10-08
8 Schamberger Dexter D'angelo 1993-10-07

9 Wintheiser Tania Toy 2020-01-24

Figure 16.42 — Members data reloaded after the record update

6. Examine the DOB column for the ID 7 record and confirm that the date is now
January 11, 1990.

You have now confirmed that you can update particular views; here, we just updated a
field, but you can insert new records or delete existing records. You also confirmed that
when data or records in an updatable view are modified, the modifications change the
underlying tables' data or records.

Solution to Activity 7.1

The solution to this activity is as follows:

1. Using your text editor, create a Node.js script and save it as motdatabase. js.
Enter the following code into the script file to create MOTdatabase:

var mysglconnection = require ("./mysglconnection.js") ;
mysglconnection.query ("CREATE DATABASE 'MOTdatabase'!",

function (err)
if (err) throw "Problem creating the database:- " +

err.code;

Solution to Activity 7.1 633

console.log ("Database created") ;

process.exit () ;

1)

Note

The complete script can be found at https://github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Activity7.01/Activity 5 01 Solution
Create Database.js.

This code will start by connecting to the database using the mysglconnection. js
file. Once the connection is established, the program runs a query to create the
MOTdatabase database.

2. Runthemotdatabase. js script in your Command Prompt. You will see the
following output:

PS D:‘\MysSQL Training\Nodejs> node index.js

Connected to MySQL!
Database created

Figure 16.43 - The result of running the code to create the database

3. Refresh the database schema in MySQL Workbench; motdatabase will appear in
the list:

Navigator

SCHEMAS o+ Name: The name of the schema. It is recommended to use only alpha-numesic characters. Spaces should be avoided and be replaced by _

(P
e @J Refiactor model, changing all refevences found in view, triggers, stored peocedures and functions from the ok schema name to the new one.
> ams
yo e Collation: Speciies which charsetlcolations the schem's tables il usa they do not have an expict seting, Comman cheices are Lagin or UTFE,
» | backuppractice
> bookwriting
» | chinock
> ditests
> elfc_loan_enquiries
» | emorlog
» | familytree
> jimsdocumentsjobs
» | jobhunt
» | maxim back end
> maximbuglist
¥ [motdatabase
» B Tables

'@ Views

B Stored Procedures

5 Functions

Figure 16.44 - The new database, motdatabase, in the schema list of MySQL

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Database.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Database.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Database.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Database.js

634

Appendix

Create another Node.js file named mot tables. js to create the two tables,
Customers and CustomerPurchases, as per the requirements provided

by the marketing head:

var mysglconnection = require ("./mysglconnection.js") ;

var sqgql = "CREATE TABLE 'MOTdatabase'.'Customers' (
"CustID' int(11) NOT NULL AUTO INCREMENT,
'CustomerName' wvarchar (50) NOT NULL,
PRIMARY KEY ('CustID')

) g "

mysqglconnection.query (sgql, function (err) ({

if (err) throw "Problem creating the Table:- " + err.
code;

console.log("Table created") ;

s

var sql = "CREATE TABLE 'MOTdatabase'.'CustomerPurchases'
(\

'CPID' int(11) NOT NULL AUTO_ INCREMENT, \

'CustID' int(11) NOT NULL, \

'SKU' varchar (20) NOT NULL, \

'SaleDateTime' varchar (25) NOT NULL, \

'Quantity' int(11) NOT NULL, \

PRIMARY KEY ('CPID') \
) g "

mysglconnection.query(sgl, function (err) {

if (err) throw "Problem creating the Table:- " + err.
code;

console.log("Table created") ;

process.exit () ;

s

Solution to Activity 7.1

635

Note

The complete script can be found at https: //github.com/
PacktWorkshops/The-MySQL-Workshop/blob/master/
Chapter07/Activity7.01/Activity 5 01 Solution
Create Tables.js.

This code will connect to the database through the mysglconnection.js
file. Once the connection is created, two queries are created to run against the
connection. The first query creates the Customers table, and the second creates
the CustomerPurchases table. Once this is completed, both tables will be
created, as specified by the marketing head.

Run the mottables. js script through the console. You should get the
following output:

PS D:“\MySQL Training\Nodejs> node index. js
onnected to MysQL!

able created
able created

Figure 16.45 - The result of running the table creation code

In MySQL Workbench, refresh the schema to see the two new tables, customers and

customerpurchases:

[J:W—, | motdatabase
o Mew
+- 14 customerpurchases
+- 14 customers

Figure 16.46 - The new tables added to motdatabase

https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Tables.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Tables.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Tables.js
https://github.com/PacktWorkshops/The-MySQL-Workshop/blob/master/Chapter07/Activity7.01/Activity_5_01_Solution_Create_Tables.js

636 Appendix

7. After running the scripts and refreshing the schema in Workbench, locate the
database and tables and select AlterTable for each table. You should see the

following table definitions:

customerpurchases - Table

el Table Name: |mstomer|:|urd'|ases | Schema: motdatabase

=97
Lé' Collation: | tf3 - defauit collation | Engne: [Tnoe

Comments:
Column Name Datatype PK NN UQ B UN ZF Al G Default/Expression
CPID INT(11) MM OO0ODOM O
CustID INT(11) O &8 O0O0O0O00
KU varcHarz) O M O O O O O O
saleDateTime varcHarizsy O M O O O O O O
Quantity INT{11) O 0O000000d
I I I O
— Table Name: |custo|‘ners | Schema: motdatabase
T
5 Collation: utf - default collation w Engine: InnoDE
Comments:
Column Name Datatype PK NM UQ B UN ZF Al G Default/Expression
CustID INT(11) M O0ODO0O®™M O
CustomerName varcHar(se) O M O O O O O O
O ododoogond

Figure 16.47 — The new tables in Workbench

The preceding output shows that the required tables have been created with the proper
names, fields, and primary keys defined. With this, you can now verify that your

script worked.

Solution to Activity 8.1 637

Solution to Activity 8.1

In this activity, you are tasked with adding new details to the existing country table -
that is, capital cities, countries' independence statuses, and currency types. Perform the
following steps to accomplish this:

1.
2.

Create a new script file named Activity-MultipleUpdates.js.

Add the connection module and instruct the server to use the world
statistics database. Include error handling:

var mysglconnection = require("./mysglconnection.js")

mysglconnection.query ("USE world statistics", function
(err, result) ({

Deal with the error, should one occur. Each distinct task performed by the code is
embedded in the part of the if statement that is executed if there is no error. This
means that, for each task to be performed, the preceding task must be error-free. If
an error occurs in any given task, the script will report the error and then exit, and
none of the following tasks will be attempted:

if (err) throw "Instructing database to use" + err.code;
//Tell user on console

console.log ("Using World Statistics");

Add the Capital column to the country table:

var newfield = "CREATE TABLE countryalldetails (CountryID
INT(11), ContinentID INT(11l), 'Country Code' VARCHAR(5),
'Country Name' VARCHAR (50))";

mysglconnection.query (newfield, function (err, result) {
//Deal with the error should one occur

if (err) throw "Problem creating column Capital" + err.
code;

//Tell user that the capital column has been created

console.log("Column Capital created") ;

5. Addthe Is Independent column to the country table:

var newfield = "ALTER TABLE countryalldetails ADD COLUMN
Is Independent VARCHAR (25) ;"

mysglconnection.query (newfield, function (err, result) {

//Deal with the error should one occur

638 Appendix

if (err) throw "Problem creating column Is Independent" +
err.code;

//Tell user that the Is Independent column has been
created

console.log("Column Is_ Independent created") ;

6. Add the Currency column to the country table:

var newfield = "ALTER TABLE countryalldetails ADD COLUMN
Currency VARCHAR(5) ;"

mysglconnection.query (newfield, function (err, result) {
//Deal with the error should one occur

if (err) throw "Problem creating column Currency" + err.
code;

//Tell user that the currency column has been created

console.log("Column Currency created") ;

7. All the columns have been created, which means that you can now insert data into
the table. Each field will be updated individually using three distinct queries. Start by
putting the SQL query into the updateOne variable in order to update the Capital
field. Use a nested query to get the data for each record. Use LIMIT 1 to ensure that
each record is updated with exactly one matching value from the temp table. The
query will place the capital data from the temp table into the country table:

var updateOne="UPDATE countryalldetails SET Capital = "

updateOne = updateOne + " (SELECT 'Capital' FROM world
statistics.temp WHERE 'Country Code'= 'country'.'Country
Code' LIMIT 1) ;"

8. Execute the SQL statement to update the Capital field in all records. The
following code will execute the query and print the number of rows affected by
the query:

mysglconnection.query (updateOne, function (err, result) {
if (err) throw "Problem updating Capital" + err.code;

//Tell user that the capital is updated, and show
affectedRows

console.log("Capital is updated") ;

console.log ("Number of rows affected : " + result.
affectedRows) ;

Solution to Activity 8.1 639

9. Repeat this process for the next field, Is_Independent. The query updates the
independence status from the temp table, using the country code to determine
which independence status to put in the country table:

var updateTwo="UPDATE countryalldetails SET Is_
Independent = "

updateTwo = updateTwo + " (SELECT 'Is Independent'
FROM world statistics.temp WHERE 'Country Code's=
'country'. 'Country Code' LIMIT 1) ;"

mysglconnection.query (updateTwo, function (err, result) {

if (err) throw "Problem updating Is Independent" + err.
code;

//Tell user that the Is Independent column has been

updated

console.log("Is Independent is updated") ;
console.log ("Number of rows affected : " + result.
affectedRows) ;

10. Repeat this process for the next field, Currency:

var updateThree="UPDATE country SET Currency = "

updateThree = updateThree + " (SELECT 'Currency'
FROM world statistics.temp WHERE 'Country Code's=
'country'. 'Country Code' LIMIT 1) ;"

mysglconnection.query (updateThree, function (err, result)
{

if (err) throw "Problem updating Currency" + err.code;
//Tell user that the currency column has been updated
console.log("Currency is updated") ;

console.log ("Number of rows affected : " + result.
affectedRows) ;

11. Now, exit the script using the following command:

process.exit () ;

12. Close off the brackets in reverse order:

}) ;//updateThree
}) ;//updateTwo
}) ; //updateOne
});//Column Currency

640 Appendix

});//Column Is Independent
});//Column Capital
});//USE world statistics

13. Execute the file, Activity-MultipleUpdates. js, in the terminal. You should
see the following output:

EY Windows PowerShell

PS5 D:\MySOL Training'MNoc
Connected to MySQL!

Using World_Statistics
Column Capital created
Column Is_Independent created
Column Currency created
Capital is updated

Mumber of rows affected
Is_Independent 1s updated
Number of r affected
dated
vs affected

Figure 16.48 - The console messages, indicating script progress

The preceding screenshot shows that the required columns were created, and all
263 records were updated with the appropriate values.

14. In Workbench, expand the countryalldetails table to see the new fields:

¥ || world_statistics
T@ Tables

| 2 'j continents

> ':| country

T'j countryalldetails

¥ [#] Columns
¥ CountryID

ContinentID
Country Code
Country Name
Capital
Is_Indepent
Currency

* ¢ 9

Figure 16.49 — A schema displaying the country table with its new fields

Solution to Activity 8.1 641

15. Now, right-click on the country table and select the Select rows option to see the

data in the table:

CountryID ContinentID ggzztﬂf Country Name Capital Is_Independent Currency
1 4 ABW Aruba Oranjestad Part of ML AWG

2 2 AFG Afghanistan Kabul Yes AFN

3 1 AGO Angola Luanda Yes ACA

4 3 ALB Albania Tirana Yes ALL

5 3 AND Andorra Andorra la Vella Yes =

3 TR ARE Arab World

7 2 ARE United Arab Emirates Abu Dhabi Yes AED

8 & ARG Argentina Buenos Aires Yes ARS

Figure 16.50 - The Select Rows view showing the new fields populated with data
This input confirms that the Capital, Is_Independent, and Currency fields have
been populated in the country table.

