

The Language
of SQL

Third Edition

Larry Rockoff

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Language of SQL, Third Edition
Copyright © 2022 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use of the infor-
mation contained herein.

ISBN-13: 978-0-13-763269-5

ISBN-10: 0-13-763269-X

Library of Congress Control Number: 2021947847

ScoutAutomatedPrintCode

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. The publisher cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corpo-
rate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief
Mark Taub

Acquisitions Editors
Kim Spenceley,
Chelsea Noack

Development
Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Senior Project
Editor
Tracey Croom

Project and Copy
Editor
Dan Foster

Indexer
Valerie Haynes
Perry

Proofreader
Scout Festa

Technical Reviewer
Julien Kervizic

Cover Designer
Chuti Prasertsith

Compositor
Danielle Foster

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Introduction xv

1 Relational Databases and SQL 1

2 Basic Data Retrieval 11

 3 Calculated Fields and Aliases 19

 4 Using Functions 27

 5 Sorting Data 43

 6 Selection Criteria 51

 7 Boolean Logic 65

 8 Conditional Logic 77

 9 Summarizing Data 85

 10 Subtotals and Crosstabs 111

11 Inner Joins 127

12 Outer Joins 135

13 Self Joins and Views 147

14 Subqueries 155

15 Set Logic 167

16 Stored Procedures and Parameters 175

 17 Modifying Data 183

 18 Maintaining Tables 193

 19 Principles of Database Design 201

20 Strategies for Using Excel 211

A Getting Started with Microsoft SQL Server 231

B Getting Started with MySQL 233

C Getting Started with Oracle 235

Index 237

This page intentionally left blank

Table of Contents

Introduction xv

1 Relational Databases and SQL 1

What Is SQL? 2

Microsoft SQL Server, MySQL, and Oracle 3

Relational Databases 4

Primary and Foreign Keys 6

Data Types 6

NULL Values 8

A Brief History of Databases 8

Looking Ahead 9

2 Basic Data Retrieval 11

A Simple SELECT 11

Syntax Notes 12

Comments 13

Specifying Columns 14

Column Names with Embedded Spaces 15

Preview of the Full SELECT 16

Looking Ahead 17

3 Calculated Fields and Aliases 19

Literal Values 20

Arithmetic Calculations 21

Concatenating Fields 22

Column Aliases 23

Table Aliases 25

Looking Ahead 25

4 Using Functions 27

What Is a Function? 27

Character Functions 28

Composite Functions 31

Date/Time Functions 32

Numeric Functions 35

Miscellaneous Functions 36

Looking Ahead 41

vi Table of Contents

5 Sorting Data 43

Sorting in Ascending Order 43

Sorting in Descending Order 45

Sorting by Multiple Columns 45

Sorting by a Calculated Field 46

Sort Sequences 47

Looking Ahead 49

6 Selection Criteria 51

Applying Selection Criteria 51

WHERE Clause Operators 52

Limiting Rows 53

Limiting Rows with a Sort 55

Pattern Matching 56

Matching by Sound 61

Looking Ahead 63

7 Boolean Logic 65

Complex Logical Conditions 65

The AND Operator 66

The OR Operator 66

Using Parentheses 67

Multiple Sets of Parentheses 68

The NOT Operator 69

The BETWEEN Operator 72

The IN Operator 73

Boolean Logic and NULL Values 74

Looking Ahead 75

8 Conditional Logic 77

The CASE Expression 77

The Simple CASE Format 78

The Searched CASE Format 80

Conditional Logic in ORDER BY Clauses 82

Conditional Logic in WHERE Clauses 83

Looking Ahead 84

viiTable of Contents

9 Summarizing Data 85

Eliminating Duplicates 85

Aggregate Functions 87

The COUNT Function 88

Grouping Data 90

Multiple Columns and Sorting 92

Selection Criteria on Aggregates 94

Conditional Logic in GROUP BY Clauses 96

Conditional Logic in HAVING Clauses 97

Ranking Functions 98

Partitions 103

Analytic Functions 105

Looking Ahead 109

10 Subtotals and Crosstabs 111

Adding Subtotals with ROLLUP 112

Adding Subtotals with CUBE 116

Creating Crosstab Layouts 120

Looking Ahead 125

11 Inner Joins 127

Joining Two Tables 128

The Inner Join 130

Table Order in Inner Joins 131

Implicit Inner Joins 131

Table Aliases Revisited 132

Looking Ahead 133

12 Outer Joins 135

The Outer Join 135

Left Joins 137

Testing for NULL Values 139

Right Joins 140

Table Order in Outer Joins 140

Full Joins 141

Cross Joins 143

Looking Ahead 146

viii Table of Contents

13 Self Joins and Views 147

Self Joins 147

Creating Views 150

Referencing Views 151

Benefits of Views 152

Modifying and Deleting Views 153

Looking Ahead 154

14 Subqueries 155

Types of Subqueries 155

Subqueries as a Data Source 156

Subqueries as Selection Criteria 159

Correlated Subqueries 160

The EXISTS Operator 163

Subqueries as a Calculated Column 164

Common Table Expressions 165

Looking Ahead 166

15 Set Logic 167

The UNION Operator 168

Distinct and Non-Distinct Unions 170

Intersecting Queries 171

Looking Ahead 173

16 Stored Procedures and Parameters 175

Creating Stored Procedures 176

Parameters in Stored Procedures 177

Executing Stored Procedures 178

Modifying and Deleting Stored Procedures 179

Functions Revisited 180

Looking Ahead 181

17 Modifying Data 183

Modification Strategies 183

Inserting Data 184

Deleting Data 187

Updating Data 188

ixTable of Contents

Correlated Subquery Updates 189

Looking Ahead 191

18 Maintaining Tables 193

Data Definition Language 193

Table Attributes 194

Table Columns 195

Primary Keys and Indexes 195

Foreign Keys 196

Creating Tables 197

Creating Indexes 200

Looking Ahead 200

19 Principles of Database Design 201

Goals of Normalization 202

How to Normalize Data 203

The Art of Database Design 207

Alternatives to Normalization 207

Looking Ahead 209

20 Strategies for Using Excel 211

Crosstab Layouts Revisited 211

External Data and Power Query 212

Excel Pivot Tables 216

Excel Pivot Charts 221

Excel Standard Charts 227

Looking Ahead 229

A Getting Started with Microsoft SQL Server 231

Installing Microsoft SQL Server 2019 Express 231

Installing Microsoft SQL Server Management Studio 18 232

Using Microsoft SQL Server Management Studio 18 232

Online Reference 232

B Getting Started with MySQL 233

Installing MySQL Community Server and Workbench 233

Using MySQL Workbench 234

Online Reference 234

x Table of Contents

C Getting Started with Oracle 235

Installing Oracle Database Express Edition 235

Installing Oracle SQL Developer 236

Using Oracle SQL Developer 236

Online Reference 236

Index 237

About the Author
Larry Rockoff has been involved with SQL and business intelligence development for many
years. His main area of interest is in using reporting tools to explore and analyze data in
complex databases. He holds an MBA from the University of Chicago and a BFA from the
University of Illinois.

In addition to writing about SQL, he has also published books on Microsoft Excel and Access.
His latest editions of those texts are Exploring Data with Excel 2019 and Exploring Data with
Access 2019.

He also maintains a website that features book reviews on technology topics, as well as broader
issues regarding technology and society:

larryrockoff.com

Please feel free to visit that site to contact the author with any comments or questions.

http://larryrockoff.com

This page intentionally left blank

Acknowledgments
A huge thanks goes out to all at Pearson who assisted with this book. I’d like to thank Kim
Spencer, who encouraged me to write a third edition, and Chelsea Noack, who oversaw and
guided me through the project, as well as the editors at Pearson who assisted with this project,
Tracey Croom, Chris Zahn, and Sandra Schroeder. I’d also like to thank project editor and copy
editor Dan Foster, who added some grace to my sentences, as well as Julien Kervizic, who did
a superb job on the technical review. As with the second edition, Chuti Prasertsith provided a
wonderfully vibrant cover design. Finally, I must mention the generally thankless tasks of the
book’s indexer, Valerie Haynes Perry; proofreader, Scout Festa; and compositor, Danielle Foster.

As this is a third edition, I’d also like to thank all readers of the first and second editions, and
especially those individuals who have contacted me at larryrockoff.com and offered gracious
comments as to the usefulness of the book in their personal lives. It’s both humbling and
thrilling to realize that one’s words and musings on a relatively mundane topic can assist
someone halfway around the world.

http://larryrockoff.com

This page intentionally left blank

Introduction

Structured Query Language (SQL) is the primary language used to communicate with
relational databases. The goal of this book is to serve as a useful introductory guide to this
essential language.

In an alternate universe, the title of this book might have been The Logic of SQL. This is
because, like all computer languages, the language of SQL has much more to do with cold
hard logic than with English vocabulary. Nevertheless, the word language has been retained in
the title for several reasons. First, a certain language-based syntax in SQL distinguishes it from
other computer languages. Unlike other languages, SQL employs many ordinary words, such
as WHERE and FROM, as keywords in its syntax.

In the spirit of the language embedded in SQL, we’ve adopted an emphasis on language in our
sequence of topics. With this book, you’ll learn SQL as you would learn English. SQL keywords
are presented in a logical progression, from simple to more complex. In essence, this is an
attempt to deal with language and logic simultaneously.

To learn any language, one must begin by hearing and remembering the words that form
the basis of its utterance. At the same time, those words have a certain meaning that must be
understood. In the case of SQL, the meaning has a great deal to do with logic.

One final reason for persisting with the title The Language of SQL rather than The Logic of SQL
is that it simply sounds better. While there can be few literary pretensions in this type of book,
the hope is that the presence of the word language in the title will generate some additional
enthusiasm for a subject that is, after all, quite interesting.

Topics and Features
Even if you’re not yet familiar with SQL, suffice it to say that it is a complex language with
many components and features. In this book, we’ll focus on one main topic:

• How to use SQL to retrieve data from a database

xvi Introduction

To a lesser extent, we will also cover:

• How to update data in a database

• How to build and maintain databases

• How to design relational databases

• Strategies for displaying data after it has been retrieved

Several features make this book unique among introductory SQL books:

• You will not be required to download software or sit with a computer as you read
the text.

Our intent is to provide examples of SQL usage that can be understood simply by reading
the book. The text includes small data samples that allow you to clearly see how SQL
statements work.

• A language-based approach is employed to enable you to learn SQL as you would
learn English.

Topics are organized in an intuitive and logical sequence. SQL keywords are introduced
one at a time, allowing you to build on your prior understanding as you encounter new
words and concepts.

• This book covers the syntax of three widely used databases: Microsoft SQL Server,
MySQL, and Oracle.

If there are any syntax differences between these databases, the Microsoft SQL Server
syntax is shown in the main text. Special “Database Differences” sidebars show and
explain any variations in the syntax for MySQL or Oracle.

• An emphasis is given to aspects of SQL relevant for retrieving data.

This approach is useful for those who need to use SQL only in conjunction with a
reporting tool. In our final chapter, we’ll move beyond pure SQL to cover strategies for
displaying data after it has been retrieved, including ideas on how to use crosstab reports
and pivot tables. In the real world, these types of tools can substantially lessen the
burden on the SQL developer and provide greater flexibility for the end user.

Note
Visit our website and register this book at informit.com/register for convenient access to
downloads, updates, or errata that may be available for this book.

What’s New in This Edition
Here are some of the new features of this third edition:

• Coverage of the latest database versions

All syntax and examples have been taken from the latest versions of the three main
databases covered in this book: Microsoft SQL Server 2019, MySQL 8.0, and Oracle 18c.

http://informit.com/register

xviiIntroduction

• Expanded coverage of common analytical tasks

The third edition adds new sidebars on common analytical tasks. While not essential
to learning the language, these topics cover useful calculations and procedures such as
calculating a median and creating fiscal calendars.

• Expanded coverage of functions

This edition adds several new date/time and numeric functions in Chapter 4, “Using
Functions.” Chapter 6, “Selection Criteria,” adds a discussion of functions that select
by sound. In Chapter 9, “Summarizing Data,” we have expanded our coverage of rank
functions and partitions by adding material on analytic functions—a useful topic for the
business analyst.

• Excel pivot charts

In Chapter 20, “Strategies for Using Excel,” we extend our discussion of Excel pivot tables
to also include charts and pivot charts. This is useful for the analyst who wants to extend
the power of SQL to visually explore data.

• New data sets

As in the prior editions, each chapter has its own small set of data to use as examples. In
this third edition, revised and updated data sets make this book more contemporary.

• Improved supplemental materials

The supplemental materials on the companion website have been reorganized with setup
scripts and SQL statements in separate files. These files are now organized by both table
and chapter, making it easier for you to find any desired SQL statement. In addition,
we’ve also added an Excel file with the source data seen in Chapter 20.

How This Book Is Organized
This book presents its topics in a unique sequence. The majority of SQL books run through
their topics as if you were a database administrator who needs to create and design a database
from scratch, then load the database with data, and then finally start to retrieve that data. In
this book, we start right off with data retrieval and then come around to database design in the
final chapters. This is done as a motivational tactic, allowing you to quickly get into interesting
topics related to data retrieval before having to deal with the more arcane subjects of indexes
and foreign keys.

The 20 chapters in the book can be broken down into several broad sections:

• Chapter 1 presents introductory material about relational databases that is necessary to
understand before encountering the SELECT statement.

• Chapters 2 through 5 begin an exploration of the SELECT statement, covering the basics
of calculations, functions, and sorting.

• Chapters 6 through 8 deal with selection criteria, from simple Boolean logic to
conditional logic.

• Chapters 9 and 10 explore ways to summarize data, from simple counts to more complex
aggregations and subtotals.

xviii Introduction

• Chapters 11 through 15 discuss ways to retrieve data from multiple tables via joins,
subqueries, views, and set logic.

• Chapters 16 through 18 move beyond the SELECT statement to focus on broader topics
associated with relational databases, such as stored procedures, updates, and table
maintenance.

• Finally, Chapters 19 and 20 bring us back to the basics of database design and then to
strategies for using Excel to further explore data beyond what is possible with SQL.

Appendixes A, B, and C provide information on how to get started with each of the three
databases covered in the book: Microsoft SQL Server, MySQL, and Oracle.

Companion Website
A listing of all SQL statements in this book can be found at this site:

• informit.com/registration/langofsql

These seven files are provided:

• Setup Script for Microsoft SQL Server

• Setup Script for MySQL

• Setup Script for Oracle

• SQL Statements for Microsoft SQL Server

• SQL Statements for MySQL

• SQL Statements for Oracle

• Chapter 20 Data

The three Setup Script files are TXT files that allow you to run a single script that will generate
all the sample data used in this book. Instructions on how to execute the setup scripts are
provided within each of the files.

The three SQL Statements files are TXT files that list all SQL statements in the book for each of
these databases. After running the setup script, you will be able to execute statements found in
the book and see the same output.

The Chapter 20 Data file is an Excel spreadsheet with the source data referenced in that chapter.

http://informit.com/registration/langofsql

1
Relational Databases

and SQL

As mentioned in the Introduction, SQL is the most widely used software tool for communicating
with data residing in relational databases. In this endeavor, SQL utilizes elements of both
language and logic. As a language, SQL employs a unique syntax with many English words,
such as WHERE, FROM, and HAVING. As an expression of logic, it specifies the details of how
data in a relational database is retrieved or updated.

With this duality in mind, we attempt to emphasize both language and logic components as we
present the topics that make up SQL. In all languages, whether they be spoken or in computer
code, there are numerous words to learn and remember. As such, we will present the various
SQL keywords one at a time in a logical sequence. As we progress through each chapter, you’ll
build on your prior vocabulary to learn new keywords and exciting possibilities for interactions
with a database.

In addition to the words themselves, we’ll also consider logic. The words employed by SQL have
a distinct logical meaning and intent. The logic of SQL is just as important as the language. As in
all computer languages, there is frequently more than one way to specify any desired objective.
The nuances of what is possible encompass both the language and logic involved.

Let’s start with the language. Once you become familiar with the syntax of SQL, you might find
yourself thinking of SQL commands as analogous to English sentences and having a certain
expressive meaning.

For example, compare this sentence:

I would like a blueberry muffin
from your pastries menu,
and please heat it up.

with this SQL statement:

Select city, state
from Customers
order by state

2 Chapter 1 Relational Databases and SQL

We’ll get into the details later, but this SQL statement means that we want the city and state
fields from a database table named Customers, and we want the results sorted by state.

In both cases, we’re specifying which items we want (muffin or city/state), where we want it
from (pastries menu or Customers table), and some extra instructions (heat it up, or sort the
results by state).

But before we get started, let’s address one minor point: how to pronounce the word SQL. It
turns out that there are two choices. One option is to simply to say it as individual letters, like
“S-Q-L.” Another possibility, preferred by the author, is to pronounce it as the word “sequel.”
This is one less syllable and a little easier to say. However, there’s no real agreement on the
question; it’s basically a matter of personal preference.

As for what the letters SQL mean, most would say that they stand for “Structured Query
Language.” However, even here, there is not total agreement. Some would argue that SQL
stands for nothing at all, since the language is derived from a now archaic language from IBM
called sequel, which did not, in fact, stand for structured query language.

What Is SQL?
So, what is SQL? In a nutshell, SQL is a standard computer language for maintaining and
utilizing data in relational databases. Put simply, SQL is a language that lets users interact with
relational databases. It has a long history of development by various organizations going back
to the 1970s. In 1986, the American National Standards Institute (ANSI) published its first set
of standards regarding the language, and those standards have gone through several revisions
since that time.

There are three major components of the SQL language. The first is called DML, or Data
Manipulation Language. This module of the language allows you to retrieve, update, add, or
delete data in a database. The second component is called DDL, or Data Definition Language.
DDL enables you to create and modify the database itself. For example, DDL provides ALTER
statements that let you modify the design of tables in a database. Finally, the third component,
DCL, or Data Control Language, maintains proper security for the database.

Major software vendors, such as Microsoft and Oracle, have adapted the standard for their own
purposes and have added extensions and modifications to the language. Although each vendor
implements its own unique interpretation of SQL, the underlying base language is much the
same for all vendors. That base language is what we’ll cover in this book.

As a computer language, SQL is different from other languages you may be familiar with, such
as C++ or Python. These languages tend to be procedural in nature, meaning that they allow
you to specify specific procedures to accomplish a desired task. SQL is more of a declarative
language. In SQL, the desired objective is often declared with a single statement. The simpler
structure of SQL is possible because it is concerned only with relational databases rather than
the entirety of computer systems.

3Microsoft SQL Server, MySQL, and Oracle

One additional clarification about the SQL language is that it is sometimes confused with
specific SQL databases. Many software companies sell database management systems (DBMS)
software. In common usage, the databases in these types of software packages are often referred
to as SQL databases because the SQL language is the primary means of managing and accessing
data in these databases. Some vendors even use the word SQL as part of the database name. For
example, Microsoft calls its latest database SQL Server 2019. But in fact, SQL is more properly a
language than a database. Our focus in this book is on the language of SQL rather than on any
particular database.

Microsoft SQL Server, MySQL, and Oracle
Although our aim is to cover the core language of SQL as it applies to all implementations, we
must ultimately also provide specific examples of SQL syntax. And because syntax does vary
somewhat among vendors, we’ve decided to focus on the SQL syntax utilized by these three
popular databases:

• Microsoft SQL Server

• MySQL

• Oracle

In most cases, these databases have the same syntax. However, there are occasional differences.
If there is any variance between these databases, the syntax for Microsoft SQL Server will be
presented in the main text of this book. Any differences for MySQL or Oracle will be indicated
in a sidebar titled “Database Differences,” as shown here:

Database Differences
A sidebar such as this will appear whenever there are syntax differences for MySQL or Oracle.
The syntax for Microsoft SQL Server will appear in the main text.

Microsoft SQL Server is available in several versions and editions. The most recent version
is called Microsoft SQL Server 2019. Available editions run from a basic Express edition to a
fully featured Enterprise edition. The Express edition is free but includes an abundance of
features that allow users to get started with full-fledged database development. The Enterprise
edition includes many sophisticated database management features, plus powerful business
intelligence components.

Although owned by Oracle, MySQL is an open-source database, which means that no single
organization controls its development. MySQL is available on numerous platforms other than
Windows, such as macOS and Linux. MySQL offers its Community Edition as a free download.
The most recent version is MySQL 8.0.

The Oracle database is available in several editions. The most recent version is called Oracle
Database 18c. The free version of the database is called the Express Edition (XE).

4 Chapter 1 Relational Databases and SQL

When starting out, it is sometimes useful to download the database of your choice, so you
have something to experiment with. However, this book does not require you to do that. The
material in this book has been written to allow you to learn SQL simply by reading through the
text. We’ll provide enough data in the text so that you can understand the results of various
SQL statements without having to download software and type in statements yourself.

However, if you would like to download the free versions of any of these databases, we’ve
included three appendixes with useful instructions and tips on how to do that. Appendix
A provides complete information on how to get started with Microsoft SQL Server. The
instructions include details on how to install the software and execute SQL commands.
Similarly, Appendixes B and C cover MySQL and Oracle.

As mentioned in the Introduction, the companion website provides supplemental material that
lists all the SQL statements shown in this book in all three databases. However, you will likely
find it unnecessary to download these files. The examples shown throughout this book are self-
explanatory and don't require you to do anything else to understand the material. However, if
you are so inclined, feel free to take advantage of these extra features.

In addition to SQL Server, MySQL, and Oracle, other popular relational databases are worthy of
consideration. For example:

• Db2, from IBM

• MongoDB, an open-source database

• PostgreSQL, an open-source database

• Microsoft Access, from Microsoft

Of these databases, Microsoft Access is somewhat unique in that it includes a graphical
element. In essence, Access is a graphical interface for relational databases. In other words,
Access allows you to create a query against a relational database entirely through graphical
means. A useful aspect of Access for beginners is that you can easily create a query in a
visual way and then switch to a SQL view to see the SQL statement you just created. Another
distinction of Access is that it is primarily a desktop database. As such, you can use it to create a
database that resides entirely in a single file on your PC, but Access also allows you to connect
to databases created with other tools, such as Microsoft SQL Server.

Relational Databases
With these preliminaries out of the way, let’s now look at the basics of relational databases to
see how they work. A relational database is a collection of data, stored in any number of tables.
In common usage, the term relational indicates that the tables are usually related to each other
in some manner. However, in more precise terms, relational refers to mathematical relation
theory and represents logical properties that govern the way tables are related.

5Relational Databases

As an example, let’s take the simple case of a database consisting of only two tables: Customers
and Orders. The Customers table contains one record for each customer who ever placed
an order. The Orders table contains one record for each order. Each table can contain any
number of fields, which are used to store the various attributes associated with each record. For
example, a Customers table might contain fields such as FirstName and LastName.

At this point, it’s useful to visualize some tables and the data they contain. The common
custom is to display a table as a grid of rows and columns. Each row represents a record in the
table. Each column represents a field in the table. The top header row normally contains the
field names. The remaining rows show the actual data.

In SQL terminology, records and fields are referred to as rows and columns, corresponding to the
visual representation. So from now on, we'll use the terms rows and columns rather than records
and fields to describe the design of tables in relational databases.

Let’s look at an example of the simplest possible relational database. This database includes
only two tables: Customers and Orders. This is what the Customers table might look like:

CustomerID FirstName LastName

1 Amanda Taylor
2 George Miller
3 Rumi Khan
4 Sofia Flores

The Orders table might appear as:

OrderID CustomerID OrderDate OrderAmount

1 1 2021-09-01 10.00
2 2 2021-09-02 12.50
3 2 2021-09-03 18.00
4 3 2021-09-15 20.00

In this example, the Customers table contains three columns: CustomerID, FirstName, and
LastName. There are currently four rows in the table, representing Amanda Taylor, George
Miller, Rumi Khan, and Sofia Flores. Each row represents a different customer, and each column
represents a different piece of information about the customer. Similarly, the Orders table has
four columns and four rows. This indicates that there are four orders in the database and four
attributes for those orders.

Of course, this example is highly simplistic and only hints at the type of data that could
be stored in a real database. For example, a Customers table would normally contain many
additional columns describing other attributes of a customer, such as city, state, zip code,
email, and phone number. Similarly, an Orders table would ordinarily have columns describing
additional attributes of the order, such as sales tax and the person who took the order.

6 Chapter 1 Relational Databases and SQL

Primary and Foreign Keys
Note the first column in each table: CustomerID in the Customers table, and OrderID in the
Orders table. These columns are commonly referred to as primary keys. Primary keys are useful and
necessary for two reasons. First, they enable us to uniquely identify a single row in a table. For
example, if we wanted to retrieve the row for George Miller, we could simply use the CustomerID
column to obtain the data. Primary keys also ensure uniqueness. Designating the CustomerID
column as a primary key guarantees that this column will have a unique value for every row in
the table. Even if we happened to have two different individuals both named George Miller in
our database, those rows would have different values in the CustomerID column.

In this example, the values in the primary key columns don’t have any particular meaning.
In the Customers table, the CustomerID column contains the values 1, 2, 3, and 4 for the
four rows in the table. Database tables are often designed to automatically generate sequential
numbers for the primary key column as new rows are added to the table. This design feature is
usually referred to as auto-increment.

A second reason for primary keys is that they allow us to easily relate one table to another. In
this example, the CustomerID column in the Orders table points to a corresponding row in the
Customers table. Looking at the fourth row of the Orders table, notice that the CustomerID
column has a value of 3. This means that this order is for the customer with a CustomerID of
3, who happens to be Rumi Khan. The use of common columns among tables is an essential
design element in relational databases.

In addition to merely pointing to the Customers table, the CustomerID column in the Orders
table can be designated as a foreign key. We’ll cover foreign keys in detail in Chapter 18,
“Maintaining Tables,” but for now, just be aware that foreign keys can be defined to ensure
that the column has a valid value. As an example, you would not want the CustomerID column
in the Orders table to have a particular value unless that CustomerID exists in the Customer
table. The designation of a column as a foreign key can enforce that restriction.

Data Types
Primary and foreign keys add structure to a database table. They ensure that all tables in a
database are accessible and properly related to each other. Another important attribute of every
column in a table is its data type.

Data types are simply a way of defining the type of data that the column can contain. A data
type must be specified for each column in every table. Unfortunately, there is a great deal of
variation between relational databases as to which data types are allowed and what they mean.
For example, Microsoft SQL Server, MySQL, and Oracle each have over 30 different allowable
data types.

7Data Types

It would be impossible to cover the details and nuances of every available data type, even for
just these three databases. However, we can summarize the situation by discussing the main
categories of data types common to most databases. Once you understand the important data
types in these categories, you will have little trouble with other data types you may encounter.
Generally, there are three important kinds of data types: Numeric, Character, and Date/Time.

Numeric data types come in a variety of flavors, including bits, integers, decimals, and real
numbers. Bits are numeric data types that allow for only two values: 0 and 1. Bit data types are
often used to define an attribute as being true or false. Integers are numbers without decimal
places. Decimal data types can contain decimal places. Unlike bits, integers, and decimals,
real numbers are those numbers whose exact value is only approximately defined internally.
The one distinguishing characteristic of all numeric data types is that they can be included
in arithmetic calculations. Here are a few representative examples of numeric data types from
Microsoft SQL Server, MySQL, and Oracle.

General
Description

Microsoft SQL Server
Data Type

MySQL Data
Type

Oracle Data
Type Example

bit bit bit (none) 1
integer int int number 43
decimal decimal decimal number 58.63
real float float number 80.62345

Character data types are sometimes referred to as string or character string data types. Unlike
numeric data types, character data types aren’t restricted to numbers. They can include
any alphabetic or numeric digit, and can even contain special characters, such as asterisks.
When providing a value for character data types in SQL statements, the value must always be
surrounded by single quotes. In contrast, numeric data types never use quotes. Here are a few
representative examples of character data types:

General
Description

Microsoft SQL Server
Data Type

MySQL Data
Type

Oracle Data
Type Example

variable length varchar varchar varchar2 'Mother Teresa'
fixed length char char char '60601'

The second example (60601) is presumably a zip code. At first glance, this looks like it might
be a numeric data type because it’s composed only of numbers. However, even though they
contain only numbers, zip codes are usually defined as character data types because there is
never a need to perform arithmetic calculations with zip codes.

Date/time data types are used for the representation of dates and times. Like character data
types, date/time data types must be enclosed in single quotes. These data types allow for special

8 Chapter 1 Relational Databases and SQL

calculations involving dates. For example, a special function can be used to calculate the number
of days between any two date/time dates. Here are a few examples of date/time data types:

General
Description

Microsoft SQL
Server Data Type

MySQL Data
Type

Oracle Data
Type Example

date date date (none) '2021-12-15'
date and time datetime datetime date '2021-12-15 08:48:30'

NULL Values
Another important attribute of individual columns in a table is whether that column is
allowed to contain null values. A null value means that there is no data for that particular data
element. It literally contains no data. However, null values are not the same as spaces or blanks.
Logically, null values and empty spaces are treated differently. The nuances of retrieving data
that contains null values will be addressed in detail in Chapter 7, “Boolean Logic.”

Many databases will display the word NULL in all capital letters when displaying data with
null values. This is done so the user can tell that the data contains a null value and not simply
spaces. We will follow that convention and display the word NULL throughout this book to
emphasize that it represents that unique type of value.

Primary keys in a database can never contain NULL values. That is because primary keys, by
definition, must contain unique values.

A Brief History of Databases
Before leaving the general subject of relational databases, let’s look at a brief historical overview
to appreciate of the usefulness of relational databases and the significance of SQL.

Back in the early days of computing in the 1960s, data was typically stored either on magnetic
tape or in files on disk drives. Computer programs, written in languages such as FORTRAN
and COBOL, typically read through input files and processed one record at a time, eventually
moving data to output files. Processing was necessarily complex because procedures needed to
be broken down into many individual steps involving temporary tables, sorting, and multiple
passes through data until the desired output could be produced.

In the 1970s, advances were made as hierarchical and network databases were invented and
utilized. These newer databases, through an elaborate system of internal pointers, made it easier
to read through data. For example, a program could read a record for a customer, automatically
be pointed to all orders for that customer, and then to details for each order. But basically, that
data still needed to be processed one record at a time.

The main problem with data storage prior to relational databases was not how the data was
stored, but how it was accessed. The real breakthrough with relational databases came when

9Looking Ahead

the language of SQL was developed, because it allowed for an entirely new method of accessing
data. This advancement had its roots in an influential 1970 paper by Edgar F. Codd, a computer
scientist at IBM, who outlined the theories that would allow for the creation of relational
databases. These theories then led Donald D. Chamberlin and Raymond F. Boyce, two
computer scientists also at IBM, in 1973 to begin work on a language to interact with relational
databases. By the late 1970s, this language matured into what is now referred to as SQL.

Unlike earlier data retrieval methods, SQL permitted the user to access a large set of data at
once. With a single statement, a SQL command could retrieve or update thousands of records
from multiple tables. This eliminated a great deal of complexity. Computer programs no
longer needed to read one record at a time in a special sequence, while deciding what to do
with each record. What used to require hundreds of lines of programming code could now be
accomplished with just a few lines of logic.

Looking Ahead
This first chapter provided some background information about relational databases, allowing
us to move on to the main topic of retrieving data from databases. We discussed several
important characteristics of relational databases, such as primary keys, foreign keys, and
data types. We also covered the possible existence of NULL values in data. We’ll add to our
discussion of NULL values in Chapter 7, “Boolean Logic,” and return to the general topics of
database maintenance in Chapter 18, “Maintaining Tables,” and database design in Chapter 19,
“Principles of Database Design.”

Why is the important topic of database design postponed until much later in this book? In
short, this approach is taken so you can plunge into using SQL without having to worry about
the details of design at the beginning. In truth, database design is as much an art as it is a
science. The principles of database design will hopefully be much more meaningful after you’ve
become aware of the details and nuances of retrieving data via SQL. We’ll therefore ignore the
question of how to design a database for the moment and commence with data retrieval in
the next chapter.

This page intentionally left blank

2
Basic Data Retrieval

Keywords Introduced
SELECT • FROM

In this chapter, we’ll begin our exploration of the most important topic in SQL—namely, how
to retrieve data from a database. Regardless the size of your organization, the most common
request made of analysts is the request for a report. Of course, it’s a nontrivial exercise to get
data into a database, but once the data is there, the energies of business analysts turn to the
wealth of data at their disposal and the desire to extract useful information from all that data.

The emphasis in this book on data retrieval corresponds to these real-world demands. Your
knowledge of SQL will go a long way toward helping your organization unlock the secrets
hidden in the data stored in your databases.

A Simple SELECT
The ability to retrieve data in SQL is accomplished through the SELECT statement. Without any
preliminary explanation, here is an example of the simplest possible SELECT statement:

SELECT * FROM Customers

In the SQL language, as in all computer languages, certain words are keywords. These words
have special meanings and must be used in a particular way. In this statement, the words
SELECT and FROM are keywords. The SELECT keyword indicates the start of a SELECT
statement. The FROM keyword is used to designate the table from which data is to be retrieved.
The name of the table follows the FROM. In this case, the table name is Customers. The asterisk
(*) in this example is a special symbol that means “all columns.”

As is the custom, we’ll print keywords in all capital letters. This is done to ensure that they are
noticeable. To sum up, this statement means: Select all columns from the Customers table.

12 Chapter 2 Basic Data Retrieval

If the Customers table looks like this:

CustomerID FirstName LastName

1 Amanda Taylor
2 George Miller
3 Rumi Khan
4 Sofia Flores

then the SELECT will return the following data:

CustomerID FirstName LastName

1 Amanda Taylor
2 George Miller
3 Rumi Khan
4 Sofia Flores

In other words, it returns everything in the table.

In the previous chapter, we mentioned that it’s a common practice to specify a primary key
for all tables. In this example, the CustomerID column is also designated as a primary key. We
also mentioned that primary keys are sometimes set up to automatically generate sequential
numbers in a numeric sequence as rows are added to a table. That is the case in this example.
In fact, most of the sample data we’ll show throughout the book will include a similar column
that is both a primary key and defined as auto-increment. Conventionally, this is generally the
first column in a table.

Syntax Notes
Two points must be remembered when writing any SQL statement. First, the keywords in SQL
are not case sensitive. The word SELECT is treated identically to “select” or “Select.”

Second, a SQL statement can be written on any number of lines and with any number of spaces
between words. For example, the SQL statement:

SELECT * FROM Customers

is identical to:

SELECT *
FROM Customers

It’s usually a good idea to begin each important keyword on a separate line. When we get
to more complex SQL statements, this will make it easier to quickly grasp the meaning of
the statement.

13Comments

Finally, as we present different SQL statements in this book, we’ll often show both a specific
example and a more general format. For instance, the general format of the previous statement
would be shown as:

SELECT *
FROM table

Italics are used to indicate a general expression. The italicized word table means that you can
substitute any table name in that spot. When you see italicized words in any SQL statement in
this book, that is simply a way of indicating that you can substitute any valid word or phrase
in that location.

Database Differences: MySQL and Oracle
Many SQL implementations require a semicolon at the end of every statement. This is true of
MySQL and Oracle but not of Microsoft SQL Server. Although not required, semicolons can be
specified in Microsoft SQL Server if desired. For simplicity, we’ll show SQL statements without
semicolons in this book. If you’re using MySQL or Oracle, you’ll need to add a semicolon at the
end of each statement. The previous statement would appear as:
SELECT *
FROM Customers;

Comments
When writing SQL statements, it’s often desirable to insert comments within or around those
statements. There are two standard methods of writing comments in SQL. The first method,
referred to as the double-dash, consists of two dashes placed anywhere on a line. All text that
follows two dashes on that line is ignored and is treated as a comment. Here’s an example of
this format:

SELECT
-- this is the first comment
FirstName,
LastName -- this is a second comment
FROM Customers

The second format, borrowed from the C programming language, consists of text placed
between /* and */ characters. Comments between the /* and */ can be written on multiple lines.
Here’s an example:

SELECT
/* this is the first comment */
FirstName,
LastName /* this is a second comment
this is still part of the second comment
this is the end of the second comment */
FROM Customers

14 Chapter 2 Basic Data Retrieval

Database Differences: MySQL
MySQL supports comments in both the double-dash and the C programming format (/* and
*/), with one minor difference. When using the double-dash format, MySQL requires a space or
special character such as a tab immediately after the second dash.

In addition, MySQL allows a third method of inserting comments, similar to the double-dash. In
MySQL, you can place a number sign (#) anywhere on a line to indicate comments. All text after
the # symbol on that line is interpreted as a comment. Here’s an example of this format:
SELECT FirstName
this is a comment
FROM Customers;

Specifying Columns
So far, we’ve done nothing more than simply display all the data in a table. But what if we
wanted to select only certain columns? For example, working from the same table, we might
want to display only the customer’s last name. The SELECT statement would then look like
this:

SELECT LastName
FROM Customers

and the resulting data would be:

LastName

Taylor
Miller
Khan
Flores

If we wanted to select more than one, but not every, column, the SELECT statement might look
like this:

SELECT
FirstName,
LastName
FROM Customers

and the output would appear as:

FirstName LastName

Amanda Taylor
George Miller
Rumi Khan
Sofia Flores

15Column Names with Embedded Spaces

The general format of this statement is:

SELECT columnlist
FROM table

The important thing to remember is that if you need to specify more than one column in the
columnlist, those columns must be separated by a comma. Also notice that we placed each
column (FirstName, LastName) in the columnlist on separate lines. This wasn’t necessary but
was done to improve readability.

Column Names with Embedded Spaces
What if a column contains a space in its name? Say, for example, that the LastName column
was specified as Last Name (with a space between the two words). Clearly, the following would
not work:

SELECT
Last Name
FROM Customers

This statement would be considered invalid because Last and Name are not column names,
and even if they were proper column names, they would need to be separated by a comma.
The solution is to place special characters around any column name containing spaces. The
character differs, depending on which database you’re using. For Microsoft SQL Server, the
required characters are square brackets, which would look like this:

SELECT
[Last Name]
FROM Customers

One additional syntax note: Just as keywords are not case sensitive, table and column names
are also not case sensitive. As such, the previous example is identical to:

Select
[last name]
from customers

For clarity’s sake, we’ll print all keywords in all caps, and we’ll also capitalize table and column
names in this book, although doing so is not necessary.

16 Chapter 2 Basic Data Retrieval

Database Differences: MySQL and Oracle
For MySQL, the character used around column names containing spaces is an accent grave (`).
The MySQL syntax for the above example is:
SELECT
`Last Name`
FROM Customers;

For Oracle, the character to use around column names containing spaces is the double
quotation mark. The Oracle syntax for the example is:
SELECT
"Last Name"
FROM Customers;

Additionally, unlike Microsoft SQL Server and MySQL, column names in Oracle surrounded by
double quotes are case sensitive. This means that the previous statement is not equivalent to:
SELECT
"LAST NAME"
FROM Customers;

Preview of the Full SELECT
The bulk of this book covers the SELECT statement introduced in this chapter. In Chapters 3
through 15, we’ll expand on this statement, introducing new features until the full potential
and capabilities of the SELECT are realized and understood. At this point, we have only
introduced this portion of the SELECT statement:

SELECT columnlist
FROM table

In the interest of removing any remaining suspense, let’s look at a preview of the full SELECT
statement and briefly comment on its various components. The full SELECT statement, with all
its clauses, is:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

We’ve already been introduced to the SELECT and FROM clauses. Let’s expand a bit on those
clauses and talk about the others. The SELECT clause initiates the statement and lists any
columns that will be displayed. As you’ll see in later chapters, the columnlist can include not
only actual columns from the specified tables, but also calculated columns, usually derived
from one or more columns in the tables. The columns in the columnlist can also include
functions, which represent a special way to transform data.

The FROM clause specifies the data sources from which data will be drawn. In most cases,
these data sources will be tables. In later chapters, we’ll learn that these data sources can also

17Looking Ahead

be other SELECT statements, which represent a type of virtual view of data. In this chapter,
our tablelist is a single table. One of the key features of SQL discussed in later chapters is the
ability to combine multiple tables together in a single SELECT statement through a JOIN. Thus,
we’ll see many examples where the tablelist in the FROM clause is composed of multiple tables
joined together.

The WHERE clause is used to indicate selection logic. This is where you specify exactly which
rows of data will be retrieved. The WHERE clause can utilize basic arithmetic operators such as
equals (=) and greater than (>), along with Boolean operators such as OR and AND.

The GROUP BY clause plays a key role in summarizing data. By organizing data into various
groups, the analyst can not only group data, but also summarize the data in each group using
various statistics, such as a sum or count of the data.

When data has been grouped, selection criteria become somewhat more complex. You must
ask whether the selection criteria apply to individual rows or to the entire group. For example,
when grouping customers by state, you may want to see only rows of individual customers for
which the aggregate purchases of all customers in the state exceed a certain amount. This is
where the HAVING clause comes in. The HAVING clause is used to specify selection logic for
an entire group of data.

Finally, the ORDER BY clause is used to sort the data in an ascending or descending sequence,
whether that data is alphabetic or numerical in nature.

As will be made clear in later chapters, the various clauses in a SELECT statement, if they exist,
must be specified in the same order shown in the above general statement. For example, if
there is a GROUP BY clause in a SELECT statement, it must appear after a WHERE clause and
before a HAVING clause.

In addition to all the above-mentioned clauses, we will also discuss several additional ways
to organize the SELECT statement, including subqueries and set logic. Subqueries are a way to
insert an entire SELECT statement within another SELECT statement and are often useful for
certain types of selection logic. Set logic is a way to combine multiple queries side by side as
a single query.

Looking Ahead
In this chapter, we began our exploration of how to use the SELECT statement to retrieve data.
We learned about basic syntax and saw how to select specific columns. However, this allows us
to accomplish very little of a practical nature. Most significantly, we have not yet learned how
to apply any type of selection criteria to our data retrieval efforts. For example, while we know
how to select all customers, we don’t yet know how to select only customers from the state
of New York.

As it happens, we won’t cover selection criteria until Chapter 6. What will we do until then?
In the next few chapters, we’ll build on what can be done with the columnlist component of

18 Chapter 2 Basic Data Retrieval

the SELECT statement. In the following chapter, we’ll move on to more variations on column
selection, allowing us to create complex calculations in a single column. We’ll also talk about
ways to rename columns to make them more descriptive. Chapters 4 and 5 will then build on
our ability to create an even more complex and powerful columnlist, so when we finally get to
the topic of selection criteria in Chapter 6, we’ll have a full arsenal of techniques available at
our disposal.

3
Calculated Fields and Aliases

Keywords Introduced
AS

In the previous chapter, we talked about how to choose individual columns for inclusion in
a SELECT statement. We’ll now introduce a way to perform calculations on the individual
data items retrieved from a database. This technique is referred to as calculated fields. Using
this approach, customer names can be transformed so they are formatted exactly as desired.
Numeric calculations specific to a business or organization can be formulated and presented.
In short, SQL developers are often required to customize the content of individual columns to
successfully turn data into more relevant and comprehensible information. The inclusion of
calculated fields is a useful device that helps accomplish that goal.

When selecting data from a table, you are not restricted to the columns that happen to be in
the table. The concept of calculated fields allows for several other possibilities. With calculated
fields, you can do the following:

• Display specific words or values

• Perform calculations on single or multiple columns

• Combine columns and specific words or values together

Let’s look at a few examples, all coming from this Sales table:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Juliette Dupont 10 1.25
3 Francine Baxter 5 4.00

20 Chapter 3 Calculated Fields and Aliases

Literal Values
Our first example of a calculated field isn’t really a calculation at all. We’ll select a specific value
as a column, even though the value has nothing to do with the data in the table. This type of
expression is called a literal value. Here’s an example:

SELECT
'First Name:',
FirstName
FROM Sales

This statement will return this data:

(no column name) FirstName

First Name: Andrew
First Name: Juliette
First Name: Francine

In this statement, we are selecting two data items. The first is the literal value 'First Name: '.
Note that single quote marks are used to indicate that this is a literal with character data. The
second data item is the FirstName column.

Notice first that the literal 'First Name:' is repeated on every row. Second, there is no header
information for the first column. When run in Microsoft SQL Server, the column header
displays “(no column name)”. There is no header simply because this is a calculated field.
There is no column name that can be associated with this information.

Database Differences: MySQL and Oracle
Both MySQL and Oracle will return a value in the header row for literal values. In MySQL, the
header will be whatever the literal or calculation is. For example, the header for the first column
in the previous example will appear as:
First Name:

In Oracle, the header will be whatever the literal or calculation is, but in all caps and without any
spaces. For example, the header for the first column in the previous example will appear as:
'FIRSTNAME:'

You might ask why the header row is important at all. If we’re using the SELECT statement
only to retrieve some data, then the header itself wouldn’t seem to be significant. Only the data
itself matters. However, if we’re using the SELECT statement to obtain data for a report displayed
to a user, then the header row is certainly relevant. Column headers are normally displayed in
a reporting environment. When users look at a column of data in a report, they generally want
to know the meaning of the column and will look to the column header for that information.
In the case of a literal value, there really is no meaning to the column, so a header isn’t truly
necessary. But in other types of calculated fields, there may be a meaningful label that could be
applied to the column. Later in this chapter, we’ll discuss the concept of column aliases, which
represent a way of providing a header in this type of situation.

21Arithmetic Calculations

One more point about literals. You might surmise from the previous example that all literals need
quotation marks, but that is not necessarily the case. For example, the following statement:

SELECT
5,
FirstName
FROM Sales

will return this data:

(no column name) FirstName

5 Andrew
5 Juliette
5 Francine

The literal value 5 is a valid value, even if it’s completely meaningless. Because it doesn’t have
quote marks, the 5 is interpreted as a numeric value.

Arithmetic Calculations
Let’s move on to a more typical example of a calculated field. Arithmetic calculations allow us
to perform a calculation on one or more columns in a table. For example:

SELECT
SalesID,
QuantityPurchased,
PricePerItem,
QuantityPurchased * PricePerItem
FROM Sales

This statement will return this data:

SalesID QuantityPurchased PricePerItem (no column name)

1 4 2.50 10.00
2 10 1.25 12.50
3 5 4.00 20.00

As with literals, the fourth column has no header because it isn’t derived from a single column.
The first three columns of the above SELECT are no different from what you’ve seen previously.
The fourth column is a calculated column with this arithmetic expression:

QuantityPurchased * PricePerItem

In this case, the asterisk symbol denotes multiplication. It doesn’t mean “all columns,” as it
did in the previous chapter. In addition to the asterisk, several other arithmetic operators are
allowed in calculated fields. The most common include:

22 Chapter 3 Calculated Fields and Aliases

Arithmetic Operator Meaning

+ addition
- subtraction
* multiplication
/ division

One commonly used arithmetic operator that isn’t available in Microsoft SQL Server or MySQL
is exponentiation. To use exponents in SQL, you must use the POWER function. This will be
demonstrated in the next chapter.

Database Differences: Oracle
Unlike SQL Server and MySQL, Oracle provides an arithmetic operator for exponentiation,
denoted by two asterisks (**). For example, the expression 4 ** 2 would indicate to take 4 to
the second power. As with SQL Server and MySQL, Oracle also provides the POWER function.

