Ben Forta

FULL COLOR

Now with challenge

questions to gauge

\ and improve
proficiency.

SamsTeach Yourself

Ben Forta

SamsTeach Yourself

SQL

in 10 Minutes

Fifth Edition

SAMS 221 River Street, Hoboken, NJ 07030

Sams Teach Yourself SQL in 10 Minutes, Fifth Edition
Copyright © 2020 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions/. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-518279-6

ISBN-10: 0-13-518279-4

Library of Congress Control Number: 2019910840
ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest
to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The author and the publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Cover credit mickyteam/Shutterstock

Editor-in-Chief
Mark Taub
Acquisitions
Editor

Kim Spenceley

Development
Editor

Mark Taber
Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Chuck Hutchinson

Indexer
Tim Wright

Proofreader
Abigail Manheim

Technical Editor
Benjamin Schupak

Designer
Chuti Prasertsith

Compositor
codeMantra

http://www.pearson.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Introduction.. ... 1

1 Understanding SQL 5
2 Retrieving Data 13
3 Sorting Retrieved Data 25
4 Filtering Data......33
5 Advanced Data Filtering ... 41
6 Using Wildcard Filtering 51
7 Creating Calculated Fields 59
8 Using Data Manipulation Functions 69
9 Summarizing Data........ 79
10 Grouping Data89
11 Working with Subqueries...... 99
12 Joining Tables 107
13 Creating Advanced Joins 117
14 Combining Queries 127
15 Inserting Data 135
16 Updating and Deleting Data 145
17 Creating and Manipulating Tables ... 151
18 Using Views 161
19 Working with Stored Procedures 171
20 Managing Transaction Processing 179
21 Using CUrsors ... 187
22 Understanding Advanced SQL Features 193

Sams Teach Yourself SQL in 10 Minutes,

Fifth Edition

Appendix A. Sample Table Scripts............

Appendix B. SQL Statement Syntax
Appendix C. Using SQL Datatypes
Appendix D. SQL Reserved Words

Table of Contents

Introduction

Who Is the Teach Yourself SQL Book For?

DBMSs Covered in This Book

Conventions Used in This Book

Understanding SQL
Database Basics
What Is SQL?

Try It Yourself

Summary

Retrieving Data

The seLECT Statement
Retrieving Individual Columns
Retrieving Multiple Columns
Retrieving All Columns
Retrieving Distinct Rows
Limiting Results

Using Comments

Summary

Challenges

Sorting Retrieved Data
Sorting Data

Sorting by Multiple Columns
Sorting by Column Position
Specifying Sort Direction
Summary

Challenges

Filtering Data

Using the wHERE Clause

The wHERE Clause Operators
Summary

Challenges

N N R R

o o,

10
10
12

13
13
14
16
17
17
19
21
22
23

25
25
27
28
29
30
31

33
33
34
39
40

Vi

5

10

Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

Advanced Data Filtering
Combining wHERE Clauses
Using the 1N Operator
Using the noT Operator
Summary

Challenges

Using Wildcard Filtering
Using the L1kE Operator
Tips for Using Wildcards
Summary

Challenges

Creating Calculated Fields
Understanding Calculated Fields
Concatenating Fields

Performing Mathematical Calculations
Summary

Challenges

Using Data Manipulation Functions
Understanding Functions

Using Functions

Summary

Challenges

Summarizing Data

Using Aggregate Functions
Aggregates on Distinct Values
Combining Aggregate Functions
Summary

Challenges

Grouping Data
Understanding Data Grouping
Creating Groups

Filtering Groups

41
41
45
46
48
49

51
51
57
57
58

59
59
60
65
67
68

69
69
70
77
78

79
79
85
86
87
88

89
89
90
91

Table of Contents

Grouping and Sorting
SELECT Clause Ordering
Summary

Challenges

11 Working with Subqueries

12

13

14

15

Understanding Subqueries

Filtering by Subquery

Using Subqueries as Calculated Fields
Summary

Challenges

Joining Tables
Understanding Joins
Creating a Join
Summary

Challenges

Creating Advanced Joins

Using Table Aliases

Using Different Join Types

Using Joins with Aggregate Functions
Using Joins and Join Conditions
Summary

Challenges

Combining Queries
Understanding Combined Queries
Creating Combined Queries
Summary

Challenges

Inserting Data

Understanding Data Insertion
Copying from One Table to Another
Summary

Challenges

vii

94
96
96
97

929
99
99
103
105
106

107
107
109
115
116

117
117
118
123
124
125
126

127
127
127
133
134

135
135
141
142
143

viii Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

16 Updating and Deleting Data 145
Updating Data 145
Deleting Data 147
Guidelines for Updating and Deleting Data 149
Summary 149
Challenges 150

17 Creating and Manipulating Tables 151
Creating Tables 151
Updating Tables 155
Deleting Tables 157
Renaming Tables 158
Summary 158
Challenges 159

18 Using Views 161
Understanding Views 161
Creating Views 164
Summary 169
Challenges 170

19 Working with Stored Procedures 171
Understanding Stored Procedures 171
Understanding Why to Use Stored Procedures 172
Executing Stored Procedures 173
Creating Stored Procedures 174
Summary 178

20 Managing Transaction Processing 179
Understanding Transaction Processing 179
Controlling Transactions 181
Summary 185

21 Using Cursors 187
Understanding Cursors 187
Working with Cursors 188

Summary 192

Table of Contents ix

22 Understanding Advanced SQL Features 193
Understanding Constraints 193
Understanding Indexes 198
Understanding Triggers 200
Database Security 202
Summary 202

A Sample Table Scripts 203
Understanding the Sample Tables 203
Obtaining the Sample Tables 207

B SQL Statement Syntax 209
ALTER TABLE 209
COMMIT 209
CREATE INDEX 210
CREATE PROCEDURE 210
CREATE TABLE 210
CREATE VIEW 211
DELETE 211
DROP 211
INSERT 211
INSERT SELECT 212
ROLLBACK 212
SELECT 212
UPDATE 213

C Using SQL Datatypes 215
String Datatypes 216
Numeric Datatypes 217
Date and Time Datatypes 218
Binary Datatypes 219

D SQL Reserved Words 221

Index 227

About the Author

Ben Forta is Adobe’s Senior Director of Education Initiatives and has three decades
of experience in the computer industry in product development, support, training, and
product marketing. He is the author of the best-selling Sams Teach Yourself SQL in

10 Minutes (including spinoff titles on MariaDB, MySQL, SQL Server T-SQL, and
Oracle PL/SQL), Learning Regular Expressions, as well as books on Java, Windows,
and more. He has extensive experience in database design and development, has
implemented databases for several highly successful commercial software programs
and websites, and is a frequent lecturer and columnist on application development
and Internet technologies. Ben lives in Oak Park, Michigan, with his wife, Marcy, and
their children. He welcomes your email at beneforta.com and invites you to visit his
website at http://forta.com.

mailto:ben@forta.com
http://forta.com

Acknowledgments

Thanks to the team at Sams for all these years of support, dedication, and encourage-
ment. Over the past two decades, we’ve created 40+ books together, but this little
volume is my favorite by far, and I thank you for giving me the creative freedom to
evolve it as [see fit.

Thank you to Amazon.com reviewers who suggested the inclusion of the Challenges,
which are new to this fifth edition.

Thanks to the many thousands of you who provided feedback on the first four
editions of this book. Fortunately, most of it was positive, and all of it was appreci-
ated. The enhancements and changes in this edition are a direct response to your
feedback, which I continue to welcome.

Thanks to the dozens of colleges and universities that have made this book part of
their IT and computer science curriculums. Being included and trusted by professors
and teachers this way is immensely rewarding and equally humbling.

And finally, thanks to the almost half-million of you who bought the previous

editions (and spinoffs) of this book, making it not just my best-selling title, but also
the best-selling book on the subject. Your continued support is the highest compliment
an author can ever be paid.

—Ben Forta

http://Amazon.com

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of
this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with
the author and editors who worked on the book.

Email: community @informit.com

Reader Services

Register your copy of Sams Teach Yourself SOL in 10 Minutes a Day at informit.com
for convenient access to downloads, updates, and corrections as they become available.
To start the registration process, go to informit.com/register and log in or create an
account*. Enter the product ISBN, 9780135182796, and click Submit. Once the pro-
cess is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive
exclusive discounts on future editions of this product.

mailto:community@informit.com
http://informit.com
http://informit.com/register

Introduction

SQL is the most widely used database language. Whether you are an application
developer, database administrator, web application designer, mobile app developer,
or a user of popular data reporting tools, a good working knowledge of SQL is an
important part of interacting with databases.

This book was born out of necessity. I had been teaching Web application
development for several years, and students were constantly asking for SQL book
recommendations. There are lots of SQL books out there. Some are actually very
good. But they all have one thing in common: for most users they teach just too
much information. Instead of teaching SQL itself, most books teach everything from
database design and normalization to relational database theory and administrative
concerns. And while those are all important topics, they are not of interest to most of
us who just need to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I turned that
classroom experience into the book you are holding. Sams Teach Yourself SOL in

10 Minutes will teach you SQL you need to know, starting with simple data retrieval
and working on to more complex topics including the use of joins, subqueries, stored
procedures, cursors, triggers, and table constraints. You’ll learn methodically, system-
atically, and simply—in lessons that will each take 10 minutes or less to complete.

Now in its fifth edition, this book has taught SQL to almost a half million English-
speaking users, and has been translated into over a dozen other languages too so as to
help users the world over.

New to this edition is the inclusion of lesson-specific challenges at the end of each
lesson 2 - 18. They provide a chance for you to take the SQL you have learned and
apply it to different scenarios and problems. The answers to each are not in the book,
but, don’t worry, you can find them on the book web page at
http://forta.com/books/0135182794.

Now it is your turn. Turn to Lesson 1, and get to work. You’ll be writing world-class
SQL in no time at all.

Who Is the Teach Yourself SQL

Book For?
This book is for you if

» You are new to SQL.

» You want to quickly learn how to get the most out of SQL.

http://forta.com/books/0135182794

2 Sams Teach Yourself SQL in 10 Minutes, Fifth Edition

» You want to learn how to use SQL in your own application development.

> You want to be productive quickly and easily in SQL without having to call
someone for help.

DBMSs Covered in This Book

For the most part, the SQL taught in this book will apply to any Database Management
System (DBMS). However, as all SQL implementations are not created equal, the
following DBMSs are explicitly covered (and specific instructions or notes are included
where needed):

» IBM DB2 (including DB2 in the cloud)
» Microsoft SQL Server (including Microsoft SQL Server Express)
» MariaDB
» MySQL
» Oracle (including Oracle Express)
» PostgreSQL
» SQLite
Example databases (or SQL scripts to create the example databases) are available

for all of these DBMSs on the book web page at
http://forta.com/books/0135182794.

Conventions Used in This Book

This book uses different typefaces to differentiate between code and regular English,
and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented in
monospace type.

It will look like this to mimic the way text looks on your screen.

The text that makes up programming code has no color. But most tools used to create
and edit code (in all programming languages, including SQL) do display code in
color. The reason for doing so is that this makes it easier to read long code sequences,

http://forta.com/books/0135182794

Introduction

and it also helps spot typos and errors (when colors don’t match or look right you
know something is wrong). The SQL code throughout this book is printed in color

with different colors used for SQL statements, clauses, strings, numbers, comments,
and so on. Just be aware that there is no standard way to color code and different tools
use different color schemes, so the colors you see in your own editor while trying the

examples may not exactly match what’s in the book.

This arrow (=) at the beginning of a line of code means that a single line of code is

too long to fit on the printed page. Continue typing all the characters after the w as
though they were part of the preceding line.

NOTE:

A Note presents interesting pieces of information related to the surrounding
discussion.

TIP:
A Tip offers advice or teaches an easier way to do something.

CAUTION:

A Caution advises you about potential problems and helps you steer clear of
disaster.

PLAIN ENGLISH:
New Term icons provide clear definitions of new, essential terms.

Input v

The Input icon identifies code that you can type in. It usually appears next to a listing.

Output v

The Output icon highlights the output produced by running a program. It usually
appears after a listing.

Analysis v

The Analysis icon alerts you to the author’s line-by-line analysis of a program.

This page intentionally left blank

Understanding SQL

In this lesson, you’ll learn exactly what SQL is and what it will do for you.

Database Basics

The fact that you are reading a book on SQL indicates that you, somehow, need to
interact with databases. SQL is a language used to do just this, so before looking at
SQL itself, it is important that you understand some basic concepts about databases
and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you
select a contact on your phone or a name from your email address book, you are using
a database. If you conduct a Google search, you are using a database. When you

log in to your network at work, you are validating your name and password against

a database. Even when you use your ATM card at a cash machine, you are using
databases for PIN verification and balance checking.

But even though we all use databases all the time, there remains much confusion
over what exactly a database is. This is especially true because different people use
the same database terms to mean different things. Therefore, a good place to start our
study is with a list and explanation of the most important database terms.

Reviewing Basic Concepts

What follows is a very brief overview of some basic database concepts. It is
intended to either jolt your memory if you already have some database experi-
ence, or to provide you with the absolute basics if you are new to databases.
Understanding databases is an important part of mastering SQL, and you might
want to find a good book on database fundamentals to brush up on the subject
if needed.

Databases

The term database is used in many different ways, but for our purposes (and indeed,
from SQL’s perspective) a database is a collection of data stored in some organized
fashion. The simplest way to think of it is to imagine a database as a filing cabinet.

6 LESSON 1: Understanding SQL

The filing cabinet is simply a physical location to store data, regardless of what that
data is or how it is organized.

Database
A container (usually a file or set of files) to store organized data.

Misuse Causes Confusion

People often use the term database to refer to the database software they are
running. This is incorrect and a source of much confusion. Database software
is actually called the Database Management System (or DBMS). The database

is the container created and manipulated via the DBMS, and exactly what the

database is and what form it takes vary from one database to the next.

Tables

When you store information in your filing cabinet, you don’t just toss it in a drawer.
Rather, you create files within the filing cabinet, and then you file related data in
specific files.

In the database world, that file is called a table. A table is a structured file that can
store data of a specific type. A table might contain a list of customers, a product
catalog, or any other list of information.

Table
A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one list. You
would never store a list of customers and a list of orders in the same database table.
Doing so would make subsequent retrieval and access difficult. Rather, you’d create
two tables, one for each list.

Every table in a database has a name that identifies it. That name is always
unique—meaning no other table in that database can have the same name.

Table Names

What makes a table name unique is actually a combination of several things
including the database name and table name. Some databases also use the
name of the database owner as part of the unique name. This means that while
you cannot use the same table name twice in the same database, you definitely
can reuse table names in different databases.

Database Basics 7

Tables have characteristics and properties that define how data is stored in them.
These include information about what data may be stored, how it is broken up, how
individual pieces of information are named, and much more. This set of information
that describes a table is known as a schema, and schemas are used to describe specific
tables within a database, as well as entire databases (and the relationship between
tables in them, if any).

Schema
Information about database and table layout and properties.

Columns and Datatypes

Tables are made up of columns. A column contains a particular piece of information
within a table.

Column
A single field in a table. All tables are made up of one or more columns.

The best way to understand this is to envision database tables as grids, somewhat like
spreadsheets. Each column in the grid contains a particular piece of information. In

a customer table, for example, one column contains the customer number, another
contains the customer name, and the address, city, state, and ZIP code are all stored in
their own columns.

Breaking Up Data

It is extremely important to break data into multiple columns correctly. For
example, city, state, and ZIP (or postal) code should always be separate col-
umns. When you break these out, it becomes possible to sort or filter data by
specific columns (for example, to find all customers in a particular state or in
a particular city). If city and state are combined into one column, it would be
extremely difficult to sort or filter by state.

When you break up data, the level of granularity is up to you and your specific
requirements. For example, addresses are typically stored with the house num-
ber and street name together. This is fine, unless you might one day need to
sort data by street name, in which case splitting house number and street name
would be preferable.

Each column in a database has an associated datatype. A datatype defines what type
of data the column can contain. For example, if the column were to contain a number
(perhaps the number of items in an order), the datatype would be a numeric datatype.

8 LESSON 1: Understanding SQL

If the column were to contain dates, text, notes, currency amounts, and so on, the
appropriate datatype would be used to specify this.

Datatype

A type of allowed data. Every table column has an associated datatype that
restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for example,
preventing the entry of alphabetical characters into a numeric field). Datatypes also
help sort data correctly and play an important role in optimizing disk usage. As such,
special attention must be given to picking the right datatype when tables are created.

Datatype Compatibility

Datatypes and their names are one of the primary sources of SQL incompatibil-
ity. While most basic datatypes are supported consistently, many more advanced
datatypes are not. And worse, occasionally you'll find that the same datatype is
referred to by different names in different DBMSs. There is not much you can do
about this, but it is important to keep in mind when you create table schemas.

Rows

Data in a table is stored in rows; each record saved is stored in its own row. Again,
envisioning a table as a spreadsheet style grid, the vertical columns in the grid are the
table columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The number of
rows in the table is the number of records in it.

Row
A record in a table.

Records or Rows?
You may hear users refer to database records when referring to rows. For the
most part the two terms are used interchangeably, but row is technically the
correct term.

Database Basics 9

Primary Keys

Every row in a table should have some column (or set of columns) that uniquely
identifies it. A table containing customers might use a customer number column for
this purpose, whereas a table containing orders might use the order ID. An employee
list table might use an employee ID. A table containing a list of books might use the
ISBN for this purpose.

Primary key
A column (or set of columns) whose values uniquely identify every row in a table.

This column (or set of columns) that uniquely identifies each row in a table is called
a primary key. The primary key is used to refer to a specific row. Without a primary
key, updating or deleting specific rows in a table becomes extremely difficult as there
is no guaranteed safe way to refer to just the rows to be affected.

Always Define Primary Keys

Although primary keys are not actually required, most database designers
ensure that every table they create has a primary key so that future data
manipulation is possible and manageable.

Any column in a table can be defined as the primary key, as long as it meets the
following conditions:

» No two rows can have the same primary key value.

» Every row must have a value in the primary key column(s). (So, no NULL
values.)

» Values in primary key columns should never be modified or updated.

» Primary key values should never be reused. (If a row is deleted from the
table, its primary key may not be assigned to any new rows in the future.)

Primary keys are usually defined on a single column within a table. But this is not
required, and multiple columns may be used together as a primary key. When multiple
columns are used, the rules listed above must apply to all columns, and the values

of all columns together must be unique (individual columns need not have unique
values).

There is another very important type of key called a foreign key, but I'll get to that
later on in Lesson 12, “Joining Tables.”

10 LESSON 1: Understanding SQL

What Is SQL?

SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for Structured
Query Language. SQL is a language designed specifically for communicating with
databases.

Unlike other languages (spoken languages like English, or programming languages
like Java, C, or Python), SQL is made up of very few words. This is deliberate. SQL
is designed to do one thing and do it well—provide you with a simple and efficient
way to read and write data from a database.

What are the advantages of SQL?

» SQL is not a proprietary language used by specific database vendors. Almost
every major DBMS supports SQL, so learning this one language will enable
you to interact with just about every database you’ll run into.

» SQL is easy to learn. The statements are all made up of descriptive English
words, and there aren’t that many of them.

» Despite its apparent simplicity, SQL is a very powerful language, and by
cleverly using and combining its language elements, you can perform very
complex and sophisticated database operations.

And with that, let’s learn SQL.

SQL Extensions

Many DBMS vendors have extended their support for SQL by adding statements
or instructions to the language. The purpose of these extensions is to provide
additional functionality or simplified ways to perform specific operations. And
while often extremely useful, these extensions tend to be very DBMS specific,
and they are rarely supported by more than a single vendor.

Standard SQL is governed by the ANSI standards committee, and is thus called
ANSI SQL. All major DBMSs, even those with their own extensions, support
ANSI SQL. Individual implementations have their own names (PL-SQL, used by
Oracle; Transact-SQL, used by Microsoft SQL Server; and so on).

For the most part, the SQL taught in this book is ANSI SQL. On the odd
occasion where DBMS-specific SQL is used, it is so noted.

Try It Yourself

As with any language, the best way to learn SQL is to try it for yourself. To do this,
you’ll need a database and an application with which to test your SQL statements.

Try It Yourself 11

All of the lessons in this book use real SQL statements and real database tables, and
you should have access to a DBMS to follow along.

Which DBMS Should You Use?
You need access to a DBMS to follow along. But which should you use?

The good news is that the SQL you’ll learn in this book is relevant to every
major DBMS. As such, your choice of DBMS should primarily be based on
convenience and simplicity.

There are basically two ways to proceed. You can install a DBMS (and support-
ing client software) on your own computer; this will give you the greatest access
and control. But for many, the trickiest part of getting started learning SQL is
actually getting a DBMS installed and configured. The alternative is to access

a remote (or cloud-based) DBMS; this way you have nothing to manage and
install.

You have lots of options if you decide to install your own DBMS. Here are a
couple of suggestions:

» MySQL (or its spin-off MariaDB) is a really good choice in that it is free,
supported on every major operating system, is easy to install, and is one
of the most popular DBMSs in use. MySQL comes with a command-line
tool for actually entering your SQL, but you are better using the optional
MySQL Workbench, so download that, too (it’'s usually a separate install).

» Windows users may want to use Microsoft SQL Server Express. This free
version of the popular and powerful SQL Server includes a user-friendly
client named SQL Server Management Studio.

The alternative is to use a remote (or cloud-based) DBMS:

» If you are learning SQL to use at work, your employer may have a DBMS
that you can use. If this is an option, you'll likely be given your own
DBMS login and a tool to use to connect to the DBMS to enter and test
your SQL.

» Cloud-based DBMSs are instances of DBMSs running on virtual servers,
effectively giving you the benefits of your own DBMS without having to
actually install one locally. All of the major cloud service vendors (includ-
ing Google, Amazon, and Microsoft) offer DBMSs in the cloud. Unfor-
tunately, at the time of this book’s writing, setting these up (including
configuring secure remote access) isn’t trivial and is often more work than
installing your own DBMS locally. The exceptions are Oracle’s Live SQL
and IBM’s Db2 on Cloud, which offer a free version that includes a web
interface. Just type your SQL in the web browser, and you’re good to go.

You'll find links to all the options mentioned here on the book’s web page, and
as DBMS options evolve that page will be updated with tips and suggestions.

12 LESSON 1: Understanding SQL

Once you have access to a DBMS, Appendix A, “Sample Table Scripts,” explains
what the example tables are and provides details on how to obtain (or create) them so
that can may follow along with the instructions in each lesson.

In addition, starting in Lesson 2 you’ll find Challenges after the “Summary” section.
They present you with the opportunity to take your newly acquired SQL knowledge
and apply it to solve problems not explicitly mentioned in the lessons. To verify your
solutions (or if you get stuck and need some help), visit the book’s web page.

Summary

In this first lesson, you learned what SQL is and why it is useful. Because SQL is used
to interact with databases, you also reviewed some basic database terminology.

Retrieving Data

In this lesson, you’ll learn how to use the all-important SELECT statement to retrieve
one or more columns of data from a table.

The seLEcT Statement

As explained in Lesson 1, “Understanding SQL,” SQL statements are made up of
plain English terms. These terms are called keywords, and every SQL statement is
made up of one or more keywords. The SQL statement that you’ll probably use most
frequently is the SELECT statement. Its purpose is to retrieve information from one or
more tables.

NEW TERM: Keyword

A reserved word that is part of the SQL language. Never name a table or column
using a keyword. Appendix D, “SQL Reserved Words,” lists some of the more
common reserved words.

To use SELECT to retrieve table data, you must, at a minimum, specify two pieces of
information—what you want to select and from where you want to select it.

NOTE: Following Along with the Examples

The sample SQL statements (and sample output) throughout the lessons in this
book use a set of data files that are described in Appendix A, “Sample Table
Scripts.” If you'd like to follow along and try the examples yourself (I strongly
recommend that you do so), refer to Appendix A, which contains instructions on
how to download or create these data files.

TIP: Use the Right Database

DBMSs allow you to work with multiple databases (the filing cabinet in the analogy
in Lesson 1). When you installed the sample tables (as per Appendix A), you were
advised to install them in a new database. If you did so, make sure you select that
database before proceeding, just as you did when you created and populated the
sample tables. As you work through these lessons, if you encounter errors about
unknown tables, then you most likely are in the wrong database.

14 LESSON 2: Retrieving Data

Retrieving Individual Columns

We’ll start with a simple SQL SELECT statement, as follows:

input v

SELECT prod_name
FROM Products;

Analysis v

The previous statement uses the SELECT statement to retrieve a single column called
prod_name from the Products table. The desired column name is specified right
after the seLECT keyword, and the FrRoM keyword specifies the name of the table from
which to retrieve the data. The output from this statement is shown in the following:

Output v

prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Raggedy Ann

King doll

Queen doll

Depending on the DBMS and client you are using, you may also see a message telling
you how many rows were retrieved and the processing time. For example, the MySQL
command line would display something like this:

9 rows in set (0.01 sec)

NOTE: Unsorted Data

If you tried this query yourself, you might have discovered that the data was
displayed in a different order than shown here. If this is the case, don’t
worry—it is working exactly as it is supposed to. If query results are not
explicitly sorted (we’ll get to that in the next lesson), then data will be returned
in no order of any significance. It may be the order in which the data was added
to the table, but it may not. As long as your query returned the same number of
rows, then it is working.

Retrieving Individual Columns

A simple SELECT statement similar to the one used above returns all the rows in a
table. Data is not filtered (so as to retrieve a subset of the results), nor is it sorted.
We’ll discuss these topics in the next few lessons.

15

TIP: Terminating Statements

Multiple SQL statements must be separated by semicolons (the ; character).
Most DBMSs do not require that a semicolon be specified after single state-
ments. But if your particular DBMS complains, you might have to add it there.
Of course, you can always add a semicolon if you wish. It’ll do no harm, even if
it is, in fact, not needed.

NOTE: SQL Statement and Case

It is important to note that SQL statements are not case sensitive, SO SELECT is
the same as select, which is the same as select. Many SQL developers find
that using uppercase for all SQL keywords and lowercase for column and table
names makes code easier to read and debug. However, be aware that while the
SQL language is case-insensitive, the names of tables, columns, and values
may not be (that depends on your DBMS and how it is configured).

TIP: Use of White Space

All extra white space within a SQL statement is ignored when that statement is
processed. SQL statements can be specified on one long line or broken up over
many lines. So, the following three statements are functionally identical:
SELECT prod_name

FROM Products;

SELECT prod name FROM Products;

SELECT
prod_name
FROM
Products;

Most SQL developers find that breaking up statements over multiple lines
makes them easier to read and debug.

16 LESSON 2: Retrieving Data

Retrieving Multiple Columns

To retrieve multiple columns from a table, the same SELECT statement is used. The
only difference is that multiple column names must be specified after the SELECT
keyword, and each column must be separated by a comma.

TIP: Take Care with Commas

When selecting multiple columns, be sure to specify a comma between each col-
umn name, but not after the last column name. Doing so will generate an error.

The following SELECT statement retrieves three columns from the Products table:

input v

SELECT prod id, prod name, prod price
FROM Products;

Analysis v

Just as in the prior example, this statement uses the SELECT statement to retrieve data
from the Products table. In this example, three column names are specified, each
separated by a comma. The output from this statement is shown below:

Output v

prod_id prod_name prod price
BNBGO1 Fish bean bag toy 3.49
BNBGO02 Bird bean bag toy 3.49
BNBGO03 Rabbit bean bag toy 3.49
BRO1 8 inch teddy bear 5.99
BRO2 12 inch teddy bear 8.99
BRO3 18 inch teddy bear 11.99
RGANO1 Raggedy Ann 4.99
RYLO1 King doll 9.49
RYLO2 Queen dool 9.49

NOTE: Presentation of Data

SQL statements typically return raw, unformatted data, and different DBMSs
and clients may display the data differently (with different alignment or decimal
places, for example). Data formatting is a presentation issue, not a retrieval
issue. Therefore, presentation is typically specified in the application that dis-
plays the data. Actual retrieved data (without application-provided formatting) is
rarely used.

Retrieving Distinct Rows 17

Retrieving All Columns

In addition to being able to specify desired columns (one or more, as seen above),
SELECT statements can also request all columns without having to list them individu-
ally. This is done using the asterisk (*) wildcard character in lieu of actual column
names, as follows:

input v

SELECT *
FROM Products;

Analysis v

When a wildcard (*) is specified, all the columns in the table are returned. The column
order will typically, but not always, be the physical order in which the columns appear
in the table definition. However, SQL data is seldom displayed as is. (Usually, it is
returned to an application that formats or presents the data as needed). As such, this
should not pose a problem.

CAUTION: Using Wildcards

As a rule, you are better off not using the * wildcard unless you really do need
every column in the table. Even though use of wildcards may save you the time
and effort needed to list the desired columns explicitly, retrieving unneces-
sary columns usually slows down the performance of your retrieval and your
application.

TIP: Retrieving Unknown Columns

There is one big advantage to using wildcards. As you do not explicitly specify
column names (because the asterisk retrieves every column), it is possible to
retrieve columns whose names are unknown.

Retrieving Distinct Rows

As you have seen, SELECT returns all matched rows. But what if you do not want
every occurrence of every value? For example, suppose you want the vendor ID of all
vendors with products in your Products table:

input v

SELECT vend id
FROM Products;

18 LESSON 2: Retrieving Data

The SELECT statement returned nine rows (even though there are only three unique
vendors in that list) because there are nine products listed in the Products table. So
how could you retrieve a list of distinct values?

The solution is to use the prsTINCT keyword, which, as its name implies, instructs the

database to only return distinct values.

input v

SELECT DISTINCT Vend_id
FROM Products;

Analysis v

SELECT DISTINCT vend_id tells the DBMS to only return distinct (unique) vend _id
rows, and so only three rows are returned, as seen in the following output. If used, the
DISTINCT keyword must be placed directly in front of the column names.

Output v

CAUTION: Can’t Be Partially DISTINCT

The prsTINCT keyword applies to all columns, not just the one it precedes. If
you were to specify SELECT DISTINCT vend id, prod price, six of the nine
rows would be retrieved because the combined specified columns produced
six unique combinations. To see the difference, try these two statements and
compare the results:

SELECT DISTINCT vend id, prod price FROM Products;

SELECT vend id, prod price FROM Products;

Limiting Results 19

Limiting Results

SELECT statements return all matched rows, possibly every row in the specified table.
What if you want to return just the first row or a set number of rows? This is doable,
but unfortunately, this is one of those situations where all SQL implementations are
not created equal.

In Microsoft SQL Server you can use the Top keyword to limit the top number of

entries, as seen here:

Input v

SELECT TOP 5 prod_name
FROM Products;

Output v

prod_name

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy

Analysis v

The previous statement uses the SELECT TOP 5 statement to retrieve just the first
five rows.

If you are using DB2, well, then you get to use SQL unique to that DBMS, like this:

input v

SELECT prod_name
FROM Products
FETCH FIRST 5 ROWS ONLY;

Analysis v

FETCH FIRST 5 ROWS ONLY does exactly what it suggests.

If you are using Oracle, you need to count rows based on ROWNUM (a row number
counter) like this:

input v

SELECT prod_name
FROM Products
WHERE ROWNUM <=5;

20 LESSON 2: Retrieving Data

If you are using MySQL, MariaDB, PostgreSQL, or SQLite, you can use the LIMIT
clause, as follows:

Input v

SELECT prod_name
FROM Products
LIMIT 5;

Analysis v

The previous statement uses the SELECT statement to retrieve a single column.
LIMIT 5 instructs the supported DBMSs to return no more than five rows. The output
from this statement is shown in the following code.

To get the next five rows, specify both where to start and the number of rows to
retrieve, like this:

Input v

SELECT prod_name
FROM Products
LIMIT 5 OFFSET 5;

Analysis v

LIMIT 5 OFFSET 5 instructs supported DBMSs to return five rows starting from
row 5. The first number is the number of rows to retrieve, and the second is where to
start. The output from this statement is shown in the following code:

Output v

prod_name

Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

So, L1MIT specifies the number of rows to return. LIMIT with an OFFSET specifies
where to start from. In our example, there are only nine products in the Products
table, so LIMIT 5 OFFSET 5 returned just four rows (as there was no fifth).

CAUTION: Row 0

The first row retrieved is row 0, not row 1. As such, LIMIT 1 OFFSET 1 will
retrieve the second row, not the first one.

Using Comments 21

TIP: MySQL, MariaDB, and SQLite Shortcut

MySQL, MariaDB, and SQLite support a shorthand version of LIMIT 4
OFFSET 3, enabling you to combine them as LIMIT 3, 4. Using this syntax,
the value before the , is the oFFSET and the value after the , is the nLIMIT
(yes, they are reversed, so be careful).

NOTE: Not ALL SQL Is Created Equal

| included this section on limiting results for one reason only—to demonstrate
that while SQL is usually quite consistent across implementations, you can’t
rely on it always being so. While very basic statements tend to be very portable,
more complex ones tend to be less so. Keep that in mind as you search for
SQL solutions to specific problems.

Using Comments

As you have seen, SQL statements are instructions that are processed by your DBMS.
But what if you wanted to include text that you’d not want processed and executed?
Why would you ever want to do this? Here are a few reasons:

» The SQL statements we’ve been using here are all very short and very
simple. But, as your SQL statements grow (in length and complexity),
you’ll want to include descriptive comments (for your own future reference
or for whoever has to work on the project next). These comments need to
be embedded in the SQL scripts, but they are obviously not intended for
actual DBMS processing. (For an example of this, see the create.sql and
populate.sql files used in Appendix B, “SQL Statement Syntax”).

» The same is true for headers at the top of a SQL file (one that is saving
SQL statements perhaps for future use), usually containing a description and
notes, and perhaps even programmer contact information. (This use case is
also seen in the Appendix B .sql files.).

» Another important use for comments is to temporarily stop SQL code from
being executed. If you were working with a long SQL statement, and wanted
to test just part of it, you could comment out some of the code so that DBMS
sees it as comments and ignores it.

Most DBMSs support several forms of comment syntax. We’ll start with inline comments:

input v

SELECT prod_name -- this is a comment
FROM Products;

22 LESSON 2: Retrieving Data

Analysis v

Comments may be embedded inline using -- (two hyphens). Any text on the same
line that is after the - - is considered comment text, making this a good option for
describing columns in a CREATE TABLE statement, for example.

Here is another form of inline comment (although less commonly supported):

input v

This is a comment
SELECT prod_name
FROM Products;

Analysis v

A # at the start of a line makes the entire line a comment. You can see this format
comment used in the accompanying create.sqgl and populate.sgl Scripts.

You can also create multiline comments and comments that stop and start anywhere
within the script:

Input v

/* SELECT prod name, vend id
FROM Products; */

SELECT prod_name

FROM Products;

Analysis v

/* starts a comment, and */ ends it. Anything between /* and */ is comment text.
This type of comment is often used to comment out code, as seen in this example.
Here, two SELECT statements are defined, but the first won’t execute because it has
been commented out.

Summary

In this lesson, you learned how to use the SQL SELECT statement to retrieve a single
table column, multiple table columns, and all table columns. You also learned how to
return distinct values and how to comment your code. And unfortunately, you were
also introduced to the fact that more complex SQL tends to be less portable SQL.
Next, you’ll learn how to sort the retrieved data.

Challenges 23

Challenges

1. Write a SQL statement to retrieve all customer IDs (cust_id) from the
Customers table.

2. The orderItems table contains every item ordered (and some were ordered
multiple times). Write a SQL statement to retrieve a list of the products
(prod_id) ordered (not every order, just a unique list of products). Here’s
a hint: you should end up with seven unique rows displayed.

3. Write a SQL statement that retrieves all columns from the customers table
and an alternate SELECT that retrieves just the customer ID. Use comments to
comment out one SELECT S0 as to be able to run the other. (And, of course,
test both statements.)

TIP: Where Are the Answers?

Challenge answers are on the book’s web page:
http://forta.com/books/0135182794.

http://forta.com/books/0135182794

This page intentionally left blank

LESSON 3
Sorting Retrieved Data

In this lesson, you will learn how to use the SELECT statement’s ORDER BY clause to
sort retrieved data as needed.

Sorting Data

As you learned in the last lesson, the following SQL statement returns a single column
from a database table. But look at the output. The data appears to be displayed in no
particular order at all.

input v

SELECT prod_name
FROM Products;

Output v

prod_name

Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Raggedy Ann

King doll

Queen doll

Actually, the retrieved data is not displayed in a mere random order. If unsorted, data
will typically be displayed in the order in which it appears in the underlying tables.
This could be the order in which the data was added to the tables initially. However,
if data was subsequently updated or deleted, the order will be affected by how the
DBMS reuses reclaimed storage space. The end result is that you cannot (and should
not) rely on the sort order if you do not explicitly control it. Relational database

26 LESSON 3: Sorting Retrieved Data

design theory states that the sequence of retrieved data cannot be assumed to have
significance if ordering was not explicitly specified.