16. Right-click on the country table and click Alter Table to verify that the structure
of the table looks as pictured here:

— Table Name: |c0unh'yalldetails | Schema: world_statistics
T
L'f/u/ Charset/Collation: | utf8mb4 | |utf8mb4_0900_ai_ci | Engine: |InnoDB ~
Comments:
Column MName Datatype PK NN UQ B uM ZFF Al G Default/Expression
CountryID INT(11) [| O
ContinentID INT(11) O 000000 0 wu
Country Code VARCHAR(S) O 0O00O0000 0 ww
Country Name varcHarse) O O O O O O O O wu
Capital varcHaris)) O O O O O O O O wu
Is_Indepent varcHarzs) O O O O O O O O wuw
Currency VARCHAR(S) OO0O0O00000 wu

Figure 16.51 - The new fields in the Alter Table view

This output verifies that the Capital, Is_Independent, and Currency fields have been
added with the expected data types.

642 Appendix

Solution to Activity 8.2

The solution to this activity is as follows:

1. Using your text editor, create a script called Activity 6 02 Solution
Populate Tables.js.

2. Start by connecting to the database and running a query to use
CustomerDatabase:

var mysglconnection = require ("./mysglconnection.js") ;

mysglconnection.query ("USE CustomerDatabase", function
(err, result) {

if (err) throw err.code;

console.log(result) ;

1)
3. Next, create the customer records and insert them through a parameterized query:

var record = [['Big Company'], ['Little Company'], ['0Old
Company'], ['New Company']];

var sql = "INSERT INTO customers (CustomerName) VALUES ?;"

mysglconnection.query(sql, [record], function (err,
result) ({

if (err) throw "Problem creating database" + err.
code;

console.log(result) ;

1)

4. Finally, create the CustomerPurchases records and insert them through
a parameterized query:

record = [
[1, 'SKUOO1','01-JAN-2020 09:10am',3],
[2, 'SKUOO1','01-JAN-2020 09:10am',2],
[3, 'SKU0OO2','02-FEB-2020 09:15am',5],
[4, 'SKUOO3','05-MAY-2020 12:21pm',10],
Iy
var sgl = "INSERT INTO

CustomerPurchases (CustID, SKU, SalesDateTime, Quantity)

Solution to Activity 8.2 643

VALUES ?;"

mysglconnection.query (sqgl, [record], function (err,

result) {
if (err) throw "Problem creating database" + err.
code;

console.log (result) ;

process.exit () ;
1) i

After running the script, your onscreen output should be similar to the following:

PS5 D:“WySQL Training'Nodejs> node Activity_6_02_Solution_Populate_Customer.js
Connected to MySQL!
ResultSetHeader {

fieldCount:

affected

insertId:

info:

SEerver
warning

T

B -

Mumber of r

Mew records]

PS5 D:YMy5S -

Figure 16.52 - A console report from running the Populate Customer JS file

5. Using MySQL Workbench, right-click on the customers table of MOTDatabase and
click Select Rows. The following data will be displayed:

customers

= v ¥ 8, e &) | Dont Limit
1w ISE_ECT * FROM motdatabase.customers;

<

Result Grid _'_J ¥ Filter R{:u‘.ﬁ:l | Edit: El] E=

CustlD CustomerMame

% Big Company

2 Litde Company
3 Old Company
= MNew Company

Figure 16.53 - The customers table data after population

644 Appendix

6. Next, in MySQL Workbench, right-click on the customerpurchases table of
MOTDatabase and click Select Rows. A screen like the following should open:

customers customerpurchases

ME Y rFe 0 R @ ORI onum
le I'SELEET * FROM motdatabase.customerpurchases;

<«

| ResultGrid | 4% Hl‘terRm"rs:l ||Edrt:|ij|ﬁyﬁ:.
CPID CustID SKU SaleDateTime Quantity
;_- 1 SKUOO1 01-JAN-202009:10am 3
2 1 SKUODZ 01-JAN-2020 09:12am 2
3 1 SKUOD1 D01-JAN-2020 09:10am 3
4 1 SKUODZ 01-JAN-2020 09:12am 2
5 2 SKUOD1 01-JAN-2020 09:10am 3
6 3 SKUDDZ 02-JAN-2020 10:12am 2
7 3 SKUOD4 02FEB-2020 11:10am 3
8 4 SKUOD3 02FEB-202009:32am 2
g 4 SKUOD4 O5-FEB-2020 08:00am 3
0 4 SKUOD3 10-MAR-2020 12:1Zam 2
1n 1 SKUOD1 11-MAR-2020 14:4lam 3
12 1 SKUOD1 12-MAR-2020 16:1Zam 2
. FE!!

Figure 16.54 - The customerpurchases table after population

Solution to Activity 8.2 645

7. Finally, you need to create the ODBC connection for this database. Press the
Windows Start button on your keyboard and type ODBC.

8. Select ODBC Data Sources (32-bit) and click Yes when prompted to allow this
application to make changes. Now, the ODBC Data Source Administrator (32-bit)
window will open.

9. Select the System DSN tab and click Add...:

'-:?. QODBC Data Source Administrator (84-bit) >

User DSM System DSMN File DSM Drivers Tracing Connection Pooling About

System Data Sources:

MName Flatform Driver Add...
scprogramming &4-bit MySGL ODBC 8.0 ANSI Driver
Remove
Configure...

An ODBC System data source stores information about how to connect to the indicated data provider.
1| A System data source is visible to all users of this computer, including NT services.

Cancel Aoy Help

Figure 16.55 — The System DSN tab displaying the available ODBC connections

646 Appendix

10. The driver selection window will open. Select the MySQL driver you wish to use and

click Finish:
Create Mew Data Source >
Select a driver for which you want to set up a data source.
\ Mame Vers ™
| Microsoft Access Text Driver (" tat, *.csv) 16.0
el Microsoft Excel Driver (" xls, *xlsx, *xlsm, *xlsb) 16.0
MySQLODBC 8.0 ANSI Driver 8.00
MySQL ODBC 8.0 Unicode Driver 3.00
QDBC Driver 17 for SQL Server 2017
SCAL Server 10.0
SQL Server Mative Client RDA 11.0 201 v
£ >

< Back Cancel

Figure 16.56 - Selecting the driver you want to use

11. For the configuration windows, enter your connection details. Your options are
as follows:

* Data Source Name: Give it any name. In this case, CustomerDatabase would
be fitting.

* Description: This is optional. It would be appropriate to add a description such as
Stores data about the customers and purchases.

* TCP/IP Server: The address of the server. Since the server is on your local
computer, use localhost or 127.0.0.1.

* Port: This is already set at 3306 and can be kept as is.

= User: Enter the user's account name.

Solution to Activity 8.2 647

* Password: The password of the account.

* Database: If the IP address and port are valid, a list of databases on the server
is listed. Select the database you want the connection to use and select the
CustomerDatabase database, as shown in the following screenshot:

MySCL Connector/QDBC Data Source Configuration x

AN -
MySOL i
Connector/ODBC

Connection Parameters

Data Source Name: | MOTDatabase Connector |

Description: | To connect to the MOTDatabase |

(®) TCP/IP Server: |12?-D-D-1 | Port: | 3308

() Mamed Fipe:

User: | root |
Password: | |
Database: | MOTDatabase i | Test

Figure 16.57 — The completed details; make sure to use your own

12. Test the connection by clicking Test. The manager attempts to connect and, if
successful, displays the following result:

Test Result *

Connection Successful

Figure 16.58 - A successful connection has been made

648 Appendix

13. If you get a Connection Successful result, click OK to close the test message and

click OK again to close the new ODBC window. If the connection failed, check
your values for TCP/IP Server, Port, User, and Password and try again.

Solution to Activity 9.1

The solution to this activity is as follows:

1.
2.

Examine your MS Access table list.

In the navigation panel, select Tables. The table list will now only contain MySQL
linked tables, as shown by the globe icon.

Open each table in turn by right-clicking and selecting Design; each table will be
the primary key set, as indicated by the key icon next to the Primary Key field. You
won't receive the window to select identifying fields because there was no primary
key when you linked the table from MySQL.

Double-click on each table in turn. Each will correctly display its data. All tables will
be writeable. This is indicated by the blank line and the asterisk on the last record
when the table is opened to view the data:

All Access Objects @ «

Search., e
Tables b3
*@ badbits

*-ﬂl capacityindicatorsstats
*@ country

*@ erorlog

*@ genderstats

*@ jobstats

*@ lookups

*@ series

*@ users

Forms 3

Figure 16.59 - The linked tables after all tables are linked

Solution to Activity 10.1 649

You did it — well done! There are a lot of things to take into account when migrating an
MS Access database to MySQL, and it is not for the faint-hearted, so feel proud of what
you have achieved here today.

Solution to Activity 10.1

The solution to this activity is as follows:

1.
2.

Make the necessary code changes to each SQL block.
For the SQL 2 block, the existing SQL statement works in Workbench, so no changes
are required. Keep the code as it is:

SQL = "SELECT Count (GenderStats.ID) AS RecCount FROM
GenderStats;"

On the second line, the Set RS = statement is not required at this location, so
comment it out:

'Set RS = CurrentDb.OpenRecordset (SQL, dbOpenDynaset)

Call the CreatePassThrough function by passing in the SQL statement and the
name for the new passthrough query, GENCount. Pass True, which indicates that
the passthrough will return a value, and False because we do not want to delete
the old passthrough query first; it will overwrite it:

Call CreatePassThrough (SQL, "GENCount", True, False)

Place Set RS = after the query that will create it and change the recordset source
to GENCount:

Set RS = CurrentDb.OpenRecordset ("GENCount",
dbOpenDynaset)

Do not change the following VBA lines for the SQL 2 code block:

RS .MoveFirst
Me.cntGS = RS.Fields ("RecCount")
RS.Close

For SQL 3, don't make any changes, as the existing SQL statement works in
Workbench:

SQL = "SELECT Count (JobStats.ID) AS RecCount FROM
JobStats;"

650 Appendix

8. The Set RS = statement is not required at this location, so comment it out:

'Set RS = CurrentDb.OpenRecordset (SQL, dbOpenDynaset)

9. The call to the CreatePassThrough function is inserted, passing in the SQL
statement and the name for the new passthrough query, JOBCount. True is passed
in to indicate that the passthrough will return a value, and False is passed in
because we do not need to delete the old passthrough query first; it will overwrite it:

Call CreatePassThrough (SQL, "JOBCount", True, False)

10. On the fourth line, place Set RS = after the query and change the recordset
source to JOBCount:

Set RS = CurrentDb.OpenRecordset ("JOBCount",
dbOpenDynaset)

11. Do not change the following VBA lines for the SQL 3 code block:

RS .MoveFirst
Me.cntGS = RS.Fields ("RecCount")
RS.Close

12. For SQL 4, the existing SQL statement has spaces in the field name with
surrounding square brackets and will not work in MySQL, so comment it out.
You can simply change the brackets to backticks here:

'SQL = "SELECT Count (Country. [Country Code]) AS
RecCount FROM Country;"

13. The Set RS = statement is not required at this location, so comment it out:

'Set RS = CurrentDb.OpenRecordset (SQL, dbOpenDynaset)

14. The SQL statement is inserted with the square brackets changed to backticks:

SQL = "SELECT Count (Country.'Country Code') AS RecCount
FROM Country;"

15. The call to the CreatePassThrough function is inserted, passing in the SQL
statement and the name for the new passthrough query, CTRYCount. True is
passed in to indicate that the passthrough will return a value, and False is passed in
because we do not need to delete the old passthrough query first; it will overwrite it:

Call CreatePassThrough (SQL, "CTRYCount", True, False)

Solution to Activity 10.1

651

16. After the query is created, place Set RS = on the fifth line. Also, change the source
of the recordset to CTRYCount:

Set RS =

dbOpenDynaset)

CurrentDb.OpenRecordset ("CTRYCount",

17. Do not change the remaining VBA lines for the SQL 3 code block:

RS .MoveFirst

Me.cntCountry =
RS.Close

RS.Fields ("RecCount")

Your results on screen and your code for the SQL 2, 3, and 4 blocks should be as
follows:

Queries

{
CISCount
CTRYCount
GENCount

eceE

JOBCount

@ «

[=3] trmMain (7§ cTRYCount Y\

»

Citations

Your current database connections are

DSN=ms_access_migration;

EPopuIate Lists E

[i

Table
Capacity Indicators
Gender Stats |
Job Stats |
Groups |
Serles.