Concatenating Fields
Concatenation is a computer term that means to combine or join character data together. Just as
arithmetic operations can be performed on numeric data, character data can be combined, or
concatenated, together. The syntax for concatenation varies, depending on the database you’re
using. Here’s an example from Microsoft SQL Server:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName
FROM Sales

The data retrieved is:

SalesID FirstName LastName (no column name)

1 Andrew Li Andrew Li
2 Juliette Dupont Juliette Dupont
3 Francine Baxter Francine Baxter

Again, the first three columns are nothing new. The fourth column is derived from this
expression in the SQL statement:

FirstName + ' ' + LastName

The plus sign denotes concatenation. Because the operation involves characters rather than
numeric data, SQL is smart enough to know that the plus sign refers to concatenation and not
addition. In this case, the concatenation is composed of three terms: the FirstName column,

23Column Aliases

a literal space (' '), and the LastName column. The literal space is necessary so that a name such
as William Smith doesn’t display as WilliamSmith.

Database Differences: MySQL and Oracle
MySQL doesn’t use a symbol, such as the plus (+) sign, to denote concatenation. Instead, it
requires you to use a function named CONCAT. We’ll cover functions in the next chapter, but
for now, here’s what the same statement looks like in MySQL:
SELECT
SalesID,
FirstName,
LastName,
CONCAT (FirstName, ' ', LastName)
FROM Sales;

In essence, the CONCAT specifies to combine the three mentioned terms within the
parentheses as a single expression.

Oracle uses two vertical bars (||) rather than a plus sign (+) to denote concatenation. The
equivalent statement in Oracle is:
SELECT
SalesID,
FirstName,
LastName,
FirstName || ' ' || LastName
FROM Sales;

Column Aliases
In all the preceding examples in this chapter, calculated fields were displayed with an
unlabeled and nondescriptive header. Microsoft SQL Server displays “(no column name)” when
it encounters a calculated field. Let’s now address how a descriptive header can be specified
for these types of columns. In brief, the solution is to utilize a column alias. The term alias
means an alternate name. Here’s an example of how to specify a column alias for the previous
SELECT statement:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName AS 'Name'
FROM Sales

The keyword AS is used to indicate a column alias, which immediately follows the keyword.
Notice that the column alias is surrounded by single quotes. The output is:

SalesID FirstName LastName Name

1 Andrew Li Andrew Li
2 Juliette Dupont Juliette Dupont
3 Francine Baxter Francine Baxter

24 Chapter 3 Calculated Fields and Aliases

The fourth column now has a header. In this example, we placed the column alias within single
quotes. These quotes are not strictly necessary unless the column alias contains embedded spaces.
Additionally, the keyword AS is optional. However, we will persist with using the AS keyword in
this book to make clear that this is a column alias. Without the single quotes or AS keyword, the
previous SELECT statement would be written as follows, with identical results:

SELECT
SalesID,
FirstName,
LastName,
FirstName + ' ' + LastName Name
FROM Sales

You can also always use the asterisk, denoting all columns, in addition to calculated fields or
other expressions. For example, the following SELECT:

SELECT
*,
FirstName + ' ' + LastName AS 'Full Name'
FROM Sales

produces this output:

SalesID FirstName LastName QuantityPurchased PricePerItem Full Name

1 Andrew Li 4 2.50 Andrew Li
2 Juliette Dupont 10 1.25 Juliette Dupont
3 Francine Baxter 5 4.00 Francine Baxter

Database Differences: Oracle
The Oracle database does not permit the ability to select all (*) plus additional fields.

In addition to providing a header for a calculated field, column aliases are often useful when
a column in a table has a cryptic name that you’d like to change. For example, if a table has
a column with the name “Qty”, you could issue this statement to display the column as
“Quantity Purchased”:

SELECT
Qty AS 'Quantity Purchased'
FROM table

Database Differences: Oracle
Oracle uses double quotes to delineate column aliases. The previous statement would be
written as follows in Oracle:
SELECT
SalesID,
FirstName,
LastName,
FirstName || ' ' || LastName AS "Name"
FROM Sales;

25Looking Ahead

Table Aliases
In addition to providing alternate names for columns, aliases can also be specified for tables
using the same AS keyword. There are three general reasons for using table aliases. The first
reason relates to tables with obscure or complex names. For example, if a table is named
Sales123, you can use the following SELECT to give the table an alias of Sales.

SELECT
LastName
FROM Sales123 AS Sales

As with column aliases, the AS keyword is optional. However, unlike column aliases, table
aliases are not enclosed within quotes. A second reason for using table aliases is to allow you
to use that alias name as a prefix for any selected column. For example, the above could also
be written as:

SELECT
Sales.LastName
FROM Sales123 AS Sales

The word Sales has now been added as a prefix to the LastName column, using a period
to separate the prefix from the column name. In this situation, the use of the prefix was
strictly optional and somewhat redundant. Because there is only one table in this query, it
wasn’t necessary to include the table name as a prefix for the column. However, when data
is selected from multiple tables, the prefix is often helpful and is sometimes required. When
multiple tables are involved, adding the table name as a prefix helps anyone viewing the query
to quickly grasp which table each column is from. Furthermore, when a column is named
identically in multiple tables, the use of a table alias is required. This usage of column aliases
will be illustrated in Chapter 11, “Inner Joins.”

A third reason for using table aliases pertains to using tables in subqueries. This will be
discussed in Chapter 14, “Subqueries.”

Database Differences: Oracle
Although the AS keyword can be used for column aliases, Oracle does not permit the AS
keyword to denote table aliases. The above SELECT would be written in Oracle as:
SELECT
Sales.LastName
FROM Sales123 Sales;

Looking Ahead
In this chapter, we discussed three general ways to create calculated fields in a SELECT
statement. First, literal values can be used to select specific words or values. Second,
arithmetic calculations can be applied to one or more columns in a single expression. Third,
concatenation can be used to combine columns and literal values. We also discussed the related
topic of column aliases, which are often employed when using calculated fields. Finally, we
offered a preview of table aliases, a topic that will be covered in greater detail in later chapters.

26 Chapter 3 Calculated Fields and Aliases

In the next chapter, we’ll move on to the subject of functions, which provide more complex
and interesting ways to perform calculations. As mentioned previously, we’re not quite at
the point where we can apply selection criteria to SQL statements. We’re still building on the
basics of what can be done with the columnlist in a SELECT. Your patience with this methodical
approach will reap rewards in Chapter 6 when we get to the topic of selection logic.

4
Using Functions

Keywords Introduced
LEFT • RIGHT • SUBSTRING • LTRIM • RTRIM • UPPER • LOWER • GETDATE • DATEPART •
DATEADD • DATEDIFF • ROUND • PI • POWER • CAST • ISNULL • NEWID

Anyone familiar with Microsoft Excel is probably aware that functions provide a huge amount
of functionality for the typical spreadsheet user. Without the ability to use functions, most
of the data available in spreadsheets would be of limited value. The same is true in the world
of SQL. Familiarity with SQL functions will greatly enhance your ability to generate dynamic
results for anyone viewing data or reports generated from SQL.

This chapter covers a wide variety of some of the most used functions in four distinct categories:
character functions, date/time functions, numeric functions, and other miscellaneous functions.
Additionally, we’ll cover composite functions—a way of combining multiple functions into a
single expression.

What Is a Function?
Like the calculations covered in the previous chapter, functions provide another way to
manipulate data. As you’ve seen, calculations can involve multiple fields, either with arithmetic
operators such as multiplication, or by concatenation. Similarly, functions can involve data
from multiple values, but the result of a function is usually a single value.

What is a function? A function is merely a rule for transforming any number of input values
into one output value. The rule is defined within the function and can’t be altered. However,
the user of a function can specify any desired value for the inputs to the function. Some
functions allow some of the inputs to be optional. Functions can also be designed to have no
inputs. However, regardless of the type or number of input values, functions almost always
return precisely one output value when the function is invoked.

There are two types of functions: scalar and aggregate. The term scalar comes from mathematics
and refers to an operation that is performed on a single number. In computer usage, it means
that the function is performed on data in a single row. For example, the LTRIM function
removes spaces from one specified value in one row of data.

28 Chapter 4 Using Functions

In contrast, aggregate functions are meant to be performed on a larger set of data. For example,
the SUM function can be used to calculate the sum of all the values of a specified column.
Because aggregate functions apply to larger sets or groups of data, we will leave our discussion
of aggregate functions to Chapter 9, “Summarizing Data.”

Every SQL database offers dozens of scalar functions. The actual functions vary widely between
databases, in terms of both their names and how they work. As a result, we will cover only a
few representative examples of some of the more useful scalar functions.

The most common types of scalar functions can be classified under three categories: character,
date/time, and numeric. These functions allow you to manipulate character, date/time, or
numeric data types.

Character Functions
Character functions enable you to manipulate character data. Just as character data types are
sometimes called string data types, character functions are sometimes called string functions.
We’ll cover seven examples of character functions: LEFT, RIGHT, SUBSTRING, LTRIM, RTRIM,
UPPER, and LOWER.

In this chapter, rather than retrieving data from specific tables, we’ll simply use SELECT
statements with literal values in the columnlist. Let’s start with an example for the LEFT
function. When this SQL command is issued:

SELECT
LEFT('sunlight',3) AS 'The Answer'

this data is returned:

The Answer

sun

The inclusion of a column alias in this SQL statement allows the output to display “The
Answer” as a column header. Note that there is no FROM clause in the SELECT statement.
Instead of retrieving data from a table, we’re selecting data from a single literal value—namely,
‘sunlight’. In many SQL implementations, including Microsoft SQL Server and MySQL, a FROM
clause isn’t strictly necessary in a SELECT statement, although in practice one would seldom
write a SELECT statement like this. We’re using this format, without a FROM clause, only to
more easily illustrate how functions work.

Now let’s look at the format of this function in greater detail. The general format of the LEFT
function is:

LEFT(CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For example, the LEFT
function has two arguments: CharacterValue and NumberOfCharacters. The term argument
is a commonly used mathematical term that describes a component of functions. The
various arguments that are defined for each function are what truly define the meaning of

29Character Functions

the function. In the case of the LEFT function, the CharacterValue and NumberOfCharacters
arguments are both needed to define what will happen when the LEFT function is invoked.

The LEFT function has two arguments, and both are required. As mentioned, other functions
may have more or fewer arguments. As you’ll see with the GETDATE function later in this
chapter, functions are even permitted to have no arguments. But regardless of the number of
arguments, even if zero, all functions use a set of parentheses following the function name. The
presence of the parentheses tells you that the expression is a function and not something else.

The formula for the LEFT function says: Take the specified CharacterValue, look at the specified
NumberOfCharacters on the left, and return the result. In the previous example, it takes the
CharacterValue, ‘sunlight’, looks at the NumberOfCharacters, 3, and brings back the left three
characters. The result is “sun”.

The main point to remember is that for any function you want to use, you’ll need to look up
the function in the database’s reference guide and determine how many arguments are required
and what they mean.

Now let’s turn to the RIGHT function. This is the same as the LEFT function, except that
characters are now specified for the right side of the input value. The general format of the
RIGHT function is:

RIGHT(CharacterValue, NumberOfCharacters)

As an example:

SELECT
RIGHT('sunlight',5) AS 'The Answer'

returns:

The Answer

light

In this case, the NumberOfCharacters argument needed a value of 5 to return the value “light”.
A value of 3 would have returned only “ght”.

One problem that often arises with the use of the RIGHT function is that character data often
contains spaces on the right side. Let’s look at an example in which a table with only one row
of data contains a column named President, where the column is defined as being 20 characters
long. The table looks like this:

President

George Washington

If we issue this SELECT statement against the table:

SELECT
RIGHT(President,10) AS 'Last Name'
FROM table1

30 Chapter 4 Using Functions

we get back this data:

Last Name

hington

We expected to get back “Washington” but only got “hington”. The problem is that the entire
column is 20 characters long. In this example, there are three spaces to the right of the value
“George Washington”. Therefore, when we ask for the rightmost 10 characters, SQL will take
the three spaces, plus another seven characters from the original expression. As you’ll soon
see, the function RTRIM must be used to remove the rightmost ending spaces before using the
RIGHT function.

You might be wondering how to select data from the middle of an expression. This is
accomplished by using the SUBSTRING function. The general format of that function is:

SUBSTRING(CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING('thewhitegoat',4,5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. This results in the
display of the word “white”.

Database Differences: MySQL and Oracle
MySQL sometimes requires that there be no space between the function name and the left
parenthesis. It depends on the specific function used. For example, the previous statement in
MySQL must be written exactly as shown above. Unlike in Microsoft SQL Server, you can’t type
in an extra space after SUBSTRING.

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle
version of SUBSTR is that the second argument (StartingPosition) can have a negative value.
A negative value for this argument means that you need to count that number of positions
backward from the right side of the column.

As mentioned, Oracle doesn’t permit you to write a SELECT statement without a FROM clause.
However, Oracle does provide a dummy table called DUAL for this type of situation. The Oracle
equivalent of the SELECT with a SUBSTRING function is:
SELECT
SUBSTR('thewhitegoat',4,5) AS "The Answer"
FROM DUAL;

31Composite Functions

Our next two character functions enable us to remove all spaces, either on the left or the right
side of an expression. The LTRIM function trims characters from the left side of a character
expression. For example:

SELECT
LTRIM(' the apple') AS 'The Answer'

returns this data:

The Answer

the apple

Note that LTRIM is smart enough not to eliminate spaces in the middle of a phrase. It only
removes the spaces to the very left of a character value.

Like LTRIM, the RTRIM function removes any spaces to the right of a character value. An
example of RTRIM will be given in the next section, on composite functions.

The final two character functions we’ll cover are UPPER and LOWER. These functions convert
any word or phrase to uppercase or lowercase. The syntax is simple and straightforward. Here’s
an example that covers both functions:

SELECT
UPPER('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase

ABRAHAM LINCOLN abraham lincoln

Composite Functions
An important characteristic of functions, whether they are character, mathematical, or date/time,
is that two or more functions can be combined to create composite functions. A composite
function with two functions can be said to be a function of a function. Let’s go back to the
George Washington query to illustrate. Again, we’re working from this data:

President

George Washington

Remember that the President column is 20 characters long. As a result, there are three spaces
to the right of the value “George Washington”. In addition to illustrating composite functions,

32 Chapter 4 Using Functions

this next example will also cover the RTRIM function mentioned in the previous section.
The statement:

SELECT
RIGHT(RTRIM (President),10) AS 'Last Name'
FROM table1

returns this data:

Last Name

Washington

Why does this now produce the correct value? Let’s examine how this composite function
works. There are two functions involved: RIGHT and RTRIM. When evaluating composite
functions, you always start from the inside and work your way out. In this example, the
innermost function is:

RTRIM(President)

This function takes the value in the President column and eliminates all spaces on the right.
After this is done, the RIGHT function is applied to the result to bring back the desired value.
Because

RTRIM(President)

equals “George Washington”, we can say that:

SELECT
RIGHT(RTRIM (President), 10)

is the same as saying:

SELECT
RIGHT('George Washington', 10)

We were able to obtain the desired result by first applying the RTRIM function to the input
data and then adding the RIGHT function to the expression to produce the final result.

Date/Time Functions
Date/Time functions allow for the manipulation of date and time values. The names of these
functions differ, depending on the database used. In Microsoft SQL Server, the functions we’ll
cover include GETDATE, DATEPART, DATEADD, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and time. In
Microsoft SQL Server, the function is named GETDATE. This function has no arguments.
It merely returns the current date and time. For example:

SELECT GETDATE()

brings back an expression with the current date and time. Since the GETDATE function has no
arguments, there is nothing specified between the parentheses. Remember that a date/time field

33Date/Time Functions

is a special data type that contains both a date and a time in a single field. An example of such
a value is:

2021-12-15 08:48:30

This value refers to the 15th of December 2021, at 48 minutes and 30 seconds past 8 am.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of GETDATE is NOW. The above statement would be written as:
SELECT NOW()

The equivalent of GETDATE in Oracle is a keyword called CURRENT_DATE. The statement is
written as:
SELECT CURRENT_DATE

The next date/time function enables us to analyze any specified date and return a value to
represent such elements as the day or week of the date. Again, the name of this function
differs, depending on the database. In Microsoft SQL Server, this function is called DATEPART.
The general format is:

DATEPART(DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have many different values,
including year, quarter, month, dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date '12/6/2021', with
different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART(month, '12/6/2021') 12
DATEPART(day, '12/6/2021’) 6
DATEPART(week, '12/6/2021') 50
DATEPART(weekday, '12/6/2021') 2

Looking at the values in the previous chart, you can see that the month of 12/6/2021 is 12
(December), and the day is 6. The week is 50, because 12/6/2021 is in the 50th week of the year.
The weekday is 2 because 12/6/2021 falls on a Monday, which is the second day of the week.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of the DATEPART function is named DATE_FORMAT, and it uses
different values for the DateValue argument. For example, to return the day of the date
‘12/6/2021’, you would issue this SELECT in MySQL:
SELECT DATE_FORMAT('2021-12-06', '%d');

Oracle doesn’t provide a function comparable to DATEPART.

34 Chapter 4 Using Functions

The DATEADD function allows the analyst to add or subtract any desired period of time to a
particular date. The general format is:

DATEADD (DatePart, Number, Date)

Valid values for the DatePart argument are the same as described above for the DATEPART
function. The Date argument is the date you would like to modify, and the Number argument is
the value you would like to add to that date. The Number can be positive or negative. Here are a
few examples of how the function can be specified:

DATEADD Function Expression Resulting Value

DATEADD(day, 2, '12/6/2021’) 2021-12-08 00:00:00.000
DATEADD(week, 1, '12/6/2021’) 2021-12-13 00:00:00.000
DATEADD(month, -1, '12/6/2021’) 2021-11-06 00:00:00.000
DATEADD(year, 1, '12/6/2021’) 2022-12-06 00:00:00.000

The format of the resulting value will vary, depending on the settings of your database. Notice
that the third row with a Number value of -1 subtracts one month from the specified date.

Database Differences: MySQL and Oracle
In MySQL, the DATEADD is called ADDDATE and has this general format:
ADDDATE(Date, Interval_Expression)

where Interval_Expression is composed of the keyword INTERVAL, a value, and then the time
period. As an example, the following indicates to add 2 days to a specified date:
ADDDATE('12/6/2021’, INTERVAL 2 day)

Oracle doesn’t provide a function comparable to DATEADD.

The final date/time function we’ll cover, DATEDIFF, enables you to determine quantities such
as the number of days between any two dates. The general format is:

DATEDIFF (DatePart, StartDate, EndDate)

Valid values for the DatePart argument for this function are the same as before, and include
year, month, day, and hour. Here’s a chart that shows how the DATEDIFF function evaluates
the difference between the dates 7/8/2021 and 8/14/2021, with different values for the
DatePart argument:

DATEDIFF Function Expression Resulting Value

DATEDIFF(day, '7/8/2021', '8/14/2021’) 37
DATEDIFF(week, '7/8/2021', '8/14/2021’) 5
DATEDIFF(month, '7/8/2021', '8/14/2021’) 1
DATEDIFF(year, '7/8/2021', '8/14/2021’) 0

35Numeric Functions

The above chart indicates that there are 37 days, or 5 weeks, or 1 month, or 0 years between
the two dates.

Database Differences: MySQL and Oracle
In MySQL, the DATEDIFF function only allows you to calculate the number of days between the
two dates, and the end date must be listed first to return a positive value. The general format is:
DATEDIFF(EndDate, StartDate)

Oracle doesn’t provide a function comparable to DATEDIFF.

Numeric Functions
Numeric functions allow for manipulation of numeric values. Numeric functions are sometimes
called mathematical functions. The functions we’ll cover are ROUND, PI, and POWER.

The ROUND function allows you to round any numeric value. The general format is:

ROUND(NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or without decimal
places, such as 712.863 or –42. The DecimalPlaces argument is trickier. It can contain a positive
or negative integer, or zero. If DecimalPlaces is a positive integer, it means to round to that
many decimal places. If DecimalPlaces is a negative integer, it means to round to that number
of positions to the left of the decimal. The following chart shows how the number 712.863 is
rounded, with different values for the DecimalPlaces argument.

ROUND Function Expression Resulting Value

ROUND(712.863, 3) 712.863
ROUND(712.863, 2) 712.860
ROUND(712.863, 1) 712.900
ROUND(712.863, 0) 713.000
ROUND(712.863, -1) 710.000
ROUND(712.863, -2) 700.000

The PI function merely returns the value of the mathematical number pi. As you might recall
from high-school geometry, the number pi is an irrational number approximated by the value
3.14. This function is seldom used but nicely illustrates the point that numeric functions need
not have any arguments. For example, in Microsoft SQL Server, the statement:

SELECT PI()

returns the value 3.14159265358979.

To take this example a little further, let’s say that we want the value of pi rounded to two
decimal places. This can be accomplished by creating a composite function with the PI and

36 Chapter 4 Using Functions

ROUND functions. The PI function is used to get the initial value, and the ROUND function is
added to round it to two decimal places. The following statement returns a value of 3.14:

SELECT ROUND(PI(),2)

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle doesn’t have a PI function.

The final numeric function we’ll cover, which is much more commonly used than PI, is
POWER. The POWER function is used to specify a numeric value that includes exponents.
The general format of the function is:

POWER(NumericValue, Exponent)

Let’s start with an example that illustrates how to both square a number and take a square root.
The SELECT statement:

SELECT
POWER(5,2) AS '5 Squared',
POWER(25, .5) AS 'Square Root of 25'

returns this data:

5 Squared Square Root of 25

25 5

In the first column, 5 is the numeric value to be evaluated, and 2 is the value of the exponent.
In essence, we are raising 5 to the second power, or in common terms, computing “5 squared.”
The second column shows how to compute a square root. Remembering that the square root of
a number can be expressed with a fractional exponent, we can calculate the square root of 25
by raising 25 to the 1/2 (or .5) power.

Miscellaneous Functions
All the previous functions pertain to specific ways to manipulate character, date/time, or
numeric data types. Now we want to address the need to convert data from one data type to
another or to perform other miscellaneous tasks. The remainder of this chapter will cover three
such functions.

The CAST function converts data from one data type to another. The general format of the
function is:

CAST(Expression AS Data_Type)

37Miscellaneous Functions

The format of this function is slightly different from other functions previously seen, as it
uses the word AS to separate the two arguments rather than a comma. Let’s look at a situation
where we might want to execute this statement, where the Quantity column is defined as a
character data type:

SELECT
2 * Quantity
FROM table

Your first impression might be that the statement would fail because Quantity is not defined
as a numeric column. However, most SQL databases are smart enough to automatically convert
the Quantity column to a numeric value so that it can be multiplied by 2.

Here’s an example where the CAST function becomes necessary. Suppose we have dates stored
in a column with a character data type. We’d like to convert those dates to a true date/time
column. This statement illustrates how the CAST function can handle that conversion:

SELECT
'2022-02-23' AS 'Original Date',
CAST('2022-02-23' AS DATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date

2022-02-23 2022-02-23 00:00:00

The Original Date column looks like a date, but it is really just character data. In contrast,
the Converted Date column is a true date/time column, as evidenced by the time value
now shown.

Another important use of the CAST function is to remove time values from dates. Let’s say that
you want to use the GETDATE function to retrieve the current date but only want to see the
resulting date without the time. The following illustrates how the CAST function can be used
for that purpose:

SELECT
GETDATE() AS 'Current Date',
CAST(GETDATE() AS DATE) AS 'Date Only'

Assuming the current date is 11/15/2021, and the time is 4:15 p.m., the output is:

Current Date Date Only

2021-11-15 16:15:00.000 2021-11-15

38 Chapter 4 Using Functions

Focus on Analysis: Relative Dates
A common task in data analysis is the selection of dates that are relative to the current date.
For example, you may want to view yesterday’s sales data or sales from the prior calendar
month. Below are two generic formulas that accomplish that.

To select data from the prior day, you need to construct a composite function with the
DATEADD, GETDATE, and CAST functions. The GETDATE function provides the current date,
and the DATEADD function computes a date one day prior to that date. The CAST function
converts the result to date without time. The following expression can be used to select dates
from the prior day:
CAST(DATEADD(day, -1, GETDATE()) AS DATE)

Selecting data from the prior month requires a considerably more complex expression. The trick
is to create an expression that selects data where the desired date is greater than or equal
to the first day of the prior calendar month and less than the first day of the current month.
This requires composite functions that include the DATEADD, GETDATE, DATEPART, CAST, and
RTRIM functions.

This is the formulation for such an expression, to be included in the WHERE clause of the
SELECT statement. In the following, the_date is the date being evaluated:
WHERE the_date >=
/*The following three lines return the first day of the prior month, in mm/dd/yyyy
format */
RTRIM(CAST(DATEPART(month, DATEADD(month, -1, GETDATE())) as char))
+ "/1/"
+ RTRIM(CAST(DATEPART(month, DATEADD(year, -1, GETDATE())) as char))
AND the_date <
/*The following three lines return the first day of the current month, in
mm/dd/yyyy format */
RTRIM(CAST(DATEPART(month, GETDATE()) as char))
+ "/1/"
+ RTRIM(CAST(DATEPART(year, GETDATE()) as char))

A second useful function is one that converts NULL values to a meaningful value. In Microsoft
SQL Server, the function is called ISNULL. As mentioned in Chapter 1, “Relational Databases and
SQL,” NULL values are those for which there is an absence of data. A NULL value is not the same
as a space or zero. Let’s say we have this table of nutrition information for various food items:

ItemID Item Calories

1 Lowfat Milk NULL
2 Water 0
3 Fat Free Milk 90
4 Whole Milk 150

39Miscellaneous Functions

Notice that Lowfat Milk has a value of NULL in the Calories column. This indicates that the
number of calories for this item has not yet been provided. Let’s say we want to produce a list
of all items in the table. When this SELECT is issued:

SELECT
Item,
Calories
FROM Nutrition

It will display:

Item Calories

Lowfat Milk NULL
Water 0
Fat Free Milk 90
Whole Milk 150

There’s nothing inaccurate about this. However, users may prefer to see something such as
“Unknown” rather than NULL for missing values. Here’s the solution:

SELECT
Item,
ISNULL(CAST(Calories AS VARCHAR),'Unknown') AS 'Calories'
FROM Nutrition

The following data is then displayed:

Item Calories

Lowfat Milk Unknown

Water 0

Fat Free Milk 90

Whole Milk 150

Notice that the solution requires the use of both the ISNULL and CAST functions. The ISNULL
function handles the display of calories as “Unknown” when NULL values are encountered.
Assuming the Calories column is defined as an integer, the CAST function is needed to convert
the value to a Varchar data type, so both integer and character values can be shown in a
single column.

40 Chapter 4 Using Functions

Database Differences: MySQL and Oracle
The ISNULL function is called IFNULL in MySQL. Furthermore, MySQL doesn’t require the use of
the CAST function in this example. The equivalent of the above statement in MySQL is:
SELECT
Item,
IFNULL(Calories,'Unknown') AS 'Calories'
FROM Nutrition;

The ISNULL function is called NVL (Null Value) in Oracle. The equivalent Oracle statement is:
SELECT
Item,
NVL(CAST(Calories AS CHAR),'Unknown') AS "Calories"
FROM Nutrition;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the
word NULL when it encounters NULL values.

Finally, Oracle provides three functions similar to CAST: TO_CHAR, TO_NUMBER, and TO_DATE.
Depending on your installation, these functions may provide more dependable results.

Finally, we’ll make brief note of a function called NEWID. This is a special system function that
generates random and unique identifiers for all rows returned from a query. These identifiers
are 36 characters long. The format of the function is:

SELECT NEWID()

As an example of what this function accomplishes, the following SELECT:

SELECT
*,
NEWID() AS 'Random Value'
FROM Nutrition

will produce output such as the following:

ItemID Item Calories Random Value

1 Lowfat Milk NULL 126DACA0-DCB6-4905-9F40-9F1696D193D6
2 Water 0 D05F9A13-30BB-4322-8BDC-C746F58D5A1A
3 Fat Free Milk 2 71EC8F84-4640-48BE-8B6D-EE88BE9676FF
4 Whole Milk 4 F9D68C06-4C38-4C13-AA5B-643564456766

As you can see, the NEWID function creates a different random value in every row. These are
true random values and will be different every time the statement is executed. In Chapter 6
“Selection Criteria,” we’ll talk about how to make use of this function in a “Focus on Analysis”
sidebar on how to create random samples.

Database Differences: MySQL and Oracle
The equivalent of the NEWID function in MySQL is UUID. The equivalent of the NEWID function
in Oracle is SYS_GUID.

41Looking Ahead

Looking Ahead
This chapter described a wide variety of functions. Functions are basically predefined rules for
transforming a set of values into another value. Just as spreadsheets provide built-in functions
for manipulating data, SQL provides similar capabilities. In addition to covering basic character,
date/time, numeric, and conversion functions, we also explained how to create composite
functions from two or more of these functions.

Because there are so many available functions with widely varying possibilities, it’s impossible
to discuss every nuance of every available function. The thing to remember is that you can
easily look up functions in a database’s help system or reference guide when you need to use
them. Online reference material will provide details on exactly how each function works and
the proper syntax.

In the next chapter, we’ll take a break from columnlist issues and discuss the more interesting
topic of how to sort data. Sorts can serve lots of useful purposes and satisfy the basic desire of
users to view data in some type of order. With the sort, we will begin to think of the entire way
in which information is presented, rather than with just bits and pieces of individual data items.

This page intentionally left blank

5
Sorting Data

Keywords Introduced
ORDER BY • ASC • DESC

The ability to present data in a sorted order is often essential to the task at hand. For example,
if an analyst is shown a large list of customers in a random order, they’d probably find it
difficult to locate one individual customer. However, if the same list is sorted alphabetically,
the desired customer can quickly be located.

The idea of sorting data applies to many situations, even when the data isn’t alphabetic in
nature. For example, you can sort orders by order date, allowing you to rapidly find an order
taken at a particular date and time. Alternatively, you can sort orders by the order amount,
allowing you to view from the smallest to largest. No matter what form a sort takes, it can add
a useful way of organizing the data being presented to an end user.

Sorting in Ascending Order
Up until now, data has not been returned in any particular order. When a SELECT is issued,
you never know which row will appear first. If the query is executed from within a software
program, and no one ever sees the data at that point in time, then it really doesn’t matter.
But if you wish to immediately display the data to a user, the order of rows is often significant.
A sort can be easily added to a SELECT statement by using an ORDER BY clause.

Here’s the general format for a SELECT statement with an ORDER BY clause:

SELECT columnlist
FROM tablelist
ORDER BY columnlist

The ORDER BY clause is always placed after the FROM clause, which in turn always comes
after the SELECT keyword. The italicized columnlist for the SELECT and ORDER BY keywords
indicates that any number of columns can be listed. The columns in columnlist can be
individual columns or more complex expressions. Also, the columns specified after the SELECT
and ORDER BY keywords can be entirely different columns. The italicized tablelist indicates that

44 Chapter 5 Sorting Data

any number of tables can be listed in the FROM clause. The syntax for listing multiple tables
will be introduced in Chapter 11, “Inner Joins,” and Chapter 12, “Outer Joins.”

For the following examples on sorting, we’ll work from data in this Salespeople table:

SalespersonID FirstName LastName

1 Iris Brown
2 Carla Brown
3 Natalie Lopez
4 Roberta King

To sort data in alphabetic order by last name, A to Z, we simply need to add an ORDER BY
clause to the SELECT statement. For example:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName

brings back this data:

FirstName LastName

Iris Brown
Carla Brown
Roberta King
Natalie Lopez

Because there are two Browns, Iris and Carla, there’s no way to predict which one will be listed
first. This is because we are sorting only on LastName, and there are multiple rows with that
same last name.

Similarly, if we issue this SELECT:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName

then this data is retrieved:

FirstName LastName

Carla Brown
Iris Brown
Natalie Lopez
Roberta King

45Sorting by Multiple Columns

The order is now completely different because the sort is by first name rather than last name.

SQL provides a special keyword named ASC, which stands for ascending. This keyword is
completely optional and largely unnecessary because all sorts are assumed to be in ascending
order by default. The following SELECT, which uses the ASC keyword, returns the same data
shown previously.

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName ASC

In essence, the keyword ASC can be used to emphasize the fact that the sort is in ascending,
rather than descending, order.

Sorting in Descending Order
The DESC keyword sorts in an order opposite to ASC. Instead of ascending, the order in such
a sort is descending. For example:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY FirstName DESC

retrieves:

FirstName LastName

Roberta King
Natalie Lopez
Iris Brown
Carla Brown

The first names are now in a Z-to-A order.

Sorting by Multiple Columns
Now we return to the problem of what to do with the Browns. To sort by last name when there
is more than one person with the same last name, we must add a secondary sort by first name,
as follows:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName, FirstName

46 Chapter 5 Sorting Data

This brings back:

FirstName LastName

Carla Brown
Iris Brown
Roberta King
Natalie Lopez

Because a second sort column is now specified, we can now be certain that Carla Brown will
appear before Iris Brown. Note that LastName must be listed before FirstName in the ORDER
BY clause. The order of the columns is significant. The first column listed always indicates the
primary sort value. Any additional columns listed become secondary, tertiary, and so on.

Sorting by a Calculated Field
We’ll now apply our knowledge of calculated fields and aliases from Chapter 3 to illustrate
some further possibilities for sorts. This statement:

SELECT
LastName + ', ' + FirstName AS 'Name'
FROM Salespeople
ORDER BY Name

returns this data:

Name

Brown, Carla
Brown, Iris
King, Roberta
Lopez, Natalie

As you can see, we utilized concatenation to create a calculated field with an alias of Name.
We can refer to that same column alias in the ORDER BY clause. This nicely illustrates another
benefit of using column aliases. Also, note the design of the calculated field itself. We inserted
a comma and a space between the last name and first name columns to separate them and to
show the name in a commonly used format. Conveniently, this format works well for sorting.
The ability to display names in this format, with a comma separating the last and first name, is
a handy trick to keep in mind. Users very often want to see names arranged in this manner.

It’s also possible to put a calculated field in the ORDER BY clause without also using it as a
column alias. Similar to the above, we could also specify:

SELECT
FirstName,
LastName
FROM Salespeople
ORDER BY LastName + FirstName

47Sort Sequences

This would display:

FirstName LastName

Carla Brown
Iris Brown
Roberta King
Natalie Lopez

The data is sorted the same as in the prior example. The only difference is that we’re now
specifying a calculated field in the ORDER BY clause without making use of column aliases.
This yields the same result as if LastName and FirstName were specified as the primary and
secondary sort columns.

Sort Sequences
In the previous examples, all the data is character data, consisting of letters from A to Z.
There are no numbers or special characters. Additionally, there has been no consideration
of uppercase and lowercase letters.

Every database lets users specify or customize collation settings that provide details on
how data is sorted. The settings vary among databases, but three facts are generally true.
First, when data is sorted in an ascending order, any data with NULL values appear first. As
previously discussed, NULL values are those for which there is an absence of data. After any
NULLs, numbers will appear before characters. For data sorted in descending order, character
data will display first, then numbers, and then NULLs.

Database Differences: Oracle
In Oracle, NULL values will sort as last rather than first.

Second, for character data, there is usually no differentiation between uppercase and lowercase.
An e is the treated the same as an E. Third, for character data, the individual characters that
make up the value are evaluated from left to right. If we’re talking about letters, then AB
will come before AC. Let’s look at an example, taken from this table, which we’ll refer to
as TableForSort:

TableID CharacterData NumericData

1 23 23
2 5 5
3 Dog NULL
4 NULL -6

48 Chapter 5 Sorting Data

In this table, the CharacterData column is defined as a character column—for example, as
VARCHAR (a variable length data type). Similarly, the NumericData column is defined as a
numeric column, such as INT (an integer data type). Values with no data are displayed as
NULL. When this SELECT is issued on the TableForSort table:

SELECT
NumericData
FROM TableForSort
ORDER BY NumericData

it will display:

NumericData

NULL
-6
5
23

Notice that NULLs come first, followed by the numbers in numeric sequence. If we want the
NULL values to assume a default value of 0, we can use the ISNULL function discussed in the
previous chapter and issue this SELECT statement:

SELECT
ISNULL(NumericData,0) AS 'NumericData'
FROM TableForSort
ORDER BY ISNULL(NumericData,0)

The result is now:

NumericData

-6
0
5
23

The ISNULL function converted the NULL value to a 0, which results in a different sort order.

Of course, the decision as to whether to display NULL values as NULL or as 0 depends on the
circumstance. If the user thinks of NULL values as meaning 0, then they should be displayed as
0. However, if the user sees NULL values as an absence of data, then displaying the word NULL
is appropriate.

Turning to a different ORDER BY clause on the same table, if we issue this SELECT:

SELECT
CharacterData
FROM TableForSort
ORDER BY CharacterData

49Looking Ahead

it will display:

CharacterData

NULL
23
5
Dog

As expected, NULLs come first, then values with numeric digits, and then values with
alphabetic characters. Notice that 23 comes before 5. This is because the 23 and 5 values are
being evaluated as characters, not as numbers. Because character data is evaluated from left to
right, and 2 is lower than 5, 23 is displayed first.

Looking Ahead
In this chapter, we talked about the basic possibilities for sorting data in a specific order. We
illustrated how to sort by more than one column. We also discussed the use of calculated fields
in sorts. Finally, we covered some of the quirks of sorting, particularly when it comes to data
with NULL values and with numbers in character columns.

At the beginning of the chapter, we mentioned some of the general uses for sorts. Primary
among these is the ability to simply place data in an easily understood order, thus allowing
users to quickly locate a desired piece of information. People generally like to see data in some
useful order, and sorts accomplish that goal. Another interesting use of sorts will be covered in
the next chapter, “Selection Criteria,” where we’ll introduce the keyword TOP and another way
to use sorts in conjunction with that keyword. This technique, commonly known as a Top N
sort, allows us to do things such as displaying customers with the five highest orders for a given
time period.

In the next chapter, we’ll move beyond our analysis of what can be done with columnlists and
discuss data selection. The ability to specify selection criteria in SELECT statements is critical to
most normal queries. In the real world, it would be very unusual to issue a SELECT statement
without some sort of selection criteria. The topics discussed in the next chapter address this
important topic.

This page intentionally left blank

6
Selection Criteria

Keywords Introduced
WHERE • TOP • PERCENT • LIKE • SOUNDEX • DIFFERENCE

Up until this point, the SELECT statements we’ve seen have always brought back every row
in the table. This would rarely occur in real-world situations. We are normally interested
only in retrieving data that meets certain criteria. For example, if you’re selecting orders, you
probably only want to see orders that meet certain conditions. When looking at products, you
ordinarily only want to view certain types of products. Rarely does someone want to simply see
everything. Your interest in data is typically directed toward a small subset of that data in order
to analyze or view one aspect.

Applying Selection Criteria
Selection criteria in SQL begins with the WHERE clause. The WHERE keyword accomplishes the
task of selecting a subset of rows. This is the general format of the SELECT statement, including
the WHERE clause and other clauses already discussed:

SELECT columnlist
FROM tablelist
WHERE condition
ORDER BY columnlist

As you can see, the WHERE clause must always come between the FROM and ORDER BY
clauses. In fact, if any clause is used, it must appear in the order shown above.

Let’s look at an example taken from data in this Sales table:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Juliette Dupont 10 1.25
3 Francine Baxter 5 4.00

52 Chapter 6 Selection Criteria

We’ll start with a statement with a simple WHERE clause:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE LastName = 'Baxter'

The output is:

FirstName LastName QuantityPurchased

Francine Baxter 5

Because the WHERE clause stipulates to select only rows with a LastName equal to ‘Baxter’,
only one of the three rows in the table is returned. Notice that the desired value of the
LastName column was enclosed in quotes because LastName is a character column. For
numeric fields, no quotes are necessary. For example, the following SELECT is equally valid
and returns the same data:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE QuantityPurchased = 5

WHERE Clause Operators
In the previous statements, an equals sign (=) is used as the operator in the WHERE clause.
The equals sign indicates a test for equality. The general format shown above requires that a
condition follows the WHERE clause. This condition consists of an operator with expressions
on either side.

The following is a list of the basic operators that can be used in the WHERE clause:

WHERE Operator Meaning

= equals
<> does not equal
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to

More advanced operators will be covered in the next chapter.

53Limiting Rows

The meaning of the equals (=) and does not equal (<>) operators should be obvious. Here’s an
example of a WHERE clause with an “is greater than” operator, taken from the same Sales table:

SELECT
FirstName,
LastName,
QuantityPurchased
FROM Sales
WHERE QuantityPurchased > 6

The result is:

FirstName LastName QuantityPurchased

Juliette Dupont 10

In this example, only one row meets the condition that the QuantityPurchased column be
greater than 6. Although not as commonly used, it is also possible to use the “is greater than”
operator with a text column. This example:

SELECT
FirstName,
LastName
FROM Sales
WHERE LastName > 'C'

returns:

FirstName LastName

Andrew Li
Juliette Dupont

Because the test is for last names greater than C, it brings back only Li and Dupont, but not
Baxter. When applied to text fields, the greater than and less than operators indicate selection
by the alphabetic order of the values. In this case, Li and Dupont are returned since L and D
come after C in the alphabet.

Limiting Rows
We may sometimes want to select a small subset of the rows in a table but don’t care which
rows are returned. Let’s say we have a table with 50,000 rows and want to see just a few rows
of data to get an idea of what it looks like. It wouldn’t make sense to use the WHERE clause for
this purpose, since we don’t care which rows are returned.

54 Chapter 6 Selection Criteria

In this situation, the solution is to use a special keyword to specify a limit as to how many rows
are returned. This is another instance where syntax differs among databases. In Microsoft SQL
Server, the keyword that accomplishes this limit is TOP. The general format is:

SELECT
TOP number
columnlist
FROM tablelist

Suppose we want to see the first 10 rows from a table. The SELECT to accomplish this looks like:

SELECT
TOP 10 *
FROM table

This statement returns all columns in the first 10 rows from the table. Like any SELECT
statement without an ORDER BY clause, there’s no way to predict which 10 rows will be
returned. It depends on how the data is physically stored in the table.

Similarly, we can list specific columns to return:

SELECT
TOP 10
column1,
column2
FROM table

Another variant of the TOP is to use a PERCENT keyword in addition to TOP. For example,
the general format to return 25% of rows is:

SELECT
TOP 25 PERCENT
column1,
column2
FROM table

In essence, the TOP keyword accomplishes something like the WHERE clause, as it returns a
small subset of rows in the specified table. However, keep in mind that rows returned using the
TOP keyword are not a true random sample, in a statistical sense. They’re only the first rows
that qualify, based on how the data is physically stored in the database.

Database Differences: MySQL and Oracle
MySQL uses the keyword LIMIT rather than TOP. The general format is:
SELECT columnlist
FROM tablelist
LIMIT number

Additionally, MySQL doesn’t allow for the PERCENT option that SQL Server provides.

Oracle uses the keyword ROWNUM rather than TOP. The ROWNUM keyword must be specified
in a WHERE clause, as follows:
SELECT columnlist
FROM tablelist
WHERE ROWNUM <= number

55Limiting Rows with a Sort

Limiting Rows with a Sort
Another use of the TOP keyword is to use it in combination with the ORDER BY clause to
obtain a designated number of rows with the highest values, based on specified criteria. This
type of data selection is commonly referred to as a Top N selection. Here’s an example, taken
from this Books table:

BookID Title Author CurrentMonthSales

1 Pride and Prejudice Austen 15
2 Animal Farm Orwell 7
3 Merchant of Venice Shakespeare 5
4 Romeo and Juliet Shakespeare 8
5 Oliver Twist Dickens 3
6 Candide Voltaire 9
7 The Scarlet Letter Hawthorne 12
8 Hamlet Shakespeare 2

Let’s say we want to see the three books that sold the most in the current month. The SELECT
that accomplishes this is:

SELECT
TOP 3
Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books
ORDER BY CurrentMonthSales DESC

The output is:

Book Title Quantity Sold

Pride and Prejudice 15
The Scarlet Letter 12
Candide 9

Let’s examine this statement in some detail. The TOP 3 in the second line indicates that only
three rows of data are to be returned. The main question to ask is how to determine which
rows to display. The answer is found in the ORDER BY clause. If there were no ORDER BY
clause, then the SELECT would simply bring back any three rows of data. However, this is not
what we want. We’re looking for the three rows with the highest sales. To accomplish this, we
need to sort the rows by the CurrentMonthSales column in descending order. Why descending?
When data is sorted in descending order, the highest numbers appear first. If we had sorted in
an ascending order, we would get the books with the least number of sales, not the most.

56 Chapter 6 Selection Criteria

Adding one more twist to this scenario, let’s say we want to see only which book by Shakespeare
had the greatest sales. To accomplish this, we need to add a WHERE clause, as follows:

SELECT
TOP 1
Title AS 'Book Title',
CurrentMonthSales AS 'Quantity Sold'
FROM Books
WHERE Author = 'Shakespeare'
ORDER BY CurrentMonthSales DESC

This brings back this data:

Book Title Quantity Sold

Romeo and Juliet 8

The WHERE clause adds the qualification to look only at books by Shakespeare. We also revised
the TOP keyword to specify TOP 1, indicating that we want to see only one row of data.

Focus on Analysis: Random Samples
As mentioned in Chapter 4, the NEWID function can be used as a device to generate a random
sample. This can be accomplished by using that function in conjunction with the TOP keyword.

To illustrate, suppose we want to create a random sample of 25% of the rows in the above-
mentioned Books table. The following statement accomplishes that objective:
SELECT
TOP 25 PERCENT
*
FROM BOOKS
ORDER BY NEWID()

The statement will return 2 of the 8 rows in the Books table. The NEWID function is used to
generate a true random value for each row, and the ORDER BY ensures that we select the rows
in ascending order. The 25 PERCENT qualification states that we want only 25% of total rows
returned.

Pattern Matching
Now we turn to a situation in which the data to be retrieved is not precisely defined. We often
want to view data based on inexact matches with words or phrases. For example, you might be
interested in finding companies whose name contains the word “bank.” The selection of data
via inexact matches within phrases is often referred to as pattern matching. In SQL, the LIKE
operator is used in the WHERE clause to enable us to find matches against part of a column
value. The LIKE operator requires the use of special wildcard characters to specify exactly how
the match should work. Let’s start with an example from the following Movies table.

57Pattern Matching

MovieID MovieTitle Rating

1 Love Actually R
2 My Man Godfrey Not Rated
3 The Sixth Sense PG-13
4 Vertigo PG
5 Everyone Says I Love You R
6 Shakespeare in Love R
7 Finding Nemo G

Our first example with a LIKE operator is:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '%LOVE%'

In this example, the percent (%) sign is used as a wildcard. The percent (%) is the most
commonly used wildcard, and it means any characters. Any characters includes the possibility
of there being no characters. The percent (%) before LOVE means that we will accept a phrase
with any (or no) characters before LOVE. Similarly, the percent (%) after LOVE means that we’ll
accept a phrase with any (or no) characters after LOVE. In other words, we’re looking for any
movie title that contains the word LOVE. Here is the data returned from the SELECT:

Movie

Love Actually
Everyone Says I Love You
Shakespeare in Love

Notice that LOVE appears as the first word, the last word, and sometimes in the middle of the
movie title.

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle is case sensitive when determining matches for
literal values. In Oracle, LOVE is not the same as Love. An equivalent statement in Oracle is:
SELECT
MovieTitle AS Movie
FROM Movies
WHERE MovieTitle LIKE '%LOVE%';

This would return no data because no movie title contains the word LOVE in all uppercase. One
solution in Oracle is to use the UPPER function to convert your data to uppercase, as follows:
SELECT
MovieTitle AS Movie
FROM Movies
WHERE UPPER(MovieTitle) LIKE '%LOVE%';

58 Chapter 6 Selection Criteria

Let’s now attempt to find only movies that begin with LOVE. If we issue:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE 'LOVE%'

we will retrieve only this row of data:

Movie

Love Actually

Because we’re now specifying the percent (%) wildcard only after the word LOVE, we get back
only movies that begin with LOVE. Similarly, if we issue:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '%LOVE'

we get only this row:

Movie

Shakespeare in Love

This is because we have now specified that the phrase must end with the word LOVE.