NEW TERM: Clause

SQL statements are made up of clauses, some required and some optional.
A clause usually consists of a keyword and supplied data. An example of this is
the SELECT statement’s FrRoM clause, which you saw in the last lesson.

To explicitly sort data retrieved using a SELECT statement, you use the ORDER BY
clause. ORDER BY takes the name of one or more columns by which to sort the output.
Look at the following example:

Input v

SELECT prod_name
FROM Products
ORDER BY prod_name;

Analysis v

This statement is identical to the earlier statement, except it also specifies an ORDER BY
clause instructing the DBMS software to sort the data by the prod_name column. The
results are as follows:

Output v

prod_name

12 inch teddy bear
18 inch teddy bear
8 inch teddy bear
Bird bean bag toy
Fish bean bag toy
King doll

Queen doll

Rabbit bean bag toy
Raggedy Ann

CAUTION: Position of orDER BY Clause

When specifying an ORDER BY clause, be sure that it is the last clause in your
SELECT statement. If it is not the last clause, an error will be generated.

Sorting by Multiple Columns 27

TIP: Sorting by Nonselected Columns

Although more often than not the columns used in an OrRDER BY clause will be
ones selected for display, this is actually not required. It is perfectly legal to
sort data by a column that is not retrieved.

Sorting by Multiple Columns

It is often necessary to sort data by more than one column. For example, if you are
displaying an employee list, you might want to display it sorted by last name and first
name (first by last name, and then within each last name sort by first name). This type
of sort would be useful if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas
(just as you do when you are selecting multiple columns).

The following code retrieves three columns and sorts the results by two of them—first
by price and then by name.

input v

SELECT prod_id, prod_price, prod name
FROM Products
ORDER BY prod price, prod name;

Output v

prod_id prod price prod_name

BNBGO02 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO03 3.4900 Rabbit bean bag toy
RGANO1 4.9900 Raggedy Ann

BRO1 5.9900 8 inch teddy bear
BRO2 8.9900 12 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO3 11.9900 18 inch teddy bear

It is important to understand that when you are sorting by multiple columns, the sort
sequence is exactly as specified. In other words, using the output in the example
above, the products are sorted by the prod name column only when multiple rows
have the same prod price value. If all the values in the prod price column had
been unique, no data would have been sorted by prod_name.

28 LESSON 3: Sorting Retrieved Data

Sorting by Column Position

In addition to being able to specify sort order using column names, ORDER BY also
supports ordering specified by relative column position. The best way to understand
this is to look at an example:

Input v

SELECT prod_id, prod price, prod name
FROM Products
ORDER BY 2, 3;

Output v

prod id prod price prod name

BNBGO02 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO03 3.4900 Rabbit bean bag toy
RGANO1 4.9900 Raggedy Ann

BRO1 5.9900 8 inch teddy bear
BRO2 8.9900 12 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO3 11.9900 18 inch teddy bear

Analysis v

As you can see, the output is identical to that of the query above. The difference here
is in the orRDER BY clause. Instead of specifying column names, you specify the rela-
tive positions of selected columns in the SELECT list. ORDER BY 2 means sort by the
second column in the SELECT list, the prod_price column. ORDER BY 2, 3 means
sort by prod_price and then by prod name.

The primary advantage of this technique is that it saves retyping the column names.
But there are some downsides too. First, not explicitly listing column names increases
the likelihood of you mistakenly specifying the wrong column. Second, it is all too
easy to mistakenly reorder data when making changes to the seLECT list (forgetting to
make the corresponding changes to the orRDER BY clause). And finally, obviously you
cannot use this technique when sorting by columns that are not in the SELECT list.

TIP: Sorting by Nonselected Columns

This technique cannot be used when sorting by columns that do not appear
in the sELECT list. However, you can mix and match actual column names and
relative column positions in a single statement if needed.

Specifying Sort Direction 29

Specifying Sort Direction

Data sorting is not limited to ascending sort orders (from a to z). Although this is the
default sort order, the ORDER BY clause can also be used to sort in descending order
(from z to 2). To sort by descending order, you must specify the keyword DESC.

The following example sorts the products by price in descending order (most
expensive first):

input v

SELECT prod_id, prod price, prod name
FROM Products
ORDER BY prod_price DESC;

Output v

prod_id prod price prod_name

BRO3 11.9900 18 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO2 8.9900 12 inch teddy bear
BRO1 5.9900 8 inch teddy bear
RGANO1 4.9900 Raggedy Ann

BNBGO1 3.4900 Fish bean bag toy
BNBGO02 3.4900 Bird bean bag toy
BNBGO03 3.4900 Rabbit bean bag toy

But what if you were to sort by multiple columns? The following example sorts the
products in descending order (most expensive first), plus product name:

input v

SELECT prod_id, prod price, prod name
FROM Products
ORDER BY prod price DESC, prod name;

Output v

prod_id prod_price prod_name

BRO3 11.9900 18 inch teddy bear
RYLO1 9.4900 King doll

RYLO2 9.4900 Queen doll

BRO2 8.9900 12 inch teddy bear
BRO1 5.9900 8 inch teddy bear
RGANO1 4.9900 Raggedy Ann

BNBGO02 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO03 3.4900 Rabbit bean bag toy

30 LESSON 3: Sorting Retrieved Data

Analysis v

The pEsc keyword only applies to the column name that directly precedes it. In the
example above, DEsC was specified for the prod price column, but not for the
prod_name column. Therefore, the prod_price column is sorted in descending
order, but the prod_name column (within each price) is still sorted in standard
ascending order.

CAUTION: Sorting Descending on Multiple Columns

If you want to sort descending on multiple columns, be sure each column has
its own DESC keyword.

It is worth noting that DESC is short for DESCENDING, and both keywords may be

used. The opposite of DESC is ASC (or ASCENDING), which may be specified to sort in
ascending order. In practice, however, asc is not usually used because ascending order
is the default sequence (and is assumed if neither Asc nor DESC is specified).

TIP: Case Sensitivity and Sort Orders

When you are sorting textual data, is A the same as a? And does a come before
B or after z? These are not theoretical questions, and the answers depend on
how the database is set up.

In dictionary sort order, & is treated the same as a, and that is the default
behavior for most DBMSs. However, most good DBMSs enable database
administrators to change this behavior if needed. (If your database contains lots
of foreign language characters, this might become necessary.)

The key here is that, if you do need an alternate sort order, you may not be able
to accomplish this with a simple orRDER BY clause. You may need to contact
your database administrator.

Summary

In this lesson, you learned how to sort retrieved data using the SELECT statement’s
ORDER BY clause. This clause, which must be the last in the SELECT statement, can be
used to sort data on one or more columns as needed.

Challenges 31

Challenges

1. Write a SQL statement to retrieve all customer names (cust_names) from
the customers table, and display the results sorted from z to a.

2. Write a SQL statement to retrieve customer ID (cust_id) and order number
(order num) from the orders table, and sort the results first by customer ID
and then by order date in reverse chronological order.

3. Our fictitious store obviously prefers to sell more expensive items, and
lots of them. Write a SQL statement to display the quantity and price
(item_price) from the orderItems table, sorted with the highest quantity
and highest price first.

4. What is wrong with the following SQL statement? (Try to figure it out
without running it):

SELECT vend_name,
FROM Vendors
ORDER vend_name DESC;

This page intentionally left blank

LESSON 4
Filtering Data

In this lesson, you will learn how to use the SELECT statement’s WHERE clause to
specify search conditions.

Using the wHERE Clause

Database tables usually contain large amounts of data, and you seldom need to
retrieve all the rows in a table. More often than not you’ll want to extract a subset of
the table’s data as needed for specific operations or reports. Retrieving just the data
you want involves specifying search criteria, also known as a filter condition.

Within a sELECT statement, data is filtered by specifying search criteria in the WHERE
clause. The wHERE clause is specified right after the table name (the FrRomM clause) as
follows:

input v

SELECT prod name, prod price
FROM Products
WHERE prod_price = 3.49;

Analysis v

This statement retrieves two columns from the products table, but instead of return-
ing all rows, only rows with a prod_price value of 3.49 are returned, as follows:

Output v

prod_name prod_price
Fish bean bag toy 3.49

Bird bean bag toy 3.49

Rabbit bean bag toy 3.49

34 LESSON 4: Filtering Data

This example uses a simple equality test: It checks to see if a column has a specified
value, and it filters the data accordingly. But SQL lets you do more than just test for
equality.

TIP: How Many Zeros?

As you try the examples in this lesson, you may see results displayed as 3.49,
3.490, 3.4900, and so on. This behavior tends to be somewhat DBMS specific,
as it is tied to the datatypes used and their default behavior. So, if your output
is a little different from mine, don’t sweat it; after all, 3.49 and 3.4900 are
mathematically identical anyway.

TIP: SQL Versus Application Filtering

Data can also be filtered at the client application level, not in the DBMS but

by whatever tool or application retrieves the data from the DBMS. To do this,
the SQL seLECT statement retrieves more data than is actually required for the
client application, and the client code loops through the returned data to extract
just the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized

to perform filtering quickly and efficiently. Making the client application (or
development language) do the database’s job will dramatically impact applica-
tion performance and will create applications that cannot scale properly. In
addition, if data is filtered at the client, the server has to send unneeded data
across the network connections, resulting in a waste of network bandwidth
usage.

CAUTION: weHeEre Clause Position

When using both oRDER BY and WHERE clauses, make sure that oRDER BY
comes after the wHERE. Otherwise, an error will be generated. (See Lesson 3,
“Sorting Retrieved Data,” for more information on using ORDER BY.)

The wHERE Clause Operators

The first wHERE clause we looked at tests for equality—determining if a column
contains a specific value. SQL supports a whole range of conditional operators as
listed in Table 4.1.

The WHERE Clause Operators

TABLE 4.1 wHERE Clause Operators

35

Operator Description

= Equality

<> Nonequality

1= Nonequality

< Less than

<= Less than or equal to
1< Not less than

> Greater than

>= Greater than or equal to
!> Not greater than
BETWEEN Between two specified values
IS NULL Is a NULL value

CAUTION: Operator Compatibility

Some of the operators listed in Table 4.1 are redundant; for example, <> is the
same as !=. !< (not less than) accomplishes the same effect as >= (greater
than or equal to). Not all of these operators are supported by all DBMSs. Refer
to your DBMS documentation to determine exactly what it supports.

Checking Against a Single Value

We have already seen an example of testing for equality. Let’s take a look at a few
examples to demonstrate the use of other operators.

This first example lists all products that cost less than $10:

input v

SELECT prod name, prod price
FROM Products
WHERE prod price < 10;

36 LESSON 4: Filtering Data

Output v

prod_name prod price
Fish bean bag toy 3.49

Bird bean bag toy 3.49
Rabbit bean bag toy 3.49

8 inch teddy bear 5.99

12 inch teddy bear 8.99
Raggedy Ann 4.99

King doll 9.49

Queen doll 9.49

This next statement retrieves all products costing $10 or less (although the result will
be the same as in the previous example because there are no items with a price of
exactly $10):

Input v

SELECT prod _name, prod price
FROM Products
WHERE prod price <= 10;

Checking for Nonmatches

This next example lists all products not made by vendor DLLO1:

Input v

SELECT vend id, prod name
FROM Products
WHERE vend_id <> 'DLLO1';

Output v

vend_id prod_name

BRSO01 8 inch teddy bear
BRSO01 12 inch teddy bear
BRSO1 18 inch teddy bear
FNGO1 King doll

FNGO1 Queen doll

The WHERE Clause Operators 37

TIP: When to Use Quotes

If you look closely at the conditions used in the above WHERE clauses, you will
notice that some values are enclosed within single quotes, and others are not.
The single quotes are used to delimit a string. If you are comparing a value
against a column that is a string datatype, the delimiting quotes are required.
Quotes are not used to delimit values used with numeric columns.

The following is the same example, except that this one uses the ! = operator instead
of <>:

input v

SELECT vend_id, prod_name
FROM Products
WHERE vend id != 'DLLO1';

CAUTION: 1= or <>?

Usually, you can use != and <> interchangeably. However, not all DBMSs
support both forms of the nonequality operator. If in doubt, consult your DBMS
documentation.

Checking for a Range of Values

To check for a range of values, you can use the BETWEEN operator. Its syntax is a
little different from other wHERE clause operators because it requires two values: the
beginning and end of the range. The BETWEEN operator can be used, for example, to
check for all products that cost between $5 and $10 or for all dates that fall between
specified start and end dates.

The following example demonstrates the use of the BETWEEN operator by retrieving all
products with a price between $5 and $10:

input v

SELECT prod name, prod price
FROM Products
WHERE prod_price BETWEEN 5 AND 10;

38 LESSON 4: Filtering Data
Output v

prod_name prod price

8 inch teddy bear 5.99

12 inch teddy bear 8.99

King doll 9.49

Queen doll 9.49

Analysis v

As seen in this example, when BETWEEN is used, two values must be specified—the
low end and high end of the desired range. The two values must also be separated by
the aND keyword. BETWEEN matches all the values in the range, including the specified
start and end values.

Checking for No Value

When a table is created, the table designer can specify whether or not individual
columns can contain no value. When a column contains no value, it is said to contain
a NULL value.

NEW TERM: NULL
No value, as opposed to a field containing o, or an empty string, or just spaces.

To determine if a value is NULL, you cannot simply check to see if = NULL. Instead,
the SELECT statement has a special wHERE clause that you can use to check for
columns with NULL values—the 1s NULL clause. The syntax looks like this:

Input v

SELECT prod_name
FROM Products
WHERE prod_price IS NULL;

This statement returns a list of all products that have no price (an empty
prod_price field, not a price of 0), and because there are none, no data is returned.
The customers table, however, does contain columns with NULL values—the
cust_email column will contain NULL if a customer has no email address on file:

Input v

SELECT cust_name
FROM Customers
WHERE cust_email IS NULL;

Summary 39

Output v

cust_name

Kids Place
The Toy Store

TIP: DBMS-Specific Operators

Many DBMSs extend the standard set of operators, providing advanced filtering
options. Refer to your DBMS documentation for more information.

CAUTION: ~urL and Nonmatches

You might expect that when you filter to select all rows that do not have a
particular value, rows with a NULL will be returned. But they will not. NULL is
strange this way, and rows with NULL in the filter column are not returned when
filtering for matches or when filtering for nonmatches.

Summary

In this lesson, you learned how to filter returned data using the SELECT statement’s
WHERE clause. You learned how to test for equality, nonequality, greater than and less
than, and value ranges, as well as for NULL values.

40 LESSON 4: Filtering Data

Challenges

1. Write a SQL statement to retrieve the product ID (prod_id) and name
(prod_name) from the Products table, returning only products with a price
of 9.49.

2. Write a SQL statement to retrieve the product ID (prod_id) and name
(prod_name) from the Products table, returning only products with a price
of 9 or more.

3. Now let’s combine Lessons 3 and 4. Write a SQL statement that retrieves the
unique list of order numbers (order num) from the orderItems table, which
contain 100 or more of any item.

4. One more. Write a SQL statement that returns the product name (prod_name)
and price (prod_price) from Products for all products priced between 3
and 6. Oh, and sort the results by price. (There are multiple solutions to this
one, and we’ll revisit it in the next lesson, but you can solve it using what
you’ve learned thus far.)

LESSON 5
Advanced Data Filtering

In this lesson, you'll learn how to combine WHERE clauses to create powerful and
sophisticated search conditions. You'll also learn how to use the NOT and IN
operators.

Combining wHERE Clauses

All the wHERE clauses introduced in Lesson 4, “Filtering Data,” filter data using a
single criterion. For a greater degree of filter control, SQL lets you specify multiple
wHERE clauses. These clauses may be used in two ways: as AND clauses or as OrR
clauses.

NEW TERM: Operator

A special keyword used to join or change clauses within a WHERE clause. Also
known as logical operators.

Using the axp Operator

To filter by more than one column, you use the AND operator to append conditions to
your WHERE clause. The following code demonstrates this:

input v

SELECT prod_id, prod price, prod name
FROM Products
WHERE vend_id = 'DLLO1' AND prod price <= 4;

Analysis v

The above SQL statement retrieves the product name and price for all products made
by vendor DLLO1 as long as the price is $4 or less. The WHERE clause in this SELECT
statement is made up of two conditions, and the keyword AND is used to join them.
AND instructs the database management system software to return only rows that meet
all the conditions specified. If a product is made by vendor DLL01, but it costs more

42 LESSON 5: Advanced Data Filtering

than $4, it is not retrieved. Similarly, products that cost less than $4 that are made by
a vendor other than the one specified are not to be retrieved. The output generated by
this SQL statement is as follows:

Output v

prod_id prod_price prod_name

BNBGO02 3.4900 Bird bean bag toy
BNBGO1 3.4900 Fish bean bag toy
BNBGO3 3.4900 Rabbit bean bag toy

NEW TERM: aND

A keyword used in a WHERE clause to specify that only rows matching all the
specified conditions should be retrieved.

The example just used contained a single AND clause and was thus made up of two
filter conditions. Additional filter conditions could be used as well, each separated by
an aND keyword.

NOTE: No orDER BY Clause Specified

In the interests of saving space (and your typing), | omitted the ORDER BY
clause in many of these examples. As such, it is entirely possible that your
output won’t exactly match the output in the book. While the number of returned
rows should always match, their order may not. Of course, feel free to add an
ORDER BY clause if you'd like; it needs to go after the wHERE clause.

Using the or Operator

The or operator is exactly the opposite of AND. The or operator instructs the database
management system software to retrieve rows that match either condition. In fact,
most of the better DBMSs will not even evaluate the second condition in an OR WHERE
clause if the first condition has already been met. (If the first condition was met, the
row would be retrieved regardless of the second condition.)

Look at the following SELECT statement:

Input v

SELECT prod id, prod price, prod name
FROM Products
WHERE vend _id = 'DLLO1' OR vend_id = 'BRS01';

Combining WHERE Clauses 43

Analysis v

The above SQL statement retrieves the product name and price for any products
made by either of the two specified vendors. The or operator tells the DBMS to
match either condition, not both. If an AND operator were used here, no data would be
returned (as it would create a wHERE clause that would match no rows). The output
generated by this SQL statement is as follows:

Output v

prod name prod_price
Fish bean bag toy 3.4900
Bird bean bag toy 3.4900
Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900
Raggedy Ann 4.9900

NEW TERM: or

A keyword used in a WHERE clause to specify that any rows matching either of
the specified conditions should be retrieved.

Understanding Order of Evaluation

WHERE clauses can contain any number of AND and or operators. Combining the two
enables you to perform sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. To demonstrate
this, look at an example. You need a list of all products costing $10 or more made by
vendors brLo1 and BRs01. The following SELECT statement uses a combination of AND
and OR operators to build a WHERE clause:

input v

SELECT prod_name, prod price

FROM Products

WHERE vend id = 'DLLO1' OR vend id = 'BRSO1'
AND prod_price >= 10;

44 LESSON 5: Advanced Data Filtering
Output v

prod_name prod price

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

18 inch teddy bear 11.9900

Raggedy Ann 4.9900

Analysis v

Look at the results above. Four of the rows returned have prices less than $10—so,
obviously, the rows were not filtered as intended. Why did this happen? The answer is
the order of evaluation. SQL (like most languages) processes AND operators before or
operators. When SQL sees the above wHERE clause, it reads any products costing $10
or more made by vendor BRsS01, and any products made by vendor DLL01 regardless
of price. In other words, because AND ranks higher in the order of evaluation, the
wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related operators.
Take a look at the following SELECT statement and output:

Input v

SELECT prod _name, prod price

FROM Products

WHERE (Vend_id = 'DLLO1' OR Vend_id = 'BRS01')
AND prod _price >= 10;

Output v
prod_name prod_price
18 inch teddy bear 11.9900

Analysis v

The only difference between this SELECT statement and the earlier one is that, in this
statement, the first two WHERE clause conditions are enclosed within parentheses. As
parentheses have a higher order of evaluation than either AND or OR operators, the
DBMS first filters the or condition within those parentheses. The SQL statement then
becomes any products made by either vendor DLLO1 or vendor BRS01 costing $10 or
greater, which is exactly what we want.

Using the IN Operator 45

TIP: Using Parentheses in wHERE Clauses

Whenever you write wHERE clauses that use both AND and Or operators, use
parentheses to explicitly group operators. Don’t ever rely on the default evalu-
ation order, even if it is exactly what you want. There is no downside to using
parentheses, and you are always better off eliminating any ambiguity.

Using the 1N Operator

The 1N operator is used to specify a range of conditions, any of which can be matched.
IN takes a comma-delimited list of valid values, all enclosed within parentheses. The
following example demonstrates this:

input v

SELECT prod name, prod price

FROM Products

WHERE vend _id IN ('DLLO1', 'BRSO01')
ORDER BY prod name;

Output v

prod_name prod_price
12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900
Bird bean bag toy 3.4900
Fish bean bag toy 3.4900
Rabbit bean bag toy 3.4900
Raggedy Ann 4.9900

Analysis v

The sELECT statement retrieves all products made by vendor pDLLo1 and vendor BRS01.
The 1N operator is followed by a comma-delimited list of valid values, and the entire
list must be enclosed within parentheses.

If you are thinking that the 1N operator accomplishes the same goal as ORr, you are right.
The following SQL statement accomplishes the exact same thing as the example above:

input v

SELECT prod name, prod price

FROM Products

WHERE vend_id = 'DLLO1' OR vend_id = 'BRSO01'
ORDER BY prod_name;

46 LESSON 5: Advanced Data Filtering
Output v

prod_name prod price

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900
Fish bean bag toy 3.4900
Rabbit bean bag toy 3.4900
Raggedy Ann 4.9900

Why use the 1N operator? The advantages are

» When you are working with long lists of valid options, the IN operator
syntax is far cleaner and easier to read.

» The order of evaluation is easier to manage when 1IN is used in conjunction
with other AND and OR operators.

» 1IN operators almost always execute more quickly than lists of OrR operators
(although you’ll not see any performance difference with very short lists like
the ones we’re using here).

» The biggest advantage of IN is that the IN operator can contain another
SELECT statement, enabling you to build highly dynamic wHERE clauses.
You’ll look at this in detail in Lesson 11, “Working with Subqueries.”

NEW TERM: 1N

A keyword used in a WHERE clause to specify a list of values to be matched
using an orR comparison.

Using the NoT Operator

The wHERE clause’s NOT operator has one function and one function only: NOT negates
whatever condition comes next. Because NOT is never used by itself (it is always used
in conjunction with some other operator), its syntax is a little different from all other
operators. Unlike other operators, the NoT keyword can be used before the column to
filter on, not just after it.

NEW TERM: NoT
A keyword used in a WHERE clause to negate a condition.

Using the NOT Operator 47

The following example demonstrates the use of NOT. To list the products made by all
vendors except vendor DLL01, you can write the following:

input v

SELECT prod_name

FROM Products

WHERE NOT Vend_id = 'DLLO1"
ORDER BY prod_name;

Output v

prod_name

12 inch teddy bear
18 inch teddy bear
8 inch teddy bear
King doll
Queen doll

Analysis v

The noT here negates the condition that follows it; so instead of matching vend_id to
DLLO01, the DBMS matches vend_id to anything that is not DLLO1.

The preceding example also could have been accomplished using the <> operator, as
follows:

input v

SELECT prod_name

FROM Products

WHERE vend id <> 'DLLO1'
ORDER BY prod_name;

Output v

prod_name

12 inch teddy bear
18 inch teddy bear
8 inch teddy bear
King doll
Queen doll

48 LESSON 5: Advanced Data Filtering

Analysis v

Why use noT? Well, for simple wHERE clauses such as the ones shown here, there
really is no advantage to using NOT. NOT is useful in more complex clauses. For exam-
ple, using NOT in conjunction with an IN operator makes it simple to find all rows that
do not match a list of criteria.

NOTE: NoT in MariaDB

MariaDB supports the use of NOT to negate IN, BETWEEN, and EXISTS clauses.
This is different from most DBMSs that allow NOT to be used to negate any
conditions.

Summary

This lesson picked up where the last lesson left off and taught you how to combine
WHERE clauses with the AND and or operators. You also learned how to explicitly
manage the order of evaluation and how to use the IN and NOT operators.

Challenges 49

Challenges

1. Write a SQL statement to retrieve the vendor name (vend_name) from the
Vendors table, returning only vendors in California (this requires filtering
by both country [usa] and state [ca]; after all, there could be a California
outside of the USA). Here’s a hint: the filter requires matching strings.

2. Write a SQL statement to find all orders where at least 100 of items
BRO1, BRO2, or BR03 were ordered. You’ll want to return order number
(order num), product ID (prod_id), and quantity for the orderItems table,
filtering by both the product ID and quantity. Here’s a hint: depending on
how you write your filter, you may need to pay special attention to order
of evaluation.

3. Now let’s revisit a challenge from the previous lesson. Write a SQL statement
that returns the product name (prod_name) and price (prod_price) from
products for all products priced between 3 and 6. Use an AND, and sort the
results by price.

4. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

SELECT vend_name

FROM Vendors

ORDER BY vend_name

WHERE vend_ country = 'USA' AND vend_ state = 'CA';

This page intentionally left blank

Using Wildcard Filtering

In this lesson, you'll learn what wildcards are, how they are used, and how to perform
wildcard searches using the LIKE operator for sophisticated filtering of retrieved data.

Using the LIKE Operator

All the previous operators we studied filter against known values. Be it matching one
or more values, testing for greater-than or less-than known values, or checking a range
of values, the common denominator is that the values used in the filtering are known.

But filtering data that way does not always work. For example, how could you search
for all products that contained the text bean bag within the product name? That cannot
be done with simple comparison operators; that’s a job for wildcard searching. Using
wildcards, you can create search patterns that can be compared against your data. In
this example, if you want to find all products that contain the words bean bag, you can
construct a wildcard search pattern enabling you to find that bean bag text anywhere
within a product name.

Wildcards
Special characters used to match parts of a value.

Search pattern

A search condition made up of literal text, wildcard characters, or any combina-
tion of the above.

The wildcards themselves are actually characters that have special meanings within
SQL wHERE clauses, and SQL supports several different wildcard types.

To use wildcards in search clauses, you must use the LIKE operator. LIKE instructs
the DBMS that the following search pattern is to be compared using a wildcard match
rather than a straight equality match.

52 LESSON 6: Using Wildcard Filtering

Predicate

When is an operator not an operator? When it is a “predicate.” Technically, LIKE
is a predicate, not an operator. The end result is the same. Just be aware of
this term in case you run across it in SQL documentation or manuals.

Wildcard searching can only be used with text fields (strings); you can’t use wildcards
to search fields of nontext datatypes.

The Percent Sign (=) Wildcard

The most frequently used wildcard is the percent sign (%). Within a search string,
% means match any number of occurrences of any character. For example, to find all
products that start with the word Fish, you can issue the following SELECT statement:

Input

SELECT prod_id, prod name
FROM Products
WHERE prod name LIKE 'Fish%';

Output

prod_id prod_name

BNBGO1 Fish bean bag toy
Analysis

This example uses a search pattern of 'Fish%'. When this clause is evaluated, any
value that starts with Fish will be retrieved. The % tells the DBMS to accept any
characters after the word Fish, regardless of how many characters there are.

Case Sensitivity

Depending on our DBMS and how it is configured, searches may be case
sensitive, in which case 'fish%' would not match Fish bean bag toy.

Wildcards can be used anywhere within the search pattern, and multiple wildcards
may be used as well. The following example uses two wildcards, one at either end of
the pattern:

Using the LIKE Operator 53

Input

SELECT prod_id, prod_name
FROM Products
WHERE prod name LIKE '%$bean bag%';

Output

prod_id prod_name

BNBGO1 Fish bean bag toy
BNBGO02 Bird bean bag toy
BNBGO03 Rabbit bean bag toy
Analysis

The search pattern ' $bean bag%' means match any value that contains the text bean
bag anywhere within it, regardless of any characters before or after that text.

Wildcards can also be used in the middle of a search pattern, although that is rarely
useful. The following example finds all products that begin with an F and end with a y.

Input

SELECT prod_name
FROM Products
WHERE prod name LIKE 'F%y';

Searching for Partial Email Addresses

There is one situation in which wildcards may indeed be useful in the middle
of a search pattern, and that is looking for email addresses based on a partial
address, such as WHERE email 'LIKE b%@forta.com'.

It is important to note that, in addition to matching one or more characters, % also
matches zero characters. % represents zero, one, or more characters at the specified
location in the search pattern.

54 LESSON 6: Using Wildcard Filtering

Watch for Trailing Spaces

Some DBMSs pad field contents with spaces. For example, if a column expects
50 characters and the text stored is Fish bean bag toy (17 characters),

33 spaces may be appended to the text so as to fully fill the column. This
padding usually has no real impact on data and how it is used, but it could
negatively affect the justused SQL statement. The clause WHERE prod name
LIKE 'F%y' Will only match prod name if it starts with F and ends with y, and
if the value is padded with spaces, then it will not end with y and so Fish bean
bag toy Will not be retrieved. One simple solution to this problem is to append
a second % to the search pattern. 'rF2ys ' will also match characters (or spaces)
after the y. A better solution would be to trim the spaces using functions, as
you will learn in Lesson 8, “Using Data Manipulation Functions.”

Watch for NnULL

It may seem that the % wildcard matches anything, but there is one exception:
NULL. Not even the clause WHERE prod name LIKE '%' Will match a row with
the value NULL as the product name.

The Underscore () Wildcard

Another useful wildcard is the underscore (_). The underscore is used just like %,
but instead of matching multiple characters, the underscore matches just a single
character.

DB2 Wildcards
The _wildcard is not supported by DB2.

Take a look at this example:

Input

SELECT prod id, prod name
FROM Products
WHERE prod name LIKE ' inch teddy bear';

Watch for Trailing Spaces

As in the previous example, you may have to append a wildcard to the pattern
for this example to work.

Using the LIKE Operator 55

Output

prod id prod_name

BRO2 12 inch teddy bear
BRO3 18 inch teddy bear
Analysis

The search pattern used in this wHERE clause specified two wildcards followed by
literal text. The results shown are the only rows that match the search pattern: the
underscore matches 12 in the first row and 18 in the second row. The 8 inch teddy
bear product did not match because the search pattern required two wildcard matches,
not one. By contrast, the following SELECT statement uses the % wildcard and returns
three matching products:

Input

SELECT prod_id, prod_name
FROM Products
WHERE prod name LIKE '% inch teddy bear';

Output

prod id prod name

BRO1 8 inch teddy bear
BRO2 12 inch teddy bear
BNR3 18 inch teddy bear

Unlike %, which can match zero characters, _always matches one character—no more
and no less.

The Brackets ([1) Wildcard

The brackets ([]) wildcard is used to specify a set of characters, any one of which
must match a character in the specified position (the location of the wildcard).

Sets Are Not Commonly Supported

Unlike the wildcards described thus far, the use of [] to create sets is not
supported by all DBMSs. Sets are supported in Microsoft SQL Server, but are
not supported in MySQL, Oracle, DB2, and SQLite. Consult your DBMS documen-
tation to determine if sets are supported.

56 LESSON 6: Using Wildcard Filtering

For example, to find all contacts whose names begin with the letter g or the letter M,
you can do the following:

Input

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE ' [JM]%'
ORDER BY cust_contact;

Output

cust_contact
Jim Jones

John Smith
Michelle Green

Analysis

The wHERE clause in this statement is ' [gM] %'. This search pattern uses two different
wildcards. The [gM] matches any contact name that begins with either of the letters
within the brackets, and it also matches only a single character. Therefore, any names
longer than one character will not match. The ¢ wildcard after the [gM] matches any
number of characters after the first character, returning the desired results.

This wildcard can be negated by prefixing the characters with * (the caret character).
For example, the following matches any contact name that does not begin with the let-
ter J or the letter M (the opposite of the previous example):

Input

SELECT cust_contact

FROM Customers

WHERE cust contact LIKE '["JM]%'
ORDER BY cust_contact;

Of course, you can accomplish the same result using the NoT operator. The only
advantage of * is that it can simplify the syntax if you are using multiple WHERE
clauses:

Summary 57

Input

SELECT cust_contact

FROM Customers

WHERE NOT cust contact LIKE ' [JM]%'
ORDER BY cust_contact;

Tips for Using Wildcards

As you can see, SQL’s wildcards are extremely powerful. But that power comes
with a price: wildcard searches typically take far longer to process than any other
search types discussed previously. Here are some rules to keep in mind when using
wildcards:

» Don’t overuse wildcards. If another search operator will do, use it instead.

» When you do use wildcards, try not to use them at the beginning of the
search pattern unless absolutely necessary. Search patterns that begin with
wildcards are the slowest to process.

» Pay careful attention to the placement of the wildcard symbols. If they are

misplaced, you might not return the data you intended.

Having said that, wildcards are an important and useful search tool, and one that you
will use frequently.

Summary

In this lesson, you learned what wildcards are and how to use SQL wildcards within
your WHERE clauses. You also learned that wildcards should be used carefully and
never overused.

58 LESSON 6: Using Wildcard Filtering

Challenges

1. Write a SQL statement to retrieve the product name (prod_name) and
description (prod_desc) from the Products table, returning only products
where the word toy is in the description.

2. Now let’s flip things around. Write a SQL statement to retrieve the product
name (prod_name) and description (prod_desc) from the products
table, returning only products where the word toy doesn’t appear in the
description. And this time, sort the results by product name.

3. Write a SQL statement to retrieve the product name (prod_name) and
description (prod_desc) from the Products table, returning only products
where both the words toy and carrots appear in the description. There are
a couple of ways to do this, but for this challenge use AND and two LIKE
comparisons.

4. This next one is a little trickier. I didn’t show you this syntax specifically, but
see whether you can figure it out anyway based on what you have learned
thus far. Write a SQL statement to retrieve the product name (prod_name)
and description (prod_desc) from the Products table, returning only
products where both the words toy and carrots appear in the description in
that order (the word toy before the word carrots). Here’s a hint: you’ll only
need one LIKE with three $ symbols to do this.

Creating Calculated Fields

In this lesson, you will learn what calculated fields are, how to create them, and how
to use aliases to refer to them from within your application.

Understanding Calculated Fields

Data stored within a database’s tables is often not available in the exact format needed
by your applications. Here are some examples:

» You need to display a field containing the name of a company along with the
company’s location, but that information is stored in separate table columns.

» City, state, and ZIP codes are stored in separate columns (as they should be),
but your mailing label printing program needs them retrieved as one
correctly formatted field.

» Column data is in mixed upper- and lowercase, and your report needs all
data presented in uppercase.

» An OrderItems table stores item price and quantity, but not the expanded
price (price multiplied by quantity) of each item. To print invoices, you need
that expanded price.

» You need total, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your
application needs. Rather than retrieve the data as it is and then reformat it within your
client application or report, what you really want is to retrieve converted, calculated,
or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns that we have retrieved
in the lessons thus far, calculated fields don’t actually exist in database tables. Rather,
a calculated field is created on-the-fly within a SQL SELECT statement.

60 LESSON 7: Creating Calculated Fields

Field

Essentially means the same thing as column and often used interchangeably,
although database columns are typically called columns and the term fields is
usually used in conjunction with calculated fields.

It is important to note that only the database knows which columns in a SELECT state-
ment are actual table columns and which are calculated fields. From the perspective
of a client (for example, your application), a calculated field’s data is returned in the
same way as data from any other column.

Client Versus Server Formatting

Many of the conversions and reformatting that can be performed within SQL
statements can also be performed directly in your client application. However, as
a rule, it is far quicker to perform these operations on the database server than
it is to perform them within the client.

Concatenating Fields

To demonstrate working with calculated fields, let’s start with a simple example—
creating a title that is made up of two columns.

The vendors table contains vendor name and address information. Imagine that
you are generating a vendor report and need to list the vendor location as part of the
vendor name, in the format name (location).

The report wants a single value, and the data in the table is stored in two columns:
vend_name and vend_country. In addition, you need to surround vend_country
with parentheses, and those are definitely not stored in the database table. The SELECT
statement that returns the vendor names and locations is simple enough, but how
would you create this combined value?

Concatenate

Joining values together (by appending them to each other) to form a single long
value.