Country

Start Tin

Finish Tir

Seconds Tak

Record Count

5136
8695
17046
]
——
o

convercing, comment cur the code lines below

SQL = "SELECT Count(GenderStats.iD) AS RecCount FROM Genderstata;™

'Set BS = CurrentDb.OpenRecordset(SQL, dhOpenDynaset)

"Eater y en the lines below
call . » Trus, False)
Set RS = (*GEN net,)

RS.MoveFirsc
Me.cme0S = RS, Fields(*RecCount®)
RS.Close

' JekStats
3

Count (JobStats.ID) AS RecCount FROM JobStats:®
Tentlb. CpenReco: , dbOpenDynaset)

Below

Call CreatePassThrough(5QL, "JOBCounc®, True, False)
Ser RS = - "

RS.MoveFirsc
Me.cmrlS = RS.Fields(*RecCount®)
RS.Close

'Countey
"SOL 4

uE new code Betwesn the lines below

(between the lines)

comment out The code lines below (between the lines)

RS RecCount FROM Country:®

5QL = "SELECT Count{Country. Country Code’) AS RecCount FROM Countryi™
. "CTI

RYCount®, True, False)

RS _MoweFizse
L = RS.Fields ("R
BS.Close

|

Figure 16.60 — Changes to the code and the affected onscreen controls

You should now have three new passthrough queries, and the count values should be as
shown in the preceding screenshot.

652 Appendix

We did not modify or move two of the original SQL statements. We tested them in
Workbench, and they worked, so there was no need to modify them. Country, however,
had a space in the field name, and the brackets that Access uses had to be changed to
backticks, our first SQL modification. Always try to make as few changes as possible to
achieve the conversion.

Solution to Activity 10.2

In this activity, you will create a function to count and assign the total groups to the
cntGroups textbox. Follow these steps to complete this activity:

1
2
3.
4

Copy the fnCountSeries. sql file and name the new file fnCountGroups . sql.
Open the file in a text editor.
Modify the file.

Instruct the server to use the ms_access_migration database. Always include
this command so that there is no question that code will be run against the intended
database. Without it, the current active database in the workbench will be used:

USE ms_access_migration;
Drop the existing function named fnCountGroups if it already exists:

DROP FUNCTION IF EXISTS 'fnCountGroups';

Set a custom delimiter so that all code between the start and end delimiters is to be
treated as one set of instructions:

DELIMITER //

Create the function as named and indicate that it will return a long value:
CREATE FUNCTION 'fnCountGroups' () RETURNS long

Include a command to indicate that the function only reads SQL data:
READS SQL DATA

Begin the function statements:

BEGIN

10. Declare a variable to receive the results of the query:

DECLARE TheValue Long;

Solution to Activity 10.2 653

11.

12.

13.

14.

15.

16.

17.

18.

19.

Execute the SQL statement to count the groups and put the results in the variable:

SET TheValue = (SELECT Count ('Group') AS RecCount FROM
(SELECT DISTINCT series.Group FROM series) AS 'Alias');

Return the results in the variable as the output from the function:

RETURN (TheValue) ;

Signify the end of the function's statements and also the end of the custom
delimiter block:

END//

Line 18 resets the delimiter back to the default:

DELIMITER ;

Save the file, load it into a Workbench query window, and run it. You should now have
two functions in the schema panel for the ms_access migration database:

v Fn Functions
f(} fnCountGroups
f{) fnCountSeries

Figure 16.61 — The new function in the schema panel

Let's walk through the VBA code required to generate the passthrough query.
Create the SQL statement to call the function for the passthrough to use. We will
use SELECT and assign its returned value to a derived field name:

SQL = "SELECT fnCountGroups () as GroupCount"

Call the routine to create the passthrough query, pass in the name for the resulting
query, and pass in the SQL statement. Set it to return values:

Call CreatePassThrough (SQL, "CntGroups", True, False)

Assign the passthrough query to a recordset:

Set RS = CurrentDb.OpenRecordset ("CntGroups",
dbOpenDynaset)

Position the recordset cursor to the first (and only) record:

RS.MoveFirst

654 Appendix

20. Assign the value of the recordset's derived field to the control receiving it:
Me.cntGroups = RS.Fields ("GroupCount")
21. Close the recordset:

RS.Close

After you run by clicking Populate Lists, your output screen in MS Access should
be as follows:

Start Time [09-Oct-19 6:14:28PM |
Populate Lists
_ Finish Time [09-Oct-19 6:14:29PM |

Seconds Taken | 1 |

Table Record Count Drop Down

Capacity Indicators 5136
Gender Stats 8695
Job Stats 17046

Combo Count

Groups | 3 || | 3
Series | 13 || | 13
Country | 263 I & 263

Figure 16.62 - The final output for Groups

Solution to Activity 10.3

The solution to this activity is as follows:

1. First, we need to develop SQL code to create the stored procedures. This will be
done in a new SQL tab in Workbench.

2. Instruct MySQL to use the ms_access migration database for all subsequent
commands:

USE ms_access migration;

Solution to Activity 10.3

655

10.

11.

12.

13.

Drop the existing spGroupsList stored procedure if it exists:

DROP PROCEDURE IF EXISTS spGroupsList;

Set the customized delimiter:

DELIMITER //

Create the spGroupsList procedure:

CREATE PROCEDURE spGroupsList ()

Include a BEGIN statement to indicate where the code starts:

BEGIN

The SQL statement will query the database. The records will be returned from
the procedure:

SELECT DISTINCT series.Group FROM series ORDER BY series.
Group;

End the block and delimiter:
END//

Reset the delimiter back to the default:
DELIMITER ;

Inside spCountryList, instruct MySQL to use thems_access _migration
database for all subsequent commands:

USE ms_access_migration;

Drop the existing spCountryList stored procedure if it exists:
DROP PROCEDURE IF EXISTS spCountryList;

Set the customized delimiter:
DELIMITER //

Create the spCountryList procedure:

CREATE PROCEDURE spCountryList ()

656 Appendix
14. Include a BEGIN statement to indicate where the code starts:
BEGIN

15. The SQL statement will query the database. The records will be returned from

the procedure:
SELECT DISTINCT Country.'Country Code', Country.'Country
Name' FROM Country ORDER BY Country.'Country Name';
16. End the block and delimiter:
END//
17. Reset the delimiter back to the default:
DELIMITER ;
Now, we need to write the VBA code.

18. For the GroupsList combo box, create a SQL statement for the passthrough
query. Note that when calling a stored procedure, we use the CALL statement, and as
no parameter is required for this one, we simply use the stored procedure's name:

SQL = "Call spGroupsList;"

19. Create the passthrough query using the CreatePassThrough function,
passing in SQL and the name of the new passthrough query, and indicate that
it is to return results:

Call CreatePassThrough (SQL, "spGroupsList", True, False)

20. Assign the passthrough query directly to the combo box:

Me.cmbGroups.RowSource = "spGroupsList"
21. For the CountryList combo box, create a SQL statement for the passthrough

query. Note that when calling a stored procedure, we use the CALL statement,
and as no parameter is required, we simply use the stored procedure's name:

SQL = "Call spCountryList;"

Create the passthrough query using the CreatePassThrough function, passing
in SQL and the name of the new passthrough query, and indicate that it is to
return results:

Call CreatePassThrough (SQL, "spCountryList", True, False)

Solution to Activity 10.4 657

22. Assign the passthrough query directly to the combo box:
Me.cmbCountry.RowSource = "spCountryList"

Your lists should be populated as they were before the change:

Table Record Count Drop Down Combo Count s - Gander Satis
BIOUE] Gender Statistics
Capacity Indicators 5136 sef 13 v
Gender Stats 8695 == e - - =
Afghanistan A
Start Year Albania
Job Stats 17046 Algeria
End Year A Sam
Groups Gender Statisticy ~ ‘ 3 |
. - Ang
Series Capacity Indicators ANTIgUa and Barbuda
Gender Statistics 1ld
Country 263 Job Statistics 263 Series Nar poas .
L -
v

Figure 16.63 - Dropdowns displaying the lists

Solution to Activity 10.4

In this activity, we will modify the code tagged as SQL 8 to call spSeriesList par ()
from a passthrough query and assign it to the cmbSeries row source. Follow these steps
to implement this:

1. Locate the code tagged as SQL 8.

2. Copy and paste the original SQL line to a new line.
3. Comment out the original SQL statements.
4

Modify the new SQL line to call the spSeriesList_par stored procedure and
pass in the value from cmbGroups as the parameter.

N

Save the changes.

6. Create the SQL statement. The parameter is passed in in brackets and is enclosed
in single quotes. The method of constructing the parameter is identical to the
VBA-based SQL:

SQL = "Call spSeriesList par('" & Me.cmbGroups & "');"

658 Appendix

7. Create the passthrough query with the CreatePassThrough function. Name the
passthrough query spSeriesFiltered:

Call CreatePassThrough (SQL, "spSeriesFiltered", True,
False)

8. Assign the resulting passthrough query to the combo box. Because the passthrough
returns a recordset, it can be assigned directly to the control:

Me.cmbSeries.RowSource = "spSeriesFiltered"

Your code for SQL 8 should now look like this:

Private Sub cmbGroups_AfterUpdate ()

Dim SQL As String
Dim TableName As String

on Error GoIo HandleError

'Get and set the Series data based on the selected Group
'SQL 8

'When converting, comment out the code lines below (between the lines)

'SQL = "SELECT DISTINCT series.[series Code], series.[series Name]FROM series WHERE series.[Group] = '" & Me.cmbGroups & "' CRDER BY series.[series Name];"
'Me.cmbSeries.RowSource = SQL

'Enter your new code between the lines below

SQL = "Call spSeriesList_par('" & Me.cmbGroups & "')"
Call CreatePassThrough(SQL, "spSeriesFiltered”, True, False)
Me.cmbSeries.RowSource = "spSeriesFiltered”

Figure 16.64 — The old code commented out and the new code inserted for SQL 8

9. Select a group and open the series combo box. The results should change, as shown
in the following screenshot. Try different group selections and ensure that the series
list changes for each selection you make:

Groups 3 Capacity Indicators hd 3
Series 13 | w 3
c t Access to water
oun
" 263 Child immunization
Government finance accounting
Start Year o
End Year v

Figure 16.65 - Changing the group will change the series list values

Note

The Combo Count boxes to the right of the combo change to show the number

of options in the lists. As you select different groups, you should see the Series
counter change.

Solution to Activity 10.5 659

Solution to Activity 10.5

In this activity, you will create a stored procedure to determine dates, generate a
passthrough query, and assign it to both date dropdowns. Follow the following steps
to implement it:

1.

Create a new SQL file and name it Create Procedure spDateRange par.
sqgl to generate a stored procedure.

Open the file named spCountryList par.sql and copy and paste all of its
code into the new file. You will modify this code.

Continuing in the new file, spDateRange par.sql, there are two locations
where the stored procedure's name is referenced. Change these to the new name
of spDateRange par.sqgl. They are in the Drop Procedure and Create
Procedure lines.

Include the parameters in the Create Procedure line. The parameters are
Tablename and TheSeries. Be sure to include IN and the data type declaration
for both parameters.

Modify the SQL statement to return the Year field and set the series filter in the
WHERE clause.

We then need to develop SQL code to create the stored procedure.