One might ask how to arrange the wildcards to see only movies that contain the word LOVE
in the middle of the title, without seeing movies where LOVE is at the beginning or end. The
solution is to specify:

SELECT
MovieTitle AS 'Movie'
FROM Movies
WHERE MovieTitle LIKE '% LOVE %'

Notice that a space has been inserted between the word LOVE and the percent (%) wildcards
on either side. This ensures that there is at least one space on both sides of the word. The data
brought back from this statement is:

Movie

Everyone Says I Love You

59Pattern Matching

The percent (%) sign is the most common wildcard used with the LIKE operator, but there are
a few other possibilities. These include the underscore character (_), a characterlist enclosed
in square brackets, and a caret symbol (^) plus a characterlist enclosed in square brackets.
The following table lists these wildcards and their meanings:

Wildcard Meaning

% any characters (can be zero characters)
_ exactly one character (can be any character)
[characterlist] exactly one character in the character list
[^characterlist] exactly one character not in the character list

We’ll use the following Actors table to illustrate statements for these wildcards.

ActorID FirstName LastName

1 Cary Grant
2 Mary Steenburgen
3 Jon Voight
4 Dustin Hoffman
5 John Cusack
6 Gary Cooper

Here’s an example of how the underscore (_) wildcard character can be used:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '_ARY'

The output of this SELECT is:

FirstName LastName

Cary Grant
Mary Steenburgen
Gary Cooper

This statement retrieves these three actors because all have a first name consisting of exactly
one character followed by the phrase ARY.

60 Chapter 6 Selection Criteria

Likewise, if we issue this statement:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE 'J_N'

it produces:

FirstName LastName

Jon Voight

The actor John Cusack is not selected since John doesn’t fit the J_N pattern. An underscore
stands for only one character.

The final wildcards we’ll discuss, [characterlist] and [^characterlist], enable you to specify
multiple wildcard values in a single position.

Database Differences: MySQL and Oracle
The [characterlist] and [^characterlist] wildcards are not available in MySQL or Oracle.

The following illustrates the [characterlist] wildcard:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '[CM]ARY'

This retrieves any rows where FirstName begins with a C or M and ends with ARY. The result is:

FirstName LastName

Cary Grant
Mary Steenburgen

The following illustrates the [^characterlist] wildcard:

SELECT
FirstName,
LastName
FROM Actors
WHERE FirstName LIKE '[^CM]ARY'

This selects any rows where FirstName does not begin with a C or M and ends with ARY. The
result is:

FirstName LastName

Gary Cooper

61Matching by Sound

Matching by Sound
Let’s turn from matching letters and characters to matching sounds. SQL provides two
functions that give you some interesting ways to compare the sounds of words or phrases in
the English language. The two functions are SOUNDEX and DIFFERENCE.

Let's first look at an example that utilizes the SOUNDEX function:

SELECT
SOUNDEX ('Smith') AS 'Sound of Smith',
SOUNDEX ('Smythe') AS 'Sound of Smythe'

The result is:

Sound of Smith Sound of Smythe

S530 S530

The SOUNDEX function always returns a four-character response, which is a sort of code for
the sound of the phrase. The first character is always the first letter of the phrase. In this case,
the first character is S because both Smith and Smythe begin with an S.

The remaining three characters are calculated from an analysis of the sound of the rest of the
phrase. Internally, the function first removes all vowels and the letter Y. So, the function takes
the MITH from SMITH and converts it to MTH. Likewise, it takes the MYTHE from SMYTHE
and converts it to MTH. It then assigns a number to represent the sound of the phrase. In this
example, that number turns out to be 530.

Since SOUNDEX returns a value of S530 for both Smith and Smythe, you can conclude that
they probably sound very similar.

Microsoft SQL Server provides one additional function, called DIFFERENCE, which works in
conjunction with the SOUNDEX function.

Database Differences: MySQL and Oracle
The DIFFERENCE function isn’t available in MySQL or Oracle.

Here’s an example, using the same words:

SELECT
DIFFERENCE ('Smith', 'Smythe') AS 'The Difference'

The result is:

The Difference

4

62 Chapter 6 Selection Criteria

The DIFFERENCE function always requires two arguments. Internally, the function first
retrieves the SOUNDEX values for each of the arguments and then compares those values. If it
returns a value of 4, as in this example, that means that all four characters in the SOUNDEX
value are identical. A value of 0 means that none of the characters are identical. Therefore, a
DIFFERENCE value of 4 indicates the highest possible match, and a value of 0 indicates the
lowest possible match.

Here’s an example of how the DIFFERENCE function can be used to retrieve values that are very
similar in sound to a specific phrase. Working from the Actors table, let’s attempt to find rows
with a first name that sounds like John. The SELECT statement is:

SELECT
FirstName,
LastName
FROM Actors
WHERE DIFFERENCE (FirstName, 'John') = 4

The results are:

FirstName LastName

Jon Voight
John Cusack

The DIFFERENCE function concluded that both John and Jon had a difference value of 4
between the name and the specified value of John.

If you want to analyze exactly why these two rows were selected, you can alter your SELECT to
show both the SOUNDEX and DIFFERENCE values for all rows in the table:

SELECT
FirstName,
LastName,
DIFFERENCE (FirstName, 'John') AS 'Difference Value',
SOUNDEX (FirstName) AS 'Soundex Value'
FROM Actors

This returns:

FirstName LastName Difference Value Soundex Value

Cary Grant 2 C600
Mary Steenburgen 2 M600
Jon Voight 4 J500
Dustin Hoffman 1 D235
John Cusack 4 J500
Gary Cooper 2 G600

Notice that both Jon Voight and John Cusack have a SOUNDEX value of J500 and a
DIFFERENCE value of 4 for their first names. This explains why they were initially selected.

63Looking Ahead

Looking Ahead
This chapter introduced the topic of how to apply selection criteria to queries. We introduced
several basic operators, such as equals and greater than. The ability to specify these types of basic
selection criteria goes a long way toward making the SELECT statement truly useful. We also
covered the related topic of limiting the number of rows returned in a query. The ability to limit
rows in combination with an ORDER BY clause allows for a useful Top N type of data selection.

Next, we discussed how to match words or phrases via a specified pattern. Matching by patterns
is a significant and widely used function of SQL. Any time you enter a word in a search box
and attempt to retrieve all entities containing that word, you are utilizing pattern matching.
We concluded the chapter with a look at matching by sound, a less common practice than
matching by word patterns. The technology exists, but there is an inherent difficulty in
translating words to sounds, due to the many quirks and exceptions in the English language.

In the next chapter, “Boolean Logic,” we’ll greatly enhance our selection criteria capabilities by
introducing several new keywords that add sophisticated logic to the WHERE clause. At present,
we can do such things as select all customers from the state of New York. In the real world,
however, more selection criteria are typically required. Boolean logic will allow us to formulate
a query that will select customers who are in New York or California but not in Los Angeles
or Albuquerque.

This page intentionally left blank

7
Boolean Logic

Keywords Introduced
AND • OR • NOT • BETWEEN • IN • IS NULL

We introduced the concept of selection criteria in the previous chapter, but only in its simplest
form. We’ll now expand on that concept to greatly enhance our ability to specify the rows
returned from a SELECT. This is where the pure logic of SQL comes into play. In this chapter,
we’ll introduce several operators that will allow you to create complex logical expressions.

Given these new capabilities, if someone should request a list of all female customers who live
in zip codes 60601 through 62999 but excluding anyone under the age of 30 or who doesn’t
have an email address, that will be something you can provide.

Complex Logical Conditions
The WHERE clause introduced in the previous chapter used only simple selection criteria.
We saw clauses such as:

WHERE QuantityPurchased = 5

The condition expressed in this WHERE clause is quite basic. It specifies merely to return all
rows for which the QuantityPurchased column has a value of 5. In the real world, the selection
of data is often much less straightforward. Accordingly, let’s now turn our attention to methods
of specifying some more complex logical conditions in selection criteria.

The ability to devise complex logical conditions is sometimes called Boolean logic. This
term, taken from mathematics, refers to the ability to formulate complex conditions that
are evaluated as either true or false. In the example, the condition QuantityPurchased = 5 is
evaluated as either true or false for each row in the table. Obviously, we want to see only rows
where the condition evaluates as true.

The principal keywords used to create complex Boolean logic are AND, OR, and NOT. These
three operators are used to provide additional functionality to the WHERE clause. In proper
combination, the AND, OR, and NOT operators, along with parentheses, can specify just about
any logical expression that can be imagined.

66 Chapter 7 Boolean Logic

The AND Operator
The following examples will be taken from this Purchases table:

PurchaseID CustomerName State QuantityPurchased PricePerItem

1 Kim Chiang IL 4 2.50
2 Sandy Harris CA 10 1.25
3 James Turban NY 5 4.00

Here’s an example of a WHERE clause that uses the AND operator:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased > 3
AND QuantityPurchased < 7

The AND clause means that all conditions must evaluate to true for the row to be selected. This
SELECT specifies that the only rows to be retrieved are those for which the QuantityPurchased
is both greater than 3 and less than 7. Therefore, only these two rows are returned:

CustomerName QuantityPurchased

Kim Chiang 4
James Turban 5

Notice that the row for Sandy Harris is not returned. Why? Sandy purchased a quantity of 10,
which, in fact, does satisfy the first condition (QuantityPurchased > 3). However, the second
condition (QuantityPurchased < 7) is not satisfied and therefore is not true. When using the
AND operator, all conditions specified must be true for the row to be selected.

The OR Operator
Let’s now look at the OR operator. The AND operator meant that all conditions must evaluate
to true for the row to be selected. The OR operator means that the row will be selected if any of
the conditions are determined to be true.

Here’s an example, taken from the same table:

SELECT
CustomerName,
QuantityPurchased,
PricePerItem
FROM Purchases
WHERE QuantityPurchased > 8
OR PricePerItem > 3

67Using Parentheses

This SELECT returns this data:

CustomerName QuantityPurchased PricePerItem

Sandy Harris 10 1.25
James Turban 5 4.00

Why are the rows for Sandy Harris and James Turban displayed, and not the row for Kim
Chiang? The row for Sandy Harris is selected because it meets the requirements of the first
condition (QuantityPurchased > 8). It doesn’t matter that the second condition (PricePerItem > 3)
isn’t true, because only one condition needs to be true for an OR condition.

Likewise, the row for James Turban is selected because the second condition (PricePerItem > 3)
is true for that row. The row for Kim Chiang isn’t selected because it doesn’t satisfy either of
the two conditions.

Using Parentheses
Suppose we are interested only in orders from customers from either the state of Illinois or the
state of California. Additionally, we want to see orders only where the quantity purchased is
greater than 8. To attempt to satisfy this request, we might put together this SELECT statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State = 'IL'
OR State = 'CA'
AND QuantityPurchased > 8

We would expect this statement to return only one row of data, for Sandy Harris. Although we
have two rows for customers in Illinois or California (Chiang and Harris), only one of those
(Harris) has a quantity purchased greater than 8. However, when this statement is executed,
we get the following:

CustomerName State QuantityPurchased

Kim Chiang IL 4
Sandy Harris CA 10

We see two rows instead of the expected one row. What went wrong? The answer lies in how
SQL interprets the WHERE clause, which happens to contain both AND and OR operators. Like
other computer languages, SQL has a predetermined order of evaluation that specifies the order
in which various operators are interpreted. Unless told otherwise, SQL always processes the

68 Chapter 7 Boolean Logic

AND operator before the OR operator. So in the previous statement, it first looks at the AND
and evaluates the condition:

State = 'CA'
AND QuantityPurchased > 8

The row that satisfies that condition is for Sandy Harris. SQL then evaluates the OR operator,
which allows for rows where the State equals IL. That adds the row for Kim Chiang. The result is
that SQL determines that both the Kim Chiang and the Sandy Harris rows meet the condition.

Obviously, this isn’t what was intended. This type of problem often comes up when AND and
OR operators are combined in a single WHERE clause. The way to resolve the ambiguity is to
use parentheses to specify the desired order of evaluation. Anything in parentheses is always
evaluated first.

Here’s how parentheses can be added to the previous SELECT to correct the situation:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE (State = 'IL'
OR State = 'CA')
AND QuantityPurchased > 8

When this is executed, we see this data:

CustomerName State QuantityPurchased

Sandy Harris CA 10

The parentheses in the SELECT statement force the OR expression (State = 'IL' OR State = 'CA')
to be evaluated first. This produces the intended result.

Multiple Sets of Parentheses
Let’s say we want to select two different sets of rows from the Purchases table: first, rows for
customers in New York, and second, rows for customers in Illinois who have made a purchase
with a quantity between 3 and 10. The following SELECT accomplishes this requirement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State = 'NY'
OR (State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

69The NOT Operator

The result is:

CustomerName State QuantityPurchased

Kim Chiang IL 4
James Turban NY 5

Notice that there are two sets of parentheses in this statement, with one set inside the other.
This use of parentheses is analogous to the parentheses used in the composite functions seen
in Chapter 4. When there is more than one set of parentheses in functions, the innermost set
is always evaluated first. The same is true of parentheses used in Boolean expressions. In this
example, the innermost set of parentheses contains:

(QuantityPurchased >= 3
AND QuantityPurchased <= 10)

After this condition is evaluated for each row, the logic proceeds outward to the second set
of parentheses:

(State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

Finally, the logic adds in the final line of the WHERE clause (not enclosed in parentheses)
regarding the state of New York:

WHERE State = 'NY'
OR (State = 'IL'
AND (QuantityPurchased >= 3
AND QuantityPurchased <= 10))

In essence, SQL’s logic first evaluated expressions in the innermost set of parentheses, then the
outer set of parentheses, and then all remaining expressions.

The NOT Operator
In addition to the AND and OR operators, the NOT operator is often useful for expressing a
complex logical condition. The NOT expresses a negation, or opposite, of whatever condition
follows the NOT. The condition can be anything from the evaluation of the value of a single
column to a complex expression within parentheses. Here’s an example of a NOT used with a
simple condition:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT State = 'NY'

70 Chapter 7 Boolean Logic

The result is:

CustomerName State QuantityPurchased

Kim Chiang IL 4
Sandy Harris CA 10

This specifies a selection of rows for which the state is not equal to NY. In this simple case,
the NOT operator is not truly necessary. The logic of the previous statement can also be
accomplished via the following equivalent statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'NY'

Here, the not equals operator (<>) accomplishes the same thing as the NOT operator. Here’s a
more complex example with the NOT operator:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT (State = 'IL'
OR State = 'NY')

The result is:

CustomerName State QuantityPurchased

Sandy Harris CA 10

When the NOT operator is used before a set of parentheses, it negates everything in the
parentheses. In this example, we’re looking for all rows for which the state is not Illinois or
New York.

Again, note that the NOT operator is not strictly necessary in this example. The logic of the
previous query can also be accomplished with the following equivalent statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'IL'
AND State <> 'NY'

71The NOT Operator

It might take a bit of reflection to understand why the preceding two statements are equivalent.
The first statement uses the NOT operator and a logical expression with an OR operator. The
second statement converts the logic into an expression with an AND operator.

Here’s a final example of how the NOT operator can be used in a complex statement:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE NOT (State = 'IL'
AND QuantityPurchased >= 4)

This query is saying to select customers where it’s not true that the state equals Illinois and has
a QuantityPurchased greater than or equal to 4. The NOT operator applies to the entire logical
expression that the state equals Illinois and has a QuantityPurchased greater than or equal to 4.
The result is:

CustomerName State QuantityPurchased

Sandy Harris CA 10
James Turban NY 5

These two rows were selected because the only customer in Illinois who also has a
QuantityPurchased greater than or equal to 4 is Kim Chiang. Because we’re applying a
NOT to this entire logic, the result is the display of the other two customers.

Once again, this query can be expressed in an alternate way without using the NOT:

SELECT
CustomerName,
State,
QuantityPurchased
FROM Purchases
WHERE State <> 'IL'
OR QuantityPurchased < 4

As seen in these examples, it may not be logically necessary to use the NOT operator in
complex expressions with arithmetic operators such as equals (=) or less than (<). However,
it’s often more straightforward to place a NOT in front of a logical expression rather than
attempting to convert that expression into one that doesn’t use the NOT. In other words, the
NOT operator can provide a convenient and useful way of expressing one’s logical thoughts.

72 Chapter 7 Boolean Logic

The BETWEEN Operator
Now let’s turn to two special operators, BETWEEN and IN, that can simplify expressions
that would ordinarily require the OR or AND operators. The BETWEEN operator allows us to
abbreviate an AND expression with greater than or equal to (>=) and less than or equal to (<=)
operators in an expression with a single operator.

Let’s say, for example, that we want to select all rows with a quantity purchased from 5 to 20.
One way of accomplishing this is with the following SELECT statement:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased >= 5
AND QuantityPurchased <= 20

Using the BETWEEN operator, the equivalent statement is:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased BETWEEN 5 AND 20

In both cases, the SELECT returns this data:

CustomerName QuantityPurchased

Sandy Harris 10
James Turban 5

The BETWEEN operator always requires a corresponding AND placed between the two numbers.

Note the relative simplicity of the BETWEEN operator. Also notice that the BETWEEN is
inclusive of the numbers specified. In this example, BETWEEN 5 AND 20 includes the numbers
5 and 20. Thus, the BETWEEN is equivalent only to the greater than or equal to (>=) and less
than or equal to (<=) operators. It can’t be used to express something simply greater than (>)
or less than (<) a range of numbers. The row for James Turban is selected because the quantity
purchased is equal to 5, and therefore is between 5 and 20.

The NOT operator can be used in conjunction with BETWEEN. For example, this SELECT:

SELECT
CustomerName,
QuantityPurchased
FROM Purchases
WHERE QuantityPurchased NOT BETWEEN 5 AND 20

retrieves this data:

CustomerName QuantityPurchased

Kim Chiang 4

73The IN Operator

The IN Operator
Just as BETWEEN represents a special case of the AND operator, the IN operator allows for
a special case of the OR operator. Suppose we want to see rows where the state is Illinois or
New York. Without the IN operator, this can be accomplished with this statement:

SELECT
CustomerName,
State
FROM Purchases
WHERE State = 'IL'
OR State = 'NY'

Here is an equivalent statement using the IN operator:

SELECT
CustomerName,
State
FROM Purchases
WHERE State IN ('IL', 'NY')

In either case, the data retrieved is:

CustomerName State

Kim Chiang IL
James Turban NY

The IN operator requires a subsequent listing of values enclosed within parentheses. Commas
must be used to separate all values.

The usefulness of the IN operator may not be obvious in this example, where only two states
are listed. However, the IN can just as easily be used in situations involving dozens of specific
values. This greatly reduces the amount of typing required for such a statement. Another
handy use for the IN operator comes in situations where values are obtained from an Excel
spreadsheet. To obtain multiple values from adjacent cells in a spreadsheet for a SQL statement,
knowledgeable Excel users can copy those values into a CSV (comma separated values) file with
a comma delimiter. The values can then be pasted inside parentheses following the IN operator.

As with the BETWEEN operator, the NOT operator can be used with the IN operator, as shown
in this example:

SELECT
CustomerName,
State
FROM Purchases
WHERE State NOT IN ('IL', 'NY')

The data retrieved is:

CustomerName State

Sandy Harris CA

74 Chapter 7 Boolean Logic

One final note about the IN operator. There is a second way to use the IN operator that is
substantially different from the syntax just discussed. In the second format, an entire SELECT
statement is specified within parentheses, allowing the individual values to be created logically
when needed. This is called a subquery, which will be covered in detail in Chapter 14.

Boolean Logic and NULL Values
At the beginning of this chapter, we stated that the Boolean logic in SQL evaluates complex
expressions as either true or false. This assertion was not completely accurate. When evaluating
the conditions in a WHERE clause, there are actually three possibilities: true, false, and
unknown. The possibility of an unknown value derives from the fact that columns in SQL
databases are sometimes allowed to have a NULL value. As mentioned in Chapter 1, NULL
values are those for which there is an absence of data.

SQL provides a special keyword to test for the presence of NULL values for a column specified
in a WHERE clause. The keyword is IS NULL. This is similar in purpose to the ISNULL function
seen previously in Chapter 4. Let’s look at an example taken from this Products table:

ProductID Description Inventory

1 Printer A NULL
2 Printer B 0
3 Monitor C 7
4 Laptop D 11

This table indicates how many units of each product are currently in inventory. For this
example, we’ll imagine that as rows are added to the Products table, they are initially not given
an inventory value. As a result, the Inventory column displays a value of NULL until someone
later counts the items in stock and enters an inventory amount. In this example, we see that
there’s a positive inventory for Monitor C and Laptop D but nothing in stock for Printer B.
The inventory for Printer A is indeterminate.

Let’s say that we attempt to use the following SELECT to find products that have nothing
in inventory:

SELECT
Description,
Inventory
FROM Products
WHERE Inventory = 0

This would return:

Description Inventory

Printer B 0

75Looking Ahead

This is not quite what we wanted. The statement correctly selects Printer B since it has an
inventory amount of 0. However, we would have also liked to see Printer A, since its inventory
amount is not known. To correct this, we need to issue:

SELECT
Description,
Inventory
FROM Products
WHERE Inventory = 0
OR Inventory IS NULL

This returns:

Description Inventory

Printer A NULL
Printer B 0

We now see Printers A and B. Note that the IS NULL keyword can also be negated as IS NOT
NULL, which allows for the retrieval of rows that do not have NULL for the specified column.
We’ll additionally mention that the ISNULL function, discussed in Chapter 4, can provide an
alternative to the IS NULL keyword. The equivalent of the previous SELECT statement, using
the ISNULL function, is:

SELECT
Description,
Inventory
FROM Products
WHERE ISNULL(Inventory, 0) = 0

This SELECT retrieves the same two rows. The ISNULL function converts all values for the
Inventory column with a value of NULL to 0. This produces the same result as the previous
statement, which tested for a value of 0 or NULL.

Looking Ahead
This chapter covered the important topic of how to create complex expressions of selection
logic. The basic Boolean operators used in this endeavor were AND, OR, and NOT. We also
discussed the BETWEEN and IN operators, which allow for a more concise statement of
the AND and OR operators in certain situations. Parentheses are another essential tool in
the formulation of complex expressions. By using parentheses, you can create almost every
imaginable logical condition. Finally, we discussed how to deal with NULL values when
selecting data.

In the next chapter, we’ll revisit the columnlist and explore an important construct that will
allow us to inject logic into the individual columns in the columnlist. This is referred to as
conditional logic. By using the same Boolean logic operators discussed in this chapter, along
with a few additional keywords, we’ll be able to specify logic that determines how individual
columns in the columnlist are displayed.

This page intentionally left blank

8
Conditional Logic

Keywords Introduced
CASE • WHEN • THEN • ELSE • END

The main topic of this chapter is conditional logic. This term refers to the ability to infuse logic
into the values that appear in specific columns in a columnlist or other expressions in a SQL
statement. Based on how the logic is evaluated when the SQL statement is executed, various
values can appear for a column. Thus, values that appear are conditional on the specified logic.
More specifically, conditional logic is indicated by an expression that begins with the CASE
keyword. This is often referred to as a CASE expression. In essence, CASE expressions allow you
to alter the output presented to a user, based on logical conditions, as applied to an evaluation
of specific columns or data elements. The use of the word CASE has nothing to do with
uppercase or lowercase. It’s used in the sense of specifying a particular case, or a set of logic,
in a conditional way.

As a beginning SQL developer, you should be aware that the CASE expression is a relatively
advanced concept. You can get by without ever using CASE expressions and still write some
extremely useful queries. Nevertheless, the ability to understand and use conditional logic can
transform rudimentary queries into something a bit more sublime. As such, this is one of the
topics that might merit an additional review after you’ve read the entire book, as a reminder of
what can be accomplished with this technique.

The CASE Expression
The CASE expression in SQL allows logic to be applied to a single element in a columnlist or
expression. As indicated in Chapter 2, the full format of the SELECT statement is:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

78 Chapter 8 Conditional Logic

A CASE expression can appear in several areas of the SELECT statement. It can appear in the
columnlist immediately after the SELECT keyword or in the GROUP BY or ORDER BY clauses.
It can also appear as an element in a condition of the WHERE or HAVING clauses. In this
chapter, we’ll begin by illustrating the use of the CASE expression in a SELECT columnlist. This
is its most typical use. Then we’ll follow up by also showing how it can be used in the WHERE
and ORDER BY clauses.

The CASE expression replaces any individual column in a columnlist or an expression referenced
in a condition in the WHERE or HAVING clauses. Focusing on its use in a columnlist, a SELECT
statement that includes both columns and a CASE expression might look like this:

SELECT
column1,
column2,
CaseExpression
FROM table

The CASE expression itself contains logic embedded in a traditional IF-THEN-ELSE structure.
IF-THEN-ELSE refers to a commonly used logical construct employed by procedural
programming languages. In general terms, this type of logic looks like this:

IF some condition is true
THEN do this
ELSE do that

The condition expressed in the IF-THEN-ELSE can contain the full range of Boolean logic
discussed in the previous chapter. Thus, the expression can include the AND, OR, NOT,
BETWEEN, and IN operators, as well as parentheses.

The Simple CASE Format
There are two basic formats for the CASE expression, generally referred to as the simple and the
searched. The simple format is:

CASE ColumnOrExpression
WHEN value1 THEN result1
WHEN value2 THEN result2
[repeat WHEN-THEN any number of times]
[ELSE DefaultResult]
END

As you can see, this CASE expression uses several keywords besides CASE—namely, WHEN,
THEN, ELSE, and END. These additional keywords are needed to fully define the logic of
the CASE expression. The WHEN and THEN keywords define a condition that is evaluated.
If the value after the WHEN is true, then the result after THEN is used. The WHEN and
THEN keywords can be repeated any number of times. For every WHEN, there must also be
a corresponding THEN. The ELSE keyword is used to define a default value to use if none
of the WHEN-THEN conditions are true. As indicated by the brackets, the ELSE keyword is
not required. However, it is usually a good idea to include the ELSE keyword in every CASE
expression to explicitly state a default value. The END keyword terminates the CASE expression.

79The Simple CASE Format

Let’s look at a specific example, using this Groceries table:

GroceryID CategoryCode Description

1 F Apple
2 F Orange
3 S Mustard
4 V Carrot
5 B Water

In this data, the CategoryCode column includes codes meant to have these meanings: F is fruit,
S is spice, V is vegetable, and B is beverage. A SELECT with a CASE expression for data in this
table might look like this:

SELECT
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Item
FROM Groceries

and produces this output:

Category Item

Fruit Apple
Fruit Orange
Other Mustard
Vegetable Carrot
Other Water

Let’s examine the SELECT statement in some detail. The first line contains the SELECT
keyword. The second line, with the CASE keyword, specifies that the CategoryCode column is
to be analyzed. The third line introduces the first WHEN-THEN condition. This line says that
if the CategoryCode column equals F, then “Fruit” should be displayed. The next line states
that if the CategoryCode is V, then “Vegetable” should be displayed. The ELSE line provides
a default value of “Other” to use if the CategoryCode is not F or V. In other words, if the
category is not Fruit or Vegetable, then it can be classified as “Other”. The END line terminates
the CASE expression and includes an AS keyword to assign a column alias. The next line, Item,
is merely another item in the SELECT columnlist and is outside of the CASE expression.

As seen, the CASE expression is especially useful for translating cryptic values into meaningful
descriptions. In this example, the CategoryCode column in the Groceries table contains only a
single character code to indicate the type of product. The CASE expression allows us to specify
the translation.

80 Chapter 8 Conditional Logic

The Searched CASE Format
The general format for the searched CASE expression is:

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
[repeat WHEN-THEN any number of times]
[ELSE DefaultResult]
END

The equivalent of the preceding SELECT statement using this second format is:

SELECT
CASE
WHEN CategoryCode = 'F' THEN 'Fruit'
WHEN CategoryCode = 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Item
FROM Groceries

The data retrieved from this statement is identical to the first simple CASE format. Notice the
subtle differences, however. In the simple format, the column name to be evaluated is placed
after the CASE keyword, and the expression following the WHEN is a simple literal value. In
the searched format, a column name to be evaluated is not placed next to the CASE keyword.
Instead, this format allows for a more complex conditional expression to be specified following
the WHEN keyword.

In the previous example, either format of the CASE clause can be used and will produce the
same result. Now let’s look at an example for which only the searched CASE format yields the
desired result. This example will be taken from this data:

GroceryID Fruit Vegetable Spice Beverage Description

1 X Apple
2 X Orange
3 X Mustard
4 X Carrot
5 X Water

81The Searched CASE Format

In this situation, rather than containing a single CategoryCode column, the table has multiple
columns to indicate the type of product. For example, a value of X in the Fruit column is used
to indicate that the product is a fruit. As such, it would be impossible to use the simple format
of the CASE expression to evaluate this data. The simple format works only with an analysis of
a single column. Using the searched format, a CASE expression that handles this type of data is:

SELECT
CASE
WHEN Fruit = 'X' THEN 'Fruit'
WHEN Vegetable = 'X' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
Item
FROM GroceryCategories

Once again, the result is:

Category Item

Fruit Apple
Fruit Orange
Other Mustard
Vegetable Carrot
Other Water

In essence, we used the searched format of the CASE expression to evaluate data in multiple
columns to produce a single result.

Focus on Analysis: Division by Zero
A common example of the usefulness of the CASE expression is in situations involving division
by zero. When formulating a calculation that has the possibility of division by zero, special care
must be taken to ensure that division by zero does not occur. Like all computer languages, SQL
produces an error when division by zero is attempted. To avoid the problem, a CASE expression
can be used, as in this general example:
SELECT
CASE
WHEN Denominator = 0 THEN 0
ELSE Numerator / Denominator
END
FROM table

In this example, we’re testing the denominator to see if it equals zero. If it does, the result
of the calculation is set to zero. If not, the normal calculation is allowed to proceed. Thus, if
the denominator in the calculation happens to have a value of zero, we effectively bypass the
“divide by zero” error that would otherwise ensue.

82 Chapter 8 Conditional Logic

Conditional Logic in ORDER BY Clauses
As mentioned at the beginning of this chapter, the CASE expression can be used in numerous
places in the SELECT statement. To illustrate its use in the ORDER BY clause, let’s imagine
that we have a table with cities from the US and Canada. In this scenario, there are separate
columns for US States and Canadian Provinces. This data might appear as the following:

CityID Country State Province City

1 US VT Burlington
2 CA QU Montreal
3 US AZ Tucson
4 US AZ Phoenix
5 CA AB Edmonton

The goal in this example is to sort data first by country, and then by either state or province,
and finally by city. A statement that accomplishes this is:

SELECT *
FROM NorthAmerica
ORDER BY
Country,
CASE Country
WHEN 'US' THEN State
WHEN 'CA' THEN Province
ELSE State
END,
City

The output from this statement is:

CityID Country State Province City

5 CA AB Edmonton
2 CA QU Montreal
4 US AZ Phoenix
3 US AZ Tucson
1 US VT Burlington

The CASE expression evaluates the Country column to determine whether it’s US or CA. If it’s
US data, then it uses the State column for the sort. If it’s Canada data, it uses Province. The
result is that this statement sorts by country, then by state or province, and finally by city.

83Conditional Logic in WHERE Clauses

Conditional Logic in WHERE Clauses
Just as the CASE expression can be placed within a columnlist, it can also be placed within an
expression in a WHERE condition. In this example, we’ll assume that we have customer data
such as the following:

CustomerID Gender Age Income

1 M 55 80000
2 F 25 65000

3 M 35 40000
4 F 42 90000
5 F 27 25000

The goal is to select customers who meet a complex set of demographic and income requirements.
If they are male and at least 50 years old, they must have an income of 75000 to qualify. If
they are female and at least 35, they must have an income of 60000 to qualify. All other people
must have income of at least 50000 to qualify. The following is a statement that specifies that
criteria by using a CASE statement:

SELECT *
FROM CustomerList
WHERE Income >
CASE
WHEN Gender = 'M' AND Age >= 50 THEN 75000
WHEN Gender = 'F' AND Age >= 35 THEN 60000
ELSE 50000
END

Note that the entire CASE expression replaced just one part of the condition expressed in the
WHERE clause. In general form, the WHERE clause in this example is:

WHERE Income > CASE_Expression

The CASE expression provides the value that is compared to Income in the selection logic.
When this statement is executed, the data retrieved is:

CustomerID Gender Age Income

1 M 55 80000
2 F 25 65000
4 F 42 90000

84 Chapter 8 Conditional Logic

Looking Ahead
The CASE expression is a powerful tool that allows you to infuse logic into various elements in
a SQL statement. In this chapter, we saw the CASE expression used in the SELECT columnlist
and in the ORDER BY and WHERE clauses. In future chapters, we’ll illustrate the use of the
CASE expression in other areas, such as in the GROUP BY and HAVING clauses.

There are two basic variations of the CASE expression: the simple and the searched. A typical
use of the simple variation is to provide translations for data items with cryptic values. The
searched format allows for more complex statements of logic.

In our next chapter, “Summarizing Data,” we’ll turn our attention to methods of separating
data into groups and summarizing the values in those groups with various statistics. Back in
Chapter 4, “Using Functions,” we talked about scalar functions. The next chapter will introduce
another type of function, called aggregate functions. These aggregate functions allow us to
summarize data in many useful ways. For example, we’ll be able to look at any group of orders
and determine the number of orders, the total dollar amount of the orders, and the average
order size. These techniques will allow you to move beyond the presentation of detailed data
and begin to truly add value for your organization as you deliver summarized information.

9
Summarizing Data

Keywords Introduced
DISTINCT • SUM • AVG • MIN • MAX • COUNT • GROUP BY • HAVING • ROW_NUMBER •
OVER • RANK • DENSE_RANK • NTILE • PARTITION BY • PERCENT_RANK • PERCENTILE_CONT •
WITHIN GROUP • LAG

Up until now, all the calculations, functions, and CASE expressions we’ve used have only
altered the values of individual columns. More significantly, the rows we’ve retrieved have
corresponded to rows in tables in the underlying database. Now we turn to various methods
of summarizing data by combining values in multiple rows.

The computer term usually associated with this type of endeavor is aggregation, which means
“to combine into groups.” The ability to aggregate and summarize data is key to being able
to move beyond a mere display of data to something approaching meaningful information.
There’s a bit of magic involved when users view summarized data in a report. The ability to
summarize offers the opportunity to extract value from the mass of data in a database and
obtain a clearer picture of what it all means.

Eliminating Duplicates
Although it doesn’t provide true aggregation, the most elementary way to summarize data is to
eliminate duplicates. SQL’s DISTINCT keyword provides an easy method for removing duplicate
values from output. Here’s an example of the DISTINCT keyword, used with the following
Songs table:

SongID Artist Album Title

1 The Beatles Let It Be Across the Universe
2 The Beatles Let It Be Get Back
3 The Beatles Abbey Road Here Comes the Sun
4 Stevie Wonder Innervisions Living for the City
5 Stevie Wonder Songs in the Key of Life Isn't She Lovely
6 Paul McCartney Band on the Run Let Me Roll It

86 Chapter 9 Summarizing Data

Let’s say we want to see a list of artists in the table. This can be accomplished with:

SELECT
DISTINCT
Artist
FROM Songs
ORDER BY Artist

The result is:

Artist

Paul McCartney
Stevie Wonder
The Beatles

The DISTINCT keyword is always placed immediately after the SELECT keyword. The DISTINCT
keyword specifies that only unique values of the columnlist that follow will be returned. In
this case, there are only three artists, so only three rows are returned. If we want to see unique
combinations of both artists and albums, we can issue:

SELECT
DISTINCT
Artist,
Album
FROM Songs
ORDER BY Artist, Album

and the result would be:

Artist Album

Paul McCartney Band on the Run
Stevie Wonder Innervisions
Stevie Wonder Songs in the Key of Life
The Beatles Abbey Road
The Beatles Let It Be

Notice that “Let It Be” is listed only once, even though there are two songs from that album in
the table. This is because the DISTINCT keyword only considers values from the listed columns.

87Aggregate Functions

Aggregate Functions
The functions discussed in Chapter 4, “Using Functions,” were all scalar functions. These
functions were all performed on a single number or value. In contrast, aggregate functions are
meant to be used with groups of data. The most widely used aggregate functions are COUNT,
SUM, AVG, MIN, and MAX. These functions provide counts, sums, averages, and minimum
and maximum values for groups of data.

All our aggregate function examples will be taken from the following two tables with data
about student fees and grades. The Fees table contains:

FeeID Student FeeType Fee

1 Jose Gym 30
2 Jose Lunch 10
3 Jose Trip 8
4 Rama Gym 30
5 Julie Lunch 10

This is the Grades table:

GradeID Student GradeType Grade YearInSchool

1 Isabella Quiz 92 7
2 Isabella Quiz 95 7
3 Isabella Homework 84 7
4 Hailey Quiz 62 8
5 Hailey Quiz 81 8
6 Hailey Homework NULL 8
7 Peter Quiz 58 7
8 Peter Quiz 74 7
9 Peter Homework 88 7

Beginning with the SUM function, let’s say we want to see the total amount of gym fees paid
by all students. This can be accomplished with this statement:

SELECT
SUM(Fee) AS 'Total Gym Fees'
FROM Fees
WHERE FeeType = 'Gym'

The resulting data is:

Total Gym Fees

60

88 Chapter 9 Summarizing Data

As you can see, the SUM function sums up the total values for the Fee column, subject to the
selection logic specified in the WHERE clause. Because the only expression in the columnlist
is an aggregate function, the query returns only one column and one row of data with the
aggregate amount.

The AVG, MIN, and MAX functions are quite similar to the SUM function. Here’s an example
of the AVG function. In this case, we’re seeking to obtain the average grade of all quizzes in the
Grades table:

SELECT
AVG(Grade) AS 'Average Quiz Score'
FROM Grades
WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score

77

More than one aggregate function can be used in a single statement. Here’s a SELECT that
utilizes AVG, MIN, and MAX in the same statement:

SELECT
AVG(Grade) AS 'Average Quiz Score',
MIN(Grade) AS 'Minimum Quiz Score',
MAX(Grade) AS 'Maximum Quiz Score'
FROM Grades
WHERE GradeType = 'Quiz'

The result is:

Average Quiz Score Minimum Quiz Score Maximum Quiz Score

77 58 95

The COUNT Function
The COUNT function is slightly more complex than the aggregate functions discussed previously,
in that it can be employed in three different ways. First, the COUNT function can be used to
return a count of all selected rows, regardless of the values in any particular column. As an
example, the following statement returns a count of all rows that have homework grades:

SELECT
COUNT(*) AS 'Count of Homework Rows'
FROM Grades
WHERE GradeType = 'Homework'

89The COUNT Function

The result is:

Count of Homework Rows

3

The asterisk within parentheses means “all columns.” Behind the scenes, SQL retrieves the data
in all columns for the selected rows, and then returns a count of the number of rows.

In the second format of the COUNT function, a specific column is specified within the
parentheses. Here’s an example:

SELECT
COUNT(Grade) AS 'Count of Homework Scores'
FROM Grades
WHERE GradeType = 'Homework'

The result is:

Count of Homework Scores

2

Notice the subtle difference between the preceding two SELECT statements. In the first, we’re
merely counting rows where the GradeType equals Homework. There are three of those
rows. In the second statement, we’re counting occurrences of the Grade column where the
GradeType column has a value of Homework. In this case, one of the three rows has a value of
NULL in the Grade column, and SQL is smart enough not to count such a row. As mentioned
previously, NULL means that the data doesn’t exist.

The third variant of the COUNT function allows us to use the DISTINCT keyword in combination
with a column name. Here’s an example:

SELECT
COUNT(DISTINCT FeeType) AS 'Number of Fee Types'
FROM Fees

Note that the DISTINCT keyword is placed inside the parentheses. The DISTINCT keyword says
that we want to include only distinct values of FeeType. The outer COUNT function counts
those values. The result of this statement is:

Number of Fee Types

3

This means that there are three different values found in the FeeType column.

90 Chapter 9 Summarizing Data

Grouping Data
The previous examples of aggregation functions are interesting but of somewhat limited value.
The real power of aggregation functions will become evident after we introduce the concept of
grouping data.

The GROUP BY keyword is used to separate the data returned from a SELECT statement into
any number of groups. For example, when looking at the Grades table, we may be interested in
analyzing test scores based on the grade type. In other words, we want to separate the data into
two separate groups: quizzes and homework. The value of the GradeType column can be used
to determine the group to which each row belongs. Once data has been separated into groups,
aggregation functions can be used so that summary statistics for each of the groups can be
calculated and compared.

Here’s an example that introduces the GROUP BY keyword:

SELECT
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType
ORDER BY GradeType

The result of this statement is:

Grade Type Average Grade

Homework 86
Quiz 77

In this example, the GROUP BY keyword specifies that groups are to be created based on the
values of the GradeType column. The two columns in the SELECT columnlist are GradeType
and a calculated field that uses the AVG function. The GradeType column was included in the
columnlist because, when creating a group, it’s usually a good idea to include the column on
which the groups are based. The “Average Grade” calculated field aggregates values based on
the rows in each group.

Notice that the average homework grade has been computed as 86. As before, even though
there is one row with a NULL value for the Homework GradeType, SQL is smart enough to
ignore rows with NULL values when computing an average. If we had wanted the NULL value
to be counted as a 0, then the ISNULL function could be used to convert the NULL to a 0,
as follows:

AVG(ISNULL(Grade, 0)) AS 'Average Grade'

91Grouping Data

Focus on Analysis: Frequency Distributions
With numeric data, one common task for the analyst is to summarize and reorder the data to
create a frequency distribution. In simple terms, a frequency distribution is an analysis of a
single column, returning a count of the number of rows for each value in that column. This is
easily accomplished with the COUNT function in conjunction with GROUP BY and ORDER BY
clauses. The following statement lets you determine the mode (the value that occurs most
frequently) for a column called ColumnName:
SELECT
ColumnName
COUNT(*) AS Occurrences
FROM table
GROUP BY ColumnName
ORDER BY ColumnName

In this general solution, the ColumnName column lists the unique values in the data set for
that column. The Occurrences column states how many times that value occurred. Due to the
ORDER BY clause, the values will be listed in ascending order by the unique values for that
column.

Once a frequency distribution is obtained, a useful next step is to create a visual
representation of the distribution, called a histogram. That topic is discussed in Chapter 20,
“Strategies for Using Excel.”

Focus on Analysis: The Mode
The three principal ways of measuring central tendency in a data set are through the mean,
mode, and median. The AVG function computes the average, also referred to as a mean.
Medians will be covered later in this chapter.

The mode is the value in a set of data that occurs the most often. It’s important to realize that
there can be more than one value to a mode. When dealing with numeric data, the common
practice is to take the average of all such values in order to present a single value, but that is
an optional step. For non-numeric data, multiple values might be listed.

Because of these considerations, there is no single approach to computing a mode. In
our example, we will simply list all values, sorted in descending order by the frequency of
occurrence, and leave it to the user to decide what to do with the output. The below solution
makes use of the COUNT function, as well as the GROUP BY and ORDER BY clauses. The
following statement lets you determine the mode for a column called ColumnName:
SELECT
ColumnName
COUNT(*) AS Occurrences
FROM table
GROUP BY ColumnName
ORDER BY Occurrences DESC

In this general solution, the ColumnName column lists the unique values in the data set for
that column. The Occurrences column states how many times that value occurred. Because
of the ORDER BY clause, the values will be listed in descending order by the number of
occurrences. The top row (or rows) will indicate the mode for the data set.

As seen, the computation of a mode is quite similar to that of a frequency distribution, the
difference being how the data is sorted.

92 Chapter 9 Summarizing Data

Note that when using a GROUP BY keyword, all columns in the columnlist must be either listed
as columns in the GROUP BY clause or used in an aggregation function. Nothing else would
make any sense. For example, the following SELECT would produce an error message:

SELECT
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade',
Student AS 'Student'
FROM Grades
GROUP BY GradeType
ORDER BY GradeType

In Microsoft SQL Server, the error message would indicate that the Student column of the SELECT
columnlist is invalid since it is not in the GROUP BY clause, nor is it contained in an aggregate
function. Since everything is presented in summarized groups, SQL doesn’t know what to do with
the Student column in the above statement. As such, this statement cannot be executed.

Database Differences: MySQL
Unlike in Microsoft SQL Server and Oracle, the previous statement will not produce an error in
MySQL. Nevertheless, it will produce partially incorrect results, displaying arbitrary values in the
Student column.

Multiple Columns and Sorting
The concept of groups can be extended so that groups are based on more than one column.
Let’s return to the previous SELECT statement and add the Student column to both the GROUP
BY clause and the columnlist. It now looks like:

SELECT
GradeType AS 'Grade Type',
Student AS 'Student',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType, Student
ORDER BY GradeType, Student

The resulting data is:

GradeType Student AverageGrade

Homework Hailey NULL
Homework Isabella 84
Homework Peter 88
Quiz Hailey 71.5
Quiz Isabella 93.5
Quiz Peter 66

93Multiple Columns and Sorting

We now see a breakdown not only of grade types but also of students. The average grades are
computed on each group. Note that the Homework row for Hailey shows a NULL value, since
she has only one homework row, and that row has a value of NULL for the grade.

The order in which the columns are listed in the GROUP BY clause has no significance. The
results would be the same if the clause were:

GROUP BY Student, GradeType

However, as always, the order in which columns are listed in the ORDER BY clause is meaningful.
If you switch the ORDER BY clause to:

ORDER BY Student, GradeType

the resulting data is:

GradeType Student AverageGrade

Homework Hailey NULL
Quiz Hailey 71.5
Homework Isabella 84
Quiz Isabella 93.5
Homework Peter 88
Quiz Peter 66

This looks a bit strange, because it’s difficult to determine at a glance that SQL sorted the data
by Student and then by GradeType. As a general rule, it usually helps if columns are listed from
left to right in the same order in which columns are sorted. A more understandable SELECT
statement would be:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
GROUP BY GradeType, Student
ORDER BY Student, GradeType

The data now looks like this:

Student Grade Type Average Grade

Hailey Homework NULL
Hailey Quiz 71.5
Isabella Homework 84
Isabella Quiz 93.5
Peter Homework 88
Peter Quiz 66

This is more comprehensible because the column order corresponds to the sort order.

94 Chapter 9 Summarizing Data

Sometimes a bit of confusion occurs regarding the difference between the GROUP BY and
ORDER BY clauses. The main point to remember is that GROUP BY merely creates the groups.
The ORDER BY still must be used to list the rows in a meaningful sequence.

Selection Criteria on Aggregates
After data has been separated into groups via the GROUP BY clause, selection criteria become a
bit more complex. When applying any kind of selection criteria to a SELECT with a GROUP BY,
you must ask whether the criteria apply to individual rows or to the entire group. Whereas the
WHERE clause handles selection criteria for individual rows, SQL provides a keyword named
HAVING that allows selection logic to be applied at the group level.

Returning to the Grades table, suppose we want to see only grades on quizzes that are 70 or
higher. In this example, the grades we’d like to see are individual grades, so the WHERE clause
can be used, as normal. Such a SELECT might look like this:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
Grade AS 'Grade'
FROM Grades
WHERE GradeType = 'Quiz'
AND Grade >= 70
ORDER BY Student, Grade

The resulting data is:

Student Grade Type Grade

Hailey Quiz 81
Isabella Quiz 92
Isabella Quiz 95
Peter Quiz 74

Notice that quizzes with a score less than 70 aren’t shown. For example, we can see Peter’s quiz
score of 74 but not his quiz score of 58.