The solution is to concatenate the two columns. In SQL SELECT statements, you
can concatenate columns using a special operator. Depending on what DBMS you
are using, this operator can be a plus sign (+) or two pipes (| |). And in the case of
MySQL and MariaDB, a special function must be used as seen below.

Concatenating Fields

61

NOTE: + oF | |2

SQL Server uses + for concatenation. DB2, Oracle, PostgreSQL, and SQLite
support | |. Refer to your DBMS documentation for more details.

Here’s an example using the plus sign:

input v

SELECT vend name + '(' + vend country + ')'
FROM Vendors
ORDER BY vend_name;

Output v
Bear Emporium USA
Bears R Us USA

Fun and Games England
Furball Inc. USA
Jouets et ours France

()
()
Doll House Inc. (usa)
()
()
()

The following is the same statement, but using the | | syntax:

input v

SELECT vend name || '(' || vend country || ')
FROM Vendors
ORDER BY vend_name;

Output v

Bear Emporium (UsAa)
Bears R Us (usa)
Doll House Inc. (usa)
Fun and Games (England)
Furball Inc. (Usa)
Jouets et ours (France)

And here’s what you’ll need to do if using MySQL or MariaDB:

input v

SELECT Concat (vend name, ' (', vend country, ')')
FROM Vendors
ORDER BY vend_name;

62 LESSON 7: Creating Calculated Fields

Analysis v

The above SELECT statements concatenate the following elements:
» The name stored in the vend name column
» A string containing a space and an open parenthesis
» The country stored in the vend country column

» A string containing the close parenthesis

As you can see in the output shown above, the SELECT statement returns a single
column (a calculated field) containing all these four elements as one unit.

Look again at the output returned by the SELECT statement. The two columns

that are incorporated into the calculated field are padded with spaces. Many data-

bases (although not all) save text values padded to the column width, so your own
results may indeed not contain those extraneous spaces. To return the data format-
ted properly, you must trim those padded spaces. This can be done using the SQL
RTRIM () function, as follows:

Input v

SELECT RTRIM (vend name) + ' (' + RTRIM(vend country) + ')'
FROM Vendors
ORDER BY vend name;

Output v

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

The following is the same statement, but using the | | syntax:

input v

SELECT RTRIM(vend name) || ' (' || RTRIM(vend country) || ')'
FROM Vendors
ORDER BY vend name;

Concatenating Fields 63

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

Analysis

The rRTRIM () function trims all space from the right of a value. When you use
RTRIM (), the individual columns are all trimmed properly.

The TrIM Functions

Most DBMSs support RTRIM () (which, as just seen, trims the right side of a
string), as well as LTRIM (), Which trims the left side of a string, and TRIM (),
which trims both the right and left.

Using Aliases

The seLECT statement used to concatenate the address field works well, as seen in the
above output. But what is the name of this new calculated column? Well, the truth is,
it has no name; it is simply a value. Although this can be fine if you are just looking
at the results in a SQL query tool, an unnamed column cannot be used within a client
application because there is no way for the client to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an alternate
name for a field or value. Aliases are assigned with the as keyword. Take a look at the
following SELECT statement:

Input

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend country) + ')'
AS vend title

FROM Vendors

ORDER BY vend name;

64 LESSON 7: Creating Calculated Fields

Output v

vend title

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

The following is the same statement, but using the || syntax:

input v

SELECT RTRIM(vend name) || ' (' || RTRIM(vend country) || ')’
AS vend_title

FROM Vendors

ORDER BY vend name;

And here is the equivalent for use with MySQL and MariaDB:

Input v

SELECT Concat (RTrim(vend name), ' (',
RTrim(vend country), ')') AS vend title

FROM Vendors

ORDER BY vend_name;

Analysis v

The seLECT statement itself is the same as the one used in the previous code snippet,
except that here the calculated field is followed by the text As vend_title. This
instructs SQL to create a calculated field named vend_title containing the calcula-
tion specified. As you can see in the output, the results are the same as before, but the
column is now named vend_title, and any client application can refer to this column
by name, just as it would to any actual table column.

NOTE: as Often Optional

Use of the as keyword is optional in many DBMSs, but using it is considered a
best practice.

Performing Mathematical Calculations

65

Other Uses for Aliases

Aliases have other uses too. Some common uses include renaming a column
if the real table column name contains illegal characters (for example, spaces)
and expanding column names if the original names are either ambiguous or
easily misread.

Alias Names

Aliases may be single words or complete strings. If the latter is used, then the
string should be enclosed within quotes. This practice is legal but is strongly
discouraged. While multiword names are indeed highly readable, they create
all sorts of problems for many client applications—so much so that one of
the most common uses of aliases is to rename multiword column names to
single-word names (as explained above).

Derived Columns

Aliases are also sometimes referred to as derived columns, SO regardless of
the term you run across, they mean the same thing.

Performing Mathematical Calculations

Another frequent use for calculated fields is performing mathematical calculations on

retrieved data. Let’s take a look at an example. The orders table contains all orders

received, and the orderItems table contains the individual items within each order.
The following SQL statement retrieves all the items in order number 20008:

Input

SELECT prod id, quantity, item price
FROM OrderItems
WHERE order num = 20008;

Output

prod_id quantity item price
RGANO1 5 4.9900
BRO3 5 11.9900
BNBGO1 10 3.4900
BNBGO02 10 3.4900

BNBGO03 10 3.4900

66 LESSON 7: Creating Calculated Fields

The item price column contains the per unit price for each item in an order. To
expand the item price (item price multiplied by quantity ordered), you simply do the
following:

Input v

SELECT prod_id,

quantity,

item price,

quantity*item price AS expanded price
FROM OrderItems
WHERE order num = 20008;

Output v

prod_id quantity item price expanded_price
RGANO1 5 4.9900 24.9500

BRO3 5 11.9900 59.9500

BNBGO1 10 3.4900 34.9000

BNBGO2 10 3.4900 34.9000

BNBGO3 10 3.4900 34.9000

Analysis v

The expanded price column shown in the output above is a calculated field; the
calculation is simply quantity*item price. The client application can now use this
new calculated column just as it would any other column.

SQL supports the basic mathematical operators listed in Table 7.1. In addition, you
can use parentheses to establish order of precedence. Refer to Lesson 5, “Advanced
Data Filtering,” for an explanation of precedence.

TABLE 7.1 SQL Mathematical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

Summary 67

How to Test Calculations

SELECT provides a great way to test and experiment with functions and
calculations. Although seLECT is usually used to retrieve data from a table, the
FROM clause may be omitted to simply access and work with expressions. For
example, SELECT 3 * 2; would return 6, SELECT Trim /(' abc ") ; would
return abc, and SELECT Curdate () ; uses the curdate () function to return the
current date and time (on MySQL and MariaDB, for example). You get the idea:
use SELECT to experiment as needed.

Summary

In this lesson, you learned what calculated fields are and how to create them. You
used examples demonstrating the use of calculated fields for both string concatenation
and mathematical operations. In addition, you learned how to create and use aliases so
that your application can refer to calculated fields.

68 LESSON 7: Creating Calculated Fields

Challenges

1. A common use for aliases is to rename table column fields in retrieved
results (perhaps to match specific reporting or client needs). Write a
SQL statement that retrieves vend_id, vend name, vend_address, and
vend_city from vendors, renaming vend name to vname, vend_city to
veity, and vend address to vaddress. Sort the results by vendor name
(you can use the original name or the renamed name).

2. Our example store is running a sale and all products are 10% off. Write a
SQL statement that returns prod_id, prod price, and sale price from
the Products table. sale price is a calculated field that contains, well, the
sale price. Here’s a hint: you can multiply by 0.9 to get 90% of the original
value (and thus the 10% off price).

Using Data Manipulation
Functions

In this lesson, you’ll learn what functions are, what types of functions DBMSs support,
and how to use these functions. You’ll also learn why SQL function use can be very

problematic.

Understanding Functions

Like almost any other computer language, SQL supports the use of functions to
manipulate data. Functions are operations that are usually performed on data, usually
to facilitate conversion and manipulation, and they are an important part of your
SQL toolbox.

An example of a function is RTRIM (), which we used in the last lesson to trim spaces
from the end of a string.

The Problem with Functions

Before you work through this lesson and try the examples, you should be aware that,
unfortunately, using SQL functions can be highly problematic.

Unlike SQL statements (for example, SELECT), which for the most part are supported
by all DBMSs equally, functions tend to be very DBMS specific. In fact, very few
functions are supported identically by all major DBMSs. Although all types of
functionality are usually available in each DBMS, the function names or syntax can
differ greatly. To demonstrate just how problematic this can be, Table 8.1 lists three
commonly needed functions and their syntax as employed by various DBMSs:

70 LESSON 8: Using Data Manipulation Functions

TABLE 8.1 DBMS Function Differences

Function Syntax
Extract part of DB2, Oracle, PostgreSQL, and SQLite use SUBSTR ().
a string MariaDB, MySQL, and SQL Server use SUBSTRING ().

Datatype conversion Oracle uses multiple functions, one for each conversion
type. DB2, PostgreSQL, and SQL Server use casT ().
MariaDB, MySQL, and SQL Server use CONVERT ().

Get current date DB2 and PostgreSQL use CURRENT DATE. MariaDB and
MySQL use CURDATE (). Oracle uses sysDATE. SQL Server
uses GETDATE (). SQLite uses DATE () .

As you can see, unlike SQL statements, SQL functions are not portable. This means
that code you write for a specific SQL implementation might not work on another
implementation.

NEW TERM: Portable
Code that is written so that it will run on multiple different systems.

With code portability in mind, some SQL programmers opt not to use any
implementation-specific features. Although this is a somewhat noble and idealistic
view, it is not always in the best interests of application performance. If you opt not to
use these functions, you make your application code work harder, as it must use other
methods to do what the DBMS could have done more efficiently.

TIP: Should You Use Functions?

So now you are trying to decide whether you should or shouldn’t use functions.
Well, that decision is yours, and there is no right or wrong choice. If you do
decide to use functions, make sure you comment your code well so that at a
later date you (or another developer) will know exactly what SQL implementation
you were writing to.

Using Functions

Most SQL implementations support the following types of functions:

» Text functions are used to manipulate strings of text (for example, trimming
or padding values and converting values to upper- and lowercase).

Using Functions 71

» Numeric functions are used to perform mathematical operations on numeric
data (for example, returning absolute numbers and performing algebraic
calculations).

» Date and time functions are used to manipulate date and time values and
to extract specific components from these values (for example, returning
differences between dates and checking date validity).

» Formatting functions are used to generate user-friendly outputs (for example,
displaying dates in local languages and formats, or currencies with the right
symbols and comma placement).

» System functions return information specific to the DBMS being used
(for example, returning user login information).

In the last lesson, you saw a function used as part of a column list in a SELECT
statement, but that’s not all functions can do. You can use functions in other parts
of the sELECT statement (for instance, in the WHERE clause), as well as in other SQL
statements (more on that in later lessons).

Text Manipulation Functions

You’ve already seen an example of text manipulation functions: in the last lesson, the
RTRIM () function was used to trim white space from the end of a column value. Here
is another example, this time using the UPPER () function:

input v

SELECT vend_name, UPPER(vend name) AS vend_name_upcase
FROM Vendors
ORDER BY vend_name;

Output v

vend name vend name upcase
Bear Emporium BEAR EMPORIUM
Bears R Us BEARS R US

Doll House Inc. DOLL HOUSE INC.
Fun and Games FUN AND GAMES
Furball Inc. FURBALL INC.

Jouets et ours JOUETS ET OURS

72 LESSON 8: Using Data Manipulation Functions

As you can see, UPPER () converts text to uppercase, and so in this example each
vendor is listed twice—first exactly as stored in the vendors table, and then converted
to uppercase as column vend_name_upcase.

TIP: UPPERCASE, lowercase, MixedCase

As should be clear by now, SQL functions are not case sensitive, so you can
use upper (), UPPER (), Upper (), Of substr (), SUBSTR (), SubStr (), and so on.
Case is a user preference, so do as you choose, but be consistent and don’t
keep changing styles in your code; it makes the SQL really hard to read.

Table 8.2 lists some commonly used text manipulation functions.

TABLE 8.2 Commonly Used Text Manipulation Functions

Function Description

LEFT () (or use substring Returns characters from left of string
function

LENGTH () (also DATALENGTH () Returns the length of a string

Or LEN())

LOWER () Converts string to lowercase

LTRIM() Trims white space from left of string
RIGHT () (or use substring Returns characters from right of string
function)

RTRIM() Trims white space from right of string
SUBSTR () Of SUBSTRING () Extracts part of a string (as noted in Table 8.1)
SOUNDEX () Returns a string’s SOUNDEX value
UPPER () Converts string to uppercase

One item in Table 8.2 requires further explanation. SOUNDEX is an algorithm that
converts any string of text into an alphanumeric pattern describing the phonetic
representation of that text. SOUNDEX takes into account similar-sounding characters
and syllables, enabling strings to be compared by how they sound rather than how
they have been typed. Although sounDEX is not a SQL concept, most DBMSs do offer
SOUNDEX Ssupport.

Using Functions 73

NOTE: sounDEX Support

SOUNDEX () is not supported by PostgreSQL, and so the following example will
not work on that DBMS.

In addition, it is only available in SQLite if the SQLITE SouNDEX compile-time
option is used when SQLite is built, and as this is not the default compile
option, most SQLite implementations won’t support SOUNDEX () .

Here’s an example using the SOUNDEX () function. Customer Kids Place is in the
Customers table and has a contact named Michelle Green. But what if that were
a typo, and the contact actually was supposed to have been Michael Green? Obvi-
ously, searching by the correct contact name would return no data, as shown here:

Input v

SELECT cust_name, cust_contact
FROM Customers

WHERE cust_contact = 'Michael Green';
Output v
cust_name cust_contact

Now try the same search using the SOUNDEX () function to match all contact names
that sound similar to Michael Green:

input v

SELECT cust_name, cust_contact
FROM Customers

WHERE SOUNDEX (cust_contact) = SOUNDEX ('Michael Green');
Output v
cust_name cust_contact

Kids Place Michelle Green

74 LESSON 8: Using Data Manipulation Functions

Analysis v

In this example, the WHERE clause uses the SOUNDEX () function to convert both the
cust_contact column value and the search string to their SOUNDEX values. Because
Michael Green and Michelle Green sound alike, their SOUNDEX values match, and
so the WHERE clause correctly filtered the desired data.

Date and Time Manipulation Functions

Date and times are stored in tables using datatypes, and each DBMS uses its own
special varieties. Date and time values are stored in special formats so that they may
be sorted or filtered quickly and efficiently, as well as to save physical storage space.

The internal format used to store dates and times is usually of no use to your appli-
cations, and so date and time functions are almost always used to read, expand, and
manipulate these values. Because of this, date and time manipulation functions are
some of the most important functions in the SQL language. Unfortunately, they also
tend to be the most inconsistent and least portable.

To demonstrate the use of a date manipulation function, here is a simple example. The
orders table contains all orders along with an order date. To retrieve all of the orders
placed in a specific year, you’d need to filter by order date, but not the entire date
value, just the year portion of it. This obviously necessitates extracting the year from
the complete date.

To retrieve a list of all orders made in 2020 in SQL Server, do the following:

Input v

SELECT order num
FROM Orders
WHERE DATEPART (yy, order date) = 2020;

Output v

order_num

Using Functions 75

Analysis v

This example uses the DATEPART () function, which, as its name suggests, returns a
part of a date. DATEPART () takes two parameters: the part to return and the date to
return it from. In our example DATEPART () specifies yy as the desired part and returns
just the year from the order date column. By comparing that to 2020, the WHERE
clause can filter just the orders for that year.

Here is the PostgreSQL version, which uses a similar function named DATE_PART () :

input v

SELECT order_ num
FROM Orders
WHERE DATE_PART ('year',6 order date) = 2020;

Oracle has no DATEPART () function either, but there are several other date manipula-
tion functions that can be used to accomplish the same retrieval. Here is an example:

input v

SELECT order num
FROM Orders
WHERE EXTRACT (year FROM order_date) = 2020;

Analysis v

In this example, the EXTRACT () function is used to extract part of the date with year
specifying what part of the date to extract. The returned value is then compared to
2020.

TIP: PostgreSQL Supports Extract ()

PostgreSQL also supports the Extract () function, so this technique will work
(in addition to using DatePart () as seen previously).

Another way to accomplish this same task is to use the BETWEEN operator:

input v

SELECT order_num

FROM Orders

WHERE order date BETWEEN to_date('2020-01-01', 'yyyy-mm-dd')
AND to_date('2020-12-31', 'yyyy-mm-dd') ;

76 LESSON 8: Using Data Manipulation Functions

Analysis v

In this example, Oracle’s to_date () function is used to convert two strings to dates.
One contains the date January 1, 2020, and the other contains the date December 31,
2020. A standard BETWEEN operator is used to find all orders between those two dates.
It is worth noting that this same code would not work with SQL Server because it
does not support the to_date () function. However, if you replaced to_date () with
DATEPART (), you could indeed use this type of statement.

DB2, MySQL, and MariaDB have all sorts of date manipulation functions, but not
DATEPART (). DB2, MySQL, and MariaDB users can use a function named YEAR ()
to extract the year from a date:

Input v

SELECT order_num
FROM Orders
WHERE YEAR (order_date) = 2020;

SQLite is a little trickier:

Input v

SELECT order num
FROM Orders
WHERE strftime('%Y', order date) = '2020';

The example shown here extracted and used part of a date (the year). To filter by a
specific month, you could use the same process, specifying an AND operator and both
year and month comparisons.

DBMSs typically offer far more than simple date part extraction. Most have functions
for comparing dates, performing date-based arithmetic, formatting dates, and more.
But, as you have seen, date-time manipulation functions are particularly DBMS spe-
cific. Refer to your DBMS documentation for the list of the date-time manipulation
functions it supports.

Numeric Manipulation Functions

Numeric manipulation functions do just that—manipulate numeric data. These func-
tions tend to be used primarily for algebraic, trigonometric, or geometric calculations
and, therefore, are not as frequently used as string or date and time manipulation
functions.

Summary 77

The ironic thing is that of all the functions found in the major DBMSs, the numeric
functions are the ones that are most uniform and consistent. Table 8.3 lists some of the
more commonly used numeric manipulation functions.

TABLE 8.3 Commonly Used Numeric Manipulation Functions

Function Description

ABS () Returns a number’s absolute value

Cos () Returns the trigonometric cosine of a specified angle
EXP () Returns the exponential value of a specific number
PI() Returns the value of PI

SIN() Returns the trigonometric sine of a specified angle
SQRT () Returns the square root of a specified number

TAN () Returns the trigonometric tangent of a specified angle

Refer to your DBMS documentation for a list of the supported mathematical
manipulation functions.

Summary

In this lesson, you learned how to use SQL’s data manipulation functions. You
also learned that although these functions can be extremely useful in formatting,
manipulating, and filtering data, the function details are very inconsistent from one
SQL implementation to the next.

78 LESSON 8: Using Data Manipulation Functions

Challenges

1. Our store is now online, and customer accounts are being created. All
users need a login, and the default login will be a combination of their name
and city. Write a SQL statement that returns customer ID (cust_id),
customer name (customer name), and user login, which is all
uppercase and composed of the first two characters of the customer contact
(cust_contact) and the first three characters of the customer city
(cust_city). So, for example, my login (Ben Forta living in Oak Park)
would be Beoak. Hint: for this one you’ll use functions, concatenation,
and an alias.

2. Write a SQL statement to return the order number (order num) and order
date (order date) for all orders placed in January 2020, sorted by order
date. You should be able to figure this out based on what you have learned
thus far, but feel free to consult your DBMS documentation as needed.

LESSON 9
Summarizing Data

In this lesson, you will learn what the SQL aggregate functions are and how to use
them to summarize table data.

Using Aggregate Functions

It is often necessary to summarize data without actually retrieving it all, and SQL
provides special functions for this purpose. Using these functions, SQL queries are
often used to retrieve data for analysis and reporting purposes. Examples of this type
of retrieval are

» Determining the number of rows in a table (or the number of rows that meet
some condition or contain a specific value)

» Obtaining the sum of a set of rows in a table

» Finding the highest, lowest, and average values in a table column (either for
all rows or for specific rows)

In each of these examples, you want a summary of the data in a table, not the actual
data itself. Therefore, returning the actual table data would be a waste of time and
processing resources (not to mention bandwidth). To repeat, all you really want is the
summary information.

To facilitate this type of retrieval, SQL features a set of five aggregate functions,
which are listed in Table 9.1. These functions enable you to perform all the types of
retrieval just enumerated. You’ll be relieved to know that unlike the data manipulation
functions in the last lesson, SQL’s aggregate functions are supported pretty
consistently by the major SQL implementations.

NEW TERM: Aggregate Functions
Functions that operate on a set of rows to calculate and return a single value.

80 LESSON 9: Summarizing Data

TABLE 9.1 SQL Aggregate Functions

Function Description

AVG () Returns a column’s average value
COUNT () Returns the number of rows in a column
MAX () Returns a column’s highest value

MIN () Returns a column’s lowest value

SUM () Returns the sum of a column’s values

The use of each of these functions is explained in the following sections.

The avce () Function

AVG () is used to return the average value of a specific column by counting both the
number of rows in the table and the sum of their values. AvG () can be used to return
the average value of all columns or of specific columns or rows.

This first example uses AvVG () to return the average price of all the products in the
Products table:

Input v

SELECT AVG (prod price) AS avg price
FROM Products;

Output v

avg_price

6.823333

Analysis v

The SELECT statement above returns a single value—avg_price, which contains
the average price of all products in the Products table. avg_price is an alias as
explained in Lesson 7, “Creating Calculated Fields.”

AVG () can also be used to determine the average value of specific columns or rows.
The following example returns the average price of products offered by a specific
vendor:

Input v

SELECT AVG (prod price) AS avg price
FROM Products
WHERE vend id = 'DLLO1';

Using Aggregate Functions 81

Output v

avg price

Analysis v

This seLECT statement differs from the previous one only in that this one contains
a WHERE clause. The wHERE clause filters only products with a vendor id of DLLO1,
and, therefore, the value returned in avg_price is the average of just that vendor’s
products.

CAUTION: Individual Columns Only

AVG () may only be used to determine the average of a specific numeric column,
and that column name must be specified as the function parameter. To obtain
the average value of multiple columns, you must use multiple avc () functions.
The exception to this is when returning a single value that is calculated from
multiple columns, as will be explained later in this lesson.

NOTE: nuLL Values
Column rows containing NULL values are ignored by the ave () function.

The count () Function

COUNT () does just that—it counts. Using COUNT (), you can determine the number of
rows in a table or the number of rows that match a specific criterion.

COUNT () can be used two ways:

» Use COUNT (*) to count the number of rows in a table, whether columns
contain values or NULL values.

» Use COUNT (column) to count the number of rows that have values in a

specific column, ignoring NULL values.

This first example returns the total number of customers in the Customers table:

input v

SELECT COUNT (*) AS num_cust
FROM Customers;

82 LESSON 9: Summarizing Data

Output v

num_cust

Analysis v

In this example, COUNT (*) is used to count all rows, regardless of values. The count is
returned in num_cust.

The following example counts just the customers with an email address:

Input v

SELECT COUNT (cust_email) AS num_cust
FROM Customers;

Output v

num_cust

Analysis v

This SELECT statement uses COUNT (cust_email) to count only rows with a value in
the cust_email column. In this example, cust_email is 3 (meaning that only 3 of
the 5 customers have email addresses).

NOTE: nurL Values

Column rows with NULL values in them are ignored by the counT () function if a
column name is specified, but not if the asterisk (*) is used.

The Max () Function

MAX () returns the highest value in a specified column. MAx () requires that the column
name be specified, as seen here:

Input v

SELECT MAX (prod _price) AS max price
FROM Products;

Using Aggregate Functions 83

Output v

max_price

11.9900

Analysis v

Here max () returns the price of the most expensive item in the products table.

TIP: Using Max () with Nonnumeric Data

Although Max () is usually used to find the highest numeric or date values,
many (but not all) DBMSs allow it to be used to return the highest value in any
columns including textual columns. When used with textual data, MAX () returns
the row that would be the last if the data were sorted by that column.

NOTE: nurLL Values
Column rows with NULL values in them are ignored by the mMax () function.

The MIN() Function

MIN () does the exact opposite of MAX () —it returns the lowest value in a specified
column. Like MaAX (), MIN () requires that the column name be specified, as seen here:

input v

SELECT MIN (prod_price) AS min price
FROM Products;

Output v

min price

Analysis v

Here m1N () returns the price of the least expensive item in the products table.

84 LESSON 9: Summarizing Data

TIP: Using MIN() with Nonnumeric Data

Although MIN () is usually used to find the lowest numeric or date values,
many (but not all) DBMSs allow it to be used to return the lowest value in any
columns including textual columns. When used with textual data, mIn () will
return the row that would be first if the data were sorted by that column.

NOTE: nuLL Values
Column rows with NULL values in them are ignored by the MIn () function.

The suM() Function

SumM () is used to return the sum (total) of the values in a specific column.

Here is an example to demonstrate this. The orderItems table contains the actual
items in an order, and each item has an associated quantity. The total number of
items ordered (the sum of all the quantity values) can be retrieved as follows:

Input v

SELECT SUM(quantity) AS items_ordered
FROM OrderItems
WHERE order num = 20005;

Output v

items_ordered

Analysis v

The function suM (quantity) returns the sum of all the item quantities in an order,
and the WHERE clause ensures that just the right order items are included.

suM () can also be used to total calculated values. In this next example the total order
amount is retrieved by totaling item price*quantity for each item:

Input v

SELECT SUM (item price*quantity) AS total price
FROM OrderItems
WHERE order num = 20005;

Aggregates on Distinct Values 85

Output v

total price

1648.0000

Analysis v

The function SUM (item price*quantity) returns the sum of all the expanded prices
in an order, and again the wHERE clause ensures that just the right order items are
included.

TIP: Performing Calculations on Multiple Columns

All the aggregate functions can be used to perform calculations on multiple
columns using the standard mathematical operators, as shown in the example.

NOTE: nurLL Values
Column rows with NULL values in them are ignored by the sum () function.

Aggregates on Distinct Values

The five aggregate functions can all be used in two ways:

» To perform calculations on all rows, specify the ALL argument or specify no
argument at all (because ALL is the default behavior).

» To include only unique values, specify the DISTINCT argument.

TIP: aLL Is Default

The aLL argument need not be specified because it is the default behavior. If
DISTINCT is not specified, ALL is assumed.

The following example uses the avG () function to return the average product price
offered by a specific vendor. It is the same SELECT statement used above, but here the
DISTINCT argument is used so that the average only takes into account unique prices:

input v

SELECT AVG (DISTINCT prod price) AS avg price
FROM Products
WHERE vend id = 'DLLO1';

86 LESSON 9: Summarizing Data

Output v

avg_price

Analysis v

As you can see, in this example avg_price is higher when DISTINCT is used because
there are multiple items with the same lower price. Excluding them raises the average
price.

CAUTION: No pzsTiNcT with counT (*)

DISTINCT may only be used with counT () if a column name is specified.
DISTINCT may not be used with counT (*). Similarly, DISTINCT must be used
with a column name and not with a calculation or expression.

TIP: Using prsTINCT with MIN() and MAX ()

Although pIsTINCT can technically be used with MIN () and MAX (), there is
actually no value in doing so. The minimum and maximum values in a column
will be the same whether or not only distinct values are included.

NOTE: Additional Aggregate Arguments

In addition to the prsTINCT and ALL arguments shown here, some DBMSs
support additional arguments such as Top and Top PERCENT that let you
perform calculations on subsets of query results. Refer to your DBMS
documentation to determine exactly what arguments are available to you.

Combining Aggregate Functions

All the examples of aggregate functions used thus far have involved a single function.
But actually, SELECT statements can contain as few or as many aggregate functions as
needed. Look at this example:

Input v

SELECT COUNT (*) AS num_items,
MIN (prod_price) AS price_min,
MAX (prod_price) AS price max,
AVG (prod_price) AS price_avg
FROM Products;

Summary 87

Output v
num_items price min price max price_avg
9 3.4900 11.9900 6.823333

Analysis v

Here a single SELECT statement performs four aggregate calculations in one step and
returns four values (the number of items in the Products table and the highest, low-
est, and average product prices).

CAUTION: Naming Aliases

When specifying alias names to contain the results of an aggregate function, try
to not use the name of an actual column in the table. Although there is nothing
actually illegal about doing so, many SQL implementations do not support this
and will generate obscure error messages if you do so.

Summary

Aggregate functions are used to summarize data. SQL supports five aggregate func-
tions, all of which can be used in multiple ways to return just the results you need.
These functions are designed to be highly efficient, and they usually return results
far more quickly than you could calculate them yourself within your own client
application.

88 LESSON 9: Summarizing Data

Challenges

1. Write a SQL statement to determine the total number of items sold (using the
quantity column in OrderItems).

2. Modify the statement you just created to determine the total number of
product item (prod_item) BRO1 sold.

3. Write a SQL statement to determine the price (prod_price) of the most
expensive item in the Products table that costs no more than 10. Name the
calculated field max_price.

LESSON 10
Grouping Data

In this lesson, you'll learn how to group data so that you can summarize subsets of
table contents. This involves two new SELECT statement clauses: the GROUP BY clause
and the HAVING clause.

Understanding Data Grouping

In the last lesson, you learned that the SQL aggregate functions can be used to
summarize data. These functions enable you to count rows, calculate sums and
averages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far were performed on all the data in a table or on data that
matched a specific WHERE clause. As a reminder, the following example returns the
number of products offered by vendor pr.Lo1:

input v

SELECT COUNT (*) AS num_ prods
FROM Products
WHERE vend_id ='DLLO1';

Output v

num_prods

But what if you wanted to return the number of products offered by each vendor? Or
products offered by vendors who offer a single product, or only those who offer more
than 10 products?

This is where groups come into play. Grouping lets you divide data into logical sets so
that you can perform aggregate calculations on each group.

90 LESSON 10: Grouping Data

Creating Groups

Groups are created using the GROUP BY clause in your SELECT statement. The best
way to understand this is to look at an example:

Input v

SELECT vend id, COUNT (*) AS num prods
FROM Products
GROUP BY vend_id;

Output v
vend id num_prods
BRSO1 3
DLLO1 4
FNGO1 2

Analysis v

The above SELECT statement specifies two columns, vend_id, which contains the ID
of a product’s vendor, and num_prods, which is a calculated field (created using the
CcouNT (*) function). The GROUP BY clause instructs the DBMS to sort the data and
group it by vend_id. This causes num_prods to be calculated once per vend_id rather
than once for the entire table. As you can see in the output, vendor BRS01 has

3 products listed, vendor DLL01 has 4 products listed, and vendor FNG01 has

2 products listed.

Because you used GrRouP By, you did not have to specify each group to be evalu-
ated and calculated. That was done automatically. The GrouP BY clause instructs the
DBMS to group the data and then perform the aggregate on each group rather than on
the entire result set.

Before you use GROUP By, here are some important rules about its use that you need
to know:

» GROUP BY clauses can contain as many columns as you want. This enables
you to nest groups, providing you with more granular control over how data
is grouped.

» If you have nested groups in your GROUP BY clause, data is summarized
at the last specified group. In other words, all the columns specified are
evaluated together when grouping is established (so you won’t get data back
for each individual column level).

Filtering Groups 91

» Every column listed in GROUP BY must be a retrieved column or a valid
expression (but not an aggregate function). If an expression is used in the
SELECT, that same expression must be specified in GRoup BY. Aliases cannot
be used.

» Most SQL implementations do not allow GRoup BY columns with variable-
length datatypes (such as text or memo fields).

» Aside from the aggregate calculation statements, every column in your
SELECT statement must be present in the GROUP BY clause.

» If the grouping column contains a row with a NULL value, NULL will be
returned as a group. If there are multiple rows with NULL values, they’ll all
be grouped together.

» The GrouP BY clause must come after any WHERE clause and before any
ORDER BY clause.

TIP: The ALL Clause

Some SQL implementations (such as Microsoft SQL Server) support an optional
ALL clause within GrouP By. This clause can be used to return all groups, even
those that have no matching rows (in which case the aggregate would return
NULL). Refer to your DBMS documentation to see if it supports ALL.

CAUTION: Specifying Columns by Relative Position

Some SQL implementations allow you to specify GRoup By columns by the
position in the SeLECT list. For example, GROUP BY 2,1 can mean group by the
second column selected and then by the first. Although this shorthand syntax is
convenient, it is not supported by all SQL implementations. Its use is also risky
in that it is highly susceptible to the introduction of errors when editing SQL
statements.

Filtering Groups

In addition to being able to group data using GrourP BY, SQL also allows you to filter
which groups to include and which to exclude. For example, you might want a list of
all customers who have made at least two orders. To obtain this data, you must filter

based on the complete group, not on individual rows.

92 LESSON 10: Grouping Data

You’ve already seen the WHERE clause in action (that was introduced back in Lesson 4,
“Filtering Data”). But wHERE does not work here because WHERE filters specific rows,
not groups. As a matter of fact, WHERE has no idea what a group is.

So what do you use instead of wHERE? SQL provides yet another clause for this
purpose: the HAVING clause. HAVING is very similar to wHERE. In fact, all types of
WHERE clauses you’ve learned about thus far can also be used with HaAVING. The only
difference is that wHERE filters rows and HAVING filters groups.

TIP: #HAVING Supports All wHERE’S Operators

In Lesson 4 and Lesson 5, “Advanced Data Filtering,” you learned about WHERE
clause conditions (including wildcard conditions and clauses with multiple
operators). All the techniques and options that you've learned about WHERE can
be applied to HAVING. The syntax is identical; just the keyword is different.

So how do you filter groups? Look at the following example:

Input v

SELECT cust_id, COUNT(*) AS orders
FROM Orders

GROUP BY cust_id

HAVING COUNT (*) >= 2;

Output v

cust_id orders

1000000001 2

Analysis v

The first three lines of this SELECT statement are similar to the statements seen
above. The final line adds a HAVING clause that filters on those groups with a
COUNT (*) >= 2—two or more orders.

As you can see, a WHERE clause couldn’t work here because the filtering is based on
the group aggregate value, not on the values of specific rows.

NOTE: The Difference Between HAVING and WHERE

Here’s another way to look it: wHERE filters before data is grouped, and HAVING
filters after data is grouped. This is an important distinction; rows that are
eliminated by a wHERE clause will not be included in the group. This could
change the calculated values, which in turn could affect which groups are
filtered based on the use of those values in the HAVING clause.

Filtering Groups 93

So is there ever a need to use both wHERE and HAVING clauses in one statement?
Actually, yes, there is. Suppose you want to further filter the above statement so that it
returns any customers who placed two or more orders in the past 12 months. To do that,
you can add a wHERE clause that filters out just the orders placed in the past 12 months.
You then add a HAVING clause to filter just the groups with two or more rows in them.

To better demonstrate this, look at the following example, which lists all vendors who
have two or more products priced at 4 or more:

input v

SELECT vend id, COUNT (*) AS num prods
FROM Products

WHERE prod price >= 4

GROUP BY vend id

HAVING COUNT (*) == 2;

Output v
vend_id num prods
BRSO1 3
FNGO1 2

Analysis v

This statement warrants an explanation. The first line is a basic SELECT using an
aggregate function—much like the examples thus far. The wHERE clause filters all
rows with a prod_price of at least 4. Data is then grouped by vend_id, and then a
HAVING clause filters just those groups with a count of 2 or more. Without the WHERE
clause, an extra row would have been retrieved (vendor pLLo1 who sells four products
all priced under 4) as seen here:

Iinput v

SELECT vend_id, COUNT (*) AS num_ prods
FROM Products

GROUP BY vend id

HAVING COUNT (*) == 2;

Output v
vend_id num prods
BRSO1 3
DLLO1 4

FNGO1 2

94 LESSON 10: Grouping Data

NOTE: Using HAVING and WHERE

HAVING is so similar to wHERE that most DBMSs treat them as the same thing
if no crouP BY is specified. Nevertheless, you should make that distinction
yourself. Use HAVING only in conjunction with GRoup BY clauses. Use WHERE for
standard row-level filtering.

Grouping and Sorting

It is important to understand that GRour BY and ORDER BY are very different, even
though they often accomplish the same thing. Table 10.1 summarizes the differences
between them.

TABLE 10.1 ORDER BY Versus GROUP BY

ORDER BY GROUP BY

Sorts generated output. Groups rows. The output might not be in group order,
however.

Any columns (even Only selected columns or expressions columns may be

columns not selected) used, and every selected column expression must be

may be used. used.

Never required. Required if using columns (or expressions) with

aggregate functions.