Include the instruction to use the ms access migration database:
USE ms_access _migration;

Drop the spDateRange par stored procedure if it exists:
DROP PROCEDURE IF EXISTS spDateRange par;

Set the customer delimiter:

DELIMITER //

10. Create the procedure and define the IN parameters:

CREATE PROCEDURE spDateRange par (IN TableName
VARCHAR (25) , IN

TheSeries VARCHAR (25))

11. Indicate the beginning of the code:

BEGIN

660 Appendix
12. We are building the SQL statement and including the parameter values that were
passed in. Use the CONCAT method to build the string and assign it to the @t 1
variable. This gives us the flexibility to use different table names:
SET @tl = CONCAT (
'SELECT DISTINCT ' , TableName , '.Year ',
'FROM ', TableName , ' ',
'WHERE ' , TableName , '.'Series Code' = "' , TheSeries |,
'ORDER BY ', TableName ,'.Year'
)i
13. Now, we instruct the server to prepare a statement named stmt1 from the @t1
variable string. This needs to be done so that the statement can be executed:
PREPARE stmtl FROM @tl;
14. Now, execute the stmt 1 statement:
EXECUTE stmtl;
15. After the statement has been executed, we clear it from the server:
DEALLOCATE PREPARE stmtl;
16. Indicate the end of the code and customer delimiter range:
END//
17. Reset the delimiter back to the default:
DELIMITER ;
18. Save the file and then execute it. spDateRange par.sql will appear in the
schema panel after you refresh it.
The VBA code needs to be modified to use the new procedure.
19. Locate the code tagged as SQL 10.
20. Comment out all five lines building the original SQL statement.
21. Add new code to build the new SQL statement to call the stored procedure and pass

in both parameters.

Solution to Activity 10.5 661

22.

23.

24.

25.

26.

27.

28.

29.

30.

Add a new line to call the CreatePassthroughQuery function, passing in SQL
and the TableName variable, and the value of the series dropdown.

Assign the spDateRange par passthrough query to both RowSource date
dropdowns. The query name must be enclosed in quotes.

Let's work through the VBA code required to generate the passthrough query and
assign it.

Create the SQL statement to pass to the server:

SQL = "Call spDateRange par('" & TableName & "',6'" &
Me.cmbSeries & "') ;"

Call the CreatePassThrough function, passing in the SQL statement and the
name of the resulting passthrough query, and indicate that it will return records:

Call CreatePassThrough (SQL, "spDateRange par", True,
False)

Add a comment to indicate what the next few lines of code do:

'Fill the Year dropdowns

Assign the spDateRange par passthrough query directly to the RowSource
StartYear combo boxes:

Me.StartYear.RowSource = "spDateRange par"

Assign the first element of StartYear as the value to the StartYear combo box.
This will set the combo to display the earliest year:

Me.StartYear = Me.StartYear.ItemData (0)

Assign the same spDateRange_par passthrough query directly to the
RowSource EndYear combo boxes:

Me.EndYear.RowSource = "spDateRange par"

Assign the last element of EndYear as the value for the EndYear combo box.
This will set the last year for the combo to display:

Me .EndYear = Me.EndYear.ItemData (Me.EndYear.ListCount -
1)

662 Appendix

To test it, use the selections shown in the screenshot; your results should match:

Groups 3 Gender Statistics ~ 3 Groups 3 Job Statistics ~ 3
Series 13 ~ a4 Series 13 ~ 6
Country 263 Algeria ~ 256 Country 263 ~ 187
StartYear [2008 ~ StartYear |2004 ~
End Year |2018 v End Year |2016 ~

Figure 16.66 — Both date combo boxes will change based on the series selected

Solution to Activity 11.1

One possible solution to this activity is the following:

1. The Worksheet_Change event subroutine should have a new Case statement and
code, like this:

Private Sub Worksheet Change (ByVal Target Rs Range)

'Test the active cell (the one that changed)
Select Case Target.hddress

Case "$BS5™
'The change was in the dropdown, target has the wvalue
Call GenreSales (Target)

'Set the chart details Population
Worksheets ("Dashboard™) .ChartObjects ("chrtPopulation™) .Activate
With ActiveChart

.SetSourceData Source:=Sheets ("Data Sheet™).Range ("GenreSales"), PlotBy:=xlColumns
.HasTitle = True

.ChartTitle.Text = "Genre Sales - " & Target
.SeriesCollection(l) .Hame = "Sales"
End With

Case "SPS5"
Call ArtistTrackSales (Target)

'Set the chart details Population

Worksheets ("Dashboard™) .ChartObjects ("chrtArtistTrackSales™) .Activate

With ActiveChart
.SetSourceData Source:=Sheets("Data Sheet").Range ("ArtistTrackSales"), PlotBy:=x1lColumns
.HasTitle = True
.ChartTitle.Text = "Artist Track Sales - " & Target
.SeriesCollection(l) .Name = "Sales"

End With

Case Else
'Nothing to work with so leave
GoTo Leavesub
End Select

Leavesub:
Exit Sub

End Sub

Figure 16.67 — A new Case test with code

Solution to Activity 11.1 663

2. You will have a new function. This function is almost identical to the GenreSales
function we created in Exercise — load genre sales chart data with the differences
highlighted.

3. Declare the subroutine and its parameters:

Private Sub ArtistTrackSales (ByVal pArtist As String)

4. Declare the variables:

Dim RS As Recordset
Dim SQL As String
Dim MyNamedRng As Range
Dim RS As Recordset
Dim SQL As String
Dim MyNamedRng As Range

5. Set error checking to ignore any errors. An error will occur if the range is not
defined when we clear it:

On Error Resume Next

6. Clear the target area to remove the old data:

Worksheets ("Data Sheet") .Range ("ArtistTrackSales") .
ClearContents

7. Resume normal error handling:
On Error GoTo HandleError
8. Make the connection to MySQL and test whether it was successful:
If ConnectDB DSNless (g Conn DSNless) = True Then

9. The connection was made, so prepare the SQL statement:

SQL = ""

SQL = SQL & "SELECT TrackName, 'Units Sold' "
SQL = SQL & "FROM vw_Artist Track Sales "

SQL = SQL & "WHERE Name = '" & pArtist & "' "
SQL = SQL & "ORDER BY 'Units Sold' DESC"

10. Set the recordset variable to a new recordset:

Set RS = New ADODB.Recordset

664 Appendix
11. Load the recordset and pass in the SQL statement and the connection to use:
RS.Open SQL, g Conn DSNless
12. Test that there are records:
If RS.EOF And RS.BOF Then
13. If there is no data, exit:
GoTo Leavesub
Else
14. We have data, so load it in row 2 and column 12:
Worksheets ("Data Sheet") .Cells (2,
12) .CopyFromRecordset RS
15. Set and create a named range, covering the column with the genre name (data only).
The final row for the range is the number of records + 1:
Set MyNamedRng = Worksheets ("Data Sheet").
Range ("L2:M" & RS.RecordCount + 1)
ActiveWorkbook.Names.Add Name:="ArtistTrackSales",
RefersTo:=MyNamedRng
16. Close off the I1f/E1se blocks:
End If
Else
'"This line will be reached if there is no
data, we do nothing and drop through
End If
17. Set an exit point. We close the recordset here:
Leavesub:
18. Close the recordset and exit:

RS.Close
Set RS = Nothing
Exit Sub

Solution to Activity 11.1

665

19. Add an error-handling routine:

HandleError:

20. Display an error message and then exit:

MsgBox Err & " " & Error (Err)

Resume Leavesub

21. Close off the Sub block:

End Sub

22. The data in Data Sheet in the L and M columns is as follows:

L A

Save The Children

Abraham, Martin And John

Seek And You Shall Find

Heavy Love Affair

You Sure Love To Ball

Praise

You've Been A Long Time Coming
When | Had Your Love

L = =R =R R

Figure 16.68 — The ArtistTrackSales output in the Data Sheet tab

23. You should have a new named range:

ArtistTrackSales -

Mame
2 |Alternative
3 |Alternative & Punk

Figure 16.69 — The ArtistTrackSales named range in the range list

666 Appendix

When the range is selected, we can see the expanded list, as follows:

L M

Save The Children

Abraham, Martin And John

Seek And You Shall Find

Heavy Love Affair

You Sure Love To Ball

Praise

You've Been A Long Time Coming
When | Had Your Love

[l = = = = R

Figure 16.70 — ArtistTrackSales highlighted when the named range is selected
24. And finally, we have a new chart and formatting on the dashboard:

(o]

o

aQ R

Artist Marvin Gaye

Artist Track Sales

Artist Track Sales - Marvin Gaye

‘When | Had Your Love

You've Been A Long Time Coming

Praise

You Sure Love To Ball

Heavy Love Affair

Seek And You Shall Find

Abraham, Martin And John

Save The Children

=]

05

[

15 2 25

Figure 16.71 — A new chart displaying ArtistTrackSales

Solution to Activity 12.1 667

In this section, we learned how to create a function to read data from a MySQL database,
create a new chart to consume the data, duplicate existing VBA functions to create new
but similar functions, and change specific details to suit the new functions' purposes.

Solution to Activity 12.1

In this activity, we will start by creating a new database in MySQL to store our data. To
achieve this, do the following:

1. Launch MySQL Workbench and connect to your local database instance:

MySQL Connections ®@®

Local instance MySQL80

¥ root
% localhost:3306

Figure 16.72 - The connection for the local database instance

2. Inyour connection, create a new query defined as shown here:

CREATE DATABASE coffee data

3. With our database created, we will move to the Cof feeProducts.xlsx file.
Inside this file, go to the Data tab and click MySQL for Excel:

e il
-

My S0L
for Excel

MyS0L ~

Figure 16.73 — The MySQL For Excel option in the Data tab

668 Appendix

4. Once you click on MySQL for Excel, you can select the local instance connection

that displays on the sidebar:

MySQL For Excel ~ %
Welcome to
w3 MySCQL for Excel

MySQL for Excel allows you to work with the
MySQL Database right from within the MS
Office Excel application. Excel is a powerful
tool for data analysis and editing.

L= Open a MySQL Connection
L Double-Click a Connection to Start

¥ Local Connections

v chinook
_:j User: root, Host: localhosti3306
W <o st ocarostsss

P Remote Connections

Figure 16.74 - The local instance that shows in the MySQL connection list

Once you have selected the local instance connection, select the coffee data

5.
database to connect to the database we just created:

Solution to Activity 12.1

669

MySQL For Excel ~ %

My
Por Excad

Local instance MySQL80
root
localhost:3306

Please select the MyS0L schema you want to
waork with, Each schema can hold a collection
of tables that store data, views that hold
selected data and routines that generate data.

= Select a Database Schema
1 Then click the [Next=] button below

|QFiIter Schemas

¥ Schemas
B backuppractice

L:} login
B ms_access_migration

B phpmyadmin

9 fest

P System Schemas

Figure 16.75 - The coffee_data database in the connection list
Now that we are connected to the database, we can move on to migrating the
existing data in the Products sheet.

670 Appendix

6. Select the data in the Products sheet:

A B C D
ProductName ProductPrice ProductSize
Roast Coffee 1 Medium
Lattee 3.5 Large
Cappuccino 4,15 Large
Espresso 1.25 Small

Figure 16.76 — The selected data in the Products sheet
7. On the MySQL for Excel sidebar, select the Export Excel Data to New Table option:

MySQL For Excel ~ %

o Local instance MySQL80
}.\ \:: root

for Exceld localhost: 3306

coffee_data

did

.::}iﬁ Export Excel Data to New Table
4 - S I r

- redte d neg d 2 dl

Figure 16.77 — The Export Excel Data to New Table option in MySQL for Excel

8. Set the table name as products and use the ProductName column as the

primary key:
Export Data to MySQL
- 1.5et a Table Name . = 2. Pick a Primary Key
2| The selected data will be stored in a My50L table, =25l Each row of data needs to hold a unique number that is
Please specify a unique name for the table, used as the Primary Key.
Mame: |products | (O Add a Primary Key column: products_id

Collation: |Schema Default V| @ Use existing column:

Figure 16.78 - The table name and primary key

Solution to Activity 12.1

671

9. Change the ProductName column to be the VarChar (50) data type to leave
enough room for future product names:

3. Specify Column Options
Click the header of a column to specify options like colum

B

[+] First Row Contains Column Mames

ProductMa... ProductPrice ProductSize

Roast Coffee Medium

Lattee 3.5 Large

Cappuccing Large

Espresso Small

Column Opticns

Column Mame: |ProductName |

Data Type: | WVarChar{50) w |

Default Value: | |

Figure 16.79 — Setting the field size to 50

10. Once this is done, click Export data. If everything works correctly, you should see

that the operation completed successfully:

MySOL For Excel >

"YN\\ I Operation Completed Successfully

for Exced 'I Created the My50L Table “preducts” with data.
Press OK to continue.