To introduce the use of the HAVING clause, let’s say we want to display data for students who
have an average quiz grade of 70 or more. In this situation, we want to select on an average, not
on individual rows. This is where the HAVING clause comes in. We need to first group grades
by student, and then apply selection criteria to an aggregate statistic based on the entire group.
The following statement produces the desired result:

SELECT
Student AS 'Student',
AVG(Grade) AS 'Average Quiz Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student
HAVING AVG(Grade) >= 70
ORDER BY Student

95Selection Criteria on Aggregates

The output is:

Student Average Quiz Grade

Hailey 71.5
Isabella 93.5

This SELECT has both a WHERE and a HAVING clause. The WHERE ensures that we consider
only rows with a GradeType of “Quiz”. The HAVING guarantees that we select only students
with an average score of at least 70.

To take this example a step further, what if we wanted to add a column with the GradeType
value? If we attempt to add GradeType to the SELECT columnlist, the statement will produce
an error. This is because all columns must be either listed in the GROUP BY or involved in an
aggregation. Therefore, if we want to show the GradeType column, it must be added to the
GROUP BY clause, as follows:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, GradeType
HAVING AVG(Grade) >= 70
ORDER BY Student

The resulting data is:

Student Grade Type Average Grade

Hailey Quiz 71.5
Isabella Quiz 93.5

Now that we’ve added the HAVING clause to the mix, let’s recap the general format of the
SELECT statement with all the clauses used thus far:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

Remember that when employing any of the above keywords in a SELECT, they must be listed
in the order shown. For example, the HAVING keyword must always come after a GROUP BY
but before an ORDER BY.

96 Chapter 9 Summarizing Data

Conditional Logic in GROUP BY Clauses
In Chapter 8, “Conditional Logic,” we saw examples of the CASE expression in the columnlist of
a SELECT statement as well as in the ORDER BY and WHERE clauses. When a GROUP BY clause
is used in a statement, all expressions in the columnlist must either be present in the GROUP BY
or involve an aggregate function. This means that when a CASE expression is used in a GROUP
BY, the same exact expression must be used in the SELECT columnlist. To illustrate, let’s return
to the Groceries data seen in the previous chapter:

GroceryID CategoryCode Description

1 F Apple
2 F Orange
3 S Mustard
4 V Carrot
5 B Water

In this example, we want to group by the category computed by the CASE expression—namely,
Fruit, Vegetable, or Other. The objective is to produce a count of how many products are in
each category. Here’s the statement:

SELECT
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END AS 'Category',
COUNT(*) AS 'Count'
FROM Groceries
GROUP BY
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END
ORDER BY
CASE CategoryCode
WHEN 'F' THEN 'Fruit'
WHEN 'V' THEN 'Vegetable'
ELSE 'Other'
END

The output appears as:

Category Count

Fruit 2
Other 2
Vegetable 1

97Conditional Logic in HAVING Clauses

Notice that the same CASE statement is used in the SELECT columnlist and in the GROUP BY
and ORDER BY clauses.

Conditional Logic in HAVING Clauses
To illustrate the use of conditional logic in HAVING clauses, let’s return to the HAVING clause
example from earlier in this chapter. In that situation, we displayed data for students who had
an average quiz grade of 70 or higher. The statement was:

SELECT
Student AS 'Student',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, GradeType
HAVING AVG(Grade) >= 70
ORDER BY Student

In this scenario, the WHERE clause selected quizzes. We declared a GROUP BY student and
grade type and then applied the aggregate selection logic in the HAVING clause to enforce the
restriction that we want only students with an average quiz of at least 70.

In this next example, we’ll use a column in the data that was previously ignored—namely,
the YearInSchool column. With this additional information, we’ll alter the previous statement
to list students with an average grade of at least 70 if they’re a Year 7 student, or an average
grade of 75 if they’re a Year 8 student. If they’re not Year 7 or Year 8, we’ll accept students with
an average grade of 80. To accomplish this goal, we’ll need to place a CASE expression in the
HAVING clause. We’ll also display the YearInSchool column, as follows:

SELECT
Student AS 'Student',
YearInSchool AS 'Year in School',
GradeType AS 'Grade Type',
AVG(Grade) AS 'Average Grade'
FROM Grades
WHERE GradeType = 'Quiz'
GROUP BY Student, YearInSchool, GradeType
HAVING AVG(Grade) >=
CASE
WHEN YearInSchool = 7 THEN 70
WHEN YearInSchool = 8 THEN 75
ELSE 80
END
ORDER BY Student

98 Chapter 9 Summarizing Data

The HAVING clause states that the average grade must be greater than the number returned by
the CASE expression. The CASE expression will provide a value of 70, 75, or 80, depending on
the value of the YearInSchool column. The result is:

Student Year In School Grade Type Average Grade

Isabella 7 Quiz 93.5

Isabella is now the only student listed because she is only person who satisfies the new criteria.

Ranking Functions
In addition to the grouping techniques discussed previously in this chapter, SQL provides
several special ranking functions that allow for the classification of rows by a method of
sequential classification. There are four basic ranking functions:

• ROW_NUMBER

• RANK

• DENSE_RANK

• NTILE

The ROW_NUMBER function creates row numbers based on a specified order of another column
or expression associated with the function. After the rows have been placed in the specified order,
the generated row numbers will start with 1 and increase sequentially to 2, 3, 4, and so on. The
ROW_NUMBER function requires no parameters.

The RANK function is the same as ROW_NUMBER except that if two or more rows have the
same value for the specified column or expression, they are both given the same number. For
example, if the second and third rows have the same value, the generated ranks will be 1, 2,
2, 4, and so on. Because the two rows with a value of 2 have the same value, SQL skips the
number 3.

The DENSE_RANK function is the same as the RANK function except that it does not skip any
numbers, even when there are duplicate values. In the preceding example, the generated dense
rank would be 1, 2, 2, 3, and so on. The number 3 is not skipped.

Finally, the NTILE function allows for the generation of a percentile (or quartile, decile, etc.),
based on the specified order of another column or expression. Unlike RANK, ROW_NUMBER,
and DENSE_RANK, NTILE requires a parameter. For example, the function NTILE(100) will
assign percentiles. Percentiles are a number from 1 to 100 that represents the relative rank of
the value. However, any other number can be used as the argument for the function. Thus, the
function NTILE(10) will create deciles, and NTILE(4) will produce quartiles.

99Ranking Functions

Let’s illustrate ranking with a few examples, all based on the following table:

StockSymbol StockName Exchange PriceEarningsRatio

AAPL Apple Inc NASDAQ 36
AMZN Amazon.com Inc NASDAQ 80
BAC Bank of America Corporation NYSE 17
GE General Electric Company NYSE 29
GOOG Alphabet Inc NASDAQ 40
HSY The Hershey Company NYSE 27
KO The Coca-Cola Company NYSE 33
MCD McDonalds Corporation NYSE 36
MMM 3M Company NYSE 22
MSFT Microsoft Corporation NASDAQ 39
NFLX Netflix Inc NASDAQ 61
ORCL Oracle Corporation NASDAQ 18
SBUX Starbucks Corporation NASDAQ 205
TGT Target Corporation NYSE 22
WMT Wal-Mart Inc NYSE 30

This table lists some stocks, showing their symbol, their name, the exchange they trade on, and
their price–earnings (PE) ratio. For example, Apple (AAPL) is traded on the NASDAQ and has a
PE ratio of 36.

In this first example, we’ll sort all the rows by PE ratio and use the ROW_NUMBER function to
generate a row number for each row. We want to sort the rows by PE from lowest to highest.
We’re displaying low PE’s first, since a low PE is generally better than a high PE. A statement
that accomplishes this is:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
StockSymbol AS 'Symbol',
StockName AS 'Name',
Exchange AS 'Exchange',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

http://Amazon.com

100 Chapter 9 Summarizing Data

The output of this statement is:

Row Symbol Name Exchange PE Ratio

1 BAC Bank of America Corporation NYSE 17
2 ORCL Oracle Corporation NASDAQ 18
3 TGT Target Corporation NASDAQ 22
4 MMM 3M Company NYSE 22
5 GE General Electric Company NASDAQ 23
6 HSY The Hershey Company NYSE 27
7 WMT Wal-Mart Inc NYSE 30
8 KO The Coca-Cola Company NYSE 33
9 MCD McDonalds Corporation NYSE 36
10 AAPL Apple Inc NYSE 36
11 MSFT Microsoft Corporation NYSE 39
12 GOOG Alphabet Inc NYSE 40
13 NFLX Netflix Inc NASDAQ 61
14 AMZN Amazon.com Inc NASDAQ 80
15 SBUX Starbucks Inc NASDAQ 205

Let’s examine how this works. First, note that there are no selection criteria or grouping in
this statement. Besides the columnlist, there is only a FROM clause and an ORDER BY clause.
The ORDER BY clause is necessary to list the rows in the desired order, by PE ratio. The main
complexity in this statement is the first item in the columnlist, which uses the ROW_NUMBER
ranking function. Note that this value includes an OVER keyword as well as another ORDER BY
in parentheses. The general format for a columnlist element that includes a ranking function is:

Rank_Function() OVER (ORDER BY expression [[ASC]|DESC])

The Rank_Function can be any of the four functions mentioned above. The keyword OVER is
required. Its purpose is to designate how the rank function will be applied. The expression in
the parentheses indicates the column or expression on which the ranking will be applied. The
ORDER BY keyword indicates that this expression will be evaluated in either an ascending or
descending order. If the order will be ascending, then the ASC keyword isn’t necessary.

In our example, we’re assigning a row number based on an evaluation of the PriceEarningsRatio
column. The values of PriceEarningsRatio are evaluated in an ascending order. The first row,
for Bank of America Corporation, is given a row number of 1 because it is first in the sequence.
Note that the ROW_NUMBER function only assigns the row number. We still need the ORDER
BY clause in the SELECT statement to display the output in the desired sequence.

http://Amazon.com

101Ranking Functions

To illustrate the use of the RANK and DENSE_RANK functions, we’ll add them as columns to
the previous statement. We won’t bother to display the stock name or exchange. The new
statement is:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
RANK() OVER (ORDER BY PriceEarningsRatio) AS 'Rank',
DENSE_RANK() OVER (ORDER BY PriceEarningsRatio) AS 'Dense Rank',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

The output is:

Row Rank Dense Rank Symbol PE Ratio

1 1 1 BAC 17
2 2 2 ORCL 18
3 3 3 TGT 22
4 3 3 MMM 22
5 5 4 GE 23
6 6 5 HSY 27
7 7 6 WMT 30
8 8 7 KO 33
9 9 8 MCD 36
10 9 8 AAPL 36
11 11 9 MSFT 39
12 12 10 GOOG 40
13 13 11 NFLX 61
14 14 12 AMZN 80
15 15 13 SBUX 205

In this example, TGT and MMM have the same PE. As a result, they are given the same value
for RANK and for DENSE_RANK. The difference is in the values assigned to subsequent rows.
For RANK, the next row after TGT and MMM, GE, skips a number and is given a value of 5. For
DENSE_RANK, no numbers are skipped, and GE is given a value of 4.

102 Chapter 9 Summarizing Data

Moving on to the NTILE function, we’ll offer examples of NTILE(4) and NTILE(10). As
mentioned, the NTILE ranks the rows in a specified sequence, and then assigns them to a group.
In the case of NTILE(4), the data is divided into four groups. This is commonly referred to as
quartiles. NTILE(10) divides the data into ten groups, otherwise known as deciles. To illustrate,
the following statement ranks the stocks by PE ratio and displays NTILE(4) and NTILE(10):

SELECT
NTILE(4) OVER (ORDER BY PriceEarningsRatio) AS 'Quartile',
NTILE(10) OVER (ORDER BY PriceEarningsRatio) AS 'Decile',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

The resulting output is:

Quartile Decile Symbol PE Ratio

1 1 BAC 17
1 1 ORCL 18
1 2 TGT 22
1 2 MMM 22
2 3 GE 23
2 3 HSY 27
2 4 WMT 30
2 4 KO 33
3 5 MCD 36
3 5 AAPL 36
3 6 MSFT 39
3 7 GOOG 40
4 8 NFLX 61
4 9 AMZN 80
4 10 SBUX 205

The Quartile column divides the data into four groups, based on a ranking of the PE ratio. As
seen, rows 1 to 4 fall in the top quartile, rows 5 to 8 fall in the second quartile, and so on. The
Decile column divides the data into ten groups in a similar manner. With larger data sets, it
would be common to include an NTILE(100) function to divide the data into 100 groups. Each
of these 100 groups is commonly referred to as a percentile.

103Partitions

Partitions
A useful variation on how the ranking functions discussed in the previous section can be used
is the ability to divide data into partitions prior to the application of the ranking function. We
indicated previously that the general format for a columnlist element that includes a ranking
function is:

Rank_Function() OVER (ORDER BY expression [[ASC]|DESC])

The partitioning of data involves a PARTITION BY keyword. With partitioning, the general
format for a columnlist element that includes a ranking function is:

Rank_Function() OVER (PARTITION BY expression_1
ORDER BY expression_2 [[ASC]|DESC])

In the previous examples, we ignored the value of the Exchange column. With partitioning, we
can separate, or partition, our data into two separate groups, based on the value of the Exchange
column, which is either NYSE or NASDAQ. After the data is separated, the ranking functions
are applied as seen previously.

To illustrate, let’s revise the first query of the previous section that used the ROW_NUMBER
function to rank the data, assigning a row number to each row based on the PE ratio. The
original SQL statement was:

SELECT
ROW_NUMBER() OVER (ORDER BY PriceEarningsRatio) AS 'Row',
StockSymbol AS 'Symbol',
StockName AS 'Name',
Exchange AS 'Exchange',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY PriceEarningsRatio

In our revision, we’ll add the PARTITION BY keyword to the columnlist element with the
ROW_NUMBER function. We’ll also remove the stock name and rearrange the order of the
columns and the ORDER BY clause so that the data appears in a more comprehensible layout.
The new statement is:

SELECT
Exchange AS 'Exchange',
ROW_NUMBER() OVER (PARTITION BY Exchange ORDER BY PriceEarningsRatio)
AS 'Exchange Rank',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY Exchange, PriceEarningsRatio

104 Chapter 9 Summarizing Data

The result is:

Exchange Exchange Rank Symbol PE Ratio

NASDAQ 1 ORCL 18
NASDAQ 2 AAPL 36
NASDAQ 3 MSFT 39
NASDAQ 4 GOOG 40
NASDAQ 5 NFLX 61
NASDAQ 6 AMZN 80
NASDAQ 7 SBUX 205
NYSE 1 BAC 17
NYSE 2 TGT 22
NYSE 3 MMM 22
NYSE 4 GE 23
NYSE 5 HSY 27
NYSE 6 WMT 30
NYSE 7 KO 33
NYSE 8 MCD 36

Notice that we also changed the column alias for the ROW_NUMBER function from “Row”
to “Exchange Rank.” This was done because we now have two sets of data. It wouldn’t make
sense to refer to this column as a row number, because we have two sequential sets of numbers.
Note that the ORDER BY clause must correspond to the PARTITION BY and RANKING BY
expressions in the ranking function. If the data is partitioned and ranked in one way and sorted
in another way, the results might be difficult to comprehend.

Remember that partitions are not the same as groups, as created by the GROUP BY clause seen
earlier in this chapter. The usual purpose of a GROUP BY clause is to group data and then
to apply aggregation functions to each of the groups. For example, you might wish to group
by the Exchange column and then obtain the average PE for each of the groups. This would
provide the average PE for both the NASDAQ and NYSE exchanges. In contrast, the concept
of partitioning keeps the detailed data intact. Partitions are created merely to apply a ranking
to individual rows within each partition. Although data is divided into groups for purposes of
ranking, the details are maintained, and there is no aggregation involved.

105Analytic Functions

The preceding example illustrated the use of partitions with the ROW_NUMBER ranking
function. The application of partitions to the other three ranking functions (RANK, DENSE_RANK,
and NTILE) works in an identical manner. For example, if we wanted to partition the data based
on the Exchange, and then show the quartile for each partition, the statement would be:

SELECT
Exchange AS 'Exchange',
NTILE(4) OVER (PARTITION BY Exchange ORDER BY PriceEarningsRatio)
AS 'Quartile',
StockSymbol AS 'Symbol',
PriceEarningsRatio AS 'PE Ratio'
FROM Stocks
ORDER BY Exchange, PriceEarningsRatio

The output for this statement is:

Exchange Quartile Symbol PE Ratio

NASDAQ 1 ORCL 16
NASDAQ 1 AAPL 36
NASDAQ 2 MSFT 39
NASDAQ 2 GOOG 40
NASDAQ 3 NFLX 61
NASDAQ 3 AMZN 80
NASDAQ 4 SBUX 205
NYSE 1 BAC 17
NYSE 1 TGT 22
NYSE 2 MMM 22
NYSE 2 GE 23
NYSE 3 HSY 27
NYSE 3 WMT 30
NYSE 4 KO 33
NYSE 4 MCD 36

As expected, the data now shows a ranking of rows by quartile, for both NASDAQ and NYSE stocks.

Analytic Functions
Now we turn to a group of functions that are similar to the previously discussed ranking
functions. Analytic functions compute a variety of aggregate values based on a group of rows.
Like ranking functions, the values returned remain on the row level. Rows are not aggregated
into groups. Also like the ranking functions, analytic functions use the OVER clause and can
also use the PARTITION BY clause to divide rows into various groups. Analytic functions
perform such tasks as computing percentiles for a row compared to other rows or displaying
the value from a prior row from the same data set. To illustrate the power of analytic functions,
we’ll provide examples of two such functions: PERCENT_RANK and LAG.

106 Chapter 9 Summarizing Data

The PERCENT_RANK function provides the relative rank of the value in a specific row
compared to other rows in the table or to other rows in a partition of a table. The relative rank
is expressed as a percentage. We’ll illustrate this function with the above-mentioned Stocks
table. In this example, our objective will be to show how the Price Earnings Ratio of each stock
compares to other PE ratios for stocks in the same exchange. For NYSE stocks, we want to see
only how the PE compares to other stocks in the NYSE, and likewise for stocks in the NASDAQ
exchange. The statement accomplishes this is as follows.

SELECT
Exchange,
StockSymbol as 'Symbol',
PriceEarningsRatio AS 'PE Ratio',
ROUND(PERCENT_RANK() OVER (PARTITION BY Exchange
ORDER BY PriceEarningsRatio) * 100, 0) AS 'Percent Rank'
FROM Stocks
ORDER BY Exchange, PriceEarningsRatio

The output for this statement is:

Exchange Symbol PE Ratio Percent Rank

NASDAQ ORCL 18 0
NASDAQ AAPL 35 17
NASDAQ MSFT 39 33
NASDAQ GOOG 40 50
NASDAQ NFLX 61 67
NASDAQ AMZN 80 83
NASDAQ SBUX 205 100
NYSE BAC 17 0
NYSE TGT 22 14
NYSE MMM 22 14
NYSE GE 23 43
NYSE HSY 27 57
NYSE WMT 30 71
NYSE KO 33 86
NYSE MCD 36 100

The PERCENT_RANK function uses a syntax much like the previously seen ranking functions.
The PARTITION BY clause specifies that we only want to compute rankings within each
exchange. The ORDER BY clause says that we want to order the rankings by the PE Ratio of the
stock. Note that we’re multiplying the result, so a percentage such as .17 displays as 17 without
the decimal point. Finally, the entire expression is placed within a ROUND function to round
the percentage to nearest integer. As seen, the computed PERCENT_RANK ranges in value
between 0 and 100 for both the NASDAQ rows and for the NYSE rows. For the NASDAQ stocks,
ORCL is at the 0 percentile and SBUX is at the 100th. Similarly, the NYSE stocks range from
BAC at 0 to MCD at 100.

107Analytic Functions

Focus on Analysis: The Median
Besides the mean and mode, the median is another way to calculate the central tendency in
a data set. The median refers to the value in the precise middle of a data set that has been
sorted by a column of interest. For example, if a data set has nine rows and is sorted in a
desired order, this would be the value of the column in row 5. If the data set has an even
number of rows, the median is usually taken as the average of the two middle rows. If there
are 10 rows, this would be the average of the values in rows 5 and 6.

Microsoft SQL Server provides an analytic function called PERCENTILE_CONT that can be
used to compute a median. This function is like the inverse of the PERCENT_RANK function.
Whereas PERCENT_RANK computes a percentile for a value, the PERCENTILE_CONT computes
a value for a specified percentile. PERCENTILE_CONT refers to a desired percentage in a
continuous distribution. To find the median, we will specify the 50th percentile for the function.
Since the distribution is continuous, it will compute an average of the middle rows if necessary.
There is also a PERCENTILE_DISC function that forces the function to select one of the existing
values without taking an average.

Using the Stocks table, a statement that computes the median for the entire table is:
SELECT
TOP 1
PERCENTILE_CONT(0.5)
WITHIN GROUP
(ORDER BY PriceEarningsRatio)
OVER (PARTITION BY 'X') AS 'Median'
FROM Stocks

The output of the above is a single row with a value of 33 for the computed Median column.
The specification of 0.5 for the PERCENTILE_CONT parameter indicates that we want the
50th percentile. The WITHIN GROUP keyword is required for this function. The ORDER BY
clause specifies which column we want a median for. Finally, the PERCENTILE_CONT requires
a PARTITION BY clause. Since, in this example, we don’t really want to partition the data, we
provided a dummy value of X, which is ignored. Finally, the TOP clause forces the statement to
return only one row. Without the TOP clause, the median would be shown for each stock in the
table, all with the same value.

If you wanted to make use of partitioning and calculate a median for each exchange, you could
use a statement such as the following:
SELECT
Exchange,
PERCENTILE_CONT(0.5)
WITHIN GROUP
(ORDER BY PriceEarningsRatio)
OVER (PARTITION BY Exchange) AS 'Median'
FROM Stocks

This will return values that indicate a median of 40 for NASDAQ stocks and 25 for NYSE stocks.

Note that unlike Microsoft SQL Server and Oracle, MySQL does not provide the PERCENTILE_CONT
or PERCENTILE_DISC functions.

108 Chapter 9 Summarizing Data

Now we turn to the LAG function. To illustrate its use, we’ll utilize data in this SalesHistory table:

HistoryID CustomerID SalesDate SalesAmount

1 100 2021-12-01 23
2 101 2021-12-02 11
3 100 2021-12-05 81
4 101 2021-12-05 40
5 101 2021-12-06 33

The LAG function allows you to examine a data set and return the value from a prior row in a
given partition, based on a specified sort order. The general format of the LAG function is:

LAG(Expression, Offset) OVER (PARTITION BY PartitionClause ORDER BY OrderClause

The Expression parameter is the expression for which we want to compute a lag. The Offset
parameter is the number of rows before the current row that we want to display.

As an example of its use, we’ll sort the SalesHistory table by SalesDate and display the SalesAmount
from the previous row for each customer. The following statement accomplishes this:

SELECT
CustomerID,
SalesDate AS 'Sales Date',
SalesAmount AS 'Sales Amount'
LAG(SalesAmount, 1)
OVER (PARTITION BY CustomerID ORDER BY SalesDate) AS 'Previous Sale'
FROM Stocks
ORDER BY CustomerID, SalesDate

The output of this statement is:

CustomerID Sales Date Sales Amount Previous Sales

100 2021-12-01 23 NULL
100 2021-12-05 81 23
101 2021-12-02 11 NULL
101 2021-12-05 40 11
101 2021-12-06 33 40

Let’s look at what this data means. First, note that we included an ORDER BY clause in the
statement to order the rows by CustomerID and then SalesDate. In the first row, the computed
Previous Sales column has a value of NULL. This means that for this customer, there was no
previous sale. The second row has a value of 23. This means that the previous sale for this
customer was 23. We can see that value on the first row. Turning to customer 101 in the third
row, again we see a value of NULL for the first sale for that customer. Rows 4 and 5 show the
most recent previous sales amount for that customer.

Finally, note that Microsoft SQL Server provides a function called LEAD that is identical to the
LAG function except that it displays the value for a row that follows, rather than precedes, the
current row.

109Looking Ahead

Looking Ahead
In this chapter, we covered several forms of aggregation, beginning with the simplest—that
of removing duplicates. We then introduced several aggregate functions, which are a different
class of functions from the scalar functions seen in Chapter 4. The real power of aggregate
functions becomes apparent when they are used in conjunction with the GROUP BY keyword,
which allows for the separation of data into groups. We also looked at the use of the HAVING
clause, which allows you to apply group-level selection criteria to values in aggregate functions.

We concluded this chapter with two additional topics related to summation. The use of CASE
expressions in the GROUP BY and HAVING clauses allows you to apply conditional logic
grouping and group selection criteria. Finally, we covered ranking functions, analytic functions,
and partitioning, which provide useful ways of organizing detailed data. Using the PARTITION
BY keyword, data can be separated into groups in conjunction with the ranking or analytic
functions.

The next chapter, on subtotals and crosstabs, offers additional formatting options for
aggregated values. Subtotals allow you to add summarized information to a presentation of
detailed data. Crosstabs offer a new method of laying out data in a format that more clearly
displays aggregated data.

This page intentionally left blank

10
Subtotals and Crosstabs

Keywords Introduced
ROLLUP • GROUPING • CUBE • PIVOT • FOR

The previous chapter provided numerous ways of adding aggregation to a query. Now we
want to extend that discussion to cover the additional option of providing subtotals. When
we aggregate data, we’re also removing the detailed data that lies below the summarized totals.
The whole point of aggregation is to replace detailed data with a summarization. However,
sometimes users want to see the detailed data, along with an occasional summary. This is
where subtotals come in. Subtotals are typically provided via extra rows added in with the
detailed data that summarize key columns.

A second topic we’ll cover in this chapter has to do with how summarized data is displayed
to the user. In the previous chapter, grouped data was displayed to the user with each row of
data indicating the values being grouped, along with the summarized values. This is usually an
acceptable way of displaying data. But sometimes users prefer data in a crosstab format. The
crosstab format is one in which groups are broken out into multiple columns. This reduces the
number of rows a user needs to look through. Crosstab layouts are typically employed by many
reporting tools. A prime example of a crosstab layout is the Excel pivot table, which allows
you to lay out data in both rows and columns. Excel pivot tables will be discussed in detail
in Chapter 20, “Strategies for Using Excel.” In this chapter, we’ll show how to create a similar
effect with a SQL command.

112 Chapter 10 Subtotals and Crosstabs

Adding Subtotals with ROLLUP
In the previous chapter, we showed how to use the GROUP BY clause to group data. Often
when data is grouped together, some columns might be aggregated to provide a sum of values
in that column. To revisit this scenario, let’s begin with the following data that shows the
current inventory of a few products.

InventoryID Category Subcategory Product Quantity

1 Furniture Chair Executive Armchair 3
2 Furniture Chair Swivel Task Chair 2
3 Furniture Desk Student Computer Desk 4
4 Paper Copy Multipurpose Paper 5
5 Paper Copy White Laser Paper 2
6 Paper Notebook College Ruled Paper 4

In this example, each product is broken down by category and subcategory. For example, the
Furniture category includes Chair and Desk subcategories. The following SELECT statement
groups this data by Category and Subcategory and sums the quantity for each group.

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY Category, Subcategory
ORDER BY Category, Subcategory

The resulting output is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
Paper Copy 7
Paper Notebook 4

So far, all is well. But now let’s add the challenge of adding subtotals for each category and a
final total at the end. In other words, in addition to the grouped data, we would like a subtotal
row every time a category changes, and a final row at the end that sums all the quantities. This
can be accomplished by using a ROLLUP keyword in the GROUP BY clause, as follows:

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

113Adding Subtotals with ROLLUP

The keyword ROLLUP is an extension to the GROUP BY clause that creates subtotal and total
rows. The output of the above statement is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
Furniture NULL 9
Paper Copy 7
Paper Notebook 4
Paper NULL 11
NULL NULL 20

As you can see, two subtotal rows and one total row have been added to the original four rows.
These rows have the keyword NULL in the Category or Subcategory columns. The first subtotal
row is the third row, displaying a quantity of 9 for the Furniture category. The Subcategory is
shown as NULL because we are showing only a subtotal for the category. The second of the
subtotal rows is the sixth row, which summarizes the Paper category, indicating that there are
11 paper items. The final row is a total column that sums all items in all categories, indicating
that we have 20 total items in inventory.

Note that the NULL that appears in the output is somewhat different from the NULL values
we’ve seen previously. In this case, the NULL is merely a placeholder that indicates that a
ROLLUP has been applied.

The previous statement did not include an ORDER BY clause. Without an ORDER BY, the
subtotal and total rows always appear after each category. Let’s now add an ORDER BY to
the statement to see the difference:

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)
ORDER BY Category, Subcategory

The output is:

Category Subcategory Quantity

NULL NULL 20
Furniture NULL 9
Furniture Chair 5
Furniture Desk 4
Paper NULL 11
Paper Copy 7
Paper Notebook 4

114 Chapter 10 Subtotals and Crosstabs

As you can see, the ORDER BY clause changes the location of the subtotal and total rows so
they appear before rather than after each category. Since NULL is the lowest possible value,
they now appear first in the sorted sequence.

Database Differences: Oracle
In Oracle, an ascending sort ordinarily causes NULL values to appear at the end of a sequence
rather than at the beginning. However, the use of a NULLS FIRST keyword in the ORDER BY
clause will ensure that NULL values appear at the start of a sequence in Oracle. To illustrate,
you would add the NULLS FIRST keyword to the SQL line:
ORDER BY Category, Subcategory;

as follows:
ORDER BY Category NULLS FIRST, Subcategory NULLS FIRST;

It’s plain to see that using NULL values in the above examples is obtuse and difficult to
interpret. Now we’ll show how to convert those NULL values to something more meaningful.
This is accomplished via a function called GROUPING. This is a special aggregate function that
works in conjunction with the ROLLUP keyword. As you’ll see in the next section, GROUPING
also works with the CUBE keyword. The following example adds two columns that make use of
the GROUPING function. To simplify, we’ll remove the ORDER BY clause.

SELECT
Category,
Subcategory,
SUM(Quantity) AS 'Quantity',
GROUPING(Category) AS 'Category Grouping',
GROUPING(Subcategory) AS 'Subcategory Grouping'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

The output is:

Category Subcategory Quantity Category Grouping Subcategory Grouping

Furniture Chair 5 0 0
Furniture Desk 4 0 0
Furniture NULL 9 0 1
Paper Copy 7 0 0
Paper Notebook 4 0 0
Paper NULL 11 0 1
NULL NULL 20 1 1

Let’s examine the output to see what the GROUPING function accomplishes. This function has
a single argument, which is the name of the column to be examined, and it returns either a 0
or a 1. A value of 1 means that this row contains a subtotal or total, as specified by the same

115Adding Subtotals with ROLLUP

column in the ROLLUP in the GROUP BY clause. In this example, the ROLLUP is on both
Category and Subcategory. Subsequently, the Grouping function on Subcategory returns a 1 if
this row provides a subtotal for Subcategory. The function returns a 0 if it is not a subtotal row
for the specified column. As you can see, the third row in the preceding output has a NULL in
the Subcategory column and a corresponding value of 1 in the Subcategory Grouping column.

Now that we’ve seen what the GROUPING function does, let’s put it to good use. In the next
example, we’ll introduce a CASE statement to translate the result of the GROUPING function
to a more meaningful label.

SELECT
ISNULL(Category,'') AS 'Category',
ISNULL(Subcategory, '') AS 'Subcategory',
SUM(Quantity) AS 'Quantity',
CASE WHEN GROUPING(Category) = 1 then 'Total'
WHEN GROUPING(Subcategory) = 1 then 'Subtotal'
ELSE ' ' END AS 'Subtotal/Total'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

This produces the following output:

Category Subcategory Quantity Subtotal/Total

Furniture Chair 5
Furniture Desk 4
Furniture 9 Subtotal
Paper Copy 7
Paper Notebook 4
Paper 11 Subtotal

20 Total

The ISNULL function in the Category and Subcategory columns suppresses the printing of
the word NULL. The CASE statement in the new Subtotal/Total column uses the GROUPING
function to print either “Subtotal” or “Total” in the column if the Quantity is a Subtotal or Total.

Still more can be done to make the display a little more understandable. In the following
example, we’ve moved the CASE statement to the first column.

SELECT
CASE
WHEN GROUPING(Category) = 1 THEN 'TOTAL'
WHEN GROUPING(Subcategory) = 1 THEN 'SUBTOTAL'
ELSE ISNULL(Category,'') END AS 'Category',
ISNULL(Subcategory, '') AS 'Subcategory',
SUM(Quantity) AS 'Quantity'
FROM Inventory
GROUP BY ROLLUP(Category, Subcategory)

116 Chapter 10 Subtotals and Crosstabs

Now the output is:

Category Subcategory Quantity

Furniture Chair 5
Furniture Desk 4
SUBTOTAL 9
Paper Copy 7
Paper Notebook 4
SUBTOTAL 11
TOTAL 20

As seen, the CASE statement under the Category column prints the words SUBTOTAL or TOTAL
if the corresponding quantity is a subtotal or total. The GROUPING function is used to make
this determination.

Database Differences: MySQL
MySQL has a slightly different format for the ROLLUP keyword. The equivalent of this Microsoft
SQL Server line:
GROUP BY ROLLUP(Category, Subcategory)

in MySQL is:
GROUP BY Category, Subcategory WITH ROLLUP

Adding Subtotals with CUBE
Rollups work well in situations where the data has a hierarchical structure. In the previous
example, there was a natural hierarchy from category to subcategory. As such, you can think of
drilling down from category to subcategory. The ROLLUP keyword provides subtotals on each
category and a total at the end.

However, in other situations where the data is not hierarchical, we might still want to add
subtotal rows. To illustrate that scenario, let’s look at the following data in a SalesSummary table:

SalesDate CustomerID State Channel SalesAmount

12/1/2021 101 NY Internet 50
12/1/2021 102 NY Retail 30
12/1/2021 103 VT Internet 120
12/2/2021 145 VT Retail 90
12/2/2021 180 NY Retail 300
12/2/2021 181 VT Internet 130
12/2/2021 182 NY Internet 520
12/2/2021 184 NY Retail 80

117Adding Subtotals with CUBE

This data shows sales by customer and date, indicating the state and channel of the sale. In this
example, there are only two states, NY and VT, and two channels, Internet and Retail. Let’s say
that we’re interested in obtaining total sales by state and channel. Even though we have sales
from multiple customers on multiple dates, we don’t need to aggregate by customer or date at
this moment. We can view total sales by state and channel with this statement:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY State, Channel
ORDER BY State, Channel

The resulting output is:

State Channel Sales Amount

NY Internet 570
NY Retail 410
VT Internet 250
VT Retail 90

So far, we’ve applied only a simple GROUP BY to obtain the aggregated sales amounts for
each combination of state and channel. Now, suppose that we want to see subtotal and total
rows, like we did previously with the furniture inventory data. The problem is that there isn’t
a natural hierarchy between state and channel as there was between category and subcategory.
If we use subtotals, there’s no obvious way to indicate how the subtotals should be calculated.
In effect, we want to see subtotals for both state and channel, independent of each other.

To accomplish this, we’ll use a new keyword, CUBE, similar to how we previously used
ROLLUP. The following statement produces the desired result:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY State, Channel

118 Chapter 10 Subtotals and Crosstabs

The output is:

State Channel Sales Amount

NULL NULL 1320
NULL Internet 820
NULL Retail 500
NY NULL 980
NY Internet 570
NY Retail 410
VT NULL 340
VT Internet 250
VT Retail 90

As with the previous example, the NULL values in the State and Channel columns indicate a
subtotal or a total. The first row, with NULL values in both State and Channel, is a total for
all the data. The second and third rows, with NULL in the State column, show subtotals for
the Channel column. For example, the second row indicates that there was a total of 820 in
Internet sales. The fourth and seventh rows, with NULL in the Channel column, have subtotals
for the State column. As you can see, NY had a total of 980 in sales, and VT had 340 in sales.

The use of the keyword CUBE is meant to express a multidimensional way of looking at the
data. Whereas the ROLLUP keyword lets you drill down through data in a hierarchical fashion,
the CUBE keyword allows for multiple dimensions. In this example, we can view subtotals by
State or by Channel.

As before, identifying the subtotals and totals is tricky. Ideally, you probably want to eliminate
all the NULL values and indicate more precisely which rows are subtotals and which is the
grand total. As with rollups, we can use the GROUPING function to determine which rows are
subtotals. The following query adds two columns with the GROUPING information:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount',
GROUPING(State) AS 'State Grouping',
GROUPING(Channel) AS 'Channel Grouping'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY State, Channel

119Adding Subtotals with CUBE

The output of this is:

State Channel Sales Amount State Grouping Channel Grouping

NULL NULL 1320 1 1
NULL Internet 820 1 0
NULL Retail 500 1 0
NY NULL 980 0 1
NY Internet 570 0 0
NY Retail 410 0 0
VT NULL 340 0 1
VT Internet 250 0 0
VT Retail 90 0 0

We’re still not at a point where the output makes much sense, but now we’ll get clever and use
the GROUPING function, along with a few other tricks, to make this output more presentable.
We’ll execute the following statement, and then explain it after we’ve looked at the output.

SELECT
ISNULL(State,' ') AS 'State',
ISNULL(Channel, ' ') AS 'Channel',
SUM(SalesAmount) AS 'Sales Amount',
CASE WHEN GROUPING(State) = 1
AND GROUPING(Channel) = 1 THEN 'Total'
WHEN GROUPING(State) = 1
AND GROUPING(Channel) = 0 THEN 'Channel Subtotal'
WHEN GROUPING(State) = 0
AND GROUPING(Channel) = 1 THEN 'State Subtotal'
ELSE ' ' END AS 'Subtotal/Total'
FROM SalesSummary
GROUP BY CUBE(State, Channel)
ORDER BY
CASE
WHEN GROUPING(State) = 0 AND GROUPING(Channel) = 0 THEN 1
WHEN GROUPING(State) = 0 AND GROUPING(Channel) = 1 THEN 2
WHEN GROUPING(State) = 1 AND GROUPING(Channel) = 0 THEN 3
ELSE 4
END

The output is:

State Channel Sales Amount Subtotal/Total

NY Retail 410
VT Retail 90
NY Internet 570
VT Internet 250
NY 980 State Subtotal
VT 340 State Subtotal

Internet 820 Channel Subtotal
Retail 500 Channel Subtotal

1320 Total

120 Chapter 10 Subtotals and Crosstabs

Let’s discuss how this output was produced. The first column uses a CASE statement to print
the State label only if the row is not for a channel subtotal or total. Similarly, the second
column does the same for the Channel label. The third column uses a SUM function to print
the sales amount for that row. The fourth column uses a CASE statement to produce the label
for the Subtotal/Total column. As you can see, the CASE uses the GROUPING function to
determine whether this is a State subtotal, a Channel subtotal, or a total. If it’s none of those,
SQL outputs a blank in that column. The GROUP BY clause uses the CUBE keyword to create
subtotals for all the combinations specified. Finally, we’ve used a CASE statement and the
GROUPING function in the ORDER BY clause to make sure that the subtotals appear after the
detail rows, and the total row appears at the very end.

Database Differences: MySQL
MySQL doesn’t support the CUBE keyword.

Creating Crosstab Layouts
The subtotal rows added with the ROLLUP and CUBE keywords provide additional aggregation
possibilities for your queries. By displaying additional subtotal rows, we can view summary
information along with the details. We now turn our attention to the way that summarized
data is typically presented. We already encountered this statement that groups data by state
and channel to provide an aggregated summary:

SELECT
State,
Channel,
SUM(SalesAmount) AS 'Sales Amount'
FROM SalesSummary
GROUP BY State, Channel
ORDER BY State, Channel

The output is:

State Channel Sales Amount

NY Internet 570
NY Retail 410
VT Internet 250
VT Retail 90

This data is perfectly understandable. We have four rows of data, in which each row gives an
aggregated summary of a specific state and channel combination. For example, the first row
provides the sum of sales over the Internet in NY. This is fine, but now we want to introduce
an alternate way of displaying this same information. Using the keyword PIVOT, it’s possible

121Creating Crosstab Layouts

to display this data as it would appear in an Excel pivot table, in what is commonly called a
crosstab query. Using the PIVOT keyword, we can produce this output in the following layout:

Channel NY VT

Internet 570 250
Retail 410 90

Instead of four rows of data, now we have only two. This was accomplished by breaking down
the state values into separate columns. This compact way of displaying data is referred to as a
crosstab. If you’re familiar with Microsoft Excel, this is like what you see in Excel pivot tables.
We’ll cover pivot tables in detail in Chapter 20, but for now the main idea to remember is that
pivot tables divide fields into four distinct areas: rows, columns, filters, and values. If this were
a pivot table, we would have placed Channel in the rows area, State in the columns area, and
Sales Amount in the values area.

The virtue of the crosstab is that it is more compact and makes it easier to navigate through the
data. For example, if we’re interested in finding retail sales in VT, we simply locate the Retail
row and VT column and then find the intersection. With the traditional aggregated summary,
we would need to scan the various rows until we locate the row with the desired Channel and
State combination.

Now let’s see how the above crosstab output was accomplished. A query that creates this
output is:

SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery

This is quite a bit more complex than anything we’ve seen previously. In a way, this is like
combining two queries together, a topic that will be discussed in Chapters 13 and 14. To
decipher this, we’ll need to break down the statement into its components. The portion of the
second line of the query within parentheses is:

SELECT
Channel,
State,
SalesAmount
FROM SalesSummary

This query selects all data for the three columns of interest in the SalesSummary table. The AS
keyword that follows is used to provide an alias for the entire query. In this case, we’re calling
it mainquery, which is an arbitrary name.

The third line introduces the PIVOT operator. This keyword indicates that we will pivot on the
data items that follow. This means that we want data to appear in a crosstab format. The first
item listed is always an aggregation function. In this example, it is:

SUM(SalesAmount)

122 Chapter 10 Subtotals and Crosstabs

This indicates that we want to sum values in the SalesAmount column. The FOR keyword
that follows separates the aggregation function from the field that we want to appear as
individual columns in the pivot table. In this example, we want each value for State to appear
as its own column. The IN keyword separates the column name from the values that we want
to appear as column headers. The PIVOT operator requires us to explicitly state the values we
want as column headers. In this example, those values are NY and VT. Note that SQL Server
requires that these enumerated values be enclosed in brackets rather than the normal single
quotes. Finally, we assign an alias to the entire PIVOT expression, which in this example is
pivotquery. Like the mainquery alias, this is an entirely arbitrary name.

To recap, we’ve seen that this statement has this general structure:

SELECT * FROM
(a SELECT query that produces the data) AS alias_for_source_query
PIVOT (aggregation_function(column)
FOR column_for_column_headers
IN pivot_column_values)
AS alias_for_pivot_table

It might first appear that this was a lot of unnecessary extra work to produce a result that’s not
significantly more useful than the original output. To better illustrate the value of the PIVOT
operator, let’s now add another level of aggregation, the sales date, into the mix. Returning to
non-crosstab queries, we might run this variation of the original query:

SELECT
SalesDate,
State,
Channel,
SUM(SalesAmount) AS Total
FROM SalesSummary
GROUP BY SalesDate, State, Channel
ORDER BY SalesDate, State, Channel

As you can see, we have added SalesDate to the GROUP BY and ORDER BY clauses. The
output is:

SalesDate State Channel Total

2021-12-01 NY Internet 50
2021-12-01 NY Retail 30
2021-12-01 VT Internet 120
2021-12-02 NY Internet 520
2021-12-02 NY Retail 380
2021-12-02 VT Internet 130
2021-12-02 VT Retail 90

With an increased number of rows, this is more difficult to interpret. For example, if we want
to find the retail sales for NY on 12/2/2021, we’ll have to scan the rows until we find that
the fifth row provides this information. Moreover, if we want to find retail sales from VT on
12/1/2021, it might take some time to realize that there are no rows with that information.
This is because our underlying data had no retail sales from VT on 12/1/2021.

123Creating Crosstab Layouts

Using the PIVOT operator, we can produce this same data in a crosstab layout, making it easier
to locate the desired data points. Our objective is to produce the data in this format:

SalesDate Channel NY VT

2021-12-01 Internet 50 120
2021-12-01 Retail 30 NULL
2021-12-02 Internet 520 130
2021-12-02 Retail 380 90

This can be accomplished with the following PIVOT statement:

SELECT * FROM
(SELECT SalesDate, Channel, State, SalesAmount FROM SalesSummary)
AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery
ORDER BY SalesDate

We’ve made only two changes to the previous PIVOT statement. First, we added the SalesDate
as a selected column in the mainquery portion of the statement. Second, we added an ORDER
BY clause, which causes the rows to be sorted by date. Unlike before, now we have both the
SalesDate and Channel fields in the rows area of the crosstab. The columns area still includes
the state, with each state listed in a separate column.

Notice that we see a NULL value for retail sales from VT on 12/1/2021. This explicitly tells
us that we had no such sales. This is a vast improvement over the traditional display of data,
which makes it more difficult to discern that fact.

Also note that the order of fields in the mainquery SELECT is significant. In the query, we have
SalesDate listed before Channel. This caused the SalesDate column to appear to the left of the
Channel column. We could have easily switched the order of those two columns, as in the
following:

SELECT * FROM
(SELECT Channel, SalesDate, State, SalesAmount FROM SalesSummary)
AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery
ORDER BY Channel

We also modified the column specified in the ORDER BY clause. The resulting output is:

Channel SalesDate NY VT

Internet 2021-12-01 50 120
Internet 2021-12-02 520 130
Retail 2021-12-01 30 NULL
Retail 2021-12-02 380 90

As you can see, the resulting output has a new layout but displays the same information.

124 Chapter 10 Subtotals and Crosstabs

Once you have more than two data elements in a crosstab query, there are many ways to
arrange the data. For example, we could have chosen to put the Channel in the columns area
rather than the State. This would look like:

SalesDate State Internet Retail

2021-12-01 NY 50 30
2021-12-01 VT 120 NULL
2021-12-02 NY 520 380
2021-12-02 VT 130 90

The statement that produces this layout is:

SELECT * FROM
(SELECT SalesDate, State, Channel, SalesAmount FROM SalesSummary)
AS mainquery
PIVOT (SUM(SalesAmount) FOR Channel IN ([Internet], [Retail])) AS pivotquery
ORDER BY SalesDate

The main change in this query is that we’ve specified Channel values in the pivotquery portion
of the statement. This causes the Channel values, Internet and Retail, to be broken out as
separate columns in the display.

One of the significant difficulties with using the PIVOT command is that all column values
must be explicitly listed. If you’re querying data, you must know what these column values are
before writing the query. For small categorical data items, this might not be a problem. But for
data that includes many possible values that can change over time, this can be problematic. In
Chapter 20, “Strategies for Using Excel,” we’ll discuss an alternative to PIVOT crosstab queries—
namely, Excel pivot tables. Unlike crosstab queries, pivot tables do not require the user to
know in advance what values will appear. Pivot tables display rows and columns dynamically,
as needed, based on the existing values. Therefore, it is often more expedient to give the user
raw data and let them create their own crosstab layouts via Excel pivot tables.

Database Differences: MySQL and Oracle
MySQL doesn’t support the PIVOT keyword.

Oracle uses slightly different syntax for the PIVOT keyword. The equivalent of this SQL
Server statement:
SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR State IN ([NY], [VT])) AS pivotquery

in Oracle is:
SELECT * FROM
(SELECT Channel, State, SalesAmount FROM SalesSummary)
PIVOT (SUM(SalesAmount) FOR State IN ('NY', 'VT'));

Unlike SQL Server, Oracle uses quotes rather than brackets for the enumerated values and
does not use aliases (mainquery and pivotquery in this example).