The first difference listed in Table 10.1 is extremely important. More often than not,
you will find that data grouped using Group By will indeed be output in group order.
But that is not always the case, and it is not actually required by the SQL specifica-
tions. Furthermore, even if your particular DBMS does, in fact, always sort the data
by the specified GrRouP BY clause, you might actually want it sorted differently. Just
because you group data one way (to obtain group-specific aggregate values) does not
mean that you want the output sorted that same way. You should always provide an
explicit ORDER BY clause as well, even if it is identical to the GrRouP BY clause.

TIP: Don’t Forget oRDER BY

As a rule, anytime you use a GROUP BY clause, you should also specify an
ORDER BY clause. That is the only way to ensure that data will be sorted
properly. Never rely on Grour BY to sort your data.

To demonstrate the use of both GrRouP BY and ORDER BY, let’s look at an example.
The following SELECT statement is similar to the ones seen previously. It retrieves

Grouping and Sorting 95

the order number and number of items ordered for all orders containing three or more
items:

input v

SELECT order num, COUNT (*) AS items
FROM OrderItems

GROUP BY order num

HAVING COUNT (*) == 3;

Output v

order num items

To sort the output by number of items ordered, all you need to do is add an ORDER BY
clause, as follows:

input v

SELECT order num, COUNT(*) AS items
FROM OrderItems

GROUP BY order_num

HAVING COUNT (*) >= 3

ORDER BY items, order num;

Output v

order num items

Analysis v

In this example, the GrRouP BY clause is used to group the data by order number

(the order num column) so that the cOuNT (*) function can return the number of items
in each order. The HAVING clause filters the data so that only orders with three or more
items are returned. Finally, the output is sorted using the ORDER BY clause.

96 LESSON 10: Grouping Data

sELECT Clause Ordering

This is probably a good time to review the order in which SELECT statement clauses
are to be specified. Table 10.2 lists all the clauses we have learned thus far, in the
order they must be used.

TABLE 10.2 seLecT Clauses and Their Sequence

Clause Description Required
SELECT Columns or expressions Yes
to be returned

FROM Table to retrieve data from Only if selecting data from
a table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggregates
by group

HAVING Group-level filtering No

ORDER BY Output sort order No

Summary

In Lesson 9, “Summarizing Data,” you learned how to use the SQL aggregate
functions to perform summary calculations on your data. In this lesson, you learned
how to use the GrouP BY clause to perform these calculations on groups of data,
returning results for each group. You saw how to use the HAVING clause to filter
specific groups. You also learned the difference between ORDER BY and GROUP BY
and between WHERE and HAVING.

Challenges 97

Challenges

1.

The orderItems table contains the individual items for each order. Write
a SQL statement that returns the number of lines (as order lines) for each
order number (order num) and sort the results by order lines.

. Write a SQL statement that returns a field named cheapest_item, which

contains the lowest-cost item for each vendor (using prod_price in the
Products table), and sort the results from lowest to highest cost.

. It’s important to identify the best customers, so write a SQL statement to

return the order number (order num in the OrderItems table) for all orders
of at least 100 items.

Another way to determine the best customers is by how much they have
spent. Write a SQL statement to return the order number (order num in the
orderItems table) for all orders with a total price of at least 1000. Hint: for
this one you’ll need to calculate and sum the total (item price multiplied
by quantity). Sort the results by order number.

. What is wrong with the following SQL statement? (Try to figure it out

without running it.)

SELECT order num, COUNT (*) AS items
FROM OrderItems

GROUP BY items

HAVING COUNT (*) >= 3

ORDER BY items, order num;

This page intentionally left blank

LESSON 11
Working with Subqueries

In this lesson, you'll learn what subqueries are and how to use them.

Understanding Subqueries

SELECT statements are SQL queries. All the sELECT statements we have seen thus far
are simple queries—single statements retrieving data from individual database tables.

NEW TERM: Query

Any SQL statement. However, the term is usually used to refer to SELECT
statements.

SQL also enables you to create subqueries—queries that are embedded into other
queries. Why would you want to do this? The best way to understand this concept is
to look at a couple of examples.

Filtering by Subquery

The database tables used in all the lessons in this book are relational tables. (See
Appendix A, “Sample Table Scripts,” for a description of each of the tables and their
relationships.) Orders are stored in two tables. The orders table stores a single row

for each order containing order number, customer ID, and order date. The individual
order items are stored in the related orderItems table. The orders table does not store
customer information. It only stores a customer ID. The actual customer information is
stored in the Customers table.

Now suppose you wanted a list of all the customers who ordered item rRGan01. What
would you have to do to retrieve this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item RGANO1.

2. Retrieve the customer ID of all the customers who have orders listed in the
order numbers returned in the previous step.

3. Retrieve the customer information for all the customer IDs returned in the
previous step.

100 LESSON 11: Working with Subqueries

Each of these steps can be executed as a separate query. By doing so, you use the
results returned by one SELECT statement to populate the WwHERE clause of the next
SELECT statement.

You can also use subqueries to combine all three queries into one single statement.

The first SELECT statement should be self-explanatory by now. It retrieves the
order_ num column for all order items with a prod_id of Reano1. The output lists the
two orders containing this item:

Input v

SELECT order num
FROM OrderItems
WHERE prod_id = 'RGANO1';

Output v

order num

Now that we know which orders contain the desired item, the next step is to retrieve
the customer IDs associated with those order number, 20007 and 20008. Using the
IN clause described in Lesson 5, “Advanced Data Filtering,” you can create a SELECT
statement as follows:

Input v

SELECT cust_id
FROM Orders
WHERE order num IN (20007,20008) ;

Output v

1000000004
1000000005

Filtering by Subquery 101

Now, combine the two queries by turning the first (the one that returned the order
numbers) into a subquery. Look at the following SELECT statement:

input v

SELECT cust_id
FROM Orders
WHERE order num IN (SELECT order num
FROM OrderItems
WHERE prod id = 'RGANO1');

Output v

1000000004
1000000005

Analysis v

Subqueries are always processed starting with the innermost SELECT statement and
working outward. When the preceding SELECT statement is processed, the DBMS
actually performs two operations.

It first runs the following subquery:

SELECT order num FROM orderitems WHERE prod id='RGANO1'

That query returns the two order numbers 20007 and 20008. Those two values are
then passed to the wHERE clause of the outer query in the comma-delimited format
required by the 1N operator. The outer query now becomes

SELECT cust_id FROM orders WHERE order num IN (20007,20008)

As you can see, the output is correct and exactly the same as the output returned by
the hard-coded wHERE clause above.

TIP: Formatting Your SQL

SELECT statements containing subqueries can be difficult to read and debug,
especially as they grow in complexity. Breaking up the queries over multiple
lines and indenting the lines appropriately as shown here can greatly simplify
working with subqueries.

Incidentally, this is where color coding also becomes invaluable, and the better
DBMS clients do indeed color code SQL for just this reason. And this is also
why the SQL statements in this book have been printed in color for you; it
makes reading them, isolating their sections, and troubleshooting them so much
easier.

102 LESSON 11: Working with Subqueries

You now have the IDs of all the customers who ordered item RGaN01. The next step is
to retrieve the customer information for each of those customer IDs. Here is the SQL
statement to retrieve the two columns:

Input v

SELECT cust_name, cust_contact
FROM Customers
WHERE cust_id IN (1000000004,1000000005) ;

Instead of hard-coding those customer IDs, you can turn this wHERE clause into yet
another subquery:

Input v

SELECT cust_name, cust_contact
FROM Customers
WHERE cust_id IN (SELECT cust_id
FROM Orders
WHERE order num IN (SELECT order_num
FROM OrderItems

WHERE prod_id = 'RGANO1')) ;
Output v
cust_name cust_contact
Fun4All Denise L. Stephens
The Toy Store Kim Howard
Analysis v

To execute the above SELECT statement, the DBMS had to actually perform three
SELECT statements. The innermost subquery returned a list of order numbers that were
then used as the wHERE clause for the subquery above it. That subquery returned a

list of customer IDs that were used as the wHERE clause for the top-level query. The
top-level query actually returned the desired data.

As you can see, using subqueries in a WHERE clause enables you to write extremely
powerful and flexible SQL statements. There is no limit imposed on the number of
subqueries that can be nested, although in practice you will find that performance will
tell you when you are nesting too deeply.

CAUTION: Single Column Only

Subquery SELECT statements can only retrieve a single column. Attempting to
retrieve multiple columns will return an error.

Using Subqueries as Calculated Fields 103

CAUTION: Subqueries and Performance

The code shown here works, and it achieves the desired result. However, using
subqueries is not always the most efficient way to perform this type of data
retrieval. More on this in Lesson 12, “Joining Tables,” where you will revisit this
same example.

Using Subqueries as Calculated Fields

Another way to use subqueries is in creating calculated fields. Suppose you wanted to
display the total number of orders placed by every customer in your Customers table.
Orders are stored in the orders table along with the appropriate customer ID.

To perform this operation, follow these steps:
1. Retrieve the list of customers from the Customers table.

2. For each customer retrieved, count the number of associated orders in the
orders table.

As you learned in the previous two lessons, you can use SELECT COUNT (*) to count
rows in a table, and by providing a wHERE clause to filter a specific customer ID, you
can count just that customer’s orders. For example, the following code counts the
number of orders placed by customer 1000000001:

input v

SELECT COUNT (*) AS orders
FROM Orders
WHERE Custiid = 1000000001;

To perform that counT (*) calculation for each customer, use COUNT* as a subquery.
Look at the following code:

input v

SELECT cust_name,
cust_state,
(SELECT COUNT (*)
FROM Orders
WHERE Orders.cust_id = Customers.cust_id) AS orders
FROM Customers
ORDER BY cust_name;

104 LESSON 11: Working with Subqueries

Output v

cust_name cust_state orders
Fun4All IN 1
Fun4All AZ 1

Kids Place OH 0

The Toy Store IL 1
Village Toys MI 2

Analysis v

This sELECT statement returns three columns for every customer in the Customers
table: cust_name, cust_state, and orders. Orders is a calculated field that is set by
a subquery that is provided in parentheses. That subquery is executed once for every
customer retrieved. In the example above, the subquery is executed five times because
five customers were retrieved.

The wHERE clause in the subquery is a little different from the wHERE clauses used
previously because it uses fully qualified column names; instead of just a column
name (cust_id), it specifies the table and the column name (as Orders.cust_id and
Customers.cust_id). The following wHERE clause tells SQL to compare the cust_id
in the orders table to the one currently being retrieved from the Customers table:

WHERE Orders.cust_id = Customers.cust_id

This syntax—the table name and the column name separated by a period—must be
used whenever there is possible ambiguity about column names. In this example, there
are two cust_id columns, one in Customers and one in orders. Without fully quali-
fying the column names, the DBMS assumes you are comparing the cust_id in the
orders table to itself. Because

SELECT COUNT (*) FROM Orders WHERE cust_id = cust id

will always return the total number of orders in the orders table, the results will not
be what you expected:

Input v

SELECT cust_name,

cust_state,

(SELECT COUNT (*)

FROM Orders

WHERE cust_id = cust_id) AS orders
FROM Customers
ORDER BY cust name;

Summary 105

Output v

cust_name cust_state orders
Fun4All IN 5
Fun4All AZ 5

Kids Place OH 5

The Toy Store IL 5
Village Toys MI 5

Although subqueries are extremely useful in constructing this type of SELECT
statement, care must be taken to properly qualify ambiguous column names.

CAUTION: Fully Qualified Column Names

You just saw a very important reason to use fully qualified column names.
Without the extra specificity, the wrong results were returned because the DBMS
misunderstood what you intended. Sometimes the ambiguity caused by the
presence of conflicting column names will actually cause the DBMS to throw an
error. For example, this might occur if your WHERE or ORDER BY clause specified
a column name that was present in multiple tables. A good rule is that if you
are ever working with more than one table in a seLECT statement, then use fully
qualified column names to avoid any and all ambiguity.

TIP: Subqueries May Not Always Be the Best Option

As explained earlier in this lesson, although the sample code shown here works,
it is often not the most efficient way to perform this type of data retrieval. You
will revisit this example when you learn about JOINs in the next two lessons.

Summary

In this lesson, you learned what subqueries are and how to use them. The most
common uses for subqueries are in WHERE clause IN operators and for populating
calculated columns. You saw examples of both of these types of operations.

106 LESSON 11: Working with Subqueries

Challenges

1. Using a subquery, return a list of customers who bought items priced 10 or
more. You’ll want to use the 0rderItems table to find the matching order
numbers (order num) and then the orders table to retrieve the customer ID
(cust_id) for those matched orders.

2. You need to know the dates when product BRo1 was ordered. Write a SQL
statement that uses a subquery to determine which orders (in orderItems)
purchased items with a prod_id of Bro1 and then returns customer ID
(cust_id) and order date (order date) for each from the orders table. Sort
the results by order date.

3. Now let’s make it a bit more challenging. Update the previous challenge
to return the customer email (cust_email in the Customers table) for
any customers who purchased items with a prod_id of Bro1. Hint: this
involves the SELECT statement, the innermost one returning order_num from
OrderItems, and the middle one returning cust_id from Customers.

4. We need a list of customer IDs with the total amount they have ordered.
Write a SQL statement to return customer ID (cust_id in the orders table)
and total ordered using a subquery to return the total of orders for each
customer. Sort the results by amount spent from greatest to the least. Hint:
you’ve used the suM () to calculate order totals previously.

5. One more. Write a SQL statement that retrieves all product names
(prod_name) from the Products table, along with a calculated column
named quant_sold containing the total number of this item sold (retrieved
using a subquery and a SUM (quantity) on the orderItems table).

Joining Tables

In this lesson, you’ll learn what joins are, why they are used, and how to create
SELECT Statements using them.

Understanding Joins

One of SQL’s most powerful features is the capability to join tables on-the-fly within
data retrieval queries. Joins are one of the most important operations that you can
perform using SQL seLECT, and a good understanding of joins and join syntax is

an extremely important part of learning SQL.

Before you can effectively use joins, you must understand relational tables and the
basics of relational database design. What follows is by no means complete coverage
of the subject, but it should be enough to get you up and running.

Understanding Relational Tables

The best way to understand relational tables is to look at a real-world example, one
based on the data you’ve used in the lessons thus far.

Suppose you had a database table containing a product list, with each product in its
own row. The kind of information you would store with each product would include
a description and price, along with vendor information about the company that creates
the product.

Now suppose that you had multiple products created by the same vendor. Where
would you store the vendor information (things like vendor name, address, and contact
information)? You wouldn’t want to store that data along with the products for several
reasons:

» Because the vendor information is the same for each product that vendor
produces, repeating the information for each product is a waste of time and
storage space.

» If vendor information changes (for example, if the vendor moves or the
contact info changes), you would need to update every occurrence of the
vendor information.

108 LESSON 12: Joining Tables

» When data is repeated (that is, the vendor information is used with each
product), there is a high likelihood that the data will not be entered
identically each time. Inconsistent data is extremely difficult to use in
reporting.

The key here is that having multiple occurrences of the same data is never a good
thing, and that principle is the basis for relational database design. Relational tables
are designed so that information is split into multiple tables, one for each data type.
The tables are related to each other through common values (and thus the relational in
relational design).

In our example, you can create two tables—one for vendor information and one for
product information. The vendors table contains all the vendor information, one table
row per vendor, along with a unique identifier for each vendor. This value, called a
primary key, can be a vendor ID or any other unique value.

The Products table stores only product information and no vendor-specific
information other than the vendor ID (the vendors table’s primary key). This key
relates the vendors table to the Products table, and using this vendor ID enables you
to use the vendors table to find the details about the appropriate vendor.

What does this do for you? Well, consider the following:
» Vendor information is never repeated, and so time and space are not wasted.

» If vendor information changes, you can update a single record, the one in the
vendors table. Data in related tables does not change.

» Because no data is repeated, the data used is obviously consistent, making

data reporting and manipulation much simpler.

The bottom line is that relational data can be stored efficiently and manipulated easily.
Because of this, relational databases scale far better than nonrelational databases.

Scale

Able to handle an increasing load without failing. A well-designed database or
application is said to scale well.

Why Use Joins?

As just explained, breaking data into multiple tables enables more efficient storage,
easier manipulation, and greater scalability. But these benefits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a single SELECT
statement?

Creating a Join 109

The answer is to use a join. Simply put, a join is a mechanism used to associate, or
join, tables within a SELECT statement (and thus the name join). By using a special
syntax, you can join multiple tables so that a single set of output is returned, and the
join associates the correct rows in each table on the fly.

Using Interactive DBMS Tools

Understand that a join is not a physical entity; in other words, it does not exist
in the actual database tables. A join is created by the DBMS as needed, and it
persists for the duration of the query execution.

Many DBMSs provide graphical interfaces that can be used to define table
relationships interactively. These tools can be invaluable in helping to maintain
referential integrity. When you are using relational tables, it is important that
only valid data is inserted into relational columns. Going back to the example,
if an invalid vendor ID is stored in the products table, those products would be
inaccessible because they would not be related to any vendor. To prevent this
from occurring, you can instruct the database to only allow valid values (ones
present in the vendors table) in the vendor ID column in the Products table.
Referential integrity means that the DBMS enforces data integrity rules. And
these rules are often managed through DBMS provided interfaces.

Creating a Join

Creating a join is very simple. You must specify all the tables to be included and how
they are related to each other. Look at the following example:

Input

SELECT vend _name, prod name, prod price
FROM Vendors, Products
WHERE Vendors.vend id = Products.vend id;

Output

vend_name prod_name prod_price
Doll House Inc. Fish bean bag toy 3.4900
Doll House Inc. Bird bean bag toy 3.4900
Doll House Inc. Rabbit bean bag toy 3.4900
Bears R Us 8 inch teddy bear 5.9900
Bears R Us 12 inch teddy bear 8.9900
Bears R Us 18 inch teddy bear 11.9900
Doll House Inc. Raggedy Ann 4.9900

Fun and Games King doll 9.4900

Fun and Games Queen doll 9.4900

110 LESSON 12: Joining Tables

Analysis

Let’s take a look at the preceding code. The SELECT statement starts in the same

way as all the statements you’ve looked at thus far, by specifying the columns to be
retrieved. The big difference here is that two of the specified columns (prod_name and
prod_price) are in one table, whereas the other (vend name) is in another table.

Now look at the FroM clause. Unlike all the prior SELECT statements, this one has

two tables listed in the FrROM clause, Vendors and Products. These are the names of
the two tables that are being joined in this SELECT statement. The tables are correctly
joined with a wHERE clause that instructs the DBMS to match vend_id in the vendors
table with vend_id in the Products table.

You’ll notice that the columns are specified as Vendors.vend id and
Products.vend_id. This fully qualified column name is required here because if
you just specified vend_id, the DBMS cannot tell which vend_id columns you
are referring to. (There are two of them, one in each table.) As you can see in the
preceding output, a single SELECT statement returns data from two different tables.

Fully Qualifying Column Names

As noted in the previous lesson, you must use the fully qualified column

name (table and column separated by a period) whenever there is a possible
ambiguity about which column you are referring to. Most DBMSs will return an
error message if you refer to an ambiguous column name without fully qualifying
it with a table name.

The Importance of the wueEreE Clause

It might seem strange to use a WHERE clause to set the join relationship, but actually,
there is a very good reason for this. Remember, when tables are joined in a SELECT
statement, that relationship is constructed on the fly. There is nothing in the database
table definitions that can instruct the DBMS how to join the tables. You have to do
that yourself. When you join two tables, what you are actually doing is pairing every
row in the first table with every row in the second table. The WHERE clause acts as a
filter to only include rows that match the specified filter condition—the join condition,
in this case. Without the wHERE clause, every row in the first table will be paired with
every row in the second table, regardless of whether they logically go together or not.

Cartesian Product

The results returned by a table relationship without a join condition. The number
of rows retrieved will be the number of rows in the first table multiplied by the
number of rows in the second table.

Creating a Join

To understand this, look at the following SELECT statement and output:

Input

SELECT vend name, prod name, prod price

FROM Vendors,

Products;

Output

vend_name
Bears R Us
Bears R Us
Bears R Us
Bears R Us
Bears R Us
Bears R Us
Bears R Us
Bears R Us

Bears R Us

Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium
Bear Emporium

Doll House
Doll House
Doll House
Doll House
Doll House
Doll House
Doll House
Doll House
Doll House

Inc.
Inc.
Inc.
Inc.
Inc.
Inc.
Inc.
Inc.
Inc.

Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Furball Inc.
Fun and Games
Fun and Games
Fun and Games

Fun and Games

prod_name

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy
Bird bean bag toy
Rabbit bean bag toy
Raggedy Ann

King doll

Queen doll

8 inch teddy bear
12 inch teddy bear
18 inch teddy bear
Fish bean bag toy

prod_price
5.99
8.99
11.99
.49
.49
.49
.99
.49
.49
.99
.99
1.99
.49
.49
.49
.99
.49
.49
.99
.99
1.99
.49
.49
.49
.99
.49
.49
.99
.99
1.99
.49
.49
.49
.99
.49
.49
.99
.99
11.99
3.49

Ulo VW Pk W WWE U VW WOVUPRWwwWEowuU WV woukrwwwrEr owuUu OV wuMkwww

[o2)

112 LESSON 12: Joining Tables

Fun and Games Bird bean bag toy 3.49
Fun and Games Rabbit bean bag toy 3.49
Fun and Games Raggedy Ann 4.99
Fun and Games King doll 9.49
Fun and Games Queen doll 9.49
Jouets et ours 8 inch teddy bear 5.99
Jouets et ours 12 inch teddy bear 8.99
Jouets et ours 18 inch teddy bear 11.99
Jouets et ours Fish bean bag toy 3.49
Jouets et ours Bird bean bag toy 3.49
Jouets et ours Rabbit bean bag toy 3.49
Jouets et ours Raggedy Ann 4.99
Jouets et ours King doll 9.49
Jouets et ours Queen doll 9.49
Analysis

As you can see in the preceding output, the Cartesian product is seldom what you
want. The data returned here has matched every product with every vendor, including
products with the incorrect vendor (and even vendors with no products at all).

Don’t Forget the wHERE Clause

Make sure all your joins have WHERE clauses; otherwise, the DBMS will return far
more data than you want. Similarly, make sure your WwHERE clauses are correct.
An incorrect filter condition will cause the DBMS to return incorrect data.

Cross Joins

Sometimes you’ll hear the type of join that returns a Cartesian Product referred
to as a cross join.

Inner Joins

The join you have been using so far is called an equijoin—a join based on the testing
of equality between two tables. This kind of join is also called an inner join. In fact,
you may use a slightly different syntax for these joins, specifying the type of join
explicitly. The following SELECT statement returns the exact same data as an earlier
example:

Input

SELECT vend _name, prod name, prod price
FROM Vendors
INNER JOIN Products ON Vendors.vend id = Products.vend id;

Creating a Join 113

Analysis

The sELECT in the statement is the same as the preceding SELECT statement, but the
FroM clause is different. Here the relationship between the two tables is part of the
FrRoOM clause specified as INNER JOIN. In this syntax, the join condition is specified
using the special oN clause instead of a WHERE clause. The actual condition passed to
ON is the same as would be passed to WHERE.

Refer to your DBMS documentation to see which syntax is preferred.

The “Right” Syntax
Per the ANSI SQL specification, use of the INNER JOIN syntax is preferred over
the simple equijoins syntax used previously. Indeed, SQL purists tend to look
upon the simple syntax with disdain. That being said, DBMSs do indeed support
both the simpler and the standard formats, so my recommendation is that you
take the time to understand both formats but use whichever you feel more
comfortable with.

Joining Multiple Tables

SQL imposes no limit to the number of tables that may be joined in a SELECT
statement. The basic rules for creating the join remain the same. First, list all the
tables, and then define the relationship between each. Here is an example:

Input

SELECT prod name, vend name, prod price, quantity
FROM OrderItems, Products, Vendors

WHERE Products.vend_id = Vendors.vend_ id

AND OrderItems.prod_id = Products.prod_id

AND order num = 20007;

Output

prod_name vend_name prod_price quantity
18 inch teddy bear Bears R Us 11.9900 50

Fish bean bag toy Doll House Inc. 3.4900 100

Bird bean bag toy Doll House Inc. 3.4900 100
Rabbit bean bag toy Doll House Inc. 3.4900 100
Raggedy Ann Doll House Inc. 4.9900 50

114 LESSON 12: Joining Tables

Analysis

This example displays the items in order number 20007. Order items are stored in

the orderItems table. Each product is stored by its product ID, which refers to a
product in the Products table. The products are linked to the appropriate vendor in
the vendors table by the vendor ID, which is stored with each product record. The
FROM clause here lists the three tables, and the wHERE clause defines both of those join
conditions. An additional wHERE condition is then used to filter just the items for order
20007.

Performance Considerations

DBMSs process joins at runtime relating each table as specified. This
process can become very resource intensive, so be careful not to join tables
unnecessarily. The more tables you join, the more performance will degrade.

Maximum Number of Tables in a Join

While it is true that SQL itself has no maximum number of tables per join
restriction, many DBMSs do indeed have restrictions. Refer to your DBMS
documentation to determine what restrictions there are, if any.

Now would be a good time to revisit the following example from Lesson 11,
“Working with Subqueries.” As you will recall, this SELECT statement returns a list of
customers who ordered product RGANO1:

Input

SELECT cust_name, cust_contact
FROM Customers
WHERE cust_id IN (SELECT cust_id
FROM Orders
WHERE order_num IN (SELECT order_num
FROM OrderItems
WHERE prod _id = 'RGANO1')) ;

As mentioned in Lesson 11, subqueries are not always the most efficient way to perform
complex SELECT operations, and so as promised, here is the same query using joins:

Input

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

AND OrderItems.order_num = Orders.order_num
AND prod_id = 'RGANO1';

Summary 115

Output

cust_name cust_contact
Fun4All Denise L. Stephens
The Toy Store Kim Howard
Analysis

As explained in Lesson 11, returning the data needed in this query requires the use of
three tables. But instead of using them within nested subqueries, here two joins are
used to connect the tables. There are three wHERE clause conditions here. The first two
connect the tables in the join, and the last one filters the data for product RGaNO1.

It Pays to Experiment

As you can see, there is often more than one way to perform any given SQL
operation. And there is rarely a definitive right or wrong way. Performance can
be affected by the type of operation, the DBMS being used, the amount of data
in the tables, whether or not indexes and keys are present, and a whole slew of
other criteria. Therefore, it is often worth experimenting with different selection
mechanisms to find the one that works best for you.

Joined Column Names

In all of the examples presented here, the columns being joined are named the
same (cust_id in both customers and orders, for example). Having identically
named columns is not a requirement, and you’ll often encounter databases that
use different naming conventions. | created the tables this way to make the
examples simpler and clearer.

Summary

Joins are one of the most important and powerful features in SQL, and using them
effectively requires a basic understanding of relational database design. In this lesson,
you learned some of the basics of relational database design as an introduction to
learning about joins. You also learned how to create an equijoin (also known as an
inner join), which is the most commonly used form of join. In the next lesson, you’ll
learn how to create other types of joins.

116 LESSON 12: Joining Tables

Challenges

1. Write a SQL statement to return customer name (cust_name) from the
Customers table and related order numbers (order num) from the orders
table, sorting the result by customer name and then by order number.
Actually, try this one twice—once using simple equijoin syntax and once
using an INNER JOIN.

2. Let’s make the previous challenge more useful. In addition to returning the
customer name and order number, add a third column named orderTotal
containing the total price of each order. There are two ways to do this: you
can create the orderTotal column using a subquery on the orderItems
table, or you can join the orderItems table to the existing tables and use an
aggregate function. Here’s a hint: watch out for where you need to use fully
qualified column names.

3. Let’s revisit Challenge 2 from Lesson 11. Write a SQL statement that
retrieves the dates when product BR01 was ordered, but this time use a join
and simple equijoin syntax. The output should be identical to the one from
Lesson 11.

4. That was fun; let’s try it again. Re-create the SQL you wrote for Lesson 11
Challenge 3, but this time using ANSI INNER JOIN syntax. The code you
wrote there employed two nested subqueries. To re-create it, you’ll need two
INNER JOIN statements, each formatted like the INNER JOIN example earlier
in this lesson. And don’t forget the wHERE clause to filter by prod_id.

5. One more, and to make things more fun, we’ll mix joins, aggregate
functions, and grouping too. Ready? Back in Lesson 10 I issued you a
challenge to find all order numbers with a value of 1000 or more. Those
results are useful, but what would be even more useful is the names of
the customers who placed orders of at least that amount. So, write a SQL
statement that uses joins to return customer name (cust_name) from the
Customers table and the total price of all orders from the orderItems table.
Here’s a hint: to join those tables, you’ll also need to include the orders
table (because Customers is not related directly to OrderItems, Customers
is related to orders, and Orders is related to orderItems). Don’t forget
GROUP BY and HAVING, and sort the results by customer name. You can use
simple equijoin or ANSI INNER JOIN syntax for this one. Or, if you are
feeling brave, try writing it both ways.

Creating Advanced Joins

In this lesson, you’ll learn all about additional join types—what they are and how
to use them. You’ll also learn how to use table aliases and how to use aggregate
functions with joined tables.

Using Table Aliases

Before we look at additional types of joins, we need to revisit aliases. Back in
Lesson 7, “Creating Calculated Fields,” you learned how to use aliases to refer to
retrieved table columns. The syntax to alias a column (in SQL Server) looks like this:

Input v

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend country) + ')'
AS vend title

FROM Vendors

ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL also enables
you to alias table names. There are two primary reasons to do this:

» To shorten the SQL syntax

» To enable multiple uses of the same table within a single SELECT statement

Take a look at the following SELECT statement. It is basically the same statement as an
example used in the previous lesson, but it has been modified to use aliases:

input v

SELECT cust_name, cust_contact

FROM Customers AS C, Orders AS O, OrderItems AS OI
WHERE C.cust_id = O.cust_id

AND OI.order_num = O.order_num

AND prod_id = 'RGANO1l';

118 LESSON 13: Creating Advanced Joins

Analysis

You’ll notice that the three tables in the FrRoM clauses all have aliases. Customers AS C
establishes c as an alias for customers, and so on. This approach enables you to use
the abbreviated c instead of the full text customers. In this example, the table aliases
were used only in the WHERE clause, but aliases are not limited to just WHERE. You

can use aliases in the SELECT list, the ORDER BY clause, and in any other part of the
statement as well.

No as in Oracle

Oracle does not support the as keyword when aliasing tables. To use aliases
in Oracle, simply specify the alias without As (so customers c instead of
Customers AS Q).

It is also worth noting that table aliases are only used during query execution. Unlike
column aliases, table aliases are never returned to the client.

Using Different Join Types

Thus far you have used only simple joins known as inner joins or equijoins. You’ll
now take a look at three additional join types: the self join, the natural join, and the
outer join.

Self Joins

As mentioned earlier, one of the primary reasons to use table aliases is to be able to
refer to the same table more than once in a single SELECT statement. An example will
demonstrate this.

Suppose you wanted to send a mailing to all the customer contacts who work for the
same company for which Jim Jones works. This query requires that you first find
out which company Jim Jones works for and next which customers work for that
company. The following is one way to approach this problem:

Input

SELECT cust_id, cust_name, cust_ contact
FROM Customers
WHERE cust_name = (SELECT cust_name
FROM Customers
WHERE cust_contact = 'Jim Jones');

Using Different Join Types 119

Output v

cust_id cust_name cust_contact
1000000003 Fun4All Jim Jones
1000000004 Fun4All Denise L. Stephens

Analysis v

This first solution uses subqueries. The inner SELECT statement does a simple retrieval
to return the cust_name of the company that Jim Jones works for. That name is the
one used in the WHERE clause of the outer query so that all employees who work for
that company are retrieved. (You learned all about subqueries in Lesson 11, “Working
with Subqueries.” Refer to that lesson for more information.)

Now look at the same query using a join:

input v

SELECT cl.cust_id, cl.cust_name, cl.cust_contact
FROM Customers AS cl, Customers AS c2
WHERE cl.cust_name = c2.cust_name

AND c2.cust_contact = 'Jim Jones';

Output v

cust_id cust_name cust_contact
1000000003 Fun4All Jim Jones
1000000004 Fun4All Denise L. Stephens

TIP: No as in Oracle
Oracle users, remember to drop the as.

Analysis v

The two tables needed in this query are actually the same table, and so the customers
table appears in the FrRoM clause twice. Although this is perfectly legal, any references
to table customers would be ambiguous because the DBMS does not know which
Customers table you are referring to.

To resolve this problem, table aliases are used. The first occurrence of customers
has an alias of c1, and the second has an alias of c2. Now those aliases can be used
as table names. The SELECT statement, for example, uses the c1 prefix to explicitly

120 LESSON 13: Creating Advanced Joins

state the full name of the desired columns. If it did not, the DBMS would return an
error because there are two of each column named cust id, cust name, and
cust_contact. It cannot know which one you want. (Even though they are the same.)
The wHERE clause first joins the tables and then filters the data by cust_contact in
the second table to return only the wanted data.

Self Joins Instead of Subqueries

Self joins are often used to replace statements using subqueries that retrieve
data from the same table as the outer statement. Although the end result is the
same, many DBMSs process joins far more quickly than they do subqueries. It
is usually worth experimenting with both to determine which performs better.

Natural Joins v

Whenever tables are joined, at least one column will appear in more than one table
(the columns being used to create the join). Standard joins (the inner joins that you
learned about in the last lesson) return all data, even multiple occurrences of the same
column. A natural join simply eliminates those multiple occurrences so that only one
of each column is returned.

How does it do this? The answer is it doesn’t—you do it. A natural join is a join in
which you select only columns that are unique. This is typically done using a wildcard
(seLECT =) for one table and explicit subsets of the columns for all other tables. The
following is an example:

Input

SELECT C.*, O.order_num, O.order_date,
OI.prod_id, OI.quantity, OI.item price
FROM Customers AS C, Orders AS O,
OrderItems AS OI
WHERE C.cust_id = O.cust_id
AND OI.order num = O.order_ num
AND prod_id = 'RGANO1';

No as in Oracle
Oracle users, remember to drop the as.

Analysis

In this example, a wildcard is used for the first table only. All other columns are
explicitly listed so that no duplicate columns are retrieved.

Using Different Join Types 121

The truth is, every inner join you have created thus far is actually a natural join, and
you will probably never need an inner join that is not a natural join.

Outer Joins

Most joins relate rows in one table with rows in another. But occasionally, you
want to include rows that have no related rows. For example, you might use joins to
accomplish the following tasks:

» Count how many orders were placed by each customer, including customers
that have yet to place an order.

» List all products with order quantities, including products not ordered by
anyone.

» Calculate average sale sizes, taking into account customers that have not yet

placed an order.

In each of these examples, the join includes table rows that have no associated rows in
the related table. This type of join is called an outer join.

Syntax Differences

It is important to note that the syntax used to create an outer join can vary
slightly among different SQL implementations. The various forms of syntax
described in the following section cover most implementations, but refer to your
DBMS documentation to verify its syntax before proceeding.

The following SELECT statement is a simple inner join. It retrieves a list of all
customers and their orders:

Input

SELECT Customers.cust_id, Orders.order num
FROM Customers
INNER JOIN Orders ON Customers.cust id = Orders.cust id;

Outer join syntax is similar. To retrieve a list of all customers including those who
have placed no orders, you can do the following:

Input

SELECT Customers.cust_id, Orders.order num
FROM Customers
LEFT OUTER JOIN Orders ON Customers.cust_id = Orders.cust_ id;

122 LESSON 13: Creating Advanced Joins

Output

cust_id order num
1000000001 20005
1000000001 20009
1000000002 NULL
1000000003 20006
1000000004 20007
1000000005 20008
Analysis

Like the inner join seen in the last lesson, this SELECT statement uses the keywords
OUTER JOIN to specify the join type (instead of specifying it in the WHERE clause). But
unlike inner joins, which relate rows in both tables, outer joins also include rows with
no related rows. When using OUTER JOIN syntax, you must use the RIGHT or LEFT
keywords to specify the table from which to include all rows (RIGHT for the one on
the right of oUTER JOIN and LEFT for the one on the left). The previous example uses
LEFT OUTER JOIN to select all the rows from the table on the left in the FrRoM clause
(the customers table). To select all the rows from the table on the right, you use a
RIGHT OUTER JOIN as seen in this next example:

Input

SELECT Customers.cust_id, Orders.order num
FROM Customers
RIGHT OUTER JOIN Orders ON Customers.cust id = Orders.cust id;

SQLite Outer Joins

SQLite supports LEFT OUTER JOIN, but not RIGHT OUTER JOIN. Fortunately, if
you do need RIGHT OUTER JOIN functionality in SQLite, there is a very simple
solution as will be explained in the next tip.