Figure 16.80 — Confirmation that the table was completed successfully

Now that the table is added, we can work on adding and updating our product data

as required.

672 Appendix

11. Go to a new sheet, select products, and then the Import MySQL Data option:

MySQL For Excel ~ %
%\\} Local instance My5SQL80

root
for Excel localhost:3306
coffee_data

- Export Excel Data to New Table
%0 Create a new table and fill it with data

== Select Database Objects

LB 1)se CTRL or SHIFT for multiple selection.

|Ci.::=. Database Objects |
¥ Tables

P Views
P Procedures

=== Import MySQL Data
BES Add object's data at the current cell

Figure 16.81 - Importing the data from MySQL Connector

12. Once the data is imported, add the Americano record to the end of the document:

ProductName ~ ProductPrice = ProductSize -

Cappuccing 4.15 Large
Espresso 1.25 Small
Lattee 3.5 Large
Roast Coffee 1 Medium
Americano 3.5 Medium

Figure 16.82 - The new record added to the end of the table

Solution to Activity 12.1 673

13. Once the data is added, click on the Append Excel Data to Table option in MySQL
for Excel:

Import MySQL Data
BES Add object's data at the current cell

E:Iflh Edit MySQL Data

et Open a new sheet to edit table data

=~ Append Excel Data to Table
Add data to an existing MySQL Table

| Options | <Back | Close |

Figure 16.83 — The Append Excel Data to Table option
14. In the dialog that appears, click Append to add the record to the table:

Append Data - Sheet3 [A6:C6] *

Append Data to MySQL Table

wry 1. Choose Column Mapping Method wry 2. Manually Adjust Column Mapping
| Select how the Excel columns should be mapped to the - % Manually change the column mapping if needed. Click
MySOL table columns. a column in the upper table with the mouse and drag it

onto a column in the lower table.

Mapping Method: |pmduc|s_mapping (coffee_dat: V|

[First Row Contains Colurmn Names This is a small subset of the data for preview purposes only.

| |
meriano 35— |edon |

FroductMame | ProductPrice | ProductSize
Americano 3.50 Medium
Cappuccing 415 Large
Espresso 1.25 Small
Lattee 3.50 Large
Roast Coffee |1.00 Medium

. Unmapped Columns . Mapped Columns

Sre e | [gpens] [cane

Figure 16.84 - The append Excel data dialog

674 Appendix

15. If the operation completes successfully, you will see the dialog shown here:

MySCL For Excel >
T\\ Operation Completed Successfully

for Exced v Appended Excel data successfully to MySCOL Table “products’,
Press OK to continue.

Show Details

Figure 16.85 - The success notice

Solution to Activity 13.1

In this activity, you will find the list of the heads of state of all monarchies. The data will be
fetched in the CSV format so that you can load it in Excel and later incorporate it into an
article. Follow these steps to complete this activity:

1. Open the MySQL client and connect to the wor1d database:

USE world

This query produces the following output:

mysql> USE world
Database changed

Figure 16.86 — The USE output

2. Select the columns we need and filter out the monarchies:

SELECT Name, HeadOfState FROM country
WHERE GovernmentForm LIKE '$%Monarchy%';

Solution to Activity 13.1 675

3. Send the result to a file named monarchy. csv:

SELECT Name, HeadOfState FROM country

WHERE GovernmentForm LIKE 'S$Monarchy%'

INTO OUTFILE '/var/lib/mysqgl-files/monarchy.csv'
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"';

This query produces the following output:

mysql> SELECT Name, HeadOfState FROM country

-> WHERE GovernmentForm LIKE '%Monarchy%'

-> INTO QUTFILE '/var/lib/mysql-files/monarchy.csv'

-> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"';
Query OK, 43 rows affected (0.00 sec)

mysql> \! head /var/lib/mysql-files/monarchy.csv
"Antigua and Barbuda", "Elisabeth II"
"Australia","Elisabeth II"
"Belgium","Albert II"

"Bahrain", "Hamad ibn Isa al-Khalifa"
"Bahamas", "Elisabeth II"
"Belize","Elisabeth II"
"Barbados","Elisabeth II"
"Brunei","Haji Hassan al-Bolkiah"
"Bhutan","Jigme Singye Wangchuk"
"Canada","Elisabeth II"

Figure 16.87 — The SELECT...INTO OUTFILE output for the head of state query
The resulting file has the following contents:

"Antigua and Barbuda","Elisabeth II"
"Australia", "Elisabeth II"
"Belgium", "Albert II"

"Bahrain", "Hamad ibn Isa al-Khalifa"
"Bahamas","Elisabeth II"
"Belize","Elisabeth II"

"Barbados", "Elisabeth II"
"Brunei","Haji Hassan al-Bolkiah"
"Bhutan", "Jigme Singye Wangchuk"
"Canada","Elisabeth II"

676 Appendix

"Denmark", "Margrethe II"

"Spain", "Juan Carlos I"

"United Kingdom", "Elisabeth II"

"Grenada", "Elisabeth II"
"Jamaica","Elisabeth II"

"Jordan", "Abdullah II"

"Japan", "Akihito"

"Cambodia", "Norodom Sihanouk"

"Saint Kitts and Nevig","Elisabeth II"
"Kuwait", "Jabir al-Ahmad al-Jdabir al-Sabah"
"Saint Lucia","Elisabeth II"
"Liechtenstein", "Hans-Adam II"

"Lesotho", "Letsie III"

"Luxembourg", "Henri"

"Morocco", "Mohammed VI"

"Monaco", "Rainier III"

"Malaysia", "Salahuddin Abdul Aziz Shah Alhaj"
"Netherlands", "Beatrix"

"Norway", "Harald V"

"Nepal", "Gyanendra Bir Bikram"

"New Zealand","Elisabeth II"

"Oman", "Qabus ibn Sa”id"

"Papua New Guinea","Elisabeth II"

"Qatar", "Hamad ibn Khalifa al-Thani"

"Saudi Arabia", "Fahd ibn Abdul-Aziz al-Sa ud"
"Solomon Islands","Elisabeth II"

"Sweden", "Carl XVI Gustaf"

"Swaziland", "Mswati III"

"Thailand", "Bhumibol Adulyadej"

"Tonga", "Taufa'ahau Tupou IV"

"Tuvalu", "Elisabeth II"

"Saint Vincent and the Grenadines","Elisabeth II"

"Samoa", "Malietoa Tanumafili II"

Solution to Activity 13.1

677

And this is what it looks like after opening the file in a spreadsheet application:

Piﬁ B
ntigua and Barbuda Elisabeth Il
2 |Australia "Elisabeth Il
3 |Belgium Albert I
4 |Bahrain Hamad ibn Isa al-Khalifa
5 |Bahamas Elisabeth Il
5 |Belize Elisabeth Il
7 |Barbados Elisabeth Il
2 |Brunei Haji Hassan al-Bolkiah
9 |Bhutan Jigme Singye Wangchuk
10 |Canada Elisabeth Il
11 [Denmark Margrethe Il
12 [Spain Juan Carlos |
13 [United Kingdom Elisabeth Il
14 |Grenada Elisabeth Il
15 |Jamaica Elisabeth Il
16 |Jordan Abdullah Il
17 |Japan Akihito
18 |Cambodia MNorodom Sihanouk
19 |Saint Kitts and Nevis Elisabeth Il
20 |Kuwait Jabir al-Ahmad al-Jabir al-Sabah
21 [Saint Lucia Elisabeth Il
22 |Liechtenstein Hans-Adam II
23 |Lesotho Letsie Il
24 |Luxembourg Henri
25 |Morocco Mohammed VI
26 |Monaco Rainier Il
27 |Malaysia Salahuddin Abdul Aziz Shah Alhaj
28 |Netherlands Beatrix
29 (Norway Harald V
30 |Nepal Gyanendra Bir Bikram
31 |New Zealand Elisabeth Il
32 |[Oman Qabus ibn Sa’id
33 |Papua New Guinea Elisabeth Il
34 |Qatar Hamad ibn Khalifa al-Thani
35 |Saudi Arabia Fahd ibn Abdul-Aziz al-Sa’ud
36 _|Solomon Islands Elisabeth Il
37 |Sweden Carl XVI Gustaf
38 |Swaziland Mswati Il
39 |Thailand Bhumibol Adulyadej
40 (Tonga Taufa'ahau Tupou IV
41 |Tuvalu Elisabeth Il
42 |Saint Vincent and the Grenadines Elisabeth |
43 [Samoa Malietoa Tanumafili Il

Figure 16.88 — monarchy.csv loaded into a spreadsheet application

While this activity seems easy, it is easy to make a mistake here. This is because an
exact match on Monarchy would not match all monarchies, as there are seven
government forms used in the database that are monarchies.

678 Appendix

4. Show the different government forms with the following query:

SELECT GovernmentForm FROM country
WHERE GovernmentForm LIKE 'S3%Monarchy%'
GROUP BY GovernmentForm;

This query produces the following output:

mysql> SELECT GovernmentForm FROM country
-> WHERE GovernmentForm LIKE '%Monarchy%'
-> GROUP BY GovernmentForm;

Constitutional Monarchy
Constitutional Monarchy, Federation |

Monarchy (Emirate)

Monarchy (Sultanate)

Monarchy

Constitutional Monarchy (Emirate)
Parlementary Monarchy

rows in set (0.00 sec)

Figure 16.89 — The SELECT output to show government forms that are monarchies

By using the INTO OUTFILE clause of the SELECT statement, you were able to export
data to a CSV file that can be used in a spreadsheet application or loaded into a different
application or database. You were, thereby, able to limit your export to only the columns
you needed.

Solution to Activity 14.1

Perform the following steps to achieve the goal of this activity:

1. Connect to the database server. As you will be working with the wor1d database,
write the following:

USE world

Again, there is no need to connect to a specific schema; just connect with an account
that has enough permissions to give out grants.

Solution to Activity 15.1

679

2. Create roles for manager and language expert and grant permissions to
language expert:

CREATE ROLE 'manager';

GRANT ALL ON world.* TO 'manager';

CREATE ROLE 'language expert';

GRANT ALL ON world.countrylanguage TO 'language expert';

3. Create an account for webserver and grant permissions to the user created for
webserver:

CREATE USER 'webserver'@'$' IDENTIFIED BY
'ltwedByutGiawWy' ;

GRANT SELECT ON world.* TO 'webserver'@'$%';

4. Create an account for intranet and grant permissions to the user created
for intranet:

CREATE USER 'intranet'@'%' IDENTIFIED BY 'JiarjOodvVavit';

GRANT INSERT, UPDATE, SELECT ON world.* TO
'intranet'@'%';

5. Create an account for stewart:

CREATE USER 'stewart'@'$%'
IDENTIFIED BY 'UkfejmuniadBekMow4 '
DEFAULT ROLE manager;

6. Create an account for sue:

CREATE USER 'sue'@'%'
IDENTIFIED BY 'WrawdOpAncy'
DEFAULT ROLE language_ expert;

Solution to Activity 15.1

Perform the following steps to achieve the goal of this activity:

1. Open Command Prompt.

2. Locate and execute the mysgldump . exe file.

680 Appendix
3. Create a backup of the wor1ld schema by writing the following code in
Command Prompt:
mysgldump -u root -p world > "C:\Users\bhaveshb\Desktop\
world backup.sqgl"
In the preceding code, you invoked mysgldump and specified the wor1d schema
as the only schema you want to back up. Depending on your configuration, you
may have to use -u, -p, and other options to specify the credentials to connect
to the database.
4. Simulate a disaster. Open the MySQL client and use the wor1d database by writing
the following code:
USE world
5. Now, delete all the rows from the city table present in the world database. This
can be done using the following query:
DELETE FROM city;
6. To check that all the rows have been deleted from the city table, use the SELECT
command:
SELECT * FROM city;
The preceding code returns the following output:
Empty set (0.00 sec)
Figure 16.90 - The empty values in the city table
As you can see from the figure here, the data inside the table has been wiped out and
shows zero results.
7. Now, get back to Command Prompt and restore the wor1d schema by writing the
following code:
mysgl -u root -p world < "C:\Users\bhaveshb\Desktop\
world backup.sqgl"
This allows us to restore our data.
8. To verify whether the data has been restored correctly, switch back to the MySQL

client and type the following command:

SELECT COUNT (*) FROM city;

Solution to Activity 15.2

681

The preceding code produces the following output:

1 row in set (0.20 sec)

Figure 16.91 - The total rows in the city table after restoring

Solution to Activity 15.2

Perform the following steps to achieve the goal of this activity:

1. Open the MySQL client and write the following command to ensure that you
have a clean start position. This is not a required step, but it does make it easier
to follow along:

RESET MASTER;

This removes all the existing binlog files and starts from a freshly created binlog.