125Looking Ahead

Looking Ahead
This chapter took a slight detour into matters concerning layout. The ROLLUP and CUBE
keywords allow the GROUPING clause to generate additional subtotal rows on any number
of columns. The ROLLUP keyword works best with data for which there is a clear hierarchy
among the columns. In our example, there was a hierarchical relationship between the
Category and Subcategory columns of the Inventory table. In contrast, the CUBE keyword
generates all combinations of subtotals for the specified columns. As with a cube structure,
subtotals can be viewed from any perspective. We also discussed the GROUPING function,
which provides a way to add clarity to subtotal displays.

Our second topic in this chapter, crosstabs, used the PIVOT operator to produce data in a useful
crosstab layout. Although PIVOT queries are decidedly cumbersome to create, they sometimes
serve a purpose in generating data in a comprehensible format for the end user. In Chapter 20,
we’ll discuss Excel pivot tables, which usually provide an easier way to display data in a
crosstab fashion.

In the next chapter, “Inner Joins,” we’ll return from this layout detour to rejoin the main focus
of this book. Up until now, all our queries have involved retrieving data from one table at a
time. The next few chapters will explore methods of combining data from multiple tables at
once. In the real world of complex databases, required data seldom comes from a single table.
Thus, it is essential to learn how to relate and combine data from more than one table in a
single query.

This page intentionally left blank

11
Inner Joins

Keywords Introduced
INNER JOIN • ON

In Chapter 1, we talked about the huge advance of relational databases over their predecessors.
The significant achievement of relational databases was in their ability to allow data to be
organized in any number of tables that are related but at the same time independent of each
other. Prior to the advent of relational databases, traditional databases utilized a chain of
internal pointers to explicitly define the relationships between tables. For example, you might
start with a Customers table and then follow pointers to find the first order for a particular
customer, then the next order, and so on until all orders for the customer have been retrieved.
In contrast, relational databases allow relationships to be inferred by columns that tables have
in common. These relationships are sometimes formalized by the definition of primary and
foreign keys, but that isn’t always necessary.

With relational databases, the SQL developer determines and defines the relationships between
tables. This allows for great flexibility in how different data elements can be combined. The
great virtue of relational databases lies in the fact that someone can grab data from a variety of
tables in numerous ways.

Let’s start with a common example. Most organizations have a business entity known as a
customer. As such, a database typically contains a Customers table that defines each customer.
Such a table would normally include a primary key to uniquely identify each customer, and
any number of columns with attributes that further define the customer. Common attributes
might include phone number, address, city, state, and so on.

The main idea is that all information about the customer is stored in a single table and only
in that table. This simplifies the task of data updates. When a customer changes their phone
number, only one table needs to be updated. However, the downside to this setup is that
whenever someone needs any information about a customer, they must access the Customers
table to retrieve the data.

128 Chapter 11 Inner Joins

This brings us to the concept of a join. Suppose someone is analyzing products that have
been purchased. Along with information about the products, it might be necessary to provide
information about the customers who purchased each product. For example, an analyst may
wish to obtain customer zip codes for a geographic analysis. Whereas product information
may be found in a Products table, the zip code is stored only in the Customers table. To get
information on both customers and products, the analyst must join both tables together in
such a way that the data matches correctly.

In essence, the promise of relational databases is fulfilled by the ability to join tables together
in any desired manner. This is the normal situation. In this chapter, we will leave behind the
somewhat artificial examples for which data is retrieved only from a single table and encounter
more realistic scenarios involving data in multiple tables.

Joining Two Tables
To begin our exploration of the join process, let’s revisit the Sales table that we encountered
previously:

SalesID FirstName LastName QuantityPurchased PricePerItem

1 Andrew Li 4 2.50
2 Juliette Dupont 10 1.25
3 Francine Baxter 5 4.00

To some extent, the use of this table in earlier chapters was somewhat misleading. In practice,
a competent database designer would seldom create a table such as this. The problem is that it
contains information about two separate entities: customers and orders. In the real world, this
information would be split into at least two separate tables. A Customers table might look like
the following table, seen previously in Chapter 2:

CustomerID FirstName LastName

1 Amanda Taylor
2 George Miller
3 Rumi Khan
4 Sofia Flores

An Orders table might look like this:

OrderID CustomerID OrderDate OrderAmount

1 1 2021-09-01 10.00
2 2 2021-09-02 12.50
3 2 2021-09-03 18.00
4 3 2021-09-15 20.00

129Joining Two Tables

In this Orders table, we’ve chosen to include OrderDate and OrderAmount columns rather
than the QuantityPurchased and PricePerItem columns seen in the first Sales table. The data
from the Sales table has now been split into two separate tables. The Customers table contains
information only about customers. The Orders table contains information solely about items
purchased. The Orders table includes a CustomerID column to indicate which customer placed
the order. As you might remember from Chapter 1, “Relational Databases and SQL,” this is
referred to as a foreign key.

The Customers and Orders tables both have four rows, but that is a coincidence. There is one
customer in the Customers table who has not placed an order. As you can see, CustomerID 4,
Sofia Flores, does not appear in the Orders table. On the other hand, George Miller has placed
two orders, as evidenced by the two rows in the Orders table with an CustomerID of 2.

Even with these two tables, this is still a simplistic scenario with much data missing. For
example, an Orders table would typically include additional columns, such as information on
the tax collected or the salesperson’s name. Plus, the Orders table itself might in fact be split
into more than one table so that information about the entire order, such as the order date,
could be stored apart from information about each item that was ordered. In other words, this
is still not a completely realistic example. However, now that we’ve split our information into
two separate tables, we can address how to create a SELECT statement that can pull data from
both tables simultaneously.

Before we get to the SELECT statement itself, we must address one additional concern, which is
how to visually represent the two tables and the implied relationship that exists between them.
Previously, we displayed each table with column names on the top row and corresponding
data on subsequent rows. Now that we have more than one table to deal with, we’ll introduce
another type of visual representation. Figure 11.1 shows a diagram with both the Customers
and Orders tables, with the table name on the top row and the column names in each
subsequent row. This diagram is a simplified version of what is commonly called an entity-
relationship diagram. The term entity refers to the tables, and relationship refers to the line drawn
between the data elements in those tables. Rather than showing detailed data, this diagram
indicates the overall structure of the data.

Figure 11.1 Entity-relationship diagram

The key point to notice is that we’ve drawn a line from the CustomerID in the Customers table
to the CustomerID in the Orders table. This indicates a relationship between these two tables—
namely, that both tables share values stored in the CustomerID column.

130 Chapter 11 Inner Joins

The Inner Join
We are now ready to present a SELECT statement with what is called an inner join:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

Let’s examine this statement line by line. The SELECT keyword on the first line merely
states that we want all (*) columns from both tables. The second line, with the FROM clause,
indicates that the first table we want to specify is the Customers table. The third line introduces
an INNER JOIN keyword, which is used to specify an additional table that we want to include
in our query. In this case, we want to add the Orders table.

Finally, the fourth line introduces the ON keyword. This ON keyword works in conjunction
with the INNER JOIN and specifies exactly how the two tables will be joined. In this situation,
we are connecting the CustomerID column of the Customers table (Customers.CustomerID)
to the CustomerID column of the Orders table (Orders.CustomerID). Because the CustomerID
column has the same name in both the Customers and Orders table, we need to specify the
table name as a prefix to the CustomerID column name. The prefix allows us to distinguish
between these columns in two separate tables.

The preceding SELECT statement produces this data:

CustomerID FirstName LastName OrderID CustomerID OrderDate OrderAmount

1 Amanda Taylor 1 1 2021-09-01 10.00
2 George Miller 2 2 2021-09-02 12.50
2 George Miller 3 2 2021-09-03 18.00
3 Rumi Khan 4 3 2021-09-15 20.00

Let’s analyze the results. Both the Customers table and the Orders table had four rows.
Looking at the OrderID column, you can tell that we have data from all four rows from the
Orders table. However, looking at the CustomerID column, you might notice that only three
customers are shown. Why is that? The answer is that the customer with a CustomerID of 4
(Sofia Flores) doesn’t exist in the Orders table. Because we’re joining the two tables together
on the CustomerID field, we have no rows in the Orders table that match the CustomerID of
4 in the Customers table.

This brings us to an important observation: An inner join only returns data for which there is
a match between both tables being joined. In the next chapter, we’ll talk about an alternative
method of joining tables that will allow the customer information for the CustomerID of 4 to
be shown, even if there are no orders for that customer.

Here’s a second important observation: Notice that the customer data for George Miller is
repeated twice. He existed only once in the Customers table, so one might wonder why he
appears on two rows. The answer is that the INNER JOIN causes all possible matches to be

131Implicit Inner Joins

shown. Because George has two rows in the Orders table, both rows match with his row in the
Customers table, resulting in his customer information being displayed twice.

Finally, you might wonder why this join is referred to an inner join. There are, in fact, two
main variations of the join: the inner join and the outer join. Outer joins will be covered in the
next chapter.

Table Order in Inner Joins
An inner join brings back data where there is a match between the two specified tables. In the
previous SELECT, we specified the Customers table in the FROM clause and the Orders table
in the INNER JOIN clause. We might ask whether it matters which table is specified first. As
it turns out, for inner joins, the order in which the tables are listed can be reversed with no
difference in the results. The following two SELECT statements are logically identical and return
the same data:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

SELECT *
FROM Orders
INNER JOIN Customers
ON Orders.CustomerID = Customers.CustomerID

The only difference is that the first statement would display columns from the Customers
table first and the Orders table second. The second statement would display columns from
the Orders table first and the Customers table second. Despite the order of the columns, both
statements return identical data.

Remember that SQL is not a procedural language. It doesn’t specify how a task should be
completed. SQL only indicates the desired logic and leaves it to the internals of the database to
decide exactly how to perform the required task. As such, SQL doesn’t influence or care how
the database physically retrieves data. It doesn’t define which table to look at first. Instead, the
database software determines the optimal method of obtaining the data.

Implicit Inner Joins
In the previous examples, we used the INNER JOIN and ON keywords to explicitly specify inner
joins. It is also possible to specify inner joins with just the FROM and WHERE clauses, which is
an older format that is sometimes referred to as implicit inner joins.

We have already seen this statement that joins the Customers and Orders tables:

SELECT *
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID

132 Chapter 11 Inner Joins

An alternate way of implicitly specifying the same inner join without the INNER JOIN and ON
keywords is:

SELECT *
FROM Customers, Orders
WHERE Customers.CustomerID = Orders.CustomerID

In this older format, rather than using the INNER JOIN keyword to define the new table to join
to, we merely list all tables to be joined in the FROM clause. Instead of using the ON clause to
define how the tables are related, we use the WHERE clause to specify the relationship between
the tables.

Even though this method works perfectly well and produces the same results, we highly
recommend not using this older format. The advantage of the INNER JOIN and ON keywords
is that they explicitly present the logic of the join. That is their only purpose. Although it is
possible to specify the relationship in a WHERE clause, the meaning of the SQL statement is
much less apparent when the WHERE clause is used for both selection criteria and to indicate
relationships between multiple tables. Furthermore, the implicit join format does not work
with outer joins, a topic covered in the following chapter.

Table Aliases Revisited
Now let’s look at the columns that were returned from the previous SELECT statement. Because
we specified all (*) columns, we see all columns from both tables. The CustomerID column
appears twice because that column exists in both tables. In practice, however, we would not
want this data repeated. Here’s an alternate version of that SELECT statement, which now
specifies only the columns we want to see. In this variant, we employ table aliases—C for
Customers and O for Orders—that are placed immediately after the FROM and INNER JOIN
keywords by inserting the AS keyword. The statement looks like this:

SELECT
C.CustomerID AS 'Cust ID',
C.FirstName AS 'First Name',
C.LastName AS 'Last Name',
O.OrderID AS 'Order ID',
O.OrderDate AS 'Date',
O.OrderAmount AS 'Amount'
FROM Customers AS C
INNER JOIN Orders AS O
ON C.CustomerID = O.CustomerID

The results are:

Cust ID First Name Last Name Order ID Date Amount

1 Amanda Taylor 1 2021-09-01 10.00
2 George Miller 2 2021-09-02 12.50
2 George Miller 3 2021-09-03 18.00
3 Rumi Khan 4 2021-09-15 20.00

133Looking Ahead

With this statement, we display only the CustomerID from the Customers table and not from
the Orders table. Also notice that we’re using the AS keyword to specify both column and table
aliases. Note that the AS keyword is completely optional. All the AS keywords can be removed
from this SELECT, and the statement would still be valid and return the same results. However,
we recommend using the AS keywords for the sake of clarity.

Database Differences: Oracle
As mentioned in Chapter 3, “Calculated Fields and Aliases,” table aliases are specified in
Oracle without the AS keyword. The syntax for the equivalent statement in Oracle is:
SELECT
C.CustomerID AS "Cust ID",
C.FirstName AS "First Name",
C.LastName AS "Last Name",
O.OrderID AS "Order ID",
O.OrderDate AS "Date",
O.OrderAmount AS "Amount"
FROM Customers C
INNER JOIN Orders O
ON C.CustomerID = O.CustomerID;

Although we see the AS keyword used for column aliases, the AS keyword is not used for table
aliases (such as C and O in this example) in Oracle.

Looking Ahead
The ability to join tables together in a query is an essential feature of SQL. Relational databases
would be of little use without joins. This chapter focused on the formulation of the inner join.
The inner join returns data for which there is a match between both tables being joined. We
also talked about an alternate way of implicitly specifying the inner join, and the usefulness of
using table aliases.

In the next chapter, we turn to another important type of join: the outer join. As mentioned,
inner joins only allow us to view data where there is a match between the tables being
joined. If you have a customer with no orders, you won’t see any customer information when
performing an inner join between a Customers table and an Orders table. The outer join will
allow you to view that customer information, even if there are no orders for the customer. In
other words, the outer join lets us see data that we would not otherwise be able to obtain with
an inner join. Additionally, the following chapter will begin to introduce scenarios in which
more than two tables are joined.

This page intentionally left blank

12
Outer Joins

Keywords Introduced
LEFT JOIN • RIGHT JOIN • FULL JOIN • CROSS JOIN

Now we advance from inner joins to outer joins. The main restriction of inner joins is that they
require a match in all tables being joined to show any results. If you’re joining a Customers
table to an Orders table, no data is shown for the customer if that customer hasn’t yet placed
an order. This may seem like a relatively unimportant problem, but it often becomes a
significant issue.

To use a different example, let’s say that we have an Orders table and a Refunds table. The
Refunds table is related to the Orders table by OrderID. In other words, all refunds are tied
to a specific order. The refund can’t exist unless the order exists. The problem arises when we
want to see both orders and refunds in a single query. If we join these two tables with an inner
join, we wouldn’t see any orders if no refunds were issued against that order. Presumably, this
would be most of the orders. The outer join allows us to view orders even if they don’t have a
matching refund and is therefore an essential technique to understand and use.

The Outer Join
All the joins seen in the previous chapter were inner joins. Because inner joins are the most
common join type, SQL considers them the default join. You can specify an inner join using
only the keyword JOIN; it isn’t necessary to state INNER JOIN.

In contrast to inner joins, there are three types of outer joins: LEFT OUTER JOIN, RIGHT
OUTER JOIN, and FULL OUTER JOIN. These can be referred to as simply LEFT JOIN, RIGHT
JOIN, and FULL JOIN. In this case, the word OUTER isn’t necessary. To summarize, our
recommendation is to refer to and specify the four main join types as:

• INNER JOIN

• LEFT JOIN

• RIGHT JOIN

• FULL JOIN

136 Chapter 12 Outer Joins

This keeps the syntax simple and consistent. At the end of this chapter, we’ll also briefly cover
a CROSS JOIN, but that join is neither an inner nor an outer join and is seldom used.

We’ll use three tables in our examples of outer joins. The first will be a Customers table with
information about each customer. The second will be an Orders table with data on each order
placed. These are the same tables seen in the previous chapter. Finally, we’ll add a Refunds
table with information about any refunds that have been issued to customers.

Figure 12.1 shows how these three tables are related.

Figure 12.1 Entity-relationship diagram for three tables

In contrast to the figure seen in the previous chapter, the lines connecting the tables are now
shown as arrows. For example, the arrow drawn from the CustomerID field of the Customers
table to the CustomerID field of the Orders table indicates that the link between the Customers
and Orders table is possibly one-sided, in the sense that there may not be any orders for a given
customer. Additionally, there may be multiple orders for a single customer. Similarly, the arrow
drawn between the Orders and Refunds tables indicates that there may not be any refunds for a
given order and that there may be multiple refunds for an order.

The line between the Customers and Orders table connects the CustomerID columns because
that is the common link between those two tables. Similarly, the line between the Orders and
Refunds tables is on the OrderID column because the OrderID is the common link between
those two tables.

In other words, the Orders table is related to the Customers table by customer. There must be
a customer for an order to exist. The Refunds table is related to the Orders table by the order.
There must be an order before a refund is issued. Note that the Refunds table is not directly
related to the Customers table. In fact, those two tables don’t share a common field. However,
by joining all three tables together, we can determine which customer a given refund is for.

Let’s now examine the contents of each table. The Customers table has these values:

CustomerID FirstName LastName

1 Amanda Taylor
2 George Miller
3 Rumi Khan
4 Sofia Flores

137Left Joins

The Orders table has these values:

OrderID CustomerID OrderDate OrderAmount

1 1 2021-09-01 10.00
2 2 2021-09-02 12.50
3 2 2021-09-03 18.00
4 3 2021-09-15 20.00

The Refunds table has these values:

RefundID OrderID RefundDate RefundAmount

1 1 2021-09-02 5.00
2 3 2021-09-18 18.00

Notice that only three out of the four customers have placed orders. Likewise, only two refunds
have been issued for the four orders placed.

Left Joins
Let’s now create a SELECT statement that joins all three tables together using a LEFT JOIN:

SELECT
Customers.LastName AS 'Last Name',
Customers.FirstName AS 'First Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

The resulting data looks like this:

Last Name First Name Order Date Order Amt Refund Date Refund Amt

Flores Sofia NULL NULL NULL NULL
Khan Rumi 2021-09-15 20.00 NULL NULL
Miller George 2021-09-02 12.50 NULL NULL
Miller George 2021-09-03 18.00 2021-09-18 18.00
Taylor Amanda 2021-09-01 10.00 2021-09-02 5.00

138 Chapter 12 Outer Joins

Database Differences: Oracle
Unlike SQL Server and MySQL, Oracle typically displays dates in a DD-MMM-YY format. For
example, the date 2021-09-02 in the previous table will display as 02-SEP-21 in Oracle.
However, no matter which database you use, the exact format in which dates are displayed
will vary, depending on the database setup.

Before analyzing the previous SELECT statement, notice two interesting aspects of the data.
First, Sofia Flores has no data shown other than her name. The reason for the lack of data is
that there are no rows in the Orders table associated with that customer. The power of the
outer join becomes evident from the fact that we can see some data for Sofia Flores, even if she
has no orders. If we had specified an INNER JOIN rather than a LEFT JOIN, we would see no
rows at all for Sofia Flores.

Similarly, there is no refund data for either the 9/2/2021 order from George Miller or the order
from Rumi Khan. This is because there are no rows in the Refunds table associated with these
orders. If we had specified an INNER JOIN rather than a LEFT JOIN, we would have seen no
rows at all for those two orders.

Now let’s examine the SELECT statement itself. The first few lines that specify the columns are
the same as we’ve seen previously. Rather than using table aliases, we’ve chosen to list all the
columns with their fully qualified names, including the table names as a prefix.

The first table listed is the Customers table. This table is shown after the FROM keyword. The
second table shown is the Orders table, which appears after the first LEFT JOIN keyword. The
subsequent ON clause specifies how the Orders table is linked to the Customers table. The
third table shown is the Refunds table, which appears after the second LEFT JOIN keyword.
The subsequent ON clause states how the Refunds table is joined to the Orders table.

It is critical to realize that the order in which tables are listed in reference to the LEFT JOIN
keyword is significant. When specifying a LEFT JOIN, the table to the left of LEFT JOIN is
always the primary table. The table to the right of LEFT JOIN is the secondary table. When
joining the secondary table to the primary table, we want to see all rows in the primary table,
even if there are no matches with any rows in the secondary table.

In the first specified LEFT JOIN, the Customers table is on the left, and the Orders table is on
the right of the LEFT JOIN. This signifies that Customers is primary and Orders is secondary.
In other words, we want to see all selected data from the Customers table, even if there isn’t a
corresponding match in the secondary table for that row.

Similarly, in the second LEFT JOIN, the Orders table is to the left and the Refunds table is to
the right of the LEFT JOIN keyword. That means that we are specifying Orders as primary and
Refunds as secondary in this join. We want all orders, even if there are no matching refunds for
some orders.

139Testing for NULL Values

Just as with inner joins, data from one table can be repeated if there is more than one matching
row between that table and the table to which it is joined. In this example, we have more than
one order for George Miller, so the customer information for George Miller is repeated on two
separate lines.

Finally, we included an ORDER BY clause. This was done merely to present the data in an
understandable order.

Testing for NULL Values
In the previous SELECT, we had one customer with no orders and two orders with no
associated refunds. Unlike the INNER JOIN, the LEFT JOIN allows these rows with missing
values to appear.

To test our understanding of the LEFT JOIN, let’s look at how we would list only those orders
for which no refund was issued. The solution involves adding a WHERE clause that tests for
NULL values, as follows:

SELECT
Customers.LastName AS 'Last Name',
Customers.FirstName AS 'First Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
WHERE Orders.OrderID IS NOT NULL
AND Refunds.RefundID IS NULL
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

The resulting data is:

Last Name First Name Order Date Order Amt

Khan Rumi 2021-09-15 20.00
Miller George 2021-09-02 12.50

The WHERE clause first tests Orders.OrderID to make sure that it isn’t NULL. Doing so ensures
that we don’t see customers who never placed an order. The second line of the WHERE clause
tests Refunds.RefundID to make sure that it is NULL. This guarantees that we see only orders
that don’t have a matching refund.

Notice that we didn’t bother to display the Refund Date or Refund Amount columns in this
SELECT. This is because we know those columns would always have NULL values based on our
selection criteria.

140 Chapter 12 Outer Joins

Right Joins
The previous SELECT statements utilized the LEFT JOIN keyword. Right joins are identical in
concept to the left join. The only difference between left joins and right joins is the order in
which the two tables in the join are listed.

In left joins, the primary table is listed to the left of the LEFT JOIN keyword. The secondary
table, which may or may not contain matching rows, is listed to the right of the LEFT JOIN
keyword.

In right joins, the primary table is listed to the right of the RIGHT JOIN keyword. The
secondary table is listed to the left of the RIGHT JOIN keyword. That’s the only difference.

The FROM clause and joins in the previous SELECT statement were:

FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

The equivalent logic, using RIGHT JOIN keywords is:

FROM Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID
RIGHT JOIN Customers
ON Customers.CustomerID = Orders.CustomerID

Note that only the order in which tables are listed before and after the RIGHT JOIN matters.
The order in which columns are listed after the ON keyword has no significance. Thus, the
above is also equivalent to:

FROM Refunds
RIGHT JOIN Orders
ON Refunds.OrderID = Orders.OrderID
RIGHT JOIN Customers
ON Orders.CustomerID = Customers.CustomerID

In essence, if you’re comfortable with the LEFT JOIN, it’s completely unnecessary to ever use
the RIGHT JOIN keyword. Anything that can be specified with a RIGHT JOIN can be stated as
a LEFT JOIN. Our suggestion is to stick with the LEFT JOIN because it is usually more intuitive.
Because we read from left to right, it’s natural to think in terms of listing the more important,
or primary, tables first.

Table Order in Outer Joins
We noted previously that the order in which tables are specified in an inner join is not
significant. The same is not true of outer joins, because the order in which tables are listed in
a left or right join is significant. At the same time, SQL syntax allows for some flexibility in
listing the tables in situations where there are three or more tables. The order of the LEFT (or
RIGHT) JOIN keywords can be transposed if desired.

141Full Joins

Let’s look again at the original FROM clause and joins from the previous SELECT:

FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

We’ve already seen that the Refunds table can be listed first and the Customers table last, as
long as everything is converted to right joins, as in:

FROM Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID
RIGHT JOIN Customers
ON Customers.CustomerID = Orders.CustomerID

Is it possible to list the Customers table first, and then the Refunds table, followed by the
Orders table? Yes, as long as you’re willing to mix left and right joins together and throw in a
few parentheses. The following is equivalent to the above:

FROM Customers
LEFT JOIN (Refunds
RIGHT JOIN Orders
ON Orders.OrderID = Refunds.OrderID)
ON Customers.CustomerID = Orders.CustomerID

What was a fairly simple statement has now turned into something unnecessarily complex.
We only show this logic to indicate what not to do, and because it’s something that you may
encounter when reviewing code. Our advice is to stick with the LEFT JOIN keyword and avoid
parentheses when devising complex FROM clauses with multiple tables.

Full Joins
In addition to left joins and right joins, there is one additional outer join type, referred to
as the full join. We’ve seen that in left and right joins, one table is primary and the other is
secondary. Alternatively, you can say that one table is required and one is optional, which
means that when matching two tables, rows in the secondary (or optional) table don’t
necessarily need to exist.

In the inner join, both tables are primary (or required). When matching two tables, there must
be a match between both tables for a row of data to be selected.

In the full join, both tables are secondary (or optional). In this situation, if we’re matching rows
in Table A and Table B, then we display 1) all rows from Table A, even if there is no matching
row in Table B, and 2) all rows from Table B, even if there is no matching row in Table A.

Database Differences: MySQL
Unlike SQL Server and Oracle, MySQL doesn’t allow for a full join.

142 Chapter 12 Outer Joins

Let’s look at an example in which we are matching rows from these two tables. First, we have
this Movies table:

MovieID MovieTitle Rating

1 Love Actually R
2 My Man Godfrey Not Rated
3 The Sixth Sense PG-13
4 Vertigo PG
5 Everyone Says I Love You R
6 Shakespeare in Love R
7 Finding Nemo G

Second, here’s a Ratings table, with rating descriptions from the Motion Picture Association of
America (MPAA):

RatingID Rating RatingDescription

1 G General Audiences
2 PG Parental Guidance Suggested
3 PG-13 Parents Strongly Cautioned
6 R Restricted
7 NC-17 Under 17 Not Admitted

The Movies table includes a list of movies in the database and the MPAA rating for each movie.
The Ratings table includes a list of the ratings and their descriptions. Let’s say that we want to
find all matches between these two tables. We’ll use a FULL JOIN to show all rows from the
Movies table as well as all rows from the Ratings table. The full join will display all rows, even
if a match from the other table isn’t found. The SELECT looks like this:

SELECT
RatingDescription AS 'Rating Description',
MovieTitle AS 'Movie'
FROM Movies
FULL JOIN Ratings
ON Movies.Rating = Ratings.Rating
ORDER BY RatingDescription, MovieTitle

143Cross Joins

The output of this statement is:

Rating Description Movie

NULL My Man Godfrey
General Audiences Finding Nemo
Parental Guidance Suggested Vertigo
Parents Strongly Cautioned The Sixth Sense
Restricted Everyone Says I Love You
Restricted Shakespeare in Love
Under 17 Not Admitted NULL

Notice that there are two NULL cells in the data, which is a direct result of having used a FULL
JOIN. In the first instance, there is no rating shown for My Man Godfrey because there was no
matching row in the Ratings table for that movie. In the second instance, there is no movie
shown for the “Under 17 Not Admitted” rating description because there were no matching
rows in the Movies table for that rating.

As a side note, observe that we chose not to use table aliases or specify table names in the
columnlist. For example, we listed the column MovieTitle as is, without the fully qualified
name (Movies.MovieTitle). This is because these columns exist only in one table, so there is no
confusion in specifying a column name without the table name.

The FULL JOIN is seldom used in practice for the simple reason that this type of relationship
between tables is relatively uncommon. In essence, the full join shows data where there are
nonmatches in both directions between two tables. We are normally interested only in data
where there is a complete match between two tables (the inner join) or perhaps a one-sided
match (the left or right join).

Cross Joins
The final join type we’ll discuss in this chapter, the cross join, is neither an inner join nor an
outer join. In essence, the cross join is a method of joining two tables without indicating any
relationship between the tables. Because no relationship is stated, the cross join produces every
combination of rows between the tables. In technical terms, this is referred to as the Cartesian
product. If one table has three rows and a second table has four rows, and those tables are cross
joined, the result will have 12 rows. Because of the esoteric nature of this join, it is seldom used
in practice.

144 Chapter 12 Outer Joins

With that in mind, let’s look at two examples of the cross join. In this first example, we’ll
imagine that we’re a shirtmaker, and we produce shirts in three sizes and in four colors. A
SizeInventory table holds the available sizes and looks like this:

SizeID Size

1 Small
2 Medium
3 Large

A ColorInventory table lists the available colors and includes this data:

ColorID Color

1 Red
2 Blue
3 Green
4 Yellow

We want to determine all the possible combinations of shirt sizes and colors that can be
produced. This can be accomplished by the following SELECT statement, using a cross join:

SELECT
Size,
Color
FROM SizeInventory
CROSS JOIN ColorInventory
ORDER BY Size, Color

The resulting output is:

Size Color

Large Blue
Large Green
Large Red
Large Yellow
Medium Blue
Medium Green
Medium Red
Medium Yellow
Small Blue
Small Green
Small Red
Small Yellow

145Cross Joins

As you can see, the cross join produces every combination of rows from both tables. Notice that
there is no ON keyword in a cross join. This is because no relationship between the tables is
specified. The tables don’t have a column in common. The data in both tables is independent
of each other.

Interestingly, the cross join can also be specified in the implicit inner join format discussed in
the previous chapter. That is, the cross join can be indicated by merely listing both tables in
the FROM clause, without the use of the CROSS JOIN keyword. The following SELECT is the
equivalent of the previous CROSS JOIN statement and produces the same output:

SELECT
Size,
Color
FROM SizeInventory, ColorInventory
ORDER BY Size, Color

The preceding cross join example represents a situation that’s not very realistic. However, this
next example indicates a somewhat more common use of the cross join. For this example, we’ll
imagine that we have a special table with only one row of data that contains certain key pieces
of information. Because that table has only one row of data, we can do a cross join to the table
without increasing the number of rows in the result. To illustrate, we’ll use this SpecialDates
table that contains dates relevant to the organization:

LastProcessDate CurrentFiscalYear CurrentFiscalQuarter

2021-09-15 2021 03

In this scenario, we want to select data from the Orders table seen earlier in this chapter.
You may recall that this table contains four orders with order dates between 09/01/2021 and
09/15/2021. However, we only want to see data in the Orders table with an OrderDate equal to
the LastProcessDate in the SpecialDates table. The LastProcessDate is a frequently changing date
that gives the date of the last group of data processed in the system. The assumption is that
there may be some sort of lag, so this may not be the current date. This statement, utilizing
a cross join, accomplishes that objective:

SELECT
OrderID AS 'Order ID',
OrderDate AS 'Date',
OrderAmount AS 'Amount'
FROM Orders
CROSS JOIN SpecialDates
WHERE OrderDate = LastProcessDate

The resulting output is:

Order ID Date Amount

4 2021-09-15 20.00

146 Chapter 12 Outer Joins

Only one row of data from the Orders table is shown. This is because we used the LastProcessDate
of the SpecialDates table as part of the selection logic. Note that because the SpecialDates table
has only one row, there is no harm in doing a cross join to this table. It doesn’t affect the
number of rows displayed.

Looking Ahead
This chapter extended our discussion of joins to outer joins. The left join enables the analyst
to join a primary and secondary table together, showing all rows in the primary table even if
there is no match in the secondary table. The right join is simply the reverse of the left join,
switching the order of the primary and secondary tables. Finally, the full join enables both
tables to be secondary tables. The full join displays all rows in either table, even if there is no
match in the other table. We also talked about the cross join, a seldom used join type that
shows all combinations of rows from both tables being joined. In a cross join, the relationship
between the tables, if one exists, is not stated.

In our next chapter, “Self Joins and Views,” we’ll take another slight detour to two related
topics. First, we’ll discuss self joins, which is a special technique that allows us to join a table
to itself. This creates a virtual view of the table, in the sense that we can now view this table
from two different perspectives. The second topic of the following chapter will extend the
concept of self joins to a more general way of creating virtual views of multiple tables.

13
Self Joins and Views

Keywords Introduced
CREATE VIEW • ALTER VIEW • DROP VIEW

The inner and outer joins of the previous two chapters dealt with various ways of combining
data from multiple tables. The assumption has always been that the data exists in physical
tables in a database. Now we’ll turn to two techniques that will let us view data in a more
virtual way. The first technique, the self join, allows the analyst to join a table to itself, referring
to the same table twice, as if it were two separate tables. As such, the self join creates a virtual
view of a table, allowing it to be used more than once. Second, we’ll learn about database
views, which is a useful concept that enables us to create new virtual tables at will.

Self Joins
The self-join lets you join a table to itself. The most common use of the self join is working
with self-referencing tables. These tables include a column that refers to another column in the
same table. A common example of this type of relationship is a table that contains information
about employees.

In this next example, each row in a Personnel table has a column that points to another row
in the same table, representing the employee’s manager. This is somewhat like the concept of
a foreign key. The main difference is that, whereas foreign keys point to a column in another
table, here a column points to another column within the same table.

148 Chapter 13 Self Joins and Views

Let’s look at the data in this Personnel table:

EmployeeID EmployeeName ManagerID

1 Susan Carter NULL
2 Li Wang 1
3 Charles Pike 1
4 Scott Ferguson 1
5 Clara Novak 2
6 Janet Brown 2
7 Jules Moreau 3
8 Amy Adamson 4
9 Jaideep Singh 4
10 Amelia Williams 5

This table has one row per employee. The ManagerID column states which manager the
employee reports to. The ID number in that column corresponds to a value in the EmployeeID
column. For example, Li Wang has a ManagerID of 1. This indicates that Li’s manager is Susan
Carter, who has an EmployeeID of 1.

We can see that the three people who report to Susan Carter are Li Wang, Charles Pike, and
Scott Ferguson. Notice that Susan Carter has no value in the ManagerID column. This indicates
that she is the head of the company and thus has no manager.

Now, let’s say that we want to list all employees and show the name of the manager to whom
each employee reports. To accomplish this, we’ll create a self join of the Personnel table to
itself. A table alias must always be used with self joins so that we have a way of distinguishing
each instance of the table. We’ll give the first instance of the Personnel table a table alias of
Employees, and we’ll give the second instance a table alias of Managers. Here’s the statement:

SELECT
Employees.EmployeeName AS 'Employee Name',
Managers.EmployeeName AS 'Manager Name'
FROM Personnel AS Employees
INNER JOIN Personnel AS Managers
ON Employees.ManagerID = Managers.EmployeeID
ORDER BY Employees.EmployeeName

149Self Joins

The resulting data is:

Employee Name Manager Name

Amelia Williams Clara Novak
Amy Adamson Scott Ferguson
Charles Pike Susan Carter
Clara Novak Li Wang
Jaideep Singh Scott Ferguson
Janet Brown Li Wang
Jules Moreau Charles Pike
Li Wang Susan Carter
Scott Ferguson Susan Carter

The key part of this SELECT is the ON clause in the join. To get the self join to work correctly,
we must use the ON to establish a relationship between the ManagerID column of the
Employees view of the Personnel table and the EmployeeID column of the Managers view of
the table. In other words, the indicated manager is also an employee.

Notice that Susan Carter isn’t shown in the previous data as an employee. This is because we
used an inner join in the statement. Because Susan Carter has no manager, there is no match
to the Managers view of the table. If we want Susan Carter to be included, we merely need to
change the inner join to an outer join. The new statement is:

SELECT
Employees.EmployeeName AS 'Employee Name',
Managers.EmployeeName AS 'Manager Name'
FROM Personnel AS Employees
LEFT JOIN Personnel AS Managers
ON Employees.ManagerID = Managers.EmployeeID
ORDER BY Employees.EmployeeName

The data retrieved is then:

Employee Name Manager Name

Amelia Williams Clara Novak
Amy Adamson Scott Ferguson
Charles Pike Susan Carter
Clara Novak Li Wang
Jaideep Singh Scott Ferguson
Janet Brown Li Wang
Jules Moreau Charles Pike
Li Wang Susan Carter
Scott Ferguson Susan Carter
Susan Carter NULL

We now see Susan Carter listed as an employee with NULL as the Manager Name, indicating
that she has no manager.

150 Chapter 13 Self Joins and Views

Creating Views
The self join allows you to create multiple views of the same table. Now we’ll extend this
concept to allow us to create new views of any table or combination of tables.

Views are merely SELECT statements that have been saved in a database. Once saved, the view
can be referred to as if it were a table in the database. Whereas database tables contain physical
data, views do not contain data but allow you to proceed as if a view were a real table with data.

Views can be thought of as virtual tables. Additionally, views are permanent, not temporary.
Once created, a view continues to be referenced until the view itself is deleted.

You might ask why views are necessary. We’ll get into the benefits of views later in the chapter,
but in short, views provide added flexibility for how data can be accessed. Whether a database
has been around for a few days or for years, the data in that database is stored in tables in a
very specific manner. As time progresses, requirements for accessing that data change, but it
isn’t a trivial matter to reorganize the tables to meet new requirements. The great advantage
of views is that they allow the analyst to create new virtual views of the data already in a
database. Views allow you to create the equivalent of new tables without having to physically
rearrange data. As such, views add a dynamic element to a database design by keeping it fresh
and up to date.

How is a view stored in a database? All relational databases consist of several different object
types. The most important object type is the table. However, most database management
software allows users to save any number of other object types. The most common of these are
views and stored procedures. There are often many other object types in a database, such as
functions and triggers.

SQL provides the CREATE VIEW keyword that enables users to create new views. The general
syntax is as follows:

CREATE VIEW ViewName AS
SelectStatement

After the view is created, the ViewName is used to reference the data that would be returned
from the SelectStatement in the view. As an example, in the previous chapter we looked at this
SELECT statement:

SELECT
Customers.LastName AS 'Last Name',
Customers.FirstName AS 'First Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID
ORDER BY Customers.LastName, Customers.FirstName, Orders.OrderDate

151Referencing Views

This statement returned the following data:

Last Name First Name Order Date Order Amt Refund Date Refund Amt

Flores Sofia NULL NULL NULL NULL
Khan Rumi 2021-09-15 20.00 NULL NULL
Miller George 2021-09-02 12.50 NULL NULL
Miller George 2021-09-03 18.00 2021-09-18 18.00
Taylor Amanda 2021-09-01 10.00 2021-09-02 5.00

To set up this SELECT statement as a view, we simply place the entire SELECT in a CREATE
VIEW statement, as follows:

CREATE VIEW CustomersOrdersRefunds AS
SELECT
Customers.LastName AS 'Last Name',
Customers.FirstName AS 'First Name',
Orders.OrderDate AS 'Order Date',
Orders.OrderAmount AS 'Order Amt',
Refunds.RefundDate AS 'Refund Date',
Refunds.RefundAmount AS 'Refund Amt'
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
LEFT JOIN Refunds
ON Orders.OrderID = Refunds.OrderID

The only item missing in the above CREATE VIEW is the ORDER BY clause of the original
SELECT statement. Because views aren’t stored as physical data, there is never a reason to
include an ORDER BY clause for a view.

Referencing Views
When we execute the above CREATE VIEW statement, it creates a view called
CustomersOrdersRefunds. Creating the view does not return any data. It merely defines
the view for later use. To use the view to bring back data as before, you would execute
this SELECT statement:

SELECT *
FROM CustomersOrdersRefunds

This retrieves:

Last Name First Name Order Date Order Amt Refund Date Refund Amt

Taylor Amanda 2021-09-01 10.00 2021-09-02 5.00
Miller George 2021-09-02 12.50 NULL NULL
Miller George 2021-09-03 18.00 2021-09-18 18.00
Khan Rumi 2021-09-15 20.00 NULL NULL
Flores Sofia NULL NULL NULL NULL

152 Chapter 13 Self Joins and Views

Notice that this data is displayed in a different row order than what was originally retrieved.
This is because the view does not contain an ORDER BY clause. As a result, the data is returned
in the order in which it is physically stored in the database. This is easily corrected by adding
an ORDER BY clause to the SELECT, as follows:

SELECT *
FROM CustomersOrdersRefunds
ORDER BY [Last Name], [First Name], [Order Date]

This now returns the data in the expected order. Remember that columns in views must be
referenced by the column aliases specified when the view was created. We can no longer
reference the original column names. In this example, the CustomersOrdersRefunds view
applied a column alias of “Last Name” to the LastName column in the Customers table. We
therefore need to reference the column alias in the ORDER BY clause. As mentioned in Chapter
2, we can include square brackets around each of these column names in the ORDER BY clause
to allow for correct interpretation of the embedded spaces.

Database Differences: MySQL and Oracle
MySQL and Oracle use different characters around column names containing spaces. MySQL
uses the accent grave (`). Oracle uses double quotes (").

Once a view is created, it can be referenced and utilized just like any other table. For example,
we might want to see only a few selected columns from the view and select only one specific
customer. To do that, we can issue a SELECT statement such as:

SELECT
[Last Name],
[First Name],
[Order Date]
FROM CustomersOrdersRefunds
WHERE [Last Name] = 'Miller'

The output is:

Last Name First Name Order Date

Miller George 2021-09-02
Miller George 2021-09-03

As before, we need to place square brackets around each of the column names because they
contain embedded spaces.

Benefits of Views
The previous example illustrates one of the important benefits of using views. Once a view
is created, that view can be referenced just as if it were a table. Even if the view references
multiple tables joined together, it now appears logically as just one table.

153Modifying and Deleting Views

Let’s summarize the benefits of using views:

• Views can reduce complexity. First, views can simplify particularly complex SELECT
statements. For example, if you have a SELECT statement that joins six tables together,
it might be useful to create views with two or three tables each. You can then reference
those views in a SELECT statement that is less complex than the original.

• Views can increase reusability. If three tables are always joined together, you can create
a view with those three tables. Then, instead of always having to join those three tables
every time you query data, you can simply reference a predefined view.

• Views can properly format data. If columns are incorrectly formatted in the database,
you can use the CAST or other functions to format that column exactly as desired. For
example, you might have a date column stored as an integer data type in the database, in
a YYYYMMDD format. It might be advantageous to view this data as a date/time column
so it can be presented and manipulated as a true date. To accomplish this, you can create
a view on the table that transforms the column to the proper format. All subsequent
references to that table can then reference the new view rather than the table.

• Views can create calculated columns. Suppose two columns in a table include Quantity
and PricePerItem. End users are usually interested in the total price, which is calculated
by multiplying the two columns together. You can create a view of the original table
with a new calculated column with this calculation. Users can then reference the view
and always have the calculation available.

• Views can be used to rename column names. If a database contains cryptic column
names, you can create views with column aliases to translate those names into something
more meaningful.

• Views can create a subset of data. Let’s say a database contains a table with all your
customers. Most of your users need only to see customers who have placed an order
during the prior year. You can easily create a view of this table that includes this useful
subset of data.

• Views can be used to enforce security restrictions. Often, you want certain users to be
able to access only certain columns in a given table. To accomplish this, you can create
a view of the table for those users. The security features of the database can then be used
to grant access to the new view for those users, while restricting them from accessing the
underlying table.

Modifying and Deleting Views
After a view is created, it can be easily modified using the ALTER VIEW statement. Here’s the
general syntax:

ALTER VIEW ViewName AS
SelectStatement

154 Chapter 13 Self Joins and Views

When altering a view, you must specify the entire SELECT statement contained in the view.
The original SELECT in the view gets replaced by the new SELECT. Let’s say we originally
created a view with this statement:

CREATE VIEW CustomersView AS
SELECT
FirstName AS 'First Name',
LastName as 'Last Name'
FROM Customers

To add a new column to this view for a CustomerID, we would issue a statement such as:

ALTER VIEW CustomersView AS
SELECT
FirstName AS 'First Name',
LastName AS 'Last Name',
CustomerID AS 'Cust ID'
FROM Customers

Once again, creating or altering a view does not return any data. It merely creates or modifies
the definition of the view.

Database Differences: Oracle
Unlike those in SQL Server and MySQL, the ALTER VIEW command in Oracle is more restrictive.
To accomplish the previous ALTER VIEW in Oracle, you must issue a DROP VIEW and then
a CREATE VIEW with the new definition.

The DROP VIEW statement is used to delete a previously created view. The syntax is:

DROP VIEW ViewName

To delete the CustomersView created earlier, we can issue this statement:

DROP VIEW CustomersView

Looking Ahead
Self joins and views are two different ways of viewing data in a virtual manner. The self join
allows the analyst to join a table to itself. Self joins are useful with self-referential data, where
one column in a table can be joined to another column in the same table.

Database views are much more flexible. Essentially, any SELECT statement can be saved as a
view, which can then be referenced as if it were a physical table. Unlike tables, views do not
contain any data. They merely define a new virtual view of data in existing tables. As such,
views serve a wide variety of purposes, from reducing complexity to reformatting data. Once
created, views can be modified or deleted with the ALTER VIEW and DROP VIEW statements.

In the next chapter, “Subqueries,” we’ll return to a topic more directly related to our previous
discussion of how to join tables together. Subqueries provide a method of relating tables to each
other without making explicit use of an inner or outer join. Because of the wide variety of ways
that subqueries can be structured and used, this is probably the most difficult subject in this
book. However, an understanding of subqueries can be tremendously rewarding. There’s a lot of
flexibility in how subqueries can be used, which allows for some creativity in your query designs.

14
Subqueries

Keywords Introduced
EXISTS • WITH

In Chapter 4, we talked about composite functions as functions that contain other functions.
Likewise, a SQL query can contain other queries. Queries contained within other queries are
called subqueries.

The topic of subqueries is somewhat complex, primarily because there are many ways in
which they can be used. Subqueries can be found in many different parts of the SELECT
statement, each with different nuances and requirements. Additionally, as a query contained
within another query, a subquery can be related to and dependent on the main query, or it
can be completely independent of the main query. Again, this distinction results in different
requirements for their usage.

No matter how subqueries are used, they add a great deal of flexibility to the ways in which
you can write SQL queries. Often, subqueries provide functionality that could be accomplished
by other means. In such instances, personal preference will come into play as you decide
whether to utilize the subquery solution. However, as you’ll see, there are certain situations for
which subqueries are essential for the task at hand.

With that said, let’s begin our discussion with an outline of the basic types of subqueries.

Types of Subqueries
Subqueries can be used not only with SELECT statements but also with the INSERT, UPDATE,
and DELETE statements that will be covered in Chapter 17, “Modifying Data.” In this chapter,
however, we’ll restrict our discussion of subqueries to the SELECT statement.

156 Chapter 14 Subqueries

Here’s the general SELECT statement we’ve seen previously:

SELECT columnlist
FROM tablelist
WHERE condition
GROUP BY columnlist
HAVING condition
ORDER BY columnlist

Subqueries can be inserted into virtually any of the clauses in the SELECT statement. However,
the way in which the subquery is stated and used varies slightly, depending on whether it is
used in a tablelist, condition, or columnlist.

But what exactly is a subquery? A subquery is merely a SELECT statement inserted inside
another SQL statement. The results returned from the subquery are used within the context of
the overall SQL query. Additionally, there can be more than one subquery in a SQL statement.
To summarize, subqueries can be specified in three different ways:

• When a subquery is part of a tablelist, it specifies a data source. This applies to situations
where the subquery is part of a FROM clause.