Outer Join Types

Remember that there are always two basic forms of outer joins—the left outer
join and the right outer join. The only difference between them is the order of
the tables that they are relating. In other words, a left outer join can be turned
into a right outer join simply by reversing the order of the tables in the From or
WHERE clause. As such, the two types of outer join can be used interchangeably,
and the decision about which one is used is based purely on convenience.

Using Joins with Aggregate Functions 123

There is one other variant of the outer join, one that tends to be rarely used. The full
outer join retrieves all rows from both tables and relates those that can be related.
Unlike a left outer join or right outer join, which includes unrelated rows from a single
table, the full outer join includes unrelated rows from both tables. The syntax for a full
outer join is as follows:

Input

SELECT Customers.cust_id, Orders.order num
FROM Customers
FULL OUTER JOIN Orders ON Customers.cust_id

Orders.cust_id;

FULL OUTER JOIN Support
The FULL OUTER JOIN syntax is not supported by MariaDB, MySQL, or SQLite.

Using Joins with Aggregate Functions

As you learned in Lesson 9, “Summarizing Data,” aggregate functions are used to
summarize data. Although all the examples of aggregate functions thus far only
summarized data from a single table, these functions can also be used with joins.

To demonstrate this, let’s look at an example. You want to retrieve a list of all
customers and the number of orders that each has placed. The following code uses
the counT () function to achieve this:

Input

SELECT Customers.cust id,
COUNT (Orders.order num) AS num_ord
FROM Customers
INNER JOIN Orders ON Customers.cust id = Orders.cust id
GROUP BY Customers.cust_id;

Output

1000000001 2
1000000003 1
1000000004 1
1000000005 1

124 LESSON 13: Creating Advanced Joins

Analysis

This SELECT statement uses INNER JOIN to relate the Customers and Orders tables
to each other. The GrouP BY clause groups the data by customer, and so the function
call COUNT (Orders.order num) counts the number of orders for each customer and
returns it as num_ord.

Aggregate functions can be used just as easily with other join types. See the following
example:

Input

SELECT Customers.cust id,
COUNT (Orders.order num) AS num_ord
FROM Customers
LEFT OUTER JOIN Orders ON Customers.cust id = Orders.cust id
GROUP BY Customers.cust id;

Output

1000000001 2
1000000002 0
1000000003 1
1
1

1000000004
1000000005

Analysis

This example uses a left outer join to include all customers, even those who have
not placed any orders. The results show that customer 1000000002 with o orders is
included this time, unlike when the INNER JOIN was used.

Using Joins and Join Conditions

Before I wrap up our two-lesson discussion on joins, I think it is worthwhile to
summarize some key points regarding joins and their use:

» Pay careful attention to the type of join being used. More often than not,
you’ll want an inner join, but there are often valid uses for outer joins too.

Summary 125

» Check your DBMS documentation for the exact join syntax it supports.
(Most DBMSs use one of the forms of syntax described in these two
lessons.)

» Make sure you use the correct join condition (regardless of the syntax being
used), or you’ll return incorrect data.

» Make sure you always provide a join condition, or you’ll end up with the
Cartesian product.

» You may include multiple tables in a join and even have different join types
for each. Although this is legal and often useful, make sure you test each join
separately before testing them together. This will make troubleshooting far
simpler.

Summary

This lesson was a continuation of the last lesson on joins. This lesson started by
teaching you how and why to use aliases, and then continued with a discussion on
different join types and various forms of syntax used with each. You also learned how
to use aggregate functions with joins and some important do’s and dont’s to keep in
mind when working with joins.

126

LESSON 13: Creating Advanced Joins

Challenges

1.

Write a SQL statement using an INNER JOIN to retrieve customer name
(cust_name in Customers) and all order numbers (order num in Orders)
for each.

Modify the SQL statement you just created to list all customers, even those
with no orders.

Use an OUTER JOIN to join the Products and OrderItems tables, returning
a sorted list of product names (prod_name) and the order numbers
(order_num) associated with each.

Modify the SQL statement created in the previous challenge so that it returns
a total of number of orders for each item (as opposed to the order numbers).

Write a SQL statement to list vendors (vend_id in Vendors) and the number
of products they have available, including vendors with no products. You’ll
want to use an OUTER JOIN and the COUNT () aggregate function to count the
number of products for each in the Products table. Pay attention: the
vend_id column appears in multiple tables, so any time you refer to it,
you’ll need to fully qualify it.

Combining Queries

In this lesson, you’ll learn how to use the UNION operator to combine multiple SELECT
statements into one result set.

Understanding Combined Queries

Most SQL queries contain a single SELECT statement that returns data from one or
more tables. SQL also enables you to perform multiple queries (multiple SELECT
statements) and return the results as a single query result set. These combined queries
are usually known as unions or compound queries.

There are basically two scenarios in which you’d use combined queries:
» To return similarly structured data from different tables in a single query

» To perform multiple queries against a single table returning the data as one
query

TIP: Combining Queries and Multiple wiHERE Conditions

For the most part, combining two queries to the same table accomplishes the
same thing as a single query with multiple wHERE clause conditions. In other
words, any SELECT statement with multiple wHERE clauses can also be specified
as a combined query, as you'll see in the section that follows.

Creating Combined Queries

SQL queries are combined using the uNION operator. Using UNION, you can specify
multiple SELECT statements, and their results can be combined into a single result set.

Using unioN

Using un1oN is simple enough. All you do is specify each SELECT statement and place
the keyword UNION between each.

128 LESSON 14: Combining Queries

Let’s look at an example. You need a report on all your customers in Illinois, Indiana, and
Michigan. You also want to include all Fun4al1 locations, regardless of state. Of course,
you can create a WHERE clause that will do this, but this time you’ll use a UNTON instead.

As just explained, creating a UNION involves writing multiple SELECT statements.
First, look at the individual statements:

Input v

SELECT cust_name, cust contact, cust_email
FROM Customers
WHERE cust_state IN ('IL',6 "IN', 'MI');

Output v

cust_name cust_contact cust_email

Village Toys John Smith sales@villagetoys.com
Fun4All Jim Jones jjones@fun4all.com
The Toy Store Kim Howard NULL

Input v

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_name = 'Fun4All';

Output v

cust_name cust_contact cust_email

Fun4All Jim Jones jjones@fun4all.com
Fun4All Denise L. Stephens dstephens@fun4all.com

Analysis v

The first seLECT retrieves all rows in Illinois, Indiana, and Michigan by passing those
state abbreviations to the 1N clause. The second SELECT uses a simple equality test to
find all Fun4a11 locations. You’ll notice that one row appears on both outputs as it
meets both WHERE conditions.

mailto:jjones@fun4all.com
mailto:dstephens@fun4all.com

Creating Combined Queries 129

To combine these two statements, do the following:

Input v

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_state IN ('IL','IN',6 'MI')

UNION

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_name = 'Fun4All';

Output v

cust_name cust_contact cust_email

Fun4All Denise L. Stephens dstephens@fun4all.com
Fun4All Jim Jones jjones@fun4all.com
Village Toys John Smith sales@villagetoys.com
The Toy Store Kim Howard NULL

Analysis v

The preceding statements are made up of both of the previous SELECT statements
separated by the unTON keyword. uNION instructs the DBMS to execute both SELECT
statements and combine the output into a single query result set.

As a point of reference, here is the same query using multiple WwHERE clauses instead
of a UNION:

input v

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_state IN ('IL',6 'IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_name = 'Fun4All';

mailto:dstephens@fun4all.com
mailto:jjones@fun4all.com
mailto:sales@villagetoys.com

130 LESSON 14: Combining Queries

In our simple example, the uNTON might actually be more complicated than using

a WHERE clause. But with more complex filtering conditions, or if the data is being
retrieved from multiple tables (and not just a single table), the unIoN could have made
the process much simpler indeed.

TIP: unzoN Limits

There is no standard SQL limit to the number of SELECT statements that can
be combined with uNnION statements. However, it is best to consult your DBMS
documentation to ensure that it does not enforce any maximum statement
restrictions of its own.

CAUTION: Performance Issues

Most good DBMSs use an internal query optimizer to combine the SELECT
statements before they are even processed. In theory, this means that from a
performance perspective, there should be no real difference between using mul-
tiple wHERE clause conditions or a un1ON. | say in theory, because, in practice,
most query optimizers don’t always do as good a job as they should. Your best
bet is to test both methods to see which will work best for you.

UNION Rules

As you can see, unions are very easy to use. But there are a few rules governing
exactly which can be combined:

» A unNION must be composed of two or more SELECT statements, each
separated by the keyword uNION (S0, if you’re combining four SELECT
statements, you would use three unzoN keywords).

» Each query in a UNION must contain the same columns, expressions, or
aggregate functions (and some DBMSs even require that columns be listed in
the same order).

» Column datatypes must be compatible. They need not be the same name or
the exact same type, but they must be of a type that the DBMS can implicitly
convert (for example, different numeric types or different date types).

Creating Combined Queries 131

NOTE: unzon Column Names

If SELECT statements that are combined with a unIoN have different column
names, what name is actually returned? For example, if one statement
contained SELECT prod name and the next used SELECT productname, what
would be the name of the combined returned column?

The answer is that the first name is used, so in our example the combined
column would be named prod name, even though the second SELECT used a
different name. This also means that you can use an alias on the first name to
set the returned column name as needed.

This behavior has another interesting side effect. Because the first set of
column names are used, only those names can be specified when sorting.
Again, in our example, you could use ORDER BY prod name to sort the com-
bined results, but ORDER BY productname would display an error message
because there is no column productname in the combined results.

Aside from these basic rules and restrictions, unions can be used for any data retrieval
tasks.

Including or Eliminating Duplicate Rows

Go back to the preceding section titled “Using untoN” and look at the sample SELECT
statements used. You’ll notice that when executed individually, the first SELECT state-
ment returns three rows, and the second SELECT statement returns two rows. However,
when the two SELECT statements are combined with a UNTION, only four rows are
returned, not five.

The unION automatically removes any duplicate rows from the query result set (in
other words, it behaves just as multiple WwHERE clause conditions in a single SELECT
would). Because there is a Fun4All location in Indiana, that row was returned by both
SELECT statements. When the uNToN was used, the duplicate row was eliminated.

This is the default behavior of uNION, but you can change it if you so desire. If you
would, in fact, want all occurrences of all matches returned, you could use UNION ALL
instead of UNION.

Look at the following example:

input v

SELECT cust _name, cust contact, cust email
FROM Customers

WHERE cust_state IN ('IL','IN',6 'MI')

UNION ALL

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust _name = 'Fun4All';

132 LESSON 14: Combining Queries

Output v

cust_name cust_contact cust_email

Village Toys John Smith sales@villagetoys.com
Fun4All Jim Jones jjones@efun4all.com
The Toy Store Kim Howard NULL

Fun4All Jim Jones jjones@fun4all.com
Fun4All Denise L. Stephens dstephens@fun4all.com

Analysis v

When you use un1oN ALL, the DBMS does not eliminate duplicates. Therefore, the
preceding example returns five rows, one of them occurring twice.

TIP: unIOoN Versus WHERE

At the beginning of this lesson, | said that unton almost always accomplishes
the same thing as multiple wHERE conditions. UNION ALL is the form of uNnIoN
that accomplishes what cannot be done with wHERE clauses. If you do, in fact,
want all occurrences of matches for every condition (including duplicates), you
must use UNION ALL and not WHERE.

Sorting Combined Query Results

SELECT statement output is sorted using the ORDER BY clause. When combining que-
ries with a UNTON, you may use only one ORDER BY clause, and it must occur after the
final seLECT statement. There is very little point in sorting part of a result set one way
and part another way, and so multiple ORDER BY clauses are not allowed.

The following example sorts the results returned by the previously used UNION:

Input v

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_state IN ('IL',6'IN',6 'MI')

UNION

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_name = 'Fun4All'

ORDER BY cust_name, cust_contact;

mailto:sales@villagetoys.com
mailto:jjones@fun4all.com
mailto:jjones@fun4all.com
mailto:dstephens@fun4all.com

Summary 133

Output v

cust_name cust_contact cust_email

Fun4All Denise L. Stephens dstephens@fun4all.com
Fun4All Jim Jones jjones@fun4all.com
The Toy Store Kim Howard NULL

Village Toys John Smith sales@villagetoys.com

Analysis v

This unTON takes a single ORDER BY clause after the final SELECT statement. Even
though the ORDER BY appears to be a part of only that last SELECT statement, the
DBMS will in fact use it to sort all the results returned by all the SELECT statements.

NOTE: Other unioN Types

Some DBMSs support two additional types of UNION. EXCEPT (sometimes called
MINUS) can be used to retrieve only the rows that exist in the first table but not
in the second, and INTERSECT can be used to retrieve only the rows that exist
in both tables. In practice, however, these uNION types are rarely used because
the same results can be accomplished using joins.

TIP: Working with Multiple Tables

For simplicity’s sake, the examples in this lesson have all used unION to com-
bine multiple queries on the same table. In practice, un1oN is really useful when
you need to combine data from multiple tables, even tables with mismatched
column names, in which case you can combine UNION with aliases to retrieve a
single set of results.

Summary

In this lesson, you learned how to combine SELECT statements with the uNTON
operator. Using UNION, you can return the results of multiple queries as one combined
query, either including or excluding duplicates. The use of uNTON can greatly simplify
complex WHERE clauses and retrieval of data from multiple tables.

mailto:dstephens@fun4all.com
mailto:jjones@fun4all.com
mailto:sales@villagetoys.com

134 LESSON 14: Combining Queries

Challenges

1. Write a SQL statement that combines two SELECT statements that retrieve
product ID (prod_id) and quantity from the orderItems table, one
filtering for rows with a quantity of exactly 100, and the other filtering for
products with an ID that begins with BNBG. Sort the results by product ID.

2. Rewrite the SQL statement you just created to use a single SELECT statement.

3. This one is a little nonsensical, I know, but it does reinforce a note earlier
in this lesson. Write a SQL statement which returns and combines product
name (prod_name) from Products and customer name (cust_name) from
Customers, and sort the result by product name.

4. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

SELECT cust _name, cust contact, cust email
FROM Customers

WHERE cust_state = 'MI'

ORDER BY cust name;

UNION

SELECT cust_name, cust_contact, cust_email
FROM Customers

WHERE cust_state = 'IL'ORDER BY cust_name;

LESSON 15
Inserting Data

In this lesson, you will learn how to insert data into tables using the SQL INSERT
statement.

Understanding Data Insertion

SELECT is undoubtedly the most frequently used SQL statement (which is why the
last 14 lessons were dedicated to it). But there are three other frequently used SQL
statements that you should learn. The first one is INSERT. (You’ll get to the other two
in the next lesson.)

As its name suggests, INSERT is used to insert (add) rows to a database table. Insert
can be used in several ways:

» Inserting a single complete row
» Inserting a single partial row

» Inserting the results of a query

Let’s now look at each of these.

TIP: 1NsERT and System Security

Use of the INSERT statement might require special security privileges in
client/server DBMSs. Before you attempt to use INSERT, make sure you have
adequate security privileges to do so.

136 LESSON 15: Inserting Data

Inserting Complete Rows

The simplest way to insert data into a table is to use the basic INSERT syntax, which
requires that you specify the table name and the values to be inserted into the new
row. Here is an example of this:

Input v

INSERT INTO Customers
VALUES (1000000006,

'Toy Land',

'123 Any Street',

'New York',

INY',

'11111°',

'UsSA!',

NULL,

NULL) ;

Analysis v

The above example inserts a new customer into the Customers table. The data to be
stored in each table column is specified in the VALUES clause, and a value must be
provided for every column. If a column has no value (for example, the cust_contact
and cust_email columns above), the NULL value should be used (assuming the table
allows no value to be specified for that column). The columns must be populated in
the order in which they appear in the table definition.

TIP: The 1NTO Keyword

In some SQL implementations, the 1NTO keyword following INSERT is optional.
However, it is good practice to provide this keyword even if it is not needed.
Doing so will ensure that your SQL code is portable between DBMSs.

Although this syntax is indeed simple, it is not at all safe and should generally be
avoided at all costs. The above SQL statement is highly dependent on the order in
which the columns are defined in the table. It also depends on information about
that order being readily available. Even if it is available, there is no guarantee that
the columns will be in the exact same order the next time the table is reconstructed.
Therefore, writing SQL statements that depend on specific column ordering is very
unsafe. If you do so, something will inevitably break at some point.

Understanding Data Insertion 137

The safer (and unfortunately more cumbersome) way to write the INSERT statement is
as follows:

input v

INSERT INTO Customers(cust_id,
cust name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country,
cust_contact,
cust_email)
VALUES (1000000006,
'Toy Land',
'123 Any Street',
'New York',
'NY',
'11111°',
'USA',
NULL,
NULL) ;

Analysis v

This example does the exact same thing as the previous INSERT statement, but this
time the column names are explicitly stated in parentheses after the table name. When
the row is inserted, the DBMS will match each item in the columns list with the
appropriate value in the vaLUES list. The first entry in VALUES corresponds to the first
specified column name. The second value corresponds to the second column name,
and so on.

Because column names are provided, the vALUES must match the specified column
names in the order in which they are specified, and not necessarily in the order that
the columns appear in the actual table. The advantage of this is that, even if the table
layout changes, the INSERT statement will still work correctly.

NOTE: Can’t 1NsERT Same Record Twice

If you tried both versions of this example, you’ll have discovered that the second
generated an error because a customer with an ID of 1000000006 already
existed. As discussed in Lesson 1, “Understanding SQL,” primary key values
must be unique, and because cust_id is the primary key, the DBMS won’t allow
you to insert two rows with the same cust_id value. The same is true for the
next example. To try the other INSERT statements, you'd need to delete the first
row added (as will be shown in the next Lesson). Or don’t, because the row has
been inserted and you can continue the lessons without deleting it.

138 LESSON 15: Inserting Data

The following INSERT statement populates all the row columns (just as before), but it
does so in a different order. Because the column names are specified, the insertion will
work correctly:

Input v

INSERT INTO Customers (cust_id,
cust_contact,
cust_email,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip)

VALUES (1000000006,

NULL,

NULL,

'Toy Land',

'123 Any Street',
'New York',

'NY',

111111"') ;

TIP: Always Use a Columns List

As a rule, never use INSERT without explicitly specifying the column list. This
will greatly increase the probability that your SQL will continue to function in the
event that table changes occur.

CAUTION: Use vaLues Carefully

Regardless of the INSERT syntax being used, the correct number of VALUES
must be specified. If no column names are provided, a value must be present
for every table column. If column names are provided, a value must be present
for each listed column. If none is present, an error message will be generated,
and the row will not be inserted.

Inserting Partial Rows

As I just explained, the recommended way to use INSERT is to explicitly specify table
column names. Using this syntax, you can also omit columns. This means you provide
values for only some columns, but not for others.

Understanding Data Insertion 139

Look at the following example:

Input v

INSERT INTO Customers(cust_id,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

VALUES (1000000006,
'Toy Land',
'123 Any Street',
'New York',
'NY',
'11111°',
'UsSA') ;

Analysis v

In the examples given earlier in this lesson, values were not provided for two of the
columns, cust_contact and cust_email. This means there is no reason to include
those columns in the INSERT statement. This INSERT statement, therefore, omits
the two columns and the two corresponding values.

CAUTION: Omitting Columns

You may omit columns from an INSERT operation if the table definition so
allows. One of the following conditions must exist:

» The column is defined as allowing NULL values (no value at all).

» A default value is specified in the table definition. This means the default
value will be used if no value is specified.

CAUTION: Omitting Required Values

If you omit a value from a table that does not allow NULL values and does not
have a default, the DBMS will generate an error message, and the row will not
be inserted.

140 LESSON 15: Inserting Data

Inserting Retrieved Data

INSERT is usually used to add a row to a table using specified values. There is another
form of INSERT that can be used to insert the result of a SELECT statement into a
table. This is known as INSERT SELECT, and, as its name suggests, it is made up of
an INSERT statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into your
Customers table. Instead of reading one row at a time and inserting it with INSERT,
you can do the following:

Input v

INSERT INTO Customers (cust_id,
cust_contact,
cust_email,
cust_name,
cust address,
cust_city,
cust_state,
cust_zip,
cust_country)

SELECT cust_id,

cust_contact,
cust_email,
cust_name,
cust address,
cust_city,
cust_state,
cust_zip,
cust_country

FROM CustNew;

NOTE: Instructions Needed for the Next Example

The following example imports data from a table named custNew into the
customers table. To try this example, create and populate the custNew table
first. The format of the custNew table should be the same as the customers
table described in Appendix A, “Sample Table Scripts.” When populating
CustNew, be sure not to use cust_id values that were already used in
customers. (The subsequent INSERT operation fails if primary key values are
duplicated.)

Copying from One Table to Another 141

Analysis v

This example uses INSERT SELECT to import all the data from custNew into
customers. Instead of listing the VALUES to be inserted, the SELECT statement
retrieves them from custNew. Each column in the SELECT corresponds to a column in
the specified columns list. How many rows will this statement insert? That depends
on how many rows are in the custNew table. If the table is empty, no rows will be
inserted (and no error will be generated because the operation is still valid). If the
table does, in fact, contain data, all that data will be inserted into Customers.

TIP: Column Names in INSERT SELECT

This example uses the same column names in both the INSERT and SELECT
statements for simplicity’s sake. But there is no requirement that the column
names match. In fact, the DBMS does not even pay attention to the column
names returned by the SELECT. Rather, the column position is used, so the
first column in the sELECT statement (regardless of its name) will be used to
populate the first specified table column, and so on.

The sELECT statement used in an INSERT SELECT can include a wHERE clause to filter
the data to be inserted.

TIP: Inserting Multiple Rows

INSERT usually inserts only a single row. To insert multiple rows, you must
execute multiple INSERT statements. The exception to this rule is INSERT
SELECT, which can be used to insert multiple rows with a single statement;
whatever the seLECT statement returns will be inserted by the INSERT.

Copying from One Table to Another

There is another form of data insertion that does not use the INSERT statement at all.
To copy the contents of a table into a brand new table (one that is created on the fly),
you can use the CREATE SELECT statement (or SELECT INTO if using SQL Server).

NOTE: Not Supported by DB2
DB2 does not support the use of CREATE SELECT as described here.

Unlike INSERT SELECT, which appends data to an existing table, CREATE SELECT
copies data into a new table (and, depending on the DBMS being used, can overwrite
the table if it already exists).

142 LESSON 15: Inserting Data

The following example demonstrates the use of CREATE SELECT:

Input v

CREATE TABLE CustCopy AS SELECT * FROM Customers;

If using SQL Server, use this syntax instead:

Input v

SELECT * INTO CustCopy FROM Customers;

Analysis v

This SELECT statement creates a new table named CustCopy and copies the entire
contents of the customers table into it. Because SELECT * was used, every column in
the customers table will be created (and populated) in the custCopy table. To copy
only a subset of the available columns, you can specify explicit column names instead
of the * wildcard character.

Here are some things to consider when using SELECT INTO:
> Any SELECT options and clauses may be used, including WHERE and GROUP BY.
» Joins may be used to insert data from multiple tables.

» Data may only be inserted into a single table regardless of how many tables
the data was retrieved from.

TIP: Making Copies of Tables

The technique described here is a great way to make copies of tables before
experimenting with new SQL statements. By making a copy first, you’ll be able
to test your SQL on that copy instead of on live data.

NOTE: More Examples

Looking for more examples of INSERT usage? See the example table population
scripts described in Appendix A.

Summary

In this lesson, you learned how to insert rows into a database table using INSERT.
You learned several ways to use INSERT and why explicit column specification is
preferred. You also learned how to use INSERT SELECT to import rows from another
table and how to use SELECT INTO to export rows to a new table. In the next lesson,
you’ll learn how to use UPDATE and DELETE to further manipulate table data.

Challenges 143

Challenges

1. Using INSERT and columns specified, add yourself to the customers table.
Explicitly list the columns you are adding and only the ones you need.

2. Make backup copies of your orders and OrderItems tables.

This page intentionally left blank

LESSON 16
Updating and Deleting Data

In this lesson, you will learn how to use the UPDATE and DELETE Statements to enable
you to further manipulate your table data.

Updating Data

To update (modify) data in a table, you use the UPDATE statement. UPDATE can be used
in two ways:

» To update specific rows in a table

» To update all rows in a table

You’ll now take a look at each of these uses.

CAUTION: Don’t Omit the wHERE Clause

Special care must be exercised when using UPDATE because it is all too easy
to mistakenly update every row in your table. Please read this entire section on
UPDATE before using this statement.

TIP: upDATE and Security

Use of the upDATE statement might require special security privileges in
client/server DBMSs. Before you attempt to use UPDATE, make sure you have
adequate security privileges to do so.

The UPDATE statement is very easy to use—some would say too easy. The basic
format of an UPDATE statement is made up of three parts:

» The table to be updated
» The column names and their new values

» The filter condition that determines which rows should be updated

146 LESSON 16: Updating and Deleting Data

Let’s take a look at a simple example. Customer 1000000005 has no email address on
file and now has an address, so that record needs updating. The following statement
performs this update:

Input v

UPDATE Customers
SET cust_email = 'kim@thetoystore.com'
WHERE cust_id = 1000000005;

The UPDATE statement always begins with the name of the table being updated. In this
example, it is the Customers table. The sET command is then used to assign the new
value to a column. As used here, the SET clause sets the cust _email column to the
specified value:

SET cust_email = 'kim@thetoystore.com'

The upPDATE statement finishes with a wHERE clause that tells the DBMS which row to
update. Without a wHERE clause, the DBMS would update all the rows in the
Customers table with this new email address—definitely not the desired outcome.

Updating multiple columns requires a slightly different syntax:

Input v

UPDATE Customers

SET cust_contact = 'Sam Roberts',
cust_email = 'sam@toyland.com'

WHERE cust_id = 1000000006;

When you are updating multiple columns, you use only a single SET command, and
each column = value pair is separated by a comma. (No comma is specified after the
last column.) In this example, columns cust_contact and cust_email will both be
updated for customer 1000000006.

TIP: Using Subqueries in an urDATE Statement

Subqueries may be used in UPDATE statements, enabling you to update columns
with data retrieved with a seLECT statement. Refer to Lesson 11, “Working with
Subqueries,” for more information on subqueries and their uses.

TIP: The FroM Keyword

Some SQL implementations support a FRoM clause in the UPDATE statement
that can be used to update the rows in one table with data from another table.
Refer to your DBMS documentation to see if it supports this feature.

Deleting Data 147

To delete a column’s value, you can set it to NULL (assuming the table is defined to
allow NULL values). You can do this as follows:

Input v

UPDATE Customers
SET cust_email = NULL
WHERE cust_id = 1000000005;

Here the nuLL keyword is used to save no value to the cust_email column. That
is very different from saving an empty string. An empty string (specified as ' ') is a
value, whereas NULL means that there is no value at all.

Deleting Data

To delete (remove) data from a table, you use the DELETE statement. DELETE can be
used in two ways:

» To delete specific rows from a table

» To delete all rows from a table

Now let’s take a look at each of these.

CAUTION: Don’t Omit the wHERE Clause

Special care must be exercised when using DELETE because it is all too easy to
mistakenly delete every row from your table. Please read this entire section on
DELETE before using this statement.

TIP: pELETE and Security

Use of the DELETE statement might require special security privileges in
client/server DBMSs. Before you attempt to use DELETE, make sure you have
adequate security privileges to do so.

I already stated that UPDATE is very easy to use. The good (and bad) news is that
DELETE iS even easier to use.

The following statement deletes a single row from the customers table (the row you
added in the last lesson):

input v

DELETE FROM Customers
WHERE cust_id = 1000000006 ;

148 LESSON 16: Updating and Deleting Data

This statement should be self-explanatory. DELETE FROM requires that you specify the
name of the table from which the data is to be deleted. The wHERE clause filters which
rows are to be deleted. In this example, only customer 1000000006 will be deleted. If
the wHERE clause were omitted, this statement would have deleted every customer in
the table!

TIP: Foreign Keys Are Your Friend

Joins were introduced in Lesson 12, “Joining Tables,” and as you learned then,
to join two tables, you simply need common fields in both of those tables. But
you can also have the DBMS enforce the relationship by using foreign keys.
(These are defined in Appendix A, “Sample Table Scripts.”) When foreign keys
are present, the DBMS uses them to enforce referential integrity. For example, if
you tried to insert a new product into the products table, the DBMS would not
allow you to insert it with an unknown vendor ID because the vend id column is
connected to the vendors table as a foreign key. So what does this have to do
with DELETE? Well, a nice side effect of using foreign keys to ensure referential
integrity is that the DBMS usually prevents the deletion of rows that are needed
for a relationship. For example, if you tried to delete a product from Products
that was used in existing orders in orderItems, that DELETE statement would
throw an error and would be aborted. That’s another reason to always define
your foreign keys.

TIP: The FroM Keyword

In some SQL implementations, the FroM keyword following DELETE is optional.
However, it is good practice to always provide this keyword, even if it is not
needed. Doing this will ensure that your SQL code is portable between DBMSs.

DELETE takes no column names or wildcard characters. DELETE deletes entire rows,
not columns. To delete specific columns, you use an UPDATE statement.

NOTE: Table Contents, Not Tables

The DELETE statement deletes rows from tables, even all rows from tables. But
DELETE never deletes the table itself.

TIP: Faster Deletes

If you really do want to delete all rows from a table, don’t use DELETE. Instead,
use the TRUNCATE TABLE statement, which accomplishes the same thing but
does it much quicker (because data changes are not logged).

Summary

Guidelines for Updating and
Deleting Data

The upPDATE and DELETE statements used in the previous section all have WHERE

clauses, and there is a very good reason for this. If you omit the wHERE clause, the
UPDATE or DELETE Will be applied to every row in the table. In other words, if you
execute an UPDATE without a WwHERE clause, every row in the table will be updated

149

with the new values. Similarly, if you execute DELETE without a WHERE clause, all the

contents of the table will be deleted.
Here are some important guidelines that many SQL programmers follow:

» Never execute an UPDATE Or a DELETE without a WHERE clause unless you
really do intend to update and delete every row.

» Make sure every table has a primary key (refer to Lesson 12 if you have
forgotten what this is), and use it as the wHERE clause whenever possible.
(You may specify individual primary keys, multiple values, or value ranges.)

» Before you use a WHERE clause with an UPDATE or a DELETE, first test it with
a SELECT to make sure it is filtering the right records; it is far too easy to
write incorrect WHERE clauses.

» Use database-enforced referential integrity (refer to Lesson 12 for this one
too) so that the DBMS will not allow the deletion of rows that have data in
other tables related to them.

» Some DBMSs allow database administrators to impose restrictions that
prevent the execution of UPDATE or DELETE without a wHERE clause. If your
DBMS supports this feature, consider using it.

The bottom line is that SQL has no Undo button. Be very careful using upDATE and
DELETE, or you’'ll find yourself updating and deleting the wrong data.

Summary

In this lesson, you learned how to use the UPDATE and DELETE statements to
manipulate the data in your tables. You learned the syntax for each of these
statements, as well as the inherent dangers they expose. You also learned why

WHERE clauses are so important in UPDATE and DELETE statements, and you were given

guidelines that should be followed to help ensure that data does not get damaged
inadvertently.

150 LESSON 16: Updating and Deleting Data

Challenges

1. USA state abbreviations should always be in uppercase. Write a SQL
statement to update all USA addresses, both vendor states (vend_state in
Vendors) and customer states (cust_state in Customers), so that they are
uppercase.

2. Lesson 15 Challenge 1 asked you to add yourself to the Customers table.
Now delete yourself. Make sure to use a WHERE clause (and test it with
a SELECT before using it in DELETE), or you’ll delete all customers!

LESSON 17

Creating and Manipulating
Tables

In this lesson, you’ll learn the basics of table creation, alteration, and deletion.

Creating Tables

SQL is not used just for table data manipulation. Rather, SQL can be used to perform
all database and table operations, including the creation and manipulation of tables
themselves.

There are generally two ways to create database tables:

» Most DBMSs come with an administration tool that you can use to create
and manage database tables interactively.

» Tables may also be manipulated directly with SQL statements.

To create tables programmatically, you use the CREATE TABLE SQL statement. It is
worth noting that when you use interactive management tools, you are actually using
SQL statements. Instead of your writing these statements, however, the interface
generates and executes the SQL seamlessly for you (the same is true for changes to
existing tables).

CAUTION: Syntax Differences

The exact syntax of the CREATE TABLE statement can vary from one SQL
implementation to another. Be sure to refer to your DBMS documentation for
more information on exactly what syntax and features it supports.

Complete coverage of all the options available when creating tables is beyond the
scope of this lesson, but here are the basics. I recommend that you review your DBMS
documentation for more information and specifics.

NOTE: DBMS-Specific Examples

For examples of DBMS-specific CREATE TABLE statements, see the example
table creation scripts described in Appendix A, “Sample Table Scripts.”

152 LESSON 17: Creating and Manipulating Tables

Basic Table Creation

To create a table using CREATE TABLE, you must specify the following information:
» The name of the new table specified after the keywords CREATE TABLE.
» The name and definition of the table columns separated by commas.
» Some DBMSs require that you also specify the table location (as in which

specific database it is to be created).

The following SQL statement creates the products table used throughout this book:

Input v

CREATE TABLE Products

(
prod_id CHAR (10) NOT NULL,
vend_id CHAR (10) NOT NULL,
prod_name CHAR (254) NOT NULL,
prod_price DECIMAL(8,2) NOT NULL,
prod_desc VARCHAR (1000) NULL

)

Analysis v

As you can see in the above statement, the table name is specified immediately
following the CREATE TABLE keywords. The actual table definition (all the columns) is
enclosed within parentheses. The columns themselves are separated by commas. This
particular table is made up of five columns. Each column definition starts with the col-
umn name (which must be unique within the table), followed by the column’s datatype.
(Refer to Lesson 1, “Understanding SQL,” for an explanation of datatypes. In addition,
Appendix C, “Using SQL Datatypes,” lists commonly used datatypes and their compat-
ibility.) The entire statement is terminated with a semicolon after the closing parenthesis.

I mentioned earlier that CREATE TABLE syntax varies greatly from one DBMS to
another, and the simple script above demonstrates this. While the statement will work
as is on most DBMSs, for DB2 the NULL must be removed from the final column.
This is why I had to create a different SQL table creation script for each DBMS (as
explained in Appendix A).

TIP: Statement Formatting

As you will recall, white space is ignored in SQL statements. Statements can
be typed on one long line or broken up over many lines. It makes no difference
at all. This enables you to format your SQL as best suits you. The preceding
CREATE TABLE statement is a good example of SQL statement formatting: the
code is specified over multiple lines, with the column definitions indented for
easier reading and editing. Formatting your SQL in this way is entirely optional
but highly recommended.

Creating Tables 153

TIP: Replacing Existing Tables

When you create a new table, the table name specified must not exist; otherwise,
you'll generate an error. To prevent accidental overwriting, SQL requires that you first
manually remove a table (see later sections for details) and then re-create it, rather
than just overwriting it.

Working with xuLL Values

Back in Lesson 4, “Filtering Data,” you learned that NULL values are no values or the
lack of a value. A column that allows NULL values also allows rows to be inserted with
no value at all in that column. A column that does not allow NULL values does not
accept rows with no value; in other words, that column will always be required when
rows are inserted or updated.

Every table column is either a NULL column or a NOT NULL column, and that state is

specified in the table definition at creation time. Take a look at the following example:

input v

CREATE TABLE Orders
(

order_num INTEGER NOT NULL,
order_date DATETIME NOT NULL,
cust_id CHAR (10) NOT NULL

)i

Analysis v

This statement creates the orders table used throughout this book. orders contains
three columns: the order number, order date, and customer ID. All three columns

are required, and so each contains the keyword NoT NULL. This will prevent the
insertion of columns with no value. If someone tries to insert no value, an error will be
returned, and the insertion will fail.

This next example creates a table with a mixture of NULL and NOT NULL columns:

input v

CREATE TABLE Vendors
(

vend_id CHAR (10) NOT NULL,
vend_name CHAR (50) NOT NULL,
vend_address CHAR (50) ,
vend_city CHAR (50) /
vend_state CHAR (5) ,

vend_ zip CHAR (10)

vend_country CHAR(50)

154 LESSON 17: Creating and Manipulating Tables

Analysis v

This statement creates the vendors table used throughout this book. The vendor ID
and vendor name columns are both required and are, therefore, specified as NOT NULL.
The five remaining columns all allow NULL values, and so NOT NULL is not specified.
NULL is the default setting, so if NOT NULL is not specified, NULL is assumed.