2. Open Command Prompt.

Locate and execute the mysgldump . exe file.

4. Create a backup of the wor1d schema by writing the following code in Command

Prompt:

mysgldump --master-data=2 -u root -p world > "C:\Users\
bhaveshb\Desktop\backup world pitr.sgl"

Here, you specified - -master-data=2 to record the binlog position of
the backup.

5. Switch back to the MySQL client and make some changes in the city table of the

world database:

USE world

UPDATE city SET Population=123456789 WHERE name =
'Toulouse';

The value here is something you can easily recognize after restoring. If you were to

restore the backup without doing a point-in-time restore, then this change would be

gone, as it was made after the backup.

682 Appendix

6. Now, simulate a disaster by deleting all the records from the city table:
DELETE FROM city;

7. View the MASTER LOGS by writing the following query:
SHOW MASTER LOGS;

The preceding code produces the following output:

Figure 16.92 - The results of the master logs

8. Find the binlog data to restore:
SHOW BINLOG EVENTS IN 'binlog.000001';

The preceding code produces the following output:
[- . . N +
Log_name Event_type | Server_id | End_log_pos
o o
PPMUMCPU@©32-bin.000001 Format_desc |] Server ver: 8.0.19, Binlog ver: 4
PPMUMCPU@@32-bin.000001 Previous_gtids |

PPMUMCPU©0@32-bin.000001] Anonymous_Gtid | SET @@SESSION.GTID_NEXT= 'ANONYMOUS'

PPMUMCPU@@32-bin.000001 Query | BEGIN

PPMUMCPU@©32-bin.000001 Table_map | table_id: 331 (world.city)
PPMUMCPU©@®32-bin.000001 Update_rows | table_id: 331 flags: STMT_END_F
PPMUMCPU@®32-bin.000001 Xid | COMMIT /* xid=20421 */

PPMUMCPU@@32-bin.000001 Anonymous_Gtid | SET @@SESSION.GTID_NEXT= 'ANONYMOUS' |

Figure 16.93 - Inspecting the binlog contents to find the position to restore to

In this output, you can see that the last event before DELETE ended at a position
of 522.

Solution to Activity 15.2 683

10.

11.

12.

Take all the changes between the start of the file and the position you found. You can
do this because you initially used RESET MASTER. This is very similar to what you
would have done if you had used the - -f1ush-1logs option for mysgldump.In
that case, you could have started from the beginning of the file but would have had
to find the right file by looking at the CHANGE MASTER TO line at the beginning
of the backup file. Open Command Prompt and inspect the binlog file we created.
By default, the binlog file will be stored in the C: \ProgramData\MySQL\
MySQL Server 8.0\Data path:

mysglbinlog -u root -p --skip-gtids --stop-position=522
"C:\ProgramData\MySQL\MySQL Server 8.0\Data\PPMUMCPU0032 -
bin.000001" > "C:\Users\bhaveshb\Desktop\restore world
pitr.sqgl"

Restore the backup world pitr.sql backup file by writing the following
command in Command Prompt:

mysgl -u root -p world <
"C:\Users\bhaveshb\Desktop\backup world pitr.sqgl"

Reapply the changes that occurred between backup creation and the time of the
disaster by writing the following command:
mysgl -u root -p <

"C:\Users\bhaveshb\Desktop\restore world pitr.sqgl"

Switch back to the MySQL client and verify that the data has been restored by
writing the following query:

SELECT * FROM city WHERE name = 'Toulouse';

The preceding code produces the following output:

+------ tommm - - - o m e .
| Name | CountryCode | District
- - - - - - e B o

| 2977 | Toulouse | FRA | Midi-Pyrénées
- - - - - Fmmmm - Fmmmm e fmmmm oo
1 row in set (0.03 sec)

Figure 16.94 - Inspecting the change that we made before

A

Absolute (ABS) function 408
access denied error 265
accidental data deletion
recovering from 240
accounts
exploring 569
ACID compliance
about 16
atomicity 16
consistency 16
durability 17
isolation 16

ActiveX Data Objects (ADO) 426

Adobe Acrobat 429
ADO data type 428
album sales data

pivot tables, creating 498-510

alter queries 240
application layer
about 14
authentication 14
connection, handling 14
security 14

Index

application programming
interface (API) 425
artist track sales chart
activity, solution 662-667
creating 461, 464
autoclub database
backing up 86-88
creating 33
EER model, creating from 61-67
restoring 89-91
Auto-Increment (AI) option 37
auto-running function 451

backups
about 588,589
creating, with mysqldump 593, 594
creating, with mysqlpump 596
full restore 599
partial restore 599
performing 591
scheduling 596-598

Bad Bits form
about 401, 402
demonstration 402-404

686 Index

binlog contents

inspecting, with mysqlbinlog 605
binlog files

point-in-time recovery,

using with 601-603

blobs

about 118

image files, adding 119, 120
blocking query 297
Boyce-Codd Normal Form (BCNF) 19

C

case statement

about 152

writing 153,154
centralized database 6
charts

about 452

code, running on changes

to document 456

Genre Sales chart 452

Genre Sales chart data, loading 453-456
chinook database

about 415,416

reference link 415
Chinook Music Downloads 494
Chinook.sql file

reference link 416
client connection 14
collections 163
command-line interface (CLI)

about 251

MySQL, accessing through 32
comma-separated values (CSV)

about 425

data, loading from 533-536

Common Table Expressions (CTEs)
about 159,173,174
recursive 174-178
using 178-181
computer DSN 313
connection
creating, with MySQL
Workbench GUT 27-31
issues, troubleshooting 583, 584
creation queries 240
CSV storage engine
using, to export data 539-542
using, to import data 542-545
customer database
designing 326, 327
design activity, solution 642-648

D

data

aggregating 147-152
deleting, from tables 116,117
displaying, in browsers 304-306
exporting, with CSV storage

engine 539-542
formatting, to web browser 307-311
functions, using 138
importing, with CSV storage

engine 542-545
inserting, with MySQL for Excel 484
loading, from CSV file 533-536
loading, from JSON file 536-539
loading, from SQL file 527,528
loading, from SQL file and 528-530
organizing, in relational format 11, 12
processing, across tables 160
pushing, from Excel 494

Index 687

reading, from MySQL with VBA 440
updating, in record 113
updating, in views 206
updating, with MySQL for Excel 488
working with 85
data access 420
database application
building, with Node.js 276-278
build activity, solution 632-636
database management
with Node.js 234
database management systems (DBMS) 7
database model
managing, with EER diagram 67-77
managing, with forward
engineering 67-77
database normalization basics
reference link 20
database objects
about 200
architecture 5,6
creating 32
developing 24
exploring 200
modifying 81
restoring 239
reverse engineering 58-60
tables 200
views 200
databases
about 4
advantage 5
backing up 86
creating 92-94
files, storing 118
image file paths, adding 126, 127
images, storing 118
maintaining, with SQL code 92

Node.js, used for interacting with 282
restoring 89
tables, creating 95-99
tables, modifying 95
using 4
working with, SQL used 84
database systems type
DBMS 6
RDBMS 6
data breaches
reference link 569
Data Definition Language (DDL) 15
Data Export tool 238
Data Manipulation Language (DML) 15
data modeling 17,18
data modeling, concepts
foreign key 17
primary key 17
data preparation 516
data querying 130
Data Source Name (DSN) 377,414 312
data types
date and time data types 10
numeric data types 10
string data types 10
using, in MySQL 10
date and time data types
about 10
reference link 10
date and time functions 142-144
delete queries 240
dependent subqueries 170,171
Developer menu 417
Developer tab
activating 417-420
development MySQL server
creating 236,237
installing 235,236

688 Index

document Excel VBA structure
about 523 code module, creating 422-425
inserting 523-525 Excel project, preparing 421
inserting, into table 525-527 exploring 421
drop query worksheets 421
using 117,118 EXPLAIN
DSN connection function query performance, analyzing 182-188
creating 467-474 using 189-195
DSN-less connection EXPLAIN ANALYZE 188,189
cons 439
pros 439 F
DSN structures
about 313 fetched results
computer DSN 313 filtering 133-136
DSN-less 314 field properties
file DSN 313,314 adjusting 344-347
ODBC drivers 315 file DSN
system DSN 313 about 313,314
user DSN 313 connections, creating to world_
statistics database 323-326
E file path
storing 121-123
EER model working with 123-126
creating, from autoclub database 61-67 First Normal Form (1NF) 19
modifying 81 flush privileges 578
Enhanced Entity-Relationship foreign key relationship 100
(EER) diagram foreign keys
modifying 81 about 51
used, for managing database creating 53-58
model 67-77 creating, with SQL queries 99
Excel defining 100
about 414 options, for maintaining
data, pushing to MySQL table 494-498 data integrity 52,53
MySQL connections, creating 480 setting, in Workbench 45
form

unbinding, from linked table 410

Index 689

forward engineering

used, for managing database
model 67-77

full restore 590, 599

functions
calling 380, 381
creating 380, 381
date and time functions 142-144
math functions 138-140
string functions 140-142
using 144-147
using, on data 138

function to count create activity
solution 652-654

G

gender statistics query
converting, to passthrough
queries 377,378
General Data Protection
Regulation (GDPR) 588
generated columns
using, to query and index
JSON data 563, 564
generic data read function
creating 476-479
exploring 475
Genre dropdown 447-450
Genre Sales chart
about 453
data, loading 453-456
Global Transaction Identifiers
(GTIDs) 602
Graphical User Interface (GUI) 332
GTID format 603-605

H

Health Insurance Portability and
Accountability Act (HIPAA) 588

image file paths

adding, to database 126,127
image root folder 123
index

about 45

applying, to multiple columns 49, 50

creating 46-49

types 45
indexes

creating, with SQL queries 99, 100
INNER JOIN

versus LEFT JOIN 164-168
INOUT parameter

about 215

working with 215
IN parameter

about 215

working with 215
integrated development

environment (IDE) 372

Internet Protocol (IP) 373

J

JavaScript
using Node.js 243,244

JavaScript Object Notation (JSON)
about 523
data, querying with SQL 561, 562

690 Index

job statistics query
converting, to passthrough
queries 377,378
joins
about 163
accidental cross joins 163, 164
JS mode
MySQL Shell, using to insert
values 521-523
JSON API integration 244
JSON documents
filtering 545-555
searching 545-555
JSON file
data, loading from 536-539
JSON functions
using, to query JSON columns 556-561

L

LAN ODBC connection
about 318
creating, to world_statistics
database 319-322
LEFT JOIN
versus INNER JOIN 164-168
library file extensions
Active X controls (OCX) 426
Dynamic-linked library (DLL) 426
Object Linking and Embedding
Type Library (OLE TLB) 426
linked MySQL tables
refreshing 368
linked tables
form, unbinding from 410
removing 410,412

list of years
generating 197
generation activity, solution 628-631
local ODBC connection 318
logical backup 590
logical layer
about 14
cache 15
MySQL services and utilities 14
optimizer 15
parser 15
SQL interface 15
lookup table (LUT) 377