• When a subquery is part of a condition, it becomes part of the selection criteria. This
applies to situations where the subquery is part of a WHERE or HAVING clause.

• When a subquery is part of a columnlist, it creates a single calculated column. This applies
to situations where the subquery is part of a SELECT, GROUP BY, or ORDER BY clause.

The remainder of this chapter explains each of these three scenarios in detail.

Subqueries as a Data Source
When a subquery is specified as part of the FROM clause, it instantly creates a new data source.
This is similar to the concept of creating a view and then referencing that view in a SELECT.
The only difference is that a view is permanently saved in a database. A subquery used as a data
source isn’t saved. It exists only temporarily, as part of the SELECT statement. Nevertheless, you
can think of a subquery in a FROM clause as a type of virtual view.

Let’s consider an example that illustrates how subqueries can be used as a data source. To
illustrate the use of subqueries in this chapter, we will reference this Users table:

UserID UserName

1 Ginger Ortiz
2 Todd Sherman
3 Machiko Tamura
4 Connie Pinsky

157Subqueries as a Data Source

We will also reference this Transactions table, related to the Users table by UserID:

TransactionID UserID TransactionDate TransactionAmount TransactionType

1 1 2021-10-11 22.50 Cash
2 2 2021-10-12 11.50 Credit
3 2 2021-10-15 5.00 Credit
4 2 2021-10-16 6.00 Cash
5 3 2021-10-16 7.00 Credit
6 3 2021-10-17 11.00 Credit

This data is quite similar to the Customers and Orders tables we’ve seen in previous chapters.
The Users table resembles the Customers table, except that we’ve combined the first and last
names into a single column. The Transactions table has entries similar to orders, except that
we’ve added a TransactionType column to indicate whether the transaction is cash or credit.

To begin, we would like to see a list of users, along with a total sum of the cash transactions
they have placed. The following SELECT accomplishes that task:

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN

(SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID) AS CashTransactions

ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

Blank lines were inserted above and below the subquery to clearly separate it from the rest of
the statement. The subquery is the middle section of the statement. The results are:

User Name Total Cash

Ginger Ortiz 22.50
Todd Sherman 6.00
Machiko Tamura 0
Connie Pinsky 0

Connie Pinsky shows no cash transactions because she made no transactions at all. Although
Machiko Tamura has two transactions, they were both credit transactions, so she also shows no
cash. Note that the ISNULL function converts the NULL values that would normally appear for
Machiko and Connie to a 0.

158 Chapter 14 Subqueries

Now let’s analyze how the subquery works. The subquery in the previous statement is:

SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID

In general form, the main SELECT statement in the above is:

SELECT
UserName AS 'User Name'
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN (subquery) AS CashTransactions
ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

If the subquery were executed on its own, the results would be:

UserID TotalCash

1 22.50
2 6.00

We see data for only users 1 and 2. The WHERE clause in the subquery enforces the
requirement that we look only at cash orders.

The entire subquery is then referenced as if it were a separate table or view. Notice that the
subquery is given a table alias of CashTransactions. This allows the columns in the subquery
to be referenced in the main SELECT. As such, the following line in the main SELECT
references data in the subquery:

ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'

CashTransactions.TotalCash is a column taken from the subquery.

You might ask whether it was truly necessary to use a subquery to obtain the desired data.
In this case, the answer is that it was. We might have attempted to simply join the Users and
Transactions tables via a LEFT JOIN, as in the following:

SELECT
UserName AS 'User Name',
SUM(TransactionAmount) AS 'Total Cash Transactions'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
WHERE TransactionType = 'Cash'
GROUP BY Users.UserID, Users.UserName
ORDER BY Users.UserID

159Subqueries as Selection Criteria

However, this statement yields the following data:

User Name Total Cash

Ginger Ortiz 22.50
Todd Sherman 6.00

We no longer see any rows for Machiko Tamura or Connie Pinsky, because the WHERE clause
exclusion for cash orders is now in the main query rather than in a subquery. As a result, we
don’t see any data for users who didn’t place cash orders.

Subqueries as Selection Criteria
In Chapter 7, “Boolean Logic,” we introduced the first format of the IN operator. The example
we used was:

WHERE State IN ('IL', 'NY')

In this format, the IN operator merely lists some values in parentheses. We now want to
introduce a second format for the IN, in which an entire SELECT statement is inserted inside
the parentheses. For example, a list of states might be specified as:

WHERE State IN
(SELECT
States
FROM StateTable
WHERE Region = 'Midwest')

Rather than list individual states, this second format allows us to generate a dynamic list of
states through more complex logic.

Let’s illustrate with an example that uses the Users and Transactions tables. In this scenario,
we want to retrieve a list of users who have ever paid cash for any transaction. A SELECT that
accomplishes this is:

SELECT UserName AS 'User Name'
FROM Users
WHERE UserID IN
(SELECT UserID
FROM Transactions
WHERE TransactionType = 'Cash')

The resulting data is:

User Name

Ginger Ortiz
Todd Sherman

160 Chapter 14 Subqueries

Machiko Tamura is not included in the list because, although she has transactions, none
were in cash. Notice that the subquery SELECT is placed entirely within the parentheses for
the IN keyword. There is only one column, UserID, in the columnlist of the subquery. This
is a requirement, because we want the subquery to produce the equivalent of a list of values
for only one column. Also note that the UserID column is used to connect the two queries.
Although we’re displaying UserName, we’re using UserID to define the relationship between
the Users and Transactions tables.

Once again, we can ask whether it was necessary to use a subquery, and this time the answer is
that it was not. Here is an equivalent query that returns the same data:

SELECT UserName AS 'User Name'
FROM Users
INNER JOIN Transactions
ON Users.UserID = Transactions.UserID
WHERE TransactionType = 'Cash'
GROUP BY Users.UserName

Without using a subquery, we can directly join the Users and Transactions tables. However,
a GROUP BY clause is now needed to ensure that we return only one row for each user.

Correlated Subqueries
The subqueries we’ve seen so far have been uncorrelated subqueries. Generally, all subqueries
can be classified as either uncorrelated or correlated. These terms describe whether the subquery
is related to the query in which it is contained. Uncorrelated subqueries are unrelated.
When a subquery is unrelated, that means it is completely independent of the outer query.
Uncorrelated subqueries are evaluated only once as part of the entire SELECT statement.
Furthermore, uncorrelated subqueries can stand on their own. If you wanted, you could
execute an uncorrelated subquery as a separate query.

In contrast, correlated subqueries are specifically related to the outer query. Because of this
explicit relationship, correlated subqueries must be evaluated for each row returned and
can produce different results each time the subquery is invoked. Correlated subqueries can’t
be executed on their own because some element in the query makes it dependent on the
outer query.

Let’s explain this with an example. Returning to the Users and Transactions tables, let’s say we
want to produce a list of users who have a total transaction amount less than 20 dollars. Here’s
a statement that accomplishes that request:

SELECT
UserName AS 'User Name'
FROM Users
WHERE
(SELECT
SUM(TransactionAmount)
FROM Transactions
WHERE Users.UserID = Transactions.UserID)
< 20

161Correlated Subqueries

The result is:

User Name

Machiko Tamura

What makes this subquery correlated, as opposed to uncorrelated? The answer can be seen by
looking at the subquery itself:

SELECT
SUM(TransactionAmount)
FROM Transactions
WHERE Users.UserID = Transactions.UserID

This subquery is correlated because it cannot be executed on its own. If run by itself, this
subquery would produce an error because the Users.UserID column in the WHERE clause
doesn’t exist within the context of the subquery. To understand what's going on, it’s helpful to
look at the entire SELECT statement in a more general way:

SELECT
UserName AS 'User Name'
FROM Users
WHERE
SubqueryResult < 20

The subquery returns a columnlist with a single value, which we’re calling SubqueryResult. As a
correlated subquery, the subquery must be evaluated for each user. Also, note that this type of
subquery demands that it only return a single row and a single value. The SubqueryResult could
not be evaluated if there were more than one row or value involved.

As before, you might ask whether a subquery was necessary, and once again the answer is that
it was not. Here’s an equivalent statement that produces the same result:

SELECT
UserName AS 'User Name'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY Users.UserID, Users.UserName
HAVING SUM(TransactionAmount) < 20

Notice, however, that without a subquery, the equivalent statement now requires GROUP BY
and HAVING clauses. The GROUP BY clause creates groups of users, and the HAVING clause
enforces the requirement that each group must have transacted less than 20 dollars.

162 Chapter 14 Subqueries

Focus on Analysis: Moving Averages
Correlated subqueries can be used to compute a moving average for a set of data. We’ll
illustrate this capability using the Transactions table seen in this chapter. In this scenario, we
want to compute the average Transaction Amount for each row and all other rows that are on
that same day, one day before, or one day after. The following SELECT accomplishes that task:
SELECT
A.TransactionDate,
A.TransactionAmount,
(SELECT
SUM (B.TransactionAmount) / COUNT(B.TransactionAmount)
FROM Transactions AS B
WHERE DATEDIFF(day, A.TransactionDate, B.TransactionDate)
BETWEEN -1 AND 1)
AS ‘Moving Average’
FROM TRANSACTIONS AS A
ORDER BY A.TransactionDate

The output of this statement is:

TransactionDate TransactionAmount Moving Average

2021-10-11 22.50 17.00
2921-10-12 11.50 17.00
2021-10-15 5.00 6.00
2021-10-16 6.00 7.25
2021-10-16 7.00 7.25
2021-10-17 11.00 8.00

To understand how this query works, let’s focus on the subquery:
(SELECT
SUM (B.TransactionAmount) / COUNT(B.TransactionAmount)
FROM Transactions AS B
WHERE DATEDIFF(day, A.TransactionDate, B.TransactionDate)
BETWEEN -1 AND 1)

This is a correlated subquery because it refers to data in the outer query and cannot be run on
its own. Note that table aliases are used to distinguish between the Transactions table in the
outer query (named A) from the Transactions table in the subquery (named B). In the subquery,
we use the DATEDIFF function to calculate the number of days between the A.TransactionDate
and the B.TransactionDate. The BETWEEN operator ensures that we select only subquery rows
that are within 1 day prior and 1 day after the TransactionDate. The average for those rows
is computed as the SUM of all such rows divided by the COUNT of those rows. This is the
moving average.

163The EXISTS Operator

The EXISTS Operator
An additional technique associated with correlated subqueries utilizes the special operator
EXISTS. This operator allows you to determine whether data in a correlated subquery exists. To
illustrate, let’s say that we want to discover which users have made any transactions. This can
be accomplished with the use of the EXISTS operator in this statement:

SELECT
UserName AS 'User Name'
FROM Users
WHERE EXISTS
(SELECT *
FROM Transactions
WHERE Users.UserID = Transactions.UserID)

This statement returns:

User Name

Ginger Ortiz
Todd Sherman
Machiko Tamura

This is a correlated subquery because it cannot be executed on its own without reference to the
main query. The EXISTS keyword in the above statement is evaluated as true if the SELECT in
the correlated subquery returns any data. Notice that the subquery selects all columns (SELECT *).
Because it doesn’t matter which columns are selected in the subquery, we use the asterisk
to return all columns. We’re interested only in determining whether any data exists in the
subquery. The result is that the query returns all users except Connie Pinsky. She doesn't appear
because she has no transactions.

As before, the logic in this statement can be expressed in other ways. Here’s a statement that
obtains the same results by using a subquery with the IN operator:

SELECT
UserName AS 'User Name'
FROM Users
WHERE UserID IN
(SELECT UserID
FROM Transactions)

This statement is probably easier to comprehend.

Here’s yet another statement that retrieves the same data without using a subquery:

SELECT
UserName AS 'User Name'
FROM Users
INNER JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY UserName

In this statement, the INNER JOIN enforces the requirement that the user must also exist in the
Transactions table. Also note that this query requires the use of a GROUP BY clause to avoid
returning more than one row per user.

164 Chapter 14 Subqueries

Subqueries as a Calculated Column
The final general use of subqueries is as a calculated column. Suppose we would like to see a
list of users, along with a count of the number of transactions they have placed. This can be
accomplished without subqueries using this statement:

SELECT
UserName AS 'User Name',
COUNT(TransactionID) AS 'Number of Transactions'
FROM Users
LEFT JOIN Transactions
ON Users.UserID = Transactions.UserID
GROUP BY Users.UserID, Users.UserName
ORDER BY Users.UserID

The output is:

User Name Number of Transactions

Ginger Ortiz 1
Todd Sherman 3
Machiko Tamura 2
Connie Pinsky 0

Notice that we used a LEFT JOIN to accommodate users who may not have made any
transactions. The GROUP BY enforces the requirement that we end up with one row per user.
The COUNT function produces a count of the number of rows in the Transactions table.

Another way of obtaining the same result is to use a subquery as a calculated column. This
looks like the following:

SELECT
UserName AS 'User Name',
(SELECT
COUNT(TransactionID)
FROM Transactions
WHERE Users.UserID = Transactions.UserID)
AS 'Number of Transactions'
FROM Users
ORDER BY Users.UserID

In this example, the subquery is a correlated subquery. The subquery cannot be executed on its
own because it references a column from the Users table in the WHERE clause. This subquery
returns a calculated column for the SELECT columnlist. In other words, after the subquery is
evaluated, it returns a single value, which is then included in the columnlist. Here’s the general
format of the previous statement:

SELECT
UserName AS 'User Name',
SubqueryResult AS 'Number of Transactions'
FROM Users
ORDER BY Users.UserID

The entire subquery returns a single value, which is used for the Number of Transactions column.

165Common Table Expressions

Common Table Expressions
An alternative subquery syntax allows it to be defined explicitly prior to the execution of the
main query. This is known as a common table expression. In this syntax, the entire subquery is
removed from its normal location and is stated at the top of the query. The WITH keyword is
used to indicate the presence of a common table expression. Although they may be used with
correlated subqueries, a common table expression is far more useful for uncorrelated subqueries.
To illustrate, let’s return to the first subquery presented in this chapter:

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN

(SELECT
UserID,
SUM(TransactionAmount) AS 'TotalCash'
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID) AS CashTransactions

ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

The subquery in the above statement is given an alias of CashTransactions and is joined to the
Users table on the UserID column. The purpose of the subquery is to provide a total of the cash
transactions for each user. The output of this query is:

User Name Total Cash

Ginger Ortiz 22.50
Todd Sherman 6.00
Machiko Tamura 0
Connie Pinsky 0

We’ll now present an alternative way of expressing this same logic, using a common table
expression. The query looks like this:

WITH CashTransactions AS
(SELECT
UserID,
SUM(TransactionAmount) as TotalCash
FROM Transactions
WHERE TransactionType = 'Cash'
GROUP BY UserID)

SELECT
UserName AS 'User Name',
ISNULL(CashTransactions.TotalCash, 0) AS 'Total Cash'
FROM Users
LEFT JOIN CashTransactions
ON Users.UserID = CashTransactions.UserID
ORDER BY Users.UserID

166 Chapter 14 Subqueries

In this alternative expression, the entire subquery has been moved to the top, prior to the main
SELECT query. The WITH keyword tells us that a common table expression follows. The first
line indicates that CashTransactions is an alias for the common table expression. The common
table expression follows the AS keyword and is enclosed within parentheses.

A blank line separates the common table expression from the primary query. The following line
in the main query:

LEFT JOIN CashTransactions

initiates the outer join to the common table expression, which is referenced via the
CashTransactions alias. The chief virtue of the common table expression is its simplicity. The
main query becomes easier to comprehend, because the details of the subquery now appear as
a separate entity. The output of this query with a common table expression is identical to the
original query with a subquery.

Personal preference determines whether you’d like to use common table expressions in your
queries. Whereas subqueries are embedded in a larger query, common table expressions state
the subqueries up front.

Looking Ahead
In this chapter, we saw subqueries used in three different ways: as a data source, in selection
criteria, and as a calculated column. Additionally, we saw examples of both correlated and
uncorrelated subqueries. Finally, we briefly demonstrated the use of an alternative method
of expressing subqueries using the common table expression. As such, we’ve only touched
on some of the uses of subqueries. What complicates the matter is that many subqueries can
be expressed in other ways. Whether or not you choose to use subqueries depends on your
personal taste and sometimes on the performance of the statement.

Through our use of joins and subqueries, we’ve explored numerous ways to select data from
multiple tables. In the next chapter, “Set Logic,” we’ll look at a method of combining entire
queries into a single SQL statement. This is a special type of logic that allows us to merge multiple
data sets into a single result. As you’ll see, set logic procedures are sometimes necessary to display
sets of data that are only partially related to each other. As with subqueries, the techniques of set
logic provide additional flexibility and logical possibilities for your SQL statements.

15
Set Logic

Keywords Introduced
UNION • UNION ALL • INTERSECT • EXCEPT

The various joins and subqueries of the previous few chapters have dealt with different ways
of combining data from multiple tables. The result, however, has always been a single SELECT
statement. Now we’ll extend the concept of combining data in multiple tables to the possibility
of combining data from multiple queries. In other words, we’ll look at a way to write a single
SQL statement that contains more than one SELECT to retrieve data.

The concept of combining queries is often referred to as set logic, a term taken from
mathematics. Each SELECT query can be referred to as a set of data. The set logic we’ll employ
and examine in this chapter will address four basic scenarios. If we have data in SET A and in
SET B, there are the four possibilities for retrieving data from the two sets:

• Data that is in SET A or in SET B

• Data that is in both SET A and SET B

• Data that is in SET A but not in SET B

• Data that is in SET B but not in SET A

We’ll start by looking at the first scenario, for which we want data included in SET A or in SET
B. As you’ll see, this is the most prevalent and important of the set logic possibilities.

168 Chapter 15 Set Logic

The UNION Operator
The UNION operator in SQL is used to handle logic to select data in either SET A or SET B. This
is by far the most common situation. We’ll illustrate with data taken from two tables. The first
is an Orders table containing data on orders placed by customers.

OrderID CustomerID OrderDate OrderAmount

1 1 2021-09-01 10.00
2 2 2021-09-02 12.50
3 2 2021-09-03 18.00
4 3 2021-09-15 20.00

The second table, named Returns, contains data on merchandise returned by customers. It
might look like this:

ReturnID CustomerID ReturnDate ReturnAmount

1 1 2021-09-10 2.00
2 2 2021-09-15 15.00
3 3 2021-09-28 3.00

Note that unlike the Refunds table seen in Chapters 12 and 13, this Returns table is not directly
related to the Orders table. In other words, returns are not tied to a specific order. In this scenario,
a customer might return merchandise from multiple orders in a single return transaction.

We want to create a report of all orders and returns from one individual customer. We would
like the results sorted by either the order date if it’s an order, or the return date if it’s a return.
The following statement accomplishes this. We’ve inserted a few extra blank lines in this
statement to emphasize the fact that it contains two distinctly separate SELECTs, combined
by the UNION operator:

SELECT
CustomerID,
OrderDate AS 'Date',
'Order' AS 'Type',
OrderAmount AS 'Amount'
FROM Orders
WHERE CustomerID = 2

UNION

SELECT
CustomerID,
ReturnDate as 'Date',
'Return' AS 'Type',
ReturnAmount AS 'Amount'
FROM Returns
WHERE CustomerID = 2

ORDER BY Date

169The UNION Operator

The resulting data is:

CustomerID Date Type Amount

2 2021-09-02 Order 12.50
2 2021-09-03 Order 18.00
2 2021-09-15 Return 15.00

As you can see, the UNION operator separates two SELECT statements. Each of these SELECT
statements could be run on its own. There is also an ORDER BY clause at the very end,
which applies to the results of both SELECT statements. The general format for the previous
statement is:

SelectStatementOne
UNION
SelectStatementTwo
ORDER BY columnlist

For the UNION to work, three rules must be followed:

• All SELECT statements combined with a UNION must have the same number of columns
in the SELECT columnlist.

• All columns in each SELECT columnlist must be in the same order.

• All corresponding columns in each SELECT columnlist must have the same, or
compatible, data types.

Given these rules, notice that both SELECT statements in the query include three columns.
Each of the three columns includes data in the same order and with the same data type.

When using the UNION, you will usually need to use column aliases to give the same column
name to all corresponding columns. In our example, the first column of each SELECT has the
same name in both tables, so column aliases are not needed. However, the second column of
the first SELECT has an original name of OrderDate. The second column of the second SELECT
has an original name of ReturnDate. To ensure that the second column in the result has the
desired name, both OrderDate and ReturnDate are given a column alias of Date. This also
allows the column to be referenced in an ORDER BY columnlist.

Also notice that the third column of each SELECT uses literal values. We created a calculated
column named Type, which has a value of either Order or Return. This allows us to determine
which table each row comes from.

Finally, notice that the ORDER BY clause applies to the results of both queries combined. This is
how it should be, because there would be no point in applying a sort to the individual queries.

At this point, let’s step back and discuss why it was necessary to employ the UNION operator
rather than simply joining the Orders and Returns tables together in a single SELECT statement.
Because both tables have a CustomerID column, why couldn’t we simply join the two tables
together on this column? The problem with that approach is that these two tables are only
indirectly related to each other. Customers can place orders and customers can initiate returns,
but there is no direct connection between orders and returns.

170 Chapter 15 Set Logic

Additionally, even if there were a direct connection between the two tables, a join would not
accomplish the desired result. With an appropriate join, related information can be placed
together on the same row. In this case, however, we are interested in showing orders and
returns in separate rows. The UNION operator must be used to display data in this manner.

In essence, the UNION allows us to retrieve unrelated or partially related data in a single
statement.

Distinct and Non-Distinct Unions
There are two variations of the UNION operator: UNION and UNION ALL. There is only a
slight difference between the two. The UNION operator eliminates any duplicate rows. The
UNION ALL operator specifies that all rows will be included, even if they are duplicates.

The UNION operator eliminates duplicates in a manner similar to the DISTINCT keyword seen
previously. Whereas DISTINCT applies to a single SELECT, the UNION eliminates duplicates in
all SELECT statements combined via the UNION.

In the previous example with the Orders and Returns tables, there was no possibility of
duplication, so it didn’t matter which variation of the UNION was used. However, here’s an
example that illustrates the difference. Suppose we were interested only in the dates on which
any order or return was issued. We don’t want to see multiple rows for the same date. The
following statement accomplishes this task:

SELECT
OrderDate AS 'Date'
FROM Orders
UNION
SELECT
ReturnDate AS 'Date'
FROM Returns
ORDER BY Date

The resulting data is:

Date

2021-09-01
2021-09-02
2021-09-03
2021-09-10
2021-09-15
2021-09-28

171Intersecting Queries

Notice that there is only one row with the date 2021-09-15. Even though there is one row with
2021-09-15 in the Orders table and one row with 2021-09-15 in the Returns table, the UNION
operator ensures that the 2021-09-15 date is listed only once.

If for some reason we wanted to see the date 2021-09-15 listed twice, we could employ the
UNION ALL operator to accomplish this:

SELECT
OrderDate AS 'Date'
FROM Orders
UNION ALL
SELECT
ReturnDate AS 'Date'
FROM Returns
ORDER BY Date

The output is now:

Date

2021-09-01
2021-09-02
2021-09-03
2021-09-10
2021-09-15
2021-09-15
2021-09-28

As you can see, the UNION ALL operator allows duplicate rows to be displayed.

Intersecting Queries
The UNION and UNION ALL operators return data in either of the sets specified in the two
SELECT statements being combined. This is like using an OR operator to combine data from
two logical sets.

SQL provides an operator called INTERSECT that only pulls data that is in both of the two
chosen sets. The INTERSECT is analogous to the AND operator and handles the second scenario
stated at the beginning of this chapter:

• Data that is in both SET A and SET B

Database Differences: MySQL
MySQL doesn’t support the INTERSECT operator.

172 Chapter 15 Set Logic

Using the same Orders and Returns tables, suppose we want to see dates for which there were
both orders and returns. A statement that accomplishes this is:

SELECT
OrderDate AS 'Date'
FROM Orders
INTERSECT
SELECT
ReturnDate AS 'Date'
FROM Returns
ORDER BY Date

The result is:

Date

2021-09-15

Only one row is shown because this is the only date that appears in both the Orders and
Returns tables.

Another variation on this theme is provided by the EXCEPT operator. Whereas the INTERSECT
returns data that is in both sets, the EXCEPT returns data that is in one set but not the other.
Accordingly, this handles the third and fourth scenarios stated at the beginning of this chapter:

• Data that is in SET A but not in SET B

• Data that is in SET B but not in SET A

The general format of the EXCEPT is:

SelectStatementOne
EXCEPT
SelectStatementTwo
ORDER BY columnlist

This statement will show data that is in SelectStatementOne but not in SelectStatementTwo. Here’s
an example:

SELECT
OrderDate AS 'Date'
FROM Orders
EXCEPT
SELECT
ReturnDate AS 'Date'
FROM Returns
ORDER BY Date

The result is:

Date

2021-09-01
2021-09-02
2021-09-03

173Looking Ahead

This data shows dates on which orders were placed but also on which no refunds were issued.
Notice that 2021-09-15 does not appear, because a refund was issued on that date.

Database Differences: MySQL and Oracle
MySQL doesn’t support the EXCEPT operator.

The equivalent of the EXCEPT operator in Oracle is MINUS.

Looking Ahead
This chapter illustrated a variety of ways to use set logic to combine multiple sets of SELECT
statements into a single statement. The most common operator is the UNION, which allows
you to combine data that is in either of two different sets. As such, the UNION is analogous to
the OR operator. The UNION ALL is a variant of the UNION that allows duplicate rows to be
shown. Similarly, the INTERCEPT operator allows data to be presented if it exists in both sets of
data being combined. The INTERCEPT is analogous to the AND operator. Finally, the EXCEPT
operator allows for selection of data that exists in one set but not another.

The next chapter, “Stored Procedures and Parameters,” will show how you can save multiple
SQL statements in a procedure and make use of parameters within those procedures to add
some generality to SQL commands. We’ll also talk about the possibility of creating your own
custom functions and explain how functions differ from stored procedures. Much like the
views discussed in Chapter 13, “Self Joins and Views,” stored procedures and custom functions
are useful objects that you can create and store in your database to provide some extra polish
and functionality.

This page intentionally left blank

16
Stored Procedures and

Parameters

Keywords Introduced
CREATE PROCEDURE • BEGIN • EXEC • ALTER PROCEDURE • DROP PROCEDURE

Up until now, all our data retrieval has been accomplished with a single SQL statement. Even
the set logic seen in the previous chapter involved combining multiple SELECTs into a single
statement. Now we’ll discuss a new scenario in which multiple statements can be saved into a
single object known as a stored procedure.

In broad terms, there are two general reasons for using stored procedures:

• To save multiple SQL statements in a single procedure

• To use parameters in conjunction with SQL statements

Stored procedures can, in fact, consist of a single SQL statement and contain no parameters.
But the real value of stored procedures becomes evident when they contain multiple statements
or parameters.

The subject of stored procedures is quite complex. In this brief review of the topic, we’ll focus
on an overview of the second stated reason, that of using parameters. This relates to the issue
of how best to retrieve data from a database. As you’ll see, the ability to add parameters to a
SELECT statement turns out to be an especially useful feature in everyday usage.

The use of stored procedures to contain multiple statements is beyond the scope of this book.
Basically, the ability to store multiple statements in a procedure means that you can create
complex logic and execute it all at once in a single transaction. For example, you might have a
business requirement to take an incoming order from a customer and quickly evaluate it before
allowing it to enter the system. This procedure might involve checking to ensure that the items
are in stock, verifying that the customer has a good credit rating, and getting an initial estimate
as to when the items can be shipped. This situation would require multiple SQL statements
with some added logic to determine what kind of message to return if all is not well with the
order. All that logic can be placed into a single stored procedure. This enhances the modularity
of the entire system. With everything in one procedure, that logic can be executed from any
calling program and return the same result.

176 Chapter 16 Stored Procedures and Parameters

Creating Stored Procedures
Before getting into the details of how to use stored procedures, let’s cover the mechanics
of how they are created and maintained. The syntax varies significantly among different
databases. For Microsoft SQL Server, the general format for creating a stored procedure is:

CREATE PROCEDURE ProcedureName
AS
OptionalParameterDeclarations
BEGIN
SQLStatements
END

The CREATE PROCEDURE keyword allows you to issue a single command that creates the
procedure. The procedure itself can contain any number of SQL statements and can also
contain parameter declarations. We'll discuss the parameter declaration syntax later. The SQL
statements are listed between the BEGIN and END keywords.

Database Differences: MySQL and Oracle
The general format for creating a stored procedure in MySQL is slightly more complex.
The MySQL format is:
DELIMITER $$
CREATE PROCEDURE ProcedureName ()
BEGIN
SQLStatements
END$$
DELIMITER ;

MySQL requires delimiters when executing multiple statements. The default delimiter is a
semicolon. The first line in the above code temporarily changes the standard delimiter from a
semicolon to two dollar signs. Any needed parameters are specified between the parentheses
on the CREATE PROCEDURE line. Then, each SQL statement listed between the BEGIN and
END keywords must include a semicolon at the end of the statement. The double dollar
signs are placed after the END keyword to denote that the CREATE PROCEDURE command is
completed. Finally, another DELIMITER statement is added at the end to change the delimiter
back to a semicolon.

The procedure for creating stored procedures in Oracle is quite a bit more involved and is
beyond the scope of this book. To create a stored procedure for a SELECT statement in
Oracle, you must first create an object called a package. The package will contain two basic
components: a specification and a body. The specification component specifies how to
communicate with the body component. The body component contains the SQL statements,
which are at the heart of the stored procedure. Consult Oracle’s online documentation for
further details.

Following is an example of how to create a stored procedure that can be used to execute this
single SELECT statement:

SELECT *
FROM Customers

177Parameters in Stored Procedures

The procedure will be named ProcedureOne. In Microsoft SQL Server, the statement to create
the procedure is:

CREATE PROCEDURE ProcedureOne
AS
BEGIN
SELECT *
FROM Customers
END

Database Differences: MySQL
In MySQL, the previous example would look like:
DELIMITER $$
CREATE PROCEDURE ProcedureName ()
BEGIN
SELECT *
FROM Customers;
END$$
DELIMITER ;

Remember that creating a stored procedure does not execute anything; it simply creates the
procedure so it can be executed later. Along with tables and views, the procedure will be visible
in your database management tool, allowing you to view its contents.

Parameters in Stored Procedures
All the SELECT statements we have seen up until now have had a certain static quality because
they were written to retrieve data in one specific way. The ability to add parameters to SELECT
statements provides the possibility of much greater flexibility.

The term parameter in SQL statements is similar to the term variable as used in other computer
languages. A parameter is basically a value passed to a SQL statement by the calling program.
It can have whatever value the user specifies at the time the call is made.

Starting with a simple example, let’s say we have a SELECT statement that retrieves data from a
Customers table. Rather than selecting all customers, we would like the SELECT to retrieve data
for only one CustomerID value. However, we don’t want to code the number directly in the
SELECT statement. We want the SELECT to be general enough that it can accept any provided
CustomerID number and then execute with that value. The SELECT statement without any
parameters is simply:

SELECT *
FROM Customers

Our goal is to add a WHERE clause that allows us to select data for one designated customer. In
a general form, we’d like the SELECT statement to be:

SELECT *
FROM Customers
WHERE CustomerID = ParameterValue

178 Chapter 16 Stored Procedures and Parameters

In Microsoft SQL Server, the creation of such a stored procedure can be accomplished as follows:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = @CustID
END

Notice the addition of the second line, which specifies the CustID parameter in the procedure.
In Microsoft SQL Server, the @ symbol denotes a parameter. The INT keyword placed after the
parameter indicates that this parameter requires an integer value. The same parameter name is
used in the WHERE clause.

Database Differences: MySQL
In MySQL, the command to create an equivalent stored procedure is:
DELIMITER $$
CREATE PROCEDURE CustomerProcedure
(CustID INT)
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = CustID;
END$$
DELIMITER ;

Notice that MySQL doesn’t require the @ symbol to denote a parameter.

When a stored procedure is executed, the calling program passes a value for the parameter, and
the SQL statement is executed as if that value were part of the statement.

Also note that the parameters discussed previously are input parameters. As such, they contain
values that are passed into the stored procedure. Stored procedures can also include output
parameters, which can contain values passed back to the calling program. For guidance on how
to use output parameters, please consult the online SQL reference manual for your database.

Executing Stored Procedures
After stored procedures are created, how are they executed? The syntax varies between
databases. Microsoft SQL Server provides the EXEC keyword to run stored procedures.

In Microsoft SQL Server, the following statement will execute the ProcedureOne procedure:

EXEC ProcedureOne

When this statement is executed, it returns the results of the SELECT statement contained in
the stored procedure.

179Modifying and Deleting Stored Procedures

The ProcedureOne parameter didn’t have any parameters, so the syntax is simple. To illustrate
running procedures with input parameters, the following executes the above discussed
CustomerProcedure procedure with a CustID value of 2:

EXEC CustomerProcedure
@CustID = 2

Database Differences: MySQL
Rather than using EXEC, MySQL uses a CALL keyword to execute stored procedures, and
the syntax for stored procedures with parameters is slightly different. The equivalent of the
previous two EXEC statements in MySQL is:
CALL ProcedureOne:
CALL CustomerProcedure (2);

Modifying and Deleting Stored Procedures
Once a stored procedure has been created, it can be modified. Just as an ALTER VIEW statement
was used to modify views, an ALTER PROCEDURE statement can be used to modify stored
procedures. The syntax is identical to the CREATE PROCEDURE command, except that ALTER
is used in place of CREATE. Just as the CREATE PROCEDURE has a slightly different syntax for
each database, so does the ALTER PROCEDURE.

We’ve already seen this example of creating a stored procedure with Microsoft SQL Server:

CREATE PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT *
FROM Customers
WHERE CustomerID = @CustID
END

After this procedure is created, if you wish to alter the procedure to select only the CustomerID
and LastName columns from the Customers table, the command to accomplish that would be:

ALTER PROCEDURE CustomerProcedure
(@CustID INT)
AS
BEGIN
SELECT
CustomerID,
LastName
FROM Customers
WHERE CustomerID = @CustID
END

180 Chapter 16 Stored Procedures and Parameters

Database Differences: MySQL
MySQL provides an ALTER PROCEDURE command, but it has limited functionality. To alter the
content of a stored procedure in MySQL, you will need to issue a DROP PROCEDURE and then
a CREATE PROCEDURE with the new content.

Deleting a stored procedure is even simpler. Just as a DROP VIEW deletes a view, a DROP
PROCEDURE statement deletes a procedure.

Here’s how the stored procedure named CustomerProcedure can be deleted:

DROP PROCEDURE CustomerProcedure

Functions Revisited
In Chapter 4, we talked about the built-in scalar functions available in SQL. For example, we
used character functions such as LEFT and mathematical functions like ROUND. In Chapter 9,
we discussed aggregate functions such as MAX.

In addition to the built-in functions in SQL, developers can create their own functions and save
them in a database. The procedure for creating functions is similar to the procedure for creating
stored procedures. SQL provides the keywords CREATE FUNCTION, ALTER FUNCTION, and
DROP FUNCTION, which work very much like CREATE PROCEDURE, ALTER PROCEDURE, and
DROP PROCEDURE.

Due to the advanced nature of this topic, we won’t provide specific examples of this
functionality. However, we’ll briefly explain the differences between using stored procedures
and functions.

Stored procedures and functions can both be saved in a database. These entities are saved
as separate objects in a database, much like tables or views. The procedures for saving and
modifying stored procedures and functions are very similar. The same CREATE, ALTER, and
DROP commands for stored procedures can be used for functions.

The difference between the two lies in how they are used and in their capabilities. There are
two main distinctions between stored procedures and functions:

• Stored procedures can have any number of output parameters. They can even have
zero output parameters. In contrast, a function must always contain exactly one output
parameter. In other words, when you call a function, you always get back a single value.

• Stored procedures are executed by a calling program. The stored procedure cannot
be directly referenced in a SELECT statement. In contrast, functions can be referenced
within any SQL statement. After a function is defined, that function is referenced by the
name specified when it was created.

181Looking Ahead

Looking Ahead
In this chapter, we’ve seen that the use of parameters can add a great deal of flexibility to the
process of retrieving data. For example, parameters allow us to generalize SQL statements so
that values for selection criteria can be specified at the time the statement is executed. We also
learned about the basics of how to create and modify stored procedures. Finally, we explained
some of the differences between stored procedures and user-defined functions.

Although the examples in this chapter focused on data retrieval, stored procedures and
functions are also quite useful when applying data updates. The next chapter, “Modifying
Data,” will take us out of the realm of data retrieval and into issues surrounding the need to
update data. The business of maintaining data doesn’t present the same analytic possibilities as
data retrieval, but it is a necessary task for any enterprise. Fortunately, most of the techniques
we’ve learned with the SELECT statement apply equally to the modification process covered in
the next chapter.

This page intentionally left blank

17
Modifying Data

Keywords Introduced
INSERT • VALUES • DELETE • TRUNCATE TABLE • UPDATE • SET

Having exhausted our discussion of retrieving data from databases, we now move on to the
question of how to modify data in a database. There are three basic scenarios as to how data
can be modified:

• Inserting new rows into a table

• Deleting rows from a table

• Updating existing data in specific rows and columns in a table

As may be surmised, inserting and deleting rows is relatively straightforward. Updating existing
data, however, is a more complex endeavor, as it involves identifying the rows to be updated
as well as the specific columns in those rows. We’ll begin with the inserts and deletes and then
move on to updates.

Modification Strategies
The mechanics of modifying data are fairly straightforward. However, the nature of the process
means that this is an area fraught with peril. Being human, mistakes can be made. With a
single command, you can easily delete thousands of rows in error or apply incorrect updates
that may be difficult to retract.

As a practical matter, various strategies can be employed to help prevent catastrophic blunders.
For example, when deleting rows from a table, you can employ a soft delete technique. This
means that instead of actually deleting rows, you denote a special column in a table to mark
each row as either active or inactive. Rather than deleting a row, you merely mark it as inactive.
That way, if a deletion is done in error, you can easily reverse it by changing the value of the
active/inactive status column.

184 Chapter 17 Modifying Data

A similar technique can be used when doing inserts. When adding a row, you can mark the
exact date and time of the insert in a column dedicated to that purpose. If it is later determined
that rows were added in error, you can find all rows that were added within a specified time
range and delete them.

The problem is more complex when it comes to updating data. Generally, it’s advisable to
maintain a separate table that holds data on intended update transactions. If any error is made,
you can go back to the transaction table to find the before and after values for data that was
modified and use that to reverse any earlier mistakes.

These strategies are just a few of the many approaches you can take. Comprehensive detail of
this topic is well beyond the scope of this book. The bottom line is to exercise caution when
updating data. Unlike many user-friendly desktop applications, SQL has no undo command.

Inserting Data
SQL provides an INSERT keyword for adding data into a table. There are two basic ways an
INSERT can be done:

• Insert specific data listed in an INSERT statement

• Insert data obtained from a SELECT statement

The INSERT keyword can also be stated as INSERT INTO. The word INTO is optional but is
added in subsequent statements for clarity.

Let’s start with an example that shows how to insert data, where the data values are specified in
an INSERT statement. We’ll assume that we have a Clients table with this data already in it:

ClientID FirstName LastName State

1 Judy Crawford WI
2 Miguel Ramirez PA
3 Ellen Baker OR

Let’s also assume that the first column, ClientID, is the primary key for the table. Back in
Chapters 1 and 2, we talked about the fact that primary keys enforce the requirement that
each row in a table be uniquely identifiable. We also mentioned that primary key columns are
often specified as auto-increment columns. This means that they are automatically assigned a
number as rows are added to the table.

Assuming that the ClientID is defined as an auto-increment column, this means that when we
add a row to the Clients table, we don’t need to specify a value for the ClientID column. It will
be automatically determined as each row is added to the table. We need only to specify values
for the other three columns.

185Inserting Data

Let’s proceed with a procedure that adds two new customers to the table: Amanda Davis from
Ohio and Ingrid Krause from California. This statement performs the insert:

INSERT INTO Clients
(FirstName, LastName, State)
VALUES
('Amanda', 'Davis', 'OH'),
('Ingrid', 'Krause', 'CA')

After the insert, the table contains:

ClientID FirstName LastName State

1 Joyce Crawford WI
2 Miguel Ramirez PA
3 Ellen Baker OR
4 Amanda Davis OH
5 Ingrid Krause CA

A few words of explanation are in order. First, notice that the VALUES keyword is used as a
prefix to lists of values to be inserted into the table. The statement lists each row of data within
a separate set of parentheses. Amanda Davis of Ohio was in one set of parentheses, and Ingrid
Krause was in another. The two sets were separated by a comma. If we needed to add only one
row, then just one set of parentheses would be needed.

Database Differences: Oracle
Oracle doesn’t support auto-increment columns.

Additionally, Oracle doesn’t permit specifying multiple rows after the VALUES keyword. The
previous example would need to be broken down into two statements, as follows:
INSERT INTO Clients
(FirstName, LastName, State)
VALUES
(Amanda, 'Davis', 'OH');
INSERT INTO Clients
(FirstName, LastName, State)
VALUES
('Ingrid', 'Krause', 'CA');

Also note that the order of the data elements after the VALUES keyword corresponds to the
order of columns listed in the columnlist after the INSERT. The order in which the columns
themselves are listed need not be the same as in the database. In other words, the above insert
could have been accomplished just as easily with this statement:

INSERT INTO Clients
(State, LastName, FirstName)
VALUES
('OH', 'Davis', Amanda),
('CA', 'Krause', 'Ingrid')

186 Chapter 17 Modifying Data

In this INSERT, we listed the State column first instead of last. Again, the order in which
columns are listed doesn’t matter.

In summary, the general format for the INSERT statement is:

INSERT [INTO] table
(columnlist)
VALUES
(RowValues1),
(RowValues2)
[repeat any number of times]

The columns in the columnlist must correspond to the columns in RowValues.

Also, if all columns in the columnlist are listed in the same order as they physically exist
in the database, and if there are no auto-increment columns in the table, then the INSERT
statement can be executed without specifying the columnlist. However, this practice is strongly
discouraged because it is prone to error.

It’s also possible to use an INSERT statement without specifying all the columns. When that
occurs, columns not specified are given NULL values. For example, suppose we want to insert
one additional row into the Clients table for a customer named John Sullivan. However, we
don’t know John’s state. Here’s the INSERT:

INSERT INTO Clients
(FirstName, LastName)
VALUES
('John', 'Sullivan')

Afterward, his row in the table will appear as:

ClientID FirstName LastName State

6 John Sullivan NULL

Because we didn’t specify a value for the State column for this new row, it was given a
NULL value.

There are two variations of the INSERT statement. The second format applies to situations
where you insert data obtained from a SELECT statement. This means that instead of listing
data elements after a VALUES keyword, you substitute a SELECT statement that obtains the
necessary values.

To illustrate, let’s say we have another table named NewClients, which holds data that we
would like to insert into the Clients table. The NewClients table might look like this:

State GivenName Surname

RI Dorothy Michaels
PA Beata Kowalski
RI Sabrina Fairchild

187Deleting Data

If we want to add all customers from the state of Rhode Island (RI) from the NewClients table
to the Clients table, the following would accomplish that objective:

INSERT INTO Clients
(FirstName, LastName, State)
SELECT
GivenName,
Surname,
State
FROM NewClients
WHERE State = 'RI'

After this INSERT, the Clients table contains:

ClientID FirstName LastName State

1 Joyce Crawford WI
2 Miguel Ramirez PA
3 Ellen Baker OR
4 Amanda Davis OH
5 Ingrid Krause CA
6 John Sullivan NULL
7 Dorothy Michaels RI
8 Sabrina Fairchild RI

The above INSERT simply substitutes a SELECT statement for the VALUES clause. As expected,
Beata Kowalski wasn’t added to the Clients table because she is not in Rhode Island. Also notice
that the column names in the Clients and NewClients tables are not identical. The column
names don’t matter as long as the columns are listed in the correct corresponding order.

Deleting Data
Deleting data is quite a bit simpler than adding it. The DELETE statement handles deletions.
When a DELETE is executed, it removes entire rows in a table. The general format is:

DELETE
FROM table
WHERE condition

Here’s a simple example. Let’s say we want to delete rows from the previously mentioned
Clients table if the customer is in Rhode Island. The statement to accomplish this is:

DELETE
FROM Clients
WHERE State = 'RI'

188 Chapter 17 Modifying Data

That’s all there is to it. If you wanted to test the results of the previous DELETE before
executing it, you could simply substitute a SELECT for the DELETE, as follows:

SELECT
COUNT(*)
FROM Clients
WHERE State = 'RI'

This would provide a count of the rows about to be deleted, which supplies some level of
validation for the delete.

One other option for deleting data is worth mentioning. If you want to delete all the data in a
table, you can employ a TRUNCATE TABLE statement to delete everything. The advantage of
the TRUNCATE TABLE over the DELETE statement is that it is faster. Unlike the DELETE, the
TRUNCATE TABLE doesn’t log the results of the transaction. We haven’t talked about data log
processes, but most databases provide a logging function that allows database administrators to
recover databases in the event of system crashes and other similar problems.

If you want to delete all data in the Clients table, you can issue this statement:

TRUNCATE TABLE Clients

This has the same result as this statement:

DELETE
FROM Clients

Database Differences: MySQL
The DELETE and UPDATE statements in this chapter may not execute in MySQL because of
Safe Update Mode restrictions in your installation. To temporarily turn off Safe Update Mode,
issue this statement:
SET SQL_SAFE_UPDATES = 0;

To turn Safe Update Mode back on, issue:
SET SQL_SAFE_UPDATES = 1;

One other difference between the DELETE and the TRUNCATE TABLE statements is that
TRUNCATE TABLE resets the values used for auto-increment columns. DELETE doesn’t affect
those values.

Updating Data
The procedure for updating data involves specifying which columns are to be updated, as well
as logic for selecting rows. The general format for an UPDATE statement is:

UPDATE table
SET Column1 = Expression1,
Column2 = Expression2
[repeat any number of times]
WHERE condition

189Correlated Subquery Updates

This statement is similar to the basic SELECT, except that the SET keyword is used to assign
new values for specified columns. The WHERE condition specifies which rows will be updated,
but the UPDATE statement can update multiple columns at the same time. If more than one
column is being updated, the SET keyword is listed only once, but a comma must separate
multiple update expressions.

Starting with a simple example, suppose we want to change Judy Crawford’s last name to
Crawfish and change her state from Wisconsin (WI) to New Jersey (NJ). Her row in the Clients
table currently looks like this:

ClientID FirstName LastName State

1 Judy Crawford WI

The UPDATE statement to accomplish the modification is:

UPDATE Clients
SET LastName = 'Crawfish',
State = 'NJ'
WHERE ClientID = 1

After executing this statement, this row in the Clients table will be changed to:

ClientID FirstName LastName State

1 Judy Crawfish NJ

Notice that the value of the FirstName column is unchanged because that column wasn’t
included in the UPDATE statement. Also note that the WHERE clause is essential. Without the
WHERE, this change would have been applied to every row in the table.

Correlated Subquery Updates
The previous UPDATE example is easy enough but not entirely realistic. A more common use of
an UPDATE involves situations in which you update data in one table based on data in another
table. Let’s say we have this Vendors table:

VendorID State Zip

1 NY 10605
2 FL 33431
3 CA 94704
4 CO 80302
5 WY 83001

190 Chapter 17 Modifying Data

The following VendorTransactions table lists recent changes for existing vendors:

TransactionID VendorID State Zip

1 1 NJ 07030
2 2 FL 33139
3 5 OR 97401

The Vendors table is the main source of data for vendors. To accomplish an update of the
Vendors table from the VendorTransactions table, we must use the correlated subquery
technique discussed in Chapter 14. A correlated subquery is needed because the UPDATE
statement can only specify a single table to update. We can’t merely join multiple tables
together and make it work. Therefore, we’ll need to use a correlated subquery after the SET
keyword to indicate where the data comes from.