CAUTION: Specifying NULL

Most DBMSs treat the absence of NOT NULL to mean NULL. However, not all
do. Some DBMSs require the keyword NuLL and will generate an error if it is not
specified. Refer to your DBMS documentation for complete syntax information.

TIP: Primary Keys and nuLL Values

Back in Lesson 1, you learned that primary keys are columns whose values
uniquely identify every row in a table. Only columns that do not allow NULL val-
ues can be used in primary keys. Columns that allow no value at all cannot be
used as unique identifiers.

CAUTION: Understanding NULL

Don’t confuse NULL values with empty strings. A NULL value is the lack of a
value; it is not an empty string. If you were to specify ' ' (two single quotes
with nothing in between them), that would be allowed in a NOT NULL column. An
empty string is a valid value; it is not no value. NULL values are specified with
the keyword NULL, not with an empty string.

Specifying Default Values

SQL enables you to specify default values to be used if no value is specified when a
row is inserted. Default values are specified using the DEFAULT keyword in the column
definitions in the CREATE TABLE statement.

Look at the following example:

Input v
CREATE TABLE OrderItems
(
order_num INTEGER NOT NULL,
order_item INTEGER NOT NULL,
prodﬁid CHAR (10) NOT NULL,
quantity INTEGER NOT NULL DEFAULT 1,

item price DECIMAL(8,2) NOT NULL

Updating Tables 155

Analysis v

This statement creates the orderItems table that contains the individual items that
make up an order. (The order itself is stored in the orders table.) The quantity
column contains the quantity for each item in an order. In this example, adding the
text DEFAULT 1 to the column description instructs the DBMS to use a quantity of 1 if
no quantity is specified.

Default values are often used to store values in date or time stamp columns. For
example, the system date can be used as a default date by specifying the function or
variable used to refer to the system date. For example, MySQL users may specify
DEFAULT CURRENT DATE (), while Oracle users may specify DEFAULT SYSDATE, and
SQL Server users may specify DEFAULT GETDATE (). Unfortunately, the command
used to obtain the system date is different in just about every DBMS. Table 17.1
lists the syntax for some DBMSs. If yours is not listed here, consult your DBMS
documentation.

TABLE 17.1 Obtaining the System Date

DBMS Function/Variable

DB2 CURRENT_DATE

MySQL CURRENT DATE() or Now ()
Oracle SYSDATE

PostgreSQL CURRENT DATE

SQL Server GETDATE ()

SQLite date ('now')

TIP: Using DEFAULT Instead of nuLL Values

Many database developers use DEFAULT values instead of NULL columns,
especially in columns that will be used in calculations or data groupings.

Updating Tables

To update table definitions, you use the ALTER TABLE statement. Although all DBMSs
support ALTER TABLE, what they allow you to alter varies dramatically from one to
another. Here are some points to consider when using ALTER TABLE:

» Ideally, tables should never be altered after they contain data. You should
spend sufficient time anticipating future needs during the table design
process so that extensive changes are not required later on.

156 LESSON 17: Creating and Manipulating Tables

» All DBMSs allow you to add columns to existing tables, although some
restrict the datatypes that may be added (as well as NULL and DEFAULT usage).

» Many DBMSs do not allow you to remove or change columns in a table.
» Most DBMSs allow you to rename columns.
» Many DBMSs restrict the kinds of changes you can make on columns that

are populated and enforce fewer restrictions on unpopulated columns.

As you can see, making changes to existing tables is neither simple nor consistent.
Be sure to refer to your own DBMS documentation to determine exactly what you
can alter.

To change a table using ALTER TABLE, you must specify the following information:

» The name of the table to be altered after the keywords ALTER TABLE.
(The table must exist; otherwise, an error will be generated.)

» The list of changes to be made.

Because adding columns to an existing table is about the only operation supported by
all DBMSs, I'1l use that for an example:

Input v

ALTER TABLE Vendors
ADD vend phone CHAR (20) ;

Analysis v

This statement adds a column named vend phone to the vendors table. The datatype
must be specified.

Other ALTER operations—for example, changing or dropping columns, or adding
constraints or keys—use a similar syntax.

Note that the following example will not work with all DBMSs:

Input v

ALTER TABLE Vendors
DROP COLUMN vend_phone;

Deleting Tables 157

Complex table structure changes usually require a manual move process involving
these steps:

1. Create a new table with the new column layout.

2. Use the INSERT SELECT statement (see Lesson 15, “Inserting Data,” for
details of this statement) to copy the data from the old table to the new table.
Use conversion functions and calculated fields, if needed.

Verify that the new table contains the desired data.
Rename the old table (or delete it, if you are really brave).

Rename the new table with the name previously used by the old table.

o & » @

Re-create any triggers, stored procedures, indexes, and foreign keys as
needed.

NOTE: aALTER TABLE and SQLite

SQLite limits the operations that may be performed using ALTER TABLE. One
of the most important limitations is that it does not support the use of ALTER
TABLE to define primary and foreign keys; these must be specified at initial
CREATE TABLE time.

CAUTION: Use ALTER TABLE Carefully

Use ALTER TABLE With extreme caution, and be sure you have a complete set
of backups (both schema and data) before proceeding. Database table changes
cannot be undone, and if you add columns you don’t need, you might not be
able to remove them. Similarly, if you drop a column that you do need, you might
lose all the data in that column.

Deleting Tables

Deleting tables (actually removing the entire table, not just the contents) is very
easy—arguably too easy. Tables are deleted using the DROP TABLE statement:

input v

DROP TABLE CustCopy;

158 LESSON 17: Creating and Manipulating Tables

Analysis v

This statement deletes the custcopy table. (You created that one in Lesson 15.) There
is no confirmation, nor is there an undo. Executing the statement will permanently
remove the table.

TIP: Using Relational Rules to Prevent Accidental Deletion

Many DBMSs allow you to enforce rules that prevent the dropping of tables
that are related to other tables. When these rules are enforced, if you issue
a DROP TABLE statement against a table that is part of a relationship, the
DBMS blocks the operation until the relationship is removed. It is a good idea
to enable these options, if available, to prevent the accidental dropping of
needed tables.

Renaming Tables

Table renaming is supported differently by each DBMS. There is no hard-and-fast
standard for this operation. DB2, MariaDB, MySQL, Oracle, and PostgreSQL users
can use the RENAME statement. SQL Server users can use the supplied sp_rename
stored procedure. SQLite supports the renaming of tables via the ALTER TABLE
statement.

The basic syntax for all rename operations requires that you specify the old name and
a new name; however, there are DBMS implementation differences. Refer to your
own DBMS documentation for details on supported syntax.

Summary

In this lesson, you learned several new SQL statements. CREATE TABLE is used to
create new tables, ALTER TABLE is used to change table columns (or other objects like
constraints or indexes), and DROP TABLE is used to completely delete a table. These
statements should be used with extreme caution and only after backups have been
made. Because the exact syntax of each of these statements varies from one DBMS to
another, you should consult your own DBMS documentation for more information.

Challenges

159

Challenges

1. Add a website column (vend_web) to the Vendors table. You need a text
field big enough to accommodate a URL.

2. Use UPDATE statements to update vendor records to include a website
(you can make up any address).

This page intentionally left blank

Using Views

In this lesson, you’ll learn exactly what views are, how they work, and when they
should be used. You’ll also see how views can be used to simplify some of the SOQL
operations performed in earlier lessons.

Understanding Views

Views are virtual tables. Unlike tables that contain data, views simply contain queries
that dynamically retrieve data when used.

Views in SQLite

SQLite supports only read-only views, so views may be created and read, but
their contents cannot be updated.

The best way to understand views is to look at an example. Back in Lesson 12,
“Joining Tables,” you used the following SELECT statement to retrieve data from three
tables:

Input

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

AND OrderItems.order num = Orders.order num
AND prod_id = 'RGANO1';

That query was used to retrieve the customers who had ordered a specific product.
Anyone needing this data would have to understand the table structure, as well as how
to create the query and join the tables. To retrieve the same data for another product
(or for multiple products), you would have to modify the last WHERE clause.

162 LESSON 18: Using Views

Now imagine that you could wrap that entire query in a virtual table called
ProductCustomers. You could then simply do the following to retrieve the
same data:

Input

SELECT cust_name, cust_contact
FROM ProductCustomers
WHERE prod id = 'RGANO1';

This is where views come into play. ProductCustomers is a view, and as a view, it
does not contain any columns or data. Instead, it contains a query—the same query
used above to join the tables properly.

DBMS Consistency

You'll be relieved to know that view creation syntax is supported pretty consis-
tently by all the major DBMSs.

Why Use Views

You’ve already seen one use for views. Here are some other common uses:
» To reuse SQL statements.

» To simplify complex SQL operations. After the query is written, it can be
reused easily, without having to know the details of the underlying query
itself.

» To expose parts of a table instead of complete tables.

» To secure data. Users can be given access to specific subsets of tables
instead of to entire tables.

» To change data formatting and representation. Views can return data
formatted and presented differently from their underlying tables.

For the most part, after views are created, they can be used in the same way as tables.
You can perform SELECT operations, filter and sort data, join views to other views or
tables, and possibly even add and update data. (There are some restrictions on this last
item. More on that in a moment.)

The important thing to remember is views are just that—views into data stored
elsewhere. Views contain no data themselves, so the data they return is retrieved from
other tables. When data is added or changed in those tables, the views will return that
changed data.

Understanding Views 163

Performance Issues

Because views contain no data, any retrieval needed to execute a query must
be processed every time the view is used. If you create complex views with
multiple joins and filters, or if you nest views, you may find that performance is
dramatically degraded. Be sure you test execution before deploying applications
that use views extensively.

View Rules and Restrictions

Before you create views yourself, you should be aware of some restrictions.
Unfortunately, the restrictions tend to be very DBMS specific, so check your own
DBMS documentation before proceeding.

Here are some of the most common rules and restrictions governing view creation and
usage:

» Like tables, views must be uniquely named. (They cannot be named with the
name of any other table or view.)

» There is no limit to the number of views that can be created.

» To create views, you must have security access. This level of access is
usually granted by the database administrator.

» Views can be nested; that is, a view may be built using a query that
retrieves data from another view. The exact number of nested levels allowed
varies from DBMS to DBMS. (Nesting views may seriously degrade
query performance, so test this thoroughly before using it in production
environments.)

» Many DBMSs prohibit the use of the ORDER BY clause in view queries.

» Some DBMSs require that every column returned be named; this will require
the use of aliases if columns are calculated fields. (See Lesson 7, “Creating
Calculated Fields,” for more information on column aliases.)

» Views cannot be indexed, nor can they have triggers or default values
associated with them.

» Some DBMSs, like SQLite, treat views as read-only queries, meaning you
can retrieve data from views but not write data back to the underlying tables.
Refer to your DBMS documentation for details.

» Some DBMSs allow you to create views that do not allow rows to be
inserted or updated if that insertion or update will cause that row to no lon-
ger be part of the view. For example, if you have a view that retrieves only

164 LESSON 18: Using Views

customers with email addresses, updating a customer to remove his email
address would make that customer fall out of the view. This is the default
behavior and is allowed, but depending on your DBMS, you might be able to
prevent this from occurring.

Refer to Your DBMS Documentation

That’s a long list of rules, and your own DBMS documentation will likely contain
additional rules too. It is worth taking the time to understand what restrictions
you must adhere to before creating views.

Creating Views

So now that you know what views are (and the rules and restrictions that govern
them), let’s look at view creation.

Views are created using the CREATE VIEW statement. Like CREATE TABLE, CREATE
VIEW can only be used to create a view that does not exist.

Renaming Views
To remove a view, you use the Drop statement. The syntax is simply DROP VIEW

viewname;.

To overwrite (or update) a view, you must first brop it and then re-create it.

Using Views to Simplify Complex Joins

One of the most common uses of views is to hide complex SQL, and this often
involves joins. Look at the following statement:

Input

CREATE VIEW ProductCustomers AS

SELECT cust_name, cust_contact, prod_id

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

AND OrderItems.order_num = Orders.order_num;

Analysis

This statement creates a view named ProductCustomers, which joins three tables
to return a list of all customers who have ordered any product. If you were to

use SELECT * FROM ProductCustomers, you’d list every customer who ordered
anything.

Creating Views 165

To retrieve a list of customers who ordered product rGaNo01, you can do the following:

Input

SELECT cust_name, cust_contact
FROM ProductCustomers

WHERE prod_id = 'RGANO1';

Output

cust_name cust_contact
Fun4All Denise L. Stephens
The Toy Store Kim Howard
Analysis

This statement retrieves specific data from the view by issuing a wHERE clause. When
the DBMS processes the request, it adds the specified WwHERE clause to any existing
WHERE clauses in the view query so that the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements. Using
views, you can write the underlying SQL once and then reuse it as needed.

Creating Reusable Views

It is a good idea to create views that are not tied to specific data. For example,
the view created above returns customers for all products, not just product
RGANO1 (for which the view was first created). Expanding the scope of the view
enables it to be reused, making it even more useful. It also eliminates the need
for you to create and maintain multiple similar views.

Using Views to Reformat Retrieved Data

As mentioned above, another common use of views is for reformatting retrieved data.
The following SQL Server SeLECT statement (from Lesson 7) returns vendor name
and location in a single combined calculated column:

Input

SELECT RTRIM(vend name) + ' (' + RTRIM(vend country) + ')'
AS vend_title

FROM Vendors

ORDER BY vend_name;

166 LESSON 18: Using Views

Output v

vend title

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

The following is the same statement, but using the | | syntax (as explained back in
Lesson 7):

input v

SELECT RTRIM(vend name) || ' (' || RTRIM(vend country) || ')’
AS vend_title

FROM Vendors

ORDER BY vend name;

Output v

vend_title

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

Now suppose that you regularly needed results in this format. Rather than perform the
concatenation each time it was needed, you could create a view and use that instead.
To turn this statement into a view, you can do the following:

Input v
CREATE VIEW VendorLocations AS
SELECT RTRIM(vend name) + ' (' + RTRIM(vend country) + ')'

AS vend title
FROM Vendors;

Creating Views

Here’s the same statement using | | syntax:

Input
CREATE VIEW VendorLocations AS
SELECT RTRIM(vend name) || ' (' || RTRIM(vend country) || ')’

AS vend title
FROM Vendors;

167

Analysis

This statement creates a view using the exact same query as the previous SELECT
statement. To retrieve the data to create all mailing labels, simply do the following:

Input

SELECT * FROM VendorLocations;

Output

vend_title

Bear Emporium (USA)
Bears R Us (USA)

Doll House Inc. (USA)
Fun and Games (England)
Furball Inc. (USA)
Jouets et ours (France)

SELECT Restrictions All Apply

Earlier in this lesson | stated that the syntax used to create views is rather
consistent between DBMSs. So why multiple versions of statements? A view
simply wraps a SELECT statement, and the syntax of that SELECT must adhere
to all the rules and restrictions of the DBMS being used.

Using Views to Filter Unwanted Data

Views are also useful for applying common WHERE clauses. For example, you might
want to define a CustomerEMailList view so that it filters out customers without
email addresses. To do this, you can use the following statement:

Input

CREATE VIEW CustomerEMailList AS
SELECT cust_id, cust_name, cust _email
FROM Customers

WHERE cust_email IS NOT NULL;

168 LESSON 18: Using Views

Analysis

Obviously, when sending email to a mailing list, you’d want to ignore users who have
no email address. The wHERE clause here filters out those rows that have NULL values
in the cust_email columns so that they’ll not be retrieved.

View CustomerEMailList can now be used like any table:

Input

SELECT *
FROM CustomerEMailList;

Output

cust_id cust name cust_email

1000000001 Village Toys sales@villagetoys.com
1000000003 Fun4All jjones@fun4all.com
1000000004 Fun4All dstephens@fun4all.com

wHERE Clauses and wHERE Clauses

If a WHERE clause is used when retrieving data from the view, the two sets
of clauses (the one in the view and the one passed to it) will be combined
automatically.

Using Views with Calculated Fields

Views are exceptionally useful for simplifying the use of calculated fields. The
following sELECT statement was introduced in Lesson 7. It retrieves the order items
for a specific order, calculating the expanded price for each item:

Input

SELECT prod_id,

quantity,

item price,

quantity*item price AS expanded price
FROM OrderItems
WHERE order num = 20008;

Output
prod id quantity item price expanded_price
RGANO1 5 4.9900 24.9500

BRO3 5 11.9900 59.9500

Summary

BNBGO1 10 3.4900
BNBGO02 10 3.4900
BNBGO3 10 3.4900

169

34.9000
34.9000
34.9000

To turn this into a view, do the following:

Input

CREATE VIEW OrderItemsExpanded AS
SELECT order num,

prod_id,

quantity,

item price,

quantity*item price AS expanded price

FROM OrderItems

To retrieve the details for order 20008 (the output above), do the following:

Input

SELECT *
FROM OrderItemsExpanded
WHERE order num = 20008;

Output

order num prod id quantity item price
20008 RGANO1 5 4.99

20008 BRO3 5 11.99
20008 BNBGO1 10 3.49

20008 BNBGO02 10 3.49

20008 BNBGO3 10 3.49

expanded price
24.95
59.95
34.90
34.90
34.90

As you can see, views are easy to create and even easier to use. Used correctly, views

can greatly simplify complex data manipulation.

Summary

Views are virtual tables. They do not contain data, but instead, they contain queries
that retrieve data as needed. Views provide a level of encapsulation around SQL
SELECT statements and can be used to simplify data manipulation, as well as to

reformat or secure underlying data.

170 LESSON 18: Using Views

Challenges

1. Create a view called CustomerswithOrders that contains all of the columns
in Customers but includes only those who have placed orders. Hint: you can
use JOIN on the orders table to filter just the customers you want. Then use
a SELECT to make sure you have the right data.

2. What is wrong with the following SQL statement? (Try to figure it out
without running it.)

CREATE VIEW OrderItemsExpanded AS
SELECT order_ num,
prod_id,
quantity,
item price,
quantity*item price AS expanded price
FROM OrderItems
ORDER BY order num;

Working with Stored
Procedures

In this lesson, you’ll learn what stored procedures are, why they are used, and how.
You’ll also look at the basic syntax for creating and using them.

Understanding Stored Procedures

Most of the SQL statements that we’ve used thus far are simple in that they use a
single statement against one or more tables. Not all operations are that simple. Often,
multiple statements will be needed to perform a complete operation. For example,
consider the following scenario:

» To process an order, checks must be made to ensure that items are in stock.

» If items are in stock, they need to be reserved so that they are not sold to
anyone else, and the available quantity must be reduced to reflect the correct
amount in stock.

» Any items not in stock need to be ordered; this requires some interaction
with the vendor.

» The customer needs to be notified as to which items are in stock (and can be
shipped immediately) and which are backordered.

This is obviously not a complete example, and it is even beyond the scope of the
example tables that we have been using in this book, but it will suffice to help make a
point. Performing this process requires many SQL statements against many tables. In
addition, the exact SQL statements that need to be performed and their order are not
fixed; they can (and will) vary according to which items are in stock and which are not.

How would you write this code? You could write each of the SQL statements individ-
ually and execute other statements conditionally based on the result. You’d have to do
this every time this processing was needed (and in every application that needed it).

You could create a stored procedure. Stored procedures are simply collections of one
or more SQL statements saved for future use. You can think of them as batch files,
although in truth they are more than that.

172 LESSON 19: Working with Stored Procedures

Not in SQLite
SQLite does not support stored procedures.

There’s a Lot More to It

Stored procedures are complex, and full coverage of the subject requires
more space than can be allocated here. Truthfully, there are entire books on
the subject. This lesson will not teach you all you need to know about stored
procedures. Rather, it is intended simply to introduce the subject so that you
are familiar with what they are and what they can do. As such, the examples
presented here provide syntax for Oracle and SQL Server only.

Understanding Why to Use Stored
Procedures

Now that you know what stored procedures are, why use them? There are lots of
reasons, but here are the primary ones:

» To simplify complex operations (as seen in the previous example) by
encapsulating processes into a single easy-to-use unit.

» To ensure data consistency by not requiring that a series of steps be created
over and over. If all developers and applications use the same stored
procedure, then the same code will be used by all.

» To prevent errors; this is an extension of the preceding reason. The more
steps that need to be performed, the more likely it is that errors will be
introduced. Preventing errors ensures data consistency.

» To simplify change management. If tables, column names, or business logic
(or just about anything) changes, then only the stored procedure code needs
to be updated, and no one else will even need to be aware that changes
were made.

» To ensure security; this is an extension of the preceding reason. Restricting
access to underlying data via stored procedures reduces the chance of data
corruption (unintentional or otherwise).

» To do less work to process the command. Because stored procedures are
usually stored in a compiled form, the DBMS has to do less work. This
results in improved performance.

Executing Stored Procedures 173

» To write code that is more powerful and flexible. There are SQL language
elements and features that are available only within single requests. Stored
procedures can use them for this reason.

In other words, there are three primary benefits: simplicity, security, and performance.
Obviously, all are extremely important. Before you run off to turn all your SQL code
into stored procedures, here’s the downside:

» Stored procedure syntax varies dramatically from one DBMS to the next. In
fact, it is close to impossible to write truly portable stored procedures. Having
said that, the stored procedure calls themselves (their names and how data is
passed to them) can be kept relatively portable so that if you need to change to
another DBMS, at least your client application code may not need changing.

» Stored procedures tend to be more complex to write than basic SQL
statements, and writing them requires a greater degree of skill and experience.
As a result, many database administrators restrict stored procedure creation
rights as a security measure (primarily due to the previous bullet item).

Nonetheless, stored procedures are very useful and should be used. In fact, most
DBMSs come with all sorts of stored procedures that are used for database and table
management. Refer to your DBMS documentation for more information on these.

Can’t Write Them? You Can Still Use Them
Most DBMSs distinguish the security and access needed to write stored
procedures from the security and access needed to execute them. This is a
good thing; even if you can’t (or don’t want to) write your own stored procedures,
you can still execute them when appropriate.

Executing Stored Procedures

Stored procedures are executed far more often than they are written, so we’ll start
there. The SQL statement to execute a stored procedure is simply EXECUTE. EXECUTE
takes the name of the stored procedure and any parameters that need to be passed to it.
Take a look at this example (you cannot actually run it because the stored procedure
AddNewProduct does not exist):

Input

EXECUTE AddNewProduct ('JTS01',
'Stuffed Eiffel Tower',
6.49,
'Plush stuffed toy with
wthe text La Tour Eiffel in red white and blue');

174 LESSON 19: Working with Stored Procedures

Analysis

Here a stored procedure named AddNewProduct is executed; it adds a new product

to the Products table. AddNewProduct takes four parameters: the vendor ID (the
primary key from the vendors table), product name, price, and description. These four
parameters match four expected variables within the stored procedure (defined as part
of the stored procedure itself). The stored procedure adds a new row to the Products
table and assigns these passed attributes to the appropriate columns.

In the Products table, you’ll notice that another column needs a value—the prod_id
column, which is the table’s primary key. Why was this value not passed as an
attribute to the stored procedure? To ensure that IDs are generated properly, it is
safer to have that process automated (and not rely on end users). That is why a stored
procedure is used in this example. This is what this stored procedure does:

» It validates the passed data, ensuring that all four parameters have values.
» It generates a unique ID to be used as the primary key.
» It inserts the new product into the Products table, storing the generated
primary key and passed data in the appropriate columns.
This is the basic form of stored procedure execution. Depending on the DBMS used,
other execution options include the following:

» Optional parameters, with default values assumed if a parameter is not
provided

» Out-of-order parameters, specified in parameter=value pairs

» Output parameters, allowing the stored procedure to update a parameter for
use in the executing application

» Data retrieved by a SELECT statement

» Return codes, enabling the stored procedure to return a value to the execut-
ing application

Creating Stored Procedures

As already explained, writing a stored procedure is not trivial. To give you a taste for
what is involved, let’s look at a simple example—a stored procedure that counts the
number of customers in a mailing list who have email addresses.

Creating Stored Procedures 175

Here is the Oracle version:

Input v

CREATE PROCEDURE MailingListCount (
ListCount OUT INTEGER

)

IS

v_rows INTEGER;

BEGIN
SELECT COUNT (*) INTO v_rows
FROM Customers
WHERE NOT cust_email IS NULL;
ListCount := v_rows;

END;

Analysis v

This stored procedure takes a single parameter named ListCount. Instead of passing a
value to the stored procedure, this parameter passes a value back from it. The keyword
out is used to specify this behavior. Oracle supports parameters of types IN (those
passed to stored procedures), ouT (those passed from stored procedures, as we’ve used
here), and NoUT (those used to pass parameters to and from stored procedures). The
stored procedure code itself is enclosed within BEGIN and END statements, and here

a simple SELECT is performed to retrieve the customers with email addresses. Then
ListCount (the output parameter passed) is set with the number of rows that were
retrieved.

To invoke the Oracle example, you could do the following:

input v

var ReturnValue NUMBER
EXEC MailingListCount (:ReturnvValue) ;
SELECT ReturnValue;

Analysis v

This code declares a variable to hold whatever the stored procedure returns, executes
the stored procedure, and then uses a SELECT to display the returned value.

176 LESSON 19: Working with Stored Procedures

Here’s the Microsoft SQL Server version:

Input v

CREATE PROCEDURE MailingListCount
AS

DECLARE @cnt INTEGER

SELECT @cnt = COUNT (*)

FROM Customers

WHERE NOT cust_email IS NULL;
RETURN @cnt;

Analysis v

This stored procedure takes no parameters at all. The calling application retrieves the
value by using SQL Server’s return code support. Here a local variable named ecnt

is declared using the DECLARE statement (all local variables in SQL Server are named
starting with a @). This variable is then used in the SELECT statement so that it contains
the value returned by the counT () function. Finally, the RETURN statement is used to
return the count to the calling application as RETURN ecnt.

To invoke the SQL Server example, you could do the following:

Input v

DECLARE @ReturnValue INT
EXECUTE @ReturnValue=MailingListCount;
SELECT @ReturnValue;

Analysis v

This code declares a variable to hold whatever the stored procedure returns, executes
the stored procedure, and then uses a SELECT to display the returned value.

Here’s another example, this time to insert a new order in the orders table. This is a
SQL Server—only example, but it demonstrates some useful stored procedure uses and
techniques:

input v

CREATE PROCEDURE NewOrder @Cust_id CHAR (10)
AS

-- Declare variable for order number
DECLARE @order_num INTEGER

-- Get current highest order number

SELECT @order num=MAX (order num)

FROM Orders

-- Determine next order number

Creating Stored Procedures 177

SELECT @order_ num=@order num+1

-- Insert new order

INSERT INTO Orders (order num, order date, cust_id)
VALUES (@order num, GETDATE (), @cust_id)

-- Return order number

RETURN @order_num;

Analysis

This stored procedure creates a new order in the orders table. It takes a single
parameter—the ID of the customer placing the order. The other two table columns,
the order number and order date, are generated automatically within the stored
procedure itself. The code first declares a local variable to store the order number.
Next, the current highest order number is retrieved (using a Max () function) and
incremented (using a SELECT statement). Then the order is inserted with an INSERT
statement using the newly generated order number, the current system date (retrieved
using the GETDATE () function), and the passed customer ID. Finally, the order
number (which is needed to process order items) is returned as RETURN @order num.
Notice that the code is commented; this should always be done when writing stored
procedures.

Comment Your Code

All code should be commented, and stored procedures are no different. Adding
comments will not affect performance at all, so there is no downside here (other
than the time it takes to write them). The benefits are numerous and include
making it easier for others (and yourself) to understand the code and safer to
make changes at a later date.

As noted in Lesson 2, “Retrieving Data,” a common way to comment code is
to precede it with -- (two hyphens). Some DBMSs support alternate comment
syntax, but all support -- and so you are best off using that.

Here’s a quite different version of the same SQL Server code:

Input

CREATE PROCEDURE NewOrder @cust_id CHAR(10)
AS

-- Insert new order

INSERT INTO Orders (cust_id)

VALUES (@cust_id)

-- Return order number

SELECT order_num = @@IDENTITY;

178 LESSON 19: Working with Stored Procedures

Analysis

This stored procedure also creates a new order in the orders table. This time the
DBMS itself generates the order number. Most DBMSs support this type of function-
ality; SQL Server refers to these auto-incrementing columns as Identity fields (other
DBMSs use names such as Auto Number or Sequences). Again, a single parameter
is passed—the customer ID of the customer placing the order. The order number and
order date are not specified at all; the DBMS uses a default value for the date (the
GETDATE () function), and the order number is generated automatically. How can

you find out what the generated ID is? SQL Server makes that available in the global
variable @@IDENTITY, which is returned to the calling application (this time using a
SELECT Statement).

As you can see, with stored procedures there are often many different ways to accom-
plish the same task. The method you choose will often be dictated by the features of
the DBMS you are using.

Summary

In this lesson, you learned what stored procedures are and why they are used. You
also learned the basics of stored procedure execution and creation syntax, and you
saw some of the ways these can be used. Using stored procedures is a really important
topic, and one that is far beyond the scope of one lesson. As you have seen here,
stored procedures are implemented differently in each DBMS. In addition, your own
DBMS probably offers some form of these functions, as well as others not mentioned
here. Refer to your DBMS documentation for more details.

Managing Transaction
Processing

In this lesson, you’ll learn what transactions are and how to use COMMIT and
ROLLBACK statements to manage transaction processing.

Understanding Transaction Processing

Transaction processing is used to maintain database integrity by ensuring that batches
of SQL operations execute completely or not at all.

As explained back in Lesson 12, “Joining Tables,” relational databases are designed
so that data is stored in multiple tables to facilitate easier data manipulation,
management, and reuse. Without going in to the hows and whys of relational database
design, take it as a given that well-designed database schemas are relational to some
degree.

The orders tables that you’ve been using in the past 19 lessons are a good example
of this. Orders are stored in two tables: orders stores actual orders, and OrderItems
stores the individual items ordered. These two tables are related to each other using
unique IDs called primary keys (as discussed in Lesson 1, “Understanding SQL”).
These tables, in turn, are related to other tables containing customer and product
information.

The process of adding an order to the system is as follows:
1. Check if the customer is already in the database. If not, add him or her.
2. Retrieve the customer’s ID.
3. Add arow to the orders table associating it with the customer ID.
4. Retrieve the new order ID assigned in the Orders table.
5

. Add one row to the orderItems table for each item ordered, associating it
with the orders table by the retrieved ID (and with the Products table by
product ID).

180 LESSON 20: Managing Transaction Processing

Now imagine that some database failure (for example, out of disk space, security
restrictions, table locks) prevents this entire sequence from completing. What would
happen to your data?

Well, if the failure occurred after the customer was added and before the orders

table was added, there is no real problem. It is perfectly valid to have customers
without orders. When you run the sequence again, the inserted customer record will be
retrieved and used. You can effectively pick up where you left off.

But what if the failure occurred after the orders row was added but before the
orderItems rows were added? Now you’d have an empty order sitting in your
database.

Worse, what if the system failed during adding the orderItems rows? Now you’d end
up with a partial order in your database, but you wouldn’t know it.

How do you solve this problem? That’s where transaction processing comes in.
Transaction processing is a mechanism used to manage sets of SQL operations that
must be executed in batches so as to ensure that databases never contain the results

of partial operations. With transaction processing, you can ensure that sets of opera-
tions are not aborted mid-processing—they either execute in their entirety or not at all
(unless explicitly instructed otherwise). If no error occurs, the entire set of statements
is committed (written) to the database tables. If an error does occur, then a rollback
(undo) can occur to restore the database to a known and safe state.

So, if we look at the same example, this is how the process would work:
1. Check if the customer is already in the database; if not, add him or her.
Commit the customer information.
Retrieve the customer’s ID.
Add a row to the orders table.
If a failure occurs while adding the row to orders, roll back.
Retrieve the new order ID assigned in the orders table.

Add one row to the orderItems table for each item ordered.

® N O g R 0 N

If a failure occurs while adding rows to orderItems, roll back all the
orderItems rows added and the orders row.

When you’re working with transactions and transaction processing, a few keywords
will keep reappearing. Here are the terms you need to know:
» Transaction—A block of SQL statements

» Rollback—The process of undoing specified SQL statements

Controlling Transactions 181

» Commit—Writing unsaved SQL statements to the database tables

» Savepoint—A temporary placeholder in a transaction set to which you can
issue a rollback (as opposed to rolling back an entire transaction)

TIP: Which Statements Can You Roll Back?

Transaction processing is used to manage INSERT, UPDATE, and DELETE
statements. You cannot roll back SeLECT statements. (There would not be much
point in doing so anyway.) You cannot roll back CREATE or DROP operations.
These statements may be used in a transaction block, but if you perform a
rollback, they will not be undone.

Controlling Transactions

Now that you know what transaction processing is, let’s look at what is involved in
managing transactions.

CAUTION: Implementation Differences

The exact syntax used to implement transaction processing differs from one
DBMS to another. Refer to your DBMS documentation before proceeding.

The key to managing transactions involves breaking your SQL statements into logical
chunks and explicitly stating when data should be rolled back and when it should not.

Some DBMSs require that you explicitly mark the start and end of transaction
blocks. In SQL Server, for example, you can do the following (replacing ... with
the actual code):

input v

BEGIN TRANSACTION

COMMIT TRANSACTION

Analysis v

In this example, any SQL between the BEGIN TRANSACTION and COMMIT
TRANSACTION statements must be executed entirely or not at all.

The equivalent code in MariaDB and MySQL is

input v

START TRANSACTION

182 LESSON 20: Managing Transaction Processing

Oracle uses this syntax:

Input v

SET TRANSACTION

PostgreSQL uses the ANSI SQL syntax:

Input v

BEGIN

Other DBMSs use variations of the above. You’ll notice that most implementations
don’t have an explicit end of transaction. Rather, the transaction exists until something
terminates it, usually a COMMIT to save changes or a ROLLBACK to undo them, as will
be explained next.

Using ROLLBACK

The SQL rorLBACK command is used to roll back (undo) SQL statements, as seen in
this next statement:

Input v

DELETE FROM Orders;
ROLLBACK;
Analysis v

In this example, a DELETE operation is performed and then undone using a ROLLBACK
statement. Although not the most useful example, it does demonstrate that, within a trans-
action block, DELETE operations (like INSERT and UPDATE operations) are never final.

Using comMIT

Usually, SQL statements are executed and written directly to the database tables.
This is known as an implicit commit—the commit (write or save) operation happens
automatically.

Controlling Transactions 183

Within a transaction block, however, commits might not occur implicitly. This, too,
is DBMS specific. Some DBMSs treat a transaction end as an implicit commit; others
do not.

To force an explicit commit, you use the comMIT statement. The following is a SQL
Server example:

input v

BEGIN TRANSACTION

DELETE OrderItems WHERE order num = 12345
DELETE Orders WHERE order num = 12345
COMMIT TRANSACTION

Analysis v

In this SQL Server example, order number 12345 is deleted entirely from the system.
Because this involves updating two database tables, Orders and OrderItems, a
transaction block is used to ensure that the order is not partially deleted. The final
coMMIT statement writes the change only if no error occurred. If the first DELETE
worked, but the second failed, the DELETE would not be committed.

To accomplish the same thing in Oracle, you can do the following:

input v

SET TRANSACTION

DELETE OrderItems WHERE order num = 12345;
DELETE Orders WHERE order_num = 12345;
COMMIT;

Using Savepoints

Simple ROLLBACK and COMMIT statements enable you to write or undo an entire
transaction. Although this approach works for simple transactions, more complex
transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a single
transaction. If an error occurs, you only want to roll back to the point before the
orders row was added. You do not want to roll back the addition to the Customers
table (if there was one).

To support the rollback of partial transactions, you must be able to put placeholders at
strategic locations in the transaction block. Then, if a rollback is required, you can roll
back to one of the placeholders.