M

mailing list
creating, with views 201-204
math functions 138-140
Microsoft Access (MS Access)
about 6,332, 333,372,417
application, migrating to MySQL 372
as database 6,7
Bad Bits form 401, 402
database, upsizing to MySQL 335-338
Microsoft (MS) Access database
application configurations 333
upsizing, to MYSQL 335
model changes
committing, to production database
with Synchronize Model 77-80
MS Access database to MySQL
migration, activity
solution 648, 649
MS Access IDE 420
MS Access tables
exporting, manually 340, 341

Index 691

MS Outlook 429
MS Visio 429
MS Word 429
multiple parameters stored procedure
country list 391-395
crosstab queries 396-401
dates activity, solution 659-661
date lists 395,396
multiple updates, in table activity
solution 637-641
multiple user accounts
usage, need for 570
MySQL
accessing, through
command-line interface (CLI) 32
connecting to 259, 260
connecting, with set of
credentials 569, 570
data types 10
exploring 9
MS Access application, migrating to 372
MS Access database, upsizing to 335
table, querying 131
task for MS Access application 334-338
MySQL architecture
exploring 12
MySQL-based Excel document activity
solution 667-674
mysqlbinlog
using, to inspect binlog contents 605
MySQL connection
about 466
modularizing 267-270
MySQL database
about 334
connecting, with ODBC 466
connection errors,
troubleshooting 263-266

preparing 338-340

setting up 415,416
MySQL database, with VBA

connecting to 431

connection function 434

connection function, creating 435-439

connection variable 432-434

setting up 431
mysqldump

about 591

using 591-593

using, to create backups 593, 594
MySQL Enterprise Backup 590
MySQL for Excel

about 414,480

connection, creating 482,483

data, inserting with 484

data, pushing from Excel 494

data, updating with 488-493

document, building 511

pivot tables 498

top 25 selling artists list,

inserting 484-488

working with 480, 481
MySQL functions

calling, with passthrough queries 379
MySQL ODBC 5.3.10 driver 339
mysqlpump

using 595

using, to create backups 596
MySQL server

connecting to 261-263

Workbench GUI, connecting to 27
MySQL server, layers

about 13

application layer 14

logical layer 14

physical layer 15

692 Index

MySQL Shell

using, to insert values in

JS mode 521-523

using, with X DevAPI 520, 521
MySQL stored procedures

activity, solution 654, 656

calling 382-385

creating 386, 387

using, in VBA 386, 387

activity, solution 654, 656
MySQL table

linking, to MS Access database 362-370
MySQL, with VBA

auto-running function 450,452

data, reading 440

Genre dropdown 447-450

ReadGenreSales 440-447
MySQL Workbench

used, for adding table to database 34-40

used, for importing SQL file 530-532
MySQL Workbench GUI

about 24,26

download link 25

used, for creating connection 27-31

N

Node.js

database application, building
with 276-278

database, creating 271,273
database, managing with 234
databases, creating 270
output, in console 253,254
outputs, testing in browser 254-256
outputs, writing to files 256,257
records, inserting 282-284
setting up 244-248

structure 251,253
tables, creating 273
tables, creating in database 274-276
using, for JavaScript 243,244
working with 248-251
writing, to disk file 257-259
non-transactional storage engines 16
normal forms 19
normalization 19
Not Null (NN) option 37
numeric data types
about 10
reference link 10

O

object-based databases 6
objects
importing, from SQL script file 40
ODBC connections
about 312,318,414
Developer menu 417
Developer tab, activating 417
exploring 417
LAN 318
local 318
remote 318
VBA IDE, activating 417
ODBC drivers
installation, verifying 315-318
Open Database Connectivity (ODBC)
about 377
preparing 338-340
operators
using, to query JSON columns 556-561
optimized table
creating, for employee project 21

Index 693

optimized table activity
solution 609-611

OUT parameters
working with 215

P

parameterized query 283
parameterized stored procedures
about 388
activity, solution 657,658
series list 388,390
parameters
using 387
parser, operations
code generation 15
lexical analysis 15
syntactic analysis 15
partial restore 591, 599
passthrough queries
about 372
activity, solution 649-651
gender and job statistics,
converting to 377,378

MySQL functions, calling 379, 380

simple SQL conversion,
performing 373-377

Payment Card Industry Data Security

Standard (PCI-DSS) 588
Percona XtraBackup 590
permissions

managing, with roles 582,583
modifying 578
revoking 579, 580

Personally Identifiable Information

(PII) 568,588

physical backup 590
physical layer 15
pivot tables
about 498-510
album sales data, importing for 498-509
point-in-time recovery
using, with binlog files 601-603
point-in-time restore
about 591
activity, solution 681-683
performing 607
Portable Document Format (PDF) 429
Primary Key (PK) option 37
private subroutines (private subs) 421
production database
about 235
model changes, committing with
Synchronize Model 77-80
public routines 421
public subroutines (public subs) 421

Q

queries
performance, analyzing with
EXPLAIN 182-188
working with 132,133

R

ReadGenreSales 440-447

read queries 240

record
adding, to members table 110-113
adding, to table 110
data, updating 113-115

694 Index

records, in Node.js
inserting 282-284
inserting, into table 284-288
multiple fields, inserting 292,293
multiple records, inserting
into table 288-291
multiple updates, performing 302, 303

populating, from existing tables 293-296

single record, updating 298-301
updating, within table 296,297
recursive CTE 174-178
referential integrity 52
relational-based databases 6
Relational Database Management
System (RDBMS) 8,332
relational database structure
creating 11, 12
relational model, properties
customer data 11
order data 11
remote ODBC connection
about 318
creating, to world_statistics
database 319-322
report data, exporting to CSV for Excel
about 565
activity, solution 674-678
REST 244
restore
types 590
results
filtering 136,138
reverse engineering
as database 58,60
roles
using 581, 582
using, to manage permissions 582,583

S

Sakila video store
activity 195
activity, solution 624-628
schema-less 516
Second Normal Form (2NF) 20
single schema
backing up 606, 607
backup, restoring 600
restoring 606, 607
Sixth Normal Form (6NF) 19
snapshot 590
SQL
used, for querying JSON data 561, 562
SQL client development, best practices
backing up, before making
changes 237,239
database, restoring 239,240
development MySQL server,
creating 236,237
development MySQL server,
installing 235,236
recovering, from accidental
data deletion 240
records, deleting 241-243
SQL code
database, maintaining with 92
SQL file
data, loading from 527,528
importing, with MySQL
Workbench 530-532
SQL queries
foreign keys, creating with 99, 100
indexes, creating with 99

Index 695

SQL script file
objects, importing from 40
tables, importing from 41-45
SQL statements, types
database maintenance 85
data manipulation 85
destructive 85
system 85
storage engine layer 15
storage engines
about 16
ACID compliance 16
non-transactional storage engines 16
reference link 17
transactional storage engines 16
stored procedures
about 211,221
creating 212,213
INOUT parameter, using 216-220
IN parameter, using 216-220
parameters, passing 213-215
working with 211
string data types
about 10
reference link 10
string functions 140-142
Structured Query Language
(SQL) 372,416
subqueries
analyzing 169, 170
dependent subqueries 170,171
using 171-173
Synchronize Model
used, for committing model changes
to production database 77-80
system DSN 313

T

table indexes
setting, in Workbench 45
table queries
altering 106
querying in MySQL 131
tables
creating 95
creating, with foreign keys 100-106
creating, with indexes 100-106
creating, with SQL statements 95-98
data, adding 110
data, deleting 116,117
importing, from SQL script file 41-45
joining 160-163, 168, 169
migrating, manually 345-347
migrating, with wizards 348, 349
modifying 95,107-109
record, adding to members
table 110-113
querying in MySQL 131
upsizing, manually 341-344
upsizing, with Workbench
Migration Wizard 349-361
Third Normal Form (3NF) 20
timeout error 264
transactional storage engines 16
transactions
implementing 229,230
using 228,229
travel magazine
activity, solution 623, 624
information, collecting 154, 155
triggers
about 221,222
advantages 221

696 Index

creating, to enforce business
rules 222-227

disadvantages 222

exploring 221

restrictions 222

U

unbound forms 404-409
user-defined function (UDF)
about 207
components 207-210
creating 208-211
working with 207,208
user DSN 313
user permissions 568, 569
users
creating 570-576
creating, to manage world schema 585
dropping 570, 571
exploring 569
inspecting 572-575
modifying 570-580
permissions, granting 571-576
users, for managing the world
schema activity
solution 678,679

\'

V8 243
values
inserting, with MySQL Shell
in JS mode 521-523
VARCHAR() datatype 38
VBA code 414
VBA IDE 420

VBA libraries
learning 426
library, referencing 426-429
worksheets, inserting 429-431
views
about 206
activity solution 631, 632
data, updating 206
mailing list, creating with 201-204
updatable 204,205
working with 201
Visual Basic 6 (VB6) 426
Visual Basic for Applications (VBA)
about 332
MySQL database, connecting to 431
MySQL stored procedures,
using 386, 387
used, for reading data from MySQL 440

W

web browsers

data, displaying 304-306

data, formatting 307-311
wizards

used, for migrating tables 348,349
Workbench GUI

connecting, to MySQL server 27
Workbench Migration Wizard

using, to upsize table 349-361
Worksheet_Change function

about 456

detecting with 456-460

working with 456-460
world schema

back up and restore activity,

solution 679, 680
managing, by creating users 585

Index 697

X

X DevAPI
example 520
MySQL Shell, using with 520, 521
working with 516-520

XLSB file 426

X protocol 517

Y

Yes/No fields 401

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

+ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

 Improve your learning with Skill Plans built especially for you
+ Geta free eBook or video every month
« Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

700 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Advanced
MySQL 8

MySQL and ensure high performance

Advanced MySQL 8

Eric Vanier, Birju Shah, Tejaswi Malepati

ISBN: 978-1-78883-444-5

Explore new and exciting features of MySQL 8.0

Analyze and optimize large MySQL queries

Understand MySQL Server 8.0 settings

Master the deployment of Group Replication and use it in an InnoDB cluster
Monitor large distributed databases

Discover different types of backups and recovery methods for your databases

Explore tips to help your critical data reach its full potential

https://packt.link/9781788834445

Other Books You May Enjoy 701

MySQL 8
Administrator's
Guide

Effective guide to administering high-performance MySQL 8 solutions

MySQL 8 Administrator's Guide
Chintan Mehta, Subhash Shah, Ankit Bhavsar, Hetal Oza
ISBN: 978-1-78839-519-9

 Understanding different MySQL 8 data types based on type of contents and
storage requirements

 Best practices for optimal use of features in MySQL 8

« Explore globalization configuration and caching techniques to improve performance
» Create custom storage engine as per system requirements

o Learn various ways of index implementation for flash memory storages

« Configure and implement replication along with approaches to use replication
as solution

+ Understand how to make your MySQL 8 solution highly available

 Troubleshoot common issues and identify error codes while using MySQL 8

https://packt.link/9781788395199

702

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.
packtpub. com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished The MySQL Workshop, we'd love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon
review page for this book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-839-21490-2
https://packt.link/r/1-839-21490-2

	Cover
	Title page
	Copyright and credits
	Contributors
	About the reviewer
	Table of Contents
	Preface
	Section 1:
Creating Your Database
	Chapter 1: Background Concepts
	Introducing databases
	Database architecture
	MS Access as a database
	Database management system
	RDBMS

	Exploring MySQL
	Data types

	Exercise 1.01: Organizing data in a relational format
	Exploring MySQL architecture
	The MySQL layers

	Storage engines (InnoDB and MyRocks)
	ACID compliance

	Data modeling
	Normalization
	Activity 1.01: Creating an optimized table for an employee project
	Summary