The following statement can be used to update the State and Zip columns in the Vendors table
from the transactions in the VendorTransactions table. Because this statement is fairly complex,
we’ve inserted a few blank lines so we can then discuss the four sections of the statement.

UPDATE Vendors

SET Vendors.State =
(SELECT VendorTransactions.State
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID),

Vendors.Zip =
(SELECT VendorTransactions.Zip
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID)

WHERE EXISTS
(SELECT *
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID)

After running this UPDATE, the Vendors table will appear as follows.

VendorID State Zip

1 NJ 07030
2 FL 33139
3 CA 94704
4 CO 80302
5 OR 97401

Let’s analyze this UPDATE statement in some detail. The first section of the statement,
consisting of the first line, indicates that the update will be done on the Vendors table.

191Looking Ahead

The second section of the statement specifies how the State column will be updated. The
update is based on this correlated subquery:

SELECT VendorTransactions.State
FROM VendorTransactions
WHERE Vendors.VendorID = VendorTransactions.VendorID

You can tell that this is a correlated subquery because it would produce an error if we
attempted to execute this SELECT on its own. The subquery is taking data from the
VendorTransactions table and matching between the two tables by VendorID.

The third section of the statement is identical to the second section, except that these lines will
update the Zip column. Also notice that the SET keyword needed to be specified only once, in
the second section. It isn’t needed in the third section.

The final section includes logic in a WHERE clause associated with the selection logic for the
entire UPDATE statement. The EXISTS operator is used along with another correlated subquery
to determine whether rows exist in the VendorTransactions table for each VendorID in the
Vendors table. Without this WHERE clause, the update would incorrectly change the State and
Zip columns for vendors 3 and 4 to NULL values, because those vendors do not have rows in
the VendorTransactions table. The correlated subquery in this WHERE clause ensures that we
apply updates only for vendors who have data in the VendorTransactions table.

As you can infer, the subject of using correlated subqueries for updates is quite complex. As
such, the topic is generally beyond the scope of this book. We’ve included this example merely
to give an idea of some of the complexities involved in data updates. Note additionally that
correlated subqueries are similarly useful with deletes.

Looking Ahead
This chapter presented an overview of the various methods of updating data. The mechanics
of executing simple inserts, deletes, and updates are relatively straightforward. However, the
correlated subquery technique, which is often necessary for real-world updates and deletes,
is not for the faint of heart. Additionally, the entire notion of applying updates to data is a
demanding exercise. With the power of SQL’s ability to update thousands of rows of data with
a single command comes an admonition to exercise caution when performing any type of
update. Procedures for reversing any updates should be carefully planned before applying any
data modifications.

Now that we’ve talked about modifying data in tables, we’ll progress to a discussion of the
tables themselves. In the next chapter, “Maintaining Tables,” we’ll look at the mechanics of
creating tables, along with all the attributes needed to properly hold the data in those tables.
As such, we’ll revisit some of the topics touched upon in Chapter 1, such as primary and
foreign keys. Up until now, we’ve assumed that tables are simply available for our use. After
the upcoming examination, you’ll have a much better idea of how to create the tables that will
hold your data.

This page intentionally left blank

18
Maintaining Tables

Keywords Introduced
CREATE TABLE • DROP TABLE • CREATE INDEX • DROP INDEX

With this chapter, we change our focus from data retrieval and modification to design. Up until
now, we’ve assumed that tables simply exist and are available to any interested user. However,
in the normal course of events, someone must create tables before their data can be accessed.
We therefore turn to the question of how to create and maintain tables.

Previously, we touched on a few of the topics we’ll address now, such as primary and foreign
keys, but now we want to delve into these areas in greater detail and address the related topic
of table indexes.

Data Definition Language
Back in Chapter 1, we mentioned the three main components of the SQL language: DML (Data
Manipulation Language), DDL (Data Definition Language), and DCL (Data Control Language).
Up until now, most of what we’ve talked about has been DML. DML statements allow you to
manipulate data in relational databases by retrieval, insertion, deletion, or updating. This is
handled by the SELECT, INSERT, DELETE, and UPDATE statements.

Although our focus has been on DML, we have already seen a few instances of DDL (Data
Definition Language). The CREATE VIEW and CREATE PROCEDURE statements we encountered
in Chapters 13 and 16 are DDL, as are the related ALTER and DROP versions of those statements.

CREATE VIEW and CREATE PROCEDURE statements are DDL because they only allow you to
manipulate the structure of a database. They have nothing to do with the data they contain.

In this chapter, we’ll provide a brief overview of a few additional DDL statements that can be
used to create and modify tables and indexes.

194 Chapter 18 Maintaining Tables

Each database has a unique way of organizing its objects and therefore has different available
DDL statements. For example, MySQL has 12 different CREATE statements for these types of
objects: Databases, Events, Functions, Indexes, Logfile Groups, Procedures, Servers, Spatial
Reference Systems, Tables, Tablespaces, Triggers, and Views.

Oracle has more than 40 different CREATE commands for the object types in its database.
Microsoft SQL Server has more than 60 different CREATE commands for its object types.

In truth, most modifications to database objects, such as views and tables, can be accomplished
through the visual GUI (graphical user interface) that each software vendor provides to
administer their software. It is often not necessary to learn any DDL at all, because
modifications can often be handled with the software GUI.

However, it’s useful to be aware of the existence of a few key statements for manipulating data
objects. We’ve already seen some statements that allow us to modify views and stored procedures.
In this chapter, we’ll cover some of the possibilities for modifying tables and indexes via DDL.

Table Attributes
In the first two chapters, we briefly discussed a few attributes of database tables, such as
primary keys, foreign keys, data types, and auto-increment columns. As mentioned, SQL DDL
provides CREATE statements for many types of database objects. In Chapters 13 and 16, we
talked about the CREATE PROCEDURE and CREATE VIEW statements that handle stored
procedures and views.

Now we’ll turn our attention back to tables. Tables are perhaps the primary and most essential
object type in a database. Without tables, nothing else really matters. All the data in a database
is physically stored in tables. Most other object types relate to tables in one way or another.
Views provide a virtual view of tables. Stored procedures generally act upon data in tables.
Functions allow for special rules for the manipulation of data in tables.

Here we’ll focus on how tables can be created initially. Many attributes can be associated with
table definitions. We’ll provide an overview of some of the more important attributes and
discuss what they mean.

The subject of table attributes is also related to the larger topic of database design, which will
be addressed in the next chapter. For now, we’ll focus on the mechanics of what can be done
with the tables themselves.

The specifics of how tables can be designed and altered varies widely among Microsoft SQL
Server, MySQL, and Oracle. We’ll talk primarily about those attributes common to tables in
all three databases.

195Primary Keys and Indexes

Table Columns
Tables are defined as containing any number of columns. Each column has a variety of
attributes specific to that column. The first and most obvious attribute is the column name.
Each column must be given a name unique to that table.

A second attribute of columns is the data type, a subject that was addressed in Chapter 1.
We’ve already described some notable data types in three main categories: numeric, character,
and date/time. The data type is a key determinant of the type of data each column can contain.

A third attribute of a column is whether it is defined as an auto-increment column. We briefly
introduced this attribute type in Chapters 1 and 2 and discussed it further in the preceding
chapter about modifying data. Basically, an auto-increment column means that the column
is automatically assigned a numeric value, in ascending sequence, as each row is added to the
table. Auto-increment columns are often used with primary keys but can also be assigned to an
ordinary column.

Note that the term auto-increment is specific to MySQL. Microsoft uses the term identity to refer
to the same type of attribute.

Database Differences: Oracle
Oracle doesn’t provide an auto-increment type of attribute. Instead, Oracle requires that
you define a column as a sequence and then create a trigger to populate that column with
sequential values. This procedure is beyond the scope of this book.

A fourth column attribute is whether the column is allowed to contain NULL values. The
default is to allow NULL values. If you don’t want to allow a column to contain NULLs, it is
normally specified via a NOT NULL keyword applied to the column description.

The final column attribute we’ll mention is whether the column is assigned a default value. A
default value is automatically assigned to the column if no value for that column is provided
when a row is added. For example, if most of your customers are in the US, you may want to
specify that a column containing a country code be given a default value of US.

Primary Keys and Indexes
Let’s turn to the topic of primary keys and explain how that attribute relates to table indexes.

Indexes are a physical structure that can be added to any column in a database table. Indexes
serve the purpose of speeding up data retrieval when that column is involved in a SQL
statement. The actual data in the index is hidden, but basically the index involves a structure
that maintains information on the sort order of the column, thus allowing for quicker retrieval
when specific values are requested.

196 Chapter 18 Maintaining Tables

One downside to indexing a column is that it requires more disk storage in the database. A
second negative is that indexes generally slow down data updates involving that column. This
is because any time a row is inserted or modified, the index must recalculate the proper sort
order for values in that column.

Any column can be indexed, but only one column, or set of columns, can be designated as
a primary key. Specifying a column as a primary key means two things: The column will be
indexed, and the column will be guaranteed to contain unique values.

As discussed in Chapter 1, primary keys (often abbreviated as PK) accomplish two main benefits
for the database user. They enable you to uniquely identify a single row in a table, and they
allow you to easily relate tables to one another. And now, a third benefit can be added—
namely, that by being indexed, the primary key enables faster data retrieval of rows involving
that column.

The main reason for having primary keys is to guarantee unique values for all rows in a table.
There must always be a way of identifying single rows for updates or deletes, and the primary
key ensures that this can be done.

Moreover, a primary key can span more than one column and can consist of two or three
columns. If the primary key contains more than one column, it simply means that all
those columns together will contain a unique value. This type of primary key is normally
referred to as a composite primary key. As an example of when a composite primary key might
be used, let’s say that you have a Movies table. You’d like to use a key that uniquely identifies
each movie in the table. Rather than using a MovieID integer value as the key, you’d like to use
the movie title as the key. The problem, however, is that more than one movie might have the
same title. To solve the problem, you might want to use two columns, the movie title and the
release date, to form a composite primary to uniquely define each movie.

Because primary keys must contain unique values, they are never allowed to contain NULL
values. Some non-NULL value for the column must always be specified.

Finally, primary keys are often specified as auto-increment columns. By making a primary key
auto-increment, database developers don’t need to worry about assigning a unique value for the
column. The auto-increment feature takes care of that requirement.

Foreign Keys
In addition to primary keys, SQL databases can also designate specific columns as foreign keys.
A foreign key (often abbreviated as FK) is simply a reference from a column in one table to a
column in a different table. When setting up a foreign key, you will be asked to specify both
columns. The foreign key in the table being configured is often referred to as being in the child
table. The referenced column in the other table is referred to as being in the parent table.

For example, suppose you have a Customers table with a CustomerID column set up as a
primary key. You also have an Orders table with an OrderID column set up as a primary key, as
well as a CustomerID column. In this scenario, you can set up the CustomerID column in the
Orders table as a foreign key that references the CustomerID column in the Customers table. In

197Creating Tables

this situation, the Orders table is the child table, and the Customers table is the parent table.
The idea of the foreign key is to ensure that the CustomerID in the Orders table points to an
existing customer in the Customers table, using the CustomerID column in both tables as the
common element.

When a foreign key is set up, some specific actions can be specified pertaining to updates and
deletes for rows in the parent table. The three most common actions are:

• No Action

• Cascade

• Set Null

These three actions can be configured for either updates or deletes. Continuing with the
example of the Customers and Orders tables, the most common action that might be specified
is No Action. This is normally the default action if none is specified. If the CustomerID column in
the Orders table is set to No Action for updates, that means that a check is performed whenever
an update is attempted in the parent table on the CustomerID column. If SQL tries to perform an
update on the CustomerID that would result in any row in the child table pointing to a value
that no longer exists, it will prevent that action from occurring. The same would be true if No
Action is specified for deletes. This ensures that, when using the CustomerID column in either
table, all rows in the Orders table properly point to an existing row in the Customers table.

The second alternative for a specified action for foreign keys is Cascade. This means that when
a value in the parent table is updated, and that value affects rows in the child table, then SQL
will automatically update all rows in the child table to reflect the new value in the parent table.
Similarly, if a row in the parent table is deleted, and if that affects rows in the child table, SQL
will automatically delete affected rows in the child table.

The third alternative for a specified action for foreign keys is Set Null, which is sometimes used for
deletes. This means that when a value in the parent table is deleted, and if that value affects rows
in the child table, SQL will automatically update all affected rows in the child table to contain a
NULL value in the foreign key, indicating that a corresponding parent row no longer exists.

Creating Tables
The CREATE TABLE statement can be used to create new tables in a database. The syntax and
available features vary among databases. We’ll illustrate this with a simple example that creates
a table with these attributes:

• The table name is MyTable.

• The first column in the table is named ColumnOne and is defined as a primary key. This
column will be defined as an INT (integer) data type and as an auto-increment column.

• The second column in the table is named ColumnTwo and is defined as an INT data
type. This column will not allow NULL values. This column will also be defined as a
foreign key, with Set Null specified for deletes, related to a column named FirstColumn
in another table called RelatedTable.

198 Chapter 18 Maintaining Tables

• The third column is named ColumnThree and is defined as a VARCHAR data type with a
length of 25 characters. This column will allow NULL values.

• The fourth column is named ColumnFour, is defined as a FLOAT data type, and will
allow NULL values. It will be given a default value of 10.

Here is the CREATE TABLE statement that will create such a table in Microsoft SQL Server:

CREATE TABLE MyTable
(ColumnOne INT IDENTITY(1,1) PRIMARY KEY NOT NULL,
ColumnTwo INT NULL
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT NULL DEFAULT (10))

Database Differences: MySQL and Oracle
The same CREATE TABLE statement in MySQL looks like this:
CREATE TABLE MyTable
(ColumnOne INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
ColumnTwo INT NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT NULL DEFAULT 10,
CONSTRAINT FOREIGN KEY(ColumnTwo)
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL);

The same statement in Oracle is:
CREATE TABLE MyTable
(ColumnOne INT PRIMARY KEY NOT NULL,
ColumnTwo INT NULL,
ColumnThree VARCHAR(25) NULL,
ColumnFour FLOAT DEFAULT 10 NULL,
CONSTRAINT "ForeignKey" FOREIGN KEY (ColumnTwo)
REFERENCES RelatedTable (FirstColumn)
ON DELETE SET NULL);

As previously mentioned, Oracle doesn’t allow for auto-increment columns.

After a table is created, an ALTER TABLE statement can be used to modify specific attributes
of the table. Due to its complexity and to the vast differences between databases for this
command, the syntax for the ALTER TABLE statement isn’t covered in this book.

As one example, however, the following statement could be used to modify MyTable to
eliminate the ColumnThree column from the table:

ALTER TABLE MyTable
DROP COLUMN ColumnThree

The syntax for deleting an entire table is simple. To delete MyTable, issue this statement:

DROP TABLE MyTable

199Creating Tables

Focus on Analysis: Fiscal Calendars
Many organizations employ a fiscal calendar. As such, a common problem is the ability to
associate calendar dates to a fiscal quarter or year. One solution is to create a table that
includes these columns: CalendarDate, FiscalQuarter, and FiscalYear. Analysts can then join to
that table on CalendarDate to return the corresponding fiscal quarter or year. There are many
ways to create such a table. The solution we’ll present will include four steps. The first is to
create the table itself. This can be done via the following:
CREATE TABLE FiscalCalendar
(CalendarID INT NULL,
CalendarDate DATE NULL,
FiscalQuarter VARCHAR(2) NULL,
FiscalYear VARCHAR(4) NULL)

Significantly, we’ve allowed all four columns to contain NULL values. The second step is to
insert rows into this table corresponding to the number of dates we need in our FiscalCalendar
table. These rows should include all dates, past and future, that might be in the database. In
this example, we’ll insert 365 rows, using the following statement.
INSERT INTO FiscalCalendar (CalendarID)
SELECT TOP 365
ROW_NUMBER() OVER (ORDER BY SampleID)
FROM SampleTable

This requires a couple explanations. First, we are utilizing the ROW_NUMBER function described
in Chapter 9 to insert a series of sequential numbers into the CalendarID column. These numbers
will range from 1 to 365. Second, we are referencing a table called SampleTable. This is a
dummy table we created that has 1000 rows and one column named SampleID. This table is
included in the setup script companion files for this book. However, note that any other table
with at least 365 rows could have been used in its place. We now have a table with data in the
CalendarID column. The next step is to populate the CalendarDate column for all rows. This
can be accomplished with:
UPDATE FiscalCalendar
SET CalendarDate = DATEADD(DAY,CalendarID - 1,'2022-02-01')

This UPDATE uses the DATEADD function to add the value of CalendarID less 1 to the starting
date in our sequence, which in this case is 2/1/2022. We’re subtracting 1 from CalendarID
because we want the increment to be one less than the CalendarID value. This populates a
sequential series of dates in the CalendarDate column from 2/1/2022 to 1/31/2023. The
final step is to populate the FiscalQuarter and FiscalYear columns for all dates. This can be
accomplished with a statement such as:
UPDATE FiscalCalendar
SET FiscalQuarter = 'Q1',
FiscalYear = '2022'
WHERE CalendarDate BETWEEN '2022-02-01' and '2022-04-30'

In this example, we’re setting the fiscal quarter to Q1 for all dates between 2/1/2022 and
4/30/2022. The fiscal year is set to 2022. A statement such as this would be repeated for
all fiscal quarters in the table.

200 Chapter 18 Maintaining Tables

Creating Indexes
SQL provides a CREATE INDEX statement for creating indexes after a table is created. You can
also use the ALTER TABLE statement to add or modify indexes.

To illustrate, the syntax in Microsoft SQL Server for adding a new index on ColumnFour in
MyTable is:

CREATE INDEX Index2
ON MyTable(ColumnFour)

This creates a new index named Index2. To delete an index, simply issue a DROP INDEX
statement such as:

DROP INDEX Index2
ON MyTable

Database Differences: Oracle
In Oracle, the equivalent DROP INDEX statement is:
DROP INDEX Index2;

Looking Ahead
The SQL statements for adding or modifying tables and indexes are complex but relatively
unimportant to learn in detail. Database software generally provides graphical tools for modifying
the structure of tables without having to resort to issuing SQL statements. The important
concepts to take from this chapter are a knowledge of the various table attributes, including
an understanding of how indexes and primary and foreign keys are related to each other.

In the next chapter, “Principles of Database Design,” we move from the relatively mundane
task of creating tables to the much broader topic of database design. Just as tables must be
created before their data is accessed, the overall structure of databases is normally designed
before tables are created. So in a sense, we’re moving in reverse through topics that are
normally introduced before retrieval of data is ever attempted. The specific design of your
database is, of course, an essential component of your ability to deliver quality results via SQL.
If a database is poorly designed, anyone accessing data in that database will be hindered in
their attempts to retrieve data. Basic knowledge of the database design principles discussed in
the next chapter can go a long way toward ensuring a quality data retrieval experience.

19
Principles of Database

Design

In Chapter 1, we introduced the notion that relational databases are a collection of data stored
in any number of tables. The tables are assumed to be related to each other in some fashion.
In the previous chapter, on maintaining tables, we made clear that database designers can,
if they choose, assign foreign keys to ensure that certain relationships between tables are
properly maintained.

However, even with our knowledge of primary and foreign keys, we still have not yet addressed
the basic issue of how to design a database in the first place. The main questions to address are:

• How should data be organized into a set of related tables?

• What data elements should be placed in each table?

Once tables and their data elements are defined, a database administrator can go about the
business of creating foreign keys, indexes, appropriate data types, and so on.

There is never a single correct answer to these questions. Besides the fact that every
organization or business is unique, there is seldom a definitive solution for any given situation.
Much depends on how flexible a business wants its data design to be. Another factor is
the existence of current data and the need to maintain continuity with that data. Very few
organizations have the luxury of designing their databases in a vacuum, apart from what
already exists.

Despite these provisions, certain database design principles have evolved over time to guide
us in our quest for an optimal design structure. Many of these design principles stem from
the most influential architect of relational database design, E.F. Codd, who published his
groundbreaking article “A Relational Model of Data for Large Shared Data Banks” in 1979.
This article laid the foundation for what we now call the relational model and the concept
of normalization.

202 Chapter 19 Principles of Database Design

Goals of Normalization
The term normalization refers to a specific process that allows database architects to turn
unstructured data into a properly designed set of tables and data elements.

The best way to understand normalization is to illustrate what it isn’t. To do this, we’ll start
with the presentation of a poorly designed table with several obvious problems. The following
table attempts to present information about all the grades that students have received for the
tests they’ve taken. Each row represents a grade for a particular student.

Test Student Date Points Grade Format Teacher Assistant

Pronoun Quiz Julie 2022-03-02 10 8 Multiple Choice Wilson Collins

Pronoun Quiz Jamal 2022-03-02 10 6 Multiple Choice Cordova Bender

Solids Quiz Nina 2022-03-03 20 17 Multiple Choice Kaplan NULL

China Test Nicole 2022-03-04 50 45 Essay Diaz Taylor

China Test Nathan 2022-03-04 50 38 Essay Diaz Taylor

Grammar Test Nicole 2022-03-05 100 88 Multiple Choice, Essay Wilson Collins

Let’s first briefly describe the information that each column in this table is meant to provide.
The columns are:

• Test: A description of the test or quiz given

• Student: The student who took the test

• Date: The date on which the test was taken

• Points: The total number of possible points for the test

• Grade: The number of points that the student received

• Format: The format of the test: essay, multiple choice, or both

• Teacher: The teacher who gave the test

• Assistant: The person assigned to assist the teacher

We’ll assume that the primary key for this table is a composite primary key consisting of the
Test and Student columns. Each row in the table is meant to express a grade for a specific test
and student.

There are two obvious problems with this table. First, certain data is unnecessarily duplicated.
For example, we can see that the Pronoun Quiz, given on 2022-03-02, had a total of 10 points.
The problem is that this information must be repeated in every row for that quiz. It would be
better if we could simply view the total points for that quiz just once.

A second problem is that data is repeated within certain single cells. In the sixth row, the
Format is both Multiple Choice and Essay. This scenario exists because this test had both types
of questions. This makes the data difficult to use. If we wanted to retrieve all tests with essay
questions, how could we do that?

More generally, the problem with this table is that it attempts to put all known information
into a single table. It would be much better to break down the information in this table into

203How to Normalize Data

separate entities, such as students, grades, and teachers, and represent each entity as a separate
table. The power of SQL can then be used to join tables together as needed to retrieve any
desired information.

With this discussion in mind, let’s now formalize what the process of normalization hopes to
accomplish. There are two main goals:

• Eliminate redundant data. The previous example clearly illustrates the issue of
redundant data. But why is this important? What exactly is the problem with listing
the same data on multiple rows? Well, besides the unnecessary duplication of effort,
redundancy reduces flexibility. When data is repeated, any changes to particular values
affect multiple rows rather than just one.

• Eliminate insert, delete, and update anomalies. The problem of redundant data also
relates to this second goal of eliminating insert, delete, and update anomalies. Suppose,
for example, that a teacher gets married and changes her name. Because we would like
the data to reflect the new name, we must now update all rows that contain her name.
However, because the data is stored redundantly, we must update a large amount of data,
rather than just one row.

There are also insert and delete anomalies. For example, let’s say we just hired a new
teacher to teach music. We would like to record this information somewhere in the
database. However, because the teacher hasn’t yet given any tests, there is nowhere to
put this information, because we don’t have a table specific to the entity of teachers.

Similarly, a delete anomaly would occur if we wanted to delete a row, but by doing so
would eliminate some related piece of information. To use another example, if we had
a database of books and wanted to delete a row for a book by George Orwell, and if that
were the only book for Mr. Orwell in the database, that row deletion would eliminate
not only the book, but also the fact that George Orwell is an author of other books that
might be acquired in the future.

How to Normalize Data
What, specifically, does normalization mean?

The term itself originates with E.F. Codd and refers to a series of recommended steps for
removing redundancy and updating anomalies from a database design. The steps involved in
the normalization process are commonly referred to as first normal form, second normal form, third
normal form, and so on. Although some individuals have described steps up to a sixth normal
form, the usual practice is to progress through only the first, second, and third normal form.
When data is in third normal form, it is generally understood to be sufficiently normalized.

We won’t describe the entire set of rules and procedures for converting data into these forms.
Other texts elaborate on the process in great detail, showing how to transform data into first
normal form, then into second normal form, and finally into third normal form.

Instead, we’ll summarize the rules for getting data into third normal form. In practice, an
experienced database administrator can jump from unstructured data to third normal form
without having to follow every intermediate procedure. We’ll do the same here.

204 Chapter 19 Principles of Database Design

The three main rules for normalizing data are as follows:

• Eliminate repeating data. This rule means that no multivalued attributes are allowed.
In the previous example, we cannot allow a value such as “Multiple Choice, Essay” to
exist in a single data cell. The existence of multiple values in a single cell creates obvious
difficulties in retrieving data by any given specified value.

A corollary to this rule is that repeated columns are not allowed. In our example, the
database might have been designed so that, rather than a single column named Format,
we had two separate columns named Format1 and Format2. With this alternative
approach, we might have placed the value “Multiple Choice” in the Format1 column
and “Essay” in the Format2 column. Under rules of normalization, this would not be
permitted. We don’t want repeated data, whether it is represented as multiple values in a
single column or as multiple columns.

• Eliminate partial dependencies. This rule refers primarily to situations in which the
primary key for a table is a composite key, meaning a key composed of multiple columns.
The rule states that no column in a table can be related to only part of the primary key.

Let’s illustrate this with an example. As mentioned, the primary key in the Grades table
is a composite key consisting of the Student and Test columns. The problem occurs with
columns such as Points. The Points column is really an attribute of the test and has
nothing to do with students. This rule mandates that all non-key columns in a table refer
to the entire key and not just a part of the key. Essentially, partial dependencies indicate
that the data in the table relates to more than one entity.

• Eliminate transitive dependencies. This rule refers to situations in which a column in
the table refers not to the primary key, but to another non-key column in the same table.
In our example, the Assistant column is really an attribute of the Teacher column. The
fact that the assistant relates to the teacher and not to anything in the primary key (the
test or the student) indicates that the information doesn’t belong in this table.

Now that we’ve seen the problems and discussed rules for fixing the data, how are proper
database design changes actually determined? This is where experience comes in. And there is
generally not a single solution to any given problem.

That said, the following is one solution to this design problem. In this new design, several
tables have been created from the single original table, and all data is now in normalized form.
Figure 19.1 uses an entity-relationship diagram to show the tables in the new design.

Figure 19.1 Normalized design

205How to Normalize Data

As mentioned in Chapter 11, entity-relationship diagrams do not display detailed data.
Instead, they indicate the overall structure of the data. The primary keys in each table are
shown in bold. Several ID columns with auto-increment values have been added to the tables,
allowing relationships between the tables to be defined. All other columns are the same as
seen previously.

The main point to notice is that every entity discussed in this example has been broken out
into separate tables. The Students table includes information about each student. The only
attribute in this table is the student name.

The Grades table includes information about each grade. It has a composite primary key of
StudentID and TestID because each grade is tied to a student and to a specific test.

The Tests table includes information about each test, such as date, TeacherID, test description,
and the total points for the test.

The Formats table includes information about the test formats. Multiple rows are added to this
table for each test to indicate whether the test is multiple choice, essay, or both.

The Teachers table includes information about each teacher, including the teacher’s assistant,
if one exists.

Following is the data contained in these new tables, corresponding to the data in the original
Grades table.

Students table:

StudentID Student

1 Julie
2 Jamal
3 Nina
4 Nicole
5 Nathan

Teachers table:

TeacherID Teacher Assistant

1 Wilson Collins
2 Cordova Bender
3 Kaplan NULL
4 Diaz Taylor

206 Chapter 19 Principles of Database Design

Tests table:

TestID TeacherID Test Date Points

1 1 Pronoun Quiz 2022-03-02 10
2 2 Pronoun Quiz 2022-03-02 10
3 3 Solids Quiz 2022-03-03 20
4 4 China Test 2022-03-04 50
5 1 Grammar Test 2022-03-05 100

Formats table:

TestID Format

1 Multiple Choice
2 Multiple Choice
3 Multiple Choice
4 Essay
5 Multiple Choice
5 Essay

Grades table:

StudentID TestID Grade

1 1 8
2 2 6
3 3 17
4 4 45
5 4 38
5 5 88

Your first impression might be that we have unnecessarily complicated the situation, rather
than improving upon it. For example, the Grades table is now a mass of numbers, the meaning
of which is not completely obvious upon quick inspection.

However, remembering SQL’s ability to easily join tables together, you can also see that there is
now much greater flexibility in this new design. Not only are we free to join only those tables
needed for any desired analysis, but we can now also add new columns to these tables much
more readily without affecting anything else.

Our information has become more modularized. Now if we decide that we want to capture
additional information about each student, such as address and phone number, we can simply
add new columns to the Students table. And when we want to modify a student’s address or
phone number later, that change will affect only one row in the table.

207Alternatives to Normalization

The Art of Database Design
Ultimately, designing a database is much more than simply going through normalization
procedures. Database design is more of an art than a science, and it requires asking and
thinking about relevant business issues.

In our grades example, we presented one possible database design as an illustration of how to
normalize data. In truth, many possibilities exist for designing this database. Much depends on
the realities of how the data will be accessed and modified. Numerous questions can be asked
to ascertain whether a design is as flexible and meaningful as it needs to be. For example:

• Are there other tables that need to be added to the database? One obvious choice
would be a Subjects table, which would allow for the selection of tests by subject, such
as English or Math. If a Subjects table were added, it could then be asked whether we’d
want to relate the subject to the test or to the teacher who administered the test.

• Is it possible for a grade to count in more than one subject? It might be that the
English and Social Studies teachers are doing a combined lesson and want certain tests
to count for both subjects. How would we account for that?

• What do we do if a child flunks a grade and is now taking the same tests a second
time? We would need to determine how we would differentiate the student’s grades each
time the test is taken.

• How do we allow for special rules that teachers might implement? For example,
a teacher might want to drop the lowest quiz score in a specified time period.

• Does the data have special analysis requirements? If there is more than one teacher for
the same subject, do we want to be able to compare the average grades for the students
of each teacher, to ensure that one teacher isn’t inflating grades?

The list of possible questions is almost endless. The point is that data doesn’t exist in a vacuum.
There is a necessary interaction between data design and real-world requirements. Databases
must be designed to allow for flexibility and ease of use. However, there is also a danger that
databases can be overdesigned to a point where the data becomes unintelligible. An overzealous
data administrator might decide to create 20 tables to allow for every possible situation. That,
too, is inadvisable. Database design is something of a balancing act in the search for a design
that is sufficiently flexible but also intuitive and understandable by users of the system.

Alternatives to Normalization
We have emphasized that the overriding principle of normalization should be followed in
designing a database. However, this is not always the case.

For example, in the realm of data warehouse systems and reporting software, many
practitioners advocate using a star schema design for databases rather than normalization.
In a star schema, a certain amount of redundancy is allowed and encouraged. The emphasis
is on creating a data structure that more intuitively reflects business realities, as well as one
that allows for quick processing of data by special analytical software.

208 Chapter 19 Principles of Database Design

To give a brief overview of the principles of star schema design, the main idea is to create a
central fact table, which is related to any number of dimension tables. The fact table contains
all the quantitative numbers that are additive in nature. In our previous example, the Grade
column is such a number, because we can add up grades to obtain a meaningful total grade.
The dimension tables contain information on all the entities related to the central facts, such
as subject, time, teacher, student, and so on.

As an additional possibility, special analytical software can be employed that allows database
developers to create cubes from their star schema databases. These cubes extend analysis
capabilities, allowing users to drill down through predefined hierarchies in the various
dimensions. For example, a user of such a system would be able to drill down from viewing
a student’s entire semester grades to seeing grades in an individual week.

Figure 19.2 shows what a database with a star schema design might look like for our grades
example.

Figure 19.2 Star schema design

In this design, the Grades table is the central fact table. All other tables are dimension tables.

The first four columns in the Grades table (Date, TestID, StudentID, and TeacherID) allow each
row in the fact table to be related to the corresponding row in a dimension table. For example,
the StudentID column in the Grades table can be joined to a StudentID value in the Students
table. The other two columns in the Grades table have additive numeric quantities. Notice that
Points is now in the Grades table. In our normalized design, points was an attribute of the Tests
table and the grade was in the Grades table. By putting both the Grade and Points in a single
fact table, we can more easily sum grades and compute averages (Grade divided by Points) for
any set of data.

Certainly, this is only a brief introduction to the subject of designing databases for data
warehouse applications. However, it illustrates the point that there are many ways to design a
database, and the best way often relates to the type of software that will be used with the data.

209Looking Ahead

Looking Ahead
This chapter covered the principles of database design. We discussed the basics of the
normalization process, showing how a database with a single table can be converted into
a more flexible structure with multiple tables, related by additional key columns. We also
emphasized that database design is not merely a technical exercise. Attention must be paid to
the organizational realities and to considerations of how the data will be accessed and used.
Finally, we briefly described the star schema as an alternative to conventional normalized
design to emphasize that there is often more than one feasible approach.

In the final chapter, “Strategies for Using Excel,” we’ll discuss some interesting possibilities for
using Microsoft Excel to complement our knowledge of SQL. In our quest to sharpen our SQL
skills, we must not forget that there is a world out there beyond SQL. We should not expend
efforts on SQL when the underlying objective can be accomplished more effectively through
other means.

This page intentionally left blank

20
Strategies for Using Excel

In this final chapter, we return to the main theme of this book: methods of retrieving data
from relational databases. In the previous few chapters, we took a detour from data retrieval
to the related topics of modifying data, maintaining tables, and designing databases. Now
we want to focus again on the task of retrieving and displaying data. More specifically, we’ll
compare the capabilities of SQL to other available reporting tools and discuss strategies for
employing the most appropriate tool for the job at hand.

In the broad business and corporate world, Microsoft Excel is the most widely available and
pervasive reporting tool for the end user. One would be hard-pressed to find a business analyst
who doesn’t use or interact with Excel in some manner. In this chapter, we’ll focus on Excel
and examine how it can be used to extend the capabilities of SQL to further explore and
manipulate data and present it in formats that aren’t easily accomplished with SQL.

Crosstab Layouts Revisited
Back in Chapter 10, we looked at using the PIVOT operator to create output in a crosstab
format. In that chapter, we presented the following data in this Sales Summary table:

SalesDate CustomerID State Channel SalesAmount

12/1/2021 101 NY Internet 50
12/1/2021 102 NY Retail 30
12/1/2021 103 VT Internet 120
12/2/2021 145 VT Retail 90
12/2/2021 180 NY Retail 300
12/2/2021 181 VT Internet 130
12/2/2021 182 NY Internet 520
12/2/2021 184 NY Retail 80

212 Chapter 20 Strategies for Using Excel

Using the PIVOT operator, we then created output in this crosstab format:

SalesDate State Internet Retail

2021-12-01 NY 50 30
2021-12-01 VT 120 NULL
2021-12-02 NY 520 380
2021-12-02 VT 130 90

The key feature of this crosstab layout is the appearance of channel values in individual
columns. Although data is grouped by SalesDate, State, and Channel, we see only combinations
of SalesDate and State in the individual rows. We moved the two channel values to their own
columns: Internet and Retail.

This is all fine, except that there was an inherent difficulty in using SQL to produce output in this
crosstab format. As seen in Chapter 10, the SQL statement that produced the above output was:

SELECT * FROM
(SELECT SalesDate, State, Channel, SalesAmount FROM SalesSummary) AS mainquery
PIVOT (SUM(SalesAmount) FOR Channel IN ([Internet], [Retail])) AS pivotquery
ORDER BY SalesDate

Notice that in this SQL statement we needed to specify the Channel column values, Internet
and Retail, in the statement. In other words, we were required to know in advance all the
possible values for the channels and put them in our statement so that columns could be
created for them. As a practical matter, this is a cumbersome solution. This simple example,
with only two channel values, doesn’t seem terribly difficult. But in the real world, we might
easily run into situations for which we might have dozens of potential values for columns, and
we wouldn’t know in advance what those values are.

For this reason, the PIVOT keyword is seldom used in practice. A much simpler and more
powerful solution is to rely on reporting software to automatically generate reports in a crosstab
format. Most reporting tools provide some sort of crosstab functionality. In Microsoft Excel,
this is accomplished with pivot tables. Other reporting tools offer similar capabilities. For
example, Microsoft Reporting Services provides a Matrix Report that allows users to lay out data
in a crosstab format.

Interestingly, the report layout in reporting tools such as Reporting Services is independent of
the underlying SQL query used to retrieve data. For example, in Reporting Services, you can
start with a simple SQL query without a GROUP BY clause and place that query in either a
Table Report or a Matrix Report. If placed in a Table Report, the output will be a simple list of
data. If placed in a Matrix Report, the data can be organized into rows and columns, and then
the report will automatically perform all required grouping and generate any needed columns.

External Data and Power Query
Now our focus turns to pivot tables and charts in Microsoft Excel, as this software is widely
available, is user friendly, and produces results similar to Reporting Services and other
specialized reporting tools.

213External Data and Power Query

However, before delving into those topics, we need to digress for a moment into some of the
specifics on how to connect to data in Excel. With its ubiquitous presence in the business
world, most query and reporting tools provide a mechanism for exporting data from their tools
directly into Excel. When working with SQL query tools, you generally need only to use an
Export to Excel option to move data into Excel.

When working within Excel, there are also a variety of options to import data from external
sources. We’ll focus on obtaining data from relational databases, but Excel can also import data
from text files and connect directly to OLAP (online analytical processing) databases. Text files
are generally imported directly into an Excel workbook via a wizard that lets the user specify
the layout of the text file, what type of delimiters are used, the properties of each column,
and so on. Excel can also connect directly to OLAP databases. Sometimes referred to as cubes,
OLAP databases are complex multidimensional structures that can make use of the star schema
design illustrated in Chapter 19. When connecting to an OLAP cube, Excel uses its pivot table
interface to view data in the cube.

To obtain data from relational databases, the likely scenario is to connect to the database server
and then import data into Excel. This is generally initiated via a command under the Get Data
command on the Data tab of the Ribbon. Under the Get Data command are options such as:

• From SQL Server Database

• From Microsoft Access Database

• From ODBC

In this tutorial on connecting to external data, we’ll focus on the From SQL Server Database
option. The From ODBC option would be used to connect to non-Microsoft databases such as
MySQL or Oracle. ODBC (open database connectivity) is a standard interface that can be used
to connect to a wide range of databases.

When selecting the From SQL Server Database option, Excel will first ask for the server you
wish to connect to and your login credentials. After providing that information, a Navigator
pane will pop up that asks for the specific tables on that server you would like to import. For
the purposes of this example, we’ll select the Customers and Orders tables, last seen together
in Chapter 13. After doing so, a Queries & Connections pane will become visible that lists the
Customers and Orders tables as queries. This is shown in Figure 20.1.

Figure 20.1 Queries and Connections

214 Chapter 20 Strategies for Using Excel

To proceed, we’ll double-click the Customers query. This will cause a Power Query Editor
window to open, as shown in Figure 20.2.

Figure 20.2 Power Query Editor

Now we see the data in the Customers table. Now our objective is to combine the Customers
and Orders tables together as a single query, joining the two tables on CustomerID. To
accomplish that, we’ll select the Merge Queries as New command under the Combine
command in the Power Query Editor and follow the prompts to select the data in both tables.
The Merge window appears as in Figure 20.3.

Figure 20.3 Merge window

215External Data and Power Query

Notice that we highlighted the CustomerID column in the Customers table and CustomerID
column in the Orders table. This indicates how the two tables will be joined. We selected the
Left Outer Join option so it will select all rows from the Customers table and any matching
rows from the Orders table. After clicking OK, the merged data now appears in the Power Query
Editor window, as shown in Figure 20.4.

Figure 20.4 Power Query Editor after merge

We then need to scroll to the right to expand the Orders table to make sure all columns are
selected. The final step is to select the Close and Load command in the Power Query Editor.
This will load the data into an Excel worksheet, as shown in Figure 20.5.

Figure 20.5 Excel Table with merged data

We have now accomplished our goal of importing all data from two tables from SQL Server into
a single table in an Excel worksheet. The join of the two tables was done by using the merge
capabilities of the Microsoft Power Query Editor. Now that all the data is in a single worksheet in
Excel, we can proceed with the logical next step, which is to create a pivot table from this table.

216 Chapter 20 Strategies for Using Excel

Excel Pivot Tables
Excel includes many features that overlap what can be done with SQL. For example, within
Excel you can sort and filter data and apply multiple transformations with numerous functions.
Data can also be grouped and subtotaled. But one feature of Excel that’s difficult to replicate
with SQL is the pivot table. Excel provides the ability to select any range of data on a worksheet
and convert that data into a pivot table.

At a basic level, a pivot table is the equivalent of the crosstab format that we’ve already seen.
However, a key benefit of the pivot table is that it’s completely interactive and dynamic. Rather
than viewing a static crosstab report, you can easily modify the pivot table by rearranging data
elements into its four data areas: rows, columns, values, and filters.

To better understand the capabilities of pivot tables, let’s illustrate with an example. We’ll
start with a set of data that already resides in an Excel worksheet. We’ll assume that the data
was moved to the worksheet either by first utilizing a SQL statement that joined data in tables
describing customers, products, and sales and then importing that data into Excel, or else by
utilizing the Power Query Editor described above to merge and import the data into Excel. The
data for our example is seen in Figure 20.6.

Figure 20.6 Underlying data for a pivot table

217Excel Pivot Tables

In this data set, rows with negative quantities and sales represent returns. There is one row per
order or return. The first step is to insert this data into a pivot table. This is accomplished by
selecting any cell in this table of data, then the PivotTable command under the Insert tab of
the Ribbon. If we accept the default values on the Create PivotTable pane, Excel will create a
pivot table, as shown in Figure 20.7.

Figure 20.7 An empty pivot table with a PivotTable Fields list

At this point, we see an empty pivot table and a PivotTable Fields list showing the available
fields that can be moved into the pivot table. The easiest way to move data to the pivot table
is to drag fields from the list to one of the four areas of the pivot table on the Fields list: Filters,
Rows, Columns, or Values. Let’s begin by moving Customer State to the Filters area, Sales
Month to the Rows area, Product Category to the Columns area, and Total Sales to the Values
area. The results are shown in Figure 20.8.

Figure 20.8 A pivot table with fields in all four areas

218 Chapter 20 Strategies for Using Excel

Let’s examine what has happened to our data. Pivot tables sum all the detailed data to which
the pivot table is connected. The pivot table displays as many rows and columns as are
necessary to display that data. The data is displayed in a crosstab format, with fields in the
Rows or Columns areas, and quantitative values summed up in the Values area. The Filter area
can be used to apply a filter to all the data. In this example, we’ve placed Customer State in the
Filters area but haven’t yet applied any filters on the state.

When fields are moved to any of the four areas, the pivot table is instantly updated with
appropriate values corresponding to the new layout. This highly interactive device lets you
manipulate data at will.

Unlike with SQL statements, you never need to specify a grouping in pivot tables. Excel
assumes that you want grouping of any fields placed in the Rows or Columns area. In this
example, the pivot table has grouped all data by Sales Month and Product Category. We see,
therefore, that there was a total of 86 dollars of Tea sales in the month of February 2022. Grand
Total rows and columns have been added automatically, although those Grand Totals can just
as easily be removed.

If we want to group data or modify the presentation in a slightly different manner, that
is easily accomplished. In this next iteration, we’ll move the Sales Month to the Columns
area, move the Product Category to the Rows, add Product to the Rows area, and adjust the
Customer State filter to select only data from Arizona (AZ), California (CA), and Maine (ME).
The resulting data is shown in Figure 20.9.

Figure 20.9 Rearranged pivot table with a filter applied

219Excel Pivot Tables

Notice that now we see a hierarchy of fields in the rows area. Within each product category, we
see the various products that belong to that category. Sales Month values are now broken down
into separate columns. Because we applied a filter by state, now we see a Grand Total of only
86 dollars in sales rather than the previous 321.

In addition to allowing summation of values, the pivot table allows other options, such as
count and average. However, understand that only summable quantitative values can be placed
in the Values area of the pivot table. In this sense, pivot tables are a close cousin of the star
schema dimensional design discussed in Chapter 19. Whereas dimensional data can be placed
in the Rows, Columns, or Filters areas, summable quantities belong in the Values area. The
Values area of the pivot table is analogous to data in a Fact table of a star schema design.

In addition to allowing you to move fields between the areas of the pivot table, Excel also
provides a few interesting report layout options. There are three basic layout options for
pivot tables:

• Compact Form

• Outline Form

• Tabular Form

When a pivot table is selected, these options appear under the Design tab of the Ribbon. The
pivot tables of Figures 20.8 and 20.9 are in compact form. After switching the layout of Figure
20.9 to tabular form, the pivot table appears as in Figure 20.10.

Figure 20.10 Pivot table in tabular form

In the tabular form, now we see Product Category and Product in separate columns, with
labels for each field in the header area. This format clearly lists all field names in the display.
Furthermore, the subtotals for each Product Category now appear on separate rows below the
Product Category.

220 Chapter 20 Strategies for Using Excel

As an additional adjustment, let’s turn off subtotals and grand totals. The data now appears
much more compactly, as in Figure 20.11.

Figure 20.11 Pivot table without subtotals or grand totals

It’s important to realize that we have thus far presented the Product Category and Product
columns in a hierarchical structure, with both columns in the rows area. If we simply reverse
the order of the Product Category and Product in the rows area, with the Product listed first,
the data displays differently, as shown in Figure 20.12. To enhance the effect, we also removed
the filter on individual states. Additionally, we selected the Repeat All Items command, found
under the Report Layout icon in the Design tab.

Figure 20.12 Pivot table with an inverted hierarchy

221Excel Pivot Charts

In this presentation, the Product Category appears merely as an attribute of the Product,
showing us the category for each product. Note that since we enabled the Repeat All Items
command, the label Vanilla appears twice in the last two rows, for both Coffee and Spices.

There are many other useful features of pivot tables, but one last benefit we’ll demonstrate is
the ability to drill down from the summarized values in the pivot table back to the original
data. This is referred to as a drillthrough. In this example, we’ll return to Figure 20.8 and double-
click the cell with the value of 48, shown as the Grand Total of sales for January 2022. When
we do this, a new worksheet appears that looks like Figure 20.13.

Figure 20.13 Drillthrough results

This table shows the detailed data used to calculate the value of 48 in the pivot table. Three
rows represent the three rows for January that we saw previously in Figure 20.6. If we sum the
values in the Total Sales column, we can verify that Total Sales in January 2022 were indeed 48.

Excel Pivot Charts
The use of pivot tables is somewhat familiar territory for SQL analysts in the sense that we’re
still dealing with a normal array of character, date, and numeric data. Excel pivot tables are
unique in that they permit viewing this data in a dynamic and interactive manner, but when
all is said and done, we’re still viewing data in a format that employs rows and columns. Now
let’s turn our attention to the equally noteworthy capabilities of Excel pivot charts, a tool
that allows us to view data in a more visual way, allowing us to readily discern any trends or
patterns that lie within.

Excel pivot charts are in fact closely related to pivot tables. After a pivot table is created, it can
be quickly transformed into a pivot chart. Alternatively, you can create a pivot chart from a
table of data in an Excel worksheet without having to create the pivot table first. When this is
done, a pivot table is automatically created along with the pivot chart. However, whereas pivot
tables are tied to the rows and columns of a worksheet, pivot charts reside as a free-floating
visual pane above the worksheet that can be moved around at will.