184 LESSON 20: Managing Transaction Processing

In SQL, these placeholders are called savepoints. To create one in MariaDB, MySQL,
and Oracle, you use the SAVEPOINT statement, as follows:

Input v

SAVEPOINT deletel;

In SQL Server, you do the following:

Input v

SAVE TRANSACTION deletel;

Each savepoint takes a unique name that identifies it so that, when you roll back, the
DBMS knows where you are rolling back to. To roll back to this savepoint, do the
following in SQL Server:

Input v

ROLLBACK TRANSACTION deletel;

In MariaDB, MySQL, and Oracle, you can do the following:

Input v

ROLLBACK TO deletel;

The following is a complete SQL Server example:

Input v

BEGIN TRANSACTION

INSERT INTO Customers (cust_id, cust_name)

VALUES (1000000010, 'Toys Emporium') ;

SAVE TRANSACTION StartOrder;

INSERT INTO Orders (order num, order date, cust_id)
VALUES (20100, '2020/12/1',1000000010) ;

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;
INSERT INTO OrderItems (order num, order item,
wprod_id, quantity, item price)

VALUES (20100, 1, 'BRO1', 100, 5.49);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;
INSERT INTO OrderItems (order num, order item,
wprod_id, quantity, item price)

VALUES (20100, 2, 'BRO3', 100, 10.99);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;
COMMIT TRANSACTION

Summary 185

Analysis v

Here four INSERT statements are enclosed within a transaction block. A savepoint is
defined after the first INSERT so that, if any of the subsequent INSERT operations fail,
the transaction is only rolled back that far. In SQL Server, a variable named @@ERROR
can be inspected to see if an operation succeeded. (Other DBMSs use different func-
tions or variables to return this information.) If @@ERROR returns a value other than o,
an error occurred, and the transaction will roll back to the savepoint. If the entire
transaction is processed, a comMIT will be issued to save the data.

TIP: The More Savepoints the Better

You can have as many savepoints as you'd like within your SQL code, and
the more the better. Why? Because the more savepoints you have, the more
flexibility you have in managing rollbacks exactly as you need them.

Summary

In this lesson, you learned that transactions are blocks of SQL statements that must
be executed as a batch. You learned that coMMIT and ROLLBACK statements are used

to explicitly manage when data is written and when it is undone. You also learned
that savepoints provide a greater level of control over rollback operations. Transaction
processing is a really important topic, and one that is far beyond the scope of one
lesson. In addition, as you saw here, transaction processing is implemented differently
in each DBMS. As such, you should refer to your DBMS documentation for further
details.

This page intentionally left blank

LESSON 21
Using Cursors

In this lesson, you'll be introduced to cursors and how (and why) to use them.

Understanding Cursors

SQL retrieval operations work with sets of rows known as result sets. The rows
returned are all the rows that match a SQL statement—zero or more of them. When
you use simple SELECT statements, there is no way to get the first row, the next row,
or the previous 10 rows. This is an integral part of how a relational DBMS works.

NEW TERM: Result Set
The results retrieved by a SQL query.

Sometimes you need to step through rows forward or backward and one or more at

a time. This is what cursors are used for. A cursor is a database query stored on the
DBMS server—not a SELECT statement, but the result set retrieved by that statement.
Once the cursor is stored, applications can scroll or browse up and down through the
data as needed.

NOTE: SQLite Support

SQLite supports a form of cursors called steps. The basic concepts described in
this lesson apply to SQLite steps, but the syntax can be quite different.

Different DBMSs support different cursor options and features. Some of the more
common ones are

» The capability to flag a cursor as read-only so that data can be read but not
updated or deleted

» The capability to control the directional operations that can be performed
(forward, backward, first, last, absolute position, relative position, and so on)

» The capability to flag some columns as editable and others as not editable

188 LESSON 21: Using Cursors

» Scope specification so as to be able to make the cursor accessible to the
specific request that created it (a stored procedure, for example) or to all
requests

» Instructing the DBMS to make a copy of the retrieved data (as opposed to
pointing to the live data in the table) so that data does not change between
the time the cursor is opened and the time it is accessed

Cursors are used primarily by interactive applications in which users need to scroll up
and down through screens of data, browsing or making changes.

Working with Cursors

Using cursors involves several distinct steps:

» Before a cursor can be used, it must be declared (defined). This process does
not actually retrieve any data, it merely defines the SELECT statement to be
used and any cursor options.

» Once it is declared, the cursor must be opened for use. This process actually
retrieves the data using the previously defined SELECT statement.

» With the cursor populated with data, individual rows can be fetched
(retrieved) as needed.

» When it is done, the cursor must be closed and possibly deallocated
(depending on the DBMS).

Once a cursor is declared, it may be opened and closed as often as needed. Once it is
open, fetch operations can be performed as often as needed.

Creating Cursors

Cursors are created using the DECLARE statement, which differs from one DBMS to the
next. DECLARE names the cursor and takes a SELECT statement, complete with WHERE
and other clauses if needed. To demonstrate this, we’ll create a cursor that retrieves all
customers without email addresses, as part of an application enabling an operator to
provide missing email addresses.

Here is the DB2, MariaDB, MySQL, and SQL Server version:

Input v

DECLARE CustCursor CURSOR
FOR

SELECT * FROM Customers
WHERE cust_email IS NULL;

Working with Cursors 189

Here is the Oracle and PostgreSQL version:

input v

DECLARE CURSOR CustCursor
Is

SELECT * FROM Customers
WHERE cust_email IS NULL;

Analysis v

In both versions, the DECLARE statement is used to define and name the cursor—in this
case, CustCursor. The SELECT statement defines a cursor containing all customers
with no email address (a NULL value).

Now that the cursor is defined, it is ready to be opened.

Using Cursors

Cursors are opened using the OPEN CURSOR statement, which is so simple a statement
that most DBMSs support exactly the same syntax:

input v

OPEN CURSOR CustCursor

Analysis v

When the OPEN CURSOR statement is processed, the query is executed, and the
retrieved data is stored for subsequent browsing and scrolling.

Now the cursor data can be accessed using the FETCH statement. FETCH specifies the
rows to be retrieved, where they are to be retrieved from, and where they are to be
stored (variable names, for example). The first example uses Oracle syntax to retrieve
a single row from the cursor (the first row):

input v

DECLARE TYPE CustCursor IS REF CURSOR
RETURN Customers%ROWTYPE;
DECLARE CustRecord Customers*ROWTYPE
BEGIN
OPEN CustCursor;
FETCH CustCursor INTO CustRecord;
CLOSE CustCursor;
END;

190 LESSON 21: Using Cursors

Analysis v

In this example, FETCH is used to retrieve the current row (it’ll start at the first row
automatically) into a declared variable named custRecord. Nothing is done with the
retrieved data.

In the next example (again, using Oracle syntax), the retrieved data is looped through
from the first row to the last:

Input v

DECLARE TYPE CustCursor IS REF CURSOR
RETURN Customers%ROWTYPE;
DECLARE CustRecord Customers%ROWTYPE
BEGIN
OPEN CustCursor;
LOOP
FETCH CustCursor INTO CustRecord;
EXIT WHEN CustCursor%NOTFOUND;
END LOOP;
CLOSE CustCursor;
END;

Analysis v

Like the previous example, this example uses FETCH to retrieve the current row into

a declared variable named custRecord. Unlike the previous example, the FETCH
here is within a Loop so that it is repeated over and over. The code EXIT WHEN
CustCursor3$NOTFOUND causes processing to be terminated (exiting the loop) when
there are no more rows to be fetched. This example also does no actual processing; in
real-world code you’d replace the . .. placeholder with your own code.

Here’s another example, this time using Microsoft SQL Server syntax:

Input v

DECLARE @cust_id CHAR(10),
@cust_name CHAR(50),
@cust_address CHAR(50),
@cust_city CHAR(50),
@cust_state CHAR(5),
@cust_zip CHAR(10),
@cust_country CHAR(50),
@cust_contact CHAR(50),
@cust_email CHAR (255)

Working with Cursors 191

OPEN CustCursor
FETCH NEXT FROM CustCursor
INTO @cust_id, @cust_name, @cust_address,
@cust_city, @cust_state, @cust_zip,
@cust_country, @cust_contact, @cust_email

WHILE @@FETCH STATUS = 0
BEGIN

FETCH NEXT FROM CustCursor
INTO @cust_id, @cust_name, @cust_address,
@cust_city, @cust_state, @cust_zip,
@cust_country, @cust_contact, @cust email
END
CLOSE CustCursor

Analysis v

In this example, variables are declared for each of the retrieved columns, and the
FETCH statements retrieve a row and save the values into those variables. A wHILE loop
is used to loop through the rows, and the condition WHILE @@FETCH_STATUS = 0
causes processing to be terminated (exiting the loop) when there are no more rows to
be fetched. Again, this example does no actual processing; in real-world code you’d
replace the . .. placeholder with your own code.

Closing Cursors

As already mentioned and seen in the previous examples, cursors need to be closed
after they have been used. In addition, some DBMSs (such as SQL Server) require
that the resources used by the cursor be explicitly deallocated. Here’s the DB2,
Oracle, and PostgreSQL syntax:

input v

CLOSE CustCursor

Here’s the Microsoft SQL Server version:

input v

CLOSE CustCursor
DEALLOCATE CURSOR CustCursor

192 LESSON 21: Using Cursors

Analysis v

The crosE statement is used to close cursors; once a cursor is closed, it cannot be
reused without being opened again. However, a cursor does not need to be declared
again to be used; an OPEN statement is sufficient.

Summary

In this lesson, you were introduced to cursors, what they are, and why they are used.
Your own DBMS probably offers some form of this function, as well as others not
mentioned here. Refer to your DBMS documentation for more details.

LESSON 22

Understanding Advanced
SQL Features

In this lesson, you’ll look at several of the advanced data manipulation features that
have evolved with SQL: constraints, indexes, and triggers.

Understanding Constraints

SQL has evolved through many versions to become a very complete and powerful
language. Many of the more powerful features are sophisticated tools that provide you
with data manipulation techniques such as constraints.

Relational tables and referential integrity have both been discussed several times in
prior lessons. As I explained in those lessons, relational databases store data broken
into multiple tables, each of which stores related data. Keys are used to create
references from one table to another (thus the term referential integrity).

For relational database designs to work properly, you need a way to ensure that

only valid data is inserted into tables. For example, if the orders table stores order
information and orderItems stores order details, you want to ensure that any order
IDs referenced in orderItems exist in Orders. Similarly, any customers referred to in
orders must be in the customers table.

Although you can perform checks before inserting new rows (do a SELECT on another
table to make sure the values are valid and present), it is best to avoid this practice for
the following reasons:

» If database integrity rules are enforced at the client level, every client is
obliged to enforce those rules, and inevitably some clients won’t.

» You must also enforce the rules on UPDATE and DELETE operations.

» Performing client-side checks is a time-consuming process. Having the
DBMS do the checks for you is far more efficient.

NEW TERM: Constraints
Rules that govern how database data is inserted or manipulated.

194 LESSON 22: Understanding Advanced SQL Features

DBMSs enforce referential integrity by imposing constraints on database tables. Most
constraints are defined in table definitions (using CREATE TABLE OF ALTER TABLE as
discussed in Lesson 17, “Creating and Manipulating Tables”).

CAUTION: Constraints Are DBMS Specific

There are several different types of constraints, and each DBMS provides its
own level of support for them. Therefore, the examples shown here might not
work as you see them. Refer to your DBMS documentation before proceeding.

Primary Keys

Lesson 1, “Understanding SQL,” briefly discussed primary keys. A primary key is

a special constraint used to ensure that values in a column (or set of columns) are
unique and never change—in other words, a column (or columns) in a table whose
values uniquely identify each row in the table. This facilitates the direct manipulation
of and interaction with individual rows. Without primary keys, it would be difficult to
safely use UPDATE or DELETE on specific rows without affecting any others.

Any column in a table can be established as the primary key, as long as it meets the
following conditions:

» No two rows may have the same primary key value.

» Every row must have a primary key value. (Columns must not enable NULL
values.)

» The column containing primary key values can never be modified or
updated. (Most DBMSs won’t enable this, but if yours does enable doing so,
well, don’t!)

» Primary key values can never be reused. If a row is deleted from the table,

its primary key must not be assigned to any new rows.

One way to define primary keys is to create them as follows:

Input v

CREATE TABLE Vendors
(

vend_id CHAR (10) NOT NULL PRIMARY KEY,
vend_name CHAR (50) NOT NULL,
vend_address CHAR (50) NULL,

vend_city CHAR (50) NULL,

vend_state CHAR (5) NULL,

vend zip CHAR (10) NULL,

vend_country CHAR (50) NULL

Understanding Constraints 195

Analysis v
In the above example, the keyword PRIMARY KEY is added to the table definition so

that vend_id becomes the primary key.

input v

ALTER TABLE Vendors
ADD CONSTRAINT PRIMARY KEY (Vend_id);

Analysis v

Here the same column is defined as the primary key, but the CONSTRAINT syntax is
used instead. This syntax can be used in CREATE TABLE and ALTER TABLE statements.

NOTE: Keys in SQLite

SQLite does not allow keys to be defined using ALTER TABLE and requires that
they be defined as part of the initial CREATE TABLE.

Foreign Keys

A foreign key is a column in a table whose values must be listed in a primary key in
another table. Foreign keys are an extremely important part of ensuring referential
integrity. To understand foreign keys, let’s look at an example.

The orders table contains a single row for each order entered into the system.
Customer information is stored in the Customers table. Orders in the orders table
are tied to specific rows in the customers table by the customer ID. The customer ID
is the primary key in the customers table; each customer has a unique ID. The order
number is the primary key in the orders table; each order has a unique number.

The values in the customer ID column in the orders table are not necessarily unique.
If a customer has multiple orders, there will be multiple rows with the same customer
ID (although each will have a different order number). At the same time, the only val-
ues that are valid within the customer ID column in orders are the IDs of customers
in the customers table.

That’s what a foreign key does. In our example, a foreign key is defined on the
customer ID column in orders so that the column can accept only values that are in
the customers table’s primary key.

196 LESSON 22: Understanding Advanced SQL Features

Here’s one way to define this foreign key:

Input v
CREATE TABLE Orders
(
order_ num INTEGER NOT NULL PRIMARY KEY,
order date DATETIME NOT NULL,
custiid CHAR (10) NOT NULL REFERENCES Customers(custiid)
) ;i
Analysis v

Here the table definition uses the REFERENCES keyword to state that any values in
cust_id must be in cust_id in the Customers table.

The same thing can be accomplished using CONSTRAINT syntax in an ALTER TABLE
statement:

Input v

ALTER TABLE Orders
ADD CONSTRAINT
FOREIGN KEY (cust_id) REFERENCES Customers (cust_id);

TIP: Foreign Keys Can Help Prevent Accidental Deletion

As noted in Lesson 16, “Updating and Deleting Data,” in addition to helping
enforce referential integrity, foreign keys serve another invaluable purpose. After
a foreign key is defined, your DBMS does not allow the deletion of rows that
have related rows in other tables. For example, you are not allowed to delete a
customer who has associated orders. The only way to delete that customer is
to first delete the related orders (which in turn means deleting the related order
items). Because they require such methodical deletion, foreign keys can help
prevent the accidental deletion of data.

However, some DBMSs support a feature called cascading delete. If enabled,
this feature deletes all related data when a row is deleted from a table. For
example, if cascading delete is enabled and a customer is deleted from the
customers table, any related order rows are deleted automatically.

Unique Constraints

Unique constraints are used to ensure that all data in a column (or set of columns) is
unique. They are similar to primary keys, but there are some important distinctions:

» A table can contain multiple unique constraints, but only one primary key is
allowed per table.

Understanding Constraints 197

v

Unique constraint columns can contain NULL values.

v

Unique constraint columns can be modified or updated.

» Unique constraint column values can be reused.

v

Unlike primary keys, unique constraints cannot be used to define foreign keys.

An example of the use of constraints is an Employees table. Every employee has a
unique Social Security number, but you would not want to use it for the primary key
because it is too long (in addition to the fact that you might not want that information
easily available). Therefore, every employee also has a unique employee ID (a primary
key) in addition to a Social Security number.

Because the employee ID is a primary key, you can be sure that it is unique. You also
might want the DBMS to ensure that each Social Security number is unique too (to
make sure that a typo does not result in the use of someone else’s number). You can
do this by defining a UNIQUE constraint on the Social Security number column.

The syntax for unique constraints is similar to that for other constraints. Either the
UNIQUE keyword is defined in the table definition, or a separate CONSTRAINT is used.

Check Constraints

Check constraints are used to ensure that data in a column (or set of columns) meets a
set of criteria that you specify. Common uses of this are

» Checking minimum or maximum values—For example, preventing an
order of 0 (zero) items (even though 0 is a valid number)

» Specifying ranges—For example, making sure that a ship date is greater
than or equal to today’s date and not greater than a year from now

» Allowing only specific values—For example, allowing only M or F in a
gender field

In other words, datatypes (discussed in Lesson 1) restrict the type of data that can be
stored in a column. Check constraints place further restrictions within that datatype,
and these can be invaluable in ensuring that the data that gets inserted into your
database is exactly what you want. Rather than relying on client applications or users
to get it right, the DBMS itself will reject anything that is invalid.

198 LESSON 22: Understanding Advanced SQL Features

The following example applies a check constraint to the orderItems table to ensure
that all items have a quantity greater than o:

Input v
CREATE TABLE OrderItems
(
order_num INTEGER NOT NULL,
order item INTEGER NOT NULL,
prod id CHAR (10) NOT NULL,
quantity INTEGER NOT NULL CHECK (quantity > 0),
item price MONEY NOT NULL

Analysis v

With this constraint in place, any row inserted (or updated) will be checked to ensure
that quantity is greater than o.

To check that a column named gender contains only M or F, you can do the following
in an ALTER TABLE statement:

Input v

ADD CONSTRAINT CHECK (gender LIKE '[MF]');

TIP: User-Defined Datatypes

Some DBMSs enable you to define your own datatypes. These are essentially
simple datatypes with check constraints (or other constraints) defined. For
example, you can define your own datatype called gender that is a single-
character text datatype with a check constraint that restricts its values to M or F
(and perhaps NULL for Unknown). You could then use this datatype in table defi-
nitions. The advantage of custom datatypes is that the constraints need to be
applied only once (in the datatype definition), and they are automatically applied
each time the datatype is used. Check your DBMS documentation to determine
if user-defined datatypes are supported.

Understanding Indexes

Indexes are used to sort data logically to improve the speed of searching and sorting
operations. The best way to understand indexes is to envision the index at the back of
a book (this book, for example).

Suppose you want to find all occurrences of the word datatype in this book. The
simple way to do this would be to turn to page 1 and scan every line of every page
looking for matches. Although that works, it is obviously not a workable solution.

Understanding Indexes 199

Scanning a few pages of text might be feasible, but scanning an entire book in that
manner is not. As the amount of text to be searched increases, so does the time it takes
to pinpoint the desired data.

That is why books have indexes. An index is an alphabetical list of words with
references to their locations in the book. To search for datatype, you find that word
in the index to determine what pages it appears on. Then, you turn to those specific
pages to find your matches.

What makes an index work? Simply, it is the fact that it is sorted correctly. The
difficulty in finding words in a book is not the amount of content that must be searched;
rather, it is the fact that the content is not sorted by word. If the content is sorted like a
dictionary, an index is not needed (which is why dictionaries don’t have indexes).

Database indexes work in much the same way. Primary key data is always sorted;
that’s just something the DBMS does for you. Retrieving specific rows by primary
key, therefore, is always a fast and efficient operation.

Searching for values in other columns is usually not as efficient, however. For exam-
ple, what if you want to retrieve all customers who live in a specific state? Because
the table is not sorted by state, the DBMS must read every row in the table (starting at
the very first row) looking for matches, just as you would have to do if you were try-
ing to find words in a book without using an index.

The solution is to use an index. You may define an index on one or more columns so
that the DBMS keeps a sorted list of the contents for its own use. After an index is
defined, the DBMS uses it in much the same way as you would use a book index. It
searches the sorted index to find the location of any matches and then retrieves those
specific rows.

But before you rush off to create dozens of indexes, bear in mind the following:

» Indexes improve the performance of retrieval operations, but they degrade
the performance of data insertion, modification, and deletion. When these
operations are executed, the DBMS has to update the index dynamically.

» Index data can take up lots of storage space.

» Not all data is suitable for indexing. Data that is not sufficiently unique
(State, for example) will not benefit as much from indexing as data that has
more possible values (First Name or Last Name, for example).

» Indexes are used for data filtering and for data sorting. If you frequently sort
data in a specific order, that data might be a candidate for indexing.

» Multiple columns can be defined in an index (for example, State plus City).
Such an index will be of use only when data is sorted in State plus City
order. (If you want to sort by City, this index would not be of any use.)

200 LESSON 22: Understanding Advanced SQL Features

There is no hard-and-fast rule as to what should be indexed and when. Most DBMSs
provide utilities you can use to determine the effectiveness of indexes, and you should
use these regularly.

Indexes are created with the CREATE INDEX statement (which varies dramatically
from one DBMS to another). The following statement creates a simple index on the
Products table’s product name column:

Input v

CREATE INDEX prod name_ ind
ON Products (prod_name) ;

Analysis v

Every index must be uniquely named. Here the name prod_name_ind is defined after
the keywords CREATE INDEX. ON is used to specify the table being indexed, and the
columns to include in the index (just one in this example) are specified in parentheses
after the table name.

TIP: Revisiting Indexes

Index effectiveness changes as table data is added or changed. Many database
administrators find that what once was an ideal set of indexes might not be

so ideal after several months of data manipulation. It is always a good idea to
revisit indexes on a regular basis to fine-tune them as needed.

Understanding Triggers

Triggers are special stored procedures that are executed automatically when specific
database activity occurs. Triggers might be associated with INSERT, UPDATE, and
DELETE operations (or any combination thereof) on specific tables.

Unlike stored procedures (which are simply stored SQL statements), triggers are tied
to individual tables. A trigger associated with INSERT operations on the orders table
will be executed only when a row is inserted into the orders table. Similarly, a trigger
on INSERT and UPDATE operations on the customers table will be executed only when
those specific operations occur on that table.

Within triggers, your code has access to the following:
> All new data in INSERT operations
» All new data and old data in UPDATE operations

» Deleted data in DELETE operations

Understanding Triggers 201

Depending on the DBMS being used, triggers can be executed before or after a
specified operation is performed.

The following are some common uses for triggers:

» Ensuring data consistency; for example, converting all state names to
uppercase during an INSERT or UPDATE operation

» Performing actions on other tables based on changes to a table; for example,
writing an audit trail record to a log table each time a row is updated or
deleted

» Performing additional validation and rolling back data if needed; for
example, making sure a customer’s available credit has not been exceeded
and blocking the insertion if it has

» Calculating computed column values or updating time stamps

As you probably expect by now, trigger creation syntax varies dramatically from one
DBMS to another. Check your documentation for more details.

The following example creates a trigger that converts the cust_state column in the
Customers table to uppercase on all INSERT and UPDATE operations.

This is the SQL Server version:

input v

CREATE TRIGGER customer_state

ON Customers

FOR INSERT, UPDATE

AS

UPDATE Customers

SET cust_state = Upper (cust_state)

WHERE Customers.cust_id = inserted.cust_id;

This is the Oracle and PostgreSQL version:

input v

CREATE TRIGGER customer state

AFTER INSERT OR UPDATE

FOR EACH ROW

BEGIN

UPDATE Customers

SET cust_state = Upper (cust_state)
WHERE Customers.cust id = :OLD.cust id
END;

202 LESSON 22: Understanding Advanced SQL Features

TIP: Constraints Are Faster Than Triggers

As a rule, constraints are processed more quickly than triggers, so whenever
possible, use constraints instead.

Database Security

There is nothing more valuable to an organization than its data, and data should
always be protected from would-be thieves or casual browsers. Of course, at the same
time data must be accessible to users who need access to it, and so most DBMSs
provide administrators with mechanisms by which to grant or restrict access to data.

The foundation of any security system is user authorization and authentication. This

is the process by which a user is validated to ensure he is who he says he is and that
he is allowed to perform the operation he is trying to perform. Some DBMSs integrate
with operating system security for this, others maintain their own user and password
lists, and still others integrate with external directory services servers.

Here are some operations that are often secured:

» Access to database administration features (creating tables, altering or
dropping existing tables, and so on)

» Access to specific databases or tables
» The type of access (read-only, access to specific columns, and so on)
» Access to tables via views or stored procedures only

» Creation of multiple levels of security, thus allowing varying degrees of
access and control based on login

» Restrictions on the ability to manage user accounts

Security is managed via the SQL GRANT and REVOKE statements, although most
DBMSs provide interactive administration utilities that use the GRANT and REVOKE
statements internally.

Summary

In this lesson, you learned how to use some advanced SQL features. Constraints are
an important part of enforcing referential integrity; indexes can improve data retrieval
performance; triggers can be used to perform pre- or post-execution processing; and
security options can be used to manage data access. Your own DBMS probably offers
some form of these features. Refer to your DBMS documentation for more details.

APPENDIX A
Sample Table Scripts

Writing SQL statements requires a good understanding of the underlying database
design. If you do not know what information is stored in what table, how tables are
related to each other, and the actual breakup of data within a row, it is impossible to
write effective SQL.

You are strongly advised to actually try every example in every lesson in this book.
All the lessons use a common set of data files. To assist you in better understand-
ing the examples, and to enable you to follow along with the lessons, this appendix
describes the tables used, their relationships, and how to build (or obtain) them.

Understanding the Sample Tables

The tables used throughout this book are part of an order entry system used by
an imaginary distributor of toys. The tables are used to perform several tasks:

» Manage vendors
» Manage product catalogs
» Manage customer lists
> Enter customer orders
Making this all work requires five tables (that are closely interconnected as part

of a relational database design). A description of each of the tables appears in the
following sections.

NOTE: Simplified Examples

The tables used here are by no means complete. A real-world order entry
system would have to keep track of lots of other data that has not been
included here (for example, payment and accounting information, shipment
tracking, and more). However, these tables do demonstrate the kinds of data
organization and relationships that you will encounter in most real installations.
You can apply these techniques and technologies to your own databases.

204 APPENDIX A: Sample Table Scripts

Table Descriptions

What follows is a description of each of the five tables, along with the name of the
columns within each table and their descriptions.

The vendors Table

The vendors table stores the vendors whose products are sold. Every vendor has
a record in this table, and that vendor ID (the vend_id) column is used to match
products with vendors.

TABLE A.1 vendors Table Columns

Column Description
vend_id Unique vendor ID
vend name Vendor name
vend_address Vendor address
vend city Vendor city
vend_state Vendor state
vend_zip Vendor ZIP code
vend country Vendor country

» All tables should have primary keys defined. This table should use vend id
as its primary key.

The products Table

The products table contains the product catalog, one product per row. Each product
has a unique ID (the prod_id column) and is related to its vendor by vend id (the
vendor’s unique ID).

TABLE A.2 pProducts Table Columns

Column Description

prod_id Unique product ID

vend_id Product vendor ID (relates to vend id in Vendors table)
prod_name Product name

prod price Product price

prod_desc Product description

Understanding the Sample Tables 205

» All tables should have primary keys defined. This table should use prod_id
as its primary key.

» To enforce referential integrity, a foreign key should be defined on vend id
relating it to vend_id in VENDORS.

The customers Table

The customers table stores all customer information. Each customer has a unique ID
(the cust_id column).

TABLE A.3 cCustomers Table Columns

Column Description

cust_id Unique customer ID

cust name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

cust_zip Customer ZIP code
cust_country Customer country
cust_contact Customer contact name
cust_email Customer contact email address

» All tables should have primary keys defined. This table should use cust_id
as its primary key.

The orders Table

The orders table stores customer orders (but not order details). Each order is uniquely
numbered (the order num column). Orders are associated with the appropriate
customers by the cust_id column (which relates to the customer’s unique ID in the
Customers table).

TABLE A.4 oOrders Table Columns

Column Description
order_num Unique order number
order date Order date

cust_id Order customer ID (relates to cust_id in Customers table)

206 APPENDIX A: Sample Table Scripts

> All tables should have primary keys defined. This table should use
order num as its primary key.

» To enforce referential integrity, a foreign key should be defined on cust_id
relating it to cust_id in CUSTOMERS.

The orderitems Table

The orderItems table stores the actual items in each order, one row per item per
order. For every row in Orders there are one or more rows in orderItems. Each
order item is uniquely identified by the order number plus the order item (first item
in order, second item in order, and so on). Order items are associated with their
appropriate order by the order num column (which relates to the order’s unique ID
in orders). In addition, each order item contains the product ID of the item orders
(which relates the item back to the Products table).

TABLE A.5 oOrderitems Table Columns

Column Description

order_num Order number (relates to order num in Orders table)
order_item Order item number (sequential within an order)
prod_id Product ID (relates to prod_id in Products table)
quantity ltem quantity

item price Item price

» All tables should have primary keys defined. This table should use
order num and order item as its primary keys.

» To enforce referential integrity, foreign keys should be defined on order num
relating it to order num in Orders and prod_id relating it to prod_id in

Products.

Database administrators often use relationship diagrams to help demonstrate how data-
base tables are connected. Remember, it is foreign keys that define those relationships

as noted in the table descriptions above. Figure A.1 is the relationship diagram for the

five tables described in this appendix.

Obtaining the Sample Tables 207

Customers Orders Orderlterns

¥ cust_id 2 ¥ order_num ¥ order_num
cust_name order_date T order_item
cust_address = cust_id prod_id
cust_city quantity
cust_state item_price
cust_zip
cust_country

cust_contact
cust_email

Products

7 vend_id W prod_id
vend_name vend_id
vend_address prod_name
vend_city prod_price
vend_state prod_desc
vend_zip

vend_country

FIGURE A.1 Sample tables relationship diagram

Obtaining the Sample Tables

In order to follow along with the examples, you need a set of populated tables.
Everything you need to get up and running can be found on this book’s web page at
http://forta.com/books/0135182794/.

On that page you’ll find links to download SQL scripts for your DBMS. There are two
files for each:

» create.txt contains the SQL statements to create the five database tables
(including defining all primary keys and foreign key constraints).

» populate.txt contains the SQL INSERT statements used to populate these

tables.

The SQL statements in these files are very DBMS specific, so be sure to execute the
one for your own DBMS. These scripts are provided as a convenience to readers, and
no liability is assumed for problems that may arise from their use.

At the time that this book went to press, scripts were available for
» IBM DB?2 (including Db2 on Cloud)
» Microsoft SQL Server (including Microsoft SQL Server Express)
» MariaDB

208 APPENDIX A: Sample Table Scripts
» MySQL
» Oracle (include Oracle Express)
» PostgreSQL
» SQLite

TIP: SQLite Data File

SQLite stores its data in a single file. You can use the creation and population
scripts to create your own SQLite data file. Or, to make things easier, you can
download a ready-to-use file from the URL above.

Other DBMSs may be added as needed or requested.

NOTE: Create, Then Populate

You must run the table creation scripts before the table population scripts.

Be sure to check for any error messages returned by these scripts. If the
creation scripts fail, you will need to remedy whatever problem may exist before
continuing with table population.

NOTE: Specific DBMS Setup Instructions

The specific steps used to set up your DBMS vary greatly based on the DBMS
used. When you download the scripts or databases from the book’s web page,
you’ll find a README file that provides specific setup and installation steps for
specific DBMSs.

SQL Statement Syntax

To help you find the syntax you need when you need it, this appendix lists the syntax
for the most frequently used SQL operations. Each statement starts with a brief
description and then displays the appropriate syntax. For added convenience, you’ll
also find cross-references to the lessons where specific statements are taught.

When reading statement syntax, remember the following:

» The | symbol is used to indicate one of several options, sO NULL |[NOT NULL
means specify either NULL or NOT NULL.

» Keywords or clauses contained within square brackets [1ike this] are
optional.

» The syntax listed below will work with almost all DBMSs. You are advised
to consult your own DBMS documentation for details of implementing
specific syntactical changes.

ALTER TABLE

ALTER TABLE is used to update the schema of an existing table. To create a new table,
use CREATE TABLE. See Lesson 17, “Creating and Manipulating Tables,” for more
information.

Input
ALTER TABLE tablename
(
ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS],
ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS] ,
)i

COMMIT is used to write a transaction to the database. See Lesson 20, “Managing
Transaction Processing,” for more information.

210 APPENDIX B: SQL Statement Syntax

Input

COMMIT [TRANSACTION] ;

CREATE INDEX

CREATE INDEX is used to create an index on one or more columns. See Lesson 22,
“Understanding Advanced SQL Features,” for more information.

Input

CREATE INDEX indexname
ON tablename (column, ...);

CREATE PROCEDURE

CREATE PROCEDURE is used to create a stored procedure. See Lesson 19, “Work-
ing with Stored Procedures,” for more information. Oracle uses a different syntax as
described in that lesson.

Input

CREATE PROCEDURE procedurename [parameters] [options]
AS
SQL statement;

CREATE TABLE

CREATE TABLE is used to create new database tables. To update the schema of an
existing table, use ALTER TABLE. See Lesson 17 for more information.

Input

CREATE TABLE tablename

(
column datatype [NULL\NOT NULL] [CONSTRAINTS] ,
column datatype [NULL | NOT NULL] [CONSTRAINTS] ,

INSERT 211

CREATE VIEW

CREATE VIEW is used to create a new view of one or more tables. See Lesson 18,
“Using Views,” for more information.

Input

CREATE VIEW viewname AS
SELECT columns,

FROM tables,

[WHERE ...]

[GROUP BY ...]

[HAVING ...];

DELETE

DELETE deletes one or more rows from a table. See Lesson 16, “Updating and Delet-
ing Data,” for more information.

Input

DELETE FROM tablename
[WHERE ...];

DROP

DROP permanently removes database objects (tables, views, indexes, and so forth). See
Lessons 17 and 18 for more information.

Input

DROP INDEX|PROCEDURE |TABLE|VIEW indexname |procedurename |tablename
viewname;

INSERT

INSERT adds a single row to a table. See Lesson 15, “Inserting Data,” for more
information.

Input

INSERT INTO tablename [(columns, ...)]
VALUES (values, ...);

212 APPENDIX B: SQL Statement Syntax

INSERT SELECT

INSERT SELECT inserts the results of a SELECT into a table. See Lesson 15 for more
information.

Input

INSERT INTO tablename [(columns, ...)]
SELECT columns, ... FROM tablename,
[WHERE ...];

ROLLBACK

ROLLBACK is used to undo a transaction block. See Lesson 20 for more information.

Input

ROLLBACK [TO savepointname] ;

or

Input

ROLLBACK TRANSACTION;

SELECT

SELECT is used to retrieve data from one or more tables (or views). See Lesson 2,
“Retrieving Data,” Lesson 3, “Sorting Retrieved Data,” and Lesson 4, “Filtering
Data,” for more basic information. (Lessons 2—14 cover aspects of SELECT.)

Input

SELECT columnname,
FROM tablename,
[WHERE ...]

[UNION ...]

[GROUP BY ...]
[HAVING ...]
[ORDER BY ...];

UPDATE 213

UPDATE

UPDATE updates one or more rows in a table. See Lesson 16 for more information.

input v

UPDATE tablename
SET columname = value,
[WHERE ...];

This page intentionally left blank

Using SQL Datatypes

As explained in Lesson 1, “Understanding SQL,” datatypes are essentially rules that
define what data may be stored in a column and how that data is actually stored.

Datatypes are used for several reasons:

» Datatypes enable you to restrict the type of data that can be stored in a
column. For example, a numeric datatype column will only accept numeric
values.

» Datatypes allow for more efficient storage, internally. Numbers and date-
time values can be stored in a more condensed format than text strings.

» Datatypes allow for alternate sorting orders. If everything is treated as
strings, 1 comes before 10, which comes before 2. (Strings are sorted in
dictionary sequence, one character at a time starting from the left.) As
numeric datatypes, the numbers would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used. Using the
wrong datatype can seriously impact your application. Changing the datatypes of
existing populated columns is not a trivial task. (In addition, doing so can result in
data loss.)

Although this appendix is by no means a complete tutorial on datatypes and how
they are to be used, it explains the major datatype types, what they are used for, and
compatibility issues that you should be aware of.

No Two DBMSs Are Exactly Alike

It’s been said before, but it needs to be said again. Unfortunately, datatypes can
vary dramatically from one DBMS to the next. Even the same datatype name
can mean different things to different DBMSs. Be sure you consult your DBMS
documentation for details on exactly what it supports and how.

216 APPENDIX C: Using SQL Datatypes

String Datatypes

The most commonly used datatypes are string datatypes. These store strings: for
example, names, addresses, phone numbers, and ZIP codes. There are basically two
types of string datatypes that you can use—fixed-length strings and variable-length
strings (see Table C.1).

Fixed-length strings are datatypes that are defined to accept a fixed number of
characters, and that number is specified when the table is created. For example,

you might allow 30 characters in a first-name column or 11 characters in a Social-
Security-number column (the exact number needed allowing for the two dashes).
Fixed-length columns do not allow more than the specified number of characters.
They also allocate storage space for as many characters as specified. So, if the string
Ben is stored in a 30-character first-name field, a full 30 characters are stored (and the
text may be padded with spaces as needed).