	Chapter 2: Creating a Database
	Developing databases
	The MySQL Workbench GUI
	Connecting the Workbench GUI to MySQL
	Exercise 2.01 – creating a connection with the MySQL Workbench GUI

	Accessing MySQL through the
command-line interface
	Creating a database
	Exercise 2.02 – creating the autoclub database

	Using Workbench to add a table
	Importing objects from a SQL script file
	Exercise 2.03 – importing tables from an SQL script file

	MySQL table indexes and foreign keys
	Indexes
	Exercise 2.04 – creating an index
	Indexes on multiple columns
	Foreign keys
	Exercise 2.05 – creating a foreign key

	Reverse engineering a database
	Exercise 2.06 – creating an EER model from the autoclub database
	Exercise 2.07 – using the EER diagram and forward engineering to manage the database model
	Exercise 2.08 – committing model changes to the production database with Synchronize Model

	Activity 2.01 – modifying the EER diagram, the model, and the database
	Summary

	Chapter 3: Using SQL to Work with a Database
	An introduction to working with databases using SQL
	Working with data
	Types of SQL statements

	Backing up databases
	Exercise 3.01 – Backing up the autoclub database

	Restoring databases
	Exercise 3.02 – restoring the autoclub database

	Working with SQL code to maintain a database
	Creating a new database
	Exercise 3.03 – creating a new database

	Creating and modifying tables
	Exercise 3.04 – creating a new table

	SQL queries to create indexes and foreign keys
	Exercise 3.05 – creating tables with indexes and foreign keys

	Activity 3.1 – creating a table with indexes and foreign keys
	Altering table queries
	Exercise 3.06 – modifying an existing table

	Adding data to a table
	Exercise 3.07 – adding a single record to a members table

	Updating data in a record
	Exercise 3.08 – updating a record

	Deleting data from tables
	Drop queries

	Blobs, files, and file paths
	Exercise 3.09 – files and blobs
	Files and file paths

	Activity 3.2 – adding image file paths to the database
	Summary

	Chapter 4: Selecting, Aggregating, and Applying Functions
	An introduction to querying data
	Querying tables in MySQL
	Exercise 4.01 – working with simple queries
	Filtering results
	Exercise 4.02 – filtering results
	Using functions on data
	Math functions
	String functions
	Date and time functions

	Exercise 4.03 – using functions
	Aggregating data
	Exercise 4.04 – aggregating data
	Case statements
	Exercise 4.05 – writing case statements
	Activity 4.01 – collecting information for a travel article
	Summary

	Section 2:
Managing Your Database
	Chapter 5: Correlating Data across Tables
	Introduction to processing data across tables
	Joining two tables
	Accidental cross joins
	LEFT JOIN versus INNER JOIN
	Exercise 5.01: Joining two tables

	Analyzing subqueries
	Dependent subqueries
	Exercise 5.02: Using a subquery

	Common table expressions
	Recursive CTE
	Exercise 5.03: Using a CTE

	Analyzing query performance with EXPLAIN
	Exercise 5.04: Using EXPLAIN

	Activity 5.01: The Sakila video store
	Activity 5.02: Generating a list of years
	Summary

	Chapter 6: Stored Procedures and Other Objects
	Introduction to database objects
	Exploring various database objects
	Working with views
	Exercise 6.01 – creating a mailing list with a view
	Updatable views

	Activity 6.01 – updating the data in a view
	Working with user-defined functions
	Exercise 6.02 – creating a function

	Working with stored procedures
	Exercise 6.03 – creating a stored procedure
	Exercise 6.04 – stored procedures and parameters

	Working with IN, OUT, and INOUT
	Exercise 6.05 – IN and INOUT

	Exploring triggers
	Advantages of triggers
	Disadvantages of triggers
	Restrictions with triggers
	Exercise 6.06 – triggers to enforce business rules

	Using transactions
	Exercise 6.07 – implementing a transaction

	Summary

	Chapter 7: Creating Database Clients in Node.js
	Introduction to database management
with Node.js
	Best practices for SQL client development
	Installing a development MySQL server
	Creating a development MySQL server
	Backing up before making changes
	Restoring a database
	Recovering from accidental data deletion
	Exercise 7.01 – safely deleting records

	JavaScript using Node.js
	Setting up Node.js
	Getting started with Node.js
	Basics of Node.js
	Exercise 7.02 – basic output in the console
	Exercise 7.03 – testing outputs in a browser
	Writing outputs to files
	Exercise 7.04 – writing to a disk file

	Connecting to MySQL
	Exercise 7.05 – connecting to the MySQL server
	Troubleshooting connection errors
	Modularizing the MySQL connection
	Exercise 7.06 – modularizing the MySQL connection
	Creating databases in Node.js
	Exercise 7.07 – creating a new database
	Creating tables in Node.js
	Exercise 7.08 – creating a table in a database

	Activity 7.01 – building a database application with Node.js
	Summary

	Chapter 8: Working with Data Using Node.js
	Interacting with databases
	Inserting records in Node.js
	Exercise 8.01 – inserting a record into a table
	Inserting multiple records
	Exercise 8.02 – inserting multiple records into a table
	Inserting with multiple fields
	Exercise 8.03 – populating records from the
existing tables

	Updating the records of a table
	Exercise 8.04 – updating a single record

	Activity 8.01 – multiple updates
	Displaying data in browsers
	Exercise 8.05 – formatting data to the web browser

	ODBC connections
	Types of DSNs
	Determining whether ODBC drivers have been installed
	Local, LAN, and remote ODBC connections
	Exercise 8.06 – creating a LAN or remote DSN/ODBC connection to the world_statistics database
	Creating file DSN/ODBC connections

	Activity 8.02 – designing a customer database
	Summary

	Section 3:
Querying Your Database
	Chapter 9: Microsoft Access – Part 1
	Introduction to MS Access
	MS Access database application configurations
	Upsizing an MS Access database to MySQL
	Exercise 9.01 – preparing your MySQL database
and ODBC

	Manually exporting MS Access tables
	Exercise 9.02 – manually upsizing a table

	Adjusting field properties
	Exercise 9.03 – manually migrating tables and adjusting their field properties

	Migrating with wizards
	Exercise 9.04 – using the Workbench Migration Wizard to upsize the table

	Linking to your tables and views
	Exercise 9.05 – linking a good MySQL table to Access
	Exercise 9.07 – linking a problematic MySQL table
to Access

	Refreshing linked MySQL tables
	Activity 9.01 – linking the remaining MySQL tables to your MS Access database
	Summary

	Chapter 10: Microsoft Access – Part 2
	Introduction to MS Access
	Migrating an MS Access application to MySQL
	Passthrough queries
	Exercise 10.01 – Passthrough (simple SQL conversion)

	Activity 10.01 – Converting gender and job statistics
	Calling MySQL functions
	Exercise 10.02 – Passthrough (calling MySQL functions)

	Activity 10.02 – Creating a function and
calling it
	Calling MySQL stored procedures
	Exercise 10.03 – Calling a MySQL stored procedure

	Activity 10.03 – Creating MySQL stored procedures and using them in VBA
	Using parameters
	Parameterized stored procedures
	Exercise 10.04 – Parameterized stored procedure (series list)

	Activity 10.04 – Parameterized stored procedure (series list)
	Exercise 10.05 – Multiple parameters stored procedure (country list)

	Activity 10.05 – Multiple parameters stored procedure (date list)
	Exercise 10.06 – Multiple parameters stored procedure (crosstab queries)

	The Bad Bits form
	Exercise 10.07 – Bad Bits demonstration
	Unbound forms
	Another way to unbind a form from a linked table
	Exercise 10.08 – Removing all linked tables

	Summary

	Chapter 11: MS Excel VBA and MySQL – Part 1
	Introduction to Excel
	Exercise 11.01 – Setting up a sample MySQL database

	Exploring the ODBC connection
	The Developer menu
	Exercise 11.02 – Activating the Developer tab and the VBA IDE

	Exploring the Excel VBA structure
	Preparing your Excel project
	Exercise 11.03 – Creating a code module

	Learning about VBA libraries
	Exercise 11.04 – Referencing a library
	Exercise 11.05 – Inserting worksheets

	Connecting to the MySQL database using VBA
	Setting the scene
	Exercise 11.06 – The connection variable
	Connection functions in VBA
	Exercise 11.07 – Creating a connection function

	Reading data from MySQL using VBA
	Exercise 11.08 – ReadGenreSales
	Exercise 11.09 – Genre dropdown
	Auto-running functions when opening a workbook
	Exercise 11.10 – Auto-running functions when opening a workbook

	Populating charts
	Populating a chart – Genre sales
	Exercise 11.11 – Loading Genre Sales chart data
	Running code on changes to a document
	Exercise 11.12 – Detecting and working with worksheet changes

	Activity 11.01 – Creating a chart (artist track sales)
	Summary

	Chapter 12: Working With Microsoft Excel VBA – Part 2
	An introduction to MySQL connections
	Connecting to the MySQL database using ODBC
	Exercise 12.01 – creating a DSN connection function

	Exploring generic data read functions
	Exercise 12.02 – a generic data reader

	Creating connections to MySQL in Excel
	Exercise 12.03 – creating a connection to MySQL

	Inserting data using MySQL for Excel
	Exercise 12.04 – inserting the top 25 selling artists

	Updating data using MySQL for Excel
	Exercise 12.05 – updating MySQL data – employees

	Pushing data from Excel
	Exercise 12.06 – pushing data from Excel to a new MySQL table

	Pivot tables
	Exercise 12.07 – album sales

	Activity 12.01 – building a MySQL-based Excel document
	Summary

	Section 4:
Protecting Your Database
	Chapter 13: Getting Data into MySQL
	An introduction to data preparation
	Working with the X DevAPI
	An example of the X DevAPI
	Using MySQL Shell with the X DevAPI
	Exercise 13.01 – inserting values with MySQL Shell
in JS mode

	Inserting documents
	Exercise 13.02 – inserting documents into a table

	Loading data from a SQL file
	Exercise 13.03 – loading data from a SQL file and viewing tables
	Exercise 13.04 – importing a SQL file using MySQL Workbench

	Loading data from a CSV file
	The SELECT…INTO OUTFILE Format
	The LOAD DATA INFILE…INTO format
	Exercise 13.05 – loading data from a CSV file

	Loading data from a JSON file
	Exercise 13.06 – loading data from a JSON file

	Using the CSV storage engine to export data
	Exercise 13.07 – utilizing the CSV storage engine to export data

	Using the CSV storage engine to import data
	Exercise 13.08 – utilizing the CSV storage engine to import data

	Searching and filtering JSON documents
	Exercise 13.09 – Searching collections and filtering documents

	Using JSON functions and operators to query JSON columns
	Exercise 13.10 – querying JSON data with SQL

	Using generated columns to query and index JSON data
	Activity 13.01 – Exporting report data to CSV for Excel
	Summary

	Chapter 14: Manipulating
User Permissions
	Introduction to user permissions
	Exploring users and accounts
	How to connect to MySQL with a set of credentials
	Creating, modifying, and dropping a user
	Granting permissions
	Inspecting users

	Exercise 14.01 – creating users and granting permissions
	Changing users
	Flush privileges
	Changing permissions
	Exercise 14.02 – modifying users and revoking permissions
	Using roles
	Exercise 14.03 – using roles to manage permissions
	Troubleshooting access problems
	Activity 14.01 – creating users for managing the world schema
	Summary

	Chapter 15: Logical Backups
	An introduction to backups
	Understanding the basics of backups
	Logical and physical backup
	Types of restore
	Performing backups
	Using mysqldump
	Exercise 15.01 – backup using mysqldump
	Using mysqlpump
	Exercise 15.02 – backing up using mysqlpump

	Scheduling backups
	Full restore
	Partial restore
	Exercise 13.03 – restore a single schema backup

	Using point-in-time recovery with binlog files
	GTID format
	Using mysqlbinlog to inspect binlog contents

	Activity 15.01 – backing up and restoring
a single schema
	Activity 15.02 – performing a point-in-time restore
	Summary

	Appendix
	Index