222 Chapter 20 Strategies for Using Excel

To illustrate the process, let’s start with a new set of data that we will use to create a pivot
chart, shown in Figure 20.14.

Figure 20.14 Underlying data for a pivot chart

This is a presentation of sales data, summarized by month, state, and channel. There are 18
combinations of data, consisting of three months (April through June of 2022), two states (New
York and Vermont), and three channels (internet, phone, and retail). For example, the first row
indicates that there was a total of $4800 in sales on the internet to customers in New York in
April. Although this data is summarized, we can just as easily build our pivot chart from the
underlying data, which might consist of thousands of rows. We’ve only summarized the data
for purposes of being able to easily view the values.

As was done with pivot tables, the first step is to select any cell in the table of data, and then
select the PivotChart command, found under the Insert tab of the Ribbon. After accepting the
default values on the Create PivotChart pane, a pivot chart will appear, as shown in Figure 20.15.

223Excel Pivot Charts

Figure 20.15 An empty pivot chart with a PivotChart Fields list

At this point, we see an empty pivot table, an empty pivot chart, and a PivotChart Fields list
showing the available fields that can be moved into the pivot chart. The PivotChart Fields list is
almost identical to the PivotTable Fields list seen previously, except that instead of containing
areas for Filters, Columns, Rows, and Values, now we see areas for Filters, Legend (Series), Axis
(Categories), and Values. The Legend area corresponds to the pivot table Columns, and the Axis
corresponds to Rows. As before, we can easily drag fields from the list to one of the four areas
of the pivot chart on the Fields list.

Let’s begin by moving Sales Month to the Axis (Categories) area, and Sales Amount to the
Values area. The results are shown in Figure 20.16.

Figure 20.16 Pivot chart with one field in the Categories area

224 Chapter 20 Strategies for Using Excel

Excel has created a column chart for us. More specifically, it created a clustered column chart.
This is the default chart type. The vertical axis has been automatically populated with labels
to indicate the value of each column. Since we have only one field in the Categories area, we
see only one column per category. Notably, unlike pivot tables, pivot charts require a field in
the Values area. If nothing were in the Values area, the pivot chart would be completely blank.
Also observe that when we modify the display of the pivot chart, the changes we made also
simultaneously update the corresponding pivot table, as shown in Figure 20.17.

Figure 20.17 Corresponding pivot table

Let’s now add the Channel field to the Series area and see how the pivot chart changes. This is
shown in Figure 20.18.

Figure 20.18 Pivot chart with fields in the Categories and Series areas

With fields in both the Categories and Series areas, this becomes a more typical chart. The
sales of each month are now broken down by channel. Labels for the channels in the series
are listed to the right of the data. In the corresponding pivot table, Sales Month is in the
Rows area and Channels is in the Columns. Just as rows are somewhat primary in importance
relative to columns in pivot tables, categories are primary to series in pivot charts. In terms of
what this chart relates to the analyst, we see a breakdown of how each channel contributed to
sales in each month. If we’re more interested in learning how each channel grew in sales over
time, we merely need to select the Switch Row/Column command under the Design tab of the
Ribbon. The results appear as in Figure 20.19.

225Excel Pivot Charts

Figure 20.19 Pivot chart after a Switch Row/Column command

Now we see Channel in the Categories and Sales Month in the Series. This allows us to more
easily discern how sales has grown within each channel over time.

Now that we’ve briefly seen what can be done with the various areas of a pivot chart, let’s turn
our attention to some of the available chart types. To see all the possibilities, we merely need to
select the Change Chart Type command, found under the Design tab of the Ribbon. This will
bring up a selection pane with over 40 chart variants that be created with pivot charts. Some of
the major categories include:

• Column charts

• Bar charts

• Line charts

• Pie charts

• Area charts

Within each category are subvariants. For example, under the column chart category, you’ll find:

• Clustered column charts

• Stacked column charts

• 100% stacked column charts

• 3-D clustered column charts

• 3-D stacked column charts

• 3-D 100% stacked column charts

• 3-D column charts

It is well beyond the scope of this book to delve into the nuances of each available chart type
and its appropriate use. This is a topic best left for the numerous books that cover visualization
theory and techniques in detail. However, to whet your appetite for what charts can
accomplish, we’ll provide two more examples of chart types.

226 Chapter 20 Strategies for Using Excel

Within the realm of column charts, we’ve previously seen the clustered column chart type.
Two other particularly useful variants are the stacked column and 100% stacked column types.
Figure 20.20 shows the stacked column equivalent of what was seen in Figure 20.18.

Figure 20.20 A stacked column pivot chart

Comparing this chart to Figure 20.18, the three separate columns for each channel have now
been combined into one column that stacks the three channel elements on top of one another.
Notice also that the vertical scale has changed to accommodate the larger values required by
combining the three channels together. In contrast to the clustered chart, the stacked chart
emphasizes the combined volume of each month. We can clearly see the rise in sales from April
to June, a fact that was not obvious in Figure 20.18. However, the clustered chart does a better
job of emphasizing the individual contributions of each channel to monthly sales.

The third main variant of the column chart, the 100% stacked column chart, is shown in
Figure 20.21.

Figure 20.21 A 100% stacked column pivot chart

227Excel Standard Charts

In this version of the stacked chart, units are expressed as percentages. The total value of
each month has the same height and a value of 100%. The virtue of this chart type is that it
indicates the relative contributions of each of the channels to the month’s sales. For example,
when looking at Figure 20.20, you can’t easily tell much about the relative contributions of
Internet sales to each month. In contrast, Figure 20.21 clearly shows the relative importance of
Internet sales increased from May to June. That said, we return to the original presentation of a
clustered column chart in Figure 20.18 and observe that it provides more succinct information.
By separating out each element in the series into its own column, you can readily compare the
values of each individual element.

Excel Standard Charts
In addition to the capabilities of pivot charts to visually summarize data, Excel also provides
several important chart types that can be created solely via traditional Excel charts, sometimes
referred to as standard charts. These charts display the type of detailed data that cannot be
summarized via pivot tables or pivot charts without losing important information. In this brief
survey of the topic, we’ll focus on two particularly useful standard chart types: scatter charts
and histograms.

Scatter charts provide a way to visually understand relationships in data. Figure 20.22 includes
data that represents ten different advertising campaigns. Each row indicates the amount of
advertising dollars spent on a campaign and the resulting sales. Figure 20.23 shows the results
when a scatter chart is created from this set of data.

Figure 20.22 Advertising
and sales data

Figure 20.23 Scatter chart

228 Chapter 20 Strategies for Using Excel

As seen, the scatter chart provides a visual representation of the specific data points along two
axes: Advertising and Sales. The relationship between these two variables can be seen as a positive
one, where sales tend to rise as advertising increases. To make the relationship more obvious, we
added a linear trend line to the chart, as well as axis and chart titles. These elements are all found
under the Add Chart Element command in the Chart Design tab of the Ribbon.

In Chapter 9, we showed how to create a rudimentary frequency distribution by grouping data
and displaying the number of occurrences of each data point, sorted from low to high. Now we
want to take that concept a step further by showing how Excel can create a chart type called a
histogram. A histogram is a frequency distribution where the data is grouped into small bins of
equal size. For example, when viewing grades from 1 to 100, we might want to view bin sizes of
10, breaking down the individual grades into the categories 1 to 10, 11 to 20, and so on. Figure
20.24 shows a histogram chart that has been created from an Excel table of 100 numbers,
where each number has a value between 1 and 100.

Figure 20.24 Histogram with six bins

This histogram shows the frequencies of the numbers, as they fall into six bins. The selection
of six bins was at first automatic and then modified to be precisely 6. This was accomplished
by right-clicking the bottom horizontal axis and selecting the Format Axis command. Each bin
covers a range of around 17 values. For example, the first bin goes from 1 to 17.5, the second
from 17.5 to 34, and so on. The vertical axis indicates the frequency of occurrences for each
bin. For example, we can see that there are 35 numbers that fall in the 67 to 83.5 bin.

Now that the histogram has been created, we can tweak it to improve its usefulness. Using the
Format Axis command, we’ll change the number of bins from 6 to 20. We’ll also modify the
chart title. The result is shown in Figure 20.25.

229Looking Ahead

Figure 20.25 Histogram with 20 bins

We can now see enough detail to have a better feel for the shape of the frequency distribution.
It’s clear that the bin with the greatest frequency centers between 80.2 to 85.15 and contains
16 of the 100 numbers in the data set.

Looking Ahead
This chapter examined a few ways in which Excel can be used to supplement our data analysis
and summarize data in a manner that is difficult to present strictly through SQL statements.
Pivot tables in Excel use the basic concept of the crosstab report and extend it to provide
additional flexibility and functionality, allowing for a fully interactive experience. Pivot
charts are a close cousin of pivot tables and provide numerous ways to visually represent data.
There are also occasional uses for standard charts in Excel. With an awareness of reporting
and analytical tools such as those found in Excel, SQL developers can focus their talents on
retrieving data and let the reporting tool or end user handle more complex display issues.

If you haven’t already done so, you may want to look at Appendixes A, B, and C for some tips
on how to get started with Microsoft SQL Server, MySQL, or Oracle. These appendixes provide
instructions on how to install the free versions of these databases, and they also provide some
basic information on how to use the software to execute SQL commands.

At the beginning of this book, we mentioned that SQL involves both logic and language. The
language component is fairly obvious. In each chapter, we stressed the keywords introduced
and the meaning behind those words. But now that you’ve completed this book, hopefully you
will better appreciate that the true power of SQL lies in the logic that it encompasses.

230 Chapter 20 Strategies for Using Excel

It is pure logic that allows you to take a bunch of values arranged in columns and rows and
transform them into something approaching meaningful information. The challenge in using
SQL is in determining how to apply logic to real-world data. This is where the theoretical
and practical meet. By using functions, aggregation, joins, subqueries, views, and the like,
the practitioner must grapple with the reality of raw data and learn how to manipulate it with
a few appropriate twists of logic.

But logic isn’t the end of the matter. The language of SQL plays an equally important role. In
a sense, the beauty of SQL lies in the fact that its language is quite sparse. It’s neither verbose
nor overly cryptic. Each keyword has a distinct purpose and specifies a particular bit of logic
and nothing more. We wouldn’t go as far as to say that SQL has poetic qualities, but within the
realm of computer languages, the language does carry a certain aesthetic appeal.

A
Getting Started with
Microsoft SQL Server

The following describes the procedure to install the free version of Microsoft SQL Server on
a computer running Windows 10. Note that the procedure may vary, depending on what is
already installed on your computer. There are two main steps:

1. Install Microsoft SQL Server 2019 Express.

2. Install Microsoft SQL Server Management Studio 18.

Microsoft SQL Server 2019 Express allows you to create databases. SQL Server Management
Studio Express 18 is a graphical interface that allows you to issue SQL commands to interact
with the server and any databases you create.

Installing Microsoft SQL Server 2019 Express
The steps for installing SQL Server 2019 Express are as follows. You may be asked to sign in to
your Microsoft account or create an account if you don’t have one.

1. Go to microsoft.com/en-us/sql-server/sql-server-downloads.

2. Under EXPRESS, select DOWNLOAD NOW.

3. After the download completes, open the downloaded file.

4. When asked if you want this app to make changes to your device, select YES.

5. Select the installation type BASIC.

6. Select ACCEPT to accept the license terms.

7. Accept the install location and click INSTALL.

8. After installation completes, select CLOSE.

After this has completed, you will have several new software apps installed, including SQL
Server 2019 Installation Center.

http://microsoft.com/en-us/sql-server/sql-server-downloads

232 Appendix A Getting Started with Microsoft SQL Server

Installing Microsoft SQL Server Management Studio 18
The steps for installing Microsoft SQL Server Management Studio 18 are as follows:

1. Open the SQL SERVER 2019 INSTALLATION CENTER application that was installed with
Microsoft SQL Server 2019 Express.

2. Select INSTALLATION on the left pane, and then select INSTALL SQL SERVER
MANAGEMENT TOOLS.

3. Select DOWNLOAD SQL SERVER MANAGEMENT STUDIO (SSMS).

4. After the download completes, open the downloaded file.

5. When asked if you want this app to make changes to your device, select YES.

6. Accept the install location, and then click INSTALL.

7. When installation completes, click CLOSE.

After this has completed, you will have several new software apps installed, including Microsoft
SQL Server Management Studio 18.

Using Microsoft SQL Server Management Studio 18
When you open the Microsoft SQL Server Management Studio 18 application, you’ll first see a
Connect to Server window. This allows you to establish a connection with the SQL Server 2019
Express instance that you already installed.

The Server Name will show the SQLEXPRESS instance you installed, and the Authentication
will show Windows Authentication. The Server Type is Database Engine.

Click the CONNECT button.

After connecting, you’ll need to create a database to work with. To do this, find the Object Explorer
pane on the left side of the window. Right-click the DATABASES line, and then select NEW
DATABASE. In the New Database window, enter a name in the Database Name box (for example,
FirstDatabase). Click the OK button. You will now see your new database under Databases.

To execute any desired SQL code, highlight your database in the database selector drop-down
menu and then click the NEW QUERY button. A new query window will open. You can enter
any SQL code and then click the EXECUTE button. If you enter multiple SQL statements in
the query window, you can highlight any number of individual statements and execute only
the highlighted portion. The results of your query will be shown in either a Results or Message
pane after the query is executed. If there is data to be displayed, it will appear in a Results pane.
Otherwise, a status message will appear in a Message pane.

Online Reference
Consult the Microsoft SQL Server online database reference manual for more information:
https://docs.microsoft.com/en-us/sql/t-sql/language-reference

https://docs.microsoft.com/en-us/sql/t-sql/language-reference

B
Getting Started with MySQL

The following describes the procedure for installing the free version of MySQL on a computer
running Windows 10. Note that the procedure may vary, depending on what is already
installed on your computer. There are two main steps:

1. Install MySQL Community Server.

2. Install MySQL Workbench.

MySQL Community Server allows you to create databases. MySQL Workbench is a graphical
interface that allows you to issue SQL commands to interact with the server and any databases
you create. At the time of this writing, MySQL Community Server and MySQL Workbench are
both at version 8.0.

Installing MySQL Community Server and Workbench
This procedure will install MySQL Community Server and MySQL Workbench on a
Windows computer.

The steps for installing are as follows:

1. Go to dev.mysql.com/downloads.

2. Select MySQL Community Server.

3. Select the appropriate version for your computer and click DOWNLOAD.

4. In the Choose a Setup Type pane, select the Developer Default option, and then select NEXT.

5. If desired, log in to or create an Oracle account.

6. After the download completes, open the downloaded file.

7. When asked if you want this app to make changes to your device, select YES.

8. On the Check Requirements pane, click NEXT.

9. On the Installation pane, click EXECUTE. When installation of all software completes,
click NEXT.

10. On the Product Configuration pane, click NEXT.

11. On the Type and Networking pane, accept all defaults and click NEXT.

12. On the Authentication Method pane, accept the defaults and click NEXT.

http://dev.mysql.com/downloads

234 Appendix B Getting Started with MySQL

13. On the Accounts and Roles pane, enter a password. Make a note of your chosen
password, and then click NEXT.

14. On the Windows Service pane, accept all defaults and click NEXT.

15. On the Apply Configuration pane, click EXECUTE. When configuration completes,
click FINISH.

16. On the Product Configuration pane, click NEXT.

17. On the MySQL Router Configuration pane, click FINISH.

18. On the Product Configuration pane, click NEXT.

19. On the Connect to Server pane, enter the previously selected root user password, click
CHECK, and then click NEXT.

20. On the Apply Configuration pane, click EXECUTE. When configuration completes,
click FINISH.

21. On the Product Configuration pane, click NEXT.

22. On the Installation Complete pane, click FINISH.

After the above has completed, you will have MySQL Community Server and MySQL
Workbench installed.

Using MySQL Workbench
When you first open MySQL Workbench after the initial install, you will need to establish a
connection to your MySQL Server instance that you already installed. Select Manage Connections
under the Database menu and select TEST CONNECTION. After this is done, select the
connection. This should open a window that allows you to enter SQL queries

You’ll then need to create a database to work with. To do this, select the connection and
click the icon under the menu bar that says CREATE A NEW SCHEMA IN THE CONNECTED
SERVER. Enter a desired database name (for example, FirstDatabase), and then click APPLY.
This will generate a script to create a new schema. Click APPLY to run the script. You will then
see your new database under the list of schemas in the Navigator pane. Now return to Manage
Connections under the Database menu and enter the database you just created as the default
schema. You can then highlight that database and create a new query to run any desired SQL
statement against that database.

After entering a SQL statement in the Query pane, click the EXECUTE button, which looks
like a lightning bolt. If you enter multiple statements in the window, you can highlight one
individual statement and execute only the highlighted portion.

The results of your query will be shown under an Output or Result pane after the query is
executed. If there is data to be shown, it will appear in a Result pane.

Online Reference
Consult the MySQL online database reference manual for more information:
https://dev.mysql.com/doc/refman/8.0/en

https://dev.mysql.com/doc/refman/8.0/en

C
Getting Started with Oracle

The following describes the procedure to install the free version of Oracle on a computer
running Windows 10. Note that the procedure may vary, depending on what is already
installed on your computer. There are two main steps:

1. Install Oracle Database Express Edition.

2. Install Oracle SQL Developer.

This installation of Oracle Database Express Edition will create a single database on your PC.
Oracle SQL Developer is an application that allows you to execute SQL commands against that
database. At the time of this writing, Oracle Database Express Edition is at version 18c, and
Oracle SQL Developer is at version 20.4.

Installing Oracle Database Express Edition
This procedure will install the Oracle Database Express Edition. The steps for installing are
as follows:

1. Go to oracle.com/database/technologies/appdev/xe.html.

2. Select DOWNLOAD ORACLE DATABASE XE.

3. Select the Express Edition for Windows.

4. Accept the license agreement, and then select the download.

5. Create an Oracle account or sign in with an existing account.

6. When the download completes, open the ZIP file.

7. Double-click the SETUP.EXE file to start the installation.

8. When asked if you want this app to make changes to your device, select YES.

9. On the Welcome pane of the install wizard, click NEXT.

10. On the License Agreement pane, accept the terms, and then click NEXT.

11. On the Choose Destination Location pane, accept the default location and click NEXT.

12. On the Specify Database Passwords pane, enter a password, and then click NEXT.

http://oracle.com/database/technologies/appdev/xe.html

236 Appendix C Getting Started with Oracle

13. On the Summary pane, click INSTALL.

14. When the install completes, click FINISH.

After these steps have been completed, you will see Oracle software installed under the Oracle
Ora18DBHome directory in the Start menu.

Installing Oracle SQL Developer
This procedure will install the Oracle SQL Developer application. The steps for installing are
as follows:

1. Go to oracle.com/database/technologies/appdev/sqldeveloper-landing.html.

2. Select SQL Developer.

3. Select the appropriate edition, accept the licensing terms, and start the download.

4. Create an Oracle account or sign in with an existing account.

5. When the download completes, extract all files from the ZIP file.

6. Double-click the SQLDEVELOPER.EXE file to start the installation.

7. Upon completion, the Oracle SQL Developer application will open automatically.

8. In the Connections pane, select the XE database, and then enter the username SYSTEM
and the password you specified previously.

9. After the above has completed, you can return to the application by executing the same
SQLDEVELOPER.EXE file. Alternatively, you can pin the file to the Start menu or taskbar
by right-clicking the file and selecting either option.

Using Oracle SQL Developer
To gain access to the Oracle database, execute the SQLDEVELOPER.EXE file. As noted above,
you might want to pin this file to the Start menu or taskbar. Connect to the XE database with
the username SYSTEM and the password you specified previously. Experienced Oracle users
can create a TNS file to store the connection information on your PC, so it doesn’t need to be
entered every time the application is used. After the connection to the database is established,
you can then enter any desired SQL command from the provided query window.

Online Reference
Consult the Oracle online database reference manual for more information:
https://docs.oracle.com/en/database/oracle/oracle-database

http://oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://docs.oracle.com/en/database/oracle/oracle-database

' (single quote), using with column alias, 23

[] (square brackets), 15

− (subtraction) operator, 22

_ (underscore) wildcard character, 59

= WHERE operator, 52–53

< WHERE operator, 52

<= WHERE operator, 52

<> WHERE operator, 52–53

> WHERE operator, 52–53

>= WHERE operator, 52

A

accent grave (`), column names with spaces, 152

Access database, 4

ADDDATE function, MySQL, 34

addition (+) operator, 22

aggregate functions, 28, 87–88. See also functions

aggregates, selection criteria on, 94–95

alias, explained, 23

ALTER FUNCTION keyword, 180

ALTER PROCEDURE statement, 179–180

ALTER TABLE statement, 198

ALTER VIEW statement, 153–154

analytic functions, 105–108. See also functions

AND expression, abbreviating with BETWEEN
operator, 72

SYMBOLS

/* and */ characters, using with comments, 13–14

` (accent grave), column names with spaces, 152

+ (addition) operator, 22

* (asterisk)

for multiplication, 21

using with INNER JOIN, 130

in SELECT statement, 11

@ (at) symbol, using with parameters, 178

|| (concatenation), Oracle, 23

/ (division) operator, 22

$$ (double dollar signs), using with stored
procedures, 176

" (double quotes)

column aliases in Oracle, 24

column names with spaces, 152

= (equals sign), 52–53

(**) exponentiation operator, Oracle, 22

>= (greater than or equal to) operator and
BETWEEN operator, 72

<= (less than or equal to) operator and BETWEEN
operator, 72

' ' (literal space), 23

* (multiplication) operator, 21–22

% (percent) wildcard, 57–59

+ (plus sign), concatenation, 22

Index

Index238

AND operator

Boolean logic, 66

vs. INTERSECT operator, 171–173

and IN operator, 73

using with WHERE clause, 17

ANSI (American National Standards Institute), 2

argument, explained, 28–29

arithmetic calculations, 21–22

arithmetic operators, and NOT operator, 71

AS keyword, 23–25, 132–133

ASC keyword, 45

asterisk (*)

for multiplication, 21

using with INNER JOIN, 130

in SELECT statement, 11

at (@) symbol, using with parameters, 178

auto-increment feature, 6, 195

AVG function, 87–88. See also moving averages

B

BEGIN keyword, using with stored procedures, 176

BETWEEN operator, Boolean logic, 72

bits, 7

Boolean logic

complex conditions, 65

NOT operator, 69–71

and NULL values, 74–75

AND operator, 66

OR operator, 66–67

BETWEEN operator, 72

IN operator, 73–74

using parentheses, 67–69

Boolean operators, using with WHERE clause, 17

Boyce, Raymond F., 9

C

calculated columns. See also columns

creating with views, 153

subqueries as, 164

calculated fields

and aliases, 19

sorting by, 46–47

calendar dates, associating with fiscal year, 199

Cartesian product and CROSS JOIN, 143

CASE expression, 77–78, 83

CASE formats, 78–81

case sensitivity

lack of, 12, 15–16

of Oracle, 57

UPPER function, 57

CASE statement

and CUBE keyword, 120

and ROLLUP keyword, 115

CAST function, 36–40

Chamberlin, Donald D., 9

character data types, 7

character functions, 28–31

character string data types, 7

[^characterlist] wildcard, 59

[characterlist] wildcard, 59

charts, using with Excel, 227–229. See also
pivot charts

child table, 196

COBOL language, 8

Codd, Edgar F., 9

Index 239

column aliases, 23–24

column names

with embedded spaces, 15–16

renaming with views, 153

columnlist, columns in, 43

columns. See also calculated columns

attributes of, 195

selecting, 11

and sorting, 92–94

sorting by, 45–46

specifying, 14–15

comments, inserting, 13

composite functions, 31–32

CONCAT function, MySQL, 23

concatenating fields, 22–23

concatenation (||), Oracle, 23

conditional logic

CASE expression, 77–78

in GROUP BY clauses, 96–97

in HAVING clauses, 97–98

in ORDER BY clauses, 82

searched CASE format, 80–81

simple CASE format, 78–79

in WHERE clauses, 83

correlated vs. uncorrelated subqueries, 160–162

COUNT function, 87–89, 162

CREATE FUNCTION keyword, 180

CREATE INDEX statement, 200

CREATE PROCEDURE statement, 176, 179–180, 193

CREATE statements, 194

CREATE TABLE statement, 197–199

CREATE VIEW statement, 150–151, 154, 193

CROSS JOIN keyword, 143–146

crosstab layouts

creating, 120–124

Excel, 211–212

CUBE keyword, vs. ROLLUP keyword, 114

CURRENT_DATE, Oracle, 33

Customers table, 5

with SELECT statement, 12

D

data. See also summarizing data

correlated subquery updates, 189–191

deleting, 187–188

formatting with views, 153

grouping, 90–92

inserting, 184–187

modification strategies, 183–184

normalizing, 203–206

sorting with ORDER BY clause, 17

summarizing, 17, 85

updating, 188–189

data sets, measuring tendencies in, 91

data storage and access, 8–9

data types, 6–8

database design

art of, 207

normalization, 202–208

overview, 201

star schema, 207–208

databases

history of, 8–9

types of, 3–4

Index240

date format, Oracle, 138

DATE_FORMAT function, MySQL, 33

DATEADD function, 30–35, 38, 199

DATEDIFF function, 30–35, 162

DATEPART function, 30–35, 38

date/time data types, 7–8

Date/Time functions, 32–35. See also relative dates

Db2 database, 4

DCL (Data Control Language), 2, 193

DDL (Data Definition Language), 2, 193–194

DD-MMM-YY date format, 138

decimals, 7

declarative language, 2

DELETE statement, 187–188

deleting

and modifying stored procedures, 179–180

and modifying views, 153–154

rows from tables, 183

tables, 198

DENSE_RANK function, 98–102

DESC keyword vs. ASC keyword, 45

DIFFERENCE function, 61–62

dimension tables, using with star schema, 208.
See also tables

DISTINCT keyword

and COUNT function, 89

eliminating duplicates, 85–86

and UNION operator, 170

division (/) operator, 22

division by zero and CASE expression, 81

DML (Data Manipulation Language), 2, 193

double dollar signs ($$), using with stored
procedures, 176

double quotes (")

column aliases in Oracle, 24

column names with spaces, 152

drillthrough, using with pivot tables, 221

DROP FUNCTION keyword, 180

DROP INDEX statement, 200

DROP PROCEDURE statement, 180

DROP TABLE statement, 198

DROP VIEW statement, 154

DUAL dummy table, Oracle, 30

duplicates, eliminating, 85–86

E

END keyword

and CASE expression, 78

using with stored procedures, 176

entity-relationship diagram, 129, 136

equals sign (=), 52–53

Excel strategies

charts, 227–229

crosstab layouts, 211–212

external data and Power Query, 212–215

merged data, 214–215

pivot charts, 221–227

pivot tables, 216–221

EXCEPT operator, 172

EXEC keyword, 178–179

EXISTS operator, 163, 191

exponentiation (**) operator, Oracle, 22

expressions, using italics with, 13

Index 241

F

fact table, creating for star schema, 208

fiscal calendars, 199

FK (foreign key), 6, 196–197

FORTRAN language, 8

frequency distributions, numeric data, 91

FROM clause

and ORDER BY clause, 43

and SELECT statement, 11

and subqueries, 156

FULL JOIN keyword, 141–143

functions. See also aggregate functions; analytic
functions; scalar functions

ADDDATE in MySQL, 34

AVG, 87–88

CAST, 36–40

COUNT, 87–89, 162

CURRENT_DATE, 33

DATE_FORMAT in MySQL, 33

DATEADD, 30–35, 38, 199

DATEDIFF, 30–35, 162

DATEPART, 30–35, 38

DENSE_RANK, 98–102

DIFFERENCE, 61–62

GETDATE, 29–35, 37–38

GROUPING, 114–115

ISNULL, 38–40, 48, 90

keywords, 180

LAG, 105–108

LEAD, 108

LEFT character function, 28–31

LOWER character function, 28–31

LTRIM character function, 28–31

MAX, 87–88

MIN, 87–88

NEWID, 40

NOW in MySQL, 33

NTILE, 98–102

overview, 27–28

PERCENT_RANK, 105–108

PERCENTILE_CONT, 107

PERCENTILE_DISC, 107

PERCENTILE_RANK, 107

PI, 35–36

POWER, 35–36

RANK, 98–102

ranking, 98–102, 105

RIGHT character function, 28–31

ROUND, 35–36

ROW_NUMBER, 98–104

RTRIM character function, 28–31, 38

SOUNDEX, 61–62

SUBSTRING character function, 28–31

SUM, 87–88

SYS_GUID in Oracle, 40

UPPER character function, 28–31

UUID function in MySQL, 40

G

GETDATE function, 29–35, 37–38

greater than or equal to (>=) operator and
BETWEEN operator, 72

Index242

GROUP BY clause

conditional logic in, 96–97

crosstab layouts, 122

CUBE keyword, 117

multiple columns and sorting, 92–94

and ROLLUP keyword, 112–113

and SELECT statement, 17, 90

subqueries and calculated columns, 164

grouping data, 90–92

GROUPING function, CUBE keyword, 114–115,
118–120

H

HAVING clause

and CASE expression, 78

conditional logic in, 97–98

and SELECT statement, 17

vs. WHERE clause, 94–95

hierarchical databases, 8

histogram, using with Excel charts, 228–229

I

IFNULL function, MySQL, 40

IF-THEN-ELSE structure and CASE expression, 78

implicit inner joins, 131–132

IN operator, Boolean logic, 73–74

indexes

creating, 200

and primary keys, 195–196

INNER JOIN keyword, 130–132, 163. See also
joining tables

inner joins, overview, 127–128

INSERT INTO keyword, 184–187

installing

Microsoft SQL Server 2019 Express, 231

Microsoft SQL Server Management Studio 18,
232

MySQL Community Server and Workbench,
233–234

Oracle Database Express Edition, 235–236

Oracle SQL Developer, 236

integers, 7

INTERSECT operator, 171–173

IS NULL keyword and Boolean logic, 74–75

ISNULL function. See also NULL values

and grouping data, 90

and ROLLUP keyword, 115

and sort sequences, 48

italics, using with expressions, 13

J

JOIN, using with SELECT, 17

joining tables, 128–129. See also INNER JOIN
keyword

K

keywords

ALTER FUNCTION, 180

AS, 23–25, 132–133

ASC, 45

BEGIN, 176

beginning on lines, 12

CREATE FUNCTION, 180

CREATE PROCEDURE, 176

CREATE VIEW, 150–151, 154

CROSS JOIN, 143–146

Index 243

CUBE, 114

DISTINCT, 85–86, 89, 170

DROP FUNCTION, 180

ELSE, 78

END, 78, 176

EXEC, 178–179

FULL JOIN, 141–143

GROUP BY, 90

INSERT INTO, 184–187

IS NULL, 74–75

LEFT JOIN, 137–139, 164–166

LIMIT in MySQL, 54

NOT NULL, 195

OUTER JOIN, 135–137, 140–141

PARTITION BY, 103–105

PERCENT, 54

PIVOT, 120–124

RIGHT JOIN, 140

ROLLUP, 112–116

SELF JOIN, 147–149

SET, 189–190

THEN, 78

TOP, 54–55

VALUES, 185–186

WHEN, 78, 80

WITH, 165–166

WITHIN GROUP, 107

words as, 11–12

L

LAG function, 105–108

LEAD function, 108

LEFT character function, 28–31

LEFT JOIN keyword

and NULL values, 139

vs. RIGHT JOIN keyword, 140

and SELECT statement, 137–139

subqueries and calculated columns, 158, 164

table expressions, 165–166

less than or equal to (<=) operator and BETWEEN
operator, 72

LIKE operator, 57

LIMIT keyword, MySQL, 54

literal space (' '), 23

literal values, 20–21

LOVE example, pattern matching, 57–60

LOWER character function, 28–31

LTRIM character function, 28–31

M

mainquery, using with crosstab layouts, 121–124.
See also queries

matching by sound, 61–62. See also pattern
matching

MAX function, 87–88

mean, explained, 91

median and analytic functions, 106

Microsoft Access database, 4

Microsoft SQL Server 2019 Express, installing, 231

Microsoft SQL Server database, 3

Microsoft SQL Server Management Studio 18,
installing, 232

MIN function, 87–88

mode, computation of, 91

MongoDB database, 4

Index244

moving averages, computing, 162. See also
AVG function

multiplication (*) operator, 21–22

MySQL Community Server and Workbench,
installing, 233–234

MySQL database

arithmetic operators, 22

character functions, 30

column names with spaces, 152

comments, 14

CONCAT function, 23

IFNULL function, 40

limiting rows, 54

literal values, 20

NOW function, 33

as open-source database, 3

and Oracle, 13

UUID function, 40

MySQL Workbench, using, 234

N

network databases, 8

NEWID function, 40

normalization

alternatives, 207–208

of data, 203–206

goals of, 202–203

NOT NULL keyword, 195

NOT operator

Boolean logic, 69–71

and IN operator, 73

NTILE ranking function, 98–102

NULL values. See also ISNULL function

and ascending sorts in Oracle, 114

and Boolean logic, 74–75

column attributes, 195

converting, 38–39

COUNT function

correlated subquery updates, 191

CUBE keyword, 118

grouping data, 90

INSERT statement, 186

and LEFT JOIN keyword, 139

and ROLLUP keyword, 113, 115

overview, 8

and sort sequences, 48

testing for, 139

numeric data

frequency distributions, 91

types, 7

numeric functions, 35–36

O

OBDC (open database connectivity), 213

OLAP (online analytical processing) databases, 213

online reference

MySQL, 234

MySQL Server, 232

Oracle SQL Developer, 236

OR operator

Boolean logic, 66–67

using with WHERE clause, 17

Oracle database, 3–4

TO_CHAR function, 40

TO_DATE function, 40

Index 245

TO_NUMBER function, 40

arithmetic operators, 22

ascending sorts, 114

case sensitivity, 57

character functions, 30

column aliases, 24

column names with spaces, 152

concatenation, 23

date formats, 138

literal values, 20

and MySQL, 13

table aliases, 25, 133

Oracle Database Express Edition, installing, 235–
236

Oracle SQL Developer, installing, 236

ORDER BY clause

analytic functions, 106

and FROM clause, 43

crosstab layouts, 122

and CUBE keyword, 120

and full SELECT, 17

limiting rows, 54

multiple columns and sorting, 93

and ROLLUP keyword, 113

and sort sequences, 48–49

and sorting by calculated fields, 46–47

and sorting in ascending order, 43

and UNION operator, 169

using with TOP keyword, 55

ORDER BY clauses, conditional logic in, 82

Orders table, 5

OUTER JOIN keyword, 135–137, 140–141

OVER clause, analytic functions, 105

P

parameter, explained, 177

parent table, 196

parentheses (()), using with Boolean logic, 67–69

PARTITION BY keyword, 103–107

partitions, 103–105

pattern matching, 56–60. See also matching
by sound

percent (%) wildcard, 57–59

PERCENT keyword, 54

PERCENT_RANK function, 105–108

percentile, explained, 102

PERCENTILE_CONT function, 107

PERCENTILE_DISC function, 107

PERCENTILE_RANK function, 107

PI function, 35–36

pivot charts, using with Excel, 221–227. See also
charts

PIVOT keyword

and Excel, 212

using with crosstab layouts, 120–124

pivot tables, using with Excel, 216–221

plus sign (+), concatenation, 22

PostgreSQL database, 4

POWER function, Oracle, 22, 35–36

Power Query, using with Excel, 212–215

primary keys, 6

primary keys and indexes, 195–196

procedural languages, 2

Q

queries, combining, 17. See also mainquery;
subqueries

Index246

R

RANK function, 98–102

real numbers, 7

relational databases

examples of, 4

overview, 4–5

relative dates, 38. See also Date/Time functions

RIGHT character function, 28–31

RIGHT JOIN keyword, 140

ROLLUP keyword

adding subtotals with, 112–116

vs. CUBE keyword, 114, 118–119

ROUND function, 35–36

ROW_NUMBER ranking function, 98–104

rows

analyzing selection of, 62

deleting from tables, 183

limiting, 53–56

rows of data, specifying for retrieval, 17

RTRIM character function, 28–31, 38

S

Sales table

calculated fields, 19

selection criteria, 51–52

Salespeople table, sorting, 44

scalar functions, 27, 87. See also functions

scatter charts, using with Excel, 227

searched CASE format, 80–81

security restrictions, enforcing with views, 153

SELECT queries and set logic, 167

SELECT statement. See also SQL statements

and aggregates, 94–95

analytic functions, 106

arithmetic calculations, 21

ASC keyword, 45

BETWEEN operator, 72

CASE expression, 77–78

conditional logic in ORDER BY clauses, 82

correlated subqueries, 160–162

COUNT function, 88–89

CROSS JOIN, 144–145

crosstab layouts, 120–124

CUBE keyword, 117

DISTINCT keyword, 86

example of, 11–12

EXISTS operator, 163

features of, 17

GROUP BY keyword, 90

implicit inner joins, 131–132

INNER JOIN keyword, 130–132

inserting into SELECT statements, 17

joining tables, 129

LEFT JOIN, 137–139

limiting rows, 54–55

literal values, 20

moving averages, 162

multiple columns and sorting, 92–94

preview of, 16–17

ranking functions, 99–102

RIGHT character function, 29–30

RIGHT JOIN keyword, 140

ROLLUP keyword, 112

Index 247

searched CASE format, 80–81

SELF JOIN, 148–149

simple CASE format, 79

and sorting in ascending order, 43–44

specifying columns, 14–15

stored procedures, 176–177

subqueries and calculated columns,
156–157, 164

table aliases, 25

table expressions, 165–166

UNION operator, 168–169

views as, 150

selection criteria

on aggregates, 94–95

applying, 51–52

limiting rows, 53–56

matching by sound, 61–62

pattern matching, 56–60

subqueries as, 159–160

WHERE clause operators, 52–53

selection logic, indicating, 17

SELF JOIN keyword, 147–149

SET keyword, 189–190

set logic

intersecting queries, 171–173

overview, 166–167

and SELECT statement, 17

UNION operator, 168–171

simple CASE format, 78–79

single quote ('), using with column alias, 23

sort, limiting rows with, 55–56

sort sequences, 47–49

sorting

in ascending order, 43–45

by calculated field, 46–47

and columns, 92–94

data, 17, 82

in descending order, 45

by multiple columns, 45–46

sound, matching by, 61–62

SOUNDEX function, 61–62

SQL (Structured Query Language)

DCL (Data Control Language), 2, 193

DDL (Data Definition Language), 2, 193–194

as declarative language, 2

development of, 9

DML (Data Manipulation Language), 2

overview, 2–3

pronouncing, 2

SQL databases vs. SQL (Structured Query
Language), 3

SQL Server 2019, 3

SQL statements. See also SELECT statement

column names with embedded spaces, 15–16

comments, 13–14

formats, 13

specifying columns, 14–15

syntax notes, 12–13

writing, 12

square brackets ([]), 15

star schema, 207–208

stored procedures

creating, 176–177

executing, 178–180

functions, 180

Index248

stored procedures (continued)

modifying and deleting, 179–180

output parameters, 180

overview, 175

parameters in, 177–178

string data types, 7, 28

string functions, 28

subqueries. See also queries

as calculated columns, 164

correlated updates, 189–191

correlated vs. uncorrelated, 160–162

as data sources, 156–159

EXISTS operator, 163

explained, 17

FROM clause, 156

IN operator, 74

LEFT JOIN, 158

as selection criteria, 159–160

table expressions, 165–166

types of, 154–155

using with SELECT statements, 156–157

SUBSTRING character function, 28–31

subtotals

adding with CUBE, 116–120

adding with ROLLUP, 112–116

and crosstabs, 111

subtraction (−) operator, 22

SUM function, 87–88

summarizing data. See also data

aggregate functions, 87–88

analytic functions, 105–108

conditional logic in GROUP BY clauses, 96–97

conditional logic in HAVING clauses, 97–98

COUNT function, 88–89

eliminating duplicates, 85–86

grouping data, 90–92

multiple columns and sorting, 92–94

partitions, 103–105

ranking functions, 98–102

selection criteria on aggregates, 94–95

syntax notes, 12–13, 54

SYS_GUID function, Oracle, 40

T

table aliases, 25, 132–133

table expressions, 165–166

table maintenance

DDL (Data Definition Language), 193–194

foreign keys, 196–197

primary keys and indexes, 195–196

table names, 15

table order

in INNER JOIN, 131

in OUTER JOIN, 140–141

tablelist, 43–44

tables. See also dimension tables

attributes, 194

child and parent, 196

columns, 195

combining, 17

creating, 197–199

deleting, 198

deleting rows from, 183

joining, 128–129

in relational databases, 5

THEN keyword, 78

Index 249

Time/Date functions, 32–35

TO_CHAR function, Oracle, 40

TO_DATE function, Oracle, 40

TO_NUMBER function, Oracle, 40

TOP keyword

using with median, 107

and WHERE clause, 54–55

TRUNCATE TABLE statement, 188

U

uncorrelated vs. correlated subqueries, 160–162

underscore (_) wildcard character, 59

UNION ALL operator, 170–171

UNION operator, 168–173

UPDATE statement, 188–191, 199

UPPER character function, 28–31, 57

UUID function, MySQL, 40

V

VALUES keyword, 185–186

views

benefits of, 152–153

creating, 150–151

DROP VIEW statement, 154

modifying and deleting, 153–154

referencing, 151–152

as SELECT statements, 150

W

WHEN keyword, 78, 80

WHERE clause

with AND operator, 66

CASE expression, 78

conditional logic in, 83

correlated subquery updates, 191

vs. HAVING clause, 94–95

implicit inner joins, 132

operators, 52–53

and SELECT statement 17

and selection criteria, 51–52

stored procedures, 177–178

and UPDATE statement, 189

WHERE condition, and CASE expression, 83

wildcards

% (percent), 57–59

[characterlist] and [^characterlist], 59

_ (underscore), 59

WITH keyword, using with table expressions,
165–166

WITHIN GROUP keyword, using with median, 107

Z

zip-code example, 7

This page intentionally left blank

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

A Hands-On Guide to Data
Manipulation in SQL

SQL Queries for Mere Mortals has earned worldwide praise as the clearest,
simplest tutorial on writing effective queries with the latest SQL standards
and database applications. Step by step, John Viescas guides you through
creating reliable queries for virtually any current SQL-based database. Coverage
includes:

• Summarizing and grouping data with GROUP BY and HAVING clause

• Drawing data from multiple tables: using INNER JOIN, OUTER JOIN, and UNION
operators, and working with subqueries

• Modifying data sets with UPDATE, INSERT, and DELETE statements

• Advanced queries: complex NOT and AND, conditions, if-then-else using CASE,
unlinked tables, driver tables, and more

informit.com/sqlqueries

SQL Queries for Mere Mortals, Fourth Edition
ISBN: 978-0-13-485833-3

Print and eBook formats available

http://informit.com/sqlqueries

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	1 Relational Databases and SQL
	What Is SQL?
	Microsoft SQL Server, MySQL, and Oracle
	Relational Databases
	Primary and Foreign Keys
	Data Types
	NULL Values
	A Brief History of Databases
	Looking Ahead

	2 Basic Data Retrieval
	A Simple SELECT
	Syntax Notes
	Comments
	Specifying Columns
	Column Names with Embedded Spaces
	Preview of the Full SELECT
	Looking Ahead

	3 Calculated Fields and Aliases
	Literal Values
	Arithmetic Calculations
	Concatenating Fields
	Column Aliases
	Table Aliases
	Looking Ahead

	4 Using Functions
	What Is a Function?
	Character Functions
	Composite Functions
	Date/Time Functions
	Numeric Functions
	Miscellaneous Functions
	Looking Ahead

	5 Sorting Data
	Sorting in Ascending Order
	Sorting in Descending Order
	Sorting by Multiple Columns
	Sorting by a Calculated Field
	Sort Sequences
	Looking Ahead

	6 Selection Criteria
	Applying Selection Criteria
	WHERE Clause Operators
	Limiting Rows
	Limiting Rows with a Sort
	Pattern Matching
	Matching by Sound
	Looking Ahead

	7 Boolean Logic
	Complex Logical Conditions
	The AND Operator
	The OR Operator
	Using Parentheses
	Multiple Sets of Parentheses
	The NOT Operator
	The BETWEEN Operator
	The IN Operator
	Boolean Logic and NULL Values
	Looking Ahead

	8 Conditional Logic
	The CASE Expression
	The Simple CASE Format
	The Searched CASE Format
	Conditional Logic in ORDER BY Clauses
	Conditional Logic in WHERE Clauses
	Looking Ahead

	9 Summarizing Data
	Eliminating Duplicates
	Aggregate Functions
	The COUNT Function
	Grouping Data
	Multiple Columns and Sorting
	Selection Criteria on Aggregates
	Conditional Logic in GROUP BY Clauses
	Conditional Logic in HAVING Clauses
	Ranking Functions
	Partitions
	Analytic Functions
	Looking Ahead

	10 Subtotals and Crosstabs
	Adding Subtotals with ROLLUP
	Adding Subtotals with CUBE
	Creating Crosstab Layouts
	Looking Ahead

	11 Inner Joins
	Joining Two Tables
	The Inner Join
	Table Order in Inner Joins
	Implicit Inner Joins
	Table Aliases Revisited
	Looking Ahead

	12 Outer Joins
	The Outer Join
	Left Joins
	Testing for NULL Values
	Right Joins
	Table Order in Outer Joins
	Full Joins
	Cross Joins
	Looking Ahead

	13 Self Joins and Views
	Self Joins
	Creating Views
	Referencing Views
	Benefits of Views
	Modifying and Deleting Views
	Looking Ahead

	14 Subqueries
	Types of Subqueries
	Subqueries as a Data Source
	Subqueries as Selection Criteria
	Correlated Subqueries
	The EXISTS Operator
	Subqueries as a Calculated Column
	Common Table Expressions
	Looking Ahead

	15 Set Logic
	The UNION Operator
	Distinct and Non-Distinct Unions
	Intersecting Queries
	Looking Ahead

	16 Stored Procedures and Parameters
	Creating Stored Procedures
	Parameters in Stored Procedures
	Executing Stored Procedures
	Modifying and Deleting Stored Procedures
	Functions Revisited
	Looking Ahead

	17 Modifying Data
	Modification Strategies
	Inserting Data
	Deleting Data
	Updating Data
	Correlated Subquery Updates
	Looking Ahead

	18 Maintaining Tables
	Data Definition Language
	Table Attributes
	Table Columns
	Primary Keys and Indexes
	Foreign Keys
	Creating Tables
	Creating Indexes
	Looking Ahead

	19 Principles of Database Design
	Goals of Normalization
	How to Normalize Data
	The Art of Database Design
	Alternatives to Normalization
	Looking Ahead

	20 Strategies for Using Excel
	Crosstab Layouts Revisited
	External Data and Power Query
	Excel Pivot Tables
	Excel Pivot Charts
	Excel Standard Charts
	Looking Ahead

	A Getting Started with Microsoft SQL Server
	Installing Microsoft SQL Server 2019 Express
	Installing Microsoft SQL Server Management Studio 18
	Using Microsoft SQL Server Management Studio 18
	Online Reference

	B Getting Started with MySQL
	Installing MySQL Community Server and Workbench
	Using MySQL Workbench
	Online Reference

	C Getting Started with Oracle
	Installing Oracle Database Express Edition
	Installing Oracle SQL Developer
	Using Oracle SQL Developer
	Online Reference

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