Variable-length strings store text of any length (the maximum varies by datatype and
DBMS). Some variable-length datatypes have a fixed-length minimum. Others are
entirely variable. Either way, only the data specified is saved (and no extra data is
stored).

If variable-length datatypes are so flexible, why would you ever want to used fixed-
length datatypes? The answer is performance. DBMSs can sort and manipulate
fixed-length columns far more quickly than they can sort variable-length columns.
In addition, many DBMSs will not allow you to index variable-length columns (or
the variable portion of a column). This also dramatically impacts performance. (See
Lesson 22, “Understanding Advanced SQL Features,” for more information on
indexes.)

TABLE C.1 String Datatypes

Datatype Description

CHAR Fixed-length string from 1 to 255 characters long. Its
size must be specified at create time.

NCHAR Special form of cHAR designed to support multibyte

or Unicode characters. (The exact specifications vary
dramatically from one implementation to the next.)

NVARCHAR Special form of TEXT designed to support multibyte or
Unicode characters. (Exact specifications vary dramati-
cally from one implementation to the next.)

TEXT (also called LoNGg Variable-length text.
Of MEMO OF VARCHAR)

Numeric Datatypes 217

Using Quotes

Regardless of the form of string datatype being used, string values must always
be surrounded by single quotes.

When Numeric Values Are Not Numeric Values

You might think that phone numbers and ZIP codes should be stored in numeric
fields (after all, they only store numeric data), but doing so would not be advis-
able. If you store the ZIP code 01234 in a numeric field, the number 1234
would be saved. You’'d actually lose a digit.

The basic rule to follow is: If the number is a number used in calculations
(sums, averages, and so on), it belongs in a numeric datatype column. If it is
used as a literal string (that happens to contain only digits), it belongs in a
string datatype column.

Numeric Datatypes

Numeric datatypes store numbers. Most DBMSs support multiple numeric datatypes,
each with a different range of numbers that can be stored in it. Obviously, the larger
the supported range, the more storage space needed. In addition, some numeric
datatypes support the use of decimal points (and fractional numbers), whereas others
support only whole numbers. Table C.2 lists common uses for various datatypes, but
not all DBMSs follow the exact naming conventions and descriptions listed here.

TABLE C.2 Numeric Datatypes

Datatype Description

BIT Single-bit value, either o or 1, used primarily for
on/off flags

DECIMAL (also called Fixed or floating-point values with varying levels

NUMERIC) of precision

FLOAT (also called NUMBER) Floating-point values

INT (also called INTEGER) 4-byte integer value that supports numbers from
—2147483648 to 2147483647

REAL 4-byte floating-point values

SMALLINT 2-byte integer value that supports numbers from
-32768 to 32767

TINYINT 1-byte integer value that supports numbers from

0 to 255

218 APPENDIX C: Using SQL Datatypes

Not Using Quotes
Unlike strings, numeric values should never be enclosed within quotes.

Currency Datatypes

Most DBMSs support a special numeric datatype for storing monetary values.
Usually called MONEY or CURRENCY, these datatypes are essentially DECIMAL
datatypes with specific ranges that make them well suited for storing currency
values.

Date and Time Datatypes

All DBMSs support datatypes designed for the storage of date and time values (see
Table C.3). Like numeric values, most DBMSs support multiple datatypes, each with
different ranges and levels of precision.

TABLE C.3 Date and Time Datatypes

Datatype Description

DATE Date value

DATETIME (also known as TIMESTAMP) Date-time values

SMALLDATETIME Date-time values with accuracy to the

minute (no seconds or milliseconds)
TIME Time value

Specifying Dates
There is no standard way to define a date that will be understood by every
DBMS. Most implementations understand formats like 2020-12-30 or
Dec 30th, 2020, but even those can be problematic to some DBMSs. Make
sure to consult your DBMS documentation for a list of the date formats that it
will recognize.

ODBC Dates

Because every DBMS has its own format for specifying dates, ODBC created a
format of its own that will work with every database when ODBC is being used.
The ODBC format looks like {a '2020-12-30'} for dates, {t '21:46:29'} for
times, and {ts '2020-12-30 21:46:29"'} for date-time values. If you are using
SQL via ODBC, be sure your dates and times are formatted in this fashion.

Binary Datatypes 219

Binary Datatypes

Binary datatypes are some of the least compatible (and, fortunately, also some of the
least used) datatypes. Unlike all the datatypes explained thus far, which have very
specific uses, binary datatypes can contain any data, even binary information, such as
graphic images, multimedia, and word processor documents (see Table C.4).

TABLE C.4 Binary Datatypes
Datatype Description

BINARY Fixed-length binary data (maximum length may
vary from 255 bytes to 8,000 bytes, depending on
implementation)

LONG RAW Variable-length binary data up to 2GB

RAW (called BINARY by Fixed-length binary data up to 255 bytes

some implementations)

VARBINARY Variable-length binary data (maximum length varying

from 255 bytes to 8,000 bytes is typical, depending
on implementation)

Comparing Datatypes

If you would like to see a real-world example of database comparisons, look at
the table creation scripts used to build the example tables in this book (see
Appendix A, “Sample Table Scripts”). By comparing the scripts used for different
DBMSs, you'll see firsthand just how complex a task datatype matching is.

This page intentionally left blank

SQL Reserved Words

SQL is a language made up of keywords—special words that are used in performing
SQL operations. Special care must be taken to not use these keywords when naming
databases, tables, columns, and any other database objects. Thus, these keywords are
considered reserved.

This appendix contains a list of the more common reserved words found in major
DBMSs. Please note the following:

» Keywords tend to be very DBMS-specific, and not all the keywords that
follow are used by all DBMSs.

» Many DBMSs have extended the list of SQL reserved words to include
terms specific to their implementations. Most DBMS-specific keywords are
not listed in the following list.

» To ensure future compatibility and portability, it is a good idea to avoid any
and all reserved words, even those not reserved by your own DBMS.

ABORT ARE BEFORE
ABSOLUTE AS BEGIN
ACTION ASC BETWEEN
ACTIVE ASCENDING BIGINT
ADD ASSERTION BINARY
AFTER AT BIT

ALL AUTHORIZATION BLOB
ALLOCATE AUTO BOOLEAN
ALTER AUTO-INCREMENT BOTH
ANALYZE AUTOINC BREAK
AND AVG BROWSE

ANY BACKUP BULK

BY

BYTES
CACHE
CALL
CASCADE
CASCADED
CASE

CAST
CATALOG
CHANGE
CHAR
CHARACTER
CHARACTER_LENGTH
CHECK
CHECKPOINT
CLOSE
CLUSTER
CLUSTERED
COALESCE
COLLATE
COLUMN
COLUMNS
COMMENT
COMMIT
COMMITTED
COMPUTE
COMPUTED

CONDITIONAL

APPENDIX D: SQL Reserved Words

CONFIRM
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTAINING
CONTAINS
CONTAINSTABLE
CONTINUE
CONTROLROW
CONVERT

COPY

COUNT

CREATE

CROSS
CSTRING

CUBE

CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT TIMESTAMP
CURRENT_USER
CURSOR
DATABASE
DATABASES
DATE
DATETIME

DAY

DBCC

DEALLOCATE

DEBUG

DEC

DECIMAL

DECLARE

DEFAULT

DELETE

DENY

DESC

DESCENDING

DESCRIBE

DISCONNECT

DISK

DISTINCT

DISTRIBUTED

DIV

DO

DOMAIN

DOUBLE

DROP

DUMMY

DUMP

ELSE

ELSEIF

ENCLOSED

END

ERRLVL

ERROREXIT

ESCAPE

ESCAPED

EXCEPT

EXCEPTION

EXEC

EXECUTE

EXISTS

EXIT

EXPLAIN

EXTEND

EXTERNAL

EXTRACT

FALSE

FETCH

FIELD

FIELDS

FILE

FILLFACTOR

FILTER

FLOAT

FLOPPY

FOR

FORCE

FOREIGN

FOUND

FREETEXT

FREETEXTTABLE

SQL Reserved Words

FROM

FULL
FUNCTION
GENERATOR
GET
GLOBAL

GO

GOTO
GRANT
GROUP
HAVING
HOLDLOCK
HOUR
IDENTITY
IF

IN
INACTIVE
INDEX
INDICATOR
INFILE
INNER
INOUT
INPUT
INSENSITIVE
INSERT
INT
INTEGER

INTERSECT

223

INTERVAL

INTO

IS

ISOLATION

JOIN

KEY

KILL

LANGUAGE

LAST

LEADING

LEFT

LENGTH

LEVEL

LIKE

LIMIT

LINENO

LINES

LISTEN

LOAD

LOCAL

LOCK

LOGFILE

LONG

LOWER

MANUAL

MATCH

MAX

MERGE

224

MESSAGE

MIN

MINUTE

MIRROREXIT

MODULE

MONEY

MONTH

MOVE

NAMES

NATIONAL

NATURAL

NCHAR

NEXT

NEW

NO

NOCHECK

NONCLUSTERED

NONE

NOT

NULL

NULLIF

NUMERIC

OF

OFF

OFFSET

OFFSETS

ON

ONCE

ONLY

APPENDIX D: SQL Reserved Words

OPEN

OPTION

OR

ORDER

OUTER

OUTPUT

OVER

OVERFLOW

OVERLAPS

PAD

PAGE

PAGES

PARAMETER

PARTIAL

PASSWORD

PERCENT

PERM

PERMANENT

PIPE

PLAN

POSITION

PRECISION

PREPARE

PRIMARY

PRINT

PRIOR

PRIVILEGES

PROC

PROCEDURE

PROCESSEXIT

PROTECTED

PUBLIC

PURGE

RAISERROR

READ

READTEXT

REAL

REFERENCES

REGEXP

RELATIVE

RENAME

REPEAT

REPLACE

REPLICATION

REQUIRE

RESERV

RESERVING

RESET

RESTORE

RESTRICT

RETAIN

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROWCOUNT

RULE

SAVE
SAVEPOINT
SCHEMA
SECOND
SECTION
SEGMENT
SELECT
SENSITIVE
SEPARATOR
SEQUENCE
SESSION USER
SET
SETUSER
SHADOW
SHARED
SHOW
SHUTDOWN
SINGULAR
SIZE
SMALLINT
SNAPSHOT
SOME

SORT
SPACE

SQL
SQLCODE
SQLERROR

STABILITY

SQL Reserved Words

STARTING
STARTS
STATISTICS
SUBSTRING
SUM
SUSPEND
TABLE
TABLES
TEMP
TEMPORARY
TEXT
TEXTSIZE
THEN

TIME
TIMESTAMP
TO

TOP
TRAILING
TRAN
TRANSACTION
TRANSLATE
TRIGGER
TRIM

TRUE
TRUNCATE
TYPE
UNCOMMITTED
UNION

UNIQUE

225

UNTIL

UPDATE

UPDATETEXT

UPPER

USAGE

USE

USER

USING

VALUE

VALUES

VARCHAR

VARIABLE

VARYING

VERBOSE

VIEW

VOLUME

WAIT

WAITFOR

WHEN

WHERE

WHILE

WITH

WORK

WRITE

WRITETEXT

XOR

YEAR

ZONE

This page intentionally left blank

Index

A

aggregate functions, 79-80
AVG(), 80-81
combining, 8687
COUNTY(), 81-82
DISTINCT keyword, 85-86
MAX(), 82-83
MIN(), 83-84
performing on distinct values, 85-86
SUM(), 84-85
using with joins, 123-124
aliases, 63-65
naming, 87
table, 117-118
ALL clause, 91
ALTER TABLE statement, 155-157, 196
syntax, 209
Analysis icon, 3
ANSI SQL, 10
controlling transactions, 182
inner join syntax, 113
application filtering, 34
arguments. See also keywords
DISTINCT, 85-86
asterisk (*) wildcard, 17
authentication, 202
authorization, 202
AVG() function, 80-81
DISTINCT keyword, 85-86

binary datatypes, 219
brackets ([]) wildcard, 55-57
breaking up data, 7

C

calculated fields, 59-60
concatenating fields, 60-63
performing mathematical calculations,

65-67
subqueries as, 103-105
testing calculations, 67
using aliases, 63—65
using with views, 168—169

case sensitivity, 30
of SQL, 15
of wildcards, 52

check constraints, 197-198

choosing the right DBMS, 11-12

clauses, 26. See also operators
ALL, 91
GROUP BY, 90-91, 94-95
HAVING, 91-94
IS NULL, 38-39
ORDER BY, 26-27, 28, 42

and GROUP BY, 94-95
ordering, 96
quotes, when to use, 37

228 clauses

WHERE, 33-34

checking against a single value,
35-36

checking for a range of values,
37-38

checking for nonmatches, 36-37
comparison with HAVING, 92

filtering unwanted data with
views, 167—168

importance of in joins, 110-112
operators, 34-35
and order of evaluation, 43—45
quotes, when to use, 37
and UNION, 132
wildcards, 51-52
client formatting, 60
CLOSE statement, 192
closing cursors, 191-192
cloud-based DBMSs, 11
color coding, 101
columns, 7-8
all, retrieving, 17
datatypes, 7-8
derived, 65

fully qualified column names, 105,
110

joined, 115
multiple, retrieving, 16
NULL, 153-154

omitting from INSERT statements,
139

position, sorting by, 28

primary keys, 9

sorting
by multiple columns, 27
specifying direction of sort,

29-30

sorting data, 25-27

specifying by relative position, 91

value, deleting, 147

combined queries, 127

creating, using UNION operator,
127-131

including or eliminating duplicate
rows, 131-132
sorting results, 132—133
combining
aggregate functions, 8687
WHERE clauses
with AND operator, 41-42
with OR operator, 42—43
comments, 21-22, 177
COMMIT statement, 182—183
syntax, 209-210
commits, 181
comparing datatypes, 219
compatibility
function, 69-70
operator, 35, 37
concatenating fields, 60-63
constraints, 193-194
check, 197-198
foreign keys, 195-196
primary keys, 194-195
unique, 196-197
controlling transactions, 181-182

copying and pasting data between tables,
141-142

COUNT() function, 81-82
CREATE INDEX statement, syntax, 210

CREATE PROCEDURE statement, syntax,
210

CREATE SELECT statement, 141-142
CREATE TABLE statement, 151-153
specifying default values, 154—155
syntax, 210
working with NULL values, 153-154
creating

combined queries, using UNION
operator, 127-131

cursors, 188-189
groups, 90-91
joins, 109-110
for multiple tables, 113115
primary keys, 194-195

EXTRACT() function

229

stored procedures, 174—178
tables, 151-153

working with NULL values,
153-154

views, 164
cross joins, 112
currency datatypes, 218
cursors, 187-188
closing, 191-192
creating, 188-189
working with, 188, 189-191

data grouping, 89
creating groups, 90-91

data insertion, 135
inserting complete rows, 136—138
inserting multiple rows, 141
inserting partial rows, 138—139
inserting retrieved data, 140-141
specifying the column list, 138

databases, 5-6. See also transaction
processing

breaking up data, 7
failures, 180
indexes, 198-200
relational tables, 107-108
security, 202
string, 216-217
tables, 6-7

columns, 7-8

rows, 8

schema, 7, 179

datatypes, 7-8, 74, 197

binary, 219
comparing, 219
currency, 218
date and time, 218
numeric, 217
reasons for using, 215
user-defined, 198

date and time datatypes, 218

date and time functions, 71, 74-76
DATEPART() function, 75

Db2, 11

DBMSs (Database Management Systems),
2,6, 13,21

choosing the right one, 11-12
color coding, 101
controlling transactions, 181-182
cursors, 187-188

working with, 188, 189-191
function compatibility, 69-70
installing, 11
operator compatibility, 37
referential integrity, 193—-194
remote, 11
reserved words, 221-225

rules and restrictions for using views,
163-164

stored procedures, 172, 173
triggers, 200-201
user-defined datatypes, 198
DECLARE statement, 189
DEFAULT values, 155
DELETE statement, syntax, 211
deleting
column values, 147
table data, 147-148, 149
tables, 157-158
derived columns, 65
DESC keyword, 30
dictionary sort order, 30
DISTINCT keyword, 18, 85-86
DROP statement, syntax, 211
DROP TABLE statement, 157-158

email addresses, partial, searching for, 53
executing, stored procedures, 173—-174
extensions, 10

EXTRACT() function, 75

230 FETCH statement

F

FETCH statement, 189-191
fields. See also calculated fields
calculated, 59-60
subqueries as, 103—105
using with views, 168—169
trailing spaces, 54
filter conditions, 33. See also clauses;
operators; wildcards
checking against a single value, 35-36
checking for a range of values, 37-38
checking for no value, 38-39
checking for nonmatches, 3637
sets, 55
subqueries, 99-103
wildcards, percent sign (%), 52-54

filtering unwanted data with views,
167-168

foreign keys, 9, 148, 195-196
and accidental deletion of rows, 196
formatting functions, 71
FULL OUTER JOIN syntax, 123
fully qualified column names, 105, 110
functions, 69
aggregate, 79-80
AVG(), 80-81
combining, 86-87
COUNT(), 81-82
DISTINCT keyword, 85-86
MAX(), 82-83
MIN(), 83-84

performing on distinct values,
85-86

SUM(), 84-85

using with joins, 123—124
date and time, 74-76
DATEPART(), 75
EXTRACT(), 75
numeric, 7677
problem with, 69-70
SOUNDEX(), 72-74
text manipulation, 71-74

TRIM(), 63
types of, 70-71
UPPER(), 71-72

GROUP BY clause, 90-91, 94-95
groups

creating, 90-91

filtering, 91-94

guidelines, for updating and deleting data,
149

HAVING clause, 91-94
icons
Analysis, 3
Input, 3
Output, 3
implicit commits, 182
indexes, 198-200
individual columns, retrieving, 14—15
inline comments, 21-22
inner joins, 112-113
Input icon, 3
INSERT SELECT statement, 140-141
INSERT statement, 135
column names, 141
inserting complete rows, 136-138
inserting multiple rows, 141
inserting partial rows, 138-139
inserting retrieved data, 140-141
INTO keyword, 136
omitting columns, 139
omitting required values, 139
specifying the column list, 138
syntax, 211
and system security, 135
triggers, 200-201
using values, 138

MySQL 231

inserting data. See data insertion
installing, DBMSs, 11
IS NULL clause, 38-39

J

FROM, 146, 148
INTO, 136
TOP, 19-21

L

joins, 107. See also combined queries
with aggregate functions, 123-124
columns, 115
conditions, 124-125
creating, 109-110
cross, 112
FULL OUTER JOIN syntax, 123

importance of the WHERE clause,
110-112

inner, 112-113

maximum number of tables in, 114
for multiple tables, 113-115
natural, 120-121

outer, 121-123

and performance, 115

reasons for using, 108—109

self, 118-120

simplifying with views, 164—165
table aliases, 117-118

K

keys, 193
foreign, 195-196
primary, 194-195
AS keyword, 63
INTO keyword, 136
FROM keyword, 146, 148
keywords, 13, 43. See also operators
AND, 41-42
AS, 63
clauses, 26
DESC, 30
DISTINCT, 18, 85-86

LIKE operator, 51-52
limiting results, 19-21
Live SQL, 11

manual move process, 157
MariaDB
concatenating fields, 61-62
controlling transactions, 181

cursors, 188
date and time functions, 76
and the NOT operator, 48

obtaining sample tables,
207-208

savepoints, 184—-185
mathematical calculations, performing,
65-67
MAX() function, 82—-83
Microsoft SQL
cursors, 188

obtaining sample tables,
207-208

savepoints, 184—185
stored procedures, 176
triggers, 201
MIN() function, 83-84
multiple columns, retrieving, 16
MySQL, 21
concatenating fields, 61-62
cursors, 188
date and time functions, 76

obtaining sample tables,
207-208

savepoints, 184—185

232 naming aliases

naming aliases, 87
natural joins, 120-121
nonequality operator, compatibility with
other DBMSs, 37
nonmatches, checking for, 36-37
nonnumeric data
using MAX() function with, 83
using MIN() function with, 84
nonrelational databases, 108
NOT NULL columns, 153-154
NOT operator, 4648
in MariaDB, 48
NULL value, 82, 84, 147, 153-154
checking for, 38-39
and DEFAULT value, 155
and wildcards, 54
numeric datatypes, 217
numeric functions, 70, 76-77

()

obtaining sample tables, 207-208
ODBC dates, 218
OPEN CURSOR statement, 189
operations, securing, 202
BETWEEN operator, 37-38
AND operator, 41-42
OR operator, 42-43
IN operator, 45-46
BETWEEN operator, 75
OR operator, order of evaluation, 43—45
AND operator, order of evaluation, 43—45
operators
AND, 41-42
BETWEEN, 37-38, 75
compatibility, 35, 37
concatenation, 60-63
IN, 45-46
LIKE, 51-52

mathematical, 66-67

NOT, 46-48

OR, 42-43

and order of evaluation, 43-45
UNION

creating combined queries with,
127-131

rules, 130-131
WHERE clause, 34-35
Oracle
to_date() function, 76
controlling transactions, 181
cursors, 189
obtaining sample tables, 207-208
savepoints, 184-185
stored procedures, 175
triggers, 201
ORDER BY clause, 26-27, 28, 42
dictionary sort order, 30
and GROUP BY, 94-95
specifying direction of sort, 29-30
order of evaluation, 43—45
outer joins, 121-123
in SQLite, 122
Output icon, 3

P

padding field contents, 54
parentheses, using in WHERE clauses, 45
partial email addresses, searching for, 53
partial rows, inserting, 138—139
percent sign (%) wildcard, 52-54
performance
and combined queries, 130
and indexes, 199
multiple-table joins, effect on, 115
and views, 163

performing mathematical calculations,
65-67
plus sign (+), concatenating fields, 60-61

SELECT INTO statement

233

portable code, 70
PostgreSQL
controlling transactions, 182
cursors, 189
obtaining sample tables, 207-208
triggers, 201
predicates, 52. See also operators
primary keys, 9, 108, 194-195
creating, 194-195
indexes, 198-200
and NULL values, 154
in SQLite, 195

Q-R

quotes
in strings, 217
when to use, 37
records, 8. See also rows
referential integrity, 193-194, 206
foreign keys, 195-196
primary keys, 194-195
reformatting retrieved data with views,
165-167

relational tables, 107-108. See also
transaction processing

referential integrity, 193-194
remote DBMSs, 11
removing, table data, 147-148, 149
renaming
tables, 158
views, 164
replacing, tables, 153
reserved words, 221-225
restrictions, for using views, 163—-164
result sets, 55, 187
limiting, 19-21
retrieved data
inserting, 140-141
reformatting with views, 165-167
result sets, 187

retrieving
columns
all, 17
individual, 14-15
multiple, 16
distinct rows, 17-18
reusable views, creating, 165
ROLLBACK statement, 182
syntax, 212
rollbacks, 180
rows, 8. See also joins
accidental deletion of, 196
duplicate
including or eliminating in
combined queries, 131-132
inserting, 136-138, 141
partial, inserting, 138—139
primary keys, 9
retrieving, 17-18
RTRIM() function, 63
rules, 193
UNION operator, 130-131
for views, 163-164

S

sample tables
Customers, 205
obtaining, 207-208
Orderltems, 206207
Orders, 205-206
Products, 204-205
Vendors, 204
SAVEPOINT statement, 184—185
savepoints, 181, 183-185
schema, 7, 179
search patterns, 51. See also wildcards
wildcards, 53
security. See system security
SELECT INTO statement, 141-142

234 SELECT statement

SELECT statement, 13. See also clauses; self joins, 118-120

aliases, 63-65

calculated fields, 59-60

clause ordering, 96

columns
all columns, retrieving, 17
individual, retrieving, 14—15
multiple, retrieving, 16

combined queries

creating with UNION operator,
127-131

including or eliminating
duplicate rows, 131-132

sorting results, 132—133
concatenating fields, 60-63
joins, 108-109

with aggregate functions,
123-124

creating, 109-110
FULL OUTER JOIN syntax, 123

importance of the WHERE
clause, 110-112

inner, 112-113

maximum number of tables in,
114

for multiple tables, 113115

natural, 120-121

outer, 121-123

and performance, 115

self, 118—120

simplifying with views, 164—165
limiting results, 19-21
ORDER BY clause, 26-27, 28

reformatting retrieved data with views,
165-167

rows, retrieving, 17-18
subqueries, 99-103

as calculated fields, 103—105
syntax, 212
testing calculations, 67
WHERE clause, 33-34

filter conditions server formatting, 60

sets, 55
sorting data, 25-27
and case sensitivity, 30
by column position, 28
from combined query results, 132—133
indexes, 198-200
multiple columns, 27
specifying direction of sort, 29-30
SOUNDEX() function, 72-74

SQL, 1, 10. See also databases; DBMSs
(Database Management Systems);
statements

and application filtering, 34
case sensitivity, 15
client versus server formatting, 60
comments, 21-22
extensions, 10
reserved words, 221-225

SQLite
ALTER TABLE statement, 157
date and time functions, 76
obtaining sample tables, 207-208
outer joins, 122
primary keys, 195
steps, 187
support for stored procedures, 172
views, 161

statements. See also clauses; functions;
keywords; operators; SELECT statement

ALTER TABLE, 155-157, 196
syntax, 209
asterisk (*) wildcard, 17
clauses, 26
CLOSE, 192
comments, 21-22
COMMIT, 182-183
syntax, 209-210
CREATE INDEX, syntax, 210
CREATE SELECT, 141-142

system security 235

CREATE TABLE, 151-153

specifying default values,
154-155

syntax, 210

working with NULL values,
153-154

DECLARE, 189

DROP TABLE, 157-158

FETCH, 189-191

INSERT, 135
column names, 141
inserting complete rows, 136—138
inserting multiple rows, 141
inserting retrieved data, 140-141
omitting columns, 139
omitting required values, 139
partial rows, inserting, 138—139
syntax, 211
using values, 138

INSERT SELECT, 140-141

INSERT statement, specifying the
column list, 138

OPEN CURSOR, 189
ROLLBACK, 182
syntax, 212
SAVEPOINT, 184185
SELECT, 13
limiting results, 19-21
retrieving all columns, 17
retrieving distinct rows, 17-18

retrieving individual columns,
14-15

retrieving multiple columns, 16
syntax, 212

stored procedures, 171
creating, 174-178
executing, 173—174
invoking the SQL server, 176
Microsoft SOL version, 176
Oracle version, 175
reasons for using, 172—173

terminating, 15
transaction processing, 181-182
TRUNCATE TABLE, 148
UPDATE, 145-147
syntax, 213
using subqueries in, 146
white space, 15, 152
steps, 187. See also cursors
stored procedures, 171
creating, 174-178
executing, 173-174
invoking the SQL server, 176
Microsoft SQL version, 176
Oracle version, 175
reasons for using, 172-173
triggers, 200-201
string datatypes, 216-217
quotes, 37, 217
subqueries, 99-103, 120
as calculated fields, 103—-105
in UPDATE statements, 146
SUM() function, 84-85
syntax
ALTER TABLE, 209
COMMIT statement, 209-210
CREATE INDEX statement, 210

CREATE PROCEDURE statement,
210

CREATE TABLE statement, 210
DELETE statement, 211
DROP statement, 211
INSERT statement, 211
ROLLBACK statement, 212
SELECT statement, 212
UPDATE statement, 213

system functions, 71

system security, 202
and the DELETE statement, 147
stored procedures, 173
and the UPDATE statement, 145
using the INSERT statement, 135

236

tables

T

tables, 6-7. See also relational tables;
sample tables; views

aliases, 117-118
breaking up data, 7
columns, 7-8
datatypes, 7-8
derived, 65
multiple, retrieving, 16
position, sorting by, 28
retrieving, 14-15
sorting by multiple, 27
specifying direction of sort,
29-30
constraints, 193-194
copying and pasting into, 141-142
creating, 151-153

working with NULL values,
153-154

deleting, 157158
deleting data from, 147-148, 149
joining, 113-115
making copies of, 142
manual move process, 157
names, 6
renaming, 158
replacing, 153
retrieving information from, 13
rows, 8
primary keys, 9
schema, 7, 179
sorting data, 25-27
updating, 145-147, 155-157
terminating, statements, 15
testing, calculations, 67
text functions, 70
text manipulation functions, 71-74

time and date functions. See date and time
functions

TOP keyword, 19-21
trailing spaces, 54-55

transaction processing, 179-181
COMMIT statement, 182-183
implicit commits, 182
ROLLBACK statement, 182
savepoints, 183-185

transactions, 180
controlling, 181-182

triggers, 200-201

TRIM() function, 63

TRUNCATE TABLE statement, 148

underscore (_) wildcard, 54-55
UNION operator

creating combined queries with,
127-131

including or eliminating duplicate
rows, 131-132

rules, 130-131

sorting combined query results,
132-133

and WHERE clause, 132
unions, 127
unique constraints, 196—-197
UPDATE statement, 145-147

FROM keyword, 146

syntax, 213

triggers, 200-201

using subqueries in, 146
updating data, 145-147, 155-157
UPPER() function, 71-72
user-defined datatypes, 198

Vv

views, 161
creating, 164
filtering unwanted data, 167-168
and performance, 163
reasons for using, 162

zero characters

237

reformatting retrieved data, 165-167

renaming, 164

reusable, 165

rules and restrictions, 163-164
simplifying complex joins, 164-165
using with calculated fields, 168169

WHERE clause, 33-34. See also filter
conditions; subqueries

checking against a single value, 35-36
checking for a range of values, 37-38
checking for nonmatches, 36-37
comparison with HAVING, 92

filtering unwanted data with views,
167-168

importance of in joins, 110-112
IS NULL, 38-39

keywords, 43

NOT operator, 46—48

BETWEEN operator, 37-38
IN operator, 45-46

operators, 34-35

and order of evaluation, 43-45
quotes, when to use, 37

and UNION, 132

using parentheses in, 45
wildcards, 51-52

wildcards, 17, 51, 54-55

brackets ([]), 55-57
case sensitivity, 52

and NULL values, 54
percent sign (%), 52-54
tips for using, 57
trailing spaces, 54
underscore (_), 54-55

X-Y-Z

zero characters, 53

This page intentionally left blank

To... See...

... learn about SQL Page 5

... retrieve data from a database table Page 13
.. sort retrieved data Page 25
.. apply filters to data retrieval Page 33
... use advanced filtering techniques Page 41
... perform wildcard searches Page 51
... use calculated fields and aliases Page 59
... take advantage of data manipulation functions Page 69
.. summarize your query results Page 79
... group query results Page 89
... use subqueries Page 99
... use subqueries Page 107
... use advanced join types Page 117
... combine queries into a single result set Page 127
... insert data into tables Page 135
... update and delete table data Page 145
... create and alter database tables Page 151
... create and use views Page 161
... learn about stored procedures Page 171
... implement transaction processing Page 179
... learn about cursors Page 187

... use constraints, indexes, and triggers Page 193

Frequently Used SQL Statements

ALTER TABLE

ALTER TABLE is used to update the schema of an existing table.
To create a new table use CREATE TABLE.

See Lesson 17, “Creating and Manipulating Tables.”

COMMIT

coMMIT is used to write a transaction to the database.

See Lesson 20, ‘“Managing Transaction Processing.”

CREATE INDEX

CREATE INDEX is used to create an index on one or more columns.
See Lesson 22, “Understanding Advanced SQL Features.”
CREATE TABLE

CREATE TABLE is used to create new database tables.

To update the schema of an existing table use ALTER TABLE.
See Lesson 17, “Creating and Manipulating Tables.”

CREATE VIEW

CREATE VIEW is used to create a new view of one or more tables.
See Lesson 18, “Using Views.”

DELETE

DELETE deletes one or more rows from a table.

See Lesson 16, ‘“Updating and Deleting Data.”

DROP

DROP permanently removes database objects (tables, views, indexes, and so on).
See Lesson 17, “Creating and Manipulating Tables,” and Lesson 18,
“Using Views.”

INSERT

INSERT adds a single row to a table.

See Lesson 15, “Inserting Data.”

INSERT SELECT

INSERT SELECT inserts the results of a SELECT into a table.
See Lesson 15, “Inserting Data.”

ROLLBACK
ROLLBACK is used to undo a transaction block.

See Lesson 20, “Managing Transaction Processing.”
SELECT

SELECT is used to retrieve data from one or more tables (or views).

See Lesson 2, “Retrieving Data,” Lesson 3, “Sorting Retrieved Data,” and
Lesson 4, “Filtering Data.” (Lessons 2 through 14 all cover various aspects
of SELECT).

UPDATE

UPDATE updates one or more rows in a table.
See Lesson 16, “Updating and Deleting Data.”

This page intentionally left blank

Keep Learning with Ben Forta

et N:__FRT.A

Learn to use one of the most powerful text processing
and manipulation tools available

Ben Forta’s Learning Regular Expressions teaches you the
regular expressions that you really need to know in order
to perform all sorts of sophisticated text processing and
manipulation in just about every language and on every
platform.

informit.com/expressions

© informit.com

Pearson the trusted technology learning source

http://informit.com/expressions

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Who Is the Teach Yourself SQL Book For?
	DBMSs Covered in This Book
	Conventions Used in This Book
	1 Understanding SQL
	Database Basics
	What Is SQL?
	Try It Yourself
	Summary

	2 Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Limiting Results
	Using Comments
	Summary
	Challenges

	3 Sorting Retrieved Data
	Sorting Data
	Sorting by Multiple Columns
	Sorting by Column Position
	Specifying Sort Direction
	Summary
	Challenges

	4 Filtering Data
	Using the WHERE Clause
	The WHERE Clause Operators
	Summary
	Challenges

	5 Advanced Data Filtering
	Combining WHERE Clauses
	Using the IN Operator
	Using the NOT Operator
	Summary
	Challenges

	6 Using Wildcard Filtering
	Using the LIKE Operator
	Tips for Using Wildcards
	Summary
	Challenges

	7 Creating Calculated Fields
	Understanding Calculated Fields
	Concatenating Fields
	Performing Mathematical Calculations
	Summary
	Challenges

	8 Using Data Manipulation Functions
	Understanding Functions
	Using Functions
	Summary
	Challenges

	9 Summarizing Data
	Using Aggregate Functions
	Aggregates on Distinct Values
	Combining Aggregate Functions
	Summary
	Challenges

	10 Grouping Data
	Understanding Data Grouping
	Creating Groups
	Filtering Groups
	Grouping and Sorting
	SELECT Clause Ordering
	Summary
	Challenges

	11 Working with Subqueries
	Understanding Subqueries
	Filtering by Subquery
	Using Subqueries as Calculated Fields
	Summary
	Challenges

	12 Joining Tables
	Understanding Joins
	Creating a Join
	Summary
	Challenges

	13 Creating Advanced Joins
	Using Table Aliases
	Using Different Join Types
	Using Joins with Aggregate Functions
	Using Joins and Join Conditions
	Summary
	Challenges

	14 Combining Queries
	Understanding Combined Queries
	Creating Combined Queries
	Summary
	Challenges

	15 Inserting Data
	Understanding Data Insertion
	Copying from One Table to Another
	Summary
	Challenges

	16 Updating and Deleting Data
	Updating Data
	Deleting Data
	Guidelines for Updating and Deleting Data
	Summary
	Challenges

	17 Creating and Manipulating Tables
	Creating Tables
	Updating Tables
	Deleting Tables
	Renaming Tables
	Summary
	Challenges

	18 Using Views
	Understanding Views
	Creating Views
	Summary
	Challenges

	19 Working with Stored Procedures
	Understanding Stored Procedures
	Understanding Why to Use Stored Procedures
	Executing Stored Procedures
	Creating Stored Procedures
	Summary

	20 Managing Transaction Processing
	Understanding Transaction Processing
	Controlling Transactions
	Summary

	21 Using Cursors
	Understanding Cursors
	Working with Cursors
	Summary

	22 Understanding Advanced SQL Features
	Understanding Constraints
	Understanding Indexes
	Understanding Triggers
	Database Security
	Summary

	A: Sample Table Scripts
	Understanding the Sample Tables
	Obtaining the Sample Tables

	B: SQL Statement Syntax
	ALTER TABLE
	COMMIT
	CREATE INDEX
	CREATE PROCEDURE
	CREATE TABLE
	CREATE VIEW
	DELETE
	DROP
	INSERT
	INSERT SELECT
	ROLLBACK
	SELECT
	UPDATE

	C: Using SQL Datatypes
	String Datatypes
	Numeric Datatypes
	Date and Time Datatypes
	Binary Datatypes

	D: SQL Reserved Words
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

